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Preface

ASIACRYPT 2012, the 18th International Conference on Theory and Appli-
cation of Cryptology and Information Security, was held during December 2–6
in Beijing International Convention Center, Beijing, China. The conference was
sponsored by the International Association for Cryptologic Research (IACR) in
cooperation with the Chinese Association for Cryptologic Research (CACR). It
was also co-sponsored by the National Natural Science Foundation of China,
Huawei Technologies Co. Ltd., and Intel Corporation.

From 241 valid submissions, 43 were accepted for publication after a very
tough evaluation process. The Program Committee (PC) with the help of 256
external reviewers provided at least three independent reviews for each paper,
and five or more for those with PC contributions.

There were also two invited talks. On Monday, Dan Boneh delivered “Pairing-
based Cryptography: Past, Present, and Future” as the IACR Distinguished Lec-
ture. On Wednesday, Chuanming Zong spoke on“Some Mathematical Mysteries
in Lattices.” In addition to the invited talks, the conference also held a Rump
Session, full of academic opinions and enjoyment.

We selected a particularly large and broad PC and encouraged members to fo-
cus on the positive aspects of submissions. During the one-and-a-half-month-long
independent review phase, each PC member had about 28 submissions to review,
our PC members and the external reviewers worked very hard and efficiently.
In the following one-month daily discussion phase, PC members communicated
each other’s opinion on the board. We processed the anonymized questions from
the PC members to authors, which resulted in a better quality of review.

We would like to thank the authors of all 241 submissions. Their contributions
made this conference possible. We are extremely grateful to the PC members for
their enormous investment of time and effort in the difficult and delicate process
of review and selection, especially given the last decision days were in the midst
of summer vacation time. A list of PC members and external reviewers can be
found on the succeeding pages of this volume. We would like to thank Xuejia
Lai, Zhijun Qiang, Hao Chen, Juan Liu, Dongdai Lin, Bao Li, Meiqin Wang and
Jialin Huang for the conference organization. Special thanks go to Shai Halevi
for providing and setting up the splendid review software. We are most grateful
to Yue Sun, who provided technical support for the entire ASIACRYPT 2012
review process. We are also grateful to Dong Hoon Lee, the ASIACRYPT 2011
Program Chair, for his timely information and replies to the host of questions
we posed during the process.

September 2012 Xiaoyun Wang
Kazue Sako
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Fabien Laguillaumie
Mario Lamberger
Tanja Lange
Gregor Leander
Hyung Tae Lee
Jooyoung Lee
Kwangsu Lee
Moon Sung Lee
Young-Ran Lee
Younho Lee
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Pairing-Based Cryptography:
Past, Present, and Future

Dan Boneh�

Stanford University
dabo@cs.stanford.edu

Abstract. While pairings were first introduced in cryptography as a tool to attack
the discrete-log problem on certain elliptic curves, they have since found numer-
ous applications in the construction of cryptographic systems. To this day many
problems can only be solved using pairings. A few examples include collusion-
resistant broadcast encryption and traitor tracing with short keys, 3-way Diffie-
Hellman, and short signatures.

In this talk we survey some of the existing applications of pairings to cryptog-
raphy, but mostly focus on open problems that cannot currently be solved using
pairings. In particular we explain where the current techniques fail and outline a
few potential directions for future progress.

One of the central applications of pairings is identity-based encryption and its
generalization to functional encryption. While identity-based encryption can be
built using arithmetic modulo composites and using lattices, constructions based
on pairings currently provide the most expressive functional encryption systems.
Constructing comparable functional encryption systems from lattices and com-
posite arithmetic is a wonderful open problem. Again we survey the state of the
art and outline a few potential directions for further progress.

Going beyond pairings (a.k.a bi-linear maps), a central open problem in public-
key cryptography is constructing a secure tri-linear or more generally a secure
n-linear map. That is, construct groups G and GT where discrete-log in G is in-
tractable and yet there is an efficiently computable non-degenerate n-linear map
e : Gn → GT. Such a construct can lead to powerful solutions to the problems
mentioned in the first paragraph as well as to new functional encryption and ho-
momorphic encryption systems. Currently, no such construct is known and we
hope this talk will encourage further research on this problem.

� Supported by NSF, DARPA, AFOSR, Google, and Samsung.

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, p. 1, 2012.
c© International Association for Cryptologic Research 2012



Some Mathematical Mysteries in Lattices

Chuanming Zong

Peking University

Lattice, as a basic object in Mathematics, has been studied by many promi-
nent figures, including Gauss, Hermite, Voronio, Minkowski, Davenport, Hlawka,
Rogers and many others still active today. It is one of the most important cor-
nerstones of Geometry of Numbers, a classic branch of Number Theory. During
recent decades, this pure mathematical concept has achieved remarkable applica-
tions in Cryptography, in particular its algorithm approaches. The main purpose
of this talk is to demonstrate some basic mathematical problems and results (old
and new) about lattices, which are probably useful in Cryptography in the fu-
ture. These problems reflect some of the main interests of the mathematicians
about lattices.

Before Minkowski, lattices were mainly studied through positive definitive
quadratic forms. In fact, to determine the minimal value of a positive definitive
quadratic form at integer points is equivalent to determine the length of the
shortest vectors (except o) of a lattice, which is also equivalent to determine the
maximal density of the corresponding lattice ball packings.

It was Minkowski who first studied the density δ∗(C) of the densest lattice
packings of a given centrally symmetric convex body C. In particular, he ob-
tained the first general lower bound of δ∗(C) for n-dimensional unit ball B. In
fact, to determine the density δ∗(C) is to estimate the maximal length of the
shortest vectors of the lattices of determinant 1 with respect to certain met-
ric determined by C. When C is the unit ball, the metric is just the ordinary
Euclidean metric. Therefore, the shortest vector problem is a particular case of
the study about δ∗(B). There are lower bound and upper bound for δ∗(C) and
δ∗(B), however the asymptotic orders of both min δ∗(C) and δ∗(B) are unknown.
For lattice kissing numbers we are facing the similar situation.

The density θ∗(C) of the thinnest lattice covering of a centrally symmetric
convex body C was first systematically studied by Rogers. In fact, it is equiva-
lent to determine the minimal length of the longest distance from a point to the
lattices of determinant 1 with respect to the metric determined by C. Therefore,
the closest vector problem is a particular case of the study of θ∗(B). For par-
ticular object C, such as a ball in a given dimension, little is known about the
exact value of θ∗(C).

Let γ∗(C) be the smallest number that there is a lattice Λ such that C +Λ is
a packing and γ∗(C)C + Λ is a covering. Equivalently, in every lattice packing
C + Λ there is a hole in which one can put a translate of (γ∗(C) − 1)C. In
1950, Rogers introduced and studied this number, in particular for the unit ball.
In fact, γ∗(C) is a bridge connecting δ∗(C) and θ∗(C). In other words, it is a

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 2–3, 2012.
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bridge connecting the packing radius and the covering radius of a lattice, with
respect to the metric determined by C. Some results about γ∗(C) and γ∗(B) are
known. At the same time, a number of fascinating mysteries about γ∗(C) and
their possible consequences remain unsolved.

Can you imagine that, in every three-dimensional lattice ball packing there is
a straight line of infinite length which does not meet any of the balls; when n
is large, in every n-dimensional lattice ball packing there is a free hyperplane of
dimension more or less n/ logn? But, this is true!
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Abstract. This paper presents efficient structure-preserving signature schemes
based on assumptions as simple as Decisional-Linear. We first give two general
frameworks for constructing fully secure signature schemes from weaker build-
ing blocks such as variations of one-time signatures and random-message secure
signatures. They can be seen as refinements of the Even-Goldreich-Micali frame-
work, and preserve many desirable properties of the underlying schemes such as
constant signature size and structure preservation. We then instantiate them based
on simple (i.e., not q-type) assumptions over symmetric and asymmetric bilinear
groups. The resulting schemes are structure-preserving and yield constant-size
signatures consisting of 11 to 17 group elements, which compares favorably to
existing schemes relying on q-type assumptions for their security.

Keywords: Structure-preserving signatures, One-time signatures, Groth-Sahai
proof system, Random message attacks.

1 Introduction

A structure-preserving signature (SPS) scheme [1] is a digital signature scheme with
two structural properties (i) the verification keys, messages, and signatures are all el-
ements of a bilinear group; and (ii) the verification algorithm checks a conjunction of
pairing product equations over the key, the message and the signature. This makes them
compatible with the efficient non-interactive proof system for pairing-product equations
by Groth and Sahai (GS) [30]. Structure-preserving cryptographic primitives promise
to combine the advantages of optimized number theoretic non-blackbox constructions
with the modularity and insight of protocols that use only generic cryptographic build-
ing blocks.

Indeed the instantiation of known generic constructions with a SPS scheme and the
GS proof system has led to many new and more efficient schemes: Groth [29] showed
how to construct an efficient simulation-sound zero-knowledge proof system (ss-NIZK)

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 4–24, 2012.
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building on generic constructions of [17,39,34]. Abe et al. [4] show how to obtain effi-
cient round-optimal blind signatures by instantiating a framework by Fischlin [20]. SPS
are also important building blocks for a wide range of cryptographic functionalities such
as anonymous proxy signatures [22], delegatable anonymous credentials [6], transfer-
able e-cash [23] and compact verifiable shuffles [16]. Most recently, [31] show how to
construct a structure preserving tree-based signature scheme with a tight security reduc-
tion following the approach of [26,18]. This signature scheme is then used to build a
ss-NIZK which in turn is used with the Naor-Yung-Sahai [35,38] paradigm to build the
first CCA secure public-key encryption scheme with a tight security reduction. Exam-
ples for other schemes that benefit from efficient SPS are [7,11,8,32,27,5,37,24,21,28].

Because properties (i) and (ii) are the only dependencies on the SPS scheme made by
these constructions, any structure-preserving signature scheme can be used as a drop-in
replacement. Unfortunately, all known efficient instantiations of SPS [4,1,2] are based
on so-called q-type or interactive assumptions that are primarily justified based on the
Generic Group model. An open question since Groth’s seminal work [29] (only partially
answered by [15]) is to construct a SPS scheme that is both efficient – in particular
constant-size in the number of signed group elements – and that is based on assumptions
that are as weak as those required by the GS proof system itself.

Our contribution. Our first contribution consists of two generic constructions for cho-
sen message attack (CMA) secure signatures that combine variations of one-time sig-
natures and signatures secure against random message attacks (RMA). Both construc-
tions inherit the structure-preserving and constant-size properties from the underlying
components. The second contribution consists in the concrete instantiations of these
components which result in constant-size structure-preserving signature schemes that
produce signatures consisting of only 11 to 17 group elements and that rely only on ba-
sic assumptions such as Decisional-Linear (DLIN) for symmetric bilinear groups and
analogues of DDH and DLIN for asymmetric bilinear groups. To our knowledge, these
are the first constant-size structure-preserving signature schemes that eliminate the use
of q-type assumptions while achieving reasonable efficiency.

We instantiate the first generic construction for symmetric (Type-I) and the second
for asymmetric (Type-III) pairing groups. See Table 1 in Section 7 for the summary of
efficiency of the resulting schemes. We give more details on our generic constructions
and their instantiations:

– The first generic construction (SIG1) combines a new variation of one-time sig-
natures which we call tagged one-time signatures and signatures secure against
random message attacks (RMA). A tagged one-time signature scheme, denoted by
TOS, is a signature scheme that attaches a fresh tag to a signature. It is unforge-
able with respect to tags that are used only once. In our construction, a message is
signed with our TOS scheme using a fresh random tag, and then the tag is signed
with the second signature scheme, denoted by rSIG. Since the rSIG scheme only
signs random tags, RMA-security is sufficient.

– The second generic construction (SIG2) combines partial one-time signatures and
signatures secure against extended random message attacks (XRMA). The latter is
a novel notion that we explain below. Partial one-time signatures, denoted by POS,
are one-time signatures for which only a part of the one-time key is renewed for
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every signing operation. They were first introduced by Bellare and Shoup [9] under
the name of two-tier signatures. In our construction, a message is signed with the
POS scheme and then the random one-time public-key is certified by the second
signature scheme, denoted by xSIG. The difference between a TOS scheme and
a POS scheme is that a one-time public-key is associated with a one-time secret-
key. Since the one-time secret-key is needed for signing, it must be known to the
reduction in the security proof. XRMA-security guarantees that xSIG is unforgeable
even if the adversary is given auxiliary information associated with the randomly
chosen messages (it is a random coin used for selecting the message). The auxiliary
information facilitates access to the one-time secret-key by the reduction.

– To instantiate SIG1, we construct structure-preserving TOS and rSIG signature
schemes based on DLIN over Type-I bilinear groups. Our TOS scheme yields
constant-size signatures and tags. The resulting SIG1 scheme is structure-preserving,
produces signatures consisting of 17 group elements, and relies solely on the DLIN
assumption.

– To instantiate SIG2, we construct structure-preserving POS and xSIG signature
schemes based on assumptions that are analogues of DDH and DLIN in Type-III
bilinear groups. The resulting SIG2 scheme is structure-preserving, produces sig-
natures consisting of 11 group elements for uniliteral messages in a base group or
14 group elements for biliteral messages from both base groups.

The role of partial one-time signatures is to compress a message into a constant number
of random group elements. This observation is interesting in light of [3] that implies
the impossibility of constructing collision resistant and shrinking structure-preserving
hash functions, which could immediately yield constant-size signatures. Our (extended)
RMA-secure signature schemes are structure-preserving variants of Waters’
dual-signature scheme [41]. In general, the difficulty of constructing CMA-secure SPS
arises from the fact that the exponents of the group elements chosen by the adversary as
a message are not known to the reduction in the security proof. On the other hand, for
RMA security, it is the challenger that chooses the message and therefore the exponents
can be known in reductions. This is the crucial advantage for constructing (extended)
RMA-secure structure-preserving signature schemes based on Waters’ dual-signature
scheme.

Finally, we mention a few new applications. Among these is the achievement of
a drastic performance improvement when using our partial one-time signatures in the
work by Hofheinz and Jager [31] to construct CCA-secure public-key encryption
schemes with a proof of security that tightly reduces to DLIN or SXDH.

Related Works. Even, Goldreich and Micali [19] proposed a generic framework (the
EGM framework) that combines a one-time signature scheme and a signature scheme
that is secure against non-adaptive chosen message attacks (NACMA) to construct a
signature scheme that is secure against adaptive chosen message attacks (CMA).

In fact, our generic constructions can be seen as refinements of the EGM framework.
There are two reasons why the original framework falls short for our purpose. The first
is that relaxing to NACMA does not seem a big help in constructing efficient structure-
preserving signatures since the messages are still under the control of the adversary and
the exponents of the messages are not known to the reduction algorithm in the security
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proof. As mentioned above, resorting to (extended) RMA is a great help in this regard.
In [19], they also showed that CMA-secure signatures exist iff RMA-secure signatures
exist. The proof, however, does not follow their framework and their impractical con-
struction is mainly a feasibility result. In fact, we argue that RMA-security alone is
not sufficient for the original EGM framework. As mentioned above, the necessity of
XRMA security arises in the reduction that uses RMA-security to argue security of the
ordinary signature scheme, as the reduction not only needs to know the random one-
time public-keys, but also their corresponding one-time secret keys in order to generate
the one-time signature components of the signatures. The auxiliary information in the
XRMA definition facilitates access to these secret keys. Similarly, tagged one-time sig-
natures avoid this problem as tags do not have associated secret values. The second
reason that the EGM approach is not quite suited to our task is that the EGM frame-
work produces signatures that are linear in the public-key size of the one-time signature
scheme. Here, tagged or partial one-time signature schemes come in handy as they al-
low the signature size to be only linear in the size of the part of the public key that is
updated. Thus, to obtain constant-size signatures, we require the one-time part to be
constant-size.

Hofheinz and Jager [31] constructed a SPS scheme by following the EGM
framework. The resulting scheme allows tight security reduction to DLIN but the size of
signatures depends logarithmically to the number of signing operation as their NACMA-
secure scheme is tree-based like the Goldwasser-Micali-Rivest signature scheme [26].
Chase and Kohlweiss [15] and Camenisch, Dubovitskaya, and Haralambiev [13] con-
structed SPS schemes with security based on DLIN that improve the performance of
Groth’s scheme [29] by several orders of magnitude. The size of the resulting signa-
tures, however, are still linear in the number of signed group elements, and an order
of magnitude larger than in our constructions. Camenisch, Dubovitskaya, and Har-
alambiev constructed a constant-size SPS scheme based on simple assumptions over
composite-order groups [12].

Full Version. In this extended abstract, we do not have enough space to write complete
proofs, so we omitted them. Please see a full version on Cryptology ePrint Archive
(2012/285).

2 Preliminaries
Notation. Appending element y to a sequenceX = (x1, . . . , xn) is denoted by (X, y),
i.e., (X, y) = (x1, . . . , xn, y). When algorithm A is defined for input x and output y,
notation y ← A(x) for x := {x1, . . . , xn} means that yi ← A(xi) is executed for
i = 1, . . . , n and y is set as y := (y1, . . . , yn). For set X , notation a ← X denote
a uniform sampling from X . Independent multiple sampling from the same set X is
denoted by a, b, c, ..← X .

Bilinear groups. Let G be a bilinear group generator that takes security parameter 1λ

and outputs a description of bilinear groups Λ := (p,G1,G2,GT , e), where G1, G2

and GT are groups of prime order p, and e is an efficient and non-degenerating bilinear
map G1 × G2 → GT . Following the terminology in [25] this is a Type-III pairing. In
the Type-III setting G1 �= G2 and there are no efficient mapping between the groups in
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either direction. In the Type-III setting, we often use twin group elements, (Ga, Ĝa) ∈
G1 × G2 for some bases G and Ĝ. For X in G1, notation X̂ denotes for an element
in G2 that logX = log X̂ where logarithms are with respect to default bases that are
uniformly chosen once for all and implicitly associated to Λ. Should their relation be
explicitly stated, we write X ∼ X̂ . We count the number of group elements to measure
the size of cryptographic objects such as keys, messages, and signatures. For Type-III
groups, we denote the size by (x, y) when it consists of x and y elements from G1 and
G2, respectively. We refer to the Type-I setting when G1 = G2 (i.e., there are efficient
mappings in both directions). This is also called the symmetric setting. In this case, we
define Λ := (p,G,GT , e). When we need to be specific, the group description yielded
by G will be written as Λasym and Λsym.

Assumptions. We first define computational and decisional Diffie-Hellman assumptions
(CDH1, DDH1) and decisional linear assumption (DLIN1) for Type-III bilinear groups.
Corresponding more standard assumptions, CDH, DDH, and DLIN, in Type-I groups
are obtained by setting G1 = G2 and G = Ĝ in the respective definitions.

Definition 1 (Computation co-Diffie-Hellman Assumption: CDH1)
The CDH1 assumption holds if, for any p.p.t. algorithm A, the probability Advco-cdh

G,A
(λ) := Pr[Z = Gxy |Λ ← G(1λ);x, y ← Zp;Z ← A(Λ,G,Gx, Gy, Ĝ, Ĝx, Ĝy) ] is
negligible in λ.

Definition 2 (Decisional Diffie-Hellman Assumption in G1: DDH1)
Given Λ ← G(1λ), G ← G∗

1, (Gx, Gy, Zb) ∈ G1
3 where Z1 = Gx+y , Z0 ← G1 for

random x and y, any p.p.t. algorithmA decides whether b = 1 or 0 only with advantage
AdvDDH1

G,A (λ) that is negligible in λ.

Definition 3 (Decisional Linear Assumption in G1: DLIN1)
Given Λ ← G(1λ), (G1, G2, G3) ← G∗

1
3 and (Gx

1 , G
y
2 , Zb) where Z1 = Gx+y

3 and
Z0 = Gz

3 for random x, y, z ∈ Zp, any p.p.t. algorithm A decides whether b = 1 or 0
only with advantage Advdlin1G,A (λ) that is negligible in λ.

For DDH1 and DLIN1, we define an analogous assumption in G2 (DDH2) by swap-
ping G1 and G2 in the respective definitions. In Type-III bilinear groups, it is assumed
that both DDH1 and DDH2 hold simultaneously. The assumption is called the sym-
metric external Diffie-Hellman assumption (SXDH), and we define advantage AdvsxdhG,C
by AdvsxdhG,C (λ) := Advddh1G,A (λ) + Advddh2G,B (λ). We extend DLIN in a similar manner as
DDH, and SXDH.

Definition 4 (External Decision Linear Assumption in G1: XDLIN1)
Given Λ← G(1λ), (G1, G2, G3)← G∗

1
3 and (Gx

1 , G
y
2 , Ĝ1, Ĝ2, Ĝ3, Ĝ

x
1 , Ĝ

y
2 , Zb) where

(G1, G2, G3) ∼ (Ĝ1, Ĝ2, Ĝ3), Z1 = Gx+y
3 , and Z0 = Gz

3 for random x, y, z ∈ Zp,
any p.p.t. algorithmA decides whether b = 1 or 0 only with advantage AdvxdlinG,A (λ) that
is negligible in λ.

The XDLIN1 assumption is equivalent to the DLIN1 assumption in the generic bilinear
group model [40,10] where one can simulate the extra elements, Ĝ1, Ĝ2, Ĝ3, Ĝ

x
1 , Ĝ

y
2 ,

in XDLIN1 from G1, G2, G3, G
x
1 , G

y
2 in DLIN1. We define the XDLIN2 assumption
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analogously by giving Ĝx+y
3 or Ĝz

3 asZb, toA instead. Then we define the simultaneous
external DLIN assumption, SXDLIN, that assumes that both XDLIN1 and XDLIN2

hold at the same time. By Advxdlin2G,A (AdvsxdlinG,A , resp.), we denote the advantage function
for XDLIN2 (and SXDLIN, resp.).

Definition 5 (Double Pairing Assumption in G1 [4]:DBP1)
Given Λ← G(1λ) and (Gz , Gr)← G∗

1
2, any p.p.t. algorithmA outputs (Z,R) ∈ G∗

2
2

that satisfies 1 = e(Gz, Z) e(Gr, R) only with probability Advdbp1G,A (λ) that is negligible
in λ.

The double pairing assumption in G2 (DBP2) is defined in the same manner by swap-
ping G1 and G2. It is known that DBP1 (DBP2, resp.) is implied by DDH1 (DDH2,
resp.) and the reduction is tight [4]. Note that the double pairing assumption does not
hold in Type-I groups since Z = Gr, R = G−1

z is a trivial solution. The following
analogous assumption will be useful in Type-I groups.

Definition 6 (Simultaneous Double Pairing Assumption [14]: SDP)
Given Λ ← G(1λ) and (Gz , Gr, Hz , Hs) ← G∗4, any p.p.t. algorithm A outputs
(Z,R, S) ∈ G∗3 that satisfies 1 = e(Gz , Z) e(Gr, R) ∧ 1 = e(Hz, Z) e(Hs, S)

only with probability AdvsdpG,A(λ) that is negligible in λ.

As shown in [14] for the Type-I setting, the simultaneous double pairing assumption
holds for G if the decisional linear assumption holds for G.

3 Definitions
Common setup. All building blocks make use of a common setup algorithm Setup that
takes the security parameter 1λ and outputs a global parameters gk that is given to all
other algorithms. Usually gk consists of a description Λ of a bilinear group setup and a
default generator for each group. In this paper, we include several additional generators
in gk for technical reasons. Note that when the resulting signature scheme is used in
multi-user applications different additional generators need to be assigned to individual
users or one needs to fall back on the common reference string model, whereas Λ and
the default generators can be shared. Thus we count the size of gk when we assess the
efficiency of concrete instantiations. For ease of notation, we make gk implicit except
w.r.t. key generation algorithms.

Signature schemes. We use the following syntax for signature schemes suitable for the
multi-user and multi-algorithm setting. The key generation function takes global param-
eter gk generated by Setup (usually it takes security parameter 1λ), and the message
space M is determined solely from gk (usually it is determined from a public-key).

Definition 7 (Signature Scheme). A signature scheme SIG is a tuple of three
polynomial-time algorithms (Key, Sign,Vrf) that;

– SIG.Key(gk) generates a long-term public-key vk and a secret-key sk.
– SIG.Sign(sk,msg) takes sk and message msg and outputs signature σ.
– SIG.Vrf(vk,msg, σ) outputs 1 for acceptance or 0 for rejection.
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Correctness requires that 1 = SIG.Vrf(vk,msg, σ) holds for any gk generated by
Setup, any keys generated as (vk, sk) ← SIG.Key(gk), any message msg ∈ M, and
any signature σ ← SIG.Sign(sk,msg).

Definition 8 (Attack Game(ATK)). Let Osig be an oracle and A be an oracle al-
gorithm. We define a meta attack game as a sequence of execution of algorithms as
follows: ATK(A, λ) =[

gk ← Setup(1λ), pre← A(gk), (vk, sk)← SIG.Key(gk), (σ†,msg†)← AOsig(vk)
]

Adversary A commits to pre, which is typically a set of messages, in the first run. This
formulation is to capture non-adaptive attacks. It is implicit that a state information
is passed to the second run of A. Let Qm be a set of messages, for which A requests
signatures from its oracle before outputting the resulting forgery. The output of ATK is
(vk, σ†,msg†, Qm).

Definition 9 (Adaptive Chosen-Message Attack (CMA)). Adaptive chosen message
attack security is defined by the attack game ATK where pre is empty and oracleOsig is
the signing oracle that, on receiving a messagemsg, performs σ ← SIG.Sign(sk,msg),
and returns σ.

Definition 10 (Random Message Attack (RMA)[19]). Random message attack se-
curity is defined by the attack game ATK where pre is empty and oracle Osig is the
following: on receiving a request, it chooses msg uniformly from M defined by gk,
computes signature σ ← SIG.Sign(sk,msg), and returns (σ,msg).

Let MSGGen be a uniform message generator. It is a probabilistic algorithm that takes
gk and outputs msg ∈ M that distributes uniformly over M. Furthermore, MSGGen
outputs auxiliary information aux that may give a hint about the random coins used for
selecting msg.

Definition 11 (Extended Random Message Attack (XRMA)). Extended random mes-
sage attack is attack game ATK where pre is empty and oracle Osig is the follow-
ing. On receiving a request, it runs (msg, aux) ← MSGGen(gk), computes σ ←
SIG.Sign(sk,msg), and returns (σ,msg, aux).

Definition 12 (Unforgeability against ATK). Signature scheme SIG is unforgeable
against attack ATK (UF-ATK) where ATK ∈ {CMA,RMA,XRMA}, if for all p.p.t. or-
acle algorithm A the advantage function Advuf-atkSIG,A := Pr

[
msg† �∈ Qm ∧ 1 =

SIG.Vrf(vk, σ†,msg†)
∣∣ (vk, σ†,msg†, Qm)← ATK(A, λ)

]
is negligibel in λ.

Fact 1. UF-CMA ⇒ UF-XRMA ⇒ UF-RMA, i.e., Advuf-cma
SIG,A (λ) ≥ Advuf-xrma

SIG,A (λ) ≥
Advuf-rma

SIG,A (λ).

Partial one-time and tagged one-time signatures. Partial one-time signatures, also
known as two-tier signatures [9], are a variation of one-time signatures where only
part of the public-key must be updated for every signing, while the remaining part can
be persistent.
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Definition 13. [Partial One-Time Signature Scheme [9]] A partial one-time signatures
scheme POS is a set of polynomial-time algorithms POS.{Key,Update, Sign,Vrf}.

– POS.Key(gk) generates a long-term public-key pk and a secret-key sk . The mes-
sage space Mo is associated with pk . (Recall that we require that Mo be com-
pletely defined by gk.)

– POS.Update() takes gk as implicit input, and outputs a pair of one-time keys
(opk , osk ). We denote the space for opk by Kopk .

– POS.Sign(sk ,msg, osk) outputs a signature σ on message msg based on sk and
osk .

– POS.Vrf(pk , opk ,msg, σ) outputs 1 for acceptance, or 0 for rejection.

For correctness, it is required that1=POS.Vrf(pk , opk ,msg, σ) holds except for neg-
ligible probability for any gk, pk , opk , σ, and msg ∈ Mo, such that gk ← Setup(1λ),
(pk , sk)←POS.Key(gk), (opk , osk )←POS.Update(),σ ← POS.Sign(sk ,msg, osk).

A tagged one-time signature scheme is a signature scheme whose signing function in
addition to the long-term secret key takes a tag as input. A tag is one-time, i.e., it must
be different for every signing.

Definition 14 (Tagged One-Time Signature Scheme). A tagged one-time signature
scheme TOS is a set of polynomial-time algorithms TOS.{Key,Tag, Sign,Vrf}.

– TOS.Key(gk) generates a long-term public-key pk and a secret-key sk . The mes-
sage space Mt is associated with pk .

– TOS.Tag() takes gk as implicit input and outputs tag . By T , we denote the space
for tag .

– TOS.Sign(sk ,msg, tag) outputs signature σ for message msg based on sk and
tag .

– TOS.Vrf(pk , tag ,msg, σ) outputs 1 for acceptance, or 0 for rejection.

Correctness requires that 1 = TOS.Vrf(pk , tag ,msg, σ) holds except for negligible
probability for any gk, pk , tag , σ, and msg ∈ Mt, such that gk ← Setup(1λ),
(pk , sk)← TOS.Key(gk), tag ← TOS.Tag(), σ ← TOS.Sign(sk ,msg, tag).

A TOS scheme is POS scheme for which tag = osk = opk . We can thus give a security
notion for POS schemes that also applies to TOS schemes by reading Update = Tag
and tag = osk = opk .

Definition 15 (Unforgeability against One-Time Adapative Chosen-Message At-
tacks). A partial one-time signature scheme is unforgeable against one-time adaptive
chosen message attacks (OT-CMA) if for all p.p.t. oracle algorithm A the advantage
function Advot-cma

POS,A is negligible in λ, where Advot-cma
POS,A(λ) :=

Pr

⎡⎣∃(opk ,msg, σ) ∈ Qm s.t.
opk † = opk ∧ msg† �= msg ∧
1 = POS.Vrf(pk , opk †, σ†,msg†)

∣∣∣∣∣∣
gk← Setup(1λ),
(pk , sk)← POS.Key(gk),

(opk †, σ†,msg†)← AOt,Osig(pk )

⎤⎦ .
Qm is initially an empty list.Ot is the one-time key generation oracle that on receiving a
request invokes a fresh session j, performs (opk j , osk j)← POS.Update(), and returns
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opk j . Osig is the signing oracle that, on receiving a message msgj for session j, per-
forms σj ← POS.Sign(sk ,msgj, osk j), returns σj toA, and records (opk j ,msgj, σj)
to the list Qm. Osig works only once for every session. Strong unforgeability is defined
as well by replacing conditionmsg† �= msg with (msg†, σ†) �= (msg, σ).

We define a non-adaptive variant (OT-NACMA) of the above notion by integrating Ot
into Osig so that opk j and σj are returned to A at the same time. Namely, A must
submit msgj before seeing opk j . If a scheme is secure in the sense of OT-CMA, the
scheme is also secure in the sense of OT-NACMA. If a scheme is strongly unforgeable,
it is unforgeable as well. By Advot-nacma

POS,A (λ) we denote the advantage of A in this non-
adaptive case. For TOS, we use the same notations, OT-CMA and OT-NACMA, and
define advantage functions Advot-cma

TOS,A and Advot-nacma
TOS,A accordingly. For strong unforge-

abiltiy, we use label sot-cma and sot-nacma.
We define a condition that is relevant for coupling random message secure signature

schemes with partial one-time and tagged one-time signature schemes in later sections.

Definition 16 (Tag/One-time Public-Key Uniformity). TOS is called uniform-tag if
TOS.Tag outputs tag that uniformly distributes over tag space T . Similarly, POS is
called uniform-key if POS.Update outputs opk that uniformly distributes over key space
Kopk .

Structure-preserving signatures. A signature scheme is structure-preserving over a bi-
linear group Λ, if public-keys, signatures, and messages are all base group elements
of Λ, and the verification only evaluates pairing product equations. Similarly, POS
schemes are structure-preserving if their public-keys, signatures, messages, and tags or
one-time public-keys consist of base group elements and the verification only evaluates
pairing product equations.

4 Generic Constructions

4.1 SIG1: Combining Tagged One-Time and RMA-Secure Signatures

Let rSIG be a signature scheme with message spaceMr, and TOS be a tagged one-time
signature scheme with tag space T such thatMr = T . We construct a signature scheme
SIG1 from rSIG and TOS. Let gk be a global parameter generated by Setup(1λ).

– SIG1.Key(gk): Run (pk t, sk t) ← TOS.Key(gk), (vkr, skr) ← rSIG.Key(gk).
Output vk := (pk t, vkr) and sk := (sk t, skr).

– SIG1.Sign(sk,msg): Parse sk into (sk t, skr). Run tag ← TOS.Tag(), σt ←
TOS.Sign(sk t,msg, tag), σr ← rSIG.Sign(skr, tag). Output σ := (tag , σt, σr).

– SIG1.Vrf(vk, σ,msg): Parse vk and σ accordingly. Output 1, if 1 = TOS.Vrf(pk t,
tag , σt,msg) and 1 = rSIG.Vrf(vkr, σr, tag). Output 0, otherwise.

We prove the above scheme is secure by showing a reduction to the security of each
component. As our reductions are efficient in their running time, we only relate success
probabilities.

Theorem 17. SIG1 is UF-CMA if TOS is uniform-tag and OT-NACMA, and rSIG is
UF-RMA. In particular, Advuf-cma

SIG1,A(λ) ≤ Advot-nacma
TOS,B (λ) + Advuf-rma

rSIG,C(λ).
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Proof. Any signature that is accepted by the verification algorithm must either reuse an
existing tag, or sign a new tag. The success probability Advuf-cma

SIG1,A(λ) of an attacker on
SIG1 is bounded by the sum of the success probabilities Advot-nacma

TOS,B (λ) of an attacker

on TOS and the success probability Advuf-rma
rSIG,C(λ) of an attacker on rSIG.

Game 0: The actual Unforgeability game. Pr[Game 0] = Advuf-cma
SIG1,A(λ).

Game 1: The real security game except that the winning condition is changed to no
longer accept repetition of tags.

Lemma 18. |Pr[Game 0]− Pr[Game 1]| ≤ Advot-nacma
TOS,B (λ)

Game 2: The fully idealized game. The winning condition is changed to reject all sig-
natures.

Lemma 19. |Pr[Game 1]− Pr[Game 2]| ≤ Advuf-rma
rSIG,C(λ)

Thus Advuf-cma
SIG1,A(λ) = Pr[Game 0] ≤ Advot-nacma

TOS,B (λ) + Advuf-rma
rSIG,C(λ) as claimed.

Theorem 20. If TOS.Tag produces constant-size tags and signatures in the size of
input messages, the resulting SIG1 produces constant-size signatures as well. Further-
more, if TOS and rSIG are structure-preserving, so is SIG1.

We omit the proof of Theorem 20 as it is done simply by examining the construction.

4.2 SIG2: Combining Partial One-Time and XRMA-Secure Signatures

Let xSIG be a signature scheme with message space Mx, and POS be a partial one-
time signature scheme with one-time public-key spaceKopk such thatMx = Kopk . We
construct a signature scheme SIG2 from xSIG and POS. Let gk be a global parameter
generated by Setup(1λ).

– SIG2.Key(gk): Run (pkp, skp) ← POS.Key(gk), (vkx, skx) ← xSIG.Key(gk).
Output vk := (pkp, vkx) and sk := (skp, skx).

– SIG2.Sign(sk,msg): Parse sk into (skp, skx). Run (opk , osk) ← POS.Update(),
σp ← POS.Sign(skp,msg, osk), σx ← xSIG.Sign(skx, opk ). Output σ := (opk ,
σp, σx).

– SIG2.Vrf(vk,
σ,msg): Parse vk and σ accordingly. Output 1 if 1 = POS.Vrf(pkp, opk , σp,
msg), and 1 = xSIG.Vrf(vkx, σx, opk ). Output 0, otherwise.

Theorem 21. SIG2 is UF-CMA if POS is uniform-key and OT-NACMA, and xSIG is
UF-XRMA w.r.t. POS.Update as the message generator. In particular, Advuf-cma

SIG2,A(λ) ≤
Advot-nacma

POS,B (λ) + Advuf-xrma
xSIG,C (λ).

Proof. The proof is almost the same as that for Theorem 17. The only difference ap-
pears in constructing C in the second step. Since POS.Update is used as the extended
random message generator, the pair (msg, aux) is in fact (opk , osk). Given (opk , osk ),
adversary C can run POS.Sign(sk ,msg, osk) to yield legitimate signatures.

Theorem 22. If POS produces constant-size one-time public-keys and signatures in
the size of input messages, resulting SIG2 produces constant-size signatures as well.
Furthermore, if POS and xSIG are structure-preserving, so is SIG2.
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5 Instantiating SIG1

We instantiate the building blocks TOS and rSIG of our first generic construction to
obtain our first SPS scheme. We do so in Type-I bilinear group setting. The resulting
SIG1 scheme is an efficient structure-preserving signature scheme based only on the
DLIN assumption.

Setup for Type-I groups. The following setup procedure is common for all instantiations
in this section. The global parameter gk is given to all functions implicitly.

Setup(1λ): RunΛ = (p,G,GT , e)← G(1λ) and pick random generators (G,C, F, U1,
U2)← G∗5. Output gk := (Λ,G,C, F, U1, U2).

The parameters gk fix the message spaceMr := {(Cm1 , Cm2 , Fm1 , Fm2 , Um1
1 , Um2

2 )
∈ G6 | (m1,m2) ∈ Z2

p} for the RMA-secure signature scheme defined below. For
our generic framework to work, the tagged one-time signature schemes should have the
same tag space.

Tagged one-time signature scheme. Basically, a tag in our scheme consists of a pair of
elements in G. However, due to a constraint from rSIG we show in the next section, the
tags will have to be in an extended form. We therefore parameterize the one-time key
generation function Update with a flag mode ∈ {normal, extended} so that it outputs
a key in the original or extended form. Although mode is given to Update as input,
it should be considered as a fixed system-wide parameter that is common for every
invocation of Update and the key space is fixed throughout the use of the scheme.
Accordingly, this extension does not affect the security model at all.

TOS.Key(gk): Parse gk = (Λ,G,C, F, U1, U2). Pick random xr, yr, xs, ys, xt, yt, x1,
y1, . . . ,xk, yk inZp such that such thatxrys �= xsyr and computeGr := Gxr , Hr :=
Gyr , Gs := Gxs , Hs := Gys , Gt := Gxt , Ht := Gyt , G0 := Gx0 , H0 :=
Gy0 , . . . , Gk := Gxk , Hk := Gyk . Outputpk := (Gr, Gs, Gt, Hr, Hs, Ht, G0, . . . ,
Gk, H0, . . . , Hk) and sk := (xr , xs, xt, yr, ys, yt, x0, . . . , xk, y0, . . . , yk)

TOS.Tag(): Take generatorsG,C, F, U1, U2 from gk. Choose w1, w2 ← Z∗
p and com-

pute tag := (Cw1 , Cw2 , Fw1 , Fw2 , Uw1
1 , Uw2

2 ). Output tag .
TOS.Sign(sk ,msg, tag): Parse msg to (M1, . . . ,Mk) and tag to (T1, T2, . . . ). Parse

sk accordingly. Choose random m ← Zp and let value M0 := Gm
∏k

i=1M
−1
i .

(This is uniformly distributed.) Compute A := G−xtT−m
1

∏k
i=0M

−xi

i and B :=

G−ytT−m
2

∏k
i=0M

−yi

i . Since xrys �= xsyr we can compute
(

α β
γ δ

)
= ( xr xs

yr ys )
−1.

(The determinant is nonzero.) Compute Z := AαBβ and W := AγBδ . Output
σ := (Z,W,M0).

TOS.Vrf(pk , tag ,msg, σ): Accept if the following equalities hold:

e(Gr, Z) · e(Gs,W ) · e(Gt, G)

k∏
i=0

e(GiT1,Mi) = 1

e(Hr, Z) · e(Hs,W ) · e(Ht, G)

k∏
i=0

e(HiT2,Mi) = 1
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We remark that the correctness of the extended tag (T3, . . . , T6) is not examined within
this scheme. (We only need to show that the extended part is simulatable in the security
proof.) Since the tag is given to SIGr as a message, it is the verification function of SIGr
that verifies the correctness with respect to its message space, which is the same as the
tag space. The scheme is obviously structure-preserving and the correctness is easily
verified by simple calculation.

Theorem 23. The above TOS scheme is OT-CMA under the SDP. In particular, for
any A that makes at most qs signing queries, Advot-cma

TOS,A(λ) ≤ qs · AdvsdpG,B(λ) + 1/p
holds.

Proof. We show a reduction algorithm that simulates the one-time adaptive chosen mes-
sage attack game for the adversary. The reduction gets an instance of the simultaneous
double pairing assumption, Λ,Gr, Gs, Hr, Hs, and proceeds as follows.

Setup and Key Generation. It chooses ξ, η, μ and setsGt := Gξ
rG

η
s , andHt := Hξ

rH
μ
s .

It chooses G ∈ G and random ω, ν, ν1, ν2, and computes gk = (Λ,C, F, U1, U2) =
(Λ,Gω, Gων , Gων1 , Gων2). It chooses random ρi, σi, τi, computesGi = Gρi

r G
σi
s G

τi
t =

Gρi+ξτi
r Gσi+ητi

s and Hi = Hρi
r H

σi
s Hτi

t = Hρi+ξτi
r Hσi+μτi

s for i = 0 . . . k, and sets
pk = (G,Gr , Gs, Gt, Hr, Hs, Ht, G0, . . . Gk, H0, . . . , Hk). (Note that Gi, Hi are cor-
rectly distributed and give no information about τi.) It sends pk , gk to the adversary.
The reduction will pick a random session j∗, and assume that the adversary will try to
reuse tag from that session.

Queries to oracle Ot. When the adversary makes a query to the tag oracle Ot, choose
the next new session index j.

– For session j �= j∗: Pick random values ρ, σ, τ ← Zp. Compute (T1, T2) =
(Gρ

rG
σ
sG

τ
t , H

ρ
rH

σ
sH

τ
t ) = (Gρ+ξτ

r Gσ+ητ
s , Hρ+ξτ

r Hσ+μτ
s ), and set T = (T1, T2,

T ν
1 , T

ν
2 , T

ν1
1 , T ν2

2 ). Store (j, ρ, σ, τ), and return T to the adversary.
– For session j∗. Pick random values ρ, σ ← Zp. Compute (T1, T2) = (Gρ

rG
σ
s ,

Hρ
rH

σ
s ). Let T = (T1, T2, T

ν
1 , T

ν
2 , T

ν1
1 , T ν2

2 ). Store (j∗, ρ, σ), and return T to the
adversary.

Queries to oracleOsig. When the adversary queriesOsig for messageM = (M1, . . . ,
Mk) ∈ Gk and session j, proceed as follows.

– If theOt has not yet produced a tag for session j, orOsig has already been queried
for session j, return ⊥.

– For session j �= j∗: Look up the stored tuple (j, ρ, σ, τ). Compute M0 = (G
∏k

i=1

M τ+τi
i )

− 1
τ0+τ . Note that for this choice of M0, it will be the case that e(Gt, G)∏k

i=0 e(G
τi+τ
t ,Mi) = e(Gt,M

τ0+τ
0 G

∏k
i=1M

τi+τ
i ) = 1 and similarly e(Ht, G)∏k

i=0 e(H
τi+τ
t ,Mi) = e(Ht,M

τ0+τ
0 G

∏k
i=1M

τi+τ
i ) = 1. Note also that the tag

is independent of τ , and since τ is uniformly distributed, thenM0 is independent of
τ0, . . . , τk even given tag . (To see this, let m0, . . . ,mk be the discrete logarithms
ofM0, . . . ,Mk respectively and note that for any choice ofm1, . . . ,mk, τ0, . . . , τk
and for any m0 such that m0 �= −

∑k
i=1mi, there is a 1

q chance that we will

choose τ =
−1−

∑k
i=0 miτi∑k

i=0 mi
which will yield M0 = (G

∏k
i=1M

τi+τ
i )−

1
τ0+τ .) Now
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compute Z =
∏k

i=0M
−ρi−ρ
i and W =

∏k
i=0M

−σi−σ
i and output the signature

(Z,W,M0).
Note that these are the unique values such that e(Gr, Z) · e(Gs,W ) ·

e(Gt, G)
∏k

i=0 e(GiT1,Mi) = 1 and similarly e(Hr, Z) · e(Hs,W ) ·
e(Ht, G)

∏k
i=0 e(HiT2,Mi) = 1. Thus, Z,W are uniquely determined by

M0,M1, . . . ,Mk, tag , and pk . M1, . . . ,Mk are provided by the adversary and,
as we have argued,M0, tag, pk are statistically independent of τ0, . . . , τk. We con-
clude that Z,W reveal no additional information about τ0, . . . , τk even given the
rest of the adversary’s view.

– For session j∗: Look up the stored tuple (j, ρ, σ). Let M0 = (G
∏k

i=1M
τi
i )

− 1
τ0 ).

Note that for this choice ofM0, it will be the case that e(Gt, G)
∏k

i=0 e(G
τi
t ,Mi) =

e(Gt,M
τ0
0 G

∏k
i=1M

τi
i ) = 1 and similarly e(Ht, G)

∏k
i=0 e(H

τi
t ,Mi) =

e(Ht,M
τ0
0 G

∏k
i=1M

τi
i ) = 1. Note that T1, T2 are correctly distributed, that M0

is statistically close to uniform since τ0, . . . , τk are chosen at random, and further-
more that the only information revealed about τ0, . . . , τk is that G

∏k
i=0M

τi
i = 1.

Now, compute Z =
∏k

i=0M
−ρi−ρ
i and W =

∏k
i=0M

−σi−σ
i , and output

the signature (Z,W,M0). Again all values are independent of τ0, . . . , τk with the
exception now of M0, which is chosen so G

∏k
i=0M

τi
i = 1.

Processing the adversary’s forgery. Now, suppose that the adversary produces
(M †

1 , . . .M
†
k) and (Z†,W †,M †

0 , T ) for T = (T1, T2, . . . ) used in the j∗th query. Look
up the stored tuple (j∗, ρ, σ). Then with non-negligible probability (whenever the ad-
versary succeeds) we have TOS.Vrf(pk , T, (M †

1 , . . . ,M
†
k), (Z

†,W †,M †
0 )) = 1. This

means

1 = e(Gr, Z
†Gξ

k∏
i=0

(M †
i )

ρi+ρ+ξτi)e(Gs,W
†Gη

k∏
i=0

(M †
i )

σi+σ+ητi), and

1 = e(Hr, Z
†Gξ

k∏
i=0

(M †
i )

ρi+ρ+ξτi)e(Hs,W
†Gμ

k∏
i=0

(M †
i )

σi+σ+μτi).

So if Z†Gξ
∏k

i=0(M
†
i )

ρi+ρ+ξτi �= 1, then

(Z�, R�, S�) := (Z†Gξ
k∏

i=0

(M†
i )

ρi+ρ+ξτi ,W †Gη
k∏

i=0

(M†
i )

σi+σ+ητi ,W †Gμ
k∏

i=0

(M†
i )

σi+σ+μτi)

is a valid solution for the simultaneous double pairing assumption.
Z†Gξ

∏k
i=0(M

†
i )

ρi+ρ+ξτi = Z† ∏k
i=0(M

†
i )

ρi+ρ(G
∏k

i=0(M
†
i )

τi)ξ , and a part of Z† ∏k
i=0

(M†
i )

ρi+ρ is information theoretically hiding. Note that the only information that the
adversary has about τ0, . . . , τ1 is that in the j∗th session M0 was chosen so that
G

∏k
i=0 M

τi
i = 1 (where M = (M1, . . . ,Mk) is the message signed in the j∗th ses-

sion). If M†
i �= Mi for at least one i, then the probability that G

∏k
i=0(M

†
i )

τi = 1

conditioned on the fact that G
∏k

i=0 M
τi
i = 1 is 1/p. As a result, the probability that

Z†Gξ
∏k

i=0(M
†
i )

ρi+ρ+ξτi = 1 is 1/p.
Thus, if the guess for j∗ is right, we succeed with all but probability 1/p whenever A

does. We therefore have Advot-cma
TOS,A(λ) ≤ qs · AdvsdpG,B(λ) + 1/p.
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RMA-secure signature scheme. For our random message signature scheme we will use
a construction based on the dual system signature proposed in [41]. While the orig-
inal scheme is CMA-secure under the DLIN assumption, the security proof makes
use of a trapdoor commitment to elements in Zp and consequently messages are el-
ements in Zp rather than G. Our construction below resorts to RMA-security and re-
moves this commitment to allows messages to be a sequence of random group ele-
ments satisfying a particular relation. As mentioned above, the message space Mx :=
{(Cm1 , Cm2 , Fm1 , Fm2 , Um1

1 , Um2
2 ) ∈ G6 | (m1,m2) ∈ Z2

p} is defined by generators
(C,F, U1, U2) in gk.

rSIG.Key(gk): Given gk := (Λ,G,C, F, U1, U2) as input, uniformly select
V, V1, V2, H from G∗ and a1, a2, b, α, and ρ from Z∗

p. Then compute and out-
put vk := (B,A1, A2, B1, B2, R1, R2,W1,W2, V, V1, V2, H,X1, X2) and sk :=
(vk,K1,K2) where

B := Gb, A1 := Ga1 , A2 := Ga2 , B1 := Gb·a1 , B2 := Gb·a2

R1 := V V a1
1 , R2 := V V a2

2 , W1 := Rb
1, W2 := Rb

2,

X1 := Gρ, X2 := Gα·a1·b/ρ, K1 := Gα, K2 := Gα·a1 .

rSIG.Sign(sk,msg): Parse msg into (M1,M2,M3,M4,M5,M6). Pick random
r1, r2, z1, z2 ∈ Zp. Let r = r1 + r2. Compute and output signature σ :=
(S0, S1, . . . S7) where

S0 := (M5M6H)r1 , S1 := K2V
r, S2 := K−1

1 V r
1 G

z1 , S3 := B−z1 ,

S4 := V r
2 G

z2 , S5 := B−z2 , S6 := Br2 , S7 := Gr1 .

rSIG.Vrf(vk, σ,msg): Parse msg into (M1,M2,M3,M4,M5,M6) and σ into
(S0, S1, . . . , S7). Also parse vk accordingly. Verify the following pairing product
equations:

e(S7,M5M6H) = e(G,S0)

e(S1, B) e(S2, B1) e(S3, A1) = e(S6, R1) e(S7,W1)

e(S1, B) e(S4, B2) e(S5, A2) = e(S6, R2) e(S7,W2) e(X1, X2)

e(F,M1)=e(C,M3), e(F,M2)=e(C,M4), e(U1,M1)=e(C,M5), e(U2,M2) = e(C,M6)

The scheme is structure-preserving by construction and the correctness is easily veri-
fied.

Theorem 24. The above rSIG scheme is UF-RMA under the DLIN assumption. In par-
ticular, for any p.p.t. adversary A against rSIG that makes at most qs signing queries,
there exists p.p.t. algorithm B for DLIN such that Advuf-rma

rSIG,A(λ) ≤ (qs+2) ·AdvdlinG,B(λ).

Proof. We refer to the signatures output by the signing algorithm as a normal signature.
In the proof we will consider an additional type of signatures to which we refer to
as simulation-type signatures that are computationally indistinguishable but easier to
simulate. For γ ∈ Zp, simulation-type signatures are of the form σ = (S0, S

′
1 = S1 ·

G−a1a2γ , S′
2 = S2 ·Ga2γ , S3, S

′
4 = S4 ·Ga1γ , S5, . . . , S7). We give the outline of the

proof using some lemmas.
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Lemma 25. Any signature that is accepted by the verification algorithm must be
formed either as a normal signature, or a simulation-type signature.

We consider a sequence of games. Let pi be the probability that the adversary succeeds
in Game i, and pnorm

i (λ) and psim
i (λ) that he succeeds with a normal-type respectively

simulation-type forgery. Then by Lemma 25, pi(λ) = pnorm
i (λ) + psim

i (λ) for all i.

Game 0: The actual Unforgeability under Random Message Attacks game.

Lemma 26. There exists an adversary B1 such that psim
0 (λ) = AdvdlinG,B1

(λ).

Game i: The real security game except that the first i signatures that are given by the
oracle are simulation-type signatures.

Lemma 27. There exists an adversary B2 such that |pnorm
i−1 (λ) − pnorm

i (λ)| =

AdvdlinG,B2
(λ).

Game q: All sigantures that given by the oracle are simulation-type signatures.

Lemma 28. There exists an adversary B3 such that pnorm
q (λ) = AdvcdhG,B3

(λ).

We have shown that in Game q, A can output a normal-type forgery with at most
negligible probability. Thus, by Lemma 27 we can conclude that the same is true in
Game 0 and it holds

Advuf-rma
rSIG,A(λ) = p0(λ) = psim

0 (λ) + pnorm
0 (λ) ≤ psim

0 (λ) +

q∑
i=1

|pnorm
i−1(λ)− pnorm

i (λ)|+ pnorm
q (λ)

≤ Advdlin
G,B1

(λ) + qAdvdlin
G,B2

(λ) + Advcdh
G,B3

(λ) ≤ (q + 2) · Advdlin
G,B(λ) .

Let MSGGen be an extended random message generator that first chooses
aux = (m1,m2) randomly from Z2

p and then computes msg =
(Cm1 , Cm2 , Fm1 , Fm2 , Um1

1 , Um2
2 ). Note that this is what the reduction algo-

rithm does in the proof of Theorem 24. Therefore, the same reduction algorithm works
for the case of extended random message attacks with respect to message generator
MSGGen. We thus have the following.

Corollary 29. Under the DLIN assumption, rSIG scheme is UF-XRMA w.r.t. the mes-
sage generator that provides aux = (m1,m2) for every message msg = (Cm1 , Cm2 ,
Fm1 , Fm2 , Um1

1 , Um2
2 ). In particular, for any p.p.t. adversary A against rSIG that is

given at most qs signatures, there exists p.p.t. algorithm B such that Advuf-xrma
rSIG,A (λ) ≤

(qs + 2) · AdvdlinG,B(λ).

Security and efficiency of resulting SIG1. Let SIG1 be the signature scheme obtained
from TOS (with mode = extended) and rSIG by following the first generic construction
in Section 4. From Theorem 17, 20, 23, and 24, the following is immediate.

Theorem 30. SIG1 is a structure-preserving signature scheme that yields constant-size
signatures, and is UF-CMA under the DLIN assumption. In particular, for any p.p.t.
adversaryA for SIG1 making at most qs signing queries, there exists p.p.t. algorithm B
such that Advuf-cma

SIG1,A(λ) ≤ (qs + 3) · AdvdlinG,B(λ) + 1/p.
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6 Instantiating SIG2

We instantiate the POS and xSIG building blocks of our second generic construction
to obtain our second SPS scheme. Here we choose the Type-III bilinear group setting.
The resulting SIG2 scheme is an efficient structure-preserving signature scheme based
on SXDH and XDLIN.

Setup for Type-III groups. The following setup procedure is common for all building
blocks in this section. The global parameter gk is given to all functions implicitly.

– Setup(1λ): Run Λ = (p,G1,G2,GT , e) ← G(1λ) and choose generators G ∈ G∗
1

and Ĝ ∈ G∗
2. Also choose u, f2, f3 randomly from Z∗

p, compute F2 := Gf2 ,

F3 := Gf3 , F̂2 := Ĝf2 , F̂3 := Ĝf3 , U := Gu, Û := Ĝu, and output gk :=
(Λ,G, Ĝ, F2, F3, F̂2, F̂3, U, Û).

A gk defines a message space Mx = {(F̂m
2 , F̂m

3 , Ûm) ∈ G∗
2 | m ∈ Zp} for the

signature scheme in this section. For our generic construction to work, the partial one-
time signature scheme should have the same key space.

Partial one-time signatures for uniliteral messages. We construct a partial one-time
signature scheme POSu2 for messages in Gk

2 for k > 0. The suffix ”u2” indicates
that the scheme is uniliteral and messages are taken from G2. Correspondingly,POSu1
refers to the scheme whose messages belong to G1, which is obtained by swapping G2

and G1 in the following description. Our POSu2 scheme is a minor refinement of the
one-time signature scheme introduced in [4]. It comes, however, with a security proof
for the new security model.

Basically, a one-time public-key in our scheme consists of one element in the base
group G1 that is the opposite of the group G2 messages belong to. This property
is very useful to construct a POS scheme for signing bilateral messages. As well
as tags of TOS in Section 5, the one-time public-keys of POS will have to be in
an extended form to meet the constraint from xSIG presented in the sequel. We use
mode ∈ {normal, extended} for this purpose again.

– POSu2.Key(gk ): Take generators U and Û from gk . Choose wr randomly from
Z∗
p and compute Gr := Uwr . For i = 1, . . . , k, uniformly choose χi and γi from

Zp and compute Gi := UχiGγi
r . Output pk := (Gr, G1, ..., Gk) ∈ Gk+1

1 and
sk :=(χ1, γ1, ..., χk, γk, wr).

– POSu2.Update(mode): Take F2, F3, U from gk . Choose a ← Zp and output
opk := Ua ∈ G1 if mode = normal or opk := (F a

2 , F
a
3 , U

a) ∈ G3
1 if

mode = extended. Also output osk := a.
– POSu2.Sign(sk ,msg, osk): Parse msg into (M̂1, . . . , M̂k) ∈ Gk

2 . Take a and wr

from osk and sk , respectively. Choose ρ randomly from Zp and compute ζ :=

a − ρwr mod p. Then compute and output σ := (Ẑ, R̂) ∈ G2
2 as the signature,

where Ẑ := Û ζ
∏k

i=1 M̂
−χi

i and R̂ := Ûρ
∏k

i=1 M̂
−γi

i

– POSu2.Vrf(pk , σ,msg, opk ): Parse σ as (Ẑ, R̂) ∈ G2
2, msg as (M̂1, . . . , M̂k) ∈

Gk
2 , and opk as (A2, A3, A) or A depending on mode. Return 1, if e(A, Û) =

e(U, Ẑ) e(Gr, R̂)
∏k

i=1 e(Gi, M̂i) holds. Return 0, otherwise.
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Scheme POSu2 is structure-preserving and has uniform one-time public-key property
from the construction. We can easily verify that it is correct by simple calculation.

Theorem 31. POSu2 is strongly unforgeable against OT-CMA if DBP1 holds. In par-
ticular, Advsot-cma

POSu2,A(λ) ≤ Advdbp1G,B (λ) + 1/p.

Partial one-time signatures for bilateral messages. Using POSu1 for msg ∈ Gk1+1
1

andPOSu2 formsg ∈ Gk2
2 , we construct a POSb scheme for signing bilateral messages

(msg1,msg2) ∈ Gk1
1 × Gk2

2 . The scheme is a simple two-story construction where
msg2 is signed by POSu2 with one-time secret-key osk2 ∈ G1 and then the one-time
public-key opk2 is attached tomsg1 and signed by POSu1. Public-key opk2 is included
in the signature, and opk1 is output as a one-time public-key for POSb.

– POSb.Key(gk ): Run (pk1, sk1) ← POSu1.Key(gk ) and (pk2, sk2) ←
POSu2.Key(gk ). Set pk := (pk1, pk2) and sk := (sk1, sk2), and output (pk , sk).

– POSb.Update(mode): Run (opk , osk)← POSu1(mode) and output (opk , osk).
– POSb.Sign(sk ,msg, osk): Parse msg into (msg1,msg2) ∈ Gk1

1 × Gk2
2 , and sk

into (sk1, sk2). Run (opk2, osk2)← POSu2.Update(normal), and compute σ2←
POSu2.Sign(sk2,msg2, osk2) and σ1 ← POSu1.Sign(sk1, (msg1, opk2), osk ).
Output σ := (σ1, σ2, opk2).

– POSb.Vrf(pk , opk , σ,msg): Parse msg into (msg1,msg2) ∈ Gk1
1 × Gk2

2 ,
and σ into (σ1, σ2, opk2). If 1 = POSu1.Vrf(pk1, opk , σ1, (msg1, opk2)) =
POSu2.Vrf(pk2, opk2, σ2,msg2), output 1. Otherwise, output 0.

For a message in Gk1
1 ×Gk2

2 , the above POSb uses a public-key of size (k + 2, k + 1),
yields a one-time public-key of size (0, 1) (for mode = normal) or (0, 3) (for mode =
extended), and a signature of size (3, 2). Verification requires 2 pairing product equa-
tions. A one-time public-key in extended mode, which is treated as a message to xSIG
in this section, is of the form opk = (F̂ a

2 , F̂
a
3 , Û

a) ∈ G3
2. Structure-preservance and

uniform public-key property are taken over from the underlying POSu1 and POSu2.

Theorem 32. Scheme POSb is unforgeable against OT-CMA if SXDH holds. In partic-
ular, Advot-cma

POSb,A(λ) ≤ AdvsxdhG,B (λ)+2/p.

XRMA-secure signature scheme. Our construction bases on a variant of Waters’ dual
system encryption proposed by Ramanna, Chatterjee, and Sarkar [36]. Recall that gk =
(Λ,G, Ĝ, F2, F3, F̂2, F̂3, U, Û) with Λ = (p,G1,G2,GT , e) is generated by Setup(1λ)
in advance.

xSIG.Gen(gk): On input gk, select generators V, V ′, H ← G1, V̂ , V̂ ′, Ĥ ∈ G2

such that V ∼ V̂ , V ′ ∼ V̂ ′, H ∼ Ĥ, F2 ∼ F̂2, F3 ∼ F̂3 and exponent
a, b, α ← Zp and ρ ← Z∗

p, compute R := V (V ′)a, R̂ := V̂ (V̂ ′)a, and set

vk := (gk, Ĝb, Ĝa, Ĝba, R̂, R̂b, sk := (V K,Gα, Ga, Gb).
xSIG.Sign(sk,msg): On input message msg = (M̂1, M̂2, M̂0) = (F̂m

2 , F̂m
3 , Ûm) ∈

G3
2 (m ∈ Zp), select r1, r2 ← Zp, set r := r1 + r2, compute σ0 := (M̂0Ĥ)r1 ,

σ1 := GαV r, σ2 := (V ′)rG−z , σ3 := (Gb)z , σ4 := (Gb)r2 , and σ5 := Gr1 , and
output σ := (σ0, σ1, . . . , σ5) ∈ G2 ×G5

1.
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Table 1. Efficiency of our schemes (SIG1 and SIG2) and comparison to other schemes with
constant-size signatures. The top section is for the Type I variant, the middle section is for uni-
lateral messages and the lower section is for bilateral messages. Notation (x, y) represents x
elements in G1 and y in G2.

Schemes |msg| |gk|+ |vk| |σ| #(PPE) Assumptions
AHO10 k 2k + 12 7 2 q-SFP
SIG1 k 2k + 25 17 9 DLIN
AHO10 (k1, 0) (4, 2k1 + 8) (5, 2) 2 q-SFP
AGHO11 (k1, 0) (1, k1 + 4) (3, 1) 2 q-type
SIG2 : POSu1 + xSIG (k1, 0) (7, k1 + 13) (7, 4) 5 SXDH, XDLIN1

POSb + AHO10 (k1, k2) (k2 + 5, k1 + 12) (10, 3) 3 q-SFP
AGHO11 (k1, k2) (k2 + 3, k1 + 4) (3, 3) 2 q-type
SIG2 : POSb + xSIG (k1, k2) (k2 + 8, k1 + 14) (8, 6) 6 SXDH, XDLIN1

xSIG.Vrfy(vk, σ,msg): On input vk,msg = (M̂1, M̂2, M̂0), and signature σ, compute

e(F2, M̂0) = e(U, M̂1), e(F3, M̂0) = e(U, M̂2), e(σ5, M̂0Ĥ) = e(G, σ0)

e(σ1, Ĝ
b)e(σ2, Ĝ

ba)e(σ3, Ĝ
a) = e(σ4, R̂)e(σ5, R̂

b)e(Gρ, Ĝαb/ρ).

The scheme is structure-preserving by the construction. We can easily verify the cor-
rectness.

Theorem 33. If the DDH2 and XDLIN1 assumptions hold, then above xSIG scheme
is UF-XRMA with respect to the message generator that returns aux = m for every
random message msg = (F̂m

2 , F̂m
3 , Ûm). In particular for any p.p.t. adversary A for

xSIG making at most q signing queries, there exist p.p.t. algorithmsB1,B2,B3 such that
Advuf-xrma

xSIG,A (λ) < Advddh2G,B1
(λ) + qAdvxdlin1G,B2

(λ) + Advco-cdh
G,B3

(λ).

Security and efficiency of resulting SIG2. Let SIG2 be the scheme obtained from POSb
(with mode = extended) and xSIG. SIG2 is structure-preserving as vk, σ, and msg
consist of group elements from G1 and G2, and SIG2.Vrf evaluates pairing product
equations. From Theorem 21, 32, and 33, we obtain the following theorem.

Theorem 34. SIG2 is a structure-preserving signature scheme that is unforgeable
against adaptive chosen message attacks if SXDH and XDLIN1 hold for G.

7 Efficiency, Applications and Open Questions
Efficiency. Table 1 summarizes the efficiency of SIG1 and SIG2. For SIG2 we consider
both uniliteral and biliteral messages. We count the number of group elements excluding
a default generator for each group in gk, and distinguish between G1 and G2 and use k1
and k2 for the number of message elements in G1 and G2, respectively. For comparison,
we include the efficiency of the schemes in [4] and [2]. For bilateral messages, AHO10
is combined with POSb from Section 6.
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Applications. Structure-preserving signatures (SPS) have become a mainstay in cryp-
tographic protocol design in recent years. From the many applications that benefit from
efficient SPS based on simple assumptions, we list only a few recent examples. Using
our SIG1 scheme from Section 5 both the construction of a group signature scheme with
efficient revocation by Libert, Peters and Yung [33] and the construction of compact ver-
ifiable shuffles by Chase et al. [16] can be proven purely under the DLIN assumption.
All other building blocks already have efficient instantiations based on DLIN.

Hofheinz and Jager [31] construct a structure-preserving one-time signature scheme
and use it to build a tree-based SPS scheme, say tSIG. Instead, we propose to use our
partial one-time scheme to construct tSIG. As the resulting tSIG is secure against non-
adaptive chosen message attacks, it is secure against extended random message attacks
as well. We then combine the POSb scheme and the new tSIG scheme according to
our second generic construction. As confirmed with the authors of [31], the resulting
signature scheme is significantly more efficient than [31] and is a SPS scheme with a
tight security reduction to SXDH. One can do the same in Type-I groups by using the
tagged one-time signature scheme in Section 5 whose security tightly reduced to DLIN.

As also shown by [31], SPS schemes allow to implement simulation-sound NIZK
proofs based on the Groth-Sahai proof system. Following the Naor-Yung-Sahai [35,38]
paradigm, one obtains structure-preserving CCA-secure public-key encryption in a
modular fashion.

Open Questions. 1) Can we have (X)RMA-secure schemes with a message space that
is a simple Cartesian product of groups without sacrificing on efficiency? 2) The RMA-
secure signature schemes developed in this paper are in fact XRMA-secure. Can we
have more efficient schemes by resorting to RMA-security? 3) Can we have tagged
one-time signature schemes with tight reduction to the underlying simple assumptions?
4) What is the exact lower bound for the size of signatures under simple assumptions?
Is it possible to show such a bound?
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Abstract. In this paper, we introduce the abstraction of Dual Form
Signatures as a useful framework for proving security (existential un-
forgeability) from static assumptions for schemes with special structure
that are used as a basis of other cryptographic protocols and applications.
We demonstrate the power of this framework by proving security under
static assumptions for close variants of pre-existing schemes: the LRSW-
based Camenisch-Lysyanskaya signature scheme, and the identity-based
sequential aggregate signatures of Boldyreva, Gentry, O’Neill, and Yum.
The Camenisch-Lysyanskaya signature scheme was previously proven
only under the interactive LRSW assumption, and our result can be
viewed as a static replacement for the LRSW assumption. The scheme
of Boldyreva, Gentry, O’Neill, and Yum was also previously proven only
under an interactive assumption that was shown to hold in the generic
group model. The structure of the public key signature scheme under-
lying the BGOY aggregate signatures is quite distinctive, and our work
presents the first security analysis of this kind of structure under static
assumptions.

1 Introduction

Digital signatures are a fundamental technique for verifying the authenticity
of a digital message. The significance of digital signatures in cryptography is
also amplified by their use as building blocks for more complex cryptographic
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protocols. Recently, we have seen several pairing based signature schemes (e.g.,
[17,13,24,48]) that are both practical and have added structure which has been
used to build other primitives ranging from Aggregate Signatures [15,43] to
Oblivious Transfer [25,32]. Ideally, for such a fundamental cryptographic primi-
tive we would like to have security proofs from straightforward, static complexity
assumptions.

Meeting this goal for certain systems is often challenging. For instance, the
Camenisch and Lysyanskaya signature scheme [24]1 has been very influential as
it is used as the foundation for a wide variety of advanced cryptographic systems,
including anonymous credentials [24,7,6], group signatures [24,5], ecash [22], un-
cloneable functions [21], batch verification [23], and RFID encryption [4]. While
the demonstrated utility of CL signatures has made them desirable, it has been
difficult to reduce their security to a static security assumption. Currently, the
CL signature scheme is proven secure under the LRSW assumption [44], an
interactive complexity assumption that closely mirrors the description of the
signature scheme itself. In addition, the interactive assumption transfers to the
systems built around these signatures.

The identity-based sequential aggregate signatures of Boldyreva, Gentry,
O’Neill, and Yum [9,10] were also proven in the random oracle model under
an interactive assumption (justified in the generic bilinear group model), which
again closely mirrors the underlying signature scheme itself. (This can be viewed
as providing a proof of the scheme only in the generic group model.) Proofs of
complicated interactive assumptions in the generic group model have several
disadvantages. First, they are themselves complex and prone to error. In fact,
the original version of the BGOY identity-based sequential aggregate signature
scheme [9] relied on an assumption that was shown to be false, and the scheme
was insecure [36]. This scheme and proof were corrected in [10]. Secondly, such
proofs do not tend to provide much insight into the security of the scheme.
This lack of insight tends to hinder transferring schemes to other settings. For
example, many schemes developed in bilinear groups now have lattice-based
analogs, and these transformations reused high-level ideas from the original se-
curity proofs in the bilinear group setting. Techniques from [48] were used in the
lattice setting in [20], techniques from [26] were used in [27], and techniques from
[12] were used in [2]. This kind of transference of ideas from the bilinear setting
to the lattice setting is unlikely to be achieved through generic group proofs.

In this work, we develop techniques that can be applied to prove security
from static assumptions for new signature schemes as well as (slight variants of)
pre-existing schemes. Providing new proofs for these existing schemes provides
a meaningful sanity check as well as new insight into their security. This kind of
sanity check is valuable not only for schemes proven in the generic group model,
but also for signatures (CL signatures included) that require extra checks to
rule out trivial breaks (e.g. not allowing the message signed to be equal to 0),
since these subtleties can easily be missed at first glance. Having new proofs

1 Throughout, we will be discussing the CL signatures based on the LRSW assump-
tion, which should not be confused with those based on the strong RSA assumption.
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from static assumptions for variants of schemes like CL signatures and BGOY
signatures gives us additional confidence in their security without having to
sacrifice the variety of applications built from them. Ultimately, this provides
us with a fuller understanding of these kinds of signatures, and is a critical step
towards obtaining proofs under the simplest and weakest assumptions.

Dual Form Signatures. Our work is centered around a new abstraction that
we call Dual Form Signatures. Dual Form Signatures have similar structure to
existing signature schemes, however they have two signing algorithms, SignA
and SignB, that respectively define two forms of signatures that will both verify
under the same public key. In addition, the security definition will categorize
forgeries into two disjoint types, Type I and Type II. Typically, these forgery
types will roughly correspond with signatures of form A and B.

In a Dual Form system, we will demand three security properties (stated
informally here):

A-I Matching. If an attacker is only given oracle access to SignA, then it is
hard to create any forgery that is not of Type I.

B-II Matching. If an attacker is only given oracle access to SignB, then it is
hard to create any forgery that is not of Type II.

Dual-Oracle Invariance. If an attacker is given oracle access to both SignA
and SignB and a “challenge signature” which is either from SignA or SignB,
the attacker’s probability of producing a Type I forgery is approximately
the same when the challenge signature is from SignA as when the challenge
signature is from SignB.

A Dual Form Signature scheme immediately gives a secure signature scheme if
we simply set the signing algorithm Sign = SignA. Unforgeability now follows
from a hybrid argument. Consider any EUF-CMA [31] attacker A. By the A-I
matching property, we know that it might have a noticeable probability ε of
producing a Type I forgery, but has only a negligible probability of producing
any other kind of forgery. We then show that ε must also be negligible. By the
dual-oracle invariance property, the probability of producing a Type I forgery
will be close to ε if we gradually replace the signing algorithm with SignB, one
signature at a time. Once all of the signatures the attacker receives are from
SignB, the B-II Matching property implies that the probability of producing a
Type I forgery must be negligible in the security parameter.

We demonstrate the usefulness of our framework with two main applications,
using significantly different techniques. This illustrates the versatility of our
framework and its adaptability to schemes with different underlying structures.
In particular, while dual form signatures are related to the dual system en-
cryption methodology introduced by Waters [49] for proving full security of IBE
schemes and other advanced encryption functionalities, we demonstrate that our
dual form framework can be applied to signature schemes that have no known
encryption or IBE analogs. Though all of the applications given here use bilinear
groups, the dual form framework can be used in other contexts, including proofs
under general assumptions.
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Our first application is a slight variant of the Camenisch-Lysyanskaya signa-
ture scheme, set in a bilinear group G of composite order N = p1p2p3. This
application is surprising, since these signatures do not have a known IBE ana-
log. We let Gpi for each i = 1, 2, 3 denote the subgroup of order pi in the group.
The SignA algorithm produces signatures which exhibit the CL structure in the
Gp1 and Gp2 subgroups and are randomized in the Gp3 subgroup. The SignB
algorithm produces signatures which exhibit the CL structure in the Gp1 sub-
group and are randomized in the Gp2 and Gp3 subgroups. Type I and II forgeries
roughly mirror signatures of form A and B. The verification procedure in our
scheme will verify that the signature is well formed in the Gp1 subgroup, but
not “check” the other subgroups.

We prove security in the dual form framework based on three static subgroup
decision-type assumptions, similar to those used in [41]. The most challeng-
ing part of the proof is dual-oracle invariance, which we prove by developing a
backdoor verification test (performed by the simulator) which acts as an almost-
perfect distinguisher between forgery types. Here we face a potential paradox,
which is similar to that encountered in dual system encryption [49,41]: we need
to create a simulator that does not know whether the challenge signature it pro-
duces is distributed as an output of SignA or SignB , but it also must be able to
test the type of the attacker’s forgery. To arrange this, we create a “backdoor
verification” test, which the simulator can perform to test the form of all but
a small space of signatures. Essentially, this backdoor verification test acts an
almost-perfect type distinguisher which fails to correctly determine the type of
only a very small set of potential forgeries.

The challenge signature of unknown form produced by the simulator will fall
within the untestable space; however, with very high probability a forgery by
an attacker will not, because some information about this space is information-
theoretically hidden from the attacker. This is possible because the elements of
the verification key are all in the subgroup Gp1 , and the space essentially resides
in Gp2 . Thus the verification key reveals no information about the hidden space.
The only information about the space that the attacker receives is contained
in the single signature of unknown type, and we show that this is insufficient
for the attacker to be able to construct a forgery that falls inside the space
for a different message. This is reminiscent of the concept of nominal semi-
functionality in dual system encryption (introduced in [41]): in this setting, the
simulator produces a key of unknown type which is correlated in its view with the
ciphertext it produces, but this correlation is information-theoretically hidden
from the attacker. This correlation prevents the simulator from determining the
type of the key for itself by testing decryption against a ciphertext.

As a second application of our dual form framework, we prove security from
static assumptions for a variant of the BGOY identity-based sequential aggre-
gate signature scheme. Aggregate signatures are useful because they allow sig-
nature “compression,” meaning that any n individual signatures by n (possi-
bly) different signers on n (possibly) different messages can be transformed into
an aggregate signature of the same size as an individual one that nevertheless
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allows verifying that all these signers signed their messages. However, aggre-
gate signatures do not provide compression of the public keys, which are needed
for signature verification. In the identity-based setting, only the identities of the
signers are needed – this is a big savings because identities are much shorter than
randomly generated keys. However, identity-based aggegate signatures have been
notoriously difficult to realize.

We first prove security for a basic public-key version of the scheme, and then
show that security for its identity-based sequential aggregate analog reduces to
security of the basic scheme (in the random oracle model, as for the original
proof). Our techniques here are significantly different, and reflect the different
structure of the scheme (it is this structure that allows for aggregation). The
core structure of the underlying public key scheme is composed of three group
elements of the form ga+bmgr1r2 , gr1, gr2 , where m is a message (or a hash of
the message), a, b are fixed parameters, and r1, r2 are randomly chosen for each
signature. There are significant differences between this and the core structure of
other notable signatures, like CL and Waters signatures [24,48]. Here, the mes-
sage term is not multiplicatively randomized, but rather additively randomized
by the quadratic term r1r2. It is the quadratic nature of this term that allows
verification via application of the bilinear map while thwarting attackers who try
to combine received signatures by taking linear combinations in the exponents.
This unique structure presents a challenge for static security analysis, and we
develop new techniques to achieve a proof for a variant of this scheme in our
dual form framework.

We still employ composite order subgroups, with the main structure of the
scheme reflected in the Gp1 subgroup and the other two subgroups used for dif-
ferentiating between signature and forgery types. However, to prove dual-oracle
invariance, we rely on the fact that the scheme has the basic structure of a one-
time signature scheme embedded in it, in addition to the quadratic mechanism
to prevent an attacker from forming new signatures by taking combinations of
received signatures. We capture the security resulting from this combination of
structures through a static assumption for our dual-oracle invariance proof, and
we show that this assumption holds in the generic group model. Though we do
employ the generic group model as a check on our static assumptions, we believe
that our proof provides valuable intuition into the security of the scheme that is
not gleaned from a proof based on an interactive assumption or given solely in
the generic group model. Also, checking the security of a static assumption in
the generic group model is much easier (and less error-prone) than checking the
security of an interactive assumption or scheme. We believe that the techniques
and insights provided by our proof are an important step toward finding a prime
order variant of the scheme that is secure under more standard assumptions,
such as the decisional linear assumption.

In the full version, we provide one more application: a signature scheme us-
ing the private key structure in the Lewko-Waters IBE system [41]. The LW
system itself can be viewed as a composite order extension of the Boneh-Boyen
selectively secure IBE scheme [11], although the structure of the proofs of these
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systems are very different (LW achieves adaptive security). For this reason, we
call these “BB-derived” signatures. While the existing LW IBE system can be
transformed into a signature scheme using Naor’s 2 general transformation, our
scheme checks the signature “directly” without going through an IBE encryp-
tion. The resulting signature has a constant number of elements in the public
key and signatures consist of two group elements.

Further Directions. While we have focused here on applying our techniques for
core short signatures, we envision that dual form signatures will be a framework
for proving security of many different signature systems that have to this point
been difficult to analyze under static assumption Some examples include em-
bed additional structure, such as Attribute-Based signatures [45] and Quoteable
signatures [3]. Attribute-based signatures allow a signer to sign a message with
a predicate satisfied by his attributes, without revealing any additional infor-
mation about his attribute set. Our framework could potentially be applied to
obtain stronger security proofs for ABS schemes, such as the schemes of [45]
proved only in the generic group model. Quoteable signatures enable derivation
of signatures from each other under certain conditions, and current constructions
are proved only selectively secure [3]. Another future target is signatures that
“natively” sign group elements [1].

The primary goal of our work is providing techniques for realizing security
under static assumptions, and we leverage composite order groups as a con-
venient setting for this. A natural future direction is to complement our work
by discovering prime order analogs of our techniques. Many previous systems
were originally constructed in composite order groups and later transferred into
prime order groups [16,34,18,33,19,47,35,38,37,28,29,40,46]. The general tech-
niques presented in [28,39] do not seem directly applicable here, but we empha-
size that our dual form framework is not tied to composite order groups and
could also be used in the prime order setting. Discussion of additional related
works can be found in the full version.

2 Dual Form Signatures

We now define dual form signatures and their security properties. We then show
that creating a secure dual form signature system naturally yields an existentially
unforgeable signature scheme. We emphasize that the purpose of the dual form
signature framework is to provide a template for creating security proofs from
static assumptions, but the techniques employed to prove the required properties
can be tailored to the structure of the particular scheme.

Definition. We define a dual form signature system to have the following algo-
rithms:

KeyGen(λ): Given a security parameter λ, generate a public key, VK, and a
private key, SK.

2 Naor’s observation was noted in [14].
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SignA(SK,M): Given a message, M , and the secret key, output a signature, σ.
SignB(SK,M): Given a message, M , and the secret key, output a signature, σ.
Verify(VK,M, σ): Given a message, the public key, and a signature, output

‘true’ or ‘false’.

We note that a dual form signature scheme is identical to a usual signature
scheme, except that it has two different signing algorithms. While only one sign-
ing algorithm will be used in the resulting existentially unforgeable scheme,
having two different signing algorithms will be useful in our proof of security.

Forgery Classes. In addition to having two signature algorithms, the dual form
signature framework also considers two disjoint classes of forgeries. Whether
or not a signature verifies depends on the message that it signs as well as the
verification key. For a fixed verification key, we consider the set of pairs, S ×M,
over the message space, M, and the signature space, S. Consider the subset of
these pairs for which the Verify algorithm outputs ‘true’: we will denote this
set as V . 3 We let VI and VII denote two disjoint subsets of V , and we refer to
signatures from these sets as Type I and Type II forgeries, respectively. In our
applications, we will have the property V = VI ∪VII in addition to VI ∩VII = ∅,
but only the latter property is necessary.

We will use these classes to specify two different types of forgeries received
from an adversary in our proof of security. In general, these classes are not
the same as the output ranges of our two signing algorithms. However, Type I
forgeries will be related to signatures output by the SignA algorithm and Type
II forgeries will be related to signatures output by the SignB algorithm. The
precise relationships between the forgery types and the signing algorithms are
explicitly defined by the following set of security properties for the dual form
system.

Security Properties. We define the following three security properties for a dual
form signature scheme. We consider an attacker A who is initially given the
verification key VK produced by running the key generation algorithm. The
value SK is also produced, and not given to A.

A-I Matching: Let OA be an oracle for the algorithm SignA. More precisely,
this oracle takes a message as input, and produces a signature that is identi-
cally distributed to an output of the SignA algorithm (for the SK produced
from the key generation). We say that a dual form signature is A-I matching
if for all probabilistic polynomial-time (PPT) algorithms, A, there exists a
negligible function, negl(λ), in the security parameter λ such that:

Pr[AOA(VK) /∈ VI ] = negl(λ).

This property guarantees that if an attacker is only given oracle access to
SignA, then it is hard to create anything but a Type I forgery.

3 Here we will assume that the Verify algorithm is deterministic. If we consider a
nondeterministic Verify algorithm, we could simply take the subset of ordered pairs
that are accepted by Verify with non-negligible probability.
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B-II Matching: Let OB be an oracle for the algorithm SignB (which takes in
a message and outputs a signature that is identically distributed an output
of the SignB algorithm). We say that a dual form signature is B-II matching
if for all PPT algorithms, A:

Pr[AOB (VK) /∈ VII ] = negl(λ).

This property guarantees that if an attacker is only given oracle access to
SignB, then it is hard to create anything but a Type II forgery.

Dual-Oracle Invariance (DOI): First we define the dual-oracle security
game.

1. The key generation algorithm is run, producing a verification key VK
and a secret key SK.

2. The adversary, A, is given the verification key VK and oracle access to
O0 = SignA(·) and O1 = SignB(·).

3. A outputs a challenge message, m.
4. A random bit, b← {0, 1}, is chosen, and then a signature σ ← Ob(m) is

computed and given to A. We call σ the challenge signature.
5. A continues to have oracle access to O0 and O1.
6. A outputs a forgery pair (m∗, σ∗), where A has not already received a

signature for m∗.

We say that a dual form signature scheme has dual-oracle invariance if, for all
PPT attackers A, there exists a negligible function, negl(λ), in the security
parameter λ such that

|Pr[(m∗, σ∗) ∈ VI |b = 1]− Pr[(m∗, σ∗) ∈ VI |b = 0]| = negl(λ).

We say that a dual form signature scheme is secure if it satisfies all three of these
security properties.

Secure Signature Scheme. Once we have developed a secure dual form signa-
ture system, (KeyGenDF , SignDF

A , SignDF
B ,VerifyDF ), this system immediately

implies a secure signature scheme. The secure scheme is constructed as follows:

Construction 1. KeyGen =KeyGenDF , Sign =SignDF
A , Verify =VerifyDF .

Our new secure signature scheme is identical to the dual form system except
that we have arbitrarily chosen to use SignA as our signing algorithm. We could
have equivalently elected to use SignB. (In which case, we would modify the
dual-oracle invariance property to be with respect to Type II forgeries instead
of Type I forgeries. Alternatively, we could strengthen the property to address
both forgery types.) Now we will prove that this signature scheme is secure.

In the full version, we prove (the argument is rather straightforward):

Theorem 1. If Π = (KeyGenDF , SignDF
A , SignDF

B ,VerifyDF ) is a secure dual
form signature scheme, then Construction 1= (KeyGenDF , SignDF

A ,VerifyDF )
is existentially unforgeable under an adaptive chosen message attack.
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3 Background on Composite Order Bilinear Groups

Composite order bilinear groups were first introduced in [16]. We define a group
generator G, an algorithm which takes a security parameter λ as input and
outputs a description of a bilinear group G. In our case, we will have G output
(N = p1p2p3,G,GT , e) where p1, p2, p3 are distinct primes, G and GT are cyclic
groups of order N = p1p2p3, and e : G2 → GT is a map such that:

1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(g
a, hb) = e(g, h)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT .

Computing e(g, h) is also commonly referred to as “pairing” g with h.
We assume that the group operations in G and GT as well as the bilinear

map e are computable in polynomial time with respect to λ, and that the group
descriptions of G and GT include generators of the respective cyclic groups.
We let Gp1 , Gp2 , and Gp3 denote the subgroups of order p1, p2, and p3 in G
respectively. We note that when hi ∈ Gpi and hj ∈ Gpj for i �= j, e(hi, hj) is the
identity element in GT . To see this, suppose we have h1 ∈ Gp1 and h2 ∈ Gp2 . Let
g denote a generator of G. Then, gp1p2 generates Gp3 , g

p1p3 generates Gp2 , and
gp2p3 generates Gp1 . Hence, for some α1, α2, h1 = (gp2p3)α1 and h2 = (gp1p3)α2 .
Then:

e(h1, h2) = e(gp2p3α1 , gp1p3α2) = e(gα1 , gp3α2)p1p2p3 = 1.

This orthogonality property of Gp1 ,Gp2 ,Gp3 is a useful feature of composite
order bilinear groups which we leverage in our constructions and proofs.

If we let g1, g2, g3 denote generators of the subgroups Gp1 , Gp2 , and Gp3

respectively, then every element h in G can be expressed as h = ga1g
b
2g

c
3 for some

a, b, c ∈ ZN . We refer to ga1 as the “Gp1 part” or “Gp1 component” of h. If we
say that an h has no Gp2 component, for example, we mean that b ≡ 0 mod p2.
Below, we will often use g to denote an element of Gp1 (as opposed to writing
g1).

The original Camenisch-Lysyanskaya scheme and BGOY identity-based se-
quential aggregate signature scheme both use prime order bilinear groups, i.e.
groups G and GT are each of prime order q with an efficiently computable bi-
linear map e : G2 → GT .

4 Camenisch-Lysyanskaya Signatures

Now we use the dual form framework to prove security of a signature scheme sim-
ilar to the one put forward by Camenisch and Lysyanskaya [24]. The Camenisch-
Lysyanskaya signature scheme was already shown to be secure under the LRSW
assumption. However, the scheme can be naturally adapted to our framework,
allowing us to prove security under static, non-interactive assumptions. Our re-
sult is not strictly comparable to the result under the LRSW assumption because
our signature scheme is not identical to the original. However, this is the first
proof of security for a scheme similar to the Camenisch-Lysyanskaya signature
scheme from static, non-interactive assumptions.
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Our signature scheme will use bilinear groups, G and GT , of composite order
N = p1p2p3, where p1, p2, and p3 are all distinct primes. Our construction is
identical to the original Camenisch-Lysyanskaya signature scheme in the Gp1

subgroup, but with additional components in the subgroups Gp2 and Gp3 . The
signatures produced by the SignA algorithm will have random components in
Gp3 and components in Gp2 which mirror the structure of the scheme in Gp1 .
The signatures produced by the SignB algorithm will have random components
in both Gp2 and Gp3 . Type I forgeries are those that are distributed exactly
like SignA signatures in the Gp2 subgroup, while Type II forgeries encompass all
other distributions.

To prove dual-oracle invariance, we develop a backdoor verification test that
the simulator can use to determine the type of the attacker’s forgery. We lever-
age the fact that the simulator will know the discrete logarithms of the public
parameters, which will allow it to strip off the components in Gp1 in the forgery
and check the distribution of the Gp2 components. This check will fail to de-
termine the type correctly only with negligible probability. In more detail, we
create a simulator which must solve a subgroup decision problem and ascertain
whether an element T is in Gp1p3 or in the full group G. It will use T to create
a challenge signature which is either distributed as an output of the SignA al-
gorithm or as an output of the SignB algorithm, depending on the nature of T .
It will be unable to determine the nature of this signature for itself because this
will fall into the negligible error space of its backdoor verification test. When the
simulator receives a forgery from the attacker, it will perform the backdoor ver-
ification test and correctly determine the type of the forgery, unless the attacker
manages to produce a forgery for which this test fails. This will occur only with
negligible probability, because the attacker will have only limited information
about the error space from the challenge signature, and it needs to forge on a
different message. This is possible because the public parameters are in Gp1 , and
so reveal no information about the error space of the backdoor test modulo p2.
We use a pairwise independent argument to show that the limited amount of
information the attacker can glean from the challenge signature on a message m
is insufficient for it to produce a forgery for a different message m∗ that causes
the backdoor test to err.

4.1 Our Dual Form Scheme

KeyGen(λ): The key generation algorithm chooses two groups, G = 〈g〉 and
GT , of order N = p1p2p3 (where p1, p2, and p3 are all distinct primes of
length λ) that have a non-degenerate, efficiently computable bilinear map,
e : G × G → GT . It then selects uniformly at random g ∈ Gp1 , g3 ∈ Gp3 ,
g2,3 ∈ Gp2p3 , and x, y, xe, ye ∈ ZN . It sets

SK = (x, y, xe, ye, g3, g2,3),

and
PK = (N,G, g,X = gx, Y = gy).
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SignA(SK,m): Given a secret key (x, y, xe, ye, g3, g2,3), a public key (N,G, g,X, Y ),
and a message m ∈ Z∗

N , the algorithm chooses a random r, r′ ∈ ZN , R2,3 ∈
Gp2p3 , and random R3, R

′
3, and R

′′
3 ∈ Gp3 , and outputs the signature

σ = (grRr′

2,3R3, (g
r)y(Rr′

2,3)
yeR′

3, (g
r)x+mxy(Rr′

2,3)
xe+mxeyeR′′

3 ).

Note that the random elements of Gp3 can be obtained by raising g3 to
random exponents modulo N . Likewise, the random elements of Gp2p3 can
be obtained by raising g2,3 to random exponents modulo N . The random
exponents modulo N will be uncorrelated modulo p2 and modulo p3 by the
Chinese Remainder Theorem.

SignB(SK,m): Given a secret key (x, y, xe, ye, g3, g2,3), a public key (N,G, g,X, Y ),
and a messagem ∈ Z∗

N , the algorithm chooses a random r ∈ ZN and random
R2,3, R

′
2,3, and R

′′
2,3 ∈ Gp2p3 , and outputs the signature

σ = (grR2,3, (g
r)yR′

2,3, (g
r)x+mxyR′′

2,3).

The random elements can be generated in the same way as in SignA.

Verify(VK,m, σ): Given a public key pk = (N,G, g,X, Y ), messagem �= 0, and
a signature σ = (σ1, σ2, σ3), the verification algorithm checks that:

e(σ1, g) �= 1

(which ensures that σ1 �∈ Gp2p3), and

e(σ1, Y ) = e(g, σ2) and e(X, σ1) · e(X, σ2)m = e(g, σ3).

As in the original CL scheme, messages must be chosen from Z∗
N , so that m �= 0.

If we allow m = 0, then an adversary can easily forge a valid signature using the
public key elements (g, Y,X). Also like the original scheme, the Verify algorithm
will not accept a signature where all the elements are the identity in Gp1 . It
suffices to check that the first element is not the identity in Gp1 and that the
other verification equations are satisfied. If σ1 is the identity in Gp1 , then it will
be an element of the subgroup Gp2p3 . To determine if σ1 ∈ Gp2p3 , we pair σ1
with the public key element g under the bilinear map and verify that it does
not equal the identity in GT . Without this check, a signature where all three
elements are members of the subgroup Gp2p3 would be valid for any message
with the randomness r′ = 0 mod p1.

Notice, until SignA is called, no information about the exponents xe and
ye is given out. Once SignA is called, these exponents behave exactly like the
secret key exponents x and y, except in the Gp2 subgroup. These exponents
will be used to verify that a forgery is of Type I. The additional randomization
with the Gp3 elements guarantees that there will be no correlation in the Gp3

subgroup between the three signature elements. Unlike the signatures given out
by the SignA algorithm, signatures from the SignB algorithm will be completely
randomized in the Gp2 subgroup as well.
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Forgery Classes. We will divide verifiable forgeries according to their correlation
in the Gp2 subgroup, similar to the way we have defined the signatures from the
SignA and SignB algorithms. We let z be an exponent in ZN . By the Chinese
Remainder Theorem, we can represent z as an ordered tuple (z1, z2, z3) ∈ Zp1 ×
Zp2 × Zp3 , where z1 = z mod p1, z2 = z mod p2, and z3 = z mod p3. Letting
(z1, z2, z3) = (0 mod p1, 1 mod p2, 0 mod p3) and g2 be a generator of Gp2 , we
define the forgery classes as follows: Type I forgeries are of the form VI =

{(m∗, σ∗) ∈ V|(σ∗
1)

z = gr
′

2 , (σ
∗
2)

z = gr
′ye

2 , (σ∗
3)

z = g
r′(xe+m∗xeye)
2 for some r′},

while Type II are of the formVII = {(m∗, σ∗) ∈ V|(m∗, σ∗) �∈ VI}.
Essentially, Type I forgeries will be correlated in the Gp2 subgroup exactly

in the same way as they are correlated in the Gp1 subgroup, with the expo-
nents xe and ye playing the same role in the Gp2 subgroup that x and y play
in the Gp1 subgroup. Type I forgeries will align with the SignA algorithm, to
guarantee that our scheme is A-I matching. Type II forgeries include any other
verifiable signatures, i.e. those not correctly correlated in the Gp2 subgroup. Un-
like the signatures produced by the SignB algorithm, Type II forgeries need not
be completely random in the Gp2 subgroup. However, we will show in our proof
of security that this is enough to guarantee B-II matching.

4.2 Complexity Assumptions

We now state our complexity assumptions. We let G and GT denote two cyclic
groups of order N = p1p2p3, where p1, p2, and p3 are distinct primes, and
e : G2 → GT is an efficient, non-degenerate bilinear map. In addition, we will
denote the subgroup of G of order p1p2 as Gp1p2 , for example.

The first two of these assumptions were introduced in [41], where it is proven
that these assumptions hold in the generic group model, assuming it is hard to
find a non-trivial factor of the group order, N . These are specific instances of the
General Subgroup Decision Assumption described in [8]. The third assumption
is new, and in the full version we prove that it also holds in the generic group
model, assuming it is hard to find a non-trivial factor of the group order, N .

Assumption 4.1. Given a group generator G, we define the following distribu-
tion:

(N = p1p2p3,G,GT , e)
R← G,

g,X1
R← Gp1 , X2

R← Gp2 , X3
R← Gp3

D = (N,G,GT , e, g,X1X2, X3)

T1
R← Gp1p2 , T2

R← Gp1

We define the advantage of an algorithm, A, in breaking Assumption 4.1 to be:

Adv
4.1
A (λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 1. We say that G satisfies Assumption 4.1 if for any polynomial

time algorithm, A, Adv
4.1
A (λ) is a negligible function of λ.
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Assumption 4.2. Given a group generator G, we define the following distribu-
tion:

(N = p1p2p3,G,GT , e)
R← G,

g,X1
R← Gp1 , X2, Y2

R← Gp2 , X3, Y3
R← Gp3 ,

D = (N,G,GT , e, g,X1X2, X3, Y2Y3),

T1
R← G, T2

R← Gp1p3

We define the advantage of an algorithm, A, in breaking Assumption 4.2 to be:

Adv
4.2
A (λ) := |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|.

Definition 2. We say that G satisfies Assumption 4.2 if for any polynomial

time algorithm, A, Adv
4.2
A (λ) is a negligible function of λ.

Assumption 4.3. Given a group generator G, we define the following distribu-
tion:

(N = p1p2p3,G,GT , e)
R← G,

a, r
R← ZN , g

R← Gp1 , X2, X
′
2, X

′′
2 , Z2

R← Gp2 , X3
R← Gp3 ,

D = (N,G,GT , e, g, g
a, grX2, g

raX ′
2, g

ra2

X ′′
2 , Z2, X3),

We define the advantage of an algorithm, A, in breaking Assumption 4.3 to be:

Adv
4.3
A (λ) := Pr[A(D) = (gr

′a2

R3, g
r′R′

3) and r
′ �= 0 mod p1],

where R3 and R′
3 are any values in the subgroup Gp3 .

Definition 3. We say that G satisfies Assumption 4.3 if for any polynomial

time algorithm, A, Adv
4.3
A (λ) is a negligible function of λ.

Proof of Security. In the full version, we prove that our signature scheme is
secure under these assumptions by proving that it satisfies the three properties
of a secure dual form signature scheme.

5 BGOY Signatures

Here we give a public key variant of the BGOY signatures and prove existential
unforgeability using our dual form framework. In the full version, we show how
this base scheme can be built into an identity-based sequential aggregate signa-
ture scheme and reduce the security of the aggregate scheme to the security of
this base scheme, in the random oracle model. We will also employ the random
oracle model in our proof for the base scheme, although this use of the random
oracle can be removed (see below for discussion of this).

Our techniques here are quite different than those employed for the BB-
derived and CL signature variants, and they reflect the different structure of
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this scheme. There are some basic commonalities, however: we again employ
a bilinear group of order N = p1p2p3, and the main structure of the scheme
occurs in the Gp1 subgroup. The signatures produced by the SignA algorithm
contain group elements which are only in Gp1 , while the signatures produced by
the SignB algorithm additionally have components in Gp3 . These components
in Gp3 are not fully randomized each time and do not occur on all signature
elements: they occur only on three signature elements, and the ratio between
two of their exponents is the same for all SignB signatures. Our forgery types
will be defined in terms of the subgroups present on two of the elements in the
forgery.

We design our proof to reflect the structure of the scheme, which essentially
combines a one-time signature with a mechanism to prevent an attacker from
producing new signatures from linear combinations of old signatures in the ex-
ponent. In proving dual-oracle invariance, we leverage these structures by first
changing the challenge signature from an output of SignA to a signature that
has components in Gp2 , and then changing it to an output of SignB. It is cru-
cial to note that as we proceed through this intermediary step, the challenge
signature is the only signature which has any non-zero components in Gp2 . This
allows us to argue that as we make this transition, an attacker cannot change
from producing Type I forgeries (which do not have Gp2 components on certain
elements) to producing forgeries which do have non-zero Gp2 components in the
relevant locations. Intuitively, such an attacker would violate the combination
of one-time security and inability to combine signatures, since the attacker has
only received one signature with Gp2 elements, and it cannot combine this with
any other signatures to produce a forgery on a new message. These aspects seem
hard to capture when working directly in a prime order rather than compos-
ite order group. (We note, however, that the one-time aspect was also implicit
in the security proof of the Gentry-Ramzan scheme [30] on which the BGOY
scheme was based; however, differences in the schemes prevent capturing it in
the same way for the latter.) The techniques here are also quite different from
those used in our proofs for CL and BB-derived signatures: here there is no
backdoor verification test or pairwise-independence argument.

5.1 The Dual Form Scheme

KeyGen(λ) → VK, SK The key generation algorithm chooses a bilinear group
G of order N = p1p2p3. It chooses two random elements g, k ∈ Gp1 , random
elements g3, g

d
3 ∈ Gp3 , and random exponents a1, a2, b1, b2, α1, α2, β1, β2 ∈ ZN .

It also chooses a function H : {0, 1}∗ → ZN which will be modeled as a random
oracle. It sets the verification key as

VK := {N,H,G, g, k, ga1, ga2 , gb1 , gb2 , gα1 , gα2 , gβ1 , gβ2}

and the secret key as

SK := {N,H,G, g, k, ga1a2 , gb1b2 , gα1α2 , gβ1β2 , g3, g
d
3}.
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SignA(m, SK) → σ The SignA algorithm takes in a message m ∈ {0, 1}∗. It
chooses two random exponents r1, r2 ∈ ZN , and computes:

σ1 := ga1a2+b1b2H(m)gr1r2 , σ2 := gr1 , σ3 := gr2 ,

σ4 := kr2 , σ5 := gα1α2+β1β2H(m)kr1r2 .

It outputs the signature σ := (σ1, σ2, σ3, σ4, σ5).

SignB(m, SK) → σ The SignB algorithm takes in a message m ∈ {0, 1}∗. It
chooses two random exponents r1, r2, x, y ∈ ZN , and computes:

σ1 := ga1a2+b1b2H(m)gr1r2gx3 , σ2 := gr1gy3 , σ3 := gr2 ,

σ4 := kr2 , σ5 := gα1α2+β1β2H(m)kr1r2(gd3)
x.

It outputs the signature σ := (σ1, σ2, σ3, σ4, σ5).

Verify(m,σ,VK)→ {True, False} The verification algorithm first checks that:

e(σ1, g) = e(ga1 , ga2)e(gb1 , gb2)H(m)e(σ2, σ3).

It also checks that:

e(σ5, g) = e(gα1 , gα2)e(gβ1 , gβ2)H(m)e(σ2, σ4).

Finally, it checks that:
e(g, σ4) = e(k, σ3).

If all of these checks pass, it outputs “True.” Otherwise, it outputs “False.”
We note that the use of the random oracle H to hash messages in {0, 1}∗ to

elements in ZN in this public key scheme that forms the base of our identity-
based sequential aggregate signatures is not necessary, and can be replaced in
the following way. Instead of using ga1a2+H(m)b1b2 , we can assume our mes-
sages are n-bit strings (denoted m1m2 . . .mn) and use ga0b0

∏n
i=1 g

miaibi . Here,
ga0 , . . . , gan , gb0 , . . . , gbn will be in the public verification key. In the proof, in-
stead of guessing which random oracle query corresponds to the challenge mes-
sage, the simulator will guess a bit which differs between the challenge message
and the message that will be used in the forgery. This guess will be correct with
non-negligible probability. However, the use of the random oracle model to prove
security for the full identity-based sequential aggregate scheme is still required.
Removing the random oracle model altogether remains an open problem.

Forgery Classes. We will divide the forgery types based on whether they have
any Gp2 or Gp3 components on σ1 or σ5. We let z2 ∈ ZN denote the exponent
represented by the tuple (0 mod p1, 1 mod p2, 0 mod p3), and we let z3 ∈ ZN

denote the exponent represented by the tuple (0 mod p1, 0 mod p2, 1 mod p3).
Then we can define the forgery classes as follows. Type I forgeries are of the
form VI = {(m∗, σ∗) ∈ V|(σ∗

1)
z2 = 1, (σ∗

1)
z3 = 1 and (σ∗

5)
z2 = 1, (σ∗

5)
z3 = 1},

while Type II are of of the form VII = {(m∗, σ∗) ∈ V|(σ∗
1)

z2 �= 1 or (σ∗
5)

z2 �=
1 or (σ∗

1)
z3 �= 1 or (σ∗

5)
z3 �= 1}.
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In other words, Type I forgeries have σ∗
1 , σ

∗
5 ∈ Gp1 , while Type II forgeries

have a non-zero component in Gp3 or Gp2 on at least one of these terms. We
note that these types are disjoint and exhaustive.

We state our complexity assumptions and prove security of this scheme in the
full version. Some the assumptions we employ were previously used in [41,42].
Those that are new are justified in the generic group model.
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Abstract. In this paper, we discuss solving the DLP over GF (36·97)
by using the function field sieve (FFS) for breaking paring-based cryp-
tosystems using the ηT pairing over GF (397). The extension degree 97
has been intensively used in benchmarking tests for the implementation
of the ηT pairing, and the order (923-bit) of GF (36·97) is substantially
larger than the previous world record (676-bit) of solving the DLP by
using the FFS. We implemented the FFS for the medium prime case,
and proposed several improvements of the FFS. Finally, we succeeded in
solving the DLP over GF (36·97). The entire computational time requires
about 148.2 days using 252 CPU cores.

Keywords: pairing-based cryptosystems, ηT pairing, discrete logarithm
problems, function filed sieve.

1 Introduction

After the advent of the tripartite Diffie-Hellman (DH) key exchange scheme [21]
and ID-based encryption using pairing [11], plenty of attractive pairing-based
cryptosystems have been proposed, for example, short signature [13], keyword
searchable encryption [10], efficient broadcast encryption [12], attribute-based
encryption [30], and functional encryption [28]. Pairing-based cryptosystems
have become a major research topic in cryptography.

Pairing-based cryptosystems are constructed on the groups G1, G
′
1 and G2

of the same order with a bilinear pairing G1 × G′
1 → G2. The security of

pairing-based cryptosystems is based on the difficulty in solving several number-
theoretic problems such as the computational/decisional bilinear DH problem
(CBDH/DBDH), strong DH problem (SDH), decisional linear problem (DLIN),
and symmetric external DH problem (SXDH). However, the most important
number-theoretic problem in pairing-based cryptosystems is the discrete loga-
rithm problem (DLP) on G1, G

′
1, and G2. All the other number-theoretic prob-

lems above are no longer intractable once the DLP on G1, G
′
1, or G2 is broken.

Therefore, it is important to investigate the difficulty in solving the DLP.
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Table 1. Summary of time data for solving DLP over GF (36·97)

phase method time machine environment

collecting relations lattice sieve 53.1 days 212 CPU cores
linear algebra parallel Lanczos 80.1 days 252 CPU cores

individual logarithm
rationalization and

15.0 days 168 CPU coresspecial-Q descent

total 148.2 days 252 CPU cores

One of the most efficient algorithms for implementing the pairing is the ηT pair-
ing [5] defined over a supersingular elliptic curve E on the finite field GF (3n),
where n is a positive integer. Since the embedding degree of E is 6, the ηT pair-
ing can reduce a DLP over E on GF (3n), which is called an ECDLP, to a DLP
overGF (36n). Joux proposed the (probably) first cryptographic scheme [21] that
uses the pairing over E. Boneh et al. then applied the pairing over E to the short
signature scheme [13], where a point (x, y) on E for extension degree n = 97 can
be represented as a signature value, e.g., x = KrpIcV0O9CJ8iyBS8MyVkNrMyE. At
CRYPTO 2002, Barreto et al. presented algorithms for efficiently computing Tate
pairing over E [6]. Many high-speed implementations of pairing over E have sub-
sequently been proposed [3, 7–9, 17, 18, 25]. For many of these implementations,
benchmark tests using the extension degree n = 97 have been conducted. There-
fore, we focus on the DLP over finite fieldGF (36·97) in this paper. The cardinality
of the subgroup of the supersingular elliptic curve is 151 bits, and that ofGF (36·97)
is 923 bits. The size of our target DLP is 247 bits larger than the previous world
record of solving the DLP over GF (36·71), whose cardinality is 676 bits [20]. The
current world record for solving an ECDLP is the 112-bit ECDLP [14]. Pollard’s
ρ method is used for solving the 112-bit ECDLP, and has not reached the ability
for solving the 151-bit ECDLP over the subgroup of E.

In this paper, we analyze the difficulty in solving the DLP overGF (36·97) by us-
ing the function field sieve (FFS), which is known as the asymptotically fastest al-
gorithm [1, 2]. Since the FFS proposed by Joux and Lercier (JL06-FFS) [24] is suit-
able for solving the DLP over a finite field whose characteristic is small, we use the
JL06-FFS and propose several efficient techniques for increasing its speed. Note
that the FFS generally consists of four phases: polynomial selection, collecting re-
lations, linear algebra, and individual logarithm, and the time-consuming phases
are collecting relations and linear algebra. For the collecting relations phase, we
applied several techniques; lattice sieve for the JL06-FFS, lattice sieve with sin-
gle instruction multiple data (SIMD), and optimization for our parameters. These
techniques enable the sieving program to run about 6 times faster. In the linear al-
gebra phase, we applied careful treatments of singleton-clique and merging [15] to
the Galois action originating from extension degree 6 ofGF (36·97), with which the
size of the matrix used for the Lanczos method is reduced to approximately 30%.
By implementing the JL06-FFS with our improvements, we succeeded in solving
the DLP over GF (36·97) by using 252 CPU cores (Core2 quad, Xeon, etc) for the
target problem discussed in Section 3.1. As shown in Table 1, the computations
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required 53.1 days for the collecting relations phase, 80.1 days for the linear alge-
bra phase, and 15.0 days for the individual logarithm phase. Thus, a total of 148.2
days were required to solve the DLP overGF (36·97) by using 252 CPU cores. Our
computational results contribute to the secure use of pairing-based cryptosystems
with the ηT pairing.

2 Pairing-Based Cryptosystems and Discrete Logarithm
Problem (DLP)

In this section, we briefly explain the security of pairing-based cryptosystems
and give a general overview of the function field sieve (FFS). We also mention
its parameters such as the smoothness bound B.

2.1 Pairing-Based Cryptosystems and DLP

Many efficient cryptographic protocols using a bilinear pairing have been pro-
posed (for example [10–13, 21, 28]), and high-speed implementations for the ηT
pairing have been reported (for example [3, 6–9, 17, 18, 25]). We discuss the
security of pairing-based cryptosystems with the ηT paring over GF (3n) for an
integer n. The security of pairing-based cryptosystems with the ηT paring de-
pends on the difficulty in solving the DLP over the supersingular elliptic curves.
Additionally, MOV reduction [27] reduces this problem to a DLP over GF (36n)∗

since the embedding degree of the ηT pairing is 6.
In particular, the ηT pairing is a bilinear map such that ηT : G1 ×G1 → G2,

where G1 is an additive subgroup of a supersingular elliptic curve over GF (3n),
G2 is a cyclic subgroup of GF (36n)∗, and the cardinalities of G1, G2 are the same
prime number P . The security of pairing-based cryptosystems with the ηT pair-
ing depends on the difficulty of not only an ECDLP over G1 but also a DLP over
G2 by MOV reduction. To explain this fact, we take ID-based encryption con-
structed on pairing-based cryptosystems as an example. The ID-based encryp-
tion has a master key skey ∈ ZP . Each user ID is deterministically transformed
into a point QID ∈ G1, and the secret key SID is defined by [skey ]QID. Therefore,
solving the ECDLP over G1, namely SID = [skey ]QID, we obtain the master key
skey = logQID

SID. Additionally, for an arbitrary point R ∈ G1, we compute
ηT (SID ,R), ηT (QID,R) ∈ G2, and then have ηT (SID,R) = ηT ([skey ]QID,R) =
ηT (QID,R)skey ∈ G2. This implies that skey = logηT (QID ,R) ηT (SID,R) is also
available by solving the DLP over G2. In this paper, we discuss the DLP over a
subgroup of GF (36n)∗.

2.2 General Overview of FFS

The FFS is the asymptotically fastest algorithm for solving a DLP over finite
fields of small characteristics. Adleman proposed the first FFS in 1994 [1]. After
that, several variants of the FFS have been proposed; Adleman and Huang im-
proved the FFS [2], and Joux and Lercier proposed two more practical FFS’s,
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JL02-FFS [23] and JL06-FFS [24]. The details of JL06-FFS are explained in
Sections 3.2.

In this section, we give a general overview of an FFS that consists of four
phases: polynomial selection, collecting relations, linear algebra, and individ-
ual logarithm. In the overview, we aim at computing logg T where T ∈ 〈g〉 ⊂
GF (36n)∗.

Polynomial Selection Phase: We select κ from κ = 1, 2, 3, 6 for the coefficient
field of GF (3κ)[x], and a bivariate polynomial H(x, y) ∈ GF (3κ)[x, y] such that
H satisfies the eight conditions proposed by Adleman [1] and degyH = dH for
a given parameter value dH . We compute a random polynomial m ∈ GF (3κ)[x]
of degree dm and a monic irreducible polynomial f ∈ GF (3κ)[x] such that

H(x,m) ≡ 0 (mod f), deg f = 6n/κ. (1)

We then have GF (36n) ∼= GF (3κ)[x]/(f). Moreover, there is a surjective homo-
morphism

ξ :

{
GF (3κ)[x, y]/(H) → GF (36n) ∼= GF (3κ)[x]/(f)

y �→ m.

We select a positive integer B as a smoothness bound, and define a rational
factor base FR(B) and an algebraic factor base FA(B) as follows.

FR(B) = {p ∈ GF (3κ)[x] | deg(p) ≤ B, p is monic irreducible}, (2)

FA(B) = {〈p, y − t〉 ∈ Div(GF (3κ)[x, y]/(H)) |
p ∈ FR(B), H(x, t) ≡ 0 mod p}, (3)

where Div(GF (3κ)[x, y]/(H)) is the divisor group of GF (3κ)[x, y]/(H) and
〈p, y− t〉 is a divisor generated by p and y− t. Note that FR(0) = FA(0) = {∅}.
We simply call the set FR(B) ∪ FA(B) a factor base and the set FR(k)\FR(k −
1) ∪ FA(k)\FA(k − 1) a factor base of degree k for k = 1, 2, . . . , B.

Collecting Relations Phase: We select positive integers R,S and collect a
sufficient amount of pairs (r, s) ∈ (GF (3κ)[x])2 such that

deg r ≤ R, deg s ≤ S, gcd(r, s) = 1, (4)

rm+ s =
∏

pi∈FR(B)

pai

i , (5)

〈ry + s〉 =
∑

〈pj ,y−tj〉∈FA(B)

bj〈pj , y − tj〉, (6)

for some non-negative integers ai, bj by using a sieving algorithm such as the
lattice sieve discussed in Section 4.1. To efficiently compute bj in (6), we use the
following equivalent property instead of (6):

(−r)dHH(x, −s/r) =
∏

〈pj,y−tj〉∈FA(B)

p
bj
j . (7)
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The (r, s) satisfying (4), (5), and (7) is called a B-smooth pair. Let h be the class
number of the quotient field of GF (3κ)(x)[y]/(H) and assume that h is coprime
to (36n − 1)/(3κ − 1). Then the following congruent holds:∑

pi∈FR(B)

ai logg pi ≡
∑

〈pj ,y−tj〉∈FA(B)

bj logg sj (mod (36n − 1)/(3κ − 1)), (8)

where sj = ξ(tj)
1/h, 〈tj〉 = h〈pj, y − tj〉. We call the congruent (8) “relation”

in this paper. Moreover, free relation [20] provides additional relations without
computation with a sieving algorithm.

Linear Algebra Phase: We generate a system of linear equations described as
a large matrix from those collected relations and reduce the rank of the matrix by
filtering [15]. The reduced system of linear equations is solved using the parallel
Lanczos method [4, 20] or other methods, and the discrete logarithms of elements
in the factor base are obtained:

logg p1, ..., logg p#FR(B), logg s1, ..., logg s#FA(B).

Individual Logarithm Phase: Note that our goal is to compute logg T . There-
fore, we find integers ai, bj using the special-Q descent [24] such that,

logg T ≡
∑

pi∈FR(B)

ai logg pi+
∑

〈pj,y−tj〉∈FA(B)

bj logg sj (mod (36n−1)/(3κ−1)).

The computational time for the individual logarithm phase is smaller than those
for the collecting relations and linear algebra phases.

3 Target Problem for n = 97 and Setting of Parameters
for FFS

We discuss solving the DLP over a subgroup of GF (36·97)∗, where the cardinality
of the subgroup is 151 bits. To estimate the time complexity of solving such
a DLP, we unintentionally set a target problem determined from the circular
constant π and natural logarithm e. The details are explained in Section 3.1.
To solve the target problem effectively, we select the parameter values of the
FFS and estimate important numbers, e.g., the number of elements in the factor
base, for it. The details are given in Section 3.2.

3.1 Target Problem

For pairing-based cryptosystems, many high-speed implementations of the ηT
pairing over supersingular elliptic curves on GF (3n) have been reported [3, 6–9,
17, 18, 25], and many benchmark tests using the ηT pairing have been conducted
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for GF (397). In this paper, we deal with a supersingular elliptic curve defined
by

E := {(x, y) ∈ GF (397)2 : y2 = x3 − x+ 1} ∪ {O},

where O is the point at infinity. The order of the E is 397 + 349 + 1 = 7P151

where P151 is a 151-bit prime number as follows:

P151 = 2726865189058261010774960798134976187171462721.

Next, let G1 be the subgroup of E of order P151 and let G2 be the subgroup
of GF (36·97)∗ of order P151. Note that, since orders of G1 and G2 are prime
numbers, every element of G1\{O} and G2\{1} is a generator of G1 and G2,
respectively. The ηT pairing for n = 97 is a map from G1 ×G1 to G2.

Our goal is to solve the ECDLP in G1. To set our target problem uninten-
tionally, we select two elements Qπ,Qe in G1, which correspond to the circular
constant π and natural logarithm e, respectively. We explain how we select Qπ

and Qe as follows. First, we describe GF (397) as GF (3)[x]/(x97 + x16 + 2),
where the irreducible polynomial x97 + x16 + 2 ∈ GF (3)[x] is well used for the
fast implementation of field operations. An element in GF (397) is represented by∑96

i=0 dix
i, where di ∈ GF (3) = {0, 1, 2}. To transform π and e to an element in

GF (397) respectively, we define a bijective map φ :
∑96

i=0 dix
i �→

∑96
i=0 di3

i ∈ Z.
We then transform π and e to the 3-adic integer of 97 digits by �π · 395� and
�e · 396�, respectively.

From these values, we define Qπ = (xπ , yπ) and Qe = (xe, ye) ∈ G1 as follows.
We first find the non-negative smallest 3-adic integers cπ and ce such that φ−1(�π·
395�+ cπ) and φ

−1(�e · 396�+ ce) become x-coordinates of the elements Qπ and
Qe in the subgroup G1 on the E. In fact we can set xπ = φ−1(�π · 395�+ (11)3)
and xe = φ−1(�e · 396� + (120)3). There are two points in G1\{O} of the same
x-coordinate. We then set the corresponding y-coordinate by computing yπ =
(x3π − xπ + 1)(3

97+1)/4 and ye = (x3e − xe + 1)(3
97+1)/4 in GF (397), respectively.

Again, our goal is to solve the ECDLP in G1, i.e., for given Qπ, Qe ∈ G1 we
try to find integer s such that Qπ = [s]Qe. On the other hand, the ηT pairing
enables us to reduce the ECDLP in G1 to the DLP over G2 by the relationship
ηT (Qπ ,Qπ) = ηT (Qπ,Qe)

s. Therefore, we can find s by computing the discrete
logarithm

s = logηT (Qπ ,Qe) ηT (Qπ,Qπ) = logg ηT (Qπ,Qπ)/ logg ηT (Qπ ,Qe) mod P151,

for a generator g of G2.

3.2 Parameter Settings for FFS

In this section, we explain the parameter setting used for our implementations
of the FFS. Hayashi et al. [20] reported that, when n ≤ 509, the JL06-FFS [24]
is more efficient for solving the DLP overGF (36n) than the JL02-FFS [23]. Thus,
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we use the JL06-FFS for our computation. In the JL06-FFS, the condition that
“r is monic” is introduced into the collecting relations phase in order to compute
efficiently. For the remainder of this paper, the FFS refers to the JL06-FFS.

To solve our DLP over GF (36·97), we have to select several parameter values
of the FFS, such that its computational time is small enough for a fixed extension
degree n. The parameter values for n = 97 are listed in [31, Table 3], and we use
those parameter values for our computation.

We select the parameter κ ∈ {1, 2, 3, 6} as follows. GF (36·97) is described
as GF (3κ)[x]/(f), where f ∈ GF (3κ)[x] is an irreducible polynomial of degree
6 ·97/κ. The appropriate value of κ is given in [31, Table 3], i.e., κ = 6. However,
we select κ = 3 for the following reasons. In the linear algebra phase, filtering [15]
is performed to reduce the size of the matrix. Then it is required that all elements
in the factor base correspond to the memory addresses of the PC for efficient
computation. The number of elements in the factor base for κ = 6 is much larger
than that for κ = 3, so κ = 3 is advantageous on this point. Additionally, [31,
Table3] shows that the computational cost of the FFS for κ = 3 is only about
twice as much as that for κ = 6. We conducted test runs for κ = 3, 6 in the
collecting relations phase, then noticed that our implementation for κ = 3 was
much faster than for κ = 6, so we set κ = 3.

Polynomial Selection Phase: We select the bivariate polynomial H(x, y) of
the form x + ydH for a given parameter dH of the FFS in the same manner as
[20]. Then we search an irreducible polynomial f ∈ GF (3κ)[x] and a polynomial
m ∈ GF (3κ)[x] which are satisfying the condition (1), by factoring H(x,m) for
a randomly picked polynomial m whose degree is dm. In fact, we randomly pick
up m from GF (3)[x], so that f is also in GF (3)[x] for use of the Galois action.
From [31, Table 3], we set dH and dm as 6 and 33, respectively.

Next, we select the smoothness bound B = 6 by using [31, Table 3] for (2)
and (3), i.e., a rational factor base FR(B) and an algebraic factor base FA(B).
#FR(B) is 67576068 and #FA(B) is 67572597, thus the number of elements of
factor base, i.e., #FR(B) + #FA(B), is 135148665.

Collecting Relations Phase: In the collecting relations phase, we use the
lattice sieve [29] and the free relation [20] and collect many relations (8); (r, s) ∈
(GF (3κ)[x])2 satisfying (4), (5), (7), where r is monic. The search range for the
lattice sieve depends on the maximum degrees R,S of r, s. We set R = S = 6
based on [31, Table 3]. The lattice sieve gives a certain amount of relations
for one special-Q, which is defined in Section 4.1. Therefore, we require a suf-
ficient number of special-Q’s so that the number of relations obtained in the
collecting relations phase is larger than that of all elements in the factor base.
The minimum sufficient number of special-Q’s is estimated by the following
process. We have to select special-Q’s from the subset FR(6)\FR(5), whose car-
dinality is 64566684. Let θmin be the minimum sufficient ratio of special-Q’s
over all elements in FR(6)\FR(5). For n = 97 and κ = 3, we can estimate
θmin = 0.01292 [31, Table 3]. Therefore, the number of special-Q’s must be
larger than �0.01292 · 64566684�= 834202. In our computation, we set 2500000
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as the number of special-Q’s to obtain more relations than we require since we
expect that these excess relations will help us reduce the size of the matrix during
filtering, especially in singleton-clique.

4 Implementation

In this section, we propose the following efficient implementation techniques;
the lattice sieve for the JL06-FFS and optimization for our parameters in the
collecting relations phase, the data structure and the parallel Lanczos method for
the Galois action in the linear algebra phase, for reducing the computational cost
of the FFS for solving the DLP over GF (36·97). Parameters (κ, dH , dm, B,R, S)
are fixed as (3, 6, 33, 6, 6, 6). The reasoning for this is explained in Section 3.2.

4.1 Collecting Relations Phase

In the collecting relations phase, we used the lattice sieve [29] in a similar fashion
to factoring a large integer [26] and solving discrete logarithm problems [22, 23].
We give an overview of our implementation of the lattice sieve in the following
paragraphs. More details are described in [19].

Lattice Sieve for JL06-FFS: Sieving with the lattice sieve is performed for
(r, s) ∈ (GF (33)[x])2 such that the formula (5) given in Section 2.2 is divisible
by an element Q chosen from a subset of the rational factor base FR(6)\FR(5)
(this Q is called a “special-Q”). Recall that deg r and deg s are not greater
than R = 6 and S = 6, respectively. Such (r, s) can be represented as (r, s) =
c(r1, s1)+d(r2, s2) for given reduced lattice bases (r1, s1), (r2, s2) ∈ (GF (33)[x])2

and any c, d ∈ GF (33)[x] such that deg(cr1 + dr2) ≤ 6, deg(cs1 + ds2) ≤ 6,
then sieving is done on the bounded c-d plane. After sieving, we conduct the
smoothness test [16] for “candidates” that are evaluated as B-smooth pairs with
high probability by using the lattice sieve.

A problem of applying the lattice sieve to the FFS is the condition “r is
monic” described in Section 3.2. Since r is represented as cr1+dr2, it is difficult
to efficiently keep r monic — it might require degree evaluations and branches.
Instead of choosing monic r, we introduce the condition r ≡ 1 mod x. To satisfy
this condition, we restrict r1 and r2 such that r1 ≡ 0 mod x and r2 ≡ 1 mod x.
Then sieving is performed on the bounded c-d plane with restriction d ≡ 1 mod x,
whose size is reduced to 1/27 compared with the original bounded c-d plane. This
sieving procedure with the restricted condition can be implemented without
extra costs such as additional degree evaluations and additional branches.

Lattice Sieve with SIMD: Since operations of GF (3) can be represented
using logical instructions [25], operations of GF (33)[x] can be performed using a
combination of logical and shift instructions. This means SIMD implementation
is appropriate for efficient computation of the lattice sieve. We represent GF (33)
as polynomial basis GF (3)[ω]/(ω3−ω− 1), and its element is represented using
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Fig. 1. Our improvement in collecting relations phase for first two weeks

6-bit (h1, �1, hω, �ω, hω2 , �ω2) ∈ GF (2)6 in our implementation. We then pack
16 elements of GF (33)[x] of degree at most 7 into 6 registers of 128 bits, and
treat 16 elements with SIMD. Note that the upper bound of the degree of our
SIMD data structure is for efficient access to each element in GF (33)[x]. On the
other hand, since we choose B,R, S as all 6, the upper bound of the degrees of
c, d, r1, s1, r2, s2 ∈ GF (33)[x] and p in the factor base, which are treated in the
lattice sieve, is also 6. Therefore, our SIMD structure can be stored elements
treated in the lattice sieve.

History of Our Optimizations: Figure 1 shows the process of our improve-
ments in the collecting relations phase for the first two weeks. We improved
our implementation of the lattice sieve four times during this period. We first
used large prime variation to omit sieving for the factor base of degree 6 and
implemented the lattice sieve for the FFS with SIMD implementation. We then
ran the program for the first four days (stage I in Fig. 1). At that point, the
estimated total number of days for the collecting relations phase was about 360
days. While the sieving program was running, we found that sieving for the
factor base of degree 5 requires heavier computation than sieving for the factor
bases of degree 1, 2, 3 and 4. Therefore, we improved sieving for the factor base
of degree 5; thus, our sieving program became over 3 times faster than before
(stage II in Fig. 1). Next, we optimized register usage for input values and omit-
ted wasteful computations (stage III in Fig. 1). Additionally, we omitted sieving
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for the factor base of degree 1 (stage IV in Fig. 1), since that computational time
was larger than that for the factor bases of degree 2, 3, 4, and 5. Moreover, we
improved our sieving program to use 128-bit registers more efficiently (stage V in
Fig. 1). Finally, our sieving program became about 6 times faster than the first
one (stage I in Fig. 1) and the estimated total number of days for the collecting
relations phase became about 53.1 days. In the next paragraph, we explain the
details of the improvement in stage II, which is the most effective and important
improvement in our implementation of the lattice sieve.

Details of Stage II: In the lattice sieve, the main computation of sieving
for given lattice bases (r1, s1), (r2, s2) ∈ (GF (33)[x])2 is as follows. For fixed
d ∈ GF (33)[x], whose degree is upper-bounded by a degree boundD, we compute
c0 ≡ −d(r1t+s1)−1(r2t+s2) mod p for all pairs (p, t) ∈ {(p, t) | p ∈ FR(B), t ≡ m
(mod p)} ∪ {(p, t) | 〈p, y − t〉 ∈ FA(B)}, and compute c ∈ GF (33)[x], whose
degree is upper-bounded by a degree bound C, such that c = c0 + kp where
k ∈ GF (33)[x]. We call the computation “sieving at d” in this section. For given
lattice bases, sieving at d is performed for all d of degree not larger than D. Note
that c0 does not need to be computed when (r1t + s1) ≡ 0 (mod p); therefore
we assume (r1t+ s1) �≡ 0 (mod p) in the following description.

In stage I of our implementation, we found that the time of sieving at d for
deg p = 5 takes over 100 msec, but each sieving time at d for deg p = 1, 2, 3
and 4 takes about 10 mesc or less. Therefore, we tried to improve the sieving
of degree 5. When we compute c0 for p of degree 5, the degree of c0 becomes 4
with probability about 26/27. On the other hand, the degree of the lattice bases
r1, s1, r2, s2 is 3 in most cases because the degree of special-Q is 6. On such
bases, degree bounds C and D can be chosen as 3 to satisfy condition (4), i.e.,
deg r ≤ 6 and deg s ≤ 6. These facts show that about 26/27 of the computation
of sieving for p of degree 5 are waste computations. Therefore, we discuss how to
sieve only with the polynomial c0, whose degree is not larger than 3, as follows.

Let α ∈ GF (33)[x] be−(r1t+s1)−1(r2t+s2) mod p, then we have c0 = dα mod
p. Let αi ∈ GF (33) be the coefficient of the fourth-order term of xiα mod p
for i = 0, 1, 2, 3. Since deg d ≤ 3, d is represented as d3x

3 + d2x
2 + d1x + 1 for

d3, d2, d1 ∈ GF (33). Recall that we restricted d ≡ 1 mod x in our implementation
of the lattice sieve. Here we know that the degree of c0 is not larger than 3 if
d3α3 + d2α2 + d1α1 + α0 = 0. Therefore, it is sufficient to perform sieving at d
for p in the factor base of degree 5 for only d satisfying the following property:

d1 =

{
−Kα−1

1 if α1 �= 0
any element in GF (33) if α1 = 0 and K = 0

(9)

where K = d3α3 + d2α2 + α0. When α1 = 0 and K = 0, we should compute
c0 for d whose d1 is any element in GF (33), and we cannot cut off any d1;
therefore, we assume that α1 �= 0 in the following description. Suppose that
we now fix lattice bases (r1, s1), (r2, s2) and a pair (p, t) where deg p = 5, then
each αi for i = 0, 1, 2, 3 is also fixed. Therefore, since K depends on d2 and d3,
the d1 satisfying (9) is given by d2 and d3 and uniquely determined for given
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d2 and d3. This implies that, since d1 is in GF (33) whose cardinality is 27, we
can ignore 26 d1’s not satisfying (9) for given d2 and d3. In fact, the time of
sieving at d for all pairs (p, t) where deg p = 5 is reduced to about 1.5 msec by
ignoring d1 not satisfying (9). Note that we need to compute K for given d2 and
d3 for all pairs (p, t). The time of computing K for all (p, t) takes about 150
msec in our implementation. Therefore, for all pairs (p, t) where deg p = 5, the
computations of K and sieving at d require about 7.1 msec at stage II, which is
over 10 times faster than the computation of sieving at d at stage I. As a result,
our implementation of the lattice sieve at stage II becomes over 3 times faster
than that at stage I.

4.2 Linear Algebra Phase

After the collecting relations phase, we obtain a system of linear equations mod-
ulo P151, which is described in Section 2.1. The Galois action [20, 24] can re-
duce the number of variables of the system of linear equations to one-third.
Additionally, after the Galois action, the numbers of equations and variables of
the system of linear equations can be further reduced using filtering [15], i.e.,
singleton-clique and merging. To solve the system of linear equations defined by
this reduced matrix, we use the parallel Lanczos method [4, 20].

Galois Action: The Galois action to GF (36·97)/GF (33·97) enables us to reduce
the number of variables of the system of linear equations to one-third (details
of the Galois action are discussed in [20, 24]). However, when we use the Galois

action, 151-bit large integers such as e0 + e1τ + e2τ
2, where τ = 397

2
mod P151

and ei is a small integer of a few bits, are added to elements of the system of linear
equations. This unfortunate fact eventually increases the data size of the reduced
matrix; therefore, high-capacity memory is required. To allay the increase in the
representation size of the elements, we store only a triplet (e1, e2, e3) in the PC
memory, not a large 151-bit integer. Since ei is small enough to be represented
by 8 bits, the size of the elements is reduced from 151 to 24 bits on average. We
call this representation the “τ -adic structure”. Note that the τ -adic structure is
used for the Galois action and singleton-clique.

Singleton-Clique and Merging: Filtering consists of two parts, singleton-
clique and merging. Singleton-clique deletes unnecessary rows and columns to
reduce the size of the matrix. In our implementation of singleton-clique, we per-
formed by maintaining 20000 more rows than columns to prevent accidentally
decreasing the rank of the matrix. After that, merging, a weight-controlled Gaus-
sian elimination, is performed. In merging, for small integer k, the column with a
weight not larger than k is deleted by row elimination with controlling the pivot
selection so that the weight of the matrix is as small as possible. This operation
is called k-way merging. In our implementation of merging, we converted the
data representation of the matrix from the τ -adic structure to a large 151-bit
integer structure, since merging on the τ -adic structure cannot reduce the size
of the matrix enough due to the restriction of the pivot selection. More details
are described in [19].
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Parallel Lanczos Method: By using the parallel Lanczos method [4, 20], we
solve the system of linear equations defined by the matrix reduced via the Galois
action, singleton-clique, and merging. For parallel computing, the matrix should
be split into sub-matrices, i.e., split into N = N1×N2 sub-matrices for N nodes,
and nodes communicate among N1 nodes or N2 nodes. To reduce the synchro-
nization time before communicating, the matrix is split so that each sub-matrix
has almost the same weight. Our machine environment for the parallel Lanczos
method consisted of 22 nodes, and each node had 12 CPU cores and 2 NICs.
The 2 NICs were connected to a 48-port Gbit HUB, i.e., 44 ports were used for
connecting 22 nodes. All 22 nodes could be used, so we had a choice for machine
environment; 20 = 5× 4, 21 = 7× 3 or 22 = 11× 2. Using 20 nodes requires the
least communication costs but the most computational costs, and using 22 nodes
requires the most communication costs but the least computational costs. Using
21 nodes was the best for our implementation; therefore, we used 21 nodes.

For computation in the parallel Lanczos method, many modular multiplica-
tions of 151-bit integers × 151-bit integers modulo P151 are required due to the
Galois action. We implemented Montgomery multiplication optimized to 151-bit
integers using assembly language. Our program then becomes several times faster
than straightforwardmodular multiplication using GMP (http://gmplib.org/)
for multiple precision arithmetic.

After the computation of the parallel Lanczos method started, we improved
our codes of the parallel Lanczos method (for example, efficient register usage,
overlapping communications and computations). These improvements are about
15% faster than our initial implementation.

4.3 Individual Logarithm Phase

As mentioned in Section 3.1, logg ηT (Qπ,Qπ) and logg ηT (Qπ,Qe) are required
to solve our target problem. To compute them, rationalization and special-Q
descent [24] were used. For simplicity, let T be ηT (Qπ,Qπ), or ηT (Qπ,Qe) in
the following paragraphs.

In the rationalization, we randomize T such that the randomized element is
M -smooth for a small enough integer M > B by the following process. First,
we randomize T by z ≡ gγT (mod f) for a random integer γ ∈ ZP151 . We
then rationalize z as z ≡ z1/z2 (mod f) where degrees of z1 and z2 are about
deg f/2, and check whether both z1 and z2 are M -smooth. Then, computing
logg T is reduced to computing logarithms of irreducible factors of M -smooth
elements z1 and z2.
M -smooth elements zi for i = 1, 2, contain some irreducible factors of degree

larger than B whose logarithms are not computed in the linear algebra phase.
To compute these logarithms, the special-Q descent [24] is usually used. In the
special-Q descent, the lattice sieve is recursively conducted with an irreducible
factor of degree larger than B, which is contained in zi or in a relation generated
during the special-Q descent, as a special-Q.

http://gmplib.org/
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5 Experimental Results

We succeeded in solving a DLP overGF (36·97) by using the FFS with our efficient
implementation techniques discussed in Section 4. In this section, we report our
computational results, such as the computational time of each phase of the FFS
and the number of relations.

5.1 Polynomial Selection

The FFS has six parameters κ, dH , dm, B,R, and S, as defined in Section 2.2,
and we set (κ, dH , dm, B,R, S) = (3, 6, 33, 6, 6, 6) for our target problem, based
on the reason given in Section 3.2. In the polynomial selection phase, we can
extract appropriate polynomials such as the definition polynomial H(x, y) of a
function field described in Section 3.2 in one minute, so the computational cost
of the polynomial selection phase is negligibly small.

5.2 Collecting Relations Phase

In the collecting relations phase, we search many relations that are equations of
the form (8) to generate a system of linear equations by using the lattice sieve and
the free relation. We explain our computational results of the collecting relations
phase, e.g., the number of relations obtained in this phase, the computational
time of the lattice sieve for one special-Q.

Lattice Sieve. Each special-Q has to be chosen from FR(6)\FR(5). The num-
ber of elements of FR(6)\FR(5) is 64566684, and the size of the table of those
elements is about 500 MB. Since our program of the lattice sieve is computed
using many nodes, it is not convenient to pick up the element from that 500-MB
table as a special-Q. Therefore, we selected a special-Q by randomly generating
an irreducible polynomial in GF (33)[x] of degree 6, which is in FR(6)\FR(5),
and iterated the computation of the lattice sieve for the special-Q.

We prepared 47 PCs (in total 212 CPU cores) for the lattice sieve. The com-
putation of the lattice sieve began on May 14, 2011, and we continued optimizing
our program of the collecting relations phase. As discussed in Section 4.1, we
applied several improvements to our program of the collecting relations phase;
the lattice sieve for the JL06-FFS, the lattice sieve with SIMD, and optimization
for our parameters. Figure 1 in Section 4.1 shows the process of our improve-
ments in the collecting relations phase for the first two weeks. The total time for
the collecting relations phase shortened due to our improvements. Finally, the
computation finished on September 9, 2011 and required 118 days. including the
loss-time of some programming errors, updating our codes, and power outages.
The real computational time of the lattice sieve was equivalent to 53.1 days using
212 CPU cores such as Xeon E5440.

Table 2 summarizes the process of generating relations in the collecting rela-
tions phase. It might seem that the number of duplicate relations is very small
compared to the integer factorization case using the number field sieve. This
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Table 2. Number of collected relations in collecting relations phase

lattice sieve 159032292 relations obtained from 2500000 special-Q’s
(64.91 relations/special-Q, 389 sec/special-Q)
153815493 unique (non-duplicated) relations
obtained from 2449991 unique special-Q’s

free relation 33786299 relations
total 187602242 relations (consist of 134697663 elements in the factor base)

Table 3. Compressing matrix using Galois action, singleton-clique and merging

method size of matrix

before compressing 187602242 equations × 134697663 variables

Galois action 159394665 equations × 45049572 variables

singleton-clique 14060794 equations × 14040791 variables

6-way merging 6141443 equations × 6121440 variables

arises from the fact that the size of the sieving space in our parameters is so
large compared to that case.

Free Relation. The free relation gives us additional relations not generated by
a sieving algorithm such as the lattice sieve. The details of the free relation is
given in [20]. As shown in Table 2, the free relation gave us 33786299 relations.
Eventually, we obtained a system of linear equations consisting of 187602242
equations and 134697663 variables. Note that there are 451002 elements in the
factor base, which does not appear in the 187602242 relations.

5.3 Linear Algebra Phase

In the linear algebra phase, we firstly reduced the size of the matrix by the
Galois action and filtering, and then performed the parallel Lanczos method for
the reduced matrix. Table 3 shows that the process of the compression of the
matrix.

Galois Action. As mentioned in Section 4.2, the Galois action reduced the
size of the matrix generated in the collecting relations phase to one-third since
κ = 3. To allay the fact that the size of each element of the matrix increases
from a few bits to 151 bits due to the Galois action, we used the τ -adic structure
mentioned in Section 4.2.

Singleton-Clique andMerging. After using the Galois action, we additionally
reduce the variables and equations of the matrix by singleton-clique and merging
[15]. Using aPC, the computation for singleton-clique took about 3 hours, and that
formerging took about 10 hours. After 6-waymerging, we started the computation
of the parallel Lanczos method for the 6-way merged matrix. See [19] for more
details about our results of singleton-clique and merging.
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Table 4. Computational time of parallel Lanczos method for 6-way merged matrix

calculation time/loop 626.3 msec
synchronization time/loop 46.5 msec
communication time/loop 457.3 msec

total time/loop 1130.1 msec

number of loops 6121438

total time 80.1 days

Parallel Lanczos Method. We used the parallel Lanczos method [4, 20] to
solve the system of linear equations defined by the 6-way merged matrix. Note
that this matrix is sparse and defined over ZP151 , where P151 is the 151-bit
prime number given in Section 3.1. The computation of the parallel Lanczos
method started on January 16, 2012, and was conducted on 21 PCs, which were
connected via a 48-port Gbit HUB. As mentioned in Section 4.2, we continued
improving our codes of the parallel Lanczos method after computation began.
The computational times of our improved codes are listed in Table 4. Finally,
computation finished on April 14, 2012. The computation for the parallel Lanczos
method took 90 days including time losses similar to our implementation of the
lattice sieve. The real computational time is equivalent to 80.1 days using 252
CPU cores such as Xeon X5650.

5.4 Individual Logarithm Phase

Our target is to compute logg ηT (Qπ,Qe) and logg ηT (Qπ,Qπ) for some g ∈ G2,
as mentioned in Section 3.1.

First, we computed the rationalization described in Section 4.3. Let g be a
polynomial (x+ω)(3

6·97−1)/P151 ∈ G2, where ω is a polynomial basis of GF (33) ∼=
GF (3)[ω]/(ω3−ω−1). Note that g is a generator of G2 ⊂ GF (36·97)∗ and x+ω is
a monic irreducible polynomial in FR(B) of degree 1. We setM = 15 and search a
pair (z1, z2) (and (z′1, z

′
2)) ∈ (GF (33)[x])2 such that ηT (Qπ,Qe)·gγ1 = z1/z2 (and

ηT (Qπ ,Qπ) · gγ2 = z′1/z
′
2), where zi (and z′i) are Mi-smooth (where Mi ≤ M)

for some γ1, γ2 ∈ ZP151 and i = 1, 2. We found z1 and z2, which are 13- and
15-smooth (and z′1 and z′2 which are 15- and 14-smooth), respectively. These
computations were conducted on 168 CPU cores and required 7 days for each
computation.

ηT (Qπ,Qe) · gγ1 = (13-smooth)/(15-smooth),

γ1 = 2514037766787322013334785428291787565870435706,

ηT (Qπ,Qπ) · gγ2 = (15-smooth)/(14-smooth),

γ2 = 2657516740789758289434702436228062607247517136.

Next, we performed special-Q descent for each irreducible factor of smooth ele-
ments obtained by the rationalization. These computations were conducted on
168 CPU cores and took about 0.5 days for each ηT (Qπ ,Qe) and ηT (Qπ ,Qπ).
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Thus, the computation of the individual logarithm phase took 15 days; (7 days
(for rationalization) + 0.5 days (for special-Q descent)) × 2 elements.

By using the logarithms of the corresponding elements in the factor base
obtained from the linear algebra phase, we could compute logg ηT (Qπ,Qe) and
logg ηT (Qπ,Qπ). The logarithm of each element is as follows:

logg ηT (Qπ,Qe) = 1540966625957007958347823268423957036469656370,

logg ηT (Qπ,Qπ) = 1630281950635507295663809171217833096970449894.

Finally, we obtained the logarithm of the target element:

s = logηT (Qπ,Qe) ηT (Qπ,Qπ)

= 1752799584850668137730207306198131424550967300.

This is the solution of the ECDLP of equation Qπ = [s]Qe.

6 Concluding Remarks

We evaluated the security of pairing-based cryptosystems using the ηT pairing
over supersingular elliptic curves on finite field GF (3n). We focused on the case
of n = 97 since many implementers have reported practically relevant high-speed
implementations of the ηT pairing with n = 97 in both software and hardware. In
particular, we examined the difficulty in solving the discrete logarithm problem
(DLP) over GF (36·97) by our implementation of the function field sieve (FFS).

To reduce the computational cost of the FFS for solving the DLP, we proposed
several efficient implementation techniques. In the collecting relations phase,
we implemented the lattice sieve for the JL06-FFS with SIMD and introduced
improvements by optimizing for factor bases of each degree; therefore, our lattice
sieve for the JL06-FFS became about 6 times faster than the first one. The main
difference from the number field sieves for integer factorization is the linear
algebra phase, namely, we have to deal with a large modulus of 151-bit prime for
the computation of the FFS. We thus performed filtering (singleton-clique and
merging) by carefully considering the data structure of large integers developing
from the Galois action, so that we can efficiently conduct the parallel Lanczos
method. From the above improvements, we succeeded in solving the DLP over
GF (36·97) in 148.2 days by using PCs with 252 CPU cores. Our computational
results contribute to the security estimation of pairing-based cryptosystems using
the ηT pairing. In particular, they show that the security parameter of such
pairing-based cryptosystems must be chosen with n > 97.

Finally, we show a very rough estimation of required computational power for
solving the DLP over GF (36n) with n > 97. Our experiment on the DLP over
GF (36n) with n = 97 used 252 CPU cores of mainly 2.67 GHz Xeon for 148.2
days, which are equivalent to 262.9 clock cycles. From the analysis of [31], the
computational complexities of breaking the DLP over GF (36n) with n = 163
and 193 become 215.4 and 219.1 times larger than that with n = 97, respectively.
Therefore, we could estimate that about 278.3 and 282.0 clock cycles are required
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for breaking the DLP over GF (36n) with n = 163 and 193, respectively. On
the other hand, the currently second fastest supercomputer K has a through-
put of about 10.5 petaflop/s from http://www.top500.org/, and it performs
about 278.1 floating-point operations for one year. If one floating-point opera-
tion on the CPU of the K is equivalent to one clock cycle of logical operation
on the Xeon core, we might be able to break the DLP over GF (36·163) using our
implementation on supercomputer K for one year.
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Abstract. Projecting bilinear pairings have frequently been used for de-
signing cryptosystems since they were first derived from composite order
bilinear groups. There have been only a few studies on the (im)possibility
of projecting bilinear pairings. Groth and Sahai showed that projecting
bilinear pairings can be achieved in the prime-order group setting. They
constructed both projecting asymmetric bilinear pairings and projecting
symmetric bilinear pairings, where a bilinear pairing e is symmetric if it
satisfies e(g, h) = e(h, g) for any group elements g and h; otherwise, it is
asymmetric.

In this paper, we provide impossibility results on projecting bilinear
pairings in a prime-order group setting. More precisely, we specify the
lower bounds of

1. the image size of a projecting asymmetric bilinear pairing

2. the image size of a projecting symmetric bilinear pairing

3. the computational cost for a projecting asymmetric bilinear pairing

4. the computational cost for a projecting symmetric bilinear pairing

in a prime-order group setting naturally induced from the k-linear as-
sumption, where the computational cost means the number of generic
operations.

Our lower bounds regarding a projecting asymmetric bilinear pairing
are tight, i.e., it is impossible to construct a more efficient projecting
asymmetric bilinear pairing than the constructions of Groth-Sahai and
Freeman. However, our lower bounds regarding a projecting symmetric
bilinear pairing differ from Groth and Sahai’s results regarding a symmet-
ric bilinear pairing results; We fill these gaps by constructing projecting
symmetric bilinear pairings.

In addition, on the basis of the proposed symmetric bilinear pair-
ings, we construct more efficient instantiations of cryptosystems that
essentially use the projecting symmetric bilinear pairings in a modular
fashion. Example applications include new instantiations of the Boneh-
Goh-Nissim cryptosystem, the Groth-Sahai non-interactive proof system,
and Seo-Cheon round optimal blind signatures proven secure under the
DLIN assumption. These new instantiations are more efficient than the
previous ones, which are also provably secure under the DLIN assump-
tion. These applications are of independent interest.
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1 Introduction

A bilinear group is a tuple of abelian groups with a non-degenerate bilinear
pairing. Projecting bilinear pairings, which are bilinear pairings with homo-
morphisms that satisfy a commutative property, have frequently been used for
designing cryptosystems since they were first derived from composite order bilin-
ear groups [10], though Freeman identified and named the projecting property
recently [15]. Of special interest is the Groth-Sahai non-interactive proof sys-
tem [22] and the Boneh-Goh-Nissim cryptosystem [10], both of which essentially
use the projecting property and have numerous applications in various fields in
cryptography. For example, the Groth-Sahai proofs were used to construct ring
signatures [13], group signatures [19], round optimal blind signatures [25], ver-
ifiable shuffles [20], a universally composable adaptive oblivious transfer pro-
tocol [18], a group encryption scheme [12], anonymous credentials [7,6], and
malleable proof systems [14]. For its part, the Boneh-Goh-Nissim cryptosystem
was used for designing private searching on streaming data [31], non-interactive
zero-knowledge [21], shuffling [5], and privacy-preserving set operations [32].

(Im)possibility of Projecting Bilinear Pairings: Although the projecting
bilinear pairings are often used for designing various cryptosystems, there have
been only a few studies on the (im)possibility of projecting bilinear pairings.
Groth and Sahai [22] demonstrated that projecting bilinear pairings can be
achieved in the prime-order group setting. They provided two distinct construc-
tions in prime-order group setting: projecting asymmetric bilinear pairings and
projecting symmetric bilinear pairings, where a bilinear pairing e is symmetric if
it satisfies e(g, h) = e(h, g) for any group elements g and h; otherwise, it is asym-
metric. On the basis of this idea of projecting bilinear pairings, they developed
non-interactive proof systems for quadratic equations over modules that can be
instantiated in composite-order bilinear groups, product groups of prime-order
bilinear groups with asymmetric bilinear pairings, and product groups of prime-
order groups with symmetric bilinear pairings. By extending Groth-Sahai’s idea,
Freeman [15] generalized Groth-Sahai’s projecting asymmetric bilinear pairings.1

Groth-Sahai and Freeman’s constructions of projecting bilinear pairings allow for
the simultaneous treatment of subgroup indistinguishability. To use projecting
bilinear pairings for designing cryptographic protocols, we need to deal with
cryptographic assumptions such as subgroup decision assumption at the same
time. Meiklejohn, Shacham, and Freeman [25] have shown some impossibility
results for projecting bilinear pairings, e.g., that projecting bilinear pairings can-
not simultaneously have a cancelling property if the subgroup indistinguishabil-
ity is naturally induced from the k-linear assumption [23,36]. Recently, Seo and

1 Freeman identified the other property of bilinear pairings in a composite-order group
setting, called cancelling, and demonstrated how to achieve the cancelling bilinear
pairings in the prime-order group setting.
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Cheon [35] proved that bilinear pairings can be simultaneously projecting and
cancelling when the subgroup decision assumption holds in the generic group
model.2

Contribution: In this paper, our contribution is a two-fold. First, we aim to
answer the fundamental question how efficient constructions for projecting bilin-
ear pairing can be. Second, we propose a construction of projecting symmetric
bilinear pairings that can achieve the efficiency of our lower bounds and then pro-
vide several constructions of cryptosystems based on the proposal in a modular
fashion.

We focus on constructions only in the prime-order bilinear group setting since
this type of group usually supports more efficient (group and bilinear pairing)
operations than those in composite-order bilinear groups (see [15] for a detailed
comparison of composite and prime-order groups). We present several impossi-
bility results of the projecting bilinear pairings in a prime-order group setting.
More precisely, we specify the lower bound of

1. the image size of a projecting asymmetric bilinear pairing
2. the image size of a projecting symmetric bilinear pairing
3. the computational cost for a projecting asymmetric bilinear pairing, and
4. the computational cost for a projecting symmetric bilinear pairing

in a prime-order group setting naturally induced from the decisional Diffie-
Hellman (DDH) assumption, the decisional linear (DLIN) assumption, and the
k-linear assumption, where the computational cost means the number of generic
operations. In this paper, we restrict ourselves to a consideration of a framework
in which the subgroup indistinguishability in the framework relies in a natural
way on simple assumptions (i.e., the DDH, DLIN, and k-linear assumption). This
framework covers all previous constructions by Groth-Sahai and Freeman, and
this restriction on the framework has already been used in [25] to show another
impossibility result on projecting bilinear pairings. As for the computational cost
of projecting bilinear pairings, we consider a slightly restricted computational
model since there are typically several ways to perform a given operation, which
makes it very difficult to compare all possible (even unknown) ways. We have two
basic assumption in our computational model. First, we only count the number
of generic operations of the underlying elliptic curve group and the pairings −
that is, we assume that one cannot utilize information about the representation
of groups and bilinear pairing operations [37,8]. Second, we assume that two
inputs of a projecting bilinear pairing are uniformly and independently chosen.
In special cases, an additional information about two inputs may lead to an effi-
cient alternative way of computing a pairing operation. For example, when one
computes e(g1, g2) for the two given inputs g1 and g2, where e : G × G → Gt

is a pairing, if we knows e(g, g), a1 and a2 such that g1 = ga1 and g2 = ga2

for a generator g of G, then we can perform one field multiplication and one

2 Seo and Cheon’s result does not contradict Meiklejohn et al.’s result. Rather, they
showed that there is a more general class of bilinear groups than Meiklejohn et al.
considered and that some of theses can be both cancelling and projecting.



64 J.H. Seo

exponentiation in Gt instead of performing e for e(g1, g2) = e(g, g)a1a2 . Since
we want to consider the computational cost of e in general, that is, without any
additional information aside from the original two inputs, we assume that two
inputs are uniformly and independently distributed in their respective domains:
Hence, our computational model rules out special cases like the above example.
Although our computational model does not perfectly correspond to the real
world, we believe that its lower computational bounds can aid our understand-
ing of the projecting property and enable us to locate efficient constructions for
projecting bilinear pairings.

In this study, our lower bounds imply that Freeman’s construction of pro-
jecting asymmetric bilinear pairings is optimal: that is, it is the most efficient
construction for projecting asymmetric bilinear pairings [15]. In contrast, our
lower bounds for the projecting symmetric bilinear pairing are different from
those of Groth-Sahai [22]. We fill these gaps by constructing projecting sym-
metric bilinear pairings and demonstrating that our construction can achieve an
efficiency coincident with the lower bounds.

The proposed projecting symmetric bilinear pairings can be used to create
more efficient instantiations of cryptosystems, which essentially use projecting
property and symmetric bilinear pairings, in a modular fashion. To show that
the proposed projecting symmetric bilinear pairings can be adapted to various
cryptosystems, we apply them to three distinct cryptosystems and create new
efficient instantiations of the Groth-Sahai non-interactive proof system [22], the
Boneh-Goh-Nissim cryptosystem [10], and Seo-Cheon round optimal blind signa-
tures [35] that are provably secure under the DLIN assumption.3 The proposed
instantiation of the non-interactive proof system has a faster verification than
Groth-Sahai’s instantiation based on the DLIN assumption, and the proposed in-
stantiation of the Boneh-Goh-Nissim cryptosystem has a smaller ciphertext size
and a faster decryption algorithm than Freeman’s instantiation based on the
DLIN assumption. We can also reduce the verification costs of the Seo-Cheon
round optimal blind signatures. These applications are of independent interest.
Our new instantiation is based on the DLIN assumption so that we can im-
prove the efficiency of all subsequent protocols using Groth-Sahai’s instantiation
3 (based on the DLIN assumption).

We should note here that symmetric bilinear pairings require the use of super-
singular elliptic curves and thus the associated bilinear groups are larger than
those with asymmetric bilinear pairings using ordinary curves (please see [16]
for a detailed comparison). However, some constructions of pairing-based cryp-
tosystems essentially use the symmetric property of bilinear pairings (e.g., Groth-
Ostrovsky-Sahai zero-knowledge proofs [21]). Therefore, the proposed projecting
symmetric bilinear pairings can be used for designing such cryptosystems.

3 The Seo-Cheon round optimal blind signature scheme can be considered a prime
order group version of the Meiklejohn-Shacham-Freeman round optimal blind sig-
nature scheme in composite order groups [25]. Since we only consider prime order
group settings in this paper, we provide a new instantiation of the Seo-Cheon scheme
instead of the Meiklejohn-Shacham-Freeman scheme.
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Modular Approach in Cryptography: Generally speaking, a modular ap-
proach for cryptosystems leads to a simple design but inefficient constructions in
comparison to an ad hoc approach. Recently, we have found a few exceptions for
structure preserving cryptography [1,2,11] and mathematical structures [26,27].
Structure preserving schemes enable one to construct modular protocols while
preserving conceptual simplicity and yielding reasonable efficiency at the same
time. Structure-preserving signatures, commitments [1], and encryptions [11] re-
strict all components in schemes to group elements, so schemes can easily be
combined with Groth-Sahai proofs [22]. In a modular fashion, round optimal
blind signatures, group signatures, and anonymous proxy signatures can be de-
rived from structure preserving signatures, and oblivious trusted third parties
can be achieved due to the structure preserving encryptions. There has been
some impossibility results for structure preserving cryptography [2,3,4]. These
save our efforts in terms of impossible goals and widen our understanding re-
garding modular constructions.

Okamoto and Takashima [26] introduced a mathematical structure called
“dual pairing vector spaces” that can be instantiated using a product of bi-
linear groups or a Jacobian variety of a supersingular curve of genus ≥ 1.
On the basis of these dual pairing vector spaces, a homomorphic encryption
scheme [26], functional encryption scheme [27,28,30], attribute-based signature
scheme [29], and (hierarchical) identity-based encryption scheme [24] have been
proposed.

Open Problem: It would be interesting to extend the (im)possibility of the
projecting property into a wider framework than ours. Furthermore, finding
other applications of projecting pairings is also interesting.

Road Map: In Section 2, we give definitions for bilinear groups, projecting
property, and cryptographic assumptions. In Section 3, we explain our impossi-
bility results of projecting bilinear pairings. In Section 4, we show the optimality
of Groth-Sahai and Freeman’s projecting asymmetric bilinear pairings and give
our construction for optimal projecting symmetric bilinear pairings. In Section 5,
we apply the proposed projecting symmetric bilinear pairings to three distinct
cryptosystems, the Groth-Sahai non-interactive proof system, the Boneh-Goh-
Nissim cryptosystem, and the Seo-Cheon round optimal blind signatures.

