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Preface

ASTACRYPT 2012, the 18th International Conference on Theory and Appli-
cation of Cryptology and Information Security, was held during December 2-6
in Beijing International Convention Center, Beijing, China. The conference was
sponsored by the International Association for Cryptologic Research (IACR) in
cooperation with the Chinese Association for Cryptologic Research (CACR). It
was also co-sponsored by the National Natural Science Foundation of China,
Huawei Technologies Co. Ltd., and Intel Corporation.

From 241 valid submissions, 43 were accepted for publication after a very
tough evaluation process. The Program Committee (PC) with the help of 256
external reviewers provided at least three independent reviews for each paper,
and five or more for those with PC contributions.

There were also two invited talks. On Monday, Dan Boneh delivered “Pairing-
based Cryptography: Past, Present, and Future” as the TACR Distinguished Lec-
ture. On Wednesday, Chuanming Zong spoke on “Some Mathematical Mysteries
in Lattices.” In addition to the invited talks, the conference also held a Rump
Session, full of academic opinions and enjoyment.

We selected a particularly large and broad PC and encouraged members to fo-
cus on the positive aspects of submissions. During the one-and-a-half-month-long
independent review phase, each PC member had about 28 submissions to review,
our PC members and the external reviewers worked very hard and efficiently.
In the following one-month daily discussion phase, PC members communicated
each other’s opinion on the board. We processed the anonymized questions from
the PC members to authors, which resulted in a better quality of review.

We would like to thank the authors of all 241 submissions. Their contributions
made this conference possible. We are extremely grateful to the PC members for
their enormous investment of time and effort in the difficult and delicate process
of review and selection, especially given the last decision days were in the midst
of summer vacation time. A list of PC members and external reviewers can be
found on the succeeding pages of this volume. We would like to thank Xuejia
Lai, Zhijun Qiang, Hao Chen, Juan Liu, Dongdai Lin, Bao Li, Meiqin Wang and
Jialin Huang for the conference organization. Special thanks go to Shai Halevi
for providing and setting up the splendid review software. We are most grateful
to Yue Sun, who provided technical support for the entire ASTACRYPT 2012
review process. We are also grateful to Dong Hoon Lee, the ASTACRYPT 2011
Program Chair, for his timely information and replies to the host of questions
we posed during the process.

September 2012 Xiaoyun Wang
Kazue Sako
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Pairing-Based Cryptography:
Past, Present, and Future

Dan Boneh*

Stanford University
dabo@cs.stanford.edu

Abstract. While pairings were first introduced in cryptography as a tool to attack
the discrete-log problem on certain elliptic curves, they have since found numer-
ous applications in the construction of cryptographic systems. To this day many
problems can only be solved using pairings. A few examples include collusion-
resistant broadcast encryption and traitor tracing with short keys, 3-way Ditfie-
Hellman, and short signatures.

In this talk we survey some of the existing applications of pairings to cryptog-
raphy, but mostly focus on open problems that cannot currently be solved using
pairings. In particular we explain where the current techniques fail and outline a
few potential directions for future progress.

One of the central applications of pairings is identity-based encryption and its
generalization to functional encryption. While identity-based encryption can be
built using arithmetic modulo composites and using lattices, constructions based
on pairings currently provide the most expressive functional encryption systems.
Constructing comparable functional encryption systems from lattices and com-
posite arithmetic is a wonderful open problem. Again we survey the state of the
art and outline a few potential directions for further progress.

Going beyond pairings (a.k.a bi-linear maps), a central open problem in public-
key cryptography is constructing a secure tri-linear or more generally a secure
n-linear map. That is, construct groups G and Gt where discrete-log in G is in-
tractable and yet there is an efficiently computable non-degenerate n-linear map
e : G" — Gr. Such a construct can lead to powerful solutions to the problems
mentioned in the first paragraph as well as to new functional encryption and ho-
momorphic encryption systems. Currently, no such construct is known and we
hope this talk will encourage further research on this problem.

* Supported by NSF, DARPA, AFOSR, Google, and Samsung.

X. Wang and K. Sako (Eds.): ASTACRYPT 2012, LNCS 7658, p. 1, 2012.
(© International Association for Cryptologic Research 2012



Some Mathematical Mysteries in Lattices

Chuanming Zong

Peking University

Lattice, as a basic object in Mathematics, has been studied by many promi-
nent figures, including Gauss, Hermite, Voronio, Minkowski, Davenport, Hlawka,
Rogers and many others still active today. It is one of the most important cor-
nerstones of Geometry of Numbers, a classic branch of Number Theory. During
recent decades, this pure mathematical concept has achieved remarkable applica-
tions in Cryptography, in particular its algorithm approaches. The main purpose
of this talk is to demonstrate some basic mathematical problems and results (old
and new) about lattices, which are probably useful in Cryptography in the fu-
ture. These problems reflect some of the main interests of the mathematicians
about lattices.

Before Minkowski, lattices were mainly studied through positive definitive
quadratic forms. In fact, to determine the minimal value of a positive definitive
quadratic form at integer points is equivalent to determine the length of the
shortest vectors (except o) of a lattice, which is also equivalent to determine the
maximal density of the corresponding lattice ball packings.

It was Minkowski who first studied the density §*(C) of the densest lattice
packings of a given centrally symmetric convex body C. In particular, he ob-
tained the first general lower bound of §*(C) for n-dimensional unit ball B. In
fact, to determine the density 6*(C) is to estimate the maximal length of the
shortest vectors of the lattices of determinant 1 with respect to certain met-
ric determined by C'. When C' is the unit ball, the metric is just the ordinary
Euclidean metric. Therefore, the shortest vector problem is a particular case of
the study about §*(B). There are lower bound and upper bound for §*(C') and
0*(B), however the asymptotic orders of both min §*(C') and 6*(B) are unknown.
For lattice kissing numbers we are facing the similar situation.

The density 6*(C) of the thinnest lattice covering of a centrally symmetric
convex body C' was first systematically studied by Rogers. In fact, it is equiva-
lent to determine the minimal length of the longest distance from a point to the
lattices of determinant 1 with respect to the metric determined by C'. Therefore,
the closest vector problem is a particular case of the study of §*(B). For par-
ticular object C', such as a ball in a given dimension, little is known about the
exact value of 6*(C).

Let v*(C) be the smallest number that there is a lattice A such that C'+ A is
a packing and v*(C)C + A is a covering. Equivalently, in every lattice packing
C + A there is a hole in which one can put a translate of (y*(C) — 1)C. In
1950, Rogers introduced and studied this number, in particular for the unit ball.
In fact, v*(C) is a bridge connecting ¢*(C) and 0*(C). In other words, it is a

X. Wang and K. Sako (Eds.): ASTACRYPT 2012, LNCS 7658, pp. 2-B] 2012.
© International Association for Cryptologic Research 2012



Some Mathematical Mysteries in Lattices 3

bridge connecting the packing radius and the covering radius of a lattice, with
respect to the metric determined by C. Some results about v*(C') and v*(B) are
known. At the same time, a number of fascinating mysteries about v*(C) and
their possible consequences remain unsolved.

Can you imagine that, in every three-dimensional lattice ball packing there is
a straight line of infinite length which does not meet any of the balls; when n
is large, in every n-dimensional lattice ball packing there is a free hyperplane of
dimension more or less n/logn? But, this is true!



Constant-Size Structure-Preserving Signatures:
Generic Constructions and Simple Assumptions

Masayuki Abe!, Melissa Chase?, Bernardo David?,
Markulf Kohlweiss2, Ryo Nishimaki', and Miyako Ohkubo*

L NTT Secure Platform Laboratories
{abe.masayuki,nishimaki.ryo}@lab.ntt.co.jp
2 Microsoft Research
{melissac,markulf}@microsoft.com
3 University of Brasilia
bernardo.david@aluno.unb.br
4 Security Architecture Laboratory, NSRI, NICT
m.ohkubo@nict.go.jp

Abstract. This paper presents efficient structure-preserving signature schemes
based on assumptions as simple as Decisional-Linear. We first give two general
frameworks for constructing fully secure signature schemes from weaker build-
ing blocks such as variations of one-time signatures and random-message secure
signatures. They can be seen as refinements of the Even-Goldreich-Micali frame-
work, and preserve many desirable properties of the underlying schemes such as
constant signature size and structure preservation. We then instantiate them based
on simple (i.e., not g-type) assumptions over symmetric and asymmetric bilinear
groups. The resulting schemes are structure-preserving and yield constant-size
signatures consisting of 11 to 17 group elements, which compares favorably to
existing schemes relying on g-type assumptions for their security.

Keywords: Structure-preserving signatures, One-time signatures, Groth-Sahai
proof system, Random message attacks.

1 Introduction

A structure-preserving signature (SPS) scheme [[1] is a digital signature scheme with
two structural properties (i) the verification keys, messages, and signatures are all el-
ements of a bilinear group; and (ii) the verification algorithm checks a conjunction of
pairing product equations over the key, the message and the signature. This makes them
compatible with the efficient non-interactive proof system for pairing-product equations
by Groth and Sahai (GS) [30]. Structure-preserving cryptographic primitives promise
to combine the advantages of optimized number theoretic non-blackbox constructions
with the modularity and insight of protocols that use only generic cryptographic build-
ing blocks.

Indeed the instantiation of known generic constructions with a SPS scheme and the
GS proof system has led to many new and more efficient schemes: Groth [29] showed
how to construct an efficient simulation-sound zero-knowledge proof system (ss-NIZK)

X. Wang and K. Sako (Eds.): ASTACRYPT 2012, LNCS 7658, pp. 4-24] 2012.
(© International Association for Cryptologic Research 2012



Constant-Size Structure-Preserving Signatures under Simple Assumptions 5

building on generic constructions of [17)39/34]. Abe et al. [4] show how to obtain effi-
cient round-optimal blind signatures by instantiating a framework by Fischlin [20]. SPS
are also important building blocks for a wide range of cryptographic functionalities such
as anonymous proxy signatures [22], delegatable anonymous credentials [6], transfer-
able e-cash [23] and compact verifiable shuffles [16]. Most recently, [31] show how to
construct a structure preserving tree-based signature scheme with a tight security reduc-
tion following the approach of [26J18]. This signature scheme is then used to build a
ss-NIZK which in turn is used with the Naor-Yung-Sahai [35/38]] paradigm to build the
first CCA secure public-key encryption scheme with a tight security reduction. Exam-
ples for other schemes that benefit from efficient SPS are [ZU1118132/271537/2412 1128]].

Because properties (i) and (ii) are the only dependencies on the SPS scheme made by
these constructions, any structure-preserving signature scheme can be used as a drop-in
replacement. Unfortunately, all known efficient instantiations of SPS [4/1)2] are based
on so-called g-type or interactive assumptions that are primarily justified based on the
Generic Group model. An open question since Groth’s seminal work [29] (only partially
answered by [[15]) is to construct a SPS scheme that is both efficient — in particular
constant-size in the number of signed group elements — and that is based on assumptions
that are as weak as those required by the GS proof system itself.

Our contribution. Our first contribution consists of two generic constructions for cho-
sen message attack (CMA) secure signatures that combine variations of one-time sig-
natures and signatures secure against random message attacks (RMA). Both construc-
tions inherit the structure-preserving and constant-size properties from the underlying
components. The second contribution consists in the concrete instantiations of these
components which result in constant-size structure-preserving signature schemes that
produce signatures consisting of only 11 to 17 group elements and that rely only on ba-
sic assumptions such as Decisional-Linear (DLIN) for symmetric bilinear groups and
analogues of DDH and DLIN for asymmetric bilinear groups. To our knowledge, these
are the first constant-size structure-preserving signature schemes that eliminate the use
of g-type assumptions while achieving reasonable efficiency.

We instantiate the first generic construction for symmetric (Type-I) and the second
for asymmetric (Type-III) pairing groups. See Table[Ilin Section [7] for the summary of
efficiency of the resulting schemes. We give more details on our generic constructions
and their instantiations:

— The first generic construction (SIG1) combines a new variation of one-time sig-
natures which we call ragged one-time signatures and signatures secure against
random message attacks (RMA). A tagged one-time signature scheme, denoted by
TOS, is a signature scheme that attaches a fresh tag to a signature. It is unforge-
able with respect to tags that are used only once. In our construction, a message is
signed with our TOS scheme using a fresh random tag, and then the tag is signed
with the second signature scheme, denoted by rSIG. Since the rSIG scheme only
signs random tags, RMA-security is sufficient.

— The second generic construction (SIG2) combines partial one-time signatures and
signatures secure against extended random message attacks (XRMA). The latter is
anovel notion that we explain below. Partial one-time signatures, denoted by POS,
are one-time signatures for which only a part of the one-time key is renewed for
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every signing operation. They were first introduced by Bellare and Shoup [9] under
the name of two-tier signatures. In our construction, a message is signed with the
POS scheme and then the random one-time public-key is certified by the second
signature scheme, denoted by xSIG. The difference between a TOS scheme and
a POS scheme is that a one-time public-key is associated with a one-time secret-
key. Since the one-time secret-key is needed for signing, it must be known to the
reduction in the security proof. XRMA-security guarantees that xSIG is unforgeable
even if the adversary is given auxiliary information associated with the randomly
chosen messages (it is a random coin used for selecting the message). The auxiliary
information facilitates access to the one-time secret-key by the reduction.

— To instantiate SIG1, we construct structure-preserving TOS and rSIG signature
schemes based on DLIN over Type-I bilinear groups. Our TOS scheme yields
constant-size signatures and tags. The resulting SIG1 scheme is structure-preserving,
produces signatures consisting of 17 group elements, and relies solely on the DLIN
assumption.

— To instantiate SIG2, we construct structure-preserving POS and xSIG signature
schemes based on assumptions that are analogues of DDH and DLIN in Type-III
bilinear groups. The resulting SIG2 scheme is structure-preserving, produces sig-
natures consisting of 11 group elements for uniliteral messages in a base group or
14 group elements for biliteral messages from both base groups.

The role of partial one-time signatures is to compress a message into a constant number
of random group elements. This observation is interesting in light of [3] that implies
the impossibility of constructing collision resistant and shrinking structure-preserving
hash functions, which could immediately yield constant-size signatures. Our (extended)
RMA-secure signature schemes are structure-preserving variants of Waters’
dual-signature scheme [41]]. In general, the difficulty of constructing CMA-secure SPS
arises from the fact that the exponents of the group elements chosen by the adversary as
a message are not known to the reduction in the security proof. On the other hand, for
RMA security, it is the challenger that chooses the message and therefore the exponents
can be known in reductions. This is the crucial advantage for constructing (extended)
RMA-secure structure-preserving signature schemes based on Waters’ dual-signature
scheme.

Finally, we mention a few new applications. Among these is the achievement of
a drastic performance improvement when using our partial one-time signatures in the
work by Hofheinz and Jager [31] to construct CCA-secure public-key encryption
schemes with a proof of security that tightly reduces to DLIN or SXDH.

Related Works. Even, Goldreich and Micali [19] proposed a generic framework (the
EGM framework) that combines a one-time signature scheme and a signature scheme
that is secure against non-adaptive chosen message attacks (NACMA) to construct a
signature scheme that is secure against adaptive chosen message attacks (CMA).

In fact, our generic constructions can be seen as refinements of the EGM framework.
There are two reasons why the original framework falls short for our purpose. The first
is that relaxing to NACMA does not seem a big help in constructing efficient structure-
preserving signatures since the messages are still under the control of the adversary and
the exponents of the messages are not known to the reduction algorithm in the security
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proof. As mentioned above, resorting to (extended) RMA is a great help in this regard.
In [[19], they also showed that CMA-secure signatures exist iff RMA-secure signatures
exist. The proof, however, does not follow their framework and their impractical con-
struction is mainly a feasibility result. In fact, we argue that RMA-security alone is
not sufficient for the original EGM framework. As mentioned above, the necessity of
XRMA security arises in the reduction that uses RMA-security to argue security of the
ordinary signature scheme, as the reduction not only needs to know the random one-
time public-keys, but also their corresponding one-time secret keys in order to generate
the one-time signature components of the signatures. The auxiliary information in the
XRMA definition facilitates access to these secret keys. Similarly, tagged one-time sig-
natures avoid this problem as tags do not have associated secret values. The second
reason that the EGM approach is not quite suited to our task is that the EGM frame-
work produces signatures that are linear in the public-key size of the one-time signature
scheme. Here, tagged or partial one-time signature schemes come in handy as they al-
low the signature size to be only linear in the size of the part of the public key that is
updated. Thus, to obtain constant-size signatures, we require the one-time part to be
constant-size.

Hofheinz and Jager [31] constructed a SPS scheme by following the EGM
framework. The resulting scheme allows tight security reduction to DLIN but the size of
signatures depends logarithmically to the number of signing operation as their NACMA-
secure scheme is tree-based like the Goldwasser-Micali-Rivest signature scheme [26]].
Chase and Kohlweiss [15] and Camenisch, Dubovitskaya, and Haralambiev [13] con-
structed SPS schemes with security based on DLIN that improve the performance of
Groth’s scheme [29] by several orders of magnitude. The size of the resulting signa-
tures, however, are still linear in the number of signed group elements, and an order
of magnitude larger than in our constructions. Camenisch, Dubovitskaya, and Har-
alambiev constructed a constant-size SPS scheme based on simple assumptions over
composite-order groups [12].

Full Version. In this extended abstract, we do not have enough space to write complete
proofs, so we omitted them. Please see a full version on Cryptology ePrint Archive
(2012/285).

2 Preliminaries

Notation. Appending element y to a sequence X = (z1,...,Z,) is denoted by (X, y),
ie, (X,y) = (z1,...,2,,y). When algorithm A is defined for input = and output y,
notation y + A(x) for @ := {x1,...,x,} means that y; < A(x;) is executed for
i=1,...,nand y is set as y := (y1,...,yn). For set X, notation a < X denote
a uniform sampling from X. Independent multiple sampling from the same set X is
denoted by a, b, ¢, .. + X.

Bilinear groups. Let G be a bilinear group generator that takes security parameter 1*
and outputs a description of bilinear groups A := (p, G1, G2, G, ), where Gy, Go
and G are groups of prime order p, and e is an efficient and non-degenerating bilinear
map G; x G2 — Gr. Following the terminology in [25] this is a Type-III pairing. In
the Type-III setting G; # G2 and there are no efficient mapping between the groups in
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either direction. In the Type-III setting, we often use twin group elements, (G*, Ga) €
G1 x Go for some bases G and G. For X in G1, notation X denotes for an element
in G, that log X = logX where logarithms are with respect to default bases that are
uniformly chosen once for all and implicitly associated to A. Should their relation be
explicitly stated, we write X ~ X . We count the number of group elements to measure
the size of cryptographic objects such as keys, messages, and signatures. For Type-III
groups, we denote the size by (x, y) when it consists of  and y elements from G; and
Go, respectively. We refer to the Type-I setting when G; = Gg (i.e., there are efficient
mappings in both directions). This is also called the symmetric setting. In this case, we
define A := (p, G, Gr, e). When we need to be specific, the group description yielded
by G will be written as Aasym and Agym.

Assumptions. We first define computational and decisional Diffie-Hellman assumptions
(CDH;, DDH;) and decisional linear assumption (DLIN; ) for Type-III bilinear groups.
Corresponding more standard assumptions, CDH, DDH, and DLIN, in Type-I groups
are obtained by setting G; = G- and G = G in the respective definitions.

Definition 1 (Computation co-Diffie-Hellman Assumption: CDH;)
The CDH, assumption holds if, for any p.p.t. algorithm A, the probability Advg

(A) :==Pr[Z = G| A+ G(1);2,y « Zp; Z + A4, G, G*,Gv,G, G’”,Gy)]
negligible in .

co- cdh

Definition 2 (Decisional Diffie-Hellman Assumption in G;: DDH;)

Given A + G(1*), G « G*, (G*,GY, Zy) € G1® where Z; = G*1Y, Zy + G for
random x and y, any p.p.t. algorithm A decides whether b = 1 or 0 only with advantage
Advgﬁfl (\) that is negligible in \.

Definition 3 (Decisional Linear Assumption in G;: DLIN,)

Given A <+ G(1*), (G1,Ga,G3) + GI* and (G¥,GY, Zy) where Z, = G5 and
Zy = Gj for random x,y, z € Zy, any p.p.t. algorithm A decides whether b =1 or 0
only with advantage Advdl'"l()\) that is negligible in ).

For DDH; and DLIN;, we define an analogous assumption in Gy (DDH3) by swap-
ping G; and Gy in the respective definitions. In Type-III bilinear groups, it is assumed
that both DDH; and DDHjy hold simultaneously. The assumption is called the sym-
metric external Diffie-Hellman assumption (SXDH), and we define advantage Adeth
by AdvET()) = Advddhl()\) + Adv ddh2()\). We extend DLIN in a similar manner as
DDH, and SXDH.

Definition 4 (External Decision Llnear Assumption in G;: XDLIN;)
Given A + G(1*), (G1,G2,G3) 3 and (G¥,GY, G, Gy, Gs, G¥, GY, Z,) where
(G1,G2,G3) ~ (Gl7 Go, G3) 7, = G -ty and Zy = G5 for random z,y, z € Z,,
any p.p.t. algorithm A decides whether b = 1 or 0 only with advantage Aded“n (\) that
is negligible in \.

The XDLIN; assumption is equivalent to the DLIN; assumption in the generic bilinear
group model [40/10] where one can simulate the extra elements, G1, G2, G3, GY, GY,
in XDLIN; from G1,Ge, G3, G, GY in DLIN;. We define the XDLIN assumption
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analogously by giving @g” or G§ as Zy, to A instead. Then we define the simultaneous
external DLIN assumption, SXDLIN, that ‘assumes that both XDLIN; and XDLIN,
hold at the same time. By Advxgdy'd"{‘2 (Advsgxfﬂ{", resp.), we denote the advantage function
for XDLIN; (and SXDLIN, resp.).

Definition 5 (Double Pairing Assumption in G, [4]:DBP;)

Given A + G(1") and (G, G,) « G*2, any p.p.t. algorithm A outputs (Z, R) € G3>
that satisfies 1 = e(G, Z) e(Gy, R) only with probability Advdgl?%()\) that is negligible
in A

The double pairing assumption in Go (DBP>) is defined in the same manner by swap-
ping G; and Gs. It is known that DBP; (DBPs, resp.) is implied by DDH; (DDHs,
resp.) and the reduction is tight [4]. Note that the double pairing assumption does not
hold in Type-I groups since Z = G,, R = G is a trivial solution. The following
analogous assumption will be useful in Type-I groups.

Definition 6 (Simultaneous Double Pairing Assumption [14]: SDP)

Given A < G(1*) and (G.,G,, H.,H,) < G** any p.p.t. algorithm A outputs
(Z,R,S) € G*? that satisfies 1 = e(G.,Z) e(G.,R) N 1 = e(H.,Z) e(Hs,S)
only with probability Advs‘;&()\) that is negligible in ).

As shown in [[14] for the Type-I setting, the simultaneous double pairing assumption
holds for G if the decisional linear assumption holds for G.

3 Definitions

Common setup. All building blocks make use of a common setup algorithm Setup that
takes the security parameter 1* and outputs a global parameters gk that is given to all
other algorithms. Usually gk consists of a description A of a bilinear group setup and a
default generator for each group. In this paper, we include several additional generators
in gk for technical reasons. Note that when the resulting signature scheme is used in
multi-user applications different additional generators need to be assigned to individual
users or one needs to fall back on the common reference string model, whereas A and
the default generators can be shared. Thus we count the size of gk when we assess the
efficiency of concrete instantiations. For ease of notation, we make gk implicit except
w.r.t. key generation algorithms.

Signature schemes. We use the following syntax for signature schemes suitable for the
multi-user and multi-algorithm setting. The key generation function takes global param-
eter gk generated by Setup (usually it takes security parameter 1), and the message
space M is determined solely from gk (usually it is determined from a public-key).

Definition 7 (Signature Scheme). A signature scheme SIG is a tuple of three
polynomial-time algorithms (Key, Sign, Vrf) that;

- SIG.Key(gk) generates a long-term public-key vk and a secret-key sk.
— SIG.Sign(sk, msg) takes sk and message msg and outputs signature o.
- SIG.Vrf(vk, msg, o) outputs 1 for acceptance or 0 for rejection.
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Correctness requires that 1 = SIG.Vrf(vk, msg, o) holds for any gk generated by
Setup, any keys generated as (vk, sk) < SIG.Key(gk), any message msg € M, and
any signature o < SIG.Sign(sk, msg).

Definition 8 (Attack Game(ATK)). Let Osig be an oracle and A be an oracle al-
gorithm. We define a meta attack game as a sequence of execution of algorithms as
follows: ATK(A, \) =

[gk: — Setup(1*), pre « A(gk), (vk, sk) « SIG.Key(gk), (¢, msg") Ao“g(vk)]

Adversary A commits to pre, which is typically a set of messages, in the first run. This
formulation is to capture non-adaptive attacks. It is implicit that a state information
is passed to the second run of A. Let Q,, be a set of messages, for which A requests
signatures from its oracle before outputting the resulting forgery. The output of ATK is

(vk, 0T, msg’, Qm).

Definition 9 (Adaptive Chosen-Message Attack (CMA)). Adaptive chosen message
attack security is defined by the attack game ATK where pre is empty and oracle Osig is
the signing oracle that, on receiving a message msg, performs o < SIG.Sign(sk, msg),
and returns o.

Definition 10 (Random Message Attack (RMA)[19]). Random message attack se-
curity is defined by the attack game ATK where pre is empty and oracle Osig is the
following: on receiving a request, it chooses msg uniformly from M defined by gk,
computes signature o < SIG.Sign(sk, msg), and returns (o, msg).

Let MSGGen be a uniform message generator. It is a probabilistic algorithm that takes
gk and outputs msg € M that distributes uniformly over M. Furthermore, MSGGen
outputs auxiliary information aux that may give a hint about the random coins used for
selecting msg.

Definition 11 (Extended Random Message Attack (XRMA)). Extended random mes-
sage attack is attack game ATK where pre is empty and oracle Osig is the follow-
ing. On receiving a request, it runs (msg,aux) < MSGGen(gk), computes o <+
SIG.Sign(sk, msg), and returns (o, msg, aux).

Definition 12 (Unforgeability against ATK). Signature scheme SIG is unforgeable
against attack ATK (UF-ATK) where ATK € {CMA,RMA, XRMA}, if for all p.p.t. or-
acle algorithm A the advantage function Advgfaﬁ = Pr [mngr g Qm N 1=

SIG.Vrf(vk, of,msg) ’ (vk,oT,msg", Qm) < ATK(A, \)] is negligibel in \.

Fact 1.UF-CMA = UF-XRMA = UF-RMA, i.e., Advei¢T3 () > AdveldR®(\) >
AdvELI2 ().

Partial one-time and tagged one-time signatures. Partial one-time signatures, also
known as two-tier signatures [9]], are a variation of one-time signatures where only
part of the public-key must be updated for every signing, while the remaining part can
be persistent.
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Definition 13. [Partial One-Time Signature Scheme [|9]] A partial one-time signatures
scheme POS is a set of polynomial-time algorithms POS.{Key, Update, Sign, Vrf}.

- POS.Key(gk) generates a long-term public-key pk and a secret-key sk. The mes-
sage space M, is associated with pk. (Recall that we require that M, be com-
pletely defined by gk.)

- POS.Update() takes gk as implicit input, and outputs a pair of one-time keys
(opk, osk). We denote the space for opk by K op.

— POS.Sign(sk, msg, osk) outputs a signature o on message msqg based on sk and
osk.

— POS.Vrf(pk, opk,msg, o) outputs 1 for acceptance, or 0 for rejection.

For correctness, it is required that1 = POS.Vrf(pk, opk, msg, o) holds except for neg-
ligible probability for any gk, pk, opk, o, and msg € M., such that gk + Setup(1*),
(pk, sk) < POS.Key(gk), (opk, osk) <+ POS.Update(), o < POS.Sign(sk, msg, osk).

A tagged one-time signature scheme is a signature scheme whose signing function in
addition to the long-term secret key takes a tag as input. A tag is one-time, i.e., it must
be different for every signing.

Definition 14 (Tagged One-Time Signature Scheme). A ragged one-time signature
scheme TOS is a set of polynomial-time algorithms TOS.{Key, Tag, Sign, Vrf}.

— TOS.Key(gk) generates a long-term public-key pk and a secret-key sk. The mes-
sage space M is associated with pk.

— TOS.Tag() takes gk as implicit input and outputs tag. By T, we denote the space
for tag.

— TOS.Sign(sk,msg, tag) outputs signature o for message msg based on sk and
tag.

— TOS.Vrf(pk, tag, msg, o) outputs 1 for acceptance, or 0 for rejection.

Correctness requires that 1 = TOS.Vrf(pk, tag, msg, o) holds except for negligible
probability for any gk, pk, tag, o, and msg € My, such that gk < Setup(1?}),
(pk, sk) + TOS.Key(gk), tag + TOS.Tag(), o + TOS.Sign(sk, msg, tag).

A TOS scheme is POS scheme for which tag = osk = opk. We can thus give a security
notion for POS schemes that also applies to TOS schemes by reading Update = Tag
and tag = osk = opk.

Definition 15 (Unforgeability against One-Time Adapative Chosen-Message At-
tacks). A partial one-time signature scheme is unforgeable against one-time adaptive
chosen message attacks (OT-CMA) if for all p.p.t. oracle algorithm A the advantage

function Advpis™y is negligible in \, where Advpgg 3 () =
(opk, msg, o) € Qm s.t. gk < Setup(1?),

Pr | opk = opk A msg’ # msg A (pk, sk) < POS.Key(gk),
1 = POS.Vrf(pk, opk', ot, msgh) (opk™, ot msgh) « ACLOsig(pk)

Qm, is initially an empty list. Ot is the one-time key generation oracle that on receiving a
request invokes a fresh session j, performs (opk ;, osk ;) <— POS.Update(), and returns
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opk ;. Ostg is the signing oracle that, on receiving a message msg; for session j, per-
forms o < POS.Sign(sk,msg;, osk;), returns o to A, and records (opk ;, msg;, ;)
to the list QQ,,. Osig works only once for every session. Strong unforgeability is defined
as well by replacing condition msgt # msg with (msg',ot) # (msg, o).

We define a non-adaptive variant (OT-NACMA) of the above notion by integrating Ot
into Osig so that opk; and o; are returned to A at the same time. Namely, .A must
submit msg; before seeing opk ;. If a scheme is secure in the sense of OT-CMA, the
scheme is also secure in the sense of OT-NACMA. If a scheme is strongly unforgeable,
it is unforgeable as well. By Advpge 4™ () we denote the advantage of A in this non-
adaptive case. For TOS, we use the same notations, OT-CMA and OT-NACMA, and
define advantage functions Advige 4 and AdvSge s accordingly. For strong unforge-
abiltiy, we use label sot-cma and sot-nacma. '

We define a condition that is relevant for coupling random message secure signature

schemes with partial one-time and tagged one-time signature schemes in later sections.

Definition 16 (Tag/One-time Public-Key Uniformity). TOS is called uniform-tag if
TOS.Tag outputs tag that uniformly distributes over tag space T. Similarly, POS is

called uniform-key if POS.Update outputs opk that uniformly distributes over key space
K opk-

Structure-preserving signatures. A signature scheme is structure-preserving over a bi-
linear group A, if public-keys, signatures, and messages are all base group elements
of A, and the verification only evaluates pairing product equations. Similarly, POS
schemes are structure-preserving if their public-keys, signatures, messages, and tags or
one-time public-keys consist of base group elements and the verification only evaluates
pairing product equations.

4 Generic Constructions

4.1 SIG1: Combining Tagged One-Time and RMA-Secure Signatures

Let rSIG be a signature scheme with message space M., and TOS be a tagged one-time
signature scheme with tag space 7 such that M, = 7. We construct a signature scheme
SIG1 from rSIG and TOS. Let gk be a global parameter generated by Setup(1?*).

- SIG1.Key(gk): Run (pk,, sk:) < TOS.Key(gk), (vk,,sk.) < rSIG.Key(gk).
Output vk := (pk,, vk, ) and sk := (sky, sk;).

- SIGL.Sign(sk, msg): Parse sk into (ski, sky). Run tag < TOS.Tag(), o¢ <
TOS.Sign(sk¢, msg, tag), o, < rSIG.Sign(sk,, tag). Output o := (tag, o¢, o).

- SIGL.Vrf(vk, o, msg): Parse vk and o accordingly. Output 1, if 1 = TOS.Vrf(pk,,
tag, o¢,msg) and 1 = rSIG.Vrf(vk,, 0., tag). Output 0, otherwise.

We prove the above scheme is secure by showing a reduction to the security of each
component. As our reductions are efficient in their running time, we only relate success
probabilities.

Theorem 17. SIG1 is UF-CMA if TOS is uniform-tag and OT-NACMA, and rSIG is
UF-RMA. In particular, Advei&™ (N) < AdvigeE™ (N) + AdviGEE (V).
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Proof. Any signature that is accepted by the verification algorithm must either reuse an

existing tag, or sign a new tag. The success probability Advgfé’{?j()\) of an attacker on

ot-nacma

SIG1 is bounded by the sum of the success probabilities Adviogs (M) of an attacker

on TOS and the success probability Adv:.’;gf‘g () of an attacker on rSIG.

Game 0: The actual Unforgeability game. Pr(Game 0] = Advel&™ (V).

Game 1: The real security game except that the winning condition is changed to no
longer accept repetition of tags.

Lemma 18. | Pr[Game 0] — Pr[Game 1]| < AdvT5s5™ ()

Game 2: The fully idealized game. The winning condition is changed to reject all sig-
natures.

Lemma 19. | Pr[Game 1] — Pr[Game 2]| < Advfgig’:‘g(/\)
Thus Advei§ 4 (A) = Pr[Game 0] < AdviGESE™ (\) + AdviGE3 (N) as claimed.

Theorem 20. If TOS.Tag produces constant-size tags and signatures in the size of
input messages, the resulting SIG1 produces constant-size signatures as well. Further-
more, if TOS and rSIG are structure-preserving, so is SIG1.

We omit the proof of Theorem[20] as it is done simply by examining the construction.

4.2 SIG2: Combining Partial One-Time and XRMA-Secure Signatures

Let xSIG be a signature scheme with message space My, and POS be a partial one-
time signature scheme with one-time public-key space /C,,, such that M, = IC, ;. We
construct a signature scheme SIG2 from xSIG and POS. Let gk be a global parameter
generated by Setup(1*).

- SIG2.Key(gk): Run (pk,, sk,) < POS.Key(gk), (vks, skz) < xSIG.Key(gk).
Output vk := (pk,,, vk,) and sk := (skp, sk).

- SIG2.Sign(sk, msg): Parse sk into (sky, sk;). Run (opk, osk) <— POS.Update(),
op < POS.Sign(sk,, msg, osk), o, < xSIG.Sign(sk,, opk). Output o := (opk,
Opy Oz).

- SIG2.Vrf(vk,
o,msg): Parse vk and o accordingly. Output 1 if 1 = POS.Vrf(pk,, opk, oy,
msg), and 1 = xSIG.Vrf(vk,, 0., opk). Output 0, otherwise.

Theorem 21. SIG2 is UF-CMA if POS is uniform-key and OT-NACMA, and xSIG is
UF-XRMA w.r.t. POS.Update as the message generator. In particular, Adveig™ (\) <
AQVRGEE2 () + VTR ().

Proof. The proof is almost the same as that for Theorem [I71 The only difference ap-
pears in constructing C in the second step. Since POS.Update is used as the extended
random message generator, the pair (msg, auz) is in fact (opk, osk). Given (opk, osk),
adversary C can run POS.Sign(sk, msg, osk) to yield legitimate signatures.

Theorem 22. If POS produces constant-size one-time public-keys and signatures in
the size of input messages, resulting SIG2 produces constant-size signatures as well.
Furthermore, if POS and xSIG are structure-preserving, so is SIG2.
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5 Instantiating SIG1

We instantiate the building blocks TOS and rSIG of our first generic construction to
obtain our first SPS scheme. We do so in Type-I bilinear group setting. The resulting
SIG1 scheme is an efficient structure-preserving signature scheme based only on the
DLIN assumption.

Setup for Type-1I groups. The following setup procedure is common for all instantiations
in this section. The global parameter gk is given to all functions implicitly.

Setup(l’\) Run A = (p,G, Gr,e) + G(1*) and pick random generators (G, C, F, Uy,
Us) < G*°. Output gk := (A, G, C, F,Uy, Us).

The parameters gk fix the message space M, := {(C™,C™z2, F™1 Fm2 U™ UJ'?)
€ G° | (m1,mgq) € Z2} for the RMA-secure signature scheme defined below. For
our generic framework to work, the tagged one-time signature schemes should have the
same tag space.

Tagged one-time signature scheme. Basically, a tag in our scheme consists of a pair of
elements in G. However, due to a constraint from rSIG we show in the next section, the
tags will have to be in an extended form. We therefore parameterize the one-time key
generation function Update with a flag mode € {normal, extended} so that it outputs
a key in the original or extended form. Although mode is given to Update as input,
it should be considered as a fixed system-wide parameter that is common for every
invocation of Update and the key space is fixed throughout the use of the scheme.
Accordingly, this extension does not affect the security model at all.

TOS.Key(gk): Parse gk = (A, G, C, F,Uy,Us). Pick random ., Y, s, Ys, Tt, Y, T1,
Y1s--.» Tk, Y in Zp such that such that x,.y, # x5y, and compute G, := G*7, H,. :=
G¥,Gs := G Hy = GY=,Gy := G*",Hy = GY,Gy = G* Hy :=
G¥%,...,Gy = G* Hy := GY*.Outputpk := (G,,Gs, Gy, H,, Hg, H, Go, . . .,
Gk:a H(), L) Hk:) and sk := (xral'saxtayraysaytax()a vy Ty Yoy e ayk)

TOS.Tag(): Take generators G, C, F, Uy, Us from gk. Choose w1, wg < Z, and com-
pute tag := (C™,C%2, F*1, F*2 Ut Uy"?). Output tag.

TOS.Sign(sk, msg, tag): Parse msg to (M1, ..., M) and tag to (T1,T5, ... ). Parse
sk accordingly. Choose random m < Z, and let value M, = G™ Hle M;l.
(This is uniformly distributed.) Compute A := G=*T ™ H?:o M; ™ and B :=

G vT,™ H?:o M, Y. Since z,ys # sy, We can compute (: ’g) = (ZrayTh
(The determinant is nonzero.) Compute Z := A“B? and W := AYB®. Output
= (Z,W, My).

TOS.Vrf(pk, tag, msg, o): Accept if the following equalities hold:
e(Gr, Z) - e(Gs, W) - e(Gy, G H e(GyTy, M,

e(H,,Z)-e(Hs, W) -e(H;, G HeHTQ,
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We remark that the correctness of the extended tag (75, . . ., T6) is not examined within
this scheme. (We only need to show that the extended part is simulatable in the security
proof.) Since the tag is given to SIGr as a message, it is the verification function of SIGr
that verifies the correctness with respect to its message space, which is the same as the
tag space. The scheme is obviously structure-preserving and the correctness is easily
verified by simple calculation.

Theorem 23. The above TOS scheme is OT-CMA under the SDP. In particular, for
any A that makes at most q, signing queries, Advigs 4 (A) < ¢s - Advsgd%(/\) +1/p
holds.

Proof. We show a reduction algorithm that simulates the one-time adaptive chosen mes-
sage attack game for the adversary. The reduction gets an instance of the simultaneous
double pairing assumption, A, G, G5, H,, H,, and proceeds as follows.

Setup and Key Generation. It chooses &, 7, ju and sets Gy := GSG", and H; := HSH".
It chooses G € G and random w, v, 11, 9, and computes gk = (A, C, F,U,,Us) =
(A, G¥,G*Y,G¥" |, G¥V2). Tt chooses random p;, 0;, T;, computes G; = GPIGIi G =
GPiteTiGoitnTi and H; = HPHO H]' = HPtETi H2iH4Ti for i = 0.. .k, and sets
pk = (G,G,,Gs, Gy, H,, Hs, Hy, Gy, ... Gy, Hy, . .., Hy,). (Note that G;, H; are cor-
rectly distributed and give no information about 7;.) It sends pk, gk to the adversary.
The reduction will pick a random session j*, and assume that the adversary will try to
reuse tag from that session.

Queries to oracle Ot. When the adversary makes a query to the tag oracle Ot, choose
the next new session index j.

— For session j # j*: Pick random values p,0,7 < Z,. Compute (T1,T>) =
(GPGIGT, HPHIHT) = (GPH7GatnT HPHETHOHHT) and set T = (T, b,
Ty, TY, T, T5?). Store (§, p, 0, T), and return T to the adversary.

— For session j*. Pick random values p,0 < Z,. Compute (T1,T2) = (GLGY,
HPH?). Let T = (Th, T, T, Ty, Ty, T5?). Store (5*, p, o), and return T to the
adversary.

Queries to oracle Osig. When the adversary queries Osig for message M = (M, . ..,
My) € G* and session 7, proceed as follows.

— If the Ot has not yet produced a tag for session j, or Osig has already been queried
for session j, return L.

— For session j # j*: Look up the stored tuple (j, p, o, 7). Compute My = (G Hle
M -+ Note that for this choice of My, it will be the case that e(G¢, G)
Hf:() e(GTTT, M;) = e(Gy, MG Hle M]*T) = 1 and similarly e(H;, G)
Hf:o e(HTT, M;) = e(Hy, M*T7G Hle M]7) = 1. Note also that the tag
is independent of 7, and since 7 is uniformly distributed, then M is independent of
To, - - -, Tr €ven given tag. (To see this, let my, ..., my be the discrete logarithms
of My, ..., My respectively and note that for any choice of mq, ..., mg, 70,..., Tk
and for any mg such that my # — Zle my, there is a (11 chance that we will
choose 7 = 7172];;0 "7 which will yield My = (G Hle M]FT)T o' .) Now

i=0 "i
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compute Z = [[*_, M;*" " and W = []/_, M, "~ and output the signature

(Za VV7 MO)

Note that these are the unique values such that e(G.,Z) - e(Gs, W) -
e(Gy, G) H?:o e(GiT\,M;) = 1 and similarly e(H,,Z) - e(Hs;,W) -
e(H, G) Hf:o e(H; Ty, M;) = 1. Thus, Z,W are uniquely determined by
My, M1, ..., My, tag, and pk. M, ..., M} are provided by the adversary and,
as we have argued, My, tag, pk are statistically independent of 79, . . ., 7. We con-
clude that Z, W reveal no additional information about 7y, ..., 7, even given the

rest of the adversary’s view.

— For session j*: Look up the stored tuple (j, p, o). Let My = (G Hle M[)_Tlo ).
Note that for this choice of My, it will be the case that e(G¢, G) Hf:o e(G{, M;) =
e(Gy, MPGTTI_, M) = 1 and similarly e(H;,G) [\, e(H], M;) =
e(Hy, M)°G Hle M%) = 1. Note that Ty, T, are correctly distributed, that M
is statistically close to uniform since 7y, . . ., 7% are chosen at random, and further-
more that the only information revealed about 7y, . . . , 7, is that G [[5_, M]* = 1.
Now, compute Z = Hf:o M;”7" and W = Hf:o M;°"77, and output
the signature (Z, W, My). Again all values are independent of 7, . . ., 7 with the
exception now of Mo, which is chosen so G [F_, M[* = 1.

Processing the adversary’s forgery. Now, suppose that the adversary produces
(MIT, . M,I) and (ZT, W1, Mg,T) forT = (T1,T5,...) used in the j*th query. Look
up the stored tuple (j*, p, o). Then with non-negligible probability (whenever the ad-
versary succeeds) we have TOS.Vrf (pk, T, (M{, ..., M]),(Z1, W M})) = 1. This
means

k k
1= e(Gy, ZIGE [ [ (M )retetemye(Gy, wiGn [ (M) 7+ +m™), and

=0 i=0
k k
L= e(H,, 2'GE T[ )y o€yl wher [T (agfy v,
=0 i=0

Soif Z1GE [Ty (M])Pitr+em £ 1, then
k k k
(z*, R*, §*) = (z1G¢ H(MJ)W“*&”,WTG" H(MJ)”"*”*"”, wtaH H(MJ)‘”*”*“”)
=0 =0 =0
is a valid solution for the simultaneous double pairing assumption.

ZYGE T (M )Pitreers = ZH T3 o (M])Pite (G TTi_o (M])™)¢, and a part of ZF [T},
(Mypite is information theoretically hiding. Note that the only information that the
adversary has about 7,...,m is that in the j*th session M, was chosen so that
GIIF,M] = 1 (where M = (M,...,My) is the message signed in the j*th ses-
sion). If M] # M; for at least one i, then the probability that GT* ,(M)™ = 1
conditioned on the fact that G[]F_, M = 1is 1/p. As a result, the probability that
YaleS Hf:o(M¢T)pi+p+§Ti =1is 1/p.

Thus, if the guess for j* is right, we succeed with all but probability 1/p whenever .4
does. We therefore have Adviig™ () < g - Advsgdf’B(/\) +1/p.



Constant-Size Structure-Preserving Signatures under Simple Assumptions 17

RMA-secure signature scheme. For our random message signature scheme we will use
a construction based on the dual system signature proposed in [41]. While the orig-
inal scheme is CMA-secure under the DLIN assumption, the security proof makes
use of a trapdoor commitment to elements in Z, and consequently messages are el-
ements in Z, rather than G. Our construction below resorts to RMA-security and re-
moves this commitment to allows messages to be a sequence of random group ele-
ments satisfying a particular relation. As mentioned above, the message space My :=
{(Cmr, Cm2 Frv Fe UM US™) € GO | (my, mg) € 72} is defined by generators
(C, F,U1,Us) in gk.

rSIG.Key(gk): Given gk := (A,G,C,F,U;,Uz) as input, uniformly select
V,Vi, Vo, H from G* and a1, az,b,, and p from Z;. Then compute and out-
put vk = (B,Al,AQ,Bl,BQ,Rl,RQ, Wl,WQ,VY,VYl, ‘/vQ,H, X1,X2) and sk :=
(vk, K1, K3) where

B =G, A = GY, Ay =G, By :=G"%, By:=(Gbe
Ry :=VV™M, Ry:=VV, Wy := RS, W,y:= R},
X, :=G*, Xo = Ga-ayb/ﬂ, K :=G% Ky:=G¥" .

rSIG.Sign(sk, msg): Parse msg into (My, My, M3, My, M5, Mg). Pick random
r1,72,21,22 € Zp. Let 1 = 711 + r2. Compute and output signature o :=

(S0, 51, ...S7) where

SO = (M5M6H)T1, Sl = KQVT, SQ = Kl_lerzl, 53 = Bizl,
S4 = V;GQ’ S5 = B_Z2, SG = B7"27 S7 = Grl.

rSIG.Vrf(vk, o, msg): Parse msg into (My, Mo, M3, My, M5, Mg) and o into
(S0, 51, ...,57). Also parse vk accordingly. Verify the following pairing product
equations:

e(S7, Ms MgH) = e(G, So)

(S1, B) e(S2, B1) e(S3, A1) = e(Se, R1) e(S7, W1)

(S1, B) e(S4, B2) e(Ss, A2) = e(Ses, R2) e(S7, Wa) e(X1, X2)

e(F,My)=e(C,M3s), e(F,Mz)=e(C,My), e(Ur, M1)=e(C, Ms), e(Uz, M2) = e(C, Ms)

o)

o)

The scheme is structure-preserving by construction and the correctness is easily veri-
fied.