2 Definition

We use notation x
$← A to mean that, if A is a finite group G, an element x is

uniformly chosen from G, and, if A is an algorithm, A outputs x by using its own
random coins. We use [i, j] to denote a set of integers {i, . . . , j}, 〈g1, . . . , gn〉 to
denote a group generated by g1, . . . , gn, and Fp to denote a finite field of prime
order p. For a map τ : TD → TR, and any subset SD of TD, τ(SD) := {τ(s)|s ∈
SD}. All values in our paper are outputs of some functions taking the security
parameter λ and ≈ denotes the difference between both sides is a negligible
function in λ.
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We use two commonly used mathematical notations internal direct sum, de-
noted by ⊕, and tensor product (Kronecker product), denoted by ⊗. For an
abelian group G, if G1 and G2 are subgroups of G such that G = G1 + G2 =
{g1 · g2|g1 ∈ G1, g2 ∈ G2} and G1 ∩ G2 = {1G} for the identity 1G of G, then
we write G = G1 ⊕ G2. If A = (ai,j) is a m1 × m2 matrix and B = (bi,j) is
an �1 × �2 matrix, the tensor product A ⊗ B is the m1�1 ×m2�2 matrix whose
(i, j)-th block is ai,jB, where we consider A⊗B as m1 ×m2 blocks. That is,

A⊗B =

⎡⎢⎣ a1,1B . . . a1,m2B
...

. . .
...

am1,1B . . . am1,m2B

⎤⎥⎦ ∈Matm1�1×m2�2(Fp).

We use several properties of the internal direct sum and tensor product. Every
element g in G has a unique representation if G = G1 ⊕G2. That is, g ∈ G can
be uniquely written as g = g1g2 for some g1 ∈ G1 and g2 ∈ G2. If two matrices
A and B are invertible, then A⊗B is also invertible and the inverse is given by
(A ⊗ B)−1 = A−1 ⊗ B−1. The transposition operation is distributive over the
tensor product. That is, (A ⊗ B)t = At ⊗ Bt. We sometimes consider a vector
over Fp as a matrix with one row.

2.1 Bilinear Groups and Projecting Bilinear Pairings

Definition 1. Let G be an algorithm that takes as input the security parameter
λ. We say that G is a bilinear group generator if G outputs a description of five
finite abelian groups (G,G1, H,H1, and Gt) and a map e such that G1 ⊂ G,
H1 ⊂ H, and e : G × H → Gt is a non-degenerate bilinear pairing; that is, it
satisfies

• Bilinearity: e(g1g2, h1h2) = e(g1, h1)e(g1, h2)e(g2, h1)e(g2, h2) for g1, g2 ∈
G and h1, h2 ∈ H,

• Non-degeneracy: for g ∈ G, if e(g, h) = 1 ∀h ∈ H, then g = 1. Similarly, for
h ∈ H, if e(g, h) = 1 ∀g ∈ G, then h = 1.

In addition, we assume that group operations in each group (G, H, and
Gt), bilinear pairing computations, random samplings from each group, and
membership-check in each group are efficiently computable (i.e., polynomial time
in λ).

If the order of output groups of G is prime p, we call G a bilinear group

generator of prime order and say G1 $→ (p,G,H,Gt, ê); that is, G, H and Gt are
finite abelian groups of prime order p.

If G = H, G1 = H1, and e(g, h) = e(h, g) for all g, h ∈ G, we say that G is
symmetric. Otherwise, we say that G is asymmetric.

We define the projecting property of a bilinear pairings.

Definition 2. Let G be a bilinear group generator, and G $→
(G,G1, H,H1, Gt, e). We say that G is projecting if there exist a subgroup
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G′
t ⊂ Gt and three homomorphisms π : G → G, π̄ : H → H, and πt : Gt → Gt

such that

1. π(G) �= {1G}, π̄(H) �= {1H}, and πt(e(G,H)) �= {1t}, where 1G, 1H , and 1t
are identities of G, H, Gt, respectively.

2. G1 ⊂ ker(π), H1 ⊂ ker(π̄), and G′
t ⊂ ker(πt).

3. πt(e(g, h)) = e(π(g), π̄(h)) for all g ∈ G and h ∈ H.

If G is symmetric, set π = π̄.

Note that in Definition 2 we slightly revised Freeman’s original projecting defi-
nition to fit our purpose. First, we added a requirement for homomorphisms to
be non-trivial (first condition of Definition 2). If we allowed trivial homomor-
phisms, they would satisfy the projecting property. Since trivial homomorphisms
may not be helpful in designing cryptographic protocols, our modification is quite
reasonable. Second, our definition requires only the existence of G′

t and homo-
morphisms while Freeman required them to be output [15]. Since our definition
is weaker than Freeman’s (if we ignore our first modification), our main results
(the lower bounds and optimal construction) are meaningful. Several other re-
searchers [25,24] have used an existence definition like ours instead of Freeman’s
definition for the projecting property.

2.2 Subgroup Decision Assumption and k-Linear Assumption

Here we define subgroup decision problem and subgroup decision assumption in
the bilinear group setting, which were introduced by Freeman [15].

Definition 3. Let G be a bilinear group generator. We define the advantage of
an algorithm A in solving the subgroup decision problem on the left, denoted by
AdvSDPL

A,G (λ), as∣∣∣Pr [A(G,G1, H,H1, Gt, e, g)→ 1| (G,G1, H,H1, Gt, e)
$← G(λ), g $← G

]
−Pr

[
A(G,G1, H,H1, Gt, e, g1)→ 1| (G,G1, H,H1, Gt, e)

$← G(λ), g1
$← G1

]∣∣∣.
We say that G satisfies the subgroup decision assumption on the left if, for any
PPT algorithm A, its AdvSDPL

A,G (λ) is a negligible function of the security param-
eter λ.

We analogously define the subgroup decision problem on the right, the advantage
AdvSDPR

A,G of A, and the subgroup decision assumption on the right by using H
and H1 instead of G and G1.

Definition 4. We say that a bilinear group generator G satisfies the subgroup
decision assumption if G satisfies both the subgroup decision assumptions on the
left and subgroup decision assumptions on the right.

For a subgroup decision assumption in the prime-order group setting, we use the
widely-known k-linear assumption which is introduced by Hofheinz and Kiltz
and Shacham [23,36], in the bilinear group setting. We give the formal definition
of k-linear assumption below.
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Definition 5. Let G1 be a bilinear group generator of prime order and k ≥ 1.
We define the advantage of an algorithm A in solving the k-linear problem in G,
denoted by Advk-LinG

A,G1
(λ), to be

∣∣∣Pr [A(G,H,Gt, e, g, ui, u
ai
i , gb, h for i ∈ [1, k])→ 1|

(G,H,Gt, e)
$← G1(λ), g, ui $← G, h

$← H, ai
$← Fp for i ∈ [1, k], b

$← Fp

]
−Pr

[
A(G,H,Gt, e, g, ui, u

ai
i , gb, h for i ∈ [1, k])→ 1|

(G,H,Gt, e)
$← G1(λ), g, ui $← G, h

$← H, ai
$← Fp for i ∈ [1, k], b =

∑
i∈[1,k] ai

]∣∣∣.
Then, we say that G1 satisfies the k-linear assumption in G if for any PPT
algorithm A, Advk-LinG

A,G1
(λ) is a negligible function of the security parameter.

We can analogously define the k-linear assumption in H. The 1-linear assumption
in G is the DDH assumption in G and the 2-linear assumption in G is the
decisional linear assumption in G [9].

3 Impossibility Results of Projecting Bilinear Pairings

In this section, we first formally define natural product groups of prime-order
bilinear groups. Next, we derive conditions for projecting bilinear groups, and
then provide our impossibility results of projecting bilinear pairings. We begin
by defining some notations that will help us to simplify explanations. For group
elements g, g1, . . . , gk+1 ∈ G, a vector −→α = (a1, . . . , ak+1) ∈ Fk+1

p , and a matrix
M = (mi,j) ∈Mat(k+1)×(k+1)(Fp), we use the notation

g
−→α := (ga1 , . . . , gak+1) ∈ Gk+1

and
(g1, . . . , gk+1)

M := (
∏

i∈[1,k+1]

g
mi,1

i , . . . ,
∏

i∈[1,k+1]

g
mi,k+1

i ).

From this notation, we can easily obtain (g
−→α )M = g(

−→αM).

3.1 Bilinear Groups Naturally Induced from k-linear Assumption

In Figure 1, we provide a generator G{A�}�∈[1,m]

k for A� ∈ Mat(k+1)×(k+1)(Fp)
and � ∈ [1,m]. When we refer to the natural construction of product groups of
prime-order bilinear groups such that the subgroup decision assumption “nat-

urally” follows from the k-linear assumption, we mean G{A�}�∈[1,m]

k .4 When we

4 Meiklejohn et al. [25] also used the word “natural” to refer to G{A�}�∈[1,m]

k . They

used G{A�}�∈[1,m]

k to show the limitation result of both projecting and cancelling:

They showed that for any A	 matrices used in G{A�}�∈[1,m]

k , G{A�}�∈[1,m]

k cannot be
both projecting and cancelling with overwhelming probability, where the probability

goes over the randomness used in G{A�}�∈[1,m]

k .
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1. G{A�}�∈[1,m]

k takes the security parameter λ as input.
2. Run G1(λ)→ (p,G,H,Gt, ê).
3. Define G = Gk+1,H = Hk+1, and Gt = Gm

t .
4. Randomly choose −→x 1, . . . ,

−→x k,
−→y 1, . . . ,

−→y k ∈ Fk+1
p such that the set {−→x i}i∈[1,k]

and {−→y i}i∈[1,k] are each linearly independent.

5. Randomly choose generators g ∈ G and h ∈ H, and let G1 = 〈g−→x 1 , . . . , g
−→x k 〉 and

H1 = 〈h−→y 1 , . . . , h
−→y k 〉.

6. Define a map e : G × H → Gt as an m-tuple of maps e(·, ·)	 for � ∈ [1, m] as
follows:

e((g1, . . . , gk+1), (h1, . . . , hk+1))	 :=
∏

i,j∈[1,k+1]

ê(gi, hj)
a
(�)
i,j ,

where A	 = (a
(	)
ij ) ∈Mat(k+1)×(k+1)(Fp) for � ∈ [1, m].

7. Output description of (p,G,G1,H,H1, Gt, e); each group description has its gen-
erators only. (e.g., G1’s description has g

−→x 1 , . . . , g
−→x k , but −→x i is not contained in

the description of G1.)

Fig. 1. Description of G{A�}�∈[1,m]

k

consider the subgroup decision assumption, which is induced from the k-linear

assumption, to mean that, given g, it is hard to determine if g
$← G1 or g

$← G,
G is a rank-(k + 1) Fp-module, and G1 is a randomly chosen rank-k submodule
of G. For any matrices A1, . . . , Am in Mat(k+1)×(k+1)(Fp), a group generator

G{A�}�∈[1,m]

k satisfies the subgroup decision assumption if the underlying prime-
order bilinear group generator G1 satisfies the k-linear assumption.

Theorem 1. [15, Theorem 2.5] If G1 satisfies the k-linear assumption in G and

H, G{A�}�∈[1,m]

k satisfies the subgroup decision assumption regardless the choice
of {A�}�∈[1,m].

Note that G{A�}�∈[1,m]

k contains Groth-Sahai’s constructions based on the DDH
assumption (k = 1) and the DLIN assumption (k = 2).

3.2 Conditions for Symmetric Property

A bilinear pairing e of G{A�}�∈[1,m]

k in Figure 1 can be rewritten, using matrix
notation, as

e(g
−→x , h

−→y )� = ê(g, h)
−→x A�

−→y t

where −→x is considered to be a 1× (k + 1) matrix, and −→y t is considered to be a
(k + 1)× 1 matrix.

If G1 is a symmetric bilinear group generator of prime-order, then one may

think that G{A�}�∈[1,m]

k is also a symmetric bilinear group generator. However,
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not all bilinear groups with underlying symmetric bilinear pairings ê do satisfy
symmetric property. The following theorem shows the necessary and sufficient

condition of {A�}�∈[1,m] for G
{A�}�∈[1,m]

k to be symmetric, that is, e(g, h) = e(h, g)
for any group elements g and h.

Theorem 2. G{A�}�∈[1,m]

k is symmetric if and only if G = H, g = h, −→x i =
−→y i

for all i ∈ [1, k], and A� is symmetric for all � ∈ [1,m], where G,H, g, h,−→x i and
−→y i are defined in the description of G{A�}�∈[1,m]

k .

Because of space constraints, we give the proof of Theorem 2 in the full version
of this paper.

3.3 Necessary Condition for Projection Property

Using a tensor product ⊗, we can further simplify e computation as follows: Let

B be a (k + 1)2 ×m matrix such that B’s ((i − 1)(k + 1) + j, �) entry is a
(�)
i,j ,

where A� = (a
(�)
i,j ). Then,

e(g
−→x , h

−→y ) = (e(g
−→x , h

−→y )1, . . . , e(g
−→x , h

−→y )m)

= (ê(g, h)
−→x A1

−→y t

, . . . , ê(g, h)
−→x Am

−→y t

) = ê(g, h)(
−→x⊗−→y )B.

From now, we use a notation GB
k as well as G{A�}�∈[1,m]

k to denote a bilinear group
generator naturally induced from the k-linear assumption, where B is defined
by {A�}�∈[1,m] as above. This notation is well-defined since there are one-to-one
correspondence between B and {A�}�∈[1,m].

We give a necessary condition of B for GB
k to be projecting in Lemma 1. This

lemma says that if G = G1⊕G2 and H = H1⊕H2, then e(G2, H2) should have
at least an element not contained in the subgroup generated by other parts of
images.

Lemma 1. 1. If GB
k is asymmetric (that is, GB

k
$→ (p,G,G1, H,H1, Gt, e)) and

projecting, for decompositions G = G1 ⊕ G2 and H = H1 ⊕ H2 it satisfies
that e(G2, H2) �⊂ D, where D is the smallest group containing e(G1, H) and
e(G,H1).

2. If GB
k is symmetric (that is, GB

k
$→ (p,G,G1, Gt, e)) and projecting, for any

decomposition G = G1 ⊕ G2 it satisfies that e(G2, G2) �⊂ D, where D is the
smallest group containing e(G,G1).

Proof. (1) Suppose that GB
k is projecting. Then, there exist three homomor-

phisms π, π̄, and πt. Since π and π̄ are non-trivial homomorphisms, G1 and H1

are proper subgroups of G and H , respectively. Since G1 and H1 are proper sub-
groups, for any decompositions G = G1⊕G2 and H = H1⊕H2, {1G} �= G2 ⊂ G
and {1H} �= H2 ⊂ H . We show that G1, G2, H1, and H2 satisfy the condition
in the theorem. By definition of D, D is a group generated by all elements in
e(G1, H) and e(G,H1) so that every element in D can be written as a product of
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elements in e(G1, H) and e(G,H1) (though it is not uniquely written). For any
g1 ∈ G1, h1 ∈ H1, g ∈ G, and h ∈ H , πt(e(g1, h)e(g, h1)) is equal to 1t since

πt(e(g1, h))πt(e(g, h1)) = e(π(g1), π̄(h))e(π(g), π̄(h1)) = e(1G, π̄(h))e(π(g), 1H).

We can see that by homomorphic property of πt, πt(D) = 1t. If e(G2, H2) ⊂ D,
then e(G,H) ⊂ D ⊂ ker(πt). That is a contradiction of πt’s non-trivial condition.

(2) We can prove similarly as (1). Essential proof idea is same to (1). Thus,
we omit it. �

For our impossibility results regarding the image size and computational cost,
we will focus on the (k + 1)2 × m matrix B of GB

k . All non-zero entries in B
imply ê-computations (bilinear pairing ê of underlying bilinear group generator
G1) and the lower bound of m implies the lower bound of the image size of
bilinear pairings. We compute the lower bound of the rank of B of GB

k , where
GB
k is asymmetric and projecting, by using the necessary condition of projecting

property in Lemma 1. For projecting symmetric bilinear pairings, the overall
strategy is similar to those of projecting asymmetric bilinear pairings except
that symmetric bilinear pairings have the special form of B as mentioned in
Theorem 2. We give the formal statement below.

Lemma 2. The following statements about GB
k are true with overwhelming prob-

ability, where the probability goes over the randomness used in the GB
k .

1. If GB
k is asymmetric and projecting, then B has (k+1)2 linearly independent

rows.
2. If GB

k is symmetric and projecting, then B has (k+1)(k+2)
2 linearly indepen-

dent rows.

Proof. (1) Let GB
k be a projecting asymmetric bilinear group generator. Let

(G,G1, H,H1, Gt, e) be the output of GB
k and G and H be decomposed by

G = G1 ⊕ G2 and H = H1 ⊕ H2, respectively for some subgroups G2

and H2. Then, G1 = 〈g−→x 1 , . . . , g
−→x k〉, H1 = 〈h−→y 1 , . . . , h

−→y k〉, G2 = 〈g−→x k+1〉,
and H2 = 〈h−→y k+1〉 for some sets of linearly independent vectors {−→x i}i∈[1,k+1]

and {−→y i}i∈[1,k+1]. Let X be a (k + 1) × (k + 1) matrix over Fp with −→x i as its
i-th row, and Y be a (k + 1) × (k + 1) matrix over Fp with −→y i as its i-th row.
Note that X and Y are invertible. Since B is a (k+1)2×m matrix for some m,
B can have at most (k + 1)2 linear independent rows.

Suppose that B has less than (k+1)2 linearly independent rows. We observe
that

e(G2, H2)=〈e(g
−→x k+1 , h

−→y k+1)〉=〈ê(g, h)(−→x k+1⊗−→y k+1)B〉 = 〈ê(g, h)
−→e (k+1)2 (X⊗Y )B〉,

and similarly

D = 〈ê(g, h)−→e 1(X⊗Y )B, . . . , ê(g, h)
−→e (k+1)2−1(X⊗Y )B〉,

where −→e i is the i-th canonical vector of F(k+1)2

p . Now, we show that there exists

a non-zero vector −→c ∈ F(k+1)2

p with a non-zero in the (k+1)2-th entry such that
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−→c · (X ⊗ Y )B =
−→
0 ∈ Fm

p . The existence of such a vector −→c implies that the
(k + 1)2-th row of (X ⊗ Y )B can be represented by the linear combination of
upper rows of (X⊗Y )B so that e(G2, H2) ⊂ D. Then, it would be a contradiction
with Lemma 1.

By hypothesis (rank(B) < (k + 1)2), there exists a non-zero vector −→r ∈
F(k+1)2

p such that −→r B =
−→
0 ∈ Fm

p . For such an −→r , we show that −→r (X−1⊗Y −1)
satisfies conditions for it to be −→c aforementioned. First, we obtain −→r (X−1 ⊗
Y −1) · (X ⊗ Y )B = −→r B =

−→
0 . Next, we argue that −→r (X−1⊗Y −1)’s (k+1)2-th

entry is non-zero with overwhelming probability, where the probability goes over
the randomness used in GB

k (to choose −→x 1, . . . ,
−→x k,

−→y 1, . . . ,
−→y k). We consider

the (k+ 1)-th column vector x̂t of X−1 such that x̂ is orthogonal to all upper k
rows of X . Denote the orthogonal complement of 〈−→x 1, . . . ,

−→x k〉 by 〈−→w 〉. Then,
x̂t is a non-zero vector in 〈−→w 〉. By definition of GB

k , −→x 1, . . . ,
−→x k are randomly

chosen so that −→w is also uniformly distributed in Fk+1
p . Similarly, the (k+1)-th

column vector ŷt of Y −1 is a non-zero vector in 〈−→y 1, . . . ,
−→y k〉⊥ := 〈−→z 〉, and

−→z is uniformly distributed in Fk+1
p . The (k + 1)2-th entry of −→r (X−1 ⊗ Y −1)

is −→r (x̂t ⊗ ŷt), and it is a non-zero constant multiple of −→r (−→w ⊗ −→z )t. By the
first statement of Lemma 3, which is given below, −→r (−→w ⊗−→z )t is non-zero with
overwhelming probability. Therefore, we complete the proof of the first statement
of theorem.

(2)We can prove the second statement of theorem by using the second statements
of Lemma 1 and Lemma 3. The overall strategy is same to the proof of the first
statement of theorem. The key observation of the proof of the second statement
is that B has a special form due to Theorem 2. We leave the detail of the proof
of the second statement in the full version. �

Lemma 3. Let V be a subspace of F(k+1)2

p generated by {−→a i,j}1≤i≤j≤k+1, where−→a i,j is a vector with 1 in the (i−1)(k+1)+j-th entry, −1 in the (j−1)(k+1)+i-th
entry, and zeros elsewhere.

1. For any non-zero vector −→r ∈ F(k+1)2

p , Pr[−→r · (−→w ⊗−→z )t = 0] ≤ 2
p , where the

probability goes over the choice of vectors −→w , −→z ∈ Fk+1
p .

2. For any vector −→r ∈ F(k+1)2

p \ V , Pr[−→r · (−→w ⊗ −→w )t = 0] ≤ 2
p , where the

probability goes over the choice of a vector −→w ∈ Fk+1
p .

We can prove Lemma 3 by using the Schwartz-Zippel lemma [33] and leave a
detailed proof in the full version.

3.4 Impossibility of Projecting Property

Basing on Lemma 2, we derive our main theorem on the impossibility results of
projecting bilinear pairings. We begin with explaining our computational model
for the lower bounds of computational cost of projecting bilinear pairings. In
our computational model, we assume two things: First, one who computes pro-
jecting bilinear pairings e can not utilize the representation of the underlying



On the (Im)possibility of Projecting Property in Prime-Order Setting 73

bilinear pairing ê and groups G,H, and Gt over which ê is defined. Note that
we rule out techniques for multi-pairings [34,17] in our computational model.
This assumption is same to that of the generic group model [37], in particular,
generic bilinear group [8]. In [37,8], the generic (bilinear) group model is used
to show the computational lower bounds of attacker solving number theoretic
problems such as the discrete logarithm problem and q-strong Diffie-Hellman
problem. Second, two inputs are uniformly and independently chosen so that
any relations with two inputs are unknown. In special cases such that a relation
with two inputs are known, there are several alternative way to compute bilinear
pairings. For example, one knowing g1, h1, e(g, h), and a relation g1 = g2 and
h1 = h3 can compute e(g1, h1) by performing e(g, h)6 instead of performing a
bilinear pairing. Since we want to consider the computational cost of e without
using any additional information of two inputs, we assume that two inputs are
uniformly and independently distributed in their respective domains. We provide
our main theorem below.

Theorem 3. (Lower Bounds) The following statements about GB
k are true with

overwhelming probability, where the probability goes over the randomness used
in the GB

k .

1. The image size of a projecting asymmetric bilinear pairing is at least (k+1)2

elements in Gt.
2. The image size of a projecting symmetric bilinear pairing is at least

(k+1)(k+2)
2 elements in Gt.

3. Any construction for a projecting (asymmetric or symmetric) bilinear pairing
should perform at least (k + 1)2 computations of ê in our computational
model.

Proof. (1) Suppose that GB
k is asymmetric and projecting. Since a (k + 1)2 ×m

matrix B has at least (k + 1)2 linearly independent rows by Lemma 2, m ≥
(k + 1)2. This implies that Gt = Gm

t consists of m (≥ (k + 1)2) elements in Gt.

(2) If GB
k is symmetric and projecting, then (k+1)2×m matrix B has at least

(k+1)(k+2)
2 linear independent rows by Lemma 2. Thus, m ≥ (k+1)(k+2)

2 ; hence,

an element in Gt = Gm
t is m (≥ (k+1)(k+2)

2 ) elements in Gt.

(3) First, we show that for two inputs g = (g1, . . . , gk+1) ∈ G and h =
(h1, . . . , hk+1) ∈ H , projecting (asymmetric or symmetric) pairings require com-
puting all ê(gi, hj) for all i, j ∈ [1, k+1]. To this end, it is sufficient to show that

every row in the matrix B is non-zero. (Recall that e(g
−→w , h

−→z ) = ê(g, h)(
−→w⊗−→z )B

and if every row in B is non-zero, then ê(gwi , hzj ) should be computed at least
one time.) If a group generator GB

k is projecting and asymmetric, then the rank
of B is (k+1)2 by Lemma 1. Since B has (k+1)2 rows, there is no zero rows. If a

group generator GB
k is projecting and symmetric, then the rank of B is (k+1)(k+2)

2
by Lemma 1. We know that the matrix B of symmetric bilinear group generators

has the special form by Theorem 2. From Theorem 2, some k(k+1)
2 rows in B

have respective same rows in B. Since B has (k+1)2 rows and (k+1)2− k(k+1)
2

is equal to the rank of B, every row in B has at least one non-zero entry.
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Next, we show that computing ê(gi, hj) cannot be generally substitute by a
product of other ê(gi′ , hj′ ) for i

′ ∈ [1, k + 1] \ {i} and j′ ∈ [1, k + 1] \ {j} in our
computational model. To this end, it is sufficient to show that for any non-zero

vector −→r = (r1, . . . , r(k+1)2 ) ∈ F(k+1)2

p ,

Pr
g

$←G,h
$←H

[ ∏
i,j∈[1,k+1]

ê(gi, hj)
r(i−1)(k+1)+j = 1Gt

]
≈ 0.

For two random inputs g
−→w and h

−→z ,∏
i,j∈[1,k+1]

ê(gwi , hzj )r(i−1)(k+1)+j = ê(g, h)(
−→w⊗−→z )−→r t

,

where −→w = (w1, . . . , wk+1) ∈ Fk+1
p and −→z = (z1, . . . , zk+1) ∈ Fk+1

p . Since −→r t is

a non-zero vector in F(k+1)2

p , (−→w ⊗−→z )−→r t �= 0 with overwhelming probability by
Lemma 3, and hence we obtain the desired result such that∏

i,j∈[1,k+1]

ê(gwi , hzj )r(i−1)(k+1)+j �= 1Gt

with overwhelming probability.
Therefore, all projecting bilinear pairings require at least (k + 1)2

ê-computations. �

4 Optimal Projecting Bilinear Pairings

In this section, we show that our lower bounds are tight; for projecting asym-
metric bilinear pairing, we show that Groth-Sahai and Freeman’s constructions
are optimal (in our computational model), and for projecting symmetric bilin-
ear pairing, we propose a new construction achieving optimal efficiency (in our
computational model).

Definition 6. Let GB
k be a projecting asymmetric (symmetric, resp.) bilinear

group generator. If the bilinear pairing e consists of (k + 1)2 ê-computation in

our computational model and Gt = G(k+1)2

t (Gt = G
(k+1)(k+2)

2
t , resp.), we say

that GB
k is optimal.

We can define GB
k by defining a (k + 1)2 × m matrix B, or equivalently a set

of (k + 1) × (k + 1) matrices {A�}�∈[1,m]. For a projecting asymmetric bilinear
group generator, we define B as I(k+1)2 , where I(k+1)2 is the identity matrix

in GL(k+1)2(Fp). Note that GI(k+1)2

k is exactly equal to Freeman’s projecting

asymmetric bilinear group generator [15] (We can easily check that GI(k+1)2

k does
not satisfy the symmetric property due to Theorem 2). Theorem 3 implies that

GI(k+1)2

k is optimal. Therefore, we obtain the following theorem.
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Theorem 4. GI(k+1)2

k is an optimal projecting asymmetric bilinear group gener-
ator.

GI(k+1)2

k covers one of the most interesting cases k = 1: GI4
1 is optimal.5

4.1 Optimal Projecting Symmetric Bilinear Pairings

We propose an optimal projecting symmetric bilinear group generator GB
k by

defining B (equivalently A1, . . . , Am). Let a set S be {(i, j) ∈ [1, k+ 1]× [1, k+

1]|1 ≤ j ≤ i ≤ k + 1}. We consider a map τ : S → [1, (k+1)(k+2)
2 ] defined by

(i, j) �→ i(i−1)
2 + j.

Lemma 4. τ is a bijective map.

We give the proof of Lemma 4 in the full version.

Description of A� (equivalently B) for optimal projecting symmetric

bilinear pairings: Let τ−1(�) = (i, j). For each � ∈ [1, (k+1)(k+2)
2 ], A� = (a

(�)
s,t)

is defined as a (k + 1)× (k + 1) matrix with{
1 in the entry (i, j) and zeros elsewhere if i = j,
1 in the entries (i, j) and (j, i), and zeros elsewhere otherwise .

We give an example to easily explain the proposal.

Example 1. For k = 2, define

A1 =

⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠ , A2 =

⎛⎝0 1 0
1 0 0
0 0 0

⎞⎠ , A3 =

⎛⎝0 0 0
0 1 0
0 0 0

⎞⎠ ,

A4 =

⎛⎝0 0 1
0 0 0
1 0 0

⎞⎠ , A5 =

⎛⎝0 0 0
0 0 1
0 1 0

⎞⎠ , A6 =

⎛⎝0 0 0
0 0 0
0 0 1

⎞⎠ .

�

Define B as a (k + 1)2 × (k+1)(k+2)
2 matrix such that B’s ((s− 1)n+ t, �) entry

is a
(�)
s,t for s, t ∈ [1, k + 1] and � ∈ [1, (k+1)(k+2)

2 ]. (Then, we implicitly define

Gt = G
(k+1)(k+2)

2
t .) By using the matrix B, we can construct a bilinear group

generator GB
k .

Next, we show that a group generator GB
k , where B is defined as above, is an

optimal projecting symmetric bilinear group generator. The following Theorem 5
provides the desired result.

5 Freeman used the notation GP , which is equivalent to our notation GI4
1 .
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Theorem 5. Let GB
k be a bilinear group generator with restrictions such that

G = H, g = h, −→x i = −→y i for all i ∈ [1, k], and B is a (k + 1)2 × (k+1)(k+2)
2

matrix defined as above. Then, GB
k is an optimal projecting symmetric bilinear

group generator with overwhelming probability, where the probability goes over
the randomness used in GB

k .

We leave the proof of Theorem 5 in the full version.
Our definition of projecting requires only the existence of homomorphisms

satisfying some conditions. However, some applications (ex: Boneh-Goh-Nissim
cryptosystem [10,15]) require that such homomorphisms are efficiently com-
putable. We provide the way how to construct efficiently computable homo-
morphisms (precisely, natural projections) satisfying projecting property in the
full version.

Example 2. For k = 2, we can construct an optimal projecting symmetric bi-
linear group generator by using the matrices in example 1. We denote such a
bilinear group generator by GB∗

2 , where B∗ is a 9 × 6 matrix defined by the
A1, . . . , A6 matrices in example 1.

B∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for GB∗
2

By Theorem 5, GB∗

2 is optimal projecting symmetric: Since B∗ is a 9× 6 matrix,
the target group Gt is equal to G6

t . Moreover, B∗ has nine 1’s in the entries and
zeros elsewhere so that bilinear pairing e requires 9 ê-computations (without any
exponentiations).

5 Application

On the basis of our optimal projecting symmetric bilinear pairings, we derive
new instantiations of three distinct cryptosystems with improved efficiency. In
particular, we apply the projecting symmetric bilinear group generator GB∗

2 in
the example 2 for the Groth-Sahai non-interactive proof system, the Boneh-
Goh-Nissim Cryptosystem, and the Seo-Cheon round optimal Blind signature
scheme. Because of space constraints, we leave details in the full version.

Acknowledgements. We gratefully acknowledge the detailed and helpful com-
ments of anonymous reviewers of ASIACRYPT 2012. We also thank Jung Hee
Cheon and Daisuke Moriyama for constructive feedback on an early draft of the
paper.
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Abstract. In the last years the use of large matrices and their alge-
braic properties proved to be useful to instantiate new cryptographic
primitives like Lossy Trapdoor Functions and encryption schemes with
improved security, like Key Dependent Message resilience. In these con-
structions the rank of a matrix is assumed to be hard to guess when
the matrix is hidden by elementwise exponentiation. This problem, that
we call here the Rank Problem, is known to be related to the Decisional
Diffie-Hellman problem, but in the known reductions between both prob-
lems there appears a loss-factor in the advantage which grows linearly
with the rank of the matrix.

In this paper, we give a new and better reduction between the Rank
problem and the Decisional Diffie-Hellman problem, such that the reduc-
tion loss-factor depends logarithmically in the rank. This new reduction
can be applied to a number of cryptographic constructions, improving
their efficiency. The main idea in the reduction is to build from a DDH
tuple a matrix which rank shifts from r to 2r, and then apply a hybrid ar-
gument to deal with the general case. In particular this technique widens
the range of possible values of the ranks that are tightly related to DDH.

On the other hand, the new reduction is optimal as we show the
nonexistence of more efficient reductions in a wide class containing all
the “natural” ones (i.e., black-box and algebraic). The result is twofold:
there is no (natural) way to build a matrix which rank shifts from r to
2r + α for α > 0, and no hybrid argument can improve the logarithmic
loss-factor obtained in the new reduction.

The techniques used in the paper extend naturally to other “algebraic”
problems like the Decisional Linear or the Decisional 3-Party Diffie-
Hellman problems, also obtaining reductions of logarithmic complexity.

Keywords: Rank Problem, Decisional Diffie-Hellman Problem, Black-
Box Reductions, Algebraic Reductions, Decision Linear Problem.

1 Introduction

Motivation. In the last years the use of large matrices and their algebraic
properties proved to be useful to instantiate new cryptographic primitives like

� Partially supported by the Spanish research project MTM2009-07694, and the Eu-
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Lossy Trapdoor Functions [7,8,12,13] and encryption schemes with improved
security, like Key Dependent Message [2]. In these constructions the rank of a
matrix is assumed to be hard to guess when the matrix is hidden by elementwise
exponentiation. This problem, that we call here the Rank Problem, is known to
be related to the Decisional Diffie-Hellman (DDH) problem, but in the known
reductions between both problems there appears a loss-factor in the adversary’s
advantage which grows linearly with the rank of the matrix. The Rank Problem
first appeared in some papers under the names Matrix-DDH [2] and Matrix
d-Linear [10].

In the cryptographic constructions mentioned above, some secret values (mes-
sages or keys) are encoded as group element vectors and then hidden by multi-
plying them by an invertible matrix. The secret value is recovered by inverting
the operations: first multiplying by the inverse matrix and then inverting the
encoding as group elements. This last step requires to encode a few bits (typi-
cally, a single bit) in each group element, forcing the length of the vector and the
rank of the matrix to be comparable to the binary length of the secret. Security
of these schemes is related to the indistinguishability of full-rank matrices from
low-rank (e.g., rank 1) matrices: If the invertible matrix is replaced by a low rank
one, the secret value is information-theoretically hidden. Therefore, the security
of these schemes is related to the hardness of the Rank problem for matrices of
large rank (e.g., 320 or 1024).

Reductions of the DDH problem to the Rank problem are based in the obvious
relationship between them in the case of 2 × 2 matrices. Namely, from a DDH

problem tuple (g, gx, gy, gz) one can build a matrix gM =

(
g gx

gy gz

)
, which is the

elementwise exponentiation of the Zq matrix M =

(
1 x
y z

)
. For a 0-instance of

DDH (i.e., z = xy), detM = 0, while for a 1-instance (i.e., z �= xy), detM �=
0, and therefore, the rank of M shifts from 1 to 2 depending on the DDH
instance. This technique can be applied to larger (even non-square) matrices by
just padding the previous 2× 2 block with some ones in the diagonal and zeroes
elsewhere, just increasing the rank from 1 or 2 to r + 1 or r + 2, where r is the
number of ones added to the diagonal.

Now, a general reduction of DDH to any instance of the rank problem (i.e.,
telling apart hidden matrices of ranks r1 and r2) is obtained by applying a hybrid
argument, incurring into a loss-factor in the adversary’s advantage which grows
linearly in the rank difference r2 − r1.

This loss-factor has an extra impact on the efficiency of the cryptographic
schemes based on matrices: For the same security level the size of the group has
to be increased, and therefore the sizes of public keys, ciphertexts, etc. increase
accordingly.

Until now it was an open problem to find a tighter reduction of DDH to the
Rank problem. To face this kind of problems one can choose between build-
ing new tighter reductions or showing impossibility results. However, most of
the known impossibility results are quite limited because they only claim the
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nonexistence of reductions of certain type (e.g., black-box, algebraic, etc.). But
still these negative results have some value since they capture all possible ‘natu-
ral’ reductions between computational problems, at least in the generic case (e.g.,
without using specific properties of certain groups and their representation).

Main Results. In this paper, we give a new and better reduction between
the Rank and the DDH problems, such that the reduction loss-factor grows
logarithmically with the rank of the matrices. This new reduction can be applied
to a number of cryptographic constructions improving their efficiency. The main
idea in the reduction is to build a matrix from a DDH tuple which rank shifts
from r to 2r, and then apply a hybrid argument to deal with the general case.

On the other hand, the new reduction is optimal: We show the nonexistence
of more efficient reductions in a wide class containing all the “natural” ones
(i.e., black-box and algebraic). The result is twofold: There is no (natural) way
to build a matrix which rank shifts from r to 2r + α for α > 0, and no hybrid
argument can improve the logarithmic loss-factor obtained in the new reduction.

Basically, the new reduction achieves the following result.

(Informal) Theorem 1. For any �1, �2, r1, r2 such that 1 ≤ r1 < r2 ≤ min(�1, �2)
there is a reduction of the DDH problem to the Rank problem for �1 × �2 matrices
of rank either r1 or r2, where the advantage of the problem solvers fulfil

AdvRank(G, �1, �2, r1, r2; t) ≤
⌈
log2

r2
r1

⌉
AdvDDH(G; t′)

and their running times t and t′ are essentially equal.

In particular, our reduction relates the DDH Problem to the hardness of telling
apart � × � full rank matrices from rank 1 matrices with a loss-factor of only
log2(�), instead of the factor � obtained in previous reductions. Moreover, the
previous reductions are tight only for ranks r1 and r2 such that r2 = r1 + 1,
while our results show that there exists a tight reduction for r1 < r2 ≤ 2r1.

At this point, it arises the natural question of whether a tight reduction exists
for a wider range of the ranks r1 and r2. However, we show the optimality of the
new reduction by the following negative result.

(Informal) Theorem 2. For any �1, �2, r1, r2 such that 1 ≤ r1 < r2 ≤ min(�1, �2)
and any ‘natural’ reduction R of DDH to the Rank problem, the advantages of the
Rank problem solver A and the DDH solver R([A]) fulfil

AdvRankR[A](G, �1, �2, r1, r2; t) ≥
⌈
log2

r2
r1

⌉
AdvDDHA(G; t′)− ε

where the running times t, t′ are similar and ε is a negligible quantity.

Here, ‘natural reduction’ basically means a black-box reduction which transforms
a DDH tuple into a hidden matrix by performing only (probabilistic) algebraic
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manipulations, which are essentially linear combinations of the exponents with
known integer coefficients, depending on the random coins of the reduction.

All generic reductions from computational problems based on cyclic groups
fall into this category. Therefore, this result has to be interpreted as one can-
not expect finding a tighter reduction for a large class of groups unless a new
(non-black-box or not algebraic) technique is used. Nevertheless, falsifying this
negative result would imply an improvement on the efficiency of the cryptosys-
tems based on matrices, or even the discovery of a new reduction technique.

The techniques used in the paper extend naturally to other “algebraic” prob-
lems like the Decisional Linear (DLin) or the Decisional 3-Party Diffie-Hellman
(D3DH) problems, also obtaining reductions with logarithmic complexity. Actu-
ally, these reductions recently appeared in [4] and [5].

(Informal) Theorem 3. For any �1, �2, r1, r2 such that 2 ≤ r1 < r2 ≤ min(�1, �2)
there is a reduction of the DLin problem to the Rank problem for �1 × �2 matrices
of rank either r1 or r2, where the advantage of the problem solvers fulfil

AdvRank(G, �1, �2, r1, r2; t) ≤
⌈
1.71 log2

r2
r1 − 1

⌉
AdvDLin(G; t′)

and their running times t and t′ are essentially equal.

(Informal) Theorem 4. For any �1, �2, r1, r2 such that 2 ≤ r1 < r2 ≤ min(�1, �2)
there is a reduction of the D3DH problem to the Rank problem for �1 × �2 matrices
of rank either r1 or r2, where the advantage of the problem solvers fulfil

AdvRank(G, �1, �2, r1, r2; t) ≤
⌈
1.71 log2

r2
r1 − 1

⌉
AdvD3DH(G; t′)

and their running times t and t′ are essentially equal.

Negative results similar to Theorem 2 are also given, but in these two cases the
reductions are shown to be optimal up to a constant factor of 1.71.

Further Research. Some of the ideas and techniques used in the paper suggest
that the problem of the optimality of certain type of reductions for a class of
decisional assumptions can be studied under the Algebraic Geometric point of
view. In particular, this could help to close the gap in the loss-factor between
the reduction and the lower bound when reducing DLin or D3DH to Rank, and
could made possible to obtain similar results for a broad class of computational
problems. A second open problem is how the techniques and results adapt to the
case of composite order groups, specially when the factorization of the order, or
the order itself is unknown.

Roadmap. The paper starts with some notation and basic lemmas, in Section 2.
Then the Rank Problem and the new reduction of DDH is presented in Section 3.
The optimality of the reduction is studied in Section 4. In the last section of the
paper, the previous results are extended to other “algebraic” decisional problems
like DLin or D3DH.
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2 Notation and Basic Lemmas

Let G be a group of prime order q, and let g be a random generator of G. For
convenience we will use additive notation for all groups. In particular, 0G denotes
the neutral element in G, whereas 1G denotes the generator g. Analogously, x1G ,
or simply xG , denotes the result of g

x, for any integer x ∈ Zq. The additive nota-
tion extends to vectors and matrices of elements in G, in the natural way. That
is, given a vector x = (x1, . . . , x�) ∈ Z�

q, we will write xG = ((x1)G , . . . , (x�)G),

and the same for matrices. Zq
�1×�2 denotes the set of all �1 × �2 matrices, and

Zq
�1×�2;r is used for the subset of those matrices with rank r. In the special

case of invertible matrices we will write GL�(Zq) = Zq
�×�;�. The sets of matrices

with entries in G, which we write G�1×�2 , G�1×�2;r and GL�(G), are defined in
the natural way by replacing every matrix M by MG . Notice that the sets are
independent of the choice of the group generator 1G .

An element xG = x1G ∈ G and an integer a ∈ Zq can be operated together:
axG = (ax mod q)1G = (ax)G = xaG . These operations extend to vectors and
matrices in the natural way. Therefore, for any two matrices A ∈ Zq

�1×�2 and

B ∈ Zq
�2×�3 , we have AGB = ABG = (AB)G .

For convenience we will use the notation A⊕B for block matrix concatenation:

A⊕B =

(
A 0
0 B

)
In addition, I� and 0�1×�2 respectively denote the neutral element in GL�(Zq) and

the null matrix in Zq
�1×�2 . The shorthand 0� = 0�×� is also used. Given a matrix

A ∈ Zq
�1×�2 , the transpose of A is denoted by A
, and the vector subspace

spanned by the columns of A is denoted by SpanA ⊆ Z�1
q , which dimension

equals rankA.
Uniform sampling of a set S is written as x ∈R S. In addition, sampling

from a probability distribution D which support is included in S is denoted by
x← D, while x← A(a) denotes that x is the result of running a (probabilistic)
algorithm A on some input a.

As it is usual, a positive function f : Z+ → R+ is called negligible if f(λ)
decreases faster than λ−c for any positive constant c. We denote this by f(λ) ∈
negl(λ). Similarly, f(λ) > negl(λ) denotes that f(λ) is non negligible in λ.

Lemma 1. The following three natural group actions are transitive:1

1. the left-action of GL�1(Zq) on Zq
�1×�2;�2 , for �1 ≥ �2, defined by A �→ UA,

where U ∈ GL�1(Zq) and A ∈ Zq
�1×�2;�2 ,

2. the right-action of GL�2(Zq) on Zq
�1×�2;�1 , for �1 ≤ �2, defined by A �→ AV ,

where V ∈ GL�2(Zq) and A ∈ Zq
�1×�2;�1 ,

1 The action of a group G on a set A is transitive if for any a, b ∈ A there exists g ∈ G
such that b = g · a. As a consequence, if g ∈R G then for any a ∈ A, g · a is uniform
in A.
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3. the left-right-action of GL�1(Zq) × GL�2(Zq) on Zq
�1×�2;r, defined by A �→

UAV , where U ∈ GL�1(Zq), V ∈ GL�2(Zq) and A ∈ Zq
�1×�2;r.

Lemma 2 (Rank Decomposition). Given any matrix A ∈ Zq
�1×�2;r, there

exist matrices L ∈ Zq
�1×r;r and R ∈ Zq

r×�2;r such that A = LR.

3 The Rank Problem and the New Reduction of DDH to
Rank

We consider an assumption related to matrices, which is weaker than some well-
known assumptions like the Decisional Diffie-Hellman, the Decisional Linear [1]
and the Decisional 3-Party Diffie-Hellman [3,6,9] assumptions. Given an (addi-
tive) cyclic group G of prime order q of binary length λ, theRank(G, �1, �2, r1, r2)
problem informally consists of distinguishing if a given matrix in Zq

�1×�2 has ei-
ther rank r1 or rank r2, for given integers r1 < r2. The problem is formally
defined through the following two experiments between a challenger and a dis-
tinguisher A.

Experiment ExpRankb
A(G, �1, �2, r1, r2) is defined as follows, for b = 0, 1.

1. If b = 0, the challenger chooses M ∈R Zq
�1×�2;r1 and sends MG to A.

If b = 1, the challenger chooses M ∈R Zq
�1×�2;r2 and sends MG to A.

2. The distinguisher A outputs a bit b′ ∈ {0, 1}.

Let Ωb be the event that A outputs b′ = 1 in ExpRankb
A(G, �1, �2, r1, r2). The

advantage of A is defined as AdvRankA(G, �1, �2, r1, r2) = |Pr[Ω0] − Pr[Ω1]|.
We can then define

AdvRank(G, �1, �2, r1, r2; t) = max
A

{AdvRankA(G, �1, �2, r1, r2)}

where the maximum is taken over all A running within time t.

Definition 1. The Rank(G, �1, �2, r1, r2) assumption in a group G states that
AdvRank(G, �1, �2, r1, r2; t) is negligible in λ = log |G| for any value of t that is
polynomial in λ.

The Rank assumption appeared in recent papers under the names Matrix-
DDH [2] and Matrix d-Linear [10]. However, the reduction given in the next
proposition substantially improves the reductions previously known. Namely,
the loss factor in the new reduction grows no longer linearly but logarithmically
in the rank.

Firstly, note that the Rank(G, �1, �2, r1, r2) problem is random self-reducible,
since by Lemma 1 given M0 ∈ Zq

�1×�2;k, for random L ∈R GL�1(Zq) and R ∈R

GL�2(Zq) the product LM0R is uniformly distributed in Zq
�1×�2;k.

Lemma 3. Any distinguisher for Rank(G, �1, �2, k − δ, k), �1, �2 ≥ 2, k ≥ 2,
1 ≤ δ ≤

⌊
k
2

⌋
can be converted into a distinguisher for the Decisional Diffie-

Hellman (DDH) problem, with the same advantage and with essentially the same
running time.
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Proof. Given a DDH instance (1, x, y, z)G , the DDH distinguisher builds the
�1 × �2 matrix

MG =

(
1 x
y z

)
G
⊕ · · · ⊕

(
1 x
y z

)
G︸ ︷︷ ︸

δ times

⊕Ik−2δG ⊕ 0(�1−k)×(�2−k)G

and submits the randomized matrix LMGR to the Rank(G, �1, �2, k − δ, k) dis-
tinguisher, where L ∈R GL�1(Zq) and R ∈R GL�2(Zq). Notice that if z = xy
mod q then the resulting matrix is a random matrix in G�1×�2;k−δ. Otherwise, it
is a random matrix in G�1×�2;k. � 

Theorem 1. For any �1, �2, r1, r2 such that 1 ≤ r1 < r2 ≤ min(�1, �2) we have,

AdvRank(G, �1, �2, r1, r2; t) ≤
⌈
log2

r2
r1

⌉
AdvDDH(G; t′)

where t′ = t+O(�1�2(�1 + �2)), taking the cost of a scalar multiplication in G as
one time unit.

Proof. We proceed by applying a hybrid argument. Let us consider the sequence
of integers {ni} defined by ni = r12

i, and let k be the smallest index such
that nk ≥ r2, that is k = �log2 r2 − log2 r1�. Then define a sequence of random
matrices {MiG}, where Mi ∈R Zq

�1×�2;ni for i = 0, . . . , k − 1, and Mk ∈R

Zq
�1×�2;r2 . For any distinguisher ARank with running time upper bounded by t,

let pi = Pr[1← ARank(MiG)]. By Lemma 3,

|pi+1 − pi| = AdvRankARank
(G, �1, �2, ni, ni+1) ≤ AdvDDH(G; t′)

for i = 0, . . . , k − 2, and

|pk − pk−1| = AdvRankARank
(G, �1, �2, nk−1, r2) ≤ AdvDDH(G; t′)

Therefore,

AdvRankARank
(G, �1, �2, r1, r2) = |pk − p0| ≤ |p1 − p0|+ . . .+ |pk − pk−1| ≤

≤ k ·AdvDDH(G; t′)

which leads to the desired result. � 

4 Optimality of the Reduction

In this section we show that there does not exist any reduction of DDH to the
Rank problem that improves the result in Theorem 1, unless it falls out of the
class of reductions that we call black-box algebraic reductions.
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4.1 Black-Box Algebraic Reductions

Formally, a reduction R of a computational problem P1 to a problem P2 effi-
ciently transforms any probabilistic polynomial time algorithm A2 solving P2

with a non-negligible advantage ε2 into another probabilistic polynomial time
algorithmA1 = R[A2] solving P1 with a non-negligible advantage ε1. The reduc-
tion R is called black-box if A1 is just a probabilistic polynomial time algorithm
with oracle access to A2.

In this paper we focus on the optimality of a reduction, measured in terms of
the advantages of A1 and A2. However, to be meaningful we need to add another
requirement to the reduction: The running times of A1 and A2 are similar.
Otherwise, one can arbitrarily increase the advantage of A1 by repetition, thus
making more than one oracle call to A2. We must add a qualifier and say that
the reduction is then time-preserving black-box. However, for simplicity we will
omit it and simply refer to black-box reductions.

Following [11], we say that R is algebraic with respect to a group G if it
only performs group operations on the elements of G (i.e., group operation,
inversion and comparison for equality), while there is no limitation in the opera-
tions performed on other data types. Although the notion of black-box algebraic
reduction is theoretically very limited, it captures all the ‘natural’ reductions,
since all known reductions between problems related to the discrete logarithm in
cyclic groups fall into this category. See [11] for a deeper discussion on algebraic
reductions and their relation with the generic group model.

In the definition of an algebraic algorithm R it is assumed that there exists
an efficient extractor that, from the inputs of R (including the random tape)
and the code of R, it extracts a representation of every group element in R’s
output as a multiexponentiation of the base formed by the group elements in the
input of R. However, here we only require that for every value of the random
tape of R there exists such representation, and it is independent of the group
elements on the input of R. More precisely, if g1, . . . , gm ∈ G are the group
elements in the input of R and h1, . . . , hn ∈ G are the group elements in the
output, then for any choice of the other inputs and the random tape, there exist
coefficients αij ∈ Zq such that hi = αi1g1 + . . .+αimgm, for i = 1, . . . , n. Notice
that this is true as long as R performs only group operations on the group
elements.

We insist in the possible existence of reductions using more intricate opera-
tions other than the group operations defined in G. However, there is little hope
to be able to control the rank of the manipulated matrices, except for the trivial
fact that a random matrix has maximal rank with overwhelming probability.

4.2 Canonical Solvers

In this paper, we consider only reductions R of some decisional problem (like
DDH) to the Rank problem (say Rank(G, �1, �2, r1, r2)). Therefore, in a (time-
preserving) black-box reduction, having oracle access to a solver A2 of Rank
exactly means that R computes some matrix in G�1×�2 , and uses it as input of
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A1, then obtaining a bit b′ ∈ {0, 1} as its output. Therefore, R is nothing more
than a way to obtain a matrix from a DDH instance by an algebraic function.

As Rank problem is random self-reducible, one can consider the notion of a
canonical solver A for Rank(G, �1, �2, r1, r2). In a first stage, a canonical solver,
on the input of a matrix MG ∈ G�1×�2 , computes the randomized matrix M ′

G =
LMGR for randomly chosen L ∈ GL�1(Zq) and R ∈ GL�2(Zq), and then uses
it as input of the second stage. Observe that MG and M ′

G have always the
same rank, and they are nearly independent. Indeed MG and M ′

G conditioned
to any specific value of the rank r are independent random variables, and M ′

G is

uniformly distributed in G�1×�2;r.
Moreover, for any solverA ofRank(G, �1, �2, r1, r2) we build a canonical solver

A from A with the same advantage, by just inserting the initial randomiza-
tion step. As a consequence, to obtain a negative result about the existence of
black-box reductions of some problem to Rank(G, �1, �2, r1, r2), we only need to
consider how the reduction works for canonical solvers of Rank(G, �1, �2, r1, r2).

Finally, it should be noticed that a canonical solver is completely character-
ized by a probability vector pA = (pA,i)i∈Z+ , where pA,i = Pr[1 ← A(MG) :
MG ∈R G�1×�2;i]. The advantage of a canonical solver is then AdvRankA =
|pA,r2 − pA,r1 |. Dealing with all canonical solvers ofRank(G, �1, �2, r1, r2) means
considering all possible probability vectors pA such that |pA,r2 − pA,r1 | is non-
negligible.

4.3 More Linear Algebra

Let us see the implications of restricting the reductions to be algebraic. Since here
we reduce the decisional problem DDH to theRank(G, �1, �2, r1, r2) problem, the
reduction R will receive as input either a 0-instance (i.e., (1G , xG , yG , xyG)) or a
1-instance (i.e., (1G , xG , yG , (xy+s)G)) of the decisional problem (where x, y, s ∈R

Zq). In spite of the instance received, R will compute a matrixMG ∈ G�1×�2 that
depends ‘algebraically’ on the input group elements. Therefore, for any value of
the random tape of R there exist matrices B1, B2, B3, B4 ∈ Zq

�1×�2 such that
M = B1 + xB2 + yB3 + (xy + s)B4, where either s = 0 or s ∈R Zq, depending
on the type of instance received by R.

Therefore, we need some properties of the sets of matrices that are linear
combinations of some fixed matrices with coefficients that are multivariate poly-
nomials. The following lemma informally states that matrices in a linear variety
of Zq

�×� (of any dimension) are invertible with either zero or overwhelming
probability.

Lemma 4. Let M be a coset of a Zq-vector subspace of Zq
�×�, that is, there

exist matrices A,B1, . . . , Bk ∈ Zq
�×� for some integer k such that M = {A +

x1B1 + . . .+ xkBk | x1, . . . , xk ∈ Zq}. If GL�(Zq) ∩M �= ∅ then,

νM =
|GL�(Zq) ∩M|

|M| > 1− �

q − 1



Optimal Reductions of Some Decisional Problems to the Rank Problem 89

Proof. 2 Let us choose A ∈ GL�(Zq) ∩ M and let {B1, . . . , Bk} be a base of
the vector space M − A. In any line L ⊂ M containing A there can be at
most � matrices M ∈ L such that rankM < � (i.e., detM = 0). Indeed, for
any line L there is a nonzero vector x = (x1, . . . , xk) ∈ Zk

q such that L =
{A+μ(x1B1+ . . .+xkBk) | μ ∈ Zq}. Therefore the polynomial equation det(A+
μ(x1B1+. . .+xkBk)) = 0, which is equivalent to Qx(μ) = det(I�+μ(x1B1A

−1+
. . .+xkBkA

−1)) = 0, has at most � roots because Qx(0) = 1 and λ−�Qx(1/λ) =
det(λI� + x1B1A

−1 + . . . + xkBkA
−1) = 0 if and only if λ is an eigenvalue of

x1B1A
−1 + . . . + xkBkA

−1. Finally, since there are exactly
∣∣PZk−1

q

∣∣ = qk−1
q−1

different lines in M containing A,

νF ≥ 1− �(qk − 1)/(q − 1)

qk
> 1− �

q − 1

as k is the dimension of the vector space M−A, and then |M| = qk. � 

This lemma can be easily generalized to parametrical subsets of linear vari-
eties by replacing each variable xj , j = 1, . . . , k, by a multivariate polynomial
pj(y1, . . . , yn) ∈ Zq[y1, . . . , yn] (or simply, M is now the range of a multivariate
polynomial with matrix coefficients). Here we cannot ensure that the mapping
between the parameter vector y = (y1, . . . , yn) and the matrices in M is one-
to-one. Therefore we will define νM as the probability of obtaining a full-rank
matrix when y ∈R Zn

q is sampled with the uniform distribution.

Lemma 5. Let M be a subset of Zq
�×� defined as M = {p1(y)B1 + . . . +

pk(y)Bk | y ∈ Zn
q }, where p1(y), . . . , pk(y) ∈ Zq[y] are multivariate polynomials

of total degree at most d, and B1, . . . , Bk ∈ Zq
�×� for some integer k. If GL�(Zq)∩

M �= ∅ then,

νM = Pr[M ∈ GL�(Zq) : M = p1(y)B1 + . . .+ pk(y)Bk, y ∈R Zn
q ] ≥

≥ 1− �d

q − 1

qn − 1

qn
> 1− �d

q − 1

Proof. The proof is similar, but now we choose A = p1(y0)B1+ . . .+pk(y0)Bk ∈
GL�(Zq) ∩M and define the new polynomials qi(z) = pi(y0 + z) − pi(y0) for
i = 1, . . . k. Now, M \ {A} is partitioned into subsets L∗ = {A + q1(μz)B1 +
. . . + qk(μz)Bk) | μ ∈ Z×

q }, where z ∈ Zn
q \ {0}, each one containing at most

�d singular matrices, since the polynomial Qz(μ) = det(I� + q1(μz)B1A
−1 +

. . . + qk(μz)BkA
−1) is nonzero (as Qz(0) = 1), and it has degree at most d�.

Finally, the claimed inequality follows from the fact that there are (qn−1)/(q−1)
different subsets L∗. � 

The above lemmas refer only to invertible matrices but a similar result applies
to (even rectangular) matrices with respect to a specific value of the rank.

2 This lemma and the following one can alternatively be proved by using the Schwartz
lemma [15] (also referred to as Schwartz-Zippel lemma).
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Lemma 6. Let M be a subset of Zq
�1×�2 defined as M = {p1(y)B1 + . . . +

pk(y)Bk | y ∈ Zn
q }, where p1(y), . . . , pk(y) ∈ Zq[y] are multivariate polynomials

of total degree at most d, and B1, . . . , Bk ∈ Zq
�1×�2 for some integer k. If rm =

maxm∈M rankM then,

νM = Pr[rankM = rm : M = p1(y)B1 + . . .+ pk(y)Bk, y ∈R Zn
q ] > 1− rmd

q − 1

Proof. We just apply the previous lemma to a projection of the set M. Firstly
choose M0 ∈ M such that rankM0 = rm and find matrices L ∈ Zq

rm×�1;rm and

R ∈ Zq
�2×rm;rm such that rankLM0R = rm, that is LM0R ∈ GLrm(Zq). This

matrices are really easy to build, since by Lemma 2 there exist L0 ∈ Zq
�1×rm;rm

and R0 ∈ Zq
rm×�2;rm such that M0 = L0R0. Therefore, we take any L such that

LL0 ∈ GLrm(Zq). For instance, take L as a the all-zero matrix and put rm ones
in its main diagonal, in positions corresponding to rm linearly independent rows
of L0. We similarly proceed with R0 and R.

Now, the projected set M′ = {LMR | M ∈ M} fulfils the conditions of
Lemma 5 and it contains at least one invertible matrix LM0R. Thus,

νM′ = Pr[M ′ ∈ GLrm(Zq) : M ′ = L(p1(y)B1 + . . .+ pk(y)Bk)R, y ∈R Zn
q ] >

> 1− �rm
q − 1

Moreover, since rank(LMR) ≤ rankM ≤ rm for allM ∈M, then rank(LMR) =
rm implies rankM = rm, and

Pr[rankM = rm : M = p1(y)B1 + . . .+ pk(y)Bk, y ∈R Zn
q ] ≥ νM′ > 1− �rm

q − 1

� 

This lemma basically says that in a set M defined and sampled as above the
matrices have a specific rank (the maximal rank in the set) with overwhelm-
ing probability, and ranks below the maximal one occur only with negligible
probability.

4.4 The Case of DDH

Now let us consider the specific case of the sets M0 and M1 generated by a
black-box algebraic reduction R from a DDH 0-tuple or 1-tuple, respectively, for
a fixed random tape of R. More precisely,MDDH-0 = {B0+xB1+ yB2+xyB3 |
x, y ∈ Zq}, while MDDH-1 = {B0 + xB1 + yB2 + (xy + s)B3 | x, y, s ∈ Zq}, for
some matrices B0, B1, B2, B3 ∈ Zq

�1×�2 that could depend on the random tape.
Let rm0 and rm1 be the maximal ranks respectively in MDDH-0 and MDDH-1.
Since the former is a subset of the latter, rm0 ≤ rm1. In addition, it is clear
that rankB0 ≤ rm0, but one can also prove that rankB3 ≤ rm0 and therefore
rm1 ≤ 2rm0, as claimed in the following lemma.
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Lemma 7. Let rm0 and rm1 be the maximal ranks respectively in MDDH-0 and
MDDH-1. Then rm0 ≤ rm1 ≤ 2rm0.

Proof. The left inequality is trivial, as mentioned above. To prove the right
one we firstly use Lemma 6 to show that rankB3 ≤ rm0. Indeed, the sub-
set M∗

DDH-0 = {B0 + xB1 + yB2 + xyB3 | x, y ∈ Z×
q } differs from MDDH-0

in that a negligible fraction of it has been removed. Therefore, the probabil-
ity distributions on both sets (induced by uniformly sampling x and y) are
statistically close. Since for all x, y ∈ Z×

q , rank(B0 + xB1 + yB2 + xyB3) =

rank( 1
xyB0 +

1
yB1 +

1
xB2 + B3), and the inversion map x �→ 1/x is a bijection

in Z×
q , the probability distributions of the ranks in M∗

DDH-0 and in M∗
DDH-0 =

{B3 + xB2 + yB1 + xyB0 | x, y ∈ Z×
q } are identical. Therefore, matrices in

MDDH-0 = {B3+xB2+yB1+xyB0 | x, y ∈ Zq} have rank rm0 with overwhelm-
ing probability. Moreover, by Lemma 6, rm0 is precisely the maximal rank in
MDDH-0 and then, rankB3 ≤ rm0.

3

Finally, observe that for anyM ∈MDDH-1,M = B0+xB1+yB2+(xy+s)B3 =
(B0 + xB1+ yB2+ xyB3)+ sB3 and rankM ≤ rank(B0 + xB1 + yB2+ xyB3)+
rank(sB3) ≤ 2rm0, because B0 + xB1 + yB2 + xyB3 ∈MDDH-0. � 

The previous discussion deals with a fixed arbitrary random tape of the reduc-
tion R. However, the overall performance of R depends on the aggregation of
the contributions of all possible values of the random tape. Technically, given a
particular canonical solver A of Rank(G, �1, �2, r1, r2), described by its probabil-
ity vector pA as defined in Section 4.2, the advantage of R[A] can be computed
as

AdvDDHR[A](G) =

∣∣∣∣∣∣
min(�1,�2)∑

r=0

(π0,r − π1,r)pAr

∣∣∣∣∣∣ = |(π0 − π1) · pA|

where

π0,r = Pr[rankM = r : M ←R(1G , xG , yG , xyG), x, y ∈R Zq]

and

π1,r = Pr[rankM = r : M ←R(1G , xG , yG , (xy + s)G), x, y, s ∈R Zq]

For convenience, we also introduce the cumulative probabilitiesΠb,r =
∑r

i=0 πb,i,
b ∈ {0, 1}.

Since the reduction R must work for any successful solver A, for every prob-
ability vector pA such that |pAr1 − pAr2 | = AdvRankA(G, �1, �2, r1, r2) is non-
negligible, the advantage AdvDDHR[A](G) must be also non-negligible. This
implies the existence of α > negl(λ) such that4

|π0,r − π1,r| ∈ negl(λ) ∀r �∈ {r1, r2}
3 A very similar trick also shows that rankB1 and rankB2 ar at most rm0. However,
it is not clear how to extend this argument to arbitrary multivariate polynomials.

4 To prove it, consider the fact that there cannot exist any probability vector pA
orthogonal to π0 − π1 such that |pAr1 − pAr2 | > negl(λ).



92 J.L. Villar

|π0,r1 − π1,r1 | = α
|π0,r2 − π1,r2 | = α± negl(λ) (1)

Moreover,

AdvDDHR[A](G) ≤ |pAr1 − pAr2 |α+ negl(λ) =
= αAdvRankA(G, �1, �2, r1, r2) + negl(λ)

All that remains is to find an upper bound of the reduction loss-factor α.
By Lemma 6 we know that for every value of the random tape, Pr[rankM <

rmb : M ← MDDH-b] ∈ neglλ for b ∈ {0, 1}, and by definition of rmb,
Pr[rankM ≤ rmb : M ← MDDH-b] = 1. Therefore, considering all values of
the random tape of R,5

Πb,i = Pr[rmb ≤ i] + negl(λ) b ∈ {0, 1} (2)

where now rm0 and rm1 are random variables. By Lemma 7, rm0 ≤ rm1 ≤ 2rm0,
which implies6 Pr[rm1 ≤ i] ≤ Pr[rm0 ≤ i] ≤ Pr[rm1 ≤ 2i], for arbitrary i, and
by (2),

Π1,i − negl(λ) ≤ Π0,i ≤ Π1,2i + negl(λ) (3)

Now, using left hand side of (3) for i = r1 we get Π1,r1 ≤ Π0,r1 + negl(λ), and
combined with (1), we obtain π0,r1 = π1,r1 + α and π1,r2 ≤ π0,r2 + α+ negl(λ).
In addition, for any i such that r1 ≤ i < r2,

Π0,i = Π1,i + α± negl(λ) (4)

Let us assume now that r2 > 2kr1 for some k ≥ 1. Then, applying the right
hand side of (3) and (4),

Π0,2kr1 = Π1,2kr1 + α± negl(λ) ≥ Π0,2k−1r1 + α− negl(λ)

and by induction,

Π0,2kr1 ≥ Π0,r1 + kα− negl(λ) ≥ (k + 1)α− negl(λ)

where (4) is used again in the last step.
Finally, since the leftmost sum is upper bounded by 1,

α ≤ 1 + negl(λ)

k + 1

for any k < log2 r2 − log2 r1. Therefore,

α ≤ 1 + negl(λ)

�log2 r2 − log2 r1�

The above discussion proves the following theorem.

5 If rmb ≤ i then rankM ≤ i with probability 1. Otherwise, rankM ≤ i only with
negligible probability.

6 Observe that rm1 ≤ i ⇒ rm0 ≤ i ⇒ rm1 ≤ 2i.
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Theorem 2. For any �1, �2, r1, r2 such that 1 ≤ r1 < r2 ≤ min(�1, �2) and any
time-preserving black-box algebraic reduction R of DDH(G) to the Rank(G, �1,
�2, r1, r2) problem, any canonical Rank solver A and the corresponding DDH
solver R([A]) fulfil

AdvRankR[A](G, �1, �2, r1, r2; t) ≥
⌈
log2

r2
r1

⌉
AdvDDHA(G; t′)− negl(λ)

where the running times t, t′ are similar.
� 

5 Reductions of Other Decisional Problems

We consider now other well-known computational problems, namely the Deci-
sional Linear (DLin) [1] and the Decisional 3-Party Diffie-Hellman (D3DH) [3,6,9]
problems.

The techniques described above can be applied to these problems by defining
a suitable basic matrix block M (of suitable size) where the problem instance
is embedded, and use as many copies of it as possible. More precisely, we call
algebraic to any decisional problem (such as DDH, DLin or D3DH) in which the
problem instance is defined by a tuple of elements in a (cyclic) group which dis-
crete logarithms fulfil or not a specific algebraic equation. The way the problem
instance is embedded into the matrix M is by rewriting the algebraic equation
as detM = 0.

5.1 The Decisional Linear Problem

The Decisional Linear problem consists on distinguishing between the distribu-
tions (xG , yG , zG , tG , (x

−1z + y−1t)G) ∈ G5 and (xG , yG , zG , tG , uG) ∈ G5, where
x, y, z, t, u ∈R Zq are chosen independently and uniformly at random. More for-
mally, we consider the following two experiments between a challenger and a
distinguisher A.

Experiment ExpDLinb
A(G) is defined as follows, for b = 0, 1.

1. The challenger chooses random x, y, z, t, u ∈R Zq. If b = 0, the challenger
sends the tuple (1G , xG , yG , zG , tG , (x

−1z + y−1t)G) ∈ G6 to A. Otherwise, it
sends the tuple (1G , xG , yG , zG , tG , uG) ∈ G6.

2. The distinguisher A outputs a bit b′ ∈ {0, 1}.

Let Ωb be the event that A outputs b′ = 1 in ExpDLinb
A(G). The advantage of

A is AdvDLinA(G) = |Pr[Ω0]−Pr[Ω1]|. We can then define AdvDLin(G; t) =
maxA {AdvDLinA(G)}, where the maximum is taken over all A running within
time t.

Definition 2 (DLin). The Decisional Linear assumption in a group G states
that AdvDLin(G; t) is negligible in λ = log |G| for any value of t that is polyno-
mial in λ.
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Lemma 8. Any distinguisher for Rank(G, �1, �2, k − δ, k), �1, �2 ≥ 3, k ≥ 3,
1 ≤ δ ≤

⌊
k
3

⌋
can be converted into a distinguisher for the Decisional Linear

(DLin) problem, with the same advantage and running essentially within the
same time.

Proof. Given a DLin instance (1, x, y, z, t, u)G the DLin distinguisher builds the
�1 × �2 matrix

MG =

⎛⎝x 0 1
0 y t
z 1 u

⎞⎠
G

⊕ · · · ⊕

⎛⎝x 0 1
0 y t
z 1 u

⎞⎠
G︸ ︷︷ ︸

δ times

⊕Ik−3δG ⊕ 0(m−k)×(n−k)G

and submits the randomized matrix LMGR to the Rank(G, �1, �2, k − δ, k) dis-
tinguisher, where L ∈R GL�1(Zq) and R ∈R GL�2(Zq). Notice that if u =
x−1z+ y−1t mod q then the resulting matrix is a random matrix in G�1×�2;k−δ.
Otherwise, it is a random matrix in G�1×�2;k. � 

Theorem 3. For any �1, �2, r1, r2 such that 2 ≤ r1 < r2 ≤ min(�1, �2),

AdvRank(G, �1, �2, r1, r2; t) ≤
⌈
log(3r2)− log(3r1 − 2)

log 3− log 2

⌉
AdvDLin(G; t′) ≤

≤
⌈
1.71 log2

r2
r1 − 1

⌉
AdvDLin(G; t′)

Proof. We can apply a hybrid argument similar to the one used in Theorem 1. Let
us consider the sequence of integers {ni} defined by the recurrence n0 = r1 and
ni+1 =

⌊
3ni

2

⌋
, and let k be the smallest index such that nk ≥ r2. Then define a

sequence of random matrices {MiG}, whereMi ∈R Zq
�1×�2;ni for i = 0, . . . , k−1,

and Mk ∈R Zq
�1×�2;r2 . For any distinguisher ARank with running time upper

bounded by t, let pi = Pr[1← ARank(MiG)]. By Lemma 8,

|pi+1 − pi| = AdvRankARank
(G, �1, �2, ni, ni+1) ≤ AdvDLin(G; t′)

for i = 0, . . . , k − 2, and

|pk − pk−1| = AdvRankARank
(G, �1, �2, nk−1, r2) ≤ AdvDLin(G; t′)

Therefore,

AdvRankARank
(G, �1, �2, r1, r2) = |pk − p0| ≤ |p1 − p0|+ . . .+ |pk − pk−1| ≤

≤ k ·AdvDLin(G; t′)

On the other hand, as
⌊
3x
2

⌋
≥ 3x−1

2 then nk ≥
(
3
2

)k (
r1 − 2

3

)
which implies that

k ≤ log(3r2)−log(3r1−2)
log 3−log 2 . � 
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The optimality of the reduction presented above can be analyzed with the same
tools described in Section 4, but adapting some parts of Subsection 4.4. First of
all, we can describe the 0-instances and the 1-instances for the DLin problem in a
slightly different way. Namely,MDLin-0 = {B1+xB2+yB3+xαB4+yβB5+(α+
β)B6 | x, y, α, β ∈ Zq}, whileMDLin-1 = {B1+xB2+yB3+xαB4+yβB5+(α+

β + s)B6 | x, y, α, β, s ∈ Zq}, for some matrices B1, B2, B3, B4, B5, B6 ∈ Zq
�1×�2

that could depend on the random tape of the reduction. By a similar trick one
can manage to reprove Lemma 7 also for DLin and the rest of the analysis
works equally well. The trick in this case is excluding the case α+ β = 0 (which
affects to a negligible fraction of the matrices) and then using a more elaborate
bijection which transforms B1 + xB2 + yB3 + xαB4 + yβB5 + (α + β)B6 into
γB1 + xγB2 + yγB3 + xαγB4 + y(1− αγ)B5 +B6, where γ = 1/(α+ β).

However, the logarithmic expression (which is identical to the one in Theo-
rem 2) for the maximal loss-factor in the reduction is different from the loss-factor
in the above reduction, leaving a gap that could mean that a better ‘natural’
reduction is still possible. Nevertheless, the authors think that a more detailed
analysis of the maximal ranks rm0 and rm1 could be possible, which would im-
prove the negative result obtained here.

5.2 The D3DH Problem

The Decisional 3-Party Diffie-Hellman (D3DH) problem [3,6,9] consists in telling
apart the two distributions (xG , yG , zG , (xyz)G) ∈ G4 and (xG , yG , zG , tG) ∈ G4,
where x, y, z, t ∈R Zq are chosen independently at random. The problem is for-
mally defined through the following two experiments between a challenger and
a distinguisher A.

Experiment ExpD3DHb
A(G) is defined as follows, for b = 0, 1.

1. The challenger chooses random x, y, z, t ∈R Zq. If b = 0, the challenger sends
the tuple (1G , xG , yG , zG , (xyz)G) ∈ G5 to A. Otherwise, it sends the tuple
(1G , xG , yG , zG , tG) ∈ G5.

2. The distinguisher A outputs a bit b′ ∈ {0, 1}.

Let Ωb be the event that A outputs b′ = 1 in ExpD3DHb
A(G). The advantage

of A is AdvD3DHA(G) = |Pr[Ω0]−Pr[Ω1]| and we define AdvD3DH(G, t) =
maxA {AdvD3DHA(G)}, where the maximum is taken over all A running
within time t.

Definition 3. The Decisional 3-Party Diffie-Hellman assumption in a group G
states that AdvD3DH(G, t) is negligible in λ = log |G| for any value of t that
is polynomial in λ.

Similar to the Decisional Linear problem, it turns out that the D3DH problem
is easier than the Rank problem.
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Theorem 4. For any �1, �2, r1, r2 such that 2 ≤ r1 < r − 2 ≤ min(�1, �2),

AdvRank(G, �1, �2, r1, r2; t) ≤
⌈
log(3r2)− log(3r1 − 2)

log 3− log 2

⌉
AdvD3DH(G; t′) ≤

≤
⌈
1.71 log2

r2
r1 − 1

⌉
AdvD3DH(G; t′)

Proof. The proof only differs from the proof of Proposition 3 in the 3× 3 blocks
built from a problem instance, in the proof of Lemma 3. Indeed, given the D3DH
instance (1, x, y, z, t)G the matrix ⎛⎝x −1 0

0 y 1
t 0 z

⎞⎠
has rank 2 or 3 depending on whether t = xyz mod q. � 

The analysis of the optimality of this reduction is comparable to the case of the
Decisional Linear problem. Here the sets of matrices areMD3DH-0 = {B1+xB2+
yB3 + zB4 + xyzB5 | x, y, z ∈ Zq} and MD3DH-1 = {B1 + xB2 + yB3 + zB4 +

(xyz + s)B5 | x, y, z, s ∈ Zq}, for some matrices B1, B2, B3, B4, B5 ∈ Zq
�1×�2

that could depend on the random tape of the reduction. The same gap between
the constructive and negative results is obtained.

5.3 Further Generalizations

The ideas presented before, both the constructive and the negative results for
reductions of some decisional problems to the Rank problem seems to be easily
applicable to a wide class of decisional problems. On the one hand, the con-
struction of a reduction to the Rank problem only needs a way to encode the
difference the 0-instance and the 1-instance of the problem as the determinant of
a square matrix M built up from the group elements in the instances. Typically
a 0-instance corresponds to detM = 0. Following this approach, it is straight-
forward to obtain efficient reductions for instance for the family of Decisional
r-Linear Problems, with arbitrary r.

On the other hand, the negative results about the existence of efficient reduc-
tions also rely on algebraic considerations, mainly related to the sets M which
can be seen as special affine algebraic varieties. It is an open problem to obtain
a description of a wide class of algebraic decisional problems for which a general
negative result can be derived.

In this paper, only prime order groups are considered. However, it would be
interesting to investigate whether the techniques presented here can be applied to
composite order groups, where the matrices involved in the analysis are defined
over rings, and this can introduce some extra difficulties to deal with notions
like the rank and the random self-reducibility.
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Abstract. In the auxiliary input model an adversary is allowed to see
a computationally hard-to-invert function of the secret key. The auxil-
iary input model weakens the bounded leakage assumption commonly
made in leakage resilient cryptography as the hard-to-invert function
may information-theoretically reveal the entire secret key. In this work,
we propose the first constructions of digital signature schemes that are
secure in the auxiliary input model. Our main contribution is a digi-
tal signature scheme that is secure against chosen message attacks when
given an exponentially hard-to-invert function of the secret key. As a sec-
ond contribution, we construct a signature scheme that achieves security
for random messages assuming that the adversary is given a polynomial-
time hard to invert function. Here, polynomial-hardness is required even
when given the entire public-key – so called weak auxiliary input secu-
rity. We show that such signature schemes readily give us auxiliary input
secure identification schemes.

1 Introduction

Modern cryptography analyzes the security of cryptographic algorithms in the
black-box model. An adversary may view the algorithm’s inputs and outputs, but
the secret key as well as all the internal computation remains perfectly hidden.
Unfortunately, the assumption of perfectly hidden keys does not reflect prac-
tice where keys frequently get compromised for various reasons. An important
example is side-channel attacks that exploit information leakage from the imple-
mentation of an algorithm. Side-channel attacks do not only allow the adversary
to gain partial knowledge of the secret key thereby making security proofs less
meaningful, but in many cases may result in complete security breaches.
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In the last years, significant progress has been made within the the-
ory community to incorporate information leakage into the black-box model
(cf. [1, 2, 8, 10, 11, 13, 20, 21] and many more). To this end, these works develop
new models to formally describe the information leakage, and design new schemes
that can be proven secure therein. The leakage is typically characterized by a
leakage function h that takes as input the secret key sk and reveals h(sk)—the
so-called leakage—to the adversary. Of course, we cannot allow h to be any
function as otherwise it may just reveal the complete secret key. Hence certain
restrictions on the class H of admissible leakage functions are necessary.

With very few exceptions (outlined in the next section) most works assume
some form of quantitative restriction on the amount of information leaked to an
adversary. More formally, in the bounded leakage model, it is assumed that H
is the set of all polynomial-time computable functions h : {0, 1}|sk| → {0, 1}λ
with λ ! |sk|. This restriction can be weakened in many cases. Namely, in-
stead of requiring a concrete bound λ on the amount of leakage, it often suffices
that given the leakage h(sk) the secret key still has a “sufficient” amount of
min-entropy left [9, 11, 21, 22]. This so-called noisy leakage models real-world
leakage functions more accurately as now the leakage can be arbitrarily large.
Indeed, real-world measurements of physical phenomenons are usually described
by several megabytes or even gigabytes of information rather than by a few bits.

While security against bounded or noisy leakage often provides a first good
indication for the security of a cryptographic implementation, in practice leakage
typically information theoretically determines the entire secret key [25]. The
only difficulty of a side-channel adversary lies in extracting the relevant key
information efficiently. Formally, this can be modeled by assuming that H is
the set of all polynomial-time computable functions such that given h(sk) it
is still computationally “hard” to compute sk. Such hard-to-invert leakage are
a very natural generalization of both the bounded leakage model and the noisy
leakage model, and is the focus of this work. More concretely, we will analyze the
security of digital signature schemes in the presence of hard-to-invert leakage.
We show somewhat surprisingly that simple variants of constructions for the
bounded leakage setting [4, 8, 9, 17, 19] also achieve security with respect to the
more general class of hard-to-invert leakage.

1.1 The Auxiliary Input Model

The auxiliary input model of Dodis, Kalai and Lovett [10] introduced the no-
tion of security of cryptographic schemes in the presence of computationally
hard-to-invert leakage. They propose constructions for secret key encryption
with IND-CPA and IND-CCA security against an adversary who obtains an
arbitrary polynomial-time computable hard-to-invert leakage h(sk). Security is
shown to hold under a non-standard LPN-related assumption with respect to
any exponentially hard-to-invert function. We say that h is an exponentially
hard-to-invert function of the secret key sk, if there exists a constant c > 0 such
that, for sufficiently large k = |sk|, any PPT adversary A has probability of at
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most 2−ck in inverting h(sk). Notice that the result gets stronger, and the class
of admissible leakage function gets larger, if c is smaller.

In a follow-up paper, and most relevant for our work, Dodis et al. [7] study
the setting of public key encryption. They show that the BHHO encryption
scheme [3] based on DDH and variants of the GPV encryption scheme [14] based
on LWE are secure with respect to auxiliary input leakage. All their schemes re-
main secure under sub-exponentially hard-to-invert leakage (for a weaker notion
that we discuss below [7] achieves security with respect to polynomial hard-to-
invert leakages). That is, a function h is sub-exponentially hard-to-invert if there
exists a constant 1 > c > 0 such that h(sk) can be inverted with probability at
most 2−kc

.
In the public key setting, some important subtleties arise which are also im-

portant for our work.

1. We shall allow the leakage to depend also on the corresponding public key
pk. One approach to model this is to let the adversary adaptively choose
the leakage function after seeing the public key pk [1]. An alternative that
is taken in the work of Dodis et al. [7] assumes admissible leakage functions
h : {0, 1}|sk|+|pk| → {0, 1}∗, where it is hard to compute sk given h(pk, sk).

2. The public key itself may leak information about the secret key. To illustrate
this, consider a contrived scheme, where the public key pk contains the first
k/2 bits of the secret key in clear. Suppose we want to prove security for
leakage functions h with the property that given h(pk, sk), it is at least
2−k/2 hard to compute the secret key sk. Given the public key pk and such
leakage that reveals the last k/2 bits of the secret key, the scheme from
above gets completely insecure. To handle this issue, Dodis et al. propose
a weaker notion of auxiliary input security, which assumes that a function
is an admissible leakage if it is hard to compute the secret key even when
given the public key.

For ease of presentation, we mainly consider in this work this weaker notion
of auxiliary input security. As shown in [7], when the public key is short this
notion implies security for functions h solely under the assumption that given
h(pk, sk) it is computationally hard to compute sk (i.e., without defining hardness
with respect to pk). The underlying idea is that the public key can be guessed
within the proof, which implies that the hardness assumption gets stronger when
applying this proof technique. Specifically, security is obtained in the presence of
exponentially hard-to-invert leakage functions. We further note that this weaker
notion already suffices for composition of different cryptographic schemes using
the same public key. For instance, consider an encryption and signature scheme
sharing the same public key. If the encryption scheme is weakly secure with
respect to any polynomially hard-to-invert leakage function,1 then the scheme
remains secure even if the adversary sees arbitrary signatures, as these signatures

1 A function h is polynomially hard-to-invert auxiliary information, if any probabilistic
polynomial-time adversary computes sk with negligible probability, given the leakage
h(sk, pk).
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can be viewed as hard-to-invert leakage. The opposite may not trivially hold for
signature schemes that are secure with respect to (sub) exponentially hard-to-
invert leakages.

Recently, Brakerski and Goldwasser [5] and Brakerski and Segev [6] proposed
further constructions of public key encryptions secure against auxiliary input
leakage. In the former, the authors show how to construct a public key encryption
scheme secure against sub-exponentially hard-to-invert leakage, based on the QR
and DCR hardness assumptions. In the latter, the concept of security against
auxiliary input has been introduced in the context of deterministic public key
encryption, and several secure constructions were proposed based on DDH and
subgroup indistinguishability assumptions.

1.2 Our Contributions

Despite significant progress on constructing encryption schemes in the auxiliary
input model, the question of whether digital signature schemes can be built
with security against hard-to-invert leakage has remained open so far. This is
somewhat surprising as a large number of constructions for the bounded and
noisy leakage setting are known [2,4,8,9,17,19]. In this paper, we close this gap
and propose the first constructions for digital signature schemes with security in
the auxiliary input model. As a first contribution of our work, we propose new
security notions that are attainable in the presence of hard-to-invert leakage.
We then show that constructions that have been proven to be secure when the
amount of leakage is bounded, also achieve security in the presence of hard-to-
invert leakage. In a nutshell, our results can be summarized as follows:

1. As shown below, existential unforgeability is unattainable in the presence of
polynomially hard-to-invert leakage. We thus weaken the security notion by
focusing on the setting where the challenge message is chosen uniformly at
random. Our construction uses ideas from [19] to achieve security against
polynomially hard-to-invert leakage when prior to the challenge message the
adversary only has seen signatures for random messages. Such schemes can
straightforwardly be used to construct identification schemes with security
against any polynomially hard-to-invert leakage (cf. Sections 3.2).

2. We show that the generic constructions proposed in [4, 9, 17] achieve the
strongest notion of security, namely existentially unforgeable under chosen
message attacks, if we restrict the adversary to obtain only exponentially
hard-to-invert leakage. As basic ingredients these schemes use a family of
second preimage resistant hash functions, an IND-CCA secure public key
encryption scheme with labels and a reusable CRS-NIZK proof system. For
our result to be meaningful, we require both the decryption key and the
simulation trapdoor of the underlying encryption scheme to be short when
compared to the length of the signing key for the signature scheme (cf. Sec-
tion 3.3).

3. We show an instantiation of this generic transformation that satisfies our
requirements on the length of the keys based on the 2-Linear hardness
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assumption in pairing based groups, using the Groth-Sahai proof system [16]
(we refer the reader to the full version).

We elaborate on these results in more detail below.

Polynomially Hard-to-Invert Leakage and Random Challenges. Impor-
tantly, security with respect to polynomially hard-to-invert leakage is impossible
if the message for which the adversary needs to output a forgery, is fixed at the
time the leakage function is chosen. This is certainly the case for the standard
security notion of existential unforgeability. One potential weakening of the se-
curity definition is by requiring the adversary to forge a signature on a random
challenge message. In the case when the challenge messages is sampled uniformly
at random, even though the leakage may reveal signatures for some messages, it
is very unlikely that the adversary hits a forgery for the challenge message.

Specifically, inspired by the work of Malkin et al. [19], we propose a construc-
tion that guarantees security in the presence of any polynomially hard-to-invert
leakage, when the challenge message is chosen uniformly at random. The scheme
uses the message as the CRS for a non-interactive zero-knowledge proof of knowl-
edge (NIZKPoK). To sign, we use the CRS to prove knowledge of sk such that
vk = H(sk), where H is a second preimage resistant hash function. Therefore,
if an adversary forges a signature given vk and the leakage h(vk, sk) with non-
negligible probability, we can use this forgery to extract a preimage of vk which
either contradicts the second preimage resistance of H or the assumption that h
is polynomially hard-to-invert. An obvious drawback of this scheme is that prior
to outputting a forgery for the challenge message the adversary only sees sig-
natures on random messages. Finally, as a natural application of such schemes,
we show that auxiliary input security for signatures carries over to auxiliary
input security of identification schemes. Hence, our scheme can be readily used
to build simple identification schemes with security against any polynomially
hard-to-invert leakage function.

Exponentially Hard-to-Invert Leakage and Existential Unforgeability.
The standard security notion for signature schemes is existential unforgeability
under adaptive chosen-message attacks [15]. Here, one requires that an adver-
sary cannot forge a signature of any message m, even when given access to a
signing oracle. We strengthen this notion and additionally give the adversary
leakage h(vk, sk), where h is some admissible function from class H. It is easy to
verify that no signature scheme can satisfy this security notion when the only
assumption that is made about h ∈ H, is that it is polynomially hard to com-
pute sk given h(vk, sk). The reason for this is as follows. Since the secret key
must be polynomially hard to compute even given some set of signatures (and
the public key), a signature is an admissible leakage function with respect to H.
Hence, a forgery is a valid leakage. This observation holds even when we define
the hardness of h with respect to the public key as well.

Our first observation towards constructing signatures with auxiliary input
security is that the above issues do not necessarily arise when we consider the
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more restricted class of functions that maintain (sub)-exponentially hardness of
inversion. Suppose, for concreteness, that there exists a constant 1 > c > 0 such
that there exists a probabilistic polynomial-time algorithm, taking as input a
signature and the public key and outputting sk with probability p. Here, we
assume that negl(k) ≥ p" 2−kc

for some negligible function negl(·). Then, if we
let H be the class of functions with hardness at least 2−kc

, the signing algorithm
is not in H and hence the artificial counterexample from above does not work
anymore! We instantiate this idea by adding an encryption C = Encek(sk) of the
signing key sk to each signature. The encryption key ek is part of the verification
key of the signature scheme, but the decryption key dk associated with ek is
not part of the signing key. However, we set up the scheme such that dk can be
guessed with probability p. Interestingly, it turns out that recent constructions
of leakage resilient signatures [4,9,17], which originally were designed to protect
against bounded leakage, use as part of the signature an encryption of the secret
key. This enables us to prove that these schemes also enjoy security against
exponentially hard-to-invert leakages.

One may object that artificially adding an encryption of the secret key to the
signature is somewhat counter-intuitive as it seems to reduce the security of the
signature scheme. However, all that is needed for this trick is that guessing dk is
significantly easier than guessing sk. For a given security level we can therefore
pick the length of dk first, as to achieve that security level. After that we can
then pick the length of sk as to achieve meaningful leakage bounds. Our concrete
security analysis allows to choose these keys as to achieve a given security. Note,
also, that adding trapdoors to cryptographic schemes for what superficially only
seems to be proof reasons is common in the field – non-interactive zero-knowledge
being another prominent example.

For readers familiar with the security proof of the Katz-Vaikuntanathan
scheme [17], we note that the crux of our new proof is that in the reduction
we cannot generate a CRS together with its simulation trapdoor. Instead, to
simulate signatures for chosen messages we will guess the simulation trapdoor.
Fortunately, we can show that the loss from guessing the simulation trapdoor
only effects the tightness in the reduction to the inversion hardness of the leakage
functions. As we use a NIZK proof system with a short simulation trapdoor and
only aim for exponential hard-to-invert leakage functions, we can successfully
complete the reduction.

Instantiation under the 2-Linear Assumption. As a concrete example, we
show in the full version how to instantiate our generic transformation using
the Groth-Sahai proofs system based on the 2-linear assumption. This yields
security with respect to any 2−6k′

-hard-to-invert leakage. If we do not wish to
define the hardness with respect to the public key as well, it is possible to guess
it and thus loose an additional factor of 2−3k′

in the hardness assumption. Here,
k′ := log(p) for a prime p that denotes the order of the group for which the
2-linear assumption holds, and the secret key of our scheme has length k := � ·k′
bits for some constant � ∈ N.
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1.3 A Road Map

In Section 2 we specify basic security definitions and our modeling for the aux-
iliary input setting. In Section 3 we present our signature schemes for random
messages (Section 3.2) and chosen massage attack security (Section 3.3). In the
full version we show how to use signatures on random messages to construct iden-
tification schemes with security against any polynomially hard-to-invert leakage.
We also show an instantiation of the later signature scheme under the 2-linear
hardness assumption.

2 Preliminaries

Basic Notation. We denote the security parameter by k and by PPT probabilistic
polynomial-time. For a set S we write x ← S to denote that x is sampled
uniformly from S. We write y ← A(x) to indicate that y is the output of an
algorithm A when running on input x. We denote by 〈a, b〉 the inner product of
field elements a and b. We use negl(·) to denote a negligible function f : N →
R and we use the ≈ notation to denote computational indistinguishability of
families of random variables.

2.1 Public Key Encryption Schemes

We introduce the notion of a labeled public key encryption scheme following the
notation used in [9].

Definition 1 (LPKE). We say that PPT algorithms Π = (KeyGen,Enc,Dec)
is a labeled public key encryption scheme (LPKE) with perfect decryption if:

– KeyGen, given a security parameter k, outputs keys (ek, dk), where ek is a
public encryption key and dk is a secret decryption key.

– Enc, given the public key ek, a label L and a plaintext message m, outputs a
ciphertext c encrypting m. We denote this by c← EncL(ek,m).

– Dec, given a label L, the secret key dk and a ciphertext c, with c← EncL(ek,
m), then with probability 1 outputs m. We denote this by m← DecL(dk, c).

Definition 2 (IND-LCCA secure encryption scheme). We say that a la-
beled public key encryption scheme Π = (KeyGen,Enc,Dec) is IND-LCCA secure
encryption scheme if, for every admissible PPT adversary A = (A1,A2), there ex-
ists a negligible function negl such that the probability IND-LCCAΠ,A(k) thatA wins
the IND-LCCA game as defined below is at most IND-LCCAΠ,A(k) ≤ 1

2 + negl(k).

– IND-LCCA game.

(ek, dk)← KeyGen(1k)

(L,m0,m1, history)← ADec(·)(dk,·)
1 (ek), s.t. |m0| = |m1|

c← EncL(ek,mb), where b← {0, 1}

b′ ← ADec(·)(dk,·)
2 (c, history)

A wins if b′ = b.

An adversary is admissible if it does not query Dec(·)(dk, ·) with (L, c)
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In this work we require a weaker notion, called IND-WLCCA, where the adver-
sary cannot query the decryption oracle with label L. Namely, we change the
definition of admissible to mean that the adversary never queries Dec(·)(dk, ·)
with any input of the form (L, ·), where L is the label picked to compute the
challenge. We discuss further details why this security notion is needed for our
construction in Section 3.3.

2.2 Signature Schemes

A signature scheme is a tuple of PPT algorithms Σ = (Gen, Sig,Ver) defined as
follows. The key generation algorithm Gen, on input 1k outputs a signing and a
verification key (sk, vk). The signing algorithm Sig takes as input a message m
and a signing key sk and outputs a signature σ. The verification algorithm Ver,
on input (vk,m, σ), outputs either 0 or 1 (respectively rejecting or accepting the
signature). A signature scheme has to satisfy the following correctness property:
for any message m and keys (sk, vk)← Gen(1k)

Pr[Ver(vk,m, Sig(sk,m)) = 1] = 1

The standard security notion for a signature scheme is existentially unforgeabil-
ity under chosen message attacks. A scheme is said to be secure under this notion
if, even after seeing signatures for chosen messages, no adversary can come up
with a forgery for a new message. In this article, we extend this security notion
and give the adversary additional auxiliary information about the signing key.
To this end, we define a set of admissible leakage functions H and allow the
adversary to obtain the value h(sk, vk) for any h ∈ H. Notice that by giving vk
as input to the leakage function, we capture the fact that the choice of h may
depend on vk.

Definition 3 (Existential Unforgeability under Chosen Message and
Auxiliary Input Attacks (EU-CMAA)). We say that a signature scheme
Σ = (Gen, Sig,Ver) is existentially unforgeable against chosen message and auxiliary
input attacks (EU-CMAA) with respect to H if for all PPT adversaries A and any
function h ∈ H, the following probability Pr[CMAΣ,A,h(k) = 1] is negligible in k,
where CMAΣ,A,h(k) is defined as follows:

Experiment CMAΣ,A,h(k)
(vk, sk)← Gen(1k)
(m∗, σ∗)← AO(sk,·)(1k, h(vk, sk), vk)
If m∗ �∈M return Ver(vk,m∗, σ∗), else return 0.

Oracle O(sk,m)
Return (m, Sig(sk,m))

Where M is the set of messages submitted by A to the oracle.

We note that the leakage may also depend on A’s signature queries as the func-
tion hmay internally run A, using the access to the secret key in order to emulate
the entire security game, including the signature queries made by A.
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As outlined in the introduction, we are also interested in a weaker security
notion where the adversary is required to output a forgery for a random message
after seeing signatures for randommessages. To this end, we extend the definition
from above and let the signing oracle reply with random messages, as well as
pick the challenge message at random. This is formally described in the following
definition.

Definition 4 (Random Message Unforgeability under Random Mes-
sage and Auxiliary Input Attacks (RU-RMAA)). We say that a signa-
ture scheme Σ = (Gen, Sig,Ver) is random message unforgeable against random
message and auxiliary input attacks (RU-RMAA) with respect to H if for all PPT
adversaries A and any function h ∈ H, the probability Pr[RMAΣ,A,h(k) = 1] is
negligible in k, where RMAΣ,A,h(k) is defined as follows:

Experiment RMAΣ,A,h(k)
(vk, sk)← Gen(1k)
m∗ ←M, where M is the message space

σ∗ ← AO(sk)(1k, h(vk, sk), vk,m∗)
Return Ver(vk,m∗, σ∗).

Oracle O(sk)
m←M
Return (m, Sig(sk,m))

We notice that this notion of security is useful in some settings. For instance,
it suffices to construct 2-round identification schemes w.r.t auxiliary inputs. In
the full version of this article [12] we propose formal definitions and a simple
construction of an identification scheme with security in the presence of auxiliary
input leakage.

One way to enhance the security notion obtained by Definition 4 is to allow
chosen message attacks, i.e., random message unforgeability under chosen mes-
sage and auxiliary input attacks (RU-CMAA). In this game the adversary can
pick the messages to be signed by itself but still need to forge a signature on a
random message; see Section 3.2 for further discussion.

2.3 Classes of Auxiliary Input Functions

The above notions of security require to specify the set of admissible functions
H. In the public key setting one can define two different types of classes of
leakage functions. In the first class, we require that given the leakage h(sk, vk) it
is computationally hard to compute sk, while in the latter we require hardness of
computing sk when additionally given the public key vk. We follow the work of
Dodis et al. [7] to formally define this difference. Let in the following (sk, vk)←
Gen(1k) be generated randomly.

– Let How(�(k)) be the class of polynomial-time computable functions h :
{0, 1}|sk|+|vk| → {0, 1}∗ such that given h(sk, vk), no PPT adversary can find
sk with probability �(k) ≥ 2−k, i.e., for any PPT adversaryA: Pr(sk,vk)←Gen(1k)

[sk← A(h(sk, vk))] < �(k).
– Let Hvkow(�(k)) be the class of polynomial-time computable functions h :
{0, 1}|sk|+|vk| → {0, 1}∗ such that given (vk, h(sk, vk)), no PPT adversary
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can find sk with probability �(k) ≥ 2−k, i.e., for any PPT adversary A:
Pr(sk,vk)←Gen(1k)[sk← A(vk, h(sk, vk))] < �(k).

Security with respect to auxiliary input gets stronger if �(k) is larger. Our goal
is typically to make �(k) as large as possible while still negl(k). If a scheme is
EU-CMAA for Hvkow(�(k)) according to Definition 3, we say for short that it is
�(k)-EU-CMAA. Similarly, if a scheme is RU-RMAA for Hvkow(�(k)), then we say
that it is an �(k)-RU-RMAA signature scheme. If the class of admissible leakage
functions is How(�(k)), we will mention it explicitly.

As outlined in the introduction, we typically prove security with respect to
the class Hvkow(�(k)). The stronger security notion where hardness is required to
hold only given the leakage, i.e., for the class of admissible functions How(�(k)),
can be achieved by a relation between How(·) and Hvkow(·) proven by Dodis et
al. [7].

Lemma 1 ([7]). If |vk| = t(k) then for any �(k), we have

1. Hvkow(�(k)) ⊆ How(�(k))
2. How(2

−t(k)�(k)) ⊆ Hvkow(�(k))

The first point of Lemma 1 says that if no PPT adversary finds sk given (vk,
h(sk, vk)) with probability �(k) or better, then no PPT adversary finds sk given
only h(sk, vk) with probability �(k) or better. Clearly this is the case since know-
ing vk will not make it harder to guess sk. The second point states that if no
PPT adversary finds sk given h(sk, vk) with probability 2−t(k)�(k) or better,
then any PPT adversary has advantage at most �(k) in guessing sk when given
additionally vk. To see this consider a PPT adversary A that finds sk given
(vk, h(sk, vk)) with probability �′(k) ≥ �(k). A then implies a PPT adversary B
that given h(sk, vk) simply tries to guess vk and uses it to run A. Since B can
guess vk with probability at least 2−t(k), B has probability at least 2−t(k)�′(k)
of finding sk. Thus contradicting h ∈ How(2

−t(k)�(k)).

3 Signature Schemes with Auxiliary Input Security

3.1 A Warm-Up Construction

In order to illustrate the difficulties encountered in designing cryptographic prim-
itives in the auxiliary input setting we present a warm-up construction of a sig-
nature scheme that may seem secure at first glance but, unfortunately, proving
its security is impossible. Essentially, the problem arises due to the computa-
tional hardness of the leakage and does not occur in other leakage models, where
given the leakage the secret key is still information theoretically hidden. For
ease of understanding, in this warm-up construction we only aim for the simpler
one-time security notion on random messages, where the adversary only views a
single signature before it outputs its forgery on a random message. We consider
two building blocks for the following scheme:
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1. A family H of second preimage resistant hash functions.
2. A non-interactive zero-knowledge proof of knowledge2 (NIZKPoK) system Π =

(CRSGen,P,V) for proving knowledge of a secret value x so that y = Hs(x)
given s and y . We further require that the CRS’s ofΠ are uniformly random
strings of some length p(k) for security parameter k and some polynomial
p(·). Denote the message space M by {0, 1}p(k).

Informally, the signature scheme is built as follows. The signing key sk is a
random element x in the domain of the hash function, whereas the verification
key vk is y = H(x). The verification key vk also contains a common reference
string crs for Π . A signature on a message m is the bit b = 〈m, sk〉 together with
a non-interactive proof with respect to crs proving that b was computed as the
inner product of the preimage of y and the message m. More precisely, define
the signature scheme Σ = (GenΣ , SigΣ ,VerΣ) as follows:

Key Generation, GenΣ(1
k): Sample a second preimage resistant hash func-

tion Hs from H , a random element x in the domain of Hs and crs ←
CRSGen(1k). Output sk = x, vk = (H(x), crs).

Signing, SigΣ(sk,m): Parse vk as (H(sk), crs). Compute b = 〈m, sk〉. Use the crs
to generate a non-interactive zero-knowledge proof of knowledge π, demon-
strating that b = 〈m, sk〉 and H(sk) = y. Output σ = (b, π).

Verifying, VerΣ(vk,m, σ): Parse vk as (H(sk), crs) and σ as (b, π). Use crs to
verify the proof π. Output 1 if the proof is verified correctly and 0 otherwise.

We continue with an attempt to prove security. Note first that by the properties
of Π , the ability to generate a forgery (σ′,m′) reduces to the ability using the
extraction trapdoor to either find a second preimage for the hash function or
break the hardness assumption of the leakage function. As the difficulties arise in
the reduction to the hardness of the leakage function, we focus in this outline on
that part. Assume there is an adversary A attacking signature scheme Σ given
auxiliary input leakage h(sk, vk) and (y, crs). Then, an attempt to construct B
that breaks the hardness assumption of the leakage function by invokingA works
as follows. B obtains (y, crs) and the leakage h(sk, vk) from its challenge oracle.
It forwards them to A who will ask for signature query. Unfortunately, at that
point we are not able to answer this query as we cannot simulate a proof without
knowing the witness or the trapdoor.

An alternative approach may be to directly prove security with respect to
the leakage class How(�(k)) and let B sample the CRS herself using the zero-
knowledge simulator to know a trapdoor. Unfortunately, also this approach is
deemed to fail as in this case there is no way to learn a y = H(sk) that is con-
sistent with the leakage. Moreover this results into several difficulties in defining
the set of admissible leakage functions as they must be different now for A and
B. This can be illustrated as follows. Suppose that the CRS is a public key for
an encryption scheme and the trapdoor is the corresponding secret key. As A
only knows the CRS but not the trapdoor a leakage function h that outputs

2 For definition of NIZKPoK we refer to the full version of this article [12].



Signature Schemes Secure against Hard-to-Invert Leakage 109

an encryption of sk = x is admissible. On the other hand, however, for B who
knows the trapdoor (hence the secret key of the encryption scheme) such leakage
cannot be admissible. This shows that we need to consider different approaches
when analyzing the security of digital signature schemes in the presence of aux-
iliary input. In what follows, we demonstrate two different approaches for such
constructions, obtaining two different notions of security.

3.2 A RU-RMAA Signature Scheme

In this section we present our construction of a RU-RMAA signature scheme as
defined in Definition 4. For this scheme we assume the following building blocks:

1. A family H of second preimage resistant hash functions with input length
k1 and key sampling algorithm GenH .

2. A (NIZKPoK) system Π = (CRSGen,P,V) for proving knowledge of a secret
value x so that y = Hs(x) given s and y . We further require that the CRS’s
ofΠ are uniformly random strings of some length p(k) for security parameter
k and some polynomial p(·). Denote the message space M by {0, 1}p(k).

The main idea for the scheme is inspired by the work of Malkin et al. [19] where
we view each message m as a common reference string for the proof system Π .
Since m is uniformly generated, we are guaranteed that the CRS is generated
correctly and knowledge soundness holds. Intuitively since each new message
induces a new CRS, each proof is given with respect to an independent CRS. This
implies that in the security proof the simulator (playing the role of the signer)
can use the trapdoor of the CRS that corresponds to the challenge message m∗.

We formally define our scheme Σ = (Gen, Sig,Ver) as follows.

Key Generation, Gen(1k): Sample s ← GenH(1k). Sample x ← {0, 1}k1 and
compute y = Hs(x). Output sk = (x, s) and vk = (y, s).

Signing, Sig(sk,m): To sign m ← M, let crs = m and sample the signature
σ ← P(crs, vk, sk) as a proof of knowledge of x such that y = Hs(x).

Verifying, Ver(vk,m, σ): To verify σ on m = crs, output V(crs, vk, σ).

Theorem 1. Assume that H is a second preimage resistant family of hash func-
tions and Π = (CRSGen,P,V) is a NIZKPoK system. Then Σ = (Gen, Sig,Ver)
is a negl(k)-RU-RMAA signature scheme.

The intuition of the proof is that if one can efficiently forge a signature on a
random m∗ after getting signatures on random messages m, then one can also
efficiently compute x, contradicting the assumption that the leakage is hard to
efficiently invert. During the simulated attack the signatures on randommessages
m are simulated by sampling m = crs, where crs is sampled along with the
simulation trapdoor. In the end one samplesm∗ = crs, where crs is sampled along
with the extraction trapdoor. Upon getting a forgery on m∗, we can extract x
using the extraction trapdoor.
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In the standard setting, a simple modification using Chameleon hash func-
tions [18] enables to achieve a stronger notion of security. Recall first that
Chameleon hash functions are collision resistance hash functions such that given
a trapdoor one can efficiently find collisions for every given preimage and its
hashed value. Thereby, instead of signing random messages the scheme can be
modified so that the signer signs the hashed value of the message. This achieves
chosen message attacks security so that the adversary picks the messages to be
signed during the security game, yet the challenge is still picked at random. Nev-
ertheless, when introducing hard-to-invert leakage into the system this approach
does not enable to obtain security against polynomially hard-to-invert leakage,
because we run into the same problem specified in Section 3.1. Moreover, in
Section 3.3 we show how to obtain the strongest security notion of existential
unforgeability under chosen message and auxiliary input attacks.

Proof. Let ExpΣ,A,h be as defined in Definition 4 for PPT adversary A and
leakage function h ∈ Hvkow(negl(k)). Furthermore let W be the event that A
wins the game. We show that Pr[W ] is negligible. Denote this probability by p0.
Consider the following modification to ExpΣ,A,h(k).

1. Generate (vk, sk) as in ExpΣ,A,h(k).

2. Instead of sampling the challengem∗ asm∗ ←M sample (m′, tde)← E1(1
k)

and let m∗ = m′, where E = (E1, E2) is the knowledge extractor for Π .

3. Give input to A as in ExpΣ,A,h(k).

4. To answer the oracle queries ofA, sample (m′, tds)← S1(1
k), letm = m′ and

return the signature (m,S2(m, vk, tds)), where S = (S1, S2) is the simulator
for Π .

5. Receive a forgery σ∗ from A as in ExpΣ,A,h(k).

6. Output as in ExpΣ,A,h(k).

Let p1 be the probability that the modified experiment above outputs 1. Also
consider x′ = E2(m

∗, vk, tde, σ
∗). I.e. x′ is a signing key extracted from A’s

forgery. By Π being a NIZKPoK we have that distributions of messages and sig-
natures in the modified experiment are indistinguishable from the distributions
in the original experiment ExpΣ,A,h(k). Thus it follows that p1 is negligibly close
to p0. Let p2 be the probability that Hs(x

′) = y. By the knowledge soundness
of Π it follows that p2 is negligibly close to p0.

Note then that, since S and E are both PPT algorithms, the modified exper-
iment describes a PPT algorithm which computes x′ where with probability p2
it holds that y = Hs(x

′). Let p3 be the probability that y = Hs(x
′) and x′ �= x

and let p4 be the probability that x′ = x. Note that p2 = p3 + p4.

The Event X. Consider the PPT algorithm B that given vk and leakage
h(sk, vk), where (sk, vk) ← Gen(1k), runs steps 2-5 of the modified experiment
above and outputs x∗ = E2(m

∗, vk, tde, σ
∗). Denote by X the event in which B

outputs x∗ = x. Since (vk, sk) is generated as in ExpΣ,A,h(k) Pr[X ] ≥ p4. Thus
by definition of Hvkow(negl(k)), p4 is negligible.
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The Event C. On the other hand, consider the PPT algorithm B that is given
s, x and y = Hs(x). B lets vk = (y, s) and runs steps 2-5 of the modified ex-
periment above (notice that B is given x, so it can compute the leakage h) and
outputs x∗ = E2(m

∗, vk, tde, σ
∗). Denote by C the event in which B outputs

x∗ �= x so that Hs(x
∗) = Hs(x). Notice again that ((Hs, y), x) are generated as

in ExpΣ,A,h(k) and therefore Pr[C] ≥ p3. Thus by the second preimage resistance
hardness of the family H , p3 is negligible.

This implies that p3 and p4 are negligible and so is p2 = p3 + p4. Since
p0 is negligibly close to p2, p0 must also be negligible. By definition p0 =
Pr[ExpΣ,A,h(k) = 1] and so by Definition 4, Σ is a negl(k)-RU-RMAA signa-
ture scheme. � 

Notice that in the above we assume that the CRS of the NIZKPoK Π is a
uniformly random bit string. As an example of a NIZKPoK with this property
we can use the construction of [23]. In their construction the CRS is a pair (ek, r)
where r is a random string and ek is an encryption key for some semantically
secure public-key encryption scheme. Thus, we can use the construction of [23]
with a public-key encryption scheme where uniformly random bit strings can act
as public-keys, like Regev’s LWE scheme[24].

3.3 A EU-CMAA Signature Scheme

In this section we build a EU-CMAA signature scheme. We use k to denote the
security parameter. We need the following tools:

1. A family of second preimage resistant hash functions H with key sampling
algorithm GenH , where the input length can be set to be any k4 = poly(k)
and where the length of the randomness used by s ← GenH(1k) is some
l1 = poly(k) independent of k4 and where the length of an output y = Hs(x)
is some l4 = poly(k) independent of k4. I.e., it is possible to increase the input
length of Hs without increasing the randomness used to generate s or the
output length.

2. An IND-WLCCA secure labeled public-key encryption scheme Γ = (KeyGen,
Enc, Dec) with perfect decryption (cf. Definition 2), where the length of dk
is some l2 = poly(k) independent of the length of the messages that Γ can
encrypt.

3. A reusable-CRS non-interactive zero-knowledge proof3 system (NIZK) Π =
(CRSGen,P,V), where the length of the simulation trapdoor tds at security
level k is some l3 = poly(k) independent of the size of the proofs that the
NIZK can handle.

The IND-WLCCA secure encryption scheme might be replaced by a IND-CPA
secure scheme, but at the price of then instead using a simulation sound NIZK:
We expect a general proof via true simulation extractability to work along the

3 For definition of reusable-CRS NIZK we refer to the full version of this article [12].
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lines of [9]. We chose the above tools as they lean themeselves nicely towards
our concrete instantiation.

The reason why we use IND-WLCCA is that our signature scheme requires
to encrypt its secret key that is much longer than the decryption key. For that
we need to break the secret key into blocks and encrypt each block separately
under the same label (looking ahead, the label would be the signed message).
Note that labeled public-key encryption schemes for arbitrary length massages is
not implied by LCCA secure scheme for fixed length messages. This is because
the adversary can change the order of the ciphertexts within a specific set of
ciphertexts and ask for a decryption. We therefore work with the weaker notion
that is sufficient for our purposes to design secure signature schemes, and is
easier to instantiate as demonstrated in the full version of this article [12].

Our scheme Σ works as follows:

Key Generation, Gen(1k): Sample s← GenH(1k) and (ek, dk)← KeyGen(1k).
Furthermore, sample (crs, tds) ← S1(1

k) and x ← {0, 1}k4, where S =
(S1, S2) is the simulator for Π .4 Compute y = Hs(x). Set (sk, vk) = (x, (y, s,
ek, crs)).

Signing, Sig(sk,m): Compute C = Encm(ek, x). Using crs and Π , generate a
NIZK proof π proving that ∃x(C = Encm(ek, x) ∧ y = Hs(x)). Output σ =
(C, π).

Verifying, Ver(vk,m, σ): Parse σ as C, π. Use crs and V to verify the NIZK
proof π. Output 1 if the proof verifies correctly and 0 otherwise.

As explained in [9], a NIZK proof system together with a CCA-secure encryp-
tion scheme are a specific instantiation of true-simulation extractable (tSE). An
alternative instantiation would be to compose a simulation-sound NIZK with a
CPA-secure encryption scheme. This approach was used in [17]. We note that
our proof follows similarly for this instantiation as well.

Theorem 2. If H, Γ = (KeyGen,Enc,Dec) and Π = (CRSGen,P,V) have the
properties listed above, then Σ is 2−k5-EU-CMAA where k5 = k + l2 + l3 and
where

– k is the security parameter of Σ,
– l1 is the length of the randomness used to sample s at security parameter k1

for H,
– l2 is the length of the decryption key dk at security parameter k2 for Γ ,
– l3 is the length of the simulation trapdoor tds at security parameter k3 for
Π,

If we consider the class How(�(k)), then our scheme is 2−k6-EU-CMAA where
k6 = k + l1 + l2 + l3 + l4 and where l4 is the length of y = Hs(x) at security
parameter k1 for H.

4 It is deliberate that we use a simulated CRS as part of the public key. This makes
the set of admissible leakage functions defined relative to a simulated CRS, which
we use in the proof. The scheme might be secure for a normal CRS too, but the
proof would be more complicated.
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Specifically, the best success against Σ in the forging game with 2−k5-hard leakage
by a PPT adversary A is 2−k +

∑3
i=0 εi + uε4, where u is a polynomial and

– ε0 and ε3 are the advantages of some PPT adversaries in the ZK game
against Π at security parameter k3,

– ε1 is the success probability of some PPT adversary in the soundness game
against Π at security parameter k3,

– ε2 is the probability that some PPT adversary wins the second preimage game
against H on security parameter k1 and x← {0, 1}k4,

– ε4 is the advantage of some PPT adversary in the IND-WLCCA game
against Γ at security parameter k2.

The intuition behind the proof of security is that a forged signature contains an
encryption of the secret key x, so forging leads to extracting x using dk, giving
a reduction to the assumption that it is hard to compute x given the leakage.
In doing this reduction the signing oracle is simulated by encrypting 0k4 and
simulating the proofs using the simulation trapdoor tds. This will clearly still
lead to an extraction of x, using reusable-CRS NIZK and IND-WLCCA. The
only hurdle is that given (vk, h(sk, vk)), we do not know dk or tds. We can,
however, guess these with probability 2−l2 respectively 2−l3 . This is why we
only get security kW = k + l2 + l3. When we prove security for How(�(k)) the
reduction is not given vk either, so we additionally have to guess s and y, leading
to kS = k + l1 + l2 + l3 + l4.

If we set k4 = k+ l2+ l3+ l4 +L , then the min-entropy of x given y = Hs(x)
is k + l2 + l3 + L, so leaking L bits would be an admissible leakage in the 2−kW

security game. Since, by assumption on our primitives, l2 and l3 and l4 does
not grow with k4, it follows that we can set L to be any polynomial and be
secure against leaking any fraction (1 − k−O(1)) of the secret key. Due to space
constraints the complete proof is found in the full version [12].

The following is a corollary to Thm. 2.

Theorem 3. If H, Γ and Π have the properties listed above, then Σ is 2−kW -
EU-CMAA where kW = k + l2 + l3 and l1 is the length of the randomness used
to sample s, l2 is the length of the decryption key dk for Γ , l3 is the length of the
simulation trapdoor tds. In particular, Σ is 2−kW -EU-CMAA for kW = poly(k)
which do not grow with k4, i.e, the input length of the hash function.

If we consider the class How(�(k)), then Σ is 2−kS-EU-CMAA where kS =
k + l1 + l2 + l3 + l4 and where l4 is the length of y = Hs(x).

Our concrete instantiation has all the needed properties, except that s has a
length which depends on k4. This, however, can be handled generically as follows.

Lemma 2. If there exists an ε-secure family of second preimage resistant hash
functions H, with key sampling algorithm GenH , and a δ-secure pseudo-random
generator prg, then there exists an (ε+δ)-secure family of second preimage resis-
tant hash function H, with key sampling algorithm Gen′H , where s← Gen′H(1k)
can be guessed with probability 2−k0 , where k0 = poly(k) is the seed length of prg
at security level k.
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Proof. Let Gen′H(1k; r ∈ {0, 1}k0) = GenH(1k; prg(r)). It is clear that an output
of Gen′H(r ∈ {0, 1}k0) can be guessed with probability 2−k0 , by guessing r. Let

ε = Prx∗←A(s,x)∧x←{0,1}k4∧s←GenH [Hs(x
∗) = Hs(x) ∧ x∗ �= x]

, and let ε′ = Prx∗←A(s,x)∧x←{0,1}k4∧s←Gen′H
[Hs(x

∗) = Hs(x)∧x∗ �= x]. Consider

the algorithm B(s) which samples x ← {0, 1}k4 and x∗ ← A(s, x) and outputs
1 iff Hs(x

∗) = Hs(x). This algorithm is PPT, and ε′ = Pr[B(GenH(prg(r ←
{0, 1}k0))) = 1] and ε = Pr[B(GenH(r ← {0, 1}∗)) = 1]. By the prg being a
δ-pseudo-random generator, it follows that |ε′ − ε| ≤ δ. � 

Remark. We can also prove security in the stronger model, where the leakage
function h sees not only sk, but the randomness used by Gen to generate (vk, sk).
In that case we need that the distribution on ek induced by sampling (ek, dk)
with KeyGenΓ ,the distribution of a crs sampled along with a trapdoor and that
the distribution on s induced by sampling s ← GenH can all be sampled with
invertible sampling. This is indeed the case for our concrete instantiation. The
only problematic point is Lemma 2. Even if GenH({0, 1}∗) has invertible sam-
pling, it would be very surprising if GenH(prg({0, 1}k0)) has invertible sampling.
So, if the probability of guessing a random s← GenH is not independent of the
input of Hs, we cannot generically add this property. One can circumvent this
problem as in [9] and consider s as a public parameter of the scheme. This is
modeled by sampling s in a parameter generation phase prior to the key gen-
eration phase and give s as input to all entities. This would in turn make s an
input to the reduction (called B7 in the appendix), circumventing the problem
of having to guess s. We would get security when considering the class How(�(k))
for kS = k + l2 + l3 + l4.

Acknowledgments. The authors thank Yevgeniy Dodis for discussions at an
early stage of this project.
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Abstract. Understanding the minimal assumptions required for carry-
ing out cryptographic tasks is one of the fundamental goals of theoretical
cryptography. A rich body of work has been dedicated to understanding
the complexity of cryptographic tasks in the context of (semi-honest) se-
cure two-party computation. Much of this work has focused on the char-
acterization of trivial and complete functionalities (resp., functionalities
that can be securely implemented unconditionally, and functionalities
that can be used to securely compute all functionalities).

All previous works define reductions via an ideal implementation of
the functionality; i.e., f reduces to g if one can implement f using an
ideal box (or oracle) that computes the function g and returns the out-
put to both parties. Such a reduction models the computation of f as
an atomic operation. However, in the real-world, protocols proceed in
rounds, and the output is not learned by the parties simultaneously. In
this paper we show that this distinction is significant. Specifically, we
show that there exist symmetric functionalities (where both parties re-
ceive the same outcome), that are neither trivial nor complete under
“ideal-box reductions”, and yet the existence of a constant-round pro-
tocol for securely computing such a functionality implies infinitely-often
oblivious transfer (meaning that it is secure for infinitely-many n’s). In
light of the above, we propose an alternative definitional infrastructure
for studying the triviality and completeness of functionalities.

1 Introduction

Secure Computation and Completeness. In the setting of secure two-party
computation, two parties with respective private inputs x and y, wish to compute
a function f of their inputs. The computation should preserve a number of
security properties, like privacy (meaning that nothing but the specified output
is learned), correctness and more.

In the late 1980s, it was shown that every function can be securely computed
in the presence of semi-honest and malicious adversaries, assuming the existence
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of enhanced trapdoor permutations [18,6]. Soon after, it was shown that any
function can be securely computed, given an ideal box for computing the obliv-
ious transfer function [9]. This work demonstrated that there exist “complete”
functions for secure computation; that is, functions that can be used to securely
compute all other functions. Such functions are of great interest. On the one
hand, when attempting to base secure computation on weaker hardness assump-
tions, it suffices to construct a secure protocol for a complete function based
on some weaker assumption, since it will imply that this assumption suffices for
securely computing all functions. On the other hand, it is immediate that a com-
plete function is the “hardest” to compute, at least with respect to the minimum
hardness assumption. Due to the above, much research has been carried out in
an attempt to classify functions as complete or not, and as trivial or not (where
triviality means that it can be securely computed without any assumption).

The Complexity of Secure Computation. Currently, we have a good picture
regarding the complexity of secure computation, through the aforementioned
research of completeness. For example, we know that in the setting of asymmetric
functionalities (where only one of the two parties receives output), every two-
party (deterministic) asymmetric function is either complete or trivial [1,11].
Thus, no non-trivial asymmetric function can be securely computed under an
assumption weaker than that needed for securely computing oblivious transfer.

However, in the setting of symmetric functionalities, where both parties re-
ceive the same output, the picture is more complex [10,13,15]. For example,
unlike the asymmetric setting, there exist (deterministic) symmetric functions
that are neither complete nor trivial; see Figure 1 below for an example of such
a function. This begs the following fundamental question:

What hardness assumptions are sufficient and necessary for securely
computing functions that are neither complete nor trivial?

The starting point of this work is the above question. We stress that although
Kilian [10] separated these functions from all complete functions, hinting that
it may be possible to devise secure protocols for such functions relying on as-
sumptions that are strictly weaker than those needed for oblivious transfer, the
only known protocols for securely computing non-trivial functions are general
protocols that rely on hardness assumptions that can be used to compute any
function including oblivious transfer.

Black-Box Reductions and Black-Box Separations. As we have men-
tioned, a large body of work has been dedicated to understanding the complexity
of cryptographic tasks in the context of (semi-honest) secure two-party compu-
tation (see, e.g., [1,9,10,11,2,7,15]). The idea underlying much of this work is
that if the possibility to securely compute a functionality f1 implies the possi-
bility to securely compute a functionality f2, then f1 is at least as hard as f2.
It is then said that f2 reduces to f1. A functionality f is called complete if all
other functionalities reduce to f . The question of how to define the notion of
reduction is of great importance to the implication of these results.



118 Y. Lindell, E. Omri, and H. Zarosim

All previous works define a reduction via an ideal implementation of a func-
tion; i.e., f2 reduces to f1 if a secure protocol for computing f2 can be constructed
given an ideal box (trusted party or oracle) that computes f1 and gives the out-
puts to both parties simultaneously.1 The advantage of (black-box) reductions
of the above type is that they provide a constructive way of securely computing
one functionality given an implementation of another. However, the disadvan-
tage of black-box reductions is that a separation (i.e., a proof that one function
does not reduce to another) does not necessary imply that one cannot construct
a secure protocol for one function given a secure protocol from the other. This
is due to the fact that a reduction may be nonblack-box.

Our Contributions. In this work we give substantial evidence that the pic-
ture of computational hardness of securely computing two-party functionalities
in the presence of semi-honest adversaries is different to that drawn by the char-
acterizations of completeness of [10,13]. Specifically, we show that there exist
symmetric functionalities f (i.e., where both parties get the same output), that
are not ideal-box-complete (i.e., OT cannot be implemented using an ideal-box
computing f) but may be in some sense as hard to obtain as OT. Specifically,
we prove the following:

Theorem 1.1 (informal). If there exists a constant round protocol π that se-
curely computes a symmetric non-trivial functionality f over a constant-size do-
main, in the presence of semi-honest adversaries, then there exists an infinitely-
often-OT that is secure in the presence of semi-honest uniform adversaries.2

Needless to say, Theorem 1.1 is of interest for functionalities f that are not
complete; as we have mentioned, such functionalities exist.

Our main observation in proving this result is that in real-world protocols, an
ideal-box that simultaneously provides outputs to both parties does not exist.
Rather, parties learn their outputs gradually, and hence, in any constant-round
protocol, there must be a round in which one party learns substantial information
before the other party does. Thus, essentially there is no difference between the
symmetric setting (where both parties receive output and there are functions
that are neither complete nor trivial) and the asymmetric setting (where only
one party receives output and all functions are either trivial or complete).

Alternative Formulation of Completeness – Existential Completeness.
In light of the above, we propose a new definition of completeness that is not
black box. We define the notion of an “achievable class” of a given functional-
ity f . Informally speaking, the achievable class of a functionality f contains all

1 We stress that the issue of simultaneity has nothing to do with fairness since we
consider semi-honest adversaries. Rather, the important point is that both parties
receive the same information and it is not possible for one party to learn the output
of the function while the other does not. If this were not the case, and only one party
receives output then the symmetric setting reduces to the asymmetric setting where
all functionalities are either trivial or complete.

2 Infinitely-often-OT is a protocol for computing OT for which correctness and security
hold for infinitely many n’s (rather than for all sufficiently large n).
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functionalities that can be securely computed, assuming that f can be securely
computed. We use this notion in the natural way in order to redefine reductions,
and trivial and complete functionalities. Our formulation has the disadvantage
of being completely non-constructive. However, it has the advantage of providing
a more accurate picture regarding the hardness assumptions required for secure
computation.

Related Work. As we have alreadymentioned, completeness in secure two-party
computation was investigated in a large body of work [2,13,10,1,12,14,11,15,16,7].
We discuss a few that are more relevant to our discussion. Kilian [10] and Kushile-
vitz [13] consider the symmetric model and give criteria for the existence of uncon-
ditionally secure protocols [13] and for completeness [10]. Maji et al. [15] extended
the discussion of the symmetric model to the UC-setting. Beimel, Malkin and Mi-
cali [1] considered the asymmetric model. They prove a zero-one law for complete-
ness vs. triviality in this model. Almost all of these works consider functions with a
constant size domain and information-theoretic security. The only exception is [7]
who deals with computational security in the asymmetric model.

2 Definitions

2.1 Preliminaries

A function μ : N → N is negligible if for every positive polynomial p(·) and all
sufficiently large n it holds that μ(n) < 1

p(n) . We use the abbreviation PPT to

denote probabilistic polynomial-time. For an integer �, define [�] = {1, . . . , �}. A
probability ensemble X = {X (a, n)}a∈{0,1}∗;n∈N

is an infinite sequence of random

variables indexed by a and n. (The value a will represent the parties’ inputs and
n the security parameter. All polynomials that we will consider will be with
respect to the security parameter, unless explicitly stated otherwise; specifically,
all polynomial time machines will be polynomial in the security parameter.) We
let λ denote the empty word.

Two ensemblesX = {X (a, n)}a∈{0,1}∗;n∈N
and Y = {Y (a, n)}a∈{0,1}∗;n∈N

are

computationally indistinguishable, denoted X
c≡ Y , if for every family {Cn}n∈N

of polynomial-size circuits, there exists a negligible function μ (·) such that for
every a ∈ {0, 1}∗ and every n ∈ N,∣∣∣Pr [Cn(X (a, n)) = 1]− Pr [Cn(Y (a, n)) = 1]

∣∣∣ < μ (n) .

The ensemblesX and Y are computationally indistinguishable by uniform machines,

denoted X
C≡UY , if the above holds for every PPT distinguisher D.

2.2 Secure Two-Party Computation and Oblivious Transfer

We follow the standard definition of secure two party computation for semi-
honest adversaries, as it appears in [5]. In brief, a two-party protocol π is de-
fined by two interactive probabilistic polynomial-time Turing machines A and B.
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The two Turing machines, called parties, have the security parameter 1n as their
joint input and have private inputs, denoted x and y for A and B, respectively.
The computation proceeds in rounds. In each round of the protocol, one of the
parties is active and the other party is idle. If party P ∈ {A,B} is active in round
i, then in this round P writes some value OutiP on its output tape, and sends
a message mi to the other party. Without loss of generality, we assume that A
is always active in the odd rounds in π and B in the even rounds. The number
of rounds in the protocol is expressed as some function r(n) in the security
parameter (where r(n) is bounded by a polynomial).

The view of a party in an execution of the protocol contains its private input,
its random string, and the messages it received throughout this execution. The
randomvariable Viewπ

A(x, y, 1
n) (respectively Viewπ

B(x, y, 1
n)) describes the view

of A (resp. B) when executing π on inputs (x, y) (with security parameter n).
The output of an execution of π on (x, y) (with security parameter n) is the pair
of values written on the output tapes of the parties when the protocol execution
terminates. This pair is described by the random variable Outputπ (x, y, 1n) =
(OutputπA (x, y, 1n) ,OutputπB (x, y, 1n)), where OutputπP (x, y, 1n) is the output
of party P ∈ {A,B} in this execution, and is implicit in the view of P .

In this work, we consider deterministic functionalities over a finite domain. We
therefore provide the definition of security only for deterministic functionalities;
see [5] for a motivating discussion regarding the definition.

Definition 2.1 (security for deterministic functionalities). A protocol π =
〈A,B〉 securely computes a deterministic functionality f = (fA, fB) in the pres-
ence of semi-honest adversaries if the following hold:

Correctness: There exists a negligible function μ(·), such that for every n and
every pair of inputs x, y, it holds that

Pr [Outputπ(x, y, 1n) = f(x, y)] ≥ 1− μ (n) . (1)

where the probability is taken over the random coins of the parties.

Privacy: There exist two probabilistic polynomial-time (in the security param-
eter) algorithms SA,SB (called “simulators”), such that:

{SA (x, fA(x, y), 1
n)}x,y∈{0,1}∗;n∈N

C≡ {Viewπ
A (x, y, 1n)}x,y∈{0,1}∗;n∈N

, (2)

{SB (y, fB(x, y), 1
n)}x,y∈{0,1}∗;n∈N

C≡ {Viewπ
B (x, y, 1n)}x,y∈{0,1}∗;n∈N

. (3)

For most of this paper, we will consider functionalities where both parties receive
the same output, meaning that fA = fB. We call such functions symmetric and
we denote by f(x, y) the output that both parties receive. We will also only
consider the semi-honest model here, and therefore omit this qualification from
hereon.

Oblivious Transfer – Naive-OT Variant. The oblivious transfer functional-
ity (OT) is one of the most important cryptographic primitives and is known to be
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complete for general two-party computation [19,6]. There are several equivalent
versions of OT; the most common being Rabin-OT [17] and 1-out-of-2 OT [3]. In
this paper we use a slightly different version presented in [7], called Naive-OT, de-

fined by the functionality OT(b, c) =

{
(λ, λ) if c = 0
(λ, b) if c = 1

, meaning that the sender

never learns anything (recall that λ is the empty string), and the receiver learns
the sender’s bit b if its choice-bit c equals 1, but does not learn anything if c = 0.
This is the same as Rabin-OT except that the receiver chooses whether or not to
receive the sender’s bit b. In the semi-honest model it is equivalent to Rabin-OT
(and to 1-out-of-2-OT).

2.3 Uniform Infinitely-Often Security

Our main result is a proof that the existence of a constant-round protocol for
functionalities that are neither complete nor trivial almost implies oblivious
transfer. The “almost” in this sentence is due to the fact that we can only
prove that it implies oblivious transfer that is secure for infinitely many n’s,
in contrast to all sufficiently large n’s. In addition, we can only prove that the
oblivious transfer is secure in the presence of uniform distinguishers. We therefore
need to define this weaker notion of security.

Definition 2.2 (uniform infinitely-often security). A protocol π securely
computes a deterministic functionality f in the presence of semi-honest adver-
saries with uniform infinitely-often security if there exists an infinite subset N ⊆ N
such that Equations (1), (2) and (3) hold for every n ∈ N , and Equations (2)
and (3) hold with respect to uniform distinguishers.

We stress that the correctness and privacy conditions must all hold for every n ∈
N (it does not suffice to require infinitely many n’s for which each requirement
holds since it is possible that they may hold for different n’s in which case the
function will be trivial).

3 Our Main Technical Result

In this section, we prove Theorem 1.1. In order to formally state the theorem
and our result, we first need to define the class of functions that we consider.
We therefore begin with preliminaries.

3.1 Preliminaries

Our theorem applies to all non-trivial functionalities, as characterized by Kushile-
vitz [13]. This characterization uses the notion of “decomposition” of a function.
We now define this notion.

Definition 3.1 (equivalence relation ≡ over inputs). Let X,Y, Z ⊆ {0, 1}∗,
and let f : X × Y → Z. Two inputs x1, x2 ∈ X existentially coincide, denoted
x1 ∼ x2, if there exists an input y ∈ Y such that f(x1, y) = f(x2, y). We define
an equivalence relation ≡ over X to be the transitive closure of the relation ∼
over all x ∈ X. The relations ∼ and ≡ are defined over Y similarly.
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Definition 3.2 (strongly non-decomposable functions). A function g :
X × Y → Z is strongly non-decomposable if it is not monochromatic, all x ∈ X
are equivalent, and all y ∈ Y are equivalent.

We refer to [13] in order to see why this is called non-decomposable. The binary
OR and AND functions are strongly non-decomposable, as is the function fKUSH
defined below:

y1 y2 y3

x1 0 0 1

x2 3 4 1

x3 3 2 2

Fig. 1. Kushilevitz’s function fKUSH

A strongly non-decomposable function has the property that all inputs are
equivalent. We now define a non-decomposable function simply to be a function
which has a subfunction that is strongly non-decomposable.

Definition 3.3 (non-decomposable functions). A symmetric function f :
X × Y → Z is non-decomposable if there exist X ′ ⊆ X and Y ′ ⊆ Y such that f
restricted to X ′ and Y ′ is strongly non-decomposable; else it is decomposable.

We remark that Kushilevitz [13] proved that a function is non-trivial if and only
if it is non-decomposable. The function fKUSH is of particular interest since it
is neither trivial (as shown by [13]) nor complete (as shown by [10]).

3.2 The Theorem and Proof

Let f be a symmetric non-decomposable functionality with domain of constant
size. We show that the existence of a constant-round protocol for computing f
implies the existence of a weak variant of oblivious transfer. The idea behind the
proof is to run a protocol π for f until the first round in which one of the parties
learns meaningful information about the input of the other party. Since this is the
first round that something is learned and only one party can learn information in
any single round, we have that one party has learned something and the other has
not. This asymmetry of information suffices for us to construct oblivious transfer.

Our proof proceeds in three stages. First, we prove that a round as described
above exists. Intuitively, this is the case since before the protocol execution
neither party has any information about the other party’s input, but at the end
of the execution each party learns significant information about the other party’s
input. Next, we show that a weak form of oblivious transfer can be constructed
from any protocol with such a round (in actuality, we need to prove that such
a round exists on a special subset of inputs called a minor, and we demonstrate
this in the first step). The OT that we construct is weak in the sense that it is
only correct with noticeable probability. Finally, we show how to boost the weak
correctness of the OT to fully correct oblivious transfer.
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We stress that we do not actually obtain a full oblivious transfer protocol.
Rather, our protocol is only secure infinitely often; see Definition 2.2. We explain
why this is the case at the end of Section 3.3.

Theorem 3.1. If there exists a constant round protocol π that securely computes
a symmetric, deterministic, non-decomposable functionality f (over a constant-
size domain), then there exists a uniform infinitely-often OT protocol.

Proof: Recall that a non-decomposable functionality is a function with a sub-
set of inputs that defines a strongly non-decomposable functionality. Since we
consider the semi-honest model and so parties use only their prescribed inputs,
it follows that the existence of a secure protocol for a non-decomposable func-
tion implies the existence of a secure protocol for the strongly non-decomposable
function defined over the appropriate subset. It thus suffices to prove the theorem
for a strongly non-decomposable function.

As we have described above, there are three steps in the proof of this theorem.
In Section 3.3 we prove the first step. Specifically, in Lemma 3.1 we prove that
there exists an “exclusive revelation round” which is a round in which one party
has learned while the other has not, and then in Lemma 3.2 we prove that such
a round must exist for inputs that form an insecure minor (defined below). We
call this an “exclusive revelation minor”. Next in Section 3.4 we prove that the
existence of an exclusive revelation minor implies the existence of OT with weak
correctness, and finally in Section 3.5 we explain how to boost the correctness
and thus obtain full OT (with infinitely-often uniform security). � 

3.3 Step 1– The Existence of an Exclusive Revelation Minor

In order to prove our result we exploit the fact that parties obtain information
about the output of a computation gradually and that one party learns sub-
stantial information before the other party does. We begin with some notation
regarding partial protocol executions. For an r-round protocol π and a func-
tion ν : N → N such that ν(n) ≤ r(n) for all n ∈ N, we denote by πν the
protocol obtained by halting π after round ν(n) is completed. Specifically, the
random variables Viewπν

A (x, y, 1n) and Viewπν

B (x, y, 1n) describe the views of A
and B (respectively) in a random execution of πν on inputs (x, y) with security
parameter n.

We next formally define what it means for a party to obtain non-trivial infor-
mation about the other party’s input.

Definition 3.4 (distinguishing between inputs). Let π be a c-round pro-
tocol for computing a functionality f (where c is some function of the security
parameter n), and fix i ∈ N. For a triple x, y, y′ of inputs, we say that A(x)
distinguishes between y and y′ at round i if there exists a polynomial p(·) and a
(uniform) PPT machine D such that for infinitely many n’s,

|Pr [D (Viewπi

A (x, y, 1n) , 1n) = 1]− Pr [D (Viewπi

A (x, y′, 1n) , 1n) = 1]| ≥ 1

p(n)
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For a triple x, x′, y of inputs we define that B(y) distinguishes between x and x′

at round i in an analogous way.

As we will see below, it is crucial that D be a uniform PPT machine, since the
parties need to run D in the OT protocol that we construct. For simplicity (and
since it suffices for our needs), the above definition considers a fixed round i.
This can be easily generalized to any (polynomial time computable) function
i : N→ N such that i(n) ≤ c(n) for every n.

We now define the notion of an exclusive revelation round, which is just a
round in which one party can distinguish inputs of the other, while the other
cannot. Our formulation of this uses Definition 3.4.

Definition 3.5 (exclusive-revelation round). Let π be a protocol for com-
puting a symmetric functionality f . Then, π has an exclusive revelation at round
i if one of the following holds:

1. There exists a triplet x, y, y′ such that A(x) distinguishes between y and y′

at round i, and B(y) does not distinguish between x and x′ at round i for
any triplet x, x′, y (we say that x, y, y′ define the revelation round); or

2. There exists a triplet x, x′, y such that B(y) distinguishes between x and x′

at round i and, A(x) does not distinguish between y and y′ at round i for
any triplet x, y, y′ (we say that x, x′, y define the revelation round).

Protocol π has an exclusive-revelation round if there exists 0 ≤ i ≤ c, such that π
has an exclusive revelation at round i.

We are now ready to prove that any constant-round protocol for computing a
non-constant function (i.e., a function that has at least two different outputs)
has an exclusive-revelation round.

Lemma 3.1. Let f be a symmetric functionality that is not constant (and has
domain of constant size). Let π be a constant-round protocol for securely com-
puting f . Then, π has an exclusive-revelation round.

Proof: For every (round number) i ≤ c, every uniform PPT machine (distin-
guisher) D, and every triplet x, x′, y (recall that there is a constant number of
such triplets), we define

εi,Dx,x′,y(n) =
∣∣Pr [D (Viewπi

B (x, y, 1n) , 1n) = 1]− Pr
[
D
(
Viewπi

B

(
x′, y, 1n

)
, 1n
)
= 1
]∣∣

and let rDx,x′,y be the minimal round number 0 ≤ i ≤ c for which there exists a

polynomial p(·) such that εi,Dx,x′,y(n) >
1

p(n) for infinitely many n’s. If no such i ex-

ists, we let rDx,x′,y = c+1. Note that this means that rDx,x′,y is the first round such
that the PPT machine D can distinguish the ensembles {Viewπi

B (x, y, 1n)}n∈N

and {Viewπi

B (x′, y, 1n)}n∈N
.

We further define rx,x′,y = minD
{
rDx,x′,y

}
(this is well defined, as every

rDx,x′,y ∈ [c + 1]). Observe that this means that rx,x′,y is the minimal round
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for which there exists any uniform PPT machine that can distinguish the two
ensembles (equivalently, the minimal round for which B(y) distinguishes between
x and x′). For every triplet x, y, y′, we define rx,y,y′ analogously.

By the correctness of the protocol, for every triplet x, x′, y such that f(x, y) �=
f(x′, y), the view of both parties after the last round (that is, round c) implies
the output and hence there exists a uniform PPT machine D and a negligible
function μ(·) such that for all sufficiently large n’s, εc,Dx,x′,y(n) ≥ 1 − μ(n). This
in turn implies that for such triplets, there exists a PPT machine D for which
rDx,x′,y ≤ c, and hence rx,x′,y ≤ c. Similarly, for every triplet x, y, y′ such that
f(x, y) �= f(x, y′), it holds that rx,y,y′ ≤ c. Since f is not constant, there either
exists a triplet of the former type or of the latter type.

Now, define i∗A = minx,y,y′ {rx,y,y′} and i∗B = minx,x′,y {rx,x′,y}. Note that
i∗A is the minimal round for which there exists a triplet x, y, y′ such that A(x)
distinguishes between y and y′, and i∗B is the minimal round for which there
exists a triplet x, x′, y such that B(y) distinguishes between x and x′. Since f is
not constant, it holds that either i∗A ≤ c or i∗B ≤ c (or both). We claim that π
has exclusive revelation at either round i∗A or at round i∗B.

Assume without loss of generality that i∗A ≤ i∗B; we show that i∗A < i∗B. It
suffices to show that i∗A < i∗B, since by the definition of i∗B we know that B(y)
does not distinguish between x and x′ at any round i < i∗B and for any triplet
x, x′, y. A crucial observation is that the view of a party does not change in
the round that it is active, and hence, neither does its distinguishing capability.
Hence, by the minimality of i∗A, it must be that B is the one sending a message
in round i∗A, since otherwise A would be able to distinguish already in round
i∗A − 1. This means that B’s view does not change in round i∗A, and hence, by
the minimality of i∗B it cannot be that i∗A = i∗B. The case that i∗B ≤ i∗A is dealt
with analogously. � 
We complete this step of the proof by showing that when a strongly non-
decomposable function has a protocol with an exclusive-revelation round, this
round is defined by inputs that form an insecure minor. An insecure minor is a
tuple of inputs x, x′, y, y′ such that f(x, y) = f(x, y′) and f(x′, y) �= f(x′, y′)
(X-minor), or f(x, y) = f(x′, y) and f(x, y′) �= f(x′, y′) (Y -minor).

Definition 3.6 (exclusive-revelation minor). Let π be a protocol for com-
puting a symmetric functionality f . If there exists an X-minor x, x′, y, y′ with
respect to f such that x′, y, y′ define an exclusive revelation round for π, then we
say that π has an exclusive-revelation X-minor; an exclusive-revelation Y -minor is
defined analogously. We say that π has an exclusive-revelation minor if it has an
exclusive revelation X-minor or an exclusive revelation Y -minor.

The next lemma states that strongly non-decomposable functions have the prop-
erty that the existence of an exclusive-revelation round implies the existence of
an exclusive-revelation minor.

Lemma 3.2. Let π be a protocol that securely computes a strongly non-decompos-
able symmetric function f with constant-size domain. If π has an exclusive-
revelation round then it has an exclusive-revelation minor.
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Proof: The proof follows by analyzing the general structure of strongly non-
decomposable functions. Let f be any symmetric strongly non-decomposable
function with a constant-size domain. Assume that there exist xj , yk, y� (with
k < �) that define an exclusive revelation at round i; that is, A(xj) distinguishes
between yk and y� at round i. We show that this implies that π has an exclusive
revelation X-minor. Since f is a strongly non-decomposable function, it holds
that yk ≡ y�. Let yi1 , . . . , yit be such that yk ∼ yi1 ∼ . . . ∼ yit ∼ y� and let
yi0 = yk and yit+1 = y�. A(xj) distinguishes between yi0 and yit+1 at round i, and
since t is a constant (recall that f has a constant-size domain), there exists some
h ∈ [t+1] such that A(xj) distinguishes between yih−1

and yih at round i. Now, by
definition, since yih−1

∼ yih , there exists some x such that f(x, yih−1
) = f(x, yih).

Hence, x, xj , yih−1
, yih forms an exclusive-revelation X-minor. The proof for the

case that B distinguishes is analogous. � 

Infinitely-Often. Observe that the existence of an exclusive revelation minor
means that there exists an insecure minor and a round of the protocol such
that one party can distinguish the other party’s inputs at this round while the
other cannot. We stress that a party distinguishes inputs if it has polynomial
advantage in guessing the input for infinitely many n’s. It would be preferable
to prove this for all sufficiently large n’s, since this would enable us to later
construct a fully secure oblivious transfer protocol, and not just an infinitely-
often secure oblivious transfer protocol. However, we are unable to do this since
we need to utilize the existence of a round where one party has learned something
and the other has not learned anything. We prove this by taking the first such
round, and this guarantees that in any previous round the other party has not
learned anything, except possibly for a finite number of n’s. This means that it
did not learn for infinitely many of the n’s in which the other party did learn,
as required. In contrast, if we were to take the first round in which one party
learns for all sufficiently large n’s, then it is possible that the other party has
learned for infinitely many of these n’s in a previous round, and so security will
not be guaranteed.

Constant-Round. We use the assumption that π is constant-round in the proof
that π has an exclusive-revelation round (Lemma 3.1). Recall that an exclusive-
revelation round is the first round that a party can distinguish between the
inputs of the other party. If the number of rounds in π is non-constant, then
for every n the concrete number of rounds in the protocol is different and hence
we would have to define an “exclusive-revelation function”; that is, a function
ν : N → round number, that defines the first round (as a function of n) that a
party can distinguish between the inputs of the other party. It is not clear how
to define such a function, and moreover, how to prove the existence of it.

Constant-Size Domain. We restrict ourselves to functions with constant-size
domains (i.e., not dependent on the security parameter) in order to be consistent
with previous works studying completeness and triviality of symmetric functions
([10,13]). Extending the study of completeness to functions with non-constant-
size domains is beyond the scope of this paper.
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3.4 Step 2 – From an Exclusive-Revelation Minor to io-Weak-OT

We now show that if a function has a protocol with an exclusive-revelation
minor, then it can be used to obtain a weak version of oblivious transfer. The
“weakness” in the OT is with respect to correctness, and not privacy. Formally:

Definition 3.7. A protocol π is a infinitely-often uniform weak oblivious trans-
fer protocol (io-weak-OT) if there exists an infinite set N ⊆ N such that Equa-
tions (2) and (3) hold for every n ∈ N and with respect to uniform distinguishers,
and there exists a polynomial p(·) such that Equation (1) holds with probability
1
2 + 1

p(n) for every n ∈ N .

We stress that the privacy requirement of the oblivious transfer (Equations (2)
and (3)) is identical to uniform infinitely-often security in Definition 2.2. How-
ever, the correctness requirement is weaker since it is only required that correct-
ness holds with probability noticeably greater than 1/2, and not close to 1.

Lemma 3.3. Let π = 〈A,B〉 be a protocol for securely computing a functionality
f . If π has an exclusive-revelation minor, then there exists a PPT protocol π̃ that
is an infinitely-often uniform weak oblivious transfer.

Proof: Intuitively, the existence of an exclusive-revelation round in the protocol
allows us (in some weak sense) to move to the realm of asymmetric functionalities
where one party learns the output, while the other party learns nothing. It is
known that an asymmetric functionality containing an insecure minor implies
OT. We therefore use the insecure minor guaranteed by the hypothesis of the
lemma to construct (a weak form of) OT in a way similar to that used in the
world of asymmetric computation. The formal arguments follow.

Let π be a protocol computing a symmetric functionality f . Assume without
loss of generality that there exists an X-minor x, x′, y, y′ with respect to f , such
that x′, y, y′ define an exclusive revelation at round i for π (the case of an exclu-
sive revelation Y -minor is analogous). That is, we have that A(x′) distinguishes
between y and y′ at round i and for every triplet x̂, x̂′, ŷ, we have that B(ŷ)
does not distinguish between x̂ and x̂′ at round i. Let D be the corresponding
distinguisher, and assume without loss of generality that it always outputs either
0 or 1. Furthermore, since f(x, y) = f(x, y′) (by definition of a minor), by the
security of π we also have that A(x) does not distinguish between y and y′ at
round i (or any round, for that matter). It is without loss of generality (e.g., by
interchanging y and y′) to assume that for infinitely many n’s that

Pr [D (Viewπi

A (x′, y, 1n) , 1n) = 1]− Pr [D (Viewπi

A (x′, y′, 1n) , 1n) = 1] ≥ 1

p(n)
(4)

We now show how to construct an io-weak-OT protocol π̃. Before giving the
formal description of the protocol, let us give some intuition. The idea is to run
the protocol on the inputs of the above minor until round i, and then to halt
the execution. By the exclusiveness of the revelation, we are guaranteed that B
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learns nothing from the computation, hence the sender S̃ will play the role of
B. If the receiver R̃ has input 0, then it will use x as its input and play the role
of A, and hence will not learn anything (recall that f(x, y) = f(x, y′) and so
the output reveals nothing about B’s input, meaning that R̃ learns nothing). In
case R̃’s input is 1 it will use x′ as its input for the computation, and will learn
the output by distinguishing as in Equation (4).

Regarding the sender’s input, one possibility is to have the sender to use y′

as its input for the computation in case b = 0 and y in case b = 1. The receiver
will then output 0 or 1, depending on what the distinguisher outputs. However,
it is possible that the distinguisher outputs 0 with probability 3/4 on input
(x′, y), and with probability 3/4 + 1/p(n) on input (x′, y′). In such a case, the
receiver will output 0 with probability 3/4 even when the output is supposed to
be 1, and so weak correctness will not hold (recall that we need correctness with
probability greater than 1/2). In order to overcome this, we have the sender use
a random input in {y, y′} and therefore transfer a random bit r to the receiver
(which in turn will try to learn r only if its input is c = 1). The sender then sends
the receiver the bit z = r ⊕ c, and the receiver outputs z if the distinguisher
output 0 and z⊕1 otherwise. This has the effect of moving the error to be around
1/2, and so we obtain correctness 1/2 + 1/p(n).

Protocol 1 (An io-weak-OT π̃ = 〈S̃, R̃〉)

Inputs: The private input of the sender S̃ is a bit b ∈ {0, 1} and the private
input of the receiver R̃ is a bit c ∈ {0, 1}. The common input is 1n, where n
is the security parameter.

The protocol:
1. The sender chooses a random bit r ∈ {0, 1}.
2. The parties start an execution of π, where the sender S̃ plays the role of

B and the receiver R̃ plays the role of A. The inputs of the parties are
set as follows:
– The input of B (played by S̃) is y′ if r = 0 and y if r = 1.
– The input of A (played by R̃) is x if c = 0 and x′ if c = 1.

The parties halt after the i-th round of π. Let viA be the partial view of
A in this partial execution of π.

3. The sender S̃ sends z = r ⊕ b to the receiver R̃.
4. If c = 0, the receiver outputs λ. Otherwise (if c = 1), the receiver executes

D on viA, sets r
′ to be the output of D, and outputs z ⊕ r′. The sender

always outputs λ.

Note that the receiver is allowed to use the distinguisher D since D is a uniform
Turing machine.

Proving the Weak-Correctness of the Protocol. Proving the correctness
when c = 0 is trivial since both parties will always output λ as required. We
consider the case that c = 1. We need to show that there exists a polynomial q (·)
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such that for infinitely many n’s, it holds that Pr
[
Outputπ̃

R̃
(b, c = 1, 1n) = b

]
≥

1
2 + 1

q(n) . We will show that this holds for the polynomial q(i) = 2p(i) and for

all n’s for which Equation (4) is satisfied. We fix such an n.

Recall that R̃ outputs z⊕r′, where z = b⊕r and hence the output of R̃ equals
b if and only if r′ = r, where r′ denotes the output of D on the partial view
viA. Thus, it suffices to give a lower bound on the following term (recall that we

consider the case that R̃ uses x′ since c = 1):

Pr
[
r′ = r

]
(5)

= Pr [r = 0] · Pr [r′ = 0 | r = 0
]
+ Pr [r = 1] · Pr [r′ = 1 | r = 1

]
=

1

2
· Pr [D (View

πi
A

(
x′, y′, 1n

)
, 1n
)
= 0
]
+

1

2
· Pr [D (View

πi
A

(
x′, y, 1n

)
, 1n
)
= 1
]

=
1

2
· (1− Pr

[
D
(
View

πi
A

(
x′, y′, 1n

)
, 1n
)
= 1
])

+
1

2
· Pr [D (View

πi
A

(
x′, y, 1n

)
, 1n
)
= 1
]

=
1

2
+

1

2
· (Pr [D (View

πi
A

(
x′, y, 1n

)
, 1n
)
= 1
]− Pr

[
D
(
View

πi
A

(
x′, y′, 1n

)
, 1n
)
= 1
])

.

Since Equation (4) is satisfied for n, we have that

Pr [D (Viewπi

A (x′, y, 1n) , 1n) = 1]− Pr [D (Viewπi

A (x′, y′, 1n) , 1n) = 1] ≥ 1

p(n)
.

Hence, we conclude that Pr [r′ = r] ≥ 1
2 + 1

2p(n) , and so correctness holds.

Proving the Privacy of the Protocol. We now proceed to prove that Equa-
tions (2) and (3) in Definition 2.1 hold for all sufficiently large n’s (and thus, in
particular, for infinitely many n’s for which weak correctness holds, as required
in Definition 2.2). Due to the lack of space in this extended abstract, we sketch
this portion of the proof.

Simulating the View of the Sender. We construct a PPT machine SS̃ that
simulates the sender’s view. SS̃ receives as input the sender’s input b and the
security parameter 1n, and works as follows:

1. SS̃ chooses a random bit rS̃ ∈ {0, 1}.
2. SS̃ then starts an execution of π on the following inputs until the i-th round:

– If rS̃ = 0, the input of B is y′ and if rS̃ = 1, the input of B is y.
– The input of A is x.

3. SS̃ outputs rS̃ and the partial view viB of B.

The difference between the view of the sender in a real execution and in a sim-
ulation by SS̃ is due to the fact that SS̃ always runs A with x whereas in a real
execution A runs with x or x′ depending on the receiver’s input. Nevertheless,
these distributions are computationally indistinguishable since i is an exclusive
revelation round for A. This means that B learns nothing about A’s input up
to and including round i, and in particular the view of B when A uses x is
computationally indistinguishable from its view when A uses x′. We stress that
the fact that i is an exclusive revelation round means that no uniform distin-
guisher given B’s view can distinguish (by the notion of distinguishing between
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inputs; Definition 3.4). This does not necessarily mean that no non-uniform dis-
tinguisher can distinguish; thus we only achieve privacy with respect to uniform
distinguishers.

Simulating the View of the Receiver. In the case that c = 1 the simulator
receives both the sender’s and receiver’s inputs c and b and so can perfectly
simulate the view of the receiver by just running the protocol on these inputs.
We therefore describe the simulator only for the case that c = 0. The simulator
SR̃ receives as input the bit c = 0, the output OTR = λ of the functionality OT
to the receiver, and the security parameter 1n, and works as follows:

1. SR̃ executes π for i rounds, running A with input x and B with input y.
2. SR̃ chooses a random bit zS ∈ {0, 1}.
3. SR̃ outputs zS appended to the partial view viA of A.

The difference between the simulated view and a real view is that in a real
execution, the sender playing B sometimes uses y and sometimes uses y′, whereas
in the simulated execution it always uses y. In addition, the simulator sends a
random zS that is not correlated to the value r implied by the input used by B in
the computation of π. In order to see that this makes no difference, first observe
that since x, x′, y, y′ form an insecure minor, it holds that f(x, y) = f(x, y′).
Thus, when A has input x in an execution of π, it cannot distinguish the case
that B used input y or y′; otherwise, A could learn something that is not revealed
by the functionality output. Thus, the view of the receiver (who runs A) in the
protocol execution is indistinguishable from its view in the simulation. Given
the above, it follows that the distribution of a random bit zS is indistinguishable
from the distribution of z = r ⊕ b by the randomness of r. This completes the
proof.

� 

Uniform Security. As explained above, the privacy of the receiver is preserved
by the exclusiveness of the revelation minor (in round i). That is, since the sender
in the OT protocol takes the role of the party that cannot distinguish the inputs
of the other party (the one active in round i). By Definition 3.4, no uniform
distinguisher D succeeds with non-negligible probability in distinguishing the
two possible inputs of the receiver. It does not, however, rule out the possibility
that a non-uniform distinguisher has noticeable success probability, yielding the
privacy of the receiver vulnerable with respect to non-uniform adversaries.

3.5 From Weak Uniform io-OT to Uniform io-OT

We conclude the proof by arguing that the existence of a uniform infinitely-often
weak-OT implies the existence of a uniform infinitely-often OT protocol. Let π be
a uniform infinitely-often weak-OT protocol. We construct a uniform infinitely-
often OT protocol π̃ by having the parties run polynomially many executions of
π on their inputs. If c = 1, the receiver outputs the majority of the outputs of
the receiver in π, and otherwise it outputs λ. It follows from the Chernoff bound
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that for the infinitely-many n’s for which π has weak-correctness, π̃ is correct
with probability 1−μ(n), for some negligible function μ (·). To prove the privacy
of π̃, we use multiple executions of the simulators of the io-weak-OT. A standard
hybrid argument shows that this yields a satisfactory simulation for the io-OT
protocol. We stress that a simple hybrid argument works because the parties are
semi-honest and hence follow the prescribed protocol (specifically, they select
fresh random coins for each execution).

This completes the proof of Theorem 3.1.