Theorem 24. The above rSIG scheme is UF-RMA under the DLIN assumption. In par-
ticular, for any p.p.t. adversary A against rSIG that makes at most q, signing queries,
there exists p.p.t. algorithm B for DLIN such that Advt'sf]gt’j(/\) < (gs+2)- Advdl'n B(A).

Proof. We refer to the signatures output by the signing algorithm as a normal signature.
In the proof we will consider an additional type of signatures to which we refer to
as simulation-type signatures that are computationally indistinguishable but easier to
simulate. For v € Z,, simulation-type signatures are of the form o = (S, S} = 51 -
G@e2Y Gl = Sy - G*27,S5,5) = Sy - GV, S5, ..., S7). We give the outline of the
proof using some lemmas.
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Lemma 25. Any signature that is accepted by the verification algorithm must be
formed either as a normal signature, or a simulation-type signature.

We consider a sequence of games. Let p; be the probability that the adversary succeeds
in Game i, and p?™(\) and p$™ () that he succeeds with a normal-type respectively
simulation-type forgery. Then by Lemmal23l p;(\) = pi*™(A) + pi™ () for all 4.

Game 0: The actual Unforgeability under Random Message Attacks game.
Lemma 26. There exists an adversary By such that pi™(\) = Adv‘é'j?g L(A).

Game i: The real security game except that the first ¢ signatures that are given by the
oracle are simulation-type signatures.

Lemma 27. There exists an adversary Ba such that |pi°7'(X) — pi™(N\)| =
dlin

Advg's, (M)

Game q: All sigantures that given by the oracle are simulation-type signatures.

Lemma 28. There exists an adversary Bz such that pi”™ () = Adv':gd’}}g3 (N).

We have shown that in Game ¢, .A can output a normal-type forgery with at most
negligible probability. Thus, by Lemma 27 we can conclude that the same is true in
Game 0 and it holds

AQVEEE ) = pol) = "0 + (V) < B (N +Z\p“°‘m A+ )
< AR, () -+ oAdvEh, () + Al () < (a-+2)- ABER ().

Let MSGGen be an extended random message generator that first chooses
aux =  (mi1,m2) randomly from Zg and then computes msg =
(Cmr ™2 Fma Fme UM US'?). Note that this is what the reduction algo-
rithm does in the proof of Theorem 4l Therefore, the same reduction algorithm works
for the case of extended random message attacks with respect to message generator
MSGGen. We thus have the following.

Corollary 29. Under the DLIN assumption, rSIG scheme is UF-XRMA w.r.t. the mes-
sage generator that provides aux = (my, ms) for every message msg = (C™,C™2,
Fra Fme g US?). In particular, for any p.p.t. adversary A against rSIG that is
given at most qs signatures, there exists p.p.t. algorithm B such that Advfsf]é':f()\) <

(gs +2) - Advg (V).

Security and efficiency of resulting SIG1. Let SIG1 be the signature scheme obtained
from TOS (with mode = extended) and rSIG by following the first generic construction
in Section 4l From Theorem[T7] and 24 the following is immediate.

Theorem 30. SIG1 is a structure-preserving signature scheme that yields constant-size
signatures, and is UF-CMA under the DLIN assumption. In particular, for any p.p.t.
adversary A for SIG1 making at most qs signing queries, there exists p.p.t. algorithm 3
such that Adv&iGma(\) < (g5 +3) - Advgs(\) + 1/p.
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6 Instantiating SIG2

We instantiate the POS and xSIG building blocks of our second generic construction
to obtain our second SPS scheme. Here we choose the Type-III bilinear group setting.
The resulting SIG2 scheme is an efficient structure-preserving signature scheme based
on SXDH and XDLIN.

Setup for Type-III groups. The following setup procedure is common for all building
blocks in this section. The global parameter gk is given to all functions implicitly.

- Setup(1*): Run A = (p, Gy, G2, Gr,e) < G(1*) and choose generators G € G
and G € G%. Also choose u, f2, f3 randomly from Z;‘;, compute Fy := G2,
Fy = GJs, 13’2 = CA}'fQ, F’g = G’f?’, U = Gv, U = G’“ and output gk :=
(A, G, G, Fs, Fs, Fy, F5,U,U).

A gk defines a message space M, = {(Fy", Fy*,U™) € G} | m € Z,} for the
signature scheme in this section. For our generic construction to work, the partial one-
time signature scheme should have the same key space.

Fartial one-time signatures for uniliteral messages. We construct a partial one-time
signature scheme POSu2 for messages in G5 for & > 0. The suffix ”u2” indicates
that the scheme is uniliteral and messages are taken from G2. Correspondingly, POSu1
refers to the scheme whose messages belong to G, which is obtained by swapping G2
and G in the following description. Our POSu2 scheme is a minor refinement of the
one-time signature scheme introduced in [4]]. It comes, however, with a security proof
for the new security model.

Basically, a one-time public-key in our scheme consists of one element in the base
group G that is the opposite of the group Gy messages belong to. This property
is very useful to construct a POS scheme for signing bilateral messages. As well
as tags of TOS in Section 3 the one-time public-keys of POS will have to be in
an extended form to meet the constraint from xSIG presented in the sequel. We use
mode € {normal, extended} for this purpose again.

- POSu2.Key(gk): Take generators U and U from gk. Choose w, randomly from
Z,, and compute G, := U"r. Fori = 1,..., k, uniformly choose x; and ~; from
Z, and compute G, := UX:G)i. Output pk := (G,,G1,...,Gi) € G’f“ and
sk:= (X17 Y15 -e5 Xk Yk wr)'

- POSu2.Update(mode): Take Fy, F3,U from gk. Choose a < Z, and output
opk = U® € Gy if mode = normal or opk = (F¢ F¢,U% € Gj if
mode = extended. Also output osk := a.

- POSu2.Sign(sk, msg, osk): Parse msg into (M1, . Mk) € Gk. Take a and w,
from osk and sk, respectively. Choose p randomly from Z, and compute ¢ :=
a — pw, mod p. Then compute and output o := (Z R) € G3 as the signature,
where Z := US [, M; * and R := U”H M

- POSu2.Vrf(pk, o, msg, opk): Parse o as (Z,R) € G3, msg as (Ml, .. .,Mk) €
G5, and opk as (AQ,AS,A) or A depending on mode. Return 1, if e(A,U) =

e(U, Z) e(G,, R) Hl L (G, M;) holds. Return 0, otherwise.
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Scheme POSu2 is structure-preserving and has uniform one-time public-key property
from the construction. We can easily verify that it is correct by simple calculation.

Theorem 31. POSu2 is strongly unforgeable against OT-CMA if DBP1 holds. In par-
ticular, Advpgsas 4(A) < Advdglf%l(/\) +1/p.

Partial one-time signatures for bilateral messages. Using POSul for msg € G’le
and POSu2 formsg € Gg"’, we construct a POSb scheme for signing bilateral messages
(msg1, msgz) € G}fl X G’;"‘. The scheme is a simple two-story construction where
msgs is signed by POSu2 with one-time secret-key osks € (1 and then the one-time
public-key opk,, is attached to msg; and signed by POSu1. Public-key opk,, is included
in the signature, and opk is output as a one-time public-key for POSb.

- POSb.Key(gk): Run (pkq,sk1) < POSul.Key(gk) and (pk,,sks) <«
POSu2.Key(gk). Set pk := (pk,, pk,) and sk := (sk1, sk2), and output (pk, sk).

- POSb.Update(mode): Run (opk, osk) <— POSul(mode) and output (opk, osk).

— POSb.Sign(sk, msg, osk): Parse msg into (msgi, msga) € G}fl X G’;"‘, and sk
into (sk1, sk2). Run (opks, osks) <— POSu2.Update(normal), and compute o3 <
POSu2.Sign(ska, msgs, osks) and oy < POSul.Sign(sk1, (msgi, opk,), osk).
Output o := (01, 02, 0pks,).

— POSb.Vrf(pk, opk,o,msg): Parse msg into (msgi,msgs) € G’fl x Gz,
and o into (01,02, 0pky). If 1 = POSul.Vrf(pky, opk, o1, (msgi, opks)) =
POSu2.Vrf(pky, opky, 02, msgs), output 1. Otherwise, output 0.

For a message in G’fl X Gg"’, the above POSD uses a public-key of size (k + 2,k + 1),
yields a one-time public-key of size (0, 1) (for mode = normal) or (0, 3) (for mode =
extended), and a signature of size (3, 2). Verification requires 2 pairing product equa-
tions. A one-time public-key in extended mode, which is treated as a message to xSIG
in this section, is of the form opk = (F¢, F$,U®) € G3. Structure-preservance and
uniform public-key property are taken over from the underlying POSu1 and POSu2.

Theorem 32. Scheme POSb is unforgeable against OT-CMA if SXDH holds. In partic-
ular, Advagy 4 () < AdVEE (N +2/p.

XRMA-secure signature scheme. Our construction bases on a variant of Waters’ dual
system encryption proposed by Ramanna, Chatterjee, and Sarkar [36]. Recall that gk =
(A, G, G, Fy, Fs, Fy, F5,U,U) with A = (p, Gy, Gy, G, e) is generated by Setup(1*)
in advance.

xSIG.Gen(gk): On input gk, select generators V,V', H < Gy, V.V, H € Gy
such that V'~ V V' o~ V H ~ H Fg ~ FQ,F3 ~ F3 and exponent
a,b,a0 < Zp and p < Z}, compute R = V(V')?, R = V(V’) , and set
vk == (gk,é’b,é‘“,é’ba,f%, Rb, sk := (VK,G* G* G).

xS1G.Sign(sk, msg): On input message msg = (My, My, M) = (Fy», E, U™) e
G3 (m € Zy), select 71,719 < Zyp, set 7 := 11 + 1o, cOMpuUte o = (MOI;T)”,
o1 =GV, 09 := (V)'G™*, 03 := (G*)?, 04 := (G®)"2, and 05 := G", and
output o := (09, 01,...,05) € Gy x G3.
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Table 1. Efficiency of our schemes (SIG1 and SIG2) and comparison to other schemes with
constant-size signatures. The top section is for the Type I variant, the middle section is for uni-
lateral messages and the lower section is for bilateral messages. Notation (x,y) represents
elements in G1 and y in Ga.

Schemes |msg| |gk| + |vE| |o| #(PPE) Assumptions
AHO10 k 2k 4+ 12 7 2 q-SFP
SIG1 k 2k 4+ 25 17 9 DLIN
AHO10 (k1,0)  (4,2k1+8) (5,2) 2 q-SFP
AGHOI11 (k1,0) (1,k1 +4) (3,1) 2 g-type
SIG2 : POSul +xSIG (k1,0)  (7,k1+13) (7,4) 5 SXDH, XDLIN;
POSb + AHO10 (ki ko) (ko +5,k1 +12) (10,3) 3 q-SFP
AGHO11 (kl, kz) (kz + 3, k1 + 4) (3, 3) 2 q-type
SIG2 : POSb + xSIG (k1 k2) (k2 +8,k1 + 14) (8,6) 6  SXDH, XDLIN;

xSIG.Vrfy(vk, 0, msg): Oninputvk, msg = (Ml, Mo, MO), and signature o, compute

e(FQ, MQ) A: €(U7 M}), €(F3, ]\:40) = e(U, Z\A{Q), €(0’5A, M()H) :A 6(G,0’0)
e(o1,G%)e(02, G")e(03,GY) = e(04, R)e(os, RY)e(GP, GV/P).

The scheme is structure-preserving by the construction. We can easily verify the cor-
rectness.

Theorem 33. If the DDHy and XDLIN, assumptions hold, then above xSIG scheme

is UF-XRMA with respect to the message generator that returns auxr = m for every

random message msg = (F3*, Fi* U™). In particular for any p.p.t. adversary A for

xSIG making at most q signing queries, there exist p.p.t. algorithms By, By, Bs such that
f- ddh2 dlinl -cdh

Advisfng()\) < Advgg (A) + quv’éJ};2 N+ Adv'é‘fgs (N).

Security and efficiency of resulting SIG2. Let SIG2 be the scheme obtained from POSb
(with mode = extended) and xSIG. SIG2 is structure-preserving as vk, o, and msg
consist of group elements from G; and Gs, and SIG2.Vrf evaluates pairing product
equations. From Theorem 21 32] and 33l we obtain the following theorem.

Theorem 34. SIG2 is a structure-preserving signature scheme that is unforgeable
against adaptive chosen message attacks if SXDH and XDLIN, hold for G.

7 Efficiency, Applications and Open Questions

Efficiency. Table[Ilsummarizes the efficiency of SIG1 and SIG2. For SIG2 we consider
both uniliteral and biliteral messages. We count the number of group elements excluding
a default generator for each group in gk, and distinguish between G and G- and use k4
and ko for the number of message elements in G; and Go, respectively. For comparison,
we include the efficiency of the schemes in [4] and [2]. For bilateral messages, AHO10
is combined with POSb) from Section[6l
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Applications. Structure-preserving signatures (SPS) have become a mainstay in cryp-
tographic protocol design in recent years. From the many applications that benefit from
efficient SPS based on simple assumptions, we list only a few recent examples. Using
our SIG1 scheme from Section[3]both the construction of a group signature scheme with
efficient revocation by Libert, Peters and Yung [33]] and the construction of compact ver-
ifiable shuffles by Chase et al. [[16] can be proven purely under the DLIN assumption.
All other building blocks already have efficient instantiations based on DLIN.

Hofheinz and Jager [31] construct a structure-preserving one-time signature scheme
and use it to build a tree-based SPS scheme, say tSIG. Instead, we propose to use our
partial one-time scheme to construct tSIG. As the resulting tSIG is secure against non-
adaptive chosen message attacks, it is secure against extended random message attacks
as well. We then combine the POSbH scheme and the new tSIG scheme according to
our second generic construction. As confirmed with the authors of [31], the resulting
signature scheme is significantly more efficient than [31] and is a SPS scheme with a
tight security reduction to SXDH. One can do the same in Type-I groups by using the
tagged one-time signature scheme in Section[3 whose security tightly reduced to DLIN.

As also shown by [31], SPS schemes allow to implement simulation-sound NIZK
proofs based on the Groth-Sahai proof system. Following the Naor-Yung-Sahai [[35/38]]
paradigm, one obtains structure-preserving CCA-secure public-key encryption in a
modular fashion.

Open Questions. 1) Can we have (X)RMA-secure schemes with a message space that
is a simple Cartesian product of groups without sacrificing on efficiency? 2) The RMA-
secure signature schemes developed in this paper are in fact XRMA-secure. Can we
have more efficient schemes by resorting to RMA-security? 3) Can we have tagged
one-time signature schemes with tight reduction to the underlying simple assumptions?
4) What is the exact lower bound for the size of signatures under simple assumptions?
Is it possible to show such a bound?
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Abstract. In this paper, we introduce the abstraction of Dual Form
Signatures as a useful framework for proving security (existential un-
forgeability) from static assumptions for schemes with special structure
that are used as a basis of other cryptographic protocols and applications.
We demonstrate the power of this framework by proving security under
static assumptions for close variants of pre-existing schemes: the LRSW-
based Camenisch-Lysyanskaya signature scheme, and the identity-based
sequential aggregate signatures of Boldyreva, Gentry, O’Neill, and Yum.
The Camenisch-Lysyanskaya signature scheme was previously proven
only under the interactive LRSW assumption, and our result can be
viewed as a static replacement for the LRSW assumption. The scheme
of Boldyreva, Gentry, O’Neill, and Yum was also previously proven only
under an interactive assumption that was shown to hold in the generic
group model. The structure of the public key signature scheme under-
lying the BGOY aggregate signatures is quite distinctive, and our work
presents the first security analysis of this kind of structure under static
assumptions.

1 Introduction

Digital signatures are a fundamental technique for verifying the authenticity
of a digital message. The significance of digital signatures in cryptography is
also amplified by their use as building blocks for more complex cryptographic
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protocols. Recently, we have seen several pairing based signature schemes (e.g.,
[T7I13124148]) that are both practical and have added structure which has been
used to build other primitives ranging from Aggregate Signatures [I5/43] to
Oblivious Transfer [25J32]. Ideally, for such a fundamental cryptographic primi-
tive we would like to have security proofs from straightforward, static complexity
assumptions.

Meeting this goal for certain systems is often challenging. For instance, the
Camenisch and Lysyanskaya signature scheme [24 has been very influential as
it is used as the foundation for a wide variety of advanced cryptographic systems,
including anonymous credentials [247J6], group signatures [245], ecash [22], un-
cloneable functions [21], batch verification [23], and RFID encryption [4]. While
the demonstrated utility of CL signatures has made them desirable, it has been
difficult to reduce their security to a static security assumption. Currently, the
CL signature scheme is proven secure under the LRSW assumption [44], an
interactive complexity assumption that closely mirrors the description of the
signature scheme itself. In addition, the interactive assumption transfers to the
systems built around these signatures.

The identity-based sequential aggregate signatures of Boldyreva, Gentry,
O’Neill, and Yum [9I0] were also proven in the random oracle model under
an interactive assumption (justified in the generic bilinear group model), which
again closely mirrors the underlying signature scheme itself. (This can be viewed
as providing a proof of the scheme only in the generic group model.) Proofs of
complicated interactive assumptions in the generic group model have several
disadvantages. First, they are themselves complex and prone to error. In fact,
the original version of the BGOY identity-based sequential aggregate signature
scheme [9] relied on an assumption that was shown to be false, and the scheme
was insecure [36]. This scheme and proof were corrected in [10]. Secondly, such
proofs do not tend to provide much insight into the security of the scheme.
This lack of insight tends to hinder transferring schemes to other settings. For
example, many schemes developed in bilinear groups now have lattice-based
analogs, and these transformations reused high-level ideas from the original se-
curity proofs in the bilinear group setting. Techniques from [48] were used in the
lattice setting in [20], techniques from [26] were used in [27], and techniques from
[12] were used in [2]. This kind of transference of ideas from the bilinear setting
to the lattice setting is unlikely to be achieved through generic group proofs.

In this work, we develop techniques that can be applied to prove security
from static assumptions for new signature schemes as well as (slight variants of)
pre-existing schemes. Providing new proofs for these existing schemes provides
a meaningful sanity check as well as new insight into their security. This kind of
sanity check is valuable not only for schemes proven in the generic group model,
but also for signatures (CL signatures included) that require extra checks to
rule out trivial breaks (e.g. not allowing the message signed to be equal to 0),
since these subtleties can easily be missed at first glance. Having new proofs

! Throughout, we will be discussing the CL signatures based on the LRSW assump-
tion, which should not be confused with those based on the strong RSA assumption.
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from static assumptions for variants of schemes like CL signatures and BGOY
signatures gives us additional confidence in their security without having to
sacrifice the variety of applications built from them. Ultimately, this provides
us with a fuller understanding of these kinds of signatures, and is a critical step
towards obtaining proofs under the simplest and weakest assumptions.

Dual Form Signatures. Our work is centered around a new abstraction that
we call Dual Form Signatures. Dual Form Signatures have similar structure to
existing signature schemes, however they have two signing algorithms, Sign 4
and Signp, that respectively define two forms of signatures that will both verify
under the same public key. In addition, the security definition will categorize
forgeries into two disjoint types, Type I and Type II. Typically, these forgery
types will roughly correspond with signatures of form A and B.

In a Dual Form system, we will demand three security properties (stated
informally here):

A-I Matching. If an attacker is only given oracle access to Sign,, then it is
hard to create any forgery that is not of Type I.

B-IT Matching. If an attacker is only given oracle access to Signg, then it is
hard to create any forgery that is not of Type II.

Dual-Oracle Invariance. If an attacker is given oracle access to both Sign 4
and Signp and a “challenge signature” which is either from Sign 4 or Signg,
the attacker’s probability of producing a Type I forgery is approximately
the same when the challenge signature is from Sign 4 as when the challenge
signature is from Signg.

A Dual Form Signature scheme immediately gives a secure signature scheme if
we simply set the signing algorithm Sign = Sign,. Unforgeability now follows
from a hybrid argument. Consider any EUF-CMA [31] attacker A. By the A-I
matching property, we know that it might have a noticeable probability e of
producing a Type I forgery, but has only a negligible probability of producing
any other kind of forgery. We then show that ¢ must also be negligible. By the
dual-oracle invariance property, the probability of producing a Type I forgery
will be close to € if we gradually replace the signing algorithm with Signg, one
signature at a time. Once all of the signatures the attacker receives are from
Signg, the B-II Matching property implies that the probability of producing a
Type I forgery must be negligible in the security parameter.

We demonstrate the usefulness of our framework with two main applications,
using significantly different techniques. This illustrates the versatility of our
framework and its adaptability to schemes with different underlying structures.
In particular, while dual form signatures are related to the dual system en-
cryption methodology introduced by Waters [49] for proving full security of IBE
schemes and other advanced encryption functionalities, we demonstrate that our
dual form framework can be applied to signature schemes that have no known
encryption or IBE analogs. Though all of the applications given here use bilinear
groups, the dual form framework can be used in other contexts, including proofs
under general assumptions.
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Our first application is a slight variant of the Camenisch-Lysyanskaya signa-
ture scheme, set in a bilinear group G of composite order N = pipops. This
application is surprising, since these signatures do not have a known IBE ana-
log. We let G,,, for each ¢ = 1,2, 3 denote the subgroup of order p; in the group.
The Sign 4 algorithm produces signatures which exhibit the CL structure in the
Gp, and G, subgroups and are randomized in the G,, subgroup. The Signg
algorithm produces signatures which exhibit the CL structure in the G, sub-
group and are randomized in the G,, and G,, subgroups. Type I and II forgeries
roughly mirror signatures of form A and B. The verification procedure in our
scheme will verify that the signature is well formed in the G,, subgroup, but
not “check” the other subgroups.

We prove security in the dual form framework based on three static subgroup
decision-type assumptions, similar to those used in [4I]. The most challeng-
ing part of the proof is dual-oracle invariance, which we prove by developing a
backdoor verification test (performed by the simulator) which acts as an almost-
perfect distinguisher between forgery types. Here we face a potential paradox,
which is similar to that encountered in dual system encryption [49/41]: we need
to create a simulator that does not know whether the challenge signature it pro-
duces is distributed as an output of Sign 4, or Signg, but it also must be able to
test the type of the attacker’s forgery. To arrange this, we create a “backdoor
verification” test, which the simulator can perform to test the form of all but
a small space of signatures. Essentially, this backdoor verification test acts an
almost-perfect type distinguisher which fails to correctly determine the type of
only a very small set of potential forgeries.