4 Ideal-Box and Existential Completeness

Loosely speaking, a functionality is called complete if it can be used to securely
compute any functionality. In the standard definitions of completeness used in
previous works (cf. [10,13,1]), this is defined via the notion of “reduction”. Specif-
ically g reduces to f if it is possible to securely compute g given access to f , and
a functionality is complete if all functionalities reduce to it. In this section we
explore in greater depth how this notion of reduction is defined and what the
ramifications of this definition are.

The definition of reduction in all previous works uses the notion of an ideal
black-box for computing a functionality f = (fA, fB). The parties A and B run a
protocol for computing g while given access to an incorruptible trusted party who
computes f for them throughout the execution (the parties send inputs x and y to
the trusted party, who computes f(x, y) = (fA(x, y), fB(x, y)), and sends them
back their respective outputs). A functionality g reduces to a functionality f , if
g is securely computable given such a trusted party for computing f . This notion
is equivalent to the notion of oracle-aided protocols, defined in [5, Section 7.3.1].
Formally, using the terminology of [5], all previous definitions say that g reduces
to f if there exists an oracle-aided protocol π that information-theoretically
securely computes g when using the oracle functionality f (the only exception
is [7] that considers computational security rather than information-theoretic).
A functionality f is called complete if all g reduce to it, and it is called trivial if it
can be information-theoretically securely computed with no oracle. We call this
notion ideal-box completeness since the reduction is black-box in the functionality.

The picture of completeness and triviality for the above definition is well
known. Specifically, for the case of asymmetric functionalities where only one of
the parties receives output, a functionality is complete if it contains an insecure
minor, and trivial if not. Furthermore, for the case of symmetric functionalities
where the parties receive the same output (i.e., fA = fB), a functionality is
complete if and only if it contains an embedded OR, and is trivial if and only if
it is decomposable (see Definition 3.3).

Combining the above with Theorem 3.1, we have the following corollary:

Corollary 4.1. There exist symmetric deterministic functionalities over a do-
main of constant-size that are not neither trivial nor ideal-box-complete, such
that if there exists a constant round protocol π that securely computes such a
function, then there exists a uniform infinitely-often OT protocol.



132 Y. Lindell, E. Omri, and H. Zarosim

We remark that using the results of Kilian [9], one can show that any function-
ality can be securely computed with uniform infinitely-often security (Defini-
tion 2.2) given a uniform infinitely-often OT protocol. It therefore seems unlikely
that such an OT protocol can be constructed under weaker assumption than fully
secure OT (at least, infinitely-often secure protocols are not known to be con-
structible under weaker assumptions, and the known black-box separations for
OT [8,4] hold also for infinitely-often OT).

Existential Completeness – An Alternative Formulation. Corollary 4.1
suggests that there may exist functionalities that are neither trivial nor com-
plete, and yet are in some sense complete (albeit, under the caveat of uniform
infinitely-often security). This is due to the fact that the definition of ideal-box-
completeness relates to the computation of f as atomic, whereas in real life,
computation is carried out step-by-step, and in particular is not black-box in
the functionality. We therefore present an alternative notion of completeness
which is purely existential. Informally, our definition is based on saying that f
“implies” g in some sense if the feasibility of securely computing g is implied by
the feasibility of securely computing f . Formally:

Definition 4.1. Let U denote the set of all polynomial-time computable func-
tionalities. The achievable class of f ∈ U , denoted as C(f), is the set of all g ∈ U
such that if there exists a computationally secure protocol πf for computing f ,
then there exists a computationally secure protocol πg for computing g.

Let f, g ∈ U . We say that g existentially reduces to f if g ∈ C(f). Functionality
f is existentially trivial if f ∈ C(fλ) (where fλ(·, ·) = (λ, λ)), and is existentially
complete if C(f) = U .

The above definition follows the intuition that a functionality is trivial if it can
be securely computed “with no help”, and complete if all functionalities can be
securely computed if it can be securely computed. We stress that if (enhanced)
trapdoor functions exist, then all functionalities are trivial and complete by this
definition. Nevertheless, our definition is helpful since a proof that a functional-
ity f is complete (without proving the existence of enhanced trapdoor permu-
tations) is essentially a proof that f requires an assumption that implies OT.
We remark that this is the same as in the definition of (ideal-box) computa-
tional completeness that appears in [7]. We also note that any functionality that
is ideal-box-complete, or complete by the computation definition in [7], is also
existentially complete.

We conclude by remarking that the definition of existential completeness has
the advantage that it can more accurately map the assumptions required for se-
curely computing a functionality. In particular, a function that is not complete
cannot imply OT, something which can happen under the ideal-box definition
(as hinted to by Corollary 4.1). However, it is also true that the definition of
existential completeness is less helpful due to its non-constructive nature. Specif-
ically, it does not enable us to prove or consider a hierarchy of functionalities,
and a proof that g ∈ C(f) does not necessarily tell us how to securely compute
g, even given a protocol for securely computing f .
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Abstract. Standard constructions of garbled circuits provide only static
security, meaning the input x is not allowed to depend on the garbled cir-
cuit F . But some applications—notably one-time programs (Goldwasser,
Kalai, and Rothblum 2008) and secure outsourcing (Gennaro, Gentry,
Parno 2010)—need adaptive security, where x may depend on F . We
identify gaps in proofs from these papers with regard to adaptive secu-
rity and suggest the need of a better abstraction boundary. To this end
we investigate the adaptive security of garbling schemes, an abstraction
of Yao’s garbled-circuit technique that we recently introduced (Bellare,
Hoang, Rogaway 2012). Building on that framework, we give definitions
encompassing privacy, authenticity, and obliviousness, with either coarse-
grained or fine-grained adaptivity. We show how adaptively secure gar-
bling schemes support simple solutions for one-time programs and secure
outsourcing, with privacy being the goal in the first case and oblivious-
ness and authenticity the goal in the second.We give transforms that pro-
mote static-secure garbling schemes to adaptive-secure ones. Our work
advances the thesis that conceptualizing garbling schemes as a first-class
cryptographic primitive can simplify, unify, or improve treatments for
higher-level protocols.

1 Introduction

Overview. Yao’s garbled-circuit technique [10, 11, 18, 20, 21] has been ex-
tremely influential, engendering an enormous number of applications. Yet, at
least in its conventional form, the technique provides only static security. Some
applications, notably one-time programs [13] and secure outsourcing [9], require
adaptive security.1 In such cases Yao’s technique can be enhanced in ad hoc
ways, and the enhanced protocol incorporated into the higher-level application.

This paper provides a different approach. We create an abstraction for the
goal of adaptively secure garbling. Via a single abstraction, we support a variety
of applications in a simple and modular way. Let’s look at two of the applications
that motivate our work.

Two applications. One-time programs are due to Goldwasser, Kalai, and
Rothblum (GKR) [13]. The authors aim to compile a program into one that

1 In speaking of adversaries or security, non-adaptive and dynamic are common syn-
onyms for what we are here calling static and adaptive.

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 134–153, 2012.
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can be executed just once, on an input of the user’s choice. Unachievable in
any “standard” model of computation, GKR assume what they call one-time
memory. Their solution makes crucial use of Yao’s garbled-circuit technique.
Recognizing that this does not support adaptive queries, GKR embellish the
method by a technique involving output-masking and n-out-of-n secret sharing.

In a different direction, secure outsourcing was formalized and investigated by
Gennaro, Gentry, and Parno (GGP) [9]. Here a client transforms a function f
into a function F that is handed to a worker. When, later, the client would like
to evaluate f at x, he should be able to quickly map x to a garbled input X
and give this to the worker, who will compute and return Y = F (X). The client
must be able to quickly reconstruct from this y = f(x). He should be sure that
the correct value was computed—the computation is verifiable—while the server
shouldn’t learn anything significant about x, including f(x). GGP again make
use of circuit garbling, and they again realize that they need something from
it—its authenticity—that is a novum for this domain.

Issues. Assuming the existence of a one-way function, GKR [13] claim that their
construction turns a (statically-secure) garbled circuit into a secure one-time
program. We point to a gap in their proof, namely, the absence of a reduction
showing that their simulator works based on the one-way function assumption.
By presenting an example of a statically-secure garbled circuit that, under their
transform, yields a program that is not one-time, we also show that the gap
cannot be filled without changing either the construction or the assumption.
The problem is that the GKR transform fails to ensure adaptive security of
garbled circuits under the stated assumption.

Lindell and Pinkas (LP) [17] prove static security of a version of Yao’s pro-
tocol assuming a semantically secure encryption scheme satisfying some extra
properties (an elusive and efficiently verifiable range). GGP [9] build a one-time
outsourcing scheme from the LP protocol, claiming to prove its security based
on the same assumption as used in LP. We point to a gap in this proof arising
from an implicit assumption of adaptive security of the LP construction.

We do not believe these are major problems for either work. In both cases, al-
ternative ways to establish the the authors’ main results already existed. Goyal,
Ishai, Sahai, Venkatesan and Wadia [14] present an unconditional one-time com-
piler (no complexity-theoretic assumption is used at all), while Chung, Kalai
and Vadhan [7] present secure outsourcing schemes based solely on FHE (gar-
bled circuits are not employed). Our interpretation of the stated gaps is that they
are symptoms of something else—a missing abstraction boundary. As recently
argued by Bellare, Hoang and Rogaway (BHR) [4], it is useful and simplifying
to see garbling not just as a technique, but as a first-class primitive. To do so,
our earlier work defines syntax and security notions for garbling schemes, pro-
vides proven-correct solutions, then solves some example higher-level problems
by employing a garbling scheme that satisfies the appropriate definition. But
the security notions of BHR do not go far enough to handle what GKR or GGP
need, since BHR deal only with static notions of security. The applications we
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point to motivate the study of adaptive security for garbling schemes, while the
gaps indicate that the issues may be more subtle than recognized.

Of course we communicated our findings to the GKR and GGP authors. GKR
responded after a few weeks with an updated manuscript [12]. It modifies the
claim from their original paper [13] to now claim that their transform works
under the stronger assumption of a sub-exponentially hard one-way function.
(This allows “complexity-leveraging,” where a static adversary can guess the in-
put that will be used by an adaptive adversary with a probability that, although
exponentially-small, is enough under the stronger assumption.) GGP responded
to acknowledge the gap and suggest that they would address it by assuming
the LP construction, or some related realization of Yao’s idea, already provides
adaptive security.

Definitions. We now discuss our contributions in more depth. We start from
the abstraction of a garbling scheme—the raw syntax—introduced by BHR [4].
That work gave multiple definitions sitting on top of this syntax, but all were for
static adversaries, in the sense that the function f to garble and its input x are
selected at the same time. We extend the definitions to adaptive ones, consider-
ing two flavors of adaptive security. With coarse-grained adaptive security the
input x can depend on the garbled function F but x itself is atomic, provided
all at once. With fine-grained adaptive security not only may x depend on the
garbled function F , but individual bits of x can depend on the “tokens” the
adversary has so-far learned.2 We will see that coarse-grained adaptive security
is what’s needed for GGP’s approach to secure outsourcing, while fine-grained
adaptive security is what’s needed for GKR’s approach to one-time programs.

Orthogonal to adaptive security’s granularity are the security aims them-
selves. Following BHR, we consider three different notions: privacy, oblivious-
ness, and authenticity. This gives rise to nine different security notions: {prv,
obv, aut} × {static, coarse, fine}. We compactly denote these prv, prv1, prv2,
obv, obv1, obv2, aut, aut1, aut2. Informally, when a function f gets transformed
into a garbled function F , an encoding function e, and a decoding function d,
privacy ensures that F , d, and X = e(x) don’t reveal anything beyond y = f(x)
that shouldn’t be revealed; obliviousness ensures that F and X don’t reveal
even y; and authenticity ensures that F and X don’t enable the computation of
a valid Y �= F (X). Privacy is the classical requirement, while obliviousness and
authenticity are motivated by the application to secure outsourcing.

Our primary definitions for adaptive secrecy (prv1, prv2, obv1, obv2) are
simulation-based. In the full version of this paper [3] we give indistinguishability-
based counterparts as well. For static security this was already done by BHR,
but it was not clear how to lift those definitions to the adaptive setting.

Relations. Weexplore the provable-security relationships among our definitions.
As expected, the simulation-based definitions imply indistinguishability-based

2 Fine-grained adaptive security requires the garbling scheme be projective: the garbled
version of each x = x1 · · ·xn ∈ {0, 1}n must be (Xx1

1 , . . . , Xxn
n ) for some vector of

2n strings (X0
1 , X

1
1 , . . . , X

0
n, X

1
n). Typical garbling schemes have this structure.
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ones (namely, prv1⇒ prv1.ind, prv2⇒ prv2.ind, obv1⇒ obv1.ind, and obv2⇒
obv2.ind). But none of the converse statements hold. BHR had earlier shown
that, for the static setting, the converse statements do hold as long as the as-
sociated side-information function3 is efficiently invertible. In contrast, we show
that, for adaptive privacy, this condition still won’t guarantee equivalence of
simulation-based and indistinguishability-based notions. (For obliviousness, it is
true that obv1.ind⇒ obv1 and obv2.ind⇒ obv2 if Φ is efficiently invertible.) The
results are our main reason to focus on simulation-based definitions for adaptive
privacy. The full version [3] paints a complete picture of the relations among
our basic definitions. Apart from the trivial relations (prv2 ⇒ prv1 ⇒ prv,
obv2⇒ obv1⇒ obv, and aut2⇒ aut1 ⇒ aut) nothing implies anything else.

Achieving adaptive security. Basic garbling-scheme constructions [4, 10,
11, 18] either do not achieve adaptive security or present difficulties in proving
adaptive security that we do not know how to overcome. One could give new con-
structions and directly prove them xxx1 or xxx2 secure, for xxx ∈ {prv, obv, aut}.
An alternative is to provide generic ways to transform statically secure garbling
schemes to adaptively secure ones. Combined with results in BHR [4], this would
yield adaptively-secure garbling schemes.

The aim of the GKR construction was exactly to add adaptive security to
statically-secure garbled circuit constructions. We reformulate it as a transform,
OMSS (Output Masking and Secret Sharing), aiming to turn a prv-secure gar-
bling scheme to a prv2-secure one. We show, by counterexample, that OMSS
does not achieve this goal.

To give transforms that work we make two steps, first passing from static
security to coarse-grained adaptive security, and thence to fine-grained adaptive
security. We design these transformations first for privacy (prv-to-prv1, prv1-to-
prv2) and then for simultaneously achieving all three goals (all-to-all1 and all1-
to-all2). Our prv-to-prv1 transform uses a one-time-padding technique from [14],
while our prv1-to-prv2 transform uses the secret-sharing component of OMSS.

Applications. We treat the two applications that motivated this work, one-
time programs and secure outsourcing. We show that adaptive garbling schemes
yield these applications easily and directly. Specifically, we show that a prv2
projective garbling scheme can be turned into a secure one-time program by
simply putting the garbled inputs into the one-time memory. We also show
how to easily turn an obv1+aut1-secure garbling scheme into a secure one-time
outsourcing scheme. (GGP [9] show how to lift one-time outsourcing schemes to
many-time ones using FHE.) The simplicity of these transformations underscores
our tenet that abstracting garbling schemes and treating adaptive security for
them enables modular and rigorous applications of the garbled-circuit technique.
Basing the applications on garbling schemes also allows instantiations to inherit
efficiency features of future schemes.

3 The side-information function Φ captures that about f one allows to be revealed in
its garbled counterpart F .
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Transform Model Cost See

prv-to-prv1 standard model |F |+ |d|+ |X| Theorem 2

prv1-to-prv2 standard model (n+ 1) |X| Theorem 3

all-to-all1 standard model |F |+ |d|+ |X|+ k Theorem 5

all1-to-all2 standard model (n+ 1) |X| Theorem 6

rom-prv-to-prv1 random-oracle model |X|+ k Full paper [3]

rom-prv1-to-prv2 random-oracle model |X|+ nk Full paper [3]

rom-all-to-all1 random-oracle model |X|+ 2k Full paper [3]

rom-all1-to-all2 random-oracle model |X|+ nk Full paper [3]

Fig. 1. Achieving adaptive security. The name of each transform specifies its rel-
evant property. The word all means that prv, obv, and aut are all upgraded. Column
“Cost” specifies the length of the garbled input in the constructed scheme in terms
of the lengths of the input scheme’s garbled function F , decoding function d, garbled
input X, number input bits n, and security parameter k.

Applying our prv-to-prv1 and then prv1-to-prv2 transforms to the prv-secure
garbling scheme of BHR [4] yields a prv2-secure scheme based on any one-way
function. Combining this with the above yields one-time programs based on one-
way functions, recovering the claim of GKR [13]. Similarly, applying our all-to-
all1 transform to the obv+aut-secure scheme of BHR yields an obv1+aut1-secure
garbling scheme based on a one-way function, and combining this with the above
yields a secure one-time outsourcing scheme based on one-way functions.

Efficiency. Let us say a garbling scheme has short garbled inputs if their
length depends only on the security parameter k, the length n of f ’s input, and
the length m of f ’s output. It does not depend on the length of f . The statically-
secure schemes of BHR, as with all classical garbled-circuit constructions, have
short garbled inputs. But our prv-to-prv1 and all-to-all1 transforms result in
long garbled inputs. In the ROM (random-oracle model) we are able to provide
schemes producing short garbled inputs, as illustrated in Fig. 1. Constructing
an adaptively secure garbling scheme with short garbled inputs under standard
assumptions remains open.

Short garbled inputs are particularly important for the application to secure
outsourcing, for in their absence the outsourcing scheme may fail to be non-
trivial. (Non-trivial means that the client effort is less than the effort needed
to directly compute the function [9].) In particular, the one-time outsourcing
scheme we noted above, derived by applying all-to-all1 to BHR, fails to be non-
trivial. ROM schemes do not fill the gap because of the use of FHE in upgrading
one-time schemes to many-time ones [9]. Thus, a secure and non-trivial instan-
tiation of the GGP method is still lacking. (However, as we have noted before,
non-trivial secure outsourcing may be achieved by entirely different means [7].)

Further related work. Applebaum, Ishai, and Kushilevitz [1] investigate
ideas similar to obliviousness and authenticity. Their approach to obtaining these
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ends from privacy can be lifted and formalized in our settings; one could spec-
ify transforms prv1-to-all1 and prv2-to-all2, effectively handling the constructive
story “horizontally” instead of “vertically.” The line of work on randomized en-
codings that the same authors have been at the center of provides an alternative
to garbling schemes [15] but lacks the granularity to speak of adaptive security.

Concurrent work by Kamara and Wei (KW) investigates the garbling what
they call structured circuits [16] and, in the process, give definitions somewhat
resembling prv1, obv1, and aut1, although circuit-based, not function-hiding,
and not allowing the adversary to specify the initial function. KW likewise draw
motivation from GKR and GGP, indicating that, in these two setting, the ad-
versary can choose the inputs to the computation as a function of the garbled
circuit, motivating adaptive notions of privacy and unforgeability.

2 Framework

We now review the syntactic framework of garbling schemes from our earlier
work [4]. See the full version for [3] basic notation, including conventions for
randomized algorithms, code-based games, and circuits.

Garbling schemes. A garbling scheme [4] is a five-tuple of algorithms G =
(Gb,En,De,Ev, ev).The first of these is probabilistic; the rest are deterministic. A
string f , the original function, describes the function ev(f, ·) :{0, 1}n → {0, 1}m
that we want to garble. The values n = f.n and m = f.m are efficiently com-
putable from f . On input f and a security parameter k ∈ N, algorithm Gb
returns a triple of strings (F, e, d) ← Gb(1k, f). String e describes an encod-
ing function, En(e, ·), that maps an initial input x ∈ {0, 1}n to a garbled input
X = En(e, x). String F describes a garbled function, Ev(F, ·), that maps a gar-
bled input X to a garbled output Y = Ev(F,X). String d describes a decoding
function, De(d, ·), that maps a garbled output Y to a final output y = De(d, Y ).
The correctness requirement is that if f ∈ {0, 1}∗, k ∈ N, x ∈ {0, 1}f.n, and
(F, e, d) ∈ [Gb(1k, f)], then De(d,Ev(F,En(e, x))) = ev(f, x). We also require
that e and d depend only on k, f.n, f.m, |f | and the random coins r of Gb. This
non-degeneracy requirement excludes trivial solutions.

A common design in existing garbling schemes is for e to encode a list of
tokens, one pair for each bit in x ∈ {0, 1}n. Encoding function En(e, ·) then uses
the bits of x = x1 · · ·xn to select from e = (X0

1 , X
1
1 , . . . , X

0
n, X

1
n) the subvector

X = (Xx1
1 , . . . , Xxn

n ). Formally, we say that garbling scheme G = (Gb,En,De,
Ev, ev) is projective if for all f , x, x′ ∈ {0, 1}f.n, k ∈ N, and i ∈ [1..n], when
(F, e, d) ∈ [Gb(1k, f)], X = En(e, x) and X ′ = En(e, x′), then X = (X1, . . . , Xn)
and X ′ = (X ′

1, . . . , X
′
n) are n vectors, |Xi| = |X ′

i|, and Xi = X ′
i if x and x′ have

the same ith bit. Let GS(proj) denote the set of all projective garbling schemes.
Boolean circuits arise often in this work. We say that G = (Gb,En,De,Ev, ev)

is a circuit-garbling scheme if ev is the canonical circuit evaluation function.

Side-information functions. A garbled circuit might reveal the size of
the circuit that is being garbled, its topology, the original circuit itself, or
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something else. The information that we allow to be revealed is captured by
a side-information function, Φ, which deterministically maps f to a string φ =
Φ(f). We parameterize our advantage notions by Φ. We require that f.n, f.m
and |f | be easily determined from φ = Φ(f). Side-information function Φsize

maps a circuit f = (n,m, q, A,B,G) to (n,m, q), while Φtopo maps f to f− =
Topo(f) = (n,m, q, A,B) and Φcirc is the identity, Φcirc(f) = f .

Sizes. We say that garbling scheme G = (Gb,En,De,Ev, ev) has short garbled
inputs if there is a polynomial s such that |En(e, x)| ≤ s(k, f.n, f.m) for all k ∈ N,
f ∈ {0, 1}∗, (F, e, d) ∈ [Gb(1k, f)], and x ∈ {0, 1}f.n. Let T be a transform that
maps a garbling scheme G to a garbling scheme T[G]. We say that T preserves
short garbled inputs if T[G] has short garbled inputs when G does.

Typical Yao-style constructions, including Garble1 and Garble2 [4], have short
garbled inputs. But they are only statically-secure. Keeping garbled inputs short
seems challenging for adaptive security in the standard model.

3 Privacy and One-Time Programs

In this section we define coarse and fine-grained adaptive privacy for garbling
schemes. We show that some natural approaches to achieve these aims fail. We
provide alternatives that work. In [3], we provide more efficient ones in the ROM.
We apply this to get secure one-time programs.

Definitions for adaptive privacy. On the top of Fig. 2 we review the
defining game for the privacy notion from BHR [4]. The adversary is static, in
the sense it must commit to its initial function f and its input x at the same
time. Thus the latter is independent of the garbled function F (and the decoding
function d) derived from f . It is natural to consider stronger privacy notions,
ones where the adversary obtains F and then selects x. Two formulations for this
are specified in Fig. 2. We call these adaptive security. The notion in the mid-
dle panel, denoted by prv1, this paper, is coarse-grained adaptive security. The
notion in the bottom panel, denoted by prv2, is fine-grained adaptive security.
This notion is only applicable for projective garbling schemes.

In detail, let G = (Gb,En,De,Ev, ev) be a garbling scheme and let Φ be a side-
information function. We define three simulation-based notions of privacy via
the games PrvG,Φ,S , Prv1G,Φ,S , and Prv2G,Φ,S of Fig. 2. Here S, the simulator,
is an always-terminating algorithm that maintains state across invocations. An
adversaryA interacting with any of these games must make exactly one Garble

query. For game Prv1 it is followed by a single Input query. For game Prv2
it is followed by multiple Input queries. There, the garbling scheme must be
projective. The advantage the adversary gets is defined by

Advprv, Φ,S
G (A, k) = 2Pr[PrvAG,Φ,S(k)]− 1

Advprv1, Φ,S
G (A, k) = 2Pr[Prv1AG,Φ,S(k)]− 1

Advprv2, Φ,S
G (A, k) = 2Pr[Prv2AG,Φ,S(k)]− 1 .
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proc Garble(f, x) PrvG,Φ,S
b� {0, 1}
if x 	∈ {0, 1}f.n then return ⊥
if b = 1 then (F, e, d)← Gb(1k, f), X ← En(e, x)
else y ← ev(f, x), (F,X, d)← S(1k, y, Φ(f))
return (F,X, d)

proc Garble(f)
b� {0, 1}
if b = 1 then (F, e, d)← Gb(1k, f)
else (F, d)← S(1k, Φ(f), 0)
return (F, d)

proc Input(x) Prv1G,Φ,S
if x 	∈ {0, 1}f.n then return ⊥
if b = 1 then X ← En(e, x)
else y ← ev(f, x), X ← S(y,1)
return X

proc Garble(f)
b� {0, 1}; n← f.n; Q← ∅; τ ← ε
if b = 1 then

(F, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), d)←Gb(1k, f)

else

(F, d)← S(1k, Φ(f), 0)
return (F, d)

proc Input(i, c) Prv2G,Φ,S
if i 	∈ {1, . . . , n} \Q then return ⊥
xi ← c; Q← Q ∪ {i}
if |Q|=n then

x← x1 · · ·xn; y←ev(f, x); τ ← y
if b = 1 then Xi ← Xxi

i

else Xi ← S(τ, i, |Q|)
return Xi

Fig. 2. Three kinds of privacy: prv, prv1, prv2.Games to define the static, coarse-
grained, and fine-grained privacy of G = (Gb,En,De,Ev, ev). Finalize(b′) returns the
predicate (b = b′). Notation s�S denotes uniform sampling from a finite set.

For xxx ∈ {prv, prv1, prv2} we say that G is xxx-secure with respect to (or
over) Φ if for every PT adversary A there exists a PT simulator S such that

Advxxx, Φ,S
G (A, ·) is negligible. We let GS(xxx, Φ) be the set of all garbling

schemes that are xxx-secure over Φ.
Let us now explain the three games, beginning with static privacy. Here we

let the adversary select f and x and we do one of two things: garble f to make
(F, e, d) and encode x to makeX , giving the adversary (F,X, d); or, alternatively,
we ask the simulator produce a “fake” (F,X, d) based only on the security pa-
rameter k, the partial information Φ(f) about f , and the output y = ev(f, x).
The adversary will have to guess if the garbling was real or fake.

For coarse-grained adaptive privacy, we begin by letting the adversary pick f .
Either we garble it to (F, e, d)← Gb(1k, f) and give the adversary (F, d); or else
we ask the simulator to devise a fake (F, d) based solely on k and φ = Φ(f).
Only after the adversary has received (F, d) do we ask it to provide an input x.
Corresponding to the two choices we either encode x to X = En(e, x) or ask the
simulator to produce a fake X , assisting it only by providing ev(f, x).

Coarse-grained adaptive privacy is arguably not all that adaptive, as the ad-
versary specifies its input x all in one shot. This is unavoidable as long as
the encoding function e operates on x atomically. But if the encoding func-
tion e is projective, then we can dole out the garbled input component-by-
component. Only after the adversary specifies all n bits, one by one, is the input
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fully determined. At that point the simulator is handed y, which might be needed
for constructing the final token Xxi

i .

The OMSS transform. In the process of constructing one-time programs
from garbled circuits, GKR [13] recognize the need for adaptive privacy of the
garbled circuits. Their construction incorporates a technique to provide it. This
technique is easily abstracted to provide, in our terminology, a transform that
aims to convert a projective, prv garbling scheme into a projective, prv2 garbling
scheme. Instead of garbling f we pick r� {0, 1}m and garble the circuit g defined
by g(x) = f(x) ⊕ r for every x ∈ {0, 1}n where n = f.n and m = f.m. Then
we secret share r as r = r1 ⊕ · · · ⊕ rn and include ri in the i-th token, so that
evaluation reconstructs r and it can be xored back at decoding time to recover
ev(f, x) as ev(g, x) ⊕ r. Intuitively, this should work because the simulator can
garble a dummy constant function with random output s and does not have to
commit to r until it gets the target output value y of f and needs to provide
the last token, at which point it can pick r = s ⊕ y so that y as desired [13].
Just the same, we show by counterexample that the OMSS does not in work, in
general, to convert a prv-secure scheme to a prv2-secure one: we present a prv
secure G such that OMSS[G] is not prv2 secure. While this does not show that
OMSS fails in the context in which GMR use it, our counterexample extends to
that setting as well; see the full paper [3].

Now proceeding formally, we associate to circuit-garbling scheme G = (Gb,
En,De,Ev, ev) ∈ GS(proj) the circuit-garbling scheme OMSS[G] = (Gb2,En2,De2,
Ev2, ev) ∈ GS(proj) defined at the top of Fig. 3. For simplicity we are assuming
that the decoding rule d in G is always vacuous, meaning d = ε. (We do not need
non-trivial d to achieve privacy [4], and this lets us stay closer to GKR [13],
whose garbled circuits have no analogue of our decoding rule.) In the code,
g(·)← f(·)⊕r means that we construct from f, r a circuit g such that ev(g, x) =
ev(f, x) ⊕ r for all x ∈ {0, 1}f.n. (Note we can do this in such a way that
Φtopo(g) = Φtopo(f).)

The claim under consideration is that if G is prv-secure relative to Φ = Φtopo

then G2 is prv2-secure relative to Φ = Φtopo. To prove this, we would need to
let A2 be an arbitrary PT adversary and build a PT simulator S2 such that
Advprv2, Φ,S2

G2
(A2, ·) is negligible. GKR suggest a plausible strategy for the sim-

ulator that, in particular, explains the intuition for the transform. We present
here our understanding of this strategy adapted to our setting. In its first phase
the simulator S2 has input 1k, φ, 0 where φ = Φ(f), with f being the query
made by the adversary to Garble. Simulator S2 picks s� {0, 1}n and lets
fs be the circuit that has output s on all inputs and Φtopo(fs) = φ. It also
picks random m-bit strings s1, . . . , sn and a random input w� {0, 1}n. It lets
(G, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n), ε)�Gb(1k, fs) and returns G to the adversary, saving

σ = (s, s1, . . . , sn) as state information. In the second phase, when given input
τ, i, j, for j ≤ n − 1, the simulator lets Ti ← (Xwi

i , si) and returns Ti to the
adversary as the token for bit i of the input. In the case that j = n, the simu-
lator obtains (from τ as per our game) the output y = ev(f, x) of the function
on input x, the latter defined by the adversary’s queries to Input. It now resets
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proc Gb2(1
k, f)

n← f.n, r1, . . . , rn � {0, 1}f.m
r ← r1 ⊕ · · · ⊕ rn, g(·)← f(·)⊕ r

(G, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), ε)�Gb(1k, g)

for i ∈ {1, . . . , n} do
T 0
i ← (X0

i , ri), T
1
i ← (X1

i , ri)
return (G, (T 0

1 , T
1
1 , . . . , T

0
n , T

1
n), ε)

proc En2((T
0
1 , T

1
1 , . . . , T

0
n , T

1
n), x)

x1 · · ·xn ← x
return (T x1

1 , . . . , T xn
n )

proc Ev2(G, (T1, . . . , Tn))
for i ∈ {1, . . . , n} do (Xi, ri)← Ti

Y ← Ev(G, (X1, . . . , Xn))
r ← r1 ⊕ · · · ⊕ rn
return (Y, r)

proc De2(ε, (Y, r))
return De(ε, Y )⊕ r

proc Gb(1k, g)

(n,m)← (g.n, g.m)

(G′, (Z0
1 , Z

1
1 , . . . , Z

0
n, Z

1
n), ε)�Gb′(1k, g)

for i ∈ {1, . . . , n} do V 0
i , V

1
i � {0, 1}m

v1 · · · vn ← v� {0, 1}n, V � {0, 1}m
if n ≥ k then

V ← ev(g, v)⊕ V v1
1 ⊕ · · · ⊕ V vn

n

for i ∈ {1, . . . , n} do
X0

i ← (Z0
i , V

0
i ), X1

i ← (Z1
i , V

1
i )

G← (G′, v, V )
return (G, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n), ε)

proc Ev(G, (X1, . . . , Xn))

for i ∈ {1, . . . , n} do (Zi, Vi)← Xi

(G′, v, V )← G
return Ev′(G′, (Z1, . . . , Zn))

proc En((X0
1 , X

1
1 , . . . , X

0
n, X

1
n), x)

x1 · · ·xn ← x
return (Xx1

1 , . . . , Xxn
n )

Fig. 3. OMSS definition (top). Scheme OMSS[G] = (Gb2,En2,De2,Ev2, ev) where
G = (Gb,En,De,Ev, ev). OMSS counterexample (bottom). The garbling scheme
G = (Gb,En,De,Ev, ev) obtained from G ′ = (Gb′,En′,De,Ev′, ev) is prv secure when
G ′ is, but OMSS[G] is not prv2 secure.

si = y ⊕ s ⊕ si ⊕ s1 ⊕ · · · ⊕ sn and returns (Xi, si), so that evaluation of the
garbled function indeed results in output y.

This simulation strategy is intuitive, but trying to prove it correct runs into
problems. We have to show that Advprv2, Φ,S2

G2
(A2, ·) is negligible. We must

utilize the assumption of prv security to do this, which means we must perform
a reduction. The only plausible path towards this is to construct from A2 an
adversary A against the prv-security of G and then exploit the existence of a
simulator S such that Advprv, Φ,S

G (A, ·) is negligible. However, it is not clear
how to construct A, let alone how its simulator comes into play. (As we will
see when proving our transforms, the proof template that works is different, not
trying first to build S2, but instead building A from A2 and then S2 from S.)

The problem turns out to be more than technical, for we will see that the
transform itself does not work in general. By this we mean that we can exhibit
a (projective) circuit-garbling scheme G = (Gb,En,De,Ev, ev) that is prv-secure
relative to Φ = Φtopo but the transformed scheme G2 = OMSS[G] is subject to
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proc Gb1(1
k, f)

(F, e, d)← Gb(1k, f)

F ′ � {0, 1}|F |, d′ � {0, 1}|d|

F1 ← F ⊕ F ′, d1 ← d⊕ d′

e1 ← (e, d′, F ′)
return (F1, e1, d1)

proc En1(e1, x)
(e, d′, F ′)← e1, X ← En(e, x)
return (X, d′, F ′)

proc Ev1(F1, X1)
(X, d′, F ′)← X1, F ← F1 ⊕ F ′

Y ← Ev(F,X)
return (Y, d′)

proc De1(d1, Y1)
(Y, d′)← Y1, d← d1 ⊕ d′

return De(d, Y )

proc Gb2(1
k, f)

(F, e, d)← Gb1(1
k, f)

(X0
1 , X

1
1 , . . . , X

0
n, X

1
n)← e

N ← |En1(e, 0n)|
for i ∈ {1, . . . , n} do

Zi � {0, 1}|X0
i |, Si � {0, 1}N

Z ← (Z1, . . . , Zn)
Sn ← Z ⊕ S1 ⊕ · · · ⊕ Sn−1

for i ∈ {1, . . . , n} do
T 0
i ← (X0

i ⊕ Zi, Si), T 1
i ← (X1

i ⊕ Zi, Si)

return (F, (T 0
1 , T

1
1 , . . . , T

0
n , T

1
n), d)

proc Ev2(F,X2)(
(U1, S1), . . . , (Un, Sn)

)
← X2

Z ← S1 ⊕ · · · ⊕ Sn

(Z1, . . . , Zn)← Z
X ← (U1 ⊕ Z1, . . . , Un ⊕ Zn)
return Ev1(F,X)

proc En2(e2, x)

(T 0
1 , X

1
1 , . . . , T

0
n , X

1
n)← e2

x1 · · ·xn ← x
return (T x1

1 , . . . , T xn
n )

Fig. 4. Transform prv-to-prv1 (top): Scheme G1 = (Gb1,En1,De1,Ev1, ev) ∈
GS(prv1, Φ) obtained by applying the prv-to-prv1 transform to G = (Gb,En,De,Ev,
ev) ∈ GS(prv, Φ). Transform prv1-to-prv2 (bottom): Projective garbling scheme
G2 = (Gb2,En2,De,Ev2, ev) ∈ GS(prv2, Φ) obtained by applying the prv1-to-prv2 trans-
form to projective garbling scheme G1 = (Gb1,En1,De1,Ev1, ev) ∈ GS(prv1, Φ)

an attack showing that it is not prv2 secure. This means, in particular, that the
above simulation strategy does not in general work.

To carry this out, we start with an arbitrary projective circuit-garbling scheme
G ′ = (Gb′,En′,De,Ev′, ev) assumed to be prv-secure relative to Φ = Φtopo. We
then transform it into the projective circuit-garbling scheme G = (Gb,En,De,Ev,
ev) shown at the bottom of Fig. 3. (We assume the decoding rule of G ′ is vacuous,
a feature inherited by G. We are letting v denote the bitwise complement of a
string v.) The following proposition, whose proof is in the full paper [3], says
that G continues to be prv-secure but an attack shows that OMSS[G] is not
prv2-secure. (The proof shows it is in fact not even prv1 secure.)

Proposition 1. Let ev be the canonical circuit-evaluation function. Assume
G ′ = (Gb′,En′,De,Ev′, ev) ∈ GS(prv, Φtopo) ∩ GS(proj) and let G = (Gb,En,De,
Ev, ev) ∈ GS(proj) be the garbling scheme shown at the bottom of Fig. 3. Then
(1) G ∈ GS(prv, Φtopo) ∩ GS(proj), but (2) OMSS[G] �∈ GS(prv2, Φtopo).

Achieving prv1 security. We now describe a transform prv-to-prv1 that
successfully turns a prv secure circuit garbling scheme into a prv1 secure one.
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Combined with established results [4], this yields prv1-secure schemes based on
standard assumptions. The idea is to use one-time pads to mask F and d, and
then append the pads to X . This will ensure that the adversary learns nothing
about F and d until it fully specifies function f and x. Given a (not necessarily
projective) garbling scheme G = (Gb,En,De,Ev, ev), the prv-to-prv1 transform
returns the garbling scheme prv-to-prv1[G] = (Gb1,En1,De1,Ev1, ev) at the top
of Fig. 4. We claim:

Theorem 2. For any Φ, if G ∈ GS(prv, Φ) then prv-to-prv1[G] ∈ GS(prv1, Φ).

The intuition behind the prv-to-prv1 transform (outlined above) is simple, but
the proof template is instructive in indicating how to move from the intuition
to a formal proof. Given any PT adversary A1 against the prv1-security of G1
we build a PT adversary A against the prv-security of G. Now the assumption
of prv-security yields a PT simulator S for A such that Advprv, Φ,S

G (A, ·) is
negligible. Now we build from S a PT simulator S1 such that for all k ∈ N we
have Advprv1, Φ,S1

G1
(A1, k) ≤ Advprv, Φ,S

G (A, k). This yields the theorem. In the
full paper [3] we provide a full proof that shows how to build A and S1.
Achieving prv2 security. Next we show how to transform a prv1 scheme
into a prv2 one. Formally, given a projective garbling scheme G = (Gb,En,De,
Ev, ev) ∈ GS(prv1, Φ), the prv1-to-prv2 transform returns the projective garbling
scheme prv1-to-prv2[G] = (Gb2,En2,De,Ev2, ev) shown at the bottom of Fig. 4.
The idea is to mask the garbled input and then use the second part of GKR’s
idea as represented by OMSS, namely secret-share the mask, putting a piece
in each token, so that unless one has all tokens, one learns nothing about the
garbled input. The formal proof of the following is in the full paper [3].

Theorem 3. For any Φ, if G1 ∈ GS(prv1, Φ) ∩ GS(proj) then prv1-to-prv2[G1] ∈
GS(prv2, Φ) ∩ GS(proj).

One-time compilers. Starting from garbling schemes with prv2 security,
we give simple designs, and proofs, for one-time programs. We begin with the
definitions. Following GKR [13], the intent is that possession of a one-time pro-
gram P for a function f should enable one to evaluate f at any single value x;
but, beyond that, the one-time program should be useless. Unachievable in any
standard model of computation (where possession of P would enable its repeated
evaluation at multiple point), GKR suggest achieving one-time programs in a
model of computation that provides one-time memory—tamper-resistant hard-
ware whose read-once i-th location returns, on query (i, b) ∈ N × {0, 1}, the
string T b

i , immediately thereafter expunging T 1−b
i . A one-time compiler proba-

bilistically transforms the description of a function f into a one-time program P
and its associated one-time memory T .

For a formal treatment, we begin by specifying two stateful oracles; see Fig. 5.
The first, OTPf , formalizes the desired behavior of a one-time program for f .
Here f will now be regarded as a string, not a function, but this string represents
a circuit computing a function ev(f) : {0, 1}f.n → {0, 1}f.m; we write ev for
the canonical circuit-evaluation function [4]. The agent calling out to OTPf
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proc OTPf (x) proc OTMT (i, b)
if x 	∈ {0, 1}f.n then ret ⊥ (T 0

1 , T
1
1 , . . . , T

0
	 , T

1
	 )← T

if called then ret ⊥ if i 	∈ [1..�] or usedi or b 	∈ {0, 1} then ret ⊥
called ← true usedi ← true
ret ev(f, x) ret T b

i

Fig. 5. Oracles model one-time programs and one-time memory. Oracle OTP

depends on a string f representing a boolean circuit. Oracle OTM depends on a list of
strings T .

provides x and, on the first query, it gets ev(f, x). Subsequent queries return
nothing. On the right-hand side of Fig. 5 we similarly define an oracle OTMT ,
this to model possession of a one-time-memory system. Given a list of � pairs of
strings (establish some convention so that every string T is regarded as denoting
a list of � pairs of strings, for some � ∈ N) the oracle returns at most one string
from each pair, otherwise satisfying each request.

Elaborating on GKR, we now define a one-time compiler as a pair of prob-
abilistic algorithms Π = (Co,Ex) (for compile and execute). Algorithm Co, on
input 1k and a string f , produces a pair (P, T ) ← Co(1k, f) where P (the one-
time program) is a string and T (the one-time-memory) encodes a list of 2�
strings, for some �. Algorithm Ex, on input of strings P and x, and given access
to an oracle O, returns a string y ← ExO(P, x). We require the following cor-
rectness condition of Π = (Co,Ex): if (P, T )← Co(1k, f) and x ∈ {0, 1}f.n then

ExOTMT (·,·)(P, x) = ev(f, x).
The security of Π = (Co,Ex) will be relative to a side-information function

Φ; the value φ = Φ(f) captures the information about f that P is allowed to
reveal. So fix a one-time compiler Π = (Co,Ex), an adversary A, a security
parameter k, and a string f . (1) Consider the distribution RealΠ,A,f (k) deter-
mined by the following experiment: first, sample (P, T ) ← Co(1k, f); then, run
AOTMT (·)(1k, P ) and output whatever A outputs. (2) Alternatively, fix a one-
time compiler Π = (Co,Ex), an information function Φ, a simulator S, a security
parameter k, and a string f . Consider the distribution FakeΠ,Φ,S,f(k) determined
by the following experiment: run SOTPf (·)(1k, Φ(f)) and output whatever S out-
puts. For D an algorithm and Π , Φ, A, S, and k as above, let

Advotc
Π,Φ,A,S,D(k) = Pr[(f, σ)← D(1k); v�RealΠ,A,f (k) : D(σ, v)⇒ 1]−

Pr[(f, σ)← D(1k); v�FakeΠ,Φ,S,f (k) : D(σ, v) ⇒ 1]

One-time compilerΠ is said to be (OTC-) secure with respect to side-information
function Φ if for any PPT adversary A there is a PPT simulator S such that for
all PPT distinguishers D, function Advotc

Π,Φ,A,S,D(k) is negligible.

Constructing an OTC from a garbling scheme. A circuit-garbling
scheme G = (Gb,En,De,Ev, ev) can be turned into a one-time compiler Π =
(Co,Ex) in a natural way: let OTC[G] = (Co,Ex) be defined as follows. (1)
Co(1k, f): let (F, e, d) ← Gb(f) and return (P, T ) where P = (F, d) and T = e.
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(2) ExO(P, x): Let (F, d) ← P , let x1 · · ·xn ← x, query oracle O on (1, x1),
. . . , (n, xn) to obtain X1, . . . , Xn, respectively, and return De(d,Ev(F,X)) with
X = (X1, . . . , Xn). The proof of the following is in the full paper [3].

Theorem 4. If G is a prv2-secure garbling scheme over side-information func-
tion Φ then OTC[G] is OTC-secure with respect to side-information Φ.

The straightforwardness of the construction and its trivial proof are, we believe,
points in our favor, evidence of our claim that the garbling scheme abstraction
and appropriate security notions for it engender applications in direct, simple
and less error-prone ways.

Separation. In the full paper [3], we elaborate on how Proposition 1 gives
an example of a garbling scheme G such that OTC[OMSS[G]] is not otc-secure.
We explain why this refutes GKR’s claim [13] that their construction provides
a secure one-time compiler assuming one-way functions.

4 Obliviousness, Authenticity and Secure Outsourcing

We define obliviousness and authenticity, both with either the coarse-grained
or fine-grained adaptivity. We show how to achieve these goals, in combination
with adaptive privacy, via generic transforms and in the standard model. In the
full paper [3] we provide more efficient transforms in the ROM. Finally we apply
this to obtain extremely simple and modular designs, and security proofs, for
verifiable outsourcing schemes based on the paradigm of GGP [9].

Obliviousness. Intuitively, a garbling scheme is oblivious if garbled function F
and garbled input X , these corresponding to f and x, reveal nothing of f or x
beyond side-information Φ(f). In particular, possession F and X will not allow
the calculation of y = ev(f, x).

The formal definition for static obliviousness is from BHR [4]. See the top
of Fig. 6. We add to this two new definitions, to incorporate either coarse-
grained or fine-grained adaptive security. See the rest of Fig. 6. Fine-grained
adaptive security continues to require that G be projective. The games used
for defining obliviousness closely mirror their privacy counterparts. The first
important difference is that the adversary does not get the decoding function d.
The second important difference is that the simulator must do without y =
ev(f, x). For a garbling scheme G, side-information Φ, simulator S, adversary A,

and security parameter k ∈ N, we let Advobv, Φ,S
G (A, k) = 2Pr[ObvAG,Φ,S(k)]−1,

Advobv1, Φ,S
G (A, k) = 2Pr[Obv1AG,Φ,S(k)] − 1, and finally Advobv2, Φ,S

G (A, k) =

2Pr[Obv2AG,Φ,S(k)]− 1. Garbling scheme G is obv-secure with respect to Φ if for

every PPTA there exists a simulator S such thatAdvobv, Φ,S
G (A, k) is negligible.

We similarly define obv1 and obv2 security. For xxx ∈ {obv, obv1, obv2} we let
GS(xxx, Φ) denote the set of all garbling schemes that are xxx-secure over Φ.

Fig. 6 also formalizes the games underlying three definitions of authenticity,
capturing an adversary’s inability to create from F and X a garbled output
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proc Garble(f, x) ObvG,Φ,S

b� {0, 1}
if x 	∈ {0, 1}f.n then return ⊥
if b = 1 then (F, e, d)← Gb(1k, f), X ← En(e, x)
else (F,X)← S(1k, Φ(f))
return (F,X)

proc Garble(f)

b� {0, 1}
if b = 1 then (F, e, d)← Gb(1k, f)
else F ← S(1k, Φ(f), 0)
return F

proc Input(x) Obv1G,Φ,S

if x 	∈ {0, 1}f.n then return ⊥
if b = 1 then X ← En(e, x)
else X ← S(1)
return X

proc Garble(f)

b� {0, 1}; n← f.n; Q← ∅; σ ← ε
if b = 1 then
(F, (X0

1 , X
1
1 , . . . , X

0
n, X

1
n), d)←Gb(1k, f)

else F ← S(1k, Φ(f), 0)
return F

proc Input(i, c) Obv2G,Φ,S

if i 	∈ {1, . . . , n} \Q then return ⊥
xi ← c; Q← Q ∪ {i}
if b = 1 then Xi ← Xxi

i

else Xi ← S(i, |Q|)
return Xi

proc Garble(f, x) AutG

if x 	∈ {0, 1}f.n then return ⊥
(F, e, d)← Gb(1k, f), X ← En(e, x)
return (F,X)

proc Garble(f)

(F, e, d)← Gb(1k, f)
return F

proc Input(x) Aut1G

if x 	∈ {0, 1}f.n then return ⊥
X ← En(e, x)
return X

proc Garble(f)

n← f.n; Q← ∅; σ ← ε

(F, (X0
1 , X

1
1 , . . . , X

0
n, X

1
n), d)←Gb(1k, f)

return F

proc Input(i, c) Aut2G

if i 	∈ {1, . . . , n} \Q then return ⊥
xi ← c; Q← Q ∪ {i}, Xi ← Xxi

i

if |Q| = n then X ← (X1, . . . , Xn)
return Xi

Fig. 6. Obliviousness (top). Games for defining the obv, obv1, and obv2 security of
G = (Gb,En,De,Ev, ev). For each game, Finalize(b′) returns (b = b′). Authenticity
(bottom). Games for defining the aut, aut1, and aut2 security of G = (Gb,En,De,Ev,
ev). Procedure Finalize(Y ) of each game returns (De(d, Y ) 	= ⊥ and Y 	= Ev(F,X)).

Y �= F (X) that will be deemed authentic. The static definition of BHR [4] is
strengthened either to allow the adversary to specify x subsequent to obtain-
ing F , or, stronger, the bits of x are provided one-by-one, each corresponding
token then issued. For the second case, game Aut2, the garbling scheme must
once again be projective. For a garbling scheme G, adversary A, and security
parameter k ∈ N, we let Advaut

G (A, k) = 2Pr[AutAG (k)] − 1, Advaut1
G (A, k) =
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proc Gb1(1
k, f)

(F, e, d)← Gb(1k, f)

F ′ � {0, 1}|F |, d′ � {0, 1}|d|

F1 ← F ⊕ F ′, K� {0, 1}k, d1 ← (d⊕ d′,K)
tag← FK(d′), e1 ← (e, d′, F ′, tag)
return (F1, e1, d1)

proc En1(e1, x)
(e, d′, F ′, tag)← e1
return (En(e, x), d′, F ′, tag)

proc Ev1(F1, X1)
(X, d′, F ′, tag)← X1, F ← F1 ⊕ F ′

Y ← Ev(F,X)
return (Y, d′, tag)

proc De1(d1, Y1)
(Y, d′, tag)← Y1

(D,K)← d1, d← D ⊕ d′

if tag 	= FK(d′) then return ⊥
return De(d, Y )

Fig. 7. Scheme all-to-all1[G] = (Gb1,En1,De1,Ev1, ev) ∈ GS(prv1, Φ) ∩ GS(obv1, Φ) ∩
GS(aut1) obtained from scheme G = (Gb,En,De,Ev, ev) ∈ GS(prv, Φ) ∩ GS(obv, Φ) ∩
GS(aut). The transform uses a PRF F : {0, 1}k × {0, 1}∗ → {0, 1}k.

2Pr[Aut1AG (k)]−1, and Advaut2
G (A, k) = 2Pr[Aut2AG (k)]−1. Garbling scheme G

is aut-secure with respect to Φ if for every PPT A Advaut
G (A, k) is negligible.

We similarly define aut1 and aut2 security. For xxx ∈ {aut, aut1, aut2} we let
GS(xxx) denote the set of all garbling schemes that are xxx-secure.

Achieving obv1 and aut1 security. It is tempting to think that the
prv-to-prv1 operator in Fig. 4 also promotes xxx-security, with xxx ∈ {obv, aut},
to xxx1-security, but it does not. We now show how to change prv-to-prv1 to
an operator all-to-all1 that promotes any xxx ∈ {prv, obv, aut} to being xxx1
secure. See Fig. 7. The proof of the following is in the full paper [3].

Theorem 5. (1) For any Φ and any xxx ∈ {prv, obv}, if G ∈ GS(xxx, Φ) then
all-to-all1[G] ∈ GS(xxx1, Φ) (2) If G ∈ GS(aut) then all-to-all1[G] ∈ GS(aut1)
(3) If G ∈ GS(proj) then all-to-all1[G] ∈ GS(proj).

Achieving obv2 and aut2 security. The transform to promote coarse-
grained to fine-grained security is unchanged. We let all1-to-all2 = prv1-to-prv2
be the transform at the bottom of Fig. 4. We claim it has additional features
captured by the following, whose proof is in the full paper [3].

Theorem 6. (1) For any Φ and any xxx ∈ {prv, obv} if G1 ∈ GS(xxx1, Φ) ∩
GS(proj) then all1-to-all2[G1] ∈ GS(xxx2, Φ) ∩ GS(proj) (2) If G1 ∈ GS(aut1) ∩
GS(proj) then all1-to-all2[G1] ∈ GS(aut2) ∩ GS(proj).

Outsourcing definitions. Towards the application to secure outsourcing,
we begin with the definitions, following GGP [9]. An outsourcing scheme Π =
(Gen, Inp,Out,Comp, ev) is a tuple of PT algorithms that, intuitively, will be run
partly on a client and partly on a server. Generation algorithm Gen is run by the
client on input of the unary encoding 1k and a string f describing the function
ev(f, ·) : {0, 1}f.n → {0, 1}f.m to be evaluated (so that ev, like in a garbling
scheme, is a deterministic evaluation algorithm) to get back a public key pk that



150 M. Bellare, V.T. Hoang, and P. Rogaway

is sent to the server and a secret key sk that is kept by the client. Algorithm Inp
is run by the client on input pk , sk and x ∈ {0, 1}f.n to return a garbled input
X that is sent to the server. Associated state information St is preserved by
the client. Algorithm Comp is run by the server on input pk , X to get a garbled
output Y that is returned to the client. The latter runs deterministic algorithm
Out on pk , sk , Y, St to get back y ∈ {0, 1}f.n ∪ {⊥}. Correctness requires that
for all k ∈ N, all f ∈ {0, 1}∗, and all x ∈ {0, 1}f.n, if (pk , sk) ← Gen(1k, f),
(X, St) ← Inp(pk , sk , x), Y ← Comp(pk , X), and y ← Out(pk , sk , Y,St), then
y = ev(f, x). Our syntax is the same as that of GGP [9] except for distinguishing
between functions and their descriptions, as represented the addition of ev to
the list.

The games OSVFΠ and OSPRΠ,Φ,Sos of Fig. 8 are used to define verifiability
and privacy of an outsourcing scheme Π = (Gen, Inp,Out,Comp, ev), where Φ
is a side-information function and Sos is a simulator. In both games, the adver-
sary is allowed only one GetPK query, and this must be its first oracle query.
For adversaries Aos and Bos, we let Advosvf

Π (Aos, k) = Pr[OSVFAos

Π (k)] and

Advospr,Φ,Sos

Π (Bos, k) = 2Pr[OSPRBos

Π,Φ,Sos
(k)]− 1. We say that Π is verifiable if

Advosvf
Π (Aos, ·) is negligible for all PT adversaries Aos. We say that Π is pri-

vate over Φ if for all PT adversaries Bos there is a PT simulator Sos such that
Advospr,Φ,Sos

Π (Aos, ·) is negligible. An adversary is said to be one-time if it makes

only one Input query. We say that Π is one-time verifiable if Advosvf
Π (Aos, ·) is

negligible for all PT one-time adversariesAos. We say that Π is one-time private
over Φ if for all PT one-time adversaries Bos there is a PT simulator Sos such
that Advospr,Φ,Sos

Π (Aos, ·) is negligible.
Our verifiability definition coincides with that of GGP [9] but our privacy

definition is stronger: it requires not just “input privacy” (concealing each in-
put x) but, also, privacy of the function f (relative to Φ). (As in our garbling
definitions this is subject to Φ(f) being revealed). Also, while GGP use an
indistinguishability-style formalization, we use a simulation-style one, as this
is stronger for some side-information functions.

To be “interesting” the work of the client in an outsourcing scheme should
be less than the work required to compute the function directly, for otherwise
outsourcing is not buying anything. An outsourcing scheme is said to be non-
trivial if this condition is met.

From garbling to outsourcing. GGP show how to use FHE to turn
any one-time verifiable and private outsourcing scheme into a fully verifiable
and private one. This allows us to focus on designing the former. We show how
a garbling scheme that is both aut1 and obv1 secure immediately implies a
one-time verifiable and private outsourcing scheme. The construction, given in
Fig. 8, is very direct, and the proof of the following, given in the full paper [3],
is trivial, points which reinforce our claim that the garbling scheme abstraction
and adaptive security may be easily used in applications:

Theorem 7. If G ∈ GS(obv1, Φ) ∩ GS(aut1) then outsourcing scheme Π [G] is
one-time verifiable and also one-time private over Φ.
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proc GetPK(f) OSVFΠ

(pk , sk)← Gen(1k, f), i← 0
return pk

proc Input(x)

if x 	∈ {0, 1}f.n then return ⊥
i← i+ 1, xi ← x
(Xi,Sti)← Inp(pk , sk , x)
return Xi

proc Finalize(Y, j)
if j 	∈ {1, . . . , i} then return false
y ← Out(pk , sk , Y,Stj)
return (y 	∈ {ev(f, xj),⊥})

proc GetPK(f) OSPRΠ,Φ,Sos

c� {0, 1}
if c = 1 then (pk , sk)← Gen(1k, f)
else (pk , σ)← Sos(1

k, Φ(f))
return pk

proc Input(x)
if x 	∈ {0, 1}f.n then return ⊥
if c = 1 then (X,St)← Inp(pk , sk , x)
else (X,σ)← Sos(σ)
return X

proc Finalize(c′)
return (c = c′)

Gen(1k, f)
(F, e, d)← Gb(1k, f)
return (F, (e, d))

Inp(F, (e, d), x)
X ← En(e, x)
return (X, ε)

Comp(F,X)
Y ← Ev(F, x)
return Y

Out(F, (e, d), Y,St)
y ← De(d, Y )
return y

Fig. 8. Games to define the verifiability (OSVF) and privacy (OSPR) of outsourcing
scheme Π = (Gen, Inp,Out,Comp, ev). Bottom: constructing the outsourcing scheme
Π [G] = (Gen, Inp,Out,Comp, ev) from garbling scheme G = (Gb,En,De,Ev, ev).

A benefit of our modular approach is that we may use any obv1+ aut1 garbling
scheme as a starting point while GGP were tied to the scheme of [17]. However,
the latter scheme is not adaptively secure, which brings us to our next point.

Discussion. GGP give a proof that their outsourcing scheme is one-time verifi-
able assuming the encryption scheme underlying the garbled-circuit construction
of [17] meets the condition called Yao-secure in [17]. However, their proof has
a gap. Quoting [9, p. 12 of Aug 2010 ePrint version]: “For any two values x, x′

with f(x) = f(x′), the security of Yao’s protocol implies that no efficient player
P2 can distinguish if x or x′ was used.” This claim is correct if both x and x′

are chosen independently of the randomness in the garbled circuit. But in their
setting, the string x is chosen after the adversary sees the garbled circuit, and
the security proof given by [17] no longer applies.

One may try to give a new proof that the LP garbling scheme satisfies aut1 se-
curity. However, this seems to be difficult. Intuitively, an adaptive attack on the
garbling scheme allows the adversary to mount a key-revealing selective-opening
(SOA-K) attack on the underlying encryption scheme. But SOA-K secure en-
cryption is notoriously hard to achieve [2]. The only known way to achieve it is
via non-committing encryption [5, 6, 8], which is only possible with keys as long
as the total number of bits of message ever encrypted [19], so the outsourcing
scheme may fail to be non-trivial.

This brings us to a more full discussion of non-triviality. The obv1 + aut1
secure scheme obtained via our all-to-all1 transform has long garbled inputs, so
the one-time verifiable outsourcing scheme yielded by Theorem 7, while secure,
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is not non-trivial. Our ROM transforms coupled with Theorem 7 yield a non-
trivial one-time outsourcing scheme in the ROM but the FHE-based method of
GGP of lifting to a many-time scheme fails in the ROM. Finding a obv1 + aut1
garbling scheme with short garbled inputs in the standard model under standard
assumptions is an open problem. We think Theorem 7 is still useful because it
can be used at any point such a scheme emerges. All this again is an indication
of the subtleties and hidden challenges underlying adaptive security of garbled
circuits that seem to have been overlooked in the literature.
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Abstract. This paper presents the Generalized Randomized Iterate of a
(regular) one-way function f and showthat it canbeused tobuildUniversal
One-Way Hash Function (UOWHF) families with O(n2) key length.

We then show that Shoup’s technique for UOWHF domain extension
can be used to improve the efficiency of the previous construction. We
present the Reusable Generalized Randomized Iterate which consists of
k ≥ n + 1 iterations of a regular one-way function composed at each
iteration with a pairwise independent hash function, where we only use
log k such hash functions, and we “schedule” them according to the same
scheduling of Shoup’s domain extension technique. The end result is a
UOWHF construction from regular one-way functions with an O(n log n)
key. These are the first such efficient constructions of UOWHF from
regular one-way functions of unknown regularity.

Finally we show that the Shoup’s domain extension technique can also
be used in lieu of derandomization techniques to improve the efficiency
of PRGs and of hardness amplification constructions for regular one-way
functions.

1 Introduction

One of the central results in Modern Cryptography is that one-way functions
imply digital signatures (as defined in [6]). This result was first established by
Naor and Yung in [12] for one-way permutations via the notion of Universal One-
Way Hash Functions (UOWHF). Later Rompel in [13] proved that UOWHFs can
be built from any one-way function. The notion of UOWHF is interesting on its
own, apart from its connection to digital signatures. UOWHFs are compressing
functions (i.e. the output is shorter than the input) which enjoy a target collision
resistance property: a function family G is a UOWHF if no efficient adversary A
succeeds in the following game with non-negligible probability:

– A chooses a target input z;
– a randomly chosen function g ∈ G is selected;
– A finds a collision for g(z), i.e. an input z′ �= z such that g(z) = g(z′).
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c© International Association for Cryptologic Research 2012



The Generalized Randomized Iterate and Its Application 155

A seemingly weaker notion is second preimage resistance where the target input
z is randomly chosen (rather than by A). It is however well known how to convert
a second preimage resistant function family into a UOWHF.

The security of these constructions is proven by reductions: given an adver-
sary A that wins the above UOWHF game, we build an “inverter” I that is able
to solve a computationally hard problem, e.g. invert a one-way function. A cru-
cial feature of these reductions is their efficiency, i.e. the relationship between
the running time of D (or A) and I, and the resulting degradation in the secu-
rity parameters. For the case of UOWHFs one of the most important efficiency
measures is the size of the key needed to run the algorithm.

Unfortunately the construction of UOWHFs based on general one-way func-
tions do not fare very well on that front. If n is the security parameter, the
original Rompel construction yielded a key of size Õ(n12) which was later im-
proved to Õ(n7) by Haitner et al. in [8]. Conversely under the much stronger
assumption of one-way permutations Naor and Yung in [12] achieve linear key
size. Apart from the above works, we are aware of only one work by De Santis
and Yung [2] that constructs UOWHFs from regular one-way functions (i.e. func-
tions that have constant size preimages). Their construction achieves O(n log n)
key size but is very complicated and more importantly requires knowledge of the
regularity parameter.

We go back to investigating the construction of UOWHFs from regular one-
way functions. We obtain a very simple construction with O(n logn) key size,
which does not require knowledge of the regularity parameter. These are the
first such efficient constructions of UOWHF from regular one-way functions of
unknown regularity.

Somewhat surprisingly our UOWHF construction is obtained via a simple
”tweak” on a well-known algorithm for pseudo-random number generation from
regular one-way functions: the Randomized Iterate [4,7]. Another surprising con-
nection established by this paper is that Shoup’s domain extension technique
[15] can be used to improve the seed size in both the PRG and UOWHF.

Motivation. Collision resistant hashing is an ubiquitous tool in Cryptography
and in practice a stronger notion of collision resistance is used where the adver-
sary is given as input just H ∈ H and must find z, z′ that collide (we will refer to
this notion as full collision resistance as opposed to the target collision-resistance
property enjoyed by UOWHFs).

This is problematic because there is strong evidence that this stronger notion
cannot be achieved by assuming just OWFs. Simon [16] proves that there is no
black-box construction1 of a fully collision resistant hash function from one-way
permutations. While a non black-box construction based on OWFs remains theo-
retically possible, such construction would probably be very inefficient, since
efficient constructions based on general assumptions seem to be black-box
ones.

1 Informally, a black-box construction accesses the underlying OWF only via input
queries, without any knowledge of its internal structure.
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Furthermore the cryptanalysis of practical and widely adopted supposedly
collision-resistant functions have reminded us of the importance of construct-
ing efficient candidates for collision-resistant functions which are also provably
secure, i.e. have a security reduction to a well established computational hard
problem. The above explains why researchers and practitioners alike are looking
at UOWHFs to replace full collision resistant hashing in practical applications
(such as certifications – see for example the work of Halevi and Krawczyk on
randomized hashing [10]).

Current efficient candidates for UOWHFs have either no proof of security
or make stronger assumptions than the existence of OWPs2. Achieving a truly
efficient UOWHF construction based on OWFs would offer practitioners a target
collision-resistant function which can be used in practice and gives the peace of
mind of a strong security guarantee.

In order to achieve this goal, our construction slightly relaxes the assumption
to regular OWFs, yielding a dramatic improvement to a O(n log n) key size. We
are following the same approach as [7] for pseudo-random generators: looking at
the more limited case of regular OWFs not only to improve the efficiency, but
also to explore techniques that might benefit constructions in the general case
(which is what happened in the PRG case).

1.1 Our Contribution

We present a new algorithm (we call it the Generalized Randomized Iterate
GRI ) which depending on its parameters can be used to build either PRGs
or UOWHFs starting from regular one-way functions.

First proposed in [4] the original Randomized Iterate construction involves
composing the regular one-way function with different n-wise (later improved to
simply pair-wise independent in [7]) universal hash functions at each iteration.
More specifically if f is a regular one-way function, and h1, . . . , hm are pairwise
independent hash functions all from {0, 1}n to {0, 1}n, the mth randomized iter-
ate of f using the hi is defined as fk = f ◦ hk ◦ f ◦ hk−1 ◦ . . . f ◦ h1 ◦ f . In [4,7] it
is shown that this function is hard to invert at each stage and therefore can be
used to construct PRGs in conjunction with a generic hard-core predicate (such
as the Goldreich-Levin bit [5]).

We generalize the Randomized Iterate to use compressing pair-wise indepen-
dent hash functions hi at each stage. Somewhat surprisingly we then show that
the resulting family (see Definition 8) is second-preimage resistant.

Notice that in the above applications the universal hash functions hi are part
of the secret key of the resulting algorithm (the seed for the PRG, the index key
for the UOWHF). Therefore it is desirable to have constructions in which the
number of functions can be minimized.

2 For example Halevi and Krawczyk in [10] propose a mode of operation for typical
hash function such as SHA-1 that creates a UOWHF under an assumption on the
compression function which is seemingly stronger than OWF, but somewhat weaker
than full collision resistance.
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The Randomized Iterate PRG construction in [7] has an O(n2) seed, but
it was also shown how an O(n log n) seed could be achieved by using generic
de-randomization techniques. First we point out that this approach does not
immediately work in the UOWHF case, as in order to reduce the key size, the
de-randomization procedure requires an additional property3.

We then explore another fascinating and somewhat unexpected connection.
We observe that instead of using de-randomization techniques, the structure of
the Generalized Randomized Iterate can be improved by using Shoup’s domain
extension technique for UOWHFs [15]. We define the Reusable Generalized Ran-
domized Iterate RGRI : Using Shoup’s approach we prove that it is possible to
”recycle” some of the hash functions in the Generalized Randomized Iterate, to
O(logm) for m iterations (instead of m). The net result is that we achieve a
UOWHF with O(n log n) key size.

Finally we point out that the RGRI also yields an O(n log n)-seed PRG from
regular one-way function, and can be also used for hardness amplification of reg-
ular one-way functions, obtaining alternative proofs of results already appearing
in [7].

1.2 Comparison with Previous Work

We already mention the previous works on UOWHFs based on general assump-
tions [12,13,8,2] and how they compare to our work.

As discussed above our UOWHF construction uses in a crucial way tools that
were developed for the task of pseudo-random generation. In this sense our work
follows the path of recent papers on inaccessible entropy [9,8]. Those beauti-
ful works elegantly show that the known constructions of PRGs and UOWHFs
can be interpreted as similar manipulation techniques on different forms of
computational entropy (pseudo-entropy for PRGs and inaccessible entropy for
UOWHFs). While less general, our work shows a more direct and specific con-
nection: a single algorithm (the Generalized Randomized Iterate) which is suffi-
ciently ”flexible” to be used either as a PRG or as a UOWHF.

1.3 Paper Organization

We briefly recall the relevant definitions in Section 2. In Section 3 we introduce
the Generalized Randomized Iterate and its Reusable variant; we also prove
a main technical Lemma that is at the heart of the efficiency claim for our
UOWHF construction which appears in Section 4. We present our alternative
constructions of a O(n log n)-seed PRG, and the hardness amplification result in
Section 5 (the proofs of these constructions will appear in the full-version). We
conclude with some discussions and open problems in Section 6.

3 The actual de-randomization algorithm (the Nisan-Zuckerman PRG for space-
bounded computations) used in [7] has this property, but a generic PRG for space-
bounded computation might not.
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2 Preliminaries and Definitions

2.1 One-Way Functions

Definition 1. Let f : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable func-
tion. f is one-way if for every PPT machine A, there exists a negligible function
ν(·) such that

Pr[x← {0, 1}n; y = f(x) : A(1n, y) ∈ f−1(f(x))] ≤ ν(n)

Definition 2 (Regular One-Way Functions). Let f : {0, 1}∗ → {0, 1}∗ be a
one-way function. f is regular if there exists a function α : N→ N such that for
every n ∈ N and every x ∈ {0, 1}n we have:

|f−1(f(x))| = α(n)

We assume that the regularity α(·) of a function f is not known (i.e. not poly-
nomial time computable). Without loss of generality, we assume the one-way
function is length preserving i.e. f({0, 1}n) ⊆ {0, 1}n.

2.2 Hardcore Predicates

Definition 3. Let f : {0, 1}n → {0, 1}∗ and b : {0, 1}n → {0, 1} be polynomial-
time computable functions. We say b is a hardcore predicate of f , if for every
PPT machine A, there exists a negligible function ν(·) such that

Pr[x← {0, 1}n; y = f(x) : A(1n, y) = b(x)] ≤ 1

2
+ ν(n)

If f is a one-way function over {0, 1}n then Goldreich and Levin in [5] prove that
the one-way function f ′ over {0, 1}2n defined as f ′(x, r) = (f(x), r) admits the
following hard-core predicate b(x, r) =< x, r >= Σxiri mod 2 where xi, ri is the
ith bit of x, r respectively. In the following we refer to this predicate as the GL
bit of f .

2.3 Pseudorandom Generators

Definition 4. Let G : {0, 1}n → {0, 1}l(n) be a polynomial time computable
function where l(n) > n. We say G is a pseudorandom generator, if for every
PPT machine A, there exists a negligible function ν(n) such that∣∣∣Pr[x← {0, 1}n; y ← G(x) : A(1n, y) = 1]

− Pr[x← {0, 1}l(n) : A(1n, y) = 1]
∣∣∣ ≤ ν(n)
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2.4 Universal One-Way Hash Function Families

Definition 5. Let G = {gk}k∈K be a family of functions where each function

gk goes from {0, 1}n+� to {0, 1}n. We say that G is a a Universal One-Way
Hash Function Family if (i) the functions gk are efficiently computable and (ii)
for every efficient adversary A , the probability that A succeeds in the following
game is negligible in n:

– Let (x, σ) ← A(1n)
– Choose k ← K
– Let x′ ← A(σ, k)
– A succeeds if x �= x′ and gk(x) �= gk(x

′)

Universal One-Way Hash Function Families [12] as defined above enjoy the prop-
erty of target collision-resistance. Next, we define the seemingly weaker notion
of Second Preimage Resistance where the adversary cannot find a collision for
randomly chosen input and key. It is well-known how to construct UOWHFs
from second preimage resistant families.

Definition 6 (Second Preimage Resistance). Let G = {gk}k∈K be a family

of functions where each function gk goes from {0, 1}n+� to {0, 1}n. We say that
G is a a Second Preimage Resistant Hash Function Family if (i) the functions
gk are efficiently computable and (ii) for every efficient adversary A , then the
following probability

Pr[z ← {0, 1}n+� ; k ← K ; A(z, k) = z′ : z �= z′ and gk(z) = gk(z
′)]

is negligible in n.

2.5 Universal Hash Function Families

Definition 7. Let H be a family of functions where each function h ∈ H goes
from {0, 1}n+� to {0, 1}n. We say that H is a an efficient family of pairwise
independent hash functions if (i) the functions h ∈ H can be described with a
polynomial (in n) number of bits; (ii) there is a polynomial (in n) time algorithm
to compute h ∈ H; (iii) for all x �= x′ ∈ {0, 1}n+� and for all y, y′ ∈ {0, 1}n

Prh∈H[h(x) = y and h(x′) = y′] = 2−2n

3 The Generalized Randomized Iterate

A well known fact about one-way functions is that if you iterate them, you may
not end up with a function that is difficult to invert. Indeed while a permutation
f , when iterated f (i) = f ◦ . . . ◦ f (i.e. f composed with itself i times) remains
one-way, this is not true for general one-way functions as a single application
could concentrate the outputs on a very small fraction of the inputs of f , where
f might even be easy to invert.
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Goldreich, Krawczyk and Luby in [4] introduced the Randomized Iterate con-
struction where a randomization step is added between two application of f ,
in its iteration. As shown in [7] when using pair-wise independent hashing to
implement this randomization step, the Randomized Iterate is hard to invert.

We introduce the Generalized Randomized Iterate (GRI) and we show how
it can be used to construct both pseudo-random generators and target collision-
resistant hashing. We then show a randomness efficient form of the (generalized)
Randomized Iterate, where some of the hash functions are “recycled” during
the iteration. This Reusable Generalized Randomized Iterate is the core of our
efficient construction of UOWHFs.

Definition 8. Let f : {0, 1}n → {0, 1}n and let H be an efficient family of
pairwise-independent hash functions from {0, 1}n+� to {0, 1}n. For input x ∈
{0, 1}n, z ∈ {0, 1}�k, h1, . . . , hm ∈ H and m ≥ k, define the kth Generalized
Randomized Iterate gk : {0, 1}n × {0, 1}�k ×Hm → {0, 1}n recursively as:

gk(x, z, h1, . . . , hm) = hk(f(g
k−1(x, z, h1, . . . , hm))||z[(k−1)�+1...k�])

where g0(x, z, h1, . . . , hm) = x, || denotes concatenation and z[a...b] is the sub-
string of z from position a to position b.

In other words at each iteration of the Generalized Randomized Iterate, first f
is applied to the output of the previous iteration, then a block of � bits from z
are appended to the output, and then a pair-wise independent hash function is
applied. Note that at each iteration a new hash function is used.

While we are defining GRI for any value of �, we are going to be interested to
two cases:

– � = 0 in which case z is the empty string, and the pair-wise independent hash
functions map n bits to n bits. This case is equivalent to the Randomized
Iterate from [4,7] and as shown there it can be used to build PRGs;

– � = 1 in which case z is k-bits long, and the hash functions compress one bit.
We will show in Section 4 that this function is a second preimage resistant
function (from which a UOWHF can be easily built).

3.1 The Reusable Generalized Randomized Iterate

We now introduce the Reusable Generalized Randomized Iterate (RGRI) which is
a version of the Randomized Generalized Iterate that uses fewer hash functions.
While the GRI described in the previous Section use new distinct hash functions
at each iteration, we “recycle” some of this hash functions during the process.
More specifically we sample m hash functions h1, . . . , hm from H and then in
the ith iteration of the RGRI we use the function hφ(i) where φ(i) is the function
that on input i, outputs the highest power of 2 that divides i. It is not hard
to see that if we have k iterations it is sufficient to set m = �log k� + 1. This
“scheduling” of the hash functions is identical to the way Shoup recycles random
masks in his construction of a domain extender for TCR functions [15].
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Definition 9. Let f : {0, 1}n → {0, 1}n and let H be an efficient family of
pairwise-independent hash functions from {0, 1}n+� to {0, 1}n. For input x ∈
{0, 1}n, z ∈ {0, 1}�k, h1, . . . , hm ∈ H and m ≥ �log k�+1, define the kth Reusable

Generalized Randomized Iterate g̃k : {0, 1}n×{0, 1}�k×Hm → {0, 1}n recursively
as:

g̃k(x, z, h1, . . . , hm) =

{
hφ(k)(f(g̃k−1(x, z, h1, . . . , hm))||z[(k−1)	+1...k	]) k > 0
x otherwise

where φ(n) is one greater than the highest power of 2 that divides n.

3.2 A Technical Lemma

We now prove a preliminary Lemma which is crucial in allowing us to achieve
logarithmic key size for our UOWHF construction. This Lemma abstracts the
property of the ”Shoup domain extension” technique we use to construct the
RGRI : intuitively the Lemma proves a preliminary result that will allows us
later to claim that the distribution induced by the RGRI is not that far from the
distribution induced by the GRI with distinct (i.e. non-reused hash functions).

The goal of the Lemma is to count how many input pairs lead to two specific
values a0, a1 as outputs of the RGRI.

Lemma 1. Fix two arbitrary values a0, a1 ∈ {0, 1}n and an integer i. The num-
ber of pairs [(x0, z0, h1, . . . , hm), (x1, z1, h1, . . . , hm)] such that

g̃i(x0, z0, h1, . . . , hm) = a0 and g̃i(x1, z1, h1, . . . , hm) = a1

is bounded by 22�k · |H|m.

Note that in the Lemma we are counting the pairs with possibly distinct inputs
x, z but same hash functions hi.

Proof: To prove the Lemma we use a “key-reconstruction” strategy introduced
by Shoup in [15]. The algorithm in Figure 1 on input i ∈ [0..k], z0, z1 ∈ {0, 1}�k
and a0, a1 ∈ {0, 1}n generates a pair of inputs (x0, h) and (x1, h) such that the
output of the ith iterate is a0 and a1, i.e.

g̃i(x0, z0, h1, . . . , hm) = a0 and g̃i(x1, z1, h1, . . . , hm) = a1

We prove that this algorithm outputs all possible input pairs (x0, h) and (x1, h)
with some probability. To complete the proof of the claim we show that the total
number of distinct outputs by the algorithm is |H|m (the Lemma follows since
there are 22�k possible values of z0, z1).

The high-level idea of the Shoup reconstruction strategy described in Figure
1 is the following. Consider the simple case of the randomized iterate func-
tion gk (where a different hash function is used after each iterate). Since, we
use different hash functions at every iterate, we choose all the hash functions
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h1, . . . , hi−1, hi+1, . . . , hm arbitrarily, except the one in the ith iterate (i.e. hi).
Using x0, z0, h1, . . . , hi−1 and x1, z1, h1, . . . , hi−1 we compute y0, y1 as the out-
puts of f ◦ gi−1. We then choose hi so that hi(y0||z0,[(i−1)�+1...i�]) = a0 and
hi(y1||z1,[(i−1)�+1...i�]) = a1 simultaneously holds. This is possible since H is a
pairwise-independent family. Furthermore, the number of such functions hi is
equal to |H|/22n. Observe that, every input pair satisfying the conditions is out-
put by the strategy for some random choices and every random choice yields
different outputs satisfying the conditions. Therefore, the total number of pairs
satisfying the conditions equals the total number of random choices made by the
strategy and that is 22n22�i|H|m−1 × |H|/22n = 22�i|H|m.

However this procedure does not work for the reusable randomized iterate
since the hash functions are recycled. Instead, we consider segments and perform
a ”right to left” sweep from the ith iterate to the first iterate, ensuring that each
segment is locally consistent. More precisely, in each segment, for a particular a,
the algorithm selects hash functions and string x such that if x is fed as input
to the jth iterate, then the output of the computation at the ith iterate (i > j)
is a. For the segments to compose, we need to ensure that the hash functions
selected by different segments do no conflict with each other and that is the
technical part of the proof. To extend the algorithm to achieve consistency for
two inputs it suffices to observe that for all x0 �= x1 and arbitrary values a0, a1,
there exists an h such that h(x0) = a0 and h(x1) = a1. The formal description
of the algorithm is presented in Figure 1.

First, we prove correctness and then compute the number of colliding pairs.

Sub-Claim 1. If the algorithm in Figure 1 outputs (x0, h), (x1, h), then it holds

that g̃i(x0, z0, h) = a0 and g̃i(x1, z1, h) = a1.

Proof: Every iteration of the algorithm, considers the segment from the jth

iterate to the ith iterate and achieves the following: if xj0 (and xj1) is fixed as the
partial input to the jth iterate then a0 (and a1) is the output of the ith iterate.
This follows from the fact that, hφ(i) is assigned a value at step 2(d) after knowing
what the output of the i− 1st iterate is computed. It only remains to show that
two iterations do not assign values to the same hash function. The algorithm
assigns value to a hash function in steps 2(b), 2(d) and 4. By construction step
2(b) and 4 only assign values to hash functions that have not been defined yet
(indicated by the flag being false). It suffices to ensure that there are no conflicts
in the assignment made at step 2(d). This is ensured by maintaining the invariant
that hφ(i) is undefined before executing 2(d) in any iteration. Observe that, in
every iteration, φ(j) > φ(i) and for all c such that j < c < i, φ(c) < φ(i). Hence,
before step 2(d) is reached in any iteration, the only hash-functions that are
defined are those with indices c such that φ(c) < φ(j). � 
Sub-Claim 2. The number of distinct pairs output by the Shoup Reconstruction
algorithm is bounded by |H|m.

Proof: From Sub-Claim 1, we know that every pair output of the algorithm
satisfies the condition that a0 and a1 are the output of the ith iterate. Further-
more, every pair that satisfies the condition occurs as an output for some choice
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Input: i, z0, z1, a0, a1

1. Set Flags F0, . . . , Fm−1 to false // Flags indicate which hash-functions

are assigned

2. while i 	= 0
(a) j ←− (i− 2φ(i)) // The new condition will be at position j

(b) Randomly choose xj
0, x

j
1 from {0, 1}n. For all j < c < i, if Fφ(c) = false,

randomly choose hφ(c) from H and set Fφ(c) ←− true.
(c) Compute

xj
0

f−−−−→
||z0,[j�+1...(j+1)�]−−−−−−−−−−−−→

hφ(j+1)−−−−−→ f−−−−→ · · ·
hφ(i−1)−−−−−→ f−−−−→ y0

xj
1

f−−−−→
||z1,[j�+1...(j+1)�]−−−−−−−−−−−−→

hφ(j+1)−−−−−→ f−−−−→ · · ·
hφ(i−1)−−−−−→ f−−−−→ y1

(d) Randomly choose h ∈ H conditioned on

h(y0||z0,[(i−1)	+1...i	]) = a0 and h(y1||z1,[(i−1)	+1...i	]) = a1

Set hφ(i) ←− h, Fφ(i) ←− true.

(e) i←− j, a0 ←− xj
0, a1 ←− xj

1

3. endwhile
4. For all c, if Fφ(c) = false, pick hφ(c) uniformly from H and set Fφ(c) to true.
5. output (x0 = x1

0, h1, . . . , hm), (x1 = x1
1, h1, . . . , hm)

Fig. 1. Shoup Reconstruction Algorithm

made by the algorithm and each choice made by the algorithm yields distinct
outputs. Therefore, it suffices to compute the total number of choices made by
the algorithm. To compute the number of pairs, observe that, for every choice
made for xj0 and xj1 (such that xj0 �= xj1) in step (b), the number of hash functions
h such that

h(y0||z0,[(i−1)�+1...i�]) = a0 and h(y1||z1,[(i−1)�+1...i�]) = a1

is |H|
22n , by the pairwise independence property. We treat the choices made for xj0,

xj1 as a choice made for hφ(i) set in step 2(d). Thus, the number of choices for

the hash function in step 2(d) is at most 22n× |H|
22n = |H|. The only other choices

are the hash functions picked in step 2(b) and 4. Since they can take any value,
they have |H| many choices. Hence, corresponding to every hash function the
algorithm makes |H| many choices. Thus, the total number of pairs is bounded
by |H|m. � 
This concludes the proof of Lemma 1. � 
The following Corollary is proven by using the same counting argument and the
same ”reconstruction strategy” of Lemma 1 (intuitively, the bound results from
the fact that you can choose x in 2n ways, z in 2lk ways, m− 1 hash functions
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uniformly at random in H, and the hash function hi via pairwise independence
among |H|/22n possible candidates).

Corollary 1. Fix arbitrary values a0, a1 ∈ {0, 1}n, y ∈ {0, 1}n+� and an integer
i. The number of inputs (x, z, h1, . . . , hm) such that

g̃i(x, z, h1, . . . , hm) = a0 and hi(y) = a1

is bounded by 2�k−n · |H|m. Moreover there exists a polynomial time algorithm
that samples such an input uniformly at random.

Remark: We point out that the ”reconstruction” property outlined in Lemma
1 is exactly what is needed in order to prove the security of our UOWHF with
O(n log n) key based on the RGRI.

This is in contrast to the case of PRG [7] where any PRG for space-bounded
computation would work to ”de-randomize” the seed from n2 to n logn. We
can show that the particular space-bounded PRG used in [7] satisfies a Lemma
similar to Lemma 1, and therefore could be used to reduce the size of the key
of our UOWHF. For simplicity we just show the construction based on Shoup’s
technique.

4 Constructions of Universal One-Way Hash Functions

In this section, we show how to construct second preimage resistant functions
from regular one-way functions. We start with a simple construction (that al-
ready improves the efficiency from previous work) of quadratic key size. We
then provide a more efficient and essentially optimal solution with O(n log n)
key size. Note that our functions compress a single bit (higher compression can
be achieved by standard modes of iteration). Note also that UOWHFs can be
easily built from second preimage resistant families.

4.1 A Construction with Linear Key Size

Definition 10. Let f : {0, 1}n → {0, 1}n and let K = {0, 1}n ×Hn+1 where H
is an efficient family of pairwise-independent hash functions from {0, 1}n+1 to
{0, 1}n. Define the function g(z, k) with input space z ∈ {0, 1}n+1 and key-space
k = (x, h1, . . . , hn+1) ∈ K as follows:

g(z, (x, h1, . . . , hn+1)) = gn+1(x, z, h1, . . . , hn+1)

where gi is the Generalized Randomized Iterate with � = 1.

Theorem 1. Suppose f is a 2r-regular one-way function. Then g defined ac-
cording to Definition 10 is a second preimage resistant function family.
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Proof Overview: To understand how our construction works, let us assume (as
a simplifying assumption) that we can uniformly sample pairs (a1, a2) such that
f(a1) = f(a2). Let us refer to such pairs as siblings for f .

Given such a pair it is possible to set up the hash functions in the above
construction so that if the adversary finds a collision, then we invert the one-
way function on a point y. Intuitively this is done as follows: given a random
input z for the UOWHF, we choose the hash functions (i.e. the key k) so that
gi(z, k) = a1 and hi(y||b) = a2 for a random index i and a random bit b. We
then run the adversary on z, k and if the adversary finds a collision z′, with non-
negligible probability the collision ”goes through” a2 at index i, i.e. g

i(z′, k) = a2
allowing us to find a preimage of y.

The intuition here is that given any input z, and key k, at each iterate the in-
put going into the one-way function has most 2r collisions w.r.t f . For a collision
to occur at a particular iterate, it must be the case that some range element y of
the one-way function f must occur at the previous iterate and the hash function
takes y and an input bit into one of the 2r collisions in the next iterate. Since
there are at most 2n−r range elements, in expectation over hash functions, the
number of possible inputs at the previous iterate that are mapped into the 2r

collisions are small, in fact O(1). Thus the hash functions selected above will
succeed with high probability.

But how do we get to sample a1, a2, i.e. siblings for f in the first place? For
this we use the adversary again. Indeed when an adversary finds a collision to
input z (say z′), it must be that at some iterate, the inputs into the intermediate
hash functions are different and the outputs to the next iterate are strings a1 and
a2 such that f(a1) = f(a2), i.e. siblings for f . It remains to argue that sampling
a1 and a2 by first querying the adversary is good enough, and this is established
using a collision-probability-type analysis. We now proceed to a formal proof.

Proof: Assume for contradiction, there exists an adversary A and polynomial
p(·) such that for infinitely many lengths n, the probability with which A finds
a collision on a random input z ∈ {0, 1}n and key k = (x, h) ∈ K is at least
ε ≥ 1

p(n) . We assume for simplicity that A is deterministic. Fix a particular n

for which this happens. Using A, we construct a machine M that inverts f with
probability that is polynomially related to ε and thus arrive at a contradiction.

The machine M on input y ∈ {0, 1}n internally incorporates the code of A
and proceeds as follows:

1. Sample a random input z and key k = (x, h). Internally run A on input
(z, k). If A fails to return a collision, halt outputting ⊥. Otherwise, let z′ be
the output of A.

2. Let i be the smallest index such that f(gi−1(z, k))||zi �= f(gi−1(z′, k))||z′i
and f(gi(z, k)) = f(gi(z′, k)) (since g(z, k) = g(z′, k) such an i must exists).
Let a1 = gi(z, k) and a2 = gi(z′, k). It follows now that f(a1) = f(a2). For
any two colliding inputs such as z and z′ with key k, we call this i the
colliding-index.

3. Choose z∗, k∗ = (x∗, h∗1, . . . , h
∗
n+1) and a random bit b such that gi(z∗, k∗) =

a1 and h∗i (y||b) = a2. This can be done using the pairwise independence
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property ofH. More precisely, choose z∗, x∗ and all the hash functions except
h∗i at random and set h∗i so that both the conditions hold. Run A on input
(z∗, k∗). If A fails to return a collision or such a hash function hi can not be
sampled,4 halt outputting ⊥. Otherwise, let z′′ be the output of A.

4. If f(gi−1(z′′, k∗)) �= y, halt outputting ⊥. Otherwise, output gi−1(z′′, k∗).

It follows from the construction that if M outputs w, then f(w) = y. We
now proceed to compute the success probability of M . But first, we require
the following definition. Define sets N(i, a1, a2) to contain all input-key pairs
(z, k) such that the following hold true: f(a1) = f(a2) and g

i(z, k) = a1, and
A on input (z, k) returns z′ such that gi(z′, k) = a2 and i is the colliding-index.
We first express the success probability of M using these sets.

Claim 1. The probability with which M succeeds in inverting f is

2n+r−1
∑

i,a1,a2

|N(i, a1, a2)|2

(22n+1|H|n+1)2

Proof: Given a tuple (z∗, k∗, i, a1, a2) such that (z∗, k∗) ∈ N(i, a1, a2), define
the following events:

Event E1: The randomly chosen input-key pair (z, k) by M in Step 1 is in
N(i, a1, a2).
Since the input and key are chosen uniformly at random, it holds that
Pr[E1] = 1/2n+1×1/2n×1/|H|n+1×|N(i, a1, a2)| = |N(i, a1, a2)|/22n+1|H|n+1

Event E2: If A on input (z∗, k∗) returns z′—where k∗ = (x, h1, . . . , hn)—
this event denotes that M ’s random choice b = z′i and M ’s input is y such
that gi−1(z′, k∗) = y. Therefore, hi(y||b) = hi(y||z′i) = a2.
The probability that b = z′i is 1/2. Therefore, since f is a 2r-regular OWF,
Pr[E2] = 1/2 · 2r/2n = 2r−1/2n.
Event E3: M chooses z∗, k∗ in Step 3.
From the pairwise-independence property of H, it follows that5 Pr[E3] =

1/(22n+1 |H|n+1

22n ) = 1/2|H|n+1

It follows from the description that for any tuple (z∗, k∗, i, a1, a2) such that
(z∗, k∗) ∈ N(i, a1, a2), if E1, E2 and E3 occurs, M inverts y. Note that E1, E2

and E3 are independent. Therefore, for a fixed tuple (z∗, k∗, i, a1, a2) such that
(z∗, k∗) ∈ N(i, a1, a2) the probability that E1, E2 and E3 occurs is

|N(i, a1, a2)|
22n+1|H|n+1

× 2r−1

2n
× 1

2|H|n+1

4 This occurs when a1 	= a2 and f(gi−1(z∗, k∗)) = y and zi = b.
5 z, x and all the hash functions except hi are randomly chosen. There are 22n+1|H|m−1

such tuples. hi is chosen so that two of its values are fixed. Since H is a pairwise-
independent family of hash functions, there are exactly |H|

22n
such functions. Finally,

one of these tuples are chosen uniformly at random.
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It follows from the definition of the sets N(·, ·, ·), that for every (z, k) there exists
at most one tuple (i, a1, a2) such that (z, k) ∈ N(i, a1, a2). Therefore, the success
probability of M can be expressed as the sum of the success probability of M
on each tuple (z∗, k∗, i, a1, a2) such that (z∗, k∗) ∈ N(i, a1, a2). More precisely,
the success probability of M is,∑

i,a1,a2

∑
(z∗,k∗)∈N(i,a1,a2)

|N(i, a1, a2)|
22n+1|H|n+1

× 2r−1

2n
× 1

2|H|n+1

=
∑

i,a1,a2

|N(i, a1, a2)|2
22n+1|H|n+1

× 2r−1

2n
× 1

2|H|n+1

= 2n+r−1
∑

i,a1,a2

|N(i, a1, a2)|2

(22n+1|H|n+1)
2

� 
We now relate this expression to the success probability of A.

Claim 2. If A succeeds with probability ε then
∑

(i,a1,a2)

|N(i, a1, a2)|2

(22n+1|H|n+1)
2 ≥

ε2

n2n+r

Proof: Since for every pair (z, k), there exists at most one tuple (i, a1, a2) such
that (z, k) ∈ N(i, a1, a2) and by definition if (z, k) ∈ N(i, a1, a2) then A succeeds
on input (z, k), we have that the success probability of A is

1/
(
22n+1|H|n+1

)
×

∑
(i,a1,a2)

|N(i, a1, a2)| = ε

Let us consider the sum in the left-hand side and use the Cauchy-Schwartz
inequality to obtain a bound on the sum of the squares of each term. It suffices
to consider the sum over all tuples (i, a1, a2) such that N(i, a1, a2) is not empty.
In particular, they are not empty only if f(a1) = f(a2). Therefore, the total
number of such tuples is at most n2n+r. Using the Cauchy-Schwartz inequality,
we have that ∑

(i,a1,a2)

|N(i, a1, a2)|2

(22n+1|H|n+1)
2 ≥

ε2

n2n+r

� 
Now, we conclude the proof of the theorem. Applying Claim 2 to Claim 1, we

obtain that the success probability of M is at least 2n+r−1 × ε2

n2n+r = ε2

2n which
is non-negligible. Therefore, M inverts f with non-negligible probability and we
arrive at a contradiction. � 

4.2 A Construction with Logarithmic Key Size

We now show how to construct a more efficient second preimage resistant family
from regular one-way functions, by showing that if f is a regular OWF then the
Reusable Generalized Randomized Iterate is second preimage resistant.
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Definition 11. Let f : {0, 1}n → {0, 1}n and let K = {0, 1}n × Hm where
H is an efficient family of pairwise-independent hash functions from {0, 1}n+1

to {0, 1}n and m = O(log n). Define the function g(z, k) with input space z ∈
{0, 1}n+1 and key-space k = (x, h1, . . . , hm) ∈ K as follows:

g(z, (x, h1, . . . , hm)) = g̃n+1(x, z, h1, . . . , hm)

where g̃i is the Reusable Generalized Randomized Iterate with � = 1.

Theorem 2. Suppose f is a 2r-regular one-way function. Then g defined ac-
cording to Definition 11 is a second preimage resistant function family.

Proof: Assume for contradiction, there exists an adversary A and polynomial
p(·) such that for infinitely many lengths n, the probability with which A finds
a collision on a random input z ∈ {0, 1}n and key k = (x, h) ∈ K is ε ≥ 1

p(n) . As

before, we assume for simplicity that A is deterministic.
Fix a particular n for which this happens. Using A, we construct a machineM

that inverts f with probability that is polynomially related to ε and thus arrive
at a contradiction. The machine M on input y ∈ {0, 1}n internally incorporates
the code of A and proceeds as follows:

1. Sample a random input z and key k = (x, h). Internally run A on input
(z, k). If A fails to return a collision, halt outputting ⊥. Otherwise, let z′ be
the output of A.

2. Let i be the colliding-index. Let a1 = gi(z, k) and a2 = gi(z′, k)
3. Choose z∗, k∗ = (z∗, h∗1, . . . , h

∗
m) and a random bit b such that gi(z∗, k∗) = a1

and h∗φ(i)(y||b) = a2. This can be done in polynomial time following Corollary

1. Internally run A on input (z∗, k∗). If A fails to return a collision, halt
outputting ⊥. Otherwise, let z′′ be A’s output.

4. If f(gi−1(z”, k∗)) �= y, halt outputting ⊥. Otherwise, output gi−1(z′′, k∗).

As before, we define sets N(i, a1, a2) that satisfy the same condition with the
exception that we rely on g̃i instead of gi. The next claim relates these sets to
the success probability of M .

Claim 3. The probability with which M succeeds in inverting the one-way func-

tion f is 2n+r−1
∑

i,a1,a2

|N(i, a1, a2)|2/
(
22n+1|H|m

)2
Proof: Consider the events E1,E2 and E3 exactly as before. We now have that
given a tuple (z, k, i, a1, a2),

– Probability that E1 occurs is 1/2n+1 × 1/2n × 1/|H|m × |N(i, a1, a2)| =
|N(i, a1, a2)|/22n+1|H|m.

– Probability that E2 occurs is 2r−1/2n as before.

– Probability that E3 occurs given E1 and E2 occurs is 1/(22n+1 |H|m
22n ) =

1/2|H|m. This follows from Corollary 1 for � = 1 and k = n + 1 (which
are the parameters used in this construction).
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Again, we have that every (z, k) belongs to at most one set N(i, a1, a2). There-
fore, the success probability of M is∑
i,a1,a2

∑
(z,k)∈N(i,a1,a2)

|N(i, a1, a2)|
22n+1|H|m × 2r−1

2n
× 1

2|H|m =2n+r−1
∑

i,a1,a2

|N(i, a1, a2)|2

(22n+1|H|m)
2

� 
The next claim follows identically to Claim 2.

Claim 4. If A succeeds with probability ε then
∑

(i,a1,a2)
|N(i,a1,a2)|2
(22n+1|H|m)2

≥ ε2

n2n+r

As before applying Claim 3 to Claim 4, we obtain that the success probability

of M is at least ε2

2n and thus we arrive at a contradiction. � 

5 PRG Construction and Hardness Amplification

The idea of iterating a one-way permutation f on itself to obtain a PRG origi-
nates from the work of Blum, Micali and Yao [1,17]. Since f is a permutation,
the function f (i) = f ◦ . . . ◦ f (f iterated on itself i times) is also one-way. This
means that the hardcore bit of every intermediate step is unpredictable. Iterat-
ing n+ 1 times on a random input of length n and outputting all the hardcore
bits would then yield a PRG that stretches by 1 bit. We refer to this as the BMY
construction6.

This approach, unfortunately does not work for general one-way functions. For
the special case of regular one-way functions, Goldreich, Krawczyk and Luby [4],
showed how to extend the BMY construction by adding a randomization step
using an n-wise independent hash-function between every two applications of
f . Haitner, et. al [7] simplified the construction to use just pair-wise hashing
and further derandomized the construction by showing how to generate the n
hash-functions required at the randomization steps using just n logn bits thus
obtaining a PRG of seed length O(n logn).

In [7], Haitner et. al, showed that the same randomized iterate can also be used
for hardness amplification to obtain strong one-way function from any regular
weakly one-way function with unknown regularity. They also showed that similar
derandomization yielded corresponding efficiency gains.

Using the Reusable Generalized Randomized Iterate, we obtain analogous
PRG constructions and hardness-amplification with same efficiency. More pre-
cisely, we obtain the following results.

Theorem 3. Let f : {0, 1}n → {0, 1}n be a regular one-way function and H
be an efficient family of pairwise-independent length preserving hash functions.
Define G : {0, 1}2n ×Hm → {0, 1}2n+1 ×Hm as

G(x, r, h) = (b(f̃0(x, h), r), . . . , b(f̃n(x, h), r), r, h)

6 If f is a permutation over n-bit strings a more efficient construction is to set the
generator G as G(x) = f(x).b(x). However this uses in a crucial way the property
that f is a permutation (since if x is uniform then f(x) is also uniform).



170 S. Ames, R. Gennaro, and M. Venkitasubramaniam

where f̃k(x, h1, . . . , hm) = f(g̃k(x, h1, . . . , hm)) and g̃k is the RGRI defined by
x, h1, . . . , hm with � = 0 and b is the Goldreich-Levin hardcore predicate. Then
G is a pseudorandom generator.

Theorem 4. Let f be a 1
p(n) -weak one-way function for some polynomial p(·).7

Let k = 4np(n) and m = �log k�. For input x ∈ {0, 1}n, h = [h1, . . . , hm] ∈ Hm,

define g(x, h) = (f̃k(x, h), h) where f̃k is the Reusable Randomized Iterate of f .
Then, g is a (strong) one-way function.

The proofs of both these theorems appear in the full-version of the paper and
on a high-level follow the proofs presented in [7].

6 Discussion and Conclusions

This paper presented the Reusable Generalized Randomized Iterate, and its ap-
plication to new efficient constructions of Universal One-Way Hash Functions
based on regular one-way functions. These are the first such efficient construc-
tions of UOWHF from regular one-way functions of unknown regularity.

We also showed that the Reusable Generalized Randomized Iterate can be
used to construct PRGs based on regular-one way functions, obtaining an alter-
native proof of a result by [7].

An interesting question raised by our work is the following: can we replace
Shoup’s technique for TCR domain extension with any appropriate log-space
derandomizer? This is not immediately clear, since the reconstruction algorithm
of Lemma 1 plays a crucial role in our construction and such a property does not
follow from the definition of derandomizers (although, the current derandomizers
indeed have that property).

A more conceptual contribution of this paper is to show that by combin-
ing techniques from the collision-resistant hashing and PRG toolboxes we can
improve efficiency in both areas. Following [9,8] we believe that exploring the
interplay between the two fields, and the possibility to apply techniques from
one field to the other can lead to new and interesting discoveries.

The works in [9,8] highlight a inherent ”black-box duality” between PRGs and
UOWHFs. Starting from the PRG constructions based on OWPs [1] and OWFs
[11], one can obtain the UOWHF constructions based on OWPs [12] and OWFs
[13,8] using the following ”parallelism”. If there is ”unpredictable” entropy in an
input to an application of the one-way function in the PRG construction from
which pseudo-entropy can be extracted, then there exists a symmetric TCR
construction with the same structure where the output of the application of the
one-way function has ”inaccessible” entropy and can be compressed.

Our Generalized Randomized Iterate justifies this observation for the case of
regular one-way functions in a more direct way, by showing a single algorithm
that yields either a PRG or a UOWHF depending on the parameters.

7 A function f is an ε-weak one-way function, if no adversary can succeed in inverting
f with probability better than 1− ε.
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The approaches in [9,8] and in this paper can hopefully help in addressing the
following interesting open problem. Is there a transformation that takes any PRG
construction from a primitive P with �-bit-expansion to a TCR construction from
the same primitive P with �-bit-compression and vice-versa. For example, given
a OWP with a large �-bit hard-core function, we know how to build a PRG that
expands by � bits per invocation of the OWP: is it possible to obtain a TCR
which compresses by � bits per invocation of the OWP? Conversely, an answer
to the above general question would allow us to achieve more efficient PRG
constructions from stronger primitives such as collision-resistant hash-functions.
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Abstract. A perfect algebraic immune function is a Boolean function
with perfect immunity against algebraic and fast algebraic attacks. The
main results are that for a perfect algebraic immune balanced function
the number of input variables is one more than a power of two; for
a perfect algebraic immune unbalanced function the number of input
variables is a power of two. Also, for n equal to a power of two, the Carlet-
Feng functions on n+1 variables and the modified Carlet-Feng functions
on n variables are shown to be perfect algebraic immune functions.

Keywords: Boolean functions, Algebraic immunity, Fast algebraic
attacks.

1 Introduction

The study of the cryptanalysis of the filter and combination generators of stream
ciphers based on linear feedback shift registers (LFSRs) has resulted in a wealth
of cryptographic criteria for Boolean functions, such as balancedness, high alge-
braic degree, high nonlinearity, high correlation immunity and so on. An overview
of cryptographic criteria for Boolean functions with extensive bibliography is
given in [3].

In recent years, algebraic and fast algebraic attacks [1,5,6] have been regarded
as the most successful attacks on LFSR-based stream ciphers. These attacks
cleverly use overdefined systems of multivariable nonlinear equations to recover
the secret key. Algebraic attacks make use of the equations by multiplying a
nonzero function of low degree, while fast algebraic attacks make use of the
equations by linear combination.

Thus the algebraic immunity (AI), the minimum algebraic degree of nonzero
annihilators of f or f + 1, was introduced by W. Meier et al. [20] to measure
the ability of Boolean functions to resist algebraic attacks. It was shown by N.
Courtois and W. Meier [5] that maximum AI of n-variable Boolean functions is
�n2 �. The properties and constructions of Boolean functions with maximum AI
were researched in a large number of papers, e.g., [8,15,16,18,4,24,25].
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The resistance against fast algebraic attacks is not covered by algebraic im-
munity [7,2,17]. At Eurocrypt 2006, F. Armknecht et al. [2] introduced an ef-
fective algorithm for determining the immunity against fast algebraic attacks,
and showed that a class of symmetric Boolean functions (the majority functions)
have poor resistance against fast algebraic attacks despite their resistance against
algebraic attacks. Later M. Liu et al. [17] stated that almost all the symmetric
functions including these functions with good algebraic immunity behave badly
against fast algebraic attacks. In [22] P. Rizomiliotis introduced a method to
evaluate the behavior of Boolean functions against fast algebraic attacks using
univariate polynomial representation. However, it is unclear what is maximum
immunity to fast algebraic attacks.

A preprocessing of fast algebraic attacks on LFSR-based stream ciphers, which
use a Boolean function f : GF (2)n → GF (2) as the filter or combination gen-
erator, is to find a nonzero function g of small algebraic degree such that the
multiple gf has algebraic degree not too large [6]. N. Courtois [6] proved that for
any pair of positive integers (e, d) such that e+d ≥ n, there is a nonzero function
g of degree at most e such that gf has degree at most d. This result reveals an
upper bound on maximum immunity to fast algebraic attacks. It implies that
the function f has maximum possible resistance against fast algebraic attacks,
if for any pair of positive integers (e, d) such that e + d < n and e < n/2, there
is no nonzero function g of degree at most e such that gf has degree at most d.
Such functions are said to be perfect algebraic immune (PAI). Note that one
can use the fast general attack [6, Theorem 7.1.1] by splitting the function into
two f = h + l with l being the linear part of f . In this case, h = f + l rather
than h = gf is used, then e equals 1, i.e., the degree of the linear function l, and
d equals the degree of the function h, i.e., the degree of f . Thus PAI functions
have algebraic degree at least n− 1.

A PAI function also achieves maximum AI. As a consequence, a PAI func-
tion has perfect immunity against classical and fast algebraic attacks. Although
preventing classical and fast algebraic attacks is not sufficient for resisting alge-
braic attacks on the augmented function [12], the resistance against these attacks
depends on the update function and tap positions used in a stream cipher and
in actual fact it is not a property of the Boolean function. Thus the use of PAI
functions does not guarantee that a stream cipher is not vulnerable to algebraic
attacks since the attacker can also exploit suitable relations for the augmented
functions as suggested in [6,12].

It is an open question whether there are PAI functions for arbitrary number
of input variables. This problem was also noticed in [4] at Asiacrypt 2008. It
seems that PAI functions are quite rare. In [4] C. Carlet and K. Feng observed
that the Carlet-Feng functions on 9 variables are PAI. One can check that the
Carlet-Feng functions on 5 variables are also PAI (see also [10]). However, no
function is shown to be PAI for arbitrary number of variables. On the contrary,
M. Liu et al. [17] proved that no symmetric functions are PAI, and in [26] the
authors proved that no rotation symmetric functions are PAI for even number
(except a power of two) of variables.
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In this paper, we study the upper bounds on the immunity to fast algebraic at-
tacks, and solve the above question. The immunity against fast algebraic attacks
is related to a matrix thanks to Theorem 1 of [2]. By a simple transformation on
this matrix we obtain a symmetric matrix whose elements are the coefficients of
the algebraic normal form of a given Boolean function. We improve the upper
bounds on the immunity to fast algebraic attacks by proving that the symmetric
matrix is singular in some cases. The results are that for an n-variable function,
we have: (1) if n is a power of 2 then a PAI function has algebraic degree n
(showing that the function is unbalanced); (2) if n is one more than a power
of 2 then a PAI function has algebraic degree n − 1 (which is also balanced);
(3) otherwise, the function is not PAI. We then prove that the Carlet-Feng
functions, which have algebraic degree n− 1, are PAI for n equal to one more
than a power of 2, and are almost PAI for the other cases. Also we prove that
the modified Carlet-Feng functions, which have algebraic degree n, are PAI for
n equal to a power of 2, and are almost PAI for the other cases. The results
show that our bounds on the immunity to fast algebraic attacks are tight, and
that the Carlet-Feng functions are optimal against fast algebraic attacks as well
as classical algebraic attacks. Our results explain the experimental observations
of C. Carlet and K. Feng [4] and also prove their conjecture.

The remainder of this paper is organized as follows. In Section 2 some basic
concepts are provided. Section 3 presents the improved upper bounds on the im-
munity of Boolean functions against fast algebraic attacks while Section 4 shows
that the Carlet-Feng functions and their modifications achieve these bounds.
Section 5 concludes the paper.

2 Preliminary

Let F2 denote the binary field GF (2) and Fn
2 the n-dimensional vector space over

F2. An n-variable Boolean function is a mapping from Fn
2 into F2. Denote by

Bn the set of all n-variable Boolean functions. An n-variable Boolean function
f can be uniquely represented as its truth table, i.e., a binary string of length
2n,

f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), · · · , f(1, 1, · · · , 1)].

The support of f is given by supp(f) = {x ∈ Fn
2 | f(x) = 1}. The Hamming

weight of f , denoted by wt(f), is the number of ones in the truth table of f .
An n-variable function f is said to be balanced if its truth table contains equal
number of zeros and ones, that is, wt(f) = 2n−1.

An n-variable Boolean function f can also be uniquely represented as a mul-
tivariate polynomial over F2,

f(x) =
∑
c∈Fn

2

acx
c, ac ∈ F2, x

c = xc11 x
c2
2 · · ·xcnn , c = (c1, c2, · · · , cn),

called the algebraic normal form (ANF). The algebraic degree of f , denoted by
deg(f), is defined as max{wt(c) | ac �= 0}.



Perfect Algebraic Immune Functions 175

Let F2n denote the finite field GF (2n). The Boolean function f considered as
a mapping from F2n into F2 can be uniquely represented as

f(x) =

2n−1∑
i=0

aix
i, ai ∈ F2n , (1)

where f2(x) ≡ f(x)(mod x2
n − x). Expression (1) is called the univariate

polynomial representation of the function f . It is well known that f2(x) ≡
f(x)(mod x2

n − x) if and only if a0, a2n−1 ∈ F2 and for 1 ≤ i ≤ 2n −
2, a2imod(2n−1) = a2i . The algebraic degree of the function f equals max

ai �=0
wt(i),

where i =
∑n

k=1 ik2
k−1 is considered as (i1, i2, · · · , in) ∈ Fn

2 .
Let α be a primitive element of F2n . The ai’s of Expression (1) are given by

a0 = f(0), a2n−1 = f(0) +
∑2n−2

j=0 f(αj) and

ai =
2n−2∑
j=0

f(αj)α−ij , for 1 ≤ i ≤ 2n − 2. (2)

For more details with regard to the representation of Boolean functions, we refer
to [3].

The algebraic immunity of Boolean functions is defined as follows. Maximum
algebraic immunity of n-variable Boolean functions is �n2 � [5].
Definition 1. [20] The algebraic immunity of a function f ∈ Bn, denoted by
AI(f), is defined as

AI(f) = min{deg(g) | gf = 0 or g(f + 1) = 0, 0 �= g ∈ Bn}.

The immunity of f against fast algebraic attacks is related to the algebraic degree
e of a function g and the algebraic degree d of gf with e ≤ d. For an n-variable
function f and any positive integer e with e < n/2, there is a nonzero function g
of degree at most e such that gf has degree at most n− e [6]. There are several
notions about the immunity of Boolean functions against fast algebraic attacks
in previous literatures, such as [13,21]. The perfect algebraic immune function
we define below is actually a Boolean function which is algebraic attack resistant
(see [21]) and has degree at least n−1. The latter is necessary for perfect algebraic
immune function since a function of degree less than n − 1 admits e = 1 and
d = deg(f) < n− 1 = n− e (taking g being a nonzero constant).

Definition 2. Let f be an n-variable Boolean function. The function f is said
to be perfect algebraic immune if for any positive integers e < n/2, the product
gf has degree at least n− e for any nonzero function g of degree at most e.

A perfect algebraic immune (PAI) function achieves maximum AI and is there-
fore a Boolean function perfectly resistant to classical and fast algebraic attacks.
As a matter of fact, if a function does not achieve maximum AI, then it admits
a nonzero function g of degree less than n/2 such that gf = 0 or gf = g, which
means that it is not PAI.
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3 The Immunity of Boolean Functions against Fast
Algebraic Attacks

In this section, we present the upper bounds on the immunity of Boolean func-
tions against fast algebraic attacks. We first recall the previous results for deter-
mining the immunity against fast algebraic attacks, then state our bounds.

Denote by Wi the ordered set {x ∈ Fn
2 |wt(x) ≤ i} in lexicographic order and

by W i the ordered set {x ∈ Fn
2 |wt(x) ≥ i + 1} in the reverse of lexicographic

order. According to the definitions of Wi and W i, it follows that if x is the
j-th element in We, then x̄ is the j-th element in Wn−e−1, where x̄ = (x1 +
1, . . . , xn+1). Here are some additional notational conventions: for y, z ∈ Fn

2 , let
z ⊂ y be an abbreviation for supp(z) ⊂ supp(y), where supp(x) = {i|xi = 1},
and let y ∩ z = (y1 ∧ z1, . . . , yn ∧ zn), y ∪ z = (y1 ∨ z1, . . . , yn ∨ zn), where ∧ and
∨ are the AND and OR operations respectively. We can see that z ⊂ y if and
only if yz = yz11 y

z2
2 · · · yznn = 1.

Let g be a function of algebraic degree at most e (e < n/2) such that h = gf
has algebraic degree at most d (e ≤ d). Let

f(x) =
∑
c∈Fn

2

fcx
c, fc ∈ F2,

g(x) =
∑
z∈We

gzx
z, gz ∈ F2,

and

h(x) =
∑
y∈Wd

hyx
y, hy ∈ F2

be the ANFs of f , g and h respectively. For y ∈ Wd, we have hy = 0 and
therefore

0 = hy =
∑
c∈Fn

2

∑
c∪z=y
z∈We

fcgz =
∑
z∈We

gz
∑

c∪z=y
c∈F

n
2

fc. (3)

The above equations on gz’s are homogeneous linear. Denote by V (f ; e, d) the
coefficient matrix of the equations, which is a

∑n
i=d+1

(
n
i

)
×

∑e
i=0

(
n
i

)
matrix

with the (i, j)-th element equal to

vyz =
∑

c∪z=y
c∈F

n
2

fc =
∑

y∩z̄⊂c⊂y
z⊂y

fc = yz
∑

y∩z̄⊂c⊂y

fc, (4)

where y is the i-th element in Wd and z is the j-th element in We. Then f
admits no nonzero function g of algebraic degree at most e such that h = gf has
algebraic degree at most d if and only if the rank of the matrix V (f ; e, d) equals
the number of gz’s which is

∑e
i=0

(
n
i

)
, i.e., V (f ; e, d) has full column rank (see

also [2,10]).
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Theorem 1. [2,10] Let f ∈ Bn and
∑

c∈Fn
2
fcx

c be the ANF of f . Let V (f ; e, d)

be the matrix whose (i, j)-th element equals
∑

c∪z=y fc, where y is the i-th ele-

ment in Wd and z is the j-th element in We.
Then there exists no nonzero function g of degree at most e such that the

product gf has degree at most d if and only if the matrix V (f ; e, d) has full
column rank.

Remark 1. The theorem shows thatAI(f) > e if and only if the matrix V (f ; e, e)
has full column rank (since AI(f) > e if and only if there exists no nonzero
function g of degree at most e such that h = gf has degree at most e). Then
AI(f) = �n2 � if and only if the matrix V (f ; �n2 � − 1, �n2 � − 1) has full column
rank.

Now we show that performing some column operations on the matrix V (f ; e, d)
creates a matrix with fc’s as its elements.

Lemma 2.
∑

z∗⊂z vyz∗ = fy∩z̄.

Proof. Note that c ∪ z = y if and only if c ⊂ y, z ⊂ y and y ⊂ c ∪ z, that is,
yc = 1, yz = 1 and (c ∪ z)y = 1. By (4) we have∑

z∗⊂z

vyz∗ =
∑
z∗⊂z

∑
c∪z∗=y

fc

=
∑
z∗⊂z

∑
c∈Fn

2

ycyz
∗
(c ∪ z∗)yfc

=
∑
c∈Fn

2

ycfc
∑
z∗⊂z

yz
∗
(c ∪ z∗)y

=
∑
c⊂y

fc
∑

z∗⊂y∩z
y⊂c∪z∗

1

=
∑
c⊂y

fc
∑

y∩c̄⊂z∗⊂y∩z
1

=
∑

c⊂y,y∩c̄=y∩z
fc

= fy∩z̄.

� 

Lemma 2 shows that the matrix V (f ; e, d) can be transformed into a matrix,
denoted by W (f ; e, d), with the (i, j)-th element equal to

wyz = fy∩z̄, (5)

where y is the i-th element in Wd and z is the j-th element in We.
The (j, i)-th element of W (f ; e, d) is equal to

wz̄ȳ = fz̄∩ ¯̄y = fy∩z̄ = wyz,



178 M. Liu, Y. Zhang, and D. Lin

since z̄ is the j-th element inWd and ȳ is the i-th element inWe by the definitions
of Wd and We. Recall that V (f ; e, d) and W (f ; e, d) are

∑n
i=d+1

(
n
i

)
×

∑e
i=0

(
n
i

)
matrices. Therefore the matrix W (f ; e, n − e − 1) is a symmetric

∑e
i=0

(
n
i

)
×∑e

i=0

(
n
i

)
matrix, denoted by W (f ; e).

Theorem 3. Let f ∈ Bn and
∑

c∈Fn
2
fcx

c be the ANF of f . Let W (f ; e, d) be

the matrix whose (i, j)-th element equals fy∩z̄, where y is the i-th element in Wd

and z is the j-th element in We.
Then there exists no nonzero function g of degree at most e such that gf has

degree at most d if and only if W (f ; e, d) has full column rank.

Proof. Lemma 2 shows that V (f ; e, d) and W (f ; e, d) have the same rank. Then
the theorem follows from Theorem 1. � 

Remark 2. The theorem shows that AI(f) > e if and only if the matrix
W (f ; e, e) has full column rank. Then AI(f) = �n2 � if and only if the matrix
W (f ; �n2 � − 1, �n2 � − 1) has full column rank.

Next we concentrate on the upper bounds on the immunity of Boolean functions
against fast algebraic attacks. As mentioned in Section 2, for an n-variable func-
tion f and any positive integer e with e < n/2, there is a nonzero function g of
degree at most e such that gf has degree at most n−e. This can also be explained
by Theorem 1 or Theorem 3: the matrices V (f ; e, n− e) and W (f ; e, n− e) do

not have full column rank since they are
∑e−1

i=0

(
n
i

)
×

∑e
i=0

(
n
i

)
matrices. From

Theorem 3 the bounds on the immunity to fast algebraic attacks are related to
the question whether the symmetric matrix W (f ; e) is invertible.

Before stating our main results, we list a useful lemma about the determinant
of a symmetric matrix over a field with characteristic 2.

Lemma 4. Let A = (aij)m×m be a symmetric m ×m matrix over a field with
characteristic 2, and aii = a21i for 2 ≤ i ≤ m, that is,

A =

⎛⎜⎜⎜⎜⎜⎝
a11 a12 a13 · · · a1m
a12 a212 a23 · · · a2m
a13 a23 a213 · · · a3m
...

...
...

. . .
...

a1m a2m a3m · · · a21m

⎞⎟⎟⎟⎟⎟⎠ . (6)

If a11 = (m+ 1)mod2, then det(A) = 0.

Proof. Let Sm be the symmetric group of degree m. Then

det(A) =
∑
σ∈Sm

m∏
i=1

ai,σ(i)

=
∑

σ∈Sm,σ2=1

m∏
i=1

ai,σ(i) +
∑

σ∈Sm,σ2 �=1

m∏
i=1

ai,σ(i)
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since

m∏
i=1

ai,σ(i) =

m∏
i=1

aσ(i),i =

m∏
i=1

aσ(i),σ−1(σ(i)) =

m∏
i=1

ai,σ−1(i)

)

=
∑

σ∈Sm,σ2=1

m∏
i=1

ai,σ(i).

If m is odd, then a11 = 0 and therefore

det(A) =
m∑
j=2

∑
σ2=1
σ(1)=j

a1j

m∏
i=2

ai,σ(i)

=

m∑
j=2

∑
σ2=1
σ(1)=j

a21j
∏

2≤i≤m
i�=j

ai,σ(i)

(for odd m and σ2 = 1, there is j′ such that j′ �= j and σ(j′) = j′)

=

m∑
j=2

∑
σ2=1

σ(1)=j,σ(j′)=j′

a21ja
2
1j′

∏
2≤i≤m
i�=j,j′

ai,σ(i)

(there is unique σ′ such that σ′(1) = j′, σ′(j′) = 1, σ′(j) = j,

and σ′(i) = σ(i) for i �∈ {1, j, j′})
= 0.

If m is even, then a11 = 1 and therefore

det(A) =
∑
σ2=1
σ(1)=1

m∏
i=2

ai,σ(i) +

m∑
j=2

∑
σ2=1
σ(1)=j

a21j
∏

2≤i≤m
i�=j

ai,σ(i)

=

m∑
j=2

∑
σ2=1

σ(1)=1,σ(j)=j

a21j
∏

2≤i≤m
i�=j

ai,σ(i) +

m∑
j=2

∑
σ2=1
σ(1)=j

a21j
∏

2≤i≤m
i�=j

ai,σ(i)

= 0.

� 

Remark 3. For the matrix A of Lemma 4 it holds that det(A) = det(A(1,1)) if
a11 = mmod2, where A(i,j) is the (m− 1)× (m− 1) matrix that results from A
by removing the i-th row and the j-th column.

Theorem 5. Let f ∈ Bn and f2n−1 be the coefficient of the monomial
x1x2 · · ·xn in the ANF of f . Let e be a positive integer less than n/2. If
f2n−1 =

(
n−1
e

)
+ 1mod 2, then there exists a nonzero function g with degree

at most e such that gf has degree at most n− e− 1.
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Proof. According to Theorem 3 we need to prove that the square matrixW (f ; e)
is singular when f2n−1 =

(
n−1
e

)
+ 1mod2. Let Wij be the (i, j)-th element of

W (f ; e). Since 1 = (1, 1, · · · , 1) and 0 = (0, 0, · · · , 0) are the first elements in
Wn−e−1 and We respectively, by (5) we have W11 = w1,0 = f2n−1. Because∑e

i=0

(
n
i

)
=

∑e
i=1

(
n−1
i

)
+

∑e
i=1

(
n−1
i−1

)
+ 1 ≡

(
n−1
e

)
(mod 2), we know W11 =∑e

i=0

(
n
i

)
+ 1mod2 when f2n−1 =

(
n−1
e

)
+ 1mod2. As mentioned previously,

W (f ; e) is a symmetric
∑e

i=0

(
n
i

)
×

∑e
i=0

(
n
i

)
matrix over F2. We wish to show

that W (f ; e) has the form of (6). By (5) we have W 2
1i = W1i = w1z = f1∩z̄ =

fz̄ = fz̄∩z̄ = wz̄z =Wii where z̄ is the i-th element in Wn−e−1 and z is the i-th
element inWe. It follows from Lemma 4 that the matrix W (f ; e) is singular. � 
Corollary 6. Let n be an even number and f ∈ Bn. If f is balanced, then there
exists a nonzero function g with degree at most 1 such that the product gf has
degree at most n− 2.

Proof. If f is balanced, then f2n−1 = 0. For even n, it holds that
(
n−1
1

)
+ 1 ≡

0(mod 2). Therefore the result follows from Theorem 5. � 
From Corollary 6 it seems that for the number n of input variables, odd numbers
are better than even ones from a cryptographic point of view (since cryptographic
functions must be balanced).

Lucas’ theorem states that for positive integers m and i, the following con-
gruence relation holds: (

m

i

)
≡

s∏
k=1

(
mk

ik

)
(mod 2),

where m =
∑s

k=1mk2
k−1 and i =

∑s
k=1 ik2

k−1 are the binary expansion of m
and i respectively. It means that

(
m
i

)
mod 2 = 1 if and only if i ⊂ m.

Note that f2n−1 = 1 if and only if deg(f) = n. Theorem 5 shows that for an
n-variable function f of degree n and e �⊂ n − 1, there is a nonzero function g
of degree at most e such that gf has degree at most n− e − 1, and that for an
n-variable function f of degree less than n and e ⊂ n − 1, there is a nonzero
function g of degree at most e such that gf has degree at most n− e− 1.

For the case n− 1 /∈ {2s, 2s − 1}, there are integers e, e∗ with 0 < e, e∗ < n/2
such that e ⊂ n− 1 and e∗ �⊂ n− 1, and thus an n-variable function is not PAI.
This shows that for a PAI function the number n of input variables is 2s+1 or
2s. For n = 2s+1 (resp. 2s), it holds that e �⊂ n−1 (resp. e ⊂ n−1) for positive
integer e < n/2, and thus an n-variable function with degree equal to n (resp.
less than n) is not PAI. Recall that a function on odd number of variables with
maximum AI is always balanced [9]. For n = 2s+1, a PAI function has degree
n−1 and is balanced since it has maximum AI. For n = 2s, a PAI function has
degree n and is then unbalanced, since a function has an odd Hamming weight
if and only if it has degree n. Consequently the following theorem is obtained.

Theorem 7. Let f ∈ Bn be a perfect algebraic immune function. Then n is one
more than or equal to a power of 2. Further, if f is balanced, then n is one more
than a power of 2; if f is unbalanced, then n is a power of 2.
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4 The Immunity of Boolean Functions against Fast
Algebraic Attacks Using Univariate Polynomial
Representation

In this section we focus on the immunity of Boolean functions against fast al-
gebraic attacks using univariate polynomial representation and show that the
bounds presented in Section 3 can be achieved.

Recall that We is the ordered set {x ∈ Fn
2 |wt(x) ≤ e} in lexicographic order

andWd is the ordered set {x ∈ Fn
2 |wt(x) ≥ d+1} in the reverse of lexicographic

order. Hereinafter, an element x = (x1, x2, · · · , xn) inWe orWd is considered as
an integer x1 +x22+ · · ·+xn2

n−1 from 0 to 2n− 1, and the operations “+” and
“−” may be considered as addition and subtraction operations modulo 2n − 1
respectively if there is no ambiguity.

Let f , g and h be n-variable Boolean functions, and let g be a function of
algebraic degree at most e (e < n/2) satisfying that h = gf has algebraic degree
at most d (e ≤ d). Let

f(x) =

2n−1∑
i=0

fix
i, fi ∈ F2n ,

g(x) =
∑
z∈We

gzx
z , gz ∈ F2n ,

and

h(x) =
∑
y∈Wd

hyx
y, hy ∈ F2n ,

be the univariate polynomial representations of f , g and h respectively. For
y ∈ Wd, we have hy = 0 and thus

0 = hy =
∑

i+z=y
z∈We

figz =
∑
z∈We

fy−zgz. (7)

The above equations on gz’s are homogeneous linear. Denote by U(f ; e, d) the
coefficient matrix of the equations, which is a

∑n
i=d+1

(
n
i

)
×

∑e
i=0

(
n
i

)
matrix

with the (i, j)-th element equal to

uyz = fy−z, (8)

where y is the i-th element inWd and z is the j-th element inWe. More precisely,
for (i, j) = (1, 1) we have (y, z) = (2n − 1, 0) and uyz = f2n−1; for (i, j) �= (1, 1)
we have y − z �∈ {0, 2n − 1} and uyz = f(y−z)mod(2n−1) when e ≤ d.

If the matrix U(f ; e, d) has full column rank, i.e., the rank of U(f ; e, d) equals
the number of gz’s, then f admits no nonzero function g of algebraic degree at
most e such that h = gf has algebraic degree at most d.
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If the matrix U(f ; e, d) does not have full column rank, then there always
exists a nonzero Boolean function satisfying Equations (7). More precisely, if
g(x) =

∑
z∈We

gzx
z (gz ∈ F2n) satisfies (7), then

0 = h2y =
∑
z∈We

f2
y−zg

2
z =

∑
z∈We

f2y−2zg
2
z , y ∈ Wd, (9)

where f2(2n−1) = f2n−1 and f2i is considered as f2imod(2n−1) for i �= 2n− 1, and

thus g2(x) =
∑

z∈We
g2zx

2z mod(x2
n−x) satisfies (9). Note that the system of (7)

and the system of (9) are actually the same. Therefore, if g(x) satisfies Equations

(7) then Tr(g(x)) satisfies Equations (7), where Tr(x) = x+x2+ · · ·+x2n−1

. Also
it follows that if g(x) satisfies Equations (7) then βg(x) and Tr(βg(x)) satisfy
Equations (7) for any β ∈ F2n . If g(x) �= 0, then there is c ∈ F2n such that
g(c) �= 0, and there is β ∈ F2n such that Tr(βg(c)) �= 0 and thus Tr(βg(x)) �= 0.
Now we can see that Tr(βg(x)) is a nonzero Boolean function and satisfies (7).
Hence if there is a nonzero solution for (7), then there always exists a nonzero
Boolean function g satisfying (7).

Thus the following theorem is obtained.

Theorem 8. Let f ∈ Bn and
∑2n−1

i=0 fix
i be the univariate polynomial repre-

sentation of f . Let U(f ; e, d) be the matrix whose (i, j)-th element equals fy−z,
where y is the i-th element in Wd and z is the j-th element in We.

Then there exists no nonzero function g of algebraic degree at most e such that
the product gf has algebraic degree at most d if and only if the matrix U(f ; e, d)
has full column rank.

Remark 4. As described at the beginning of this section, the sets We and Wd

of Theorem 8 are subsets of {0, 1, · · · , 2n − 1}, while the sets We and Wd of
Theorem 1 and Theorem 3 are subsets of Fn

2 .

Remark 5. The theorem gives a method using one matrix to evaluate the im-
munity of Boolean functions against fast algebraic attacks based on univariate
polynomial representation while in [22] P. Rizomiliotis used three matrices.

Remark 6. The theorem shows thatAI(f) > e if and only if the matrix U(f ; e, e)
has full column rank. Then AI(f) = �n2 � if and only if the matrix U(f ; �n2 � −
1, �n2 � − 1) has full column rank.

Remark 7. The matrix U(f ; e, n− e− 1), denoted by U(f ; e), is symmetric since

uz̄ȳ = fz̄−ȳ = f(2n−1−z)−(2n−1−y) = fy−z = uyz.

Further, we have

uyȳ = fy−ȳ = fy−(2n−1−y) = f2y = f2
y = u2y,0,

and therefore U(f ; e) has the form of (6). Hence Theorem 5 can also be derived
from Theorem 8 and Lemma 4.
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4.1 Carlet-Feng Functions

The class of the Carlet-Feng functions were first presented in [11] and further
studied by C. Carlet and K. Feng [4]. Such functions have maximum algebraic
immunity and good nonlinearity. It was observed through computer experiments
by Armknecht’s algorithm [2] that the functions also have good behavior against
fast algebraic attacks. In [23], P. Rizomiliotis determined the immunity of the
Carlet-Feng functions against fast algebraic attacks by computing the linear
complexity of a sequence, which is more efficient than Armknecht’s algorithm
but is not yet feasible for large n. In this section, we further discuss the immunity
of the Carlet-Feng functions against fast algebraic attacks and prove that the
functions achieve the bounds of Theorem 5.

Let n be an integer and α a primitive element of F2n . Let f ∈ Bn and

supp(f) = {αl, αl+1, αl+2, · · · , αl+2n−1−1}, 0 ≤ l ≤ 2n − 2. (10)

Then AI(f) = �n2 � according to [11,4]. As a matter of fact, the support of

the function f(αl+2n−1

x) + 1 is {0, 1, α, · · · , α2n−1−2}, which is a Carlet-Feng
function. It means that these functions are affine equivalent.

A similar proof of [4, Theorem 2] applies to the following result. Here we give
a proof for self-completeness.

Proposition 9. Let
∑2n−1

i=0 fix
i be the univariate polynomial representation of

the function f of (10). Then f0 = 0, f2n−1 = 0, and for 1 ≤ i ≤ 2n − 2,

fi =
α−il

1 + α−i/2
.

Hence the algebraic degree of f is equal to n− 1.

Proof. We have f0 = f(0) = 0 and f2n−1 = 0 since f has even Hamming weight
and thus algebraic degree less than n. For 1 ≤ i ≤ 2n − 2, by (2) we have

fi =

2n−2∑
j=0

f(αj)α−ij =

l+2n−1−1∑
j=l

α−ij = α−il
2n−1−1∑
j=0

α−ij

= α−il 1 + α−i2n−1

1 + α−i
= α−il 1 + α−i/2

1 + α−i
=

α−il

1 + α−i/2
.

We can see that f2n−2 �= 0 and therefore f has algebraic degree n− 1. � 

Remark 8. For the function f of (10), the (i, j)-th element of the matrix
U(f ; e, d) with e ≤ d is equal to

uyz = fy−z =
α−ylαzl

1 + α−y/2αz/2
, for (i, j) �= (1, 1),

where y is the i-th element in Wd and z is the j-th element in We.
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Lemma 10. Let K be a field of characteristic 2. Let A = (aij)m×m be an m×m
matrix over K and aij = (1 + βiγj)

−1, βi, γj ∈ K and βiγj �= 1, 1 ≤ i, j ≤ m.
Then the determinant of A is equal to∏

1≤i<j≤m

(βi + βj)(γi + γj)
∏

1≤i,j≤m

aij .

Furthermore, the determinant of A is nonzero if and only if βi �= βj and γi �= γj
for i �= j.

Proof. The second half part of this lemma is derived from the first half part.
The proof of the first half part is given by induction on m. First we can check
that the statement is certainly true for m = 1. Now we verify the induction step.
Suppose that it holds for m− 1. Thus we suppose that

det(A(1,1)) =
∏

2≤i<j≤m

(βi + βj)(γi + γj)
∏

2≤i,j≤m

aij ,

where A(i,j) is the (m − 1) × (m − 1) matrix that results from A by removing
the i-th row and the j-th column.

We wish to show that it also holds for m. Let B = (bij)m×m with b1j = a1j
and for i > 1,

bij = aij + a−1
11 ai1a1j

=
1

1 + βiγj
+ (

1

1 + β1γ1
)−1 · 1

1 + βiγ1
· 1

1 + β1γj

=
(1 + βiγ1)(1 + β1γj) + (1 + β1γ1)(1 + βiγj)

(1 + βiγj)(1 + βiγ1)(1 + β1γj)

=
βiγ1 + β1γj + β1γ1 + βiγj

(1 + βiγj)(1 + βiγ1)(1 + β1γj)

=
(β1 + βi)(γ1 + γj)

(1 + βiγj)(1 + βiγ1)(1 + β1γj)

= aij · (β1 + βi)ai1 · (γ1 + γj)a1j .

Let
P = diag(1, (β1 + β2)a21, · · · , (β1 + βm)am1)

and
Q = diag(1, (γ1 + γ2)a12, · · · , (γ1 + γm)a1m)

where diag(x1, · · · , xm) denotes a diagonal matrix whose diagonal entries start-
ing in the upper left corner are x1, · · · , xm. Then

B = P

(
a11 ∗
0 A(1,1)

)
Q.

Hence

det(A) = det(B)
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= det(P ) · a11 det(A(1,1)) · det(Q)

=

(
m∏
i=2

(β1 + βi)ai1

)
· a11 det(A(1,1)) ·

⎛⎝ m∏
j=2

(γ1 + γj)a1j

⎞⎠
=

∏
1≤i<j≤m

(βi + βj)(γi + γj)
∏

1≤i,j≤m

aij .

It has now been proved by mathematical induction that the first half part of this
lemma holds for all positive integers m. � 

Lemma 11. Let A = (aij)m×m and B = (bij)m×m be m × m matrices with
aij = βiγjbij and βi �= 0, γj �= 0 for 1 ≤ i, j ≤ m. Then det(A) �= 0 if and only
if det(B) �= 0.

Proof. Let P = diag(β1, β2, · · · , βm) and Q = diag(γ1, γ2, · · · , γm). Then A =
PBQ and hence det(A) = det(B)

∏m
i=1 βiγi, which proves this lemma. � 

Proposition 12. Let e be a positive integer less than n/2 and f be the function
of (10). Then U(f ; e) is invertible if

(
n−1
e

)
≡ 0(mod2), and U(f ; e, n − e − 2)

has full column rank if
(
n−1
e

)
≡ 1(mod 2).

Proof. Let U = U(f ; e) and Uij be the (i, j)-th element of U . We have U11 =
f2n−1 = 0. By Remark 7 we know that U is a symmetric matrix of order

∑e
i=0

(
n
i

)
in the form of (6). For the case

(
n−1
e

)
mod 2 = 0, we have

∑e
i=0

(
n
i

)
mod 2 = 0 =

U11. By Remark 3 it holds that det(U) = det(U (1,1)). Remark 8 shows that the
(i, j)-th element of U (1,1) is

U
(1,1)
ij =

α−ylαzl

1 + α−y/2αz/2
,

where y is the i-th element in Wn−e−1 \ {2n − 1} and z is the j-th element in
We\{0}, since e ≤ n−e−1 for e < n/2. Let U∗ be a (

∑e
i=0

(
n
i

)
−1)×(

∑e
i=0

(
n
i

)
−1)

matrix with the (i, j)-th element equal to

U∗
ij =

1

1 + α−y/2αz/2
.

Since α−y/2 �= α−y′/2 for y �= y′ (y, y′ ∈ Wn−e−1 \ {2n − 1}) and αz/2 �= αz′/2

for z �= z′ (z, z′ ∈ We \ {0}), from Lemma 10 we have det(U∗) �= 0. Then by
Lemma 11 it holds that det(U (1,1)) �= 0. Hence, U is invertible.

For the case
(
n−1
e

)
mod 2 = 1, we consider the

∑e+1
i=0

(
n
i

)
×

∑e
i=0

(
n
i

)
matrix

U(f ; e, n − e − 2). For even n, we always have e ≤ n − e − 2 for e < n/2. For
odd n, we always have e ≤ n− e − 2 for e ≤ (n− 3)/2 and

(
n−1
e

)
mod 2 = 0 for

e = n−1
2 . Thus for

(
n−1
e

)
mod 2 = 1 and e < n/2, we always have e ≤ n− e− 2.

Let U∗∗ be the
∑e

i=0

(
n
i

)
×

∑e
i=0

(
n
i

)
matrix that results from U(f ; e, n− e− 2)

by removing the first
(

n
e+1

)
rows. A similar proof of det(U (1,1)) �= 0 also applies

to det(U∗∗) �= 0. Then U(f ; e, n− e− 2) has full column rank. � 
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The proof of the proposition shows that for the function f of (10) the rank of
the matrix U(f ; e) is at least

∑e
i=0

(
n
i

)
−1 (since the matrix U (1,1) is invertible).

Then, by Theorem 5, f admits a unique nonzero function g with algebraic degree
e such that gf has algebraic degree at most n− e− 1 when

(
n−1
e

)
≡ 1(mod2).

Theorem 13. Let e be a positive integer less than n/2 and f be the function of
(10). Then f admits no nonzero function g with algebraic degree at most e such
that gf has algebraic degree at most n− e − 1 if

(
n−1
e

)
≡ 0(mod 2), and admits

no nonzero function g with algebraic degree at most e such that gf has algebraic
degree at most n− e− 2 if

(
n−1
e

)
≡ 1(mod 2).

Proof. It is derived from Theorem 8 and Proposition 12. � 

Corollary 14. Let n = 2s + 1 and f ∈ Bn be the function of (10). Then f is
PAI.

Proof. It is obtained from Theorem 13 since
(
n−1
e

)
=

(
2s

e

)
≡ 0(mod 2) for 1 ≤

e < n/2. � 

Theorem 13 states that the Carlet-Feng functions achieve the bounds of Theorem
5 and thus the bounds of Theorem 5 are tight for the functions with algebraic
degree less than n, while Corollary 14 states that the Carlet-Feng functions on
2s+1 variables are PAI. The theorem explains the experimental results of [4,10]
on the immunity of the Carlet-Feng functions against fast algebraic attacks, and
implies the conjecture of C. Carlet and K. Feng [4, Section 5].

Next we consider the Boolean functions with algebraic degree equal to n.
Let n be an integer and α a primitive element of F2n . Let f ∈ Bn and

supp(f) = {0, αl, αl+1, · · · , αl+2n−1−1}, 0 ≤ l ≤ 2n − 2. (11)

The function of (11) is a function that results from the function of (10) by
flipping the output at x = 0.

A similar proof of Proposition 9 applies to the following result.

Proposition 15. Let
∑2n−1

i=0 fix
i be the univariate polynomial representation of

the function f of (11). Then f0 = 1, f2n−1 = 1, and for 1 ≤ i ≤ 2n − 2,

fi =
α−il

1 + α−i/2
.

Hence the algebraic degree of f is equal to n.

A similar proof of Proposition 12 also applies to the following result.

Proposition 16. Let e be a positive integer less than n−1
2 and f be the function

of (11). Then U(f ; e) is invertible if
(
n−1
e

)
≡ 1(mod2), and U(f ; e, n − e − 2)

has full column rank if
(
n−1
e

)
≡ 0(mod 2).
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Theorem 17. Let e be a positive integer less than n−1
2 and f be the function of

(11). Then f admits no nonzero function g with algebraic degree at most e such
that gf has algebraic degree at most n− e − 1 if

(
n−1
e

)
≡ 1(mod 2), and admits

no nonzero function g with algebraic degree at most e such that gf has algebraic
degree at most n− e− 2 if

(
n−1
e

)
≡ 0(mod 2).

Proof. It is confirmed by Theorem 8 and Proposition 16. � 

Similarly to the function of (10), the function of (11) admits a unique nonzero
function g with algebraic degree e such that gf has algebraic degree at most
n− e− 1 when

(
n−1
e

)
≡ 0(mod 2).

In Theorem 17 we do not consider the case e = n−1
2 for odd n, since Theorem

5 shows that for odd n, an n-variable function f with algebraic degree n admits a
nonzero function g with algebraic degree at most n−1

2 such that gf has algebraic

degree at most n−1
2 (noting that

(n−1
n−1
2

)
mod 2 = 0).

Corollary 18. Let n = 2s and f ∈ Bn be the function of (11). Then f is PAI.

Proof. It is obtained from Theorem 17 since
(
n−1
e

)
=

(
2s−1
e

)
≡ 1(mod 2) for

1 ≤ e < n/2. � 

Theorem 17 states that the modified Carlet-Feng functions achieve the bounds
of Theorem 5 and thus the bounds of Theorem 5 are tight for the functions
with algebraic degree equal to n, while Corollary 18 states that the modified
Carlet-Feng functions on 2s variables are PAI.

Consequently, as mentioned above, the bounds of Theorem 5 are tight and
there exist PAI functions on 2s and 2s+1 variables. More precisely, there exist
n-variable PAI functions with degree n − 1 (balanced functions) if and only
if n = 2s + 1; there exist n-variable PAI functions with degree n (unbalanced
functions) if and only if n = 2s.

5 Conclusion

In this paper, several open problems about the immunity of Boolean functions
against fast algebraic attacks have been solved. We proved the maximum im-
munity to fast algebraic attacks, and identified the immunity of the Carlet-Feng
functions against fast algebraic attacks. It seems that for a balanced function, in
terms of the immunity to fast algebraic attacks, the optimal value of the number
n of input variables is one more than a power of two. The Carlet-Feng functions
previously shown to have maximum algebraic immunity and good nonlinearity
are proved to be optimal against fast algebraic attacks among the balanced func-
tions. To the best of our knowledge this is the first time that a class of Boolean
functions are shown to have such cryptographic property.
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Abstract. In this paper, we present a security analysis of the lightweight
block cipher LED proposed by Guo et al. at CHES 2011. Since the design
of LED is very similar to the Even-Mansour scheme, we first review exist-
ing attacks on this scheme and extend them to related-key and related-
key-cipher settings before we apply them to LED. We obtain results for
12 and 16 rounds (out of 32) for LED-64 and 16 and 24 rounds (out of 48)
for LED-128. Furthermore, we present an observation on full LED in the
related-key-cipher setting1. For all these attacks we need to find good dif-
ferentials for one step (4 rounds) of LED. Therefore, we extend the study
of plateau characteristics for AES-like structures from two rounds to four
rounds when the key addition is replaced with a constant addition. We
introduce an algorithm that can be used to find good differentials and
right pairs for one step of LED. To be more precise, we can find more than
210 right pairs for one step of LED with complexity of 216 and memory
requirement of 5 × 217. Moreover, a similar algorithm can also be used
to find iterative characteristics for the LED.

1 Introduction

Security in embedded systems, such as RFID and sensor networks, where the area
is restricted is getting more and more important since people started interacting
with them in daily life more often. Improving the efficiency while preserving the
security is one of the main challenges in this area and it has been an ongoing
research problem. Recently, many algorithms have been developed to address
this problem: hash functions like Quark [1], photon [13], spongent [3] as well
as block ciphers like Piccolo [23], LED [14], TWINE [24] and Klein [12]. Each of
them uses the advantage of the improved knowledge on the design and analysis
of symmetric key components.

LED [14] is a lightweight block cipher proposed by Guo et al. at CHES 2011.
While being dedicated to compact hardware implementation with one of the
smallest area consumptions (among block ciphers with comparable parameters),

� This work was sponsored he Research Fund KU Leuven, OT/08/027, by the IAP
Programme P6/26 BCRYPT of the Belgian State (Belgian Science Policy) and by
the European Commission through the ICT Programme under Contract ICT-2007-
216676 (ECRYPT II).

1 Due to the page limitations, details of this part is given in the full version of the
paper in [19].

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 190–207, 2012.
c© International Association for Cryptologic Research 2012
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LED also offers reasonable performance in software. The design bears some resem-
blance with the (generalized) Even-Mansour construction [4] with the difference
that the same key is used in each step for LED-64 or every second step in the
case of the larger variant LED-128. The step function is based on AES-like design
principles that provide good bounds against large classes of attacks including
differential and linear cryptanalysis. Additionally, LED offers strong security ar-
guments against attacks even in the related-key model.

To the best of our knowledge, no external analysis of LED with respect to
differential cryptanalysis has been published so far. The best existing differential
attacks are distinguishers for 15 (out of 32) rounds of LED-64 and 27 (out of
48) rounds of LED-128 in a hash setting, where the key is known to (or even
chosen by) the attacker, described by the designers. Moreover, the security of
LED against meet-in-the-middle attack has been investigated recently by Isobe
et al. [16]. They describe attacks for 8 (out of 32) and 16 (out of 48) rounds for
LED-64 and LED-128, respectively.

Our Contribution. In this paper, we present the first external cryptanaly-
sis of LED with respect to differential cryptanalysis. First, we show attacks for
LED-64 reduced to 12 and 16 rounds. Furthermore, we present an observation
on full LED in the related-cipher setting [25]. All our attacks are based on the
attack of Daemen [5] on Even-Mansour construction [11] that is extended in a
straightforward way to the related-key setting.

Secondly, we show how to improve the bound for the maximum expected
differential probability (MEDP) for four rounds (one step) of LED from 2−32 to
2−41.75 using mega-boxes and the result of Park et al. [20].

Furthermore, we present algorithms to find differential characteristics with
high probability that can be used in our attacks. By using the ideas of plateau
characteristics [9] and extending the work with mega boxes [6], we are able to
obtain characteristics for four rounds of LED. We find more than 210 right pairs
for a differential with a complexity less than 216 time and 5 × 217 memory and
an iterative characteristic with six right pairs with the same complexities. We
emphasize that our method is not specific to the block cipher LED and it can
be used in the analysis of any AES-like construction where the key addition is
replaced with a constant addition.

Outline. This paper is organized as follows. In Section 2 we give a brief descrip-
tion of LED and introduce the required definitions for our analysis. In Section 3,
we describe the attacks on Even-Mansour construction and show how they can
be extended to attack LED. We continue with differential analysis and give an
algorithm to find the number of right pairs in a plateau characteristic in Sec-
tion 4. We generalize this algorithm find characteristics for four rounds of LED
in Section 5 and we provide the results for characteristics with high probability
and iterative characteristics that can be used in our attacks in Section 6.
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2 Description of LED

LED [14] is a conservative lightweight block cipher whose design can be seen as a
special case of the generalized Even and Mansour construction [11] depicted in
Figure 1.

0F

K K

P

0 1

C

(a)

KK

P

0 1

C

K2

0F 1F

(b)

Fig. 1. Even-Mansour Construction with (a) t = 1 and (b) t = 2

LED accepts a 64-bit plaintext P, represented by a 4 × 4 array, and a 64-bit
(or 128-bit) user key as inputs, and is composed of 8 (or 12) STEP functions
preceded by a key addition. The STEP function is an AES-like design com-
posed of four rounds. Each round is combination of Constant addition, S-boxes,
ShiftRows, and (a variant of) MixColumns. LED uses the present S-box. In
MixColumnsSerial, each column vector is multiplied by a matrix and replaced
with the resulting vector. Note that the round constants for the second col-
umn are obtained from a linear shift register while the round constants for the
remaining three columns do not change.

Key Schedule: LED has a simple key schedule where the 64-bit user key K is
used as it is in each round whereas the 128-bit key is divided into two parts,
K = K0||K1, and used alternately. For the remainder of this paper, we refer
to these two versions as LED-64 and LED-128. For more detail, please check the
specification of LED [14].

One observation is that the S-boxes and linear transformations in the round
function of the cipher can be described by structure of a super box :

Definition 1 (Super box [9]). A super box maps an array a of m elements
ai to an array e of m elements ei. Each of the elements has size n. A super
box takes a key k of size m × n = nb where nb is the block size. It consists of
the sequence of four transformations (layers): Substitution, Mixing, Round Key
Addition, Substitution.

Similar to AES [7], two rounds of LED can also be described alternatively as four
parallel instances of the LED super box where the key addition is replaced by the
constant addition. So, instead of dealing with the classical 4-bit S-boxes, one can
consider 16-bit super boxes each composed of two S-box layers surrounding one
MixColumnsSerial (MC) and one AddConstants (AC) function.

Four rounds of LED can be described as a mega-box, where the elements are 16-
bit words and the LED super boxes defined above are seen as S-boxes. The linear
transformation in the middle is a combination of ShiftRows, MixColumnsSerial
and ShiftRows respectively. We will refer to this linear transformation as SMS.
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3 Attacks on the Even-Mansour Construction and
Application to LED

The Even-Mansour construction is a simple and yet provably secure block ci-
pher construction. The designers have shown that the number of queries needed
to break the scheme is bounded by 2n/2, where n is the blocklength (n = 64
for LED). A generic key recovery attack with chosen plaintexts showing that
this bound is tight was introduced by Daemen [5]. Twenty years later, the con-
struction was revisited. It was shown that the same bound applies to the known
plaintext setting by using the slidex attack, an extended version of the slide
attack [10].

Simultaneously, Bogdanov et al. generalized the construction in [4] to more
steps and discussed its security. They even provided a security proof for the
construction in the single-key setting. However, as pointed out by the authors,
the scheme is insecure in the related-key setting. In this section, we focus on the
attack of Daemen on the Even-Mansour construction, since it is the basis for all
our attacks on LED. First we show how it can be extended to a related key attack
on the generalized Even-Mansour construction. Then, we will use it to attack
reduced versions of the LED block cipher.

3.1 Daemen’s Attack

At Asiacrypt 1991 Daemen presented a generic key-recovery attack with com-
plexity of 2n/2 [5]. It can be summarized as follows.

1. Choose a difference Δ.
2. For � values of a compute ΔF0 = F0(a) ⊕ F0(a ⊕ Δ) and save the pair

(ΔF0, a) in a list L.
3. Choose an arbitrary plaintext P with P ′ = P⊕Δ and ask for the ciphertexts
C and C′

4. Compute ΔC = C ⊕ C′ and check if ΔC is in the list L to get a.
– If ΔC is in the list L then a candidate for the key is found. Compute
K0 = a⊕ P and K1 = F0(a)⊕ C.

– Else go back to Step 3.

After repeating steps 3− 4 about 2n/� times one expects to find the correct key
with complexity of about 2n/�+ �. Obviously the attack has the best complexity
by choosing � = 2n/2 resulting in a final attack complexity of about 2n/2 and
similar memory requirements.

Note that, the attack can be applied in an iterative way to attack the Even-
Mansour construction with t > 1 with complexity of 2t·n/2 and similar memory
requirements. For instance, if t = 2 then we get a complexity of 2n.

3.2 Using Daemen’s Attack in a Related-Key Setting

In certain scenarios one considers also related-key attacks where the adversary is
allowed to get encryptions under several related keys. In this setting Daemen’s
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attack can be adapted to attack t steps of the Even-Mansour construction with
complexity of t·2n/2 and similar memory requirements. For the sake of simplicity
we first describe the attack for t = 2.

Related Key Attack with t = 2. Let K,K ′ be two related keys, where
K = K0‖K1‖K2 and K ′ = K0 ⊕ Δ0‖K1 ⊕ Δ1‖K2 ⊕ Δ2, with arbitrary (but
known) Δ0, Δ1, Δ2 and Δ1 �= 0. Then we can do a key recovery attack on
the Even-Mansour construction with t = 2 with complexity of roughly 2n/2

and similar memory requirements using the attack of Daemen [5]. It can be
summarized as follows.

1. For � values of a compute ΔF1 = F1(a) ⊕ F1(a ⊕ Δ1) and save the pair
(ΔF1, a) in a list L.

2. Choose an arbitrary P and P ′ = P ⊕Δ0 and ask for the ciphertexts C and
C′

3. Compute ΔC = C ⊕ (C′ ⊕Δ2) and check if ΔC is in the list L to get a.
– If ΔC is in the list L then a candidate for K2 is found, K2 = F1(a)⊕C.
– Else go back to Step 2.

After repeating steps 2−3 about 2n/� times, the expected number of matches in
the list L (i.e., candidates for K2) is at least one. Note that, if we have more than
one candidate for K2 then we have to repeat the attack to get new candidates
for K2. The intersection of both sets of candidates gives us the correct key. Note
that it is very unlikely that this intersection will have more than one solution.

OnceK2 is known one can apply the attack of Daemen to findK0 andK1. This
results in a final attack complexity of about 2·2n/�+2� and memory requirements
of �. Again, the attack has the best complexity by choosing � ≈ 2n/2 resulting
in a final attack complexity of about 2 · 2n/2 and memory requirements of 2n/2.

Related Key Attack with t > 2. The related key attack can be extended
to more steps by applying the attack for t = 2 iteratively using more related
keys with certain properties. Assume t = 3 and there are two related keys K =
K0‖K1‖K2‖K3 and K ′ = K0 ⊕Δ0‖K1‖K2 ⊕Δ2‖K3 ⊕Δ3, with arbitrary (but
known) Δ0, Δ2, Δ3 and Δ2 �= 0. Then one can find K3 similar as in the attack
on the Even-Mansour construction with t = 2 with a complexity of roughly 2n/2.
Once K3 is found one can apply the attack for t = 2 with another pair of related
keys to recover K0, K1 and K2. In general, one can find the key for t = i using
i related keys with certain properties.

3.3 Attacks on Reduced LED

In this section, we will discuss the application of the attacks described in the
previous section to the LED block cipher. Due to the fact that in LED the same key
is used more than once the number of steps that can be attacked is significantly
reduced. However, the attack can still be used in a straightforward way to break
one and two steps of LED-64 in a single-key and related-key setting, respectively.
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Both attacks have a complexity of about 2n/2 and similar memory requirements.
Note that a similar related-attack was described recently in [4].

However, both attacks can be extended to more steps in the case of LED-128.
In more detail, we can attack four and six steps of LED-128 in the single-key and
related-key setting, respectively. First, we describe an attack on four steps of LED-
128 based on Daemen’s attack. It is based on the following simple observation
(cf. Figure 2).

P x
F0

K0 K1

F1

K0
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F2

K1

F ∗

CF3

K0

Fig. 2. Structure of LED-128 with t = 4

Assume K0 is known, then one can peel off the first and last key addition.
Thus, the attacker can remove one iteration at each side of the cipher with a
complexity of about 264 tries on K0. Moreover, assuming that K0 is known two
steps of LED-128 can be viewed as one big iteration using only K1. In other
words, we get a ‘new’ Even-Mansour construction with t = 1 and one key K1

where we can apply Daemen’s attack to recover the key. Using this, one can find
K0 and K1 for four steps of LED-128 with a complexity of about 23n/2. It can be
summarized as follows.

1. Guess the key K0.
2. For 2n/2 values a and a fixed Δ compute ΔF ∗ = F ∗(a) ⊕ F ∗(a ⊕Δ) with
F ∗(a) = F2(F1(a)⊕K0) and save the pair (ΔF ∗, a) in a list L.

3. Choose an arbitrary P and compute P ′ = F−1
0 (x ⊕ Δ) ⊕ K0 with x =

F0(P ⊕K0). Ask for the ciphertexts C and C′.
4. Compute Δy = y⊕y′ with y = F−1

3 (C⊕K0) and y
′ = F−1

3 (C′⊕K0). Check
if Δy is in the list L to get a.
– If Δy is in the list L then a candidate for the key is found. Compute
K1 = a⊕ x.

– Else go back to Step 3.
5. Once K1 is found check if the key K = K0‖K1 is correct.

Since the expected number of K0 guesses that we need to make to find the
correct key is 2n, we need to repeat the attack 2n times. Since for each guess of
K0 we need about 2n/2 computations to find K1, the complexity of the attack is
roughly 23n/2. Note that the above attack needs the whole codebook. However,
at the cost of a higher attack complexity, the data complexity of the attack can
be reduced. To be more precise, in step 3 of the attack we can always choose P
from a predefined subset and when computing P ′ we check if it is also in this
subset, if not then we repeat this step. Thus, the data complexity of the attack
can be reduced by simultaneously increasing the time complexity.
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The attack can be extended to six steps of LED-128 using related keys as in the
attack on the Even-Mansour construction with t = 2. The attack is very similar
as the attack on four steps. Basically only steps 2 − 4 (Daemen’s attack) are
replaced by the related key attack described in the previous section. The result
is a key-recovery attack on six steps (24 rounds) of LED-128 with complexity of
about 23n/2. Again, as in the attack on 4 steps the data complexity of the attack
can be reduced on the cost of a higher attack complexity.