The challenge signature of unknown form produced by the simulator will fall
within the untestable space; however, with very high probability a forgery by
an attacker will not, because some information about this space is information-
theoretically hidden from the attacker. This is possible because the elements of
the verification key are all in the subgroup G,,, and the space essentially resides
in Gp,. Thus the verification key reveals no information about the hidden space.
The only information about the space that the attacker receives is contained
in the single signature of unknown type, and we show that this is insufficient
for the attacker to be able to construct a forgery that falls inside the space
for a different message. This is reminiscent of the concept of nominal semi-
functionality in dual system encryption (introduced in [41]): in this setting, the
simulator produces a key of unknown type which is correlated in its view with the
ciphertext it produces, but this correlation is information-theoretically hidden
from the attacker. This correlation prevents the simulator from determining the
type of the key for itself by testing decryption against a ciphertext.

As a second application of our dual form framework, we prove security from
static assumptions for a variant of the BGOY identity-based sequential aggre-
gate signature scheme. Aggregate signatures are useful because they allow sig-
nature “compression,” meaning that any n individual signatures by n (possi-
bly) different signers on n (possibly) different messages can be transformed into
an aggregate signature of the same size as an individual one that nevertheless
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allows verifying that all these signers signed their messages. However, aggre-
gate signatures do not provide compression of the public keys, which are needed
for signature verification. In the identity-based setting, only the identities of the
signers are needed — this is a big savings because identities are much shorter than
randomly generated keys. However, identity-based aggegate signatures have been
notoriously difficult to realize.

We first prove security for a basic public-key version of the scheme, and then
show that security for its identity-based sequential aggregate analog reduces to
security of the basic scheme (in the random oracle model, as for the original
proof). Our techniques here are significantly different, and reflect the different
structure of the scheme (it is this structure that allows for aggregation). The
core structure of the underlying public key scheme is composed of three group
elements of the form g?*tP™mgrir2 g g2 where m is a message (or a hash of
the message), a, b are fixed parameters, and r1, 79 are randomly chosen for each
signature. There are significant differences between this and the core structure of
other notable signatures, like CL and Waters signatures [24/48]. Here, the mes-
sage term is not multiplicatively randomized, but rather additively randomized
by the quadratic term ry7o. It is the quadratic nature of this term that allows
verification via application of the bilinear map while thwarting attackers who try
to combine received signatures by taking linear combinations in the exponents.
This unique structure presents a challenge for static security analysis, and we
develop new techniques to achieve a proof for a variant of this scheme in our
dual form framework.

We still employ composite order subgroups, with the main structure of the
scheme reflected in the G, subgroup and the other two subgroups used for dif-
ferentiating between signature and forgery types. However, to prove dual-oracle
invariance, we rely on the fact that the scheme has the basic structure of a one-
time signature scheme embedded in it, in addition to the quadratic mechanism
to prevent an attacker from forming new signatures by taking combinations of
received signatures. We capture the security resulting from this combination of
structures through a static assumption for our dual-oracle invariance proof, and
we show that this assumption holds in the generic group model. Though we do
employ the generic group model as a check on our static assumptions, we believe
that our proof provides valuable intuition into the security of the scheme that is
not gleaned from a proof based on an interactive assumption or given solely in
the generic group model. Also, checking the security of a static assumption in
the generic group model is much easier (and less error-prone) than checking the
security of an interactive assumption or scheme. We believe that the techniques
and insights provided by our proof are an important step toward finding a prime
order variant of the scheme that is secure under more standard assumptions,
such as the decisional linear assumption.

In the full version, we provide one more application: a signature scheme us-
ing the private key structure in the Lewko-Waters IBE system [41]. The LW
system itself can be viewed as a composite order extension of the Boneh-Boyen
selectively secure IBE scheme [I1], although the structure of the proofs of these
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systems are very different (LW achieves adaptive security). For this reason, we
call these “BB-derived” signatures. While the existing LW IBE system can be
transformed into a signature scheme using Naor’s |4 general transformation, our
scheme checks the signature “directly” without going through an IBE encryp-
tion. The resulting signature has a constant number of elements in the public
key and signatures consist of two group elements.

Further Directions. While we have focused here on applying our techniques for
core short signatures, we envision that dual form signatures will be a framework
for proving security of many different signature systems that have to this point
been difficult to analyze under static assumption Some examples include em-
bed additional structure, such as Attribute-Based signatures [45] and Quoteable
signatures [3]. Attribute-based signatures allow a signer to sign a message with
a predicate satisfied by his attributes, without revealing any additional infor-
mation about his attribute set. Our framework could potentially be applied to
obtain stronger security proofs for ABS schemes, such as the schemes of [45]
proved only in the generic group model. Quoteable signatures enable derivation
of signatures from each other under certain conditions, and current constructions
are proved only selectively secure [3]. Another future target is signatures that
“natively” sign group elements [I].

The primary goal of our work is providing techniques for realizing security
under static assumptions, and we leverage composite order groups as a con-
venient setting for this. A natural future direction is to complement our work
by discovering prime order analogs of our techniques. Many previous systems
were originally constructed in composite order groups and later transferred into
prime order groups [16/34/1833/194 735383 72829/40/46]. The general tech-
niques presented in [28/39] do not seem directly applicable here, but we empha-
size that our dual form framework is not tied to composite order groups and
could also be used in the prime order setting. Discussion of additional related
works can be found in the full version.

2 Dual Form Signatures

We now define dual form signatures and their security properties. We then show
that creating a secure dual form signature system naturally yields an existentially
unforgeable signature scheme. We emphasize that the purpose of the dual form
signature framework is to provide a template for creating security proofs from
static assumptions, but the techniques employed to prove the required properties
can be tailored to the structure of the particular scheme.

Definition. We define a dual form signature system to have the following algo-
rithms:

KeyGen(\): Given a security parameter A\, generate a public key, VK, and a
private key, SK.

2 Naor’s observation was noted in [14].
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Sign 4(SK, M): Given a message, M, and the secret key, output a signature, o.

Signg(SK, M): Given a message, M, and the secret key, output a signature, o.

Verify(VK, M, o0): Given a message, the public key, and a signature, output
‘true’ or ‘false’.

We note that a dual form signature scheme is identical to a usual signature
scheme, except that it has two different signing algorithms. While only one sign-
ing algorithm will be used in the resulting existentially unforgeable scheme,
having two different signing algorithms will be useful in our proof of security.

Forgery Classes. In addition to having two signature algorithms, the dual form
signature framework also considers two disjoint classes of forgeries. Whether
or not a signature verifies depends on the message that it signs as well as the
verification key. For a fixed verification key, we consider the set of pairs, S x M,
over the message space, M, and the signature space, S. Consider the subset of
these pairs for which the Verify algorithm outputs ‘true’: we will denote this
set as V. [ We let V; and V;; denote two disjoint subsets of V, and we refer to
signatures from these sets as Type I and Type II forgeries, respectively. In our
applications, we will have the property V = VyUVy in addition to Vy NV = (),
but only the latter property is necessary.

We will use these classes to specify two different types of forgeries received
from an adversary in our proof of security. In general, these classes are not
the same as the output ranges of our two signing algorithms. However, Type 1
forgeries will be related to signatures output by the Sign , algorithm and Type
IT forgeries will be related to signatures output by the Signp algorithm. The
precise relationships between the forgery types and the signing algorithms are
explicitly defined by the following set of security properties for the dual form
system.

Security Properties. We define the following three security properties for a dual
form signature scheme. We consider an attacker A who is initially given the
verification key VK produced by running the key generation algorithm. The
value SK is also produced, and not given to A.

A-I Matching: Let O4 be an oracle for the algorithm Sign ,. More precisely,
this oracle takes a message as input, and produces a signature that is identi-
cally distributed to an output of the Sign, algorithm (for the SK produced
from the key generation). We say that a dual form signature is A-I matching
if for all probabilistic polynomial-time (PPT) algorithms, A, there exists a
negligible function, negl(\), in the security parameter A such that:

PrlA°4(VK) ¢ Vi] = negl()).
This property guarantees that if an attacker is only given oracle access to
Sign 4, then it is hard to create anything but a Type I forgery.

3 Here we will assume that the Verify algorithm is deterministic. If we consider a
nondeterministic Verify algorithm, we could simply take the subset of ordered pairs
that are accepted by Verify with non-negligible probability.
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B-IT Matching: Let Op be an oracle for the algorithm Signg (which takes in
a message and outputs a signature that is identically distributed an output
of the Signy algorithm). We say that a dual form signature is B-II matching
if for all PPT algorithms, A:

Pr[A°=(VK) ¢ Vr1] = negl()).

This property guarantees that if an attacker is only given oracle access to
Sign g, then it is hard to create anything but a Type II forgery.

Dual-Oracle Invariance (DOI): First we define the dual-oracle security
game.

1. The key generation algorithm is run, producing a verification key VK
and a secret key SK.

2. The adversary, A, is given the verification key VK and oracle access to
Oy = Sign 4 () and Oy = Signg(+).

3. A outputs a challenge message, m.

4. A random bit, b < {0, 1}, is chosen, and then a signature o < Op(m) is
computed and given to A. We call ¢ the challenge signature.

5. A continues to have oracle access to Oy and O;.

6. A outputs a forgery pair (m*,c*), where 4 has not already received a
signature for m*.

We say that a dual form signature scheme has dual-oracle invariance if, for all
PPT attackers A, there exists a negligible function, negl(A), in the security
parameter A such that

|Pr{(m*,c*) € Vilb = 1] — Pr[(m*,c*) € Vr|b = 0]| = negl(\).

We say that a dual form signature scheme is secure if it satisfies all three of these
security properties.

Secure Signature Scheme. Once we have developed a secure dual form signa-
ture system, (KeyGen”*' Sign¥ SignB”, Verify”"), this system immediately
implies a secure signature scheme. The secure scheme is constructed as follows:

Construction 1. KeyGen = KeyGenP', Sign :SigngF, Verify = Verify?t .

Our new secure signature scheme is identical to the dual form system except
that we have arbitrarily chosen to use Sign 4 as our signing algorithm. We could
have equivalently elected to use Signg. (In which case, we would modify the
dual-oracle invariance property to be with respect to Type II forgeries instead
of Type I forgeries. Alternatively, we could strengthen the property to address
both forgery types.) Now we will prove that this signature scheme is secure.

In the full version, we prove (the argument is rather straightforward):

Theorem 1. If II = (KeyGenDF, Sz’gngF, Sign[B)F, Vem’fyDF) is a secure dual
form signature scheme, then Construction = (KeyGenDF, SigngF, VerifyDF)
1s existentially unforgeable under an adaptive chosen message attack.
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3 Background on Composite Order Bilinear Groups

Composite order bilinear groups were first introduced in [16]. We define a group
generator G, an algorithm which takes a security parameter A as input and
outputs a description of a bilinear group G. In our case, we will have G output
(N = p1p2ps, G, G, e) where p1, p2, ps are distinct primes, G and G are cyclic
groups of order N = pypops, and e : G2 — Gy is a map such that:

1. (Bilinear) ¥Yg,h € G, a,b € Zy, e(g®, h®) = e(g, h)*®
2. (Non-degenerate) 3g € G such that e(g, g) has order N in Grp.

Computing e(g, h) is also commonly referred to as “pairing” g with h.

We assume that the group operations in G and G as well as the bilinear
map e are computable in polynomial time with respect to A\, and that the group
descriptions of G and Gr include generators of the respective cyclic groups.
We let G, Gp,, and G,, denote the subgroups of order p;,p2, and p3 in G
respectively. We note that when h; € G, and h; € Gy, for i # j, e(hs, h;) is the
identity element in G. To see this, suppose we have h; € G, and hy € Gy,. Let
g denote a generator of G. Then, gP*P? generates G,,, g’'?? generates G,,, and
gP2P3 generates Gy, . Hence, for some ay, ag, hy = (gP?P3)*! and hg = (gPP3)e2.
Then:

e(hl, h2) = e(gpzmal,gplpsaz) — e(gOu,gpsOéz )pwzps =1.

This orthogonality property of G, ,Gy,, Gy, is a useful feature of composite
order bilinear groups which we leverage in our constructions and proofs.

If we let g1,92,93 denote generators of the subgroups G,,, G,,, and Gy,
respectively, then every element h in G can be expressed as h = g¢g5g5 for some
a,b,c € Zn. We refer to gf as the “Gp, part” or “G,, component” of h. If we
say that an h has no G,, component, for example, we mean that b =0 mod ps.
Below, we will often use g to denote an element of G,, (as opposed to writing
91)-

The original Camenisch-Lysyanskaya scheme and BGOY identity-based se-
quential aggregate signature scheme both use prime order bilinear groups, i.e.
groups G and Gp are each of prime order ¢ with an efficiently computable bi-
linear map e : G2 — Gr.

4 Camenisch-Lysyanskaya Signatures

Now we use the dual form framework to prove security of a signature scheme sim-
ilar to the one put forward by Camenisch and Lysyanskaya [24]. The Camenisch-
Lysyanskaya signature scheme was already shown to be secure under the LRSW
assumption. However, the scheme can be naturally adapted to our framework,
allowing us to prove security under static, non-interactive assumptions. Our re-
sult is not strictly comparable to the result under the LRSW assumption because
our signature scheme is not identical to the original. However, this is the first
proof of security for a scheme similar to the Camenisch-Lysyanskaya signature
scheme from static, non-interactive assumptions.
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Our signature scheme will use bilinear groups, G and G, of composite order
N = py1paps, where py, po, and p3 are all distinct primes. Our construction is
identical to the original Camenisch-Lysyanskaya signature scheme in the G,
subgroup, but with additional components in the subgroups G,, and G,,. The
signatures produced by the Sign, algorithm will have random components in
Gyp, and components in Gp, which mirror the structure of the scheme in Gy, .
The signatures produced by the Signp algorithm will have random components
in both G,, and G,,. Type I forgeries are those that are distributed exactly
like Sign 4 signatures in the G,, subgroup, while Type II forgeries encompass all
other distributions.

To prove dual-oracle invariance, we develop a backdoor verification test that
the simulator can use to determine the type of the attacker’s forgery. We lever-
age the fact that the simulator will know the discrete logarithms of the public
parameters, which will allow it to strip off the components in G, in the forgery
and check the distribution of the G,, components. This check will fail to de-
termine the type correctly only with negligible probability. In more detail, we
create a simulator which must solve a subgroup decision problem and ascertain
whether an element T is in G, p, or in the full group G. It will use T" to create
a challenge signature which is either distributed as an output of the Sign, al-
gorithm or as an output of the Signy algorithm, depending on the nature of 7.
It will be unable to determine the nature of this signature for itself because this
will fall into the negligible error space of its backdoor verification test. When the
simulator receives a forgery from the attacker, it will perform the backdoor ver-
ification test and correctly determine the type of the forgery, unless the attacker
manages to produce a forgery for which this test fails. This will occur only with
negligible probability, because the attacker will have only limited information
about the error space from the challenge signature, and it needs to forge on a
different message. This is possible because the public parameters are in G, , and
so reveal no information about the error space of the backdoor test modulo ps.
We use a pairwise independent argument to show that the limited amount of
information the attacker can glean from the challenge signature on a message m
is insufficient for it to produce a forgery for a different message m* that causes
the backdoor test to err.

4.1 Owur Dual Form Scheme

KeyGen()): The key generation algorithm chooses two groups, G = (g) and
Gr, of order N = pipaps (where p1, pa2, and p3 are all distinct primes of
length A) that have a non-degenerate, efficiently computable bilinear map,
e: G x G — Gr. It then selects uniformly at random g € G,,, g3 € G,
92,3 € Gp,py, and z, Y, Te, Yo € Zp. 1t sets

SK = (xvyaxevyeag?ng?ﬁ)’

and
PK = (N,G,g, X =¢°,Y =g").
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Sign 4(SK, m): Givenasecretkey (z,y, Ze, Ye, g3, 92,3), apublickey (N, G, g, X, Y),
and a message m € Zy, the algorithm chooses a random r,r" € Zy, Ra 3 €
Gp,ps, and random R3, R;, and RY € G,,, and outputs the signature

0 = (§" Ry 3R, (97)"(Ry3)" Ry, (g)" "V (Ry 5) TV RY).

Note that the random elements of G,, can be obtained by raising gs to
random exponents modulo N. Likewise, the random elements of G,;,, can
be obtained by raising g 3 to random exponents modulo N. The random
exponents modulo N will be uncorrelated modulo ps and modulo ps by the
Chinese Remainder Theorem.
Signg(SK,m): Givenasecretkey (x,y, Te, Ye, g3, 92,3), apublickey (N, G, g, X, Y),

and a message m € Z};, the algorithm chooses a random r € Zy and random
Ry 3, Ry 5, and Ry 5 € Gy,p,, and outputs the signature

0 =(9"Ra3, (9")" Ry 3, (g")" TRy 3).

The random elements can be generated in the same way as in Sign 4.
Verify(VK, m,o): Given a public key pk = (N, G, g, X,Y"), message m # 0, and
a signature o = (01, 02, 03), the verification algorithm checks that:

e(o1,9) # 1

(which ensures that o1 & Gp,p,), and
e(01,Y) = e(g,02) and e(X,01) - e(X, 02)™ = e(g, 03).

As in the original CL scheme, messages must be chosen from Z%;, so that m # 0.
If we allow m = 0, then an adversary can easily forge a valid signature using the
public key elements (g, Y, X). Also like the original scheme, the Verify algorithm
will not accept a signature where all the elements are the identity in G, . It
suffices to check that the first element is not the identity in G,, and that the
other verification equations are satisfied. If o is the identity in G,,, then it will
be an element of the subgroup Gy,p,. To determine if o1 € Gy,yp,, We pair o1
with the public key element g under the bilinear map and verify that it does
not equal the identity in Gp. Without this check, a signature where all three
elements are members of the subgroup G,,,, would be valid for any message
with the randomness r’ = 0 mod ps.

Notice, until Sign, is called, no information about the exponents z. and
Ye is given out. Once Sign, is called, these exponents behave exactly like the
secret key exponents x and y, except in the G,, subgroup. These exponents
will be used to verify that a forgery is of Type I. The additional randomization
with the G,, elements guarantees that there will be no correlation in the G,
subgroup between the three signature elements. Unlike the signatures given out
by the Sign 4 algorithm, signatures from the Signg algorithm will be completely
randomized in the G, subgroup as well.
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Forgery Classes. We will divide verifiable forgeries according to their correlation
in the G, subgroup, similar to the way we have defined the signatures from the
Sign 4 and Signp algorithms. We let z be an exponent in Zy. By the Chinese
Remainder Theorem, we can represent z as an ordered tuple (z1, 22, 23) € Zp, X
ZLp, X Lpy, where z1 = z mod p1, 22 = z mod pa, and z3 = z mod p3. Letting
(21,22, 23) = (0 mod p1, 1 mod pz,0 mod p3) and g be a generator of G,,, we
define the forgery classes as follows: Type I forgeries are of the form V; =
{(m*,0*) € VI(@1)* = g5, (03) = g5, (03)" = g5 """ ") for some '},
while Type II are of the formV;; = {(m*,0*) € V|(m*,0*) & Vi }.

Essentially, Type I forgeries will be correlated in the G,, subgroup exactly
in the same way as they are correlated in the G,, subgroup, with the expo-
nents . and y. playing the same role in the G,, subgroup that =z and y play
in the G,, subgroup. Type I forgeries will align with the Sign, algorithm, to
guarantee that our scheme is A-I matching. Type II forgeries include any other
verifiable signatures, i.e. those not correctly correlated in the G,, subgroup. Un-
like the signatures produced by the Signp algorithm, Type II forgeries need not
be completely random in the G,, subgroup. However, we will show in our proof
of security that this is enough to guarantee B-II matching.

4.2 Complexity Assumptions

We now state our complexity assumptions. We let G and G denote two cyclic
groups of order N = pypops, where p1, p2, and ps are distinct primes, and
e : G2 = Gr is an efficient, non-degenerate bilinear map. In addition, we will
denote the subgroup of G of order p;ps as Gy, ,,, for example.

The first two of these assumptions were introduced in [4I], where it is proven
that these assumptions hold in the generic group model, assuming it is hard to
find a non-trivial factor of the group order, N. These are specific instances of the
General Subgroup Decision Assumption described in [§]. The third assumption
is new, and in the full version we prove that it also holds in the generic group
model, assuming it is hard to find a non-trivial factor of the group order, N.

Assumption 4.1. Given a group generator G, we define the following distribu-
tion: .
(N = pip2p3, G,Gr,e) < G,

g,Xl (ﬁ Gpl,XQ (E Gp2,X3 (E Gp3
D = (N, (Gr, GT, e, g, XlXQ, Xg)
T & Gpp,, T £ Gy,
We define the advantage of an algorithm, A, in breaking Assumption[J.1] to be:
AdHA0 = |PrHAD, T)) = 1] - PrAD, T) = 1]..

Definition 1. We say that G satisfies Assumption [{1] if for any polynomial
time algorithm, A, Adi"z=()) is a negligible function of .
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Assumption 4.2. Given a group generator G, we define the following distribu-
tion: .
(N = pipaps, G, Gr,e) < G,

9. X &Gy, X0, Yo E Gy, Xa, Vs £.Gyy,
D= (Na Ga GT, €9, X1X2a X3a YvZYS)a
T EG T, EG,,,,
We define the advantage of an algorithm, A, in breaking Assumption[f.2 to be:

AdH20\) = |PrHAD, T)) = 1] - PriAD, T») = 1]..

Definition 2. We say that G satisfies Assumption [{.9 if for any polynomial
time algorithm, A, Adi"5=()) is a negligible function of .
Assumption 4.3. Given a group generator G, we define the following distribu-

tion: .
(N = p1p2ps3,G,Gr,e) & G,

R R R R
a,r < ZN,g < GPI,XQ,Xé,Xg,ZQ < GPQ,XS — Giﬂsv
D= (N, Ga GT, eagaga,gTXQa graXéa g’l‘L‘LQXé/’ Z?a Xd)a
We define the advantage of an algorithm, A, in breaking Assumption[].3 to be:

AdzJE = PrlA(D) = (grlazRg,grlRé) and v’ # 0 mod p1],
where R and Rj are any values in the subgroup G, .

Definition 3. We say that G satisfies Assumption [{.3 if for any polynomial
time algorithm, A, AdvE=(X) is a negligible function of .

Proof of Security. In the full version, we prove that our signature scheme is
secure under these assumptions by proving that it satisfies the three properties
of a secure dual form signature scheme.

5 BGOY Signatures

Here we give a public key variant of the BGOY signatures and prove existential
unforgeability using our dual form framework. In the full version, we show how
this base scheme can be built into an identity-based sequential aggregate signa-
ture scheme and reduce the security of the aggregate scheme to the security of
this base scheme, in the random oracle model. We will also employ the random
oracle model in our proof for the base scheme, although this use of the random
oracle can be removed (see below for discussion of this).

Our techniques here are quite different than those employed for the BB-
derived and CL signature variants, and they reflect the different structure of
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this scheme. There are some basic commonalities, however: we again employ
a bilinear group of order N = pipaps, and the main structure of the scheme
occurs in the G,, subgroup. The signatures produced by the Sign, algorithm
contain group elements which are only in G,,, while the signatures produced by
the Signp algorithm additionally have components in G,,. These components
in G,, are not fully randomized each time and do not occur on all signature
elements: they occur only on three signature elements, and the ratio between
two of their exponents is the same for all Signp signatures. Our forgery types
will be defined in terms of the subgroups present on two of the elements in the
forgery.

We design our proof to reflect the structure of the scheme, which essentially
combines a one-time signature with a mechanism to prevent an attacker from
producing new signatures from linear combinations of old signatures in the ex-
ponent. In proving dual-oracle invariance, we leverage these structures by first
changing the challenge signature from an output of Sign, to a signature that
has components in G,,, and then changing it to an output of Signg. It is cru-
cial to note that as we proceed through this intermediary step, the challenge
signature is the only signature which has any non-zero components in G,,. This
allows us to argue that as we make this transition, an attacker cannot change
from producing Type I forgeries (which do not have G,, components on certain
elements) to producing forgeries which do have non-zero G,, components in the
relevant locations. Intuitively, such an attacker would violate the combination
of one-time security and inability to combine signatures, since the attacker has
only received one signature with G,, elements, and it cannot combine this with
any other signatures to produce a forgery on a new message. These aspects seem
hard to capture when working directly in a prime order rather than compos-
ite order group. (We note, however, that the one-time aspect was also implicit
in the security proof of the Gentry-Ramzan scheme [30] on which the BGOY
scheme was based; however, differences in the schemes prevent capturing it in
the same way for the latter.) The techniques here are also quite different from
those used in our proofs for CL and BB-derived signatures: here there is no
backdoor verification test or pairwise-independence argument.

5.1 The Dual Form Scheme

KeyGen(\) — VK,SK The key generation algorithm chooses a bilinear group
G of order N = pipops. It chooses two random elements g,k € G,,, random
elements g3, g4 € Gp,, and random exponents a1, az, by, b2, a1, a2, B1, B2 € Zn.
It also chooses a function H : {0,1}* — Zy which will be modeled as a random
oracle. It sets the verification key as

VK :={N,H,G, g,k g*, 9", 9", 9", 9*,9°*, 9", 97}
and the secret key as

SK := {N,H,G,g,k, g, g"", g2 g7P2 gq g},



Dual Form Signatures 39

Sign 4 (m,SK) — o The Sign, algorithm takes in a message m € {0,1}*. It
chooses two random exponents ry,7ry € Zy, and computes:

a1a2+b1b2H(m)g'r1r2 T2
)

P e AT —
o1:=g o2:=g"', 03:=g7?,

o4 =k, 05 := ga1a2+5152H(m)]€7‘1T2.

It outputs the signature o := (01, 02,03, 04,05).

Signg (m,SK) — o The Signg algorithm takes in a message m € {0,1}*. It
chooses two random exponents 71,712, 2,y € Zy, and computes:

a1a2+b1b2H(m) riT2 T

o1:=g g "gs, 09 =g g4, 03 :=g"?,

o1 =k, 05 := ga1a2+5152H(m)knrz(gg’l)r.

It outputs the signature o := (01, 02,03, 04,05).

Verify(m, o, VK) — {T'rue, False} The verification algorithm first checks that:
e(o1,9) = e(g™. g**)e(g", 9") " e(o2, 03).

It also checks that:
e(0s,9) = e(9™*,9°*)e(g™, 7)™ e(02, 04).

Finally, it checks that:
e(g,04) = e(k, 03).

If all of these checks pass, it outputs “True.” Otherwise, it outputs “False.”

We note that the use of the random oracle H to hash messages in {0,1}* to
elements in Zy in this public key scheme that forms the base of our identity-
based sequential aggregate signatures is not necessary, and can be replaced in
the following way. Instead of using g®t®>tH(m)bib2 we can assume our mes-
sages are n-bit strings (denoted mims ... m,) and use g2t [T, g™i%% . Here,
g%, ..., g% g*, ..., g° will be in the public verification key. In the proof, in-
stead of guessing which random oracle query corresponds to the challenge mes-
sage, the simulator will guess a bit which differs between the challenge message
and the message that will be used in the forgery. This guess will be correct with
non-negligible probability. However, the use of the random oracle model to prove
security for the full identity-based sequential aggregate scheme is still required.
Removing the random oracle model altogether remains an open problem.

Forgery Classes. We will divide the forgery types based on whether they have
any G, or G,, components on o; or o5. We let 2z, € Zx denote the exponent
represented by the tuple (0 mod p;, 1 mod ps,0 mod p3), and we let z3 € Zy
denote the exponent represented by the tuple (0 mod p;,0 mod py, 1 mod ps3).
Then we can define the forgery classes as follows. Type I forgeries are of the
form Vr = {(m*,0*) € V|(67)** = 1,(07)*® = 1 and (c%)* = 1, (0f)* = 1},
while Type IT are of of the form Vi = {(m*,0*) € V|(c7)** # 1 or (0%)** #
lor (o7)*® #1or (0f)* # 1}.
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In other words, Type I forgeries have o7, 0% € G,,, while Type II forgeries

have a non-zero component in G,, or G,, on at least one of these terms. We
note that these types are disjoint and exhaustive.

We state our complexity assumptions and prove security of this scheme in the

full version. Some the assumptions we employ were previously used in [41/42].
Those that are new are justified in the generic group model.
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Abstract. In this paper, we discuss solving the DLP over GF(3%°7)
by using the function field sieve (FFS) for breaking paring-based cryp-
tosystems using the nr pairing over GF(3°7). The extension degree 97
has been intensively used in benchmarking tests for the implementation
of the nr pairing, and the order (923-bit) of GF(3%°7) is substantially
larger than the previous world record (676-bit) of solving the DLP by
using the FFS. We implemented the FFS for the medium prime case,
and proposed several improvements of the FFS. Finally, we succeeded in
solving the DLP over GF(3%°7). The entire computational time requires
about 148.2 days using 252 CPU cores.

Keywords: pairing-based cryptosystems, nr pairing, discrete logarithm
problems, function filed sieve.

1 Introduction

After the advent of the tripartite Diffie-Hellman (DH) key exchange scheme [21]]
and ID-based encryption using pairing [L1l], plenty of attractive pairing-based
cryptosystems have been proposed, for example, short signature |13], keyword
searchable encryption [10], efficient broadcast encryption [12], attribute-based
encryption [30], and functional encryption [28]. Pairing-based cryptosystems
have become a major research topic in cryptography.

Pairing-based cryptosystems are constructed on the groups Gp, G} and Ga
of the same order with a bilinear pairing G; x G; — G3. The security of
pairing-based cryptosystems is based on the difficulty in solving several number-
theoretic problems such as the computational/decisional bilinear DH problem
(CBDH/DBDH), strong DH problem (SDH), decisional linear problem (DLIN),
and symmetric external DH problem (SXDH). However, the most important
number-theoretic problem in pairing-based cryptosystems is the discrete loga-
rithm problem (DLP) on G1, GY, and G. All the other number-theoretic prob-
lems above are no longer intractable once the DLP on G1, G, or G2 is broken.
Therefore, it is important to investigate the difficulty in solving the DLP.
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Table 1. Summary of time data for solving DLP over GF (3597)

phase method time  machine environment
collecting relations lattice sieve 53.1 days 212 CPU cores

linear algebra parallel Lanczos 80.1 days 252 CPU cores

individual logarithm fgg{;g;;f}ggggcggf 15.0 days 168 CPU cores

total 148.2 days 252 CPU cores

One of the most efficient algorithms for implementing the pairing is the np pair-
ing [5] defined over a supersingular elliptic curve E on the finite field GF'(3"),
where n is a positive integer. Since the embedding degree of F is 6, the np pair-
ing can reduce a DLP over E on GF(3™), which is called an ECDLP, to a DLP
over GF(3%"). Joux proposed the (probably) first cryptographic scheme [21] that
uses the pairing over E. Boneh et al. then applied the pairing over E to the short
signature scheme |13], where a point (x,y) on E for extension degree n = 97 can
be represented as a signature value, e.g., x = KrpIcV009CJ81iyBS8MyVkNrMyE. At
CRYPTO 2002, Barreto et al. presented algorithms for efficiently computing Tate
pairing over F [6]. Many high-speed implementations of pairing over E have sub-
sequently been proposed |3, (719, (17, 18, [25]. For many of these implementations,
benchmark tests using the extension degree n = 97 have been conducted. There-
fore, we focus on the DLP over finite field GF(35°7) in this paper. The cardinality
of the subgroup of the supersingular elliptic curve is 151 bits, and that of G F(3%°7)
is 923 bits. The size of our target DLP is 247 bits larger than the previous world
record of solving the DLP over GF(3%™), whose cardinality is 676 bits [20]. The
current world record for solving an ECDLP is the 112-bit ECDLP [14]. Pollard’s
p method is used for solving the 112-bit ECDLP, and has not reached the ability
for solving the 151-bit ECDLP over the subgroup of E.

In this paper, we analyze the difficulty in solving the DLP over GF (35°7) by us-
ing the function field sieve (FFS), which is known as the asymptotically fastest al-
gorithm [1,12]. Since the FFS proposed by Joux and Lercier (JLO6-FFS) [24] is suit-
able for solving the DLP over a finite field whose characteristic is small, we use the
JLO6-FFS and propose several efficient techniques for increasing its speed. Note
that the FFS generally consists of four phases: polynomial selection, collecting re-
lations, linear algebra, and individual logarithm, and the time-consuming phases
are collecting relations and linear algebra. For the collecting relations phase, we
applied several techniques; lattice sieve for the JLO6-FFS, lattice sieve with sin-
gle instruction multiple data (SIMD), and optimization for our parameters. These
techniques enable the sieving program to run about 6 times faster. In the linear al-
gebra phase, we applied careful treatments of singleton-clique and merging [15] to
the Galois action originating from extension degree 6 of GF'(3597), with which the
size of the matrix used for the Lanczos method is reduced to approximately 30%.
By implementing the JLO6-FFS with our improvements, we succeeded in solving
the DLP over GF(3%97) by using 252 CPU cores (Core2 quad, Xeon, etc) for the
target problem discussed in Section B} As shown in Table [l the computations
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required 53.1 days for the collecting relations phase, 80.1 days for the linear alge-
bra phase, and 15.0 days for the individual logarithm phase. Thus, a total of 148.2
days were required to solve the DLP over GF (3%°7) by using 252 CPU cores. Our
computational results contribute to the secure use of pairing-based cryptosystems
with the nr pairing.

2 Pairing-Based Cryptosystems and Discrete Logarithm
Problem (DLP)

In this section, we briefly explain the security of pairing-based cryptosystems
and give a general overview of the function field sieve (FFS). We also mention
its parameters such as the smoothness bound B.

2.1 Pairing-Based Cryptosystems and DLP

Many efficient cryptographic protocols using a bilinear pairing have been pro-
posed (for example [10-13, 121, 28]), and high-speed implementations for the np
pairing have been reported (for example [3, 649, [L7, [18, 125]). We discuss the
security of pairing-based cryptosystems with the ny paring over GF(3™) for an
integer n. The security of pairing-based cryptosystems with the nr paring de-
pends on the difficulty in solving the DLP over the supersingular elliptic curves.
Additionally, MOV reduction |27] reduces this problem to a DLP over GF(3%")*
since the embedding degree of the np pairing is 6.

In particular, the np pairing is a bilinear map such that ny : G1 X G1 — Ga,
where G is an additive subgroup of a supersingular elliptic curve over GF(3"),
G is a cyclic subgroup of GF(35")*, and the cardinalities of G1, Go are the same
prime number P. The security of pairing-based cryptosystems with the nr pair-
ing depends on the difficulty of not only an ECDLP over G; but also a DLP over
G2 by MOV reduction. To explain this fact, we take ID-based encryption con-
structed on pairing-based cryptosystems as an example. The ID-based encryp-
tion has a master key sy € Zp. Each user ID is deterministically transformed
into a point Qip € G1, and the secret key Sip is defined by [sgey] Qp. Therefore,
solving the ECDLP over G1, namely Sip = [Skey] Qrp, We obtain the master key
Skey = logg,, Sip. Additionally, for an arbitrary point R € (1, we compute
nr(Sm,R),nr(Qip,R) € G2, and then have 77 (S, R) = 11 ([Skey]| Qip, R) =
nr(Qim, R)*kv € Gq. This implies that sge, = 10g,,, (2. R) nr(Sip, R) is also
available by solving the DLP over Gs. In this paper, we discuss the DLP over a
subgroup of GF(3%7)*.

2.2 General Overview of FFS

The FFS is the asymptotically fastest algorithm for solving a DLP over finite
fields of small characteristics. Adleman proposed the first FF'S in 1994 [1]. After
that, several variants of the FF'S have been proposed; Adleman and Huang im-
proved the FFS [2], and Joux and Lercier proposed two more practical FFS’s,
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JLO2-FFS [23] and JLO6-FFS [24]. The details of JLO6-FFS are explained in
Sections 321

In this section, we give a general overview of an FFS that consists of four
phases: polynomial selection, collecting relations, linear algebra, and individ-
ual logarithm. In the overview, we aim at computing log, 7" where T' € (9) C

GF (35",

Polynomial Selection Phase: We select k from k = 1, 2, 3, 6 for the coefficient
field of GF(3")[x], and a bivariate polynomial H(z,y) € GF(3")[x,y] such that
H satisfies the eight conditions proposed by Adleman [1] and deg, H = dy for
a given parameter value dy. We compute a random polynomial m € GF(3")[x]
of degree d,, and a monic irreducible polynomial f € GF(3")[z]| such that

H(z,m)=0 (mod f), degf=6n/k. (1)

We then have GF(35") = GF(3%)[x]/(f). Moreover, there is a surjective homo-
morphism

£ {GF(?»“)[% yl/(H) — GF(3°") = GF(3%)[x]/(f)
Y —> m.

We select a positive integer B as a smoothness bound, and define a rational
factor base Fr(B) and an algebraic factor base F4(B) as follows.

Fr(B) ={p € GF(3")[z] | deg(p) < B, p is monic irreducible}, (2)
Fa(B) = {(p,y —t) € Div(GF(3")[x, y|/(H)) | 3)
p € Fr(B), H(z,t) =0 mod p},

where Div(GF(3")[z, y]/(H)) is the divisor group of GF(3")[x, y]/(H) and
(p, y —t) is a divisor generated by p and y — t. Note that Fr(0) = Fa(0) = {0}.
We simply call the set Fr(B) U F4(B) a factor base and the set Fr(k)\Fr(k —
1)U Fa(k)\Fa(k — 1) a factor base of degree k for k =1,2,...,B.

Collecting Relations Phase: We select positive integers R,S and collect a
sufficient amount of pairs (r, s) € (GF(3%)[x])? such that

degr < R, degs < S, ged(r,s) =1, (4)
rm+ s = Pty (5)
pi€FR(B)
(ry +s) = Z bj(ps,y —tj), (6)
(pj>y—tj)€FA(B)

for some non-negative integers a;,b; by using a sieving algorithm such as the
lattice sieve discussed in Section EJl To efficiently compute b; in (@), we use the
following equivalent property instead of (@l):

(=) H@, /)= [ ¥} (7)

(pj,y—t;)EFa(B)
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The (r, s) satisfying @), (&), and () is called a B-smooth pair. Let h be the class
number of the quotient field of GF(3")(x)[y]/(H) and assume that h is coprime
to (35" —1)/(3% — 1). Then the following congruent holds:

Z a;log, pi = Z bjlog, s; (mod (36n -1)/(3"-1)), (8)

pi€FR(B) (pj,y—tj)EFa(B)

where 5; = £(t;)Y") (t;) = h{p;, y — t;). We call the congruent (§) “relation”
in this paper. Moreover, free relation [20] provides additional relations without
computation with a sieving algorithm.

Linear Algebra Phase: We generate a system of linear equations described as
a large matrix from those collected relations and reduce the rank of the matrix by
filtering [15]. The reduced system of linear equations is solved using the parallel
Lanczos method [4,120] or other methods, and the discrete logarithms of elements
in the factor base are obtained:

logg P, logg p#FR(B)vloggslv ...,logg B#FA(B)'

Individual Logarithm Phase: Note that our goal is to compute log, T'. There-
fore, we find integers a;, b; using the special-Q) descent [24] such that,

log, T = Z a;log, p;+ Z bjlog,s; (mod (35" —1)/(3% —1)).
pi€FRr(B) (pj y—t;)EFA(B)

The computational time for the individual logarithm phase is smaller than those
for the collecting relations and linear algebra phases.

3 Target Problem for n = 97 and Setting of Parameters
for FFS

We discuss solving the DLP over a subgroup of GF(35°7)* where the cardinality
of the subgroup is 151 bits. To estimate the time complexity of solving such
a DLP, we unintentionally set a target problem determined from the circular
constant 7 and natural logarithm e. The details are explained in Section [3.11
To solve the target problem effectively, we select the parameter values of the
FF'S and estimate important numbers, e.g., the number of elements in the factor
base, for it. The details are given in Section

3.1 Target Problem

For pairing-based cryptosystems, many high-speed implementations of the np
pairing over supersingular elliptic curves on GF(3™) have been reported |3, [6-9,
17,118, 125], and many benchmark tests using the 7p pairing have been conducted
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for GF(3%7). In this paper, we deal with a supersingular elliptic curve defined
by

E:={(z,y) € GF(3°)? : y? =23~z +1} U {0},

where O is the point at infinity. The order of the F is 3°7 + 3% + 1 = 7Py5,
where Py51 is a 151-bit prime number as follows:

Pi51 = 2726865189058261010774960798134976187171462721.

Next, let Gy be the subgroup of E of order Pi5; and let G4 be the subgroup
of GF(36'97)* of order P;51. Note that, since orders of Gy and G2 are prime
numbers, every element of G1\{O} and G3\{1} is a generator of G; and Ga,
respectively. The np pairing for n = 97 is a map from G; x G to Gs.

Our goal is to solve the ECDLP in G;. To set our target problem uninten-
tionally, we select two elements Q,, Q. in GG1, which correspond to the circular
constant 7 and natural logarithm e, respectively. We explain how we select O,
and Q. as follows. First, we describe GF(37) as GF(3)[z]/(z + 2'¢ + 2),
where the irreducible polynomial 2°7 + 26 + 2 € GF(3)[z] is well used for the
fast implementation of field operations. An element in GF(3°7) is represented by
Z’fio d;x', where d; € GF(3) = {0, 1,2}. To transform 7 and e to an element in
GF(3%7) respectively, we define a bijective map ¢ : Z?ﬁo d;x’ — Z?ﬁo d;3' € 7.
We then transform 7 and e to the 3-adic integer of 97 digits by |7 - 3% and
le - 3%, respectively.

From these values, we define Q. = (2, yr) and Q. = (z¢, y.) € G1 as follows.
We first find the non-negative smallest 3-adic integers ¢, and c. such that ¢=*(| -
3% ] 4+ c,) and ¢~ 1(|e- 3% + c.) become z-coordinates of the elements Q, and
Q. in the subgroup G on the E. In fact we can set z, = ¢~ (|7 - 3% | + (11)5)
and z, = ¢~ 1(|e - 39] + (120)5). There are two points in G1\{O} of the same
z-coordinate. We then set the corresponding y-coordinate by computing y, =
(23 — 2 +1)B7 D/ and g, = (23 — z + 1) /4 in GF(3%7), respectively.

Again, our goal is to solve the ECDLP in Gy, i.e., for given Qr, Q. € G1 we
try to find integer s such that Q, = [s]Q.. On the other hand, the nr pairing
enables us to reduce the ECDLP in GG; to the DLP over G2 by the relationship
N7(Qry Qn) = N1 (Qr, Qe)®. Therefore, we can find s by computing the discrete
logarithm

s =10g,,.(0, 0.)M(Lxr, Qr) =log, N1 (Qxr, Qr)/log, N7 (Qxr, Qc) mod Pi51,

for a generator g of Ga.

3.2 Parameter Settings for FFS

In this section, we explain the parameter setting used for our implementations
of the FFS. Hayashi et al. [20] reported that, when n < 509, the JLO6-FFS [24]
is more efficient for solving the DLP over GF(3%") than the JLO2-FFS [23]. Thus,
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we use the JLO6-FFS for our computation. In the JLO6-FFS, the condition that
“r is monic” is introduced into the collecting relations phase in order to compute
efficiently. For the remainder of this paper, the FFS refers to the JLO6-FFS.

To solve our DLP over GF(357), we have to select several parameter values
of the FF'S, such that its computational time is small enough for a fixed extension
degree n. The parameter values for n = 97 are listed in |31, Table 3], and we use
those parameter values for our computation.

We select the parameter k € {1,2,3,6} as follows. GF(3%97) is described
as GF(3")[x]/(f), where f € GF(3")[z] is an irreducible polynomial of degree
6-97/k. The appropriate value of x is given in [31, Table 3], i.e., k = 6. However,
we select k = 3 for the following reasons. In the linear algebra phase, filtering |15]
is performed to reduce the size of the matrix. Then it is required that all elements
in the factor base correspond to the memory addresses of the PC for efficient
computation. The number of elements in the factor base for x = 6 is much larger
than that for kK = 3, so kK = 3 is advantageous on this point. Additionally, |31,
Table3] shows that the computational cost of the FFS for x = 3 is only about
twice as much as that for k = 6. We conducted test runs for k = 3,6 in the
collecting relations phase, then noticed that our implementation for k = 3 was
much faster than for kK = 6, so we set Kk = 3.

Polynomial Selection Phase: We select the bivariate polynomial H(z,y) of
the form x + y?# for a given parameter dy of the FFS in the same manner as
[20]. Then we search an irreducible polynomial f € GF'(3")[z] and a polynomial
m € GF(3%)[z] which are satisfying the condition (), by factoring H (z,m) for
a randomly picked polynomial m whose degree is d,,. In fact, we randomly pick
up m from GF(3)[z], so that f is also in GF(3)[z] for use of the Galois action.
From |31, Table 3], we set dy and d,, as 6 and 33, respectively.

Next, we select the smoothness bound B = 6 by using [31, Table 3] for (2]
and (@), i.e., a rational factor base Fr(B) and an algebraic factor base F4(B).
#Fr(B) is 67576068 and #F4(B) is 67572597, thus the number of elements of
factor base, i.e., #Fr(B) + #Fa(B), is 135148665.

Collecting Relations Phase: In the collecting relations phase, we use the
lattice sieve [29] and the free relation [20] and collect many relations [ ); (r, s) €
(GF(3%)[z])? satisfying @), (@), (@), where 7 is monic. The search range for the
lattice sieve depends on the maximum degrees R,S of r,s. We set R =5 =6
based on |31, Table 3]. The lattice sieve gives a certain amount of relations
for one special-), which is defined in Section Il Therefore, we require a suf-
ficient number of special-Q’s so that the number of relations obtained in the
collecting relations phase is larger than that of all elements in the factor base.
The minimum sufficient number of special-Q)’s is estimated by the following
process. We have to select special-Q’s from the subset Fr(6)\Fr(5), whose car-
dinality is 64566684. Let 6,,;, be the minimum sufficient ratio of special-Q’s
over all elements in Fr(6)\Fr(5). For n = 97 and x = 3, we can estimate
Omin = 0.01292 [31, Table 3]. Therefore, the number of special-Q’s must be
larger than [0.01292 - 64566684 = 834202. In our computation, we set 2500000
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as the number of special-Q)’s to obtain more relations than we require since we
expect that these excess relations will help us reduce the size of the matrix during
filtering, especially in singleton-clique.

4 Implementation

In this section, we propose the following efficient implementation techniques;
the lattice sieve for the JLO6-FFS and optimization for our parameters in the
collecting relations phase, the data structure and the parallel Lanczos method for
the Galois action in the linear algebra phase, for reducing the computational cost
of the FFS for solving the DLP over GF(3%°7). Parameters (k,dg,dm, B, R, S)
are fixed as (3,6,33,6,6,6). The reasoning for this is explained in Section

4.1 Collecting Relations Phase

In the collecting relations phase, we used the lattice sieve [29] in a similar fashion
to factoring a large integer |26] and solving discrete logarithm problems [22, [23].
We give an overview of our implementation of the lattice sieve in the following
paragraphs. More details are described in |19].