3.4 Extending the Attack to More Steps

In this section, we discuss how the attacks can be extended to more steps of LED.
First, we show that by exploiting differential properties of the STEP-function F , it
might be possible to extend the attacks on LED-64 by one or two steps. Moreover,
the attack on 4 steps can also be used in related-cipher attack [25] with related
key setting on full LED-128. We represent our observation in the full version of
our paper [19].

Δ⊕Δ∗ F0

Δ∗ → Δ

Δ Δ

F1

Δ

ΔCF2

Δ→?

Δ

Fig. 3. Attack on LED-64 with t = 3

In the following, we show how the attack can be extended to t steps of LED-
64. The attack is based on the assumption that one can find a good related-key
differential for the first t − 2 steps such that one gets a zero difference after
the key addition of step t− 2. Then one can use Daemen’s attack on the last 2
steps to recover the key. For In the attack on 3 steps we a differential with good
probability in F0 is used, see Figure 3. The attack can be summarized as follows.

1. Assume we have given two related keysK0 andK
′
0 = K0⊕Δ and furthermore

the differential Δ∗ → Δ for F0 holds with probability p" 2−64.

2. For 2(n+
1
p )/2 values a compute ΔF2 = F2(a)⊕ F2(a⊕Δ) and save the pair

(ΔF2, a) in a list L.
3. Choose an arbitrary P and P ′ = P ⊕Δ∗ ⊕Δ and ask for the ciphertexts C

and C′

4. Compute ΔC = C ⊕ (C′ ⊕Δ) and check if ΔC is in the list L to get a.
– If ΔC is in the list L then a candidate for K0 is found, K0 = F2(a)⊕C.
– Else go back to step 3.

After repeating steps 3−4 about 2(n+
1
p )/2 times, the expected number of matches

in the list L (and hence candidates for the key K0) is 1/p. Since the differential
in F0 will hold with probability p, for one of these matches we will haveΔF1 = 0.
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Table 1. Summary of the attacks on LED

algorithm # step time memory attack type reference
functions complexity complexity

LED-64 3 2(n+ 1
p
)/2 2(n+ 1

p
)/2 related-key Section 3.4

4 2(n+ 1
p
)/2 2(n+ 1

p
)/2 related-key Section 3.4

LED-128 4 23n/2 2n/2 single-key Section 3.3

6 23n/2 2n/2 related-key Section 3.3

12 2(n+ 1
p
)/2 2(n+ 1

p
)/2 related-key-cipher [19]

Hence, one will find the right key after testing all candidates for K0 resulting
from the 1/p matches in the list L. The complexity and memory requirements

of the attack depends on p, i.e. 2(n+
1
p )/2.

The attack on three steps can be extended to four steps of LED-64. Assume we
can find a good iterative differential for F1 that holds with probability p. Then
this differential can be easily extended to a differential for the first 2 steps with
the same probability (see Figure 4), resulting in an attack on 4 steps of LED-64

with complexity of 2(n+
1
p )/2 and similar memory requirements.
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Fig. 4. Attack on LED-64 with t = 4

In the Table 1, we summarize the attacks on LED that are given in Section 3.We
will discuss in the following sections how to find good (iterative) differential
characteristics for one step of LED that can be used in the attacks on three and
four steps.

4 Differential Analysis and Plateau Characteristics

In this section, we start with some definitions that will be helpful to under-
stand the rest of the paper. We then give an introduction of the previous work
on AES [9] and describe how we can use this method to find two/four round
characteristics efficiently (and the corresponding right pairs).

4.1 Characteristics and Differentials

Differential cryptanalysis [2] is one of the most powerful techniques used in
analysis of block ciphers, hash functions, stream ciphers, etc. It investigates how
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an input difference (generally XOR) propagates through the target function.
The concept of differential cryptanalysis starts with analyzing the components
of the function, mostly focusing on S-boxes since they are the smallest nonlinear
building block. In the analysis, we call an S-box active if it has a non-zero input
difference, otherwise we call it passive.

A differential characteristic Q = (Δ0, Δ1, · · · , Δm) is a sequence of differences
through various stages of the encryption. The sequence consists of an input dif-
ference Δ0, followed by the output differences of all the steps (Δ1, Δ2, · · · , Δm).

A differential [17] over a map is denoted by (Δ0, Δm) where Δ0 is the input
difference and Δm is the output difference. The differential probability
DP(Δ0, Δm) of a differential over a map f is the fraction of pairs with input
difference Δ0 that have output difference Δm.

For a keyed map, we can define differential probabilities DP[k](Δ0, Δm) and
DP[k](Q) for each value k of the key. Then, the expected differential probability
(EDP) is the average of the differential probability over all keys. The weight
of a differential or a characteristic is minus the binary logarithm of their EDP.
Moreover, we define the height of a possible differential or a characteristic as
the binary logarithm of the number of their right pairs satisfying (Δ0, Δm) for
a fixed key.

A differential characteristic through the AES-like (including LED) super boxes
consist of a sequence of four differences: the input difference a, the difference
after the first substitution b, the difference after the mixing step which is equal
to the difference after the round (key) constant addition d, and the output dif-
ference after the second substitution e. These characteristics are denoted by
Q = (a, b, d, e).

It can be shown that SMS is a map whose branch number is 5. Therefore, a
characteristic over a mega-box consists of 5 to 8 sub-characteristics, each over
an LED super box. We denote the characteristics over the first and the second
layer of super boxes by (a, b, d, e) and (f, g, i, j), respectively.

4.2 The Maximum Expected Differential Probability of LED

Differential cryptanalysis plays a crucial role in the analysis of symmetric key
components since most of the cryptanalysis techniques are based on it. Therefore,
giving bounds for resistance against differential cryptanalysis is one of the first
steps in the evaluation of a design. In LED, the AES-like structure in the STEP

function makes it possible to apply the previous work of [20] to bound the MEDP.
By a straightforward computation of the formula stated in [20, Theorem 4],
the designers compute the bound for the MEDP as 2−32. This bound can be
improved by considering the STEP function as a mega-box and then using [20,
Theorem 1] to bound the MEDP of LED as

max

⎧⎨⎩ max
1≤i≤8

1≤x≤216−1

216−1∑
y=1

{
DPsbi(x, y)

}5

, max
1≤i≤8

1≤x≤216−1

216−1∑
y=1

{
DPsbi(y, x)

}5

⎫⎬⎭ = 2−41.75.
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Here DPsbi(x, y) is the probability of the characteristic (x, y) for the i-th super
box obtained from the Difference Distribution Table (DDT). This result improves
the approximations used in [14, Table 1]. We provided the bound for the first
STEP function; the results for the other super boxes are similar.

4.3 Planar Differentials

Let γ be a map and let F(a,b), G(a,b) be the sets that contain the input values,
respectively the output values, for the right pairs of the differential (a, b). i.e.,
F(a,b) = {x|γ(x) + γ(x + a) = b} and G(a,b) = γ(F(a,b)). A differential (a, b) is
called a planar differential, if F(a,b) and G(a,b) form affine subspaces [9]. In that
case, we can write:

F(a,b) = p+ U(a,b)

G(a,b) = q + V(a,b),

where U(a,b) and V(a,b) are uniquely defined vector spaces, p any element in F(a,b)

and q any element in G(a,b). Note that, if a differential (a, b) has exactly two or
four right pairs, then it is always planar [9].

Plateau characteristics [9] are a special type of characteristics whose proba-
bility for each value k of the key, DP [k](Q), depends on the key and can have
only two values. For a fraction 2nb−(weight(Q)+height(Q)) of the keys DP [k](Q) =
2height(Q)−nb and for all other keys the it is zero. Note that the height is inde-
pendent of the key.

Two-Round Plateau Characteristic Theorem states that a characteristic Q =
(a, b, c) over a map consisting of two steps with a key addition in between, in
which the differentials (a, b) and (b, c) are planar, is a plateau characteristic with
height(Q) = dim(V(a,b) ∩ U(b,c)).

4.4 Algorithm for Number of Right Pairs in a Plateau
Characteristic

Here, we describe the algorithm to find the number of right pairs of a given
characteristicQ = (a, b, d, e) through a super box. If the sub-characteristics (a, d)
and (d, e) are planar then we can use the Two-Round Plateau Characteristic
Theorem to compute the right pairs. Our aim in the algorithm is to build the
matrix B containing the basis vectors of (M(V(a,b))) and U(d,e) where M is the
mixing operation and M(V ) = {M(v)|v ∈ V }. We denote vectors by rows of nb
bits.

The first step of our algorithm is to determine V(a,b) and U(d,e). Since, the
super box is a set of m parallel maps, V(a,b) and U(d,e) can be written as:

V(a,b) = V(a1,b1) × V(a2,b2) × · · · × V(am,bm)

U(d,e) = U(d1,e1) × U(d2,e2) × · · · × U(dm,em)

by using the Lemma 4 in [9]. Now, if |G(ai,bi)| > 0, we are interested in the
output values of the right pairs.
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– If |G(ai,bi)| = 2, then the right pairs have input values in the set {q+{0, bi}}
for some q in G(ai,bi) , the basis vector for V(ai,bi) being bi.

– If |G(ai,bi)| = 2k where 2 ≤ k < n, then V(ai,bi) =< bi, β
1
i , . . . , β

k
i > and

hence V(ai,bi) is said to be spanned by bi and β
j
i ’s.

– If (ai, bi) = (0, 0) then G(ai,bi) covers the whole space and V(ai,bi) =<
w0, w1, · · · , wn−1 > where wj is a coordinate vector (i.e. a vector with 1
at position j and zero at all other positions) and V is the standard basis.

Similarly, if |F(di,ei)| > 0, we are interested in the input values of the right pairs.
When we find the right pairs for each parallel map we can compute the height by
using Algorithm 1. The number of dependent rows in B gives dim(M(V(a,b)) ∩
U(d,e)) which is equal to the height.

Algorithm 1 calls the following subroutines. Add(v) adds the vector v as a
new row to the matrix B. RowReduce is the Gaussian Elimination and RowCount

gives the number of nonzero rows of a matrix.

Algorithm 1 Algorithm to compute the height of a given plateau characteristic

Input: Characteristic Q = (a, b, d, e) with EDP (Q) > 0
Output: height(Q)

1: procedure precompute

2: for i = 1→ m do
3: Compute V(ai,bi) =< bi, β

1
i , . . . , β

kv
i

i > and U(di,ei) =< di, δ
1
i , . . . , δ

ku
i

i >
4: end for
5: end procedure

6: procedure height

7: //at the input of Mixing
8: for i = 0→ m do
9: if bi = 0 then
10: for j = 0→ n do
11: Add(M(w4i+j))
12: end for
13: else if bi > 0 then
14: Add(M(bi))
15: if |V(ai,bi)| > 2 then
16: for j = 1→ kv

i do
17: Add(M(βj

i ))
18: end for
19: end if
20: end if
21: end for

22: //at the output of Mixing
23: for i = 0→ m do
24: if di = 0 then
25: for j = 0→ n do
26: Add(w4i+j)
27: end for
28: else if di > 0 then
29: Add(di)
30: if |U(di,ei)| > 2 then
31: for j = 1→ ku

i do
32: Add(δji )
33: end for
34: end if
35: end if
36: end for

37: B’ = RowReduce (B).
38: return height(Q) = RowCount(B) - RowCount(B’)
39: end procedure
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The algorithm also gives us an insight on how to find the right pairs which can
be determined by intersecting the affine spaces F(a,b) ∩ (G(b,c) ⊕ k). This can be
efficiently done by preparing the set of linear equations to solve. We would like to
emphasize that, for a fraction of the keys the right pairs exists and their values
differ depending on the key. On the other hand, if the constant operation is used
instead of the key addition operation in the cipher, then it is not guaranteed
always to have a solution.

5 Non-plateau Characteristics: LED Mega-Box

As we mentioned in Section 2, two rounds of LED can be considered as a super
box and four rounds is defined as a mega-box. Let (a, b, d, e) and (f, g, i, j) denote
the characteristic through the super boxes at the input and the output of SMS
respectively. Since the super boxes are key independent, we consider them as
16-bit S-boxes. This allows us to omit the middle values (b, d) and (g, i) and use
the differentials (a, e) and (f, j) in our analysis.

In order to use the two-round plateau characteristic theorem, it is required
that the set of output values G(a,e) and the set of input values F(f,j) for the right
pairs must be affine spaces/planar. However, this is not always guaranteed when
the number of right pairs is greater than 4. Although the difference between the
values of each pair is known and constant, some extra conditions between the
pairs are also required for a set to become affine/planar. Therefore, we have to
work with a union of affine spaces in order to compute the number of right pairs
of a given characteristic. In the following, we will denote by height∗ the binary
logarithm of the maximum number of right pairs of a given characteristic, over
all values of the key. For a plateau characteristic, height∗ equals the height.

The details of our algorithm are given below. An algorithmic description can
be found in Algorithm 2.

Precomputation: The first step of our algorithm is finding G(a,e) and F(f,j)

for the given path, and the next step is obtaining the subspace decompositions
of V(a,e) and U(f,j). If V(ai,ei) is affine then V(ai,ei) =< e, ε1, . . . , εn >, otherwise
it is a union of smaller vector spaces, i.e. V(ai,ei) = V 1

(ai,ei)
∪ V 2

(ai,ei)
∪ . . . V m

(ai,ei)

where m ≥ 2. Therefore, we have to find the corresponding basis vectors (εi’s)
for each subspace. The results are then stored in a list, Li, for each active super
box.

Analysis: We then use the Two-Round Plateau Characteristic Theorem to com-
pute the height using the basis vectors obtained in the precomputation phase.
Since the solution exist only for a fraction of the constant values, we check
whether the given round constant is in the solution set or not. This step can also
be done by solving a system of linear equations as in two-rounds, but this time
the equations are obtained from the SMS layer and the basis vectors of the super
boxes.

Here, we would like to emphasize that the solution does not always exist
for the round constant of LED. Denote by Kq, the set of values, k, such that
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Algorithm 2 Algorithm to compute the height∗ of a four-round characteristic

Input: Characteristic Q = (a, e, f, j)
Output: Upper bound for height∗(Q)

1: procedure precompute

2: L0 = L1 = . . . = L7 = Ø
3: for i = 0→ 3 do
4: Compute G(ai,ei) and F(fi,ji)⋃

m

V m
(ai,ei)

= Decompose(V(ai,ei)) and < εm1 , εm2 , . . . εmdm >= V m
(ai,ei)

, dm = |V m
(ai,ei)

|⋃
n

Un
(fi,ji)

= Decompose(U(fi,ji)) and < εn1 , ε
n
2 , . . . ε

n
dn >= V n

(fi,ji)
, dn = |V n

(fi,ji)
|

5: Store(Li, {(ai, ei), ε
m
1 , εm2 , . . . εmdm}) and Store(L4+i, {(fi, ji), εn1 , εn2 , . . . εndn})

6: end for
7: end procedure

8: procedure analyze

9: count = 0
10: for all q ∈ L0 × L1 × . . .× L7 do
11: h = height(q);
12: count = count + 2h

13: end for
14: return log2(count)
15: end procedure

DP[k](q) > 0. Since constants are used in the round function of LED, it is not
guaranteed that the round constant, cr ∈ Kq for all q. Therefore, the algorithm
gives an upper bound for height∗(Q). If the key addition was used in the round
function rather than constant addition, it could be possible to find a key value
k ∈ Kq for all q satisfying the upper bound.

On the other hand, if the key addition was used, the Algorithm 2 could not
be applied immediately, since the lists Li would depend on the key values and
would not be unique. This would require recomputation of the lists for each key
value increasing the complexity of the algorithm.

Note that, since height∗ for four rounds is the summation over all possible
decompositions q ∈ L0×L1× . . .×L7 of the characteristic Q, height∗(Q) is not
guaranteed to be an integer, although height(q) is integer for all q.

In Algorithm 2, Store adds input/output differences and the basis vectors
{ε1, ε2, . . .} to the list L. height is given in Algorithm 1 used with parameters
m = 4 and n = 16.

6 Application of the Algorithms 1 and 2

In this section, we give two examples to demonstrate how Algorithm 1 and
Algorithm 2 work. These examples can directly be used with attacks described
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Fig. 5. (a)Path for iterative characteristics of the LED cipher (b)Mega-box representa-
tion of the same path

in Section 3.4. We do not claim that these are the best characteristics in terms of
probability for the STEP function of LED that one can find. For both examples,
we fix the number of active S-boxes to 25 for four rounds of LED. Since, we
know from previous work [9] that all the characteristics with high probability
are expected to have a low weight and a low number of active S-boxes. This
also allows us to reduce the time and memory complexities of our algorithm and
make the computation feasible.

6.1 Iterative Characteristics

Our aim is to find iterative characteristics (i.e., characteristics that have the same
input and output difference) for the STEP function of the LED block cipher. We
show that it is possible to obtain multiple iterative characteristics by using the
16-bit boxes and the two round plateau characteristic theorem in 216 time and
around 5×217 memory. In terms of efficiency, this computation can be compared
with the inbound technique of the rebound attack [18]. The main advantage of
our computation is that many characteristics can be found whereas with the
rebound attack, the expected number of characteristics that we find, equals one,
using the same time complexity and slightly less data complexity.

In our analysis we used the differential path given in Figure 5. It is possible
to adopt the algorithm for the other possible differential paths. The algorithm
is summarized as follows:

Precomputation: For each of the active super boxes, obtain the differentials
(ai, ei) (or (fi, ji)) for the given path and find the corresponding right pairs
G(ai,ei) (or F(fi,ji)). Then compute their affine subspace decomposition and the
corresponding basis vectors. Store the input/output differences together with
the basis vectors in a list. We denote these lists as L0, L1, L2, L3 for the super
boxes at the input and L4 for the super box at the output of the SMS layer. Note
that this calculation is done for all possible differentials. Each list has around
217 elements, therefore the total memory requirement of this step is 5× 217.
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Algorithm 3 Compute iterative characteristics

Input: Precomputed tables Li where i ∈ {1, · · · , 5}
Output: All the iterative characteristics with their height∗

1: for all (e, f) ∈ S do
2: if (f0, j0) ∈ L4 then
3: Δ = MC ◦ SR ◦AC(j)
4: a = SR ◦ AC(Δ)
5: if (ai, ei) ∈ Li for 1 ≤ i ≤ 4 then
6: h =height

∗(Q)
7: Output Q = (a, e, f, j) and h
8: end if
9: end if
10: end for

Analysis: We start from the four MixColumnsSerial operations in the SMS

layer. Each of them has only one 4-bit word active at the output, hence we have
154 ≈ 216 possibilities for the differences at f (call the set of possibilities S).
For each of these differences, we obtain the possible differences at j by using
the precomputed list L4. Then, we compute (MC ◦ SR ◦ AC)(j) = Δ which is
the output difference after four rounds of the STEP function and is also equal
to the input difference of the STEP function since we are interested in iterative
characteristics. We make one more computation (SR ◦ AC)(Δ) to obtain the
difference at a. Note that by choosing a difference for f , we have already fixed
the difference at e. We then check whether (ai, ei) is in the list Li for 0 ≤ i ≤ 3.
If it does for all i, we use the Algorithm 2 to compute the height∗ and find the
right pairs.

Results: In our analysis we found 240 iterative characteristics for the pattern
given in Figure 5 but not all of them have a solution for the round constants of
the LED block cipher. One of these characteristics is given below. It has 6 right
pairs and the corresponding right pairs are given in [19].

a 0x6000 0x0003 0x0070 0x0C00

e 0x6962 0x5848 0x46A3 0x5CBF

f 0x943C 0x0000 0x0000 0x0000

j 0x8000 0x0000 0x0000 0x0000

6.2 Characteristics with High Height∗

In this section, our aim is to find characteristics with high height∗ for the STEP

function of the LED block cipher. We show that it is possible to obtain such char-
acteristics by using a similar algorithm to Algorithm 3 with 216 time complexity
and 5 × 217 memory complexity. In our analysis we focused on the differential
path given in Figure 6 and searched for characteristics whose height∗ is greater
than 5.
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Precomputation: All possible differentials together with the basis vectors of
their affine space decomposition are stored in the lists L1, L2, L3 for each of the
the super boxes at the input and in the lists L4, L7 for the super boxes at the
output of the SMS layer. Again, each list has around 217 elements, and the total
the memory requirement of this step is 5× 217.

Analysis: We start from the two active MixColumnsSerial operations in the
SMS layer. Each of them has two 4-bit words active at the output, hence we have
(152)2 ≈ 216 possibilities for the differences at f . For each of these possibilities,
we obtain the possible differences at a by using the precomputed lists L1, L2 and
L3. Similarly, the possible differences at j are obtained by using the lists L4 and
L7. We then use Algorithm 2 to compute the height and find the right pairs.

Results: Assume that dim(V(a,e)) > 0 and dim(U(f,j)) > 0, then we can write
V(a,e) =

⋃
m V m

(a,e) and U(f,j) =
⋃

n U
n
(f,j). We define a partition by Qmn where

Qmn = SMS(Vm
(a,e))∩Un

(f,j). Then we know that height∗(Q) ≤ log2(
∑
m,n

2dim(Qmn))

(see Algorithm 2). In our analysis we observed that it is not easy to find a par-
tition whose height is greater than six, but by combining all partitions, we were
able to find characteristics which have height∗ greater than eleven or twelve. One
example of such characteristics is provided below.

a 0x0000 0x0F91 0x2F0B 0x2803

e 0x0000 0xC00D 0x8F00 0x0F50

f 0x0CD0 0x0000 0x0000 0x00C8

j 0x8C07 0x0000 0x0000 0x50BF

The upper bound for height∗ is computed as 12.16 by using the formula.
However, not all partitions have a solution for the given round constant, and
we obtain only 1026 right pairs for the round constants used in LED. We also
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computed the number of right pairs by changing the round constant used in
round three of the STEP function. The number of right pairs is computed as
1024± ε where ε ≤ 116 for all constants.

To sum up, we introduced not only a new method that can be useful in the
security evaluation of AES-like structures but we also showed that by using this
method it is possible to obtain characteristics that can be used to attack LED

(see Section 3.4).

7 Future Work and Open Problems

The analysis of super boxes and mega-boxes play an important role in the crypt-
analysis of AES-like ciphers. In this paper, we focused on characteristics for the
block cipher LED with 25 active S-boxes. Since it is not feasible to compute the
whole distribution of the characteristics for four rounds of LED, we focus only
on characteristics that may have many right pairs. Therefore, our results cover
characteristics with high height∗ and iterative characteristics with a fixed pat-
tern. The examples given in this paper are the best ones that we computed. But
still, it is possible to cover other patterns with 25 active S-boxes and they might
give better results and at the same time result in improvements of our attacks.

We want to note that the algorithms given in this paper can also be used to
compute the differentials for constructions using four rounds of AES as internal
building block such as Pelican [8] giving new insights on these designs. Moreover,
these algorithms might also be used in the computation of the inbound phase of
the rebound attack.
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18. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

19. Mendel, F., Rijmen, V., Toz, D., Varıcı, K.: Differential Analysis of the LED Block
Cipher. Cryptology ePrint Archive, Report 2012/544 (2012),
http://eprint.iacr.org/

20. Park, S., Sung, S.H., Lee, S., Lim, J.: Improving the Upper Bound on the Maximum
Differential and the Maximum Linear Hull Probability for SPN Structures and
AES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 247–260. Springer,
Heidelberg (2003)

21. Pointcheval, D., Johansson, T. (eds.): EUROCRYPT 2012. LNCS, vol. 7237, pp.
2012–2031. Springer, Heidelberg (2012)

22. Preneel, B., Takagi, T. (eds.): CHES 2011. LNCS, vol. 6917, pp. 2011–2013.
Springer, Heidelberg (2011)

23. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An Ultra-Lightweight Blockcipher. In: Preneel, Takagi [22], pp. 342–357

24. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: Twine: A Lightweight, Ver-
satile Blockcipher. In: ECRYPT Workshop on Lightweight Cryptography (2011),
http://www.uclouvain.be/crypto/ecrypt_lc11/static/post_proceedings.pdf

25. Wu, H.: Related-Cipher Attacks. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.)
ICICS 2002. LNCS, vol. 2513, pp. 447–455. Springer, Heidelberg (2002)

http://eprint.iacr.org/
http://www.uclouvain.be/crypto/ecrypt_lc11/static/post_proceedings.pdf


PRINCE – A Low-Latency Block Cipher

for Pervasive Computing Applications

Extended Abstract�

Julia Borghoff1,��, Anne Canteaut1,2,� � �, Tim Güneysu3, Elif Bilge Kavun3,
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Abstract. This paper presents a block cipher that is optimized with
respect to latency when implemented in hardware. Such ciphers are de-
sirable for many future pervasive applications with real-time security
needs. Our cipher, named PRINCE, allows encryption of data within
one clock cycle with a very competitive chip area compared to known
solutions. The fully unrolled fashion in which such algorithms need to be
implemented calls for innovative design choices. The number of rounds
must be moderate and rounds must have short delays in hardware. At
the same time, the traditional need that a cipher has to be iterative with
very similar round functions disappears, an observation that increases
the design space for the algorithm. An important further requirement is
that realizing decryption and encryption results in minimum additional
costs. PRINCE is designed in such a way that the overhead for decryp-
tion on top of encryption is negligible. More precisely for our cipher it
holds that decryption for one key corresponds to encryption with a re-
lated key. This property we refer to as α-reflection is of independent
interest and we prove its soundness against generic attacks.

1 Introduction

The area of lightweight cryptography, i.e., ciphers with particularly low imple-
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best studied algorithms are the block ciphers CLEFIA, Hight, KATAN, KTAN-
TAN, Klein, mCrypton, LED, Piccolo and PRESENT [33,23,15,20,29,21,32,9],
as well as the stream ciphers Grain, Mickey, and Trivium [22,2,16]. Particular
interest in lightweight symmetric ciphers is coming from industry, as becoming
evident in the adoption of CLEFIA and PRESENT in the ISO/IEC Standard
29192-2. The dominant metric according to which the majority of lightweight
ciphers have been optimized is chip area, typically measured in gate equivalences
(GE), i.e., the cipher area normalized to the area of a 2-input NAND gate in
a given standard cell library. This is certainly a valid optimization objective in
cases where there are extremely tight power or cost constraints, in particular pas-
sive RFID tags. However, depending on the application, there are several other
implementation parameters according to which a cipher should have lightweight
characteristics. There are several important applications for which a low-latency
encryption and instant response time is highly desirable, such as instant au-
thentication or block-wise read/write access to memory devices, e.g., solid-state
hard disks. There are also embedded applications where current block ciphers in
multiple-clock architectures could be sufficiently fast, but the needed high clock
rates are not supported by the system. For instance, in many FPGA designs
clock rates above 200 MHz are often difficult to realize. It can also be antici-
pated that given the ongoing growth of pervasive computing, there will be many
more future embedded systems that require low-latency encryption, especially
applications with real-time requirements, e.g., in the automotive domain. More-
over, [27] as well as [24] show that low-latency goes hand in hand with energy
efficiency, another crucial criterion in many (other) applications.

For all these cases, we like to have symmetric ciphers that can instantaneously
encrypt a given plaintext, i.e., the entire encryption and decryption should take
place within the shortest possible delay. This seemingly simple problem poses a
considerable challenge with today’s cryptosystems — in particular if encryption
and decryption should both be available on a given platform. Software implemen-
tations of virtually all strong ciphers take hundreds or thousands of clock cycles,
making them ill suited for a designer aiming for low-latency cryptography. In the
case of stream ciphers implemented in hardware, the high number of clock cy-
cles for the initialization phase makes them not suitable for this task, especially
when secret keys need to be regularly changed. Moreover, if we want to encrypt
small blocks selected at random (e.g., encryption of sectors on solid-state disks),
stream ciphers are not suited1. This leaves block ciphers as the remaining viable
solution. However, the round-based, i.e., iterative, nature of virtually all existing
block ciphers, as shown for the case of AES, makes low-latency implementation
a non-trivial task. A round-based hardware architecture of the AES-128 requires
ten clock cycles to output a ciphertext which we do not consider instantaneous
as it is still too long for some applications. As a remedy, the ten rounds can be
loop-unrolled, i.e., the circuit that realizes the single round is repeated ten times.
Now, the cipher returns a ciphertext within a single clock cycle — but at the
cost of a very long critical path. This yields a very slow absolute response time

1 A possible exception are random-access stream ciphers such as Salsa [5].
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and clock frequencies, e.g., in the range of a few MHz. Furthermore, the unrolled
architecture has a high gate count in the range of several tens of thousand GE,
implying a high power consumption and costs. Both features are undesirable, es-
pecially if one considers that many of the applications for instantaneous ciphers
are in the embedded domain. Following the same motivation and reasoning as
above [27] compares several lightweight ciphers with respect to latency and as a
conclusion calls for new designs that are optimized for low-latency.

Our Contribution. Based on the above discussion our goal is to design a
new block cipher which is optimized with respect to the following criteria if
implemented in hardware:

1. The cipher can perform instantaneous encryption, a ciphertext is computed
within a single clock cycle. There is no warm-up phase.

2. If implemented in modern chip technology, low delays resulting in moderately
high clock rates can be achieved.

3. The hardware costs are moderate (i.e., considerably lower than fully unrolled
versions of AES or PRESENT).

4. Encryption and decryption should both be possible with low costs and
overhead.

We would like to remark that existing lightweight ciphers such as PRESENT
do not fulfill Criteria 2 and 3 (low delay, small area) due to their large number
of rounds. In order to fulfill Criterion 4, one needs to design a cipher for which
decryption and encryption use (almost) identical pieces of hardware. This is an
important requirement since the unrolled nature of instantaneous ciphers leads
to circuits which are large and it is thus clearly advantageous if large parts of
the implementation can be used both for encryption and decryption.

Besides designing a new lightweight cipher that is for the first time optimized
with respect to the goals above, PRINCE has several innovative features that
we like to highlight.

First, a fully unrolled design increases the possible design choices enormously.
With a fully unrolled cipher, the traditional need that a cipher has to be iterative
with very similar round functions disappears. This in turn allows us to efficiently
implement a cipher where decryption with one key corresponds to encryption
with a related key. This property we refer to as α-reflection is of independent
interest and we prove its soundness against generic attacks. As a consequence,
the overhead of implementing decryption over encryption becomes negligible.
Note that previous approaches to minimizing the overhead of decryption over
encryption, for example in the ciphers NOEKEON and ICEBERG usually re-
quire multiplexer in each round. While for a round-based implementation this
does not make a difference, our approach is clearly preferable for a fully unrolled
implementation, as we require multiplexer only once at the beginning of the
circuit.

Another difference to known lightweight ciphers like PRESENT is that we
balance the cost of an Sbox-layer and the linear layer. As it turns out optimizing
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the cost of the Sbox chosen has a major influence on the overall cost of the
cipher. As an Sbox that performs well in one technology does not necessarily
perform well in another technology, we propose the PRINCE-family of ciphers
that allows to freely choose the Sbox within a (large) set of Sboxes fulfilling
certain criteria. Our choice for the linear layer can be seen as being inbetween
a bit-permutation layer PRESENT (implemented with wires only) and AES
(implemented with considerable combinatorial logic). With the expense of only
2 additional XOR-gates per bit over a simple bit-permutation layer, we achieve
an almost-MDS property that helps to prove much better bounds against various
classes of attacks and in turn allows to significantly reduce the number of rounds
and hence latency.

As a result, PRINCE compares very favorable to existing ciphers. For the
same time constraints and technologies, PRINCE uses 6-7 times less area than
PRESENT-80 and 14-15 times less area than AES-128. In addition to this,
our design uses about 4-5 times less area than other ciphers in the literature
(see Section 5 and in particular Tables 1 and 2 for a detailed comparison and
technology details). To facilitate further study and fairer comparisons, we also
report synthesis results using the open-source standard-cell library NANGATE
[30]. We also like to mention that, although this is not the main objective of
the cipher, PRINCE compares reasonably well to other lightweight ciphers when
implemented in a round-based fashion (see [10]).

We believe that our consideration can be of major value for industry and
can at the same time stimulate the scientific community to pursue research on
lightweight ciphers with different optimization goals.

Organization of the Paper. We introduce an instance of PRINCE-family of
ciphers and state our security claims in Section 2. Design decisions are discussed
in Section 3 where we also describe the entire PRINCE-family. We provide se-
curity proofs and evaluations considering cryptanalytical attacks in Section 4.
In Section 5 we finally present implementation results and comparisons with
other lightweight ciphers for a range of hardware technologies. For further de-
tails, including a detailed security analysis against standard attacks as well as
test vectors, we refer to [10].

2 Cipher Description

PRINCE is a 64-bit block cipher with a 128-bit key. The key is split into two
parts of 64 bits each,

k = k0||k1
and extended to 192 bits by the mapping

(k0||k1)→ (k0||k′0||k1) := (k0||(k0 ≫ 1)⊕ (k0 " 63)||k1).
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PRINCE is based on the so-called FX construction [7,25]: the first two subkeys
k0 and k′0 are used as whitening keys, while the key k1 is the 64-bit key for a
12-round block cipher we refer to as PRINCEcore. We provide test vectors in the
full version of the paper [10].

m

k0

PRINCEcore

k′0

c

Specification of PRINCEcore.

The whole encryption process of PRINCEcore is depicted below.

S M

1k
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1
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RC1 RC2 RC3 RC4 RC5

1k 1k

RC6 RC7 RC8 RC9 RC10

RCi

S -1M -1

1k RCi

RC0 RC11

Each round of PRINCEcore consist of a key addition, an Sbox-layer, a linear
layer, and the addition of a round constant.

ki-add. Here the 64-bit state is xored with the 64-bit subkey.

S-Layer. The cipher uses one 4-bit Sbox. The action of the Sbox in hexadecimal
notation is given by the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] B F 3 2 A C 9 1 6 7 8 0 E 5 D 4

The Matrices: M/M ′-layer. In the M and M ′-layer the 64-bit state is mul-
tiplied with a 64× 64 matrix M (resp. M ′) defined in Section 3.3.

RCi-add. In the RCi-add step a 64-bit round constant is xored with the state.
We define the constants used below (in hex notation)
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RC0 0000000000000000
RC1 13198a2e03707344
RC2 a4093822299f31d0
RC3 082efa98ec4e6c89
RC4 452821e638d01377
RC5 be5466cf34e90c6c
RC6 7ef84f78fd955cb1
RC7 85840851f1ac43aa
RC8 c882d32f25323c54
RC9 64a51195e0e3610d
RC10 d3b5a399ca0c2399
RC11 c0ac29b7c97c50dd

Note that, for all 0≤ i≤ 11,RCi⊕RC11−i is the constant α=c0ac29b7c97c50dd,
RC0 = 0 and that RC1, . . . , RC5 and α are derived from the fraction part of
π = 3.141....

From the fact that the round constants satisfy RCi ⊕ RC11−i = α and that
M ′ is an involution, we deduce that the core cipher is such that the inverse
of PRINCEcore parametrized with k is equal to PRINCEcore parametrized with
(k⊕α). We call this property of PRINCEcore the α-reflection property. It follows
that, for any expanded key (k0||k′0||k1),

D(k0||k′
0||k1)(·) = E(k′

0||k0||k1⊕α)(·)

where α is the 64-bit constant α = c0ac29b7c97c50dd. Thus, for decryption one
only has to do a very cheap change to the master key and afterwards reuse the
exact same circuit.

Security Claims. For an adversary that is able to acquire 2n plaintext/
ciphertext pairs in a model with a single fixed unknown key k, we claim that the
effort to find the key is not significantly less expensive than 2127−n calls to the
encryption or decryption function. In Section 4.1 we give a bound matching this
claim in the ideal cipher model that does consider the special relation between
the encryption and decryption operations. One way to interpret this is that any
attack violating our security claim will have to use more properties of the cipher
than the relation between the encryption and decryption operations.

We explicitly state that we do not have claims in related-key or known- and
chosen-key models as we do not consider them to be relevant for the intended
use cases. In particular, as for any cipher based on the FX construction or on
the Even-Mansour scheme [18], there exists a trivial distinguisher for PRINCE

in the related-key model: for any difference Δ, the ciphertexts corresponding to
m and (m ⊕Δ) encrypted under keys (k0||k1) and ((k0 ⊕ Δ)||k1) respectively,
differ from ((Δ≫ 1)⊕ (Δ" 63)) with probability 1.

Reduced Versions. Many classes of cryptanalytic attacks become more dif-
ficult with an increased number of rounds. In order to facilitate third-party
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cryptanalysis and estimate the security margin, reduced-round variants need to
be considered. We encourage to study round-reduced variants of PRINCE where
the symmetry around the middle is kept, and rounds are added in an inside-out
fashion, i.e. for every additional round 'i its inverse is also added. Another nat-
ural way to reduce PRINCE is to consider the cipher without the key whitening
layer, PRINCEcore.

3 Design Decisions

In this section we explain our design decisions. First note that an SP-network
is preferable over a Feistel-cipher, since a Feistel-cipher operates only on half
the state resulting often in a higher number of rounds. In order to minimize the
number of rounds and still achieve security against linear and differential attacks,
we adopted the wide-trail strategy [11]. As not all round functions have to be
identical for a cipher aiming for a fully unrolled implementation as PRINCE, it
is very tempting to directly use the concept of code-concatenation [13] to achieve
a high number of active Sboxes over 4 rounds of the cipher. However, not only
a serial implementation benefits from similar round functions. It is also very
helpful for ensuring a minimum number of active Sboxes. Assume that, using
the code-concatenation approach, one can ensure that rounds Ri to Ri+3 have at
least 16 active Sboxes. While this is nice, the problem is that it does not ensure
that rounds Ri−1 to Ri+2 or Ri+1 to Ri+4 have 16 active Sboxes as well if the
individual rounds are very different in nature. We therefore decided to follow
a design that on one hand allows to use the freedom given by a fully enrolled
design and on the other hand still keeps the round functions similar enough to
prove some bounds on the resistance against linear and differential attacks.

In this context, one of the main features of the design is that decryption can
be implemented on top of encryption with a minimal overhead. This is achieved
by designing a cipher which is symmetric around the middle round, a very simple
key scheduling, and a special choice of round constants.

3.1 Aligning Encryption with Decryption

The use of a core cipher having the α-reflection property, with two additional
whitening keys, offers a nice alternative to the usual design strategy which con-
sists in using involutional components — Noekeon [12], Khazad [4], Anubis [3],
Iceberg [35] or SEA [34] are some examples of such ciphers with involutional com-
ponents. Actually, the general construction used in PRINCE has the following
advantages:

– It allows a much larger choice of Sboxes, which may lead to a lower imple-
mentation cost, since the Sbox is not required to be an involution. It is worth
noticing that the fact that both the Sbox and its inverse are involved in the
encryption function does not affect the cost of the fully-unrolled implemen-
tations we consider;
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– In ciphers with involutional components, the overhead due to the implemen-
tation of the inverse key scheduling can be reduced by adding some symmetry
in the subkey sequence. But this may introduce weak keys or potential slide
attacks. The fact that all components are involutions may also introduce
some regularities in the cyclic structure of the cipher which can be exploited
in some attacks [6]. The resistance of PRINCE to this type of attacks will
be extensively discussed in Section 4.2.

– It is an open problem to prove the security of ciphers with ideal, involutional
components against generic attacks. We show in Section 4.1 that ciphers with
the α-reflection property (for α �= 0) has a proof of security similar to that
of the FX construction.

– Previous approaches to minimizing the overhead of decryption over encryp-
tion usually require multiplexer in each round while our approach requires
multiplexer only once at the beginning of the circuit.

3.2 The PRINCE-Family: Choosing the Sbox

As discussed in more detail in Section 5, the cost of the Sbox, i.e., its area
and critical path, is a substantial part of the overall cost. Thus, choosing an
Sbox which minimizes those costs is crucial for obtaining competitive results.
As the cost of an Sbox depends on various parameters, such as the technology,
the synthesis tool, and the library used, one cannot expect that there is one
optimal Sbox for all environments. In fact, in order to achieve optimal results it
is preferable to choose your favorite Sbox. In order to ensure the security of the
resulting design, an Sbox S : F4

2 → F4
2 for the PRINCE-Family has to fulfill the

following criteria.

1. The maximal probability of a differential is 1/4
2. There are exactly 15 differentials with probability 1/4.
3. The maximal absolute bias of a linear approximation is 1/4.
4. There are exactly 30 linear approximations with absolute bias 1/4.
5. Each of the 15 non-zero component functions has algebraic degree 3.

As it can be deduced for example from [28] up to affine equivalence there are
only 8 Sboxes fulfilling those criteria. Thus, another way of defining an Sbox for
the PRINCE-Family is to say that it has to be affine equivalent to one of the
eight Sboxes Si given in the full version of this paper [10].

3.3 The Linear Layer

In the M and M ′-layer the 64-bit state is multiplied with a 64 × 64 matrix M
(resp. M ′) defined below. We have different requirements for the two different
linear layers. The M ′-layer is only used in the middle round, thus M ′ has to
be an involution to ensure the α-reflection property. This requirement does not
apply for the M -layer used in the round functions. Here we want to ensure full
diffusion after two rounds. To achieve this we combine the M ′-mapping with an
application of matrix SR which behaves like the AES shift rows and permutes
the 16 nibbles in the following way.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 −→ 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

Thus M = SR ◦M ′.
Additionally the implementation costs should be minimized, meaning that the

number of ones in the matricesM ′ and M should be minimal, while at the same
time it should be guaranteed that at least 16 Sboxes are active in 4 consecutive
rounds (see full version [10] for details). Thus, trivially each output bit of an
Sbox has to influence 3 Sboxes in the next round and therefore the minimum
number of ones per row and column is 3. Thus we can use the following four
4× 4 matrices as building blocks for the M ′-layer.

M0 =

⎛⎜⎜⎝
0000

0100

0010

0001

⎞⎟⎟⎠ , M1 =

⎛⎜⎜⎝
1000

0000

0010

0001

⎞⎟⎟⎠ , M2 =

⎛⎜⎜⎝
1000

0100

0000

0001

⎞⎟⎟⎠ , M3 =

⎛⎜⎜⎝
1000

0100

0010

0000

⎞⎟⎟⎠
In the next step we generate a 4×4 block matrix M̂ where each row and column
is a permutation of the four 4 × 4 matrices M0, . . . ,M3. The row permutations
are chosen such that we obtain a symmetric block matrix. The choice of the
building blocks and the symmetric structure ensures that the resulting 16 × 16
matrix is an involution. We define

M̂ (0) =

⎛⎜⎜⎝
M0 M1 M2 M3

M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

⎞⎟⎟⎠ M̂ (1) =

⎛⎜⎜⎝
M1 M2 M3 M0

M2 M3 M0 M1

M3 M0 M1 M2

M0 M1 M2 M3

⎞⎟⎟⎠ .

In order to obtain a permutation for the full 64-bit state we construct a 64× 64
block diagonal matrixM ′ with (M̂ (0), M̂ (1), M̂ (1), M̂ (0)) as diagonal blocks. The
matrixM ′ is an involution with 232 fixed points, which is average for a randomly
chosen involution [19, Page 596]. The linear layerM is not an involution anymore
due to the composition of M ′ and shift rows, which is not an involution.

3.4 The Key Expansion

The 128-bit key (k0||k1) is extended to a 192-bit key (k0||k′0||k1) by a linear
mapping of the form

(k0||k1) �→ (k0||P (k0)||k1) .
This expansion should be such that it makes peeling of rounds (both at the
beginning and at the end) by partial key guessing difficult for the attacker. In
particular, we would like that each pair of subkeys among k1 and the quantities
(k0⊕k1) and (k′0⊕k1) takes all the 2128 possible values when (k0||k1) varies in the
set of 128-bit words. In other words, the set of all triples (k0||P (k0)||k1) should
correspond to an MDS code of length 3 and size 2128 over F64

2 . This equivalently
means that both x �→ P (x) and x �→ x ⊕ P (x) should be permutations of F64

2 .
Note that no bit-permutation P satisfies this condition. Indeed, both the all-zero
vector and the all-one vector satisfy P (x)⊕ x = 0.
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Thus, a hardware-optimal choice for P such that both P and P ⊕ Id are
permutations is

P (x) = (x≫ 1)⊕ (x" 63) ,

i.e., P (x63, . . . , x0) = (x0, x63, . . . , x2, x1 ⊕ x63). Then, we can easily check that
P (x) = 0 (resp. P (x) = x) has a unique solution.

4 Security Analysis

This section investigates the security of the general construction of PRINCE.
In particular, we show that the α-reflection property of the core cipher does
not introduce any generic attack with complexity significantly lower than the
known generic attacks against the FX construction. However, in the particular
case of PRINCEcore, the α-reflection property comes from some symmetries in
the construction, including the use of an involution as middle round. Thus,
we investigate in Section 4.2 whether weaknesses similar to those identified for
involutional ciphers could also appear in the case of PRINCE. An evaluation
of the security of PRINCE regarding more classical attacks, including linear,
differential and algebraic but also to the recently introduced biclique attacks is
provided in the full version [10].

4.1 On Generic Attacks: Security Proof

The FX construction, introduced by Rivest for increasing the resistance of DES
to exhaustive key-search [7], consists in deriving a block cipher E with (2n+κ)-
bit key and n-bit block from a block cipher F with κ-bit key and n-bit block by
xoring the input and output of F with a pre-whitening key and a post-whitening
key:

Ek0,k1,k2(x) = Fk1(x⊕ k0)⊕ k2 .

Kilian and Rogaway [25,26] proved that, if the core cipher F is ideal, then this
construction achieves (κ+ n− 1− logT )-bit security where T is the number of
pairs of inputs and outputs for F known by the attacker. This result obviously
does not apply in the case of PRINCE since the core cipher F in PRINCE can
be easily distinguished from a family of random permutations due to the α-
reflection property, i.e., F−1

k = Fk⊕α for any k. Here, we want to quantify the
impact of this property on the generic attacks against the FX construction.
For instance, it appears that a decryption oracle also gives a related-key oracle
with the fixed-key relation (k0, k2, k1) → (k2, k0, k1 ⊕ α) and it is important to
determine whether an adversary can profit from this relation.

A similar question was investigated by Kilian and Rogaway for showing that
the complementation property of DES decreases the security level by a single
bit [25, Section 4]. In the case of the α-reflection property, we like to model the
core cipher F as an ideal cipher, that is as a set of random permutations, with
the (only!) additional relation that Fk⊕α(x) = F−1

k (x). Informally, this can be
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seen as picking only half of the 2κ permutations independently at random, while
the second half is defined by the encryption vs decryption relation above.

More precisely, we consider for F a keyed permutation with a (κ− 1)-bit key,
operating on n-bit blocks. Let α be a nonzero element in Fκ

2 . We decompose the
set of κ-bit words into two subsets as Fκ

2 = H ∪ (α⊕H) where H is some linear
subspace of dimension (κ− 1) which does not contain α, e.g., if lsb(α) = 1, H is
the set of all n-bit words x with lsb(x) = 0. In the following, H is identified with
the set of (κ− 1)-bit words. It is worth noticing that such a decomposition does
not exist when α = 0, i.e., when F is an involution. Therefore, the following
construction is defined for α �= 0 only. Now, we derive from F a block cipher
with (2n+ κ) key bits and n-bit blocks:

Ek0,k1,k2(m) =

{
Fk1(m⊕ k0)⊕ k2 if k1 ∈ H
F−1
k1⊕α(m⊕ k0)⊕ k2 if k1 ∈ (α⊕H)

This construction, we refer to as F̃X-construction, corresponds to the FX con-
struction applied to F̃ where F̃ is the family of 2κ permutations defined by

F̃k(x) =

{
Fk(x) if k ∈ H
F−1
k⊕α(x) if k ∈ (α⊕H)

The only difference with the construction considered in the case of the com-
plementation property is that F is extended by using the inverse permutations
Fk, k ∈ H , instead of the permutations themselves. But, we can obtain a similar
result.

More precisely, when analyzing the original FX construction, Kilian and Ro-
gaway [25] consider the following problem. Let A be an adversary with access to
three oracles: E, F and F−1. During the game, the adversary may make queries
to E, to F and F−1. Any query to the F/F−1 oracle consists of a pair (k, x) in
Fκ

2×Fn
2 and the oracle returns an element in Fn

2 . A query to the E oracle consists
of an n-bit element, and an n-bit value is returned. The aim of this adversary is
then to guess whether the E oracle computes FXk for some random key k, or if
it computes π for a random permutation of Fn

2 . Then, a game-hoping argument
leads to the following upper-bound on the advantage of any such adversary.

Theorem 1. [25] The advantage of any adversary who makes D queries to the
E oracle and T queries to the F/F−1 oracle satisfies

AdvCPAFX (A) =
∣∣∣Pr[k $← Fκ+2n

2 , F
$← (Pn)

2κ : AFXk,F,F
−1

= 1]

−Pr[π
$← Pn, F

$← (Pn)
2κ : Aπ,F,F−1

= 1]
∣∣∣ ≤ DT 2−(n+κ−1) ,

where x
$← S means that x is uniformly chosen at random from a set S, Pn

denotes the set of permutations of Fn
2 and F

$← (Pn)
2κ means that F is a family

of 2κ independently chosen random permutations.

We deduce a similar result for the F̃X construction.
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Corollary 1. The advantage of any adversary who makes D queries to the E or-
acle and T queries to the F/F−1 oracle satisfies

AdvCPA
F̃X

(A) =
∣∣∣Pr[k $← Fκ+2n

2 , F
$← (Pn)

2κ−1

: AF̃Xk,F,F
−1

= 1]

−Pr[π
$← Pn, F

$← (Pn)
2κ−1

: Aπ,F,F−1

= 1]
∣∣∣ ≤ DT 2−(n+κ−2)

Proof. We decompose

Pc = Pr[k
$← Fκ+2n

2 , F
$← (Pn)

2κ−1

: AF̃Xk,F,F
−1

= 1]

= Pr[k0, k2
$← Fn

2 , k1
$← H,F

$← (Pn)
2κ−1

: AF̃Xk0,k1,k2
,F,F−1

= 1]

×Pr[k1 ∈ H ]

+Pr[k0, k2
$← Fn

2 , k1
$← α⊕H,F

$← (Pn)
2κ−1

: AF̃Xk0 ,k1,k2
,F,F−1

= 1]

×Pr[k1 ∈ α⊕H ]

=
1

2
Pr[k0, k2

$← Fn
2 , k1

$← H,F
$← (Pn)

2κ−1

: AFXk0 ,k1,k2
,F,F−1

= 1]

+
1

2
Pr[k0, k2

$← Fn
2 , k1

$← H,F
$← (Pn)

2κ−1

: AF−1Xk0 ,k1,k2
,F,F−1

= 1] ,

since

F̃Xk0,k1,k2(x) =

{
FXk0,k1,k2(x) if k1 ∈ H
F−1Xk0,k1⊕α,k2(x) if k1 ∈ α⊕H .

Obviously,

Pr[AF−1Xk0,k1,k2
,F,F−1

= 1] = Pr[AFXk0 ,k1,k2
,F,F−1

= 1]

leading to

Pc = Pr[k0, k2
$← Fn

2 , k1
$← H,F

$← (P2κ−1

n ) : AFXk0 ,k1,k2
,F,F−1

= 1] .

It directly follows from Theorem 1 that

AdvCPA
F̃X

(A) = AdvCPAFX (A) ≤ DT 2−(n+κ−2) .

� 

As noticed in [25], this bound is still valid in a chosen-ciphertext scenario; it can
also be extended to the case where the whitening keys are related, for instance
if k2 = k0 or k2 = P (k0) as in PRINCE. Both generalizations apply to the F̃X
construction as well.

The bound obtained for the FX construction is achieved, for instance by the
slide attack due to Biryukov and Wagner [8] and by its recent generalization
named slidex [17]. A chosen-plaintext variant of this attack allows to exploit
the α-reflection property for reducing the security level by one bit, compared to
the original FX construction. This attack, detailed in the full version, has an
average time complexity corresponding to 2κ+n−log2 D computations of the core
cipher F for any number D of pairs of chosen plaintexts-ciphertexts.



220 J. Borghoff et al.

4.2 Impact of the Construction Implementing the α-Reflection
Property

As mentioned earlier, one particular feature of PRINCE is the α-reflection prop-
erty of PRINCEcore. But, not surprisingly, the construction we used for obtain-
ing this feature also has structural properties, including an involutional middle
round, and care has to be taken when designing a cipher with such a structure.
In this section we analyse the influence of this construction on the security of
the cipher. In particular, we are interested in the so-called profile of the core
cipher, i.e., in the sequence of the lengths of all cycles in the decomposition of
PRINCEcore.

A first strategy for exploiting some information on the profile of the core
cipher is the following. If the decomposition of the core cipher is independent
from the key, then this decomposition can be used as a distinguishing property for
recovering some information on the whitening keys. The simplest illustration of
this type of attack is when the core cipher is an involution, i.e. when α = 0 which
is the only case where Corollary 1 does not apply. Indeed, the attack presented by
Dunkelman et al. [17, Section 5.2] allows to recover the sum of the two whitening
keys (k0⊕k2) in the FX construction when F is an involution. This attack uses
the fact that for two plaintext-ciphertext pairs (m, c) and (m′, c′) related by
m′ = E−1

k0,k1,k2
(m⊕ k0 ⊕ k2) it holds that m⊕ c = m′ ⊕ c′. Indeed,

m′ ⊕ c′ = E−1
k0,k1,k2

(m⊕ k0 ⊕ k2)⊕m⊕ k0 ⊕ k2

= k0 ⊕ F−1
k1

(m⊕ k0)⊕m⊕ k0 ⊕ k2 = Fk1 (m⊕ k0)⊕m⊕ k2

= m⊕ c

where the last-but-one equality uses that Fk1 is an involution. Thus, plaintext-
ciphertext pairs (m, c) and (m′, c′) such that c′ = m ⊕ k0 ⊕ k2 can be easily

detected. Such a collision can be found if the attacker has access to 2
n+1
2 known

plaintext-ciphertext pairs, and it provides the value of (k0 ⊕ k2). Moreover, in
the particular case of PRINCE, k2 is related to k0 by k2 = P (k0) where x �→
x ⊕ P (x) is a permutation (see Section 3.4). Therefore, the whitening key k0
can be deduced from (k0⊕ k2) in this case. It follows that, when the core cipher
is an involution, the whole key can then be recovered with time complexity 2κ

(corresponding to an exhaustive search for k1) and data complexity 2
n+1
2 . This

confirms that Corollary 1 does not hold for α = 0.
This type of attack can be generalized to the case where the profile of the

core cipher does not depend on k1: since PRINCEcore has a reasonable block
size, its cycle structure could be precomputed and then used as a distinguishing
property for (k0 ⊕ k2). Indeed, the profile of Ek0,k1,k2 : m �→ k2 ⊕ Fk1(m ⊕ k0)
depends on (k0⊕k2) only. It follows that, for each n-bit word δ, we could compute
one or a few cycles of x �→ Fk1(x ⊕ k0 ⊕ k2 ⊕ δ) in a chosen-plaintext scenario
where the attacker knows a sequence of plaintext-ciphertext pairs (mi, ci) with
mi+1 = ci⊕ δ. A valid candidate for (k0⊕ k2) is a value δ which leads to a cycle
having a length which appears in the precomputed profile of Fk1 .
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We checked whether the cycle structure of PRINCEcore has some peculiarities
which do not depend on its key. Based on the technique used by Biryukov for
analyzing involutional ciphers [6], we can observe the profile of the reduced
version of PRINCEcore with 4 Sbox layers where we keep the symmetry around
the middle does not depend on the key. Actually, this reduced version can be
written as

G =
(
R−1

5 ◦Addk1⊕α

)
◦
(
S−1 ◦M ′ ◦ S

)
◦ (Addk1 ◦R5)

where R5 corresponds to '5 without the key addition. Since S−1 ◦M ′ ◦ S is an
involution, the cycle structure of Addk1⊕α◦

(
S−1 ◦M ′ ◦ S

)
◦Addk1 depends on α

only and not on k1. Its profile then remains unchanged after a right composition
with R5 and a left composition with its inverse. However, this property does not
hold anymore when an additional round is included since the next key addition
Addk1⊕α◦G◦Addk1 modifies the cycle structure of G in a way which depends on
the values G, and not only on its profile. Therefore, it appears that the previously
mentioned attack strategy does not apply if PRINCEcore contains more than 6
Sbox layers.

In the light of the previous analysis, a more relevant attack method consists
in using the fact that the core cipher may have a peculiar cycle decomposition
for some weak keys. For instance, if there exists some weak keys k1 for which
PRINCEcore is an involution, then this class of keys can be detected from the

knowledge of 2
n+1
2 pairs of plaintext-ciphertext by counting the number of colli-

sions for m⊕ c. And the technique from [17] that we have previously described
also recovers the whitening key. It is worth noticing that this attack applies to
DESX and allows to detect the use of the four weak keys of DES [14] for which
DES is an involution. A similar weakness would appear if, in PRINCEcore, we
have used two subkeys k1 and k′1 in turn as round keys. Keeping the remaining
structure of PRINCEcore results in the following relation

F−1
(k1||k′

1)
= F(k′

1⊕α||k1⊕α) .

However, this has serious – and interesting – consequences for the security of the
resulting cipher. For the class of keys such that k′1 = k1 ⊕ α, it holds that

F−1
(k1||k′

1)
= F(k1||k′

1)
,

that is, the core cipher is an involution. This class of weak keys can then be
easily detected. It then appears that some particular related-key distinguishers
for the core cipher may be exploited for detecting the corresponding class of
keys. To be very clear, we do not consider related key-attacks here in the classical
sense of enlarging the power of an adversary. But without a careful choice, the
construction we used for implementing the α-reflection property might result in
key-recovery attacks for certain weak-key classes, as soon as the core cipher is
vulnerable to related key-attacks.
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5 Implementation

Besides the main target low-latency, low-cost hardware implementation is one of
the design objectives of PRINCE. To achieve low-latency, a fully unrolled design
should be considered for implementation. During the design process of PRINCE

the cost of each function was investigated and each component was carefully
designed in order to get the lowest possible gate count without compromising se-
curity. One of the most critical and expensive operations of the cipher is the sub-
stitution, where we use the same Sbox 16 times (rather than having 16 different
Sboxes). Therefore, the implementation of PRINCE started with a search for the
most suitable Sbox for the target design specifications. In order to achieve an im-
plementation with low delay and gate count, we analyzed many Sbox instances to
identify one with optimal combinational logic and propagation paths. Then, the
targeted unrolled design was implemented with the resulting optimal Sbox.

In the implementation process, Cadence NCVerilog 06.20-p001 is used for sim-
ulation and Cadence Encounter RTL Compiler v10.1 for synthesis. Since gate
count and delay parameters are heavily technology dependent, the implementa-
tions have been synthesized for three different technology libraries: 130 nm and
90 nm low-leakage Faraday libraries from UMC, and 45 nm generic NANGATE
Open Cell Library. In all syntheses, typical operating conditions were assumed.

The unrolled version of PRINCE is a direct mapping to hardware of the cipher
defined in Section 2. Multiplexers select encryption and decryption keys accord-
ingly. The only costs associated with the key whitening stages are XOR gates and
multiplexers used for whitening key selection. However, in practice, due to the
unrolled nature of the implementation, these additions reduce to XOR operations
with constants, which in turn reduce to inverters or no additional gates at all.
Furthermore, these inverters are combined with the preceding or following matrix
multiplications, which are implemented with cascaded XOR gates. In cases where
an XOR is sourced by the output from an inverter, or is sourcing input of an in-
verter, it is simply replaced by an XNOR gate and the sourced/sourcing inverter
is removed. Since both XOR and XNOR have the same gate count, the overall
effect of the round constant addition on area reduces to zero.

The unrolled implementation of PRINCE results are listed in Table 1 for dif-
ferent technologies with respect to different timing constraints. In this table, a
unit delay (UD) parameter is used to enable a fair comparison between differ-
ent technologies. It is the average delay of a single inverter gate (with lowest
drive - X1) within a ring oscillator under zero wireload conditions in the target
technology (6.7 ps, 31.9 ps, and 43.6 ps for 45 nm, 90 nm, and 130 nm, re-
spectively). We also implemented PRESENT-80, PRESENT-128, LED-128 and
AES-128 and applied the same metrics to adequately evaluate the achievements
of our new cipher (note that in some cases the key size – and also our security
claim – is different: PRINCE does not claim to offer 128-bit security and security
against related key-attacks). In order to achieve both encryption and decryption
capability in PRESENT and LED, we had to implement both true and inverse
Sboxes and select their output by a multiplexer, which doubled the Sbox area
with respect to an encryption-only implementation. For AES, we just had to
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implement the inverse affine transform since the finite field inversion module
could be shared between encryption and decryption. In addition to this compar-
ison, Table 2 shows the extrapolated results (which are calculated by removing
register and control logic area from the total gate count, and multiplying the
rest by the number of rounds) for other unfolded cipher instances obtained from
round-based cipher implementations provided by previous works. Note that all
ciphers in the table include encryption and decryption functionality with 128-bit
key size, however the comparison is difficult as the block size is different in some
cases (also note that the ciphers having 128-bit block size are obviously much
bigger and more power consuming than a 64-bit block cipher).

We also measured maximum frequencies achievable by unrolled versions of
PRINCE under two different conditions: The frequency where the area of syn-
thesized design starts to deviate from the unconstrained area – 158.9, 38.4 and
35.5 MHz, and the frequencey where the timing slack becomes zero – 212.8, 71.8
and 54.3 MHz. Both figures are given for 45 nm, 90 nm, and 130 nm, respectively.

Table 1. Area/power comparison of unrolled versions of PRINCE and other ciphers

Tech. Nangate 45nm Generic UMC 90nm Faraday UMC 130nm Faraday
Constr.(UD) 1000 3162 10000 1000 3162 10000 1000 3162 10000

PRINCE˜ Area(GE) 8260 8263 8263 7996 7996 7996 8679 8679 8679
Power(mW ) 38.5 17.9 8.3 26.3 10.9 3.9 29.8 11.8 4.1

PRESENT-80 Area(GE) 63942 51631 50429 113062 49723 49698 119196 51790 51790
Power(mW ) 1304.6 320.9 98.0 1436.9 144.9 45.5 1578.4 134.9 42.7

PRESENT-128 Area(GE) 68908 56668 55467 120271 54576 54525 126351 56732 56722
Power(mW ) 1327.1 330.4 99.1 1491.1 149.9 47.8 1638.7 137.4 43.6

LED-128 Area(GE) 109811 109958 109697 281240 286779 98100 236770 235106 111496
Power(mW ) 2470.7 835.7 252.3 5405.0 1076.3 133.7 5274.8 1133.9 163.6

AES-128 Area (GE) 135051 135093 118440 421997 130835 118522 347860 141060 130764
Power (mW ) 3265.8 1165.7 301.6 8903.2 587.4 186.8 8911.2 876.8 229.1

Table 2. Extrapolated area of unrolled versions of other ciphers against PRINCE

Technology Area* (GE)

CLEFIA-128 [1] 28035 (18 rounds unfolded, 130nm CMOS)

HIGHT-128 [23] 42688 (32 rounds unfolded, 250nm CMOS)

mCrypton-128 [29] 37635 (13 rounds unfolded, 130nm CMOS)

Piccolo-128 [32] 25668 (31 rounds unfolded, 130nm CMOS)

* Area requirements extrapolated from round-based implementations.
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in ARX Constructions
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Abstract. In this paper, we study differential attacks against ARX
schemes. We build upon the generalized characteristics of de Cannière
and Rechberger; we introduce new multi-bit constraints to describe dif-
ferential characteristics in ARX designs more accurately, and quartet
constraints to analyze boomerang attacks. We also describe how to prop-
agate those constraints; this can be used either to assist manual con-
struction of a differential characteristic, or to extract more information
from an already built characteristic. We show that our new constraints
are more precise than what was used in previous works, and can detect
more cases of incompatibility.

In particular, we show that several published attacks are in fact fact in-
valid because the differential characteristics cannot be satisfied. This high-
lights the importance of verifying differential attacks more thoroughly.

Keywords: Symmetric ciphers, Hash functions, ARX, Generalized char-
acteristics, Differential attacks, Boomerang attacks.

1 Introduction

A popular way to construct cryptographic primitives is the so-called ARX design,
where the construction only uses Additions (a�b), Rotations (a ≫ i), and Xors
(a ⊕ b). These operations are very simple and can be implemented efficiently in
software or in hardware, but when mixed together, they interact in complex and
non-linear ways. In particular, two of the SHA-3 finalists, Blake and Skein, follow
this design strategy. More generally, functions of the MD/SHA family are built
using Additions, Rotations, Xors, but also bitwise Boolean functions, and logical
shifts; they are sometimes also referred to as ARX. This stategy as also been
used for stream ciphers such as Salsa20 and ChaCha, and block ciphers, such
as TEA, XTEA, HIGHT, or SHACAL (RC5 uses additions and data-dependant
rotations, but we only consider construction with fixed rotations).

The ARX design philosophy is opposed to S-Box based designs such as the
AES. Analysis of S-Box based designs usually happen at the word-level, and
differential characteristic are relatively easy to build, but efficient attacks often
need novel techniques, such as the rebound attack against hash functions [17].
For ARX designs, the analysis is done on a bit-level; finding good differential
characteristics remains an important challenge. In particular, the seminal at-
tacks on the MD/SHA-familiy by the team of X. Wang are based on differential
characteristics built by hand [28,27,29], and an important effort has been devoted

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 226–243, 2012.
c© International Association for Cryptologic Research 2012
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to building tools to construct automatically such characteristics [6,23,8,15,24].
This effort has been quite successful for functions of the MD/SHA family, and
it has allowed new attacks based on specially designed characteristics: attacks
against HMAC [9], the construction of a rogue MD5 CA certificate [25], and
attacks against combiners [16].

Another important problem is that the components of an ARX design can
interact in complex and unexpected ways. Differential characteristics are usually
built by looking at each operation individually, and multiplying the probabilities
of each non-linear operation, but this approach can lead to very misleading re-
sults. For SHA-0 and SHA-1 differential characteristics, it has been shown that
the hypothesis of independence between the local collisions is flawed, and some
patterns of local collisions lead to impossible characteristics [4,21,14]. Problems
have also been identified for differential attacks on SHACAL [26]. More recently,
Mendel, Nad, and Schläffer have tackled the problem of building differential char-
acteristics for SHA-2, and found that many of them are in fact incompatible [15].

A similar problem has been discussed in the context of boomerang attacks by
Murphy [20]: the assumption that the differential characteristics are independent
does not necessarily hold. Several recent works have found characteristics that
turned out to be incompatible when analyzing ARX hash functions such as
HAVAL [22], SHA-256 [2], or Skein [11].

Our Results. In this paper, we try to provide a framework to study these
problems for ARX designs. In pure ARX functions, the modular addition is the
only source of non-linearity (with respect to the xor difference). Therefore it is
important to capture its behaviour as accurately as possible.

We extend the generalized characteristics of de Cannière and Rechberger [6]
by introducing constraints involving several consecutive bits of a variable (i.e.
x[i] and x[i−1]), instead of considering bits one by one. We show that constraints
on 2 consecutive bits can completely capture the modular difference, and we
introduce reduced sets of constraints on 1.5 and 2.5 consecutive bits. This is
motivated by the analysis of modular addition, but since these constraints are
still local, they interact well with bitwise Boolean operations and rotations, and
we can use them to study pure ARX as well as SHA-like constructions. We show
that they capture more information than the single bit constraints of [6]. In
particular, we describe cases of incompatibility in ARX characteristics due to
interactions between consecutive bits, and we show that a proposed path for
Skein is invalid [29]. This is detected automatically by our new constraints.

We also study boomerang attacks, and introduce constraints on quartets of
variables, instead of considering each characteristic separately with constraints
on pairs of variables. This allows to capture some extra information in the middle
of the attack, when the top characteristic and the bottom characteristic meet. In
particular, we can automatically detect incompatibilities in previously published
attacks against Skein [1,5] and Blake [3].

As opposed to [15], our work is focused on local conditions, and we try to
extract as much information as possible from a single operation. If needed, it
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can be combined with more computing intensive techniques considering several
operations simultaneously.

Additionally, we give a complete description of how to compute the probability
of a characteristic using these constraints, and how to do constraints propagation.
All our code will be available from our webpage1 so that these tools can be used
by the community to build or verify differential attacks. Our tools are quite
generic and we hope that they can be used to study more primitives. We don’t
provide a complete solution to automatically find differential characteristics in
ARX schemes, but we believe our work is an important step in this direction.

This paper is organized as follows: first, we explain the theory of S-systems
and how to solve them efficiently in Section 2, and we show how to use S-systems
to study differential attacks using the generalized characteristic of de Cannière
and Rechberger in Section 3. In Section 4, we introduce multi-bit constraints and
show how they improve over previous results. Finally, in Section 5, we describe
quartet constraint to study boomerang attacks, and show that they can detect
incompatibilities in several attacks.

2 Analysis of S-systems

Since ARX systems in general are hard to analyze, we first study systems without
rotations. An important remark is that a system of Additions and Xors, can be
seen as a T-function [10], or more precisely, as an S-function [19]. We use the
following definitions:

T-function. A T-function on n-bit words with k inputs and l outputs is a
function from ({0, 1}n)k to ({0, 1}n)l with the following property:

For all t, the t least significant bits of the outputs can be computed
from the t least significant bits of the inputs.

S-function. An S-function on n-bit words is a function from ({0, 1}n)k to
({0, 1}n)l, for which we can define a small set of states S, and an initial
state S[−1] ∈ S with the following property:

For all t, bit t of the outputs and the state S[t] ∈ S can be computed
from bit t of the inputs, and the state S[t − 1].

In practice, our analysis will be linear in the number of states, and the number
of states can be exponential in the size of the system. We can only study systems
with a limited number of states.

For instance, the modular addition is an S-function, with a 1-bit state corre-
sponding to the carry. An S-function can also include bitwise functions, shifts to
the left by a fixed number of bits, or multiplications by constants. However, a
shift to the left by i bits, or multiplication by constant of i bits, leads to an in-
crease of the state by a factor of 2i, so the analysis will only be practical for small
values of i. Note that the multiplication of two variables, or a data-dependant
shift to the left, are T-functions, but are not S-functions because the size of the
state has to grow with n.
1 http://www.di.ens.fr/~leurent/arxtools.html

http://www.di.ens.fr/~leurent/arxtools.html
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In this work, we consider systems of the form f(P, x) = 0 where f is an S-
function, P is a vector of p parameters, and x is a vector of v unknown variables.
This defines a family of systems, and we are interested in properties of the set
of solutions of the unknown x for a given P . We call such a system an S-system.

A simple and yet important example is the system

x ⊕ Δ = x � δ (1)

where the parameter are Δ, δ. Solving this system is equivalent to finding a pair
of variables with a given modular difference and a given xor difference, and was
an important part of a recent attack on BMW [12].

It is well-known that those systems are T-functions, and can be solved from the
least significant bit to the most significant bit. However, the naive approach to
solve such a system uses backtracking, and can lead to an exponential complexity
in the worst case.2

2.1 Representation of S-systems Using Finite State Machines

A more efficient strategy is to use an approach based on Finite State Machines,
or automata: any system of such equations can be represented by an automaton,
and solving a particular instance take time proportional to the word length. This
kind of approach has been used to study differential properties of S-functions
in [19].

The first step to apply this technique is to build an automaton corresponding
to the system of equations. The states of this automaton correspond to the states
of the S-function in S, i. e. the carry bits: a system with s modular additions
gives an automaton with 2s states. The alphabet of the automaton is {0, 1}p+v;
each transition reads one bit from each parameter and each variable, starting
from the least significant bit. The automaton just accepts (P, x) if and only if
f(P, x) = 0.

We can then count the number of solutions to the system by counting paths
in the graph corresponding to the automaton. In this work we mainly use this
technique to decide whether a system is solvable, but we can also compute a
random solution, or enumerate the set of solutions.

If the S-system is given as an expression with additions and bitwise Boolean
operations, the transition table of the automaton can easily be constructed by
evaluating the expression for every possible state, every possible 1-bit parameters,
and every possible 1-bit variable.

Decision Automaton. When we remove the information about the variables
from the edges, we obtain a non-deterministic automaton which can decide
whether a system is solvable or not, i. e. whether there exists a choice of the
variable x so that f(P, x) = 0 for a given P . We can then optionally build an
equivalent deterministic automaton using the powerset construction.
2 e.g. to solve the system x⊕ 0x80000000 = x, the backtracking algorithm will try all

possible values for the 31 lower bits of x before concluding that there is no solution.
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Implementation. We have automated the construction of the FSM from a
simple description of the S-system. Our tool can deal with any system of addi-
tions, and bitwise Boolean functions. For instance System (1) will be written
as V0^P0==V0+P1, and System (2) will be written as P0|V0|V1; P1|V0|~V1;
P2|~V0|V1; P3|~V0|~V1. The variables are denoted by Vi and the parameters
by Pi, and the operations are written naturally with a C-like syntax. The tool out-
puts the transition table of the automaton, and we have a collection of function
to compute properties of the system from this table. From the FSM representa-
tion of an S-system, we can automatically derive:

– Whether a given set of parameter leads to a compatible system
– A random solution when the system is compatible
– The number of solutions (and the probability that a random x is a solution)
– A description of the solution set, from which we can efficiently iterate over

the solutions

3 Study of Differential Characteristics

The most basic approach to describe a differential characteristic is to choose
a difference operation (usually the modular difference � or the xor difference
⊕), and to specify the difference x′ − x for every internal variable of a cipher.
One can compute the probability of reaching the specified output difference for
each operation, and the probability of the full characteristic is computed by
multiplying the probabilities of each operation, under the assumption that the
probabilities are independent.

However, this approach is not very successful for ARX designs, because the
assumption of independence is very often false. To overcome this, Wang et al.
introduced the notion of a signed difference. For each bit, we now consider three
different possibilities:

– x[i] = x′[i], this is denoted as 0;
– x[i] = 0, x′[i] = 1, this is denoted as +1;
– x[i] = 1, x′[i] = 0, this is denoted as −1.

This gives much better results in the presence of modular addition, because it
combines both the modular difference and the xor difference.

3.1 Generalized Constraints

More generally, de Cannière and Rechberger noted that we can define a difference
characteristic by allowing certain subsets of the values of (x, x′) for each bit of
the cipher [6].

Table 1 shows the symbol they use to denote all the possible subsets of
P({0, 1}2). For a given internal state variable x, and a constraint Δ, we write
δ(x, x′) = Δ — or δx = Δ if there is no ambiguity — to means that (x, x′) is
restricted to the subset defined by Δ.
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Table 1. Constraints used in [6]

(x, x′): (0, 0) (0, 1) (1, 0) (1, 1)

? anything � � � �
- x = x′ � - - �
x x �= x′ - � � -
0 x = x′ = 0 � - - -
u (x, x′) = (0, 1) - � - -
n (x, x′) = (1, 0) - - � -
1 x = x′ = 1 - - - �
# incompatible - - - -

3 x = 0 � � - -
5 x′ = 0 � - � -
7 � � � -
A x′ = 1 - � - �
B � � - �
C x = 1 - - � �
D � - � �
E - � � �

Table 2. Trivial encoding

P0 P1 P2 P3

? 1 1 1 1
- 1 0 0 1
x 0 1 1 0
0 1 0 0 0
u 0 1 0 0
n 0 0 1 0
1 0 0 0 1
# 0 0 0 0

3 1 1 0 0
5 1 0 1 0
0 1 1 1 0
A 0 1 0 1
B 1 1 0 1
C 0 0 1 1
D 1 0 1 1
E 0 1 1 1

Since the definition of δ only involves bitwise operation, we can write it as an
S-system, if we encode Δ as shown in Table 2:

P0 = 0 ⇒ (x, x′) �= (0, 0) P1 = 0 ⇒ (x, x′) �= (0, 1)

P2 = 0 ⇒ (x, x′) �= (1, 0) P3 = 0 ⇒ (x, x′) �= (1, 1)
or equivalently:

P0 ∨ x ∨ x′ P1 ∨ x ∨ x̄′ P2 ∨ x̄ ∨ x′ P3 ∨ x̄ ∨ x̄′. (2)

3.2 Differential Characteristics

In order to describe a differential characteristics with this framework, we specify
a difference for each internal variable of a cipher, and we consider the operations
that connect the variables. For each operation �, we can write an S-system3:

δx = Δx δy = Δy δz = Δz z = x � y z′ = x′ � y′, (3)

where x, y, z, x′, y′, z′ are unknowns, and Δx, Δy, Δz are parameters. Using this
S-system, we can verify if the differences specified input and output patterns
for each operation are compatible. Moreover, we can compute the probability to
reach the specified output pattern by counting the number of solutions. Assuming
that the probabilities of each operations are independent, we can compute the
probability of the full characteristic by multiplying the probabilities of each
operations. We deal with the rotations y = x ≫ i by just rotating the constraint
pattern: if δx = Δx then we use δy = Δx ≫ i.
3 We assume that all the operations except the rotations are S-function, as is the case

in ARX designs.
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3.3 Propagation of Constraints

This approach can also be used to propagate the constraints associated with a
differential characteristic. The main idea is to consider each bit constraint, and
to split it into two disjoint subsets; if one of the subsets result in an incompatible
system, we known that we can restrict the constraint to the other subset without
reducing the number of solutions. More precisely, we use the following splits for
the 1-bit constraints of [6]:

? → -/x, 3/C, 5/A, 0/E, 1/7, u/D, n/B - → 0/1 x → u/n
3 → 0/u C → 1/n 5 → 0/n A → 1/u

7 → 0/x, u/5, n/3 B → 0/A, u/-, 1/3 D → 0/C, n/-, 1/5 E → u/C, n/A, 1/x

For instance, if a bit is specified as ?, we test whether the system is still com-
patible when it is restricted to - and to x, respectively. If one of the systems
becomes incompatible, we can turn the ? constraint into x or -, accordingly. If
both are still compatible, we then try to restrict the ? bit to 3 and C, and try
all the available splits.

This will be repeated with the S-systems corresponding to each operation in
the cipher. We can not apply this strategy to bigger chunks because the resulting
system would be too large. Still, the constraints found in one system will be
given as input to other systems involving the same variable, and can generate
new constraints. The technique will discover necessary constraints, and output
a characteristic more precise than the input characteristic.

This can also be combined with more global techniques such as Section 2.3
of [7]. or the “Complete Condition Check” of [15]. When we a constraint is split
into two subsets, we can look for contradictions by running the propagation
algorithm on the full path, instead of running it on a single operation. However,
this becomes very expensive for large systems and it can take hours to try to split
each constraint. In this work, we focus on discovering local conditions efficiently,
and we leave the analysis of less local techniques for future work.

All this can be implemented quite efficiently using automata to solve S-systems.
If we build deterministic decision automata, we can test whether a system is com-
patible with only n table access. This approach is very similar to the technique
used in [6], and explained in more details in [21] and [18]. The main difference
is that we iterate over all possible choices for the variables only when building
the automaton, not when using it. In previous work, a similar result is achieved
by caching the results of the computations.

4 Multi-bit Constraints

In this work, we extend this framework by considering constraints on several
consecutive bits, instead of strictly bitwise constraints. This allows to express
some conditions that occur naturally when considering carry extension, such as
x[i] = x[i−1]. Two-bit conditions have already been proposed in [15], but they are
treated separately from the main characteristic. In particular, two-bit conditions
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Table 3. New 1.5-bit constraints

(x ⊕ x′, x ⊕ 2x, x): (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)

= x′ = x = 2x � � - - - - - -
! x′ = x �= 2x - - � � - - - -
< x′ �= x = 2x - - - - � � - -
> x′ �= x �= 2x - - - - - - � �

are not used to deduce further constraints through the propagation algorithm. In
our work, multi-bit constraints can only deal with consecutive bits of a variable,
but they are part of the characteristic, and they can be propagated efficiently.

1.5-bit Constraints. First, we consider constraints on pairs of consecutive bits.
Intuitively, this is used to capture the fact that in a carry chain, even if we don’t
known the sign of the modular difference, we know that the active bits all have
the same sign, except the final one. For instance, if we have ---x�---- → -xxx,
we know that output difference must be either -nuu (if the input difference is
---n) or -unn (if the input difference is ---u). We can capture this behaviour
using constraints that link the sign of an active bit to the sign of the previous bit.
In our implementation, we introduce a set of 16 constraints described in Table 3
and 1: ?, -, x, 0, u, n, 1, #, 3, C, 5, A, =, !, <, >. For instance, the symbol < means
that the current bit is active, and that bit i of x is equal to bit i of 2x, i. e. to
bit i− 1 of x — this can be written as x′[i] �= x[i] = x[i−1], and it appears in the
middle of carry chain. The situation of a carry extension with an unknown sign
as in ---x� ---- → -xxx can now be written more accurately as -><x.

The constraints of Table 3 are written as subsets of (x[i], x′[i], x[i−1]); we call
them 1.5-bit constraints because we use x[i−1] but we do not use x′[i−1].

2-bit Constraints. The 1.5-bit constraints are quite efficient to capture in-
formation about the carries when the xor difference is known. However, when
the xor difference is not known a priori, we still loose a lot of information. To
overcome this problem, we considered the full set of 216 possible constraints
on (x[i], x′[i], x[i−1], x′[i−1]), and we discovered an important property: they can
restrict the pair (x, x′) to exactly the set of values with any given modular dif-
ference. More precisely, this is achieved using the 10 constraints of Table 4. We
found this set of constraints experimentally, by testing all 8-bit differences.

This is an important result because it allows to express the modular difference
using only local constraints. Local constraints can easily go through rotations,
and can be expressed as S-functions. Therefore we can compute the probability
of a differential characteristic expressed in this way, and we can propagate these
constraints automatically.

We denote the first four constraints as U, V, N and M; the remaining six can be
obtained by combining previous constraints. The most important constraints are
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Table 4. 2-bit constraints sufficient to describe exactly the modular difference

(2x, 2x′, x ⊕ x′): (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)
-0 x0 -u xu -n xn -1 x1

U ≡ {--, -u, xn} � - - � � - � -
V not U - � � - - � - �
N ≡ {--, -n, xu} � - � - - � � -
M not N - � - � � - - �

≡ x0 - � - - - - - -
≡ -0 � - - - - - - -
≡ x- - � - - - - - �
≡ -- � - - - - - � -
≡ Ux - - - � � - - -
≡ Nx - - � - - � - -

Table 5. New 2.5-bit constraints

(x ⊕ x′, x ⊕ 2x, x): (0, 0, 0) (0, 0, 1) (0, 1, 0) (0, 1, 1) (1, 0, 0) (1, 0, 1) (1, 1, 0) (1, 1, 1)
2x ⊕ 2x′, 4x ⊕ 2x: (0, 0)/(0, 1)/(1, 0)/(1, 1)

X carry chain � � � � - /� - /� - /� - /�
U u carry � /� � / - � / - � /� - / - - /� - /� - / -
N n carry � / - � /� � /� � / - - /� - / - - / - - /�
/ x carry �/�/-/��/�/-/��/�/-/��/�/-/� -/-/�/- -/-/�/- -/-/�/- -/-/�/-
\ X minus / -/-/�/- -/-/�/- -/-/�/- -/-/�/- -/-/-/� -/-/-/� -/-/-/� -/-/-/�

the one denoted as U and N: they can capture the carry extension of a positive
(resp. negative) modular difference. For instance a modular difference of +1 can
be realized with 4-bit words as ---u, --un, -unn, unnn or nnnn, depending on
the carry extension. For each of the potential carry bits (1–3), we can see that
the difference pattern of bit i and bit i − 1 is always one of --, -u, un, or nn.
Reciprocally, if bits 1–3 follow these patterns, then the full difference has to
be one of the previous patterns, and the modular difference will be +1. The U
constraint correspond to these patterns.

In our implementation, we only use the U and N constraints, which are sufficient
to express sparse modular differences.

2.5-bit Constraints. To obtain an efficient technique to study differential char-
acteristics in ARX constructions, we want to combine the results of the 1.5-bit
constraints, and the 2-bit constraints. On the one hand, the 1.5-bit constraints
are constructed from the 1-bit constraints in order to capture information about
the carry when the sign of the difference is not known. On the other hand, the 2-
bit constraints can capture exactly the modular difference, but we need to know
the sign of the difference. We now introduce constraints to capture the modular
difference when the sign is not known.
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Table 6. Comparison of the constraint sets. We show how simple difference sets can
be encoded with our constraints, and the number of pairs allowed by each constraint.

Diff, carry 1-bit cstr. 1.5-bit cstr. 2-bit cstr. 2.5-bit cstr.

+1, k-bit (2n−k) -unnn (2n−k) -unnn (2n−k) -unnn (2n−k) -unnn (2n−k)
±1, k-bit (2n−k+1) -xxxx (2n) -><<x (2n−k+1) -><<x (2n−k+1) -><<x (2n−k+1)
+1, any (2n) ????x (22n−1) ????x (22n−1) UUUUx (2n) UUUUx (2n)
±1, any (2n+1) ????x (22n−1) ????x (22n−1) XXXXx (2n × n) ///Xx (2n+1)

Following the analysis of the 2-bit constraints, we study the patterns created
by a carry extension with an unknown sign. Using the 1.5-bit constraints, we can
see that the constraints of bits i and i−1 are either --, ->, or x<. Reciprocally, if
all the bits follow these patterns, this result in a valid carry extension. We denote
the corresponding set of possibilities for (x[i], x′[i], x[i−1], x′[i−1], x[i−2]) as /.

As shown in Table 5, we introduce the following new constraints: X ≡
{--, -x, xx}, U ≡ {--, -u, xn}, N ≡ {--, -n, xu}, / ≡ {--, ->, x<}, \ ≡ {-<, x>}.
For efficiency reasons, we keep a set of only 16 constraints by removing the less
useful ones: ?, -, x, 0, u, n, 1, =, !, <, >, X, U, N, /, \.

4.1 Comparison

To compare the sets of constraints, we show how they can be used in simple
situations in Table 6. We consider 4 situations, were we describe a set of pairs
with a modular difference of ±1:

– First, we assume that we know the sign of the difference, and the length of
the carry (e.g. -----u� ------ → -xxxxx). In this case all the constraints
systems give an optimal characterization of the set of allowed pairs.

– Second, we assume that we don’t known the sign of the difference, but we
know the length of he carry (e.g. -----x� ------ → -xxxxx). In the case,
we need constraints on 1.5 bits to optimally capture the relations in the
carry-extended bits.

– Third, we assume that we know the sign of the difference, but we don’t know
the length of the carry (e.g. -----u� ------ → ??????). In this situation,
the 2-bit constraints can express precisely the modular difference.

– Finally, we assume that we don’t know the sign of the difference, nor the
length of the carry (e.g. -----x � ------ → ??????). Here, we need con-
straints on 2.5 bits to restrict the set of pairs optimally using relations be-
tween the bits.

4.2 Use as S-sytems

We also denote the new sets of constraint by δ. Since the definition of δ only
involves bitwise operation and left-shift by a few bits, δx = Δ can by written as
a S-system, similar to System (2). We can use the tools of Section 2 to compute
the probability of a characteristic specified with the new constraints, and to prop-
agate the new constraints, by build the automata associated with the systems
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of each operation, as given in (3). These automata are quite large, because the
state of the automata has to include the values of x[i−1], x′[i−1], and x[i−2].

In practice, we implemented the 1.5-bit constraints and the 2.5-bit constraints.
With the 1.5-bit constraints, we have 5 bits of state for the S-system of the
addition, but the transition automaton only reaches 16 different states. When
using the powerset construction to build a deterministic decision, we obtain
12929 states, and the full table takes 102MB. With the 2.5-bit constraints, we
have 11 bits of state, and the transition automaton reaches 160 different states
(we cannot build a deterministic decision automaton in this case).

We could easily include more constraints in our framework, but this set of
symbol is quite expressive, and a larger set of constraints would result in larger
tables. We will see that those constraints give good results in practice. Moreover,
we note that many cases can be expressed using the constraints of two consecutive
bits. For instance, the constraint x[i] = x′[i] = x[i−1] = 0 cannot be expressed in
Table 3, but it will be coded with constraint = for bit i, and constraint 3 for bit
i − 1 (if some more information is known for bit i − 1, it will become 0 or u).

When we deal with a rotation, we have to relax the constraints slightly if the
multi-bit constraints are broken by the rotation. For a rotation of i bits to the
right, if Δ

[i]
x is one of =, !, < or >, it will be relaxed to -, -, x and x, respectively.

4.3 Propagation of Constraints

To propagate the new constraints, we need to define how to split the new con-
straints. We use the following splits for the 1.5-bit constraints:

? → -/x, 3/C, 5/A - → 0/1, =/! x → u/n, </>
3 → 0/u C → 1/n 5 → 0/n A → 1/u

= → 0/1 ! → 0/1 > → u/n < → u/n

For the 2.5-bit constraints, some useful subsets are not included in the 16 con-
straints, but can be obtained by restricting both Δ

[i]
x and Δ

[i−1]
x . We use the

following splits:

? → -/x, X/x- X → U/Nx, N/Ux, -/xx, //\ N → -/xu

\ → -</x> / → U/Nx, N/Ux, -/x< U → -/xn

This approach is quite efficient. As an example, let us consider this system:

δx = x--x δy = ---- z = x � y

δu = ---x δv = ---- z = u � v δz = -???.

It is easy to see that this system is incompatible when considering modular
differences: the difference in x � y is ±8 ± 1, while the difference in u � v is ±1.
However, when using only the xor difference, or the constraints of [6], this system
seems to be compatible, and constraint propagation gives δz = -xxx. Using our
new constraints, the algorithm can further deduces δz = -<<x from the first
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Table 7. Experiments with a few rounds of a 4-bit Skein. We give the number of
input/output differences accepted by each technique, and the ratio of false positive.

4 rounds (total: 232) 6 rounds (sparse1)

Method Accepted Fp. Accepted Fp.

Exhaustive search 35960536 (225.1) 0 427667 (218.7) 0
2.5-bit constraints 40820032 (225.3) 0.13 746742 (219.5) 0.7
1.5-bit constraints 40820032 (225.3) 0.13 1372774 (220.4) 2.2
1-bit constraints 43564288 (225.4) 0.21 1762857 (220.7) 3.1
Checking additions independently 56484732 (225.8) 0.57

1 Weight 4 differences. The total number of input/output differences is(
24
4

)(
24
4

) ≈ 226.75

addition and δz = -><x from the second addition, and the incompatibility is
detected. Moreover, the incompatibility can be detected without specifying the
difference in z beforehand using the 2.5 bit constraints.

4.4 Comparison with Previous Works

To compare the efficiency of the constraints, we did some experiments with
reduced versions of Skein. We test a set of input and output xor differences, and
we compare several methods to detect if the differences are compatible. We use
small versions so that we can find exact results with exhaustive search. We verify
that no false-negative are found, and we compare how many false-positive are
found with each technique.

First we use a reduced Skein with two rounds and 4 words of 4 bits each.
We note that for a two-round Skein, all the intermediary xor difference can be
computed from the input and output xor differences; therefore we have a full
xor differential characteristic. As a reference point, we can check whether each
non-linear operation has a non-zero probability. Our result in Table 7 show that
the assumption of independence of the operations can be quite flawed: we found
many paths where each operation has a non-zero probability, but no pair can
satisfy the differential. This motivates the use of more advanced constraints in
order to extract information from one operation and combine it with another
operation. We also see that our 1.5-bit constraints can detect more problems
that the 1-bit constraints of [6]. In this setting the 2.5-bit constraints are no
better than the 1.5-bit constraints because the xor differences are all known.

We also did experiments with a reduced Skein with three rounds and 4 words
of 6 bits each. We only use sparse differences (less than 4 active bits in the input
and output), because the full space is too large to be exhausted in practice. Our
results are given in Table 7, and show that in this setting, the 2.5-bit constraints
reduces the number of false positives threefold over the 1.5-bit constraints. The
2.5-bit constraints provide much better results than previous works when the
xor difference is not known beforehand.
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4.5 Description of Some Case of Incompatibility

We have developed a graphical tool that can display such a characteristic, and
allows the user to easily modify the characteristic by adding and removing con-
straints. The tool can automatically propagate the new constraints, and show
incompatibilities if there are some.

We have studied published differential trails with this tool and we found prob-
lems in several of them. It seems that many characteristics following a natural
construction, and seemingly valid when verified manually, are in fact incompatible.
We will now describe some of the patterns that can lead to unexpected problem.

Problems with Modular Addition. A simple class of problems is related to
the modular additions when using xor differences. Techniques to check the valid-
ity of these operations are well known [13,19], but in some cases the results are
somewhat unexpected. In particular, the valid differences are quite constrained
in the least significant bit, because the incoming carry is fixed to zero. For in-
stance the following path is built with a simple linearization, but it is in fact
incompatible:

δa = ---x δb = ---x δc = ---x
x = a � b � c δx = ---x.

More generally, some pattern which seem valid when studied with a signed differ-
ence are in fact incompatible. The characteristic used in a recent near-collision
attack against Skein [29] contains a pattern similar to this one4:

δa = --xxxxx- δb = ---xx---
x = a � b δx = -xxxx-x-.

This seems valid when considering signed differences: the difference should be
±2 in a, ±8 in b, and ±2±8 in x. In fact, this does not have any solution, and it
does not seem easy to modify the characteristic of [29] to obtain a valid attack.

Problems with Carry Extensions. Carry extensions in modular additions
generate constraints between consecutive bits which can be detected with our
framework. For instance, let us consider the following simple path:

δa = -xx--- c = a � b c′ = c ≫ 2 u = c′ � d

δb = xxx--- δc = ------ δd = ---xx- δu = ---xx-.

The first addition generate a constraint c[4] �= c[3] (i. e. δc = -!----), and the
second addition generate a constraints c′[2] = c′[1] (i. e. δc′ = ---=--). Obviously
these constraints are contradictory through the rotation. In this example the
problem will be detected by our new constraints, but not when looking at each
operation individually, or using the single-bit constraints of [6].
4 This can be found at round 20, in the addition c20 = c19 � d19, with the following

xor-differences: Δc19 = 0x020030a0000f80a0, Δd19 = 0xf8f87ca007f7c7a7, Δc20 =
0x7ef8f50001104501.
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5 Constraints for the Analysis of Boomerang Attacks

We also study differential characteristics in the context of boomerang attacks.
The traditional approach is to specify each characteristic separately, and to as-
sume that they are all independent. In this work, we consider a boomerang
characteristic mostly as collection of constraints for the top characteristics and
the bottom characteristics.

Let x be some internal state variable, and x(0), x(1), x(2), x(3) be the cor-
responding variables in a boomerang quartet. A boomerang property is built
by specifying a top trail for (x(0), x(2)) and (x(1), x(3)), and a bottom trail for
(x(0), x(1)) and (x(2), x(3)). For more generality, we allow the two characteristics
to be different in each case (e.g., the signs might be different). The top trail will
be mostly unconstrained for the bottom part of the cipher, while the bottom
trail will be mostly unconstrained for the top part.

Unfortunately, the hypothesis of independence might be wrong in practice,
and we can find paths that are impossible to satisfy simultaneously, as shown
by Murphy [20]. In fact, this kind of problem seem to be quite common with
ARX designs, as shown in the case of HAVAL [22], SHA-256 [2], or Skein [11].
To capture this kind of dependency, we use constraints on quartets of variables,
instead of constraints on pairs of variables. We can not use the full set of 216

constraints, because the resulting system is too large, but we use a set of 81
constraints given in Table 8 to specify the xor difference in each of the four sides
of the quartet. For (i, j) in {(0, 1), (2, 3), (0, 2), (1, 3)}, we restrict x(i)⊕x(j) to 0 or
1, or leave it unrestricted. Note that some constraints are actually contradictory5

or redundant6, but this uniform set is much easier to work with than a reduced
set without the extra constraints.

We use three different kinds of S-systems to propagate constraints in a
boomerang characteristic:

1. systems with multi-bit constraints and non-linear operations in each individ-
ual path, following System (3) (for (i, j) in {(0, 1), (2, 3), (0, 2), (1, 3)}):

δ(x(i), x(j)) = Δi,j
x δ(y(i), y(j)) = Δi,j

y δ(z(i), z(j)) = Δi,j
z

x(i) � y(i) = z(i) x(j) � y(j) = z(j);

2. systems with quartet constraints and non-linear operations:

δ(u(0), u(1), u(2), u(3)) = Δ0,1,2,3
u , for all u in {x, y, z}

x(i) � y(i) = z(i), for all i in {0, 1, 2, 3}
3. systems with multi-bit constraints linking the four variables of a quartet:

δ(x(0), x(2)) = Δ0,2
x δ(x(1), x(3)) = Δ1,3

x (Top path)

δ(x(0), x(1)) = Δ0,1
x δ(x(2), x(3)) = Δ2,3

x . (Bottom path)

5 e.g. ---x means x(0) ⊕ x(1) = 0, x(2) ⊕ x(3) = 0, x(0) ⊕ x(2) = 0, x(1) ⊕ x(3) = 1,
which is impossible.

6 e.g. ---? and ---- allow the same values for the x(i)’s.
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Table 8. New boomerang constraints

(x(0) ⊕ x(1), x(2) ⊕ x(3), x(0) ⊕ x(2), x(1) ⊕ x(3)):
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

???? � � � � � � � � � � � � � � � �
x??? - - - - - - - - � � � � � � � �
-??? � � � � � � � � - - - - - - - -
?x?? - - - - � � � � - - - - � � � �
xx?? - - - - - - - - - - - - � � � �
---- � - - - - - - - - - - - - - - -

δx = -x- δy = --- Top path
(x(0), y(0); x(2), y(2)) (x(1), y(1); x(3), y(3))

Bottom path
(x(0), y(0); x(1), y(1)) (x(2), y(2); x(3), y(3))

δx = -x- δy = -x-

δx′ = -- δy′ = -x

Fig. 1. Example of incompatible characteristics

5.1 Incompatibility in Boomerang Characteristics

We found that some very simple patterns can lead to incompatibilities. Figure 1
gives an example of a pattern that results in incompatible characteristics. If a
quartet follows these characteristics, the middle bit of the variables has to satisfy:

x(0) ⊕ x(2) = x(1) ⊕ x(3) = 1 y(0) ⊕ y(2) = y(1) ⊕ y(3) = 0 (Top path)

x(0) ⊕ x(1) = x(2) ⊕ x(3) = 1 y(0) ⊕ y(1) = y(2) ⊕ y(3) = 1 (Bottom path)

x(0) � y(0) = x(1) � y(1) x(2) � y(2) = x(3) � y(3)

We can assume that x(0) = 0, and deduce x(1) = 1, x(2) = 1, x(3) = 0. Since the
difference in (y(0), y(1)) must cancel the difference in (x(0), x(1)), we have y(0) = 1,
y(1) = 0, and we can deduce y(2) = 1, y(3) = 0. But the difference in (y(2), y(2))
can not cancel the difference in (x(2), x(3)). A more detailed analysis shows that
this pattern can lead to incompatibilities even if we allow some incoming carries.

This pattern seem to appear very frequently when using linearized character-
istics in ARX designs.

5.2 Application

We used our tools to verify several boomerang attacks in the literature, and
found some attack using incompatible paths.
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Blake-256. First, we studied the boomerang attacks on Blake from Biryukov
et.al in [3]. When looking at the paths used for the attacks on 7 and 8 round of
the keyed permutation, our tool detects an incompatibility. More precisely, when
starting from a middle quartet with the specified differences, and going backward
through G3, it is impossible to get the specified difference simultaneously in both
paths. We verified experimentally that we could not find such quartets, even with
significantly more trials than predicted under the assumption that the paths are
independent.

With the help of the authors of [3], we found out an alternative path that
give a valid boomerang attack. More precisely we modify the top path by using
a difference on bit 25 instead of 31, and rotating all the difference patterns. We
verified experimentally that this leads to a valid attack, but the cost of the attack
becomes higher than reported in [3].

Similarly, for the compression function attacks, our tool detects that the path
used for the 6.5 and 7-round attacks is invalid. We found that this can corrected
by modifying the top path to use differences on bits 4 and 20 instead of 15
and 31.

Skein-512. We also used our tool to study the boomerang attacks on Skein. We
start with only the linearized (or almost linearized) xor differential characteristics
for rounds 12–16 and 16–20, with the key addition in between to provide extra
freedom, and we use our tool to propagate the constraints. We found that the
following paths lead to contradictions:

– The paths for the 32-round attack of [5];
– The paths for the 33- and 34-round attack of [5];
– The paths for the attack of[1], based on the old rotation constants, and

inverse permutations; as well as a modified version using the correct permu-
tations.

In each case, our tool detect the contradiction automatically. More recently, a
new path has been proposed [30], and a middle quartet was given to show that
the paths are compatible.

6 Conclusion

In this paper, we study differential characteristics in ARX constructions. We
extend the framework of de Cannière and Rechberger with new constraints.
First we introduce multi-bit constraints that can be propagated more accurately
through modular addition. We show that a set of 2-bit constraints can express
exactly the modular difference of a pair of variables, and describe a reduced set
of 2.5-bit constraints that can express the modular difference in simple cases
and can also capture the carry extensions of an unsigned difference. Second, we
introduce new quartet constraints to work with boomerang attacks.

We provide experimental results showing that our constraints can automati-
cally detect several cases of incompatibility in differential characteristics unde-
tected by previous techniques; and we point out several published attacks that
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turn out to be invalid. We show that some paths can in fact be incompatibile;
this shows the importance of verifying differential attacks.

We hope that the tools will be useful to other cryptanalysts, and they are
available at http://www.di.ens.fr/~leurent/arxtools.html.
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Abstract. Zero-correlation cryptanalysis uses linear approximations
holding with probability exactly 1/2. In this paper, we reveal fundamen-
tal links of zero-correlation distinguishers to integral distinguishers and
multidimensional linear distinguishers. We show that an integral implies
zero-correlation linear approximations and that a zero-correlation linear
distinguisher is actually a special case of multidimensional linear dis-
tinguishers. These observations provide new insight into zero-correlation
cryptanalysis which is illustrated by attacking a Skipjack variant and
round-reduced CAST-256 without weak key assumptions.

Keywords: zero-correlation cryptanalysis, integral distinguishers, mul-
tidimensional linear distinguishers, Skipjack, CAST-256.

1 Introduction

1.1 Zero-Correlation

Zero-correlation cryptanalysis [7, 8] is a novel promising attack technique for
block ciphers. The distinguishing property used in zero-correlation cryptanalysis
is the existence of zero-correlation linear approximations over (a part of) the
cipher. Those are linear approximations that hold true with a probability p
of exactly 1/2, that is, strictly unbiased approximations having a correlation
c = 2p− 1 equal to 0.

The original work [7] provides a simple and efficient technique to find zero-
correlation approximation but the distignuisher was rather weak. Recently, the
work [8] hasproposedamorepowerful distinguisher by exploiting the fact that zero-
correlation approximations are numerous in susceptible ciphers. Though working
fine in practice and being useful in cryptanalysis, the distinguisher of [8] has some
constraints that we would like to overcome: (1) If there are � zero-correlation lin-
ear approximations for an n-bit block cipher, the distinguisher of [8] has to make
O(2n/

√
�) queries. So the data complexity does not go down as fast as � grows. (2)

Thedistinguisher of [8] relies on the assumption that all linear approximationswith
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correlation zero are independent. In most cases, including the attacks of [8] in fact,
this assumption is formally not met, since all classes of zero-correlation approxi-
mations known so far are actually truncated, building linear spaces of dimension
log2 �. That is, almost all � approximations used will be linearly dependent, for-
mally jeopardizing the assumption and another theory is needed to support the
zero-correlation.

1.2 Our Contributions

Zero-Correlation and Integrals. Integral distinguishers were originally pro-
posed by Knudsen as a dedicated attack against the Rijndael-predecessor Square
[12]. Integral distinguishers [21] are also known as square distinguishers for this
reason, especially when applied to Square-type ciphers such as AES. Variants of
integral distinguishers include saturation [23] and multiset distinguishers [5]. In-
tegral distinguishers mainly make use of the observation that it is possible to fix
some parts of the plaintext such that specific parts of the ciphertext are balanced,
i.e. eachpossible partial value occurs the exact samenumber of times in the output.

In this paper, we demonstrate that an integral implies zero-correlation lin-
ear approximations, see Fig. 1. In the other direction, a zero-correlation distin-
guisher implies an integral distinguisher only if input and output linear masks
in zero-correlation approximations are independent of each other. Note that the
condition for the input and output masks to be detached from each other im-
plies that, for instance, the 5-round zero-correlation property of balanced Feistel
ciphers of [7] is not directly described by an integral.

In this sense, the fact the integrals imply zero-correlation distinguishers is
especially intriguing as not only the ways the distinguishers are constructed are
different but also the ways the resulting attacks work seem inherently different.
In particular, this link allows using � input masks and one output mask with
correlation zero in a distinguisher with a data complexity of 2n/�. Thus, in these
settings the above outlined link allows to reduce the data complexity of zero-
correlation distinguishers by a factor of

√
� (at the price of transforming the

attack into a chosen-plaintext attack) compared to previous works.

Zero-Correlation and Multidimensional Linear Distinguishers. The ba-
sic idea of multidimensional cryptanalysis [1,4,13,15,17,18] is that, given corre-
lations of all linear approximations with non-zero correlation on a linear space
formed by some cipher data, the probability distribution of the cipher data can
be determined. Then, instead of the statistical behavior of a large set of mu-
tually dependent linear approximations, one can examine the data distribution.
Indeed, statistical behavior of multiple linear approximations has been analyzed
only under the assumption of statistical independence [4]. The main advantage
of the multidimensional approach is that it allows rigorous statistical analysis
of linear approximations without the independence assumption. In traditional
linear cryptanalysis, the focus is on linear approximations with correlations of
large magnitude. The larger are the magnitudes of correlations, the more non-
uniform is the distribution of the cipher data under consideration. The linear
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distinguisher is then based on distinguishing the nonuniform cipher data distri-
bution from an uniform distribution. For a more comprehensive recent survey
on multidimensional linear distinguishers, the reader is referred to e.g. [16].

In this paper, we consider linear spaces of cipher data where correlations of all
linear approximations are equal to zero. Our starting observation here is that in
fact, being truncated, zero-correlation approximations constitute a special case
of multidimensional linear approximations. However, unlike traditional multi-
dimensional linear distinguishers where the cipher data behaves non-uniformly,
the cipher data for zero-correlation is uniformly distributed. This requires the
development of a statistical theory to distinguish a sample of such cipher data
from a sample of random data drawn from an uniform distribution.

In contrast to [8], the new distinguisher does not need the assumption of the sta-
tistical independence for multiple zero-correlation linear approximations. While
still requiring aboutO(2n/

√
�) cipher queries, it allows taking full advantage of all

zero-correlation linear approximations available, independent or not. The distri-
bution of the cipher data is accurately modeled as sampling from a multivariate
hypergeometric distribution, while the random data is drawn from a multinomial
distribution. This establishes an inherent link of zero-correlation to multidimen-
sional linear distinguishers. In their essence, zero-correlationdistinguishers consti-
tute a special case of multidimensional linear-correlationdistinguishers, see Fig. 1.
We expect this technique to be useful in the cryptanalysis of many ciphers.

Fig. 1. Relations among distinguishers: zero-correlation, integral, statistical saturation,
and multidimensional linear

Applications: Attacks on Skipjack Variant and CAST-256. To empha-
size the practical meaningfulness of our findings, we apply the new distinguishers
to mount key recovery attacks on block ciphers.

Skipjack is the only block cipher known to be designed by NSA. It is a 32-
round 4-line unbalanced Feistel-type network based on interleaving two types
of round functions – Rule A and Rule B. The best known cryptanalytic result
for Skipjack is the impossible differential cryptanalysis for 31 rounds given by
Biham et al. [2] based on a 24-round impossible differential. We change the
order of Rules A and B in Skipjack such that the longest impossible differential
identified is over 21 rounds and show that it has a 30-round zero-correlation
property. We can recover its key for 31 rounds with practical complexity using
an integral zero-correlation attack.
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CAST-256 was proposed as an AES candidate. It has 48 rounds. The best
cryptanalysis so far in the classical single-key model without the weak-key
assumption has been a linear attack on 24 rounds. We find 24-round zero-
correlation linear approximations for CAST-256 and attack 28 rounds of CAST-
256 using multidimensional zero-correlation cryptanalysis. At the same time, the
longest impossible differential we are aware of is over 18 rounds (though there is
an unspecified impossible differential for 20 rounds mentioned in the literature).
Our multidimensional zero-correlation attack is the first attack on more than half
of the full-round AES-candidate CAST-256 without the weak key assumption.

The remainder of the paper is organized as follows. In Section 2, we intro-
duce some basic concepts and notions which will be useful throughout the paper.
Section 3 establishes a strong link between the properties of integrals and zero-
correlation approximations. Using an integral zero-correlation distinguisher, Sec-
tion 4 cryptanalyzes a Skipjack variant resistant to impossible differential attack.
Section 5 describes a link of zero-correlation approximations to multidimensional
linear approximations and introduces a novel zero-correlation multidimensional
linear distinguisher. Section 6 uses it to recover the key of 28 rounds of CAST-
256. We conclude in Section 7.

2 Preliminaries

2.1 Linear Approximations and Balanced Functions

F2 denotes the binary field of two elements and Fn
2 is its extension of dimension

n. Let x and a ∈ Fn
2 . Then 〈a, x〉 denotes their cannonical inner product on Fn

2 .
Given a function H : Fn

2 → Fk
2 the correlation c of the linear approximation

〈b,H(x)〉 + 〈a, x〉

for a k-bit output mask b and an n-bit input mask a is defined by

Pr(〈b,H(x)〉+ 〈a, x〉 = 0) =
1 + c

2

where the probability is taken over all choices of inputs x. A related measure for
this correlation is the Walsh- or Fourier-transformation, defined as

Ĥ(a, b) =
∑
x

(−1)〈b,H(x)〉+〈a,x〉.

The fundamental relation between the Fourier transformation of H and the
correlation of the linear approximation is given by

c =
Ĥ(a, b)

2n

and, thus, studying the correlation and studying the Fourier transformation are,
up to scaling, equivalent.
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We say a function F : Fn
2 → Fk

2 is balanced if all preimages have identical size,
i.e. if the size of the set

F−1(y) := {x ∈ Fn
2 | F (x) = y}

is independent of y. Note that F being balanced implies k ≤ n. We recall the
following well-known characterization of balanced functions, see for example [10,
Proposition 2]: A function F : Fn

2 → Fk
2 is balanced if and only if all its com-

ponent functions are balanced, that is, if and only if for any non-zero b ∈ Fk
2 it

holds that F̂ (0, b) = 0.

2.2 Decomposition of the Target Cipher

Assume thatH : Fn
2 → Fn

2 is a (part of) cipher. To simplify notation and without
loss of generality we split the inputs and outputs into two parts each.

H : Fr
2×Fs

2 → Ft
2×Fu

2 , H(x, y) =

(
H1(x, y)
H2(x, y)

)
Furthermore, the function Tλ defined by

Tλ : Fs
2 → Ft

2, Tλ(y) = H1(λ, y)

will play a key role. The function Tλ is the function H when the first r bits of its
input are fixed to λ and only the first t bits of the output are taken into account.

Table 1. Defining properties of some important distinguishers

Distinguisher Defining property

multidimensional linear
∑

a1,b1
Ĥ(a, b)2 non-random

statistical saturation ∀λ :
∑

b1
T̂λ(0, b1)

2 non-random

integral ∀λ, b1 : T̂λ(0, b1) = 0

zero-correlation ∀a1, b1 : Ĥ(a, b) = 0

2.3 Distinguishers and Relations

Here we briefly outline the concepts behind four types of relevant distinguishers
that we will be dealing with in this paper, which are also summarized in Table 1:
Zero-correlation distinguisher uses the property that, for all input and output
masks a = (a1, 0) and b = (b1, 0), the Fourier transformation of the cipher yields

zero, Ĥ(a, b) = 0. Integral distinguisher is based on the property that, for all
partial input fixations λ, the partial function of the cipher with this fixation
is balanced in parts of its output. Multidimensional linear distinguisher relies
upon the property that multiple Fourier coefficients of the cipher behave in a
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non-random way, i.e.
∑

a1,b1
Ĥ(a, b)2 is non-random. Statistical saturation dis-

tinguisher builds upon the property that, for all partial input fixations λ, the
partial function of the cipher with this fixation is non-random under Fourier
transformation, i.e.

∑
b1
T̂λ(0, b1)

2 is non-random. While statistical saturation
and multidimensional linear distinguishers concentrate on the cumulative prop-
erties holding for the partial Fourier spectra, integral and zero-correlation dis-
tinguishers deal with a set of individual properties of Fourier coefficients.

3 Zero-Correlation and Integral Distinguishers

3.1 Conditional Equivalence Result

We start by stating the main result of this section, which is summarized in the
following statement:

Proposition 1. If the input and output linear masks a and b are independent,
the approximation 〈b,H(x)〉+ 〈a, x〉 has correlation zero for any a = (a1, 0) and
any b = (b1, 0) �= 0 (zero-correlation) if and only if the function Tλ is balanced
for any λ (integral).

This basically means that, at least in terms of their defining properties, integral
distinguishers imply zero-correlation distinguishers. The proof of Proposition 1
follows directly from the two lemmata below whose proofs are provided in the
full version of this paper [6]. The tools used in the proofs mainly originate from
results in the area of Boolean functions [22]. For instance, Lemma 2 is stated in
different notation e.g. in [11, Proposition 9]).

The main technical tool is the next lemma linking the correlation of Tλ to the
correlation of H .

Lemma 1. With the notation from above, the following holds for any λ, b1:

2sT̂λ(0, b1) =
∑
a1

(−1)〈a1,λ〉Ĥ((a1, 0), (b1, 0)) (1)

Lemma 1 already proves one direction of Proposition 1, namely, that zero-
correlation approximations imply an integral under the condition that b1 re-
mains the same with the change of a1. Lemma 1 is also especially useful for
defining an integral distinguisher that is based on zero-correlation properties:
Given a number of zero-correlation linear approximations (on the right-hand
side of (1)), one checks if the corresponding partial function of the cipher is bal-
anced (the left-hand side of (1)). This can be done for each partial input fixation
λ separately.

The following direct corollary of Lemma 1 is even more telling and is the key
in exhibiting the close link between zero-correlation distinguishers and integral
distinguishers:

Lemma 2. The following holds for any b1:

2s
∑
λ

T̂λ(0, b1)
2 =

∑
a1

Ĥ1((a1, 0), b1)
2
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This lemma proves both directions of Proposition 1, including the fact that an
integral implies zero-correlation distinguishers. In the sequel, we provide a more
detailed description of the link and an example.

3.2 From Zero-Correlation to Integral Distinguishers
(Conditional)...

First, assume that H : Fn
2 → Fn

2 is a (part of) cipher vulnerable to zero-
correlation attacks. More precisely, assume that for any a = (a1, 0) and any
b = (b1, 0) �= 0 the relation 〈b,H(x)〉 + 〈a, x〉 has correlation zero. We’d like
to highlight two points here. The restriction to masks of the form a = (a1, 0)
and b = (b1, 0), that is, to the masks where the last bits are fixed to zero, is
solely for the simplicity of notations. However, the zero-correlation distinguish-
ers considered here are of a special case: We assume not only that the used input
and output masks form subspaces but also that this space of input and output
masks is actually the direct product of the space of input masks and the space of
output masks. Informally, the masks must not be coupled as they are for exam-
ple in the attack on CAST-256 described in Section 6. We call such uncoupled
input-output masks, for our equivalence result applies, detached masks.

Under those conditions, it follows from Lemma 2 above that T̂λ(0, b1) equals
zero for all b1 �= 0 and all λ. This yields that, for any λ the function Tλ mapping
s bits to t bits is balanced. In other words, H exhibits the following integral
distinguisher: Fixing the first s bits of H arbitrarily and encrypting all remaining
2r possible plaintext, each possible t bits string occurs equally often in the first
t bits of the output of H . In the particular case of s = t, the function Tλ is a
permutation and, thus, each possible t-bit string should occur exactly once.

3.3 ...And Back Again (Unconditional)

On the other hand, let us consider the case of a cipher that is vulnerable to an in-
tegral distinguisher in the following sense. Assume that, by fixing some (without
loss of generality, the first s) bits in the input and encrypting all possible remain-
ing plaintexts, one can identify a subset of t bits (again without loss of generality,
the first t bits), each possible t-bit string occurs equally often. Then H is also

vulnerable to a zero-correlation attack. More precisely, Ĥ((a1, 0), (b1, 0)) = 0 for
all a1 ∈ Fs

2 and b1 ∈ Ft
2. Again, this follows directly from Lemma 2. In fact, an

integral unconditionally implies zero-correlation.

3.4 Discussion of the Link

As pointed out, this relation is intriguing as zero-correlation distinguishers and
integral distinguishers are constructed quite differently. Moreover, not only the
ways the distinguishers are constructed are different but also the ways the re-
sulting attacks work seem inherently different.

The first difference is that zero-correlation attacks are usually known plain-
text attacks (or using known distinct plaintexts, while integral attacks are usually
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chosenplaintext attacks.Moreover, for zero-correlationattacks, appending rounds
before the distinguisher normally does not increase the data complexity. On the
other hand, appending rounds before an integral distinguisher often results in an
increased data complexity as, for each (partial) key guess, one has to ensure that
some values are fixed according to the distinguisher. Finally, integral distinguishers
have the advantage that it is often possible to extend the distinguisher by relaxing
the balanced property to a zero-sum property (or equivalently to the fact that a
certain subfunction does not have maximal algebraic degree). For zero correlation
attacks, such an extension is not known so far.

Thus, besides being interesting from a theoretical perspective, the above men-
tioned link clearly calls for further work on combining the specific advantages
offered by both attacks.

Before discussing an application of this relation to mount an integral attack on
a variant of Skipjack, we’d like to illustrate the above with AES as an example.

3.5 Example with AES

Fig.2 depicts the well-known 3-round integral distinguisher for AES. Starting
with one active byte and fixing all other bytes results in all bytes being active
after ShiftRows in the third round. In terms of zero-correlation distinguisher,
the above discussion implies that for any non-zero input mask with (at least)
one zero byte and any non-zero output mask which is zero in all but one byte
the corresponding linear approximation is unbiased.

AK SB SR MC

AK SB SR MC

AK SB SR

X X X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Fig. 2. The integral distinguisher on 3
rounds of AES. The X denotes an active
byte.
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Fig. 3. Zero correlation distinguisher on
4 rounds of AES. The N denotes a non-
zero byte in the mask.

Reciprocally, Fig.3 shows the 4 round zero-correlation distinguisher from [7].
For any non-zero mask which is zero in all-but-one bytes and any output mask
with the same condition, the corresponding linear approximation is unbiased.
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Now, again using the above discussion, this implies the following integral dis-
tinguisher on 4 rounds of AES. Fix any byte in the plaintext and encrypt all
remaining 2120 possible plaintexts. Check if the output restricted to any byte
results is a balanced function, that is, of each out of the possible 256 values is
obtained exactly 2112 times. Note that this distinguisher was implicitly used for
example in [14].

4 Integral Zero-Correlation for a Skipjack Variant

4.1 Skipjack-BABABABA vs the Original Skipjack-AABBAABB

Skipjack [25] is the only block cipher known to be designed by NSA. Skipjack is
a 64-bit block cipher with an 80-bit key. It is an unbalanced Feistel network with
32 rounds of two types, called Rule A and Rule B. Each round is described in the
form of a linear feedback shift register with additional non-linear keyed G per-
mutation. Rule B is basically the inverse of Rule A with minor positioning differ-
ences. Skipjack applies eight rounds of Rule A, followed by eight rounds of Rule
B, followed by another eight rounds of Rule A, followed by another eight rounds
of Rule B. We refer to this original Skipjack algorithm as Skipjack-AABBAABB
– A denoting four rounds of Rule A and B standing for four rounds of Rule B.
The best known cryptanalytic result for the original Skipjack-AABBAABB is
the impossible differential cryptanalysis for 31 rounds given by Biham et.al. [2]
based on a 24-round impossible differential.

In Skipjack-BABABABA, four rounds of Rule B are applied first, followed by
four rounds of Rule A, followed by another four rounds of Rule B, followed by
another four rounds of Rule A. The rest of the cipher is exactly as in Skipjack-
AABBAABB, amounting to 32 rounds in total. See the Fig.4a. Skipjack variants
involving the change of order of Rules A and B were studied in [19,20]. Though
it was suggested that putting Rule B before Rule A might facilitate truncated
differentials as a matter of principle, no attacks have been reported on Skipjack-
BABABABA.

For Skipjack-BABABABA, the longest impossible differential we can find is
over 21 rounds and covers less rounds than the 24-round impossible differential
for the original Skipjack. However, in the following, we derive 30-round zero-
correlation linear approximations for Skipjack-BABABABA.

4.2 Zero-Correlation Linear Approximations for 30 Rounds of
Skipjack-BABABABA

Let the input masks for the first round be (L1, L1, 0, 0) and the output mask for
the last round be (L2, L2, 0, 0) for any non-zero L1 and L2. Fig.4b depicts the evo-
lution of both masks from the top and from the bottom towards the middle of the
cipher. In the figure,Mi denotes an undetermined non-zero mask and Ri denotes
an undetermined mask (zero or non-zero). From the input mask (L1, L1, 0, 0) at
the first round, the output mask of the 19-th round is (M4, R2, R1,M5). From
the output mask (L2, L2, 0, 0) at the 30-th round, the input mask of the 20-th
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Fig. 4. Integral zero-correlation cryptanalysis of 31-round Skipjack-BABABABA
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round is (M7, 0, 0, 0). Here we conclude that (M4, R2, R1,M5) �= (M7, 0, 0, 0) as
equality would imply that M5 = 0 contradicting that M5 �= 0. Therefore, the
linear hull of the 30-round linear approximation (L1, L1, 0, 0) → (L2, L2, 0, 0)
does not contain linear trails of non-zero correlation contribution and, thus, has
correlation zero.

Property 1. In Skipjack-BABABABA, each linear approximation of the form
(L1, L1, 0, 0) → (L2, L2, 0, 0) for non-zero L1 and L2 over the 30 rounds
B3ABABABA3 has zero correlation. Here B3ABABABA3 means that the 30
rounds start from three consecutive rounds of Rule B, followed by ABABAB
and by three consecutive rounds of Rule A.

4.3 Zero-Correlation Integral Attack on 31-Round
Skipjack-BABABABA

Here we describe how to use Proposition 1 to attack 31 rounds of Skipjack-
B3ABABABA using an integral distinguisher. Combining Proposition 1 with
Property 1 leads to the following distinguisher.

Corollary 1. With the notation of Fig.4c, for the 30-round Skipjack-
B3ABABABA3, encrypting all 248 plaintexts of the form (P1|P2|P3|P1) each
of the 216 possible values of v2 ⊕ v3 occurs exactly 232 times.

With the notation of Fig.4c, this distinguisher can now be used directly to mount
a key-recovery attack on the 31 rounds of Skipjack-B3ABABABA as follows.

– Initialize 232 counters V1[C2|C3] to zero.
– Encrypt each of all 248 plaintexts of the form (P1|P2|P3|P1), and increase
V1[C2|C3] by one.

– For each guess of the 232 possible values for k:
• Initialize 216 counters V2[v] to zero.
• Decrypt all 216 values of C2 to get v2|v3 and increase V2[v2 ⊕ v3] by
V1[C2|C3].

• If one of the counters V2[v] �= 216, discard k as a wrong key-guess.

With high probability only the correct guess for k will not be discarded. As the
key size for Skipjack is 80 bits, the remaining key bits can be brute-forced with
a complexity of 248. The time complexity of this attack is roughly 249 Skipjack
encryptions and we have to store roughly 232 counters. The data complexity is
248 chosen plaintexts. Thus, this attack has practical complexities.

5 Zero-Correlation and Multidimensional Linear
Distinguishers

5.1 Multidimensional Linear Setting

Given m linear approximations

〈ui, x〉+ 〈wi, y〉, i = 1, . . . ,m,
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where x ∈ Fn
2 is plaintext and y ∈ Ft

2 is some part of data in the encryption pro-
cess, one obtains anm-tuple of bits by evaluating those for a plaintext-ciphertext
pair. Instead of considering each such bit and its distribution independently as
x varies, multidimensional linear cryptanalysis focuses on the analysis of the
distribution of the m-tuples

z = (z1, . . . , zm), zi = 〈ui, x〉+ 〈wi, y〉.

Then we have the following relationship between the probability distribution of
z and the correlations cγ of all linear approximations γ ∈ Fm

2 :

Pr[z] = 2−m
∑
γ∈Fm

2

(−1)〈γ,z〉cγ . (2)

Note that this is actually the key in proving that for a balanced function all
component functions have zero-correlation.

We denote by U and W the m× n and m× t matrices with rows ui and wi,
respectively. Then we have z = Ux+Wy and can write

〈γ, z〉 = 〈γ, Ux+Wy〉 = 〈UTγ, x〉+ 〈WTγ, y〉, (3)

where UTγ and WTγ are linear combinations of the linear masks ui and wi,
i = 0, . . . ,m, respectively.

5.2 How to Make Zero-Correlation Multidimensional

Now we are ready to formulate the zero-correlation distinguishing property as a
special case of the multidimensional distinguishing property.

Zero-correlation distinguisher assumes that the correlations of all linear ap-
proximations 〈ui, x〉+〈wi, y〉, i = 1, . . . ,m, and their nonzero linear combinations
are equal to zero. (Note that this means, in particular, that these m linear ap-
proximations are statistically independent.) By (3), it follows that cγ = 0, for
all γ �= 0. When substituting this information in the formula of Pr[z] in (2), we
obtain that z has a uniform distribution in Fm

2 .
Let the adversary be given N distinct plaintexts for an n-bit block cipher and

m linear approximations such that all their nonzero linear combinations have
correlation zero. Then he can construct, as shown above, a function from Fn

2

to Fm
2 whose outputs z computed for all plaintexts are uniformly distributed

m-tuples of bits in Fm
2 .

Such a completely uniform distribution is very unlikely to have been obtained
from selecting the values at random in Fm

2 , even if the probability of each value
is equal, spanning a linear space of � = 2m zero-correlation approximations of
dimension m. But as we will see, it is possible to distinguish the non-random
behavior of the cipher data already with much less data than the full codebook.
The distribution of the cipher data follows multivariate hypergeometric distribu-
tion, while the data drawn at random from a uniform distribution on Fm

2 follows
multinomial distribution. These distributions have essentially different param-
eters for large sample sizes N and can be distinguished from each other. The
distinguisher can be obtained as follows.
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5.3 Multidimensional Distinguisher for Correlation Zero

For each of the 2m data values z ∈ Fm
2 , the attacker initializes a counter V [z], z =

0, 1, 2, . . . , 2m − 1, to zero value. Then, for each distinct plaintext, the attacker
computes the corresponding data value in Fm

2 (by evaluating the m basis linear
approximations) and increments the counter V [z] of this data value by one. Then
the attacker computes the statistic T for this distribution as

T =

2m−1∑
i=0

(V [z]−N2−m)2

N2−m(1− 2−m)
. (4)

The statistic T will have two distinct distributions for the cipher exhibiting
zero-correlation and a randomly drawn permutation which is our wrong-key
hypothesis assumption:

Proposition 2. For sufficiently large sample size N and number � of zero-
correlation linear approximations given for the cipher, the statistic T follows
a χ2-distribution for the cipher approximately with mean and variance

μ0 = Exp(Tcipher) = (�− 1)
2n −N

2n − 1
and σ2

0 = Var(Tcipher) = 2(�− 1)

(
2n −N

2n − 1

)2

and for a randomly drawn permutation with mean and variance

μ1 = Exp(Trandom) = �− 1 and σ2
1 = Var(Trandom) = 2(�− 1).

The proof of this proposition is available in the full version of this paper [6].

5.4 Distinguishing Complexity

Applying the standard normal approximation of χ2 to the two different distri-
butions of the statistic T in Proposition 2, one can compute data complexities
N of the distinguisher, given error probabilities. As a rule of thumb, we can
conclude that it is sufficient to have N ≈ 2n+2−m

2 distinct plaintexts and their
corresponding ciphertexts to distinguish the cipher distribution from randomly
drawn permutation. A more precise distinguishing complexity is given by the
following statement.

Corollary 2. Under the assumptions of Proposition 2, for type-I error probabil-
ity α0 (the probability to wrongfully discard the cipher), type-II error probability
α1 (the probability to wrongfully accept a randomly chosen permutation as the
cipher), for an n-bit block cipher exhibiting � zero-correlation linear approxima-
tions forming an log2 �-dimensional linear space, the distinguishing complexity
N can be approximated as

N =
2n(q1−α0 + q1−α1)√

�/2− q1−α1

,

where q1−α0 and q1−α1 are the respective quantiles of the standard normal dis-
tribution.
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Note that this statistical test is based on the decision threshold of τ = μ0 +
σ0q1−α0 = μ1 − σ1q1−α1 : If the statistic T ≤ τ , the test outputs ’cipher’. Other-
wise, if the statistic T > τ , the test returns ’random’.

6 Multidimensional Zero-Correlation for 28-Round
CAST-256

6.1 Description of CAST-256

As a first-round AES candidate, CAST-256 is designed based on CAST-128. The
block size is 128 bits, and the key size can be 128, 192 or 256 bits. CAST-256
has 48 rounds for all key sizes. The design of CAST-256 is a generalized Feistel
network with 4 lines as illustrated in Fig.5a.

We denote the 128-bit block of CAST-256 as β = (A|B|C|D), where A, B, C
and D are 32 bits each. Two types of round function, the forward quad-round
Q(·) and the reverse quad-round Q̄(·) are used in CAST-256.

The forward quad-round β := Qi(β) is defined as consecutive application of
4 rounds as follows:

C = C ⊕ F1(D,KR1

(i),KM1

(i)), B = B ⊕ F2(C,KR2

(i),KM2

(i)),

A = A⊕ F3(B,KR3

(i),KM3

(i)), D = D ⊕ F1(A,KR4

(i),KM4

(i)).

Similarly, the reverse quad-round β := Q̄i(β) is defined as:

D = D ⊕ F1(A,KR4

(i),KM4

(i)), A = A⊕ F3(B,KR3

(i),KM3

(i)),

B = B ⊕ F2(C,KR2

(i),KM2

(i)), C = C ⊕ F1(D,KR1

(i),KM1

(i)),

where KR
(i) = {KR1

(i),KR2

(i),KR3

(i),KR4

(i)} is the set of rotation keys for

the i-th quad-round, and KM
(i) = {KM1

(i),KM2

(i),KM3

(i),KM4

(i)} is the set of
masking keys for the i-th quad-round.

The encryption procedure for CAST-256 consists of 6 forward quad-rounds
followed by 6 reverse quad-rounds, counting 48 rounds in total. Decryption is
identical to encryption except that the sets of quad-round keys KR

(i) and KM
(i)

are applied in the reverse order. The keys are obtained from an up to 256-bit
master key by encrypting it with a CAST-256-type cipher (acting on on eight
32-bit words) with known constants as subkeys.

The functions F1, F2 and F3 are exactly those of CAST-128. They use four
8x32-bit S-boxes based on bent functions, modular addition, modular subtrac-
tion, XOR and key-dependent rotation. See Fig. 5a.

6.2 24-Round Zero-Correlation Linear Approximations for
CAST-256

Property 2. For 24-round CAST-256 (3 forward quad-rounds followed by 3 re-
verse quad-rounds, or rounds 13-36), if the input mask is (0|0|0|L1) and the
output mask is (0|0|0|L2), the correlation of the linear approximation for the
24-round CAST-256 is zero, where L1 �= L2, L1 �= 0, and L2 �= 0.
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The proof of this property is available in the full version of this paper [6].
As compared to this 24-round property, the longest impossible differential for

CAST-256 we are aware of covers 18 rounds [28]. The work [3] claims unspecified
20-round impossible differentials. Thus, the zero-correlation property for CAST-
256 is at least 4 rounds longer than the one of impossible differential.
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Fig. 5. Multidimensional zero-correlation cryptanalysis of 28-round CAST-256

6.3 Key Recovery for 28-Round CAST-256

We use the 24-round zero-correlation linear approximations of Property 2 to
attack 28 rounds of CAST-256. Fig. 5c illustrates the recovery of the subkey
values from the first round to the fourth round. The attack works as follows.
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For each possible 148-bit subkey value κ = KR
(1)|KM

(1):

1. Allocate a 64-bit global counter V [z] for each of 264 possible values of the 64-
bit vector z and set it to 0. V [z] will contain the number of times the vector
value z occurs for the current key guess κ. The vector z is the concatenation
of evaluations of 64 basis zero-correlation masks.

2. For each of N distinct plaintext-ciphertext pairs:
(a) Partially encrypt 4 rounds and get 64-bit value for X |C4.
(b) Evaluate all 64 basis zero-correlation masks on X |C4 and put the eval-

uations to the vector z.
(c) Increment V [z].

3. Compute the χ2 statistic T = N264
∑264−1

z=0

(
V [z]
N − 1

264

)2

.

4. If T < τ , then the subkey guess κ is a possible subkey candidate and all
master keys it is compatible with are tested exhaustively against a maximum
of 3 plaintext-ciphertext pairs.

Table 2. Summary of attacks on CAST-256: KP = Known Plaintexts, CP = Chosen
Plaintexts

Rounds Key size Attack Data Time Memory Ratio of Ref.
(bytes) weak keys

16 128, 192, 256 boomerang 249.3CP − − 1 [26]
24 192 or 256 linear 2124.1KP 2156.52 − 1 [27]
36 256 differential 2123CP 2182 − 2−35 [24]

28 256 multidim. ZC 298.8KP 2246.9 268 1 Here

In this attack, using Corollary 2, we set the type-I error probability (the
probability to miss the right key) to α0 = 2−2.7 and the type-II error probability
(the probability to accept a wrong key) to α1 = 2−14. Thus, we get q1−α0 = 1
and q1−α1 = 3.84. Here, τ = σ1 · qα1 + μ1 ≈ 264.

Corollary 2 suggests that the data complexity is N = 298.8 distinct plaintext-
ciphertexts with those parameters. The success probability of the entire attack
is 1− α0 ≈ 0.846.

The time complexity is 2246.8 times of one-round encryption and 2246.8 mem-
ory accesses to a memory of size 264. Under the assumption that one memory
access with size 264 is equivalent to one 28-round CAST-256 encryption, the
total time complexity would be about 2246.9 28-round CAST-256 encryptions.
Due to α1 = 2−14 and the total number of recovered bits is 148, the number of
the remaining subkey values is 2−14 · 2148 = 2134. Then we exhaustively search
other 256− 148 = 108 subkey bits, the time complexity will be 2134+108 = 2242

times of 28-round encryptions.
The memory requirements are 264 128-bit words needed for V [z], or 268 bytes.
In all, the data complexity is about 298.8 known plaintexts, the time complex-

ity is about 2246.9 28-round CAST-256 encryptions and the memory require-
ments are 264 blocks. This is the first attack on more than half of the full-round
AES-candidate CAST-256 without the weak key assumption. See Table 2 for a
summary and a comparison of attacks.
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7 Conclusions

In this paper, we establish fundamental links between zero-correlation distin-
guishers on the one hand and integral and multidimensional linear distinguish-
ers on the other. In particular, an integral implies a zero-correlation property
and zero-correlation distinguishers can be seen as a special case of multidimen-
sional linear distinguishers. These findings result in two novel distinguishers for
zero-correlation based on integral and multidimensional linear distinguishers. To
obtain the latter, we refine the theory of multidimensional linear distinguishers.
We illustrate these new distinguishers by mounting attacks on a Skipjack variant
and CAST-256.
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Abstract. Stream cipher ZUC is the core component in the 3GPP con-
fidentiality and integrity algorithms 128-EEA3 and 128-EIA3. In this
paper, we present the details of our differential attacks against ZUC 1.4.
The vulnerability in ZUC 1.4 is due to the non-injective property in the
initialization, which results in the difference in the initialization vector
being cancelled. In the first attack, difference is injected into the first
byte of the initialization vector, and one out of 215.4 random keys re-
sult in two identical keystreams after testing 213.3 IV pairs for each key.
The identical keystreams pose a serious threat to the use of ZUC 1.4 in
applications since it is similar to reusing a key in one-time pad. Once
identical keystreams are detected, the key can be recovered with aver-
age complexity 299.4. In the second attack, difference is injected into the
second byte of the initialization vector, and every key can result in two
identical keystreams with about 254 IVs. Once identical keystreams are
detected, the key can be recovered with complexity 267. We have pre-
sented a method to fix the flaw by updating the LFSR in an injective way
in the initialization. Our suggested method is used in the later versions
of ZUC. The latest ZUC 1.6 is secure against our attacks.

1 Introduction

Comparing to block ciphers, dedicated stream ciphers normally require less com-
putation for achieving the same security level. Stream ciphers are widely used
in applications. For example, RC4 [10] is used in SSL and WEP, and A5/1 [8] is
used in GSM (the Global System for Mobile Communications). But the use of
RC4 in WEP is insecure [7], and A5/1 is very weak [4]. ECRYPT (2004–2008)
has organised the eSTREAM competition, which stimulated the study on stream
ciphers, and a number of new stream ciphers were proposed [1–3, 5, 6, 9, 15].

The 3rd Generation Partnership Project (3GPP) was set up for making
globally applicable 3G mobile phone system specifications based on the GSM
specifications. Stream cipher ZUC was designed by the Data Assurance and
Communication Security Research Center of the Chinese Academy of Sciences.
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It is the core component of the 3GPP Confidentiality and Integrity Algorithms
128-EEA3 & 128-EIA3 which were proposed for inclusion in the “4G” mobile
standard LTE (Long Term Evolution). In July 2010, the ZUC 1.4 [11] was made
public for evaluation. We developed two key recovery attacks against ZUC 1.4
[16], and our attacks directly led to the tweak of ZUC 1.4 into ZUC 1.5 [12] in
Jan 2011. (Note that it was reported independently in [14] that the non-injective
initialization of ZUC 1.4 may result in identical keystreams.) The latest version,
ZUC 1.6 [13], was released in June 2011 (ZUC 1.6 and ZUC 1.5 have almost the
same specifications).

In this paper, we present the details of our differential attacks against ZUC
1.4. Our attacks against ZUC is similar to the differential attacks against Py,
Py6 and Pypy [17], in which different IVs result in identical keystreams. In the
first attack against ZUC 1.4, the difference is at the first byte of the IV, and
one in 215.4 keys results in identical keystreams after testing 213.3 IV pairs for
each key. Once identical keystreams are detected, the key can be recovered with
complexity 299.4. In the second attack against ZUC 1.4, the difference is at the
second byte of the IV, and identical keystreams can be obtained after testing
254 IVs. The key can be recovered with complexity 267.

This paper is organized as follows. The notations and the description of ZUC
1.4 are give in Sect. 2. The overview of the attack is is given in Sect. 3. In Section
4 and 5, we present the key recovery attack with difference at the first byte and
the second byte of IV, respectively. We suggest the tweak to fix the flaw in Sect.
6. Section 7 concludes the paper.

2 Preliminaries

2.1 The Notations

In this paper, we follow the notations used in the ZUC specifications [11].

+ The addition of two integers

⊕ The bit-wise exclusive-or operation of integers

� The modulo 232 addition

ab The product of integers a and b

a||b The concatenation of a and b

a <<< k The k-bit cyclic shift of a to the left

a >>> k The k-bit cyclic shift of a to the right

a >> k The k-bit right shift of integer a

aH The most significant 16 bits of integer a

aL The least significant 16 bits of integer a

(a1, a2, . . . , an)→(b1, b2, . . . , bn) It assigns the values of ai to bi in parallel
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0n The sequence of n bits 0

1n The sequence of n bits 1

ȳ The bitwise complement of y

An integer a can be written in different formats. For example,

a = 25 decimal representation

= 0x19 hexadecimal representation

= 000110012 binary representation

We number the least significant bit with 1 and use A[i] to denote the ith bit of
a A. And use B[i..j] to denote the bit i to bit j of B.

2.2 The General Structure of ZUC 1.4

ZUC is a word-oriented stream cipher with 128-bit secret key and a 128-bit initial
vector. It consists of three main components: the linear feedback shift register
(LFSR), the bit-reorganization (BR) and a nonlinear function F . The general
structure of the algorithm is illustrated in Fig. 1.

Fig. 1. General structure of ZUC

Linear Feedback Shift Register(LFSR). It consists of sixteen 31-bit regis-
ters s0, s1, . . ., s15, and each register is an integer in the range {1, 2, . . . , 231−1}.
During the keystream generation stage, the LFSR is updated as follows:
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LFSRUpdate():

1. s16 = (215s15 + 217s13 + 221s10 + 220s4 + (1 + 28)s0)mod(231 − 1);
2. If s16 = 0 then set s16 = 231 − 1;
3. (s1, s2, . . . , s15, s16)→ (s0, s1, . . . , s14, s15).

Bit-Reorganization Function. It extracts 128 bits from the state of the LFSR
and forms four 32-bit words X0, X1 X2 and X3 as follows:

Bitreorganization():

1. X0 = s15H ||s14L;
2. X1 = s11L||s9H ;
3. X2 = s7L||s5H ;
4. X3 = s2L||s0H ;

Nonlinear Function F . It contains two 32-bit memory words R1 and R2. The
description of F is given below. In function F , S is the Sbox layer and L1 and
L2 are linear transformations as defined in [11]. The output of function F is a
32-bit word W . The keystream word Z is given as Z =W ⊕X3 .
F (X0, X1, X2):

1. W = (X0 ⊕R1)�R2;
2. W1 = R1 �X1;
3. W2 = R2 ⊕X2;
4. R1 = S(L1(W1L||W2H ));
5. R2 = S(L2(W2L||W1H ));

2.3 The Initialization of ZUC 1.4

The initialization of ZUC 1.4 consists of two steps: loading the key and IV into
the register, and running the cipher for 32 steps with the keystream word being
used to update the state.

Key and IV Loading. Denote the 16 key bytes as ki (0 ≤ i ≤ 15), the
16 IV bytes as ivi (0 ≤ i ≤ 15). We load the key and IV into the register
as: si = (ki||di||ivi). The values of the constants di are given in [11]. The two
memory words R1 and R2 in function F are set as 0.

Running the Cipher for 32 Steps. At the initialization stage, the keystream
word Z is used to update the LFSR as follows:

LFSRWithInitialisationMode(u):

1. v = (215s15 + 217s13 + 221s10 + 220s4 + (1 + 28)s0)mod(231 − 1);
2. If v = 0 then set v = 231 − 1;
3. s16 = v ⊕ u;
4. If s16 = 0 then set s16 = 231 − 1;
5. (s1, s2, . . . , s15, s16)→ (s0, s1, . . . , s14, s15).
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The cipher runs for 32 steps at the initialization stage as follows:
InitializationStage():

for i = 0 to 31 {

1. Bitreorganization();
2. Z = F (X0, X1, X2)⊕X3 ;
3. LFSRWithInitialisationMode(Z >> 1) .

}

3 Overview of the Attacks

We notice that the LFSR in ZUC is defined over GF (231−1), with the element
0 being replaced with 231−1. To the best of our knowledge, it is the first time
that GF (231−1) is used in the design of stream cipher. In the initialization of
ZUC 1.4, we notice that XOR is involved in the update of LFSR (s16 = v ⊕ u).
When XOR is applied to the elements in GF (231−1) , we obtain the following
undesirable property:

Property 1. Suppose that a and a′ are two elements in GF (231−1), a �= a′,
and ā = a′. If b = a or b = ā, then a⊕ b mod (231−1) = a′⊕ b mod (231−1) = 0.

The above property shows that the difference between a and a′ can get eliminated
with an XOR operation! In the rest of this paper, we exploit this property to
attack ZUC 1.4 by eliminating the difference in the state.

In our attacks, we try to eliminate the difference in the state without the
difference in the state being injected into the nonlinear function F . The reason
is that if a difference is injected into F , then Sboxes would be involved, and the
difference would remain in F until additional difference being injected into F ,
thus the probability that the difference in the state being eliminated would get
significantly reduced.

We now investigate what are the IV differences that would result in the dif-
ference in the state being eliminated with high probability. The IV differences
are classified into the following three types:

Type 1. Δivi �= 0 for at least one value of i (7 ≤ i ≤ 15).

After loading this type of IVs into LFSR, the difference would appear at the
least significant byte of at least one of the LFSR elements s7, s8, · · · , s15. Note
that the least significant byte of s7 is part of X2 in the Bit-reorganization func-
tion since X2 = s7L||s5H , and X2 is an input to function F . Due to the shift
of LFSR, the difference at the least significant byte of s7, s8, · · · , s15 would be
injected into F . Thus we would not use this type of IV difference in our attacks.

Type 2. Δivi = 0 for 7 ≤ i ≤ 15, Δivi �= 0 for at least one value of i (2 ≤ i ≤ 6).
After loading this type of IVs into LFSR, the difference would appear at the least
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significant byte of at least one of the LFSR elements s2, s3, · · · , s6 . Note that
the least significant byte of s2 is part of X3 in the Bit-reorganization function
since X3 = s2L||s0H , X3 is XORed with the output of F to generate keystream
word Z, and Z is used to update the LFSR. Two steps later, the difference in iv2
would appear in the feedback function to update LFSR. It means that if there is
difference in iv2, the difference in s2 would be used to update the LFSR twice,
and the probability that the difference would be eliminated is very small. Due to
the shift of LFSR, the difference at s2, s3, · · · , s7 would be eliminated with very
small probability. Thus we did not use this type of IV difference in our attacks.

Type 3. Δivi = 0 for 2 ≤ i ≤ 15, Δiv0 �= 0 or Δiv1 �= 0.
The focus of our attacks is on this type of IV differences. In order to increase
the chance of success, we consider the difference at only one byte of the IV. We
discuss below how the difference in the state can be eliminated when there is
difference in s0 (the analysis for the difference in s1 is similar). At the first step
in the initialization,

s0 = (k0||d0||iv0) , (1)

v = 215s15 + 217s13 + 221s10 + 220s4 + (1 + 28)s0 mod (231 − 1) , (2)

s16 = v ⊕ u . (3)

Suppose that the difference is only at iv0, and iv0 − iv′0 = Δiv0 > 0. From (1)
and (2) we know that

v − v′ = (1 + 28)(iv0 − iv′0) mod (231 − 1)

= Δiv0 ‖ Δiv0 . (4)

If we need to eliminate the difference in s16, from Property 1 and (3), the fol-
lowing condition should be satisfied:

v ⊕ v′ = 131 (5)

u = v or u = v′ (6)

According to (5), v and v′ haveXORdifference in the left-most 15 bits (i.e.v[17..31]
and v′[17..31]), while according to (4), the subtraction difference of those bits are 0.
The only possible reason is that the 15 bits, v[17..31], are all affected by the carries
from the addition ofΔiv0 to v

′. After testing all the one-byte differences, we found
that v must be in one of the following four forms (the values of v and v′ can be
swapped):

v = 11111111111111112 ‖ y ‖ 12 ‖ y
or v = 01111111111111112 ‖ y ‖ 02 ‖ y
or v = 00000000000000002 ‖ ȳ ‖ 02 ‖ ȳ
or v = 10000000000000002 ‖ ȳ ‖ 12 ‖ ȳ

(y is a 7-bit integer.)

(7)
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There are 510 possible values of v (v = 131 and v = 031 are excluded since one
of v and v̄ cannot be 0). All the (v, v′) pairs and their differences are given in
Table 1 in Appendix A. Notice that we ignored the order of v and v′ as they are
exchangeable. We have obtained all the possible values of v and u for generating
identical keystreams.

We highlight the following property in the table: the difference between v
and v′ uniquely determines the value of pair (v, v′) in the table. As a result, if
we know the difference of IVs that results in the collision of the state, we can
determine the value of (v, v′) immediately.

By eliminating the difference in the state as illustrated above, we developed
two attacks against ZUC 1.4. The first attack is to exploit the difference at iv0,
and the second attack is to exploit the difference at iv1. The details are given in
the following two sections.

4 Attack ZUC 1.4 with Difference at iv0

In this section, we present our first differential attack on the initialization by
using IV difference at iv0 and generating identical keystream. The keys that
generate the same keystream are called weak keys in this attack. We will show
that a weak key exists with probability 2−15.4, and a weak key can be detected
with about 213.3 chosen IVs. Once a weak key is detected, its effective key size
is reduced from 128 bits to around 100 bits.

4.1 The Weak Keys for Δiv0

We will show that when there is difference at iv0, about one in 215.4 keys would
result in identical keystream. For a random key, we will check whether there
exists a pair of IVs such that (5), (6) and (7) can be satisfied.

We start with analyzing how keys and IVs are involved in the expression of u
and v in the first step of initialization. From the specifications of the initializa-
tion, we have

u =Z >> 1 = (X0 ⊕X3) >> 1 = ((s15H ||s14L)⊕ (s2L||s0H)) >> 1

=((k15 ‖ iv2 ‖ k0 ‖ iv14)⊕ 0x6b8f9a89) >> 1
(8)

In (2) and (8), there are 5 bytes of key, {k0, k4, k10, k13, k15}, and 7 bytes of IV,
{iv0, iv2, iv4, iv10, iv13, iv14, iv15} being involved in the computation of u and v.
The complexity would be very high if we directly try all possible combinations
of the keys and IVs. However, with analysis on the expressions of u and v, we
can reduce the search space from 296 to around 226.3.
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Solve (5), (6), (7) and (8), we obtain the following four groups of solutions:

Group 1.

u = v = 11111111111111112 ‖ y ‖ 12 ‖ y
k15 = 0x94

iv2 = 0x70

k0 = 0x9a⊕ (y ‖ 12)
iv14 >> 1 = 0x44⊕ y

(9)

Group 2.

u = v = 01111111111111112 ‖ y ‖ 02 ‖ y
k15 = 0x14

iv2 = 0x70

k0 = 0x9a⊕ (y ‖ 02)
iv14 >> 1 = 0x44⊕ y

(10)

Group 3.

u = v = 00000000000000002 ‖ ȳ ‖ 02 ‖ ȳ
k15 = 0x6b

iv2 = 0x8f

k0 = 0x9a⊕ (ȳ ‖ 02)
iv14 >> 1 = 0xbb⊕ ȳ

(11)

Group 4.

u = v = 10000000000000002 ‖ ȳ ‖ 12 ‖ ȳ
k15 = 0xeb

iv2 = 0x8f

k0 = 0x9a⊕ (ȳ ‖ 12)
iv14 >> 1 = 0xbb⊕ ȳ

(12)

Furthermore, from (2) we compute v as follows (note that the property 2ksi
mod (231 − 1) = si <<< k ):

v = (1 + 223)k0 + 27k15 + 29(k13 + 23k4 + 24k10) + (1 + 28)iv0

+ 215(iv15 + 22iv13 + 25iv4 + 26iv10) + 0x451bfe1b mod (231 − 1)
(13)

Let sum1 = k13+23k4+24k10, sum2 = iv15+22iv13+25iv4+26iv10. The value
of sum1 ranges from 0 to 6375, and the value of sum2 ranges from 0 to 25755.
We developed Algorithm 1 to search for weak keys.
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Algorithm 1. Find weak keys for Δiv0
for (k15, iv2) in each of the 4 groups of solutions (9), (10), (11), (12) do

for y = 0 to 127 do
determine iv14 >> 1 and k0
for sum1 = 0 to 6375 do

for iv0 = 0 to 255 do
keySum← 27k15 + (223 + 1)k0 + 29sum1 mod (231 − 1)
sum2 ← (u− keySum− (1 + 28)iv0 − 0x451bfe1b)/215 mod (231 − 1)
if sum2 is less than 25756 then

v = u; v′ = u⊕ 132;
if (v − v′) mod (231 − 1) is a multiple of 1 + 28 then

Δiv0 = (v − v′) mod (231 − 1)/(1 + 28);
iv′0 = iv0 −Δiv0;

else
Δiv0 = (v′ − v) mod (231 − 1)/(1 + 28);
iv′0 = iv0 +Δiv0;

end if
output u, k0, k15, sum1, iv0, iv

′
0, iv2, iv14 >> 1, sum2

end if
end for

end for
end for

end for

Each output from Algorithm 1 gives the value of (k15, k0, sum1, iv0, iv
′
0,

iv2, iv14, sum2) that results in identical keystreams. Running Algorithm 1,
we found 9934 = 213.28 different outputs. We note that on average, each
sum1 from the output of the algorithm represents 224/6376 = 211.36 possible
choices of (k4, k10, k13). Thus there are 213.3 × 211.4 = 224.7 weak values of
(k0, k4, k10, k13, k15). Hence, there are 224.7 weak keys out of 240 possible values
of the 5 key bytes. The probability that a random key is weak for IV differ-
ence at iv0 is 2

−15.4. The complexity of Algorithm 1 is 4×128×6376×256 = 226.3.

Identical Keystreams. We give below a weak key and an IV pair with differ-
ence at iv0 that result in identical keystreams.

key = 87,4,95,13,161,32,199,61,20,147,56,84,126,205,165,148

IV = 166,166,112,38,192,214,34,211,170,25,18,71,4,135,68,5

IV ′ = 116,166,112,38,192,214,34,211,170,25,18,71,4,135,68,5

For both IV and IV ′, the identical keystreams are: 0xbfe800d5 0360a22b
6c4554c8 67f00672 2ce94f3f f94d12ba 11c382b3 cbaf4b31. . ..

4.2 Detecting Weak Keys for Δiv0

We have shown above that a random key is weak with probability 2−15.4. In the
attack against ZUC, we will first detect a weak key, then recover it. To detect
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a weak key, our approach is to use the IV pairs generated from Algorithm 1 to
test whether identical keystreams are generated. Note that for a particular value
of sum2, we can always find a combination of (iv4, iv10, iv13, iv15} that satisfies
sum2 = iv15 + 22iv13 + 25iv4 + 26iv10. Thus a pair of IVs (iv0, iv2, iv4, iv10,
iv13, iv14, iv15) and (iv′0, iv2, iv4, iv10, iv13, iv14, iv15) can be determined by each
output of Algorithm 1. Using this result, we developed Algorithm 2 to detect
weak keys for Δiv0.

Algorithm 2. Detecting weak keys for Δiv0

1. Choose one of the 213.28 outputs of Algorithm 1.
2. Find the pair of IVs determined by this output (if ivj does not appear in the first

initialization step, set it as some fixed constant).
3. Use the IV pair to generate two key steams.
4. If the keystreams are identical, output the IVs and conclude the key is weak.
5. If all outputs of Algorithm 1 have been checked, and there are no identical

keystreams, we conclude that the key is not weak.

In Algorithm 2, we need to test at most 213.3 pairs of IVs to determine if a key
is weak for difference at iv0.

4.3 Recovering Weak Keys for Δiv0

After detecting a weak key, we proceed to recover the weak key. Once a key is
detected as weak (as given from Algorithm 2), from the IV pair being used to
generate identical keystreams, we immediately know the value of k0, k15 and
sum1. Note that sum1 = (k13 + 23k4 + 24k10). In the best situations, the sum
is 0 or 25755, then we can uniquely determine k4, k10 and k13. In the worst
situation, there are 212 possible choices for k4, k10 and k13, and therefore, we
need 212 tests to determine the correct values for k4, k10 and k13. On average,
for each value of sum1, we need to test 211.4 combinations of (k4, k10, k13).

Since there are only five key bytes being recovered in our attack, the remaining
11 key bytes should be recovered with exhaustive search. Hence, the complexity
to recover all key bits is 288 × 211.4 = 299.4. From the analysis above, we also
know that the best complexity is 288 and the worst complexity is 2100.

5 Attack ZUC 1.4 with Difference at iv1

In this section, we present the differential attack on ZUC 1.4 for IV difference at
iv1. Different from the attack in Section 4, we need to consider the computation
of u and v in the second step of the initialization. For this type of IV difference,
for every key, there are some IV pairs that result in identical keystreams since
more IV bytes are involved. Once we found such an IV pair, we can recover the
key with complexity around 267.
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5.1 Identical Keystreams for Δiv1

The computation of u and v in the second initialization step involves more key
and IV bytes. The v in the second initialization step is computed as:

v = (215s16 + 217s14 + 221s11 + 220s5 + (1 + 28)s1) mod (231 − 1),

s16 = ((215s15 + 217s13 + 221s10 + 220s4 + (1 + 28)s0) mod (231 − 1))

⊕ (((k15 ‖ iv2 ‖ k0 ‖ iv14)⊕ 0x6b8f9a89) >> 1)

(14)

And u is given as:

u = (((X0 ⊕R1) +R2)⊕X3) >> 1

X0 = (s16H ||101011002||iv15)
X3 = (010111102||iv3||k1||010011012)
R1 = S(L1(s9H ||s7L)) = f1(iv7, k9)

R2 = S(L2(s5H ||s11L)) = f2(iv11, k5)

(15)

where f1 and f2 are some deterministic non-linear functions.
There are 10 IV bytes involved in the expression of v, i.e. (iv0, iv1, iv2, iv4, iv5,

iv10, iv11, iv13, iv14, iv15) and 8 IV bytes involved in the expression of u, i.e. (iv0,
iv3, iv4, iv7, iv10, iv11, iv13, iv15). In total, there are 12 IV bytes being involved
in the computation of u and v, and every bit of u and v can be affected by IV.
We conjecture that for every key, the conditions (5) and (6) can be satisfied, and
identical keystreams can be generated. To verify it, we tested 1000 random keys.
Our experimental results show that there is always an IV pair for each key that
results in identical keystreams.

In the attack, a random key and a random iv pair with difference at
iv1, the probability that v and u satisfy the conditions (5) and (6) is
2−31 × 2−31 × 2 = 2−61. Choosing 28 ivs with difference at iv1, we have around
215 pairs. The identical keystream pair appears with probability 2−61+15 = 2−46

with 28 IVs. We thus need about 246 × 28 = 254 IVs to obtain identical
keystreams.

Identical Keystreams. We give below a key and an IV pair with difference at
iv1 that result in identical keystreams. The algorithm being used to find the IV
pair is given in Appendix B. The algorithm is a bit complicated since a number
of optimization tricks are involved. The explanation of the optimization details
is omitted here since our focus is to develop a key recovery attack.

key = 123,149,193,87,42,150,117,4,209,101,85,57,46,117,49,243

IV = 92,80,241,10,0,217,47,224,48,203,0,45,204,0,0,17

IV ′ = 92,182,241,10,0,217,47,224,48,203,0,45,204,0,0,17

The identical keystreams are: 0xf09cc17d 41f12d3f 453ac0c3 cadcef9f f98fb964
ca6e576e b48b813 6c43da22 . . ..
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5.2 Key Recovery for Δiv1

After identical keystreams are generated from an IV pair with difference at iv1,
we proceed to recover the secret key. From Table 1 in Appendix A, we know the
value of (v, v′) since we know the difference at iv1 of the chosen IV pair, and we
also know the value of u since u = v or u = v′. In the following, we illustrate a
key recovery attack after identical keystreams have been detected.