Lattice Sieve for JLO6-FFS: Sieving with the lattice sieve is performed for
(r,s) € (GF(3%)[x])? such that the formula () given in Section is divisible
by an element @ chosen from a subset of the rational factor base Fr(6)\Fr(5)
(this @ is called a “special-Q)”). Recall that degr and degs are not greater
than R = 6 and S = 6, respectively. Such (r,s) can be represented as (r,s) =
c(r1, s1)+d(re, s2) for given reduced lattice bases (11, s1), (r2, s2) € (GF(3?)[x])?
and any c¢,d € GF(3%)[x] such that deg(cry + dre) < 6,deg(cs; + ds2) < 6,
then sieving is done on the bounded c-d plane. After sieving, we conduct the
smoothness test [16] for “candidates” that are evaluated as B-smooth pairs with
high probability by using the lattice sieve.

A problem of applying the lattice sieve to the FFS is the condition “r is
monic” described in Section Since r is represented as cry + dra, it is difficult
to efficiently keep r monic — it might require degree evaluations and branches.
Instead of choosing monic r, we introduce the condition » = 1 mod x. To satisfy
this condition, we restrict r; and ro such that r; = 0 mod x and ro = 1 mod x.
Then sieving is performed on the bounded c-d plane with restriction d = 1 mod =,
whose size is reduced to 1/27 compared with the original bounded ¢-d plane. This
sieving procedure with the restricted condition can be implemented without
extra costs such as additional degree evaluations and additional branches.

Lattice Sieve with SIMD: Since operations of GF(3) can be represented
using logical instructions [25], operations of GF(3%)[z] can be performed using a
combination of logical and shift instructions. This means SIMD implementation
is appropriate for efficient computation of the lattice sieve. We represent GF(3%)
as polynomial basis GF(3)[w]/(w? —w — 1), and its element is represented using
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Fig. 1. Our improvement in collecting relations phase for first two weeks

6-bit (h1, 01, he, e, he2, ly2) € GF(2)° in our implementation. We then pack
16 elements of GF(3%)[z] of degree at most 7 into 6 registers of 128 bits, and
treat 16 elements with SIMD. Note that the upper bound of the degree of our
SIMD data structure is for efficient access to each element in GF(3%)[z]. On the
other hand, since we choose B, R, S as all 6, the upper bound of the degrees of
c,d,r1, 81,72, 82 € GF(3%)[z] and p in the factor base, which are treated in the
lattice sieve, is also 6. Therefore, our SIMD structure can be stored elements
treated in the lattice sieve.

History of Our Optimizations: Figure [I]l shows the process of our improve-
ments in the collecting relations phase for the first two weeks. We improved
our implementation of the lattice sieve four times during this period. We first
used large prime variation to omit sieving for the factor base of degree 6 and
implemented the lattice sieve for the FFS with SIMD implementation. We then
ran the program for the first four days (stage I in Fig. [[). At that point, the
estimated total number of days for the collecting relations phase was about 360
days. While the sieving program was running, we found that sieving for the
factor base of degree 5 requires heavier computation than sieving for the factor
bases of degree 1, 2, 3 and 4. Therefore, we improved sieving for the factor base
of degree 5; thus, our sieving program became over 3 times faster than before
(stage I in Fig. ). Next, we optimized register usage for input values and omit-
ted wasteful computations (stage Il in Fig. [I)). Additionally, we omitted sieving
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for the factor base of degree 1 (stage IV in Fig.[I]), since that computational time
was larger than that for the factor bases of degree 2, 3, 4, and 5. Moreover, we
improved our sieving program to use 128-bit registers more efficiently (stage V in
Fig.[). Finally, our sieving program became about 6 times faster than the first
one (stage I in Fig.[I]) and the estimated total number of days for the collecting
relations phase became about 53.1 days. In the next paragraph, we explain the
details of the improvement in stage II, which is the most effective and important
improvement in our implementation of the lattice sieve.

Details of Stage II: In the lattice sieve, the main computation of sieving
for given lattice bases (r1,s1), (12,82) € (GF(3%)[z])? is as follows. For fixed
d € GF(33)[z], whose degree is upper-bounded by a degree bound D, we compute
co = —d(rit+s1) " (rot+s2) mod p for all pairs (p,t) € {(p,t) |p € Fr(B),t =m
(mod p)} U {(p,t)|{p,y — t) € Fa(B)}, and compute ¢ € GF(33)[z], whose
degree is upper-bounded by a degree bound C, such that ¢ = ¢g + kp where
k € GF(3%)[z]. We call the computation “sieving at d” in this section. For given
lattice bases, sieving at d is performed for all d of degree not larger than D. Note
that ¢o does not need to be computed when (r1t + s1) = 0 (mod p); therefore
we assume (r1t + s1) # 0 (mod p) in the following description.

In stage I of our implementation, we found that the time of sieving at d for
degp = 5 takes over 100 msec, but each sieving time at d for degp = 1,2,3
and 4 takes about 10 mesc or less. Therefore, we tried to improve the sieving
of degree 5. When we compute ¢y for p of degree 5, the degree of ¢y becomes 4
with probability about 26/27. On the other hand, the degree of the lattice bases
r1,81,T2,S2 is 3 in most cases because the degree of special-Q is 6. On such
bases, degree bounds C and D can be chosen as 3 to satisfy condition {), i.e.,
degr < 6 and degs < 6. These facts show that about 26/27 of the computation
of sieving for p of degree 5 are waste computations. Therefore, we discuss how to
sieve only with the polynomial ¢, whose degree is not larger than 3, as follows.

Let a € GF(33)[x] be —(r1t+s1) " (rat+s2) mod p, then we have ¢y = da mod
p. Let a; € GF(3?) be the coefficient of the fourth-order term of z'a mod p
for i = 0,1,2,3. Since degd < 3, d is represented as dzz> + dyx? + dix + 1 for
dz,do,d; € GF(3?). Recall that we restricted d = 1 mod z in our implementation
of the lattice sieve. Here we know that the degree of ¢g is not larger than 3 if
dsas + doas + diag + ag = 0. Therefore, it is sufficient to perform sieving at d
for p in the factor base of degree 5 for only d satisfying the following property:

di — —Kaj! ifa; #0 )
17\ any element in GF(33) if oy =0 and K =0

where K = dsasz + daas + ag. When a; = 0 and K = 0, we should compute
co for d whose d; is any element in GF(3%), and we cannot cut off any di;
therefore, we assume that oy # 0 in the following description. Suppose that
we now fix lattice bases (71, s1), (r2,s2) and a pair (p,?) where degp = 5, then
each «; for i = 0,1,2,3 is also fixed. Therefore, since K depends on ds and ds,
the dy satisfying (@) is given by dy and d3 and uniquely determined for given
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dy and d3. This implies that, since d; is in GF(3®) whose cardinality is 27, we
can ignore 26 d;’s not satisfying (@) for given dy and ds. In fact, the time of
sieving at d for all pairs (p,t) where degp = 5 is reduced to about 1.5 msec by
ignoring d; not satisfying (@)). Note that we need to compute K for given ds and
ds for all pairs (p,t). The time of computing K for all (p,t) takes about 150
msec in our implementation. Therefore, for all pairs (p,t) where degp = 5, the
computations of K and sieving at d require about 7.1 msec at stage II, which is
over 10 times faster than the computation of sieving at d at stage I. As a result,
our implementation of the lattice sieve at stage Il becomes over 3 times faster
than that at stage I.

4.2 Linear Algebra Phase

After the collecting relations phase, we obtain a system of linear equations mod-
ulo Pi51, which is described in Section 11 The Galois action [20, 124] can re-
duce the number of variables of the system of linear equations to one-third.
Additionally, after the Galois action, the numbers of equations and variables of
the system of linear equations can be further reduced using filtering |15], i.e.,
singleton-clique and merging. To solve the system of linear equations defined by
this reduced matrix, we use the parallel Lanczos method [4, 20].

Galois Action: The Galois action to GF(3%°7)/GF(33°7) enables us to reduce
the number of variables of the system of linear equations to one-third (details
of the Galois action are discussed in [20, 24]). However, when we use the Galois

action, 151-bit large integers such as eg + e17 + ea72, where 7 = 3972 mod P51
and e; is a small integer of a few bits, are added to elements of the system of linear
equations. This unfortunate fact eventually increases the data size of the reduced
matrix; therefore, high-capacity memory is required. To allay the increase in the
representation size of the elements, we store only a triplet (e, ez, e3) in the PC
memory, not a large 151-bit integer. Since e; is small enough to be represented
by 8 bits, the size of the elements is reduced from 151 to 24 bits on average. We
call this representation the “r-adic structure”. Note that the 7-adic structure is
used for the Galois action and singleton-clique.

Singleton-Clique and Merging: Filtering consists of two parts, singleton-
clique and merging. Singleton-clique deletes unnecessary rows and columns to
reduce the size of the matrix. In our implementation of singleton-clique, we per-
formed by maintaining 20000 more rows than columns to prevent accidentally
decreasing the rank of the matrix. After that, merging, a weight-controlled Gaus-
sian elimination, is performed. In merging, for small integer k, the column with a
weight not larger than k is deleted by row elimination with controlling the pivot
selection so that the weight of the matrix is as small as possible. This operation
is called k-way merging. In our implementation of merging, we converted the
data representation of the matrix from the 7-adic structure to a large 151-bit
integer structure, since merging on the 7-adic structure cannot reduce the size
of the matrix enough due to the restriction of the pivot selection. More details
are described in [19].
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Parallel Lanczos Method: By using the parallel Lanczos method |4, 20], we
solve the system of linear equations defined by the matrix reduced via the Galois
action, singleton-clique, and merging. For parallel computing, the matrix should
be split into sub-matrices, i.e., split into N = N; X N5 sub-matrices for N nodes,
and nodes communicate among N; nodes or Ny nodes. To reduce the synchro-
nization time before communicating, the matrix is split so that each sub-matrix
has almost the same weight. Our machine environment for the parallel Lanczos
method consisted of 22 nodes, and each node had 12 CPU cores and 2 NICs.
The 2 NICs were connected to a 48-port Gbit HUB, i.e., 44 ports were used for
connecting 22 nodes. All 22 nodes could be used, so we had a choice for machine
environment; 20 =5 x4, 21 =7 x 3 or 22 = 11 x 2. Using 20 nodes requires the
least communication costs but the most computational costs, and using 22 nodes
requires the most communication costs but the least computational costs. Using
21 nodes was the best for our implementation; therefore, we used 21 nodes.

For computation in the parallel Lanczos method, many modular multiplica-
tions of 151-bit integers x 151-bit integers modulo P;5; are required due to the
Galois action. We implemented Montgomery multiplication optimized to 151-bit
integers using assembly language. Our program then becomes several times faster
than straightforward modular multiplication using GMP (http://gmplib.org/)
for multiple precision arithmetic.

After the computation of the parallel Lanczos method started, we improved
our codes of the parallel Lanczos method (for example, efficient register usage,
overlapping communications and computations). These improvements are about
15% faster than our initial implementation.

4.3 Individual Logarithm Phase

As mentioned in Section B.1] log, nr(Qr, Qr) and log, N7 (Qxr, Qe) are required
to solve our target problem. To compute them, rationalization and special-Q
descent [24] were used. For simplicity, let T' be n7(Qr, Qr), or N7 (Qr, Q) in
the following paragraphs.

In the rationalization, we randomize T such that the randomized element is
M-smooth for a small enough integer M > B by the following process. First,
we randomize T by z = ¢"T (mod f) for a random integer v € Zp,,,. We
then rationalize z as z = 21/22 (mod f) where degrees of z; and 22 are about
deg f/2, and check whether both 2z; and 25 are M-smooth. Then, computing
log, T is reduced to computing logarithms of irreducible factors of M-smooth
elements z; and z».

M-smooth elements z; for i = 1,2, contain some irreducible factors of degree
larger than B whose logarithms are not computed in the linear algebra phase.
To compute these logarithms, the special-Q descent [24] is usually used. In the
special-@ descent, the lattice sieve is recursively conducted with an irreducible
factor of degree larger than B, which is contained in z; or in a relation generated
during the special-QQ descent, as a special-Q.
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5 Experimental Results

We succeeded in solving a DLP over G F(3%7) by using the FFS with our efficient
implementation techniques discussed in Section [l In this section, we report our
computational results, such as the computational time of each phase of the FFS
and the number of relations.

5.1 Polynomial Selection

The FFS has six parameters x,dg,dn, B, R, and S, as defined in Section 2.2]
and we set (k,dpg,dm, B,R,S) = (3,6,33,6,6,6) for our target problem, based
on the reason given in Section In the polynomial selection phase, we can
extract appropriate polynomials such as the definition polynomial H(z,y) of a
function field described in Section in one minute, so the computational cost
of the polynomial selection phase is negligibly small.

5.2 Collecting Relations Phase

In the collecting relations phase, we search many relations that are equations of
the form (8)) to generate a system of linear equations by using the lattice sieve and
the free relation. We explain our computational results of the collecting relations
phase, e.g., the number of relations obtained in this phase, the computational
time of the lattice sieve for one special-Q.

Lattice Sieve. Each special-Q has to be chosen from Fg(6)\Fg(5). The num-
ber of elements of Fr(6)\Fr(5) is 64566684, and the size of the table of those
elements is about 500 MB. Since our program of the lattice sieve is computed
using many nodes, it is not convenient to pick up the element from that 500-MB
table as a special-QQ. Therefore, we selected a special-Q) by randomly generating
an irreducible polynomial in GF(3%)[z] of degree 6, which is in Fr(6)\Fg(5),
and iterated the computation of the lattice sieve for the special-Q.

We prepared 47 PCs (in total 212 CPU cores) for the lattice sieve. The com-
putation of the lattice sieve began on May 14, 2011, and we continued optimizing
our program of the collecting relations phase. As discussed in Section L] we
applied several improvements to our program of the collecting relations phase;
the lattice sieve for the JLO6-FFS, the lattice sieve with SIMD, and optimization
for our parameters. Figure [1l in Section 1] shows the process of our improve-
ments in the collecting relations phase for the first two weeks. The total time for
the collecting relations phase shortened due to our improvements. Finally, the
computation finished on September 9, 2011 and required 118 days. including the
loss-time of some programming errors, updating our codes, and power outages.
The real computational time of the lattice sieve was equivalent to 53.1 days using
212 CPU cores such as Xeon E5440.

Table 2] summarizes the process of generating relations in the collecting rela-
tions phase. It might seem that the number of duplicate relations is very small
compared to the integer factorization case using the number field sieve. This
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Table 2. Number of collected relations in collecting relations phase

lattice sieve 159032292 relations obtained from 2500000 special-Q’s
(64.91 relations/special-@, 389 sec/special-Q)
153815493 unique (non-duplicated) relations
obtained from 2449991 unique special-Q’s
free relation 33786299 relations
total 187602242 relations (consist of 134697663 elements in the factor base)

Table 3. Compressing matrix using Galois action, singleton-clique and merging

method size of matrix
before compressing 187602242 equations x 134697663 variables
Galois action 159394665 equations x 45049572 variables

singleton-clique 14060794 equations x 14040791 variables
6-way merging 6141443 equations x 6121440 variables

arises from the fact that the size of the sieving space in our parameters is so
large compared to that case.

Free Relation. The free relation gives us additional relations not generated by
a sieving algorithm such as the lattice sieve. The details of the free relation is
given in [20]. As shown in Table 2] the free relation gave us 33786299 relations.
Eventually, we obtained a system of linear equations consisting of 187602242
equations and 134697663 variables. Note that there are 451002 elements in the
factor base, which does not appear in the 187602242 relations.

5.3 Linear Algebra Phase

In the linear algebra phase, we firstly reduced the size of the matrix by the
Galois action and filtering, and then performed the parallel Lanczos method for
the reduced matrix. Table Bl shows that the process of the compression of the
matrix.

Galois Action. As mentioned in Section 2] the Galois action reduced the
size of the matrix generated in the collecting relations phase to one-third since
k = 3. To allay the fact that the size of each element of the matrix increases
from a few bits to 151 bits due to the Galois action, we used the T-adic structure
mentioned in Section

Singleton-Clique and Merging. After using the Galois action, we additionally
reduce the variables and equations of the matrix by singleton-clique and merging
[15]. Using a PC, the computation for singleton-clique took about 3 hours, and that
for merging took about 10 hours. After 6-way merging, we started the computation
of the parallel Lanczos method for the 6-way merged matrix. See [19] for more
details about our results of singleton-clique and merging.
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Table 4. Computational time of parallel Lanczos method for 6-way merged matrix

calculation time/loop 626.3 msec
synchronization time/loop 46.5 msec
communication time/loop 457.3 msec

total time/loop 1130.1 msec
number of loops 6121438
total time 80.1 days

Parallel Lanczos Method. We used the parallel Lanczos method [4, 120] to
solve the system of linear equations defined by the 6-way merged matrix. Note
that this matrix is sparse and defined over Zp,,,, where P51 is the 151-bit
prime number given in Section [B.Il The computation of the parallel Lanczos
method started on January 16, 2012, and was conducted on 21 PCs, which were
connected via a 48-port Gbit HUB. As mentioned in Section 2] we continued
improving our codes of the parallel Lanczos method after computation began.
The computational times of our improved codes are listed in Table [ Finally,
computation finished on April 14, 2012. The computation for the parallel Lanczos
method took 90 days including time losses similar to our implementation of the
lattice sieve. The real computational time is equivalent to 80.1 days using 252
CPU cores such as Xeon X5650.

5.4 Individual Logarithm Phase

Our target is to compute log, 77 (Qxr, Qe) and log, 77 (Qx, Q) for some g € Ga,
as mentioned in Section Bl

First, we computed the rationalization described in Section Let g be a
polynomial (z4w)3” " =D/Pis1 ¢ Gy, where w is a polynomial basis of GF(33) &
GF(3)[w]/(w®—w—1). Note that g is a generator of Go C GF(3%97)* and z+w is
a monic irreducible polynomial in Fr(B) of degree 1. We set M = 15 and search a
pair (21, 22) (and (2], 25)) € (GF(3%)[x])? such that n7(Qx, Qc)-g" = 21/22 (and
nr(Qr, Qx) - g% = 21/72}), where z; (and z]) are M;-smooth (where M; < M)
for some v1,v2 € Zp,,, and i = 1,2. We found z; and z2, which are 13- and
15-smooth (and z{ and z5 which are 15- and 14-smooth), respectively. These
computations were conducted on 168 CPU cores and required 7 days for each
computation.

N7 (Qry Qe) - g7 = (13-smooth)/(15-smooth),

v1 = 2514037766787322013334785428291787565870435706,
N1 (Qr, Qr) - 72 = (15-smooth)/(14-smooth),

Yo = 2657516740789758289434702436228062607247517136.

Next, we performed special-Q descent for each irreducible factor of smooth ele-
ments obtained by the rationalization. These computations were conducted on
168 CPU cores and took about 0.5 days for each nr(Qx, Q.) and np(Qx, Qx).
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Thus, the computation of the individual logarithm phase took 15 days; (7 days
(for rationalization) + 0.5 days (for special-@) descent)) x 2 elements.

By using the logarithms of the corresponding elements in the factor base
obtained from the linear algebra phase, we could compute log, 77 (Qx, Qc) and
log, N7(Qr, Qr). The logarithm of each element is as follows:

log, n7(Qxr, Qc) = 1540966625957007958347823268423957036469656370,
log, N1 (Qx, Qr) = 1630281950635507295663809171217833096970449894.

Finally, we obtained the logarithm of the target element:

s =1log,, (0, 0.) N (Qr, Q)
= 1752799584850668137730207306198131424550967300.

This is the solution of the ECDLP of equation Q, = [s]Q..

6 Concluding Remarks

We evaluated the security of pairing-based cryptosystems using the np pairing
over supersingular elliptic curves on finite field GF(3™). We focused on the case
of n = 97 since many implementers have reported practically relevant high-speed
implementations of the np pairing with n = 97 in both software and hardware. In
particular, we examined the difficulty in solving the discrete logarithm problem
(DLP) over GF(3597) by our implementation of the function field sieve (FFS).

To reduce the computational cost of the FFS for solving the DLP, we proposed
several efficient implementation techniques. In the collecting relations phase,
we implemented the lattice sieve for the JLO6-FFS with SIMD and introduced
improvements by optimizing for factor bases of each degree; therefore, our lattice
sieve for the JLO6-FFS became about 6 times faster than the first one. The main
difference from the number field sieves for integer factorization is the linear
algebra phase, namely, we have to deal with a large modulus of 151-bit prime for
the computation of the FFS. We thus performed filtering (singleton-clique and
merging) by carefully considering the data structure of large integers developing
from the Galois action, so that we can efficiently conduct the parallel Lanczos
method. From the above improvements, we succeeded in solving the DLP over
GF(3597) in 148.2 days by using PCs with 252 CPU cores. Our computational
results contribute to the security estimation of pairing-based cryptosystems using
the np pairing. In particular, they show that the security parameter of such
pairing-based cryptosystems must be chosen with n > 97.

Finally, we show a very rough estimation of required computational power for
solving the DLP over GF(35") with n > 97. Our experiment on the DLP over
GF(35") with n = 97 used 252 CPU cores of mainly 2.67 GHz Xeon for 148.2
days, which are equivalent to 262 clock cycles. From the analysis of [31], the
computational complexities of breaking the DLP over GF(3°") with n = 163
and 193 become 2154 and 2'%'! times larger than that with n = 97, respectively.
Therefore, we could estimate that about 2783 and 2829 clock cycles are required
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for breaking the DLP over GF(35") with n = 163 and 193, respectively. On
the other hand, the currently second fastest supercomputer K has a through-
put of about 10.5 petaflop/s from http://www.top500.org/, and it performs
about 278! floating-point operations for one year. If one floating-point opera-
tion on the CPU of the K is equivalent to one clock cycle of logical operation
on the Xeon core, we might be able to break the DLP over GF(3%163) using our
implementation on supercomputer K for one year.
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Abstract. Projecting bilinear pairings have frequently been used for de-
signing cryptosystems since they were first derived from composite order
bilinear groups. There have been only a few studies on the (im)possibility
of projecting bilinear pairings. Groth and Sahai showed that projecting
bilinear pairings can be achieved in the prime-order group setting. They
constructed both projecting asymmetric bilinear pairings and projecting
symmetric bilinear pairings, where a bilinear pairing e is symmetric if it
satisfies e(g, h) = e(h, g) for any group elements g and h; otherwise, it is
asymmetric.

In this paper, we provide impossibility results on projecting bilinear
pairings in a prime-order group setting. More precisely, we specify the
lower bounds of

the image size of a projecting asymmetric bilinear pairing
the image size of a projecting symmetric bilinear pairing
the computational cost for a projecting asymmetric bilinear pairing

W=

the computational cost for a projecting symmetric bilinear pairing

in a prime-order group setting naturally induced from the k-linear as-
sumption, where the computational cost means the number of generic
operations.

Our lower bounds regarding a projecting asymmetric bilinear pairing
are tight, i.e., it is impossible to construct a more efficient projecting
asymmetric bilinear pairing than the constructions of Groth-Sahai and
Freeman. However, our lower bounds regarding a projecting symmetric
bilinear pairing differ from Groth and Sahai’s results regarding a symmet-
ric bilinear pairing results; We fill these gaps by constructing projecting
symmetric bilinear pairings.