1. In the expression of u in (15), (k1, k5, k9, s16H) is involved. Note that there
are only two possible values of the 31-bit u. We try all the possible values
of (k1, k5, k9, s16H), then there would be 28×3+16 × 2−31 × 2 = 210 possible
values of (k1, k5, k9, s16H) that generate the two possible values of u. The
complexity of this step is 240.

2. Next we use the expression of s16 in (14). For each of the 210 possible values
of (k1, k5, k9, s16H), we try all the possible values of (k0, k4, k10, k13, k15)
and check whether the values of s16H is computed correctly or not. There
would be 28×5 × 2−16 = 224 possible values of (k0, k4, k10, k13, k15) left.
Considering that there are 210 possible values of (k1, k5, k9, s16H), about
210 × 224 = 234 possible values of (k0, k1, k4, k5, k9, k10, k13, k15, s16H)
remain. The complexity of this step is 28×5 × 210 = 250.

3. Then we use the expression of v in (14). For each of the 234 possible values
of (k0, k1, k4, k5, k9, k10, k13, k15, s16H), we try all the possible values of
(k11, k14) and check whether the value of v is correct or not. A random
value of (k11, k14) would pass the test with probability 28×2 × 2−31 = 2−15

Considering that there are 234 possible values of (k0, k1, k4, k5, k9, k10, k13,
k15, s16H), about 234 × 2−15 = 219 possible values of (k0, k1, k4, k5, k9, k10,
k11, k13, k14, k15) remain. The complexity of this step is 28×2 × 234 = 250.

4. For each of the 219 possible values of (k0, k1, k4, k5, k9, k10, k11, k13, k14,
k15), we recover the remaining 6 key bytes (k2,k3,k6,k7,k8,k12) by exhaustive
search. The complexity of this step is 219 × 28×6 = 267.

The overall computational complexity to recover a key is 240 +250+250+267 ≈
267. And we need about 254 IVs in the attack. Note that the complexity in the
first, second and third steps can be significantly reduced with optimization since
we are dealing with simple functions. For example, meet-in-the-middle attack
can be used in the first step, and the sum of a few key bytes can be considered
in the second and third steps. However, the complexity of those three steps has
little effect on the overall complexity of the attack, so we do not present the
details of the optimization here.

6 Improving ZUC 1.4

From the analysis in Sect. 3, the weakness of the initialization comes from the
non-injective update of the LFSR. To fix the flaw, we proposed the tweak in
the rump session of Asiacrypt 2010. Instead of using the XOR operation, it is
better to use addition modulo operation over GF (231 − 1). More specifically,



274 H. Wu et al.

the operation s16 = v ⊕ u is changed to s16 = v + u mod (231 − 1). With this
tweak, the difference in v would always result in the difference in s16 if there
is no difference in u, and the attack against ZUC 1.4 can no longer be applied.
In the later versions ZUC 1.5 and 1.6 (ZUC 1.5 and 1.6 have almost the same
specifications), the computation of s16 is modified using our suggested method.

7 Conclusion

In this paper, we developed two chosen IV attacks against the initialization of
ZUC 1.4. In our attacks, identical keystreams are generated from different IVs,
then key recovery attacks are applied. Our attacks are independent of the number
of steps in initialization. The lesson from this paper is that when non-injective
functions are used in cipher design, we should pay special attention to ensure
that the difference cannot be eliminated with high probability.
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A The List of Possible v and v′ for Collision

Table 1. The list of possible v, v′

Index v v′ Δiv Index v v′ Δiv Index v v′ Δiv

1 0x3fff8000 0x40007fff 0xff 86 0x3fffd555 0x40002aaa 0x55 171 0x7fffaaaa 0x5555 0xaa

2 0x3fff8101 0x40007efe 0xfd 87 0x3fffd656 0x400029a9 0x53 172 0x7fffabab 0x5454 0xa8

3 0x3fff8202 0x40007dfd 0xfb 88 0x3fffd757 0x400028a8 0x51 173 0x7fffacac 0x5353 0xa6

4 0x3fff8303 0x40007cfc 0xf9 89 0x3fffd858 0x400027a7 0x4f 174 0x7fffadad 0x5252 0xa4

5 0x3fff8404 0x40007bfb 0xf7 90 0x3fffd959 0x400026a6 0x4d 175 0x7fffaeae 0x5151 0xa2

6 0x3fff8505 0x40007afa 0xf5 91 0x3fffda5a 0x400025a5 0x4b 176 0x7fffafaf 0x5050 0xa0

7 0x3fff8606 0x400079f9 0xf3 92 0x3fffdb5b 0x400024a4 0x49 177 0x7fffb0b0 0x4f4f 0x9e

8 0x3fff8707 0x400078f8 0xf1 93 0x3fffdc5c 0x400023a3 0x47 178 0x7fffb1b1 0x4e4e 0x9c

9 0x3fff8808 0x400077f7 0xef 94 0x3fffdd5d 0x400022a2 0x45 179 0x7fffb2b2 0x4d4d 0x9a

10 0x3fff8909 0x400076f6 0xed 95 0x3fffde5e 0x400021a1 0x43 180 0x7fffb3b3 0x4c4c 0x98

11 0x3fff8a0a 0x400075f5 0xeb 96 0x3fffdf5f 0x400020a0 0x41 181 0x7fffb4b4 0x4b4b 0x96

12 0x3fff8b0b 0x400074f4 0xe9 97 0x3fffe060 0x40001f9f 0x3f 182 0x7fffb5b5 0x4a4a 0x94

13 0x3fff8c0c 0x400073f3 0xe7 98 0x3fffe161 0x40001e9e 0x3d 183 0x7fffb6b6 0x4949 0x92

14 0x3fff8d0d 0x400072f2 0xe5 99 0x3fffe262 0x40001d9d 0x3b 184 0x7fffb7b7 0x4848 0x90

15 0x3fff8e0e 0x400071f1 0xe3 100 0x3fffe363 0x40001c9c 0x39 185 0x7fffb8b8 0x4747 0x8e

16 0x3fff8f0f 0x400070f0 0xe1 101 0x3fffe464 0x40001b9b 0x37 186 0x7fffb9b9 0x4646 0x8c

17 0x3fff9010 0x40006fef 0xdf 102 0x3fffe565 0x40001a9a 0x35 187 0x7fffbaba 0x4545 0x8a

18 0x3fff9111 0x40006eee 0xdd 103 0x3fffe666 0x40001999 0x33 188 0x7fffbbbb 0x4444 0x88

19 0x3fff9212 0x40006ded 0xdb 104 0x3fffe767 0x40001898 0x31 189 0x7fffbcbc 0x4343 0x86

20 0x3fff9313 0x40006cec 0xd9 105 0x3fffe868 0x40001797 0x2f 190 0x7fffbdbd 0x4242 0x84

21 0x3fff9414 0x40006beb 0xd7 106 0x3fffe969 0x40001696 0x2d 191 0x7fffbebe 0x4141 0x82

22 0x3fff9515 0x40006aea 0xd5 107 0x3fffea6a 0x40001595 0x2b 192 0x7fffbfbf 0x4040 0x80

23 0x3fff9616 0x400069e9 0xd3 108 0x3fffeb6b 0x40001494 0x29 193 0x7fffc0c0 0x3f3f 0x7e

24 0x3fff9717 0x400068e8 0xd1 109 0x3fffec6c 0x40001393 0x27 194 0x7fffc1c1 0x3e3e 0x7c

25 0x3fff9818 0x400067e7 0xcf 110 0x3fffed6d 0x40001292 0x25 195 0x7fffc2c2 0x3d3d 0x7a

26 0x3fff9919 0x400066e6 0xcd 111 0x3fffee6e 0x40001191 0x23 196 0x7fffc3c3 0x3c3c 0x78

27 0x3fff9a1a 0x400065e5 0xcb 112 0x3fffef6f 0x40001090 0x21 197 0x7fffc4c4 0x3b3b 0x76

28 0x3fff9b1b 0x400064e4 0xc9 113 0x3ffff070 0x40000f8f 0x1f 198 0x7fffc5c5 0x3a3a 0x74

29 0x3fff9c1c 0x400063e3 0xc7 114 0x3ffff171 0x40000e8e 0x1d 199 0x7fffc6c6 0x3939 0x72

30 0x3fff9d1d 0x400062e2 0xc5 115 0x3ffff272 0x40000d8d 0x1b 200 0x7fffc7c7 0x3838 0x70

31 0x3fff9e1e 0x400061e1 0xc3 116 0x3ffff373 0x40000c8c 0x19 201 0x7fffc8c8 0x3737 0x6e

32 0x3fff9f1f 0x400060e0 0xc1 117 0x3ffff474 0x40000b8b 0x17 202 0x7fffc9c9 0x3636 0x6c

33 0x3fffa020 0x40005fdf 0xbf 118 0x3ffff575 0x40000a8a 0x15 203 0x7fffcaca 0x3535 0x6a

34 0x3fffa121 0x40005ede 0xbd 119 0x3ffff676 0x40000989 0x13 204 0x7fffcbcb 0x3434 0x68

35 0x3fffa222 0x40005ddd 0xbb 120 0x3ffff777 0x40000888 0x11 205 0x7fffcccc 0x3333 0x66

36 0x3fffa323 0x40005cdc 0xb9 121 0x3ffff878 0x40000787 0xf 206 0x7fffcdcd 0x3232 0x64

37 0x3fffa424 0x40005bdb 0xb7 122 0x3ffff979 0x40000686 0xd 207 0x7fffcece 0x3131 0x62

38 0x3fffa525 0x40005ada 0xb5 123 0x3ffffa7a 0x40000585 0xb 208 0x7fffcfcf 0x3030 0x60

39 0x3fffa626 0x400059d9 0xb3 124 0x3ffffb7b 0x40000484 0x9 209 0x7fffd0d0 0x2f2f 0x5e

40 0x3fffa727 0x400058d8 0xb1 125 0x3ffffc7c 0x40000383 0x7 210 0x7fffd1d1 0x2e2e 0x5c

41 0x3fffa828 0x400057d7 0xaf 126 0x3ffffd7d 0x40000282 0x5 211 0x7fffd2d2 0x2d2d 0x5a

42 0x3fffa929 0x400056d6 0xad 127 0x3ffffe7e 0x40000181 0x3 212 0x7fffd3d3 0x2c2c 0x58

43 0x3fffaa2a 0x400055d5 0xab 128 0x3fffff7f 0x40000080 0x1 213 0x7fffd4d4 0x2b2b 0x56

44 0x3fffab2b 0x400054d4 0xa9 129 0x7fff8080 0x7f7f 0xfe 214 0x7fffd5d5 0x2a2a 0x54

45 0x3fffac2c 0x400053d3 0xa7 130 0x7fff8181 0x7e7e 0xfc 215 0x7fffd6d6 0x2929 0x52

46 0x3fffad2d 0x400052d2 0xa5 131 0x7fff8282 0x7d7d 0xfa 216 0x7fffd7d7 0x2828 0x50

47 0x3fffae2e 0x400051d1 0xa3 132 0x7fff8383 0x7c7c 0xf8 217 0x7fffd8d8 0x2727 0x4e

48 0x3fffaf2f 0x400050d0 0xa1 133 0x7fff8484 0x7b7b 0xf6 218 0x7fffd9d9 0x2626 0x4c

49 0x3fffb030 0x40004fcf 0x9f 134 0x7fff8585 0x7a7a 0xf4 219 0x7fffdada 0x2525 0x4a

50 0x3fffb131 0x40004ece 0x9d 135 0x7fff8686 0x7979 0xf2 220 0x7fffdbdb 0x2424 0x48

51 0x3fffb232 0x40004dcd 0x9b 136 0x7fff8787 0x7878 0xf0 221 0x7fffdcdc 0x2323 0x46

52 0x3fffb333 0x40004ccc 0x99 137 0x7fff8888 0x7777 0xee 222 0x7fffdddd 0x2222 0x44

53 0x3fffb434 0x40004bcb 0x97 138 0x7fff8989 0x7676 0xec 223 0x7fffdede 0x2121 0x42

54 0x3fffb535 0x40004aca 0x95 139 0x7fff8a8a 0x7575 0xea 224 0x7fffdfdf 0x2020 0x40

55 0x3fffb636 0x400049c9 0x93 140 0x7fff8b8b 0x7474 0xe8 225 0x7fffe0e0 0x1f1f 0x3e

56 0x3fffb737 0x400048c8 0x91 141 0x7fff8c8c 0x7373 0xe6 226 0x7fffe1e1 0x1e1e 0x3c

57 0x3fffb838 0x400047c7 0x8f 142 0x7fff8d8d 0x7272 0xe4 227 0x7fffe2e2 0x1d1d 0x3a

58 0x3fffb939 0x400046c6 0x8d 143 0x7fff8e8e 0x7171 0xe2 228 0x7fffe3e3 0x1c1c 0x38

59 0x3fffba3a 0x400045c5 0x8b 144 0x7fff8f8f 0x7070 0xe0 229 0x7fffe4e4 0x1b1b 0x36

60 0x3fffbb3b 0x400044c4 0x89 145 0x7fff9090 0x6f6f 0xde 230 0x7fffe5e5 0x1a1a 0x34

61 0x3fffbc3c 0x400043c3 0x87 146 0x7fff9191 0x6e6e 0xdc 231 0x7fffe6e6 0x1919 0x32

62 0x3fffbd3d 0x400042c2 0x85 147 0x7fff9292 0x6d6d 0xda 232 0x7fffe7e7 0x1818 0x30

63 0x3fffbe3e 0x400041c1 0x83 148 0x7fff9393 0x6c6c 0xd8 233 0x7fffe8e8 0x1717 0x2e

64 0x3fffbf3f 0x400040c0 0x81 149 0x7fff9494 0x6b6b 0xd6 234 0x7fffe9e9 0x1616 0x2c

65 0x3fffc040 0x40003fbf 0x7f 150 0x7fff9595 0x6a6a 0xd4 235 0x7fffeaea 0x1515 0x2a

66 0x3fffc141 0x40003ebe 0x7d 151 0x7fff9696 0x6969 0xd2 236 0x7fffebeb 0x1414 0x28

67 0x3fffc242 0x40003dbd 0x7b 152 0x7fff9797 0x6868 0xd0 237 0x7fffecec 0x1313 0x26

68 0x3fffc343 0x40003cbc 0x79 153 0x7fff9898 0x6767 0xce 238 0x7fffeded 0x1212 0x24

69 0x3fffc444 0x40003bbb 0x77 154 0x7fff9999 0x6666 0xcc 239 0x7fffeeee 0x1111 0x22

70 0x3fffc545 0x40003aba 0x75 155 0x7fff9a9a 0x6565 0xca 240 0x7fffefef 0x1010 0x20

71 0x3fffc646 0x400039b9 0x73 156 0x7fff9b9b 0x6464 0xc8 241 0x7ffff0f0 0xf0f 0x1e

72 0x3fffc747 0x400038b8 0x71 157 0x7fff9c9c 0x6363 0xc6 242 0x7ffff1f1 0xe0e 0x1c

73 0x3fffc848 0x400037b7 0x6f 158 0x7fff9d9d 0x6262 0xc4 243 0x7ffff2f2 0xd0d 0x1a

74 0x3fffc949 0x400036b6 0x6d 159 0x7fff9e9e 0x6161 0xc2 244 0x7ffff3f3 0xc0c 0x18

75 0x3fffca4a 0x400035b5 0x6b 160 0x7fff9f9f 0x6060 0xc0 245 0x7ffff4f4 0xb0b 0x16

76 0x3fffcb4b 0x400034b4 0x69 161 0x7fffa0a0 0x5f5f 0xbe 246 0x7ffff5f5 0xa0a 0x14

77 0x3fffcc4c 0x400033b3 0x67 162 0x7fffa1a1 0x5e5e 0xbc 247 0x7ffff6f6 0x909 0x12

78 0x3fffcd4d 0x400032b2 0x65 163 0x7fffa2a2 0x5d5d 0xba 248 0x7ffff7f7 0x808 0x10

79 0x3fffce4e 0x400031b1 0x63 164 0x7fffa3a3 0x5c5c 0xb8 249 0x7ffff8f8 0x707 0xe

80 0x3fffcf4f 0x400030b0 0x61 165 0x7fffa4a4 0x5b5b 0xb6 250 0x7ffff9f9 0x606 0xc

81 0x3fffd050 0x40002faf 0x5f 166 0x7fffa5a5 0x5a5a 0xb4 251 0x7ffffafa 0x505 0xa

82 0x3fffd151 0x40002eae 0x5d 167 0x7fffa6a6 0x5959 0xb2 252 0x7ffffbfb 0x404 0x8

83 0x3fffd252 0x40002dad 0x5b 168 0x7fffa7a7 0x5858 0xb0 253 0x7ffffcfc 0x303 0x6

84 0x3fffd353 0x40002cac 0x59 169 0x7fffa8a8 0x5757 0xae 254 0x7ffffdfd 0x202 0x4

85 0x3fffd454 0x40002bab 0x57 170 0x7fffa9a9 0x5656 0xac 255 0x7ffffefe 0x101 0x2
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B Generating Identical Keystreams for Δiv1

Here we describe more details of an algorithm that is used to generate identical
keystreams for the IV difference at iv1:

1. Initialize iv0, iv1, . . . , iv15 with 0. Set iv13 = 64.
2. Denote (iv4 + 8iv13 + 16iv10) as sum1 and guess sum1 with 1 of the 6376

possible values.
3. Guess iv2[1, 2], and compute v, until the condition v[1..7]− (v >> 8)[1..7] ≤ 1

is satisfied. If not possible, go to (2) .
4. Guess iv7 and iv11, and compute u, until u[24..31] = 0xff is satisfied. We

store the intermediate state s16. If not possible, go to (3).
5. Guess iv15 and re-compute u, until u[1..7] = u[9..15] and u[8] = 0 are satis-

fied. If not possible, go to (4).
6. Now we compare the current s16 with stored s16 to capture the change. By

properly changing iv2 and iv13(this is the reason iv13 is initialized as 64), we
can always change the current s16 back to the saved value. Hence, u[24..31]
will remain.

7. Determine iv1 as follows:
– If v[8] �= v[16], then if u[1..16] < v[1..16] is satisfied, iv1 = 256+u[1..16]−
v[1..16] and update v, otherwise, go to (5).

– If v[8] = v[16], then if u[1..16] >= v[1..16] is satisfied, iv1 = u[1..16]−
v[1..16] and update v, otherwise, go to (5).

8. Guess iv0, iv5 and iv14, compute v, until v[16..31] = 0xffff. If not possible,
go to (5).

9. If (u⊕ v)[1] = 1, let iv2 = iv2⊕ 2. Choose iv3 properly to ensure u[16..23] =
0xff. Check if we indeed have v = u, then output iv0, iv1, . . . , iv15. Other-
wise, go to (8).

In this algorithm, we restrict the forms of v and u to those starting with 0x7fff

to reduce the search space.
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Abstract. We analyze the security of the iterated Even-Mansour cipher
(a.k.a. key-alternating cipher), a very simple and natural construction of
a blockcipher in the random permutation model. This construction, first
considered by Even and Mansour (J. Cryptology, 1997) with a single
permutation, was recently generalized to use t permutations in the work
of Bogdanov et al. (EUROCRYPT 2012). They proved that the con-
struction is secure up to O(N2/3) queries (where N is the domain size
of the permutations), as soon as the number t of rounds is 2 or more.
This is tight for t = 2, however in the general case the best known attack
requires Ω(N t/(t+1)) queries. In this paper, we give asymptotically tight
security proofs for two types of adversaries:
1. for non-adaptive chosen-plaintext adversaries, we prove that the con-

struction achieves an optimal security bound of O(N t/(t+1)) queries;
2. for adaptive chosen-plaintext and ciphertext adversaries, we prove

that the construction achieves security up to O(N t/(t+2)) queries
(for t even). This improves previous results for t ≥ 6.

Our proof crucially relies on the use of a coupling to upper-bound the
statistical distance of the outputs of the iterated Even-Mansour cipher
to the uniform distribution.
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1 Introduction

The Even-Mansour Cipher. Even and Mansour [9] proposed the following
“minimal” construction of a blockcipher on message space {0, 1}n: given a public
permutation P on {0, 1}n (e.g. AES-128 with a fixed, publicly known key),
encrypt x by computing y = k1 ⊕ P (k0 ⊕ x), where k0, k1 are two n-bit keys.
Their work was motivated by the DESX construction proposed by Rivest (1984,
unpublished) and later formally analyzed by Kilian and Rogaway [13], in which
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Rivest suggested to strengthen DES against exhaustive key search by using two
independent pre-whitening and post-whitening keys xored respectively to the
input and the output of DES (thereby augmenting the key size of the resulting
cipher from 56 to 184 bits). Even and Mansour analyzed their proposal in the
random permutation model, where P is replaced by an oracle implementing a
random (invertible) permutation, publicly accessible to all parties including the
adversary. They showed that an adversary with black-box access to both P and
the cipher with a random unknown key (as well as their inverse), has only a
negligible probability to correctly inverse the cipher on an un-queried ciphertext
of its choice (or to compute the ciphertext corresponding to some un-queried
plaintext). In fact, the Even-Mansour cipher yields a (strong) pseudorandom
permutation (in the random permutation model) in the sense that the system
(P, EMP,(k0,k1)), where EMP,(k0,k1) is the Even-Mansour cipher built from P with
two uniformly random keys k0 and k1, is indistinguishable from an ideal system
(P, Q), where Q is an independent random permutation. More precisely, any
distinguisher has to make Ω(2n/2) queries to distinguish these two systems with
non-negligible advantage.

The Iterated Even-Mansour Cipher. The Even-Mansour cipher was re-
cently generalized in a very natural way by Bogdanov et al. [4] as follows: given
t public permutations P1, . . . , Pt on {0, 1}n, encrypt x by computing:

y = kt ⊕ Pt(kt−1 ⊕ Pt−1(· · · P1(k0 ⊕ x) · · · )) ,

where k0, . . . , kt are t + 1 keys of n bits. They used the moniker (first coined
in [7]) key alternating cipher for this construction, but we will prefer the name
iterated Even-Mansour cipher in this paper to emphasize that we work in the
random permutation model. We will refer to t as the number of rounds of the
construction.

The main result of [4] is a proof (again, in the random permutation model
for P1, . . . Pt) that the iterated Even-Mansour cipher with t ≥ 2 rounds is secure
(i.e., indistinguishable from an independent random permutation) up to O(N2/3)
queries (where N = 2n). They also gave a distinguishing attack (in fact a key-
recovery attack) requiring Ω(N t/(t+1)) queries. Hence, their analysis is tight for
t = 2, but they left the security gap for t > 2 as an interesting open problem.

Our Contribution. In this work, we strengthen the security bounds of [4]. We
obtain two distinct results depending on which type of adversaries we consider.
For non-adaptive chosen-plaintext (NCPA for short) adversaries, we prove that
the iterated Even-Mansour cipher with t rounds is secure up to O(N t/(t+1))
queries. Given that the attack described by [4] falls into this category of adver-
saries, this is tight up to constant factors. Tough this type of adversaries was
not explicitly considered by [4], we note that this improves their general bound
as soon as t ≥ 3.

For adaptive chosen-plaintext and ciphertext (CCA for short) adversaries (i.e.
the most powerful ones in terms of how queries may be issued to the system),
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we prove that the iterated Even-Mansour cipher with t rounds is secure up to
O(N t/(t+2)) queries when t is even. When t is odd, we get the same bound as for
t − 1 (since it is clear that adding a round to the construction cannot improve
the advantage of a distinguisher). Our bound becomes better than O(N2/3),
therefore improving [4]’s result, for t ≥ 6. In particular, for t = 6, we obtain an
improved security bound of O(N3/4) queries. Our findings are summarized in
Table 1.

Our Techniques. Our proof strategy is very different and much simpler than
the one of [4] (the counterpart of which is that for the interesting case of CCA
adversaries, we improve their results only for t “large”, where large means at
least 6). One of the main ingredient of our proof is a well-known tool of the the-
ory of Markov chains, namely the coupling technique. Indeed, a crucial step of our
proof is to upper-bound, for any possible tuple of plaintext queries (x1, . . . , xqe )
to the iterated Even-Mansour cipher, the statistical distance of the outputs of
the cipher to the uniform distribution, conditioned on some partial informa-
tion about the inner permutations P1, . . . , Pt (namely equations of the form
Pi(a) = b) that was gathered from the queries to these permutations. The out-
puts of permutations Pi, i = 1, . . . , t, when computing the ciphertexts for inputs
(x1, . . . , xqe ), can be seen as the state of a Markov chain, so that we can refor-
mulate the problem as studying how quick the distribution of this Markov chain
converges to the uniform (as a function of the number of rounds). The coupling
technique is one of the most efficient way to analyze this convergence rate (often
named the mixing time of the Markov chain), and this is exactly the technique
we adopt. Couplings were previously used in cryptography by Mironov [16] to
analyze the RC4 stream cipher, and more recently by Morris et al. [17] to study
maximally unbalanced Feistel networks and by Hoang and Rogaway [12] who
generalized the results of [17] to many variants of the Feistel construction. In
fact, our analysis was strongly inspired by the works of [17,12].

However, the coupling technique only enables to treat adversaries choosing
their queries to the cipher non-adaptively. To leverage the result from NCPA-
security to CCA-security, we use a composition strategy which is very similar to
what is often referred to as the “two weak make one strong” technique [14,15]. For
“classical” pseudorandom permutations (i.e. not build from ideal primitives as
the Even-Mansour cipher), this strategy enables to prove the following: if {Fk}
and {Gk′} are two permutation families secure against NCPA attacks (with
upper-bounds resp. εF and εG on the advantage of any NCPA-distinguisher),
then the composition {G−1

k′ ◦Fk} is secure against CCA attacks (with advantage
upper-bounded by εF + εG). This was proved by Maurer and Pietrzak [14] up
to logarithmic factors and then refined by Maurer et al. [15], in the formalism of
random systems. However, subtle complications appear when trying to use these
results directly because of the additional inner permutation oracles P1, . . . , Pt,
so that we prefer a more direct approach, very similar to the “H coefficients”
technique of Patarin [18].
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A Caveat. We warn that the value of our results is similar to security proofs in
the random oracle model [2], meaning that they offer no guarantee once the inner
permutations are instantiated with real, standard permutations [5]. They show
however that any attack beating our bounds cannot use the inner permutations
as black-boxes.

Table 1. Summary of our results. The NCPA (resp. CCA) column gives the constant c
such that the iterated Even-Mansour cipher is secure up to Nc queries against NCPA-
distinguishers (resp. CCA-distinguishers). Gray cells indicate when we improve the
N2/3 bound of [4]. The last column gives, for n = 128, the log in base 2 of the minimal
number of queries a CCA-distinguisher has to make to have advantage at least 1/2
in distinguishing the cipher from random (we only give this number when our bound
improves the one of [4]).

t NCPA CCA CCA (n = 128)

2 2/3 1/2 —
3 3/4 1/2 —
4 4/5 2/3 —
5 5/6 2/3 —
6 6/7 3/4 93
7 7/8 3/4 93
8 8/9 4/5 100

Related Work. We focus on security proofs in this work, but we stress that
quite a few papers explored attacks (mainly key-recovery ones) against the Even-
Mansour cipher. Daemen [6] gave a differential-style attack requiring qp (direct)
chosen queries to P and qe chosen plaintext queries to the cipher, with qpqe =
Ω(2n) (hence the total query complexity is minimized for qp = qe = Ω(2n/2)).
Later, Biryukov and Wagner [3] gave an attack requiring Ω(2n/2) queries to
both P and the cipher, but allowing to use known plaintexts rather than chosen
ones. However, their method does not allow any trade-off between queries to P
and the cipher as is possible in Daemen’s attack. Recently, Dunkelman et al. [8]
refined the work of [3] by giving a known-plaintext attack where such a trade-off
is possible, thereby providing an optimal attack on the Even-Mansour cipher.

On the provable-security side, Gentry and Ramzan [10] showed that the Even-
Mansour cipher remains secure when the random permutation oracle P is re-
placed by a Feistel construction with four rounds, where the round functions are
public random function oracles.

Open Problems. Our work settles the case of non-adaptive chosen-plaintext ad-
versaries; there remains however a gap for adaptive chosen-plaintext and cipher-
text attacks between the proven bound of O(N t/(t+2)) queries and the best attack
requiring Ω(N t/(t+1)) queries. The two practically appealing cases where all keys
are identical (as was for example recently proposed in the blockcipher LED [11]),
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and where all inner permutations are identical, also remain interesting directions
of research. It may even be possible that using both identical keys and a single
inner permutation provides some level of security greater than 2n/2.1

Organization. In Section 2, we introduce the general notation, formally de-
fine the adversarial model, and give the necessary background on couplings. In
Section 3, we prove our main result on the statistical distance of the outputs
of the iterated Even-Mansour cipher to the uniform distribution using a cou-
pling, which enables us to treat NCPA-adversaries. In Section 4, we deal with
CCA-adversaries.

2 Preliminaries

2.1 General Notation

In all the following, we fix an integer n ≥ 1. We denote In = {0, 1}n the set of
binary strings of length n and N = 2n. Given an integer q ≥ 1, we denote (In)∗q

the set of all sequences of pairwise distinct elements of In of length q. Given
integers q1, . . . , qt we denote (In)∗q1,...,qt = (In)∗q1 × · · · × (In)∗qt . We denote
(N)q = N(N − 1) · · · (N − q + 1) the falling factorial. Note that |(In)∗q| = (N)q.
We denote [i; j] the set of integers k such that i ≤ k ≤ j.

The set of permutations on In will be denoted Pn. Given P ∈ Pn and two
sequences x = (x1, . . . , xq) and y = (y1, . . . , yq) of (In)∗q, we will write P (x) = y
to mean that P (xi) = yi for i = 1, . . . , q. Given a tuple of permutations P =
(P1, . . . , Pt) ∈ (Pn)t and two sequences a = (a1, . . . , at) and b = (b1, . . . , bt) of
(In)∗q1,...,qt , with ai = (a1

i , . . . , aqi

i ) and bi = (b1
i , . . . , bqi

i ), we will write P (a) = b

to mean that Pi(ai) = bi for i = 1, . . . , t (i.e. Pi(aj
i ) = bj

i for j = 1, . . . , qi).
Given a value k ∈ {0, 1}n, ⊕k denotes the mapping x �→ x⊕ k from {0, 1}n to

itself. Fix an integer t ≥ 1. Let P = (P1, . . . , Pt) be a tuple of permutations on
{0, 1}n. Then the iterated Even-Mansour cipher associated with P is the cipher
with message space {0, 1}n and key space ({0, 1}n)t+1 where the permutation
associated with key k = (k0, . . . , kt) is defined as (see Fig. 1):

EMP ,k = ⊕kt ◦ Pt ◦ ⊕kt−1 ◦ · · · ◦ ⊕k1 ◦ P1 ◦ ⊕k0 .

We denote Ωt = (Pn)t × (In)t+1. An element (P , k) of Ωt names a tuple of
permutations and a key for the resulting Even-Mansour cipher.

2.2 Distinguishers

We consider distinguishers interacting with systems constituted of t + 1 per-
mutations. A query to such a system is a triplet (i, b, z) where i ∈ [1; t + 1]
names which permutation is being queried, b is a bit indicating whether the
1 Note however that, as observed by [4], using P and P −1 for the construction with

t = 2 rounds causes the security to drop to 2n/2, even with three independent keys.
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x P1

k0

P2

k1

Pt y

kt

Fig. 1. The iterated Even-Mansour cipher

query is forward or backward, and z ∈ {0, 1}n is the actual query to the per-
mutation. The goal of the distinguisher is to tell whether it is interacting with a
tuple of t + 1 uniformly random and independent (URI for short) permutations
(P1, . . . , Pt, Q), or with (P1, . . . , Pt, EMP ,k) where (P1, . . . , Pt) are URI and EMP ,k

is the Even-Mansour cipher associated with P = (P1, . . . , Pt) with a uniformly
random key k = (k0, . . . , kt). In the following we will refer to the first t per-
mutations of the system as the inner permutations, by opposition to the last
permutation of the system (which may be an independent random permutation
Q or the Even-Mansour cipher EMP ,k) to which we will refer to as the outer per-
mutation. A (q1, . . . , qt, qe)-distinguisher is a distinguisher that makes at most
qi queries to inner permutation Pi for i = 1, . . . , t and qe queries to the outer
permutation. We will consider only computationally unbounded distinguishers.
As usual we restrict ourself wlog to deterministic distinguishers that never make
redundant queries and always make the maximal number of allowed queries to
each permutation of the system.

The way we define chosen-plaintext/-ciphertext and adaptive/non-adaptive
distinguishers is very specific to the context of our work. The qualifier chosen-
plaintext/-ciphertext will only refer to the queries the distinguisher is allowed
to make to the outer permutation of the system (it will always be allowed to
make both forward and backward queries to the inner permutations). As well,
adaptivity will only refer to how the distinguisher is allowed to choose its queries
to the outer permutation (it will always be allowed to choose its queries to the
inner permutations adaptively), and also to whether the distinguisher is allowed
to query the inner permutations as a function of the answers received from
the outer permutation. We now give a precise definition of the two types of
distinguishers we consider: non-adaptive chosen-plaintext (NCPA) distinguishers
and adaptive chosen-plaintext and ciphertext (CCA) distinguishers.

Definition 1. A (q1, . . . , qt, qe)-NCPA-distinguisher runs in two phases:

1. in a first phase, it can only query the inner permutations (P1, . . . , Pt). These
queries can be adaptive, and both forward and backward queries are allowed.
During this phase it makes exactly qi queries to Pi for i = 1, . . . , t;

2. in a second phase, it chooses a tuple of qe non-adaptive2 forward queries
x = (x1, . . . , xqe ) to the outer permutation of the system, and receives the
corresponding answers.

2 By non-adaptive we mean that all queries have to be chosen before receiving any
corresponding answer from the outer permutation. However the choice of x may
depend on the answers received from the inner permutations during the first phase.
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A (q1, . . . , qt, qe)-CCA-distinguisher is the most general one: it is allowed to make
both forward and backward queries to all permutations of the system, in any order
it wishes (in particular it may interleave queries to the outer permutation and
to the inner permutations).

In all the following, the probability of an event E when D interacts with t + 1
URI permutations (P1, . . . , Pt, Q) will simply be denoted Pr∗[E], whereas the
probability of an event E when D interacts with (P1, . . . , Pt, EMP ,k), where
P = (P1, . . . , Pt) are URI permutations and the key k is uniformly random,
will simply be denoted Pr[E]. With these notations, the advantage of a distin-
guisher D is defined as | Pr[D(1n) = 1] − Pr∗[D(1n) = 1]| (we omit the oracles in
this notation since they can be deduced from the notation Pr[·] or Pr∗[·]). The
maximum advantage of a (q1, . . . , qt, qe)-ATK-distinguisher against the iterated
Even-Mansour cipher with t rounds (where ATK is NCPA or CCA) will be de-
noted Advatk

EM[t](q1, . . . , qt, qe). When considering distinguishers making at most
q queries in total, we simply denote Advatk

EM[t](q).

Remark 1. We warn that our NCPA-security notion should not be considered
as interesting in itself, but rather as a preliminary step towards proving CCA-
security. The reason why it is rather artificial is that once the distinguisher has
received the answers to its queries to the outer permutation, it is not allowed
to query the inner permutations any more. This is not satisfying since these
permutations are public primitives, and hence adversaries should be allowed to
query them in their entire discretion.

2.3 Total Variation Distance and Coupling

Given a finite event space Ω and two probability distributions μ and ν defined on
Ω, the total variation distance (or statistical distance) between μ and ν, denoted
‖μ − ν‖ is defined as:

‖μ − ν‖ = 1
2

∑

x∈Ω

|μ(x) − ν(x)| .

The following definitions can easily be seen equivalent:

‖μ − ν‖ = max
S⊂Ω

{μ(S) − ν(S)} = max
S⊂Ω

{ν(S) − μ(S)} = max
S⊂Ω

{|μ(S) − ν(S)|} .

A coupling of μ and ν is a distribution λ on Ω × Ω such that for all x ∈
Ω,

∑
y∈Ω λ(x, y) = μ(x) and for all y ∈ Ω,

∑
x∈Ω λ(x, y) = ν(y). In other

words, λ is a joint distribution whose marginal distributions are resp. μ and
ν. The fundamental result of the coupling technique is the following one. For
completeness, we provide the proof in Appendix A.

Lemma 1 (Coupling Lemma). Let μ and ν be probability distributions on
a finite event space Ω, let λ be a coupling of μ and ν, and let (X, Y ) ∼ λ
( i.e. (X, Y ) is a random variable sampled according to distribution λ). Then
‖μ − ν‖ ≤ Pr[X �= Y ].
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For the analysis of CCA attacks, we will rely on the following observation.

Lemma 2. Let Ω be some finite event space and ν be the uniform probability
distribution on Ω. Let μ be a probability distribution on Ω such that ‖μ−ν‖ ≤ ε.
Then there is a set S ⊂ Ω such that:

– |S| ≥ (1 − √
ε)|Ω|

– ∀x ∈ S, μ(x) ≥ (1 − √
ε)ν(x)

Proof. Define S = {x ∈ Ω : μ(x) ≥ (1 − √
ε)ν(x)}. We will show that |S| ≥

(1 − √
ε)|Ω|. Assume for contradiction that |S| < (1 − √

ε)|Ω|, or equivalently
|S̄| >

√
ε|Ω|, i.e. ν(S̄) >

√
ε. By definition, for any x ∈ S̄, ν(x)−μ(x) >

√
εν(x).

Consequently,
ν(S̄) − μ(S̄) >

√
εν(S̄) > (

√
ε)2 = ε ,

a contradiction with ‖μ − ν‖ ≤ ε. ��

3 Security against Non-adaptive Distinguishers

In this section, we start with dealing with NCPA-distinguishers. The crucial
point will be to upper bound the statistical distance between the outputs of the
iterated Even-Mansour cipher conditioned on partial information on the inner
permutations (namely P (a) = b for some tuples a, b ∈ (In)∗q1,...,qt) and the
uniform distribution on (In)∗qe . We introduce the following important definitions
and notations.

Definition 2. Let q1, . . . , qt, qe be positive integers. Fix tuples a, b ∈ (In)∗q1,...,qt

and x ∈ (In)∗qe . We denote μx(·|P (a) = b) the distribution of EMP ,k(x) condi-
tioned on the event P (a) = b ( i.e. when the key k = (k0, . . . , kt) is uniformly
random and the permutations P = (P1, . . . , Pt) are uniformly random among
permutations satisfying P (a) = b). We also denote μ∗

qe
= 1/(N)qe the uniform

distribution on (In)∗qe .

We have the following expression for μx(·|P (a) = b).

Lemma 3. Let a, b ∈ (In)∗q1,...,qt and x ∈ (In)∗qe . Then for any y ∈ (In)∗qe

one has:

μx(y|P (a) = b) =
#{(P , k) ∈ Ωt : P (a) = b ∧ EMP ,k(x) = y}

|Ωt|/
∏t

i=1(N)qi

.

Proof. This follows easily from the observation that the number of (P , k) ∈ Ωt

such that P (a) = b is |Ωt|/
∏t

i=1(N)qi . ��
The following lemma states that the advantage of a NCPA-distinguisher is upper-
bounded by the total variation distance between μx(·|P (a) = b) and μ∗

qe
. This is
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a classical result regarding the advantage of the best NCPA-distinguisher for a
pseudorandom permutation, however we need to adapt it here to fit the random
permutation model.

Lemma 4. Let q1, . . . , qt, qe be positive integers. Assume that there exists α such
that for any tuples a, b ∈ (In)∗q1,...,qt and x ∈ (In)∗qe , one has

‖μx(·|P (a) = b) − μ∗
qe

‖ ≤ α .

Then Advncpa
EM[t](q1, . . . , qt, qe) ≤ α.

Proof. Fix a (q1, . . . , qt, qe)-NCPA-distinguisher D. Such a distinguisher first
queries the inner permutations (P1, . . . , Pt). Let τ be the resulting transcript,
i.e. the ordered sequence of q1 + . . . + qt queries with the corresponding answer
(i, b, z, z′), where i ∈ [1; t] names which permutation is being queried, b is a bit
indicating whether the query is forward or backward, z ∈ {0, 1}n is the actual
query and z′ the answer. Let also Φ be the function that maps a tuple of permu-
tations P = (P1, . . . , Pt) to the transcript of the first phase of the attack when
D interacts with (P1, . . . , Pt, ∗), where ∗ is either an independent random per-
mutation Q or EMP ,k (this is clearly irrelevant since D does not query the outer
permutation during the first phase of the attack). We say that a transcript τ is
consistent if there exists a tuple of permutations P such that Φ(P ) = τ , and we
denote Γ the set of consistent transcripts. Finally, from a consistent transcript τ ,
we build the sequences a(τ), b(τ) ∈ (In)∗q1,...,qt as follows: let (i, b, z, z′) be the
j-th query and corresponding answer to Pi in the transcript. If this is a forward
query (b = 0), then we define aj

i = z and bj
i = z′; else, when this is a backward

query (b = 1), we define aj
i = z′ and bj

i = z. Note that for a consistent transcript
τ , Φ(P ) = τ iff P (a(τ)) = b(τ). The number of consistent transcripts can be
exactly determined:

|Γ | =
t∏

i=1
(N)qi . (1)

This can be easily seen as follows. The first query of D is fixed in all executions.
Assume wlog that this is a query to P1. There are exactly N possible answer.
The next query is determined by the answer received to the first query. If this
is again a query to P1, there are now N − 1 possible answers, whereas if this a
query to Pi, i �= 1, there are N possible answers. This can be easily extended by
induction to obtain the above claim.

The tuple of non-adaptive plaintext queries x = (x1, . . . , xqe ) ∈ (In)∗qe of D
to the outer permutation is a deterministic function of the transcript τ of the
first phase of the attack. Let Ψ denote the function which maps a consistent
transcript τ to the corresponding tuple of queries. The output of D is then a
deterministic function of τ and the answers y = (y1, . . . , yqe) received from the
outer permutation to the tuple of queries Ψ(τ). For any consistent transcript τ ,
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we denote Στ the set of tuples y such that D outputs 1 when receiving answers
y to the queries Ψ(τ). Then, by definition we have:

Pr∗[D(1n) = 1] =
∑

τ∈Γ

∑

y∈Στ

#{(P , Q) ∈ (Pn)t+1 : Φ(P ) = τ ∧ Q(Ψ(τ)) = y}
|Pn|t+1

=
∑

τ∈Γ

∑

y∈Στ

#{(P , Q) ∈ (Pn)t+1 : P (a(τ)) = b(τ) ∧ Q(Ψ(τ)) = y}
|Pn|t+1

=
∑

τ∈Γ

∑

y∈Στ

1
(N)qe

∏t
i=1(N)qi

. (2)

Also, we have:

Pr[D(1n) = 1] =
∑

τ∈Γ

∑

y∈Στ

#{(P , k) ∈ Ωt : Φ(P ) = τ ∧ EMP ,k(Ψ(τ)) = y}
|Ωt| . (3)

We now use the assumption that, for all tuples a, b ∈ (In)∗q1,...,qt and x ∈ (In)∗qe ,
one has ‖μx(·|P (a) = b) − μ∗

qe
‖ ≤ α. By Lemma 3, this exactly means that for

all tuples a, b, x and any subset S ⊂ (In)∗qe , one has:
∣∣∣∣∣∣

∑

y∈S

#{(P , k) ∈ Ωt : P (a) = b ∧ EMP ,k(x) = y}
|Ωt|/

∏t
i=1(N)qi

−
∑

y∈S

1
(N)qe

∣∣∣∣∣∣
≤ α .

For any τ ∈ Γ we can apply the above inequality with (a, b) = (a(τ), b(τ)),
x = Ψ(τ), and S = Στ to get:

∣∣∣∣∣
∑

y∈Στ

#{(P , k) ∈ Ωt : P (a(τ)) = b(τ) ∧ EMP ,k(Ψ(τ)) = y}
|Ωt| −

∑

y∈Στ

1
(N)qe

∏t
i=1(N)qi

∣∣∣∣∣ ≤ α
∏t

i=1(N)qi

. (4)

Combining Eqs. (2-3-4), and using that for a consistent transcript τ , Φ(P ) = τ
iff P (a(τ)) = b(τ), we obtain:

|Pr[D(1n) = 1] − Pr∗[D(1n) = 1]| ≤
∑

τ∈Γ

α
∏t

i=1(N)qi

.

Finally, we deduce using Eq. (1) that the advantage of D is less than α, which
concludes the proof. ��
The rest of this section is devoted to establishing an appropriate upper bound α
for ‖μx(·|P (a) = b) − μ∗

qe
‖ as required to apply Lemma 4. The following lemma

can be regarded as the main contribution of this work.
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Lemma 5. Let q1, . . . , qt, qe be positive integers. Fix tuples a, b ∈ (In)∗q1,...,qt

and x ∈ (In)∗qe . Then:

‖μx(·|P (a) = b) − μ∗
qe

‖ ≤ 2t qe

∏t
i=1 qi

N t
.

Proof. Fix tuples a, b ∈ (In)∗q1,...,qt and x ∈ (In)∗qe , with x = (x1, . . . , xqe ). For
each � ∈ [0; qe], let (z1, . . . , zqe) be a tuple of queries such that zi = xi for i ≤ �,
and zi is uniformly random in {0, 1}n \ {z1, . . . , zi−1} for i > �. Denote ν� the
distribution of the tuple of qe outputs when EMP ,k receives inputs (z1, . . . , zqe),
conditioned on P (a) = b. Note that ν0 = μ∗

qe
since for � = 0 the tuple of inputs

is uniformly random in (In)∗qe , and νqe = μx(·|P (a) = b). Hence we have:

‖μx(·|P (a) = b) − μ∗
qe

‖ = ‖νqe − ν0‖ ≤
qe−1∑

l=0

‖ν�+1 − ν�‖ . (5)

It remains to upper bound the total variation distance between ν�+1 and ν�, for
each � ∈ [0; qe − 1]. For this, we will construct a suitable coupling of the two
distributions. Note that we only have to consider the first � + 1 elements of the
two tuples of outputs since for both distributions, the i-th inputs for i > � + 1
are sampled at random. In other words, ‖ν�+1 − ν�‖ = ‖ν′

�+1 − ν′
�‖, where ν′

�+1
and ν′

� are the respective distributions of the � + 1 first outputs of the cipher. To
define the coupling of ν′

�+1 and ν′
�, we consider the iterated Even-Mansour cipher

EMP ,k, where P satisfies P (a) = b, that receives inputs x′ = (x1, . . . , x�+1), so
that EMP ,k(x′) is distributed according to ν′

�+1. We will construct a second Even-
Mansour cipher EMP ′,k′ , with inputs u = (u1, . . . , u�+1), satisfying the following
properties:
1) ui = xi for i = 1, . . . , �, and u�+1 is uniformly random in {0, 1}n\{u1, . . . , u�};
2) for i = 1, . . . , � + 1, if the outputs of the j-th inner permutation in the

computations of EMP ,k(xi) and EMP ′,k′(ui) are equal, then this also holds for
any subsequent inner permutation;

3) P ′ is uniformly random among permutation tuples satisfying P ′(a) = b and
k′ is uniformly random in (In)t+1.

Note that properties 1) and 3) will ensure that EMP ′,k′(u) is distributed according
to ν′

�. We warn that (P ′, k′) will not be independent from (P , k), however this
is not required for the Coupling Lemma to apply. The only requirement is that
both (P , k) and (P ′, k′) have the correct marginal distribution.

We now describe how the second iterated Even-Mansour cipher is constructed.
First, it uses exactly the same keys as the original one, namely k′ = (k0, . . . , kt).
In order to construct permutations P ′ (on points encountered when computing
EMP ′,k′(u)), we compare the computations of EMP ,k(xi) and EMP ′,k′(ui) for i =
1, . . . , � + 1. For j = 1, . . . , t, we define xi

j as the output of Pj when computing
EMP ,k(xi), and similarly ui

j as the output of P ′
j when computing EMP ′,k′(ui), i.e.

xi
j = Pj(kj−1 ⊕ Pj−1(· · · P1(xi ⊕ k0) · · · ))

and ui
j = P ′

j(kj−1 ⊕ P ′
j−1(· · · P ′

1(ui ⊕ k0) · · · )) .
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We also let xi
0 = xi and ui

0 = ui. For j = 0, . . . , t − 1 we use the following rules:

i) if ui
j ⊕kj ∈ aj+1, then ui

j+1 = P ′
j+1(ui

j ⊕kj) is determined by the constraint
P ′(a) = b;

ii) if ui
j ⊕ kj /∈ aj+1 and xi

j ⊕ kj ∈ aj+1, then we choose ui
j+1 = P ′

j+1(ui
j ⊕ kj)

uniformly at random in {0, 1}n \ (bj+1 ∪ {u1
j+1, . . . , ui−1

j+1});
iii) if ui

j ⊕ kj /∈ aj+1 and xi
j ⊕ kj /∈ aj+1, then we define ui

j+1 = xi
j+1, that is

P ′
j+1(ui

j ⊕ kj) = Pj+1(xi
j ⊕ kj).

Property 2) can easily be seen to follow from these rules and the fact that the keys
are the same in both ciphers. Since P is uniformly random among permutation
tuples satisfying P (a) = b, so is P ′. This follows from the fact that when using
rule iii), xi

j ⊕ kj /∈ aj+1 implies that xi
j+1 is uniformly random in {0, 1}n \

(bj+1 ∪{x1
j+1, . . . , xi−1

j+1}), and hence ui
j+1 is uniformly random in {0, 1}n\(bj+1 ∪

{u1
j+1, . . . , ui−1

j+1}) as well. This justifies Property 3). Hence, the joint distribution
probability we created for the random variable (EMP ,k(x′), EMP ′,k′(u)) is such
that the marginal distributions of EMP ,k(x′) and EMP ′,k′(u) are respectively ν′

�+1
and ν′

�. We can now apply Lemma 1 to obtain:

‖ν�+1 − ν�‖ = ‖ν′
�+1 − ν′

�‖ ≤ Pr
[
(x1

t , . . . , x�+1
t ) �= (u1

t , . . . , u�+1
t )

]

where we used EMP ,k(xi) = xi
t ⊕ kt+1 and EMP ′,k′(ui) = ui

t ⊕ kt+1. Clearly,
the rules (combined with the fact that ui = xi for i = 1, . . . , �) imply that
ui

j = xi
j for i = 1, . . . , � and j = 0, . . . , t, so that the above expression simplifies

to ‖ν�+1 − ν�‖ ≤ Pr[x�+1
t �= u�+1

t ]. Hence, we are left with the task of upper-
bounding the probability not to equate x�+1

j and u�+1
j in any of the t rounds.

Consider the first round. Unless we have u�+1
0 ⊕ k0 ∈ a1 or x�+1

0 ⊕ k0 ∈ a1,
we will use rule iii) so that we will have u�+1

1 = x�+1
1 . Since the size of a1 is

q1, and k0 is uniformly random, we see that Pr[x�+1
1 �= u�+1

1 ] ≤ 2q1/N . Assume
now that x�+1

j �= u�+1
j for some j ∈ [1; t − 1]. As in the preceding case, unless

u�+1
j ⊕kj ∈ aj+1 or x�+1

j ⊕kj ∈ aj+1, we will have u�+1
j+1 = x�+1

j+1, so that Pr[x�+1
j+1 �=

u�+1
j+1|x�+1

j �= u�+1
j ] ≤ 2qj+1/N . Using a chain of conditional probabilities, we get:

‖ν�+1 − ν�‖ ≤ Pr[x�+1
t �= u�+1

t ] ≤ 2q1

N
· 2q2

N
· · · 2qt

N
= 2t

∏t
i=1 qi

N t
.

Finally, using Eq. (5), we see that

‖μx(·|P (a) = b) − μ∗
qe

‖ = ‖νqe − ν0‖ ≤ 2t qe

∏t
i=1 qi

N t
,

as claimed. ��
Remark 2. It can easily be checked that the final key kt does not play any role
in the proof of Lemma 5. Hence it also holds for iterated Even-Mansour cipher
without the last key.
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Remark 3. The proof of Lemma 5 can be straightforwardly extended to handle
distinguishers that are allowed to make both forward and backward queries to
the outer permutation, in a non-adaptive way (such adversaries could be named
NCCA). However, notations become quite cumbersome, so that we omit the
details.

Combining Lemmata 4 and 5, we obtain the following theorem.

Theorem 1. Let q1, . . . , qt, qe be positive integers. Then:

Advncpa
EM[t](q1, . . . , qt, qe) ≤ 2t qe

∏t
i=1 qi

N t
.

In particular, for any positive integer q:

Advncpa
EM[t](q) ≤ 2t qt+1

N t
.

This remains true for the iterated Even-Mansour cipher where the last key kt is
omitted.

More concretely, the iterated Even-Mansour cipher with t rounds achieves NCPA-
security up to N

t
t+1 queries. This is optimal (neglecting constant factors) con-

sidering the attack described in [4].

4 From Non-adaptive to Adaptive Distinguishers

In this section, we turn to the case of CCA-distinguishers. For this, we will need
the following refinement to Lemma 4, which relies on a stronger assumption on
the distribution of the outputs of the iterated Even-Mansour cipher.

Lemma 6. Let q1, . . . , qt, qe be positive integers. Assume that there exists β such
that for any tuples a, b ∈ (In)∗q1,...,qt and x, y ∈ (In)∗qe , one has

Pr[P (a) = b ∧ EMP ,k(x) = y] ≥ 1 − β

(N)qe

∏t
i=1(N)qi

.

Then Advcca
EM[t](q1, . . . , qt, qe) ≤ β.

Proof. The proof is very similar to the one of Lemma 4. Fix a (q1, . . . , qt, qe)-
CCA-distinguisher D. Let τ be the transcript of the interaction of D with the
system of t + 1 permutations, i.e. the ordered sequence of q1 + . . . + qt + qe

queries with the corresponding answer (i, b, z, z′), where i ∈ [1; t + 1] names
which permutation is being queried, b is a bit indicating whether the query is
forward or backward, z ∈ {0, 1}n is the actual query and z′ the answer. Let
also Φ be the function that maps a tuple of permutations (P , Pt+1) ∈ (Pn)t+1

to the transcript of the attack when D interacts with (P , Pt+1). We say that
a transcript is consistent if there exists a tuple of permutations (P , Pt+1) such
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that Φ(P , Pt+1) = τ , and we denote Γ the set of consistent transcripts. Finally,
from a consistent transcript τ , we build the sequences a(τ), b(τ) ∈ (In)∗q1,...,qt

and x(τ), y(τ) ∈ (In)∗qe as follows. For i = 1, . . . , t, let (i, b, z, z′) be the j-th
query and corresponding answer to Pi in the transcript. If this is a forward
query (b = 0), then we define aj

i = z and bj
i = z′; else, when this is a backward

query (b = 1), we define aj
i = z′ and bj

i = z. Similarly, let (t + 1, b, z, z′) be
the j-th query and corresponding answer to the outer permutation Pt+1 in the
transcript. If this is a forward query (b = 0), then we define xj = z and yj = z′;
else, when this is a backward query (b = 1), we define xj = z′ and yj = z.
Note that for a consistent transcript τ , Φ(P , Pt+1) = τ iff P (a(τ)) = b(τ) and
Pt+1(x(τ)) = y(τ).

The output of D is a deterministic function of the transcript. We let Σ denote
the set of consistent transcripts τ such that D outputs 1 when the transcript is
τ . Then, by definition we have:

Pr∗[D(1n) = 1] =
∑

τ∈Σ

#{(P , Q) ∈ (Pn)t+1 : Φ(P , Q) = τ}
|Pn|t+1

=
∑

τ∈Σ

#{(P , Q) ∈ (Pn)t+1 : P (a(τ)) = b(τ) ∧ Q(x(τ)) = y(τ)}
|Pn|t+1

=
∑

τ∈Σ

1
(N)qe

∏t
i=1(N)qi

. (6)

Also, we have:

Pr[D(1n) = 1] =
∑

τ∈Σ

#{(P , k) ∈ Ωt : Φ(P , EMP ,k) = τ}
|Ωt|

=
∑

τ∈Σ

Pr [P (a(τ) = b(τ) ∧ EMP ,k(x(τ)) = y(τ)] . (7)

Using the assumption and Eq. (6), we see that:

Pr[D(1n) = 1] ≥
∑

τ∈Σ

1 − β

(N)qe

∏t
i=1(N)qi

= (1 − β)Pr∗[D(1n) = 1] ,

so that Pr∗[D(1n) = 1] − Pr[D(1n) = 1] ≤ β. Applying the same reasoning to
the distinguisher D′ which outputs the negation of D’s output, we obtain

(1 − Pr∗[D(1n) = 1]) − (1 − Pr[D(1n) = 1]) ≤ β ,

which implies that the advantage of D is at most β. This concludes the proof. ��

We will now derive an appropriate bound β refining Lemma 5 by doubling the
number of rounds of the construction and using Lemma 2.
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Lemma 7. Let t be an even integer and t′ = t/2. Let q1, . . . , qt, qe be positive
integers. We denote:

α1 = 2t′ qe

∏t′

i=1 qi

N t′ and α2 = 2t′ qe

∏t
i=t′+1 qi

N t′ .

Then for any tuples a, b ∈ (In)∗q1,...,qt and x, y ∈ (In)∗qe , one has

Pr[P (a) = b ∧ EMP ,k(x) = y] ≥ 1 − β

(N)qe

∏t
i=1(N)qi

,

where β = 2(√α1 + √
α2).

Proof. First, we slightly modify how the Even-Mansour cipher with 2t′ rounds is
defined in order to write it as the composition of two Even-Mansour ciphers with
t′ rounds. For this, we write the middle key kt′ between permutations Pt′ and
Pt′+1 as the xor of two independent keys k1

t′ and k2
t′ , and we redefine EMP ,k where

P = (P1, . . . , P2t′) ∈ (Pn)2t′ and k = (k0, . . . , kt′−1, k1
t′ , k2

t′ , kt′+1, . . . , k2t′) ∈
(In)2t′+2, as:

EMP ,k = ⊕k2t′ ◦ P2t′ ◦ ⊕k2t′−1 ◦ · · · ◦ Pt′+1 ◦ ⊕k2
t′︸ ︷︷ ︸

EMP2,k̃2

◦

⊕k1
t′ ◦ Pt′ ◦ · · · ◦ ⊕k1 ◦ P1 ◦ ⊕k0

︸ ︷︷ ︸
EMP1,k̃1

.

Clearly, this does not change the quantity Pr[P (a) = b ∧ EMP ,k(x) = y] since
k1

t′ ⊕ k2
t′ is uniformly distributed when k1

t′ and k2
t′ are. This enables to write

EMP ,k = EMP2,k̃2
◦ EMP1,k̃1

, where P1 = (P1, . . . , Pt′), P2 = (Pt′+1, . . . , P2t′),
k̃1 = (k0, . . . , kt′−1, k1

t′), k̃2 = (k2
t′ , kt′+1, . . . , k2t′). In the following we denote

Ω̃2t′ = (Pn)2t′ × (In)2t′+2. Note that |Ω̃2t′ | = |Ωt′ |2.
Fix tuples a, b ∈ (In)∗q1,...,qt and x, y ∈ (In)∗qe . We denote ã1 = (a1, . . . , at′),

ã2 = (at′+1, . . . , a2t′), b̃1 = (b1, . . . , bt′), and b̃2 = (bt′+1, . . . , b2t′). We will apply
Lemma 2 independently to each half of the cipher EMP1,k̃1

and EMP2,k̃2
. Consider

the first half EMP1,k̃1
. By Lemma 5, we have ‖μ1

x(·|P1(ã1) = b̃1) − μ∗
qe

‖ ≤ α1,
where μ1

x(·|P1(ã1) = b̃1) is the distribution of EMP1,k̃1
(x) conditioned on P1(ã1) =

b̃1. Hence Lemma 2 ensures that there is a subset Sx ⊂ (In)∗qe of size at least
(1 − √

α1)(N)qe such that for all z ∈ Sx:

μ1
x(z|P1(ã1) = b̃1) =

#{(P1, k̃1) ∈ Ωt′ : P1(ã1) = b̃1 ∧ EMP1,k̃1
(x) = z}

|Ωt′ |/ ∏t′
i=1(N)qi

≥ (1 − √
α1) 1

(N)qe

.
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Applying a similar reasoning to the distribution μ2
y(·|P2(ã2) = b̃2) of EM−1

P2,k̃2
(y)

conditioned on P2(ã2) = b̃2, we see that there exits a subset Sy ⊂ (In)∗qe of size
at least (1 − √

α2)(N)qe such that for all z ∈ Sy:

μ2
y(z|P2(ã2) = b̃2) =

#{(P2, k̃2) ∈ Ωt′ : P2(ã2) = b̃2 ∧ EM−1
P2,k̃2

(y) = z}
|Ωt′ |/ ∏t

i=t′+1(N)qi

≥ (1 − √
α2) 1

(N)qe

.

We can now lower-bound the number of (P , k) ∈ Ω̃2t′ satisfying P (a) = b and
EMP ,k(x) = y by summing, over all intermediate values z ∈ Sx ∩ Sy, the product
of the number of (P1, k̃1) ∈ Ωt′ satisfying P1(ã1) = b̃1 and EMP1,k̃1

(x) = z

times the number of (P2, k̃2) ∈ Ωt′ satisfying P2(ã2) = b̃2 and EMP2,k̃2
(z) = y.

Combining the two above equations yields:

#{(P , k) ∈ Ω̃2t′ : P (a) = b ∧ EMP ,k(x) = y} ≥
|Sx ∩ Sy|(1 − √

α1)(1 − √
α2)|Ωt′ |2

((N)qe )2 ∏t
i=1(N)qi

.

Finally, noting that |Sx ∩ Sy| ≥ (1 − √
α1 − √

α2)(N)qe , dividing both terms by
|Ωt′ |2 = |Ω̃2t′ |, and using

(1 − √
α1 − √

α2)(1 − √
α1)(1 − √

α2) ≥ 1 − 2(
√

α1 +
√

α2) ,

we obtain:

Pr[P (a) = b ∧ EMP ,k(x) = y] ≥ 1 − β

(N)qe

∏t
i=1(N)qi

,

with β = 2(√α1 + √
α2), which concludes the proof. ��

Combining Lemmata 6 and 7, we finally obtain our main theorem.

Theorem 2. Let t be an even integer and t′ = t/2. Let q1, . . . , qt, qe be positive
integers. Then:

Advcca
EM[t](q1, . . . , qt, qe) ≤

(
2t′+2qe

∏t′

i=1 qi

N t′

)1/2

+

(
2t′+2qe

∏t
i=t′+1 qi

N t′

)1/2

.

In particular, for any positive integer q:

Advcca
EM[t](q) ≤ 2t/4+3 q(t+2)/4

N t/4 .

For odd t, we have Advcca
EM[t] ≤ Advcca

EM[t−1], so that we can use the above bounds
with t − 1.

More concretely, the iterated Even-Mansour cipher with t rounds achieves CCA-
security up to N

t
t+2 queries.
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A Proof of the Coupling Lemma

The original statement and proof of the Coupling Lemma is due to Aldous [1].
Here we follow closely a proof by Vigoda.3

Let λ be a coupling of μ and ν, and (X, Y ) ∼ λ. By definition, we have that
for any z ∈ ω, λ(z, z) ≤ min{μ(z), ν(z)}. Moreover, Pr[X = Y ] =

∑
z∈Ω λ(z, z).

Hence we have:
Pr[X = Y ] ≤

∑

z∈Ω

min{μ(z), ν(z)} .

Therefore:

Pr[X �= Y ] ≥ 1 −
∑

z∈Ω

min{μ(z), ν(z)}

=
∑

z∈Ω

(μ(z) − min{μ(z), ν(z)})

=
∑

z∈Ω
μ(z)≥ν(z)

(μ(z) − ν(z))

= max
S⊂Ω

{μ(S) − ν(S)}
= ‖μ − ν‖ .

3 Available from www.cc.gatech.edu/~vigoda/MCMC_Course/MC-basics.pdf

www.cc.gatech.edu/~vigoda/MCMC_Course/MC-basics.pdf
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Abstract. Among various cryptographic schemes, CBC-based MACs
belong to the few ones most widely used in practice. Such MACs iterate
a blockcipher EK in the so called Cipher-Block-Chaining way, i.e. Ci =
EK(Mi⊕Ci−1) , offering high efficiency in practical applications. In the
paper, we propose a new deterministic variant of CBC-based MACs that
is provably secure beyond the birthday bound. The new MAC 3kf9 is
obtained by combining f9 (3GPP-MAC) and EMAC sharing the same
internal structure, and so it is almost as efficient as the original CBC

MAC. 3kf9 offers O( l
3q3

22n
+ lq

2n
) PRF-security when its underlying n-bit

blockcipher is pseudorandom with three independent keys. This makes
it more secure than traditional CBC-based MACs, especially when they
are applied with lightweight blockciphers. Therefore, 3kf9 is expected to
be a possible candidate MAC in resource-restricted environments.

Keywords: MAC, Birthday Bound, CBC, Mode of Operation.

1 Introduction

1.1 Background

Birthday Bound. In cryptography, birthday attack is a generic attack that
exploits no specific properties within cryptographic schemes, but just takes the
advantage of birthday paradox in probability theory. This paradox says, approx-
imately 2n/2 independently random n-bit points will collide with a probability
close-to-1, where 2n/2 is called the birthday bound [28,20]. The birthday attack
itself is not fatal to the practical security of cryptographic schemes, because
people can choose long-enough security parameters to defend, e.g. by restricting
the output length of hash functions to be no shorter than 224 bits [3], or by pre-
venting attackers from getting sufficient number of input-output pairs, to make
this attack infeasible in recent years.

However, being constrained by some particular software/hardware environ-
ments, there still exist many actual applications using short security parameters.
For example, the 64-bit blockcipher KASUMI is currently a standard algorithm
in mobile communication systems [7]. With the rapid developments of Internet

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 296–312, 2012.
c© International Association for Cryptologic Research 2012



3kf9: Enhancing 3GPP-MAC beyond the Birthday Bound 297

of Things, several lightweight primitives have been proposed in recent years, e.g.
present and PHOTON [11,14]. These algorithms take small-size internal states
and output values, usually are much easier to be realized in software and require
smaller area in hardware, offering better performance than normal-size ones.
Unfortunately, their small sizes imply vulnerability when they are used with
traditional modes of operation, most of which are only secure within the birth-
day bound [19,2]. To ensure practical security in such cases, those modes have
to be combined with stateful or random values, or to limit the lengths of their
input messages, or to update secret keys frequently, resulting in inconveniences
and security risks if misused.

MAC. Message Authentication Code is a widely-used cryptographic scheme for
data integrity protection and data origin authentication. Practical applications
usually require them to be not only secure (outputting unpredictable tags for
new messages) but also efficient. A common way to design a MAC algorithm is
to iterate a blockcipher E : KE×{0, 1}n → {0, 1}n in the Cipher-Block-Chaining
(CBC) manner. That is, in each step, a new chaining value Ci is obtained by
encrypting the XOR result of the current message block Mi and the previous
chaining value Ci−1, i.e. Ci = EK(Mi ⊕ Ci−1). The CBC structure is so com-
mon in the design of many cryptographic schemes that it has been considerably
studied for many years [8,27,9,16,24].

Up to now, many excellent CBC-based MACs have been proposed, e.g. EMAC,
XCBC, OMAC, CMAC and GCBC [27,9,16,4,24]. Besides, PMAC takes a fully
parallelizable construction and can offer extremely high speed in parallel envi-
ronments [10]. All of the above MAC algorithms are deterministic (needing no
stateful or random values), and provably secure when their underlying block-
cipher is assumed to be a pseudorandom permutation (PRP). However, their
security bounds all fall within the birthday bound, and can not be further im-
proved because there exist birthday attacks on them, i.e. the birthday bound is
tight for them [19,2].

There are also a few CBC-based MACs with provable security beyond the
birthday bound. For example, RMAC replaces the second key in EMAC by
XORing its first key and a random value [18,2], and MAC-R1 and MAC-R2 inject
n-bit randomness into the internal states of CBC-based MACs [23]. Obviously,
their high security relies on not only the PRP security of blockciphers but also
the randomness of the injected values.

In fact, all the deterministic blockcipher-based MACs fall within the birthday
bound until Yasuda shows algorithm 6 in the ISO standard is an exception,
conditioned on some restrictions on messages [1,30]. In the same paper, Yasuda
also introduces SUM-ECBC to reduce the key size in algorithm 6, by XORing
the results from two CBC-based MACs, providing half of the efficiency that
normal CBC-based MACs offer in serial implementations (rate 2 1). On the other
hand, Dodis and Steinberger build a MAC from unpredictable blockciphers, with

1 For each message of l blocks long, it has to call the underlying blockcipher roughly
2l times.
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security beyond the birthday bound, but pay by very high efficiency cost [12].
Very recently, Yasuda proposes PMAC Plus that improves PMAC beyond the
birthday bound [31]. By pre-calculating sufficiently large number (as many as
the number of message blocks) of masks, this MAC would provide high efficiency
due to the fully parallelizable structure in PMAC and rate-1 design.

3GPP-MAC. To promote the global system for mobile communications, the
3rd Generation Partnership Project (3GPP) proposes f9 as its first MAC algo-
rithm, which is based on blockcipher KASUMI and produces 32-bit tags [6]. f9
inherits the structure of original CBC MAC, but in the end encrypts the sum
of all chaining values, other than the last chaining value, to obtain the tag. The
analysis for f9 tends to be tough due to this particular feature [17]. Knudsen
and Mitchell are the first to give birthday attacks on f9, which need 2(n+1)/2

known (Message, MAC) pairs and 2n/2+1 chosen (Message, MAC) pairs to make
a forgery against f9 without truncations [20]. Then, Iwata and Kohno proved
that when KASUMI is secure against a special kind of related-key attacks (RK-
PRP), a generalized version of f9 (named with f9′) is PRF-secure within the
birthday bound [15]. This implies the previous birthday attack is the best one
without knowledge of internal information.

Despite the fact that the birthday attacks on MACs need on-line invocations,
making it much more harder than those on hash functions (needing only off-
line computations), people still take several countermeasures for large enough
security margin. For example, in the practical applications of f9, it has been
demanded that each message should be prepended with a fresh value, the length
of messages should be no longer than 20000 bits, the secret key should be changed
after each invocation, and the outputs should be truncated [5,6].

1.2 Our Work

In this paper, we attempt to design a rate-1 CBC-based MAC with provable
security beyond the birthday bound. A direct application of such a scheme is to
enforce the security level of current CBC-based MACs, especially in the situa-
tions where small-size (lightweight) blockciphers are used, e.g. 3GPP and smart
cards. Another application is to make it serve as a highly-secure pseudoran-
dom number generator for various protocols, which therefore would improve the
security level of the latter.

To do this, stateful or random values (e.g. counter, fresh) can help, but we
would not consider them for practical convenience. Another possible way is to
enlarge the size of internal states but still output normal-size tags. As for CBC-
based MACs, however, their internal states have the same size as their underly-
ing blockcipher, so one may want to use a large-size blockcipher in CBC-based
MACs and truncate their outputs. Unfortunately, the efficiency of such a solu-
tion will not be satisfying, because a large-size blockcipher usually runs no faster
than a small-size one, not to mention many other costs, e.g. memory and area
requirements.
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Our starting point is f9, in favor of its double-blocksize internal states pro-
viding a possible chance to resist the birthday attacks. Inspired by the design of
SUM-ECBC and PMAC Plus, we append one more blockcipher invocation to the
end of the f9 structure, as illustrated in Fig. 1. The resulting MAC is named
with 3kf9, for it enhances f9 and needs three independent keys. From another
point of view, it is also an extension of EMAC [27], ignoring EK3 and the last
XOR operation.
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Fig. 1. Illustration of 3kf9

When authenticating messages, 3kf9 can start to work without stateful val-
ues or message length information (on-line), requires no pre-computation and
only two block-size memory for internal states, besides those for its underlying
blockcipher. Specially, it needs no multiplications, comparing with PMAC Plus.
Therefore, 3kf9 will provide high efficiency in serial implementations.

A more detailed comparison with related MACs is given in Table 1.

Table 1. Comparison among 3kf9 and its related deterministic MACs

key size rate structure multi. upper bounds bBB. a Ref.

Alg. 6 in ISO std.b

SUM-ECBC
6k
4k

2 CBC none
O( l

4q3

22n
) or

restricted O( l
3q3

22n
)
conditional

[1]
[30]

PMAC Plus
3k 1

parallel 4l − 1
O( l

3q3

22n
+ lq

2n
) yes

[31]
3kf9 CBC none This Work

f9 k c

1 CBC none O( l
2q2

2n
) no

[15]
EMAC 2k [27]

a bBB stands for “beyond the Birthday Bound”.
b It has been removed from the latest version ISO/IEC 9797-1:2011.
c Its second key is obtained by K2=K1 ⊕KM, where KM is a non-zero k-bit value.
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1.3 Organization

The rest of this paper is organized as follows. Section 2 introduces necessary
symbols and 3kf9 specification. Section 3 gives our provable security analysis for
3kf9, including security definitions, the main result and its proof. The proof will
be completed in Section 4. In Section 5, we give some suggestions for practical
usages of 3kf9. Finally, we conclude this work in Section 6.

2 Symbols and Specification

{0, 1}n is the set of all n-bit strings and {0, 1}∗ is the set of all strings. For strings
a, b ∈ {0, 1}∗, a||b is a concatenation of a and b, and |a| is its length in bits. If
a, b have equal lengths then a ⊕ b is their bitwise XOR. Denote Perm(n) and
Rand(n, n) as the sets of all permutations and functions over {0, 1}n respectively.
Rand(∗, n) stands for the set of all functions whose range belongs to {0, 1}n. If
A is a set, then #A denotes the size of set A, and x

$←A means that x is chosen
from set A uniformly at random.

A message M can be alternatively seen as a bit string M ∈ {0, 1}∗. Then,
by M ← M ||10n−1−|M| mod n we mean we append a single bit “1” to the end
of M , followed by as many as n− 1− |M | mod n bit “0”s such that the length
of the padded string is a multiple of n. For any such string M (|M | = nL),
M1M2 · · ·ML ← Partition(M) means we break M into L successive n-bit
blocks such that M1||M2|| · · · ||ML =M .

MAC Algorithm 3kf9[E]

Input: K1,K2,K3
$←K, M ∈ {0, 1}∗

Output: T ∈ {0, 1}n
01. M ←M ||10n−1−|M| mod n

02. M1M2 · · ·ML ← Partition(M)
03. S ← 0n

04. Y0 ← 0n

05. for l ← 1 to L do
06. Xl ← Yl−1 ⊕Ml

07. Yl ← EK1(Xl)
08. S ← S ⊕ Yl

09. end for
10. T ← EK2(YL)⊕ EK3(S)
11. return T

Fig. 2. Specification of 3kf9

For any message M ∈ {0, 1}∗, 3kf9 takes a blockcipher E : KE × {0, 1}n →
{0, 1}n as its underlying primitive, calling it iteratively as specified in Fig. 2 to
deal with M , and finally outputs T ∈ {0, 1}n as a tag. If necessary, T can be
truncated to be of some particular length less than n.
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3kf9 needs three keys K1, K2 and K3, each of which should be independently
selected from K = KE uniformly at random. We use 3kf9[EK1 , EK2 , EK3 ] to
stand for this MAC algorithm and we also write it as 3kf9[E] for short.

3 Security Proof

3.1 Security Definitions

W need to introduce PRP/PRF definitions here, which are frequently used in
the analysis of modes of operation for blockciphers [8,27,9,16,24].

These two definitions focus on the randomness of a keyed function fK , which
is selected from a function family f : Kf × {0, 1}∗ → {0, 1}n by selecting a
random key K. To measure its randomness, fK is compared with a random

function R
$←Rand(∗, n) (or a random permutation P

$←Perm(n) if f consists
of only permutations).

The comparison is done as, informally, allowing adversaries (without knowing
K) to query an oracle, which is either fK or R with equal probability. The
oracle will answer with the corresponding outputs. After some number of queries,
the adversaries are asked to tell what the oracle is. The precise definition is
given by

⎧⎨⎩Advprf
f (A)

def
= |Pr[K $←Kf : AfK(·) = 1]− Pr[R

$←Rand(∗, n) : AR(·) = 1]|,
Advprf

f (t, q, μ)
def
= max

A
{Advprf

f (A)},⎧⎨⎩Advprp
f (A)

def
= |Pr[K $←Kf : AfK(·) = 1]− Pr[P

$←Perm(n) : AP (·) = 1]|,
Advprp

f (t, q, μ)
def
= max

A
{Advprp

f (A)},

and the maximum is over all adversaries taking time at most t, making oracle
queries at most q, whose total length is at most μ bits. If Advprf

f (t, q, μ) (or

Advprp
f (t, q, μ)) is sufficiently small, we say function family f is a pseudorandom

function (PRF) (or a pseudorandom permutation (PRP)).
It has been proved that a PRF is a secure MAC [8].

3.2 Main Results

Let 3kf9[P1, P2, P3] stand for 3kf9[EK1 , EK2 , EK3 ] when blockcipher E with three
independent keys are replaced by three independently random permutations P1,
P2 and P3, and we further write it as 3kf9[P ] for simplicity. Then, the following
theorem says that 3kf9[P ] is a PRF with an upper bound beyond the birthday
bound.
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Theorem 1 (Main Theorem). For any computationally unbounded adversary
A, after querying the oracle q times, with each query no longer than lmax blocks,

its advantage to distinguish 3kf9[P ] from a random function R
$←Rand(∗, n) is

upper bounded by

|Pr[A3kf9[P ] = 1]− Pr[AR = 1]| ≤ qlmax+q
2n−2 +

2q3l3max+q3l2max+2q3lmax+2q3

22n−1 .

We conclude this theorem by the “coefficient H technique” initially proposed by
Patarin [25,26]. This method is a useful tool for proving pseudorandom properties
of blockcipher structures and modes of operation, and it has been frequently used
before [25,13,16,24].

To simplify our proof, we also adopt the framework used in the proofs for
SUM-ECBC and PMAC Plus [30,31], which separates the inputs to P2 and P3

into four cases. Taking advantage of some known results for CBC structure, f9
and sum of PRPs [9,15,22], the first three cases can be easily upper bounded.
For the last case, we prove it by Lemma 1 in the next section.

Proof. Since A is computationally unbounded, w.l.o.g. we assume A is a deter-
ministic algorithm, otherwise we can maximize A by running it over all pos-
sible cases and choose the most powerful one. Based on this, the i-th query
M i /∈ {M1,M2, · · · ,M i−1} A would make is fully determined by the previous
i − 1 input-output pairs (M1, T 1), (M2, T 2), · · · , (M i−1, T i−1). Then, if we fix

a q-tuple
−→
T = (T 1, T 2, · · · , T q), we know

- all A’s queries are uniquely determined,
- the number of queries q is uniquely determined, and
- the output of A (0 or 1) is uniquely determined.

Denote Tset1 = {(T 1, T 2, · · · , T q)} is the set that contains all q-tuple
−→
T =

(T 1, T 2, · · · , T q) such that A outputs 1, and N = #Tset1. Then we have

Evaluation for random function R.

Pr[AR = 1] =
∑

−→
T ∈Tset1

Pr[R(M i) = T i, i = 1, 2, · · · , q] = N
2qn .

Evaluation for 3kf9[P ].

Pr[A3kf9[P ] = 1]

=
∑

−→
T ∈Tset1

Pr[3kf9[P ](M i) = T i, i = 1, 2, · · · , q]

≥
∑

−→
T ∈Tset1

(Pr[3kf9[P ] outputs q random values]× (
1

2n
)q)

=
N

2qn
× Pr[3kf9[P ] outputs q random values]. (1)
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Denote CBC[P1] as the internal structure of 3kf9[P ], i.e. (Q,S)← CBC[P1](M),
and 3kf9[P ](M) = P2(Q) ⊕ P3(S) = T , as in Fig. 1. In the following analy-
sis, we do step by step for each i = 1, 2, · · · , q. Suppose in the previous i − 1
queries, the i−1 outputs T 1, T 2, · · · , T i−1 are independently random values. Let
Domain[P2] = {Q1, Q2, · · · , Qi−1} and Domain[P3] = {S1, S2, · · · , Si−1}. Then,
for the i-th query M i, its corresponding (Qi, Si)← CBC[P1](M

i) will definitely
fall into one of the following four cases,

Case A: Qi ∈ Domain[P2] and S
i /∈ Domain[P3],

Case B: Qi /∈ Domain[P2] and S
i ∈ Domain[P3],

Case C: Qi /∈ Domain[P2] and S
i /∈ Domain[P3],

Case D: Qi ∈ Domain[P2] and S
i ∈ Domain[P3].

For Case A, Black and Rogaway have shown that the probability for any two
messages to collide in CBC structure (with an independent ending blockcipher
invocation, e.g. EMAC, ECBC) is upper bounded by the birthday bound, i.e.

Pr[Qj = Qi] ≤ 4(lmax+1)2

2n (See Lemma 3 in [9]). In such a case, we still have
randomness for T i = P2(Q

i) ⊕ P3(S
i) because Si /∈ Domain[P3] and we can do

lazy sampling P3(S
i). Since at this moment #Domain[P3] ≤ i−1, the advantage

to distinguish P3(S
i) from a random value r

$←{0, 1}n is no more than i−1
2n . Then,

the advantage to distinguish T i from r is upper bounded by
(
i−1
1

) 4(lmax+1)2

2n × i−1
2n .

For Case B, Iwata and Kohno have pointed out that the probability for any two
messages to collide in f9 (with an independent ending block cipher invocation)

is also upper bounded by the birthday bound, i.e. Pr[Sj = Si] ≤ (2lmax+2)2+22

2n+1 =
2l2max+4lmax+4

2n (See Lemma B.1 in [15], and note that we apply σ ≤ 2lmax + 2
and q = 2 here). Then, by lazy sampling for P2(Q

i), we know the advantage to

distinguish T i from r is upper bounded by
(
i−1
1

) 2l2max+4lmax+4
2n × i−1

2n .
For Case C, Lucks has proved that the advantage to distinguish T i = P2(Q

i)⊕
P3(S

i) from r is upper bounded by (i−1)2

(2n−(i−1))2 ≤ 4(i−1)2

22n (See the proof for

Theorem 5 in [22]).
As for Case D, we will show by Lemma 1 in the next section that Pr[∃i ∈

[1, q] : Case D occurs] ≤ qlmax+q
2n−2 +

q3l3max

22n−2 .

Denote [T i � r] as the event that T i is not an independently random value.
Then, based on the none occurrence of Case D, we get

Pr[T i � r]

= Pr[Case A]Pr[T i � r|Case A] + Pr[Case B]Pr[T i � r|Case B] +

Pr[Case C] Pr[T i � r|Case C]

≤
(
i− 1

1

)
4(lmax + 1)2

2n
× i− 1

2n
+

(
i− 1

1

)
2l2max + 4lmax + 4

2n
× i− 1

2n
+ 1× 4(i− 1)2

22n

=
(i− 1)2(3l2max + 5lmax + 6)

22n−1
.
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This allows us to have

Pr[3kf9[P ] doesn′t output q random values]

≤ Pr[Case D] +

q∑
i=1

Pr[T i � r]

≤ qlmax + q

2n−2
+
q3l3max

22n−2
+

q∑
i=1

(i − 1)2(3l2max + 5lmax + 6)

22n−1

≤ qlmax + q

2n−2
+

2q3l3max + q3l2max + 2q3lmax + 2q3

22n−1

= ε,

which implies Pr[A3kf9[P ] = 1] ≥ N
2qn × (1− ε) by applying it to inequality (1).

Comparison

By the above analysis, we can get

Pr[AR = 1]− Pr[A3kf9[P ] = 1] ≤ N

2qn
− N

2qn
× (1− ε) ≤ N

2qn
× ε ≤ ε.

On the other side, if we define Tset0 and by similar analysis we can get

Pr[AR = 0]− Pr[A3kf9[P ] = 0] ≤ ε,

which implies (1 − Pr[AR = 1]) − (1 − Pr[A3kf9[P ] = 1]) ≤ ε. Thus we get
Pr[A3kf9[P ] = 1]− Pr[AR = 1] ≤ ε.

Finally, we conclude

|Pr[A3kf9[P ] = 1]− Pr[AR = 1]| ≤ qlmax + q

2n−2
+

2q3l3max + q3l2max + 2q3lmax + 2q3

22n−1
.

� 

Based on the main theorem, we can say that 3kf9[E] is a PRF if blockcipher E
is secure. More precisely, we have

Theorem 2. If blockcipher E : KE × {0, 1}n → {0, 1}n is a PRP, then 3kf9[E]
is a PRF for all adversaries, who make at most q queries, each of which is no
longer than lmax blocks. That is,

Advprf3kf9[E](t, q, μ) ≤
qlmax+q
2n−2 +

2q3l3max+q3l2max+2q3lmax+2q3

22n−1 + 3AdvprpE (t′, q′, μ′),

where t′ = t+O(t), q′ ≤ q(lmax + 1), and μ′ ≤ μ+ qn.

4 Key Lemma

The none occurrence of Case D implies the q pairs (Qi, Si) (i = 1, 2, · · · , q) are
free. By “free”, we mean for each i ∈ [1, q], either Qi is unique in its corre-
sponding sequence Q1, Q2, · · · , Qq or Si is unique in its corresponding sequence
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S1, S2, · · · , Sq. This property is closely related to the newly appeared Cover Free
notion [12], which says the q outputs (N i

1, N
i
2, · · · , N i

w) (1 ≤ i ≤ q) from a cover-
free function should satisfy the following property. For each i, there exists at least
one j ∈ [1, w] such that N i

j is unique in its own subsequence N1
j , N

2
j , · · · , N

q
j .

Unfortunately, the internal structure CBC[P1] can not satisfy the cover free prop-
erty, when its outputs are made public. However, if adversaries can not get its
internal states, CBC[P1] holds a similar property, as the following lemma says.

Lemma 1. IfP1,P2 andP3 are independently randompermutations fromPerm(n),
then for all computationally unbounded adversaries, who querying 3kf9[P ] nomore
than q times, with each query no longer than lmax blocks, the probability for internal
states (Qi, Si) (i = 1, 2, · · · , q) to satisfy Case D is upper bounded by

Pr[∃i ∈ [1, q] : Case D occurs] ≤ qlmax+q
2n−2 +

q3l3max

22n−2 .

In the following proof, we will prove an even stronger result. That is, all the pairs
(Y i

l , S
i
l ) for l = 1, 2, · · · , Li and i = 1, 2, · · · , q are free with this probability, ex-

cluding the trivial case that (Y i
l , S

i
l ) = (Y j

l , S
j
l ) with l ≤ d for two different mes-

sagesM i andM j , which after being padded are written asM i
1||M i

2|| · · · ||M i
Li and

M j
1 ||M

j
2 || · · · ||M

j
Lj and having common prefixM i

1||M i
2|| · · · ||M i

d =M j
1 ||M

j
2 || · · · ||

M j
d for some d ≤ min{Li, Lj}. To do this, we check the process detail of CBC[P1]

in dealing with the querying messagesM1,M2, · · · ,M q step by step, and record
every Y i

l and Si
l for l = 1, 2, · · · , Li and i = 1, 2, · · · , q with two sets YRange

and SRange. By lazy sampling for P1, we upper bound the probability for the
events Y i

l ∈ YRange and Si
l ∈ SRange to occur at the same time, and in the end

we sum up all these probabilities to get the final result.

Proof. For any q pairwise distinct queries M1,M2, · · · ,M q, we use a program
to show the process of CBC[P1] in dealing with them, as in Fig. 3. To better
analyze the target probability, we do lazy sampling for P1. Furthermore, we
denote three flags Zero, Cover and Bad. Zero is used to identify whether there
exists Y i

l = 0n, which may be easily used to undermine the freeness consistence
of (Y i

l , S
i
l ) for l = 1, 2, · · · , Li and i = 1, 2, · · · , q. Cover is used directly to

identify the freeness of (Y i
l , S

i
l ). Either [Zero = True] or [Cover = True] implies

[Bad = True], so Pr[∃i ∈ [1, q] : Case D occurs] = Pr[Bad = True] ≤ Pr[Zero =
True] + Pr[Cover = True].

Then, it is easy to get that Pr[Zero = True] ≤
∑q(lmax+1)

j=1
1

2n−(j−1) ≤
q(lmax+1)

2n−1 ,

because for the qmessages whose length is no more than lmax+1 blocks after being
padded, we do no more than q(lmax+1) lazy sampling for P1, and in the j-th sam-
pling for a new output Y , Pr[Y = 0n] ≤ 1

2n−(j−1) . Here we use q(lmax+1) < 2n−1

to get the final bound.
To upper bound Pr[Cover = True] for all (Y i

l , S
i
l ), we will upper bound the

probability for each lazy sampling that may result in the occurrence of [Y i
l ∈

YRange ∧ Si
l ∈ SRange] with l = 1, 2, · · · , Li and i = 1, 2, · · · , q, and then sum

up them. For better understanding the following analysis, we work on a simple
case first (see Fig. 4 for an illustration), and then generalize it step by step.
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00. Domain[P1],Range[P1],YRange,SRange← φ; Zero, Cover, Bad← False;
for A’s i-th query M i ∈ {0, 1}∗, do
01. M i ←M i||10n−1−|Mi | mod n; M i

1M
i
2 · · ·M i

Li ← Partition(M i);
02. Si

0 ← 0n; Y i
0 ← 0n;

03. for l← 1 to Li do
04. Xi

l ← Y i
l−1 ⊕M i

l ;
05. if Xi

l ∈ Domain[P1] then Y i
l ← P1(X

i
l );

06. else Y i
l

$←{0, 1}n \ Range[P1];
07. if Y i

l = 0n then Zero← True; Bad← True; end if
08. Range[P1]← Range[P1] ∪ {Y i

l };
09. Domain[P1]← Domain[P1] ∪ {Xi

l };
10. end if
11. Si

l ← Si
l−1 ⊕ Y i

l ;
12. if Y i

l ∈ YRange and Si
l ∈ SRange and

13. �j < i s.t. M i
1||M i

2|| · · · ||M i
l = M j

1 ||M
j
2 || · · · ||M

j
l

14. then Cover← True; Bad← True;
15. else YRange← YRange ∪ {Y i

l }; SRange← SRange ∪ {Si
l};

16. end if
17. end for

Fig. 3. A program showing the process of CBC[P1]

. . .

. . . �Si
l−1⊕�
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l

Y i
l

�

�⊕�
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�
�
�
�
�
��

�⊕�

P1

Xi
l+1

Y i
l+1

�

�⊕�

M i
l+1

Si
l+1

�
�
�
�
�
��

�⊕�

P1

Xi
l+2

Y i
l+2

�

�⊕�

M i
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Si
l+2

�
�
�
�
�
��

�

� . . .

. . .

Fig. 4. An insight view on the internal structure of CBC[P1]

4.1 The Most Common Case

For a new inputX i
l /∈ Domain[P1], we will choose a value Y

i
l

$←{0, 1}n\Range[P1]
by lazy sampling. Since Y i

l is a new output, it is definite that (Y i
l , S

i
l ) is consistent

with the previous pairs for freeness. However, if it happens that X i
l+1 = Y i

l ⊕
M i

l+1 ∈ Domain[P1], then event [Y i
l+1 ∈ YRange] would occur, and the freeness

consistence of pairs will rely only on the none occurrence of the event [Si
l+1 ∈

SRange]. Consider the following two subcases:

1. X i
l+1 = X i

l . This implies Y i
l+1 = Y i

l and Si
l+1 = Si

l−1, and thus undermining
the freeness consistence. The probability for this event to occur is no more



3kf9: Enhancing 3GPP-MAC beyond the Birthday Bound 307

than Pr[X i
l+1 = X i

l ] = Pr[Y i
l = X i

l ⊕M i
l+1] ≤ 1

2n−#Range[P1]
≤ 1

2n−1 , where

we assume #Range[P1] < 2n−1.

2. X i
l+1 ∈ Domain[P1] \ {X i

l }. This implies Y i
l ⊕M i

l+1 ∈ Domain[P1] \ {X i
l},

and so Y i
l has no more than #Domain[P1] \ {X i

l } choices. Choose any one
such choice and fix Y i

l , then Y i
l+1 = P1(X

i
l+1) = P1(Y

i
l ⊕M i

l+1) would be

fixed, so is Si
l+1 =

∑l+1
c=1 Y

i
c . On the other hand, the elements in SRange

are
∑d

c=1 Y
j
c (1 ≤ d ≤ Lj , 1 ≤ j ≤ i − 1) and

∑d
c=1 Y

i
c (1 ≤ d ≤ l).

Then, event [Si
l+1 ∈ SRange] implies no more than #SRange equations,

all of which can be written as linear combination of Y a
b equals to linear

combination of message blocks (i.e. M i
l+1 ⊕Ma

b+1 or 0n) with 0 ≤ b ≤ La,
1 ≤ a ≤ i − 1 or 0 ≤ b ≤ l − 1, a = i. Specially, note that Y i

l is not
included here because X i

l+1 ∈ Domain[P1] \ {X i
l} implies Y i

l can be written

as M i
l+1 ⊕X i

l+1 = M i
l+1 ⊕ Y ⊕M , where Y and M appear in the previous

(Y, S) pairs and queries respectively (Y may be 0n if b = 0). Furthermore,
notice that we have upper bounded Pr[Y = 0n] by analyzing [Zero = True],
so we can assume all Y a

b (b ≥ 1) are non-zero values. Then, excluding the
trivial case that two different messages would collide in their common prefix
part, the possibility for each of these equations to hold is no more than
1/2n−1, because all Y a

b (b ≥ 1) are chosen by the previous lazy samplings,
from a space with roughly 2n − #Domain[P1] − #Range[P1] − 1 ≤ 2n−1

size. 2n − #Range[P1] is naturally understood, “1” is respect to 0n, and
“#Domain[P1]” is respect to the number of bad points that may result in
Y a
b ⊕Ma

b+1 ∈ Domain[P1]. So the linear combinations of Y a
b has at least 2n−1

possible values, and their real values are hidden in the internal structure
CBC[P1], not known by adversaries. So, in this subcase,

Pr[Y i
l+1 ∈ Range[P1] \ {Y i

l } ∧ Si
l+1 ∈ SRange]

= Pr[X i
l+1 ∈ Domain[P1] \ {X i

l} ∧ Si
l+1 ∈ SRange]

= Pr[Y i
l ⊕M i

l+1 ∈ Domain[P1] \ {X i
l } ∧ Si

l+1 ∈ SRange] (2)

≤ Pr[Y i
l ⊕M i

l+1 ∈ Domain[P1] \ {X i
l }]× Pr[Si

l+1 ∈ SRange] (3)

≤ #Domain[P1] \ {X i
l}

2n −#Range[P1]
× #SRange

2n−1

≤ (#Domain[P1])
2

22n−2
,

Where we apply #Range[P1] < 2n−1. Notice that P1[X
i
l ] = Y i

l

$←{0, 1}n \
Range[P1] is a new lazy sampling, and Si

l+1 ∈ SRange is only related with
previous lazy samplings (X i

l+1 ∈ Domain[P1] \ {X i
l} implying Y i

l =M i
l+1 ⊕

Y ⊕M can be calculated by the previous pairs and queries), so the probability
in (2) can be separated, thus we obtain inequality (3).

In thismost commoncase, theprobability for lazy samplingP1[X
i
l ] = Y i

l

$←{0, 1}n\
Range[P1] to undermine the freeness consistence is at most 1

2n−1 + (#Domain[P1])
2

22n−2 .
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4.2 Generalized Case 1

The above lazy sampling may further induce the occurrence of event [X i
l+2 ∈

Domain[P1]], so the previous analysis is not complete, and here we generalize it
in this direction.

Suppose P1[X
i
l ] = Y i

l

$←{0, 1}n \ Range[P1] induces series of occurrences, i.e.
[X i

l+1 ∈ Domain[P1]], [X
i
l+2 ∈ Domain[P1]], · · · , [X i

l+u−1 ∈ Domain[P1]], with
u ≤ Li − l + 1, let us consider the probability to undermine the freeness con-
sistence. First, we have Pr[X i

l+1 = X i
l ] ≤ 1

2n−1 as before. Then, conditioned
on X i

l+1 �= X i
l , those u − 1 events imply Y i

l ⊕ M i
l+1 ∈ Domain[P1] \ {X i

l+1}
and Y i

l+a ⊕M i
l+a+1 ∈ Domain[P1] for 1 ≤ a ≤ u − 2, and so Y i

l has at most
#Domain[P1]\{X i

l+1} choices. Choose any one such choice and fix Y i
l , then S

i
l+a

(0 ≤ a ≤ u − 1) are also fixed. To keep freeness consistence, none of the events
[Sl+1+a ∈ SRange ∪ {Si

l , S
i
l+1, · · · , Si

l+a}] (0 ≤ a ≤ u − 2) should occur. These

events imply no more than (u−1)#SRange+ (u−1)(u−2)
2 equations, and each has

a probability of 1/2n−1 to occur, with similar reasons given in the most com-
mon case. So, here the probability for this lazy sampling to keep freeness consis-

tence is upper bounded by 1
2n−1 +

#Domain[P1]\{Xi
l+1}

2n−#Range[P1]
× (u−1)#SRange+

(u−1)(u−2)
2

2n−1 ≤∑u
a=1(

1
2n−1 +

(#Domain[P1]+a−1)2

22n−2 ). Notice that u is the number of invocations to

P1 related to lazy sampling P1[X
i
l ] = Y i

l

$←{0, 1}n \Range[P1].

4.3 Generalized Case 2

Since we assume adversaries can make any q pairwise distinct queries M1, M2,
· · · , M q, it is possible that some queries share a common prefix. Here we gen-

eralize the probability for lazy sampling P1[X
i
l ] = Y i

l

$←{0, 1}n \ Range[P1] to
undermine the freeness consistence in this direction.

Without loss of generality, we assumeM i,M i+1, · · · ,M i+v−1 share a common
prefix (This can be reached by sorting the queries), and M i

l is the last block
in their prefix. If X i+b

l+1 = Y i+b
l ⊕ M i+b

l+1 /∈ Domain[P1] for all b ∈ [0, v − 1],

then Y i+b
l+1 can keep freeness consistence. However, if ∃b ∈ [0, v − 1] s.t. X i+b

l+1 =

Y i+b
l ⊕M i+b

l+1 = X i+b
l = X i

l , then the events [Y i+b
l+1 = Y i+b

l ] and [Si+b
l+1 = Si+b

l−1] will
occur, and thus undermine the freeness consistence. This probability is no more
than Pr[∃b ∈ [0, v − 1], X i+b

l+1 = X i+b
l ] ≤ v

2n−1 . Based on its none occurrence, we

focus on the probability of [∃b ∈ [0, v−1], X i+b
l+1 ∈ Domain[P1]\{X i

l}]. Note that
some particular choices of Y i

l may result in several [X i+b
l+1 ∈ Domain[P1] \ {X i

l}]
to occur at the same time, and the number of Y i

l that induces v′ such events is

no more than #Domain[P1]v/v
′. W.l.o.g. we assume X i

l+1, X
i+1
l+1 , · · · , X

i+v′−1
l+1 ∈

Domain[P1] \ {X i
l } for some v′ ∈ [1, v]. Choose any one such Y i

l and fix it,

then Y i
l+1, Y

i+1
l+1 , · · · , Y

i+v′−1
l+1 would be fixed, so are Si

l+1, S
i+1
l+1 , · · · , S

i+v′−1
l+1 . The

events [Si+j
l+1 ∈ SRange ∪ {Si

l+1, S
i+1
l+1 , · · · , S

i+j−1
l+1 }] (0 ≤ j ≤ v′ − 1) imply no

more than v′#SRange + v′(v′−1)
2 equations, with probability 1/2n−1 to occur

each. Then it is not hard to get the probability to keep freeness consistence in this
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case is no more than v
2n−1 +

#Domain[P1]v/v
′

2n−#Range[P1]
× v′#SRange+ v′(v′−1)

2

2n−1 ≤
∑v

b=1(
1

2n−1 +
(#Domain[P1]+b−1)2

22n−2 ). Notice that v is the number of invocations to P1 related to

lazy sampling P1[X
i
l ] = Y i

l

$←{0, 1}n \ Range[P1].

4.4 The Most General Case

Based on the above, we generalize the most common case in two directions, as
in Generalized case 1 and 2.

The analysis here is the same as that in Generalized case 2, until Y i
l is fixed.

and w.l.o.g. we assume X i
l+1, X

i+1
l+1 , · · · , X

i+v′−1
l+1 ∈ Domain[P1] \ {X i

l} for some
v′ ∈ [1, v] occurs. Then we take Generalized case 1 into account.

Suppose for X i+b
l+1 (0 ≤ b ≤ v′ − 1), its following calls to P1 X

i+b
l+2 , X

i+b
l+3 , · · · ,

X i+b
l+u[b]−1 ∈ Domain[P1], with u[b] ≤ Li+b − l+ 1. Then Si+b

l , Si+b
l+1 , · · · , S

i+b
l+u[b]−1

can be fixed by Y i
l . The events [S

i+b
l+a+1 ∈ SRange ∪ {Si+b

l , Si+b
l+1 , · · · , S

i+b
l+a}] with

0 ≤ a ≤ u[b]− 2 and 0 ≤ b ≤ v′− 1 imply no more than
∑s

w=1(#SRange+w− 1)

equations (s =
∑v′−1

b=0 u[b]), with probability 1/2n−1 to occur each.Thenwe can get

the probability for lazy sampling P1[X
i
l ] = Y i

l

$←{0, 1}n \Range[P1] to undermine

the freeness consistence is at most v
2n−1 +

#Domain[P1]v/v
′

2n−#Range[P1]
×

∑s
w=1(#SRange+w−1)

2n−1 ≤∑s
w=1(

1
2n−1 + (#Domain[P1]+w−1)2

22n−2 ). Notice that s =
∑v′−1

b=0 u[b] is the number of

invocations to P1 related to lazy sampling P1[X
i
l ] = Y i

l

$←{0, 1}n \ Range[P1].

4.5 Summing Up

From the most common case to the most general case, we have observed that for

every lazy sampling P1[X
i
l ] = Y i

l

$←{0, 1}n \Range[P1], its probability to under-

mine the freeness consistence is no more than
∑s

w=1(
1

2n−1 +
(#Domain[P1]+w−1)2

22n−2 ),
where s is the number of invocations to P1 related to this lazy sampling. Suppose
in dealing with M1,M2, · · · ,M q, we do z times lazy sampling in total, and the
invocations to P1 related to them are s1, s2, · · · , sz respectively. Thus,

Pr[Cover = True] ≤
z∑

j=1

Pr[Cover = True in lazy sampling j]

≤
z∑

j=1

sj∑
w=1

(
1

2n−1
+

(#Domain[P1] + w − 1)2

22n−2
)

≤ q(lmax + 1)

2n−1
+

q(lmax+1)∑
w=1

(w − 1)2

22n−2

≤ qlmax + q

2n−1
+
q3l3max

22n−2
,



310 L. Zhang et al.

where we apply
∑z

j=1 sj ≤ q(lmax +1) and note that #Domain[P1] is a variable
growing from 0 to some value no larger than q(lmax + 1), with lazy samplings.

At last, we get Pr[∃i ∈ [1, q] : Case D occurs] = Pr[Bad = True] ≤ Pr[Zero =

True] + Pr[Cover = True] ≤ q(lmax+1)
2n−1 + qlmax+q

2n−1 +
q3l3max

22n−2 = qlmax+q
2n−2 +

q3l3max

22n−2 . � 

5 Some Suggestions

The key size in 3kf9 is three times of that for its underlying blockcipher, and this
may be too large to be stored securely in some resource-restricted environments.
For such cases, we give the following solutions:

1. Derive a master key K
$←− {0, 1}k, and generate Ki = EK(Csti) (i = 1, 2, 3)

with three different constants Csti. Then we need only to store the master
key K securely. The security of the resulting scheme is still guaranteed by
the PRP assumption on blockcipher E.

2. DeriveK1
$←− {0, 1}k, and generateKi = K1⊕Csti for i = 2, 3, with two non-

zero constants Cst2,Cst3. Then we need only to store K1 securely. However,
this solution requires blockcipher E should be a RK-PRP (pseudorandom
against a kind of related-key attacks) [15].
We warn that generating K2 = EK1(Cst2) and K3 = EK1(Cst3) may result
in security flaws in 3kf9, because EK(K⊕·) may not reach pseudorandomness
given E is a PRP [29].

3. Adopt a beyond-birthday-bound tweakable blockcipher TBC as the under-
lying primitive in 3kf9. Then, we can replace EK1 , EK2 and EK3 by TBCT1

K ,

TBCT2

K and TBCT3

K , where T1, T2, T3 are three public tweaks. Such a TBC
has recently been introduced by Landecker, Shrimpton and Terashima [21],
but the current TBC scheme still needs key size reducing.

Since CMAC has been widely used in practical applications [4], someone may
want to use CMACK1(·)⊕CMACK2(·) to get a highly secure MAC. We note that
the precise security of this proposal is still unclear [30], and it is rate-2, implying
more power consumption and lower efficiency in serial implementations.

6 Conclusion

We propose a rate-1 CBC-based MAC 3kf9 with provable security beyond the
birthday bound in this paper. 3kf9 is efficient for its rate-1 design, and highly-

secure for its O( l
3q3

22n + lq
2n ) PRF bound. Moreover, 3kf9 is light in the sense

that it needs only XOR operations besides blockcipher invocations, and thus
it immediately turns into a lightweight MAC when equipped with a lightwight
blockcipher. However, its key size seems to be too large in some particular envi-
ronments, requiring further improvements therefore.
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Abstract. We develop a conceptual approach for probabilistic analysis of adap-
tive adversaries via Maurer’s methodology of random systems (Eurocrypt’02).
We first consider a well-known comparison theorem of Maurer according to
which, under certain hypotheses, adaptivity does not help for achieving a certain
event. This theorem has subsequently been misinterpreted, leading to a misrepre-
sentation with one of Maurer’s hypotheses being omitted in various applications.
In particular, the only proof of (a misrepresentation of) the theorem available in
the literature contained a flaw. We clarify the theorem by pointing out a simple
example illustrating why the hypothesis of Maurer is necessary for the compari-
son statement to hold and provide a correct proof. Furthermore, we prove several
technical statements applicable in more general settings where adaptivity might
be helpful, which can be seen as the random system analogue of the game-playing
arguments recently proved by Jetchev, Özen and Stam (TCC’12).

1 Introduction

One of the key concepts in cryptographic security definitions and proofs is the notion
of indistinguishability [3]. In the information-theoretic setting, the simplest example
is how easy it is for a computationally unbounded adversary to distinguish two ran-
dom variables X and Y based on a single sample from either of the two variables. It
is not hard to see that the success probability of the optimal distinguishing algorithm
(the distinguisher’s advantage) is simply the statistical distance of the two probability
distributions for X and Y . Yet, the analysis of current cryptographic systems typically
requires much more than distinguishing two random variables. For instance, the related
cryptographic primitive of a pseudo-random function allows an adversary to make mul-
tiple queries and hence, obtain multiple related samples in order to distinguish between
either a truly random function or a pseudo-random one. Moreover, the distinguisher can
interact with the system by choosing the queries adaptively, i.e., based on the previous
queries and corresponding responses. Adversarial adaptivity is notoriously difficult to
deal with, not only in the context of pseudorandomness, but across the cryptologic land-
scape.

With the increasing number of sophisticated cryptographic schemes appearing in
the literature (e.g., authenticated encryption, compression functions, message authen-
tication codes), the level of complexity of proving even relatively straightforward se-
curity notions such as pseudorandomness or collision resistance becomes ever more
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involved and complicated. Even though the building blocks of the proofs rarely extend
beyond basic notions such as conditional probabilities, Bayes’ rule or basic concepts
from stochastic processes, combining these building blocks into a rigorous proof poses
a challenge in many cases. Consequently, developing a more conceptual approach to-
wards rigorous security analyses of adaptive adversaries is an important challenge in
theoretical cryptology.

Games and Random Systems. One of the general methods for security proofs is based
on “game-playing” [2,8,16]. A common technique involves the introduction to the game
of a flag bad (initially set to false). The fundamental lemma of game playing [2,
§3.4] states that for games that are identical until bad, distinguishing between these
games is at most as hard as setting bad to true. Several common and a few new
techniques employed to prove preimage and collision security of compression functions
based on ideal primitives were recently abstracted using game playing by Jetchev, Özen
and Stam [7].

A different approach to indistinguishability and probabilistic analysis of adaptive ad-
versaries is through the concept of random systems, as introduced by Maurer [11]. This
abstraction unifies many existing security proofs and it allows for proving new indistin-
guishability results. Intuitively, a random system takes a generally unbounded sequence
of inputs (queries) and produces an output (response) for each input using a specific
source of randomness. Random systems are rigorously modeled in such a way that they
exploit the input-output behavior via specifying (abstractly) a set of conditional proba-
bility distributions (see Definition 1 for more details).

A distinguisher (see Definition 4) can be thought of as another random system that
is allowed to query either one of the two random systems and that outputs a binary
decision bit at the end. Estimating the advantage in the case of non-adaptive adversaries
is often much simpler than estimating the advantage for adaptive ones. Maurer gave a
two step approach to deal with adaptive distinguishers effectively.

First, in analogy with the fundamental lemma of game playing, it is always possible
to rephrase the problem of upper bounding the advantage of any adversary in distin-
guishing two arbitrary random systems into one where an adversary has to provoke
an event instead [11, 14, Thm.1]. Most of the indistinguishability proofs indeed follow
along these lines.

Next, Maurer [11, Thm.2] presented a result stating that, under certain hypotheses,
adaptivity does not help to cause an event. Throughout the paper, we often refer to this
statement as the adaptive–non-adaptive (ANA) switching lemma (see Section 4.1). It
can also be used in the context of events that are meaningful in their own right, such as
finding collisions for a hash function.

Our Contribution. In this paper, we revisit and refine the currently existing tech-
niques based on random systems for bounding the advantage of an adaptive adversary
for provoking a certain event. Our contribution is twofold. On the one hand, we show
that Maurer’s phrasing of the ANA switching lemma has been been misinterpreted,
in the sense that an essential hypothesis has been omitted in subsequent applications.
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This applies to the only proof given in the literature (by Pietrzak [15, §3.2]) which
consequently contains an incorrect step. We restate and prove a corrected version that
luckily works for most uses of the lemma in the literature. We explain why the original
hypothesis is indeed necessary by providing a simple example where adaptivity does
help, yet, where the remaining hypotheses have been satisfied. On the other hand, we
examine existing techniques to bound the advantage of adaptive adversaries directly in
the context of random systems. This can be seen as a generalization of the earlier work
by Jetchev, Özen and Stam [7].

The example is rather simple and intuitive: finding a fixed point in a uniformly
random permutation. Here, one can easily see that adaptivity is helpful after the first
query/response pair is obtained since (assuming that the first query has not produced a
fixed point) an adaptive adversary can choose its second query based on the response
to the first query and the condition that there is no fixed point yet (see Section 4.1).
Indeed, an adaptive adversary can already eliminate one choice for the second query
(two for the third and so on), as opposed to a non-adaptive adversary who commits
all of its queries in advance. Thus the best adaptive adversary will have a significantly
better advantage than any non-adaptive one. Nevertheless, as we demonstrate, the hy-
potheses of Pietrzak’s (mis)interpretation of the ANA switching lemma are satisfied,
thus completing our counterexample.

We proceed to examine Pietrzak’s proof of the lemma to determine what underlies
the mistake and whether the proof can be fixed. To some extent, the problem originates
from the elliptical notation that the theory of random systems occasionally suffers from.
We propose a restatement of the lemma (Theorem 12) together with a correct proof. We
then perform the important (if somewhat tedious) task of investigating known exam-
ples in the literature where an incorrect version of the ANA switching lemma has been
exploited (see the full version). Fortunately, to the best of our knowledge, the flaw un-
covered by us does not lead to a violation of any security claim based on the incorrect
ANA switching lemma (as the modified hypotheses are still satisfied).

Our second contribution is a string of technical statements, all phrased in the lan-
guage of random systems, that are applicable in the more general setting where adap-
tivity might be helpful in triggering an event. The first result (Proposition 9) is the
random system interpretation of a well-known technique, where a union bound is com-
puted over the subevent that an adversary provokes the event at the jth step, where the
required “stepwise” probabilities (for the subevents) are maximized in a greedy-type
manner. This is a standard and often-used argument from security proofs that has not
been previously linked to random systems. It makes derivation of the overall bound rel-
atively easy. Yet, in many cases the overall upper bound is not tight enough due to the
maximal probabilities occuring for rather unlikely query/response histories or due to
overcounting.

Several proofs in the literature tackle the problem of “bad” query/response history by
the introduction of an auxiliary event explicitly bounding such a bad history occuring
(e.g., [10,17]). Subsequent bounding of the probabilities of on the one hand the auxiliary
event and on the other of the actual event conditioned on the auxiliary bad event not
occurring, leads to a tighter bound. Proposition 13 generalizes this method in the context
of random systems.
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Lee et al. [9] recently introduced “wish lists” to the analysis of adaptive adversaries
to limit the effect of overcounting. The idea is to cut up the analysis in two parts. First,
one upper bounds the maximum size W of the wish list, i.e., the total number of query-
response pairs that could ever lead to an adversarial win (to get useful bounds, one
typically needs to introduce an auxiliary flag as in the discussion above). Next, one
upper bounds the probability p of any particular wish to be granted, i.e., the probability
that a query on the wish list gets to the wished for response when actually being asked
by the adversary. Finally, one observes that in order to win, at some point an adversary
needs to have some wish granted. Intuitively, a union bound over all wishes in the list
means the advantage of an adaptive adversary is then at most pW . We formalize this
approach in Proposition 14, which assumes as a hypothesis an upper bound on the sum
of the stepwise probabilities of success for each query/response history and thus avoids
the greedy-type argument. We refine this in Proposition 15 by adding an auxiliary flag
event.

Yet, the most subtle and useful (in terms of applications) bounds are provided in
Proposition 16. Here, an adaptive adversary is trying to achieve a certain event more
than once. A simple example is an adversary trying to obtain more than κ fixed points
in a random permutation, but it could also relate to a scenario where an adversary needs
to see multiple wishes being granted. The techniques we develop here are very similar
to those used for the analysis of a recent incidence-based compression function con-
struction [7]. We illustrate the usefulness of our result by revisiting the analysis of an
auxiliary collinearity event needed for the security proof of that construction (see the
full version). The strong emphasis on conditional probabilities in the random systems
methodology makes it very natural to express the various bounds on an adaptive adver-
sary’s advantage, providing a different and arguably clearer perspective on the original
proof.

Related Work. Modification of the adversary is an important technique, orthogonal
to our work, that is often used to bound the advantage of an adaptive adversary. In
particular free queries have been used to great effect in the analysis of double length
hash functions [1,6,9]. A typical proof will first modify the adversary—adding the free
queries with the somewhat paradoxic effect of taking away some of the adaptivity of the
adversary by making it more it more powerful—followed by an analysis of the advan-
tage of this modified adversary. For bounding the advantage of the modified adversary
our work comes into play.

Very recently, during their analysis of key-alternating ciphers, Bogdanov et al. [4]
uncovered an interesting scenario where a distinguisher surprisingly benefits from adap-
tivity. While it would be straightforward to describe their problem (and the support-
ing counterexample) in the random systems framework and subsequently applying the
first step of Maurer’s two step approach to move it from distinguishing to causing an
event, the resulting event cannot be expressed as a predicate, ruling out direct applica-
tion of many of our theorems. It is an interesting open problem to see if our approach
can be extended to improve upon the bounds already obtained by Steinberger [18] and
Bogdanov et al.
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2 Preliminaries

Notation. Following the terminology and notation of [11, 15], we denote random
variables by capital letters (e.g., X), their values by lower-case letters (e.g., x) and
their finite1 sampling spaces by calligraphic letters (e.g., X ). For a fixed sample space
X , let X k be k-fold Cartesian product of X . The corresponding random variables
and their values are denoted analogously (i.e., Xk and xk , respectively). For brevity,
we use PA[a] to denote the probability Pr[A = a] and similarly, PA|BC [a; b, c] for
Pr[A = a|B = b ∧ C = c]. If it is clear from the context, we sometimes omit the
specific values and simply use, e.g., PA|BC to denote Pr[A = a|B = b ∧C = c].

Random Systems. Various cryptographic systems can be seen as random systems [11]
that are modeled as the mathematical abstraction of interactive systems: an (X ,Y)-
random system takes the inputs X1, X2, . . . ∈ X and for each input Xi it generates
an output Yi ∈ Y depending probabilistically on X i = (X1, . . . , Xi) and Y i−1 =
(Y1, . . . , Yi−1). Random systems have been used in the literature (see e.g., [11–14]) to
unify, simplify, generalize, and in some cases strengthen security proofs.

Definition 1 (Random System). An (X ,Y)-random system F is a (possibly infinite)
sequence of conditional probability distributions PF

Yi|XiY i−1 for i ≥ 1; specifically, the

distribution of the outputs Yi conditioned on X i = xi (i.e., the ith query xi and all
previous queries xi−1 = (x1, . . . , xi−1)) and Y i−1 = yi−1 (i.e., all previous outputs
yi−1 = (y1, . . . , yi−1)). Define

PF
Y i|Xi :=

i∏
j=1

PF
Yj |XjY j−1 ,

where, for completeness, PF
Y1|X1Y 0 := PF

Y1|X1 = PF
Y1|X1

. Two (X ,Y)-random systems

F and G are said to be equivalent (denoted by F ≡ G) if PF
Yi|XiY i−1 = PG

Yi|XiY i−1

for all i ≥ 1 and all arguments (xi, yi) ∈ X i × Yi.

Example 2 (Random system). Random functions and random permutations are special
cases of random systems. If (X ,Y) is any pair of sets, a random function X → Y is
a random variable whose values are functions X → Y . For any finite set X , a ran-
dom permutation is a random variable taking values in the set of permutations of X . A
uniformly random function R is a random function with uniform distribution over all
functions X → Y . Using random systems, we have the following:

PR
Yi|XiY i−1 [yi;x

i, yi−1] =

⎧⎨⎩1 if xi = xj for some j < i and yi = yj ,
0 if xi = xj for some j < i and yi �= yj ,
1/|Y| else.

(1)

A uniformly random permutation is defined analogously.
1 Most of the results and arguments in this paper generalize to infinite sampling spaces; for

simplicity, we restrict to finite spaces as the latter are the ones relevant for cryptographic ap-
plications.
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Distinguishing Random Systems. In order to distinguish two (X ,Y)-random sys-
tems F and G, we use the notion of a distinguisher that can be regarded as a random
system itself. A distinguisher interacts with random systems by making queries to ei-
ther F or G and outputs a binary decision bit after a certain number of queries. In the
sequel, we consider information-theoretic distinguishers only; they are computation-
ally unbounded and the only measure of complexity is the number of queries made
by them.

In the literature, distinguishers are classified based on how they interact with the
random systems. For instance, adaptive distinguishers choose their ith query Xi de-
pending on the history (i.e., all previous query-response pairs), whereas non-adaptive
distinguishers commit all their queries in advance. Throughout, we let Ad and NAd be
the classes of all adaptive and non-adaptive distinguishers, respectively. Definition 4
formally introduces the concept of a distinguisher as well as its interaction with random
systems via probability theory.

Definition 3 (Distinguisher). An (X ,Y)-distinguisher D is a (Y,X )-random system
defined by a sequence of conditional probability distributions PD

Xi|Y i−1Xi−1 . That is, it
is a (Y,X )-random system that is one query ahead. A (X ,Y)-distinguisher D and an
(X ′,Y ′)-random system F are said to be compatible if X ′ = X and Y ′ = Y .

One models the interaction of a distinguisher with a random system via a random ex-
periment that is a sequence of conditional probability distributions. This is denoted by
PD♦F
XiYi|Xi−1Y i−1 and defined simply as

PD♦F
XiYi|Xi−1Y i−1 = PF

Yi|XiY i−1PD
Xi|Xi−1Y i−1 .

Intuitively, this models the probabilities of the distinguisher choosing a given query xi
at the ith step and the random system returning a given response yi conditioned on the
history. Moreover, we define

PD♦F
XiY i =

i∏
j=1

PD♦F
XjYj |Xj−1Y j−1 .

We are now interested in distinguishing two random systems F and G where we as-
sume that both systems are compatible with the distinguisher D. The performance of
D (known as the advantage of D in distinguishing F from G) is generally measured as
follows:

Definition 4. Let F and G be two (X ,Y)-random systems that are compatible with a
distinguisher D. Given an integer i > 0, the advantage of D in distinguishing F from
G in i queries is defined to be

ΔD
i (F,G) :=

1

2

∑
(xi,yi)∈X i×Yi

|PD♦F
XiY i − PD♦G

XiY i | .

Let C be a class of distinguishers trying to distinguish F from G. We define the advan-
tage of the best C-distinguisher making i queries to F and G as

ΔC
i (F,G) := max

D∈C

{
ΔD

i (F,G)
}
.
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Random Systems with Monotone Conditions. One of the similarities between ran-
dom systems and game-playing is a notion known as monotone condition or monotone
event. Intuitively, it represents an event that once set, it cannot be “reset" by additional
queries. The notion of monotone event/condition is more general and should not be con-
fused with monotone predicate (or monotone binary output as discussed in [5, §2.3]).
To explain the difference, let A = {ai} be the sequence of events a1, a2, . . ..

Monotone predicates (or binary outputs) are simpler and less general since the
query/response pairs (xi, yi) at step i uniquely determine whether the corresponding
event ai holds or not, whereas the former could be more complex (e.g., ai could be the
(monotone) event that a certain flag is set in at most 10 steps). In other words, in the
case of monotone predicates, the conditional probability of ai occurring conditioned on
X i = xi ∧ Y i = yi is binary, whereas monotone events could be more general. For
simplicity, we assume that our monotone events are monotone predicates and consider
a sequence of boolean predicates ai indicating whether ai holds (i.e., ai ⇔ ai holds;
equivalently, ¬ai ⇔ ai does not hold) with the property that ¬ai ⇒ ¬ai+1 (the latter
guarantees monotonicity).

As an example, consider the monotone event ai that after the ith query to a uniformly
random function, all distinct inputs result in distinct outputs (i.e., there exists no output
collisions). It is not difficult to see thatA = {ai} is a monotone binary output as ¬ai ⇒
¬ai+1 and ai is completely determined from (xi, yi). Equivalently, if there is an output
collision for the ith step, there is also an output collision for all the subsequent steps.
The monotonicity condition gives rise to a sequence of binary probabilities PF

ai|XiY i ∈
{0, 1} with the property that

∀i ≥ 1, PF
ai|XiY i = 1⇒ PF

ai−1|Xi−1Y i−1 = 1 . (2)

Associated to a random system with a monotone binary output, we have the following
data:

– D.0 (data defining F): these are simply the probability distributions PF
Yi|XiY i−1 ,

– D.1 (binary probabilities for A): these are the binary probabilities PF
ai|XiY i (de-

scribing the predicates ai and ¬ai) satisfying (2).

Remark 5. In the case of monotone conditions, the defining probabilities PF
ai|XiY i can

be arbitrary real numbers in the interval [0, 1].

We can derive various other probabilities using conditional probabilities/Bayes’ rule as
well as D.0 and D.1:

Event Probabilities for A: These are the probabilities denoted by PF
ai|ai−1XiY i−1 .

Intuitively, PF
ai|ai−1XiY i−1 models the probability of the predicate ai conditioned on

the query/response history, as well as on the predicate ai−1. We derive it from D.0 and
D.1 as follows:

PF
ai|ai−1XiY i−1 =

∑
yi

PF
ai|XiY iPF

Yi|XiY i−1 .
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Here, one can also derive the probability distributions PF
¬ai|ai−1XiY i−1 simply as 1 −

PF
ai|ai−1XiY i−1 . It is important to note that if the condition ai−1X

iY i−1 evaluates to

false for all yi for a given (xi, yi−1), this probability is set to zero (for reasons that
will become clear later). We remark that in a similar manner, one can adjoin yet another
monotone condition B to a random system with a monotone condition A.

A Random System Conditioned onA not Failing (denoted by F|A): These are prob-
ability distributions PF

Yi|aiXiY i−1 and can be derived from Bayes’ rule as follows:

PF
Yi|XiY i−1PF

ai|XiY i = PF
aiYi|XiY i−1 = PF

Yi|aiXiY i−1PF
ai|XiY i−1 , (3)

where the middle term (which has not been defined yet) is a formal symbol for the
corresponding probability. Assuming that PF

ai−1|Xi−1Y i−1 = 1 together with the mono-

tonicity of A, we see that PF
ai|XiY i−1 = PF

ai|ai−1XiY i−1 �= 0. One can thus derive the
conditional probabilities

PF
Yi|aiXiY i−1 =

PF
Yi|XiY i−1PF

ai|XiY i

PF
ai|ai−1XiY i−1

.

Intuitively, this looks like a random system except that we have conditioned on the pred-
icate ai. Note that this need not be a probability distribution: for instance, consider the
example of a random function R : {0, 1}n → {0, 1}n and define the ai as the event of
having a collision between an input and an output. It might occur that x2 = y1 in which
case a2X2Y 1 will always evaluate to false and thus, the probability PR

Y2|a2X2Y 1 = 0
for all y2, so it will not represent a well-defined distribution on the variable Y2. In cases
when this degeneracy does not occur, we can consider F|A as a true random system G
(see Hypothesis 8), denoted F|A ≡ G. Note that this particular notion of equivalence
of a random system and a random system with a monotone condition can be extended
slightly in the case of degeneracies too. As described in [11, Defn.6], we say that F|A
is equivalent to G if PF

Yi|aiXiY i−1 = PG
Yi|XiY i−1 for any i and any values of the pa-

rameters for which PF
Yi|aiXiY i−1 is not identically zero (i.e.., is a distribution). Finally,

we note that F|A appeared in, e.g., [15, Defn.7].

A Random System with a Condition A (denoted by FA): This is the random system
corresponding to [15, Defn.6]) and can be derived by

PF
aiYi|ai−1XiY i−1 := PF

Yi|aiXiY i−1PF
ai|ai−1XiY i−1 .

We also define

PF
aiY i|Xi :=

i∏
j=1

PF
ajYj |aj−1XjY j−1 .

Moreover, we consider distinguishers trying to provoke the negated event ¬ai again
via a sequence of probability distributions. To indicate the link with ai, we denote
these distributions by PD

Xi|ai−1Xi−1Y i−1 . As in the case of true random systems, this
models the probability distribution of an adversary choosing the ith query based on the
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previous responses and the predicate ai−1 (meaning that the desired event ¬ai−1 has
not occurred after the (i− 1)st query/response pair).

Using this data, we can derive various probabilities and distributions by imposing Bayes’
rule. We define the probabilities for the random experiment D♦F by

PD♦F
aiXiYi|ai−1Xi−1Y i−1 := PF

aiYi|ai−1XiY i−1PD
Xi|ai−1Xi−1Y i−1 .

Intuitively, this models the probability of choosing a particular query, obtaining a par-
ticular response and the predicate ai (resp., ¬ai) conditioned on the history and the
predicate ai−1. Finally, let

PD♦F
aiXiY i :=

i∏
j=1

PD♦F
ajXjYj |aj−1Xj−1Y j−1 .

Similarly, we define an expression for ¬ai. We are now ready to define the advantage
of the distinguisher (adversary) D in provoking the desired event ¬ai:

Definition 6. Let C be a class of distinguishers D that are trying to provoke ¬ai. Given
i > 0, define νD(F,¬ai) to be the advantage of the distinguisher D in provoking the
event ¬ai in the random experiment D♦F. That is

νD(F,¬ai) =
∑

(xi,yi)∈X i×Yi

PD♦F
¬aiXiY i .

Furthermore, for all i ≥ 1, define νC(F,¬ai) := max
D∈C

νD(F,¬ai) to be the maximum

advantage over all distinguishers in the class C trying to provoke ¬ai.

Finally, we explain the analogue (in the context of random systems) of the fundamental
lemma of game-playing and comment on why the random-system statement is more
general. Suppose that F is a random system with a monotone conditionA and let G be
another random system. The analogue of the hypothesis of the fundamental lemma of
game-playing (that two games are equivalent up to statements that are evaluated only
if ai is set to true) is simply F|A ≡ G. Under that hypothesis, we expect that one
can bound the distinguishing advantage ΔD

i (F,G) via the advantage νD(F,¬ai) of
an adversary to provoke ¬ai. Interestingly enough, one can deduce the latter from a
weaker hypothesis, namely the hypothesis that

PF
ajY j |Xj ≤ PG

Y j |Xj , ∀j ≤ i.

The following lemma is proven in [15, Lem.6] (see also [11, Thm.1]):

Lemma 7. Assume that PF
ajY j |Xj ≤ PG

Y j |Xj holds for all j ≤ i. Then for any distin-
guisher D,

ΔD
i (F,G) ≤ νD(F,¬ai) .

In the following sections, we develop techniques to upper bound νD(F,¬ai).
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3 A Standard Method for Probabilistic Analysis of Adaptive
Adversaries

Let A be a monotone condition and let F be an (X ,Y)-random system. Our goal is to
compute an upper bound for νAd(F,¬ai). The standard way to deal with the overall
probability of setting ¬ai is to bound it by a sum (over j ≤ i) of the maximum (over all
adversaries) probability of winning at the jth step, where these “stepwise" probabilities
are only taken over the probability distributions describingF. In other words, for each j,
we maximize individually the probability of winning at the jth step assuming that we
have not won at step j − 1. This greedy-type approach for producing an upper bound
can be formalized in Proposition 9 (see Appendix of the full version for its proof). We
first state an hypothesis that is commonly used throughout the paper.

Hypothesis 8. Let F be an (X ,Y)-random system and let A be a monotone condition
on F. There exists an (X ,Y)-random system G such that F|A ≡ G, i.e., for all i ≥ 1
and all (xi, yi) ∈ X i × Yi,

PF
Yi|aiXiY i−1 = PG

Yi|XiY i−1 .

Proposition 9. Let F be an (X ,Y)-random system and let A be a monotone condition

on F. Assuming that
∑i

j=1 max(xj,yj−1)

{
PF
¬aj |aj−1XjY j−1

}
< 1, we have

νAd(F,¬ai) ≤
i∑

j=1

max
(xj ,yj−1)

{
PF
¬aj |aj−1XjY j−1

}
.

4 When Adaptivity Does Not Help

4.1 Revisiting the Result of Maurer and Pietrzak

Maurer [11] and Pietrzak [15] provide a general method for proving that under certain
hypotheses, adaptive strategies are no better than non-adaptive ones in forcing a condi-
tion to fail. In other words, if these hypotheses are satisfied, the advantage of the best
Ad- and NAd-distinguisher are equal. Here, we show that the hypothesis (Hypothesis 8)
used by Pietrzak is not sufficient for the comparison result of [11, 15] (ANA switching
lemma) to hold by providing a particular counterexample in Proposition 10 where the
hypothesis is clearly satisfied and where adaptivity does help. We then explain the prob-
lem in the ANA switching lemma in detail and suggest different ways to remedy it in
Section 4.2. The following statement appears in [15, Lem.6]:

Adaptive–Non-Adaptive (ANA) Switching Lemma. Let A be a monotone condition
and let F be an (X ,Y)-random system. If Hypothesis 8 holds for F, A and an (X ,Y)-
random system G, then adaptivity does not help in provoking ¬ai. More precisely,

νAd(F,¬ai) = νNAd(F,¬ai).
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Now, we present an example of a random system where adaptive adversaries have better
advantage than the adaptive ones in provoking a welldefined monotone event.

Proposition 10. Let X = {0, 1}n and let P : X → X be a uniformly random permu-
tation. Let ai be the event that yj �= xj for all j ≤ i where yj = P(xj). Then A is
monotone and

νAd(P,¬ai) > νNAd(P,¬ai) .

Proof. The sequence of predicates {ai} is monotone by definition. We calculate the
probability of obtaining a fixed point forP after at most two queries; the case for general
i follows by inspection. After querying P with any X1 = x1 ∈ {0, 1}n, the response
y1 ∈ {0, 1}n is uniformly random. Thus, with probability 1/2n a fixed point is found
after the first query. Hence,

PP[Y2 = x2 ∨ Y1 = x1] = PP[Y2 = x2 ∧ Y1 �= x1] + PP[Y1 = x1] =

= PP[Y2 = x2 ∧ Y1 �= x1] + 1/2n .

The distinction between an adaptive and a non-adaptive strategy shows up after the sec-
ond query: the latter commits the second query in advance whereas the former chooses
it adaptively based on the first query and its response.

Case 1: Non-adaptive adversary. If the adversary were non-adaptive, she would have
fixed x2 �= x1 prior to obtaining the response y1 and since P(x2) �= P(x1) and P is a
uniformly random permutation,P(x2) ∈ {0, 1}n−{y1}. Note however that if x2 = y1,
no y2 could lead to a fixed point. Hence (by Bayes’ rule),

PP[Y2 = x2 ∧ Y1 �= x1] = PP[Y2 = x2 | Y1 �= x1, x2]P
P[Y1 �= x1, x2] .

Clearly, PP[Y1 �= x1, x2] = (2n − 2)/2n. Moreover, y2 is uniformly random among
{0, 1}n − {y1}, so

PP[Y2 = x2 ∧ Y1 �= x1] =
1

2n − 1
· 2

n − 2

2n
⇒ PP[Y2 = x2 ∨ Y1 = x1] =

=
1

2n − 1
· 2

n − 2

2n
+

1

2n
<

1

2n−1
.

Since the above analysis holds for any non-adaptive adversary, we conclude that
νNAd(P,¬a2) < 1/2n−1.

Case 2: Adaptive adversary. Knowing x1, y1 and y1 �= x1 from the first query, an
adaptive adversary can eliminate one choice for the second query x2 different from x1,
namely x2 = y1. Thus, a clever adversary will choose x2 ∈ {0, 1}n − {x1, y1} so that
the chance of finding a fixed point after the second step is 1/(2n − 1). Thus,

PP[Y2 = x2 ∧ Y1 �= x1] = PP[Y2 = x2 | Y1 �=x1 ∧ Y1 �=x2]PP[Y1 �=x1 ∧ Y1 �=x2] =

=
1

2n − 1
· 2

n − 1

2n
,



324 D. Jetchev, O. Özen, and M. Stam

and we conclude that

νAd(P,¬a2) ≥
1

2n
+

1

2n − 1
· 2

n − 1

2n
=

1

2n−1
> νNAd(P,¬a2) .

� 

We now explain why Hypothesis 8 holds for the monotone event sequence A and the
random system P.

Proposition 11. Let P and A be as in Proposition 10. Then, Hypothesis 8 holds using
the monotone condition A, along with taking P as F.

Proof. Let i = 2. We simply need to define the distributions (i) PG
Y1|X1 for all y1 ∈ Y

and x1 ∈ X 1, and (ii) PG
Y2|X2Y 1 for all y2 ∈ Y , x2 ∈ X 2 and y1 ∈ Y1. For (i), define

PG
Y1|X1 =

{
1

2n−1 if y1 �= x1,

0 otherwise.

Clearly, PF
Y1|a1X1 = PG

Y1|X1 . For (ii), assuming y1 �= x1 and x1 �= x2, define the
distribution in the following two cases:

Case 1: x2 = y1. There are 2n−1 possible values for y2 = P(x2) occurring with equal
probabilities and none of these values can lead to a fixed point, so we have

PG
Y2|X2Y 1 =

{
0 if y2 = y1 = x2,

1
2n−1 otherwise .

Case 2: x2 �= y1. Here, the case of y2 = x2 �= y1 causes ¬a2, so one can define:

PG
Y2|X2Y 1 =

{
0 if y2 = y1 or y2 = x2 �= y1

1
2n−2 otherwise .

We easily verify that in all cases, PF
Y2|a2X2Y 1 = PG

Y2|X2Y 1 . � 

4.2 Another Look at the Comparison of Adaptive vs. Non-adaptive Adversaries

Propositions 10 and 11 show that the ANA switching lemma cannot hold as stated
in [15, Lem.6]. We now analyze in detail the proof of the ANA switching lemma given
in [15], identify the step that causes the discrepancy and propose a fix.

The Mistake in the Original Proof [15]. The ANA switching lemma first appears
in [11, Thm.2] with the correct hypothesis (see (1) of loc. cit.), but without a proof. A
slightly different version referring to the original claim is given in [12, Prop.2] (again
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without a proof). The only proof, to the best of our knowledge, appears in [15, Lem.6]
and is based on a chain of equalities and inequalities starting with

1− νAd(F,¬ai) = min
D∈Ad

⎧⎨⎩ ∑
(xi,yi)

⎛⎝ i∏
j=1

PF
ajYj |XjY j−1PD

Xj |Y j−1

⎞⎠⎫⎬⎭ .

Similarly to Proposition 9, the proof is based on applying Bayes’ rule to PF
ajYj |XjY j−1 .

The application of the Bayes’ rule in [15, Lem.6] is, however, incorrect2. The correct
application yields (assuming that the conditional distributions are well-defined)

PF
Yjaj |XjY j−1 = PF

Yj |ajXjY j−1PF
aj |XjY j−1 .

The problem is that the term PF
ai|Xi =

∏i
j=1 P

F
aj |XjY j−1 is assumed to be independent

of Y i−1 (see the top line of [15, p.30] - step (2.26)). There is no reason why (for a fixed
xi) this term should be independent of Y i−1; yet, this is used implicitly in the argument.
We have seen in Proposition 10 that the probability PF

a2|X2Y 1 depends on Y 1, so the
ANA switching lemma does not apply.

Strengthening the Hypotheses. We now propose a simple fix to the ANA switch-
ing lemma by adding an extra hypothesis, essentially stating that the probability of
achieving a success on the jth query is independent of the answers to all the previous
queries. This statement (albeit in a different formulation) already appears as (1) in Mau-
rer’s original [11, Thm.2], as well as a rephrased reproduction [12, Prop.2]. Neither of
these statements comes with a proof and both omit mention of Hypothesis 8, although
in [11, Thm.2] an alternative condition (2) is given such that (2) is claimed to imply
both (1) and Hypothesis 8.

Our proof of Theorem 12 follows largely along the lines of the (incorrect) proof
of Pietrzak, but obviously with fixes applied where necessary. Here, Hypothesis 8 is
needed to guarantee that all conditional probabilitiesPF

Yj |ajXjY j−1 are well-defined and
are also distributions when considered as functions on yj ∈ Y . The second hypothesis
simply says that if there is no dependency of the conditionals PF[aj |aj−1 ∧ Xj =
xj ∧ Y j−1 = yj−1] on the previous outputs then adaptivity should not help at all.

Theorem 12. Let F be an (X ,Y)-random system and let A be a monotone condition
on F. Let i > 0 be an integer. Suppose that Hypothesis 8 holds for F and A. If, in
addition, for every j ≤ i and xj ∈ X j , PF[aj |aj−1 ∧ Xj = xj ∧ Y j−1 = yj−1] is
independent of yj−1 ∈ Yj−1, then adaptivity does not help in provoking ¬ai, i.e.,

νAd(F,¬ai) = νNAd(F,¬ai).

Proof of Theorem 12. We first note that νAd(F,¬ai) ≥ νNAd(F,¬ai) holds. The rest
of the proof follows by showing the other direction of the inequality; we have that
1− νAd(F,¬ai) equals

2 Furthermore, the argument in [15, Lem.6] does not state whether the conditional probabilities
PF
Yj |ajX

jY j−1 are well-defined, for all j ≤ i.
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min
D∈Ad

⎧⎨⎩ ∑
(xi,yi)

⎛⎝ i∏
j=1

PF
Yj |ajXjY j−1PF

aj |aj−1XjY j−1PD
Xj |aj−1Xj−1Y j−1

⎞⎠⎫⎬⎭
(∗)
= min

D∈Ad

⎧⎨⎩ ∑
(xi,yi)

⎛⎝ i∏
j=1

PG
Yj |XjY j−1PF

aj |aj−1XjPD
Xj |aj−1Xj−1Y j−1

⎞⎠⎫⎬⎭
= min

D∈Ad

⎧⎨⎩∑
xi

⎛⎝ i∏
j=1

PF
aj |aj−1Xj

⎞⎠∑
yi

⎛⎝ i∏
j=1

PG
Yj |XjY j−1PD

Xj |aj−1Xj−1Y j−1

⎞⎠⎫⎬⎭
= min

D∈Ad

⎧⎨⎩∑
xi

⎛⎝ i∏
j=1

PF
aj |aj−1Xj

⎞⎠⎫⎬⎭
≥ min

D∈Ad

⎧⎨⎩∑
xi

⎛⎝ i∏
j=1

PF
aj |aj−1XjPD

Xj |aj−1

⎞⎠⎫⎬⎭ = min
D∈Ad

{∑
xi

PD♦F
aiXi

}
≥ = (1− νNAd(F,¬ai)) .

Here, (*) uses Hypothesis 8, as well as the extra hypothesis that PF
aj |XjY j−1 is indepen-

dent of yj−1. Hence, νNAd(F,¬ai)) ≥ νAd(F,¬ai)) and the claim follows. � 

5 Towards Obtaining Better Bounds

5.1 Using an Auxiliary Flag

The standard approach given in Section 3 has the disadvantage that for more complex
constructions, the maximal probabilities can get too large. This is often due to the fact
that the maximum is achieved for rather degenerate values of (xi, yi) that occur with
very low probability. Assuming that one can bound the probability of the degeneracy,
one way to refine the analysis of the adaptive adversary is to introduce an auxiliary
event (flag) that is set only for non-degenerate pairs (xi, yi). More precisely, if ai is
the monotone event to be studied, we introduce a flag event bi (together with a corre-
sponding predicate bi indicating whether bi has occurred or not) and we use the fact
that

¬ai ⇔ (¬ai ∧ bi) ∨ (¬ai ∧ ¬bi)⇒ (¬ai ∧ bi) ∨ ¬bi.

Now, bounding the advantage of achieving ¬ai amounts to bounding the advantage of
achieving ¬ai ∧ bi together with bounding the probability of degeneracy (or, of ¬bi).
The latter can be done via Proposition 9; yet for the former we need to introduce new
definitions.

All this can be rigorously modeled using random systems as follows: suppose that
F is a random system with a monotone condition B (here, B represents the flag event).
Suppose further that F|B is equivalent to another random system G (i.e., F|B ≡ G).
Now, we simply impose a monotone conditionA onG. Equivalently, we need to specify
the corresponding probabilities and distributions from Section 2. Suppose that we are
given the following data:
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– Event probabilities PG
ai|ai−1XiY i−1 also denoted by PF

ai|ai−1biXiY i−1 (to indicate
better what they are supposed to model),

– The random system G|A, namely, probabilities PG
Yi|aiXiY i−1 that we also denote

by PF
Yi|aibiXiY i−1 ,

– Distinguisher relative to A, namely, probability distributions denoted by
PD
Xi|ai−1bi−1Xi−1Y i−1 .

This data allows us to upper bound the advantage νAd(F,¬ai∧bi) (by definingPD♦F
¬ai|bi=

PD♦G
¬ai

) following exactly the same steps as in Section 2 (for the random system G and
the monotone event A). Moreover, we assume all the corresponding notation. The fol-
lowing proposition provides an upper bound on the adaptive advantage (see Appendix
of the full version for its proof):

Proposition 13. Let F be a random system with a monotone conditionB with the prop-
erty that there exists a random system G such that F|B ≡ G. Let A be a monotone
condition on G. Assuming that

i∑
j=1

max
(xj ,yj−1)

{
PF
¬aj |aj−1bjXjY j−1

}
< 1 ,

we have

νAd(F,¬ai ∧ bi) ≤
i∑

j=1

max
(xj ,yj−1)

{
PF
¬aj|aj−1bjXjY j−1

}
.

5.2 Improving the Bounds Obtained from Step-Specific Maximization

The greedy approach based on step-specific maximization often has limitations in the
sense that the produced bounds are not tight enough. One can obtain better bounds
via the simple observation that the advantage of an adversary in provoking ¬ai for a
monotone eventA can be bounded by the sum of the event probabilities for the negated
events¬aj for j ≤ i that are part of the data defining the monotone conditionA. Conse-
quently, if one is able to provide upper bounds on these sums, one would automatically
obtain an upper bound on the adaptive advantage.

In order to carry out this idea rigorously, we consider two methods that are formally
stated in Propositions 14 and 15 (see Appendix of the full version for the proof of the
former; the proof of the latter follows from the proof of Propositions 13 and 14). We
first give ourselves an upper bound BΣ on the sum of the event probabilities and then
show that the same BΣ bounds the adaptive advantage as well. The second method
is a variation of the first where one uses an auxiliary event. These two techniques are
important whenever the bounds given in Propositions 9 and 13 are not sufficiently tight).
A good example of that is the analysis an adaptive adversary trying to achieve a collision
in the compression function of [7] (see Appendix of the full version for the details).
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Proposition 14. Let F be a random system with a monotone event A. If there exists a
value BΣ ∈ (0, 1) such that for all (xi, yi) ∈ X i × Yi

i∑
j=1

PF
¬aj |aj−1XjY j−1 ≤ BΣ ,

then νAd(F,¬ai) ≤ BΣ .

The following proposition shows the natural generalization of the above proposition to
the case of auxiliary events (its proof follows from the proof of Propositions 13 and 14):

Proposition 15. Let F be a random system with a monotone condition B with the
property that there exists a random system G such that F|B ≡ G. Let A be a mono-
tone condition on G. Suppose that there exists a value BΣ ∈ (0, 1) such that for all
(xi, yi) ∈ X i × Yi

i∑
j=1

PF
¬aj |aj−1bjXjY j−1 =

i∑
j=1

PG
¬aj |aj−1XjY j−1 ≤ BΣ .

Then νAd(F,¬ai ∧ bi) ≤ BΣ .

Counting Successes. In Proposition 14, we are mainly interested in estimating the
maximal probability of the event (success) occurring once. Nevertheless, in some cases
the major monotone event A might depend on an auxiliary condition that intrinsically
requires an event (success) to occur more than once. As a simple example, consider
a generalization of the case studied in Proposition 10: let P be a uniformly random
permutation P : X → X for X = {0, 1}n and let ¬ai be the event that yj = xj for
more than κ values of j ≤ i where yj = P(xj) and κ is a positive integer. More
precisely, ai is the predicate that there exist at most κ fixed points after the ith query.

Such a general problem can be modeled and studied using random systems as fol-
lows: suppose that F is an (X ,Y)-random system. We then attach an event called hiti to
the random system F - this is the success event at step i. Note that hiti is not monotone.
Moreover, we introduce a random variable ctri to indicate the number of successes up
to step i. In other words, ctr0 = 0 and for every j ≥ 1, ctrj = ctrj−1 + 1 if hitj occurs
and ctrj = ctrj−1 otherwise. Finally, we can associate monotone events Aκ = {aκ,i}
for every integer κ ≥ 0, so that aκ,i is event that there are at most κ successes after the
ith query. In other words, aκ,i is the event that ctri ≤ κ.

In order to attach the success event to the random system, we provide the following
additional data to D.0:

H.1: Binary probabilities PF
hiti|XiY i for every xi ∈ X i and yi ∈ Yi.

We can derive the following probabilities from D.0 and H.1 via Bayes’ rule:

– Probabilities PF
hiti|XiY i−1 for every xi ∈ X i and yi−1 ∈ Yi−1 defined by

PF
hiti|XiY i−1 =

∑
yi

PF
hiti|XiY iPF

Yi|XiY i−1 .

– The data for each of the monotone events Aκ.
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Proposition 16 sets an upper bound on νAd(F,¬ai,κ) (see Appendix of the full version
for its proof).

Proposition 16. Let κ be a non-negative integer and suppose that there exists a value
BΣ ∈ (0, 1) such that for all (xi, yi) ∈ X i × Yi,

i∑
j=0

PF
hitj |XjY j−1 ≤ BΣ and PF

hiti|XiY i−1 > 0.

Then νAd(F,¬ai,κ) ≤ Bκ+1
Σ .

Remark 17. We should indicate the analogy between Proposition 14 and Proposition 16
with [7, Prop.7] and [7, Prop.9], respectively. We believe that having such statements
and techniques developed in the general context of random systems could serve as a
guiding tool for more conceptual security proofs for other constructions in the future.
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Abstract. We provide a framework enabling the construction of IBE
schemes that are secure under related-key attacks (RKAs). Specific in-
stantiations of the framework yield RKA-secure IBE schemes for sets of
related key derivation functions that are non-linear, thus overcoming a
current barrier in RKA security. In particular, we obtain IBE schemes
that are RKA secure for sets consisting of all affine functions and all poly-
nomial functions of bounded degree. Based on this we obtain the first
constructions of RKA-secure schemes for the same sets for the following
primitives: CCA-secure public-key encryption, CCA-secure symmetric
encryption and Signatures. All our results are in the standard model
and hold under reasonable hardness assumptions.

1 Introduction

Related-key attacks (RKAs) were first conceived as tools for the cryptanalysis
of blockciphers [22,9]. However, the ability of attackers to modify keys stored
in memory via tampering [13,10] raises concerns that RKAs can actually be
mounted in practice. The key could be an IBE master key, a signing key of a
certificate authority, or a decryption key, making RKA security important for a
wide variety of primitives.

Provably achieving security against RKAs, however, has proven extremely
challenging. This paper aims to advance the theory with new feasibility results
showing achievability of security under richer classes of attacks than previously
known across a variety of primitives.

Contributions in brief. The primitive we target in this paper is IBE. RKA se-
curity for this primitive was defined by Bellare, Cash, and Miller [4]. As per the
founding theoretical treatment of RKAs by Bellare and Kohno [5], the definition
is parameterized by the class Φ of functions that the adversary is allowed to ap-
ply to the target key. (With no restrictions, security is unachievable.) For future
reference we define a few relevant classes of functions over the space S of master
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keys. The set Φc = {φc}c∈S with φc(s) = c is the set of constant functions. If S is
a group under an operation ∗ then Φlin = {φa}a∈S with φa(s) = a ∗ s is the class
of linear functions. (Here ∗ could be multiplication or addition.) If S is a field we
let Φaff = {φa,b}a,b∈S with φa,b(s) = as + b be the class of affine functions and
Φpoly(d) = {φq}q∈Sd[x] with φq(s) = q(s) the class of polynomial functions, where
q ranges over the set Sd[x] of polynomials over S of degree at most d. RKA security
increases and is a more ambitious target as we move from Φlin to Φaff to Φpoly(d).

The choice of IBE as a primitive is not arbitrary. First, IBE is seeing a lot of
deployment, and compromise of the master secret key would cause widespread
damage, so we are well motivated to protect it against side-channel attacks.
Second, IBE was shown in [4] to be an enabling primitive in the RKA domain:
achieving RKA-secure IBE for any class Φ immediately yields Φ-RKA-secure
CCA-PKE (CCA-secure public-key encryption) and Sig (signature) schemes.
These results were obtained by noting that the CHK [12] IBE-to-CCA-PKE
transform and the Naor IBE-to-Sig transform both preserve RKA security. Thus,
results for IBE would immediately have wide impact.

We begin by presenting attacks showing that existing IBE schemes such as
those of Boneh-Franklin [14] and Waters [25] are not RKA secure, even for Φlin.
This means we must seek new designs.

We present a framework for constructing RKA-secure IBE schemes. It is an
adaptation of the framework of Bellare and Cash [3] that builds RKA-secure
PRFs based on key-malleable PRFs and fingerprinting. Our framework has two
corresponding components. First, we require a starting IBE scheme that has a
key-malleability property relative to our target class Φ of related-key deriving
functions. Second, we require the IBE scheme to support what we call collision-
resistant identity renaming. We provide a simple and efficient way to transform
any IBE scheme with these properties into one that is Φ-RKA secure.

To exploit the framework, we must find key-malleable IBE schemes. Some-
what paradoxically, we show that the very attack strategies that broke the RKA
security of existing IBE schemes can be used to show that these schemes are
Φ-key-malleable, not just for Φ = Φlin but even for Φ = Φaff . We additionally
show that these schemes support efficient collision-resistant identity renaming.
As a consequence we obtain Φaff -RKA-secure IBE schemes based on the same
assumptions used to prove standard IBE security of the base IBE schemes.

From the practical perspective, the attraction of these results is that our
schemes modify the known ones in a very small and local way limited only
to the way identities are hashed. They thus not only preserve the efficiency of
the base schemes, but implementing them would require minimal and modular
software changes, so that non-trivial RKA security may be added without much
increase in cost. From the theoretical perspective, the step of importance here
is to be able to achieve RKA security for non-linear functions, and this without
extra computational assumptions. As we will see below, linear RKAs, meaning
Φlin-RKA security, has so far been a barrier for most primitives.

However, we can go further, providing a Φpoly(d)-RKA-secure IBE scheme.
Our scheme is an extension of Waters’ scheme [25]. The proof is under a q-
type hardness assumption that we show holds in the generic group model. The
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Primitive Linear Affine Polynomial

IBE [4]+[3] � �
Sig [4]+[3] � �

CCA-PKE [26], [4]+[3] � �
CPA-SE [2], [4]+[3] [21] [21]

CCA-SE [4]+[3] � �∗

PRF [3] – –

Fig. 1. Rows are indexed by primitives. Columns are indexed by the class Φ of related-
key derivation functions, Φlin, Φaff and Φpoly(d) respectively. Entries indicate work
achieving Φ-RKA security for the primitive in question. Checkmarks indicate results
from this paper that bring many primitives all the way to security under polynomial
RKAs in one step. The table only considers achieving the strong, adaptive notions of
security from [4]; non-adaptively secure signature schemes for non-linear RKAs were
provided in [21]. Note that symmetric key primitives cannot be RKA secure against
constant RKD functions, so affine and polynomial RKA security for the last three rows
is with respect to the RKD sets Φaff \Φc and Φpoly(d)\Φc. The “∗” in the CCA-SE row is
because our CCA-SE construction is insecure against RKD functions where the linear
coefficient is zero, so does not achieve RKA security against the full set Φpoly(d) \ Φc.
See the full version for details.

significance of this result is to show that for IBE we can go well beyond linear
RKAs, something not known for PRFs.

As indicated above, we immediately get Φ-RKA-secure CCA-PKE and Sig
schemes for any class Φ for which we obtained Φ-RKA-secure IBE schemes,
and under the same assumptions. When the base IBE scheme has a further
malleability property, the CCA-PKE scheme so obtained can be converted into a
Φ-RKA-secure CCA-SE (CCA-secure symmetric encryption) scheme. This yields
the first RKA secure schemes for the primitives Sig, CCA-PKE, and CCA-SE
for non-linear RKAs, meaning beyond Φlin.

Background and context. The theoretical foundations of RKA security were
laid by Bellare and Kohno [5], who treated the case of PRFs and PRPs. Re-
search then expanded to consider other primitives [20,2,21,4]. In particular, Bel-
lare, Cash and Miller [4] provide a comprehensive treatment including strong
definitions for many primitives and ways to transfer Φ-RKA security from one
primitive to another.

RKA-security is finding applications beyond providing protection against
tampering-based sidechannel attacks [19], including instantiating random ora-
cles in higher-level protocols and improving efficiency [2,1].

With regard to achieving security, early efforts were able to find PRFs with
proven RKA security only for limited Φ or under very strong assumptions. Even-
tually, using new techniques, Bellare and Cash [3] were able to present DDH-
based PRFs secure against linear RKAs (Φ = Φlin). But it is not clear how to
take their techniques further to handle larger RKA sets Φ.
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Fig. 1 summarizes the broad position. Primitives for which efforts have now
been made to achieve RKA security include CPA-SE (CPA secure symmetric
encryption), CCA-SE (CCA secure symmetric encryption), CCA-PKE (CCA
secure public-key encryption1) Sig (Signatures), and IBE (CPA secure identity-
based encryption). Schemes proven secure under a variety of assumptions have
been provided. But the salient fact that stands out is that prior to our work,
results were all for linear RKAs with the one exception of CPA-SE where a
scheme secure against polynomial (and thus affine) RKAs was provided by [21].

In more detail, Bellare, Cash and Miller [4] show how to transfer RKA se-
curity from PRF to any other primitive, assuming an existing standard-secure
instance of the primitive. Combining this with [3] yields DDH-based schemes
secure against linear RKAs for all the primitives, indicated by a “[4]+[3]” table
entry. Applebaum, Harnik and Ishai [2] present LPN and LWE-based CPA-
SE schemes secure against linear RKAs. Wee [26] presents CCA-PKE secure
schemes for linear RKAs. Goyal, O’Neill and Rao [21] gave a CPA-SE scheme
secure against polynomial RKAs. (We note that their result statement should
be amended to exclude constant RKD functions, for no symmetric primitive can
be secure under these.) Wee [26] (based on a communication of Wichs) remarks
that AMD codes [18] may be used to achieve RKA security for CCA-PKE, a
method that extends to other primitives including IBE (but not PRF), but with
current constructions of these codes [18], the results continue to be restricted to
linear RKAs. We note that we are interested in the stronger, adaptive versions
of the definitions as given in [4], but non-adaptively secure signature schemes
for non-linear RKAs were provided in [21].

In summary, a basic theoretical question that emerges is how to go beyond
linear RKAs. A concrete target here is to bring other primitives to parity with
CPA-SE by achieving security for affine and polynomial RKAs. Ideally, we would
like approaches that are general, meaning each primitive does not have to be
treated separately. As discussed above, we are able to reach these goals with
IBE as a starting point.

A closer look. Informally, key-malleability means that user-level private keys
obtained by running the IBE scheme’s key derivation algorithm K using a mod-
ified master secret key φ(s) (where φ ∈ Φ and s ∈ S, the space of master secret
keys) can alternatively be computed by running K using the original master se-
cret key s , followed by a suitable transformation. A collision-resistant identity
renaming transform maps identities from the to-be-constructed RKA-secure IBE
scheme back into identities in the starting IBE scheme in such a way as to “sep-
arate” the sets of identities coming from different values of φ(s). By modifying
the starting IBE scheme to use renamed identities instead of the original ones,
we obtain a means to handle otherwise difficult key extraction queries in the
RKA setting.

1 RKAs are interesting for symmetric encryption already in the CPA case because
encryption depends on the secret key, but for public-key encryption they are only
interesting for the CCA case because encryption does not depend on the secret key.
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To show that the framework is applicable to the Boneh-Franklin [14] and
Waters [25] IBE schemes with Φ = Φaff (the space of master keys here is Zp), we
exploit specific algebraic properties of the starting IBE schemes. In the Waters
case, we obtain an efficient, Φaff -RKA-secure IBE scheme in the standard model,
under the Decisional Bilinear Diffie-Hellman (DBDH) assumption. In the Boneh-
Franklin case, we obtain an efficient, Φaff -RKA-secure IBE scheme under the
Bilinear Diffie-Hellman (BDH) assumption with more compact public keys at
the expense of working in the Random Oracle Model. Going further, we exhibit
a simple modification of the Waters scheme which allows us to handle related key
attacks for Φpoly(d), this being the set of polynomial functions of bounded degree
d. This requires the inclusion of an extra 2d − 2 elements in the master public
key, and a modified, q-type hardness assumption. We show that this assumption
holds in the generic group model.