In addition, on the basis of the proposed symmetric bilinear pair-
ings, we construct more efficient instantiations of cryptosystems that
essentially use the projecting symmetric bilinear pairings in a modular
fashion. Example applications include new instantiations of the Boneh-
Goh-Nissim cryptosystem, the Groth-Sahai non-interactive proof system,
and Seo-Cheon round optimal blind signatures proven secure under the
DLIN assumption. These new instantiations are more efficient than the
previous ones, which are also provably secure under the DLIN assump-
tion. These applications are of independent interest.

X. Wang and K. Sako (Eds.): ASTACRYPT 2012, LNCS 7658, pp. 61-[(9] 2012.
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1 Introduction

A bilinear group is a tuple of abelian groups with a non-degenerate bilinear
pairing. Projecting bilinear pairings, which are bilinear pairings with homo-
morphisms that satisfy a commutative property, have frequently been used for
designing cryptosystems since they were first derived from composite order bilin-
ear groups [10], though Freeman identified and named the projecting property
recently [I5]. Of special interest is the Groth-Sahai non-interactive proof sys-
tem [22] and the Boneh-Goh-Nissim cryptosystem [10], both of which essentially
use the projecting property and have numerous applications in various fields in
cryptography. For example, the Groth-Sahai proofs were used to construct ring
signatures [I3], group signatures [19], round optimal blind signatures [25], ver-
ifiable shuffles [20], a universally composable adaptive oblivious transfer pro-
tocol [18], a group encryption scheme [12], anonymous credentials [7J6], and
malleable proof systems [I4]. For its part, the Boneh-Goh-Nissim cryptosystem
was used for designing private searching on streaming data [31], non-interactive
zero-knowledge [21], shuffling [5], and privacy-preserving set operations [32].

(Im)possibility of Projecting Bilinear Pairings: Although the projecting
bilinear pairings are often used for designing various cryptosystems, there have
been only a few studies on the (im)possibility of projecting bilinear pairings.
Groth and Sahai [22] demonstrated that projecting bilinear pairings can be
achieved in the prime-order group setting. They provided two distinct construc-
tions in prime-order group setting: projecting asymmetric bilinear pairings and
projecting symmetric bilinear pairings, where a bilinear pairing e is symmetric if
it satisfies e(g, h) = e(h, g) for any group elements g and h; otherwise, it is asym-
metric. On the basis of this idea of projecting bilinear pairings, they developed
non-interactive proof systems for quadratic equations over modules that can be
instantiated in composite-order bilinear groups, product groups of prime-order
bilinear groups with asymmetric bilinear pairings, and product groups of prime-
order groups with symmetric bilinear pairings. By extending Groth-Sahai’s idea
Freeman [I5] generalized Groth-Sahai’s projecting asymmetric bilinear pairings
Groth-Sahai and Freeman’s constructions of projecting bilinear pairings allow for
the simultaneous treatment of subgroup indistinguishability. To use projecting
bilinear pairings for designing cryptographic protocols, we need to deal with
cryptographic assumptions such as subgroup decision assumption at the same
time. Meiklejohn, Shacham, and Freeman [25] have shown some impossibility
results for projecting bilinear pairings, e.g., that projecting bilinear pairings can-
not simultaneously have a cancelling property if the subgroup indistinguishabil-
ity is naturally induced from the k-linear assumption [23/36]. Recently, Seo and

! Freeman identified the other property of bilinear pairings in a composite-order group
setting, called cancelling, and demonstrated how to achieve the cancelling bilinear
pairings in the prime-order group setting.
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Cheon [35] proved that bilinear pairings can be simultaneously projecting and
cancel%ng when the subgroup decision assumption holds in the generic group
model

Contribution: In this paper, our contribution is a two-fold. First, we aim to
answer the fundamental question how efficient constructions for projecting bilin-
ear pairing can be. Second, we propose a construction of projecting symmetric
bilinear pairings that can achieve the efficiency of our lower bounds and then pro-
vide several constructions of cryptosystems based on the proposal in a modular
fashion.

We focus on constructions only in the prime-order bilinear group setting since
this type of group usually supports more efficient (group and bilinear pairing)
operations than those in composite-order bilinear groups (see [15] for a detailed
comparison of composite and prime-order groups). We present several impossi-
bility results of the projecting bilinear pairings in a prime-order group setting.
More precisely, we specify the lower bound of

1. the image size of a projecting asymmetric bilinear pairing

2. the image size of a projecting symmetric bilinear pairing

3. the computational cost for a projecting asymmetric bilinear pairing, and
4. the computational cost for a projecting symmetric bilinear pairing

in a prime-order group setting naturally induced from the decisional Diffie-
Hellman (DDH) assumption, the decisional linear (DLIN) assumption, and the
k-linear assumption, where the computational cost means the number of generic
operations. In this paper, we restrict ourselves to a consideration of a framework
in which the subgroup indistinguishability in the framework relies in a natural
way on simple assumptions (i.e., the DDH, DLIN, and k-linear assumption). This
framework covers all previous constructions by Groth-Sahai and Freeman, and
this restriction on the framework has already been used in [25] to show another
impossibility result on projecting bilinear pairings. As for the computational cost
of projecting bilinear pairings, we consider a slightly restricted computational
model since there are typically several ways to perform a given operation, which
makes it very difficult to compare all possible (even unknown) ways. We have two
basic assumption in our computational model. First, we only count the number
of generic operations of the underlying elliptic curve group and the pairings —
that is, we assume that one cannot utilize information about the representation
of groups and bilinear pairing operations [37J8]. Second, we assume that two
inputs of a projecting bilinear pairing are uniformly and independently chosen.
In special cases, an additional information about two inputs may lead to an effi-
cient alternative way of computing a pairing operation. For example, when one
computes e(g1, g2) for the two given inputs g; and g2, where e : G x G — G
is a pairing, if we knows e(g,g), a1 and as such that g1 = ¢g** and go = g*2
for a generator g of G, then we can perform one field multiplication and one

2 Seo and Cheon’s result does not contradict Meiklejohn et al.’s result. Rather, they
showed that there is a more general class of bilinear groups than Meiklejohn et al.
considered and that some of theses can be both cancelling and projecting.
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exponentiation in Gy instead of performing e for e(g1,92) = e(g, g)***2. Since
we want to consider the computational cost of e in general, that is, without any
additional information aside from the original two inputs, we assume that two
inputs are uniformly and independently distributed in their respective domains:
Hence, our computational model rules out special cases like the above example.
Although our computational model does not perfectly correspond to the real
world, we believe that its lower computational bounds can aid our understand-
ing of the projecting property and enable us to locate efficient constructions for
projecting bilinear pairings.

In this study, our lower bounds imply that Freeman’s construction of pro-
jecting asymmetric bilinear pairings is optimal: that is, it is the most efficient
construction for projecting asymmetric bilinear pairings [I5]. In contrast, our
lower bounds for the projecting symmetric bilinear pairing are different from
those of Groth-Sahai [22]. We fill these gaps by constructing projecting sym-
metric bilinear pairings and demonstrating that our construction can achieve an
efficiency coincident with the lower bounds.

The proposed projecting symmetric bilinear pairings can be used to create
more efficient instantiations of cryptosystems, which essentially use projecting
property and symmetric bilinear pairings, in a modular fashion. To show that
the proposed projecting symmetric bilinear pairings can be adapted to various
cryptosystems, we apply them to three distinct cryptosystems and create new
efficient instantiations of the Groth-Sahai non-interactive proof system [22], the
Boneh-Goh-Nissim cryptosystem [10], and Seo-Cheon round optimal blind signa-
tures [35] that are provably secure under the DLIN assumptionﬁ The proposed
instantiation of the non-interactive proof system has a faster verification than
Groth-Sahai’s instantiation based on the DLIN assumption, and the proposed in-
stantiation of the Boneh-Goh-Nissim cryptosystem has a smaller ciphertext size
and a faster decryption algorithm than Freeman’s instantiation based on the
DLIN assumption. We can also reduce the verification costs of the Seo-Cheon
round optimal blind signatures. These applications are of independent interest.
Our new instantiation is based on the DLIN assumption so that we can im-
prove the efficiency of all subsequent protocols using Groth-Sahai’s instantiation
3 (based on the DLIN assumption).

We should note here that symmetric bilinear pairings require the use of super-
singular elliptic curves and thus the associated bilinear groups are larger than
those with asymmetric bilinear pairings using ordinary curves (please see [10]
for a detailed comparison). However, some constructions of pairing-based cryp-
tosystems essentially use the symmetric property of bilinear pairings (e.g., Groth-
Ostrovsky-Sahai zero-knowledge proofs [21]). Therefore, the proposed projecting
symmetric bilinear pairings can be used for designing such cryptosystems.

3 The Seo-Cheon round optimal blind signature scheme can be considered a prime
order group version of the Meiklejohn-Shacham-Freeman round optimal blind sig-
nature scheme in composite order groups [25]. Since we only consider prime order
group settings in this paper, we provide a new instantiation of the Seo-Cheon scheme
instead of the Meiklejohn-Shacham-Freeman scheme.
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Modular Approach in Cryptography: Generally speaking, a modular ap-
proach for cryptosystems leads to a simple design but inefficient constructions in
comparison to an ad hoc approach. Recently, we have found a few exceptions for
structure preserving cryptography [I2ITT] and mathematical structures [26/27].
Structure preserving schemes enable one to construct modular protocols while
preserving conceptual simplicity and yielding reasonable efficiency at the same
time. Structure-preserving signatures, commitments [1], and encryptions [I] re-
strict all components in schemes to group elements, so schemes can easily be
combined with Groth-Sahai proofs [22]. In a modular fashion, round optimal
blind signatures, group signatures, and anonymous proxy signatures can be de-
rived from structure preserving signatures, and oblivious trusted third parties
can be achieved due to the structure preserving encryptions. There has been
some impossibility results for structure preserving cryptography [2/314]. These
save our efforts in terms of impossible goals and widen our understanding re-
garding modular constructions.

Okamoto and Takashima [26] introduced a mathematical structure called
“dual pairing vector spaces” that can be instantiated using a product of bi-
linear groups or a Jacobian variety of a supersingular curve of genus > 1.
On the basis of these dual pairing vector spaces, a homomorphic encryption
scheme [26], functional encryption scheme [27[28/30], attribute-based signature
scheme [29], and (hierarchical) identity-based encryption scheme [24] have been
proposed.

Open Problem: It would be interesting to extend the (im)possibility of the
projecting property into a wider framework than ours. Furthermore, finding
other applications of projecting pairings is also interesting.

Road Map: In Section ] we give definitions for bilinear groups, projecting
property, and cryptographic assumptions. In Section B we explain our impossi-
bility results of projecting bilinear pairings. In Section Fl, we show the optimality
of Groth-Sahai and Freeman’s projecting asymmetric bilinear pairings and give
our construction for optimal projecting symmetric bilinear pairings. In Section [l
we apply the proposed projecting symmetric bilinear pairings to three distinct
cryptosystems, the Groth-Sahai non-interactive proof system, the Boneh-Goh-
Nissim cryptosystem, and the Seo-Cheon round optimal blind signatures.

2 Definition

We use notation z <~ A to mean that, if A is a finite group G, an element x is
uniformly chosen from G, and, if A is an algorithm, A outputs x by using its own
random coins. We use [, j] to denote a set of integers {i,...,7}, (91,.--,9n) tO
denote a group generated by g1, ..., gn, and F, to denote a finite field of prime
order p. For a map 7 : Tp — Tg, and any subset Sp of Tp, 7(Sp) := {7(s)|s €
Sp}. All values in our paper are outputs of some functions taking the security
parameter A and = denotes the difference between both sides is a negligible
function in A.
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We use two commonly used mathematical notations internal direct sum, de-
noted by @, and tensor product (Kronecker product), denoted by ®. For an
abelian group G, if G; and G2 are subgroups of G such that G = Gy + G2 =
{91 92|1 € G1,92 € G2} and G1 N G2 = {1} for the identity 15 of G, then
we write G = G1 & Ga2. If A = (a;,;) is a m1 X my matrix and B = (b; ;) is
an £ X o matrix, the tensor product A ® B is the mi£; X mals matrix whose
(1,7)-th block is a; ; B, where we consider A ® B as m1 x mg blocks. That is,

al’lB al,mQB
A® B = € Matm1£1><m252(FP)'

aml,lB e aml,mgB

We use several properties of the internal direct sum and tensor product. Every
element g in G has a unique representation if G = G; ® G2. That is, g € G can
be uniquely written as g = g1g- for some g1 € Gy and g2 € Go. If two matrices
A and B are invertible, then A ® B is also invertible and the inverse is given by
(A® B)™! = A~! @ B~!. The transposition operation is distributive over the
tensor product. That is, (A ® B)" = A’ ® B'. We sometimes consider a vector
over [F), as a matrix with one row.

2.1 Bilinear Groups and Projecting Bilinear Pairings

Definition 1. Let G be an algorithm that takes as input the security parameter
M. We say that G is a bilinear group generator if G outputs a description of five
finite abelian groups (G,G1,H,Hy, and Gi) and a map e such that G; C G,
Hy C H, and e : G x H — G; is a non-degenerate bilinear pairing; that is, it
satisfies

e Bilinearity: e(giga, hih2) = e(g1,h1)e(g1, h2)e(ge, h1)e(ge, h2) for gi,92 €
G and hi,he € H,

e Non-degeneracy: for g € G, if e(g,h) =1 Vh € H, then g = 1. Similarly, for
he H, ife(g,h) =1Vg € G, then h = 1.

In addition, we assume that group operations in each group (G, H, and
Gt ), bilinear pairing computations, random samplings from each group, and
membership-check in each group are efficiently computable (i.e., polynomial time
in A).

If the order of output groups of G is prime p, we call G a bilinear group
generator of prime order and say Gy LA (p, G, H, Gy, é); that is, G, H and G are
finite abelian groups of prime order p.

If G = H, Gy = Hy, and e(g,h) = e(h,g) for all g,h € G, we say that G is
symmetric. Otherwise, we say that G is asymmetric.

We define the projecting property of a bilinear pairings.

Definition 2. Let G be a bilinear group generator, and G A

(G,G1,H,H1,Gyt,e). We say that G is projecting if there exist a subgroup
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G} C G and three homomorphisms 7 : G — G, © : H — H, and 7 : Gy — G
such that

m(G) #{1lg}, 7(H) #{1lu}, and m(e(G, H)) # {1¢}, where 1g, 1y, and 1,
are identities of G, H, Gy, respectively.

2. G1 C ker(w), Hy C ker(7), and G}, C ker(m).
3. m(e(g, h)) = e(m(g),7(h)) for all g € G and h € H.

If G is symmetric, set m = 7.

Note that in Definition [2] we slightly revised Freeman’s original projecting defi-
nition to fit our purpose. First, we added a requirement for homomorphisms to
be non-trivial (first condition of Definition [2)). If we allowed trivial homomor-
phisms, they would satisfy the projecting property. Since trivial homomorphisms
may not be helpful in designing cryptographic protocols, our modification is quite
reasonable. Second, our definition requires only the existence of G} and homo-
morphisms while Freeman required them to be output [I5]. Since our definition
is weaker than Freeman’s (if we ignore our first modification), our main results
(the lower bounds and optimal construction) are meaningful. Several other re-
searchers [2524] have used an existence definition like ours instead of Freeman’s
definition for the projecting property.

2.2 Subgroup Decision Assumption and k-Linear Assumption

Here we define subgroup decision problem and subgroup decision assumption in
the bilinear group setting, which were introduced by Freeman [15].

Definition 3. Let G be a bilinear group generator. We define the advantage of
an algorithm A in solving the subgroup decision problem on the left, denoted by
Advi{ngL()\), as

’PI‘ [A(GaleHleaGtvevg) - 1‘(6:,6?171{71{1,6;(t7 )(i Q( ) g (E G]

—Pr [A(GlevHlethaeagl)_>1|(G,G1,H,H1,Gt, )<—Q( ) 1<—G1]‘

We say that G satisfies the subgroup decision assumption on the left if, for any
PPT algorithm A, its AdeDPL (N) is a negligible function of the security param-
eter \.

We analogously define the subgroup decision problem on the right, the advantage
Advs D PR of A, and the subgroup decision assumption on the right by using H
and H1 instead of G and G;.

Definition 4. We say that a bilinear group generator G satisfies the subgroup
decision assumption if G satisfies both the subgroup decision assumptions on the
left and subgroup decision assumptions on the right.

For a subgroup decision assumption in the prime-order group setting, we use the
widely-known k-linear assumption which is introduced by Hofheinz and Kiltz
and Shacham [23]36], in the bilinear group setting. We give the formal definition
of k-linear assumption below.
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Definition 5. Let G1 be a bilinear group generator of prime order and k > 1.
We define the advantage of an algorithm A in solving the k-linear problem in G,
denoted by Adv®; Lm(’()\), to be

’Pr [A(G,H,Gt,e,g,ui,ufi,gb,h fori e [1,k]) — 1
(G,H,Ge,e) & Gi(\), g, & G, h & Hya; & F, foric[1,k],b & IF,,]
—Pr [A(G,H,Gt,e,g,ui,uf",gb,f) forie [LE]) — 1
(G,H,Gre) & Gi(N),g.u & G b E Hoas EF, fori € [LAb= Yy ai] ,

Then, we say that Gy satisfies the k-linear assumption in G if for any PPT
algorithm A, Adv®; Lm(’()\) s a negligible function of the security parameter.

We can analogously define the k-linear assumption in H. The 1-linear assumption
in G is the DDH assumption in G and the 2-linear assumption in G is the
decisional linear assumption in G [9].

3 Impossibility Results of Projecting Bilinear Pairings

In this section, we first formally define natural product groups of prime-order
bilinear groups. Next, we derive conditions for projecting bilinear groups, and
then provide our impossibility results of projecting bilinear pairings. We begin
by defining some notations that will help us to simplify explanations. For group
elements g, g1, ..., 01 € G, a vector o = (a1,...,aK41) € IF’;“, and a matrix
M = (m; ;) € Mat41)xk+1)(Fp), we use the notation

ga> = (gu,...,g%+1) € GFL
and
(g1, ohp1)™ = H g, H g; .
1€[1,k+1] ze[l,k+1]
From this notation, we can easily obtain (ga) = g(ﬁM).

3.1 Bilinear Groups Naturally Induced from k-linear Assumption

In Figure [[ we provide a generator Q;Ae}ee[l‘m] for Ay € Mat(i1)x(k+1)(Fp)
and ¢ € [1,m]. When we refer to the natural construction of product groups of
prime-order bilinear groups such that the subgroup decision assumption “nat-

. . A m
urally” follows from the k-linear assumption, we mean g,ﬁ theen, 'H When we

* Meiklejohn et al. [25] also used the word “natural” to refer to g{ eheeqml . They

A
used g{ eheent,m) to show the limitation result of both projecting and cancelling:

A
They showed that for any A, matrices used in Q{ eheepm) Q{ eheeqt,m) cannot be

both projecting and cancelling with overwhelming probablhty, where the probability

A u
goes over the randomness used in Q{ theepml
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QiAe}ee[l‘m] takes the security parameter A as input.

Run Gi(\) — (p, G, H, Gy, é).

Define G = G**', H = H**', and G; = G}".

Randomly choose Z'1,..., 7k, ¥1,---, ¥k € Fit! such that the set {7 }icp
and {71‘}1‘6[1,191 are each linearly independent.

Ll e

5. Randomlg choose generators g € G and h € H, and let G; = (g?l yeee ,g?k) and
Hy= (7. p7%).
6. Define a map e : G x H — G; as an m-tuple of maps e(-,-)¢ for £ € [1,m] as

follows:

e((glv"'7gk+1)7(h17‘”7hk+1))é = H é(ghhj)age])7

i,j€[1,k+1]

where Ay = (agf)) S Mat(k+1)><(k+1)(Fp) for £ € [1,771}.

7. Output description of (p, G,G1, H, Hy, G% e); each group description has its gen-
erators only. (e.g., G1’s description has g*',...,g%*, but Z; is not contained in
the description of G1.)

Fig. 1. Description of Q,EAZ}ZE“’""]

consider the subgroup decision assumption, which is induced from the k-linear

assumption, to mean that, given g, it is hard to determine if g & Giorg & G,
G is a rank-(k + 1) F,-module, and G is a randomly chosen rank-k submodule
of G. For any matrices Ai,..., Ap in Mat 41y k+1)(Fp), a group generator

A . .. . . .
g,ﬁ eheettm satisfies the subgroup decision assumption if the underlying prime-

order bilinear group generator G, satisfies the k-linear assumption.

Theorem 1. [15, Theorem 2.5] If Gi satisfies the k-linear assumption in G and
H g{Az}ze[l,m]
> Yk

of {Ac}eenim)-

satisfies the subgroup decision assumption regardless the choice

Note that Q,EAZ}ZE[I"'"] contains Groth-Sahai’s constructions based on the DDH
assumption (k = 1) and the DLIN assumption (k = 2).

3.2 Conditions for Symmetric Property

A bilinear pairing e of Q,EA['}ZE“"”]

notation, as

in Figure [Il can be rewritten, using matrix

e(g” b7 ), = é(g,h) T AV’

where 7 is considered to be a 1 x (k 4+ 1) matrix, and Yt is considered to be a
(k4 1) x 1 matrix.
If G; is a symmetric bilinear group generator of prime-order, then one may

. A m] A
think that g,i eheetm) is also a symmetric bilinear group generator. However,
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not all bilinear groups with underlying symmetric bilinear pairings é do satisfy

symmetric property. The following theorem shows the necessary and sufficient

g{Az}zeu m]

condition of { A} gefr,m for to be symmetric, that is, e(g, h) = e(h, g)

for any group elements g and h.

Theorem 2. Q,EAZ}ZE[I"'"] is symmetric if and only if G =H, g =1, @; = ¥
for alli € [1,k], and Ay is symmetric for all £ € [1,m], where G,H, g, b, 7, and

Y are defined in the description of QIEAE}““”"].

Because of space constraints, we give the proof of Theorem [2in the full version
of this paper.

3.3 Necessary Condition for Projection Property

Using a tensor product ®, we can further simplify e computation as follows: Let
B be a (k +1)? x m matrix such that B’s ((i — 1)(k + 1) + j,£) entry is agej)’
where Ay = (agej)) Then,

0™ h7) = (6™ 57 )1, e(a® 07 )
= (@(g.0)TMT 6, 0) T AT ) = e(g, ) TETE,

From now, we use a notation Q,? as well as Q,EAZ}ZE[I"'"] to denote a bilinear group
generator naturally induced from the k-linear assumption, where B is defined
by {A¢}re[1,m] as above. This notation is well-defined since there are one-to-one
correspondence between B and {A¢}se(1,m-

We give a necessary condition of B for GZ to be projecting in Lemma[ll This
lemma says that if G = G4 ® G2 and H = Hy @ Hs, then e(Gs, Hy) should have
at least an element not contained in the subgroup generated by other parts of
images.

Lemma 1. 1. IfGP is asymmetric (that is, GP LA (p,G,G1,H, Hy,Gy,e)) and
projecting, for decompositions G = G1 ® Gy and H = Hy & Hy it satisfies
that e(Ga, Ha) ¢ D, where D is the smallest group containing e(G1, H) and

e(G, Hy).

2. If GP is symmetric (that is, GE > (p,G G1, Gy, e)) and projecting, for any
decomposition G = G1 ® G2 it satisfies that e(G2,G2) ¢ D, where D is the
smallest group containing e(G,G1).