Applying the results of [4] to these IBE schemes, we obtain the first construc-
tions of RKA-secure CCA-PKE and signature schemes for Φaff and Φpoly(d).
Again, our schemes are efficient and our results hold in the standard model un-
der reasonable hardness assumptions. The CCA-PKE schemes, being derived via
the CHK transform [12], just involve the addition of a one-time signature and
verification key to the IBE ciphertexts and so incur little additional overhead for
RKA security. As an auxiliary result that improves on the corresponding result
of [4], we show in the full version [6] that the more efficient MAC-based transform
of [15,12] can be used in place of the CHK transform. The signature schemes
arise from the Naor trick, wherein identities are mapped to messages, IBE user
private keys are used as signatures, and a trial encryption and decryption on a
random plaintext are used to verify the correctness of a signature. This generic
construction can often be improved by tweaking the verification procedure, and
the same is true here: for example, for the Waters-based signature scheme, we
can base security on the CDH assumption instead of DBDH, and can achieve
more efficient verification. We stress that our signature schemes are provably
unforgeable in a fully adaptive related-key setting, in contrast to the recently
proposed signatures in [21].

Note that RKA-secure PRFs for sets Φaff and Φpoly(d) cannot exist, since these
sets contain constant functions, and we know that no PRF can be RKA-secure in
this case [5]. Thus we are able to show stronger results for IBE, CCA-PKE and
Sig than are possible for PRF. Also, although Bellare, Cash and Miller [4] showed
that Φ-RKA security for PRF implies Φ-RKA security for Sig and CCA-PKE,
the observation just made means we cannot use this result to get Φaff or Φpoly(d)

RKA-secure IBE, CCA-PKE or Sig schemes. This provides further motivation
for starting from RKA-secure IBE as we do, rather than from RKA-secure PRF.

Finally we note that even for linear RKAs where IBE schemes were known
via [4]+[3], our schemes are significantly more efficient.

Further contributions. In the full version [6], as a combination of the re-
sults of [4] and [24], we provide definitions for RKA security in the joint security
setting, where the same key pair is used for both signature and encryption func-
tions, and show that a Φ-RKA-secure IBE scheme can be used to build a Φ-RKA
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and jointly secure combined signature and encryption scheme. This construction
can be instantiated using any of our specific IBE schemes, by which we obtain
the first concrete jointly secure combined signature and encryption schemes for
the RKA setting.

We also show in [6] how to adapt the KEM-DEM (or hybrid encryption)
paradigm to the RKA setting, and describe a highly efficient, Φaff -RKA-secure
CCA-KEM that is inspired by our IBE framework and is based on the scheme
of Boyen, Mei and Waters [17]. Our CCA-KEM’s security rests on the hardness
of the DBDH problem for asymmetric pairings e : G1 × G2 → GT ; its cipher-
texts consist of 2 group elements (one in G1 and one in G2), public keys are 3
group elements (two in G2 and one in GT ), encryption is pairing-free, and the
decryption cost is dominated by 3 pairing operations.

The final contribution (also in [6]) is an extension of our framework that lets
us build an RKA-secure CCA-SE scheme from any IBE scheme satisfying an
additional master public key malleability property. Such an IBE scheme, when
subjected to our transformation, meets a notion of strong Φ-RKA security [4]
where the challenge encryption is also subject to RKA. Applying the CHK trans-
form gives a strong Φ-RKA-secure CCA-PKE scheme which can be converted
into a Φ-RKA-secure CCA-SE scheme in the natural way.

Paper organization. Section 2 contains preliminaries, Section 3 describes
some IBE schemes and RKA attacks on them, while Section 4 presents our frame-
work for constructing RKA-secure IBE schemes. Section 5 applies the framework
to specific schemes, and sketches the CCA-PKE and signature schemes that re-
sult from applying the techniques of [4].

2 Preliminaries

Notation. For sets X,Y let Fun(X,Y ) be the set of all functions mapping X
to Y . If S is a set then |S| denotes its size and s←$ S the operation of picking a
random element of S and denoting it by s. Unless otherwise indicated, an algo-
rithm may be randomized. An adversary is an algorithm. By y←$ A(x1, x2, . . .)
we denote the operation of running A on inputs x1, x2, . . . and letting y denote
the outcome. We denote by [A(x1, x2, . . . , xn)] the set of all possible outputs of
A on inputs x1, x2, . . . , xn.

Games. Some of our definitions and proofs are expressed through code-based
games [8]. Recall that such a game consists of an Initialize procedure, proce-
dures to respond to adversary oracle queries, and a Finalize procedure. A game
G is executed with an adversary A as follows. First, Initialize executes and its
output is the input to A. Then A executes, its oracle queries being answered by
the corresponding procedures of G. When A terminates, its output becomes the
input to the Finalize procedure. The output of the latter is called the output
of the game. We let GA denote the event that this game output takes value true.
The running time of an adversary, by convention, is the worst case time for the
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execution of the adversary with any of the games defining its security, so that
the time of the called game procedures is included.

RKD functions and classes. We say that φ is a related-key deriving (RKD)
function over a set S if φ ∈ Fun(S,S). We say that Φ is a class of RKD functions
over S if Φ ⊆ Fun(S,S) and id ∈ Φ where id is the identity function on S. In our
constructs, S will have an algebraic structure, such as being a group, ring or field.
In the last case, for a, b ∈ S we define φ+b , φ

∗
a, φ

aff
a,b ∈ Fun(S,S) via φ+b (s) = s+ b,

φ∗a(s) = as , and φaffa,b(s) = as + b for all s ∈ S. For a polynomial q over field S,
we define φpolyq (s) = q(s) for all s ∈ S. We let Φ+ = { φ+b : b ∈ S } be the class
of additive RKD functions, Φ∗ = { φ∗a : a ∈ S } be the class of multiplicative
RKD functions, Φaff = { φaffa,b : a, b ∈ S } the class of affine RKD functions, and

for any fixed positive integer d, we let Φpoly(d) = { φpolyq : deg q ≤ d } be the set
of polynomial RKD functions of bounded degree d.

If φ �= φ′ are distinct functions in a class Φ there is of course by definition an
s such that φ(s) �= φ′(s), but there could also be keys s on which φ(s) = φ′(s).
We say that a class Φ is claw-free if the latter does not happen, meaning for all
distinct φ �= φ′ in Φ we have φ(s) �= φ′(s) for all s ∈ S. With the exception of [21],
all previous constructions of Φ-RKA-secure primitives with proofs of security
have been for claw-free classes [5,23,20,3,4,26]. In particular, key fingerprints
are defined in [3] in such a way that their assumption of a Φ-key fingerprint
automatically implies that Φ is claw-free.

IBE syntax. We specify an IBE scheme IBE = (S,P ,K, E ,D) by first specify-
ing a non-empty set S called the master-key space from which the master secret
key s is drawn at random. The master public key π ← P(s) is then produced
by applying to s a deterministic master public key generation algorithm P . A
decryption key for an identity u is produced via dku ←$K(s , u). A ciphertext
C encrypting a message M for u is generated via C←$ E(π, u,M). A cipher-
text C is deterministically decrypted via M ← D(dk , C). Correctness requires
that D(K(s , u), E(π, u,M)) = M with probability one for all M ∈ MSp and
all u ∈ USp where MSp,USp are, respectively, the message and identity spaces
associated to IBE .

The usual IBE syntax specifies a single parameter generation algorithm that
produces s , π together, and although there is of course a space from which the
master secret key is drawn, it is not explicitly named. But RKD functions will
have domain the space of master keys of the IBE scheme, which is why it is
convenient in our context to make it explicit in the syntax. Saying the master
public key is a deterministic function of the master secret key is not strictly
necessary for us, but it helps make some things a little simpler and is true in all
known schemes, so we assume it.

We make an important distinction between parameters and the master public
key, namely that the former may not depend on s while the latter might. Pa-
rameters will be groups, group generators, pairings and the like. They will be
fixed and available to all algorithms without being named as explicit inputs.
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proc Initialize

s←$ S ;π ← P(s)
b←$ {0, 1}
u∗ ← ⊥ ; I ← ∅
Ret π

proc Finalize(b′)
Ret (b = b′)

proc KD(φ, u)

s ′ ← φ(s)
If (s ′ = s) I ← I ∪ {u}
If (u∗ ∈ I) Ret ⊥
Ret dk ←$ K(s ′, u)

proc LR(u,M0,M1)

If (|M0| 	= |M1|) Ret ⊥
u∗ ← u
If (u∗ ∈ I) Ret ⊥
Ret C←$ E(π,u∗,Mb)

Fig. 2. Game IBE defining Φ-RKA-security of IBE scheme IBE = (S ,P ,K, E ,D)

P(s):
π ← gs

Ret π

K(s, u):
dk ← H1(u)

s

Ret dk

E(π,u,M):

t←$ Zp

C1 ← gt

C2 ← H2(e(π,H1(u))
t)⊕M

Ret (C1,C2)

D(dk ,C ):

M ← C2 ⊕H2(e(dk ,C1))
Ret M

P(s):
π ← gs

Ret π

K(s, u):
r←$ Zp

dk1 ← gs1 ·H(u)r

dk2 ← gr

Ret (dk1, dk2)

E(π,u,M):

t←$ Zp

C1 ← gt

C2 ← H(u)t

C3 ← e(π, g1)
t ·M

Ret (C1,C2,C3)

D(dk ,C ):

M ← C3 · e(dk2,C2)
e(dk1,C1)

Ret M

Fig. 3. Boneh-Franklin IBE scheme on the left, Waters IBE scheme on the right

RKA-secure IBE. We define Φ-RKA security of IBE schemes following [4].
Game IBE of Fig. 2 is associated to IBE = (S,P ,K, E ,D) and a class Φ of
RKD functions over S. An adversary is allowed only one query to LR. Let
Advibe−rka

IBE ,Φ (A) equal 2 Pr[IBEA]−1. A feature of the definition we draw attention
to is that the key derivation oracle KD refuses to act only when the identity
it is given matches the challenge one and the derived key equals the real one.
This not only creates a strong security requirement but one that is challenging to
achieve because a simulator, not knowing s , cannot check whether or not the IBE
adversary succeeded. This difficulty is easily resolved if Φ is claw-free but not
otherwise. We consider this particular RKA security definition as, in addition to
its strength, it is the level of RKA security required of an IBE scheme so that
application of the CHK and Naor transforms results in RKA-secure CCA-PKE
and signature schemes.

3 Existing IBE Schemes and RKA Attacks on Them

The algorithms of the Boneh-Franklin BasicIdent IBE scheme [14] are given in
Figure 3. The parameters of the scheme are groups G1,GT of prime order p, a
symmetric pairing e : G1 × G1 → GT , a generator g of G1 and hash functions
H1 : {0, 1}∗ → G1, H2 : GT → {0, 1}n which are modeled as random oracles in
the security analysis. Formally, these are output by a pairing parameter generator



RKA Security beyond the Linear Barrier 339

on input 1k. This scheme is IND-CPA secure in the usual model for IBE security,
under the Bilinear Diffie-Hellman (BDH) assumption.

The algorithms of the Waters IBE scheme [25] are also given in Figure 3.
The parameters of the scheme are groups G1,GT of prime order p, a symmetric
pairing e : G1×G1 → GT , generators g, g1 of G1 and group elements h0, . . . , hn ∈
G1 specifying the hash function H(u) = h0

∏
i∈u hi. The Waters IBE scheme is

also IND-CPA secure in the usual model for IBE security, under the DBDH
assumption.

The Waters IBE scheme is not RKA secure if Φ includes a function φ∗a(s) =
as. A call to the key derivation oracle with any such φ yields a user secret
key (dk1, dk2) = (gas1 · H(u)

r
, gr). Raising this to a−1 gives (dk ′

1, dk
′
2) = (gs1 ·

H(u)ra
−1

, gra
−1

), so that (dk ′
1, dk

′
2) is a user secret key for identity u under

the original master secret key with randomness r′ = ra−1. An RKA adversary
can thus obtain the user secret key for any identity of his choosing and hence
break the RKA security of the Waters scheme. A similar attack applies to the
Boneh-Franklin scheme.

4 Framework for Deriving RKA-Secure IBE Schemes

In the previous section we saw that the Boneh-Franklin and Waters schemes are
not RKA secure. Here we will show how to modify these and other schemes to be
RKA secure by taking advantage, in part, of the very algebra that leads to the
attacks. We describe a general framework for creating RKA-secure IBE schemes
and then apply it obtain several such schemes.

We target a very particular type of framework, one that allows us to reduce
RKA security of a modified IBE scheme directly to the normal IBE security
of a base IBE scheme. This will allow us to exploit known results on IBE in a
blackbox way and avoid re-entering the often complex security proofs of the base
IBE schemes.

Key-malleability.We say that an IBE scheme IBE = (S,P ,K, E ,D) is Φ-key-
malleable if there is an algorithm T , called the key simulator, which, given π, an
identity u, a decryption key dk ′ ←$K(s , u) for u under s and an RKD function
φ ∈ Φ, outputs a decryption key dk for u under master secret key φ(s) that
is distributed identically to the output of K(φ(s), u). The formalization takes a
little more care for in talking about two objects being identically distributed one
needs to be precise about relative to what other known information this is true.
A simple and rigorous definition here can be made using games. We ask that

Pr[KMRealMIBE ,Φ] = Pr[KMSimM
IBE,Φ,T ]

for all (not necessarily computationally bounded) adversaries M , where the
games are as follows. The Initialize procedure of both picks s at random from S
and returns π ← P(s) to the adversary. In game KMRealIBE ,Φ, oracle KD(φ, u)
returns dk ←$K(φ(s), u) but in game KMSimIBE ,Φ,T it lets dk ′ ←$K(s , u) and
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returns T (π, u, dk ′, φ). There are no other oracles, and Finalize(b′) returns
(b′ = 1).

Using KM. Intuitively, key-malleability allows us to simulate a Φ-RKA adver-
sary via a normal adversary and would thus seem to be enough to prove Φ-RKA
security of IBE based on its normal security. Let us see how this argument
goes and then see the catches that motivate a transformation of the scheme via
collision-resistant identity renaming. Letting A be an adversary attacking the
Φ-RKA security of IBE , we aim to build an adversary A such that

Advibe−rka
IBE ,Φ (A) ≤ Advibe

IBE (A) . (1)

On input π, adversary A runs A(π). When the latter makes a KD(φ, u) query,
A lets dk ← KD(id, u), where KD is A’s own key derivation oracle. It then
lets dk ← T (π, u, dk , φ) and returns dk to A. Key-malleability tells us that dk
is distributed identically to an output of KD(φ, u), so the response provided
by A is perfectly correct. When A makes a LR(u,M0,M1) query, A lets C ←
LR(u,M0,M1) and returns C to A. Finally when A halts with output a bit b′,
adversary A does the same.

The simulation seems perfect, so we appear to have established Equation (1).
What’s the catch? The problem is avoiding challenge key derivation. Suppose A
made a KD(φ, u) query for a φ such that φ(s) �= s ; then made a LR(u,M0,M1)
query; and finally, given C, correctly computed b. It would win its game, be-
cause the condition φ(s) �= s means that identity u may legitimately be used
both in a key derivation query and in the challenge LR query. But our con-
structed adversary A, in the simulation, would make query KD(id, u) to answer
A’s KD(φ, u) query, and then make query LR(u,M0,M1). A would thus have
queried the challenge identity u to the key-extraction oracle and would not win.

This issue is dealt with by transforming the base scheme via what we call
identity renaming, so that Φ-RKA security of the transformed scheme can be
proved based on the Φ-key-malleability of the base scheme.

Identity renaming. Renaming is a way to map identities in the new scheme
back to identities of the given, base scheme. Let us now say how renaming works
more precisely and then define the modified scheme.

Let IBE = (S,P ,K, E ,D) denote the given, base IBE scheme, and let USp
be its identity space. A renaming scheme is a pair (SI,PI) of functions where
SI: S × USp → USp and PI: [P(S)] × USp × Φ → USp where USp, implicitly
specified by the renaming scheme, will be the identity space of the new scheme we
will soon define. The first function SI, called the secret renaming function, uses
the master secret key, while its counterpart public renaming function PI uses
the master public key. We require that SI(φ(s), u) = PI(π, u, φ) for all s ∈ S, all
π ∈ [P(s)], all u ∈ USp and all φ ∈ Φ. This compatibility condition says that the
two functions arrive, in different ways, at the same outcome.

The transform. The above is all we need to specify our Identity Renaming
Transform IRT that maps a base IBE scheme IBE = (S,P ,K, E ,D) to a new
IBE scheme IBE = (S,P ,K, E ,D). As the notation indicates, the master key
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space, master public key generation algorithm and decryption algorithm are
unchanged. The other algorithms are defined by

K(s , u) = K(s , SI(s , u)) and E(π, u ,M) = E(π,PI(π, u, id),M) .

We clarify that algorithms of the new IBE scheme do not, and cannot, have as
input the RKD functions φ used by the attacker. We are defining an IBE scheme,
and algorithm inputs must follow the syntax of IBE schemes. When the new en-
cryption algorithm invokes PI, it sets φ to the identity function id. (Looking
ahead, the simulation will call the renaming functions with φ emanating from
the adversary attacking the new IBE scheme.) The key derivation algorithm has
s but not π (recall we cannot give it π because otherwise it becomes subject
to the RKA) and thus uses the secret renaming function. On the other hand
the encryption algorithm has π but obviously not s and thus uses the public
renaming function. This explains why we need two, compatible renaming func-
tions. The new scheme has the same message space as the old one. Its identity
space is inherited from the renaming scheme, being the space USp from which
the renaming functions draw their identity inputs.

The above compatibility requirement implies that SI(s , u) = PI(π, u, id). From
this it follows that IBE preserves the correctness of IBE . We now go on to
specifying properties of the base IBE scheme and the renaming functions that
suffice to prove Φ-RKA security of the new scheme.

A trivial renaming scheme is obtained by setting SI(s , u) = u = PI(π, u, φ).
This satisfies the compatibility condition. However, the transformed IBE scheme
IBE ends up identical to the base IBE and thus this trivial renaming cannot
aid in getting security. We now turn to putting a non-trivial condition on the
renaming scheme that we will show suffices.

Collision-resistance. The renaming scheme (SI,PI) will be required to have
a collision-resistance property. In its simplest and strongest form the requirement
is that

(φ(s), u1) �= (s , u2) ⇒ SI(φ(s), u1) �= SI(s , u2)

for all s ∈ S, all u1, u2 ∈ USp and all φ ∈ Φ. This statistical collision-resistance
will be enough to prove that IBE is Φ-RKA secure if IBE is Φ-key-malleable
(cf. Theorem 1). We will now see how this goes. Then we will instantiate these
ideas to get concrete Φ-RKA-secure schemes for many interesting classes Φ in-
cluding Φaff and Φpoly(d).

Theorem 1. Let IBE = (S,P ,K, E ,D) be a Φ-key-malleable IBE scheme with
key simulator T . Let IBE = (S,P ,K, E ,D) be obtained from IBE and renaming
scheme (SI,PI) via the transform IRT described above. Assume the renaming
scheme is statistically collision-resistant. Let A be a Φ-RKA adversary against
IBE that makes q key derivation queries. Then there is an adversary A making
q key derivation queries such that

Advibe−rka

IBE ,Φ
(A) ≤ Advibe

IBE (A) . (2)



342 M. Bellare, K.G. Paterson, and S. Thomson

proc Initialize //G0

000 s ←$ S ; π ← P(s)
001 b←$ {0, 1} ; u∗ ← ⊥
002 I ← ∅
003Ret π

proc Initialize //G1,G2,G3

100 s ←$ S ; π ← P(s)
101 b←$ {0, 1} ; u∗ ← ⊥
102 I ← ∅
103Ret π

proc KD(φ,u) //G0

010 s ′ ← φ(s)

011 If (s ′ = s) I ← I ∪ {u}
012 If (u∗ ∈ I) Ret ⊥
013 u ← SI(s ′, u)
014Ret dk ←$K(s ′, u)

proc KD(φ,u) //G1

110 s ′ ← φ(s)
111 u ← SI(s ′, u)
112 I ← I ∪ {u}
113 If (u∗ ∈ I) Ret ⊥
114Ret dk ←$K(s ′, u)
proc KD(φ,u) //G2

210 u ← PI(π,u, φ)
211 I ← I ∪ {u}
212 If (u∗ ∈ I) Ret ⊥
213Ret dk ←$K(φ(s), u)
proc KD(φ,u) //G3

310 u ← PI(π,u, φ)
311 I ← I ∪ {u}
312 If (u∗ ∈ I) Ret ⊥
313 dk ←$K(s, u)
314Ret dk ← T (π,u, dk , φ)

proc LR(u,M0,M1) //G0

020 If (|M0| 	= |M1|) Ret ⊥
021 u∗ ← u

022 If (u∗ ∈ I) Ret ⊥
023 u∗ ← SI(s, u∗)
024Ret C←$ E(π,u∗,Mb)

proc LR(u,M0,M1) //G1

120 If (|M0| 	= |M1|) Ret ⊥
121 u∗ ← SI(s, u)
122 If (u∗ ∈ I) Ret ⊥
123Ret C←$ E(π,u∗,Mb)

proc LR(u,M0,M1) //G2,G3

220 If (|M0| 	= |M1|) Ret ⊥
221 u∗ ← PI(π, u, id)
222 If (u∗ ∈ I) Ret ⊥
223Ret C←$ E(π,u∗,Mb)

proc Finalize(b′) //All

030Ret (b = b′)

Fig. 4. Games for proof of Theorem 1

Furthermore, the running time of A is that of A plus the time for q executions
of T and q + 1 executions of PI.

Proof (Theorem 1). Consider the games of Fig. 4. Game G0 is written to be
equivalent to game IBEIBE , so that

Advibe−rka

IBE ,Φ
(A) = 2Pr[GA

0 ]− 1 . (3)

In answering a KD(φ, u) query, G0 must use the key-generation algorithm K of
the new scheme IBE but with master secret key s ′ = φ(s). From the definition
of K, it follows that not only is the key-generation at line 014 done under s ′,
but also the identity renaming at line 013. LR, correspondingly, should use E ,
and thus the public renaming function PI. The compatibility property however
allows us at line 023 to use SI instead. This will be useful in exploiting statistical
collision-resistance in the next step, after which we will revert back to PI.

The adversaryA we aim to construct will not know s . A central difficulty in the
simulation is thus lines 011, 012 of G0 where the response provided to A depends
on the result of a test involving s , a test that A cannot perform. Before we can
design A we must get rid of this test. Statistical collision-resistance is what will
allow us to do so.KD of game G1 moves the identity renaming up before the list of
queried identities is updated to line 111 and then, at line 112, adds the transformed
identity to the list.LR is likewise modified so its test now involves the transformed
(rather than original) identities. We claim this makes no difference, meaning

Pr[GA
0 ] = Pr[GA

1 ] . (4)
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Indeed, statistical collision-resistance tell us that (s ′, u) = (s , u∗) iff SI(s ′, u) =
SI(s , u∗). This means that lines 011, 012 and lines 112, 113 are equivalent.

Compatibility is invoked to use PI in place of SI in both KD and in LR in
G2, so that

Pr[GA
1 ] = Pr[GA

2 ] . (5)

Rather than use s ′ for key generation as at 213, G3 uses s at 313 and then
applies the key simulator T . We claim the key-malleability implies

Pr[GA
2 ] = Pr[GA

3 ] . (6)

To justify this we show that there is an adversary M such that

Pr[KMRealMIBE ,Φ] = Pr[GA
2 ] and Pr[KMSimM

IBE ,Φ,T ] = Pr[GA
3 ] .

Adversary M , on input π, begins with the initializations u∗ ← ⊥ ; I ← ∅ ;
b←$ {0, 1} and then runs A on input π. When A makes a KD(φ, u) query, M
does the following:

u ← PI(π, u, φ) ; I ← I ∪ {u} ; If (u∗ ∈ I) Ret ⊥ ; dk ← KD(φ, u).

IfM is playing game KMReal then its KD oracle will behave as line 213 in game
G2, while ifM is playing game KMSim its KD oracle will behave as lines 313,314
in game G3. When A makes its LR(u,M0,M1) query M sets u∗ ← PI(π, u , id)
and checks if u∗ ∈ I, returning ⊥ if so. M then computes C←$ E(π, u∗,Mb)
which it returns to A. When A halts with output b′, M returns the result of
(b′ = b). If M is playing game KMReal then game G2 is perfectly simulated,
while if M is playing KMSim then game G3 is perfectly simulated, soM returns
1 with the same probability that A wins in each case and by the key-malleability
of IBE Equation (6) holds.

Finally, we design A so that

Advibe
IBE (A) = 2Pr[GA

3 ]− 1 . (7)

On input π, adversary A runs A(π). When the latter makes a KD(φ, u) query,
A does the following:

u ← PI(π, u, φ) ; dk ← KD(id, u) ; dk ← T (π, u, dk , φ).

It then returns dk to A. The KD invoked in this code is A’s own oracle. Com-
patibility tells us that u = SI(φ(s), u) and thus from the definition of IBE , the
response to A’s query is distributed according to K(φ(s), u). But key-malleability
then tells us that dk is distributed identically to this, so the response provided
by A is perfectly correct. When A makes a LR(u,M0,M1) query, A does the
following:

u ← PI(π, u, id) ; C ← LR(u,M0,M1).

It then returns C to A. The LR invoked in this code is A’s own oracle. The
definition of IBE implies that the response provided by A is again perfectly
correct. Finally when A halts with output a bit b′, adversary A does the same.
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5 Applying the Framework

Affine RKD functions for Boneh-Franklin and Waters. We show how
the framework can be instantiated with the IBE schemes of Boneh-Franklin and
Waters to achieve IBE schemes secure against affine related-key attacks. First
we look at key-malleability. Keys in the Boneh-Franklin IBE scheme are of the
form dk ′ = H1(u)

s , so the algorithm T is as follows:

T (π, u, dk ′, φa,b): dk ← dk ′a ·H1(u)
b; Ret dk

The output of T is a valid key for user u under master secret key φa,b(s), since:
dk ′a ·H1(u)

b = H1(u)
sa ·H1(u)

b = H1(u)
as+b. Since the key derivation algorithm

is deterministic, the keys output by T are distributed identically to the keys
output by K(φ(s), u), and so the Boneh-Franklin IBE scheme is key-malleable.

Keys in the Waters IBE scheme are of the form (dk ′
1, dk

′
2) = (gs1 ·H(u)

r
, gr)

for some r in Zp, so the algorithm T is as follows:

T (π, u, dk ′, φa,b):
If (a = 0) then r←$ Zp ; dk1 ← gb1 ·H(u)

r
; dk2 ← gr

Else dk1 ← dk ′a
1 · gb1 ; dk2 ← dk ′a

2

Ret (dk1, dk2)

When the RKD function is a constant function, T behaves exactly as the key
derivation algorithm under master secret key b, so its output is valid and correctly
distributed. Otherwise, the output of T is still a valid key for user u under master
secret key φa,b(s), now under randomness ra, since:

dk ′a
1 · gb1 = (gs1 ·H(u)r)

a · gb1 = gas+b
1 H(u)ra dk ′a

2 = gra .

Since r is uniformly distributed in Zp, ra is also uniformly distributed in Zp and
so the keys output by T are distributed identically to those output by K(φ(s), u).
Hence the Waters IBE scheme is key-malleable.

The same identity renaming scheme can be used for both IBE schemes.
Namely, SI(s , u) returns u||gs and PI(π, u, φa,b) returns u||πa · gb. The com-
patibility requirement is satisfied and the renaming scheme is clearly collision-
resistant since u1||gφ(s) = u2||gs ⇒ u1 = u2 ∧ φ(s) = s . Thus the IBE schemes
of Boneh-Franklin and Waters are key-malleable and admit a suitable identity
renaming scheme, and so satisfy the requirements of Theorem 1. Notice that in
the Waters case, we must increase the parameter n by the bit length of elements
of G1 (and hence increase the size of the description of the scheme parameters)
to allow identities of the form u||gs to be used in the renaming scheme.

The following theorem is obtained by combining Theorem 1 with [14], and
the running time of B below may be obtained in the same way.

Theorem 2. Let IBE = (S,P ,K, E ,D) be the Boneh-Franklin IBE scheme
shown in Fig. 3 under the above identity renaming transform. Let A be a Φaff -
RKA adversary against IBE making qKD key derivation queries and qH2 queries
to random oracle H2. Then there is an algorithm B solving the Decision Bilinear
Diffie-Hellman problem such that

Advibe−rka

IBE ,Φaff
(A) ≤ e(1 + qKD )qH2

2
·Advdbdh(B) . (8)
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The following theorem is obtained by combining Theorem 1 with [25], and the
running time of B below may be obtained in the same way. Concrete-security
improvements would be obtained by using instead the analysis of Waters’ scheme
from [7].

Theorem 3. Let IBE = (S,P ,K, E ,D) be the Waters scheme shown in Fig. 3
under the above identity renaming transform. Let A be a Φaff-RKA adversary
against IBE making qKD key derivation queries. Then there is an algorithm B
solving the Decision Bilinear Diffie-Hellman problem such that

Advibe−rka

IBE ,Φaff
(A) ≤ 32(n+ 1) · qKD ·Advdbdh(B) . (9)

We recall from [4] that, given a Φ-RKA-secure IBE scheme, the CHK transform
[12] yields a Φ-RKA-secure CCA-PKE scheme at the cost of adding a strongly
unforgeable one-time secure signature and its verification key to the IBE ci-
phertexts. In the full version [6] we show that the more efficient Boneh-Katz
transform [12] can also be used to the same effect. We omit the details of the
Φaff -RKA-secure CCA-PKE schemes that result from applying these transforms
to the above IBE schemes. We simply note that the resulting CCA-PKE schemes
are as efficient as the pairing-based schemes of Wee [26], which are only Φlin-
RKA-secure. Similarly, using a result of [4], we may apply the Naor transform to
these IBE schemes to obtain Φaff -RKA-secure signature schemes that are closely
related to (and as efficient as) the Boneh-Lynn-Shacham [16] and Waters [25]
signature schemes. The verification algorithms of these signature schemes can
be improved by replacing Naor’s trial encryption and decryption procedure by
bespoke algorithms, exactly as in [16,25].

An IBE scheme handling RKAs for bounded degree polynomials.

We show how to construct an IBE scheme that is RKA secure when the RKD
function set equals Φpoly(d), the set of all polynomials of degree at most d,
for an arbitrary d chosen at the time of master key generation. The scheme
is obtained through a simple extension of the IBE scheme of Waters com-
bined with the identity renaming transform used above. The only change we
make to the Waters scheme is in the master public key, where we add the ex-

tra elements gs
2

, . . . , gs
d

, g1
s2 , . . . , g1

sd alongside gs . These elements assist in
achieving key-malleability for the set Φpoly(d). The master public-key genera-
tion algorithm P of the extended Waters scheme, on input s , returns π ←
(gs , gs

2

, . . . , gs
d

, (g1)
s2
, . . . , (g1)

sd
). The other algorithms and keys remain un-

changed; in particular, key derivation does not make use of these new elements.
This extended Waters IBE scheme is secure (in the usual IND-CPA sense for
IBE) under the q-type extension of the standard DBDH assumption captured
by the game in Fig. 5. We define the advantage of an adversary A against the
problem as Advq-edbdh(A) = 2Pr[q-EDBDHA]− 1.

Theorem 4. Let IBE = (S,P ,K, E ,D) be the extended Waters scheme. Let A
be an adversary against IBE making qKD key derivation queries. Then there is
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proc Initialize

g←$ G1 ; x, y, z←$ Zp ; b←$ {0, 1}
If (b = 1) T ← e(g, g)xyz

Else T ←$ GT

Ret g, gx, gx
2

, . . . , gx
q

, gy, g(x
2)y, g(x

3)y, . . . , g(x
q)y, gz, T

proc Finalize(b′)
Ret (b = b′)

Fig. 5. q-Extended Decision Bilinear Diffie-Hellman (q-EDBDH) game

an algorithm B solving the q-Extended Decision Bilinear Diffie-Hellman problem
for q = d such that

Advibe
IBE (A) ≤ 32(n+ 1) · qKD ·Advq-edbdh(B) . (10)

To see this, observe that the original proof of security for Waters’ scheme [25,7]
also goes through for the extended scheme, using the elements g, gx, gy, T from
the q-EDBDH problem to run the simulation as in the original proof and using
the additional elements from the q-EDBDH problem to set up the master public
key in the extended scheme.

We give evidence for the validity of the q-EDBDH assumption by examining
the difficulty of the problem in the generic group model. The problem falls within
the framework of the generic group model “master theorem” of Boneh, Boyen and
Goh [11]. In their notation, we have P = {1, x, x2, . . . , xq, y, x2y, . . . , xqy, z},Q =
1, and f = xyz. It is clear by inspection that P,Q and f meet the independence
requirement of the master theorem, and it gives a lower bound on an adversary’s
advantage of solving the q-EDBDH problem in a generic group of the form
(q + 1)(qξ + 4q + 6)2/p where qξ is a bound on the number of queries made by
the adversary to the oracles computing the group operations in G,GT . While a
lower bound in the generic group model does not rule out an efficient algorithm
when the group is instantiated, it lends heuristic support to our assumption.

The extended Waters IBE scheme is Φpoly(d)-key malleable with algorithm T
as follows:

T (π, u, dk ′, φa0,a1,...,ad
):

If (a0 = 0) then r←$ Zp ; dk1 ← ga0
1 ·H(u)r · (g1s

2

)
a2 · · · (g1s

d

)
ad

; dk2 ← gr

Else dk1 ← ga0
1 · dk ′a1

1 · (g1s
2

)
a2 · · · (g1s

d

)
ad

; dk2 ← dk ′a1
2

Ret (dk1, dk2)

The identity renaming scheme is then defined via

SI(s , u) = u||gs and PI(π, u , φa0,a1,...,ad
) = u||ga0 · πa1 · (gs2)

a2 · · · (gsd)
ad

which clearly meets the compatibility and collision-resistance requirements.
Combining Theorem 1 with Theorem 4 gives the following theorem.

Theorem 5. Let IBE = (S,P ,K, E ,D) be the extended Waters scheme un-
der the above identity renaming transform. Let A be a Φpoly(d)-RKA adversary
against IBE making qKD key derivation queries. Then there is an algorithm B
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solving the q-Extended Decision Bilinear Diffie-Hellman problem for q = d such
that

Advibe−rka

IBE ,Φpoly(d)
(A) ≤ 32(n+ 1) · qKD ·Advq-edbdh(B) . (11)

As in the affine case, we may apply results of [4] to obtain a Φpoly(d)-RKA-
secure CCA-PKE scheme and a Φpoly(d)-RKA-secure signature scheme. We omit
the detailed but obvious description of these schemes, noting merely that they
are efficient and secure in the standard model under the q-EDBDH assumption.
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Abstract. In this paper, we present the first inner-product encryption
(IPE) schemes that are unbounded in the sense that the public parame-
ters do not impose additional limitations on the predicates and attributes
used for encryption and decryption keys. All previous IPE schemes were
bounded, or have a bound on the size of predicates and attributes given
public parameters fixed at setup. The proposed unbounded IPE schemes
are fully (adaptively) secure and fully attribute-hiding in the standard
model under a standard assumption, the decisional linear (DLIN) as-
sumption. In our unbounded IPE schemes, the inner-product relation
is generalized, where the two vectors of inner-product can be different
sizes and it provides a great improvement of efficiency in many appli-
cations. We also present the first fully secure unbounded attribute-based
encryption (ABE) schemes, and the security is proven under the DLIN
assumption in the standard model. To achieve these results, we develop
novel techniques, indexing and consistent randomness amplification, on
the (extended) dual system encryption technique and the dual pairing
vector spaces (DPVS).

1 Introduction

1.1 Background

IPE and ABE. The notions of inner-product encryption (IPE) and attribute-
based encryption (ABE) introduced by Katz, Sahai and Waters [6] and Sahai and
Waters [18] constitute an advanced class of encryption, functional encryption
(FE), and provide more flexible and fine-grained functionalities in sharing and
distributing sensitive data than traditional symmetric and public-key encryption
as well as identity-based encryption (IBE).

In FE, there is a relation R(v, x), that determines whether a secret key as-
sociated with a parameter v can decrypt a ciphertext encrypted under another
parameter x. The parameters for IPE are expressed as vectors �x (for encryption)
and �v (for a secret key), where R(�v, �x) holds, i.e., a secret key with �v can decrypt
a ciphertext with �x, iff �v ·�x = 0. (Here, �v ·�x denotes the standard inner-product.)
In ABE systems, either one of the parameters for encryption and secret key is
a set of attributes, and the other is an access policy (structure) or (monotone)
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span program over a universe of attributes, e.g., a secret key for a user is associ-
ated with an access policy and a ciphertext is associated with a set of attributes,
where a secret key can decrypt a ciphertext, iff the attribute set satisfies the pol-
icy. If the access policy is for a secret key, it is called key-policy ABE (KP-ABE),
and if the access policy is for encryption, it is ciphertext-policy ABE (CP-ABE).

For some applications, the parameters for encryption are required to be hid-
den from ciphertexts. To capture the security requirement, Katz, Sahai and
Waters [6] introduced attribute-hiding (based on the same notion for hidden vec-
tor encryption (HVE) by Boneh and Waters [4]), a security notion for FE that
is stronger than the basic security requirement, payload-hiding. Roughly speak-
ing, attribute-hiding requires that a ciphertext conceal the associated parameter
as well as the plaintext, while payload-hiding only requires that a ciphertext
conceal the plaintext. A weaker notion of attribute-hiding than the original one
[6] was given by [7]. The weaker notion is called weakly attribute-hiding, and
the original one is fully attribute-hiding. Informally, in the fully attribute-hiding,
the secrecy of attribute x is ensured even against an adversary having a secret
key with v such that R(v, x) holds (i.e., no information is released on x except
R(v, x) holds), while it is ensured only when R(v, x) does not hold in the weakly
attribute-hiding (see Definition 4 for the definition of the fully attribute-hiding).

To the best of our knowledge, the widest class of attribute-hiding FE is IPE
[6, 7, 12, 14] (KSW08, LOS+10, OT10 and OT12 schemes). Inner-products for
IPE represent a fairly wide class of relations including equality tests as the
simplest case (i.e., anonymous IBE and HVE are very special classes of attribute-
hiding IPE), disjunctions or conjunctions of equality tests, and, more generally,
CNF or DNF formulas. We note, however, that inner-product relations are less
expressive than a class of relations (on span programs) for ABE, while existing
ABE schemes for such a wider class of relations are not attribute-hiding but only
payload-hiding.

Among the existing IPE schemes, only the OT12 IPE scheme [14] achieves
the full (adaptive) security and fully attribute-hiding simultaneously, whereas
other attribute-hiding IPE schemes [6, 11, 7, 12] are selectively secure or weakly
attribute-hiding, and some IPE schemes [1, 13] only achieve payload-hiding. As
for ABE, Lewko et.al. and Okamoto-Takashima ABE schemes [7, 12] are fully
secure in the standard model, while ABE schemes [18, 5, 16, 20] before [7, 12]
were selectively secure.

Unbounded IPE and ABE. All previous constructions of IPE and ABE ex-
cept the Lewko-Waters ABE scheme [9] have restriction, or are bounded, in the
choice of the parameters for secret key and encryption once the public parame-
ters have been set. The only unbounded ABE scheme [9], however, is selectively
secure, while they presented an unbounded hierarchical identity-based encryption
(HIBE) that is fully secure in the standard model. No unbounded IPE scheme
has been presented. Therefore, no fully secure and unbounded scheme for an
advanced class of encryption like IPE or ABE has been presented.
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In practice, it is highly desirable that the parameters for secret key and en-
cryption should be flexible or unbounded by the public parameters fixed at setup,
since if we set the public parameters for a possible maximum size (e.g., the maxi-
mum dimension of predicate and attribute vectors for IPE), the size of the public
parameters should be huge.

Removing the restrictions for fully secure IPE and ABE, however, is quite
challenging. As mentioned above, no fully secure and unbounded scheme for an
advanced class of encryption like IPE or ABE has been presented. The difficulty
resides in the existing techniques for proving the full (or adaptive) security of
such an advanced class of encryption.

The only known technique to prove the full security of an (attribute-hiding)
IPE or ABE system is the dual system encryption by Waters [19] and its exten-
sion [14]. In the techniques, information theoretical arguments (e.g., conceptual
change due to the same distribution and the independent randomness of two
distributions etc.) over some (hidden) parts of a secret-key and challenge cipher-
text play a key role in the security proof, provided that the adversary follows
the secret-key-query condition in the security games. To execute a security proof
based on the information theoretical arguments, an appropriate distribution of
randomness consistent with the key-query condition should be supplied in the
proof games transformed from the original proof game.

As for bounded IPE and ABE schemes, the public parameters can supply
immanent randomness enough for the arguments, since the size of parameters
for secret-keys and encryption is bounded by the public parameters. For example,
when the dimension of vectors for IPE is required to be n, the public parameters
whose size is O(n) with respect to n should be given in bounded IPE, and the size
of secret randomness to generate the public parameter is O(n2). Such an amount
of randomness can be enough for the arguments over n-dimensional vectors.

In contrast, for unbounded IPE and ABE schemes, some (unbounded amount
of) randomness whose distribution is consistent with the key-query condition
should be supplied in addition to the randomness provided by the public param-
eters. For example, even when the dimension of vectors for IPE is required to
be n, the size of the public parameters is O(1) in unbounded IPE, i.e., the size of
secret randomness to generate the public parameters is O(1). Clearly, such a size
of randomness is not sufficient for the information theoretical arguments over
n-dimensional vectors. Therefore, any additional source of randomness should
be provided, and the distribution of the randomness should be specific (i.e.,
consistent with the key-query condition). For the unbounded HIBE scheme [9],
where the equality (un-)matching is the key-query condition, a simple compres-
sion technique works well to create such randomness since equality can be sim-
ply compressed with preserving the property. The key-query condition for IPE
and ABE, however, is in general much more complicated than just the equality
matching for (H)IBE, and no technique was known to create randomness consis-
tent with such a complicated condition in some security proofs. This is a reason
why [9] succeeds in realizing a fully secure unbounded HIBE but not for ABE
(and not for IPE).
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Restriction on IPE. The existing IPE schemes have another restriction on the
parameters (i.e., vectors) for secret key and encryption that the dimensions of �x
(for encryption) and �v (for a secret key) should be equivalent. Such a restriction
may be considered to be inevitable for the inner-product relation on �v · �x, but
it is required to be relaxed in various applications to improve the efficiency,
especially in unbounded IPE systems where the setup (public) parameters give
no restriction on the dimensions of vectors.

Let us consider an example on a genetic profile data of an individual. It
is desirable that such a sensitive data be treated as encrypted data even for
data processing and retrievals. Although a genetic profile may include a large
amount of information, only a part of the profile is examined in many applica-
tions. For example, let X1, . . . , X100 be variables of 100 genetic properties and
x1, . . . , x100 be Alice’s values of these variables. To evaluate if f(x1, . . . , x100) = 0
for any examination (multivariate) polynomial f with degree 3, or the truth
value of the corresponding predicate φf (x1, . . . , x100), the attribute vector �x
of Alice should be a monomial vector of Alice’s values with degree 3, �x :=
(1, x1, . . . , x100, x

2
1, x1x2, . . . , x

2
100, x

3
1, x

2
1x2, . . . , x

3
100), whose dimension is around

106. A predicate vector �v for a secret key can be associated with predicate φf .
To ensure the private data processing of �x, it should be encrypted (say c

for a ciphertext of �x) by a fully attribute-hiding IPE scheme, since whether
φf (x1, . . . , x100) holds can be examined with releasing no other information by
checking whether c can be decrypted by a secret key with �v (i.e., R(�v, �x) holds).
Here, if c is encrypted by fully attribute-hiding IPE, it releases no information on
�x except that R(�v, �x) holds, or φf (x1, . . . , x100) holds, however, if it is encrypted
by weakly attribute-hiding IPE, such desirable security cannot be ensured.

Let a predicate for �v be ((X5 = a)∨(X16 = b))∧(X57 = c), which focuses only
three factors, X5, X16, X57, among the 100 genetic properties. It can be repre-
sented by a polynomial equation, r1(X5 − a)(X16 − b) + r2(X57 − c) = 0 (where

r1, r2
U← Fq), i.e., (r1ab−r2c)−r1bX5−r1aX16+r2X57+r1X5X16 = 0. In order

that r1(x5−a)(x16− b)+ r2(x57− c) = 0 iff �v ·�x = 0, vector �v should be ((r1ab−
r2c), 0, . . . , 0,−r1b, 0, . . . , 0,−r1a, 0, . . . , 0, r2, 0, . . . , 0, r1, 0, . . . , 0), whose dimen-
sion is equivalent to that of �x, i.e., around 106, although the effective dimension
of �v is just 5. This is due to the above-mentioned restriction on the inner-product
relation of the existing IPE schemes. The size of secret key for �v then should be
in proportion to the dimension of �v (and �x), around 106. This example shows
us a strong practical motivation, especially for unbounded IPE schemes, to relax
this restriction on the inner-product relation and to shorten the length of the
secret key to that in proportion to the effective dimension, e.g., 5, instead of
around 106.

1.2 Our Results

1. This paper introduces a new concept of IPE, generalized IPE, which relaxes
the above-mentioned restriction of IPE and consists of three types of IPE,
Types 0, 1 and 2. Here the notion of Types 1 and 2 is introduced in this
paper, and Type 0 is the traditional one (see Remark below).
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Table 1. Comparison of attribute-hiding IPE schemes, where |G| and |GT | represent
size of an element of G and that of GT , respectively. AH, IP, PK, SK, CT, GSD and
eDDH stand for attribute-hiding, inner-product, master public key (public parameters),
secret key, ciphertext, general subgroup decision [3] and extended decisional Diffie-
Hellman [7], respectively.

KSW08 [6] LOS+10 [7] OT10 [12] OT12 [14] Proposed IPE

(basic) (variant)
(type 1 or 2)

Section 4.1

(type 0)

Section 4.2

Bounded or

Unbounded
bounded bounded bounded bounded bounded unbounded unbounded

Restriction on

IP relation
restricted∗ restricted restricted restricted restricted relaxed restricted

Security
selective &

fully-AH

adaptive &

weakly-AH

adaptive &

weakly-AH

adaptive &

fully-AH

adaptive &

fully-AH

adaptive &

fully-AH

adaptive &

fully-AH

Order

of G

composite prime prime prime prime prime prime

Assump.
2 variants

of GSD
n-eDDH DLIN DLIN DLIN DLIN DLIN

PK size O(n)|G| O(n2)|G| O(n2)|G| O(n2)|G| O(n)|G| O(1)|G| O(1)|G|
SK size (2n + 1)|G| (2n + 3)|G| (3n + 2)|G| (4n + 2)|G| 11|G| (15n + 5)|G| (21n + 9)|G|

CT size
(2n + 1)|G|

+ |GT |
(2n + 3)|G|

+ |GT |
(3n + 2)|G|

+ |GT |
(4n + 2)|G|

+ |GT |
(5n + 1)|G|

+ |GT |
(15n′ + 5)|G|

+ |GT |
(21n′ + 9)|G|

+ |GT |

* It can be easily relaxed.

Remark: We now roughly explain the three types of inner-product rela-
tions. To relax the above-mentioned restriction on the inner-product relation,
we introduce a new type of inner-product (generalized inner-product) for �v
and �x, where their dimensions can be different (say n and n′ for the dimen-
sions of �v and �x). In this notion, vector �v and �x are expressed by {(t, vt) |
t ∈ I�v, �I�v = n} and {(t, xt) | t ∈ I�x, �I�x = n′}, respectively, where t ∈ N
is an index for vectors, whose semantics is given by each application. Here
note that we abuse the same vector notation, �v, for the new expression as
well as for the conventional one, (v1, . . . , vn). In the above-mentioned exam-
ple, �x := {(1, 1), (2, x1), . . . , (101, x100), (102, x21), (103, x1x2), . . . , (n′, x3100)}
where I�x := {1, 2, . . . , n′}, and �v := {(1, r1ab−r2c), (6,−r1b), (17,−r1a), (58,
r2), (517, r1)} where I�v := {1, 6, 17, 58, 517}. The generalized inner-product
of �v over �x is defined by

∑
t∈I	v vtxt if I�v ⊆ I�x. Otherwise, it is undefined.

By using the generalized inner-product notion, the secret key size can be in
proportion to the effective dimension (e.g., 5 instead of around 106).

We then introduce three types of IPE schemes. For Type 1, relationR(�v, �x)
holds iff the generalized inner-product of �v over �x is 0, while for Type 2 it
holds iff the generalized inner-product of �x over �v is 0. We call Type 0
for the conventional inner-products, i.e., relation R(�v, �x) is defined by the
standard inner-product of �v and �x, where �v and �x have the same dimension
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Table 2. Comparison of KP-ABE Schemes, where |G| represents the size of an element
of G, and PK, SK, CT and GSD stand for master public key (public parameters), secret
key, ciphertext and general subgroup decision [3], respectively. And, d, n, nmax, � and
kmax are the number of sub-universes of attributes, the number of attributes for a CT,
the maximum number of attributes for a CT, the row size of an access policy matrix
for a SK and the maximum value of the degree of access policies, respectively.

LW11 [9] LOS+10 [7] OT10 [12] Proposed KP-ABE

(basic) (modified) (basic) (modified)
(basic)

Section 5

(modified)

in full ver.

Bounded or

Unbounded
unbounded bounded bounded bounded bounded unbounded unbounded

Security selective full full full full full full

Order of G composite composite composite prime prime prime prime

Assump. GSD GSD GSD DLIN DLIN DLIN DLIN

Degree of

access policies
arbitrary 1 arbitrary 1 arbitrary 1 arbitrary

PK size O(1)|G| O(nmax)|G| O(nmax)|G| O(d)|G| O(d)|G| O(1)|G| O(1)|G|
SK size O(�)|G| O(�)|G| O(�)|G| O(�)|G| O(�)|G| O(�)|G| O(�)|G|
CT size O(n)|G| O(n)|G| O(kmaxn)|G| O(n)|G| O(kmaxn)|G| O(n)|G| O(kmaxn)|G|

(in other words, the inner-product for Type 0 is defined iff these dimensions
are equivalent.)

2. We present the first unbounded inner-product encryption (IPE) schemes. The
proposed unbounded IPE schemes are fully (adaptively) secure and fully
attribute-hiding in the standard model under a standard assumption, the
decisional linear (DLIN) assumption. The proposed unbounded IPE schemes
consist of the above-mentioned types of generalized IPE, Types 0, 1 and 2,
For comparison of attribute-hiding IPE schemes, see Table 1.

3. We present the first unbounded KP- and CP-ABE schemes that are fully
secure (adaptively payload-hiding) in the standard model. The proposed
unbounded ABE schemes are fully secure under the DLIN assumption, and
are for a wide class of relations, non-monotone access structures (see the full
version for the proposed CP-ABE scheme). See Table 2 for comparison of
KP-ABE schemes.

Remark: Similarly to the existing fully secure ABE schemes in the stan-
dard model [7, 12, 8] except [10], our basic ABE scheme (Section 5) has
a restriction that the degree of access policies is 11. A modified KP-ABE
scheme is shown in the full version of this paper to relax the restriction or
to achieve an arbitrary degree k of access policies with preserving the fully

1 Informally, the degree may imply the number of appearance of a variable in a formula,
e.g., formula ((x = a)∨(x = b))∧(y = c) has degree 2 for variable x. For the definition
of the degree of access policies in our schemes, see the full version. The degree should
be a bit differently defined in [18, 5, 16, 20, 7, 8], where degree 1 is called one-use.
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secure and unbounded property. It, however, shares a shortcoming of the ex-
isting fully secure (modified) ABE schemes [7, 12, 8] that the ciphertext size
grows linearly with k. Here, a (maximum) value of k can be determined in
each application of our ABE scheme, while the public parameters are fixed
and commonly shared by all applications and users.

1.3 Key Techniques

As mentioned above, the difficulty of realizing a fully secure unbounded IPE
or ABE scheme arises from the hardness of supplying an unbounded amount of
randomness consistent with the complicated key-query condition for the (dual
system encryption) security arguments on IPE or ABE. To overcome this dif-
ficulty, we develop novel techniques, indexing and consistent randomness am-
plification, on the dual system encryption and the dual pairing vector spaces
(DPVS). Roughly speaking, the indexing technique is for supplying a source of
unbounded amount of randomness and the consistent randomness amplification
technique is for amplifying the randomness of the source through a computa-
tional assumption (e.g., the DLIN assumption in our case) and the randomness
of hidden bases as well as for adjusting the distribution of the amplified ran-
domness to be consistent with a condition. This methodology could provide a
general framework for proving the security in unbounded situations.

In DPVS, a pair of dual (or orthonormal) bases for N -dimensional linear
spaces, B := (b1, . . . , bN ) and B∗ := (b∗1, . . . , b

∗
N ), are randomly generated using

a secret random linear transformation X (random N ×N matrix) (see Section

2). In a typical application of DPVS to cryptography, a part of B (say B̂) is used
as a public key (public parameters), and B∗ as a secret key, where X is the top
level secret key and the source of randomness.

In a typical construction of bounded IPE schemes [7, 12, 14] which are based
on DPVS, once a basis of DPVS, a part of the basis of a N -dimensional space
is published as public parameters, the dimension n of predicate and attribute
vectors for secret key and encryption is bounded or fixed, e.g., n ≤ N/4 (i.e.,
N = O(n)). The full security is proven through the information theoretical
arguments, and the randomness of secret matrix X (e.g., the amount of the
randomness is O(n2)) supplies enough randomness for the arguments.

In contrast, the dimension, n, of the predicate and attribute vectors is not
bounded by the public parameters in unbounded IPE. For example, in one of
the proposed IPE schemes (Section 4), the public parameters consist of a con-
stant number of elements, 9 elements of bases (or 105 pairing group elements),

B̂0 := (b0,1, b0,3, b0,5) and B̂ := (b1, . . . , b4, b14, b15), where random matrices of

constant sizes, X0
U← F5×5

q and X1
U← F15×15

q , are employed to generate the
public parameters. The randomness of the public parameters, just a constant
amount with respect to n, is clearly insufficient for the (dual system encryption)
arguments on the proof of full security.

To supply additional randomness for the purpose, in our IPE schemes, we
introduce a technique called indexing, where two-dimensional index vectors,
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σt(1, t) and μt(t,−1) are embedded into ciphertext ct and secret key k∗
t , re-

spectively, where σt and μt are freshly random for each t. In our IPE scheme
(Section 4) where n = n′ for simplicity, for example, secret key (k∗

1 , . . . ,k
∗
n) for

�v := (v1, . . . , vn) can be expressed by a coefficient vector, (μt(t,−1), δvt, . . .),
for t = 1, . . . , n, over basis B∗, i.e., k∗

t := (μt(t,−1), δvt, . . .)B∗ and ciphertext
(c1, . . . , cn) for �x := (x1, . . . , xn) can be expressed by ct := (σt(1, t), ωxt, . . .)B
for t = 1, . . . , n, where δ, ω are randomly selected. While the size of the public
parameters or its randomness is constant in n, an unbounded amount of ran-
domness, {μt}t=1,...,n, {σt}t=1,...,n, can be supplied to secret key and ciphertext.
This is a key idea of the indexing technique.

Although the technique supplies an unbounded amount of randomness, i.e.,
O(n)-size of randomness, it is not enough for our purpose. We need more and a
specific distribution of randomness. This is because: in the proof of full security
on dual system encryption and the extension, such a real randomness provided
by the indexing technique should be expanded into a hidden part in spaces over
bases B and B∗, and the distribution should be also adjusted to (or consistent
with) the key-query condition for IPE or ABE. For this purpose, i.e., in order
to amplify the randomness to a hidden subspace and to adjust it to a specific
distribution, we develop another technique, consistent randomness amplification.

For a bit more detailed explanation of the consistent randomness amplifica-
tion technique, we will briefly review a hidden part (subspace) of DPVS. As
mentioned above, in a typical application of DPVS to cryptography, a part of B
(say B̂) is used as a public key (public parameters). Therefore, the basis, B− B̂,
is information theoretically concealed against an adversary, i.e., even an infi-
nite power adversary has no idea on which basis is selected as B − B̂ when B̂
is published. The underlying dual vector spaces, span〈B〉 and span〈B∗〉, are 15-
dimensional for our IPE scheme (Type 1 or 2) and 14-dimensional for our ABE
scheme. The subspaces employed for public parameters are just 6-dimensional
and other 2 dimensional basis can be public. Hence, the basis for the remaining
7 or 6-dimensional subspace is information theoretically concealed (uncertain).
The consistent randomness amplification technique is executed over these 7 or
6-dimensional hidden subspaces. For example, as mentioned above, a real secret

key {k∗
t } and ciphertext {ct} are expressed by k∗

t := (μt(t,−1), δvt, st, 07 , . . .)B∗

and ct := (σt(1, t), ωxt, ω̃, 0
7 , . . .)B. This technique provides a transforma-

tion (for the dual system encryption technique and the extension) to the fol-

lowing forms: k∗
t := (μt(t,−1), δvt, st, 04, (πvt, at) · Ut, 0 , . . .)B∗ and ct :=

(σt(1, t), ωxt, ω̃, . . . , (τxt, τ̃) · Zt, 0 , . . .)B, where Zt is an independently ran-

dom 2 × 2 matrix for each t and Ut := (ZT
t )

−1, and other new variables are
random. Here, the box-framed parts are the information theoretically hidden
subspaces, the randomness of the hidden parts is amplified and the distribution
of (πvt, at) · Ut and (τxt, τ̃ ) · Zt is consistent with the key-query condition.

The consistent randomness amplification technique is composed of several
computational and conceptual (information theoretical) transformations. One
of the key tricks of the transformations is to amplify a source of randomness to
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a hidden part by applying a computational assumption, the DLIN assumption.
Another computational trick is to swap two vectors in different positions under
DLIN. Information theoretical key tricks are inter-subspace and intra-subspace
types of conceptual transformations (see the full version for more details).

The security proofs of our IPE and ABE schemes are hierarchically con-
structed in a modular manner. The very top level of the security proof is based
on the dual system encryption and its extension. Several problems in the mid-
dle level support the top level arguments. Our key techniques, the indexing and
consistent randomness amplification techniques, which are also constructed in a
hierarchical manner, are employed in the lowest level to reduce the hardness of
the middle level problems to the DLIN assumption.

1.4 Notations

When A is a random variable or distribution, y
R← A denotes that y is randomly

selected from A according to its distribution. When A is a set, y
U← A denotes

that y is uniformly selected from A. y := z denotes that y is set, defined or
substituted by z. We denote the finite field of order q by Fq, Fq \ {0} by F×

q ,

and the set of positive integers by N. The vector �0 is abused as the zero vector
in Fn

q for any n. XT denotes the transpose of matrix X . A bold face letter
denotes an element of vector space V, e.g., x ∈ V. When bi ∈ V (i = 1, . . . , n),
span〈b1, . . . , bn〉 ⊆ V (resp. span〈�x1, . . . , �xn〉) denotes the subspace generated by
b1, . . . , bn (resp. �x1, . . . , �xn). For bases B := (b1, . . . , bN ) and B∗ := (b∗1, . . . , b

∗
N ),

(x1, . . . , xN )B :=
∑N

i=1 xibi and (y1, . . . , yN )B∗ :=
∑N

i=1 yib
∗
i . �e1 and �e2 denote

the canonical basis vectors in F2
q, i.e., �e1 := (1, 0) and �e2 := (0, 1). GL(n,Fq)

denotes the general linear group of degree n over Fq.

2 Dual Pairing Vector Spaces by Direct Product of
Symmetric Pairing Groups

Definition 1. “Symmetric bilinear pairing groups” (q,G,GT , G, e) are a tuple
of a prime q, cyclic additive group G and multiplicative group GT of order q,
G �= 0 ∈ G, and a polynomial-time computable nondegenerate bilinear pairing
e : G × G → GT i.e., e(sG, tG) = e(G,G)st and e(G,G) �= 1. Let Gbpg be an
algorithm that takes input 1λ and outputs a description of bilinear pairing groups
(q,G,GT , G, e) with security parameter λ.

Definition 2. “Dual pairing vector spaces (DPVS)” (q,V,GT ,A, e) by a direct
product of symmetric pairing groups (q,G,GT , G, e) are a tuple of prime q, N -

dimensional vector space V :=

N︷ ︸︸ ︷
G× · · · × G over Fq, cyclic group GT of order q,

canonical basis A := (a1, . . . ,aN ) of V, where ai := (

i−1︷ ︸︸ ︷
0, . . . , 0, G,

N−i︷ ︸︸ ︷
0, . . . , 0), and

pairing e : V×V→ GT . The pairing is defined by e(x,y) :=
∏N

i=1 e(Gi, Hi) ∈ GT
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where x := (G1, . . . , GN ) ∈ V and y := (H1, . . . , HN ) ∈ V. This is nondegenerate
bilinear i.e., e(sx, ty) = e(x,y)st and if e(x,y) = 1 for all y ∈ V, then x = 0.
For all i and j, e(ai,aj) = e(G,G)δi,j where δi,j = 1 if i = j, and 0 otherwise,
and e(G,G) �= 1 ∈ GT . DPVS generation algorithm Gdpvs takes input 1λ (λ ∈ N)
and N ∈ N, and outputs a description of paramV := (q,V,GT ,A, e) with security
parameter λ and N -dimensional V. It can be constructed by using Gbpg.
For the asymmetric version of DPVS, see Appendix A.2 in [12]. We describe
random dual orthonormal basis generator Gob, which is used as a subroutine in
our IPE and ABE schemes.

Gob(1λ, (Nt)t=0,1) : paramG := (q,G,GT , G, e)
R← Gbpg(1λ), ψ

U← F×
q ,

for t = 0, 1, paramVt
:= (q,Vt,GT ,At, e) := Gdpvs(1λ, Nt, paramG),

Xt := (χt,i,j)i,j=1,...,Nt

U← GL(Nt,Fq),

X∗
t := (ϑt,i,j)i,j=1,...,Nt := ψ · (XT

t )
−1, hereafter, �χt,i and �ϑt,i

denote the i-th rows of Xt and X
∗
t for i = 1, . . . , Nt, respectively,

bt,i := (�χt,i)At =
∑Nt

j=1 χt,i,jat,j for i = 1, ..., Nt, Bt := (bt,1, ..., bt,Nt),

b∗t,i := (�ϑt,i)At =
∑Nt

j=1 ϑt,i,jat,j for i = 1, ..., Nt, B∗
t := (b∗t,1, ..., b

∗
t,Nt

),

gT := e(G,G)ψ , param := ({paramVt
}t=0,1, gT ), return (param,B,B∗).

We note that gT = e(bt,i, b
∗
t,i) for t = 0, 1; i = 1, . . . , Nt. Hereafter, for simplicity,

we denote N := N1,V := V1,A := A1,B := B1 and B∗ := B∗
1 for variables with

t = 1.

3 Definitions of Generalized Inner-Product Encryption
(IPE) and Attribute-Based Encryption (ABE)

3.1 Generalized Inner-Product Encryption

This section defines generalized inner product encryption (IPE) and its security.
The parameters of generalized inner-product predicates are expressed as a

vector �x := {(t, xt) | t ∈ I�x, xt ∈ Fq} \ {�0} with finite index set I�x ⊂ N for

encryption and a vector �v := {(t, vt) | t ∈ I�v, vt ∈ Fq} \ {�0} with finite index set
I�v ⊂ N for a secret key, respectively. Here there are three types of unbounded
IPE with respect to the decryption condition. For Type 1, R(�v, �x) = 1 iff I�v ⊆ I�x
and

∑
t∈I	v vtxt = 0. For Type 2, R(�v, �x) = 1 iff I�v ⊇ I�x and

∑
t∈I	x vtxt = 0.

We will consider Type 0 inner-product predicate only for conventional prefix
type vectors �v := (v1, . . . , vn) and �x := (x1, . . . , xn′). For Type 0, R(�v, �x) = 1 iff
n = n′ and �v · �x :=

∑n
t=1 vtxt = 0.

Definition 3. An inner product encryption scheme (for generalized inner-
product relation R(�v, �x)) consists of probabilistic polynomial-time algorithms
Setup,KeyGen, Enc and Dec. They are given as follows:

Setup takes as input security parameter 1λ. It outputs public parameters pk and
(master) secret key sk.
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KeyGen takes as input public parameters pk, secret key sk, and vector �v. It
outputs a corresponding secret key sk�v.

Enc takes as input public parameters pk, message m in some associated message
space, msg, and vector �x. It returns ciphertext ct�x.

Dec takes as input the master public key pk, secret key sk�v and ciphertext ct�x.
It outputs either m′ ∈ msg or the distinguished symbol ⊥.

A generalized IPE scheme should have the following correctness property: for all

(pk, sk)
R← Setup(1λ), all vectors �v and �x, all secret keys sk�v

R← KeyGen(pk, sk,

�v), all messages m, all ciphertext ct�x
R← Enc(pk,m, �x), it holds that m =

Dec(pk, sk�v, ct�x) if R(�v, �x) = 1. Otherwise, it holds with negligible probability.

Definition 4. The model for defining the adaptively fully-attribute-hiding secu-
rity of IPE against adversary A (under chosen plaintext attacks) is given by the
following game:

Setup. The challenger runs the setup algorithm, (pk, sk)
R← Setup(1λ), and gives

public parameters pk to A.
Phase 1. A may adaptively make a polynomial number of key queries for vec-

tors, �v, to the challenger. In response, the challenger gives the corresponding

key sk�v
R← KeyGen(pk, sk, �v) to A.

Challenge. A submits challenge vectors (�x(0), �x(1)) with the same index set
I�x(0) = I�x(1) (or n′(0) = n′(1) for Type 0) and challenge messages (m(0),m(1)),
subject to the following restrictions:
– Any key query �v in Phase 1 satisfies R(�v, �x(0)) = R(�v, �x(1)) = 0, or
– Two challenge messages are equal, i.e., m(0) = m(1), and any key query
�v in Phase 1 satisfies R(�v, �x(0)) = R(�v, �x(1)).

The challenger flips a coin b
U← {0, 1}, and gives ct�x(b)

R← Enc(pk,m(b), �x(b))
to A.

Phase 2. Phase 1 is repeated with the above restriction for key query �v and
challenge, (�x(0), �x(1)) and (m(0),m(1)).

Guess. A outputs a bit b′, and wins if b′ = b.

The advantage of A in the above game is defined as AdvIPE,AHA (λ) := Pr[A wins ]−
1/2 for any security parameter λ. An IPE scheme is adaptively fully-attribute-
hiding (AH) against chosen plaintext attacks if all probabilistic polynomial-time
adversaries A have at most negligible advantage in the above game. For each
run of the game, the variable s is defined as s := 0 if m(0) �= m(1) for challenge
messages m(0) and m(1), and s := 1 otherwise.

3.2 Attribute-Based Encryption with Non-monotone Access
Structures

Span Programs and Non-Monotone Access Structures

Definition 5 (Span Programs [2]). Let {p1, . . . , pn} be a set of variables. A
span program over Fq is a labeled matrix M̂ := (M,ρ) whereM is a (�×r) matrix
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over Fq and ρ is a labeling of the rows of M by literals from {p1, . . . , pn,¬p1, . . . ,
¬pn} (every row is labeled by one literal), i.e., ρ : {1, . . . , �} → {p1, . . . , pn,¬p1,
. . . , ¬pn}.

A span program accepts or rejects an input by the following criterion. For
every input sequence δ ∈ {0, 1}n define the submatrix Mδ of M consisting of
those rows whose labels are set to 1 by the input δ, i.e., either rows labeled by
some pi such that δi = 1 or rows labeled by some ¬pi such that δi = 0. (i.e.,
γ : {1, . . . , �} → {0, 1} is defined by γ(j) = 1 if [ρ(j) = pi] ∧ [δi = 1] or
[ρ(j) = ¬pi] ∧ [δi = 0], and γ(j) = 0 otherwise. Mδ := (Mj)γ(j)=1, where Mj is
the j-th row of M .)

The span program M̂ accepts δ if and only if �1 ∈ span〈Mδ〉, i.e., some linear
combination of the rows of Mδ gives the all one vector �1. (The row vector has
the value 1 in each coordinate.) A span program computes a Boolean function f
if it accepts exactly those inputs δ where f(δ) = 1.

A span program is called monotone if the labels of the rows are only the positive
literals {p1, . . . , pn}. Monotone span programs compute monotone functions. (So,
a span program in general is “non”-monotone.)

We assume that no rowMi (i = 1, . . . , �) of the matrixM is �0. We now introduce
a non-monotone access structure with evaluating map γ that is employed in the
proposed attribute-based encryption schemes.

Definition 6 (Access Structures). Ut (t = 1, . . . , d and Ut ⊂ {0, 1}∗) is a
sub-universe, a set of attributes, each of which is expressed by a pair of sub-
universe id and value of attribute, i.e., (t, v), where t ∈ {1, . . . , d} and v ∈ Fq.

We now define such an attribute to be a variable p of a span program M̂ :=
(M,ρ), i.e., p := (t, v). An access structure S is span program M̂ := (M,ρ)
along with variables p := (t, v), p′ := (t′, v′), . . ., i.e., S := (M,ρ) such that
ρ : {1, . . . , �} → {(t, v), (t′, v′), . . . ,¬(t, v),¬(t′, v′), . . .}.

Let Γ be a set of attributes, i.e., Γ := {(t, xt) | xt ∈ Fq, 1 ≤ t ≤ d}, where
1 ≤ t ≤ d means that t is an element of some subset of {1, . . . , d}.

When Γ is given to access structure S, map γ : {1, . . . , �} → {0, 1} for span
program M̂ := (M,ρ) is defined as follows: For i = 1, . . . , �, set γ(i) = 1 if
[ρ(i) = (t, vi)]∧[(t, xt) ∈ Γ ]∧[vi = xt] or [ρ(i) = ¬(t, vi)]∧[(t, xt) ∈ Γ ]∧[vi �= xt].
Set γ(i) = 0 otherwise.

Access structure S := (M,ρ) accepts Γ iff �1 ∈ span〈(Mi)γ(i)=1〉.

We now construct a secret-sharing scheme for a non-monotone access structure
or span program.

Definition 7. A secret-sharing scheme for span program M̂ := (M,ρ) is:

1. Let M be � × r matrix. Let column vector �fT := (f1, . . . , fr)
T U← F r

q . Then,

s0 := �1 · �fT =
∑r

k=1 fk is the secret to be shared, and �sT := (s1, . . . , s�)
T :=

M · �fT is the vector of � shares of the secret s0 and the share si belongs to
ρ(i).
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2. If span program M̂ := (M,ρ) accept δ, or access structure S := (M,ρ) accepts
Γ , i.e., �1 ∈ span〈(Mi)γ(i)=1〉 with γ : {1, . . . , �} → {0, 1}, then there exist
constants {αi ∈ Fq | i ∈ I} such that I ⊆ {i ∈ {1, . . . , �} | γ(i) = 1} and∑

i∈I αisi = s0. Furthermore, these constants {αi} can be computed in time
polynomial in the size of matrix M .

Key-Policy Attribute-Based Encryption. In key-policy attribute-based en-
cryption (KP-ABE), encryption (resp. a secret key) is associated with attributes
Γ (resp. access structure S). Relation R for KP-ABE is defined as R(S, Γ ) = 1
iff access structure S accepts Γ .

Definition 8 (Key-Policy Attribute-Based Encryption: KP-ABE). A
key-policy attribute-based encryption scheme consists of probabilistic polynomial-
time algorithms Setup,KeyGen,Enc and Dec. They are given as follows:

Setup takes as input security parameter 1λ. It outputs public parameters pk and
master secret key sk.

KeyGen takes as input public parameters pk, master secret key sk, and access
structure S := (M,ρ). It outputs a corresponding secret key skS.

Enc takes as input public parameters pk, message m in some associated message
space msg, and a set of attributes, Γ := {(t, xt)|xt ∈ Fq, 1 ≤ t ≤ d}. It
outputs a ciphertext ctΓ .

Dec takes as input public parameters pk, secret key skS for access structure S,
and ciphertext ctΓ that was encrypted under a set of attributes Γ . It outputs
either m′ ∈ msg or the distinguished symbol ⊥.

A KP-ABE scheme should have the following correctness property: for all

(pk, sk)
R← Setup(1λ), all access structures S, all secret keys skS

R← KeyGen(pk,

sk, S), all messages m, all attribute sets Γ , all ciphertexts ctΓ
R← Enc(pk,m, Γ ),

it holds that m = Dec(pk, skS, ctΓ ) if S accepts Γ . Otherwise, it holds with
negligible probability.

Definition 9. The model for defining the adaptively payload-hiding security of
KP-ABE under chosen plaintext attack is given by the following game:

Setup. The challenger runs the setup algorithm, (pk, sk)
R← Setup(1λ), and gives

public parameters pk to the adversary.
Phase 1. The adversary is allowed to adaptively issue a polynomial number of

key queries, S, to the challenger. The challenger gives skS
R← KeyGen(pk, sk, S)

to the adversary.
Challenge. The adversary submits two messages m(0),m(1) and a set of at-

tributes, Γ , provided that no S queried to the challenger in Phase 1 ac-

cepts Γ . The challenger flips a coin b
U← {0, 1}, and computes ct

(b)
Γ

R←
Enc(pk,m(b), Γ ). It gives ct

(b)
Γ to the adversary.

Phase 2. Phase 1 is repeated with the restriction that no queried S accepts chal-
lenge Γ .
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Guess. The adversary outputs a guess b′ of b, and wins if b′ = b.

The advantage of adversary A in the above game is defined as AdvKP-ABE,PHA (λ) :=
Pr[A wins ]−1/2 for any security parameter λ. A KP-ABE scheme is adaptively
payload-hiding secure if all polynomial time adversaries have at most a negligible
advantage in the above game.

4 Proposed IPE Schemes

4.1 Type 1 IPE Scheme

Construction Idea for Our Type 1 and 2 IPE Schemes. In the existing
constructions [11, 7, 12–15] of IPE on DPVS, around cn (c ≥ 1) dimensional
vector spaces are used for n-dimensional attribute and predicate vectors. Here,
the vectors are encoded in an n-dimensional subspace. Although this is a typ-
ical strategy of constructing IPE on DPVS, we cannot employ this idea in the
unbounded setting, where we can use only constant dimensional spaces. In our
construction, each component xt of �x (resp. vt of �v) is encoded in a constant
dimensional space. In order to meet the decryption condition, we employ the
indexing technique and n-out-of-n secret sharing trick. For example, in Type 1
construction, 4-dimensional vector (μt(t,−1), δvt, st) is encoded in key k∗

t , and
(σt(1, t), ωxt, ω̃) is encoded in ciphertext ct. The first 2-dimension is used for
indexes, and st in the fourth component of k∗

t is for the secret sharing. Infor-
mally, a ciphertext can be decrypted if all n pieces of shares st are recovered. A
Type 2 IPE scheme can be constructed from our Type 1 scheme by setting the
secret-sharing mechanism in the ciphertext side instead of the secret key side.

Construction of Type 1 IPE

Setup(1λ) : (param, (B0,B∗
0), (B,B

∗))
R← Gob(1λ, (N0 := 5, N := 15)),

B̂0 := (b0,1, b0,3, b0,5), B̂ := (b1, .., b4, b14, b15),

B̂∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4), B̂

∗ := (b∗1, .., b
∗
4, b

∗
12, b

∗
13),

return pk := (1λ, param, B̂0, B̂), sk := (B̂∗
0, B̂

∗).

KeyGen(pk, sk, �v := {(t, vt) | t ∈ I�v}) : st, δ, η0
U← Fq for t ∈ I�v,

s0 :=
∑

(t,vt)∈�v st, k∗
0 := ( −s0, 0, 1, η0, 0 )B∗

0
,

for t ∈ I�v, μt, ηt,1, ηt,2
U← Fq,

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷
k∗
t := ( μt(t, −1), δvt, st 07, ηt,1, ηt,2, 02 )B∗ ,

return sk�v := (I�v,k
∗
0 , {k∗

t }t∈I	v).

Enc(pk, m, �x := {(t, xt) | t ∈ I�x}) : ω, ω̃, ζ, ϕ0
U← Fq,

c0 := ( ω̃, 0, ζ, 0, ϕ0 )B0 , cT := gζT ,
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for t ∈ I�x, σt, ϕt,1, ϕt,2
U← Fq,

4︷ ︸︸ ︷ 7︷ ︸︸ ︷ 2︷︸︸︷ 2︷ ︸︸ ︷
ct := ( σt(1, t), ωxt, ω̃ 07, 02, ϕt,1, ϕt,2 )B,

return ct�x := (I�x, c0, {ct}t∈I	x , cT ).
Dec(pk, sk�v := (I�v ,k

∗
0, {k∗

t }t∈I	v), ct�x := (I�x, c0, {ct}t∈I	x , cT )) :
if I�v ⊆ I�x, K := e(c0,k

∗
0) ·

∏
t∈I	v e(ct,k

∗
t ), return m′ := cT /K,

else return ⊥.

[Correctness] If I�v ⊆ I�x and
∑

t∈I	v vtxt = 0, e(c0,k
∗
0) ·

∏
t∈I	v e(ct,k

∗
t ) =

g−ω̃s0+ζ
T ·

∏
t∈I	v g

δωvtxt+ω̃st
T = g−ω̃s0+ζ

T ·g
δω(

∑
t∈I	v

vtxt)+ω̃(
∑

t∈I	v
st)

T = g−ω̃s0+ζ+ω̃s0
T

= gζT .

Theorem 1. The proposed Type 1 IPE scheme is adaptively fully-attribute-
hiding against chosen plaintext attacks under the DLIN assumption.

The proof of Theorem 1 is given in the full version of this paper.

4.2 Type 0 IPE Scheme

Construction Idea for Our Type 0 IPE Scheme. In Type 1 construction,
4-dimensional vector (μt(t,−1), δvt, st) is encoded in key k∗

t , and (σt(1, t), ωxt,
ω̃) is encoded in ciphertext ct. Here, secret-sharing system, st for t ∈ I�v, in k∗

t are
used to assure one of the decryption conditions, I�v ⊆ I�x. In Type 0 scheme, to
achieve its decryption condition I�v = I�x for �v := (v1, . . . , vn), �x := (x1, . . . , xn′)
i.e., that is equivalent to n = n′, we use the above mechanism also to ciphertext
side. Then, in our Type 0 scheme, we encode 5-dimensional (μt(t,−1), δvt, st, δ̃)
in the first part of k∗

t , and (σt(1, t), ωxt, ω̃, ft) in the first part of ct with random

μt, σt, ω, ω̃, δ, δ̃, st, ft
U← Fq.

Construction of Type 0 IPE

Setup(1λ) : (param, (B0,B∗
0), (B,B

∗))
R← Gob(1λ, (N0 := 9, N := 21)),

B̂0 := (b0,1, b0,2, b0,5, b0,8, b0,9), B̂ := (b1, . . . , b5, b19, . . . , b21),

B̂∗
0 := (b∗0,1, b

∗
0,2, b

∗
0,5, . . . , b

∗
0,7), B̂

∗ := (b∗1, . . . , b
∗
5, b

∗
16, . . . , b

∗
18),

return pk := (1λ, param, B̂0, B̂), sk := (B̂∗
0, B̂

∗).

KeyGen(pk, sk, �v := (v1, . . . , vn)) : st, δ, δ̃, η0,1, η0,2
U← Fq for t = 1, . . . , n,

s0 :=
∑n

t=1 st, k∗
0 := ( −s0, δ̃, 02, 1, η0,1, η0,2, 02 )B∗

0
,

for t = 1, . . . , n, μt, ηt,1, .., ηt,3
U← Fq,

5︷ ︸︸ ︷ 10︷ ︸︸ ︷ 3︷ ︸︸ ︷ 3︷ ︸︸ ︷
k∗
t := ( μt(t, −1), δvt, st, δ̃, 010, ηt,1, .., ηt,3, 03 )B∗ ,

return sk�v := {k∗
t }t=0,...,n.
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Enc(pk, m, �x := (x1, . . . , xn′)) : ft, ω, ω̃, ζ, ϕ0,1, ϕ0,2
U← Fq for t = 1, . . . , n′,

f0 :=
∑n′

t=1 ft, c0 := ( ω̃, −f0, 02, ζ, 02, ϕ0,1, ϕ0,2 )B0 , cT := gζT ,

for t = 1, . . . , n′, σt, ϕt,1, .., ϕt,3
U← Fq,

5︷ ︸︸ ︷ 10︷ ︸︸ ︷ 3︷︸︸︷ 3︷ ︸︸ ︷
ct := ( σt(1, t), ωxt, ω̃, ft, 010, 03, ϕt,1, .., ϕt,3 )B,

return ct�x := ({ct}t=0,...,n′ , cT ).

Dec(pk, sk�v := {k∗
t }t=0,...,n, ct�x := ({ct}t=0,...,n′ , cT )) :

if n = n′, K :=
∏n

t=0 e(ct,k
∗
t ), return m′ := cT /K, else return ⊥.

Correctness of the scheme can be shown in a similar manner to that of our Type
1 IPE scheme.

Theorem 2. The proposed Type 0 IPE scheme is adaptively fully-attribute-
hiding against chosen plaintext attacks under the DLIN assumption.

The proof of Theorem 2 is given in the full version of this paper.

5 Proposed KP-ABE Scheme (Basic)

We define function ρ̃ : {1, .., �} → {1, .., d} by ρ̃(i) := t if ρ(i) = (t, v) or ρ(i) =
¬(t, v), where ρ is given in access structure S := (M,ρ). In the proposed scheme,
we assume that ρ̃ is injective for S := (M,ρ) in skS. For the modified scheme
without such a restriction, see the full version. Let d := poly(λ), where poly(·)
is a polynomial.

Setup(1λ) : (param, (B0,B
∗
0), (B,B

∗))
R← Gob(1λ, (N0 := 5, N := 14)),

B̂0 := (b0,1, b0,3, b0,5), B̂ := (b1, .., b4, b13, b14),

B̂∗
0 := (b∗0,1, b

∗
0,3, b

∗
0,4), B̂

∗ := (b∗1, .., b
∗
4, b

∗
11, b

∗
12),

return pk := (1λ, param, B̂0, B̂), sk := (B̂∗
0, B̂

∗).

KeyGen(pk, sk, S := (M,ρ)) : �f
U← F r

q , s0 := �1 · �fT,

�sT := (s1, . . . , s�)
T :=M · �fT, η0

U← Fq, k∗
0 := (−s0, 0, 1, η0, 0)B∗

0
,

for i = 1, . . . , �, μi, θi, ηi,1, ηi,2
U← Fq,

if ρ(i) = (t, vi),
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷

k∗
i := ( μi(t, −1), si + θivi, −θi 06, ηi,1, ηi,2, 02 )B∗ ,

if ρ(i) = ¬(t, vi),
4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷ ︸︸ ︷ 2︷︸︸︷

k∗
i := ( μi(t, −1), si(vi, −1), 06, ηi,1, ηi,2, 02 )B∗ ,

return skS := (S, {k∗
i }i=0,...,�).
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Enc(pk, m, Γ := {(t, xt) | 1 ≤ t ≤ d}) : ω, ζ, ϕ0
U← Fq,

c0 := (ω, 0, ζ, 0, ϕ0)B0 , cd+1 := gζTm,

for (t, xt) ∈ Γ, σt, ϕt,1, ϕt,2
U← Fq,

4︷ ︸︸ ︷ 6︷ ︸︸ ︷ 2︷︸︸︷ 2︷ ︸︸ ︷
ct := ( σt(1, t), ω(1, xt), 06, 02, ϕt,1, ϕt,2 )B,

return ctΓ := (Γ, c0, {ct}(t,xt)∈Γ , cd+1).

Dec(pk, skS := (S, {k∗
i }i=0,...,�), ctΓ := (Γ, c0, {ct}(t,xt)∈Γ , cd+1)) :

If S := (M,ρ) accepts Γ := {(t, xt)}, then compute I and {αi}i∈I such that

�1 =
∑

i∈I αiMi, where Mi is the i-th row of M, and

I ⊆ {i ∈ {1, . . . , �} | [ρ(i) = (t, vi) ∧ (t, vi) ∈ Γ ]
∨ [ρ(i) = ¬(t, vi) ∧ (t, xt) ∈ Γ ∧ vi �= xt] },

K := e(c0,k
∗
0)

∏
i∈I ∧ ρ(i)=(t,vi)

e(ct,k
∗
i )

αi

∏
i∈I ∧ ρ(i)=¬(t,vi)

e(ct,k
∗
i )

αi/(vi−xt),

return m′ := cd+1/K, else return ⊥.

[Correctness] If S := (M,ρ) accepts Γ := {(t, xt)},
K = g−ωs0+ζ

T

∏
i∈I ∧ ρ(i)=(t,vi)

gωαisi
T

∏
i∈I ∧ ρ(i)=¬(t,vi)

g
ωαisi(vi−xt)/(vi−xt)
T =

g
ω(−s0+

∑
i∈I αisi)+ζ

T = gζT .

Theorem 3. The proposed KP-ABE scheme is adaptively payload-hiding against
chosen plaintext attacks under the DLIN assumption.

The proof of Theorem 3 is given in the full version of this paper.
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Abstract. Homomorphic signatures are primitives that allow for public
computations on authenticated data. At TCC 2012, Ahn et al. defined a
framework and security notions for such systems. For a predicate P , their
notion of P -homomorphic signature makes it possible, given signatures
on a message set M , to publicly derive a signature on any message m′

such that P (M,m′) = 1. Beyond unforgeability, Ahn et al. considered a
strong notion of privacy – called strong context hiding – requiring that
derived signatures be perfectly indistinguishable from signatures newly
generated by the signer. In this paper, we first note that the definition
of strong context hiding may not imply unlinkability properties that can
be expected from homomorphic signatures in certain situations. We then
suggest other definitions of privacy and discuss the relations among them.
Our strongest definition, called complete context hiding security, is shown
to imply previous ones. In the case of linearly homomorphic signatures,
we only attain a slightly weaker level of privacy which is nevertheless
stronger than in previous realizations in the standard model. For subset
predicates, we prove that our strongest notion of privacy is satisfiable and
describe a completely context hiding system with constant-size public
keys. In the standard model, this construction is the first one that allows
signing messages of arbitrary length. The scheme builds on techniques
that are very different from those of Ahn et al.

Keywords: Homomorphic signatures, provable security, privacy, un-
linkability, standard model.

1 Introduction

With the advent of fully homomorphic encryption [24], much attention has been
paid to the problem of computing on encrypted data (see, e.g., [24,37]) in the
recent years. This also revived the interest of the research community in homo-
morphic signatures, which allow for computations on authenticated data.
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Informally, a signer has a set of messages {mi}ki=1 and generates a cor-
responding set of signatures {σi}ki=1 with σi = Sign(sk,mi) for each i. The
signed dataset {(mi, σi)}ki=1 is then archived on a remote server. Later on, the
server can publicly compute (m,σ) = Evaluate(pk, {(mi, σi)}ki=1, f) such that
Verify(pk,m, σ) = 1, where m = f(m1, . . . ,mk) for some function f .

In the last decade, the area was investigated by several lines of research: ex-
amples include homomorphic signatures for arithmetic functions [10,22,11,12]
but also redactable signatures [34,15,16,14] and various other forms of algebraic
signatures [33,7,26,27].

Recently, Ahn et al. [3] defined a framework for computing on signed data.
For a predicate P , their notion of P -homomorphic signature allows anyone who
observes signatures on a message m to publicly derive signatures on messages
m′ such that P (m,m′) = 1. This framework is geared towards capturing ho-
momorphic signatures supporting quoting and redacting, arithmetic functions
and more. Ahn et al. [3] gave thorough definitions for the unforgeability of P -
homomorphic signatures. Besides, they introduced a strong notion of privacy,
called strong context hiding, that captures the infeasibility of linking a derived
signature to the signature it was derived from. A scheme is said strongly context
hiding when a derived signature is statistically indistinguishable from a freshly
generated signature, even when the original signature is available.

1.1 Related Work

Homomorphic signatures were first considered by Johnson, Molnar, Song and
Wagner [32]. Boneh, Freeman, Katz and Waters [10] used them to sign vector
spaces in order to prevent pollution attacks in network coding. They adapted
the definitions of [32] to the network coding setting and designed a linearly
homomorphic scheme in the random oracle model using bilinear maps. Gennaro,
Katz, Krawczyk and Rabin subsequently described a homomorphic signature
[22] over the integers based on the RSA assumption in the random oracle model.
Later on, Boneh and Freeman [11] gave a linearly homomorphic construction
over binary fields. They also formalized a notion, called weak privacy, which
requires derived signatures to hide the original dataset they were derived from.

In the network coding scenario, constructions in the standard model were
given by Attrapadung and Libert [4] and Catalano, Fiore and Warinschi [17,18].
Recently, Freeman [20] defined a framework for constructing linearly homomor-
phic signatures satisfying enhanced security properties. In the standard model,
the framework of [20] notably provides constructions based on the RSA, Diffie-
Hellman and Strong Diffie-Hellman assumptions. In the meantime, Boneh and
Freeman [12] used lattices to move beyond linear functions and described homo-
morphic signatures (in the random oracle model) supporting the evaluation of
multivariate polynomials over signed data.

Recently, Ahn et al. [3] realized strongly context hiding P -homomorphic signa-
tures for quoting and subset predicates: a signed message allows deriving signa-
tures on substrings or arbitrary subsets of that message, respectively. They also
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showed that linearly homomorphic signatures [10,11,17,20] give P -homomorphic
signatures allowing for the computation of weighted averages and Fourier trans-
forms on signed data. The construction of [10] was notably shown strongly con-
text hiding thanks to its uniqueness of signatures property.

1.2 Our Contributions

New Definitions of Privacy. In this paper, we first reconsider the definition
of strong context hiding security in [3] and point out a subtlety that arises in
the context of randomizable signatures. While the definition of Ahn et al. [3]
aims at perfect indistinguishability, it only considers honestly generated original
signatures. In specific schemes, signatures may satisfy the verification algorithm
without being produced by the legitimate signing algorithm. Signatures [30,4,23]
derived from Waters’ dual system encryption technique [39] – which is currently
the only known way to prove the standard unforgeability property for certain
predicates – are typical examples. For these constructions, the definition of [3]
does not guarantee the unlinkability when the original signature is adversarially
chosen (e.g., by re-randomizing original signatures). This may be a concern in
certain applications. In network coding, suppose that we want to hide the path
taken by specific packets. If a curious target node colludes with some intermedi-
ate nodes that maliciously re-randomize signatures on the road, they may infer
information on the rest of the path downstream.

To address this issue, we suggest other definitions of unlinkability and discuss
the relations among them. We first define a security property, called adaptive
context hiding, that allows for adversarially-generated original signatures. Since
this definition only asks for computational security, it does not imply strong
context hiding security [3]: we show examples of schemes that are context hiding
according to one definition and fall short of satisfying the other one. In order
to unify these definitions, we thus define a notion of completely context hiding
homomorphic signature, which requires statistical unlinkability and implies both
strong and adaptive context hiding properties.

New Linearly Homomorphic Signatures. Using the dual system tech-
nique [39,30], we describe a new linearly homomorphic signature and prove it
(in the standard model) both strongly context hiding and context hiding on
adversarially-chosen signatures with private key exposure. To our knowledge,
all previous such schemes fail to simultaneously satisfy both security notions.
The scheme of [4] is actually the only strongly context hiding realization in
the standard model but, as we shall see, it is provably not adaptively context
hiding. Since the new construction is only adaptively context hiding for compu-
tationally bounded distinguishers, it does not meet our strongest definition. This
shortcoming seems inherent to all signature schemes [4,23] based on the dual sys-
tem paradigm. We leave it as an open problem to achieve information-theoretic
unlinkability in that sense without resorting to the random oracle model.
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If we settle for weak context hiding security1 (as in most linearly homomor-
phic signatures [11,20]), a variant of our scheme provides the shortest linearly
homomorphic signature based on a simple assumption in the standard model. At
the expense of being context hiding in a weaker sense than [10], the scheme can
be proved unforgeable under the standard computational Diffie-Hellman (CDH)
assumption. Each signature consists of two group elements and one scalar, which
shortens Freeman’s CDH-based signatures [20] by about 25%.

Handling Subset Predicates for Messages of Arbitrary Length. Fi-
nally, the paper puts forward a new method for dealing with subset predicates.
Ahn et al. [3] showed how to obtain such signatures from a certain class of
ciphertext-policy attribute-based encryption (CP-ABE) systems, by applying
a Naor-like transformation [9]. With currently available fully secure CP-ABE
schemes [29,35], this technique is limited to support messages of bounded length:
the maximal length nmax of original messages must be fixed at key generation
time and public keys comprise at least O(nmax) group elements. This limitation
could be avoided using a fully secure unbounded [31] CP-ABE scheme. However,
no such system is currently available: the only known [31,28] unbounded ABE
constructions to date are selectively secure key-policy ABE schemes.

To fill this gap, we suggest an alternative design principle which yields
constant-size public keys and allows signing messages of arbitrary length. Our
construction departs from the ABE-based approach of [3] and rather uses the
randomizability properties of Groth-Sahai proofs [25]. In a nutshell, when origi-
nal signatures are computed for a set of words {m1, . . . ,mn}, the signer generates
a fresh public key pk′, which is certified using the long-term secret key of the
system, and uses sk′ to compute σi = Sign(sk′,mi) for each i. This construction
is made unlinkable by letting pk′ and all signatures {σi}ni=1 appear in committed
form, accompanied with non-interactive witness indistinguishable proofs of their
validity. The general idea is instantiated by combining the structure-preserving
signature of [1] with Waters signatures [38] – which are both partially random-
izable – in such a way that we only need to manipulate linear pairing product
equations (in the terminology of [25]). This makes it easy to re-randomize Groth-
Sahai proofs when deriving signatures. As a result, the system provably satisfies
our strongest definition of unlinkability.

We believe this approach to be of interest in its own right for the design of P -
homomorphic signatures. Indeed, if we compare it with the dual system technique
[39], it allows us to more easily obtain completely context hiding schemes.

1.3 Organization

We first review previous security definitions for P -homomorphic signatures and
introduce new definitions of privacy in Section 2.1. Section 3 discusses the rela-
tions among these privacy definitions. In Section 4, we describe a new linearly

1 This property relaxes strong context hiding security by only requiring the indistin-
guishability when the original signatures are not given.
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homomorphic constructions, for which a CDH-based weakly context-hiding vari-
ant is described in the full version of the paper. Section 5 finally presents our
completely context hiding system for subset predicates.

2 Background

2.1 Definitions for Homomorphic Signatures

Definition 1 ([3]). Let M be a message space and 2M be its powerset. Let
P : 2M ×M → {0, 1} be a predicate. A message m′ is said derivable from
M ⊂ M if P (M,m′) = 1. As in [3], P i(M) is the set of messages derivable
from P i−1(M), where P 0(M) := {m′ ∈M | P (M,m′) = 1}. Finally, P ∗(M) :=
∪∞
i=0P

i(M) denotes the set of messages derivable from M by iterated derivation.

Definition 2 ([3]). A P-homomorphic signature for a predicate P : 2M×M→
{0, 1} is a triple of algorithms (Keygen, SignDerive,Verify) such that:

Keygen(λ): takes as input a security parameter λ ∈ N and outputs a key pair
(sk, pk). As in [3], the private key sk is seen as a signature on the empty
tuple ε ∈ M.

SignDerive
(
pk, ({σm}m∈M ,M),m′): is a possibly randomized algorithm that

takes as input a public key pk, a set of messagesM ⊂M, a corresponding set
of signatures {σm}m∈M and a derived message m′ ∈ M. If P (M,m′) = 0,
it returns ⊥. Otherwise, it outputs a derived signature σ′

Verify(pk, σ,m): is a deterministic algorithm that takes as input a public key pk,
a signature σ and a message m. It outputs 0 or 1.

Note that the empty tuple ε ∈ M satisfies P (ε,m) = 1 for eachm ∈M. Like [3],
we define the algorithm Sign(pk, sk,m) that runs SignDerive(pk, (sk, ε),m) and
returns the resulting output. For any set M = {m1, . . . ,mk} ⊂ M, we define
Sign(sk,M) := {Sign(sk,m1), . . . , Sign(sk,mk)} . Also, Verify(pk,M, {σm}m∈M ) =
1 means that Verify(pk,m, σm) = 1 for each m ∈M .

Correctness. It is mandated that, for all pairs (pk, sk) ← Keygen(λ), for any
set M ⊂M, any message m′ ∈ M such that P (M,m′) = 1, then, we have

- SignDerive(pk, (Sign(sk,M),M),m′) �=⊥.
- Verify

(
pk,m′, SignDerive(pk, (Sign(sk,M),M),m′)

)
= 1.

Definition 3 ([3]). A P -homomorphic signature (Keygen, SignDerive,Verify) is
said unforgeable if no probabilistic polynomial-time (PPT) adversary has non-
negligible advantage in this game:

1. The challenger generates (pk, sk)← Keygen(λ) and gives pk to the adversary
A. It initializes two initially empty tables T and Q.

2. A adaptively interleaves the following queries.

- Signing queries: A chooses a message m ∈ M. The challenger replies
by choosing a handle h, runs σ ← Sign(sk,m) and stores (h,m, σ) in a
table T . The handle h is returned to A.
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- Derivation queries: A chooses a vector of handles �h = (h1, . . . , hk) and
a message m′ ∈M. The challenger retrieves the tuples {(hi,mi, σi)}ki=1

from T and returns ⊥ if one of these does not exist. Otherwise, it defines
M := (m1, . . . ,mk) and {σm}m∈M = {σ1, . . . , σk}. If P (M,m′) = 1,
the challenger runs σ′ ← SignDerive

(
pk, ({σm}m∈M ,M),m′), chooses a

handle h′, stores (h′,m′, σ′) in T and returns h′ to A.
- Reveal queries: A chooses a handle h. If no tuple of the form (h,m′, σ′)
exists in T , the challenger returns ⊥. Otherwise, it returns σ′ to A and
adds (m′, σ′) to the set Q.

3. A outputs a pair (σ′,m′) and wins if the following conditions hold.

- Verify(pk,m′, σ′) = 1.
- If M ⊂M is the set of messages in Q, then m′ �∈ P ∗(M).

Definition 4 ([3]). A homomorphic signature (Keygen, Sign, SignDerive,Verify)
is strongly context hiding for the predicate P if, for all key pairs (pk, sk)←
Keygen(λ), for all messages M ⊂M∗ and m′ ∈M such that P (M,m′) = 1, the
following two distributions are statistically close:

{(sk, {σm}m∈M ← Sign(sk,M), Sign(sk,m′))}sk,M,m′ ,{(
sk, {σm}m∈M ← Sign(sk,M), SignDerive

(
pk, ({σm}m∈M ,M),m′))}

sk,M,m′ .

In [3] Ahn et al. showed that, if a scheme is strongly context hiding, then Defini-
tion 3 can be simplified by removing the SignDerive and Reveal oracles and only
providing the adversary with an ordinary signing oracle.

As we will see, specific constructions leave a gap between signatures accepted
by the verification algorithm and those generated by the original signing proce-
dure. For these schemes, a stronger definition than Definition 4 may be necessary
in some situations.

To illustrate this, we first give an alternative definition which is almost iden-
tical to the computational security definition of [3][Appendix A]: the only dif-
ference is that, in the challenge phase, one of the signatures is supplied by the
adversary instead of being honestly generated by the challenger. This modifica-
tion is motivated by re-randomizable signatures. It allows for adversaries who
attempt to re-randomize one of the signatures obtained from the oracle in order
to embed some subliminal information that would help them win the game.

Definition 5. A P -homomorphic signature (Keygen, Sign, SignDerive,Verify) is
weakly adaptively context hiding if no PPT adversary has non-negligible
advantage in the following game:

1. The challenger runs (sk, pk)← Keygen(λ) and gives pk to the adversary.
2. The adversary A adaptively interleaves queries exactly as in Definition 3.
3. The adversary A chooses a message set M ⊂ M together with a set of

signatures {σm}m∈M as well as another message m′ ∈ M. If P (M,m′) = 0
or Verify(pk,M, {σm}m∈M ) = 0, return ⊥. Otherwise, the challenger flips a
fair binary coin β R← {0, 1}. If β = 0, it computes a derived signature σ� =
SignDerive

(
pk, ({σm}m∈M ,M),m′). If β = 1, it computes σ� = Sign(sk,m′).

In either case, σ� is sent as a challenge to A.
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4. A is allowed to make another series of queries as in stage 2.
5. Eventually, A outputs a bit β′ ∈ {0, 1} and wins if β′ = β. As usual, A’s

advantage is defined to be Adv(A) = |Pr[β′ = β]− 1/2|.

The latter definition can be seen as an analogue of a definition of unlinkability
given by Prabhakaran and Rosulek [36] for homomorphic encryption: both mod-
els account for adversarially-chosen original signatures or ciphertexts.

We will see that Definitions 4 and 5 do not imply each other. While incom-
parable, we believe that they both make sense in practice. For example, when
it comes to conceal the path followed by packets in network coding signatures,
Definition 5 ensures that each node only learns the last node visited by incoming
packets, even if it colludes with another node far upstream.

Towards unifying previous definitions, we now simplify Definition 5 as follows.
Instead of providing the adversary A with a signing oracle, A is directly given
the private key at the beginning.

Definition 6. A P -homomorphic signature is adaptively context hiding if
no PPT adversary has non-negligible advantage in the following game:

1. The challenger runs (sk, pk)← Keygen(λ) and hands (sk, pk) to A.
2. The adversary A chooses a message set M ⊂ M together with a set of

signatures {σm}m∈M as well as another message m′ ∈ M. If P (M,m′) = 0
or Verify(pk,M, {σm}m∈M ) = 0, return ⊥. Otherwise, the challenger flips a
fair binary coin β R← {0, 1}. If β = 0, it computes a derived signature σ� =
SignDerive

(
pk, ({σm}m∈M ,M),m′). If β = 1, it computes σ� = Sign(sk,m′).

In either case, σ� is sent as a challenge to A.
3. Eventually, A outputs a bit β′ ∈ {0, 1} and wins if β′ = β. As usual, A’s

advantage is defined to be Adv(A) = |Pr[β′ = β]− 1/2|.

While the latter definition seems sufficient for many applications, it still does not
imply Definition 4 and we may want signatures to be unlinkable in the statistical
sense. The resulting stronger definition implies both Definition 6 and Definition
4 and goes as follows.

Definition 7. A P -homomorphic signature (Keygen, Sign, SignDerive,Verify) is
completely context hiding if, for all pairs (pk, sk) ← Keygen(λ), all mes-
sages M ⊂ M∗ and m′ ∈ M such that P (M,m′) = 1, for all {σm}m∈M such
that Verify(pk,M, {σm}m∈M ) = 1, the distribution {(sk, Sign(sk,m′))}sk,M,m′ is

statistically close to
{(

sk, SignDerive
(
pk, ({σm}m∈M ,M),m′))}

sk,M,m′ .

In all schemes based on the dual system approach [4,23], the existence of an
alternative distribution of acceptable signatures makes it seemingly impossible
to satisfy the above definition. In these schemes, the combination of strong (i.e.,
Definition 4) and adaptive context hiding security thus appears as the best we
can hope for. For this reason, we chose to present Definition 6 first instead of
directly working with Definition 7.

Definition 7 assumes honestly generated keys (sk, pk). It can be strengthened
by allowing the adversary to generate a pair (sk, pk) of its own. In the random
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oracle model, the construction of [10] is easily seen to satisfy such a stronger
definition (if we assume that all public keys live in a cyclic group which is part
of common public parameters) because it has unique signatures. In the standard
model, we do not know of any scheme that would be secure in that sense.

In the following, we can satisfy Definition 7 with our homomorphic signature
for subset predicates. In the case of linearly homomorphic signatures, we are
only able to meet Definition 6.

2.2 Complexity Assumptions

We consider groups (G,GT ) of composite order N = p1p2p3, for which a bilinear
map e : G × G → GT is computable. For each i ∈ {1, 2, 3}, we denote by Gpi

the subgroup of order pi. Also, for all distinct i, j, we call Gpipj the subgroup of
order pipj . An important property of composite order groups is that pairing two
elements of order pi and pj, with i �= j, always gives the identity element 1GT .

In these groups, we rely on the following assumptions introduced in [30].

Assumption 1. Given g R← Gp1 , X3
R← Gp3 , and T , it is infeasible to efficiently

decide if T ∈R Gp1p2 or T ∈R Gp1 .

Assumption 2. Let g,X1
R← Gp1 , X2, Y2

R← Gp2 , Y3, Z3
R← Gp3 . Given a tuple

(g,X1X2, Z3, Y2Y3) and T , it is hard to decide if T ∈R G or T ∈R Gp1p3 .

Assumption 3. Let elements g, w, gt, X1
R← Gp1 with t R← ZN , X2, Y2, Z2

R←
Gp2 , X3, Y3, Z3

R← Gp3 . Given (g, w, gt, X1X2, X3, Y2Y3), and T ∈ G, decide
if T = wtZ3 or T = wtZ2Z3.

Assumption 4. Let g R← Gp1 , X2, Y2, Z2
R← Gp2 , X3

R← Gp3 and a, b, c R← ZN .
Given (g, ga, gb, gabX2, X3, g

cY2, Z2), it is infeasible to compute e(g, g)abc.

We also use bilinear maps e : G×G→ GT over groups of prime order p. In these
groups, we rely on the following hardness assumptions.

Definition 8 ([8]). The Decision Linear Problem (DLIN) in G, is to dis-
tinguish the distributions (ga, gb, gac, gbd, gc+d) and (ga, gb, gac, gbd, gz), where
a, b, c, d R← Z∗

p, z
R← Z∗

p. The Decision Linear Assumption is the intractabil-
ity of DLIN for any PPT distinguisher D.

Definition 9 ([1]). In a group G, the q-Simultaneous Flexible Pairing
Problem (q-SFP) is, given

(
gz, hz, gr, hr, a, ã, b, b̃ ∈ G

)
and q tuples

(zj , rj , sj , tj , uj, vj , wj) ∈ G7 such that

e(a, ã) = e(gz, zj) · e(gr, rj) · e(sj , tj), e(b, b̃) = e(hz, zj) · e(hr, uj) · e(vj , wj),
(1)

to find a new tuple (z�, r�, s�, t�, u�, v�, w�) ∈ G7 satisfying (1) and such that
z� �∈ {1G, z1, . . . , zq}.
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2.3 Structure-Preserving Signatures

Privacy-preserving protocols often require to sign elements of bilinear groups
as if they were ordinary messages. Abe, Haralambiev and Ohkubo [1,2] (AHO)
described such an efficient structure-preserving signature. The description here-
under assumes public parameters pp =

(
(G,GT ), g

)
consisting of bilinear groups

(G,GT ) of prime order p > 2λ, where λ ∈ N and a generator g ∈ G.

Keygen(pp, n): given an upper bound n ∈ N on the number of group elements
per signed message, choose generators Gr, Hr

R← G. Pick γz , δz
R← Zp and

γi, δi
R← Zp, for i = 1 to n. Then, compute Gz = Gγz

r , Hz = Hδz
r and

Gi = Gγi
r , Hi = Hδi

r for each i ∈ {1, . . . , n}. Finally, choose αa, αb
R← Zp and

define A = e(Gr, g
αa) and B = e(Hr, g

αb). The public key is defined to be

pk =
(
Gr, Hr, Gz, Hz, {Gi, Hi}ni=1, A, B

)
∈ G2n+4 ×G2

T

while the private key is sk =
(
αa, αb, γz, δz, {γi, δi}ni=1

)
.

Sign(sk, (M1, . . . ,Mn)): to sign a vector (M1, . . . ,Mn) ∈ Gn using sk, choose
ζ, ρa, ρb, ωa, ωb

R← Zp and compute θ1 = gζ as well as

θ2 = gρa−γzζ ·
n∏

i=1

M−γi

i , θ3 = Gωa
r , θ4 = g(αa−ρa)/ωa ,

θ5 = gρb−δzζ ·
n∏

i=1

M−δi
i , θ6 = Hωb

r , θ7 = g(αb−ρb)/ωb ,

The signature consists of σ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7) ∈ G7.

Verify(pk, σ, (M1, . . . ,Mn)): given σ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7), return 1 iff these
equalities hold:

A = e(Gz , θ1) · e(Gr, θ2) · e(θ3, θ4) ·
n∏

i=1

e(Gi,Mi),

B = e(Hz, θ1) · e(Hr, θ5) · e(θ6, θ7) ·
n∏

i=1

e(Hi,Mi).

The scheme was proved [1,2] existentially unforgeable under chosen-message at-
tacks under the q-SFP assumption, where q is the number of signing queries.

As showed in [1,2], signature components {θi}7i=2 can be publicly randomized
to obtain a different signature {θ′i}7i=1 ← ReRand(pk, σ) on (M1, . . . ,Mn). After
randomization, we have θ′1 = θ1 while {θ′i}7i=2 are uniformly distributed among
the values (θ2, . . . , θ7) such that the equalities e(Gr, θ

′
2) · e(θ′3, θ′4) = e(Gr, θ2) ·

e(θ3, θ4) and e(Hr, θ
′
5)·e(θ′6, θ′7) = e(Hr, θ5)·e(θ6, θ7) hold. This re-randomization

is performed by choosing #2, #5, μ, ν
R← Zp and computing

θ′2 = θ2 · θ�2

4 , θ′3 = (θ3 ·G−�2
r )1/μ, θ′4 = θμ4 (2)

θ′5 = θ5 · θ�5

7 , θ′6 = (θ6 ·H−�5
r )1/ν , θ′7 = θν7 .
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As a result, {θ′i}i∈{3,4,6,7} are statistically independent of the message and other
signature components. This implies that, in privacy-preserving protocols, re-
randomized {θ′i}i∈{3,4,6,7} can be safely given in the clear as long as (M1, . . . ,Mn)
and {θ′i}i∈{1,2,5} are given in committed form.

3 Separation Results

Separating Definitions 4 and 5. Let us consider the following variant2 of the
construction in [4], which relies on the Lewko-Waters signatures [30] and bilinear
groups whose order is a product N = p1p2p3 of three primes. If n denotes the
dimension of signed vectors, the public key is pk =

(
g, e(g, g)α, u, v, {hi}ni=1, X3

)
,

where α ∈R ZN , g, u, v, h1, . . . , hn ∈ Gp1 , X3 ∈ Gp3 and the private key consists
of sk = (gα, κ), where κ is the seed of a pseudorandom function. The latter is
used to de-randomize the scheme and make sure that all vectors of the same file
will be signed using partially identical random coins.

To sign a vector �v = (v1, . . . , vn) ∈ Zn
N using the file identifier τ , the signer

computes a pseudorandom r = Ψ(κ, τ) ∈ ZN which is used to compute

(σ1, σ2, σ3) =
(
gα · (uτ · v)r · R3, g

r · R′
3, (

n∏
i=1

hvii )r · R′′
3

)
,

with R3, R
′
3, R

′′
3

R← Gp3 . The homomorphic property follows from the fact that
all vectors of the same dataset are signed using the same r ∈ ZN . The homomor-
phic evaluation algorithm proceeds in the obvious way and combines signatures
{(σi,1, σi,2, σi,3)}�i=1 by linearly combining the {σi,3}�i=1 and re-randomizing the
Gp3 components. Note that the underlying exponent r is not re-randomized, so
that all {(σi,1, σi,2)}�i=1 share the same Gp1 components.

It is easy to see that the construction is strongly context hiding in the sense of
Definition 4. Indeed, the signing algorithm is honestly run in the first distribution
of Definition 4. This implies that, for any message setM = {(τ, �v1), . . . , (τ, �vk)} ⊂
M, the underlying logg(σ2) will have the same value no matter if the second sig-
nature (σ1, σ2) is produced by Sign or SignDerive.

However, the scheme does not satisfy Definition 5. Indeed, in step 2, the ad-
versary can first invoke the signing oracle on k occasions to obtain signatures for
some set M = {(τ, �v1), . . . , (τ, �vk)} of its choice. If we denote by {σm}m∈M the
resulting signatures, the adversary re-randomizes {σm}m∈M in such a way that
each randomized σm is of the form

(
gα · (uτ ·v)r′ · R̃3, g

r′ · R̃′
3, (

∏n
i=1 h

vi
i )r

′ · R̃′′
3

)
,

for some fresh r′ ∈R ZN . The adversary A can then choose a random message
m′ ∈ M such that P (M,m′) = 1 and send

(
(M, {σ′

m}m∈M ),m′) to the chal-
lenger. The latter returns a challenge signature σ� = (σ�1 , σ

�
2 , σ

�
3) onm

′ andA can
immediately figure out if σ� is fresh or derived, by testing if e(σ�2 , g) = e(σm,2, g).
With overwhelming probability, the latter equality only holds if β = 0.

2 This variant is obtained by applying Freeman’s framework [20] to Lewko-Waters
signatures [31], which guarantees its unforgeability.
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Separating Definitions 5 and 6. The original construction of [4] works ex-
actly like the scheme outlined in the previous paragraph with the difference
that it prevents public randomizations of the Gp1 components of signatures
(σ1, σ2, σ3). More precisely, the scheme makes use of an additional collision-
resistant hash function H : {0, 1}∗ → ZN . If the file identifier is τ , a vector
�v = (v1, . . . , vn) is signed by computing r = Ψ(κ, τ) ∈ ZN , τ ′ = H(τ, e(g, g)r)
and returning

(σ1, σ2, σ3) =
(
gα · (uτ

′
· v)r · R3, g

r · R′
3, (

n∏
i=1

hvii )r ·R′′
3

)
,

with R3, R
′
3, R

′′
3

R← Gp3 . The security proof of [4] implies that, if the adversary
is given signatures {(σi,1, σi,2, σi,3)}�i=1 on messages (τ, �v1), . . . , (τ, �v�), the ad-
versary cannot generate a signature (σ1, σ2, σ3) on (τ, �y) such that e(σ2, g) �=
e(σi,2, g) for each i. Essentially, since (σi,1, σi,2) can be seen as a Lewko-Waters
signature on the messageH(τ, e(g, g)r), any valid signature (σ1, σ2, σ3) for which
e(σi,2, g) �= e(σ2, g) implies either an attack against the signature scheme of [30]
or a breach in the collision-resistance of H .

Let us consider an adversary in the sense of Definition 5. Since signatures
cannot be publicly randomized, when the adversary enters the challenge phase
in step 3, it can only choose a message set M = {(τ, �v1), . . . , (τ, �v�)} and signa-
tures {(σm,1, σm,2, σm,3)}m∈M for which {e(σm,2, g)}m∈M has the same value as
in signatures obtained from the signing oracle at step 2. Therefore, the only way
for A to have non-negligible advantage in the game of Definition 5 is to choose
(M, {σm}m∈M ) where {σm}m∈M is obtained by introducing a Gp2 component in
a signature obtained from the signing oracle. Otherwise, the distribution of the
challenge signature (σ�1 , σ

�
2 , σ

�
3) does not depend on β ∈ {0, 1} in step 3. Using

the same arguments as in the proof of Theorem 1, we can prove that Assumption
1 can be broken if A can output a set {σm}m∈M where one of the signatures
contains a Gp2 component. If H is collision-resistant and under the assumptions
used in [4], the scheme is thus weakly adaptively context hiding.

Now, we easily observe that the original scheme of [4] is not adaptively context
hiding in the sense of Definition 6. Recall that the adversary is given the private
key sk = (gα, κ) at the beginning of the game. In the challenge phase, it can thus
choose a message set M ⊂M and signatures {σm}m∈M for which each σm is of
the form (σm,1, σm,2, σm,3) =

(
gα ·(uτ ′ ·v)r′ ·R3, g

r′ ·R′
3, (

∏n
i=1 h

vi
i )r

′ ·R′′
3

)
, with

R3, R
′
3, R

′′
3 ∈R Gp3 , and for some random r′ ∈R ZN\{Ψ(κ, τ)}. When receiving

(M, {σm}m∈M ) and m′ such that P (M,m′) = 1, the challenger runs SignDerive
on {σm}m∈M if β = 0. If β = 1, it ignores {σm}m∈M and simply generates a
fresh signature on m′. In the letter case, the challenge signature (σ�1 , σ

�
2 , σ

�
3) is

such that logg(σ
�
2) = Ψ(κ, τ) mod p1 and, since the adversary knows κ, it can

easily test whether e(σ�2 , g) = e(g, g)Ψ(κ,τ) and, if so, return β′ = 1.
Later on, we will see an example of scheme that satisfies Definition 6 but fails

to be secure as per Definition 4. The two definitions are thus incomparable.
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4 An Adaptively Context Hiding Linearly Homomorphic
Scheme in the Standard Model

So far, the scheme of [4] is seemingly the only linearly homomorphic signature
in the standard model to satisfy Definition 4. This section presents a linearly
homomorphic signature satisfying both Definition 4 and the adaptive context
hiding property captured by Definition 6.

The scheme works over groups whose order is a product N = p1p2p3 of three
primes. Like [4], it builds on Lewko-Waters signatures, where public keys contain(
g, e(g, g)α, u, v

)
, with g, u, v ∈ Gp1 and α ∈ ZN , and a signature on m consists

of (gα · (um · v)r · R3, g
r · R′

3), for some R3, R
′
3 ∈ Gp3 . A difference with [4] is

that e(g, g)α is replaced by gα in the public key and signatures are obtained
by aggregating a Lewko-Waters signature on the file identifier τ and a signed
vector hash (

∏n
i=1 g

vi
i )α of the vector �v = (v1, . . . , vn), where (g1, . . . , gn) ∈ Gn

p1

is part of the public key. We note that (
∏n

i=1 g
vi
i )α is not a secure homomorphic

signature in general: it can actually be seen as a one-time linearly homomorphic
signature where only one message set M = {(τ, �v1), . . . , (τ, �vk)} can be signed.
Nevertheless, we will show that aggregating the two components actually pro-
vides unforgeability. Moreover, beyond providing a stronger flavor of privacy
than [4], it also shortens signatures by 33%.

For simplicity, the scheme is described in terms of composite order groups. It
is very plausible that Lewko’s techniques [28] apply to translate the scheme in
the prime order setting.

4.1 Construction

Keygen(λ, n): given λ ∈ N and an integer n ∈ poly(λ), choose bilinear groups
(G,GT ) of order N = p1p2p3, where pi > 2λ for each i ∈ {1, 2, 3}. Choose
α R← ZN , g, u, v R← Gp1 , Xp3

R← Gp3 , gi
R← Gp1 for i = 1 to n. Then, select

an identifier space T . The private key is sk := α while the public key is

pk :=
(
(G,GT ), N, g, g

α, u, v, {gi}i=1,...,n, Xp3

)
.

Sign(sk, τ, �v): on input of a vector �v = (v1, . . . , vn) ∈ Zn
N , a file identifier τ ∈ T

and the private key sk = α ∈ ZN , return ⊥ if3 �v = �0. Otherwise, conduct the
following steps. First, choose r R← ZN and R3, R

′
3

R← Gp3 . Then, compute a
signature σ = (σ1, σ2) as

σ1 = (gv11 · · · gvnn )α · (uτ · v)r · R3, σ2 = gr ·R′
3,

SignDerive(pk, τ, {(βi, σi)}�i=1): given pk, a file identifier τ and � tuples (βi, σi),
parse σi as σi = (σi,1, σi,2) for i = 1 to �. Then, choose r̃ R← ZN , R̃3, R̃

′
3

R← ZN

and compute σ1 =
∏�

i=1 σ
βi

i,1 · (uτ · v)r̃ · R̃3 and σ2 =
∏�

i=1 σ
βi

i,2 · gr̃ · R̃′
3 and

output (σ1, σ2).

3 In the construction, we disallow signatures on the all-zeroes vector �0. This is not
a restriction since, in all applications of linearly homomorphic signatures, a unit
vector (0, . . . , 1, . . . , 0) of appropriate length is appended to signed vectors.
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Verify(pk, τ, �y, σ): given a public key pk, a signature σ = (σ1, σ2) and a message
(τ, �y), where τ ∈ ZN and �y = (y1, . . . , yn) ∈ (ZN )n, return ⊥ if �y = �0.
Otherwise, return 1 if and only if e(σ1, g) = e(gy1

1 · · · gyn
n , gα) · e(uτ · v, σ2).

Verifying the correctness of the scheme is straightforward since pairing an ele-
ment of Gp1 with an element of Gp3 always gives the identity element in GT .

4.2 Security

Theorem 1. The scheme is adaptively context hiding if Assumption 1 holds.
(The proof is given in the full version of the paper).

As already mentioned, computational adaptive context hiding security does not
imply statistical strong context hiding security (cf. Definition 4) in general. Let
us consider a simple modification of the scheme. The public key includes e(g, g)ϕ,
for some ϕ ∈R ZN which is not part of sk. Original signatures are augmented with
σ3 = e(g, g)ϕ·r, which is ignored by the verification algorithm. Also, SignDerive
replaces σ3 by a random element of GT . Although this artificial scheme can be
proved adaptively context hiding under Assumptions 1 and 4, it does not meet
the requirements of Definition 4.

Yet, it is immediate that the system of Section 4.1 is also secure in the sense
of Definition 4.

Theorem 2. The scheme is unforgeable assuming that Assumptions 1, 2, 3 and
4 hold. (The proof is given in the full version of the paper).

In the full version of the paper, we show that the same scheme can be safely
instantiated in prime order groups if we settle for the weaker privacy definition
used in [11,12,20]. The unforgeability of this modified scheme can be proved un-
der the standard Diffie-Hellman assumption. To date, this construction turns out
to be the shortest linearly homomorphic signature based on a simple assumption.

5 A Construction with Short Keys for Subset Predicates

In this section, we use the malleability properties of Groth-Sahai proofs (al-
ready exploited in, e.g., [6,21,19]) to construct a homomorphic signature for
subset predicates. The main advantage over the approach of [3] is that we ob-
tain constant-size4 public keys in the standard model. In the standard model,
the CP-ABE approach of [3] is currently limited to provide linear-size public
keys in the maximal length of signed messages.

This limitation could be avoided using a ciphertext-policy adaption of the
unbounded key-policy ABE system of [31]. However, the ABE construction of
[31] is only known to be selectively secure and, for the time being, no fully
secure unbounded CP-ABE system is available. Conceivably, such a scheme can

4 By “constant”, we mean that it only depends on the security parameter and not on
the length of messages to be signed.
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be obtained by extending the techniques of [31]. Still, the resulting system would
probably encounter the same difficulties as in Section 4 when it comes to obtain
complete context hiding security. In contrast, our scheme is proved completely
context hiding and fully (as opposed to selective-message) secure. It also allows
for messages of unbounded (but polynomial) length.

In homomorphic signatures for subset predicates, the message space M can
be defined as the set of tuplesM := Σ∗, where Σ is a set of words. The predicate
P is defined in such a way that, for any polynomials {ni}i and n′, we have

P
(
{m1, . . . ,mn} , {m′

1, . . . ,m
′
n′}

)
= 1

⇐⇒ (n′ ≤ n) ∧ (m′
j ∈ {m1, . . . ,mn} for j = 1 to n′).

The intuition of the scheme begins with the following naive construction, based
on any digital signature, that only works when privacy is not a concern. The
public key of the scheme is a standard digital signature key pair (sk, pk). When a
message Msg = {m1, . . . ,mn} must be signed, the signer generates a fresh public
key (sk′, pk′), certifies pk′ by computing σpk′ ← Sign(sk, pk′) and returning
(pk′, σpk′ , {σi = Sign(sk′,mi)}ni=1). This simple construction immediately allows
signature derivations for subset predicates. Moreover, since each signed set of
words Msg involves a different public key pk′, there is no way to generate a
signature on a messageMsg� that mixes words from two distinct signed messages
Msg1, Msg2. However, the latter construction is trivially not context hiding. To
achieve the latter property, instead of leaving pk′ and {σi}n

′

i=1 appear in the clear
within signatures, we let them appear in committed form and appeal to non-
interactive witness indistinguishable (NIWI) arguments of knowledge of these
signatures and keys. Then, the randomizability properties of Groth-Sahai proofs
come in handy to obtain the desired privacy properties.

To realize the above idea, we work with Waters signatures [38] and the
structure-preserving signature of Abe et al. [1,2] because they make it possi-
ble to work with linear pairing product equations. As observed in [21], these
equations have proofs that only depend on the randomness of Groth-Sahai com-
mitments and not on the committed witnesses or on the right-hand-side member
of the equation. In the SignDerive algorithm, this allows updating some of the
witnesses in such a way that the old proof remains valid.

In the following notations, we define a coordinate-wise pairing E : G×G3 →
G3

T such that, for any element h ∈ G and any vector �g = (g1, g2, g3), we have
E
(
h,�g

)
=

(
e(h, g1), e(h, g2), e(h, g3)

)
. In the following, when X ∈ G (resp.

Y ∈ GT ), the notation ιG(X) (resp. ιGT (Y )) will be used to denote the vec-
tor (1G, 1G, X) ∈ G3 (resp. the vector (1GT , 1GT , Y ) ∈ G3

T ).

Keygen(λ): given a security parameter λ ∈ N, choose bilinear groups (G,GT )
of prime order p > 2λ. Then, do the following.

1. Generate a Groth-Sahai CRS f = (�f1, �f2, �f3) for the perfect witness in-

distinguishability setting. Namely, choose �f1 = (f1, 1, g), �f2 = (1, f2, g),

and �f3 = �f1
ξ1 · �f2

ξ2 · (1, 1, g)−1, with f1, f2
R← G, ξ1, ξ2

R← Zp.
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2. Generate a key pair (skAHO, pkAHO) for the AHO signature in order to
sign messages consisting of a single group element. This key pair are

pkAHO =
(
Gr, Hr, Gz = Gγz

r , Hz = Hδz
r , G1 = Gγ1

r , H1 = Hδ1
r , A, B

)
and skAHO =

(
αa, αb, γz, δz, γ1, δ1

)
.

3. Generate parameters for the Waters signature. Namely, choose group
elements h R← G, and (u0, u1, . . . , uL)

R← GL+1. These are used to im-
plement a hash function HG : {0, 1}L → G such that, for any string

m = m[1] . . .m[L] ∈ {0, 1}L, HG(m) = u0 ·
∏L

i=1 u
m[i]
i .

The public key is defined to be pk :=
(
(G,GT ), g, f , pkAHO, h, {ui}Li=0

)
and the private key is sk = skAHO. The public key defines Σ = {0, 1}L.

Sign(sk,Msg): on input of a message Msg = {mi}ni=1, where mi ∈ {0, 1}L for
each i, and the private key sk = skAHO, do the following.

1. Choose a new public key X = gx for Waters signatures, with x R← Zp.

Generate a Groth-Sahai commitment �CX = ιG(X) · �f1
rX · �f2

sX · �f3
tX
,

with rX , sX , tX
R← Zp.

2. Generate an AHO signature (θ1, . . . , θ7) ∈ G7 on the group element
X ∈ G. Then, for each j ∈ {1, 2, 5}, generate Groth-Sahai commit-

ments �Cθj = ιG(θj) · �f1
rθj · �f2

sθj · �f3
tθj . Finally, generate NIWI proofs

�πAHO,1, �πAHO,2 ∈ G3 that committed variables (X, θ1, θ2, θ5) satisfy

A · e(θ3, θ4)−1 = e(Gz , θ1) · e(Gr, θ2) · e(G1, X) (3)

B · e(θ6, θ7)−1 = e(Hz, θ1) · e(Hr, θ5) · e(H1, X)

These proofs are obtained as

�πAHO,1 =
(
G

−rθ1
z G

−rθ2
r G−rX

1 , G
−sθ1
z G

−sθ2
r G−sX

1 , G
−tθ1
z G

−tθ2
r G−tX

1

)
�πAHO,2 =

(
H

−rθ1
z H

−rθ5
r H−rX

1 , H
−sθ1
z H

−sθ5
r H−sX

1 , H
−tθ1
z H

−tθ5
r H−tX

1

)
3. For each i ∈ {1, . . . , n}, generate a Waters signature (σi,1, σi,2) on the

word mi ∈ {0, 1}L by computing (σi,1, σi,2) =
(
hx ·HG(mi)

χi , gχi
)
for

a randomly chosen χi
R← Zp. Then, generate a Groth-Sahai commitment

�Cσi,1 = ιG(σi,1) · �f1
ri,1 · �f2

si,1 · �f3
ti,1

, with ri,1, si,1, ti,1
R← Zp, and a NIWI

proof πW,i that (X, σi,1) satisfy

e(HG(mi), σi,2) = e(X,h)−1 · e(σi,1, g). (4)

This proof is obtained as πW,i =
(
hrX · g−ri,1 , hsX · g−si,1 , htX · g−ti,1

)
.

4. Return the signature

σ=
(
�CX , { �Cθj}j∈{1,2,5}, {θj}j∈{3,4,6,7}, �πAHO,1, �πAHO,2, { �Cσi,1 , σi,2, �πW,i}ni=1

)
. (5)



382 N. Attrapadung, B. Libert, and T. Peters

Note that proofs �πAHO,1, �πAHO,2 and {�πW,i}i only depend on the randomness
used in commitments and not on the committed values or on the left-hand-side
members of pairing-product equations (3) and (4).

SignDerive(pk,Msg,Msg′, σ): given pk, Msg = {mi}ni=1 and Msg′ = {m′
i}n

′

i=1,
return ⊥ if there exists i ∈ {1, . . . , n′} such that m′

i �∈ {mi}ni=1. Otherwise,
parse σ as in (5). For each i ∈ {1, . . . , n′}, let ρ(i) ∈ {1, . . . , n} be the index
such that m′

i = mρ(i). Then, for each i ∈ {1, . . . , n′}, do the following.

1. Re-randomize the commitment �CX and the proofs �πAHO,1, �πAHO,2, {�πW,i}i
accordingly. Let �C′

X , �π′
AHO,1, �π

′
AHO,2, and {�π′

W,i}i be the randomized com-
mitment and proofs. Note that, in all of these commitments and proofs
(rX , sX , tX) have been updated consistently.

2. Re-randomize { �Cθj}j∈{2,5} and {θj}j∈{3,4,6,7} by choosing #2, #5, μ, ν
and computing

�C′
θ2 = �Cθ2 · ιG(θ4)�2 θ′3 =

(
θ3 ·G−�2

r

)1/μ
θ′4 = θμ4 ,

�C′
θ5 = �Cθ5 · ιG(θ7)�5 θ′6 =

(
θ6 ·H−�5

r

)1/ν
θ′7 = θν7 .

We note that, although the committed values inside �C′
θ2
, �C′

θ5
have

changed. The proofs π′
AHO,1, π

′
AHO,2 are still valid for the new commit-

ted values. Then, compute { �C′′
θj
}j∈{1,2,5} by re-randomizing the com-

mitments �Cθ1 , { �C′
θj
}j∈{2,5} and re-randomize the proofs π′

AHO,1, π
′
AHO,2

again. Let �π′′
AHO,1, �π

′′
AHO,2 be the re-randomized proofs.

3. For each i ∈ {1, . . . , n′}, choose χ′
i

R← Zp and compute

�C′
σρ(i),1

= �Cσρ(i),1
· ιG

(
HG(mρ(i))

χ′
i
)
, σ′

ρ(i),2 = σρ(i),2 · gχ
′
i .

Even though the committed value inside �C′
σρ(i),1

has changed, �π′
W,ρ(i)

remains a valid proof that the updated committed value σ′
ρ(i),1 satisfies

e(X,h) · e(HG(mρ(i)), σ
′
ρ(i),2) = e(σ′

ρ(i),1, g). The commitment �C′
σρ(i),1

is

then re-randomized and the proof �π′
W,ρ(i) is re-randomized accordingly.

Let �C′′
σρ(i),1

and �π′′
W,ρ(i) denote the new commitment and proof.

4. Return the signature

σ′ =
(
�C′
X , { �C′′

θj}j∈{1,2,5}, {θ′j}j∈{3,4,6,7},

�π′′
AHO,1, �π

′′
AHO,2, { �C′′

σρ(i),1
, σ′

ρ(i),2, �π
′′
W,ρ(i)}n

′

i=1

)
. (6)

Verify(pk,Msg, σ): given pk, σ and Msg = {mi}ni=1, parse σ as per (5).

1. Return 0 if �πAHO,1 = (π1, π2, π3) and �πAHO,2 = (π4, π5, π6) do not satisfy.

ιGT (A) ·E
(
θ3, ιG(θ4)

)−1
=E(Gz, �Cθ1) ·E(Gr, �Cθ2) ·E(G1, �CX) ·

3∏
j=1

E(πj , �fj)

ιGT (B) ·E
(
θ6, ιG(θ7)

)−1
= E(Hz, �Cθ1) · E(Hr, �Cθ5) · E(H1, �CX) ·

3∏
j=1

E(πj+3, �fj).



Computing on Authenticated Data: New Privacy Definitions 383

2. Return 1 if and only if, for each i, �πW,i = (πW,i,1, πW,i,2, πW,i,3) satisfies

E
(
h, �CX

)
· E

(
HG(mi), (1, 1, σi,2)

)
= E(g, �Cσi,1) ·

3∏
j=1

E(πW,i,j , �fj).

In the full version of the paper, we prove that the scheme is unforgeable under
the DLIN and q-SFP assumptions and completely context hiding.

References

1. Abe, M., Haralambiev, K., Ohkubo, M.: Signing on Elements in Bilinear Groups
for Modular Protocol Design. Cryptology ePrint Archive: Report 2010/133 (2010)

2. Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-
Preserving Signatures and Commitments to Group Elements. In: Rabin, T. (ed.)
CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)

3. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Com-
puting on Authenticated Data. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194,
pp. 1–20. Springer, Heidelberg (2012)

4. Attrapadung, N., Libert, B.: Homomorphic Network Coding Signatures in the Stan-
dard Model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011.
LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011)

5. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Or-
der. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331.
Springer, Heidelberg (2006)

6. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable Proofs and Delegatable Anonymous Credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009)

7. Bellare, M., Neven, G.: Transitive Signatures Based on Factoring and RSA. In:
Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 397–414. Springer, Hei-
delberg (2002)

8. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

9. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. SIAM
Journal of Computing 32(3), 586–615 (2003); In: Kilian, J. (ed.) CRYPTO 2001.
LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

10. Boneh, D., Freeman, D.M., Katz, J., Waters, B.: Signing a Linear Subspace: Sig-
nature Schemes for Network Coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009.
LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009)

11. Boneh, D., Freeman, D.M.: Linearly Homomorphic Signatures over Binary Fields
and New Tools for Lattice-Based Signatures. In: Catalano, D., Fazio, N., Gennaro,
R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg
(2011)

12. Boneh, D., Freeman, D.M.: Homomorphic Signatures for Polynomial Functions. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 149–168. Springer,
Heidelberg (2011)

13. Boneh, D., Shen, E., Waters, B.: Strongly Unforgeable Signatures Based on Com-
putational Diffie-Hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)



384 N. Attrapadung, B. Libert, and T. Peters

14. Brzuska, C., Busch, H., Dagdelen, O., Fischlin, M., Franz, M., Katzenbeisser, S.,
Manulis, M., Onete, C., Peter, A., Poettering, B., Schröder, D.: Redactable Signa-
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Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 667–678. Springer,
Heidelberg (2008)

37. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully Homomorphic
Encryption over the Integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010)

38. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

39. Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under
Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
619–636. Springer, Heidelberg (2009)



A Coding-Theoretic Approach to Recovering

Noisy RSA Keys
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Abstract. Inspired by cold boot attacks, Heninger and Shacham (Crypto
2009) initiated the study of the problem of how to recover an RSA pri-
vate key from a noisy version of that key. They gave an algorithm for
the case where some bits of the private key are known with certainty.
Their ideas were extended by Henecka, May and Meurer (Crypto 2010)
to produce an algorithm that works when all the key bits are subject to
error. In this paper, we bring a coding-theoretic viewpoint to bear on the
problem of noisy RSA key recovery. This viewpoint allows us to cast the
previous work as part of a more general framework. In turn, this enables
us to explain why the previous algorithms do not solve the motivating
cold boot problem, and to design a new algorithm that does (and more).
In addition, we are able to use concepts and tools from coding theory
– channel capacity, list decoding algorithms, and random coding tech-
niques – to derive bounds on the performance of the previous and our
new algorithm.

1 Introduction

Cold boot attacks [6, 7] are a class of attacks wherein memory remanence effects
are exploited to extract data from a computer’s memory. The idea is that modern
computer memories retain data for periods of time after power is removed, so an
attacker with physical access to a machine may be able to recover, for example,
cryptographic key information. The time during which data is retained can be
increased by cooling the memory chips. However, because the memory gradually
degrades over time once power is removed, only a noisy version of the data may
be recoverable. The question then naturally arises: given a noisy version of a
cryptographic key, is it possible to reconstruct the original key?

This question was addressed for broad classes of cryptosystems, both symmet-
ric and asymmetric, by Halderman et al. in [6,7] and specifically for RSA private
keys in [8, 9]. Similar problems arise in the context of side-channel analysis of
cryptographic implementations, where noisy key information may leak through
power consumption [11] or timing [2]. The question is also linked to the classical
cryptanalysis problem of recovering an RSA private key when some bits of the
key are known, for example the most or least significant bits, or contiguous bits
spread over a number of blocks (see, for example, the surveys in [1,12] and [10]).

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 386–403, 2012.
c© International Association for Cryptologic Research 2012
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Heninger and Shacham (HS) [9] considered the setting where a random frac-
tion of the RSA private key bits is known with certainty. Their approach ex-
ploits the fact that the individual bits of an RSA private key of the form
sk = (p, q, d, dp, dq) must satisfy certain algebraic relations. This enables the
recovery of the private key in a bit-by-bit fashion, starting with the least signifi-
cant bits, by growing a search tree. It is easy to prune the search tree to remove
partial solutions which do not match with the known key bits. The resulting algo-
rithm will always succeed in recovering the private key, since the pruning process
will never remove a partial version of the correct solution. On the other hand,
when only few bits are known, the search tree may grow very large, and the HS
algorithm will blow up. It was proved in [9] that, under reasonable assumptions
concerning randomness of incorrect solutions, the HS algorithm will efficiently
recover an n-bit RSA private key in time O(n2) with probability 1−1/n2 when a
random fraction of at least 0.27 of the private key bits are known with certainty.
These theoretical results are well-matched by experiments reported in [9]. These
experiments also confirm that the HS algorithm has good performance when the
known fraction is as small as 0.24, and the analysis of [9] extends to cases where
the RSA private key sk is of the form (p, q, d) or (p, q).

Henecka, May and Meurer (HMM) [8] took the ideas of [9] and developed them
further to address the situation where no key bits are known with certainty. They
consider the symmetric case where the two possible bit flips 0 → 1, 1 → 0 have
equal probability δ. Their main idea was to consider t bit-slices at a time of
possible solutions to the equations relating the bits of sk, instead of single bits
at a time as in the HS algorithm. In the formulation where sk = (p, q, d, dp, dq),
this yields 2t candidate solutions on 5t new private key bits for each starting
candidate at each stage of the algorithm. The HMM algorithm then computes the
Hamming distance between the candidate solutions and the noisy key, keeping
all candidates for which this metric is less than some carefully chosen threshold
C. This replaces the procedure of looking for exact matches used in the HS
algorithm. Of course, now the correct solution may fail this statistical test and
be rejected; moreover the number of candidate solutions retained may explode if
C is set too loosely. Nevertheless, it was shown in [8] that the HMM algorithm is
efficient and has reasonable success in outputting the correct solution provided
that δ < 0.237. Again, the analysis depends on assumptions concerning the
random behaviour of wrong solutions. To support the analysis, [8] reports the
results of experiments for different noise levels and algorithmic parameters. For
example, the algorithm can cope with δ = 0.20.

In recent work independent of ours, Sarkar and Maitra [13] revisited the work
of [8], applying the HMM algorithm to break Chinese Remainder implementa-
tions of RSA with low weight decryption exponents and giving ad hoc heuristics
to improve the algorithm.

Limitations of Previous Work and Open Questions: Although inspired
by cold boot attacks, it transpires that neither the HS algorithm nor the HMM
algorithm actually solve the motivating cold boot problem. Let us see why.
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One observation made in [6,7] is that for a given region of memory, the decay
of memory bits is overwhelmingly either 0 → 1 or 1 → 0, while the decay
direction in a given region can be inferred by comparing the number of 0s and
1s (since for an uncorrupted private key, we expect these to be roughly equal).
Thus, in a 1 → 0 region, a 1 bit in the noisy version of the key is known (with
high probability) to correspond to a 1 bit in the original key.

In the case of [9], the assumption is made that a certain fraction of the RSA
private key bits – both 0s and 1s – is known with certainty. But, in the cold boot
scenario, only 1 (or 0) bits are known, and not a mixture of both. Fortunately,
the authors of [9] have informed us that their algorithm does still work when
only 0 or only 1 bits are known, but this is not the case it was designed for,
and, formally, the performance guarantees obtained in [9] do not apply in this
case. Furthermore, in a real cold boot attack, bits are never known with absolute
certainty, because even in a 1 → 0 region, say, bit flips in the reverse direction
can occur. Halderman et al. report rates of 0.05% to 0.1% for this event. Such
an event will completely derail the HS algorithm, as it will result in the correct
solution being eliminated from the search tree. Based on an occurrence rate of
0.1%, this kind of fatal event can be expected to arise around 2.5 to 5 times in
a real key recovery attack for 1024-bit RSA moduli with sk = (p, q, d, dp, dq).
Thus, the HS algorithm really only applies to an “idealised” cold boot setting,
where some bits are known for sure.

The HMM algorithm is designed to work for the symmetric case where the
two possible bit flips have equal probability δ. Yet, in a cold boot attack, in a
1 → 0 region say, α := Pr(0 → 1) will be very small (though non-zero), while
β := Pr(1 → 0) may be relatively large, and perhaps even greater than 0.5 in
a very degraded case. The use of Hamming distance as a metric for comparison
and the setting of the threshold C are closely tied to the symmetric case, and it
is not immediately clear how one can generalise the HMM approach to handle
the type of errors occurring in real cold boot attacks. So it does not solve the
cold boot problem for RSA keys.

Intriguing features of the work in [8,9] are the constants 0.27 and 0.237, which
bound the fraction of known bits/noise rate the HS and HMM algorithms can
handle. One can trace through the relevant analysis to see how these numbers
emerge, but it would be more satisfying to have a deeper, unifying explanation.
One might also wonder if these bounds are best possible or whether significant
improvements might yet be forthcoming. Is there any ultimate limit to the noise
level that these kinds of algorithms can deal with? And can we design an algo-
rithm that works in the true cold boot setting, or for fully general noise models
that might be expected to occur in other types of side channel attack?

Our contributions: We show how to recast the problem of noisy RSA key recov-
ery as a problem in coding theory. That such a connection exists should be no
surprise: after all, we are in a situation where bits are only known with certain
probabilities and we wish to recover the true bits. However, this connection opens
up the opportunity to apply to our problem the full gamut of sophisticated tools
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that have been developed by coding theorists over the last 60 years. We sketch
this connection and its main consequences next.

Recall that in the HMM algorithm, we generate from each solution so far a set
of 2t candidate solutions on 5t new bits. We now view the set of 2t candidates
as being a code, with one codeword s (representing bits of the true private key)
being selected and transmitted over a noisy channel, resulting in a received word
r (representing 5t bits of the noisy version of the key). In the HMM case, the
noise is realised via bit flipping with probability δ. The HS algorithm can be
seen as arising from the special case t = 1, where the noise now corresponds
to erasing a fraction of key bits instead of flipping them. Alternatively, we can
consider a generalisation of the HS algorithm which considers 5t bits at a time,
generated just as in the HMM algorithm, and which then filters the resulting 2t

candidates based on matching with known key bits. Because filtering is based on
exact matching, this algorithm has the same output as the original HS algorithm.
This brings the two algorithms under a single umbrella.

In general, in coding theory, the way in which s is transformed into r depends
on the channel model, which in its full generality defines the probabilities Pr(r|s)
over all possible pairs (s, r). In the case of [9], the assumption is that particular
bits are known with certainty and others are not known at all, with the bits all
being treated independently. The appropriate channel model is then an erasure
channel, meaning that bits are independently either erased or transmitted cor-
rectly over the channel, with the receiver knowing the positions of the erasures.
In the case of [8], the appropriate channel model is the binary symmetric channel
with cross-over probability δ. It also emerges that the appropriate channel model
for the true cold boot setting is a binary non-symmetric channel with cross-over
probabilities (α, β). In general, the problem we are faced with is to decode r,
with the aim being to reproduce s with high probability.

When couched in this language, it becomes obvious that the HS and HMM
algorithms do not solve the original cold boot problem – simply put these al-
gorithms use inappropriate channel models for that specific problem. We can
also use this viewpoint to derive limits on the performance of any procedure for
selecting which candidate solutions to keep in an HMM-style algorithm. To see
why, we recall that the converse to Shannon’s noisy-channel coding theorem [14]
states that no combination of code and decoding procedure can jointly achieve
arbitrarily reliable decoding when the code rate exceeds the (Shannon) capac-
ity of the channel. Moreover, there are analogues of the converse of Shannon’s
theorem for so-called list decoding that essentially show that channel capacity is
also the barrier to any efficient algorithm outputting lists of candidates, as the
HS and HMM algorithms do.

When sk is of the form (p, q, d, dp, dq), for example, the code rate is fixed at 1/5
(we have 2t codewords and length 5t). The channel capacity can be calculated
as a function of the channel model and its parameters. For example, for the
erasure channel with erasure probability ρ (meaning that a fraction 1− ρ of the
bits are known with certainty), the capacity is simply 1 − ρ. Then we see that
the limiting value is ρ = 0.8, meaning that the fraction of known bits must be
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at least 0.2 to achieve arbitrarily reliable, efficient decoding. The analysis in [9]
needs that fraction to be at least 0.27, though a fraction as low as 0.24 could be
handled in practice. Thus a capacity analysis suggests that there should be room
to improve the HS algorithm further, but capacity shows that it is impossible
go below a fraction 0.2 of known bits with an efficient algorithm. See Section 3
for further details on list decoding and its application to the analysis of the HS
and HMM algorithms.

Informed by our coding-theoretic viewpoint, we derive a new key recovery
algorithm that works for any (memoryless) binary channel and therefore is ap-
plicable to the cold boot setting (and more). In essence, we modify the HMM
algorithm to use a likelihood statistic in place of the Hamming metric when
selecting from the candidate codewords. We keep the L codewords having the
highest values of this likelihood statistic and reject the others. An important
consequence of this algorithmic choice is that our algorithm has deterministic
running time O(L2tn/t) and, when implemented using a stack, deterministic
memory consumption O(L+ t). This stands in contrast to the running time and
memory usage of the HS and HMM algorithms, which may blow up when the
erasure/error rates are high. We note that private RSA keys are big enough that
they may cross regions when stored in memory. We can handle this by chang-
ing the likelihood statistic used in our algorithm at the appropriate transition
points, requiring only a simple modification to our approach. In the full version,
we give an analysis of the success probability of our new algorithm, under dif-
ferent randomness hypotheses, using coding-theoretic tools. Essentially, we are
able to show that, as t → ∞, its success probability tends to 1 provided the
code rate (1/5 when sk = (p, q, d, dp, dq)) remains below the channel capacity.
Moreover, from the converse to Shannon’s theorem, we are unlikely to be able
to improve this result if reliable key recovery is required.

We include the results of extensive experiments using our new algorithm.
These demonstrate that our approach matches or outperforms the HS and HMM
algorithms in the cases they are designed for, and achieves results close to the
limits imposed by our capacity analysis more generally. For example, in the
symmetric case with δ = 0.20, we can achieve a 20% success rate in recovering
keys for t = 18 and L = 32. This is comparable to the results of [8]. Furthermore,
for the same t and L we achieve a 4% success rate for δ = 0.22, whilst [8] does
not report any experiments for an error rate this high. As another example, our
algorithm can handle the idealised cold boot scenario by setting α = 0 (in which
case all the 1 bits in r are known with certainty, i.e. we are in a 1 → 0 region).
Here, our capacity analysis puts a bound of 0.666 on β for reliable key recovery.
Using our algorithm, we can recover keys for β = 0.6 with a 13% success rate
using t = 18 and L = 32, whereas the HS algorithm can only reach β = 0.52
(and this under the assumption that the experimental results reported in [9] for
a mixture of known 0 and 1 bits do translate to the same performance for the
case where only 1 bits are known). In the same setting, we can even recover keys
up to β = 0.63 with a non-zero success rate. We also have similar experimental
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results for the ‘true’ cold boot setting where both α and β are non-zero, and for
the situation where sk is of the form (p, q, d) or (p, q).

Paper Organisation: The remainder of this paper is organised as follows. In the
next section, we give further background on the algorithms of [8,9]. In Section 3,
we develop the connection with coding theory and explain how to use it to derive
limits on the performance of noisy RSA key recovery algorithms. Section 4 de-
scribes our new maximum likelihood list decoding algorithm. Section 5 presents
our experimental results. Finally, Section 6 contains some closing remarks and
open problems.

2 The HS and HMM Algorithms

Let (N, e) be the RSA public key, where N = pq is an n-bit RSA modulus,
and p, q are balanced primes. As with [8, 9], we assume throughout that e is
small, say e = 3 or e = 216 + 1; for empirical justification of this assumption,
see [15]. We start by assuming that private keys sk follow the PKCS#1 standard
and so are of the form (N, p, q, e, d, dp, dq, q

−1
p ), where d is the decryption key,

dp = d mod p − 1, dq = d mod q − 1 and qp = q−1 mod p. However, neither
the algorithms of [8, 9] nor ours make use of q−1

p , so we henceforth omit this
information. Furthermore, we assume N and e are publicly known, so we work
only with the tuple sk = (p, q, d, dp, dq). We will also consider attacks where the
private key contains less information – either sk = (p, q, d) or sk = (p, q).

Now assume we are given a degraded version of the key s̃k = (p̃, q̃, d̃, d̃p, d̃q).
We start with the four RSA equations:

N = pq (1)

ed = k(N − p− q + 1) + 1 (2)

edp = kp(p− 1) + 1 (3)

edq = kq(q − 1) + 1. (4)

where k, kp and kq are integers to be determined. A method for doing so is given
in [9]: first it is shown that 0 < k < e; then, since e is small, we may enumerate

d(k′) :=

⌊
k′(N + 1) + 1

e

⌋
for all 0 < k′ < e. We then find the k′ such that d(k′) is “closest” to d̃ in the most
significant half of the bits. Simple procedures for doing this are given in [8, 9].
In the more general setting where bit flips can occur in both directions and
with different probabilities, we proceed as follows. First, we estimate parameters
α = Pr(0→ 1) and β = Pr(1→ 0) from known bits, e.g. from a noisy version of
N that is adjacent in memory to the private key. Second, we compute for each
k′ an approximate log-likelihood using the expression

n01 logα+ n00 log(1− α) + n10 log β + n11 log(1− β)
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where n01 is the number of positions in the most significant half where a 0
appears in d(k′) and a 1 appears in d̃, etc. Finally, we select the k′ that provides
the highest log-likelihood.

At the end of this procedure, with high probability we will have k′ = k and
we will have recovered the most significant half of the bits of d. Now we wish to
find kp and kq. By manipulating the above equations we see that

k2p − (k(N − 1) + 1)kp − k ≡ 0 mod e

If e is prime (as in the most common case e = 216 + 1) there will only be two
solutions to this equation. One will be kp and the other kq. If e is not prime we
will have to try all possible pairs of solutions in the remainder of the algorithm.

Now, for integers x, we define τ(x) := max{i ∈ N : 2i | x}. Then it is easy to
see that 2τ(kp)+1 divides kp(p− 1), 2τ(kq)+1 divides kq(q− 1) and 2τ(k)+2 divides
kφ(N). These facts, along with relations (2) – (4), allow us to see that

dp ≡ e−1 mod 2τ(kp)+1

dq ≡ e−1 mod 2τ(kq)+1

d ≡ e−1 mod 2τ(k)+2.

This allows us to correct the least significant bits of d, dp and dq. Furthermore
we can calculate slice(0), where we define

slice(i) := (p[i], q[i], d[i+ τ(k)], dp[i+ τ(kp)], dq[i+ τ(kq)]).

with x[i] denoting the i-th bit of the string x.
Now we are ready to explain the main idea behind the algorithm of [9]. Sup-

pose we have a solution (p′, q′, d′, d′p, d
′
q) from slice(0) to slice(i − 1). Then [9]

uses a multivariate version of Hensel’s Lemma to show that the bits involved in
slice(i) must satisfy the following congruences:

p[i] + q[i] = (N − p′q′)[i] mod 2

d[i+ τ(k)] + p[i] + q[i] = (k(N + 1) + 1− k(p′ + q′)− ed′)[i+ τ(k)] mod 2

dp[i+ τ(kp)] + p[i] = (kp(p
′ − 1) + 1− ed′p)[i+ τ(kp)] mod 2

dq[i+ τ(kq)] + q[i] = (kq(q
′ − 1) + 1− ed′q)[i+ τ(kq)] mod 2.

Because we have 4 constraints on 5 unknowns, there are exactly 2 possible solu-
tions for slice(i), rather than 32. This is then used in [9] as the basis of building
a search tree for the unknown private key bits. At each node in the tree, rep-
resenting a partial solution up to slice(i − 1), at most two successor nodes are
added by the above procedure. Moreover, since a random fraction of the bits
is assumed to be known with certainty, the tree can be pruned of any partial
solutions that are not consistent with these known bits. Clearly, if the fraction of
known bits is large enough, then the tree will be highly pruned and the number
of nodes in the tree will be small. The analysis of [9] shows that if the fraction of
known bits is at least 0.27, then the tree’s size remains close to linear in n, the
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size of the RSA modulus, meaning that an efficient algorithm results. A similar
algorithm and analysis can be given for the case where sk is of the form (p, q, d)
or (p, q); in each case, there are exactly 2 possible solutions for each slice(i).

Instead of doing Hensel lifting bit-by-bit and pruning on each bit, the HMM
algorithm performs t Hensel lifts for some parameter t, yielding, for each surviv-
ing candidate solution on slice(0) to slice(i − 1), a tree of depth t whose 2t leaf
nodes represent candidate solutions on slices slice(0) to slice(i+ t− 1), involving
5t new bits (in slice(i) to slice(i+ t−1)). A solution is kept for the next iteration
if the Hamming distance between the 5t new bits and the corresponding vector
of noisy bits is less than some threshold C. Clearly the HS algorithm could also
be modified in this way, lifting t times and then doing pruning based on match-
ing known key bits. Alternatively, one can view the HS algorithm as being the
special case t = 1 of the HMM algorithm (with a different pruning procedure).
The HMM algorithm can also be adapted to work with sk of the form (p, q, d)
or (p, q). Henecka et al. [8] showed how to select C and t so as to guarantee that
their algorithm is efficient and produces the correct solution with a reasonable
success rate. In particular, they were able to show that this is the case provided
the probability of a bit flip δ is at most 0.237.

At each stage in the HMM algorithm, candidate solutions on t new slices
are constructed. Then roughly n/2t iterations or stages of the algorithm are
needed, since all the quantities being recovered contain at most n/2 bits. As
pointed out in [8], only half this number of stages is required since once we have
the least significant half of the bits of the private key, the entire private key
can be recovered using a result of Coppersmith [3]. At their conclusion, the HS
and HMM algorithms outputs lists of candidate solutions rather than a single
solution. But it is easy to verify the correctness of each candidate by using a
trial encryption and decryption, say. Thus the success rate of the algorithms is
defined to be the probability that the correct solution is on the output list. We
adopt the same measure of success in the remainder of the paper.

3 The Coding-Theoretic Viewpoint

In this section, we develop our coding-theoretic viewpoint on the HS and HMM
algorithms, using it to derive limits on the performance of these and similar
algorithms. In particular, we will explain how channel capacity plays a crucial
role in setting these limits.

We begin by defining the parameterm. We setm = 5 when sk = (p, q, d, dp, dq),
m = 3 when sk = (p, q, d), and m = 2 when sk = (p, q). Consider a stage of the
HMM algorithm, commencing with M partial solutions that have survived the
previous stage’s pruning step. The HMM algorithm produces a total of M2t

candidate solutions on mt bits, prior to pruning. We label these s1, . . . , sM2t , let
C denote the set of all M2t candidates, and use r to denote the corresponding
vector of mt noisy bits in sk.

Now we think of C as being a code. This code has rate R ≥ 1/m, but its
other standard parameters such as its minimum distance are unknown (and
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immaterial to our analysis). The problem of recovering the correct candidate
sj given r is clearly just the problem of decoding this code. Now both the HS
and HMM algorithms have pruning steps that output lists of candidates for the
correct solution, with the list size being dynamic in both cases and depending on
the number of candidates surviving the relevant filtering process (based either
on exact matches for the HS algorithm or on Hamming distance for the HMM
algorithm). In this sense, the HS and HMM algorithms are performing types
of list decoding, an alternative to the usual unique decoding of codes that was
originally proposed by Elias [4].

To complete the picture, we need to discuss what error and channel models are
used in [8,9], and what models are appropriate to the cold boot setting. As noted
in the introduction, [9] assumes that some bits of r are known exactly, while no
information at all is known about the other bits. This corresponds to an erasure
model for errors, and an erasure channel. Usually, this is defined in terms of a
parameter ρ representing the fraction of erasures. So 1−ρ represents the fraction
of known bits, a parameter denoted δ in [9]. On the other hand, [8] assumes that
all bits of r are obtained from the correct sj by independent bit flipping with
probability δ. In standard coding terminology, we have a (memoryless) binary
symmetric channel with crossover probability δ. From the experimental data
reported in [6, 7], an appropriate model for the cold boot setting would be a
binary non-symmetric channel with crossover probabilities (α, β), with α being
small and β being significantly larger in a 1 → 0 region (and vice-versa in a
0 → 1 region). In an idealised cold boot case, we could assume α = 0, meaning
that a 0 → 1 bit flip can never occur, so that all 1 bits in r are known with
certainty. This is better known as a Z-channel in the coding-theoretic literature.

This viewpoint highlights the exact differences between the settings considered
in [8, 9] and the cold boot setting. It also reveals that, while the HS algorithm
can be applied for the Z-channel seen in the idealised cold boot setting, there is
no guarantee that the performance proven for it in [9] for the erasure channel
will transfer to the Z-channel. Moreover, one might hope for substantial improve-
ments to the HS algorithm if one could somehow take into account the (partial)
information known about 0 bits as well as the exact information known about 1
bits.

3.1 The Link to Channel Capacity

We can use this coding viewpoint to derive limits on the performance of any
procedure for selecting which candidate solutions to keep in the HS and HMM
algorithms. To see why, we recall that the converse to Shannon’s noisy-channel
coding theorem [14] states that no combination of code and decoding procedure
can jointly achieve arbitrarily reliable decoding when the code rate exceeds the
capacity of the channel. Our code rate is at least 1/m where m = 2, 3 or 5 and
the channel capacity can be calculated as a function of the channel model and
its parameters.