Proof. (1) Suppose that GP is projecting. Then, there exist three homomor-
phisms 7, 7, and 7. Since m and 7 are non-trivial homomorphisms, G; and H;
are proper subgroups of G and H, respectively. Since G; and H; are proper sub-
groups, for any decompositions G = G1 ® Gy and H = H1 & Ha, {16} #G2 C G
and {1y} # Hy C H. We show that G1,G2, H1, and Hs satisfy the condition
in the theorem. By definition of I, D is a group generated by all elements in
e(G1, H) and e(G, Hy) so that every element in D can be written as a product of
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elements in e(Gy, H) and e(G, Hy) (though it is not uniquely written). For any
91 € G1, hy € Hy, g € G, and h € H, m(e(g1, h)e(g, h1)) is equal to 1; since

mi(e(gr, h)me(e(g, ) = e(m(gr), w(h))e(n(g), 7 (h1)) = e(la, T (h))e(m(9), 1r)-

We can see that by homomorphic property of 7, (D) = 1;. If e(G2, H2) C D,
then e(G, H) C D C ker(m;). That is a contradiction of 7’s non-trivial condition.

(2) We can prove similarly as (1). Essential proof idea is same to (1). Thus,
we omit it. ]

For our impossibility results regarding the image size and computational cost,
we will focus on the (k + 1)2 x m matrix B of GP. All non-zero entries in B
imply é-computations (bilinear pairing é of underlying bilinear group generator
G1) and the lower bound of m implies the lower bound of the image size of
bilinear pairings. We compute the lower bound of the rank of B of Q,f, where
GB is asymmetric and projecting, by using the necessary condition of projecting
property in Lemma [II For projecting symmetric bilinear pairings, the overall
strategy is similar to those of projecting asymmetric bilinear pairings except
that symmetric bilinear pairings have the special form of B as mentioned in
Theorem [2I We give the formal statement below.

Lemma 2. The following statements about g,’f are true with overwhelming prob-
ability, where the probability goes over the randomness used in the Q,f.

1. If GP is asymmetric and projecting, then B has (k+1)? linearly independent
TOWS.

2. If GP is symmetric and projecting, then B has (k+1
dent rows.

) (k+2)
2

linearly indepen-
Proof. (1) Let Q,? be a projecting asymmetric bilinear group generator. Let
(G,G1,H,Hy, Gi,e) be the output of GZ and G and H be decomposed by
G = Gy ® Gy and H = H; ® H,, respectively for some subgroups Gs
and Hy. Then, Gy = (g®*,...,g%%), Hy = (§71,... h¥k), Gy = (g@++1),
and Hy = (f)?k“) for some sets of linearly independent vectors {71}1-6[1’;%1]
and {7i}ie[1,k+1]- Let X be a (k4 1) x (k + 1) matrix over F, with Z; as its
i-th row, and Y be a (k + 1) x (k + 1) matrix over F, with /; as its i-th row.
Note that X and Y are invertible. Since B is a (k + 1)? x m matrix for some m,
B can have at most (k + 1)? linear independent rows.

Suppose that B has less than (k + 1)? linearly independent rows. We observe
that

(G, Ha)= (e(g™*1, 57 +41) = {e(g, 0) 71O Twe)) = (e(g, ) T e XONIE)

and similarly

D = (&(g, h)?l(x®y)3, o e(g, h)?(k+1>2—1(X®Y)B>

b

2
where @, is the i-th canonical vector of IF,(,kH) . Now, we show that there exists

2
a non-zero vector ¢ € IF‘,(,kH) with a non-zero in the (k+ 1)2-th entry such that
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7 (X®Y)B = T e [F7*. The existence of such a vector @ implies that the
(k + 1)%-th row of (X ® Y)B can be represented by the linear combination of
upper rows of (X®Y')B so that (G2, Hz) C ID. Then, it would be a contradiction
with Lemma [II

By hypothesis (rank(B ) (k + 1)2), there exists a non-zero vector 7 &

IF,(,kH) such that 7B = 0 € [F;*. For such an 7, we show that 7(X '@y 1)
satisfies conditions for it to be 7 aforementioned. First, we obtain 7 (X' ®
Y1) (X®Y)B=7B = 0. Next, we argue that 7(X~' @Y ~1)’s (k +1)2-th
entry is non-zero with overwhelming probability, Where the probability goes over
the randomness used in GZ (to choose AT A ST 7 We consider
the (k + 1)-th column vector ¢ of X ~! such that Z is orthogonal to all upper k
rows of X. Denote the orthogonal complement of (71, ce ?k> by (W) Then,

2! is a non-zero vector in <E?> By definition of Qk , ... ?k are randomly
chosen so that @ is also uniformly distributed in IFk+1 Sumlarly7 the (k: + 1)-th
column vector §¢ of Y1 is a non-zero vector in 71, ceey 7k = ), and

7 is umformly distributed in FA. The (k + 1)?-th entry of 7 (X~ 1 ® Y1
is 7 (&' ® g'), and it is a non-zero constant multiple of 7 (@ ® Z). By the
first statement of Lemma 3 which is given below, 7 (@ ® Z)* is non-zero with
overwhelming probability. Therefore, we complete the proof of the first statement
of theorem.

(2) We can prove the second statement of theorem by using the second statements
of Lemma [Tl and Lemma [Bl The overall strategy is same to the proof of the first
statement of theorem. The key observation of the proof of the second statement
is that B has a special form due to Theorem 2l We leave the detail of the proof
of the second statement in the full version. |

2
Lemma 3. LetV be a subspace ofIF,(,kH) generated by { @i ;}1<i<j<ii1, where
@i is a vector with 1 in the (i—1)(k-+1)+j-th entry, —1 in the (j—1)(k+1)+i-th
entry, and zeros elsewhere.

1. For any non-zero vector 7 € IF‘,(,kH)Q, Pr[7 - (W@ Z) =0] < f}, where the
probability goes over the choice of vectors W, 7€ IF’;“.

2. For any vector 7 € F](gk+1)2 \V, Pr[7 - (W @ W) =0 < Z, where the
probability goes over the choice of a vector W e IF’;‘H.

We can prove Lemma B by using the Schwartz-Zippel lemma [33] and leave a
detailed proof in the full version.

3.4 Impossibility of Projecting Property

Basing on Lemma [2] we derive our main theorem on the impossibility results of
projecting bilinear pairings. We begin with explaining our computational model
for the lower bounds of computational cost of projecting bilinear pairings. In
our computational model, we assume two things: First, one who computes pro-
jecting bilinear pairings e can not utilize the representation of the underlying
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bilinear pairing é and groups G, H, and G; over which é is defined. Note that
we rule out techniques for multi-pairings [34/I7] in our computational model.
This assumption is same to that of the generic group model [37], in particular,
generic bilinear group [8]. In [37/8], the generic (bilinear) group model is used
to show the computational lower bounds of attacker solving number theoretic
problems such as the discrete logarithm problem and ¢-strong Diffie-Hellman
problem. Second, two inputs are uniformly and independently chosen so that
any relations with two inputs are unknown. In special cases such that a relation
with two inputs are known, there are several alternative way to compute bilinear
pairings. For example, one knowing g1, h1, e(g, h), and a relation g; = g? and
hy = h® can compute e(g1,h1) by performing e(g, h)® instead of performing a
bilinear pairing. Since we want to consider the computational cost of e without
using any additional information of two inputs, we assume that two inputs are
uniformly and independently distributed in their respective domains. We provide
our main theorem below.

Theorem 3. (Lower Bounds) The following statements about G2 are true with

overwhelming probability, where the probability goes over the randomness used
in the g}f .

1. The image size of a projecting asymmetric bilinear pairing is at least (k+1)?
elements in Gy.

2. The image size of a projecting symmetric bilinear pairing is at least
k+DEF2) olements in Gy.

3. Any construction for a projecting (asymmetric or symmetric) bilinear pairing
should perform at least (k + 1)? computations of é in our computational
model.

Proof. (1) Suppose that G2 is asymmetric and projecting. Since a (k +1)2 x m
matrix B has at least (k + 1)? linearly independent rows by Lemma 2l m >
(k + 1)2. This implies that G; = G consists of m (> (k + 1)?) elements in G;.

(2) If GP is symmetric and projecting, then (k+1)? x m matrix B has at least

(k+1)2(k+2) linear independent rows by Lemma Bl Thus, m > (k+1)2(k+2); hence,

> (k+1)2(k+2)

an element in Gy = G} is m ( ) elements in Gy.

(3) First, we show that for two inputs ¢ = (g1,...,9k+1) € G and h =
(b1, ..., bkt1) € H, projecting (asymmetric or symmetric) pairings require com-
puting all é(g,, ;) for all ¢, € [1, k+1]. To this end, it is sufficient to show that
every row in the matrix B is non-zero. (Recall that e(gw, h7) = é(g, h)(ﬁ@’?)B
and if every row in B is non-zero, then é(g"i,h* ) should be computed at least
one time.) If a group generator G is projecting and asymmetric, then the rank
of B is (k+1)? by Lemmalll Since B has (k+1)? rows, there is no zero rows. If a
group generator Q,? is projecting and symmetric, then the rank of B is (k+1)2(k+2)
by Lemmal[ll We know that the matrix B of symmetric bilinear group generators

has the special form by Theorem Bl From Theorem Bl some k(k;' Y rows in B

have respective same rows in B. Since B has (k +1)? rows and (k+1)? — k(k;l)
is equal to the rank of B, every row in B has at least one non-zero entry.
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Next, we show that computing é(g;,h;) cannot be generally substitute by a
product of other é(g;/, h;/) for i’ € [1,k+ 1]\ {i} and j' € [1,k+ 1]\ {j} in our
computational model. To this end, it is sufficient to show that for any non-zero
vector 7 = (rq,.. S T(t1)2) € ]Fz(,kﬂ)2

)

. Pr$ [ H é(gi, b)) G-DrtD4 = 1Gt] ~ 0.
g+—G,hH i,§€[1,k+1]

For two random inputs gﬁ and h7,

[T etam po)yenems =g p @7
4,j€[1,k+1]

where W = (wy,...,wpp1) € ]F’;Jrl and 7 = (21,...,2k41) € IF’;“‘I. Since 7! is

2
a non-zero vector in ]F,(,kH) , (7 ® 7)7'5 # 0 with overwhelming probability by
Lemma [3, and hence we obtain the desired result such that

[T e poyreneens £1g,

4,j€[1,k+1]

with overwhelming probability.
Therefore, all projecting bilinear pairings require at least (k + 1)2
é-computations. O

4 Optimal Projecting Bilinear Pairings

In this section, we show that our lower bounds are tight; for projecting asym-
metric bilinear pairing, we show that Groth-Sahai and Freeman’s constructions
are optimal (in our computational model), and for projecting symmetric bilin-
ear pairing, we propose a new construction achieving optimal efficiency (in our
computational model).

Definition 6. Let Q,? be a projecting asymmetric (symmetric, resp.) bilinear
group generator. If the bilinear pairing e consists of (k + 1)? é-computation in

p (k+1)(k+2)
_ (k+D)?
= G!

our computational model and Gy Gy =G, * , Tesp.), we say

that G2 is optimal.

We can define Q,? by defining a (k + 1)? x m matrix B, or equivalently a set
of (k+1) x (k+ 1) matrices {Az}se[1,m]- For a projecting asymmetric bilinear
group generator, we define B as I(jy1)2, where I(; )2 is the identity matrix

I, . —
in GL(j11)2(F,). Note that Qk“”“’z) is exactly equal to Freeman’s projecting

I
asymmetric bilinear group generator [15] (We can easily check that gk(’““"’ does

not satisfy the symmetric property due to Theorem [2)). Theorem [B] implies that

I, . . . .
Qk“”“’z) is optimal. Therefore, we obtain the following theorem.
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Theorem 4. gk““)z s an optimal projecting asymmetric bilinear group gener-
ator.

I, . . . .
Qk“”“’z) covers one of the most interesting cases k = 1: g{4 is optlmalﬁ

4.1 Optimal Projecting Symmetric Bilinear Pairings

We propose an optimal projecting symmetric bilinear group generator g,? by
defining B (equivalently Ay,..., Ay,). Let a set S be {(4,5) € [1,k+ 1] x [1,k+
11 <j <i<k+1}. We consider a map 7: S — [1, (k+1)2(k+2)} defined by
(i,5) = "3V 4.

Lemma 4. 7 is a bijective map.

We give the proof of Lemma [ in the full version.

Description of A, (equivalently B) for optimal projecting symmetric
bilinear pairings: Let 771(¢) = (i, ). For each £ € 1, (k+1)2(k+2)], Ay = (agg)
is defined as a (k4 1) x (k + 1) matrix with

1 in the entry (4,7) and zeros elsewhere if i = j,
1 in the entries (7, ) and (j,4), and zeros elsewhere otherwise .

We give an example to easily explain the proposal.

Ezxample 1. For k = 2, define

100 010 000
A;=(1000}),42=1100],A43=(1010],
000 000 000
001 000 000
Ay=1000}),45=1001],4=]000
100 010 001
|
Define B as a (k + 1)? x (k+1)2(k+2) matrix such that B’s ((s — 1)n + ¢, £) entry
is affz for s,t € [1,k+ 1] and ¢ € [, (k+1)2(k+2)]. (Then, we implicitly define
(1) (k+2)
G =G, °* .) By using the matrix B, we can construct a bilinear group

generator g,? .

Next, we show that a group generator g,’f , where B is defined as above, is an
optimal projecting symmetric bilinear group generator. The following Theorem [
provides the desired result.

5 Freeman used the notation G p, which is equivalent to our notation g{4.
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Theorem 5. Let Q,? be a bilinear group generator with restrictions such that
G=Hg=0h @, =Y foralic [1,k], and B is a (k + 1)% x (k+1)2(k+2)
matriz defined as above. Then, GP is an optimal projecting symmetric bilinear
group generator with overwhelming probability, where the probability goes over
the randomness used in g,?.

We leave the proof of Theorem [Hlin the full version.

Our definition of projecting requires only the existence of homomorphisms
satisfying some conditions. However, some applications (ex: Boneh-Goh-Nissim
cryptosystem [I0/I5]) require that such homomorphisms are efficiently com-
putable. We provide the way how to construct efficiently computable homo-
morphisms (precisely, natural projections) satisfying projecting property in the
full version.

Ezxample 2. For k = 2, we can construct an optimal projecting symmetric bi-
linear group generator by using the matrices in example 1. We denote such a

bilinear group generator by G£*, where B* is a 9 x 6 matrix defined by the
Aq, ..., Ag matrices in example 1.

1 0 0 0 0 0
01 0 0 0 0
00 01 0 0
01 0 0 0 0 i
B"=| 0 0 1 0 0 0 for G2
00 0 0 1 0
00 01 0 0
000 0 0 1 0
00 0 0 0 1

By Theorem [(] QQB* is optimal projecting symmetric: Since B* is a 9 x 6 matrix,
the target group Gy is equal to GY. Moreover, B* has nine 1’s in the entries and
zeros elsewhere so that bilinear pairing e requires 9 é-computations (without any
exponentiations).

5 Application

On the basis of our optimal projecting symmetric bilinear pairings, we derive
new instantiations of three distinct cryptosystems with improved efficiency. In
particular, we apply the projecting symmetric bilinear group generator QQB* in
the example @] for the Groth-Sahai non-interactive proof system, the Boneh-
Goh-Nissim Cryptosystem, and the Seo-Cheon round optimal Blind signature
scheme. Because of space constraints, we leave details in the full version.
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Abstract. In the last years the use of large matrices and their alge-
braic properties proved to be useful to instantiate new cryptographic
primitives like Lossy Trapdoor Functions and encryption schemes with
improved security, like Key Dependent Message resilience. In these con-
structions the rank of a matrix is assumed to be hard to guess when
the matrix is hidden by elementwise exponentiation. This problem, that
we call here the Rank Problem, is known to be related to the Decisional
Diffie-Hellman problem, but in the known reductions between both prob-
lems there appears a loss-factor in the advantage which grows linearly
with the rank of the matrix.

In this paper, we give a new and better reduction between the Rank
problem and the Decisional Diffie-Hellman problem, such that the reduc-
tion loss-factor depends logarithmically in the rank. This new reduction
can be applied to a number of cryptographic constructions, improving
their efficiency. The main idea in the reduction is to build from a DDH
tuple a matrix which rank shifts from r to 2r, and then apply a hybrid ar-
gument to deal with the general case. In particular this technique widens
the range of possible values of the ranks that are tightly related to DDH.

On the other hand, the new reduction is optimal as we show the
nonexistence of more efficient reductions in a wide class containing all
the “natural” ones (i.e., black-box and algebraic). The result is twofold:
there is no (natural) way to build a matrix which rank shifts from r to
2r + « for a > 0, and no hybrid argument can improve the logarithmic
loss-factor obtained in the new reduction.

The techniques used in the paper extend naturally to other “algebraic”
problems like the Decisional Linear or the Decisional 3-Party Diffie-
Hellman problems, also obtaining reductions of logarithmic complexity.

Keywords: Rank Problem, Decisional Diffie-Hellman Problem, Black-
Box Reductions, Algebraic Reductions, Decision Linear Problem.

1 Introduction

Motivation. In the last years the use of large matrices and their algebraic
properties proved to be useful to instantiate new cryptographic primitives like
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Lossy Trapdoor Functions [7I8[T2IT3] and encryption schemes with improved
security, like Key Dependent Message [2]. In these constructions the rank of a
matrix is assumed to be hard to guess when the matrix is hidden by elementwise
exponentiation. This problem, that we call here the Rank Problem, is known to
be related to the Decisional Diffie-Hellman (DDH) problem, but in the known
reductions between both problems there appears a loss-factor in the adversary’s
advantage which grows linearly with the rank of the matrix. The Rank Problem
first appeared in some papers under the names Matrix-DDH [2] and Matrix
d-Linear [10].

In the cryptographic constructions mentioned above, some secret values (mes-
sages or keys) are encoded as group element vectors and then hidden by multi-
plying them by an invertible matrix. The secret value is recovered by inverting
the operations: first multiplying by the inverse matrix and then inverting the
encoding as group elements. This last step requires to encode a few bits (typi-
cally, a single bit) in each group element, forcing the length of the vector and the
rank of the matrix to be comparable to the binary length of the secret. Security
of these schemes is related to the indistinguishability of full-rank matrices from
low-rank (e.g., rank 1) matrices: If the invertible matrix is replaced by a low rank
one, the secret value is information-theoretically hidden. Therefore, the security
of these schemes is related to the hardness of the Rank problem for matrices of
large rank (e.g., 320 or 1024).

Reductions of the DDH problem to the Rank problem are based in the obvious
relationship between them in the case of 2 x 2 matrices. Namely, from a DDH

x
problem tuple (g, g%, g¥, g*) one can build a matrix g™ = <ggy ZZ) which is the

elementwise exponentiation of the Z, matrix M = ;Z) For a 0O-instance of
DDH (i.e., z = zy), det M = 0, while for a l-instance (i.e., z # xy), det M #
0, and therefore, the rank of M shifts from 1 to 2 depending on the DDH
instance. This technique can be applied to larger (even non-square) matrices by
just padding the previous 2 x 2 block with some ones in the diagonal and zeroes
elsewhere, just increasing the rank from 1 or 2 to » 4+ 1 or r + 2, where r is the
number of ones added to the diagonal.

Now, a general reduction of DDH to any instance of the rank problem (i.e.,
telling apart hidden matrices of ranks r; and r2) is obtained by applying a hybrid
argument, incurring into a loss-factor in the adversary’s advantage which grows
linearly in the rank difference ro — 1.

This loss-factor has an extra impact on the efficiency of the cryptographic
schemes based on matrices: For the same security level the size of the group has
to be increased, and therefore the sizes of public keys, ciphertexts, etc. increase
accordingly.

Until now it was an open problem to find a tighter reduction of DDH to the
Rank problem. To face this kind of problems one can choose between build-
ing new tighter reductions or showing impossibility results. However, most of
the known impossibility results are quite limited because they only claim the
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nonexistence of reductions of certain type (e.g., black-box, algebraic, etc.). But
still these negative results have some value since they capture all possible ‘natu-
ral’ reductions between computational problems, at least in the generic case (e.g.,
without using specific properties of certain groups and their representation).

Main Results. In this paper, we give a new and better reduction between
the Rank and the DDH problems, such that the reduction loss-factor grows
logarithmically with the rank of the matrices. This new reduction can be applied
to a number of cryptographic constructions improving their efficiency. The main
idea in the reduction is to build a matrix from a DDH tuple which rank shifts
from r to 2r, and then apply a hybrid argument to deal with the general case.
On the other hand, the new reduction is optimal: We show the nonexistence
of more efficient reductions in a wide class containing all the “natural” ones
(i.e., black-box and algebraic). The result is twofold: There is no (natural) way
to build a matrix which rank shifts from r to 2r + « for a > 0, and no hybrid
argument can improve the logarithmic loss-factor obtained in the new reduction.
Basically, the new reduction achieves the following result.

(Informal) Theorem [l Foranyty,¥{2,71,r2 suchthatl < r; < ro < min({q, la)
there is a reduction of the DDH problem to the Rank problem for {1 x {5 matrices
of rank either ri orry, where the advantage of the problem solvers fulfil

2

AdvRank(G, ¢y, la,11,72;t) < {log2 : —‘ AdvDDH(G;t)

1

and their running timest andt’ are essentially equal.

In particular, our reduction relates the DDH Problem to the hardness of telling
apart £ x £ full rank matrices from rank 1 matrices with a loss-factor of only
log,(£), instead of the factor ¢ obtained in previous reductions. Moreover, the
previous reductions are tight only for ranks ry and ro such that ro = r; + 1,
while our results show that there exists a tight reduction for r1 < ro < 2r;.

At this point, it arises the natural question of whether a tight reduction exists
for a wider range of the ranks r; and ro. However, we show the optimality of the
new reduction by the following negative result.

(Informal) Theorem [2L Foranyly, s, 11,72 suchthatl < ry < re < min(¢,{2)
and any ‘natural’ reduction R of DDH to the Rank problem, the advantages of the
Rank problem solver A and the DDH solver R([A]) fulfil

AdvRankyg 4 (G, (1, o, 1, 7251) > {log2 7’2—‘ AdvDDH 4(G;t') — ¢
1
where the running times t,t’ are similar and € is a negligible quantity.

Here, ‘natural reduction’ basically means a black-box reduction which transforms
a DDH tuple into a hidden matrix by performing only (probabilistic) algebraic
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manipulations, which are essentially linear combinations of the exponents with
known integer coefficients, depending on the random coins of the reduction.

All generic reductions from computational problems based on cyclic groups
fall into this category. Therefore, this result has to be interpreted as one can-
not expect finding a tighter reduction for a large class of groups unless a new
(non-black-box or not algebraic) technique is used. Nevertheless, falsifying this
negative result would imply an improvement on the efficiency of the cryptosys-
tems based on matrices, or even the discovery of a new reduction technique.

The techniques used in the paper extend naturally to other “algebraic” prob-
lems like the Decisional Linear (DLin) or the Decisional 3-Party Diffie-Hellman
(D3DH) problems, also obtaining reductions with logarithmic complexity. Actu-
ally, these reductions recently appeared in [4] and [5].

(Informal) Theorem Bl Foranyty, {2,711, r2 suchthat2 < r; < ro < min({q, {a)
there is a reduction of the DLin problem to the Rank problem for {1 X {5 matrices
of r