Two caveats must be made here. Firstly, capacity only puts limits on reli-
able decoding, and even decoding with low success probability is of interest in



A Coding-Theoretic Approach to Recovering Noisy RSA Keys 395

cryptanalysis. Secondly, Shannon’s result applies only to decoding algorithms
that output a single codeword s, while both the HS and HMM algorithms are per-
mitted to output many candidates at each stage, with the final output list only
being required to contain the correct private key. Perhaps such list-outputting
algorithms can surpass the bounds imposed by Shannon’s theorem? Indeed, the
HS algorithm is guaranteed to output the correct key provided the algorithm
terminates. Similarly, the threshold C in the HMM algorithm can always be set
to a value that ensures that every candidate passes the test and is kept for the
next stage, thus guaranteeing that the algorithm is always successful. However,
neither of these variants would be efficient and in fact there are analogues of the
converse of Shannon’s noisy-channel coding theorem that essentially show that
capacity is the barrier for efficient list decoding too.

For the binary symmetric channel, it is shown in [5, Theorem 3.4] that if C is
any code of length n and rate 1 −H2(δ) + ε for some ε > 0, then some word r
is such that the Hamming sphere of radius δn around r contains at least 2εn/2

codewords. Here H2(·) is the binary entropy function:

H2(x) = −x log2(x)− (1− x) log2(1 − x)

and 1−H2(δ) is just the capacity of the channel. The proof also shows that, over
a random choice of r, the average number of codewords in a sphere of radius δn
around r is 2εn/2. Since the expected number of errors in r is δn, we expect the
correct codeword to be in this sphere, along with 2εn/2 other codewords. This
implies that, if the rate of the code exceeds the channel capacity 1−H2(δ) by a
constant amount ε, then C cannot be list decoded using a polynomial-sized list,
either in the worst case or on average, as n→∞.

An analogous result can be proved for the erasure channel, based on a similarly
simple counting argument as was used in the proof of [5, Theorem 3.4]: if ρ is
the erasure probability and C is any code of rate 1 − ρ + ε (i.e. ε above the
erasure channel’s capacity), then it can be shown that on average there will be
2εn codewords that differ from r in its erasure positions, assuming r contains ρn
erasure symbols. Hence reliable list decoding for C cannot be achieved using a
polynomial-sized list.

In the next sub-section, we will examine in more detail the implications of
these results on list decoding for the HS and HMM algorithms.

3.2 Implications of the Capacity Analysis

The Binary Symmetric Channel and the HMM Algorithm. If the HMM
algorithm is to have reasonable success probability in recovering the key, then
at each stage, it must set the threshold C in such a way that all words si ∈ C
with dH(si, r) ≈ δmt are accepted by the algorithm. This is because δmt is the
expected number of errors occurring in r, and if the threshold is set below this
value, then the correct codeword is highly likely to be rejected by the algorithm.
(In fact, the HMM algorithm sets C to be slightly higher than this, which makes
good sense given that there is an even chance of there being more than δmt
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errors.) Recall that we have rate R ≥ 1/m. Now suppose δ is such that R =
1 −H2(δ) + ε for some ε > 0, i.e. δ is chosen so that that the code rate is just
above capacity. Then the argument above shows that there will be on average
at least 2εmt/2 codewords on the output list at each stage. Thus, as soon as δ
is such that R exceeds capacity by a constant amount ε, then there must be a
blow-up in the algorithm’s output size at each stage, and the algorithm will be
inefficient asymptotically.

We write CBSC(δ) = 1 − H2(δ) for the capacity of the binary symmetric
channel. Table 1 shows that CBSC(δ) = 0.2 when δ = 0.243. Thus what our
capacity analysis shows is that the best error rate one could hope to deal with
in the HMM algorithm when m = 5 is δ = 0.243. Notice that this value is rather
close to, but slightly higher than, the corresponding value of 0.237 arising from
the analysis in [8]. The same is true for the other entries in this table. This means
that significantly improving the theoretical performance of the HMM algorithm
(or indeed any HMM-style algorithm) whilst keeping the algorithm efficient will
not be possible. The experimental work in [8] gives results up to a maximum δ
of 0.20; compared to the capacity bound of 0.243, it appears that there is some
room for practical improvement in the symmetric case.

The Erasure Channel and the HS Algorithm. As noted above, for the
erasure channel, the capacity is 1 − ρ, where ρ is the fraction of bits erased by
the channel. Note that the list output by the HS algorithm is independent of
whether pruning is done after each lift or in one pass at the end (but obviously
doing so on a lift-by-lift basis is more efficient in terms of the total number of
candidates examined). Then considering the HS algorithm in its entirety (i.e.
over n/2 Hensel lifts), we see that it acts as nothing more than a list decoder
for the erasure channel, with the code C being the set of all 2n/2 words on mn/2
bits generated by doing n/2 Hensel lifts without any pruning, and the received
word r being the noisy version of the entire private key sk.

Then our analysis above applies to show that the HS algorithm will produce
an exponentially large output list, and will therefore be inefficient, when the
rate (which in this case is exactly 1/m) exceeds the capacity 1− ρ. For m = 5,
we have rate 0.2 and so our analysis shows that the HS algorithm will produce
an exponentially large output list whenever ρ exceeds 0.8. Now [9] reports good
results (in the sense of having a reasonable running time) for ρ as high as 0.76
(corresponding to Heninger and Shacham’s parameter δ being equal to 0.24),

Table 1. Private key-type, equivalent
rate R, and maximum crossover prob-
ability δ allowing reliable key recovery,
symmetric channel case

sk R δ

(p, q, d, dp, dq) 1/5 0.243
(p, q, d) 1/3 0.174
(p, q) 1/2 0.110

Table 2. Private key-type, equivalent
rate R, and maximum error probabil-
ity ρ allowing reliable key recovery, Z-
channel case

sk R β

(p, q, d, dp, dq) 1/5 0.666
(p, q, d) 1/3 0.486
(p, q) 1/2 0.304
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leaving a gap between the experimental performance and the theoretical bound.
Similar remarks apply for the casesm = 2, 3: form = 2, the HS algorithm should
be successful for ρ = 0.43 (δ = 0.57), while the bound from capacity is 0.50; for
m = 3, we have ρ = 0.58 (δ = 0.42) and the capacity bound is 0.67. Hence,
further improvements for m = 2, 3 are not ruled out by the capacity analysis.

The Z-channel. We may also apply the above capacity analysis to the idealised
cold boot setting, where the crossover probabilities are of the form (0, β). Here
we have a Z-channel, whose capacity can be written as:

CZ(β) = log2(1 + (1 − β)β
β

1−β ).

Solving the equation CZ(β) = R for R = 1/5, 1/3, 1/2 gives us the entries in
Table 2. We point out the large gap between these figures and what we would
expect to obtain both theoretically and experimentally if we were to directly
apply the HS algorithm to the idealised cold boot setting. For example, when
m = 5, the analysis of [9] suggests that key recovery should be successful provided
that β does not exceed 0.46 (the value of δ = 0.27 translates into a β value of
0.46 using the formula δ = (1− β)/2 given in [9]), whereas the capacity analysis
suggests a maximum β value of 0.666. This illustrates that the HS algorithm
is not well-matched to the Z-channel. Our new algorithm will close this gap
substantially.

The True Cold Boot Setting. For the true cold boot setting, we must con-
sider the general case of a memoryless, binary channel with crossover probabili-
ties (α, β). We can calculate the capacity C(α, β) of this channel and obtain the
regions for which C(α, β) > R for R = 1/5, 1/3, 1/2. The results are shown in
Figure 1. Notice that these plots include as special cases the data from Tables 1
and 2. If we set α = 0.001, say, we see that the maximum achievable β is quite
close to that in the idealised cold boot setting. Note also that the plots are sym-
metric about the lines y = x and y = 1 − x, reflecting the fact that capacity is
preserved under the transformations (α, β)→ (β, α) and (α, β)→ (1−α, 1−β).

However, we must caution that capacity-based bounds for list decoding for the
general binary non-symmetric channel (including the Z-channel) are not known
in the coding-theoretic literature. Strictly speaking, then, our capacity analysis
for this case does not bound the performance of key recovery algorithms that are
allowed to output many key candidates, but only the limited class of algorithms
that output a single key candidate. This said, our capacity analysis sets a target
for our new algorithm, which follows.

4 The New Algorithm and Its Analysis

In this section, we give our new algorithm for noisy RSA key recovery that
works for any memoryless, binary channel, as characterised by the cross-over
probabilities (α, β). Our algorithm has the same basic structure as the HMM
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Fig. 1. Plots showing achievable (α, β) pairs for private keys containing 5, 3 and 2
components, respectively. The vertical axis is β, the horizontal axis is α. The shaded
area in each case represents the unachievable region.

algorithm but uses a different procedure to decide which candidate solutions to
retain and which to reject. Specifically, we use a likelihood measure in place of
Hamming distance.

Recall that we label the M2t candidate solutions on mt bits arising at some
stage in the HMM algorithm s1, . . . , sM2t and let us name the corresponding
vector of mt noisy bits in the RSA private key r. Then the Maximum Likelihood
(ML) estimate for the correct candidate solution is simply:

arg max
1≤i≤M2t

Pr(si|r).

that is, the choice of i that maximises the conditional probability Pr(si|r). Using
Bayes’ theorem, this can be rewritten as:

arg max
1≤i≤M2t

Pr(r|si) Pr(si)
Pr(r)

.

Here, Pr(r) is a constant for a given set of bits r. Let us make the further
mild assumption that Pr(si) is also a constant, independent of i. Then the ML
estimate is obtained from

arg max
1≤i≤M2t

(Pr(r|si)) = arg max
1≤i≤M2t

(
(1− α)n

i
00αni

01(1− β)n
i
11βn

i
10

)
where α = Pr(0 → 1) and β = Pr(1 → 0) are the crossover probabilities, ni00
denotes the number of positions where si and r both have 0 bits, ni01 denotes the
number of positions where si has a 0 and r has a 1, and so on.

Equivalently, we may maximise the log of these probabilities, and so we seek:

arg max
1≤i≤M2t

(log Pr(r|si))

= arg max
1≤i≤M2t

(
ni00 log(1− α) + ni01 logα+ ni11 log(1 − β) + ni10 log β

)
which provides us with a simpler form for computational purposes.
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Algorithm 1. Pseudo-code for the maximum likelihood list decoding al-
gorithm for reconstructing RSA private keys.

list ← slice(0);
for stage = 1 to n/2t do

Replace each entry in list with a set of 2t candidate solutions obtained by
Hensel lifting;
Calculate the log-likelihood log Pr(r|si) for each entry si on list;
Keep the L entries in list having the highest log-likelihoods and delete the
remainder;

Output list;

Then our proposed algorithm is simply this: select at each stage from the
candidates generated by Hensel lifting those L candidates si which produce the
highest values of the log-likelihood log Pr(r|si) as in the equation above. These
candidates are then passed to the next stage. So at each stage except the first
we will generate a total of L2t candidates and keep the best L. We may then
test each entry in the final list by trial encryption and decryption to recover a
single candidate for the private key. Pseudo-code for this algorithm is shown in
Algorithm 1. Note that here we assume there are n/2t stages; this number can
be halved as in the HS and HMM algorithms.

Our algorithm has fixed running time O(L2t) for each of the n/2t stages, and
fixed memory consumption O(L2t). This is a consequence of choosing to keep
the L best candidates at each stage in place of all candidates surpassing some
threshold as in the HMM algorithm. The memory consumption can be reduced to
O(L+t) by using a depth-first approach to generating and filtering the candidates.
The main overhead is then the Hensel lifting to generate candidate solutions; the
subsequent computation of log-likelihoods for each candidate is relatively cheap.
Notice that if α = 0 (as in the Z-channel for an idealised cold boot setting), then
any instance of a 0 → 1 bit flip is very heavily penalised by the log-likelihood
statistic – it adds a −∞ term to log Pr(r|si). In practice, for α = 0, we just reject
any solution containing a 0→ 1 transition. For the erasure channel, we reject any
candidate solution that does not match r in the known bits.

A special case of our algorithm arises when L = 1 and corresponds to just
keeping the single ML candidate at each stage. This algorithm then corresponds
to Maximum Likelihood (ML) decoding. However, at a given stage, it is likely
that the correct solution will be rejected because a wrong solution happens to
have the highest likelihood. This is especially so in view of how similar some
candidates will be to the correct solution. Therefore, ML decoding is likely to
go awry at some stage of the algorithm.

4.1 Remarks on the Asymptotic Analysis of Our Algorithm

In the full version, we give two analyses of our algorithm, using tools from coding
theory to assist us. The first analysis uses a strong randomness assumption, that
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Table 3. Success probabilities for the symmetric case ((α, β) = (δ, δ)). Experiments
with δ ≤ 0.16 are based on 500 trials. Capacity bound on δ is 0.243.

δ 0.08 0.10 0.12 0.14 0.16 0.18 0.19 0.2 0.21 0.22

t 6 8 10 12 16 18 18 18 18 18
L 4 4 8 32 32 32 32 32 32 64

Success rate 1 0.921 0.932 0.963 0.84 0.60 0.38 0.20 0.08 0.04
Time per trial (ms) 113 98 474 4323 85662 395069 399451 380139 377342 722341

the L2t candidates si generated at each stage of Algorithm 1 are independent and
uniformly random mt-bit vectors. It shows that, asymptotically, our algorithm
will be successful in recovering the RSA private key provided 1/m is less than the
capacity of the memoryless, binary channel with crossover probabilities (α, β).
In fact, this result follows as a simple application of Shannon’s noisy-channel
coding theorem [14], which states that, asymptotically, the use of random codes
in combination with Maximum Likelihood (ML) decoding achieves arbitrarily
small decoding error probability, provided that the code rate stays below the
capacity of the channel. Unfortunately, it is easy to see that our strong random-
ness assumption is in fact not true for the codes C generated in our algorithm,
because of the iterative nature of the Hensel lifting. The second analysis proves
a similar result for the symmetric case under weaker randomness assumptions
for which we have good experimental evidence. Details can be found in the full
version.

5 Experimental Results

For our experiments, we used a multi-threaded implementation based on Java
code kindly supplied by the authors of [8]. We ran our code on an 8x virtual
CPU hosted on a 2x Intel Xeon X5650, clocked at 2.67 GHz (IBM BladeCenter
HS22V). Except where noted below, our experiments were run for 100 trials using
a randomly-generated RSA key for each trial. Except where noted, our results
refer to private keys of the form sk = (p, q, d, dp, dq) and are all for 1024-bit RSA
moduli.

We have conducted extensive experiments for the symmetric case considered
in [8]. Our results are shown in Table 3. For small values of δ, we achieve a
success rate of 1 or very close to 1 using only moderate amounts of computation.
By contrast the HMM algorithm does not achieve such high success rate for
small δ. This cannot be solved by increasing t in the HMM algorithm because
this leads to a blow-up in running time. For larger δ, the success rate of our
algorithm is comparable to that of [8] for similar values of t. We were able to
obtain a non-zero success rate for δ = 0.22, while [8] only reached δ = 0.20. The
bound from capacity is 0.243.

For the idealised cold boot setting where α = 0, our experimental results are
shown in Table 4. Recall that the HS algorithm can also be applied to this case.
Translating the fraction of known bits (1− ρ) to the idealised cold boot setting,
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Table 4. Success probabilities for the idealised cold boot case (α = 0). Capacity bound
on β is 0.666.

ρ 0.1 0.2 0.3 0.4 0.46 0.5 0.55 0.6 0.62 0.63

t 6 6 8 12 16 18 18 18 18 18
L 4 4 8 8 8 16 16 16 64 64

Success rate 1 1 1 0.98 0.87 0.81 0.43 0.13 0.07 0.03
Time per trial (ms) 69 88 147 1518 22349 292834 282235 290254 692532 683421

Table 5. Success probabilities for the true cold-boot case with α = 0.001. Capacity
bound on β is 0.658.

β 0.1 0.2 0.3 0.4 0.5 0.55 0.6 0.61

t 6 6 8 12 16 18 18 18
L 4 4 8 8 16 32 64 64

Success rate 1 1 0.97 0.97 0.66 0.31 0.09 0.04
Time per trial (ms) 80 80 273 4268 42732 384262 740244 735169

and assuming the HS algorithm works just as well when only 1 bits are known
(instead of a mixture of 0 and 1 bits), the maximum value of β that could be
handled by the HS algorithm theoretically would be 0.46 (though results reported
in [9] would allow β as high as 0.52). Our algorithm still has a reasonable success
rate for β as high as 0.6 and non-zero success rate even for β = 0.63, beating the
HS algorithm by some margin. Our capacity analysis for this case suggests that
the maximum value of β will be 0.666. Thus our algorithm is operating within
5% of capacity here.

Table 6. Success probabilities for the true cold-boot case with α = 0.001 and sk =
(p, q, d). Capacity bound on β is 0.479.

β 0.1 0.15 0.20 0.25 0.30 0.35 0.40 0.43

t 6 10 14 16 18 18 18 18
L 4 16 16 16 16 16 32 64

Success rate 0.99 0.99 0.98 0.96 0.63 0.55 0.12 0.04
Time per trial (ms) 46 371 4441 19906 117502 108523 165418 301457

Table 7. Success probabilities for the true cold-boot case with α = 0.001 and sk =
(p, q). Capacity bound on β is 0.298.

β 0.05 0.1 0.15 0.20 0.26

t 10 12 16 18 18
L 8 8 16 32 64

Success rate 0.95 0.83 0.68 0.29 0.06
Time per trial (ms) 404 904 9492 87273 217214
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We present experimental results for the true cold boot setting in Table 5.
Given α = 0.001, it follows from our asymptotic analysis that the theoretical
maximum value of β which can be handled by our algorithms is 0.658. Our
algorithm still has a non-zero success rate for β as high as 0.61. We reiterate
that this true cold boot setting is not handled by any of the algorithms previously
reported in the literature.

Furthermore, for private keys of the form sk = (p, q, d) and sk = (p, q), our
algorithm performs very well in the true cold boot setting. For sk = (p, q, d), the
maximum value of β suggested by our capacity analysis is 0.479. With β = 0.4,
t = 20 and L = 16 our success rate is 0.12 and we have non-zero success rate
even with β = 0.43. Similarly, when sk = (p, q) our capacity analysis shows that
the maximum β is 0.298. When β = 0.2, t = 18 and L = 16 we still have a
success rate of 0.29, but we can even recover keys with non-zero success rate for
β as high as 0.26. Tables 6 and 7 show our results for these cases.

In the full version, we report further results for the erasure channel that
improve on the results of [9] and nearly close the gap to our capacity bound. For
example, when m = 5, we can achieve reliable key recovery up to an erasure rate
of 0.79 for this channel, where the bound from capacity is 0.80. By contrast, the
best result reported in [9] is for erasure rate 0.76. These and other improvements
are obtained using an optimised ‘C’ implementation of a depth-first search.

6 Conclusions

We have introduced an coding-theoretic viewpoint to the problem of recovering
an RSA private key from a noisy version of the key. This provides new insights
on the HS and HMM algorithms and leads to a new algorithm which is efficiently
implementable and enjoys good performance at high error rates. In particular,
ours is the first algorithm that works for the true cold boot case, where both
Pr(0→ 1) and Pr(1→ 0) are non-zero. Our algorithm is amenable to asymptotic
analysis, and our experimental results indicate that this analysis provides a good
guide to what is actually achievable with reasonable computing resources. Open
problems include:

1. Developing a rigorous asymptotic analysis of our algorithm in the general
case. However, in view of the state-of-the-art in list decoding, this seems to
be hard to obtain.

2. Generalising our approach to the situation where soft information is available
about the private key bits, for example reliability estimates of the bits. In
general, and by analogy with the situation in the coding theory literature, one
would expect to achieve better performance by exploiting such information.
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Abstract. We propose an algorithm that, given an arbitrary N of un-

known factorization and prime e ≥ N
1
4
+ε, certifies whether the RSA

function RSAN,e(x) := xe mod N defines a permutation over Z∗
N or not.

The algorithm uses Coppersmith’s method to find small solutions of poly-
nomial equations and runs in time O(ε−8 log2 N). Previous certification
techniques required e > N .

Keywords: RSA, certified trapdoor permutations, Coppersmith.

1 Introduction

One of the most well known cryptographic primitives is the RSA function [25].
Given a public modulus N (which is usually the product of two primes) and
an exponent e, it is defined as RSAN,e : Z∗

N → Z∗
N , x �→ xe mod N . It is well

known that the RSA function defines a permutation over the domain Z∗
N iff

gcd(e, ϕ(N)) = 1. Furthermore, with the right choice of parameters, the RSA
function even defines a trapdoor permutation since the prime factorization of N
allows to efficiently invert RSAN,e.

Trapdoor permutations have many applications to public-key cryptosystems
and serve as a building block for (often quite complex) cryptographic proto-
cols. In a large number of applications of trapdoor functions, the fact that the
function is a permutation is required to be publicly verifiable. The importance
of trapdoor permutations with an efficient permutation checking procedure was
first noted by Bellare and Yung [2,3], who called them certified trapdoor permu-
tations. Certified trapdoor permutations are in particular important in scenarios
where one party (for example, the prover) sends a description of a trapdoor per-
mutation to another party (for example, the verifier). A dishonest prover may
send a malicious description of a trapdoor function which is not a permuta-
tion. If this remains unnoticed by the verifier, it may allow the prover to cheat
in the protocol. See Section 1.2 for a list of applications of certified trapdoor
permutations.

RSA as a certified trapdoor permutation. The question whether the
RSA function is a certified trapdoor permutation was first addressed by Bellare
and Yung who wrote in [2,3]:

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 404–414, 2012.
c© International Association for Cryptologic Research 2012
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In particular, RSA is (probably) not certified [...]. This is because [...]
the (description of) the trapdoor permutation f includes a number which
is a product of two primes, and there is (probably) no polynomial time
procedure to test whether or not a number is a product of two primes.

To overcome this problem, Bellare and Yung showed that every trapdoor permu-
tation can be transformed into a certified trapdoor permutation by presenting
pre-images (under the function) of random elements specified in a common refer-
ence string (CRS), hence certifying that the function is (almost) a permutation.
While this result is certainly interesting at a theoretical level, the Bellare-Yung
transformation has two main disadvantages. First, it comes with an additional
computational overhead (consisting of a number of evaluations of the function)
and is therefore relatively inefficient. Second, in order to keep the same data
structures one would rather prefer that the initial trapdoor function (e.g., RSA)
can be certified directly, without any additional overhead such as a CRS or
pre-images. Related transformations for RSA were proposed in [14,6,7].

Subsequently, two results were obtained about the direct certifiability of RSA,
i.e., without using a CRS and expanding the public description. First, [5,20]
observed that if e > N and e is prime, then the RSA function RSAN,e is a
certified permutation. (This is, since if e is a prime, then it can never divide
ϕ(N) < N and hence gcd(e, ϕ(N)) = 1.) However, choosing e > N is usually
avoided in practice due to the costs for modular exponentiation. Second, Kiltz
et al. [19] noted that if e < N1/4, then RSAN,e is a lossy trapdoor permutation
[24] (under the phi-Hiding Assumption [5]) and hence it cannot be certified.
This is because a lossy trapdoor permutation is in some sense the opposite
of a certified trapdoor permutation: a honestly generated (N, e) with N = pq
and gcd(e, ϕ(N)) = 1 cannot be efficiently distinguished from (N, e) for which
RSAN,e is many-to-1 and hence not a permutation.

To summarize, if e < N1/4, then the RSA function is lossy and cannot be
certified (unless the phi-hiding assumption is wrong); if e > N , then it is certified
[5,20]; if N1/4 < e < N , nothing is known and therefore generic Bellare-Yung
NIZK proofs [3] have to be added to certify RSA.

1.1 Our Results

In this work we close the above gap by showing an efficient certification proce-
dure that works for any prime exponent e > N1/4. Concretely, we construct an
algorithm that, given an arbitrary modulus N (with unknown factorization) and
a prime e ≥ N1/4+ε, returns 1 iff RSAN,e defines a permutation over Z∗

N . The
running time of the algorithm is O(ε−8 log2(N)) bit operations plus additional
O(log4N) if e needs to be checked for primality.

Our Certification Algorithm. The idea of our new certification algorithm
is as follows. The RSAN,e function defines a permutation over Z∗

N iff e does not
divide ϕ(N). Hence given N, e, our goal is to identify if gcd(e, ϕ(N)) = 1 or
not. First, we use Coppersmith’s algorithm [8,21] to find prime divisors p of N
in a specific range. Concretely, our algorithm FindFactor run with parameter β
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successfully identifies if a given prime e > N1/4+ε divides p − 1 iff there exists
a divisor p of N in the range [Nβ, Nβ2+1/4+ε]. If we could assume that N = pq
is the product of two primes, both of size roughly N1/2, then we could run
FindFactor with parameter β = 1/2 to identify whether e divides ϕ(N) or not.
However, the certification algorithm has to view N as an arbitrary integer with
unknown factorization. If N = pq with p ≈ N2/3 and q ≈ N1/3, then FindFactor
run with parameter β = 1/2 does not work any more. To get around this, we run
the FindFactor algorithm multiple times (with different parameters β) to check
for various ranges of the prime factors ofN . Our main technical contribution is to
show that the number of invocations of FindFactor in our certification algorithm
is poly(ε) if e ≥ N1/4+ε.

Extensions. Our certification algorithm works only for prime e but it can be
extended to the case where the factorization of e =

∏
ezii is known. In that case

we can give an efficient certification procedure if ei ≥ N1/4+ε, for all i. If, for
one i, we have ei < N1/4, then RSAN,e is (at least) ei-to-1 (lossy) under the
phi-hiding assumption. Extending our methods to work with arbitrary integers
e of unknown factorization remains an open problem.

1.2 Certified Trapdoor Permutations and Applications

The only known candidate trapdoor permutations are the (factoring-based)
Blum-Blum-Shub permutation [4], the RSA permutation [25], and Paillier [23].
Since the Blum-Blum-Shub function is lossy assuming one cannot distinguish
N = pq from N = pqr [22,12], the RSA trapdoor function is the most efficient
certified trapdoor permutation currently known. Our results show that one can
use RSA with prime e = N1/4+ε (rather than e > N) as a certified trapdoor
permutation.

We now mention a number of cryptographic protocols that are using certi-
fied (rather than standard) trapdoor permutations as a building block. Most
importantly, NIZK protocols for any NP-statement can be built from (doubly-
enhanced) certified trapdoor permutations [11,17,15,16]. Since the RSA trap-
door permutation is doubly-enhanced [17] we obtain simplified and more efficient
NIZK protocols from the RSA assumption (with e > N1/4), that do not suffer
from the Bellare-Yung certification overhead. Apart from that, [10] used certified
trapdoor permutations to construct ZAPS and verifiable PRFs; [13] to construct
round-optimal blind signatures; [20,1] to build sequential aggregate signatures.
We stress that requiring the trapdoor permutation to be certified is not only
an artifact of the security proofs. In almost all cases the use of a lossy trapdoor
permutation leads to a concrete attack on the scheme. For example, the security
of the RSA-based aggregate signatures scheme of [20] can be broken (assuming
the Phi-Hiding Assumption) when instantiated with e < N1/4 (e.g., using the
common choices e = 3 or e = 216 + 1). The same holds for the NIZK proto-
cols for any NP statement [17]. Recently, [18] showed that a full-domain hash
impossibility result by Coron [9] only holds if the trapdoor function is certified.
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2 Definitions

2.1 Notation

We denote our security parameter as k. For all n ∈ N, we denote by 1n the n-bit
string of all ones. For any element x in a set S, we use x ∈

R
S to indicate that

we choose x uniformly at random from S. We denote the set of prime numbers
by P and the set of n-bit prime numbers by Pn. We denote by Z∗

N = {x ∈ ZN :
gcd(x,N) = 1} the multiplicative group modulo an integer N . All logarithms
are base 2 unless otherwise stated.

2.2 Families of Permutations

Definition 1. A family of permutations P = (Gen,Eval) consists of the following
two polynomial-time algorithms.

1. A probabilistic algorithm Gen, which on input 1k outputs a public description
pub which includes an efficiently sampleable domain Dompub .

2. A deterministic algorithm Eval, which on input pub and x ∈ Dompub, outputs
y ∈ Dompub. We write f(x) = Eval(pub, x).

We require that for all k ∈ N and all pub output by Gen(1k), Eval(pub, ·) defines
a permutation over Dompub.

Definition 1 extends to families of trapdoor permutations, where Gen additionally
outputs a trapdoor trap which can be used by a deterministic polynomial-time
algorithm Invert to compute f−1(y), for any y ∈ Dompub .

We want to point out that Eval(pub, ·) is only required to be a permutation
for correctly generated pub but not every bit-string pub yields a permutation.
A family of permutations Π is said to be certified [3] if the fact that it is a
permutation can be verified in polynomial time given pub.

Definition 2. CP = (Gen,Eval,Certify) is called a family of certified permuta-
tions if (Gen,Eval) is a family of permutations and Certify is a deterministic
polynomial-time algorithm that, on input of 1k and an arbitrary pub (poten-
tially not generated by Gen), returns 1 iff Eval(pub, ·) defines a permutation over
Dompub.

Definition 2 also extends to families of certified trapdoor permutations.
We remark that Definition 2 follows [20] and is slightly weaker than that of

Bellare and Yung [3], where, for all inputs, the Certify algorithm is required to
return 1 iff pub was generated by Gen(1k), with some constant error probabil-
ity (in the sense of a BPP algorithm).1 In fact, it seems that the certification

1 The difference between the two definitions can be explained for the case of RSA. Sup-
pose the original Gen algorithm outputs pub = (N = pq, e) with gcd(e, ϕ(N)) = 1.
This cannot define a certified permutation with respect to the Bellare-Yung def-
inition since if pub′ = (N ′ = pqr, e′) with gcd(e′, ϕ(N ′)) = 1) then pub ≈ pub′

under the 2-vs-3 prime assumption but pub ′ is never output by Gen. However, since
gcd(N ′, e′) = 1, RSAN′,e′ defines a permutation so there is some hope that it still
meets Definition 2.
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constructions by Bellare and Yung [3, Section 3] only meet our weaker defini-
tion which is, in particular, sufficient for their applications to NIZK for all NP
languages.

2.3 RSA Trapdoor Permutation

In Figure 1 we give a description of a family of trapdoor permutations RSAγ =
(RSAGenγ ,RSAEval,RSAInvert), parametrized by some function γ > 0 (which
controls the size of the exponent e ≈ Nγ). The domain is defined as Dompub =
Z∗
N .

algorithm RSAGenγ(1
k) algorithm RSAEval(pk, x) algorithm RSAInvert(td, y)

p, q ∈R Pk/2 return xe mod N return yd mod N
N = pq
repeat

e ∈R Pγk

until (gcd(e,ϕ(N)) = 1)
d = e−1 mod ϕ(N)
return (pk = (N, e), td = d)

Fig. 1. RSA permutation algorithms

3 RSA Certification Algorithm

In this section we will give a certification algorithm for the RSA trapdoor permu-
tation RSAγ from Section 2.3. Our algorithm can be derived from the following
main theorem.

Theorem 3. Let N be an integer of unknown factorization and e < N be a
prime integer such that γ = logN e = 1

4 + ε and gcd(e,N) = 1. We can decide if

gcd(e, ϕ(N)) = 1 or gcd(e, ϕ(N)) = e in time O(ε−8 log2N).

Proof. Let us write N =
n∏

i=1

pzii , with prime pi. Therefore,

ϕ(N) =

n∏
i=1

pzi−1
i (pi − 1).

Since e is prime, we can only have gcd(e, ϕ(N)) = 1 or gcd(e, ϕ(N)) = e. In the
last case, we must have e|ϕ(N). If e > N then we know that gcd(e, ϕ(N)) = 1
[20]. When e < N , then we need to perform some further checks.

Let us look at the case e|ϕ(N). If e|pzi−1
i then gcd(e,N) = e, which contradicts

the prerequisite that e and N are coprime. Hence we must have e|(pi − 1) for
some i. Let us denote p = pi. There exists an x0 ∈ N s.t.

ex0 + 1 = p.
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Our goal is to recover x0 and thus to find p. Notice that x0 is a small root of the
polynomial equation f(x) = ex+ 1 modulo p.

This allows us to use Coppersmith’s algorithm for finding small roots of mod-
ular polynomial equations.

Theorem 4 (Coppersmith). Let N be an integer of unknown factorization,
which has a divisor p ≥ Nβ, 0 < β ≤ 1. Let 0 < μ ≤ 1

7β. Furthermore, let f(x)
be a univariate monic polynomial of degree δ. Then we can find all solutions x0
for the equation:

f(x0) = 0 mod p with |x0| ≤
1

2
N

β2

δ −μ

This can be achieved in time O(μ−7δ5 log2N). The number of solutions x0 is
bounded by O(μ−1δ).

A proof can be found in [21].
We use Coppersmith’s algorithm to find prime divisors p of N in a specific

range as specified in the following lemma.

Lemma 5. Let N be an integer of unknown factorization with divisor p ≥ Nβ

for some β ∈ (0, 1]. Let μ ∈ (0, β7 ]. Further, let e = Nγ with e|p−1. Then there is

an algorithm FindFactor that on input N, e, β, μ outputs p in time O(μ−7 log2N)
provided that

p ≤ Nβ2+γ−μ.

If FindFactor cannot find a non-trivial factor of N , it outputs ⊥.

Proof. Since e|p− 1, we have ex0 = p− 1 for some x0 ∈ N. Thus the polynomial
f(x) = ex+ 1 has the root x0 modulo p. Multiplication of f(x) by e−1 modulo
N gives us a monic polynomial with the same root modulo p. Let us bound the
size of our desired root x0. We have

x0 =
p− 1

e
<
Nβ2+γ−μ

Nγ
= Nβ2−μ.

Thus we can recover x0 by Theorem 4 in time O(μ−7 log2N). Also by Theorem 4,
the number of candidates for x0 is bounded by O(μ−1). For every candidate we
check whether gcd(ex0 + 1, N) gives us the divisor p. This can be done in time
O(μ−1 log2N), which concludes the proof.

Lemma 5 can be used to check whether e|p− 1 for some prime divisor p in the

range [Nβ , Nβ2−μ+γ ]. Our goal is to check whether e|p − 1 for some p in the
entire range [e,N ], which we will call the target range.

Obviously p ≤ N . Thus, we can set the upper bound to β2 + γ − μ = 1. This
in turn implies a lower bound of β =

√
1− (γ − μ). Hence, we can first search

for a divisor p in the interval [N
√

1−(γ−μ), N ]. If we do not find a divisor p in

this interval, then we know that any divisor p must satisfy p ≤ N
√

1−(γ−μ). This
defines a new upper bound, and in turn a new lower bound.
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In total, we cover the target range by a sequence of intervals [Nβ1 , Nβ0 ], . . . ,
[Nβn , Nβn−1 ] where the βi are defined by the recurrence relation

βi+1 = max{
√
βi − (γ − μ), γ} with β0 = 1.

Two examples of such an interval sequence are illustrated in Figure 2.
The following lemma shows that our recurrence reaches γ and thus covers the

target range [e,N ] after a certain number of steps.

Lemma 6. Let 1
4 < γ − μ < γ < 1. Then the recurrence relation

βi+1 = max{
√
βi − (γ − μ), γ} with β0 = 1

satifies βk = γ for some k ≤
⌈

1−γ
γ−μ− 1

4

⌉
+ 1.

Proof. Since by definition γ ≤ βi ≤ 1 for all i and μ > 0, we have βi−(γ−μ) > 0
and therefore

√
βi − (γ − μ) is defined in R.

We now show by induction that the sequence of the βi is monotone decreasing.
Let us start with β1 < β0. Since β0 − (γ − μ) < 1, we have max{

√
β0 − (γ − μ),

γ} < 1 and therefore β1 < β0.
Our inductive hypothesis is βi ≤ βi−1 for all i ≤ n. Now βn ≤ βn−1 implies

βn − (γ − μ) ≤ βn−1 − (γ − μ)

and therefore by monotonicity of the square root function√
βn − (γ − μ) ≤

√
βn−1 − (γ − μ).

This yields max{
√
βn − (γ − μ), γ} ≤ max{

√
βn−1 − (γ − μ), γ}. Thus, βn+1 ≤

βn.
Since the sequence of the βi is monotone decreasing and bounded below by γ,

it converges. Now we show that we can upper bound the number k−1 of intervals
[βi, βi−1], 1 ≤ i < k for which βi > γ. This implies that our sequence stabilizes
after k steps at the point βk = γ.

Let us define a function Δ(βi−1) = βi−1−βi ≥ 0, which gives us the length of
the ith interval. For βi > γ we obtain Δ(βi−1) = βi−1 −

√
βi−1 − (γ − μ). Since

the first two derivatives of Δ(β) satisfy

Δ′(β) = 1− 1
2 (β − (γ − μ))−

1
2 and Δ′′(β) = 1

4 (β − (γ − μ))−
3
2 > 0,

an easy computation shows that Δ(β) achieves its minimum at the point β(0) =
1
4 + γ − μ. Therefore, each interval length is of size at least

Δ(β(0)) = γ − μ− 1

4
.

This in turn means that the number k − 1 of intervals with βi > γ is at most

k − 1 ≤
⌈

1− γ

γ − μ− 1
4

⌉
,

which concludes the proof.
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0 1
4

γ = β3 β2 β1 1

0 1
4

γ = β5 β4 β3 β2 β1 1

Fig. 2. Values Obtained for (γ = 0.43, μ = 0.06) and (γ = 0.365, μ = 0.05)

We continue the proof of Theorem 3. We can use the algorithm FindFactor
from Lemma 5 with the parameters (N, e, βi, μ) to test if there is any factor p

such that e|p− 1 in the sub-range [Nβi , Nβ2
i−μ+γ ]. If we run FindFactor multiple

times with the βi values computed using the relation in Lemma 6, we can test
the entire range as required.

We now discuss the choice of the parameter μ. Lemma 5 gives us the condition
μ ≤ βi/7 for all values of i. We know from the proof of Lemma 6 that γ ≤ βi
for all values of i. Hence it is sufficient to pick μ such that μ ≤ γ/7.

Furthermore, from Lemma 6 we have the condition μ < γ − 1
4 . It is easy to

verify that both conditions

μ ≤ γ/7 and μ < γ − 1
4

are satisfied by the choice μ := 1
7 (γ −

1
4 ) =

1
7ε for all γ > 1

4 .
We give the whole algorithm GCDDecide for deciding whether gcd(e, φ(N)) =

1 in Figure 3.
It remains to determine the running time tGCDDecide of GCDDecide. We know

from Lemma 6 that we need at most �(1 − γ)/(γ − μ − 1
4 )� + 1 iterations of

FindFactor, which can be bounded as

algorithm GDCDecide(N, e) algorithm RSACertify(N, e)

if (e > N) then return 1 if (!PRIME(e)) then return ⊥
γ = logN e, ε = γ − 1

4
if (gcd(e,N)! = 1) then return ⊥

if (ε ≤ 0) then return ⊥ if (GCDDecide(N, e)! = 1)
μ = 1

7
ε then return false

β0 = 1, i = 0 else return true
while(βi >= γ)

if (FindFactor(N, e, βi, μ) 	= ⊥) return e
i++

βi = max{
√

βi−1 − (γ − μ), γ}
wend
return 1

Fig. 3. GCD Decision and RSA Certification algorithms
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1− γ

γ − μ− 1
4

⌉
+ 1 ≤

⌈
1

6μ− 1
4

⌉
+ 1 = O(μ−1) = O(ε−1).

Since each iteration takes time O(μ−7 log2N), we obtain

tGCDDecide = O(μ−8 log2N) = O(ε−8 log2N).

This concludes the proof of Theorem 3.

We now describe our full certification algorithm RSACertify that certifies the
RSA trapdoor permutation RSAγ from Section 2.3, for γ = 1/4 + ε. Note that
we assume in Theorem 3 that e is prime and that gcd(e,N) = 1. If we want
to check these prerequisites, we have an additional overhead of O(log4N) for
the primality test on e and O(log2N) for the GCD computation. The complete
certification algorithm RSACertify is described in Figure 3. The total running
time of RSACertify, denoted by tRSACertify, is given by the expression

tRSACertify = O(log4N) +O(log2N) + tGCDDecide

= O(max{log4N, ε−8 log2N}).

Let CRSAγ = (RSAGenγ ,RSAEval,RSAInvert,RSACertify), as described in Fig-
ures 1 and 3, where γ controls the size of e ≈ Nγ . By Theorem 3 we can see
that, for any γ = 1/4 + 1/poly(k), CRSAγ defines a family of certified trapdoor
permutations with respect to Definition 2.
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Abstract. Many lattice cryptographic primitives require an efficient al-
gorithm to sample lattice points according to some Gaussian distribution.
All algorithms known for this task require long-integer arithmetic at some
point, which may be problematic in practice. We study how much lattice
sampling can be sped up using floating-point arithmetic. First, we show
that a direct floating-point implementation of these algorithms does not
give any asymptotic speedup: the floating-point precision needs to be
greater than the security parameter, leading to an overall complexity
Õ(n3) where n is the lattice dimension. However, we introduce a laziness
technique that can significantly speed up these algorithms. Namely, in
certain cases such as NTRUSign lattices, laziness can decrease the com-
plexity to Õ(n2) or even Õ(n). Furthermore, our analysis is practical: for
typical parameters, most of the floating-point operations only require the
double-precision IEEE standard.

1 Introduction

Lattice-based cryptography has been attracting considerable interest in the past
few years (see the survey [22]), due to unique features such as security based on
worst-case assumptions [3] or more recently fully-homomorphic encryption [11].
But it has several differences compared to classical public-key cryptography
based on factoring and discrete logarithms: in particular, the description of
many lattice schemes (such as the seminal Ajtai-Dwork cryptosystem [4] and
its LWE variants [27], or schemes using lattice sampling [12]) involves real num-
bers at some point. Although the descriptions usually mention that one can
replace these real numbers by approximations with sufficiently high precision,
which guarantees efficiency in an asymptotical sense, the practical impact is un-
clear: no article seems to specify exactly which precision one should take, and
how all the operations will be performed exactly. This was not an issue when
lattice-based cryptography was considered to be mostly of theoretical interest,
but recent works [22,26,17,28,18,20] suggest that the time has come to assess the
practicality of lattice-based constructions.

There is another reason to study carefully the use of floating-point arithmetic
in lattice-based cryptography. Many recent lattice schemes (e.g. trapdoor sig-
natures [12,6] and ID-based encryption [12,7,1,2]) require a Gaussian sampler,

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 415–432, 2012.
c© International Association for Cryptologic Research 2012

http://www.di.ens.fr/~ducas/
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that is an efficient algorithm to sample lattice points according to a Gaussian-
like distribution, given a (short secret) basis and a target vector. There are two
approaches for this task: Klein’s randomized variant [15] (as analyzed by Gentry
et al. [12]) of Babai’s nearest plane algorithm [5], and algorithms [26,20] based
on convolution for the so-called q-ary lattices.

The cost of Klein’s algorithm is the same as Babai’s algorithm, namely
Õ(n3 logB) (or O(n4 log2B) without fast integer arithmetic), where n is the
lattice dimension, and B is the maximal norm of the input basis vectors: since
B is polynomial in n for trapdoor bases used in lattice cryptography, the usual
cost is Õ(n3) (or Õ(n4) without fast integer arithmetic). The main reason be-
hind the cost of Klein’s algorithm is the use of long-integer arithmetic: it relies on
Gram-Schmidt orthogonalization, which involves rational numbers of bit-length
O(n logB). A natural way to improve the efficiency is to use floating-point arith-
metic (FPA) to replace exact Gram-Schmidt by suitable approximations. Indeed,
Klein’s algorithm is a variant of Babai’s nearest plane algorithm, which itself is
simply the size-reduction subroutine used extensively in the LLL algorithm [16];
and floating-point arithmetic is classically used to speed up LLL (see [29,25,23]).
But the use of FPA is not straightforward, and it is unclear at first sight how
much speed up can be gained, if any.

On the other hand, the convolution algorithms [26,20] based on Peikert’s
work [26] have two phases: an offline phase (depending on the secret basis only)
and an online phase (depending on the target vector). The online phase costs
Õ(n2) for q-ary lattices (which are widespread in lattice cryptography), or even
Õ(n) in the so-called ring setting (i.e. special lattices such as NTRU lattices);
but the offline phase is the generation of a noise following some discrete Gaussian
distribution, which seems to have the same cost Õ(n3) as Klein’s algorithm, and
involves floating-point arithmetic whose exact cost is not analyzed in [26,20].
Both algorithms [26,20] can use the same offline phase, which will later be re-
ferred to as Peikert’s offline Algorithm.

It should be stressed that the offline phase is not a precomputation: this
phase must be repeated before each sampling, which is reminiscent of DSA one-
time pairs (k, k−1), which can be precomputed as coupons or generated online;
but unlike a precomputation it should not be re-used. In some scenario, this
computational cost might be acceptable, but it is clearly valuable to analyze
and improve the offline phase.

Our results. We develop techniques to improve all three samplers, obtaining the
first algorithms with quasi-optimal complexity to sample the discrete Gaussian
distribution over lattices: their running time is quasi-linear in the size of the input
basis.More precisely, our optimized variant of Klein’s algorithm runs in Õ(n2) (for
certain bases) and our variant of Peikert’s offline algorithm runs in average time
Õ(n) in some ring setting (where n is the lattice dimension). In both cases, our
improvements do not introduce any loss of quality.

To do so, we study how much lattice sampling can be sped up using FPA. As
a starting point, we present FPA variants of Klein’s algorithm with statistically
close output. Surprisingly, the basic FPA variant has the same asymptotical
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complexity Õ(n3) as Klein’s algorithm, because the precision needs to be greater
than the security parameter. However, we also present an optimized algorithm
with an improved complexity Õ(n2): it is based on a so-called laziness technique
which combines high and low precision FPA. But this optimized complexity only
applies to a special class of bases which include NTRUSign bases [13], namely
the inverse basis must be small.

Next, we show that the same optimization can be used to speed up Peikert’s
offline algorithm, improving the total complexity, to bring its offline complexity
down to that of its online complexity for both sampling algorithms of [26,20].
More precisely, we apply our laziness technique to reduce the offline complexity
to Õ(n2). And for certain ring settings (precisely when the ring isR = Xb±1), we
show that the offline phase can also be sped up to average quasi-linear time. This
is achieved by using two additional tricks: a structured square-root algorithm and
an improved rejection sampler for Gaussians over Z.

As a direct application of this last result, one can strengthen the security of
NTRUSign [13] by replacing their heuristic perturbation technique with our
optimized sampler, without any loss of efficiency asymptotically. This prevents
learning attacks [24,10] on NTRUSign as the signature scheme is now provably
secure in the random-oracle model (see [12]), under the (reasonable) assumption
that finding close vectors in NTRUSign lattices is hard.

While numerical analysis has often be used [29,25,23] to speed up lattice
reduction algorithms in a rigorous way, our work might be its first application
to provable security.

Practical impact of laziness. The precision used for floating-point arithmetic has
non-negligible practical impact, because fp-operations become much more expen-
sive when the precision goes over the hardware precision. For instance, modern
processors typically provide floating-point arithmetic following the double IEEE
standard (53-bit precision), but quad-float FPA (113-bit precision simulated by
software libraries) is usually about 10-20 times slower for basic operations, and
the overhead is much more for multiprecision FPA.

Our complexity results are stated in an asymptotical manner, but our analysis
can give concrete bounds (which are provided in the full version [9]). It turns
out that in typical cryptographic settings, the double-precision (53-bit) IEEE
standard can be selected as the “low precision” of our lazy algorithm, which
means that most of our fp-operations are hardware fp-operations, even though
the security level is not limited to 53 bits.

Roadmap. We start in Sect. 2 with background and notation on lattices, sampling
and FPA. In Sect. 3, we present our basic FPA variant of Klein’s algorithm, which
we optimize using laziness in Sect. 4. In Sect. 5, we apply laziness to speedup
Peikert’s Offline Algorithm. Eventually, in Sect. 6, we explain how to reach quasi-
linear time complexity in the ring setting. Missing proofs and additional details,
such as non-asymptotic bounds can be found in the full version [9].
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2 Preliminaries

Throughout the paper, we use row representations of matrices (to match lat-
tice software), and use bold fonts to denote vectors: if B = (b1, . . . ,bn) is a
matrix, then its row vectors are the bi’s. Notation Mn and S+

n denote respec-
tively the square matrices, and the square symmetric definite positive matrices
of dimension n over R.

2.1 Notation

Lattices. Lattices are discrete subgroups of Rm. A lattice L is represented by
a basis, that is, a set of linearly independent vectors b1, . . . ,bn in Rm such
that L is equal to the set L(b1, . . . ,bn) = {

∑n
i=1 xibi, xi ∈ Z} of all integer

linear combinations of the bi’s. The integer n is the dimension of the lattice L.
The volume vol(L) is the n-dimensional volume of the parallelepiped generated
by any basis of L. In lattice-based cryptography, one mainly uses the so-called q-
ary lattices, which include NTRU lattices [14,13] and Ajtai’s worst-case/average-
case lattices [3]. A q-ary lattice is simply a full-rank integer lattice L ⊆ Zn such
that qZn ⊆ L, where q is a somewhat small integer. For such a lattice, vol(L)
divides qn.

Norms. For a vector x ∈ Rn, ‖x‖ =
√
〈x,x〉 will denote its Euclidean norm.

The norm of a matrix B is the maximal norm of its rows: ‖B‖ = maxni=1 ‖bi‖.
The spectral norm of a square n×n matrix M is: ‖M‖s = maxx∈Rn/{0}

‖x·M‖
‖x‖ .

Orthogonalization. An n×m basis B = (b1, . . . ,bn) can be written uniquely as
B = μ · D · Q where μ = (μi,j) is an n × n lower-triangular matrix with unit
diagonal, D an n-dimensional positive diagonal matrix and Q an n×m matrix
with orthonormal row vectors. Then μD is a lower triangular representation of
B (with respect to Q), B� = DQ = (b�

1, . . . ,b
�
n) is the Gram-Schmidt orthogo-

nalization of the basis, and D is the diagonal matrix formed by the ‖b�
i ‖’s. With

those notations, we have μi,j = 〈bi ,b
�
j 〉/‖b�

j‖2.
For any σ > 0, we let σi = σ/ ‖b�

i ‖ and σ̂ = maxni=1 σi. Since the b�
i ’s are

orthogonal, we have σ̂ = σ/(minni=1 ‖b�
i ‖) = σ

∥∥B�−1
∥∥
s
≤ σ

∥∥B−1
∥∥
s
‖μ‖s ≤

σ
∥∥B−1

∥∥
s
nμ̂ where μ̂ ≥ 1 upper bounds the coefficients of μ.

Gaussian Distribution. The (unnormalized) weight of Gaussian distribution of
parameter σ ∈ R and center c ∈ R at x ∈ R is defined by ρσ,c(x) = exp

(
−

π (x−c)2

σ2

)
, and more generally by ρσ,c(x) = exp

(
−π ‖x−c‖2

σ2

)
for c,x ∈ Rn. The

discrete Gaussian distribution over Z is defined by DZ,σ,c(x) = ρσ,c(x)/ρσ,c(Z),
and more generally, over a lattice L by DL,σ,c(x) = ρσ,c(x)/ρσ,c(L). Peikert [26]
generalized the discrete Gaussian distribution over a lattice L using a posi-
tive definite matrix Σ > 0 (which generalizes σ ∈ R) as follows: the density
DL,

√
Σ,c(x) is proportional to ρ1,0((x− c)B−1) where Σ = BtB, for x ∈ L.
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2.2 Gaussian Lattice Sampling

The goal of Gaussian lattice sampling is to efficiently sample lattice points
according to a distribution statistically close to DL,σ,c. All lattice samplers
known [15,12,26,20] have constraints on the parameter σ and the statistical dis-
tance, which are related to the so-called smoothing parameter. The sampling
parameter σ determines the average distance of the sampled lattice point to the
target point: the smaller σ, the better for cryptographic applications. For in-
stance, σ impacts the verification threshold of lattice-based signatures [12] and
therefore the security of the scheme; a lower quality forces to increase lattice
parameters. And for a security level of λ bits, we need a statistical distance less
than 2−λ.

Smoothing Parameter. For any n-dimensional lattice L and any real ι > 0,
the smoothing parameter ηι(L) (see [21]) is the smallest real s > 0 such that
ρ1/s(L

∗\{0}) ≤ ι, where L∗ is the dual lattice of L. For details on the importance
of this parameter, please refer to [21,12].

Klein’s sampling. Gentry et al. showed in [12] that given as input a lattice
basis B of an n-dimensional lattice L such that σ ≥ ‖B∗‖ω(

√
logn), Klein’s

algorithm [15] outputs lattice points with a distribution statistically close to
DL,σ,c(x). For applications, it is more convenient to have a concrete bound on
the statistical distance, and to separate this bound from the lattice dimension
n. We therefore use the following concrete analysis of Klein’s algorithm:

Theorem 1 (Concrete version of [12, Th. 4.1]). Let n, λ ∈ N be any positive
integers, and ι = 2−λ/(2n). For any n-dimensional lattice L generated by a
basis B ∈ Zn×n, and for any target vector c ∈ Z1×n, Alg. 2 is such that the
statistical distance Δ(DL,σ,c,SampleLattice∞(B, σ, c)) is less than 2−λ, under
the condition:

σ ≥ ‖B�‖ ηι(Z) where ηι(Z) �
√
(λ ln 2 + lnn)/π .

Tailcut. We will also use a tailcut parameter τ , chosen such that (informally)
a sample from a normal distribution of parameter σ is at distance at most τσ
from the center with overwhelming probability:

Corollary 1 (Tailcut error, Corollary of [21, Lemma 2.10] ). Let L be
an n-dimensional lattice, ι ≤ 1/2, σ ≥ ηι(L), τ > 1 δτ ∈ (0, 1) and c ∈ Rn.
For x ← DL,σ,c we have: Pr

[
‖x− c‖ ≥ (1 − δτ )τσ

]
≤ 3Etailcut(τ, δτ )

n where

Etailcut(τ, δτ )
def
= τ

√
2πe · e−π(1−δτ )

2τ2

.

2.3 Floating-Point Arithmetic

We consider floating-point arithmetic (FPA) with m bits of mantissa, which we
denote by FPm: the precision is ε = 2−m+1. A floating-point number f̄ ∈ FPm is a
triplet f̄ = (s, e, v) where s ∈ {0, 1}, e ∈ Z and v ∈ N2m−1, which represents the
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real number R(f̄) = (−1)s · 2e−m · v ∈ R. Every FPA-operation ◦̄ ∈ {+̄, −̄, ×̄, /̄}
and its respective arithmetic operation on R, ◦ ∈ {+,−, · , / } verify:

∀f̄1, f̄2 ∈ FPm,
∣∣R(f̄1◦̄f̄2)− (R(f̄1) ◦R(f̄2))

∣∣ ≤ (R(f̄1) ◦R(f̄2))ε (1)

We require a floating-point implementation of the exponentiation function ¯exp(·)
and we assume that it verifies a similar error bound: for any f̄ ∈ FPm,∣∣R( ¯exp

(
f̄
)
)− exp(R(f̄))

∣∣ ≤ ε. Finally, we note that if an integer x ∈ Z veri-
fies |x| ≤ 2m, it can be converted to a float f̄ ∈ FPm with no error, i.e. R(f̄) = x.
For the rest of the article, we omit the function R and consider FPm as a subset
of R.

2.4 Pseudo-code

Types. Variables are typed, and the type is given at each initialization and
assignment, as follows: variable← value : type. We use a simpler syntax for the
definition of local functions: {variable �→ value}. Functional types are denoted
by (t1 → t2).

Primitives. We use the basic arithmetic operations {+,−, ·, /}, as well as squar-
ing �2 and exponentiation exp; the arguments are either integers in Z, or
floating-point numbers in FPm. We extend these notations to vectors and matri-
ces. We also use the following additional primitives:

RandInt(a, b) : Z×Z→ Z : return a random uniform integer in the range [a, b].
RandFloatm() : void→ FPm : return a random uniform float in the range [0, 1).
ExtRandFloatm′,m(r) : FPm′ → FPm: return a random uniform floating-point

number in the range [r, r+2−m′
). For a random r ← RandFloatm′(), the output

follows the same distribution as RandFloatm().

3 A Basic Floating-Point Variant of Klein’s Algorithm

3.1 Description

Algorithm 2 describes both Klein’s algorithm [15] and our basic floating-point
variant: given a basis B of a lattice L, a target c and a parameter σ, the al-
gorithm outputs a vector with distribution statistically close to DL,σ,c. It uses
two subroutines: DecomposeGSm (Alg. 3) to compute the coordinates ti’s of
the target vector c with respect to the Gram-Schmidt basis B�, and SampleZm

(Alg. 1) to sample according to the Gaussian distribution over Z. Algorithm 2
comes in two flavors:

– SampleLattice∞ is the exact version, which corresponds to Klein’s original
algorithm [15]. The μi,j ’s and the ti’s are represented exactly by rational
numbers, and all the computations use exact integer arithmetic. Assuming
σ ∈ Q, we can only ensure that σi ∈

√
Q, thus we can represent them exactly

by their square. We also assume that this version has access to a perfect
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primitive (or an oracle) SampleZ∞(σi, ti, τ = ∞) that given ti, σ
2
i ∈ Q

answers an integer x : Z exactly according to the distribution DZ,σi,ti . It
does not matter how to sample such a perfect distribution, as the purpose
of this perfect algorithm is to be a reference for inexact ones.

– SampleLatticem is our basic floating-point version, using FPm. The matri-
ces μ and B� and values σi may have been pre-computed exactly, but only
approximations are stored.

Algorithm 1. SampleZm: Rejection Sampling for Discrete Gaussian on Z

input: A center t : FPm, and a parameter σ : FPm, and a tailcut parameter τ : FPm
output: output x : Z, with distribution statistically close to DZ,t,σ

1: h← −π/σ2 : FPm ; xmax ← �t+ τσ� : Z ; xmin ← �t− τσ� : Z
2: x← RandInt(xmin, xmax) : Z; p← exp(h · (x− t)2) : FPm
3: r ← RandFloatm() : FPm; if r < p then return x
4: Goto Step 2.

Algorithm 2. SampleLatticem: Gaussian Sampling over a lattice

input: a (short) lattice basis B = (b1, . . . ,bn) : Zn×n, parameter σ : FPm, A target
vector c : Z1×n, and a tailcut parameter τ : FPm Precomputation: The GS
decomposition (B� = (b�

1, . . . ,b
�
n), (μi,j) = (μ1, . . . ,μn)), norms ri = ‖b�

i ‖ : FPm
and σi = σ/ri : FPm

output: a vector v : Z1×n drawn approximately from DL,c,σ where L = L(B)
1: v, z← 0 : Zn ; t← DecomposeGSm(c, B�) : FPm
2: for i = n downto 1 do
3: zi ← SampleZm(σi, ti, τ ) : Z
4: v ← v + zi · bi : Zn; t← t− zi · μi : FP

n
m

5: end for
6: return v

Algorithm 3. DecomposeGSm: Decompose a vector c over the GS Basis

input: A vector c : Z1×n, an orthogonal basis B� = (b�
1, . . . ,b

�
n) : Qn×n, and r2i =

‖b�
i ‖2 ∈ FPm

output: output t : Qn such that c = t1b
�
1 + · · ·+ tnb

�
n

1: y ← c · B�t : Z1×n

2: return (y1/r
2
1, . . . , yn/r

2
n)

The description of SampleLattice∞ differs from the original description
[15,12] only in the way we compute and update the coordinates ti’s. In our
version, the final value of ti before it is used is ti = 〈c,b�

i 〉 /r2i −
∑n

j>i zjμj,i,
which matches with the original value :

t′i =

〈
c−

n∑
j>i

zjbj , b
�
i

〉/
r2i =

⎛⎝〈c,b�
i 〉 −

n∑
j>i

zj 〈bj ,b
�
i 〉

⎞⎠ /r2i = ti
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We unroll this computation and update the sum after each value zi is known.
This allows a parallelization up to n processors without the usual logn factor
required for summing up all terms.

Since we use the matrix μ in the main loop, we might want to get rid of B�

for the DecomposeGS algorithm, to save some precomputation and storage,
by computing c′ ← c · Bt and then solving the triangular system y μt = c′. Solv-
ing this system also requires n2 operations, however when using FPA, it would
produce a relative error exponential in the dimension n, because we recursively
use previous results.

Our main loop may also be seen as solving a triangular system, where we
apply Gaussian rounding at each step. It is worth noting that this additional
rounding prevents such relative exponential error, as our proof will show.

Efficiency of SampleLattice∞. The algorithm SampleLattice∞ performs
O(n2) arithmetic operations on rational numbers of size O(n logB), which leads
to a complexity of Õ(n4) for cryptographic use. Here, we ignored the calls to the
oracle SampleZ∞(·, ·, τ =∞).

Termination of SampleZ∞(·, ·, τ <∞). We upper bound the number of trials of
Rejection Sampling, ignoring issues related to the transcendental function exp:

Fact 2. If σ ≥ 4 and τ ≥ 1, and uniforms x← Z ∩ [xmin, xmax] and r ← [0, 1),
we have Pr

[
r < ρσ,t(x)

]
> 1/(6τ) where xmin = �t− τσ� and xmax = �t+ τσ�.

Thus SampleZ∞(·, ·, τ) performs less than 6τ trials on average.

3.2 Correctness

We give the list of assumptions needed for our correctness results (Theorems 3
and 5), and which we refer to as conditions A.

Assumption on Gram-Schmidt Precomputation. We assume that the
Gram-Schmidt values are (possibly approximately) precomputed, and that
the computed values μ̄i,j , b̄

�
i,j and σ̄i verify:

|Δμi,j | = |μi,j − μ̄i,j | ≤ μ̂ε,
∣∣Δb�i,j∣∣ = ∣∣b�i,j − b̄�i,j

∣∣ ≤ ‖b�
i ‖ ε,

|Δσi| = |σi − σ̄i| ≤ σiε,

where μ̂ denotes the maximal absolute value of the sub-diagonal coefficient of
μ. Those condition can be achieved by running the precomputation exactly,
then convert the result to floating points of mantissa size m.

Assumption on the Target Vector. We assume that the components ci of
the input target vector c satisfy: |ci| ≤ q for a parameter q. This holds in all
known cryptographic applications of lattice sampling, for which the lattice
is q-ary. But we do not require that the lattice is q-ary.
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Assumption on the Parameters

A

⎧⎨⎩ ε ≤ 0.01, Kn = (1 + ε)n ≤ 1.1, 1 + nKnε ≤ 1.01
nι ≤ 0.01, ∀i, σi ≥ ηι(Z), ∀i, σi ≥ 4
n ≥ 10 τ ≥ 4

The assumptions on ε are easily achievable for a mantissa size m at least
logarithmic in the dimension n. The condition on ι is not restrictive as it
needs to be negligible. Similarly, conditions on σi’s are not restrictive since
the security requires all σi ≥ ηι(Z) > 4 for security parameters λ ≥ 80.

For the rest of the analysis, we assume that all parameters B, c and σ are fixed.
Our main result states that with enough precision, the outputs of the exact
sampler SampleLattice∞ and the floating-point sampler SampleLatticem are
statistically close:

Theorem 3. There exist constants Cλ, Cτ , Cm, such that for any security pa-
rameter λ ≥ Cλ, and under conditions A, the statistical distance between
SampleLatticem and SampleLattice∞ is less than 2−λ on the same input
if the following conditions are satisfied:

τ ≥ Cτ

√
λ logn m ≥ Cm + λ+ 2 log2(

∥∥B−1
∥∥
s
) + log2

(
μ̂2n4(q + σ2)τ3

)
Furthermore, under those conditions, the integers manipulated by
SampleLatticem can be represented by floating-point numbers without errors.

3.3 Efficiency

We deduce the efficiency of the basic floating-point sampler from Theorem 3.
We first analyze SampleZm:

Fact 4. There is a constant Cm such that for any m ≥ Cm, and any τ ≥ 1,
SampleZm(·, ·, τ) performs less than 6τ trials on the average.

This can be easily derived from Fact 2 and appropriate error bound (see full
version). This ensures that SampleLatticem performs ∼ 6n2 FPm-operations
as long as τ = o(n).

Arbitrary bases. To minimize the FPA-precision m in Theorem 3, we need to
evaluate log(

∥∥B−1
∥∥
s
): this is always less than ≈ n log(B) by Cramer’s rule. This

leads to the constraint m ≥ λ + n� where � is logarithmic in n and B, yielding
a Õ(n3) bit-complexity as long as λ = O(n), or Õ(n4) without fast integer
arithmetic.

The exact algorithm SampleLattice∞ also has complexity Õ(n3). However,
the constants are likely to be smaller for the FPA sampler. Indeed, the exact al-
gorithm must handle integers of size log(max1≤i≤n vol(b1, . . . ,bi)), whereas the
quantity log(

∥∥B−1
∥∥
s
) is typically smaller, though they have similar worst-case

asymptotical bounds. And the constants of the FPA sampler can be improved
by processing the basis, for instance using LLL reduction.

Furthermore, in cryptographic applications, we may focus on bases B of a
particular shape. More precisely, we will consider the following type of basis:
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Small-inverse bases. A sequence C = (Cn) of square matrices generating qn-ary
lattices of dimension n is a class of small-inverse bases if there exists a polynomial
function f such that for any basis B ∈ Cn, ‖B‖s ≤ f(n) and

∥∥B−1
∥∥
s
≤ f(n).

In particular, the bases used by the NTRUSign signature scheme [13] form
a small-inverse class (see [13]). For such bases, we only need m ≥ λ + � for �
logarithmic in λ. This still gives a Õ(n3) complexity for cryptographic use (when
λ ∼ n), but with much better constants.

4 A Lazy Floating-Point Variant of Klein’s Algorithm

Overview. We now describe our optimized sampler, which is more efficient than
the basic sampler, due to a better use of FPA. The analysis of the basic sampler
showed that it was sufficient to compute ti up to ≈ λ bits below the unity to get
an error below 2−λ on the output distribution. However, a careful analysis of
the rejection sampling algorithm (Alg. 1) shows that most of the time, many of
those bits are not used: the precision of ti impacts the precision of p = ρσ,t(x),
which is only used to make a comparison with a uniform random real r ∈ [0, 1).
For all j > 1, such a comparison is determined by the first j bits, except with
probability 2−j (exactly when the j first bits of r and p match); and on average
only the first two bits contribute to the decision.

However, we still need to decide properly this comparison even when the first
j ≤ λ bits match, to output a proper distribution. This suggests a new strategy:
compute lazily the bits of ti and p. We first only compute most significant bits
and backtrack for additional bits until the comparison can be determined. We
choose a simple lazyness control, using only two levels of precision (for simplicity,
but also for practical efficiency). Informally, we choose k ≤ λ, and compute ti up
to a precision m′ that only guarantees the first k bits of p, draw the first k bits
of the random real r. If the comparison is decided with those k bits, continue
normally. Otherwise (which happens with probability less than 2−k), recompute
ti and p at a precision m to ensure λ correct bits.

4.1 Description

Our optimized sampler LazySampleLatticem′,m (Alg 4) works with two
floating-point types, FPm (high precision) and FPm′ (low precision), where
m > m′. The algorithm works similarly to the original one, except it now works
most of the time at low precision m′. The subroutine for sampling over Z is re-
placed by LazySampleZm′,m, which takes the usual arguments at low precision,
plus an error bound, and access to high-precision arguments: σ is precomputed
thus requiring no special care, however, the access to high precision value of t is
given through a function that takes no argument.

This new subroutine LazySampleZm′,m (Alg. 5) works identically to the
original SampleZm′ as long as the decisive comparison is trusted, i.e. as long as
the difference |r′ − p′| is higher than the error bound δp. Otherwise, the high pre-
cision is triggered, and high-precision inputs are requested through the function
F . Then all sample trials are computed with high precision.
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Algorithm 4. LazySampleLatticem′,m: Lazy Gaussian Sampling over a lattice

input: Same as SampleLattice plus low precision versions of μ,B� and σi’s values:
μ′, B�′ : FPn×n

m′ , σ′
i : FPm′ , and an error bound δp

output: Same as SampleLattice
1: v, z← 0 : Zn; t′ ← DecomposeGSm′(c, B�′) : FPn

m′

2: for i = n downto 1 do
3: Fi ← {() �→ 〈c,b�

i 〉 −
〈
z,
[
μt
]
i

〉
}: (void → FPm)

4: zi ← LazySampleZm′,m(σ′
i, τ, t

′
i, δp, σi, Fi) : Z

5: v ← v + zi · bi : Zn; t′ ← t′ − zi · μ′
i : FP

n
m′

6: end for
7: return v

Algorithm 5. LazySampleZm′,m(σ′, τ, t′, δp : FPm′ , σ : FPm, F : (void→ FPm))

1: h′ ← −π/σ2 : FPm′ ; xmax ← �t′ + τσ′� : Z ; xmin ← �t′ − τσ′� : Z ; highprec ←
false : bool

2: x← RandInt(xmin, xmax) : Z; r′ ← RandFloatm′() : FPm′

3: if not(highprec) then
4: p′ ← exp(h′ · (x− t′)2) : FPm′

5: if |r′ − p′| ≤ δp then {t← F () : FPm; h← −π/σ2 : FPm ; highprec ← true }
6: else if r′ < p′ then return x
7: end if
8: if highprec then
9: r ← ExtRandFloatm′,m(r′) : FPm; p← exp(h · (x− t)2) : FPm
10: if r < p then return x
11: end if
12: Goto Step 2.

4.2 Correctness

We need to determine a proper value for the error bound δp in terms of the
basis and m′ (the size of the low precision), to ensure correctness. For this
parameter, the lower the better, since it determines the probability to trigger
the re-computation of t at high precision, as detailed in the next section. The
behavior of the new subroutine is analyzed by the following:

Lemma 1 (Informal, see [9] for a formal statement). The behaviour of
LazySampleZm,m′ given approximate inputs σ±δσ and t±δt and δp, is similar
to SampleZm on input σ, t under the condition:

δp ≥ 4σ2ε′ + 1.7σδσ + (1.7/σ)δt where ε′ = 21−m′

From this lemma, we prove the correctness of LazySampleLatticem′,m, sum-
marized by the following result.

Theorem 5. There exist constants Cλ, Cτ , Cm, C
′
m, Cδp , such that for any secu-

rity parameter λ ≥ Cλ, and under Conditions A, the statistical distance between
LazySampleLatticem,m′ and SampleLattice∞ is less than 2−λ on the same
input if the following conditions are satisfied:
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τ ≥ Cτ

√
λ logn

m ≥ Cm + λ+ 2 log2(
∥∥B−1

∥∥
s
) + log2

(
μ̂2n4qσ2τ3

)
m′ ≥ Cm′ + 2 log2(

∥∥B−1
∥∥
s
) + log2

(
μ̂2n4(Q+ σ2)τ3

)
δp ≥ 2−k where k = m′ −

(
Cδp + 2 log2(

∥∥B−1
∥∥
s
) + log2

(
μ̂2n3τσ2q

))
Furthermore, under those conditions, the integers manipulated by the algorithm
can be represented by low-precision floating-point numbers (FPm′) without errors.

4.3 Efficiency

The error bound δp impacts the efficiency of the optimized sampler as follows:

Lemma 2. Under the conditions of Theorem 5, each call to LazySampleZm,m′

triggers high precision with probability less than 12τδp. On the average, the al-
gorithm LazySampleLatticem,m′ performs less than O(n2τδp) high-precision
floating-point operations.

Proof. At each trial performed by LazySampleZm,m′ , the probability to trigger
high precision is less than 2δp: indeed it happens only if the randomness r′ ←
[0, 1) falls in the interval [p′−δp, p′+δp]. It remains to bound the average number
of trials performed by LazySampleZm,m′ . The condition of Theorem 5 ensures
that it behaves similarly to SampleZm. Thus, for a large enough m, Fact 4
ensures that the average number of trials is less than 6τ .

Triggering high precision during LazySampleZm,m′ requires O(n) high-
precision FPA operations. This subroutine is called n times, thus on the av-
erage less than O(n2τδp) high-precision FPA operations. � 
This leads to our main result: with Small-Inverse bases, the discrete Gaussian
distribution can be sampled in quasi-quadratic time, with an exponentially small
statistical distance, and no sacrifice on the quality compared to the analysis
of [12].

Theorem 6 (Gaussian sampling in quasi-quadratic time). Let (Cn) be a
Small-Inverse class of bases. For any implicit function λ, such that λ ∼ n, and
σ polynomial in n, there exist implicit functions m,m′, τ, δp of n such that, for
any basis B ∈ Cn generating a lattice L:

– LazySampleLatticem,m′(B, σ, c, τ, δp) runs in expected time Õ(n2) without
fast integer arithmetic.

– Δ(DL,σ,c,LazySampleLatticem,m′(B, σ, c, τ, δp)) ≤ 2−λ whenever σ veri-

fies σ ≥ ‖B�‖ ηι(Z) with ι = 2−λ/(4n).

Proof. For a small-inverse class of bases, the conditions of Theorem 5 can be
satisfied with functions verifying:

τ = O(
√
n),m = O(n),m′ = O(logn), δp = O(1/n5/2).

Lemma 2 states that on the average, less than O(n2τδp) high-precision opera-
tions are performed, which in our case is a O(1). Without fast integer arithmetic,
the total complexity is thus less than O(n2)O(m′2) +O(1)O(m2) ≤ Õ(n2). � 
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5 Speeding Up Peikert’s Offline Algorithm

Peikert [26] recently proposed a different sampling algorithm based on convo-
lution, which was inspired by NTRUSign’s perturbation countermeasure [13].
This algorithm offers a different trade-off than Klein’s algorithm, with slightly
worse constraints on sampling parameters (see [26] for details). The discrete
Gaussian distribution is obtained by adding two points, one generated by an
offline phase, the other generated by a (cheaper) online phase. The online phase
is essentially a randomized variant of Babai’s round-off algorithm [5], which
only involves small-integer arithmetic when the input is a q-ary lattice, and
thus runs in Õ(n2) time, and even Õ(n) in ring settings. This offline phase is
itself essentially the generation of some discrete Gaussian distribution, which
requires long-integer arithmetic, and is not fully analyzed in [26], but seems to
be Õ(n3) (even Õ(n4) without fast integer arithmetic) like Klein’s algorithm. In
the follow-up work of Micciancio and Peikert [20], a new kind of lattice trapdoor
is introduced to optimize efficiency and geometric quality, which allows an even
faster online phase, but the same kind of offline computations is required. We
refer to this common offline phase as Peikert’s offline algorithm.

5.1 Peikert’s Offline Algorithm

LetB be the input basis of the lattice for which one wants to generate the discrete
Gaussian distribution. In both [26,20], the offline phase consists of generating a
(centered) discrete Gaussian noise over Zn of parameterΣ ∈ S+

n such that BtB+
Σ = sIn where s is some appropriate real number: this implies certain constraints
on B which are discussed in [26]. Letting Σ = CtC, this distribution D

Zn,
√
Σ

has support Zn and density at x proportional to ρ1,0(xC
−1): in other words,

this is “essentially’ the discrete Gaussian distribution D over the lattice spanned
by C−1, since the density of x ∈ Zn is proportional to the density of the lattice
point xC−1 in D. The offline-phase algorithm is described in Alg. 6 (from [26]):
it generates this discrete Gaussian distribution by convolution (see [26]), which
is a different strategy than Klein’s algorithm, and has different constraints. The
main idea is to consider a “shift” Σ′ = Σ− η2In of Σ such that Σ′ ∈ S+

n (which
implies that Σ ≥ η2In) and η ≥ ηι(Zn), and to compute a square-root L of
Σ′, i.e. Σ′ = LtL. To implement this, it is suggested in [26] to use a Cholesky
decomposition. The parameters selected to reach security λ are η = τ = ηι(Z)

Algorithm 6. Peikert’s Offline Algorithm

input: Σ ∈ S+
n , a real η ≥ ηι(Zn) such that Σ′ = Σ − η2In ∈ S+

n and ι is negligible,
and a square-root L of Σ′ i.e. Σ′ = LtL.

output: An integer vector z ∈ Zn following the distribution D
Zn,

√
Σ

1: Choose x : Rn according to the continuous Gaussian distribution of covariance In
2: y = x · L
3: for i = 1 to n do zi ← SampleZm(η, yi, τ )
4: return z
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= Õ(
√
λ). The choice of the floating-point precision is not discussed in [26,20],

however a quick analysis shows that one should take m = λ + � where � is
logarithmic in n, s and τ . Thus, a naive implementation would have a running-
time of Õ(n2λ2), the main cost being a (non-structured) matrix-vector product:
that is n2 floating-point operations, at precision Õ(λ).

5.2 Using Laziness in Peikert’s Offline Algorithm

Like in Klein’s sampling algorithm, the offline phase of Peikert’s algorithm [26]
only uses non-integer values to compute the input of the SampleZm(η, ·, τ)
subroutine. High-precision bits of this input are useless except with small prob-
ability: one may apply the laziness technique to improve efficiency to Õ(n2), by
replacing the subroutine by LazySampleZm′,m. We sketch a proof.

The floating-point computation yj =
∑n

i=1 xiLj,i with m bits of precision

produces an error less than Õ(n2 ‖x‖∞ ‖L‖∞ ε) where ε = 21−m. For τ = Õ(
√
n)

we have that ‖x‖∞ ≤ τ with overwhelming probability, and ‖L‖∞ ≤ ‖L‖S ≤ s
since LtL = C′ ≤ σ2Id. The error propagation is thus polynomial in n, and
Lemma 1 ensures correction with the following parameters:

τ = O(
√
n),m = O(n),m′ = O(logn), δp = O(1/n5/2).

Similarly to Lemma 2, one easily proves that, on average, less than O(n2τδp)
high-precision operations are performed, which in our case is O(1). Without
fast integer arithmetic, the total complexity is thus less than O(n2)O(m′2) +
O(1)O(m2) ≤ Õ(n2).

6 Quasi-Linear Complexity in Ring Settings
R = Zq[X]/(Xb ± 1)

For efficiency purposes, lattice cryptography often uses a special class of “alge-
braic” lattices arising from polynomial rings i.e. R = Z[X ]/(P (X)) for some
polynomial P of degree b. More precisely, the lattices are generated by an R-
basis, and can also be viewed as an integer lattice of dimension �b for some
� ≥ 1.

In this section, we show that for the ring settings R = Zq[X ]/(Xb ± 1), it is
possible to achieve quasi-linear complexity using two improvement on top of our
lazy variant of Peikert’s offline phase [26,20]. The first improvement is to use
special square-root algorithms (e.g. Babylonian Method or the Denman-Beavers
iteration [8]) to preserve matrix structures, unlike Cholesky decomposition. In
our case, we use block-circulant or block-skew-circulant structures, which are
stable under transposition and multiplication, which implies that Σ′ = Σ −
η2In = (s − η2)In − BtB has the same structure. The second improvement
targets SampleZ.
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6.1 Structured Square-Root for R = Zq[X]/(Xb ± 1)

Consider the special ring setting R = Zq[X ]/(Xb ± 1), which includes
Zq[X ]/(Xb−1) for the class of NTRU lattices [13], and some cyclotomic lattices
Zq[X ]/(Φm) the m-th cyclotomic ring, when m is a power of two, made popular
by the hardness results of [19].

When P (X) = Xb − 1 (resp. P (X) = Xb + 1) the integer representation B ∈
Mbk×bl(Z) of any R-basis is a b-block circulant, (resp. b-block skew-circulant)
matrix, i.e. a matrix composed with (b× b)-blocks of the form :⎡⎢⎢⎣

a1 a2 · · · ab

ab a1 · · · ab−1

...
. . .

. . .
...

a2 · · · ab a1

⎤⎥⎥⎦ , resp.

⎡⎢⎢⎣
a1 a2 · · · ab

−ab a1 · · · ab−1

...
. . .

. . .
...

−a2 · · · −ab a1

⎤⎥⎥⎦ .
We denote these families by Cb (resp. C
b ). These families are stable under ring
operations (addition, product and inverse, when defined) because of the ring iso-
morphism with matrices over R. Such isomorphisms also exist for other polyno-
mials P , defining other b-block structures. However, circulant and skew-circulant
structures have a key property for our improvement:

Fact 7. Matrix families Cb and C
b are stable under transposition.

From this, we deduce that Σ′ = Σ−η2In = (s−η2)In−BtB ∈ Cb (or C
b ) when
working in this ring setting. At this point, one would want to find a square root
of Σ that is still structured. Interestingly, the solution can be found in algorithms
that were designed to extract another notion of square root; namely, the Baby-
lonian Method, or the Denman-Beavers iteration [8]. Indeed, those algorithms
are searching for an Y such that Y · Y = X , without symmetry requirement
on X , and no guarentee of convergence in general. Lemma 3 proves that given
as input X ∈ S+

n , such methods (quickly) converge to some Y ∈ S+
n such that

Y t · Y = X .

Definition. The Babylonian Method approximates the limit of the sequence:

Y0(X) = In; Yk+1(X) = (Yk(X) +X · Yk(X)−1)/2 (2)

and if this sequence converges to an invertible limit Y (X), it must verify Y (X) =
1
2 (Y (X)+X ·Y (X)−1), which is equivalent to Y (X) ·Y (X) = X . The Denman-
Beavers iteration is similar, using the sequences:{

Y0(X) = X
Z0(X) = Id

{
Yk+1(X) =

(
Yk(X) + Zk(X)−1

)
/2

Zk+1(X) =
(
Zk(X) + Yk(X)−1

)
/2

(3)

it verifies the invariant Yk ·Z−1
k = Z−1

k ·Yk = X , and if it converges, the limit Y
of Yk verifies Y · Y = X .
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Lemma 3. Let X ∈ S+
n be a symmetric positive definite matrix, then the Baby-

lonian Method, as defined by the sequence Yk(X) in (2) converges quadratically3

to some Y (X) ∈ S+
n . Furthermore, if X ∈ Cb (resp. C
b ) then Y (X) ∈ Cb

(resp. C
b ), which implies that Y (X)tY (X) = X. Similar results also hold for
the Denman-Beavers iteration (3).

Proof (sketch). By induction, write Yi(X) as QDiQ
t for a fixed orthogonal ma-

trix Q and diagonal matrices Di. Each diagonal entry of (Di) follows the Babylo-
nian Square-Root sequence over R, which allows to prove convergence. Structure
preservation follows from ring and topological closure of Cb and C
b .

6.2 Improved Efficiency

Assuming the square root L of Σ was precomputed using one of the structure-
preserving algorithms described below, each computation of y = x·L at precision
m′ can now be done in time Õ(nm′2), but some coordinate may need to be
recomputed at precision m. Using a similar analysis as in Sect. 5.2 with:

τ = O(
√
n),m = O(n),m′ = O(logn), δp = O(1/n7/2).

we show that the “average” time4 spent on the computation of y = x · L is
indeed Õ(n).

By combining Laziness and Structured-Square-Root, we move the complexity
bottleneck to the LazySampleZ subroutine, which is called n times and requires
Õ(τ) = Õ(

√
λ) trials in average. For λ ∼ n, this leads to an overall average

complexity of Õ(n1.5).
To reach quasi-linear complexity we need a third trick, detailed in the full

version [9]. There, we improve the rejection sampling algorithm SampleZ so
that it only needs a constant number of trials on average. This is done by sam-
pling from a distribution before rejection which is much closer to the target
distribution than the uniform distribution used in SampleZ.

By combining the three techniques, we eventually obtain an implementation
of Peikert’s offline phase which runs in average4 quasi-linear time. These results
also apply to the recent variant of Micciancio and Peikert [20].

3 The number of correct bits grows quadratically with the number k of iterations:

|sk − s∞| ≤ c 2−c′k2

for some c, c′ > 0.
4 We explain what we mean by average. As high-precision is triggered independently
with small probability over n trials, the running times of the optimized Klein’s Sam-
pler and optimized Peikert’s Offline Phase are bounded by some function Õ(n2), ex-
cept with negligible probability. However, when applying laziness in the ring setting,
triggering high-precision once in the whole algorithm raises this instance’s running
time to Õ(nλ2): only the average cost is below that bound. And dealing with average
running times is less problematic in an offline phase, than in an online phase which
is more subject to timing attacks.
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23. Morel, I., Stehlé, D., Villard, G.: H-LLL: using Householder inside LLL. In: Proc.
ISSAC 2009, pp. 271–278. ACM (2009)

24. Nguyen, P.Q., Regev, O.: Learning a parallelepiped: Cryptanalysis of GGH and
NTRU signatures. J. Cryptology 22(2), 139–160 (2009)
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Abstract. NTRUSign is the most practical lattice signature scheme.
Its basic version was broken by Nguyen and Regev in 2006: one can
efficiently recover the secret key from about 400 signatures. However,
countermeasures have been proposed to repair the scheme, such as the
perturbation used in NTRUSign standardization proposals, and the de-
formation proposed by Hu et al. at IEEE Trans. Inform. Theory in 2008.
These two countermeasures were claimed to prevent the NR attack. Sur-
prisingly, we show that these two claims are incorrect by revisiting the
NR gradient-descent attack: the attack is more powerful than previ-
ously expected, and actually breaks both countermeasures in practice,
e.g. 8,000 signatures suffice to break NTRUSign-251 with one pertur-
bation as submitted to IEEE P1363 in 2003. More precisely, we explain
why the Nguyen-Regev algorithm for learning a parallelepiped is heuristi-
cally able to learn more complex objects, such as zonotopes and deformed
parallelepipeds.

1 Introduction

There is growing interest in cryptography based on hard lattice problems (see
the survey [22]). The field started with the seminal work of Ajtai [2] back in
1996, and recently got a second wind with Gentry’s breakthrough work [7] on
fully-homomorphic encryption. It offers asymptotical efficiency, potential resis-
tance to quantum computers and new functionalities. There has been significant
progress in provably-secure lattice cryptography in the past few years, but from
a practical point of view, very few lattice schemes can compete with standard-
ized schemes for now. This is especially true in the case of signature schemes, for
which there is arguably only one realistic lattice alternative: NTRUSign [11],
which is an optimized instantiation of the Goldreich-Goldwasser-Halevi (GGH)
signature scheme [9] using the compact lattices introduced in NTRU encryp-
tion [14] and whose performances are comparable with ECDSA. By comparison,
signatures have size beyond 10,000 bits (at 80-bit security level) for the most effi-
cient provably-secure lattice signature scheme known, namely the recent scheme
of Lyubashevsky [19].

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 433–450, 2012.
c© International Association for Cryptologic Research 2012
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However, NTRUSign has no provable-security guarantee. In fact, the GGH
signature scheme and its simplest NTRUSign instantiation were broken at EU-
ROCRYPT ’06 by Nguyen and Regev [23], who presented a polynomial-time
key-recovery attack using a polynomial number of signatures: in the case of
NTRUSign, 400 signatures suffice in practice to disclose the secret key within
a few hours. In the GGH design, a signature is a lattice point which is rel-
atively close to the (hashed) message. Clearly, many lattice points could be
valid signatures, but GGH selects one which is closely related to the secret key:
each message–signature pair actually discloses a sample almost uniformly dis-
tributed in a secret high-dimensional parallelepiped. The NR attack works by
learning such a parallelepiped: given a polynomial number of samples of the form∑n

i=1 xibi where the xi’s are picked uniformly at random from [−1, 1] and the
secret vectors b1, . . . ,bn ∈ Rn are linearly independent, the attack recovers the
parallelepiped basis (b1, . . . ,bn), by finding minima of a certain multivariate
function, thanks to a well-chosen gradient descent. The NR attack motivated
the search of countermeasures to repair NTRUSign:

– The very first countermeasure already appeared in half of the parameter
choices of NTRU’s IEEE P1363.1 standardization proposal [17], the other
half being broken by NR. It consists of applying the signature generation
process twice, using two different NTRU lattices, the first one being kept
secret: here, the secret parallelepiped becomes the Minkowski sum of two
secret parallelepipeds, which is a special case of zonotopes. This slows down
signature generation, and forces to increase parameters because the signature
obtained is less close to the message. However, no provable security guarantee
was known or even expected. In fact, heuristic attacks have been claimed
by both the designers of NTRUSign [10] and more recently by Malkin et
al. [20], but both are impractical: the most optimistic estimates [10,20] state
that they both require at least 260 signatures, and none have been fully
implemented. Yet, as a safety precaution, the designers of NTRUSign [10]
only claim the security of NTRUSign with perturbation up to 1 million
signatures in [11]. Still, breaking this countermeasure was left as an open
problem in [23].

– In 2008, Hu, Wang and He [16] proposed a simpler and faster countermeasure
in IEEE Trans. Inform. Theory, which we call IEEE-IT, where the secret
parallelepiped is deformed. Again, the actual security was unknown.

– Gentry, Peikert and Vaikuntanathan [8] proposed the first provably secure
countermeasure for GGH signatures, by using a randomized variant [18] of
Babai’s nearest plane algorithm. However, this slows down signature gener-
ation significantly, and forces to increase parameters because the signatures
obtained are much less close to the message. As a result, the resulting sig-
nature for NTRUSign does not seem competitive with classical signatures:
no concrete parameter choice has been proposed.

Our Results. We revisit the Nguyen-Regev gradient-descent attack to show
that it is much more powerful than previously expected: in particular, an opti-
mized NR attack can surprisingly break in practice both NTRU’s perturbation
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technique [11] as recommended in standardization proposals [17,13], and the
IEEE-IT countermeasure [16]. For instance, we can recover the NTRUSign se-
cret key in a few hours, using 8,000 signatures for the original NTRUSign-251
scheme with one perturbation submitted to IEEE P1363 standardization in 2003,
or only 5,000 signatures for the latest 80-bit-security parameter set [13] proposed
in 2010. These are the first successful experiments fully breaking NTRUSign

with countermeasures. Note that in the perturbation case, we have to slightly
modify the original NR attack. The warning is clear: our work strongly suggests
to dismiss all GGH/NTRUSign countermeasures which are not supported by
some provable security guarantee.

Our work sheds new light on the NR attack. The original analysis of Nguyen
and Regev does not apply to any of the two NTRUSign countermeasures, and
it seemed a priori that the NR attack would not work in these cases. We show
that the NR attack is much more robust than anticipated, by extending the
original analysis of the Nguyen-Regev algorithm for learning a parallelepiped,
to tackle more general objects such as zonotopes (to break the NTRUSign

countermeasure with a constant number of perturbations) or deformed paral-
lelepipeds (to break the IEEE-IT countermeasure). For instance, in the zonotope
case, the parallelepiped distribution

∑n
i=1 xibi is replaced by

∑m
i=1 xivi where

v1, . . . ,vm ∈ Rn are secret vectors with m ≥ n. The key point of the NR attack
is that all the local minima of a certain multivariate function are connected to
the directions bi’s of the secret parallelepiped. We show that there is somewhat
a similar (albeit more complex) phenomenon when the parallelepiped is replaced
by zonotopes or deformed parallelepipeds: there, we establish the existence of
local minima connected to the secret vectors spanning the object, but we can-
not rule out the existence of other minima. Yet, the attack works very well in
practice, as if there were no other minima.

Roadmap. In Sect. 2, we recall background on NTRUSign and the NR attack.
In Sect. 3, we attack NTRU’s perturbation countermeasure, by learning a zono-
tope. In Sect. 4, we attack the IEEE-IT countermeasure, by learning a deformed
parallelepiped. More information is provided in the full version [5].

2 Background and Notation

2.1 Notation

Sets. Zq is the ring of integers modulo q. N and Z denote the usual sets. [n]
denotes {1, · · · , n}. Sn is the unit sphere of Rn for the Euclidean norm ‖.‖,
whose inner product is 〈, 〉.

Linear Algebra. Vectors of Rn will be row vectors denoted by bold lowercase
letters. A (row) matrix is denoted by [b1, . . . ,bn]. We denote by Mm,n(R) the
set of m×n matrices over a ring R. The group of n×n invertible matrices with
real coefficients will be denoted by GLn(R) and On(R) will denote the subgroup
of orthogonal matrices. The transpose of a matrix M will be denoted by M t,
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and M−t will mean the inverse of the transpose. For a set S of vectors in Rn

and M ∈ Mn,m(R), S ·M denotes the set {s ·M : s ∈ S}. We denote by In the
n× n identity matrix.

Rounding. We denote by �x� the closest integer to x. Naturally, �b� denotes the
operation applied to all the coordinates of b.

Distributions. If X is a random variable, we denote by E[X ] its expectation. For
any set S, we denote by U(S) the uniform distribution over S, when applicable.
If D is a distribution over Rn, its covariance is the n × n symmetric positive
matrix Cov(D) = Ex←D [xtx]. The notation D ⊕ D′ denotes the convolution of
two distributions, that is the distribution of x + y where x ← D and y ← D′

are sampled independently. Furthermore, we denote by D ·B the distribution of
xB where x← D.

Zonotopes and Parallelepipeds. A zonotope is the Minkowski sum of finitely
many segments. Here, we use centered zonotopes: the zonotope spanned by an
m×n row matrix V = [v1, . . . ,vm] is the set Z(V ) = {

∑m
i=1 xivi,−1 ≤ xi ≤ 1}.

We denote by DZ(V ) the convolution distribution over Z(V ) obtained by pick-
ing independently each xi uniformly at random from [−1, 1]n: in other words,
DZ(V ) = U([−1, 1]n) · V , which in general is not the uniform distribution over
Z(V ). However, in the particular case V ∈ GLn(R), Z(V ) is simply the paral-
lelepiped P(V ) spanned by V , and DP(V ) is equal to the uniform distribution
over P(V ).

Differentials. Let f be a function from Rn to R. The gradient of f at w ∈ Rn is
denoted by ∇f(w) = ( ∂f

∂x1
(w), . . . , ∂f

∂xn
(w)). The Hessian matrix of f at w ∈ Rn

is denoted by H f(w) = ( ∂2f
∂xi∂xj

(w))1≤i,j≤n .

Running Times. All given running times were measured using a 2.27-GHz Intel
Xeon E5520 core.

Lattices. We refer to the survey [24] for a bibliography on lattices. In this paper,
by the term lattice, we mean a full-rank discrete subgroup of Rn. A non-empty
set L ⊆ Rn is a lattice if and only if there exists B = [b1, . . . ,bn] ∈ GLn(R) such
that L = {

∑n
i=1 nibi | ni ∈ Z} . Any such B is called a basis of L, and the

absolute value of its determinant is the lattice volume vol(L) of the lattice L.
The closest vector problem (CVP) is the following: given a basis of L ⊆ Zn and
a target t ∈ Qn, find a lattice vector v ∈ L minimizing the distance ‖v − t‖. If
d is the minimal distance, then approximating CVP to a factor k means finding
v ∈ L such that ‖v − t‖ ≤ kd. Bounded Distance Decoding (BDD) is a special
case of CVP where the distance to the lattice is known to be small.

2.2 The GGH Signature Scheme

The GGH scheme [9] works with a lattice L in Zn. The secret key is a non-
singular matrix R ∈ Mn(Z), with very short row vectors. Following [21], the
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public key is the Hermite normal form (HNF) of L. The messages are hashed
onto a “large enough” subset of Zn, for instance a large hypercube. Let m ∈ Zn

be the hash of the message to be signed. The signer applies Babai’s round-off
CVP approximation algorithm [3] to get a lattice vector close to m:

s = �mR−1�R, (1)

so that s −m ∈ 1
2P(R). To verify the signature s of m, one checks that s ∈ L

using the public basis B, and that the distance ‖s−m‖ is sufficiently small.

2.3 NTRUSign

Basic Scheme. NTRUSign [11] is an instantiation of GGH using the compact
lattices from NTRU encryption [14], which we briefly recall: we refer to [11,4] for
more details. In the former NTRU standards [4] proposed to IEEE P1363.1 [17],
N = 251 and q = 128. Let R be the ring Z[X ]/(XN − 1) whose multiplication is
denoted by ∗. One computes (f, g, F,G) ∈ R4 such that f ∗G− g ∗ F = q in R
and f is invertible mod q, where f and g have 0–1 coefficients (with a prescribed
number of 1), while F and G have slightly larger coefficients, yet much smaller
than q. This quadruplet is the NTRU secret key. Then the secret basis is the
following (2N)× (2N) block-wise circulant matrix:

R =

[
C(f) C(g)
C(F ) C(G)

]
where C(a) denotes

⎡⎢⎣ a0 a1 · · · aN−1

aN−1 a0 · · · aN−2

.

.

.
. . .

. . .
.
.
.

a1 · · · aN−1 a0

⎤⎥⎦,
and fi denotes the coefficient of X i of the polynomial f . Thus, the lattice di-
mension is n = 2N . Due to the special structure of R, a single row of R is
sufficient to recover the whole secret key. Because f is chosen invertible mod q,
the polynomial h = g/f mod q is well-defined in R: this is the NTRU public
key. Its fundamental property is that f ∗ h ≡ g mod q in R. The polynomial

h defines the following (natural) public basis of the lattice:

[
In C(h)
0 qIn

]
, which

implies that the lattice volume is qN .
The messages are assumed to be hashed in {0, . . . , q − 1}2N . Let m be such

a hash. We write m = (m1,m2) with mi ∈ {0, . . . , q − 1}N . The signature is
the vector (s, t) ∈ Z2N which would have been obtained by applying Babai’s
round-off CVP approximation algorithm to m, except that it is computed more
efficiently using convolution products and can even be compressed (see [11]). We
described the basic NTRUSign scheme [11], as used in half of the parameter
choices of the former NTRU standards [4].

Perturbations. The second half of parameter choices of NTRU standards [4]
use perturbation techniques [10,4,12] to strengthen security, which are described
in Sect. 2.5. But there is a second change: instead of the standard NTRU secret
key, one uses the so-called transpose basis, which is simply Rt, then the public
basis remains the same, except that one defines the public key as h = F/f = G/g
mod q rather than h = g/f mod q.
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New Parameters. In the latest NTRU article [13], new parameters for
NTRUSign have been proposed. These include different values of (N, q) and
a different shape for f and g: the coefficients of f and g are now in {0,±1},
rather than {0, 1} like in [11]. But the scheme itself has not changed.

2.4 The Nguyen-Regev Attack

We briefly recall the Nguyen-Regev attack [23], using a slightly different presen-
tation. The NR attack solves the following idealized problem:

Problem 1 (The Hidden Parallelepiped Problem or HPP). Let V = [v1,
. . . ,vn] ∈ GLn(R) and let P(V ) = {

∑n
i=1 xivi : xi ∈ [−1, 1]} be the parallelepiped

spanned by V . The input to the HPP is a sequence of poly(n) independent sam-
ples from the uniform distribution DP(V ). The goal is to find a good approxima-
tion of the rows of ±V .

In practice, instead of samples from DP(V ), the attack uses 2(s−m) for all given
message-signature pairs (m, s): this distribution is heuristically close to DP(V )

where R is the secret basis. To recover rows of R, the attack simply rounds
the approximations found to integer vectors. The NR attack has two stages:
morphing and minimization.

Morphing the Parallelepiped into a Hypercube. The first stage of the NR attack
is to transform the hidden parallelepiped into a hidden hypercube (see Alg. 1),
using a suitable linear transformation L. It is based on the following elementary
lemma [23, Lemmas 1 and 2]:

Lemma 1. Let V ∈ GLn(R) and denote by G ∈ GLn(R) the symmetric positive
definite matrix V tV . Then:

– Cov(DP(V )) = G/3.
– If L ∈ GLn(R) satisfies LLt = G−1 and we let C = V L, then C ∈ On(R)

and DP(V ) · L = DP(C).

Algorithm 1. Morphing(X ): Morphing a Parallelepiped into a Hybercube

Input: A set X of vectors x ∈ Rn sampled from the uniform distribution DP(V ) over
a parallelepiped.

Output: A matrix L such that DP(V ) · L is close to DP(C) for some C ∈ On(R).
1: Compute an approximation G of V tV using the set X , using Cov(DP(V )) = V tV/3

(see Lemma 1).
2: Return L such that LLt = G−1

This stage is exactly (up to scaling) the classical preprocessing used in inde-
pendent component analysis to make covariance equal to the identity matrix:

Lemma 2. Let G be the covariance matrix of a distribution D over Rn. If L ∈
GLn(R) satisfies LLt = G−1, then Cov(D · L) = In.
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Learning a Hypercube. The second stage of the NR attack is to solve the hidden
hypercube problem, using minimization with a gradient descent (see Alg. 2).
Nguyen and Regev [23] showed that for any V ∈ On(R), if D denotes the distri-
bution DP(V ):

– The function momD,4(w) = Ex←D[〈x,w〉4] has exactly 2n local minima
over the unit sphere Sn, which are located at ±v1, · · · ,±vn, and are global
minima.

– It is possible to find all minima of momD,4(·) over Sn in random polynomial
time, using Alg. 2 with parameter δ = 3/4, thanks to the nice shape of
momD,4(·). Alg. 2 is denoted by Descent(X ,w, δ) which, given a point w ∈
Sn, performs a suitable gradient descent using the sample set X , and returns
an approximation of some ±vi.

Algorithm 2. Descent(X ,w, δ): Solving the Hidden Hypercube Problem by
Gradient Descent
Input: A set X of samples from the distribution DP(V ) where V ∈ On(R), a vector w

chosen uniformly at random from Sn and a descent parameter δ.
Output: An approximation of some row of ±V .
1: Compute an approximation g of the gradient ∇momV,4(w) using X .
2: Let wnew = w − δg.
3: Divide wnew by its Euclidean norm ‖wnew‖.
4: if momV,4(wnew) ≥ momV,4(w) where the moments are approximated using X

then
5: return the vector w.
6: else
7: Replace w by wnew and go back to Step 1.
8: end if

The whole NR attack is summarized by Alg. 3.

Algorithm 3. SolveHPP(X ): Learning a Parallelepiped [23]

Input: A set X of vectors x ∈ Rn sampled from DP(V ), where V ∈ GLn(R)
Output: An approximation of a random row vector of ±V
1: L := Morphing(X ) using Alg. 1
2: X := X · L
3: Pick w uniformly at random from Sn

4: Compute r := Descent(X ,w, δ) ∈ Sn using Alg. 2: use δ = 3/4 in theory and
δ = 0.7 in practice.

5: Return rL−1

Shrinking the number of NTRUSign-signatures. In practice, the NR attack
requires a polynomial number of signatures, but it is possible to experimentally
decrease this amount by a linear factor [23], using a well-known symmetry of
NTRU lattices. We define the NTRUSign symmetry groupSNTRU

N as the group
spanned by σ ∈ On(R) : (x1, . . . xN |y1, · · · yN) �→ (x2, . . . xN , x1|y2, · · · yN , y1).
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If L is the NTRU lattice, then σ(L) = L. Furthermore, (σ(m), σ(s)) follows
the same distribution as uniformly random (m, s). So, any pair (m, s) gives rise
to N parallelepiped samples. This technique also allows a N -factor speedup for
covariance computation, which is the most time consuming part of the attack.

2.5 Countermeasures

NTRUSign perturbation: Summing Parallelepipeds. Roughly speaking, these
techniques perturbates the hashed message m before signing it with the NTRU
secret basis. More precisely, the hashed message m is first signed using a second
NTRU secret basis (of another NTRU lattice, which is kept secret), and the
resulting signature is then signed as before. Heuristically, the effect on the sample
distribution of the transcript is as follows: if R and R′ are the two secret bases,
the distribution of s−m becomes the convolution P(R)⊕P(R′), i.e. a natural
distribution over the Minkowski sum of the two parallelepipeds obtained by
adding the uniform distributions of both parallelepipeds.

IEEE-IT perturbation: Parallelepiped Deformation. Hu et al. [16] suggested an-
other approach to secure NTRUSign in the journal IEEE Trans. IT. Their
definition are specific to NTRUSign-bases, but it can be generalized to GGH,
and we call this technique “Parallelepiped deformation”. Let δ : [-1/2, 1/2)n → Zn

be a function, possibly secret-key dependent. The signature generation (1) is re-
placed by:

s =
( ⌈

mR−1
⌋
+ δ

(
mR−1 −

⌈
mR−1

⌋))
R (2)

If δ outputs small integer vectors, then the signature s is still valid. The associ-
ated deformation function is dδ(x) = x+ δ(x). The sample distribution of s−m
is deformed in the following way : dδ(Un) ·R where dδ(Un) denotes the distribu-
tion of x+ δ(x) with x← Un. In [16], the deformation δIEEE for a NTRUSign

secret key (f, g, F,G) is as follows:

– Let U ⊂ [N ] be the set of indexes u such that the u-th entry of f+g+F +G
is 1 modulo 2, and let A = #U . On the average, A ≈ N/2, and it is assumed
that A ≥ 25, otherwise a new secret key must be generated.

– Let 1 ≤ u1 < u2 < · · · < uA ≤ N be the elements of U . For i /∈ [A], ui
denotes u(i modA).

– Let the input of δIEEE be the concatenation of two vectors x,y ∈ [-1/2, 1/2)N .
Then the i-th entry of δIEEE(x|y) is:

[
δIEEE(x|y)

]
i
=

{
0 if i /∈ U

s(xuj , yuj , yuj+1 , yuj+3 , yuj+7 , yuj+12) if i = uj

where s(a0, . . . , a5) =

⎧⎨⎩
1 if ai < 0 for all i
−1 if ai > 0 for all i
0 otherwise
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Gaussian Sampling. Gentry et al. [8] described the first provably secure coun-
termeasure: Gaussian sampling. In previous schemes, the distribution of s −m
was related to the secret key. In [8], the distribution becomes independent of
the secret key: it is some discrete Gaussian distribution, which gives rise a to a
security proof in the random-oracle model, under the assumption that finding
close vectors is hard in the NTRU lattice. Unfortunately, this countermeasure
is not very competitive in practice: the sampling algorithm [18] is much less ef-
ficient than NTRUSign generation, and the new signature is less close to the
message, which forces to increase parameters. But its efficiency has recently been
improved, see [26,6].

3 Learning a Zonotope: Breaking NTRUSign with
Perturbations

In Sect. 3.1, we introduce the hidden zonotope problem (HZP), which is a natu-
ral generalization of the hidden parallelepiped problem (HPP), required to break
NTRUSign with perturbations. In Sect. 3.2, we explain why the Nguyen-Regev
HPP algorithm (Alg. 3) can heuristically solve the HZP, in cases that include
NTRUSign, provided that Step 5 is slightly modified. Yet, the approximations
obtained by the algorithm are expected to be worse than in the non-perturbed
case, so we use a folklore meet-in-the-middle algorithm for BDD in NTRU lat-
tices, which is described in [5]. Finally, in Sect. 3.3, we present experimental
results with our optimized NR attack which show that NTRUSign with one
(or slightly more) perturbation(s) is completely insecure, independently of the
type of basis. In particular, we completely break the original NTRUSign pro-
posed to IEEE P1363 standardization [4]: only one half of the parameter sets
was previously broken in [23].

3.1 The Hidden Zonotope Problem

Assume that one applies k − 1 NTRUSign perturbations as a countermea-
sure, which corresponds to k NTRUSign lattices L1, . . . , Lk (with secret bases
R1, . . . , Rk) where only Lk is public. One signs a hashed message m ∈ Zn

by computing s1 ∈ L1 such that s1 − m ∈ 1
2P(R1), then s2 ∈ L2 such that

s2 − s1 ∈ 1
2P(R2), . . . , and finally sk ∈ Lk such that sk − sk−1 ∈ 1

2P(Rk). It
follows that sk is somewhat close to m, because sk−m is in the Minkowski sum
1
2P(R1)+

1
2P(R2)+· · ·+ 1

2P(Rk), which is a zonotope spanned by 1
2R1, . . . ,

1
2Rk.

And heuristically, the distribution of 2(sk −m) is the convolution of all the k
uniform distributions DP(Ri). In other words, similarly to the perturbation-free
case, an attacker wishing to recover the secret key of a GGH-type signature
scheme using perturbations using a polynomial number of signatures is faced
with the following problem with m = kn:

Problem 2 (The Hidden Zonotope Problem or HZP). Let m ≥ n be
integers, and V = [v1, . . . ,vm] be an m × n row matrix of rank n. The in-
put to the HZP is a sequence of poly(n,m) independent samples from D =
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DZ(V ) over Rn, which is the convolution distribution over the zonotope Z(V ) =
{
∑m

i=1 xivi,−1 ≤ xi ≤ 1} spanned by V . The goal is to find a good approxima-
tion of the rows of ±V .

Here, we assume V to have rank n, because this is the setting of NTRUSign

with perturbation, and because the HPP is simply the HZP with m = n.

3.2 Extending the Nguyen-Regev Analysis to Zonotopes

Here, we study the behavior of the original Nguyen-Regev algorithm for learning
a parallelepiped ( SolveHPP(X ), Alg. 3) on a HZP instance, that is, when the
secret matrix V is not necessarily square, but is an arbitrary m × n matrix of
rank n with m ≥ n. To do this, we need to change the analysis of Nguyen and
Regev [23], and we will have to slightly change Alg. 3 to make the attack still
work: Alg. 4 is the new algorithm. Recall that the input distribution DZ(V ) is
formed by

∑m
i=1 xivi where the xi’s are uniformly chosen in [−1, 1]. We study

how the two stages of the NR attack behave for DZ(V ).

Morphing Zonotopes. We start with a trivial adaptation of Lemma 1 to zono-
topes:

Lemma 3. Let V be an m×n matrix over R of rank n. Let G be the symmetric
definite positive matrix V tV . Then:

– Cov(DZ(V )) = G/3.
– If L ∈ GLn(R) satisfies LLt = G−1 and we let C = V L, then CtC = In and
DZ(V ) · L = DZ(C).

Lemma 3 shows that if we apply Morphing(X ) (Alg. 1) to samples from DZ(V )

(rather than DP(V )), the output transformation L will be such that DZ(V ) ·L is
close to DZ(C) for some m× n matrix C such that CtC = In.

In other words, the effect of Step. 2 in SolveHPP(X ) (Alg. 3) is to make
the zonotope matrix V have orthonormal columns: V tV = In. The following
lemma gives elementary properties of such matrices, which will be useful for our
analysis:

Lemma 4. Let V be an m × n row matrix [v1, . . . ,vm] such that V tV = In.
Then:

– ‖w‖2 =
∑m

i=1 〈w,vi〉2 for all w ∈ Rn.
– ‖vi‖ ≤ 1 for all 1 ≤ i ≤ m.
–

∑m
i=1 ‖vi‖2 = n and Expx←U(Sn)(‖xV V t‖2) = n/m.

Learning an “Orthogonal” Zonotope. Nguyen and Regev [23] used the target
function momD,4(w) = Ex←D[〈x,w〉4] for w ∈ Sn, D = DP(V ) and V ∈ On(R)
to recover the hidden hypercube. We need to study this function when D is
the zonotope distribution D = DZ(V ) to recover the hidden zonotope. Nguyen
and Regev [23] gave elementary formulas for momD,4 and ∇momD,4 when D =
DP(V ) and V ∈ On(R), which can easily be adapted to the zonotope distribution
DZ(V ) if V

tV = In, as follows:
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Lemma 5. Let V be a m× n matrix over R such that V tV = In, and D be the
convolution distribution DZ(V ) over the zonotope spanned by V . Then, for any
w ∈ Rn:

momD,4(w) =
1

3
‖w‖4 − 2

15

m∑
i=1

〈vi,w〉4

∇momD,4(w) =
4

3
w − 8

15

m∑
i=1

〈vi,w〉3 vi if w ∈ Sn

Corollary 1. Under the same hypotheses as Lemma 5, the minima over Sn
of the function momD,4(w) are the maxima (over Sn) of f(w) =

∑m
i=1 fvi(w)

where fv(w) = 〈v,w〉4 is defined over Rn.

In [23, Lemma 3], Nguyen and Regev used Lagrange multipliers to show that
when V ∈ On(R), the local minima of momDP(V ),4 were located at ±v1, . . . ,vn,
and these minima are clearly global minima. However, this argument breaks
down when V is a rectangular m× n matrix of rank n such that V tV = In. To
tackle the zonotope case, we use a different argument, which requires to study
each function fvi(w) = 〈vi,w〉4 individually:

Lemma 6. Let v ∈ Rn and fv(w) = 〈v,w〉4 for w ∈ Rn . Then:

1. The gradient and Hessian matrix of fv are ∇fv(w) = 4 〈w,v〉3 · v and

H fv(w) = 12 〈w,v〉2 · vtv.
2. There are only two local maxima of fv over Sn, which are located at ±v/‖v‖,

and their value is ‖v‖4.
3. The local minima of fv over Sn are located on the hyperplane orthogonal to

v, and their value is 0.
4. The mean value of fv over Sn is 3‖v‖4/(n(n+ 2)).

This already gives a different point of view from Nguyen and Regev in the special
case where V ∈ On(R): for all 1 ≤ j ≤ n, vj is a local maximum of fvj and a
local minimum of fvi for all i �= j because vi ⊥ vj ; and therefore ±v1, . . . ,vn

are local extrema of momU·V,4.
In the general case where V is an m × n matrix such that V tV = In, let

di = vi/ ‖vi‖ ∈ Sn for 1 ≤ i ≤ m. The direction dj is a local maximum
of fvj over Sn. On the other hand, fvi(dj) is likely to be small for i �= j.
This suggests that dj should be very close to a local maximum of the whole
sum

∑m
i=1 fvi(dj), provided that the local maximum ‖vj‖4 of fvj is somewhat

larger than
∑

i�=j fvi(dj). In fact, this local maximum dj is intuitively shifted by

g/(2‖vj‖4) where g is the gradient of
∑m

i=1 fvi(dj) at dj , because this is exactly
what happens for its second-order Taylor approximation. This is formalized by
our main result, which provides a sufficient condition on V guaranteeing that a
given direction vj/‖vj‖ is close to a local minimum of momDZ(V ),4:
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Theorem 3 (Local Minima for Zonotopes). Let V be a m× n matrix over
R such that V tV = In. Assume that there is α ≥ 1 such that V is α-weakly-
orthogonal, that is, its m rows satisfy for all i �= j: |〈vi,vj〉| ≤ α ‖vi‖ ‖vj‖ /

√
n.

Let 1 ≤ j ≤ m and 0 < ε < 1/
√
2 such that:

ε‖vj‖4 > 6

(
α√
n
+ ε

)2

ε+
4

‖vj‖3
‖
∑
i�=j

〈vj ,vi〉3 vi‖ (3)

which holds in particular if ‖vj‖ ≥
2
√
α

n1/12
and ε =

5α3

√
n‖vj‖4

< 1/
√
2. Then,

over the unit sphere, the function momDZ(V ),4 has a local minimum at some
point mj ∈ Sn such that mj is close to the direction of vj , namely:〈

mj,
vj

‖vj‖

〉
> 1− ε2

2
and

∥∥∥∥mj −
vj

‖vj‖

∥∥∥∥ ≤ ε.

And the local minimum momDZ(V ),4(mj) discloses an approximation of ‖vj‖,
namely:∣∣∣∣momDZ(V ),4(mj)−

(
1

3
− 2‖vj‖4

15

)∣∣∣∣ ≤ 2

15

(
5ε3 + 6ε2 + 4ε+m

(
ε+

α√
n

)4
)
.

Proof. (Sketch of the proof in [5]) Let B = {w ∈ Sn : ‖w − dj‖ < ε} be the
open ball of Sn of radius ε, where dj = vj/ ‖vj‖ ∈ Sn Notice that for all w ∈ Sn:

‖w− dj‖2 = ‖w‖2 + ‖dj‖2 − 2 〈w,dj〉 = 2(1− 〈w,dj〉).

Therefore B =
{
w ∈ Sn : 〈dj ,w〉 > 1− ε2/2

}
, whose closure and boundary are

denoted respectively by B̄ and ∂B. Recall that f =
∑m

i=1 fvi . We will prove the
following property:

∀w ∈ ∂B, f(w) < f(dj), (4)

which allows to conclude the proof of Th. 3. Indeed, by continuity, the restriction
of f to B̄ has a global maximum at some point mj ∈ B̄. And (4) implies that
mj �∈ ∂B, therefore mj ∈ B. Thus, m is a global maximum of f over the
open set B: in other words, mj is a local maximum of f , and therefore a local
minimum of momD,4. Furthermore, by definition of B, we have: ‖mj − dj‖ < ε
and 〈dj ,mj〉 > 1− ε2/2. And the final inequality follows from:

momD,4(mj)−
(
1

3
− 2‖vj‖4

15

)
=

2

15

⎛⎝〈vj ,dj〉4 − 〈vj ,mj〉4 −
∑
i�=j

〈vi,mj〉4
⎞⎠ .

We now prove (4). Let w ∈ ∂B. To show f(dj)− f(w) > 0, we decompose it as:(
fvj(dj)− fvj (w)

)
+

∑
i�=j

(fvi(dj)− fvi(w)) (5)
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On the one hand, the left-hand term of (5) is:

fvj(dj)− fvj (w) = ‖vj‖4 − (1− ε2

2
)4 ‖vj‖4 ≥ ε2 ‖vj‖4 (6)

because ε < 1/
√
2. On the other hand, we upper bound the right-hand term

of (5) by the Taylor-Lagrange formula, which states that there exists θ ∈ (0, 1)
such that

∑
i�=j (fvi(w)− fvi(dj)) is equal to:〈∑

i�=j

∇fvi(dj),w − dj

〉
+

1

2
(w − dj)

∑
i�=j

H fvi(dj + θ(w − dj))(w − dj)
t (7)

Let g =
∑

i�=j ∇fvi(dj) = 4
∑

i�=j 〈dj ,vi〉3 vi by Lemma 6. The left-hand term
of (7) is bounded as: ∣∣∣∣∣∣

〈∑
i�=j

∇fvi(dj),w − dj

〉∣∣∣∣∣∣ ≤ ε‖g‖. (8)

Using Lemma 6, the right-hand term of (7) can be bounded as:∣∣∣∣∣∣(w − dj)
∑
i�=j

H fvi(dj + θ(w − dj))(w − dj)
t

∣∣∣∣∣∣ ≤ 12(α/
√
n+ ε)2ε2. (9)

Collecting (6), (7), (8) and (9), we obtain:

f(dj)− f(w) ≥
(
ε ‖vj‖4 − ‖g‖ − 6(α/

√
n+ ε)2ε

)
ε,

which is > 0 by (3). To conclude, it remains to prove that (3) is satisfied when

‖vj‖ ≥ 2
√
α

n1/12 and ε = 5α3
√
n‖vj‖4 < 1/

√
2. This is shown by tedious computations,

using weak-orthogonality and Lemma 4. � 

Th. 3 states that under suitable assumptions on V (which we will discuss shortly),
if ‖vj‖ is not too small, then the secret direction vj/‖vj‖ is very close to a local
minimum of momDZ(V ),4, whose value discloses an approximation of ‖vj‖, be-
cause it is ≈ 1

3 −
2
15‖vj‖4. This suggests SolveHZP(X ) (Alg. 4) for learning a

zonotope: SolveHZP(X ) is exactly SolveHPP(X ) (Alg. 3), except that Step 5
of SolveHPP(X ) has been modified, to take into account that ‖vj‖ is no longer
necessarily equal to 1, but can fortunately be approximated by the value of the
local minimum.

First, we discuss the value of α in Th. 3 . Note that weak-orthogonality is a
natural property, as shown by the following basic result:

Lemma 7. Let v ∈ Sn and denote by X the random variable X = 〈v,w〉2 where
w has uniform distribution over Sn. Then X has distribution Beta(1/2, (n −
1)/2), Exp(X) = 1

n , Exp(X2) = 3
n(n+2) , Exp(X3) = 15

n(n+2)(n+4) and more

generally: Exp(Xk) = k−1/2
n/2+k−1 Exp(X

k−1).
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Algorithm 4. SolveHZP(X ): Learning a Zonotope

Input: A set X of vectors x ∈ Rn sampled from DZ(V ), where V is an m× n matrix
of rank n.

Output: An approximation of some row vector of ±V .
1: L := Morphing(X ) using Alg. 1
2: X := X · L
3: Pick w uniformly at random from Sn

4: Compute r := Descent(X ,w, δ) ∈ Sn using Alg. 2: use δ = 3/4 in theory and
δ = 0.7 in practice.

5: Return λrL−1 where λ = (( 1
3
−momX ,4(r))

15
2
)1/4

By studying more carefully the Beta distribution, it is possible to obtain strong
bounds. For instance, Ajtai [1, Lemma 47] showed that for all sufficiently large
n, if v ∈ Sn is fixed and w has uniform distribution over Sn, then | 〈v,w〉 | ≤
(logn)/

√
n with probability ≥ 1 − 1

n(log n)/2−1 . Since the probability is subex-

ponentially close to 1, this implies that if m = nO(1) and we assume that all
the directions vi/‖vi‖ are random, then V is (logn)-weakly orthogonal with
probability asymptotically close to 1.

This gives strong evidence that, if m = nO(1), the assumption on V in Th. 3
will be satisfied for α = logn. We can now discuss the remaining assumptions.
If α = logn, we may take any index j such that ‖vj‖ ≥ Ω(1/n13): in particular,
if ‖vj‖ = Ω(1), we may take ε = O(log3 n)/

√
n. And higher values of α can

be tolerated, as while as α = o(n1/6). Now recall that
∑m

i=1 ‖vi‖2 = n, thus

maxi ‖vi‖ ≥
√
n/m and ‖vi‖ is on average

√
n/m. In particular, if the number

of perturbations is constant, then m = O(n) and maxi ‖vi‖ ≥ Ω(1), therefore
Th. 3 applies to at least one index j, provided that α = o(n1/6). In fact, one can
see that the result can even tolerate slightly bigger values of m than Θ(n), such
as m = o(n7/6/ logn).

While Th. 3 explains why SolveHZP(X ) (Alg. 4) can heuristically solve the
HZP, it is not a full proof, as opposed to the simpler parallelepiped case. The
obstructions are the following:

– First, we would need to prove that the distance is sufficiently small to enable
the recovery of the original zonotope vectors, using an appropriate BDD
solver. Any error on vj/‖vj‖ is multiplied by L−1‖vj‖. In [23], the error on
vj could be made polynomially small for any polynomial, provided that the
number of samples was (polynomially) large enough. But ε cannot be chosen
polynomially small for any arbitrary polynomial in Th. 3.

– Second, we would need to prove that Descent(X ,w, δ) (Alg. 2) finds a ran-
dom local minimum of momDZ(V ),4 in polynomial time, even in the presence
of noise to compute momDZ(V ),4. Intuitively, this is not unreasonable since
the function momDZ(V ),4 is very regular, but it remains to be proved.

– Finally, we would need to prove that there are no other local minima, or at
least, not too many of them.
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Regarding the third obstruction, it is easy to prove the following weaker state-
ment, which implies that global minima of momDZ(V ),4 over the unit sphere are
close to some direction vj/‖vj‖:

Lemma 8. Let V be a m× n matrix over R such that V tV = In, and D be the
distribution DZ(V ). Let w be a global maximum of f(w) =

∑m
i=1 fvi(w) over

Sn. Then there exists j ∈ {1, . . . ,m} such that: 1
m1/4 <

|〈vj,w〉|
‖vj‖ ≤ 1.

3.3 Experiments

We now report on experiments with the attack performed on NTRUSign, with
n up to 502. Our experiments are real-world experiments using signatures of
uniformly distributed messages.

Conditions of Th. 3. Our discussion following Th. 3 suggested that the matrix
V should be heuristically weakly-orthogonal for α = logn. In practice, we may
in fact take α ≈ 5 for both types of NTRUSign secret bases.

Regarding the norms ‖vi‖ after morphing, we experimentally verified that
‖vi‖ ≈

√
1/k where k is the number of perturbations for NTRUSign transposed

bases (see [5]), as expected by
∑m

i=1 ‖vi‖2 = n. But for the so-called standard
bases, the situation is a bit different: half of the ‖vi‖’s are very small, and the re-
maining half are close to

√
2/k. This can be explained by the fact that standard

bases are unbalanced: half of the vectors are much shorter than the other vectors.
For a number of perturbations ≤ 8, we experimentally verified that the “gradi-

ent” g = 4
‖vj‖3 ‖

∑
i�=j 〈vj ,vi〉3 vi‖ appearing in the conditions of Th. 3 satisfies

‖g‖ = O(1/n) with a small constant ≤ 4 (see [5]).
To summarize, the conditions of Th. 3 are experimentally verified for a number

of perturbations ≤ 8: for all vectors vj ’s in the case of transposed bases, and for
half of the vectors vj ’s in the case of standard bases.

Modifications to the original NR attack. We already explained that the orig-
inal NR algorithm SolveHPP(X ) (Alg. 3) had to be slightly modified into
SolveHZP(X ) (Alg. 4): more precisely, Step 5 is modified.

However, because Th. 3 states that the secret direction might be perturbed
by some small ε, we also implemented an additional modification: instead of the
elementary BDD algorithm by rounding, we used in the final stage a special BDD
algorithm tailored for NTRU lattices, which is a tweaked version of Odlyzko’s
meet-in-the-middle attack on NTRU described in [15]. Details are given in [5].

Practical cryptanalysis. We first applied successfully the optimized NR-attack on
the original NTRUSign-251 scheme with one perturbation (which corresponds
to a lattice dimension of 502), as initially submitted to the IEEE P1363 standard:
about 8,000 signatures were sufficient to recover the secret key, which should be
compared with the 400 signatures of the original attack [23] when there was no
perturbation. This means that the original NTRUSign-251 scheme [10] is now
completely broken.



448 L. Ducas and P.Q. Nguyen

Furthermore, we performed additional experiments for varying dimension and
number of perturbations, for the parameters proposed in the latest NTRU ar-
ticle [13], where transposed bases are used. Table 1 summarizes the results ob-
tained: each successful attack took less than a day, and the MiM error recovery
algorithm ran with less than 8Gb of memory.

Table 1. Experiments with the generalized NR-attack on the latest NTRUSign pa-
rameters [13]

Security level : dimension n Toy : 94 80-bit : 314 112-bit : 394 128-bit : 446

0 perturbation 300:(0,1) 400:(0,1) 400:(0,1) 600:(0,1)
1 perturbation 1000:(1,2) 5000:(0,1) 4000:(0,1) 4000:(0,0)
2 perturbations 10000:(5,3) 12000:(0,2)
3 perturbations 12000:(5,4)
4 perturbations 100000:(0,1)

In this table, each non-empty cell represents a successful attack for a given transposed
basis (the column indicates the security level and the dimension) and number of per-
turbations (row). These cells have the form s : (e = ‖εF ‖1 , w = ‖εG‖∞) where s is
the number of signatures used by the learning algorithm, and where (εF |εG) is the
error vector of the best approximation given by a descent. The running time of our
MiM-Algorithm is about (n/2)	e/2
+1 for such small w.

Our experiments confirm our theoretical analysis:NTRUSign with a constant
number of perturbations is insecure, but we see that the number of signatures
required increases with the number of perturbations.

4 Learning a Deformed Parallelepiped: Breaking the
IEEE-IT Countermeasure

In this section,we show that the deformation suggested in [16] is unlikely to prevent
the NR attack [23]. More generally, we show that the NR attack heuristically still
works if the deformation is only partial, which means that it preserves at least one
of the canonical axes, namely there exists at least one index i such that:

– for all x ∈ [-1/2, 1/2)n, [δ(x)]i = 0
– δ(x) is independent of xi : (∀j �= i, xj = yj)⇒ δ(x) = δ(y)

Such an index i is said to be ignored by the deformation δ. And it is clear that
δIEEE is partial by definition (see Sect. 2.5), because it ignores exactly all index
i /∈ U . Our main result is the following, whose proof is given in [5].

Theorem 4. Let δ be a partial deformation, and i be an index ignored by δ. Let
D = 2·dδ(Un) and M ∈ GLn(R) be an invertible matrix and G = Cov(D·M). Let
L be such that LLt = G−1. Then r = 1√

3
·miL is a local minimum of mom4,D′(·)

over the unit sphere, where D′ = D ·M · L.
While this is a strong theoretical argument supporting why the NR attack still
works, it is not a full proof, for reasons similar to the zonotope case (see the
previous section): there may be other minima, and we did not prove that the
gradient descent efficiently finds minima.
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Experimental results. The attack was run, using 300,000 signatures, to recover
the secret key in 80-bit, 112-bit and 128-bit NTRUSign security level settings,
and each run led to a secret key recovery, in about two days. No other local min-
imum was found. Though the samples no longer belong to a set stable by NTRU
symmetry group SNTRU

N , we may still try to apply the symmetry trick, to multi-
ply the number of samples by N , like in [23]. This modifies the distribution of the
sample to the average of its orbit : SNTRU

N (D) = σ(x) : x← D, σ ← U(SNTRU
N ).

It turns out that applying the attack on such an averaged distribution leads
once again to descents converging to some basis vectors: in fact, by symmetry,
all of them are equally likely. The attack used 2,000 signatures, and ran in less
than an hour, on the same basis. Intuitively, this averaging strongly reduces
the co-dependence between the coordinates of x ← Dσ, making the resulting
distribution much closer to a parallelepiped than D.
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Université catholique de Louvain

Place du Levant 3
1348 Louvain-la-Neuve (Belgium)

{christophe.petit,jjq}@uclouvain.be

Abstract. In the last two decades, many computational problems aris-
ing in cryptography have been successfully reduced to various systems
of polynomial equations. In this paper, we revisit a class of polynomial
systems introduced by Faugère, Perret, Petit and Renault. Based on new
experimental results and heuristic evidence, we conjecture that their de-
grees of regularity are only slightly larger than the original degrees of
the equations, resulting in a very low complexity compared to generic
systems. We then revisit the application of these systems to the ellip-
tic curve discrete logarithm problem (ECDLP) for binary curves. Our
heuristic analysis suggests that an index calculus variant due to Diem

requires a subexponential number of bit operations O(2c n2/3 logn) over
the binary field F2n , where c is a constant smaller than 2. According
to our estimations, generic discrete logarithm methods are outperformed
for any n > N where N ≈ 2000, but elliptic curves of currently rec-
ommended key sizes (n ≈ 160) are not immediately threatened. The
analysis can be easily generalized to other extension fields.

1 Introduction

While linear systems of equations can be efficiently solved with Gaussian elim-
ination, polynomial systems are much harder to solve in general. After their
introduction by Buchberger [13], Gröbner bases have become the most popular
way to solve polynomial systems of equations, in particular since the develop-
ment of fast algorithms like F4 [26] and F5 [27]. Polynomial systems arising in
cryptography tend to have a special structure that simplifies their resolution.
In the last twenty years, many cryptographic challenges have been first reduced
to polynomial systems of equations and then solved with fast and sometimes
dedicated Gröbner basis algorithms [42,30,38,10,22,23,32,12,31].
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Our Contribution

In this paper, we revisit a particular class of polynomial systems introduced by
Faugère et al. [33,34]. These systems naturally arise by deploying a multivariate
polynomial equation over an extension field into a system of polynomial equa-
tions over the ground prime field (a technique commonly called Weil descent).

We first observe that polynomial systems arising from a Weil descent are a
natural generalization of a well-known family of polynomial systems appearing
in the cryptanalysis of HFE [48,42,18,30,38,24,10,22,23]. Starting from this ob-
servation, we extend various experimental and theoretical results on HFE to
the more general class of polynomial systems arising from a Weil descent. Our
results suggest that the degrees of regularity of these systems are only sligthly
larger than the degrees of their equations, essentially as small as they could be.

Following [34], we subsequently study an elliptic curve discrete logarithm al-
gorithm of Diem [21] in the case of binary fields. Based on our heuristic analysis
of polynomial systems arising from a Weil descent, we conjecture that the ellip-
tic curve discrete logarithm problem can be solved over the binary field F2n in

subexponential time O(2c n
2/3 logn), where c is a constant smaller than 2. For n

prime, this problem was previously thought to have complexity O(2n/2).
Our analysis of polynomial systems arising from a Weil descent can also be

applied to the factorization problem in SL(2,F2n), to HFE and to other discrete
logarithm problems. These applications will be discussed in an extended version
of this paper [49]. Although we focus on characteristic 2 in this paper, most of
our results can be easily extended to other characteristics.

Outline

The remaining of this paper is organized as follows. Section 2 contains most of
the notations and definitions used in the paper. Section 3 provides general back-
ground on algebraic cryptanalysis with Gröbner bases. Section 4 contains our
new analysis of polynomial systems arising from a Weil descent. The application
to Diem’s algorithm is detailed in Section 5 and Section 6 concludes the paper.

2 Definitions and Notations

We mostly follow the notations introduced in [33]. For any “small” prime p and
any n ∈ Z, we write Fpn for the finite field with pn elements. We see the field
Fpn as an n-dimensional vector space over Fp and we let {θ1, . . . , θn} be a basis
for Fpn/Fp. With some abuse of notations, we use bold letters for all elements,
variables and polynomials over Fpn and normal letters for all elements, variables
and polynomials over Fp. If x1, . . . , xN are variables defined over a field K, we
write R := K[x1, . . . , xN ] for the ring of polynomials in these variables. Given
a set of polynomials f1, . . . , f� ∈ R, the ideal I(f1, . . . , f�) ⊂ R is the set of

polynomials
∑�

i=1 gifi, where, g1, . . . , g� ∈ R. We write Resxi(f1, f2) for the
resultant of f1, f2 ∈ R with respect to the variable xi. A monomial of R is a
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power product
∏k

i=1 x
ei
i where ei ∈ N. A monomial ordering for R is an ordering

> such that m1 > m2 ⇒ m1m3 > m2m3 for any monomials m1,m2,m3 and
m > 1 for any monomialm. The leading monomial LM(f) of a polynomial f ∈ R
for a given ordering is equal to its largest monomial according to the ordering. Its
leading term is the corresponding term. For any polynomial f ∈ R, we denote the
set of monomials of f by Mon(f). We measure the memory and time complexities
of algorithms by respectively the number of bits and bit operations required.
Actual experimental results are given in megabytes and seconds. We write O for
the “big O” notation: given two functions f and g of n, we say that f = O(g)
if there exist N, c ∈ Z+ such that n > N ⇒ f(n) ≤ cg(n). Similarly, we write
o for the “small o” notation: given two functions f and g of n, we say that
f = o(g) if for any ε > 0, there exists N ∈ Z such that for any n > N , we have
|f(n)| ≤ ε|g(n)|. Finally, we write ω for the linear algebra constant. Depending
on the algorithm used for linear algebra, we have 2.376 ≤ ω ≤ 3.

3 Background on Polynomial System Resolution

Let R be a polynomial ring and let > be a fixed monomial ordering for this ring.
A Gröbner basis [13,19] of an ideal I(f1, . . . f�) ⊂ R is a basis {f ′

1, . . . , f
′
�′} of

this ideal such that for any f ∈ I(f1, . . . f�), there exists i ∈ {1, . . . , �′} such that
LT(f ′

i)|LT(f). The first Gröbner basis algorithm was provided by Buchberger in
his PhD thesis [13]. Lazard [44] later observed that computing a Gröbner basis
is essentially equivalent to performing linear algebra on Macaulay matrices at a
certain degree.

Definition 1 (Macaulay Matrix [45,46]). Let R be a polynomial ring over
a field K and let Bd := {m1 > m2 > · · · } be the sorted set of all monomials
of degree ≤ d for a fixed monomial ordering. Let F := {f1, . . . , f�} ⊂ R be
a set of polynomials of degrees ≤ d. For any fi ∈ F and tj ∈ Bd such that
deg(fi) + deg(tj) ≤ d, let gi,j := tjfi and let cki,j ∈ K be such that gi,j =∑

mk∈B c
k
i,jmk. The Macaulay matrix Md(F ) of degree d is a matrix containing

all the coefficients cki,j, such that each row corresponds to one polynomial gi,j
and each column to one monomial mk ∈ Bd.

The idea behind Lazard’s observation is linearization: new equations for the
ideal are constructed by algebraic combinations of the original equations, every
monomial term appearing in the new equations is treated as an independent new
variable, and the system is solved with linear algebra. Gröbner basis algorithms
like F4 [26] and F5 [27] successively construct Macaulay matrices of increasing
sizes and remove linear dependencies in the rows until a Gröbner basis is found.
Moreover, they optimize the computation by avoiding monomials tj that would
produce trivial linear combinations such as f1f2 − f2f1 = 0. The complexity of
this strategy is determined by the cost of linear algebra on the largest Macaulay
matrix occuring in the computation.

The degree of the largest Macaulay matrix appearing in a Gröbner basis
computation with the algorithm F5 is called the degree of regularity Dreg. For
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a “generic” sequence of polynomials f1, . . . , f� ∈ R (with � ≤ n), this degree

is equal to 1 +
∑�

i=1(deg(fi) − 1) [6]. The degree of regularity can be precisely
estimated in the case of regular and semi-regular sequences [6,8] and (assuming
a variant of Fröberg conjecture) in a few other cases [28,11]. However, precisely
estimating this value for other classes of systems (in particular for the various
structured systems appearing in cryptanalysis problems) may be a very difficult
task. In practice, the degree of regularity may often be approximated by the
first degree at which a non trivial degree fall occurs during a Gröbner basis
computation.

Definition 2. Let R be a polynomial ring over a field K and let F := {f1, . . . , f�}
⊂ R. The first fall degree of F is the smallest degree Dfirstfall such that there
exist polynomials gi ∈ R with maxi(deg(fi) + deg(gi)) = Dfirstfall, satisfying

deg(
∑�

i=1 gifi) < Dfirstfall but
∑�

i=1 gifi �= 0.

We haveDreg ≥ Dfirstfall. For many classes of polynomial systems, the two defi-
nitions lead to very close numbers. Although this is not true in general (counter-
examples can be easily produced), it seems to be true for “random systems”
and “most real-life systems of equations” [38, p. 350] including HFE and its
variants [30,38,24,22,23,11]. This can intuitively be explained by the observation
that an extremely large number of relations with a degree fall occur at the degree
Dfirstfall or the degreeDfirstfall+1 in these contexts, and these low degree rela-
tions can in turn be combined to produce lower degree relations [24, p. 561], until
a Gröbner basis is finally found. In fact, the first fall degree has even sometimes
been called degree of regularity in the cryptography community [24,22,23].

Many polynomial systems arising in cryptanalysis are very far from
generic ones. In fact, their special structures often induce lower degrees of reg-
ularity, hence much better time complexities. Gröbner basis techniques have suc-
cessfully attacked many cryptosystems, including HFE and its variants
[48,42,30,38,10,22,23], the Isomorphism of Polynomials [32,12] and someMcEliece
variants [31]. In many cases, the resolution of these systems could be accelerated
using dedicated Gröbner basis algorithms that exploited the particular struc-
tures. As was first pointed out in [33,34], this is also the case for polynomial
systems arising from a Weil descent.

4 Polynomial Systems Arising from a Weil Descent

Let n, n′,m be positive integers and let V be a vector subspace of F2n/F2 with
dimension n′. Let f ∈ F2n [x1, . . . ,xm] be a multivariate polynomial with de-
grees bounded by 2t − 1 with respect to all variables. In [33,34], Faugère et al.
considered the following problem:

Find xi ∈ V, i = 1, . . . ,m, such that f(x1, . . . ,xm) = 0. (1)

The constraints xi ∈ V, i = 1, . . . ,m are called linear constraints. From now
on, we assume that mn′ ≈ n such that Problem (1) has about one solution on
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average. We also assume n′ ≥ t. The multilinear case (t = 1) was first considered
in [33] and later extended in [34].

Following [33,34], Problem (1) can be reduced to a system of polynomial equa-
tions. Let {θ1, . . . , θn} be a basis of F2n over F2 and let {vi|i = 1, . . . , n′} be a ba-
sis of V over F2. We define m ·n′ variables xij over F2 such that xi =

∑n′

j=1 xijvj

and we group them into m blocks of variables Xi := {xij |j = 1, . . . , n′}. By
substituting each xi in f , decomposing in the basis {θ1, . . . , θn} and reduc-
ing by the field equations x2ij − xij = 0, we obtain 0 = f(x1, . . . ,xm) =

f
(∑n′

j=1 x1jvj, . . . ,
∑n′

j=1 xmjvj

)
= [f ]

↓
1 θ1+ . . .+[f ]

↓
n θn for some [f ]

↓
1 , . . . , [f ]

↓
n ∈

F2[x11, . . . , xmn′ ] that depend on f and on the vector subspace V . Problem (1)
can therefore be reformulated as finding a solution to the (algebraic) system

[f ]
↓
1 = 0, . . . , [f ]

↓
n = 0. (2)

Due to the bounds on the degrees of f , this system has a block structure: the
degrees of all polynomials [f ]

↓
k are bounded by t with respect to all blocks of

variables. The resolution of System (2) can therefore be greatly accelerated using
block-structured Gröbner basis algorithms [29,33,34].

Link to HFE. In this paper, we observe that a particular instance of Prob-
lem (1) had previously been studied in the cryptography literature. Indeed, the
well-known problem of inverting HFE [48,30,38] leads to a particular instance
of System (2), where the polynomial f is univariate (m = 1) and the linear con-
straints are trivial (V = F2n).

1 Interestingly, although the polynomial f used in
HFE has a particular shape (it leads to quadratic equations over F2), we will see
that this shape has generically little influence on the complexity of Problem (1).

Ten years of research on HFE systems have shown that their degrees of regu-
larity are abnormally low compared to generic systems, resulting in very efficient
attacks. Although no definitive proof of these results has been published yet, the
experimental observations of [30] are now being supported by theoretical evi-
dence such as the isolation of a subsystem with less variables [38], the existence
of many low degree equations [17], first fall degree computations [22,24] and
complexity results on the MinRank problem [11]. In this paper, we generalize
some of these results to polynomial systems arising from a Weil descent.

Experimental Observations. We start our analysis of these systems with an
experimental study of their degree of regularity for various parameters n,m, n′, t.
For each set of parameters, we generate a random vector space V of dimension
n′ and a random multivariate polynomial f(x1, . . . ,xm) with degree bounded
by 2t − 1 with respect to each variable. We then perform a Weil descent on this

1 In HFE contexts, the attacker is not given f but only a “hidden” version of Sys-
tem (2). This can be ignored in the complexity analysis of Gröbner basis algorithms
since the hiding transformation only consists of a linear combinations of the equa-
tions and a linear change of variables [48,38].
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polynomial and we append the field equations to the system. Finally, we apply
the Magma function Groebner to the result and we collect the maximal degree D
reached during the computation, as given by the Verbose output of the Magma
function. We repeat each experiment 100 times.

Table 1. Average maximal degree reached in Gröbner Basis experiments, average
computation time (in seconds) and maximal memory requirements (in MB) for random
polynomials

t n n′ m mt+ 1 Dav Time Mem.

1 6 3 2 3 3.1 0 10
1 6 2 3 4 3.8 0 10
1 8 4 2 3 3.0 0 11
1 12 6 2 3 3.6 0 11
1 12 4 3 4 4.2 0 11
1 12 3 4 5 5.3 0 14
1 12 2 6 7 7.4 1 23
1 15 5 3 4 4.1 5 20
1 15 3 5 6 6.3 7 114
1 16 8 2 3 3.0 14 25
1 16 4 4 5 5.3 16 98
1 16 2 8 9 9.6 69 3388
1 18 9 2 3 3.0 85 74
1 18 6 3 4 4.1 86 89
1 18 3 6 7 7.4 233 5398
1 20 10 2 3 3.0 487 291
1 20 5 4 5 6.2 515 733
1 20 4 5 6 6.2 669 3226

t n n′ m mt+ 1 Dav Time Mem.

2 6 3 2 5 5.1 0 10
2 6 2 3 7 6.7 0 10
2 8 4 2 5 5.1 0 11
2 9 3 3 7 7.2 0 12
2 12 4 3 7 7.1 1 38
2 12 3 4 9 9.3 2 95
2 15 5 3 7 7.0 12 263
2 16 8 2 5 5.1 13 36
3 6 3 2 7 6.6 0 10
3 12 6 2 7 7.0 1 31
3 12 4 3 10 10.1 9 70
3 12 3 4 13 12.6 70 113
3 15 5 3 10 10.0 118 2371
3 16 8 2 7 7.0 23 253
3 16 4 4 13 13.2 1891 20135
4 8 4 2 9 8.7 1 11
4 12 4 3 13 12.6 199 116
4 15 5 3 13 13.1 2904 6696

Table 1 reports the average value of D for these experiments, as well as the
average computation time and the maximal memory used (all experiments were
done on an Intel Xeon CPU X5500 processor running at 2.67 GHz, with 24 GB
RAM). As is often the case in Gröbner basis computations, our experiments were
limited more by the memory requirements than by the computation time.

For all parameter sets, the maximal degrees occuring during Gröbner basis
computations were much smaller than the degrees of regularity of regular or
semi-regular systems with the same degrees. In fact, our experiments suggest
that the degree of regularity of System (2) is not much higher than the value
mt+1. In other words since the original equations have degree mt, the degree of
regularity is essentially as small as it could be. The even lower values obtained
for all parameter sets such that t = n′ can be explained by a probable degeneracy
in the degrees of the equations. Taking m = 1, we recover known experimental
results on HFE [30].

Heuristic Upper Bound on Dreg. As a first step towards explaining these
experimental results, we follow Granboulan et al. [38] and we bound of the degree
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of regularity of System (2) from above by the degree of regularity of a smaller
system with a lower number of variables. We now suppose that {θ1, . . . , θn} is a
normal basis of F2n over F2, such that θi := θ2

i−1

for some θ ∈ F2n . Let vij ∈ F2

such that vi =
∑n

j=1 vijθj . We define nm auxiliary binary variables yij such

that xi =
∑n

j=1 yijθj . Proceeding to a Weil descent as above, we obtain a new

system2

[f ]
↓y

1 = 0, . . . , [f ]
↓y

n = 0 (3)

in the variables yij , to which we add m(n+ n′) field equations y2ij − yij = 0 and

x2ij − xij = 0, as well as mn linear equations yij =
∑n

k=1 xikvkj modeling the
linear constraints. The resulting system of m(n + n′) variables and n +m(n +
n′) +mn equations is equivalent to System (2) (with the field equations), hence
they have the same degree of regularity.

Following Granboulan et al. [38], we perform additional modifications on this
system to obtain a new system with less variables and higher or equal degree of
regularity. First, we observe that linear equations do not contribute to the degree
of regularity and can therefore be removed without affecting it. The resulting
system is composed of n +mn equations containing only the variables yij and
mn′ field equations x2ij − xij = 0. Without decreasing the degree of regularity,
we can focus on the first part containing Equations (3) and the field equations
y2ij − yij = 0.

In the next step, we observe that the degree of regularity of this system is
not affected if we see the variables yij over F2n rather than over F2. Thanks
to the field equations, the set of solutions is not affected by this change either.
We then apply an invertible linear transformation on Equations (3), defined by

Fi :=
∑n

j=1 θ
2i+j

[f ]
↓y

j for i = 1, · · · , n. This transformation implies Fi = F 2i−1

1 .

Finally, we perform a linear change of variables defined by zij :=
∑n

k=1 θ
2j+k−1

yik
for i = 1, . . . ,m, and j = 1, · · · , n. Since this corresponds to setting zi1 = xi,
zi2 = xi

2, . . . , zi,n = xi
2n−1

, each Fk only depends (linearly) on zij , k ≤ j ≤
t+k−1. A last linear transformation changes the field equations into z2ij = zi,j+1

and z2i,n = zi,1.
Since F2 = F1 · F1 modulo the field equations, the polynomial F2 can be

expressed at the degree 2mt as an algebraic combination of F1 and the field
equations. Similarly, all polynomials Fi, i ≥ 2 can be recovered at degree 2mt
from algebraic combination of F1 and the field equations. Therefore, the degree
of regularity of the original system is smaller than the maximum of 2mt and
the degree of regularity of the system {F1 = 0; z2ij = zi,j+1, i = 1, . . . ,m, j =

1, . . . , n − 1; z2i,n = zi,1, i = 1, . . . ,m}. Finally like [38], we bound this last de-

gree by the degree of regularity of the subsystem {F1 = 0; z2ij = zi,j+1, i =
1, . . . ,m, j = 1, . . . , t − 1}. Assuming that this system behaves like a generic
system with the same degrees and the same number of variables3, its degree of

2 We add a subscript y to the arrows in System (3) to stress that the Weil descent is
done on the yij variables and to distinguish this system from System (2).

3 A similar assumption of semi-regularity is needed in [38] to apply Bardet’s theorem.
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regularity can be bounded by m(2t − 1) using Macaulay’s bound. Under this
heuristic assumption, we conclude that the degree of regularity of System (3) is
bounded by 2mt.

We point out that the value 2mt is already much below the degree of regularity
of a generic system of equations (or even a generic binary system of equations)
with the same degrees [6,7]. Still, our experiments suggest that this bound is
not even tight. A tighter bound can be obtained with a seemingly stronger (yet
“classical”) heuristic assumption.

First Fall Degree. An important characteristic of HFE systems is the existence
of many algebraic combinations of the equations that have a degree lower than
it would be expected for a generic system. Similar low degree equations were
identified for System (2). More precisely, Faugère et al. [33,34] showed that for
any monomial m ∈ F2n [x1, . . . ,xn′ ], the equations obtained by applying a Weil
descent on the polynomial mf are algebraic combinations of the equations of
System (2) that produce a degree fall. By the way they are constructed, the
existence of these equations is very specific to polynomial systems arising from
a Weil descent. For m := x1, we immediately deduce:

Proposition 1. The first fall degree of System (2) is at most mt+ 1.

This proposition provides a heuristic explanation for the degrees of regularity
observed above since the first fall degree is often a good approximation of the
degree of regularity. As recalled in Section 3, this heuristic assumption is “classi-
cal” in algebraic cryptanalysis, and it has in particular been verified for various
HFE-like systems [38,24,22].

Assumption 1. Let n,m, t, n′ ∈ Z. Let f be generated as in our experiments.
For all but a negligible fraction of the resulting systems, we have Dreg =
Dfirstfall + o(Dfirstfall).

The assumption intuitively makes sense for System (2) since not only one but
many degree falls are occuring at degree Dfirstfall and the next ones (each
monomial m leads to new degree falls).

Heuristic Complexity Bounds for Problem (1). Given the degree of regu-
larity, the complexity of Problem 1 simply follows from the cost of linear algebra.

Proposition 2. If Assumption 1 holds, Problem 1 can be solved with standard
Gröbner basis algorithms (like F4 or F5) in time O(nωD) and memory O(n2D),
where ω is the linear algebra constant and D ≈ mt.

In the univariate case, this estimation reduces to D ≈ t which perfectly matches
known cryptanalysis results on HFE algebraic systems [30,38]. Interestingly, the
special shape of HFE polynomials (they deploy to quadratic equations over F2)
seems to have no impact on the degree of regularity (although further restrictions
on the shape may have an impact as pointed out in [22]). In the multilinear case,
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the estimation provided by Proposition 2 becomes D ≈ m which matches the
experimental data of [33].

As observed in [33,34], the block structure of System (2) can be exploited to
accelerate its resolution.

Proposition 3. If Assumption 1 holds, Problem 1 can be solved with block
Gröbner basis algorithms in time O((n′)ωD) and memory O((n′)2D), where ω is
the linear algebra constant and D ≈ mt.

Additional heuristic methods like hybrid approaches (consisting in mixing ex-
haustive search and polynomial system resolution [52,9]) may lead to substantial
complexity improvements in practice, as was described in [33] for the multilinear
case.

5 Index Calculus for Elliptic Curves

We now turn to the main application (so far) of Problem (1). As pointed out
in [34], an instance of Problem (1) appears in the relation search step of an in-
dex calculus algorithm for elliptic curves proposed by Diem [21]. Given a cyclic
(additive) group G, a generator P of this group and another element Q of G, the
discrete logarithm problem asks for computing an integer k such that Q = kP .
Groups typically used in cryptography include the multiplicative groups of finite
fields, groups of points on elliptic curves and hyperelliptic curves and Jaco-
bians of higher genus curves. Index calculus algorithms [43,25] with subexponen-
tial complexities have long been obtained for the multiplicative groups of finite
fields [1,16,2,5,39] and more recently for the Jacobian groups of hyperelliptic
curves [3,36,35].

In 2004, Semaev introduced his summation polynomials and identified their
potential application to build index calculus algorithms on elliptic curves [51]
over prime fields Fp. These ideas were independently extended by Gaudry [37]
and Diem [20] to elliptic curves over composite fields Fpn . Following this ap-
proach, Gaudry [37] and later Joux and Vitse [40,41] obtained index calculus
algorithms running faster than generic algorithms for any p and any n ≥ 3. On
the other hand, Diem [20,21] identified some families of curves with a subexpo-
nential time index calculus algorithm by letting p and n grow simultaneously
in an appropriate way. As far as was known at the moment, the two families of
elliptic curves recommended by standards [47] (elliptic curves over prime fields
Fp or over binary fields F2n with n prime) remained immune to these attacks.
In 2012, Faugère et al. [34] observed that the computation of the relations in an
algorithm of Diem for binary fields [21] could be reduced to special instances of
Problem (1).

Diem’s Variant of Index Calculus. Let K be a finite field and let E be an
elliptic curve over K defined by the equation E : y2 + xy = x3 + a2x

2 + a6
for some a2, a6 ∈ F2n . Semaev’s summation polynomials Sr are multivariate
polynomials satisfying Sr(x1, . . . ,xr) = 0 for some x1, . . . ,xr ∈ K̄ if and only
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if there exist y1, . . . ,yr ∈ K̄ such that (xi,yi) ∈ E(K̄) and (x1,y1) + · · · +
(xr,yr) = P∞ [51]. The summation polynomials can be recursively computed
as S2(x1,x2) := x2 + x1, S3(x1,x2,x3) := x1

2x2
2 + x1

2x3
2 + x1x2x3 +

x2
2x3

2 + a6 and for any r ≥ 4, any k, 1 ≤ k ≤ r − 3, Sr(x1, . . . ,xr) :=
ResX (Sr−k(x1, . . . ,xm−k−1,X),Sk+2(xr−k, . . . ,xr,X)) . For r ≥ 2, the poly-
nomial Sr is symmetric and has degree 2r−2 in every variable xi [51].

Summation polynomials were used by Gaudry [37], Joux and Vitse [40] and
Diem [20,21] to compute relations in index calculus algorithms for elliptic curves
over composite fields. The following variant is an adaptation of Diem [21].

1. Factor Basis definition. Fix two integers m,n′ < n with mn′ ≈ n and a
vector space V ⊂ F2n/F2 of dimension n′. Let FV := {(x,y) ∈ E(K)|x ∈ V }
be the factor basis.

2. Relation search. Find about 2n
′
relations aiP + biQ =

∑m
j=1 Pij with

Pij ∈ FV . For each relation,
(a) Compute Ri := aiP + biQ for random integers ai, bi.
(b) Solve Semaev’s polynomial Sm+1(x1, . . . ,xm, (Ri)x) with the constraints

xi ∈ V .
(c) If there is no solution, go back to (a).

3. Linear Algebra. Perform linear algebra on the relations to recover the
discrete logarithm value.

In previous works [37,20,21,40], a Weil descent was applied to Semaev’s poly-
nomials and the resulting systems were solved with resultants or Gröbner basis
algorithms. In these works, the complexity of the relation search step was de-
rived from the complexity of solving generic systems. However as pointed out
in [33,34] and further demonstrated in Section 4 of the present paper, polynomial
systems arising from a Weil descent are very far from generic ones.

A New Complexity Analysis. We now revisit Diem’s algorithm [21] and
its analysis by [34] in accordance with our new analysis of Problem (1). Let
n,m, n′ be integer numbers. Before starting Diem’s algorithm, the (m+1)th sum-
mation polynomial must be computed. Using Collins’ evaluation/interpolation
method [15] for the resultant, this can be done in time approximately 2t1 where4

t1 ≈ m(m+1). We then compute about 2n
′
relations. To obtain these relations,

we solve special instances of Problem (1) where f(x1, . . . ,xm) := Sm+1(x1, . . . ,
xm, (aiP+biQ)x) has degree 2

m−1 with respect to every variable. Since Semaev’s
polynomials are clearly not random ones, we perform additional experiments.

In our experiments, we apply Diem’s algorithm to a randomly chosen binary
curve E : y2+xy = x3+a2x

2+a6 defined over F2n , where n ∈ {11, 17}. We first
fix m ∈ {2, 3} and n′ := �n/m�. We then generate a random vector space V of
dimension n′ and a random point R on the curve such that f has solutions. As
in Section 4, we finally use the Groebner function of Magma to solve Semaev’s

4 To compute Sm+1, we apply Collins’ algorithm on Sk where k = �m+3
2
�. This

polynomial has degree 2	(m−1)/2
 in each variable. Following Collins, Theorem 9,
we have t1 ≤ 2(m+ 1)m/2 = m(m+ 1).
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Table 2. Average maximal degree reached in Gröbner Basis experiments, average
computation time (in seconds) and maximal memory requirements (in MB) for Semaev
polynomials. (R): Random curves. (K): Koblitz curves.

E n n′ m t mt+ 1 Dav Time Mem.

K 11 6 2 2 5 3.0 0 11
K 11 4 3 3 10 7.1 1 15
K 17 9 2 2 5 4.0 0 15
K 17 6 3 3 10 7.2 132 2133

E n n′ m t mt+ 1 Dav Time Mem.

R 11 6 2 2 5 3.0 0 11
R 11 4 3 3 10 7.1 1 15
R 17 9 2 2 5 4.0 0 16
R 17 6 3 3 10 7.1 130 2136

equation Sm+1(x1, . . . ,xm, Rx) = 0 with the linear constraints. We repeat this
experiment 100 times for each parameter set, then we repeat all our experiments
with the Koblitz curve E : y2+xy = x3+x2+1. The average value of the maximal
degrees reached during the computation, the average computation time and the
maximal memory requirements are reported in Table 2.

In all cases, the maximal degrees reached in the computations were even
below the first fall degree bound given by Proposition (1). This phenomenon is
probably due to the sparsity of Semaev’s polynomials and will be exploited in
future work (in particular, the degree of Sm+1 with respect to every variable
is 2m−1 but bounded by 2m − 1 in the analysis of Section 4). From now on in
the analysis, we ignore this difference and analyze Semaev’s polynomials as the
random polynomials of Section 4.

Assumption 2. Assumption 1 still holds if f is generated from Semaev’s poly-
nomials as in the experiments of this section.

Under Assumption (2), Step 2(b) of Diem’s algorithm can be solved using a
dedicated Gröbner basis algorithm taking advantage of the block structure, in a
time (n′)ωD, where D ≈ (m2+1) and ω is the linear algebra constant. Once the
x components of a relation have been computed, the y components can be found
by solving m quadratic equations and testing each possible combination of the
solutions. This requires a time roughly 2m, that can be neglected. On average,
the probability that a point Ri := aiP + biQ can be written as a sum of m

points from the factor basis can be heuristically approximated by 2mn′−n

m! [21].
Assuming mn′ ≈ n, the total cost of the relation search step can therefore be
approximated by 2t2 , where t2 ≈ m logm+ n′ + ω(m2 + 1) logn′.

The last step of Diem’s algorithm consists in (sparse) linear algebra on a
matrix of rank about 2n

′
with about m elements of size about n bits per row.

This step takes a time approximately equal tomn2ω
′n′

= 2t3 , where t3 ≈ logm+
logn+ω′n′ and ω′ is the sparse linear algebra constant. If Assumption (2) holds
and if mn′ ≈ n, the total time taken by Diem’s algorithm can be estimated by
T := 2t1 + 2t2 + 2t3 , where t1, t2, t3 are defined as above.

On the Hardness of ECDLP in Characteristic 2. We now evaluate the
hardness of the elliptic curve discrete logarithm problem over the field F2n for
“small” values of n. In our estimations, we use ω = log(7)/ log(2) and ω′ = 2.
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Table 3. Complexity estimates for Diem’s algorithm in characteristic 2

n m n′ t1 t2 t3 tmax

50 2 25 6 92 57 92
100 2 50 6 131 108 131
160 2 80 6 171 168 171
200 2 100 6 195 209 209
500 3 167 12 379 344 379
1000 4 250 20 638 512 638

n m n′ t1 t2 t3 tmax

2000 4 500 20 936 1013 1013
2500 5 500 30 1166 1014 1166
5000 6 833 42 1857 1682 1857
10000 7 1429 56 2919 2873 2919
20000 9 2222 90 4810 4462 4810
50000 12 4167 156 9105 8353 9105

We consider n ∈ {50, 100, 160, 200, 500, 1000, 2000, 2500, 5000, 104, 2 · 104, 5 ·
104, 105, 2 · 105, 5 · 105, 106} and m ∈ {2, . . . , n/2}. For every pair of values, we
compute values t1, t2 and t3 as above. Finally, we approximate the total running
time of Diem’s algorithm by 2tmax where tmax := max(t1, t2, t3). For every value
of n, Table 3 presents the data corresponding to the value m for which tmax

is minimal. We point out that the numbers obtained here have to be taken
cautiously since they all rely on Assumption 2 and involve some approximations.

According to our estimations, Diem’s version of index calculus (together with
a sparse Gröbner basis algorithm) beats generic algorithms for any n ≥ N ,
where N is an integer close to 2000. An actual attack for current cryptograph-
ically recommended parameters (n ≈ 160) seems to be out of reach today, but
the numbers in [34] suggest that medium-size parameters could be reachable
with additional Gröbner basis heuristics like the hybrid method [9]. Large prime
variations [35] of Diem’s algorithm may also lead to substantial improvements
in practice. This will be investigated in further work.

Letting n grow and fixing n′ := nα and m := n1−α for a positive constant
α < 1, we obtain

t1 ≈ n2(1−α),

t2 ≈ (1− α)n1−α logn+ nα + αωn2(1−α) logn,

t3 ≈ (2− α) logn+ ω′nα

Taking α := 2/3, the relation search dominates the complexity of the index
calculus algorithm and we deduce the following result.5

Proposition 4. Under Assumption 2, the discrete logarithm problem over F2n

can asymptotically be solved in time O(2cn
2/3 log n), where c := 2ω/3 and ω is the

linear algebra constant.

In particular if the Gaussian elimination algorithm is used for linear algebra, we
have ω = 3 and c = 2. We stress that Proposition 4 holds even when n is prime.
Until now, the best complexity estimates obtained in that case corresponded to
generic algorithms that run in time 2n/2.

5 Note that the weaker bound Dreg ≤ 2mt derived in Section 4 with Macaulay’s bound
also leads to a subexponential complexity but with a constant c = 4ω/3.
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6 Conclusion and Perspectives

In this paper, we revisited the complexity of solving polynomial systems arising
from a Weil descent, a class of polynomial systems previously introduced by
Faugère et al. [33,34]. We observed that these systems can be seen as natural
extensions of HFE systems and we generalized various results on HFE. Based on
experimental results and heuristic arguments, we conjectured that the degree of
regularity of these systems are only slightly larger than their original degrees, and
we deduced new heuristic bounds on their resolution. Interestingly, our bounds
nicely generalize previous bounds on HFE.

The most proeminent consequence of our analysis so far concerns the ellip-
tic curve discrete logarithm problem (ECDLP) over binary fields. Indeed, our
heuristic analysis suggests that ECDLP can be solved in subexponential time

O(2c n
2/3 logn) over the binary field F2n , where c is a constant smaller than 2.

This complexity is obtained with an index calculus algorithm due to Diem [20]
and a block-structured Gröbner basis algorithm. In practice, our estimations
predict that the resulting algorithm is faster than generic algorithms (previ-
ously thought to be the best algorithms for this problem) for any n larger than
N , where N is an integer approximately equal to 2000. In particular, binary
elliptic curves of currently recommended sizes (n ≈ 160) are not immediately
threatened.

Our complexity estimates are based on heuristic assumptions that differ from
other index calculus algorithms, but are common in algebraic cryptanalysis. The
polynomial systems appearing in the cryptanalysis of HFE have been intensively
studied in the last 15 years, yet we have no definitive proof for their commonly
admitted complexity. Our paper broadens the interest of these researches to all
polynomial systems arising from a Weil descent and to their various applications.
We leave further experimental and theoretical investigation of our heuristic as-
sumptions to further work.

To conclude this paper, we point out that most of our results generalize quite
easily to other fields, resulting in comparable asymptotic complexities.
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Abstract. The performance of the elliptic curve method (ECM) for in-
teger factorization plays an important role in the security assessment
of RSA-based protocols as a cofactorization tool inside the number field
sieve. The efficient arithmetic for Edwards curves found an application by
speeding up ECM. We propose techniques based on generating and com-
bining addition-subtracting chains to optimize Edwards ECM in terms of
both performance and memory requirements. This makes our approach
very suitable for memory-constrained devices such as graphics processing
units (GPU). For commonly used ECM parameters we are able to lower
the required memory up to a factor 55 compared to the state-of-the-art
Edwards ECM approach. Our ECM implementation on a GTX 580 GPU
sets a new throughput record, outperforming the best GPU, CPU and
FPGA results reported in literature.

Keywords: Elliptic curve factorization, cofactorization, addition-
subtraction chains, twisted Edwards curves, parallel architectures.

1 Introduction

Today, more than 25 years after its invention by Hendrik Lenstra Jr., the elliptic
curve method [24] (ECM) remains the asymptotically fastest integer factoriza-
tion method for finding relatively small prime factors of large integers. Although
it is not the fastest general purpose integer factorization method, when factoring
a composite integer n = pq with p ≈ q ≈ √

n the number field sieve [32,23] (NFS)
is asymptotically faster, it has recently received a renewed research interest due to
the discovery of an interesting normal form for elliptic curves introduced by Ed-
wards [13]. From a cryptologic point of view the practical performance of ECM is
important since it is used to rapidly factor many small (up to one or two hundred
bits) integers inside NFS. This is illustrated by the fact that it is estimated that
five to twenty percent (cf. Section 2.2 why this is hard to estimate) of the total wall-
clock time was spent in ECM in the current world-record factorization of a 768-bit
RSA number [20] (and it is expected that this percentage will grow for larger fac-
torizations). Using ECM as a tool to factor many small numbers inside NFS is
an active research area by itself. Offloading this work to reconfigurable hardware
such as field-programmable gate arrays is studied in [37,16,11,17,25,40] while [5,4]
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considers parallel architectures such as graphics processing units (GPUs) and the
Cell broadband engine architecture. A comparison between software and hard-
ware based solutions is presented in [21]. Traditionally, ECM is implemented us-
ing Montgomery curves [26] and uses the various techniques described in [39]. The
most-widely used ECM implementation is GMP-ECM [41] and this implementa-
tion, or modifications to it, is responsible for setting all recent ECM record fac-
torizations (see a description of some of these record factorizations in [8]). After
the invention of Edwards curves Bernstein et al. explored the possibility to use
these curves in the ECM setting [3]. Hisil et al. [19] published a coordinate system
for Edwards curves which results in the fastest known realization of curve arith-
metic. A follow-up paper by Bernstein et al. discusses the usage of these “a = −1”
twisted Edwards curves [1] for ECM. The speedup from switching to Edwards
curves comes at a price, addition chains [35] (or addition-subtraction chains [28])
equipped with large windowing sizes [9] are used (cf. [6] for a summary of these
techniques). The memory requirement for Edwards ECM grows roughly linearly
with the input parameters of ECM while a small constant number of residues mod-
ulo n are sufficient when using Montgomery curves.

In this paper we optimize ECM by exploiting the fact that the same scalar
is often used when computing the elliptic curve scalar multiplication (ECSM),
allowing one to prepare particularly good addition-subtraction chains for these
fixed scalars. Our approach is inspired by the ideas used in the ECM implemen-
tation by Dixon and Lenstra [12] from 1992. In [12] the total cost to compute the
ECSM, in terms of point doubling and point additions, is lowered by testing if
the computation of the ECSM using batches of small prime products is cheaper
(requires fewer point additions) than processing the primes one at a time (or all
in one big batch). We generalize this idea: many billions of integers, which are
constructed such that they can be computed using an addition-subtraction chain
with a high doubling/addition ratio, are tested for smoothness and factored. By
fixing different popular elliptic curve scalar values used in ECM inside NFS we
are able to combine some of these integers using a greedy approach. This results
in a more efficient ECSM algorithm with a smaller memory footprint. To il-
lustrate, compared to the cofactorization setting considered by Bernstein et al.
in [5,4] (using the parameter B1 = 213) the techniques from this paper reduce
the memory by a factor 55. This makes our approach particularly interesting
for environments where the memory (per thread) is constrained; e.g. GPUs. We
illustrate the practical benefits by implementing this approach for GPUs: setting
a new throughput speed record compared to the current CPU, GPU and FPGA
based results reported in literature. The best addition-subtraction chains found
for the various popular B1 values can be found online [7].

This paper is organized as follows. After recalling the preliminaries in Section 2
the notation and basic idea behind elliptic curve constant scalar multiplication
is discussed in Section 3. Section 4 explains how to combine these chains such
that they might result in a faster and more memory efficient ECM. Section 5
explains a side-effect why certain chains require more modular multiplications
and Section 6 presents the obtained results. Section 7 concludes the paper.
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2 Preliminaries

2.1 The Elliptic Curve Method

The elliptic curve method (ECM) for integer factorization [24] is analogous to the
Pollard p−1 integer factorization method [33] and attempts to factor a composite
integer n. The general idea behind ECM is as follows (we follow the description
from [24]). First, pick a random point P and construct an elliptic curve E over
Z/nZ such that P ∈ E(Z/nZ) (cf. [22, Sec. 2.B]). Next, compute the elliptic
curve scalar multiplication Q = kP ∈ E(Z/nZ). The positive integer k is selected
such that it is divisible by many small prime powers: e.g. k = lcm(1, 2, . . . , B1)
for some bound B1 ∈ Z. If for a prime p dividing n the order #E(Fp) is B1-
powersmooth (an integer is defined to be B-powersmooth if none of the prime
powers dividing this integer is greater than B) then #E(Fp) | k. In other words,
Q = kP and the neutral element of the curve become the same modulo p. In
this event we have p | gcd(n, Qz), where Qz is the z-coordinate of the point Q
when using projective Weierstrass coordinates. If gcd(n, Qz) �= n then we have
split n.

Hasse proved (see e.g. [36, Theorem 1.1]) that the order #E(Fp) is in the
interval [p + 1 − 2

√
p, p + 1 + 2

√
p]. The advantage of ECM is that one can

randomize the group order by trying different curves. It has been shown in [24]
that the (heuristic) run-time of ECM depends mainly on p, the smallest non-
trivial prime divisor of n, and can be expressed as

O(exp((
√

2 + o(1))(
√

log p log log p))M(log n))

where M(log n) represents the complexity of multiplication modulo n and the
o(1) is for p → ∞. The approach described here is often referred to as “stage 1”.
There is a “stage 2” continuation for ECM which takes as input a bound B2 ∈ Z
and succeeds (in factoring n) if Q = kP has prime order � (for B1 < � < B2) in
E(Fp). This means that #E(Fp) is B1-powersmooth except for one prime factor
which is below B2. There are several techniques [10,26,27] how to perform stage
2 efficiently. In the following we will focus on stage 1 only.

2.2 Cofactorization Using ECM

The relation collection phase, one of the two main phases of NFS, generates a lot
of composite integers which need to be tested for powersmoothness. This is done
using different factorization techniques and is denoted as the cofactorization
phase. To illustrate, the total time spent in the cofactorization procedure was
roughly one third of the sieving time when factoring the 768-bit RSA modulus
in [20]. Note that this one third includes the time of pseudo primality tests and
different factorization methods: quadratic sieve [34], Pollard p − 1 [33] and ECM.
In this cofactorization phase only composites up to 140 bits were considered and
ECM was used only for composites up to 109 bits. The parameters for ECM
varied depending on the size of the composites and ranged from B1 = 150 to
B1 = 500 where often only a single curve was tried with a maximum of around
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Table 1. Performance comparison between GMP-ECM and EECM-MPFQ using the
“a = −1” twisted Edwards curves in terms of modular multiplications (M) and squar-
ings (S) together with the required number of residues modulo n (R) which needs to
be kept in memory.

B1
GMP-ECM [41] EECM-MPFQ [3]

#S #M #S+#M #R #S #M #S+#M #R

256 1 066 2 025 3 091 14 1 436 1 638 3 074 38
512 2 200 4 210 6 410 14 2 952 3 183 6 135 62

1024 4 422 8 494 12 916 14 5 892 6 144 12 036 134
8192 35 508 68 920 104 428 14 47 156 45 884 93 040 550

eight curves. Observing the trend of past record factorizations, it is conceivable
that cofactorization becomes more important in bigger factorizations (cf. [5] for
more detailed arguments about the significance of ECM in NFS).

2.3 Montgomery versus Edwards Curves

The main motivation to use Edwards (over Montgomery) curves is performance.
There is one implementation of ECM using Edwards curves available: EECM-
MPFQ. This implementation includes the “a = 1” Edwards curves approach
from [3] and the “a = −1” Edwards curves approach from [1]. The a = −1
Edwards ECM approach is the fastest in practice and we use this as the base
setting to compare to. Table 1 compares the required number of multiplications
and squarings required in GMP-ECM and EECM-MPFQ for different typical
B1 values used in ECM when used as a cofactorization method in NFS. These
numbers show that using Edwards curves results in fewer modular multiplica-
tions and squarings. However, the required storage for GMP-ECM (Montgomery
curves) is independent of B1 while it grows almost linearly with the size of B1

and is significantly higher, due to the use of windowing based methods, for
EECM-MPFQ (Edwards curves, see [3, Table 4.1]).

3 Elliptic Curve Constant Scalar Multiplication

Most of the addition-subtraction chains based algorithms in practice use a w-
bit windowing technique, for some (optimal) width w, to reduce the number of
required elliptic curve additions. The total number of additions may be signifi-
cantly reduced by using this approach but one also needs to store more points:
2w−1 when using sliding windows [38]. In environments where the available mem-
ory per thread is low, these methods cannot be used or one is forced to settle
for a suboptimal window size. A prime example of such a platform are graphics
processing units (GPUs); one of the latest GPU architectures [29] (Fermi) shares
64 kilobyte fast shared memory per 32 processors and each processor typically
time-shares multiple threads (e.g., 16 to 32 corresponding to 128 to 64 bytes per
thread).
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We investigate two approaches to lower the number of elliptic curve additions
and the storage required to compute the scalar product. Our approach is inspired
by the results reported by Dixon and Lenstra [12]. Suppose we have a scalar
k = lcm(1, . . . , B1) =

∏�
i=1 pi, where the pi are primes which can occur multiple

times. Typically, the ECSM is implemented processing one such pi at a time [39].
In [12] it is suggested to process the pi in batches ; i.e. multiply a batch of pi’s at
a time such that the weight of the product w(

∏
i pi), the number of ones in the

binary representation of
∏

i pi, is (much) lower than the sum of the individual
weights

∑
i w(pi). If this is the case then the number of required EC-additions

is reduced when using the straight forward double-and-add approach (which
does not require to store any additional precomputed points). Such low-weight
products can be constructed by greedily searching through b-tuples of the pi

where b is small. In [12] b was at most 3 which reduced the total weight by
approximately a factor three. As an example the following triple is given

1028107 · 1030639 · 1097101 = 1162496086223388673
w(1028107) = 10, w(1030639) = 16, w(1097101) = 11,

w(1162496086223388673) = 8,

where the product of primes of weights 10, 16, and 11 results in a integer of weight
eight. The resulting composite integer can be computed using an addition chain
requiring only seven additions and 60 doublings using the naive double-and-add
algorithm.

In this section we explore different methods to find numbers which can be con-
structed using even better (higher) doubling/addition ratios. These methods do
not aim to construct sequences by combining the different pi (as in [12]) but we
propose an opposite approach by factoring many integers which are the result of
addition-subtraction chains with high doubling/addition ratios and subsequently
combining these integers such that all pi’s are used. These addition-subtraction
chains are constructed such that they do not require any large lookup tables.
Notice that the information encoding the sequence of arithmetic operations has
to be stored (in all approaches). This does not pose a problem since this in-
formation is constant and can be shared among all the computational units (or
streamed to the units or even hardcoded) and hence does not result in additional
overhead in practice.

In the remainder of the paper we denote addition-subtraction chains simply
as chains.

3.1 Chains with Restrictions

In order to generate integers which can be computed using a chain with a high
doubling/addition ratio we need to construct and denote chains of a certain
length m. A chain is a sequence of doublings, additions and subtractions denoted
by D, A and S respectively. A doubling can always be assumed to apply to the
previously generated element in the chain (instead of doubling any previous
element), since one can reorder the symbols such that doubling always occurs
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on the last element without changing the result of the chain. In some cases this
might result in a shorter (more efficient) sequence when the same element is
doubled multiple times. Let us define the set of symbols O as

O = {D} ∪ {Ai,j | i, j ∈ Z, i > j} ∪ {Si,j | i, j ∈ Z, i > j},
where the subscripts indicate on which element in the chain we compute (this is
made more precise later). The set of all m-tuples, ordered lists of m elements, of
symbols in O with the restriction that no elements can be used which have not
yet been generated is

Om = {(om−1, . . . , o0) ∈ Om |ok ∈ {D}∪{Ai,j | i ≤ k}∪{Si,j | i ≤ k}, 0 ≤ k < m}.
In order to construct a chain from such an m-tuple of symbols we define functions
σm : O × Zm+1 → Zm+2 such that (o, (tm, . . . , t0)) �→ (tm+1, tm, . . . , t0) where

tm+1 =

⎧⎨⎩
2tm if o = D,
ti + tj if o = Ai,j ,
ti − tj if o = Si,j .

Given an m-tuple of symbols (om−1, . . . , o0) ∈ Om the (m + 1)-tuple of integers
associated to this chain is σm−1(om−1, σm−2(om−2, . . . , σ0(o0, 1) . . .)) and the
resulting integer produced by this chain is tm. As an example consider the 7-tuple
of symbols (S6,0, D, D, A3,0, D, D, D) ∈ O7 which corresponds to the 8-tuple of
integers in the chain (35, 36, 18, 9, 8, 4, 2, 1) computed as

σ6(S6,0, σ5(D, σ4(D, σ3(A3,0, σ2(D, σ1(D, σ0(D, 1))))))).

The function σm is the correspondence between a tuple of symbols and the actual
chain. The example shows how to compute the resulting integer 35 using one
subtraction, one addition and five doublings.

The set of tuples Om consists of the most generic type of chains, a signif-
icant amount of tuples corresponds to chains which perform useless (unneces-
sary) computations. An example is computing the addition (or subtraction) of
two previous values without using this result. To address this we define a more
restricted set of tuples Pm ⊂ Om as

Pm = {(om−1, . . . , o0) ∈ Om |ok ∈ {D}∪{Ai,j | i = k}∪{Si,j | i = k}, 0 ≤ k < m}.
These additional restrictions ensure that, just as for the doubling, we only add or
subtract to the last integer in the sequence to obtain the next one. Such chains
are known as Brauer chains or star addition chains [18, Section C6].

In this setting we write Aj and Sj for Ai,j and Si,j , respectively, and k > 0
subsequent instances of D are denoted by Dk. The previous example can now
be written as S0D

2A0D
3 ∈ P7 by abusing the notation: omitting the brackets

and comma’s. In practice we would generate sequences of symbols such that
a number of elliptic curve additions A and doublings D are fixed and look at
sequences of symbols of length m = A + D which use A times Aj or Sj and
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D times D. Different tuples might compute the same integer result. Using our
example, the number 35 can be obtained with D = 5 and A = 2 in different
ways

35 = (23 + 1) · 22 − 1 S0D
2A0D

3 ∈ P7

= (24 + 1) · 2 + 1 A0DA0D
4 ∈ P7.

3.2 Generating Chains

We discuss how to efficiently generate the resulting integers tm in a low-storage
and no-storage setting.

The Low-Storage Setting. Let A be the number of elliptic curve additions
and D the number of elliptic curve doublings (with D ≥ A). The generation
of all the tuples in Pm, with m = A + D results in many identical integers
tm. Removing these duplicate integers can be achieved by first generating and
storing all the resulting integers and subsequently sorting and keeping exactly
one of consecutive equal integers. To avoid storing all the resulting integers for a
given pair (A,D), which requires a significant amount of storage as we will see
later, and to avoid sorting this huge data set we define a more restricted set of
rules Qm ⊂ Pm ⊂ Om as follows

Qm =
{
(om−1, . . . , o0) ∈ Pm | o0 = D, om−1 ∈ {Ai, Si}, and for 0 < k < m − 1:

ok ∈ {D} ∪ {Ai, Si}, ok ∈ {Ai, Si} ⇒ ok−1 = D
∧ (i = 0 ∨ oi−1 ∈ {A�, S�})

}
.

The restrictions used in the definition of Qm ensure that the resulting integer is
odd and only addition (or subtraction) of an odd number to the current (even)
number is allowed. This approach significantly reduces the amount of chains
which produce the same resulting integer at the cost of slightly reducing the
number of unique integers produced. To illustrate, for D = 50 the total number
of tuples generated by P53 is more than 140 times higher compared to Q53 while
the number of unique odd resulting integers is only 1.09 times higher.

The list of m + 1 integers ui corresponding to the m-tuple of symbols from
Qm can be efficiently generated recursively using

ui+1 =
{

2ui

ui ± uj for j < i and 2 | ui, 2 � uj

with u0 = 1 and ensuring that the final operation is not a doubling (to make
the resulting integer odd). Hence, the next integer in the sequence can always
be obtained by doubling or adding a previous odd number uj to the current
even integer ui. The required storage depends on which uj are used in subse-
quent additions and at which indices they are used. In practice we generate all
sequences using a fixed number of doublings D and additions A making sure
that the resulting storage requirement is never too large.

A sequence of additions and doublings corresponding to the chains resulting
from Qm looks like

AiA−1D
dA−1 ... Ai1D

d1Ai0D
d0 =(AiA−1D)DdA−1−1... (Ai1D)Dd1−1(Ai0D)Dd0−1

(1)
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with D =
∑A−1

i=0 di, di > 0, and indices ij that satisfy the restrictions of Qm,
i.e., ij takes one of the values

∑h
g=0(dg + 1) for −1 ≤ h < j. Such a sequence

starts with a doubling, ends with an addition and an addition is always preceded
by a doubling. Hence, there are

(D−1
A−1

)
choices for the order of the A − 1 pairs

(Aij D) and the D − A doublings D. Since every addition can be substituted
by a subtraction the number of possibilities is multiplied by a factor 2A. The
indices ij can be chosen in A! ways, hence the total number of resulting integers
produced by Qm is(

D − 1
A − 1

)
·A! · 2A = 2A · A ·

A−1∏
i=1

(D − A + i).

The No-Storage Setting. The second setting we consider is constructing
chains which do not require any additional stored points, besides the in- and
output (and possibly some auxiliary variables required to calculate the elliptic
curve group operation). This means we are looking for integers which can be
computed using chains which only use doublings and add or subtract the input
point. We can define the set of tuples Rm ⊂ Qm as Rm = {(om−1, . . . , o0) ∈
Qm | ok ∈ {A0, S0, D}, 0 ≤ k < m}. All resulting integers of no-storage chains
which can be constructed using A elliptic curve additions and D elliptic curve
doublings are of the form

2D +
A−1∑
i=0

±2ni, with 0 = n0 < n1 < . . . < ni < . . . < nA−1 < D.

This follows from (1) by setting ij = 0; we have ni =
∑i

g=1 dA−g. Using the
same argument as in the low-storage setting the number of resulting integers
generated by Rm is

(D−1
A−1

) ·2A. Compared to the low-storage setting the number
is reduced by a factor of A!, reflecting the missing choice of the indices ij.

4 Combining Chains

Recall that, given a bound B1, we want to perform an elliptic curve scalar
multiplication with the integer k =

∏�
i=1 pi = lcm(1, . . . , B1) where the product

ranges over � (not necessarily distinct) primes. We can get rid of the problems
posed by the primes 2 in this product by noticing that they can be handled by a
sequence of doublings at the end of the ECSM and assuming in the following that
all si are odd. The techniques from the previous section provide us with a lot of
integers which can be constructed using a known number of additions (here we
count subtractions as additions) and doublings. Since different chains can lead
to the same integer we pick for each of these integers one chain (preferably the
one with the lowest cost). In this way we get a list of distinct integers, each with
an associated chain. We index this list by an index set I and call si the integer
corresponding to i ∈ I. For i ∈ I denote by add(si) resp. dbl(si) the number
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of additions resp. doublings in the chain and by {si,1, . . . , si,ti} the multiset of
the primes in the prime decomposition of si. Furthermore, let cost(si) be the
cost of performing a scalar multiplication with si using the associated chain. A
reasonable choice for Edwards curves is cost(si) = 7dbl(si)+8add(si)+1 which
will be discussed in the next section.

Ideally, we want to find a subset I ′ ⊂ I such that k | ∏
i∈I′ si and

∑
i∈I′ cost(si)

is minimal. To facilitate our task we will modify this in two ways. If the product
in the first condition is bigger than k we do more work than necessary. This
can lead to a lower cost, but we assume that replacing the first condition by
k =

∏
i∈I′ si will not increase the minimum of

∑
i∈I′ cost(si) significantly. The

second modification is the replacement of
∑

i∈I′ cost(si) by
∑

i∈I′ add(si). To
explain why we think that this does not increase the minimum too much we
consider subsets I ′ for which

∑
i∈I′ cost(si) is close to the minimum. Then most

si have a high ratio dbl(si)
add(si)

and therefore we have for most of them si ≈ 2dbl(si).
Since

∏
i∈I′ si = k the sum

∑
i∈I′ dbl(si) ≈ log2(k) does not vary too much.

Furthermore, the summand 1 in the cost function is the least significant term
and the cardinality of I ′ does not vary much. We are aware that the second
modification is more delicate than the first one, but, as explained below, we will
generate many sets I ′ and will pick the best one amongst them using the more
costly function cost(si).

The condition k =
∏

i∈I′ si implies that every si in this product is B1-
powersmooth which suggests the following two stage approach:

1. Restrict to Î = {i ∈ I | si is B1-powersmooth}.
2. Find a subset I ′ ⊂ Î such that the multisets

⋃
i∈I′{si,1, . . . , si,ti} =

{p1, . . . , p�} coincide and that
∑

i∈I′ add(si) is minimal.

Testing a large list of numbers for B1-powersmoothness can be done using the
method from [15, Section 4]. The main idea is to build a product tree from the
list, replace the root node R (the product of all numbers of the list) by k mod R
(where k = lcm(1, . . . , B1) is precomputed) and then tree-wise replace each node
by the residue of k modulo the node. The leaves resulting in 0 contained B1-
powersmooth numbers and their factorizations can be obtained by other means.

Finding an optimal set I ′ is in general a difficult problem and has been studied
in [31]. We choose to use a greedy approach which produces satisfactory results.
We start with an empty set I ′ and the multiset M = {p1, . . . , p�} of primes to
be matched. As long as M is non-empty we select an integer si =

∏ti

j=1 si,j with
{si,1, . . . si,ti} ⊂ M such that the ratio dbl(si)

add(si)
is high and replace I ′ by I ′ ∪ {i}

and M by M \ {si,1, . . . si,ti}. This may fail because we might not be able to
satisfy the condition {si,1, . . . si,ti} ⊂ M at a given point. There are several ways
to overcome this problem, e.g., we could increase our supply of si by generating
more chains. Another way consists in aborting the greedy search at this point,
getting k = c·∏i∈I′ si for some integer c. Using the method of Dixon/Lenstra, we
can search for a decomposition of c into several factors, each having a good chain.
For the sizes of B1 considered in this paper, namely B1 ≤ 8192, c consisted of
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very few primes and was often 1. Therefore the usually lower doubling/addition
ratio of the c-part does not pose a problem for small B1.

A refinement to this approach is to also take the size of the prime factors
si,j into account. A strategy could be to prefer choosing integers si which have
mostly large prime divisors, since the majority of the primes pi is large. The idea
is to attach a score to a B1-powersmooth integer given its prime factorization
with respect to the currently unmatched prime factors in k. For a multiset N of
primes bounded by B1 the ratio of j-bit primes is defined as

aj(N) :=
#{p ∈ N | �log2(p)� = j}

#M
,

where 1 ≤ j ≤ �log2(B1)�. Given M , the multiset of currently unmatched primes,
the score of si is defined as

score

⎛⎝si =
ti∏

j=1

si,j , M

⎞⎠ =
�log2(B1)�∑

h=1:
ah(M) �=0

ah({si,1, . . . , si,ti})
ah(M)

The higher the score the more small prime divisors are likely to be present. In
general, for a given ratio, we select the integers which have a low score.

To illustrate, consider B1 = 1024 where the initial ai are

a2 = 0.032, a3 = 0.037, a4 = 0.021, a5 = 0.053, a6 = 0.037,
a7 = 0.069, a8 = 0.122, a9 = 0.229, a10 = 0.399

(with
∑10

i=2 ai = 1). Almost 40 percent of all the primes fall in the largest (10-
bit) category. An example of a low score-integer is 11529215054666795009 = 743·
719 ·677 ·461 ·457 ·449 ·337 where the size of the smallest prime is 9-bit, the score
is 3.57 and this integer can be computed using 63 doublings and five additions
as A0D

11A0D
12A0D

10A0D
28A0D

2 ∈ R68. On the other hand, an example of a
high-score integer, consisting of mainly small primes, is 1048575 = 41·31·11·52·3,
its score is significant higher (29.62) and it can be computed with 20 doublings
and a single subtraction as S0D

20 ∈ R21.
This approach using scores is outlined in Algorithm 1. Note that the scores are

recalculated each time an si is chosen. In practice one could reduce the amount
of these costly recalculations by picking several si in lines 10-13 of the algorithm;
in this case one has to check that the union of the prime factors of the chosen
si is still a multisubset of M .

A Randomized Variant. In the current state, Algorithm 1 returns a single
solution given a set of input parameters. To increase the amount of different
subsets I ′, and thereby hopefully improving the results, we randomize the se-
lection process of the index that is added in lines 10-13 of the algorithm. With
probability x ∈ R (0 < x < 1) select the si corresponding to score1 or, with
probability 1 − x, skip it and repeat this procedure for score2 and so on. If we
have reached the end of the list (after j trials) one could apply a deterministic
choice.
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Algorithm 1. Given a bound B1 and a set of B1-powersmooth integers {si | i ∈
Î}, which can be computed with a chain using add(si) resp. dbl(si) elliptic curve
additions resp. doublings, together with the prime factorization of these integers
(si =

∏
j si,j) the algorithm attempts to output triples (sj , add(sj), dbl(sj)) such

that lcm(1, . . . , B1) = c · ∏
j sj for a small integer c. This algorithm considers

scores ≤ T only and combines integers si for which
dbl(si)
add(si)

≥ r where r starts

at rh and is decreased until rl.

Input:

⎧⎪⎪⎨⎪⎪⎩
Bound B1 ∈ Z, we have lcm(1, . . . , B1) =

∏�
i=1 pi with pi prime.

Set of integers {si | i ∈ Î} with si =
∏

j si,j for si,j prime and i ∈ Î.

Upper and lower bound on the doubling/addition ratio: rh and rl.
A threshold value for the score: T.

Output: Triples (si, add(si), dbl(si)) and c such that c ·
∏

i

si = lcm(1, . . . , B1).

1. M ← {p1, . . . , p�}, I ′ ← ∅
2. for r = rh to rl do
3. found ← true
4. while found=true do
5. found ← false, j ← 0
6. for i ∈ Î do
7. if {si,1, . . . , si,ti} ⊂ M and

dbl(si)

add(si)
≥ r and score(si, M) ≤ T then

8. j ← j + 1, scorej ← (score(si, M), i)
9. sort scorei for 1 ≤ i ≤ j with respect to score(si, M)

10. if j ≥ 1 then
11. i ← index from score1, output (si, add(si), dbl(si))
12. I ′ ← I ′ ∪ {i}, M ← M \ {si,1, . . . , si,ti}
13. found ← true
14. output {(si, add(si), dbl(si)) | i ∈ I ′} and c =

∏
p∈M p

5 Additional Multiplications

The fastest arithmetic for Edwards curves is due to Hisil et al. [19]. They pro-
pose to use extended twisted Edwards coordinates, which are twisted Edwards
coordinates plus an auxiliary coordinate. This allows faster addition but slower
doubling. Using a mixing technique, by switching between extended twisted Ed-
wards and regular twisted Edwards, the overall cost for scalar multiplication
is reduced [19]. This is realized by performing the doublings using the cheaper
regular twisted Edwards coordinates when a doubling is followed by a doubling.
When an addition is required after a doubling one can use the doubling for-
mula in the extended twisted Edwards coordinates (which does not need the
auxiliary coordinate as input) at the cost of an extra multiplication to compute
the auxiliary coordinate of the result. Next, the fast addition is performed in
extended twisted Edwards coordinates; one multiplication (to compute the aux-
iliary coordinate of the output) can be saved, cancelling the extra multiplication
used when doubling, since a doubling is always performed after an addition in
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Table 2. The left table shows the number of integers (#int) generated with an addition-
subtraction chain using A and D elliptic curve additions and doublings respectively.
All these integers were tested for 2.9 · 109-powersmoothness and, if smooth, the prime
divisors are stored. The bold ranges indicate that 231 random integers per single A,
D combination were tested for smoothness instead of the full range. The right table
shows the number of unique B1-powersmooth integers in the no-storage and low-storage
setting for different values of B1.

No-storage setting Low-storage setting
A D #int A D #int
1 5 − 200 3.920 · 102 1 5 − 250 4.920 · 102

2 10 − 200 7.946 · 104 2 10 − 250 2.487 · 105

3 15 − 200 1.050 · 107 3 15 − 250 1.235 · 108

4 20 − 200 1.035 · 109 4 20 − 250 6.101 · 1010

5 25 − 200 8.114 · 1010 5 25 − 158 2.956 · 1012

5 159 − 220 1.331 · 1011

6 30 − 150 9.150 · 1011 6 60 − 176 2.513 · 1011

7 35 − 66 9.900 · 1010

Total 1.096 · 1012 3.403 · 1012

B1 No-Storage Low-Storage
256 2.423 · 105 9.210 · 106

512 1.470 · 106 3.159 · 107

1 024 5.691 · 106 7.861 · 107

8 192 9.352 · 107 4.400 · 108

2.9 · 109 2.274 · 1010 3.997 · 1010

ECSM-algorithms. This approach assumes that both inputs of the elliptic curve
addition are in extended twisted Edwards coordinates. This is the case for
double-and-add algorithms and (signed) windowing algorithms where the com-
putation of the auxiliary coordinates of the lookup table are a minor overhead.

In both our settings, where we consider low- and no-storage, this does not hold.
The computation of the large elliptic curve scalar product is done by processing
batches of prime products (the si) at a time. All the additions or subtractions
required in the chain to compute si require that the points are in extended
twisted Edwards coordinates. When required, the odd intermediate results are
stored in extended twisted Edwards coordinates at a cost of a single additional
multiplication. The cost of computing a low-storage chain (om−1, . . . , o0) ∈ Qm

resulting in si is increased by x(si) multiplications, where x(si) = #{j | ∃h : oh ∈
{Aj , Sj}, 0 ≤ h < m}; i.e. the unique number of indices used in the additions and
subtractions. Therefore we get for the cost function from the previous section
cost(si) = 7dbl(si) + 8add(si) + x(si). In the no-storage setting we always have
x(si) = 1 leading to the choice for cost(si) given at the beginning of the previous
section. In total we have #{chains used} additional multiplications in the no-
storage setting and a potentially higher number in the low-storage setting. We
can save one multiplication due to the sequence containing the power of 2 (which
consists of doublings only) and another multiplication if we assume that the input
point is already in extended twisted Edwards coordinates.

6 Results

Using the rules given in Section 3.2 for both the no-storage and the low-storage
setting, we generated more than 1012 integers for many choices of the number of
additions A and doublings D. Table 2 summarizes the ranges we have covered
where bold ranges (in the low-storage setting) indicate that only 231 random
integers were generated instead of the full range. All these integers were subjected
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Table 3. The table shows the number of modular multiplications (M) and squarings
(S) required to calculate A elliptic curve additions and D doublings for various B1

parameters when factoring an integer n with ECM. The memory required is expressed
as the number of residues (R), integers modulo n, which are kept in memory. The
performance speedup PS (in terms of #M+#S) and memory reduction MR compared
to the ECM approach from [1] using “a = −1” twisted Edwards curves is given.

B1 #M #S #M + #S PS A D #R MR

256 [1] 1 638 1 436 3 074 69 359 38
No-storage 1 400 1 444 2 844 1.08 38 361 10 3.80
Low-storage 1 383 1 448 2 831 1.09 35 362 14 2.71
512 [1] 3 183 2 952 6 135 120 738 62

No-storage 2 842 2 964 5 806 1.06 75 741 10 6.20
Low-storage 2 776 2 964 5 740 1.07 65 741 18 3.44
1 024 [1] 6 144 5 892 12 036 215 1 473 134
No-storage 5 596 5 912 11 508 1.05 141 1 478 10 13.40
Low-storage 5 471 5 904 11 375 1.06 123 1 476 18 7.44
8 192 [1] 45 884 47 156 93 040 1 314 11 789 550
No-storage 43 914 47 160 91 074 1.02 1 043 11 790 10 55.00
Low-storage 42 855 47 136 89 991 1.03 878 11 784 18 30.56

to 2.9 · 109-powersmoothness tests which reduced the number of integers by
about two orders of magnitude. This large powersmoothness-bound was chosen
to facilitate searching for efficient chains for much larger B1 parameters. From
the reduced set of integers we extracted those that are B1-powersmooth for the
values of B1 used in this paper (see right part in Table 2). These computations
were done on five 8-core Intel Xeon E5430 (2.66GHz) and took more than a year,
i.e., in total over 40 core years. The smoothness testing required most of the run-
time and up to 4.6GB of memory. Using the approach outlined in Algorithm 1
one of these nodes was occasionally used for the combining experiments which
consisted of thousands of runs of the randomized greedy approach, each of them
taking only a couple of seconds for these low values of B1.

Table 3 shows the results obtained using Algorithm 1 on our dataset (see
Table 2). The memory required is expressed in the number of residues (R),
integers modulo n, which need to be kept in memory. Here we assume that
extended twisted Edwards coordinates are used, i.e., every point is represented
by four coordinates. In the setting of EECM-MPFQ [3,1] we assume that an
optimal window size is used and that besides the window table only the input
point needs to be kept in memory while we assume that two points (the input
point and the current active point) are required in the no- and low-storage
setting. The implementation of the elliptic curve group operation is assumed to
require at most two auxiliary variables (residues). Hence, the no-storage setting
requires memory for 2 × 4 + 2 = 10 residues modulo n. The low-storage results
presented in Table 3 require to store at most two additional points (8 more
residues modulo n compared to the no-storage setting). This is still significantly
less compared to the approach used in [3,1].
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6.1 Application to GPUs

When running ECM on memory constrained devices, like GPUs, the large num-
ber of precomputed points required for the windowing methods cannot be stored
in fast memory. Typically one is forced to settle for a (much) smaller window
size reducing the advantage from using twisted Edwards curves. For example,
in [5] no large window sizes are used at all, the authors remark: “Besides the
base point, we cannot cache any other points”. Memory is also a problem in [4],
the faster curve arithmetic from Hisil et al. [19] is not used since this requires
storing a fourth coordinate per point.

From the data given in Table 3 it becomes clear that our approach reduces
the memory requirements significantly. For example, the memory required to run
ECM in the cofactorization setting on GPUs using B1 = 8 192 can be reduced
by a factor 55. This setting was already considered in [5,4] where the authors
were forced to reduce memory requirements by using suboptimal window sizes.
Hence, when using the methods described in this paper less memory is required
allowing the usage of the faster curve arithmetic and reducing the number of
elliptic curve additions required in the computation of the elliptic curve scalar
multiplication.

6.2 Performance Comparison

In order to measure the practical speedup of the methods described in this
paper we implemented the no-storage approach on GPUs. This implementation
uses the Compute Unified Device Architecture (CUDA) which facilitates the
development of massively-parallel general purpose applications for GPUs [30].
Our implementation is targeted at the third generation CUDA GPUs called
“Fermi” [29]. Table 4 compares the performance results of different hardware
platforms for B1 = 960 and B1 = 8192, numbers chosen such that we can directly
compare to results reported in the literature on other (hardware) platforms. For
B1 = 960, which is used as the example B1 value in [40,11] and not spending
as much effort as for B1 = 1024, we were able to construct a no-storage chain
requiring 1 371 doublings and 135 additions. The FPGA and GTX295 results are
quadratically scaled to 192-bit arithmetic to compare the different performance
results. The other GPU results are from [4] and this implementation is optimized
for the second generation CUDA GPUs. The pricing for this card is omitted since
it is no longer sold (this card was launched January 2009). The results on the
Intel i7-2600K CPUs have been obtained with the ECM implementation (using
Montgomery curves) from the NFS software suite [14] which is responsible for
all recent record NFS factorizations (e.g. [20]) and the EECM-MPFQ software
package [2] which uses Edwards curves. The FPGA results are from [11,40] and
the FPGA prices are taken from [40]. Note that the prices are for the GPU, CPU
or FPGA devices only; in order to get a fully operational system more hardware
is required. Note also that for all of the considered devices newer versions with
better price performance ratio exist, but we do not expect that these will change
this comparison significantly.
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Table 4. Performance comparison of ECM on different platforms (using the “a = −1”
twisted Edwards curves if available). The first table lists the different hardware proper-
ties. The second and third table state results for B1 = 960 and B1 = 8192 respectively.
The scaled number of curves are when using 192-bit moduli. The performance ratio
is the ratio between the GTX 580 no-storage row and the current row for the scaled
number of curves per 100 USD.

properties GPU CPU FPGA
GTX 295 GTX 580 Intel i7-2600K V4SX35-10 V4SX25-10

#cores 480 512 4 24 1
clock (MHz) 1 242 1 544 3 400 200 220
price (USD) - 400 300 468 298
#threads 46 080 8 192 4 24 1
#bits in moduli 210 192 192 202 135

performance (#curves), B1 = 960 performance
(1/sec) (1/sec, scaled) (1/100 USD, scaled) ratio

GTX 580, no-storage 171 486 171 486 42 872 1.00
GTX 580, windowing 79 170 79 170 19 793 2.17
Intel i7 [14] 13 661 13 661 4 554 9.41
Intel i7 [2] 8 677 8 677 2 892 14.82
V4SX35-10 [40] 3 240 3 586 766 55.97
V4SX25-10 [11] 16 000 7 910 2 654 16.15

performance (#curves), B1 = 8192

GTX 295 [4] 4 928 5 895 - -
GTX 580, no-storage 19 869 19 869 4 967 1.00
GTX 580, windowing 9 106 9 106 2 277 2.18
Intel i7 [14] 1 629 1 629 543 9.15
Intel i7 [2] 1 092 1 092 364 13.65

For the sake of comparison we also implemented Edwards ECM for GPUs
using the same 192-bit arithmetic but using the windowing based approach.
For B1 = 960 (B1 = 8192) we used a signed sliding window of size 26 (28),
precomputing and storing 25 (27) extended twisted Edwards coordinates. These
results are stated in Table 4 as well. On the GTX 580 the no-storage approach
is more than twice as fast as the approach based on windowing techniques.
This is significantly better than the theoretical numbers from Table 3. When
running exactly the same experiment on 96-bit (three 32-bit limbs instead of
six 32-bit limbs) moduli the number of curves per second for the no-storage
and windowing approach is 76 665 and 75 584 for B1 = 8 192 and 649 904 and
618 111 for B1 = 960, respectively. We think that this behaviour can be partially
explained by an increased memory usage for the windowing approach and a
better handling of the no-storage approach by the compiler since this approach
uses fewer variables.

Another interesting observation is that the FPGA performance per 100 USD
is lower than that of the CPU-based approaches. Furthermore, aided by the
no-storage approach outlined in this paper, the GPU performance is almost an
order of magnitude faster per 100 USD than the CPU and more than a order
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of magnitude faster compared to the fastest FPGA results. This suggests that
GPUs are the best platform, i.e. give the best performance / price ratio, for
integer cofactorization.

7 Conclusion

The relatively new Edwards curves combined with the fast arithmetic from ex-
tended twisted Edwards coordinates are faster compared to using Montgomery
curves. This speed-up comes at a price, namely a larger memory requirement
which, when optimizing for speed, grows roughly linearly in the size of B1,
whereas the memory requirement in the Montgomery curves setting is constant
and small. Inspired by the approach from Dixon and Lenstra and using the fact
that only a few popular B1-values are used in practice in NFS, we have presented
techniques to reduce the memory requirement significantly by doing precompu-
tations for these B1-values. In these precomputations we tested over 1012 inte-
gers coming from chains with a low addition/doubling ratio for smoothness and
combined them using a greedy approach. Our results show that we require signif-
icantly less memory compared to the current state-of-the-art Edwards ECM ap-
proach, and are even slightly faster. This makes our approach extremely suitable
for memory-constrained parallel architectures like GPUs. This is demonstrated
by our GPU implementation which sets a new ECM cofactorization throughput
speed record.
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Abstract. In 2003 Michael Alekhnovich (FOCS 2003) introduced a
novel variant of the learning parity with noise problem and showed that
it implies IND-CPA secure public-key cryptography. In this paper we in-
troduce the first public-key encryption-scheme based on this assumption
which is IND-CCA secure in the standard model. Our main technical
tool to achieve this is a novel all-but-one simulation technique based
on the correlated products approach of Rosen and Segev (TCC 2009).
Our IND-CCA1 secure scheme is asymptotically optimal with respect to
ciphertext-expansion. To achieve IND-CCA2 security we use a technique
of Dolev, Dwork and Naor (STOC 1991) based on one-time-signatures.
For practical purposes, the efficiency of the IND-CCA2 scheme can be
substantially improved by the use of additional assumptions to allow for
more efficient signature schemes. Our results make Alekhnovich’s vari-
ant of the learning parity with noise problem a promising candidate to
achieve post quantum cryptography.

Keywords: IND-CCA2 Security, Learning Parity with Noise, All-But-
One Decryption.

1 Introduction

This paper presents the first IND-CCA2 secure cryptosystem based on a com-
putational assumption first introduced by Michael Alekhnovich in the year 2003
[Ale03]. This assumption essentially states that for a given random linear code C
with a constant rate, a random code word with an inverse square root fraction of
noise is indistinguishable from a random string. Alekhnovich [Ale03] was able to
construct a semantically secure cryptosystem which was based solely on this as-
sumption. It can be seen as an special case of the decisional learning parity with
noise (LPN) problem. The decisional LPN problem (henceforth LPN problem),
asks to distinguish noisy binary linear equations Ax+e from uniformly random.
The problem is parametrized by the number of samples provided (i.e the number
of rows of A) and the amount of noise (i.e. the distribution of e). While most
cryptographic constructions based on LPN (e.g. [HB01, JW05, KSS10]) use the
standard parameter-choice of a polynomial number of samples and a constant
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fraction of noise, Alekhnovich’s LPN problem uses a linear number of samples
and an inverse square root fraction of noise. These two parameter-choices are
apparently incomparable. On one side, providing a larger amount of samples
makes the problem apparently easier. On the other side, a larger amount of
noise seems to make the problem harder. Nevertheless, Alekhnovich’s parame-
ter choice seems to yield the stronger assumption, as constructing a public key
cryptosystem from LPN with a constant fraction of noise remains an important
open problem.

LPN assumptions are of a more combinatorial nature and seem incompa-
rable to the algebraic assumptions needed for the McEliece cryptosystem. For
the security of the McEliece cryptosystem one has to additionally assume that
scrambled Goppa-codes are computationally indistinguishable from random lin-
ear codes [McE78, BS08, NIKM08, DMQN09]. Moreover, though there is a syn-
tactic similarity to the learning with errors (LWE) problem, LPN and LWE also
seem rather incomparable. LWE asks to distinguish a polynomial number noisy
linear equations over Zq (for a polynomial sized q), where the error-distribution
is euclidean, from uniformly random. IND-CCA2 encryption schemes based on
LWE [PW08, Pei09, MP12] use properties that are very specific to LWE (e.g.
short dual-lattice bases) and not available in the binary domain. It has been open
for nine years if an IND-CCA2 secure scheme could be built from Alekhnovich’s
LPN problem. In this paper we present such a IND-CCA2 secure scheme which
is based on the all-but-one approach [DDN00, PW08, RS09]. The new construc-
tion is asymptotically optimal for IND-CCA1 security. It has only a constant
factor ciphertext-expansion and the ciphertexts are of size O(k2/(1−2ε)), where
k is the security parameter and ε a small constant. To achieve IND-CCA2 se-
curity we use a generic transformation based on one-time-signatures [DDN00].
A more efficient construction is possible using additional assumptions yielding
more efficient signature schemes. The trapdoor of our scheme is substantially
different from Alekhnovich’s original construction, but bears some similarities
with the above-mentioned lattice-based constructions. It allows witness recov-
ery and decryption with incomplete keys, which is necessary for applying the
all-but-one approach. Different from [PW08, RS09, Pei09, DMQN09] we do not
achieve the all-but-one property by repeatedly encrypting the same ciphertext
or a correlated product. We employ a bitwise decryption and use error correction
to cope with incomplete decryptions. The novel all-but-one simulation technique
employed in this construction allows for a significant improvement in efficiency
compared with previous constructions. While this new technique might be of
interest in lattice-based cryptography, we see no obvious way to make use of
our technique in McEliece-based constructions. Crucial to our technique is the
ability to recover individual bits of a plaintext from the ciphertext using a par-
tial secret key. This, however, seems out of reach for constructions based on the
McEliece assumption.

Related Work. Ciphertext indistinguishability under chosen ciphertext attacks
(IND-CCA2) security [RS91] is one of the strongest known notions of security for
public key encryption schemes (PKE). Many computational assumptions have
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been used in the literature for obtaining cryptosystems meeting this security no-
tion. Given one-way trapdoor permutations, CCA2 security can be obtained from
any semantically secure public key cryptosystem [NY90, Sah99, Lin03]. Efficient
constructions are also known based on number-theoretic assumptions [CS98,
CS03, HK09], lattice-based assumptions [PW08, Pei09, MP12], the McEliece
assumption [DMQN09] or identity based encryption schemes [CHK04].

2 Preliminaries

2.1 Coding-Theory

We need a few coding-theoretic facts and constructions for our schemes and
proofs. We denote the finite field with q elements by Fq. The hamming-weight
|x| of a vector x ∈ Fn

q is the number of its non-zero locations. The q-ary entropy
function is defined as Hq(α) = α logq(q − 1) − α logq α − (1 − α) logq(1 − α).
It assumes its maximum at α = 1 − 1/q with Hq(1 − 1/q) = 1. The vol-
ume Volq(αn, n) of the hamming-ball of radius αn in Fn

q can be bounded by

qHq(α)·n−o(n) ≤ Volq(αn, n) ≤ qHq(α)·n.

Random Codes and the Gilbert-Varshamov bound. The Gilbert-Varshamov bound
guarantees the existence of q-ary codes with almost maximal relative minimum-
distance 1− 1/q. Moreover, with high probability, randomly chosen codes enjoy
this property. Let n, d, k ∈ N and λ > 0. If it holds that k ≤ n− logq Volq(d, n)−
λn, then the code C(G) generated by a uniformly chosen matrix G ∈ Fn×k

q

has minimum-distance at least d, except with probability q−λn. Therefore, if
δ < 1 − 1/q it holds that n − logq Volq(δn, n) ≥ (1 − Hq(δ))n =: ζn. Thus, if

k ≤ ζn/2, a uniformly random chosen matrix G ∈ Fn×k
q generates a code C(G)

with minimum-distance at least δn, except with probability q−ζn/2.

Asymptotically good codes with efficient error-correction. The decryption algo-
rithm of our scheme will introduce errors in the plaintext when decrypting. We
will therefore use asymptotically good error-correcting codes C with efficient
error-correction algorithm DecodeC to encode plaintexts. Prominent examples of
such codes are binary expander-codes [SS96, Zém01]: There exists an explicit
family of binary linear codes {Cn} of constant rate R arbitrarily close to 1 that
can efficiently correct an α-fraction of errors, for a constant α > 0.

2.2 Bernoulli Distributions and Bounds

In this section we will briefly gather some facts about low-noise Bernoulli distri-
butions. While Alekhnovich’s [Ale03] original proposal used a noise distribution
that samples vectors of low-weight t uniformly at random, we will use Bernoulli-
distributions where each bit of a vector is 1 with probability t/n and other-
wise 0. The advantage of Bernoulli-distributions over the former distribution is
that all components are independent of one another. We will take advantage of
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this fact when bounding the hamming-weight of matrix-vector products when
the matrix is chosen from a Bernoulli distribution. The decryption-algorithm of
Alekhnovich’s and our encryption-scheme computes inner-products of Bernoulli-
distributed vectors. To ensure that the inner-product of two Bernoulli-distributed
vectors is 0 with high probability, we need to choose the bit-flip probability ρ
below a 1/

√
n amount. If ρ is too big (e.g. constant), then the distribution

of the inner-product would be statistically close to uniform and our decryption-
approach would fail. Finally, we show that matricesX chosen from a component-
wise low-noise Bernoulli distribution enjoy (with high probability) the property,
that a product Xs has low-hamming-weight, for any vector s with sufficiently
small hamming-weight. We will call such matrices good, and we will use this
property for proving correctness of our schemes and in the proof of IND-CCA1
security.

Bernoulli distributions. For a noise-parameter ρ, we write χρ for the Bernoulli-
distribution that outputs 1 with probability ρ and 0 with probability 1− ρ. The
distribution of the hamming-weight of a vector of n iid distributed Bernoulli-
distributed random variables is the binomial distribution Bρ,n. Throughout the
paper, we frequently need to bound Binomial distributions. For this we require
two different Chernoff bounds. Let x be distributed by χnρ .

1. It holds for any R ≥ 6ρn that Pr[|x| > R] < 2−R.

2. It holds for any 0 < δ < 1 that Pr[||x| − ρn| ≥ δρn] < 2e−δ2ρn/3 .

Distributions of inner products. For the decryption-algorithms of our schemes we
require that the inner-product of a Bernoulli-distributed vector x and a vector s
of small hamming weight is 0 with probability bounded away from 1/2. We will
thus show that the probability of the inner-product being 1 is sub-constant for
a proper choice of ρ. Let s ∈ Fn

2 be a fixed vector and x be distributed by χnρ .
By a simple XOR-Lemma, it holds that

Pr[xT s = 1] =
1

2
· (1− (1 − 2ρ)|s|),

i.e. the random variable xT s is distributed according to χρ′ with ρ′ = 1
2 · (1 −

(1− 2ρ)|s|). If it holds that ρ = ρ(n) = O(n−1/2−ε) for some constant ε > 0 and
|s| < γρn for some constant γ > 0, we get the following estimate for ρ′. By the
mean-value-theorem it holds for any p in the interval (0, e−1) that e−ep ≤ 1− p,
therefore we get

ρ′ =
1

2
·(1−(1−2ρ)|s|) ≤ 1

2
·(1−e−2eρ|s|) ≤ 1

2
·(1−e−2eγρ2n) =

1

2
·(1−e−O(n−2ε)).

The last term is sub-constant in n, i.e. ρ′(n) = o(1). This means that for suffi-
ciently large n ρ′ is arbitrarily small.
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Multiplication with random matrices. We will now give bounds for how much the
hamming weight of a vector s increases when multiplied with a matrix X ∈ Fl×n

2

chosen from χl×n
ρ . Let x be distributed by χnρ and the hamming-weight of s be

bounded by |s| < γρn. Then by the above ρ′ = Pr[xT s = 1] can be made an
arbitrarily small constant if ρ = O(n−1/2−ε). If X ∈ Fl×n

2 is distributed by χl×n
ρ ,

then |Xs| is distributed by the Binomial-distribution Bρ′,l. The Chernoff-bound
thus yields that for any R ≥ 6ρ′l it holds that Pr[|Xs| > R] < 2−R. The volume
Vol2(γρn, n) of the hamming-ball of radius γρn in Fn

2 is bounded by 2H2(γρ)n.
Thus, there are at most 2H2(γρ)n vectors s satisfying |s| < γρn. A union-bound
yields for any R ≥ 6ρ′l

Pr[∃s ∈ Fn
2 : |s| < γρn and |Xs| > R] < 2H2(γρ)n · 2−R.

If l = Ω(n) and β > 0 it holds that

Pr[∃s ∈ Fn
2 : |s| < γρn and |Xs| > βl] < 2−Ω(n),

as H2(γρ)n is sub-linear in n (i.e. o(n)) since ρ = O(n−1/2−ε).

Definition 1. Fix a constant β and ε = ε(n). We shall call a matrix X ∈ Fl×n
2

(β, ε)-good, if for all s ∈ Fn
2 with |s| < εn it holds that |Xs| ≤ βl.

The above now implies that for ρ = O(n−1/2−ε), any fixed β, γ > 0 and suffi-
ciently large n, a matrixX sampled from χl×n

ρ is (β, γρ)-good with overwhelming
probability in n.

2.3 Public Key Encryption

This Section is only meant to provide reference for the standard notions of
security for encryption schemes and can be safely skipped. Let k be a security
parameter.

Definition 2. A public key encryption scheme PKE is a tuple (KeyGen,Enc,Dec),
such that

– KeyGen(1k) is a PPT-algorithm that takes a security-parameter k and out-
puts a pair of public and private keys (pk, sk).

– Encpk(m) is a PPT-algorithm that takes a public key pk, a message m and
outputs a ciphertext c.

– Decsk(c) is an efficient deterministic algorithm taking as input a secret key
sk and a ciphertext c and outputs a plaintext m.

A standard-requirement for public key encryption is correctness.

Definition 3. We say that PKE = (KeyGen,Enc,Dec) is correct, if it holds for
all plaintexts m that

Pr[Decsk(Encpk(m)) �= m : (pk, sk) = KeyGen(1k)] < negl(k).

The three security notions for public key encryption we are concerned with in
this paper are IND-CPA, IND-CCA1 and IND-CCA2 security. Let A be an
adversary.
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Experiment: IND-CPA.

– Generate a pair of keys (pk, sk) = KeyGen(1k). Run A on input pk.
– Once A outputs a pair (m0,m1), flip a coin b and compute c∗ = Encpk(mb).

Give input c∗ to A and continue its computation.
– Let b′ be A’s output. Output 1 if b′ = b an 0 otherwise.

Experiment: IND-CCA1.

– Generate a pair of keys (pk, sk) = KeyGen(1k). GiveA access to a decryption-
oracle Decsk(·) and run A on input pk.

– Once A outputs a pair (m0,m1), flip a coin b and compute c∗ = Encpk(mb).
Give input c∗ to A and continue its computation without access to the
decryption-oracle.

– Let b′ be A’s output. Output 1 if b′ = b an 0 otherwise.

Experiment: IND-CCA2.

– Generate a pair of keys (pk, sk) = KeyGen(1k). GiveA access to a decryption-
oracle Decsk(·) and run A on input pk.

– Once A outputs a pair (m0,m1), flip a coin b and compute c∗ = Encpk(mb).
Give input c∗ to A and continue its computation with access to the
decryption-oracle.

– Let b′ be A’s output. Output 1 if b′ = b an 0 otherwise.

Definition 4. For X ∈ {CPA,CCA1, CCA2}, we say that the scheme PKE =
(KeyGen,Enc,Dec) is IND-X secure, if it holds for every PPT-adversary A that
AdvIND-X(A) = |Pr[IND-X(A) = 1]− 1/2| ≤ negl(k).

2.4 One-Time Signatures

We also briefly recall the definition of one-time signatures [Lam79]. Let k be a
security parameter.

Definition 5. A one-time signature scheme SIG is a tuple (Gen, Sign,Verify),
such that

– Gen(1k) is a PPT-algorithm that takes a security-parameter k and outputs a
pair of verification and signature keys (vk, sgk).

– Signsgk(m) is a PPT-algorithm that takes a signature key sgk, a message m
and outputs a signature σ.

– Verifyvk(m,σ) is a PPT-algorithm taking as input a verification key vk, a
message m and a signature c and outputs a bit b ∈ {0, 1}.

We require one-time signature schemes to be correct.

Definition 6. We say that SIG = (Gen, Sign,Verify) is correct, if it holds for all
messages m that

Pr[Verifyvk(m, Signsgk(m)) = 1 : (vk, sgk) = Gen(1k)] > 1− negl(k).

Moreover, we require existential unforgeability under one-time chosen message
attacks (EUF-CMA security), specified by the following experiment. Let A be
an adversary.
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Experiment: EUF-CMA

– Generate a pair of keys (vk, sgk) = Gen(1k). Give A a access to a signing-
oracle Signsgk(·) that signs one message m∗ of A’s choice and then outputs
⊥ for any further signing-queries. Run A on input vk

– Once A outputs a pair (m,σ) with m �= m∗, compute b = Verifyvk(m,σ) and
output b. Otherwise output 0.

Definition 7. We say that SIG = (Gen, Sign,Verify) is EUF-CMA secure, if it
holds for every PPT-adversary A that Pr[EUF-CMA(A) = 1] ≤ negl(k).

EUF-CMA secure one-time signature schemes can be constructed from any one-
way function [Lam79].

3 The Hardness-Assumption

The basic problem we will base the security of our scheme upon is a variant of
the decisional learning parity with noise (LPN) problem. Roughly speaking, the
LPN problem asks to distinguish a number of noisy samples of a linear function
(specified by a secret vector x) from uniform random. The variant considered here
differs from the standard LPN problem in two aspects. First, the distinguisher
is provided only linear number of samples, rather than an arbitrary polynomial
number. Second, the noise-level in this variant is significantly lower than in the
standard LPN problem. While the standard LPN problem comes with an error-
distribution that flips each output-bit with a small, but constant probability, for
this variant the probability is sub-constant. More precisely, we will work with a
bit-flip probability of the order O(n−1/2−ε) for some small constant ε. Here, n
is the size of the secret x in bits.

Problem 1. Let n ∈ N be a problem parameter, m = O(n) and ε > 0 and
ρ = ρ(n) = O(n−1/2−ε). Let A ∈ Fm×n

2 be chosen uniformly at random, x ∈ Fn
2

be chosen uniformly at random and e according to χmρ . The problem is, given A
and y, to decide whether y is distributed according to Ax+e or chosen uniformly
at random.

Currently, the best classical algorithms to attack Problem 1 require time of

the order 2Ω(n1/2−ε) [Ste88, CC98, MMT11, BLP11, BJMM12]. Moreover, there
are no quantum algorithms known performing significantly better than the best
classical algorithms. In our constructions we will choose n by n = O(k2/(1−2ε)),
where k is the security parameter. This normalizes the hardness of Problem 1 to
2Θ(k). Thus, we choose ρ by ρ(k) = O(k−(1+2ε)/(1−2ε)). In the full version of this
paper, we provide a reduction establishing the hardness of problem 1 based on the
hardness-assumption used in [Ale03], which uses a different error-distribution.
It will be necessary to use a normal-form (as in [ACPS09]) of Problem 1 in our
cryptographic constructions, which is stated in Problem 2. In this normal-form,
the secret x is drawn from the noise-distribution χnρ .
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Problem 2. Let n ∈ N be a problem parameter, m = O(n), ε > 0 and ρ =
O(n−1/2−ε). Let A ∈ Fm×n

2 be chosen uniformly at random, x be distributed
according to χnρ and e be distributed according to χmρ . The problem is, given A
and y, to decide whether y is distributed according to Ax+e or chosen uniformly
at random.

The hardness of Problem 2 can be established by a simple reduction from Prob-
lem 1, given in the full version of this paper. By a simple hybrid-argument, it
follows that that a matrix-version of problem 2 is also hard.

Problem 3. Let n ∈ N be a problem parameter, m, k = Θ(n), ε > 0 and
ρ = O(n−1/2−ε). Let A ∈ Fn×k

2 be chosen uniformly at random, T ∈ Fm×n
2

be distributed according to χm×n
ρ and X be distributed according to χm×k

ρ . The
problem is, given A and B, to decide whether B is distributed according to
TA+X or chosen uniformly at random in Fm×k

2 .

In the security-proof for our schemes, we will use Problem 3 to establish pseu-
dorandomness of the public keys, while we use Problem 2 to establish pseudo-
randomness of the ciphertexts.

4 Outline of the Techniques

In this Section, we will outline the techniques used to construct an IND-CCA1
secure scheme based on the hardness of Problem 2 and Problem 3. We will
provide the full presentation in the subsequent sections. Let henceforth ρ =
O(n−1/2−ε) for a small constant ε > 0.

We will start with a rough outline of a scheme that encrypts single bits and
has a substantial decryption-error. On a technical level, this first building block
resembles the schemes of Regev [Reg05] and the Dual-Regev Scheme of Gentry et
al. [GPV08] (which both live in the LWE realm). Public keys for our scheme are
pairs (A, bT ), where A ∈ Fl1×n

2 is chosen uniformly at random and bT = tTA+xT

with t ∈ Fl1
2 is distributed by χl1ρ and x ∈ Fn

2 by χnρ . The secret key is tT . To

encrypt a message m ∈ F2, sample s according to χnρ , e1 according to χlρ and

e2 according to χρ. Compute c = (As + e1, b
T s + e2 + m) and output c. To

decrypt a ciphertext c = (c1, c2), compute y = c2 − tT c1 and output y. The
output y is a noisy version of the plaintext m, since it holds that y = c2− tT c1 =
bT s+e2+m−tT (As+e1) = m+tTAs+xT s+e2−tTAs−tT e1 = m+xT s+e2−tT e1.
By the properties of the distribution χρ, the error-term v = xT s+ e2 − tT e1 is
0 with probability bounded away from 1/2, i.e. it holds y = m with substantial
probability.

This decryption-error can be dealt with by encoding m (which is now a bit-
vector of length n) using an error-correcting code as follows. Let G ∈ Fl2×n

2 be
the generator-matrix of a binary linear error-correcting code C. The modified
scheme works as follows. Public keys are of the form (A,B) with A as above
and B = TA + X , where T is chosen from χl2×l1

ρ and X from χl2×n
ρ . The se-

cret key is T . Messages m ∈ Fn
2 are encrypted as c = (As + e1, Bs+ e2 +Gm),
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with s, e1, e2 sampled from the corresponding χρ distributions. Decryption com-
putes y = c2 − Tc1 = Gm +Xs+ e2 − Te1. Since the matrices T and X were
chosen from a χρ distribution, they are good (as defined in Section 2.2) with
overwhelming probability. Thus the error-term v = Xs + e2 − Te1 has a low
hamming-weight and we can use the decoding-procedure of C to recover m. The
IND-CPA security of this scheme follows easily by the hardness of Problem 2
and Problem 3. However, we will require a witness-recovering IND-CPA scheme
for the construction of our IND-CCA scheme. A scheme is witness recovering if
the decryption recovers the randomness used to encrypt. For the above scheme
however, the vector s is ”lost” during decryption. We circumvent this problem
by using some sort of key-encapsulation. Instead of encrypting a plaintext-vector
m using the above scheme, we encrypt the witness s (which has the same size
as m). We will then use another instance of Problem 2 to encrypt the plaintext
m (using s as symmetric key). Encrypting the witness s instead of m will not
harm security. By Problem 3, the matrix B is pseudorandom. Therefore, the
matrix B + G is also pseudorandom. Thus, the second part of the ciphertext
c2 = Bs + e2 + Gs = (B + G)s + e2 is also pseudorandom by Problem 2. Ob-
serve that we do not need the entire secret key T to recover s from a ciphertext
c. Let y = c2 − Tc1 = Gs + Xs + e2 − Te1. To recover the i-th component
yi of y, we merely need the i-th row tTi of the matrix T . If we posses a suffi-
cient amount of the rows of T , yet not all of them, we can still recover s by
computing yi for all the i for which tTi is known and setting yi = ⊥ (erasure)
otherwise. We can now recover s by performing a combined error- and erasure-
correction on y using the decoding algorithm of C. If it is guaranteed that the
number of erasures is very low, we can simply set all erasures to random val-
ues (thereby introducing a few additional random errors) and use the standard
decoding-algorithm DecodeC of C. Micciancio and Peikert [MP12] recently used a
very similar witness-recovering mechanism in their construction of an improved
LWE-based IND-CCA2 scheme. While our construction uses off-the-shelf binary
error-correcting codes to encode the witness s, they needed to construct a spe-
cial family of lattices for this purpose. These lattices have a short dual basis and
an efficient decoding algorithm, thus they can be seen as a euclidean analogue
to efficiently decodable error-correcting codes with large minimum distance. We
can now give an outline of our IND-CCA1 construction. It is an adoption of the
all-but-one simulation-paradigm [PW08, RS09] to the special structure of our
CPA scheme. The key-generation samples not just one, but q (for a constant
q) matrices B1, . . . , Bq and T1, . . . , Tq. Encryption first samples a tag τ , then
derives an instance-public-key Bτ from B1, . . . , Bq. It further proceeds as the
INC-CPA variant using the matrix Bτ instead of B. The ciphertext is (τ, c).
Decryption takes the tag τ , derives an instance secret-key Tτ and uses Tτ to de-
crypt c. After recovering the random coins it checks whether they suffice a certain
hamming-weight criterium. If not, it aborts, otherwise it outputs the plaintext
m. The instance-key derivation will assemble the matrix Bτ by picking certain
rows from the matrices B1, . . . , Bq depending on the tag τ . In the security proof,
there will be a single tag τ∗ for which the simulator is completely oblivious of the
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instance-secret key Tτ∗ (this is the tag where the IND-CPA challenge will be
embedded). For all other tags, the simulator needs to be able to simulate a
decryption-oracle. This means that no other instance-secret-key Tτ should share
too many rows with Tτ∗ . If this is the case, the simulator will be able to
use an incomplete secret key to answer decryption-queries by the above ob-
servation. To guarantee that the instance-secret-keys Tτ have small overlap
with one another, we will use a q-ary error-correcting encoding for the tags τ .
This simulation-strategy requires that the hamming-weight of the ciphertext-
noise satisfies a certain bound, otherwise the simulator is unable to correct
the additional erasure caused by the incomplete secret key. This is the rea-
son why the decryption needs to check the hamming-weight of the witnesses.
The IND-CCA2 construction is obtained by replacing the randomly chosen tags
τ with the verification keys of a one-time signature scheme and appending an
according signature to the ciphertext. This transformation has been used in
several contexts to obtain CCA2 secure encryption from different primitives
[DDN00, CHK04, PW08, RS09, DMQN09]. The encryption primitives admit-
ting such a transformation can be generalized under the notion of tag-based
encryption schemes [Kil06].

5 The IND-CPA Scheme

In this Section we will provide the full construction of an IND-CPA secure en-
cryption scheme. We will use this scheme in the construction of our CCA1 secure
scheme.

Let k be a security parameter, n ∈ O(k2/(1−2ε)), l1, l2, l3 ∈ O(k2/(1−2ε)) and
ρ = O(k−(1+2ε)/(1−2ε)). Let G ∈ Fl2×n

2 be the generator-matrix of a binary linear
error-correcting code C and DecodeC an efficient decoding procedure for C that
corrects up to αl2 errors (for a constant α). Further let D ⊆ Fl3

2 be a binary error-
correcting code with efficient encoding EncodeD and error-correction DecodeD
that corrects up to λl3 errors.

Construction 1. The scheme PKE1 = (KeyGen,Enc,Dec) is specified by

– KeyGen(1k): Sample matrices A ∈ Fl1×n
2 and C ∈ Fl3×n

2 uniformly at ran-
dom, sample the matrix T from χl2×l1

ρ and the matrix X from χl2×n
ρ . Set

B = G+ T · A+X. Set pk = (A,B,C) and sk = T . Output (pk, sk).
– Encpk(m): Takes a public key pk = (A,B,C) and a plaintext m ∈ Fn

2 as
input, samples s from χnρ , e1 from χl1ρ , e2 from χl2ρ and e3 from χl3ρ . It sets
c1 = A · s + e1, c2 = B · s + e2 and c3 = C · s + e3 + EncodeD(m). Output
c = (c1, c2, c3).

– Decsk(c): Takes a secret key sk = T and a ciphertext c = (c1, c2, c3) as input.
Computes y = c2 − T · c1 and s = DecodeC(y). Outputs ⊥ if decoding fails.
Otherwise computes m = DecodeD(c3 − C · s) and outputs m.

We will now show that this scheme is correct, i.e. the probability that a
decryption-error occurs is negligible in k.
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Lemma 1. The scheme PKE1 is correct.

Proof. Decryption only fails if one of the two decoding operations fails. We will
thus bound the probability of failure for both decoding operations. It holds that

y = c2 − T · c1 = B · s+ e2 − T (A · s+ e1) = G · s+X · s+ e2 − T · e1.

Thus, it is sufficient to bound the hamming-weight of the error-term v = X ·
s+ e2 − T · e1. Fix constants β, γ > 0 such that 2β + γρ < α and γρ < λ. By a
Chernoff-bound, it holds that |s| < γρn, e1 < γρl1, e2 < γρl2 and e3 < γρl3 with
overwhelming probability in k. The decoding procedure DecodeC can correct up
to αl2 errors. With overwhelming probability in k, both matrices X and T are
(β, γρ)-good (see Section 2.2). Thus it holds that |Xs| < βl2 and |Te1| < βl2
(for sufficiently large k). All together, it holds that

|v| ≤ |Xs|+ |e2|+ |Te1| ≤ 2βl2 + γρl2 < αl2.

Therefore, the decoding-procedure DecodeC will successfully recover s. Moreover,
DecodeD will successfully recover m as |e3| < γρ · l3 < λl3.

We now turn to proof IND-CPA security of the scheme PKE1.

Theorem 1. Assume that Problem 2 is hard. Then the scheme PKE1 is IND-
CPA secure.

Proof. Let A be PPT-bounded IND-CPA adversary against PKE1. Consider the
following sequence of games.

– Game 1: This is the IND-CPA experiment.
– Game 2: This is the same as game 1, except that during key-generation, the

matrix B is chosen uniformly at random by the experiment.
– Game 3: The same as game 2, except that during encryption of the challenge-

ciphertext, c∗ = (c∗1, c
∗
2, c

∗
3) is chosen uniformly at random.

Clearly, A’s advantage of winning game 3 is zero, as the challenge-ciphertext c∗

is statistically independent of the challenge bit b chosen by the experiment. It re-
mains to show that the views of A are computationally indistinguishable in game
1, 2 and 3. For contradiction, assume that A distinguishes game 1 and game 2
with non-negligible advantage ν1(n). We will construct a distinguisher B1 that
distinguishes the distributions (A, T · A+X) and (A,U) with advantage ν1(k),
contradicting the hardness of Problem 3. The input of B1 is an instance (A†, B†).
B1 simulates the interaction with A in the same way as game 1 does, except
for the key generation step. Instead of generating A and B as in game 1, it sets
A = A† and B = G+B†. After the simulation terminates, B1 outputs whatever
A outputs. Clearly, if (A†, B†) is chosen according to (A, T · A +X), then A’s
view in B1’s simulation is identically distributed as in game 1. On the other hand,
if (A†, B†) is distributed according to (A,U), then A’s view in B1’s simulation
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is identical to game 2. Thus it holds that |Pr[B1(A, TA+X)]−Pr[B1(A,U)]| =
|Pr[viewA(Game1)] − Pr[viewA(Game2)]| ≥ ν1(k), which contradicts the hard-
ness of Problem 3. Now assume that A distinguishes between game 2 and game
3 with non-negligible advantage ν2(k). We will construct a distinguisher B2 that
distinguishes the distributions (M,Ms + e) and (M,u) with advantage ν2(k),
contradicting the hardness of Problem 2. Let the input of B2 be (M, r), where

M ∈ F(l1+l2+l3)×n
2 and r ∈ Fl1+l2+l3

2 . B2 first partitions M in three matri-
ces M1 ∈ Fl1×n

2 , M2 ∈ Fl2×n
2 and M3 ∈ Fl3×n

2 . Likewise, it partitions r into
r1 ∈ Fl1

2 , r2 ∈ Fl2
2 and r3 ∈ Fl3

2 . B2 simulates the interaction with A exactly
like game 2, except for two details. In the key-generation step, it sets A = M1,
B = M2 and C = M3. Moreover, the challenge-ciphertext c∗ = (c∗1, c

∗
2, c

∗
3) by

c∗1 = r1, c
∗
2 = r2 and c∗3 = r3 + EncodeD(mb). After the simulation termi-

nates, B1 outputs whatever A outputs. Clearly, if (M, r) is chosen according to
(M,Ms + e), then A’s view is identically distributed to game 2. On the other
hand, if (M, r) is distributed according to (M,u), then A’s view is identically dis-
tributed to game 3. Therefore, it holds that |Pr[B2(M,Ms+e)]−Pr[B2(M,u)]| =
|Pr[viewA(Game2)]−Pr[viewA(Game3)]| ≥ ν2(k), which contradicts the hardness
of problem 2. This concludes the proof.

6 The IND-CCA1 Scheme

In this Section, we will construct an IND-CCA1 scheme based on the scheme
PKE1 constructed in the last section. We will extend the encryption and de-
cryption algorithms with an instance-key derivation step, that assigns a tag to
each ciphertext and derives an instance public or secret key for each tag. These
instance-keys will be used as keys for PKE1. Moreover, we need to ensure that
decryption only outputs a plaintext if an incomplete key would have already
been sufficient to decrypt. Decryption therefore checks if the hamming-weight
of the randomness used to encrypt is small enough. When the scheme is used
honestly, this is the case with overwhelming probability. As in the last section,
let k be a security parameter, n ∈ O(k2/(1−2ε)), l1, l2, l3 ∈ O(k2/(1−2ε)) and
ρ = O(k−(1+2ε)/(1−2ε)). Let G ∈ Fl2×n

2 be the generator-matrix of a binary lin-
ear error-correcting code C and DecodeC an efficient decoding procedure that
corrects up to αl2 errors (for a constant α). Let D ⊆ Fl3

2 be a binary error-
correcting code with efficient encoding EncodeD and error-correction DecodeD
as before. Let E ⊆ Σl2 be a q-ary code over the alphabet Σ (with q = |Σ|) with
relative minimum-distance δ and dimension n. Such a code can be generated ran-
domly (see Section 2.1). We will now explain how the parameters δ and q must
be chosen. Recall that DecodeC corrects up to αl2 errors. As explained earlier, α
must be big enough to correct the decryption-error, which has hamming-weight
less than (2β + γρ)l2 (for any constant β > 0). As the additional error induced
by erasures will have hamming weight ≤ (1 − δ)l2, it is sufficient to choose δ
(which must be smaller than 1− 1/q) such that 2β + γρ+1− δ < α. As we can
choose β and γ arbitrarily small, we can always find q and δ such that the above
is met. Therefore, fix β, γ, q and δ such that for sufficiently large n it holds that
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2β+γρ+1− δ < α. We can choose the constant β arbitrarily small and it holds
that γρ ∈ o(1). There exist constructions of efficiently decodable linear codes
C such that α is slightly larger than 1/400 [Zém01]. Thus we can choose q as
small as q > 1/(α − 2β − γρ) > 400. We remark that this might be drastically
improved if a more sophisticated joint error-and-erasure correction mechanism
than ours was used. Our naive mechanism simply treats erasures as errors, but
there might be much more efficient mechanism, maybe allowing to choose q as
small as 2.

Construction 2. The scheme PKE2 = (KeyGen,Enc,Dec) is specified by

– KeyGen(1k): Sample matrices A ∈ Fl1×n
2 and C ∈ Fl3×n

2 uniformly at ran-
dom. For every j ∈ Σ sample a matrix Tj from χl2×l1

ρ and a matrix Xj from

χl2×n
ρ . Set Bj = G+Tj ·A+Xj . Set pk = (A, (Bj)j∈Σ , C) and sk = (Tj)j∈Σ.

Output (pk, sk).

– Encpk(m): Takes a public key pk = (A, (Bj)j∈Σ , C) and a plaintext m ∈ Fn
2

as input. Write each Bj as Bj = (bj,1, . . . , bj,l2)
T (The bTj,i are the rows of

Bj). Sample a tag τ ∈ Σn uniformly at random and set τ̂ = EncodeE(τ). It
then sets Bτ̂ = (bτ̂1,1, . . . , bτ̂l2 ,l2)

T , i.e. the i-th row of Bτ̂ is bτ̂i,i. Encryption

now samples s from χnρ , e1 from χl1ρ , e2 from χl2ρ and e3 from χl3ρ . It sets
c1 = A · s+ e1, c2 = Bτ̂ · s+ e2 and c3 = C · s+ e3 + EncodeD(m). Output
c = (τ, c1, c2, c3).

– Decsk(c): Takes a secret key sk = (Tj)j∈Σ and a ciphertext c = (τ, c1, c2, c3)
as input. Write each Tj as Tj = (tj,1, . . . , tj,l2)

T (The tTj,i are the rows of

Tj). Then it computes τ̂ = EncodeE(τ) and Tτ̂ = (tτ̂1,1, . . . , tτ̂l2 ,l2)
T . Next it

computes y = c2 − Tτ̂ · c1 and s = DecodeC(y). Outputs ⊥ if decoding fails.
Otherwise compute m = DecodeD(c3−C ·s). Now it computes e1 = c1−A ·s,
e2 = c2−Bτ̂ · s, e3 = c3−C · s−EncodeD(m) and checks whether |s| < γρn,
|e1| < γρl1, |e2| < γρl2 and |e3| < γρl3. If yes it outputs m, otherwise ⊥.

Correctness of PKE2 follows immediately from the correctness of PKE1. The
only additional step is the check of the hamming weights |s|, |e1|, |e2| and |e3|.
However, this has been dealt with implicitly in Lemma 1. We will now prove
IND-CCA1 security for the scheme PKE2.

Theorem 2. The scheme PKE2 is IND-CCA1 secure, provided that the scheme
PKE1 is IND-CPA secure and the parameters α, β, γ, q and δ suffice δ < 1−1/q
and 2β + γρ+ 1− δ < α.

Proof. Let A be PPT-bounded IND-CPA adversary against PKE2. Consider the
following sequence of games.

– Game 1: This is the IND-CCA1 experiment.
– Game 2: This is the same as game 1, except that the tag τ∗ of the challenge-

ciphertext c∗ = (τ∗, c∗1, c
∗
2, c

∗
3) is chosen before the experiment starts, and

game 2 aborts if A sends a decryption-query with tag τ∗.
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– Game 3 This is the same as game 2, except that the decryption-oracle
is implemented differently. For a decryption-query c = (τ, c1, c2, c3) the
decryption-oracle proceeds as follows. Let τ̂ = EncodeE(τ). For all i ∈
{1, . . . , l2} with τ̂i �= τ̂∗i , it computes yi = c2,i − tTτ̂i,ic1. For all remaining
i it chooses yi uniformly at random. The decryption-oracle then continues
like in game 2, computing s = DecodeC(y) (and aborts if decoding fails)
and m = DecodeD(c3 − C · s), setting e1 = c1 − A · s, e2 = c2 − B · s,
e3 = c3 − C · s− EncodeD(m) and checking whether |s| < γρn, |e1| < γρl1,
|e2| < γρl2 and |e3| < γρl3. If yes it outputs m, otherwise ⊥.

In game 2, the event that A sends a decryption-query with tag τ∗ has proba-
bility at most f(k)/qn = negl(k), where f(k) is a polynomial upper bound for
the number of decryption-queries A makes. If this event does not occur, game 1
and game 2 are identically distributed from A’s view. Thus, from A’s view game
1 and game 2 are statistically indistinguishable. We will now show that game
2 and game 3 are statistically indistinguishable from A’s view. First, assume
that for every tag τ the matrices Tτ̂ and Xτ̂ are (β, γρ)-good. If this is the case,
we claim that the decryption oracles of game 2 and game 3 behave identical.
We split the claim in two cases. The first case is simple: If either |s| ≥ γρn,
|e1| ≥ γρl1, |e2| ≥ γρl2 or |e3| ≥ γρl3, then the decryption oracle will return
⊥ in both games, regardless whether decoding fails or not. In the other case it
holds that |s| < γρn, |e1| < γρl1, |e2| < γρl2 and |e3| < γρl3. Now it holds that
the hamming-weight of the error-term v = Xτ̂ · s+ e2 − Tτ̂ · e1 will be bounded
by 2βl2 + γρl2. Thus, in game 2 the decoding-algorithm DecodeC has to correct
at most (2β + γρ)l2 < αl2 and will thus be successful and output the unique
s. In game 3, there might be up to (1 − δ)l2 additional errors DecodeC has to
deal with, as the decryption oracle chooses up to (1 − δ)l2 components of the
codeword y at random. However, since (2β + γρ+ 1− δ)l2 < αl2 the decoding-
algorithm DecodeC will also succeed in game 3 and output the unique s. This
concludes the claim. What remains to show for this part of the proof is that,
with overwhelming probability in k, it holds that for every tag τ the matrices Tτ̂
and Xτ̂ are (β, γρ)-good. We can think of each matrix Tτ̂ as a row-sub-matrix of

a large matrix Tfull ∈ Fql2×n
2 that consists of all the rows of all Ti for i ∈ Σ (i.e.

Tfull is just the vertical concatenation of all Ti). With overwhelming probability
in k, Tfull is (β/q, γρ)-good (since q is constant). This means that for each e1
with |e1| < γρl1 it holds that |Tfulle1| < β/q · (ql2) = βl2. However, as each
Tτ̂ is a row-sub-matrix of Tfull, it also holds that |Tτ̂e1| < βl2. Showing that
|Xτ̂s| < βl2 works analogously, which concludes this part of the proof. Finally,
A’s advantage of winning game 3 is negligible in k, given that PKE1 is IND-
CPA secure. Assume for contradiction that A wins game 3 with non-negligible
advantage ν(k). We will construct an IND-CPA adversary B against PKE1 that
wins the IND-CPA experiment with advantage ν. B’s input from the IND-CPA
experiment is a public key pk′ = (A′, B′, C′) for the scheme PKE1. B now runs
the key-generation of game 3 with the following modifications. Instead of sam-
pling the matrices A and C uniformly at random, it sets A = A′ and C = C′.
Now it generates the Bj and Tj exactly like the key-generation in game 3. Then
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however, it replaces the public-key at the locations that constitute Bτ̂ with B′,
i.e. it sets bTτ̂i,i = b′i

T
for i = 1, . . . , l2. B. Then it simulates the interaction be-

tween A and game 3, answering decryption-queries like game 3. This is possible,
as game 3 never uses secret keys tτ̂i,i (that correspond to public keys bτ̂i,i) to
answer decryption queries. Once A sends challenge messages (m0,m1), B for-
wards (m0,m1) to the IND-CPA experiment and receives a challenge-ciphertext

c† = (c†1, c
†
2, c

†
2). B sends c∗ = (τ∗, c†1, c

†
2, c

†
2) to A and continues the simulation.

Once A terminates, B outputs whatever A outputs. From A’s view, B’s simu-
lation and game 3 are perfectly indistinguishable, as the distributions of A and
C are the same, as well as the distribution of the partial public keys bTj,i, which
are independent of one another (only depending on the same A). Moreover, the
decryption-oracle behaves identically in both experiments. Therefore, it holds
that AdvIND-CPA(B) = AdvIND-CCA1(A) = ν(k) which contradicts the IND-CPA
security of scheme PKE1.

7 The IND-CCA2 Scheme

We will now provide details how the scheme PKE2 can be transformed into an
IND-CCA2 secure scheme PKE3 using additional one-time signatures. We fol-
low an approach by Dolev, Dwork and Naor [DDN00], which has been used in
several other constructions [PW08, Pei09, RS09, DMQN09, MP12], especially
in the world of lattice and coding assumptions, to achieve full CCA2 security.
First observe that it is not necessary to choose the tag τ ∈ Σn uniformly at
random in the encryption procedure of PKE2. We only need to guarantee that
a PPT-adversary A will have negligible probability guessing the secret tag τ∗

correctly if it is granted a polynomial number of trials (this immediately yields
the statistical indistinguishability of game 1 and game 2 in Theorem 2). Thus
it is sufficient to sample the tags τ from a distribution with high min-entropy.
Moreover, observe that the proof of Theorem 2 still holds if we allow A to
make decryption-queries even after it has received the challenge-ciphertext c∗.
This can be seen by noting that the decryption-oracle in game 3 can answer
decryption-queries with τ �= τ∗ regardless of whether the challenge-ciphertext
has been given to A or not (decryption-queries with τ = τ∗ are rejected un-
conditionally). In fact, the decryption-oracle in game 3 is oblivious of whether
the challenge-ciphertext has been given to A or not. Thus, the scheme PKE2

can be recast as a tag-based encryption scheme [Kil06]. We will now outline
PKE3. Let SIG = (Gen, Sign,Verify) be an EUF-CMA secure one-time signature
scheme. For simplicity, assume that the verification-keys vk of SIG are elements
of Σn (this can always be accomplished by encoding vk in the q-ary alphabet
Σ and choosing n large enough). The key-generation of PKE3 is identical to the
key-generation of PKE2. The encryption procedure PKE3.Enc first computes a
pair of verification and signature-keys (vk, sgk) = SIG.Gen(1k). Then it runs the
encryption procedure PKE2.Enc, with the difference that it sets τ = vk instead
of choosing τ uniformly at random. Let c′ be the output of PKE2.Enc. PKE3.Enc
then computes σ = SIG.Signsgk(c

′) and outputs the ciphertext c = (c′, σ). The
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decryption procedure PKE3.Dec first checks if σ is a valid signature on c′ using
the verification-key vk = τ (where τ is the tag given in c′). If the check succeeds,
it runs the decryption procedure PKE2.Dec on the ciphertext c′ and outputs
whatever PKE2.Dec outputs. We summarize this in the following construction.
Let Enc′pk(m, vk) be a procedure that does exactly the same as PKE2.Encpk(m),
but sets τ = vk instead of choosing τ uniformly at random.

Construction 3. The scheme PKE3 = (KeyGen,Enc,Dec) is specified by

– KeyGen(1k): Compute (pk, sk) = PKE2.KeyGen(1
k) and output (pk, sk).

– Encpk(m): Generate (vk, sgk) = SIG.Gen(1k), encrypt c′ = Enc′pk(m, vk),
sign σ = SIG.Signsgk(c

′) and output c = (c′, σ).
– Decsk(c): Let c = (c′, σ) and c′ = (τ, c1, c2, c3). Set vk = τ . Check if

SIG.Verifyvk(c
′, σ) = 1, if not abort. Otherwise compute m = PKE2.Decsk(c

′)
and output m.

Theorem 3. The scheme PKE3 is IND-CCA2 secure, provided that SIG is an
EUF-CMA secure one-time signature scheme and the same requirements as in
Theorem 2 are given.

Proof. (Sketch) Let A be PPT-bounded IND-CCA2 adversary against PKE3.
It suffices to show that with overwhelming probability, every decryption-query
by A tagged with τ∗ (the tag of the challenge-ciphertext) is rejected. Thus, we
can recycle the proof of Theorem 5 almost entirely, we only need to replace the
indistinguishability of game 1 and game 2 in the proof of Theorem 2. The rest
of the proof is identical. Consider the following two games.

– Game 1: This is the IND-CCA2 experiment.
– Game 2: This is the same as game 1, except that the tag τ∗ of the challenge-

ciphertext c∗ = (τ∗, c∗1, c
∗
2, c

∗
3, σ

∗) is generated before the experiment starts,
and game 2 aborts if A sends a decryption-query with tag τ∗.

Assume that A distinguishes between game 1 and game 2 with non-negligible ad-
vantage ν(k). Clearly, given that the decryption-oracle rejects every decryption-
query tagged with τ∗, both games are identically distributed from A’s view.
Thus, to distinguish game 1 and game 2 A must generate a decryption-query
tagged with τ∗ that is accepted by the decryption-oracle. This implies that such
a decryption-query c = (c′, σ) with c′ = (τ∗, c1, c2, c3) suffices the condition
SIG.Verifyvk(c

′, σ) = 1, where vk = τ∗. Thus we can assume that A gener-
ates such a decryption-query with probability ν(k). We construct an EUF-CMA
adversary B that breaks the EUF-CMA security of SIG with probability ν(k).
Let vk be the verification key provided to B by the EUF-CMA experiment. B
simulates game 2 with A, but makes the following changes. Instead of gener-
ating the tag τ∗ itself, it sets τ∗ = vk. Moreover, B obtains the signature σ∗

of the challenge-ciphertext c∗ by querying its signature-oracle with c′
∗
, where

c′
∗
= Enc′pk(mb, vk). Finally, once A sends a decryption-query c = (c′, σ) with

c′ = (τ∗, c1, c2, c3) and SIG.Verifyvk(c
′, σ) = 1, B outputs (c′, σ) an terminates.
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Clearly, game 2 and the simulation of B are identically distributed from the
view of A. Thus, the event that A sends a decryption-query c = (c′, σ) with
c′ = (τ∗, c1, c2, c3) and SIG.Verifyvk(c

′, σ) = 1 happens with probability ν(k) in
B’s simulation. This means that B outputs a valid forged signature with proba-
bility ν(k), contradicting the EUF-CMA security of SIG.

8 Conclusion

In this work we constructed the first IND-CCA2 secure public key encryption
scheme based solely on the hardness of a low-noise variant of the learning parity
with noise problem. To achieve this, we introduced a novel all-but-one simula-
tion technique. This new technique enabled the construction of a CCA1 secure
scheme, which is more efficient than any previous such construction based on
the correlated-products approach. The scheme enjoys a constant-factor cipher-
text expansion as well as asymptotically efficient key-generation, encryption and
decryption.
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Abstract. This paper discusses the provable security of the compres-
sion functions introduced by Knudsen and Preneel [11,12,13] that use lin-
ear error-correcting codes to build wide-pipe compression functions from
underlying blockciphers operating in Davies-Meyer mode. In the infor-
mation theoretic model, we prove that the Knudsen-Preneel compression

function based on an [r, k, d]2e code is collision resistant up to 2
(r−d+1)n
2r−3d+3

query complexity if 2d ≤ r + 1 and collision resistant up to 2
rn

2r−2d+2

query complexity if 2d > r + 1. For MDS code based Knudsen-Preneel
compression functions, this lower bound matches the upper bound re-
cently given by Özen and Stam [23].

A preimage security proof of the Knudsen-Preneel compression func-
tions has been first presented by Özen et al. (FSE ’10). In this paper,
we present two alternative proofs that the Knudsen-Preneel compression
functions are preimage resistant up to 2

rn
k query complexity. While the

first proof, using a wish list argument, is presented primarily to illustrate
an idea behind our collision security proof, the second proof provides a
tighter security bound compared to the original one.

1 Introduction

A cryptographic hash function takes a message of arbitrary length, and returns a
bit string of fixed length. The most common way of hashing variable length mes-
sages is to iterate a fixed-size compression function (e.g. according to the Merkle-
Damg̊ard paradigm [7,20]). The underlying compression function can either be
constructed from scratch, or be built upon off-the-shelf cryptographic primitives
such as blockciphers. Recently, blockcipher-based constructions have attracted
renewed interest as many dedicated hash functions, including those most com-
mon in practical applications, have started to exhibit serious security weak-
nesses [2,6,18,19,29,34,35,36]. By instantiating a blockcipher-based construction
with an extensively studied (and fully trusted) blockcipher, one can conveniently
transfer the trust in the existing blockcipher to the hash function.
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Compression functions based on blockciphers have been widely studied
[3,4,9,10,14,22,25,26,27,28,30,31,32,33]. The most common approach is to con-
struct a 2n-to-n bit compression function using a single call to an n-bit blockci-
pher. However, such a function, called a single-block-length (SBL) compression
function, might be vulnerable to collision attacks due to its short output length.
For example, one could successfully mount a birthday attack on a compression
function based on AES-128 using approximately 264 queries. This observation
motivated substantial research on constructions whose output size is larger than
the block length of the underlying blockcipher(s). A typical approach has been to
construct double-block-length (DBL) hash functions, where the output length is
twice the block length of the underlying blockcipher(s). Since the 1990s various
double-block-length constructions have been proposed mostly without formal
security proofs. Those constructions were mainly focused on optimizing their ef-
ficiency in terms of the rate, while only recently have a few double-block-length
constructions been supported by rigorous security proofs [8,15,17,24].

The Knudsen-Preneel compression functions. On the other hand, Knud-
sen and Preneel [11,12,13] adopted a different approach, aiming at achieving a
particular level of security using a given number of ideal compression functions
as building blocks. Specifically, they used r independent cn-to-n bit random
functions to build the entire compression function producing rn-bit outputs.
The parameter c is typically two or three so that the inner primitives can be
constructed from n-bit key or 2n-bit key blockciphers operating in Davies-Meyer
mode. The main idea of Knudsen and Preneel’s approach lies in the method of
deriving the inputs to the inner primitives from the input to the entire compres-
sion function. They used an [r, k, d] linear error-correcting code over a finite field
in a way that its generator matrix extends a kcn-bit input to the entire compres-
sion function to an rcn-bit string. This string is parsed into r blocks of the same
size, and the blocks go into the inner primitives in parallel. The output of the
entire compression function is the concatenation of the n-bit outputs obtained
from the r inner primitives. This Knudsen-Preneel (KP) compression function is
fed to the Merkle-Damg̊ard transform, producing the final output via a random
finalization function whose output size might depend on the security target.

Due to the property of linear codes of minimum distance d, two different
inputs to the KP compression function determine two sets of inputs to the inner
primitives that are different at least at d positions. Based on this observation,
Knudsen and Preneel made a certain plausible security assumption (see [11,
Section 5]) which was used for their security proof that the KP compression

function is collision resistant up to 2
(d−1)n

2 query complexity. They also expected
that the KP compression function would be preimage resistant up to 2(d−1)n

query complexity. In order to maximize the query complexity, Knudsen and
Preneel suggested the use of MDS codes satisfying d = r − k + 1.

Attack history. For KP compression functions based on an MDS code, the
designers described preimage attacks matching their security conjecture, while
their collision attacks were far from tight for many of the parameter sets.
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Afterwards Watanabe [37] proposed a collision attack beating the original con-
jecture for many cases. In particular, for 2k > r and d ≤ k, one could find a
collision with k2n query complexity.

Özen, Shrimpton and Stam [21] presented a preimage attack of 2
rn
k query

complexity, far less than the bound of 2(d−1)n that was originally conjectured
by the designers. By giving a preimage security proof, they proved that their
attack is tight. Their result also implies that one could expect a collision with
about 2

rn
2k queries.

Subsequently, Özen and Stam [23] presented new collision attacks using the
ideas of Watanabe and the preimage attack of Özen, Shrimpton and Stam. For

2k > r and d ≤ k, their attacks require 2
kn

3k−r query complexity. This implies
that the KP compression functions do not achieve the security level they were
originally designed for. On the other hand, tightness of their attack remained a
open question.

1.1 Our Contribution

In this paper, we prove that the KP compression function based on an [r, k, d]2e

code is collision resistant up to 2
(r−d+1)n
2r−3d+3 query complexity if 2d ≤ r + 1 and

collision resistant up to 2
rn

2r−2d+2 query complexity if 2d > r + 1. For KP com-

pression functions based on an MDS code, this lower bound, simplified to 2
kn

3k−r

for 2d ≤ r+1 and 2
rn
2k for 2d > r+1 respectively, matches the upper bound given

by [21,23]. For two parameter sets [4, 2, 3]8 and [5, 2, 4]8 such that 2d > r + 1,
the collision security is proved up to the query complexity equal to or beyond
the block-size of the underlying blockciphers.

Özen, Shrimpton and Stam [21] proved that the preimage finding advantage
of a q-query adversary is not greater than

ε1(r, k) =
q

(r−k)k
r

2(r−k)n
+

(
eq

k
r

2n

)kq
(r−k)

r

,

where we set δ = r(k−1)−k2

r in Theorem 10 of [21]. The upper bound ε1(r, k)
becomes negligible as q gets much smaller than 2

rn
k . In this paper, we present

two alternative preimage security proofs, where the second proof provides a
tighter security bound compared to the original one. Specifically, the preimage
finding advantage of a q-query adversary is upper bounded by

ε2(r, k) =

(
r

k

)
qk

2rn
.

Our upper bound ε2(r, k) is significantly smaller than ε1(r, k) since ε2(r, k) ≤(
r
k

)
ε1(r, k)

1+ k
r−k . For example, for a [5, 3, 3]4 code based KP compression func-

tion, we have ε1(r, k) ≥ q6/5

22n while ε2(r, k) =
10q3

25n .
Our first preimage security proof, using a wish-list argument, is presented

primarily to illustrate an idea behind our collision security proof. This proof is
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Table 1. Provable security of Knudsen-Preneel constructions. Non-MDS parameters
in italic. The parameter sets satisfying r + 1 > 2k are [4, 2, 3]8 and [5, 2, 4]8.

[r,k,d]2e - Basing Compression Collision Resistance Preimage Resistance

Code Primitive Function Attack [23] Security Tightness Attack [21] Security

[5, 3, 3]4 (5 + 1)n → 5n 23n/4 23n/4 √
25n/3 25n/3

[8 , 5 , 3 ]4 (8 + 2)n → 8n 25n/7 23n/5 28n/5 28n/5

[12 , 9 ,3 ]4 2n → n (12 + 6)n → 12n 23n/5 25n/9 24n/3 24n/3

[9 , 5 , 4 ]4 (9 + 1)n → 9n 25n/6 22n/3 29n/5 29n/5

[16 , 12 , 4 ]4 (16 + 8)n → 16n 23n/5 213n/23 24n/3 24n/3

[6, 4, 3]16 (6 + 2)n → 6n 22n/3 22n/3 √
23n/2 23n/2

[8, 6, 3]16 (8 + 4)n → 8n 23n/5 23n/5 √
24n/3 24n/3

[12, 10, 3]16 2n → n (12 + 8)n → 12n 25n/9 25n/9 √
26n/5 26n/5

[9, 6, 4]16 (9 + 3)n → 9n 22n/3 22n/3 √
23n/2 23n/2

[16, 13, 4]16 (16+10)n → 16n 213n/23 213n/23 √
216n/13 216n/13

[4, 2, 3]8 (4 + 2)n → 4n 2n [21] 2n √
22n 22n

[6, 4, 3]8 (6 + 6)n → 6n 22n/3 22n/3 √
23n/2 23n/2

[9, 7, 3]8 (9 + 12)n → 9n 27n/12 27n/12 √
29n/7 29n/7

[5, 2, 4]8 3n → n (5 + 1)n → 5n 25n/4 [21] 25n/4 √
25n/2 25n/2

[7, 4, 4]8 (7 + 5)n → 7n 24n/5 24n/5 √
27n/4 27n/4

[10, 7, 4]8 (10+11)n → 10n 27n/11 27n/11 √
210n/7 210n/7

tight only for the parameter sets of MDS codes. Table 1 summarizes these results
for 16 parameter sets proposed by the original designers.

Wish list argument. In the information-theoretic model, the most typical
approach for a security proof has been upper bounding the probability that a
single query of an adversary achieves a certain security goal (such as finding a
collision or finding a preimage of a target image). The upper bound of the total
adversarial advantage is obtained by multiplying this upper bound by the num-
ber of queries allowed to the adversary. Most single-block-length constructions
can be analyzed in this way [25].

However, certain constructions might not allow an upper bound small enough
to uniformly apply to all the queries. One of the techniques to address this diffi-
culty is to define a certain bad event that happens with only small probability,
and prove that it is hard for a single query to achieve an adversarial goal with-
out the occurrence of the bad event. This approach was adopted in the collision
security proof of MDC-2 and MJH hash functions [16,24] as well as the preimage
security proof of the KP compression functions [21].

Another technique is to cleverly modify the adversary: the modified adver-
sary, typically using the original adversary as a subroutine, is given slightly
more power than the original one. So the success probability of the modified
adversary is not reduced, while it becomes much easier to upper bound. With
this approach, one can prove the security of Abreast-DM and Tandem-DM hash
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functions [8,15,17]. Our second alternative preimage security proof of the KP
compression functions also follows this approach.

As yet another technique, one might use an observation that a security goal is
usually achieved by a group of queries and the last query that achieves the goal
is uniquely determined by the previous queries in the group. We assume, once
a new query is obtained, the adversary computes a query that might become
the last winning query along with a certain group of existing queries (including
the new query). If this query has not been asked, the adversary includes it in a
wish list expecting this wish is accomplished sometime later. If we have upper
bounds on the size of the wish list (hopefully smaller than the total number of
queries) and the probability that each wish in the list is accomplished, the total
adversarial advantage can be obtained by a union bound. This technique, called
a wish list argument, was first used in the preimage security proof of certain
double-length blockcipher-based compression functions [1]. This work is the first
application of a wish list argument to a collision security proof (combined with
a bad event argument). In our extension, each wish is typically given as a set of
unasked queries, rather than a single query.

Efficiency. Unfortunately, for most of the parameter sets, the KP compression
functions do not provide collision security beyond the block-size of the underly-
ing blockcipher. However, from a practical point of view, some of the KP com-
pression functions are still comparable to the existing blockcipher-based hash
functions such as MDC-2, Abreast-DM and Tandem-DM in terms of efficiency
and probable security.

In MDC-2, compression of a single n-bit message block requires two calls to
the underlying n-bit key blockcipher, and it enjoys a 3n

5 -bit collision security
proof. This construction is comparable to the KP compression functions using
[12, 9, 3]4, [16, 12, 4]4 or [8, 6, 3]16 codes: they are all of rate 1

2 using 2n-to-n bit
primitives (or equivalently n-bit key blockciphers), and supported by a 3n

5 -bit
security proof.

The compression function H = KP1([6, 4, 3]8) using 3n-to-n bit primitives (or
equivalently 2n-bit key blockciphers) is supported by a 2n

3 -bit security proof.
This construction has the same rate and the same provable security as MJH [16]
using a 2n-bit key blockcipher.

The compression function H = KP1([4, 2, 3]8) using 3n-to-n bit primitives (or
equivalently 2n-bit key blockciphers) is supported by an n-bit security proof.
This construction is comparable to Abreast-DM and Tandem-DM, both of which
are of rate 1

2 using a 2n-bit key blockcipher. We also refer to [5] for comparison
of this compression function with the other existing schemes in terms of AES
driven implementations.

The compression function H = KP1([5, 2, 4]8) is relatively slow with rate 1
5 ,

while this is the first construction that enjoys the provable collision security
beyond the block-size of the underlying blockciphers. However it remains open
whether this KP compression function is still secure when the inner primitives
are instantiated with 2n-bit key n-bit blockciphers, since in general an n-bit
blockcipher loses its randomness beyond 2n queries (for a fixed key). The other
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open question raised here is the provable security of KP constructions where all
the inner primitives are instantiated the same.

2 Preliminaries

2.1 The Knudsen-Preneel Compression Functions

An [r, k, d]2e linear error-correcting code C is a k-dimensional subspace of Fr
2e ,

where F2e denotes a finite field of order 2e. An [r, k, d]2e code C can be represented
by a k × r generator matrix G over F2e where every codeword of C is expressed
as a linear combination of the row vectors of G, namely w ·G for some w ∈ Fk

2e .
Obviously, k ≤ r, and the Singleton bound states that

d ≤ r − k + 1.

When a code meets the equality of the Singleton bound, it is calledmaximum dis-
tance separable (MDS). As an important property of MDS codes, any k columns
of a generator matrix of an MDS code are linearly independent.

Let F2e = F(ω) be an extension of F2 generated by the root ω of a primitive
polynomial p(x) of degree e, and let Fe

2 be an e-dimensional vector space over F2.
In order to clearly define the Knudsen-Preneel compression functions, we need
to identify F2e and Fe

2 by a group isomorphism ψ : F2e → Fe
2 such that

ψ(ae−1ω
e−1 + · · ·+ a1ω + a0) = (ae−1, . . . , a1, a0)

T .

For each g ∈ F2e , consider a map

Φ(g) : Fe
2 −→ Fe

2

u �−→ ψ(g · ψ−1(u)),

where “·” denotes the field multiplication of F2e . This is a linear map, so it is
associated with an e× e matrix over F2 with respect to the standard basis. We
will denote this matrix as φ(g). Since for every g, h ∈ F2e ,

1. Φ(g + h) = Φ(g) + Φ(h),
2. Φ(gh) = Φ(g) ◦ Φ(h),

we also have φ(g + h) = φ(g) + φ(h) and φ(gh) = φ(g)φ(h) for all g, h ∈ F2e .
This implies the map φ : F2e → Fe×e

2 is a ring homomorphism.
Suppose that φ(g) is the identity matrix, or equivalently Φ(g) is the identity

map. Since this implies g · ψ−1(u) = ψ−1(u) for every u ∈ Fe
2, g should be the

multiplicative identity of F2e . This implies again that φ is injective.
This injective ring homomorphism naturally extends to φ̄ : Fr×k

2e → Fre×ke
2

where φ is applied to each component and then (Fe×e
2 )r×k is identified with

Fre×ke
2 . Now we are ready to define the Knudsen-Preneel compression functions.
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Definition 1. Let C be an [r, k, d]2e linear code with a generator matrix G ∈
Fk×r
2e and let φ : F2e → Fe×e

2 be the injective ring homomorphism defined above.
Let e = bc and n = bn′ for some positive integers b, c, n, n′, and let ek > rb.
Then the Knudsen-Preneel compression function

H = KPb([r, k, d]2e) : {0, 1}kcn → {0, 1}rn

making oracle queries to public random functions fl : {0, 1}cn → {0, 1}n, l =
1, . . . , r, computes H(W ) for W ∈ {0, 1}kcn as follows.

1. Compute X ← (φ̄(GT )⊗ In′) ·W .
2. Parse X = (x1, . . . , xr), where x1, . . . , xr ∈ {0, 1}cn.
3. Make oracle queries yl = fl(xl) for l = 1, . . . , r, and output the digest Z =

y1|| · · · ||yr.

Here ⊗ denotes the Kronecher product and In′ the identity matrix in Fn′×n′

2 .

Example 1. The above mathematical description of Knudsen-Preneel construc-
tions looks complicated, while the constructions themselves are very simple. For
example, let e = 2 and let F22 = F(ω) for a root ω satisfying ω2 + ω + 1 = 0.
For a1ω + a0 ∈ F22 ,

ω(a1ω + a0) = (a0 + a1)ω + a1.

This implies φ(ω) =

[
1 1

1 0

]
. Since φ is an injective ring homomorphism,

φ(0) =

[
0 0

0 0

]
, φ(1) =

[
1 0

0 1

]
, φ(ω) =

[
1 1

1 0

]
, φ(ω+1) = φ(ω)+φ(1) =

[
0 1

1 1

]
.

Let C be a [5, 3, 3]4 linear code with a generator matrix G =

⎡⎢⎣1 0 0 1 1

0 1 0 1 ω

0 0 1 1 ω + 1

⎤⎥⎦. If
c = 2, then b = 1, n = n′ and

φ̄(GT ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 | 0 0 | 0 0 | 1 0 | 1 0

0 1 | 0 0 | 0 0 | 0 1 | 0 1

0 0 | 1 0 | 0 0 | 1 0 | 1 1

0 0 | 0 1 | 0 0 | 0 1 | 1 0

0 0 | 0 0 | 1 0 | 1 0 | 0 1

0 0 | 0 0 | 0 1 | 0 1 | 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

.

Let H : {0, 1}6n → {0, 1}5n be the resulting KP compression function using
five public random functions fl : {0, 1}2n → {0, 1}n, l = 1, . . . , 5. Then for
W = ω1|| · · · ||ω6,

H(W ) = f1(x1)|| · · · ||f5(x5),
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where x1 = (ω1||ω2), x2 = (ω3||ω4), x3 = (ω5||ω6), x4 = (ω1⊕ω3⊕ω5||ω2⊕ω4⊕
ω6), x5 = (ω1 ⊕ ω3 ⊕ ω4 ⊕ ω6||ω2 ⊕ ω3 ⊕ ω5 ⊕ ω6).

Throughout this work, we will simply write CPRE(W ) = (φ̄(GT )⊗ In′) ·W . For
the security analysis of H , we need to state some properties of CPRE .

Definition 2. Let I ⊂ [1, r] and let (x∗l )l∈I ∈
∏

l∈I{0, 1}cn. (x1, . . . , xr) ∈
({0, 1}cn)r is called an extension of (x∗l )l∈I if there exists an inputW ∈ {0, 1}kcn
such that CPRE(W ) = (x1, . . . , xr) and xl = x∗l for l ∈ I. We will say (x∗l )l∈I
is valid if it has an extension.1

For I = [1, r], valid tuples are exactly the images of CPRE . Due to the linearity
of CPRE (with respect to bitwise xor “⊕”), we have the following property.

Property 1. If (xl)l∈I and (x′l)l∈I are valid, then (xl ⊕ x′l)l∈I is also valid.

Property 2. Let I be a subset of [1, r] such that |I| = r − d + 1. If (x∗l )l∈I ∈∏
l∈I{0, 1}cn is valid, then it has a unique extension.

Proof. Suppose that (x1, . . . , xr), and (x′1, . . . , x
′
r) are extensions of (x∗l )l∈I .

Then (x1 ⊕ x′1, . . . , xr ⊕ x′r) is also an extension of (0)l∈I . Since any nonzero
codeword in C has at least d nonzero coordinates, we have (x1⊕x′1, . . . , xr⊕x′r) =
(0, . . . , 0), and hence (x1, . . . , xr) = (x′1, . . . , x

′
r). � 

2.2 Collision Resistance and Preimage Resistance

In this section, we review security notions of collision resistance and preimage
resistance in an information theoretic sense. In the collision resistance experi-
ment, a computationally unbounded adversary A makes oracle queries to public
random functions fl, l = 1, . . . , r, and records a query history Q, which is initial-
ized as an empty set. When A makes a new query fl(x), a query-response pair
(l, x, fl(x)) is added to Q.2 We will loosely write (l, x) ∈ Q indicating that the
value of fl(x) has been determined by A’s query. Furthermore, we will denote
A’s i-th query as (li, xi), i = 1, . . . , q, indicating the i-th query is fli(x

i).
At the end of the collision-finding attack, A would like to find queries

(1, xi1), . . . , (r, xir ), (1, xj1 ), . . . , (r, xjr ) ∈ Q

satisfying the following two conditions.

1. (xi1 , . . . , xir ) and (xj1 , . . . , xjr ) are distinct valid tuples.

2. f1
(
xi1

)
|| · · · ||fr

(
xir

)
= f1

(
xj1

)
|| · · · ||fr

(
xjr

)
.

1 We regard
∏

l∈I{0, 1}
cn as the set of all functions from I to {0, 1}cn. Thus, even in

case |I| = |I′|,
∏

l∈I{0, 1}
cn 	=

∏
l∈I′{0, 1}cn as long as I 	= I′. We also naturally

identify ({0, 1}cn)r with {0, 1}crn.
2 Unless stated otherwise, we will not allow any redundant query.
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In this case, (il, jl)l∈[1,r] is called an index sequence of a collision. The suc-

cess probability of A’s finding a collision is denoted by Advcol
H (A). The maxi-

mum of Advcol
H (A) over the adversaries making at most q queries is denoted by

Advcol
H (q).

In the preimage resistance experiment, A chooses a target image Z =
z1|| · · · ||zr at the beginning of the attack, where z1, . . . , zr ∈ {0, 1}n. After mak-
ing a certain number of oracle queries to fl, l = 1, . . . , r, A would like to find
queries

(1, xi1), . . . , (r, xir ) ∈ Q

such that f1
(
xi1

)
|| · · · ||fr

(
xir

)
= z1|| · · · ||zr. The success probability of A’s

finding a preimage is denoted by Advpre
H (A), and Advpre

H (q) is the maximum of
Advpre

H (A) over the adversaries making at most q queries. There might be several
definitions of preimage resistance according to the distribution of a target image.
The definition described here, called everywhere preimage resistance, is known
as the strongest version in the sense that an adversary chooses its target image
on its own.

3 Preimage Resistance Proofs

In this section, we will give two preimage resistance proofs of the KP compression
functions. In both security proofs, we let Z = z1|| · · · ||zr be the range point to
be inverted where z1, . . . , zr ∈ {0, 1}n. When an adversary A succeeds in finding
a preimage of Z, predicate Pre is set to true by definition. So we need to upper
bound the probability Pr[Pre]. Throughout this work, we will write N = 2n.

3.1 The First Alternative Proof

Consider a subset T ⊂ [1, r] such that |T | = r − d + 1. With respective to
this subset, we define predicate PreT , where PreT is true if A obtains an index
sequence of a preimage D = (il)l∈[1,r] such that

1. (l, xil) ∈ Q and fl(x
il) = zl for l = 1, . . . , r,

2. maxl∈T {il} < minl∈[1,r]\T {il}.

By the second condition, T specifies the function indices where the first r−d+1
partial preimages are determined. More precisely, a partial preimage can be
defined as follows.

Definition 3. Let T be a subset of [1, r] such that |T | = r − d+ 1. A sequence
of indices

P = (il)l∈T

is called a partial preimage at T if (l, xil) ∈ Q and fl(x
il) = zl for l ∈ T .



Provable Security of the Knudsen-Preneel Compression Functions 513

We will upper bound Pr [Pre] by using the following implication.

Pre⇒
∨

T ⊂[1,r]
|T |=r−d+1

PreT

⇒ Bad(M) ∨
∨

T ⊂[1,r]
|T |=r−d+1

(¬Bad(M) ∧ PreT ) , (1)

where the parameterized predicate Bad(M), M > 0, is true if there exists a
subset T ⊂ [1, r] of size r − d+ 1 such that the number of partial preimages at
T is greater than M .

In order for a preimage finding adversary A to set PreT to true, A has to first
complete a partial preimage at T . If (xil)l∈T is valid at the point when a partial
preimage P = (il)l∈T is completed, then the remaining queries (xl)l∈[1,r]\T that
might complete a preimage of Z along with (xil)l∈T are uniquely determined
by Property 2. Specifically, it is required that fl(xl) = zl for l ∈ [1, r]\T . If any
of these evaluations has not been determined, we include (xl, zl)l∈[1,r]\T into a
wish list L, expecting all of these evaluations to happen sometime later. A single
query might include a multiple number of wishes into L by completing a multiple
number of partial preimages at T . However a single partial preimage at T is
associated with a unique element in L. Therefore the size of L would be at most
M without the occurrence of Bad(M). Since each wish would be accomplished
with probability 1/N |[1,r]\T | = 1/Nd−1, we have the following upper bound.

Pr [¬Bad(M) ∧ PreT ] ≤
M∑
i=1

Pr [the i-th wish is granted] ≤ M

Nd−1
. (2)

In order to address the remaining problem of upper bounding the probability of
Bad(M), we will define a random variable X that counts the number of partial
preimages at T , and probabilistically upper bound the value ofX using Markov’s
inequality.

Fix a subset T ⊂ [1, r] of size r − d + 1, and define a random variable XP

for each sequence P = (il)l∈T ∈
∏

l∈T [1, q], where XP = 1 if (l, xil) ∈ Q and
fl(x

il) = zl for every l ∈ T , and XP = 0 otherwise. If we define

X =
∑

P∈
∏

l∈T [1,q]

XP ,

thenX counts the number of partial preimages at T . Since
∣∣∏

l∈T [1, q]
∣∣ = qr−d+1

and

Pr[XP = 1] = Ex(XP ) ≤
1

N r−d+1
,

we have Ex(X) ≤ qr−d+1

Nr−d+1 . Using Markov’s inequality, for M > 0 we have

Pr [X ≥M ] ≤ qr−d+1

MN r−d+1
.
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Applying a union bound over subsets T ⊂ [1, r] of size r − d+ 1, we have

Pr[Bad(M)] ≤
(

r

r − d+ 1

)
qr−d+1

MN r−d+1
=

(
r

d− 1

)
qr−d+1

MN r−d+1
. (3)

By (1), (2) and (3), we have

Pr[Pre] ≤
(

r

d− 1

)
qr−d+1

MN r−d+1
+

(
r

d− 1

)
M

Nd−1
.

Let

M =
q

r−d+1
2

N
r−2d+2

2

by setting qr−d+1/(MN r−d+1) =M/Nd−1. Then we have

Pr[Pre] ≤ 2

(
r

d− 1

)
q

r−d+1
2

N
r
2
.

The following theorem summarizes this result.

Theorem 1. Let H be the Knudsen-Preneel compression function based on an
[r, k, d]2e code. Then we have

Advpre
H (q) ≤ 2

(
r

d− 1

)
q

r−d+1
2

N
r
2
.

For MDS codes, we have

Advpre
H (q) ≤ 2

(
r

k

)
q

k
2

N
r
2
.

Example 2. Let H be based on a [5, 3, 3]4 MDS code. Then Theorem 1 implies

Advpre
H (q) ≤ 20q

3
2

N
5
2

.

Therefore H is preimage resistant up to N5/3 query complexity.

3.2 The Second Alternative Proof

The main idea of this proof is based on the observation that for any set of r
queries to f1, . . . , fr that are in the range of CPRE , one can appoint k queries
that expand the span. Whenever any of such queries is made by an adversary
A, we let the corresponding modified adversary A′ immediately make any other
queries that are added to the span. In this way, we can fix all the indices of
queries at which A′ obtains a full preimage of Z. This modification makes upper
bounding the preimage finding advantage of A′ much easier than A.
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To be precise, let H = KPb([r, k, d]2e) be given with a generator matrix

G = [G1, G2, · · · , Gr]

where Gi is a k × 1 column matrix for i = 1, . . . , r. (G is not necessarily in
standard form.) Fix a sequence

T = (l1, l2, . . . , lk) ∈ [1, r]k

such that column matrices Gl1 , . . . , Glk are linearly independent (which implies
l1, l2, . . . , lk are all different), and a sequence

P = (i1, i2, . . . , ik) ∈ [1, q]k

such that i1 < i2 < · · · < ik. If partial preimages fl1(x
i1 ) = zl1 , · · · , flk(xik ) =

zlk are found,3 then these queries uniquely determine the remaining r−k queries
xl, l ∈ [1, r]\T , such that, setting xlj = xij for lj ∈ T , (xl)l∈[1,r] is an image
of CPRE . Specifically, each of the remaining queries is represented as a linear
combination of xi1 , . . . , xik . We define predicate PreT ,P where PreT ,P is true if
the following two conditions are satisfied.

1. (lα, x
iα) ∈ Q and flα(x

iα) = zlα for α = 1, . . . , k.
2. For all l ∈ [1, r]\T , let α be the first index such that Gl is represented as a

linear combination of Gl1 , . . . , Glα . A obtains fl(xl) = zl after A makes
the iα-th query. (Note that xl is determined as a linear combination of
xi1 , . . . , xiα .)

Then we have the following implication.

Pre⇒
∨

(T ,P )

PreT ,P . (4)

In order to prove the above implication, suppose that A sets Pre to true by
obtaining fl1(x

i1 ) = z1, · · · , flr(xir ) = zr in an order of i1 < i2 < . . . < ir. From
the sequence (l1, . . . , lr) ∈ [1, r]r, we can extract a subsequence T ∈ [1, r]k using
the following algorithm.

T ← ∅
For α = 1, . . . , r,
if Glα is not represented by a linear combination of Gl, l ∈ T then

T ← lα

Since G is of rank k, we have |T | = k. We can also check that PreT ,P is true
with P = (iα) where α satisfies lα ∈ T .

Sequence P fixes the indices of queries when we need to obtain the partial
preimages of zl for l ∈ T . In order to fix the indices of queries from which we
obtain the remaining partial preimages, we construct a modified adversary A′

that uses A as a subroutine. The behavior of A′ can be illustrated as follows.

3 Here we are using slightly different notations from Section 2.2 by assuming xiα is
queried to flα not fα. This implies lα = liα for α = 1, . . . , k.
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1. Between A and the random function oracles, A′ faithfully relays all the A’s
queries and the oracles’ responses.

2. Once queries fl1(x
i1), · · · , flα(xiα) are made for α = 1, . . . , r, A′ searches for

Gl that is represented as a linear combination of Gl1 , . . . , Glα with a nonzero
coefficient of Glα .

3. For such an index l, query xl that is consistent with x
i1 , . . . , xiα is determined

as a linear combination of xi1 , . . . , xiα . A′ makes an additional query fl(xl)
without relaying the response to A. When A makes a certain query, A′ might
need to make a multiple number of additional queries, while we fix an order
between those queries.

In case A requests any of the additional queries later, A′ would have to make a
redundant query. Including the redundant queries, the number of queries made
by A′ is at most q + r − k. In this way, (T , P ) induces new sequences

T ′ = (l′1, l
′
2, . . . , l

′
r) ∈ [1, r]r,

P ′ = (i′1, i
′
2, . . . , i

′
r) ∈ [1, q]r

such that l′α are all distinct, i′1 < i′2 < · · · < i′r, and A setting PreT ,P to true

implies that A′ obtains fl′α(x
i′α) = zl′α as fresh queries for α = 1, . . . , r.4

Example 3. Let H be based on a [5, 3, 3]4 MDS code with a generator matrix

G = [G1, G2, G3, G4, G5] .

Let T = (1, 5, 3) and P = (i1, i2, i3), and let G2 = λG1 and G4 = μ1G1+μ3G3+
μ5G5 for some constants λ, μ1, μ3, μ5 where λ and μ3 are nonzero. Then (T , P )
induces T ′ = (1,2, 5, 3,4) and P ′ = (i1, i1 + 1, i2 + 1, i3 + 1, i3 + 2). Note that
i2 and i3 have been replaced by i2 + 1 and i3 + 1 respectively in P ′, since one
additional query has been inserted right after the i1-th query.

Since (T ′, P ′) fixes all query indices i′α that determine a preimage of Z, we have

Pr [A sets PreT ,P to true] ≤ Pr [A′ sets PreT ′,P ′ to true] ≤ 1

N r
. (5)

Since the number of possible choices for (T , P ) is at most(
r

k

)
k! ·

(
q

k

)
≤

(
r

k

)
qk,

and by (4), (5) we conclude

Pr [Pre] ≤
(
r

k

)
qk

N r
.

To summarize this result, we have the following theorem.

4 Without allowing a redundant query, P ′ is not uniquely defined from (T , P ). P ′

would be different according to the point of time when a redundant query is made.
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Theorem 2. Let H be the Knudsen-Preneel compression function based on an
[r, k, d]2e code. Then we have

Advpre
H (q) ≤

(
r

k

)
qk

N r
.

Example 4. Let H be based on a [5, 3, 3]4 MDS code. Then Theorem 2 implies

Advpre
H (q) ≤ 10q3

N5
.

4 Collision Resistance Proof

Consider two sets of evaluations
(
fl(x

il )
)
l∈[1,r]

and
(
fl(x

jl )
)
l∈[1,r]

of the inner

primitives for H = KPb([r, k, d]2e). Let S ⊂ [1, r] and suppose that il = jl (and
hence xil = xjl) for l ∈ S. As long as (xil)l∈[1,r] and (xjl)l∈[1,r] are valid, partial
inner collisions fl(x

il ) = fl(x
jl) for l ∈ [1, r]\S suffice to guarantee an actual

collision ofH regardless of the evaluations of fl(x
il )(= fl(x

jl )) for l ∈ S. For this
reason, we will call the indices in S inactive and the other indices active. The
probability of finding a collision turns out to be closely related to the number of
inactive indices that contribute a collision.

When a collision happens, let predicate Col be set to true by definition. Our
security proof begins with decomposing this predicate into subcases according
to the number of inactive indices. For 0 ≤ s ≤ r− d, consider a subset S ⊂ [1, r]
such that |S| = s. With respective to this subset, we define predicate ColS , where
ColS is true if A obtains an index sequence of a collision C = (il, jl)l∈[1,r] such
that

il = jl if and only if l ∈ S.

Note that more than r − d inactive inner collisions enforce (xi1 , . . . , xir ) =
(xj1 , . . . , xjr ) since H is based on a code of minimum distance d. Therefore
we have

Col⇒
∨

0≤s≤r−d

⎛⎜⎜⎝ ∨
S⊂[1,r]
|S|=s

ColS

⎞⎟⎟⎠ . (6)

4.1 Inner Collisions Compatible with Inactive Indices

For s < d−1, we will upper bound Pr [ColS ] by a wish list argument. In order to
upper bound the size of a certain wish list, we need a notion of partial collisions.
Similar to partial preimages, each partial collision will uniquely determine a wish
in the list, so the size of the wish list is upper bounded by the number of partial
collisions.
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Definition 4. Let S and T be disjoint subsets of [1, r]. A sequence of indices

P = (il, jl)l∈T

is called a partial collision at T compatible with inactive indices S if

1. 1 ≤ il, jl ≤ q are all distinct,

2. (l, xil), (l, xjl) ∈ Q and fl(x
il) = fl(x

jl ) for l ∈ T ,

3. (Δl)l∈S∪T is valid where Δl = 0 for l ∈ S and Δl = xil ⊕ xjl for l ∈ T .

Note that even in case of S∪T = [1, r], a partial collision need not correspond to
an actual collision as (xil)l∈T and (xjl )l∈T might not be valid. A partial collision
also has the following property.

Property 3. For disjoint subsets S and T ⊂ [1, r], the number of partial colli-
sions at T compatible with inactive indices S is a multiple of 2|T |.

Proof. From a single partial collision P = (il, jl)l∈T , we can obtain 2|T | different
partial collisions by swapping il and jl for each l ∈ T . Since we can define an
equivalence relation between them, the total number of partial collisions is given
as a multiple of 2|T |. � 

By the following lemma, we can upper bound the number of partial collisions at
T compatible with inactive indices S for a fixed subset T such that S ∩ T = ∅
and |S|+ |T | ≥ r−d+1. The proof, given in Appendix A in detail, is essentially
based on the application of Markov’s inequality.

Lemma 1. Let S and T be disjoint subsets of [1, r] such that |S| ≤ r − d and
|S| + |T | ≥ r − d + 1, and let |S| = s and |T | = t. Then for M > 0, the
number of partial collisions at T compatible with inactive indices S is smaller
than 2t−r+d+s−1M except with probability(

t

r − d− s+ 1

)
qt+r−d−s+1

MN t
.

4.2 Upper Bounding Pr [ColS ]

According to the number of inactive indices, s = |S|, we distinguish two cases.

Case 1. s < d − 1 : This case is analyzed by a wish list argument.
Note that |[1, r]\S| > r−d+1. For a subset T ⊂ [1, r]\S such that |T | = r−d+1,
we define predicate ColS,T where ColS,T is true if A obtains an index sequence
of a collision C = (il, jl)l∈[1,r] such that

1. il = jl if and only if l ∈ S,
2. maxl∈T {il, jl} < minl∈[1,r]\(S∪T ){max{il, jl}}.
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Thus T specifies the indices where the first r − d+ 1 active inner collisions are
completed. For M > 0, we define predicate Bad(M) where Bad(M) is true if
there exists a subset T ⊂ [1, r]\S of size r − d + 1 such that the number of
partial collisions at T compatible with inactive indices S is greater than

L = 2sM.

Then by Lemma 1 (with t = r − d+ 1) and a union bound, we have

Pr[Bad(M)] ≤
(

r − s

r − d+ 1

)(
r − d+ 1

s

)
q2(r−d+1)−s

MN r−d+1
. (7)

In order to upper bound Pr [ColS ], we will use the following implication.

ColS ⇒ Bad(M) ∨
∨

T ⊂[1,r]\S
|T |=r−d+1

(¬Bad(M) ∧ ColS,T ) . (8)

Now we will focus on upper bounding Pr [¬Bad(M) ∧ ColS,T ] for fixed subsets
S and T . In order for A to set ColS,T to true, A has to first complete a partial
collision at T compatible with inactive indices S. At the point when a partial
collision P = (il, jl)l∈T is completed, the remaining queries (xl, x

′
l)l∈[1,r]\(S∪T )

that could make a collision along with P are uniquely determined. (They exist
only if (xil )l∈T and (xjl )l∈T are valid.) If

1. xl �= x′l for l ∈ [1, r]\(S ∪ T ),

2. any of collisions of fl(xl) and fl(x
′
l) has not been determined for l ∈

[1, r]\(S ∪ T ),

then we include (xl, x
′
l)l∈[1,r]\(S∪T ) into a wish list L, expecting all of the colli-

sions to happen sometime later. A single query might include a multiple number
of wishes into L by completing a multiple number of partial collisions. However
a single partial collision is associated with a unique element in L. Therefore
without the occurrence of Bad(M), the size of L is at most L, and we have the
following upper bound.

Pr [¬Bad(M) ∧ ColS,T ] ≤
L∑
i=1

Pr [the i-th wish is granted] . (9)

Since

Pr [the i-th wish is granted] ≤ 1

N |[1,r]\(S∪T )| =
1

Nd−s−1
,

for each i = 1, . . . , L, and by (7), (8), (9), we have

Pr[ColS ] ≤
(

r − s

r − d+ 1

)(
r − d+ 1

s

)
q2(r−d+1)−s

MN r−d+1
+

(
r − s

r − d+ 1

)
2sM

Nd−s−1
. (10)
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Case 2. s ≥ d−1 : This case might occur when d−1 ≤ r−d. Let T = [1, r]\S.
In this case, ColS implies that there is a partial collision at T compatible with
inactive indices S. Here we can use Lemma 1 with M = 1 and t = r − s
since the number of partial collisions should be a multiple of 2|T | = 2r−s but
2t−r+d+s−1(= 2d−1) is smaller than 2r−s. Therefore we have

Pr[ColS ] ≤ Pr[there is a partial collisions at T compatible with inactive indices S]

≤
(
r − s

d− 1

)
q2(r−s)−d+1

Nr−s
. (11)

4.3 Putting the Pieces Together

By (6), (10) and (11), we obtain the following result.

Pr[Col] ≤
d−2∑
s=0

(
r

s

)(
r − s

r − d+ 1

)((
r − d+ 1

s

)
q2(r−d+1)−s

M(s)N r−d+1
+

2sM(s)

Nd−s−1

)

+

r−d∑
s=d−1

(
r

s

)(
r − s

d− 1

)
q2(r−s)−d+1

N r−s
,

where the parameter M(s) might depend on the size of S and the second term
of the right hand side appears only when d− 1 ≤ r− d. In order to optimize the
right hand side of the inequality, set

M(s) =

(
r − d+ 1

s

) 1
2 qr−d+1− s

2

2
s
2N

r+s
2 −d+1

,

by solving (
r − d+ 1

s

)
q2(r−d+1)−s

M(s)N r−d+1
=

2sM(s)

Nd−s−1
.

Then we have the following theorem.

Theorem 3. Let H be the Knudsen-Preneel compression function based on an
[r, k, d]2e code. Then we have

Advcol
H (q) ≤

d−2∑
s=0

(
r

s

)(
r − s

r − d+ 1

)(
r − d+ 1

s

) 1
2 2

s
2+1qr−d+1− s

2

N
r−s
2

+
r−d∑

s=d−1

(
r

s

)(
r − s

d− 1

)
q2(r−s)−d+1

N r−s
.

Interpretation. Let d − 1 ≤ r − d or equivalently 2d ≤ r + 1. Assuming
N

1
2 ≤ q ≤ N , we have

d−2∑
s=0

(
r

s

)(
r − s

r − d+ 1

)(
r − d+ 1

s

) 1
2 2

s
2+1qr−d+1− s

2

N
r−s
2

= O

(
qr−

3d
2 +2

N
r
2−

d
2+1

)
,
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and
r−d∑

s=d−1

(
r

s

)(
r − s

d− 1

)
q2(r−s)−d+1

N r−s
= O

(
q2r−3d+3

N r−d+1

)
.

In this case, H is collision resistant up to N
r−d+1

2r−3d+3 query complexity since

N
1
2 ≤ N

r−d+1
2r−3d+3 ≤ N

r−d+2
2r−3d+4 ≤ N.

Let 2d > r + 1. Assuming q ≥ N , we have

r−d∑
s=0

(
r

s

)(
r − s

r − d+ 1

)(
r − d+ 1

s

) 1
2 2

s
2+1qr−d+1− s

2

N
r−s
2

= O

(
qr−d+1

N
r
2

)
.

In this case, H is collision resistant up to N
r

2r−2d+2 query complexity since

N ≤ N
r

2r−2d+2 .

We summarize this result as follows.

Corollary 1. Let H be the Knudsen-Preneel compression function based on an
[r, k, d]2e code.

(a) If 2d ≤ r+1, then H is collision resistant up to N
r−d+1

2r−3d+3 query complexity.

(b) If 2d > r+1, then H is collision resistant up to N
r

2r−2d+2 query complexity.

Corollary 2. Let H be the Knudsen-Preneel compression function based on an
[r, k, d]2e MDS code.

(a) If r + 1 ≤ 2k, then H is collision resistant up to N
k

3k−r query complexity.

(b) If r + 1 > 2k, then H is collision resistant up to N
r
2k query complexity.

Example 5. Let H be based on [5, 3, 3]4 MDS code. Then

Advcol
H (q) ≤

1∑
s=0

(
5

s

)(
5− s

3

)(
3

s

) 1
2 2

s
2+1q3−

s
2

N
5−s
2

+

(
5

2

)(
3

2

)
q4

N3

=
20q3

N
5
2

+
40
√
6q

5
2

N2
+

30q4

N3
.

Therefore H is collision resistant up to N3/4 query complexity.
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A Proof of Lemma 1

Let T = U ∪ V be a disjoint decomposition of T such that |S|+ |U| = r− d+1.
Let D[U ,V ] be the set of index sequences

D = ((il, jl)l∈U , (hl)l∈V)

such that

1. 1 ≤ il, jl, hl ≤ q are all distinct,
2. maxl∈U{il, jl} < minl∈V{hl}.

For a sequence D = ((il, jl)l∈U , (hl)l∈V ) ∈ D[U ,V ], we define a random variable
XD where XD = 1 if there is a sequence (il, jl)l∈V such that

1. max{il, jl} = hl for l ∈ V ,
2. P = (il, jl)l∈U∪V is a partial collision at T compatible with inactive indices
S,

and XD = 0 otherwise. The condition

max
l∈U

{il, jl} < min
l∈V

{hl} = min
l∈V

{max{il, jl}}

implies that the inner collisions at V are completed after the inner collisions at U .
Therefore for D = ((il, jl)l∈U , (hl)l∈V) ∈ D[U ,V ], Pr[XD = 1] is the probability
that

1. For l ∈ U , fl(xil) = fl(x
jl),

2. For l ∈ V , fl(xhl) = fl(x
hl ⊕Δ∗

l ), where
(a) (Δ∗

l )l∈[1,r] is a unique extension of (Δl)l∈S∪U , where Δl = 0 for l ∈ S
and Δl = xil ⊕ xjl for l ∈ U (by Property 2),

(b) fl(x
hl ⊕Δ∗

l ) has been queried before the hl-th query.

Since t inner collisions are necessary for XD = 1, we have

Pr[XD = 1] = Ex(XD) ≤ 1

N t
.5

Let
X =

∑
U∪V=T
U∩V=∅

|S|+|U|=r−d+1

∑
D∈D[U ,V]

XD.

5 If the extension (Δ∗
l )l∈[1,r] does not exist, then Pr[XD = 1] = 0.

http://csrc.nist.gov/pki/HashWorkshop/2006/UnacceptedPapers/WATANABE_kp_attack.pdf
http://csrc.nist.gov/pki/HashWorkshop/2006/UnacceptedPapers/WATANABE_kp_attack.pdf
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Since the number of possible decompositions of T = U ∪ V such that U ∩ V = ∅
and |S|+ |U| = r − d+ 1 is

(
t

r−d−s+1

)
and

|D[U ,V ]| ≤ q2|U|+|V| = q|T |+|U| = qt+(r−d+1)−s

for each decomposition, we have

Ex(X) =

(
t

r − d− s+ 1

)
qt+r−d−s+1Ex(XD) ≤

(
t

r − d− s+ 1

)
qt+r−d−s+1

N t
.

Using Markov’s inequality, for M > 0 we have

Pr [X ≥M ] ≤
(

t

r − d− s+ 1

)
qt+r−d−s+1

MN t
. (12)

Let P = (il, jl)l∈T be a partial collision at T compatible with inactive indices
S. Then we always have a unique disjoint decomposition of T = U ∪V such that
|U| = r − d− s+ 1 and

max
l∈U

{il, jl} < min
l∈V

{max{il, jl}} .

In this case, we have XD = 1 for D =
(
(il, jl)l∈U , (hl)l∈V

)
where hl =

max{il, jl}. If we regard this association of P with D as a mapping, then exactly
2|V|(= 2t−(r−d−s+1)) different partial collisions would be mapped to the same
sequence D since (il, jl) can be replaced by (jl, il) for each index l ∈ V without
changing the image of this mapping. Therefore the inequality (12) implies that
the number of partial collisions at T compatible with inactive indices S is at
most 2t−r+d+s−1M except with probability

(
t

r−d−s+1

)
qt+r−d−s+1/(MN t).
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Abstract. The idea of double block length hashing is to construct a
compression function on 2n bits using a block cipher with an n-bit block
size. All optimally secure double length hash functions known in the
literature employ a cipher with a key space of double block size, 2n-bit.
On the other hand, no optimally secure compression functions built from
a cipher with an n-bit key space are known. Our work deals with this
problem. Firstly, we prove that for a wide class of compression functions
with two calls to its underlying n-bit keyed block cipher collisions can
be found in about 2n/2 queries. This attack applies, among others, to
functions where the output is derived from the block cipher outputs in
a linear way. This observation demonstrates that all security results of
designs using a cipher with 2n-bit key space crucially rely on the presence
of these extra n key bits. The main contribution of this work is a proof
that this issue can be resolved by allowing the compression function to
make one extra call to the cipher. We propose a family of compression
functions making three block cipher calls that asymptotically achieves
optimal collision resistance up to 2n(1−ε) queries and preimage resistance
up to 23n(1−ε)/2 queries, for any ε > 0. To our knowledge, this is the first
optimally collision secure double block length construction using a block
cipher with single length key space.

1 Introduction

Double (block) length hashing is a well-established method for constructing a
compression function with 2n-bit output based only on n-bit block ciphers. The
idea of double length hashing dates back to the work of Meyer and Schilling
[19], with the introduction of the MDC-2 and MDC-4 compression functions
in 1988. In recent years, the design methodology got renewed attention in the
works of [2,4,7,9,10,12,16,21,27]. Double length hash functions have an obvious
advantage over classical block cipher based functions such as Davies-Meyer and
Matyas-Meyer-Oseas [22,26]: the same type of underlying primitive allows for a
larger compression function. Yet, for double length compression functions it is
harder to achieve optimal n-bit collision and 2n-bit preimage security.

We focus on the simplest and most-studied type of compression functions,
namely functions that compress 3n to 2n bits. Those can be classified into two
classes: compression functions that internally evaluate a 2n-bit keyed block ci-
pher E : {0, 1}2n × {0, 1}n → {0, 1}n (which we will call the DBL2n class), and

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 526–543, 2012.
c© International Association for Cryptologic Research 2012
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ones that employ an n-bit keyed block cipher E : {0, 1}n × {0, 1}n → {0, 1}n
(the DBLn class). The DBL2n class is well understood. It includes the classical
compression functions Tandem-DM and Abreast-DM [8] and Hirose’s function
[6], as well as Stam’s supercharged single call Type-I compression function de-
sign [25,26] (reconsidered in [14]) and the generalized designs by Hirose [5] and
Özen and Stam [21]. As illustrated in Table 1, all of these functions provide op-
timal collision security guarantees (up to about 2n queries), and Tandem-DM,
Abreast-DM, and Hirose’s function are additionally proven optimally preimage
resistant (up to about 22n queries). These bounds also hold in the iteration,
when a proper domain extender is applied [1]. Lucks [15] introduced a com-
pression function that allows for collisions in about 2n/2 queries, but achieves
optimal collision resistance in the iteration. Members of the DBLn class are
the MDC-2 and MDC-4 compression functions [19], the MJH construction [10],
and a construction by Jetchev et al. [7]. For the MDC-2 and MJH compression
functions, collisions and preimages can be found in about 2n/2 and 2n queries, re-
spectively1. The MDC-4 compression function achieves a higher level of collision
and preimage resistance than MDC-2 [16], but contrary to the other functions
it makes four block cipher calls. Jetchev et al.’s construction makes two block
cipher calls and achieves 22n/3 collision security. Stam also introduced a design
based on two calls, and proved it optimally collision secure in a restricted se-
curity model where the adversary must fix its queries in advance. Therefore we
did not include this design in the table. Further related results include the work
of Nandi et al. [20], who presented a 3n-to-2n-bit compression function making
three calls to a 2n-to-n-bit one-way function, achieving collision security up to
22n/3 queries. They extended this result to a 4n-to-2n-bit function using three
2n-bit keyed block ciphers.

Unlike the DBL2n class, for the DBLn class no optimally secure compression
function is known. The situation is the same for the iteration, where none of
these designs has been proven to achieve optimal security. Determinative to this
gap is the difference in the underlying primitive: in the DBL2n class, the under-
lying primitive maps 3n bits to n bits and thus allows for more compression. In
particular, if we consider Tandem-DM, Abreast-DM, and Hirose’s function, the
first cipher call already compresses the entire input to the compression function,
and the second cipher call is simply used to assure a 2n-bit output. In fact, these
designs achieve their level of security merely due to this property, for their proofs
crucially rely on this (see also Sect. 4).

Thus, from a theoretical point of view it is unreasonable to compare DBL2n

and DBLn. But the gap between the two classes leaves us with an interesting
open problem: starting from a single block cipher E : {0, 1}n×{0, 1}n → {0, 1}n,
is it possible to construct a double length compression function that achieves
optimal collision and preimage security? This is the central research question
of this work. Note that Stam’s bound [25] does not help us here: it claims that
collisions can be found in at most (2n)(2r−1)/(r+1) queries, where r denotes the

1 In the iteration collision resistance is proven up to 23n/5 queries for MDC-2 [27] and
22n/3 queries for MJH [10].
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Table 1. Asymptotic ideal cipher model security guarantees of known double length
compression functions in the classes DBL2n (first) and DBLn (next). A more detailed
comparison of some of these functions can be found in [3, App. A].

compression
E-calls

collision preimage underlying
function security security cipher

Lucks’ 1 2n/2 2n

Stam’s 1 2n [26] 2n [26]
Tandem-DM 2 2n [12] 22n [2,13]
Abreast-DM 2 2n [4,9] 22n [2,13]
Hirose’s 2 2n [6] 22n [2,13]
Hirose-class 2 2n [5] 2n [5]

Özen-Stam-class 2 2n [21] 2n [21]

MDC-2 2 2n/2 2n

MJH 2 2n/2 2n

Jetchev et al.’s 2 22n/3 [7] 2n [7]

MDC-4 4 25n/8 [16] 25n/4 [16]

Our proposal 3 2n 23n/2

number of block cipher calls, which results in the trivial bound for r ≥ 2. For
r ≥ 2, denote by F r : {0, 1}3n → {0, 1}2n a compression function that makes r
calls to its primitive E.

As a first contribution, we consider F 2, and prove that for a very large class
of functions of this form one expects collisions in approximately 2n/2 queries.
Covered by the attack are among others designs with linear finalization function
(the function that produces the 2n-bit output given the 3n-bit input and the
block cipher responses). We note that the compression function by Jetchev et
al. [7] is not vulnerable to the attack due to its non-linear finalization function.
Nevertheless, these results strengthen the claim that no practical optimally col-
lision secure F 2 function exists. Motivated by this, we increase the number of
calls to E, and consider F 3. In this setting, we derive a family of compression
functions which we prove asymptotically optimal collision resistant up to 2n(1−ε)

queries and preimage resistant up to 23n(1−ε)/2 queries, for any ε > 0. Our com-
pression function family, thus, achieves the same level of collision security as the
well-established Tandem-DM, Abreast-DM, and Hirose’s function, albeit based
on a much weaker assumption. In the DBLn class, our design clearly compares
favorably to MDC-4 that makes four block cipher evaluations, and from a prov-
able security point of view it beats MDC-2 and MJH, still, an extra E evaluation
has to be made which results in an efficiency loss. The introduced class of com-
pression functions is simple and easy to understand: they are defined by 4 × 4
matrices over the field GF (2n) which are required to comply with easily satisfied
conditions. Two example compression functions in this class are given in Fig. 1.

The security proofs of our compression function family rely on basic principles
from previous proofs, but in order to accomplish optimal collision security (and
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u v w

c1

linear mapping

v + 2c1

u + w

2v + c1

2w

y z

u v w

c1

linear mapping

v + c1

u + v + w

2v + 3c1

u+ 2c1 + 2w

y z

Fig. 1. Two example compression functions from the family of functions introduced
and evaluated in this work. For these constructions, all wires carry n = 128 bits, and
the arithmetic is done over GF (2128). We further elaborate on these designs and their
derivations in Sect. 4.

as our designs use n-bit keyed block ciphers) our proofs have become significantly
more complex. The security proofs of all known DBL2n functions (see Table 1)
crucially rely on the property that one block cipher evaluation defines the input
to the second one. For F 3 this cannot be achieved as each primitive call fixes
at most 2n bits of the function input. Although one may expect this to cause
an optimal proof to become unlikely, this is not the case. Using a new proof
approach—we smartly apply the methodology of “wish lists” (by Armknecht et
al. and Lee et al. [2,13]) to collision resistance—we manage to achieve asymptoti-
cally the close to 2n collision security for our family of functions. Nonetheless, the
bound on preimage resistance does not reach the optimal level of 22n queries. One
can see this as the price we pay for using single key length rather than double key
length block ciphers: a straightforward generalization of the pigeonhole-birthday
attack of Rogaway and Steinberger [24] shows that, when the compression func-
tion behaves “sufficiently random”, one may expect a preimage in approximately
25n/3 queries (cf. Sect. 2). The asymptotic preimage bound of 23n/2 found in this
work closely approaches this generic bound.

Outline.We present and formalize the security model in Sect. 2. Then, in Sect. 3
we derive our impossibility result on F 2. We propose and analyze our family of
compression functions in Sects. 4 and 5. This work is concluded in Sect. 6.

2 Security Model

For n ≥ 1, we denote by Bloc(n) the set of all block ciphers with a key and
message space of n bits. Let E ∈ Bloc(n). For r ≥ 1, let F r : {0, 1}3n → {0, 1}2n
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be a double length compression function making r calls to its block cipher E.
We can represent F r by mappings fi : {0, 1}(i+2)n → {0, 1}2n for i = 1, . . . , r+1
as follows:

F r(u, v, w)

for i = 1, . . . , r:

(ki,mi)← fi(u, v, w; c1, . . . , ci−1) ,

ci ← E(ki,mi) ,

return (y, z)← fr+1(u, v, w; c1, . . . , cr) .

For r = 3, the F r compression function design is depicted in Fig. 2. This generic
design is a generalization of the permutation based hash function construction
described by Rogaway and Steinberger [24]. In fact, it is straightforward to gen-
eralize the main findings of [24] to our F r design and we state them as prelim-
inary results. If the collision- and preimage-degeneracies are sufficiently small
(these values intuitively capture the degree of non-randomness of the design
with respect to the occurrence of collisions and preimages), one can expect col-
lisions after approximately 2n(2−2/r) queries and preimages after approximately
2n(2−1/r) queries. We refer to [24] for the details. First of all, these findings
confirm that at least two cipher calls are required to get 2n collision resistance.
More importantly, from these results we can conclude that F r can impossibly
achieve optimal 22n preimage resistance. Yet, it may still be possible to con-
struct a function that achieves optimal collision resistance and almost-optimal
preimage resistance.

Throughout, we consider security in the ideal cipher model: we consider an
adversary A that is a probabilistic algorithm with oracle access to a block cipher

E
$← Bloc(n) randomly sampled from Bloc(n). A is information-theoretic: it

has unbounded computational power, and its complexity is measured by the
number of queries made to its oracles. The adversary can make forward queries
and inverse queries to E, and these are stored in a query history Q as indexed
tuples of the form (ki,mi, ci), where ki denotes the key input, and (mi, ci) the
plaintext/ciphertext pair. For q ≥ 0, by Qq we define the query history after q
queries. We assume that the adversary never makes queries to which it knows
the answer in advance.

u, v, w

u, v, w

u, v, w

u, v, w

k1

m1 c1

c1

c1
k2

m2 c2

c2
k3

m3 c3f1
f2

f3
f4

y, z

Fig. 2. F 3 : {0, 1}3n → {0, 1}2n making three block cipher evaluations
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A collision-finding adversary A for F r aims at finding two distinct inputs
to F r that compress to the same range value. In more detail, we say that A
succeeds if it finds two distinct tuples (u, v, w), (u′, v′, w′) such that F r(u, v, w) =
F r(u′, v′, w′) and Q contains all queries required for these evaluations of F r. We
define by

advcoll
F r (A) = Pr

(
E

$← Bloc(n), (u, v, w), (u′, v′, w′)← AE,E−1

:
(u, v, w) �= (u′, v′, w′) ∧ F r(u, v, w) = F r(u′, v′, w′)

)
the probability that A succeeds in this. By advcoll

F r (q) we define the maximum
collision advantage taken over all adversaries making q queries.

For preimage resistance, we focus on everywhere preimage resistance [23],
which captures preimage security for every point of {0, 1}2n. Before making any
queries to its oracle, a preimage-finding adversary A first decides on a range
point (y, z) ∈ {0, 1}2n. Then, we say that A succeeds in finding a preimage if it
obtains a tuple (u, v, w) such that F r(u, v, w) = (y, z) and Q contains all queries
required for this evaluation of F r. We define by

advepre
F r (A) = max

(y,z)∈{0,1}2n
Pr

(
E

$← Bloc(n), (u, v, w)← AE,E−1

(y, z) :
F r(u, v, w) = (y, z)

)
the probability that A succeeds, maximized over all possible choices for (y, z).
By advepre

F r (q) we define the maximum (everywhere) preimage advantage taken
over all adversaries making q queries.

3 Impossibility Result for 2-Call Double Length Hashing

We present an attack on a wide class of double block length compression func-
tions with two calls to their underlying block cipher E : {0, 1}n × {0, 1}n →
{0, 1}n. Let F 2 be a compression function of this form. We pose a condition
on the finalization function f3, such that if this condition is satisfied, collisions
for F 2 can be found in about 2n/2 queries. Although we are not considering all
possible compression functions, we cover the most interesting and intuitive ones,
such as compression functions with linear finalization function f3. Compression
functions with non-linear f3 are covered up to some degree (but we note that
the attack does not apply to the compression function of [7], for which collision
security up to 22n/3 queries is proven).

We first state the attack. Then, by ways of examples, we illustrate its gen-
erality. For the purpose of the attack, we introduce the function leftn which on
input of a bit string of length 2n bits outputs the leftmost n bits.

Proposition 1. Let F 2 : {0, 1}3n → {0, 1}2n be a compression function as
described in Sect. 2. Suppose there exists a bijective function L such that for
any u, v, w, c1, c2 ∈ {0, 1}n we have

leftn ◦ L ◦ f3(u, v, w; c1, c2) = leftn ◦ L ◦ f3(u, v, w; c1, 0) . (1)

Then, one can expect collisions for F 2 after 2n/2 queries.
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Proof. Let F 2 be a compression function and let L be a bijection such that (1)
holds. First, we consider the case of L being the identity function, and next we
show how this attack extends to the case L is an arbitrary bijection.

Suppose (1) holds with L the identity function. This means that the first n
bits of f3(u, v, w; c1, c2) do not depend on c2 and we can write f3 as a concate-
nation of two functions g1 : {0, 1}4n → {0, 1}n and g2 : {0, 1}5n → {0, 1}n as
f3(u, v, w; c1, c2) = g1(u, v, w; c1)‖g2(u, v, w; c1, c2). Let α ∈ N. We present an
adversary A for F 2. The first part of the attack is derived from [24].

• Make α queries (k1,m1)→ c1 that maximize the number of tuples (u, v, w)
with f1(u, v, w) hitting any of these values (k1,m1). By the balls-and-bins
principle2, the adversary obtains at least α·23n/22n = α2n tuples (u, v, w; c1)
for which it knows the first block cipher evaluation;

• Again by the balls-and-bins principle, there exists a value y such that at
least α tuples satisfy g1(u, v, w; c1) = y;

• Varying over these α tuples, compute (k2,m2) = f2(u, v, w; c1) and query
(k2,m2) to the cipher to obtain a c2. A finds a collision for F 2 if it obtains
two tuples (u, v, w; c1, c2), (u

′, v′, w′; c′1, c
′
2) that satisfy g2(u, v, w; c1, c2) =

g2(u
′, v′, w′; c′1, c

′
2).

In the last round one expects to find a collision if α2/2n = 1, or equivalently if
α = 2n/2. In total, the attack is done in approximately 2 · 2n/2 queries.

It remains to consider the case of L being an arbitrary bijection. Define F
2
as

F 2 with f3 replaced by f3 = L◦f3. Using the idea of equivalence classes on com-

pression functions [18] we prove that F 2 and F
2
are equally secure with respect

to collisions. Let A be a collision finding adversary for F
2
. We construct a colli-

sion finding adversary A for F 2, with oracle access to E, that uses A to output
a collision for F 2. Adversary A proceeds as follows. It forwards all queries made
by A to its own oracle. Eventually, A outputs two tuples (u, v, w), (u′, v′, w′)

such that F
2
(u, v, w) = F

2
(u′, v′, w′). Denote by c1 the block cipher outcome

on input of f1(u, v, w) and by c2 the outcome on input of f2(u, v, w; c1). Define
c′1 and c′2 similarly. By construction, as (u, v, w) and (u′, v′, w′) form a collision

for F
2
, we have L ◦ f3(u, v, w; c1, c2) = L ◦ f3(u′, v′, w′; c′1, c

′
2). Now, bijectivity

of L implies that f3(u, v, w; c1, c2) = f3(u
′, v′, w′; c′1, c

′
2), and hence (u, v, w) and

(u′, v′, w′) form a collision for F 2. (Recall that F 2 and F
2
only differ in the

finalization function f3, the functions f1 and f2 are the same.) We thus obtain
advcoll

F
2 (q) ≤ advcoll

F 2 (q). The derivation in reverse order is the same by symmetry.

But F
2
satisfies (1) for L the identity function. Therefore, the attack described

in the first part of the proof applies to F
2
, and thus to F 2. � 

We demonstrate the impact of the attack by giving several example functions
that fall in the categorization. We stress that the requirement of Prop. 1 is in
fact solely a requirement on f3; f1 and f2 can be any function.

2 If k balls are thrown in l bins, the α fullest bins in total contain at least αk/l balls.
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Suppose F 2 uses a linear finalization function f3. Say, f3 is defined as follows:(
a11 a12 a13 a14 a15
a21 a22 a23 a24 a25

)
(u, v, w, c1, c2)


 = (y, z)
,

where addition and multiplication is done over the field GF (2n). Now, if a25 = 0

we set L =
( 0 1
1 0

)
which corresponds to swapping y and z. If a25 �= 0, we set L =(

1 −a15a
−1
25

0 1

)
, which corresponds to subtracting the second equation a15a

−1
25 times

from the first one. The attack also covers designs whose finalization function f3
rotates or shuffles its inputs, such as MDC-2, where one defines L so that the
rotation gets undone. We elaborate on this in the full version [17]. In general, if f3
is a sufficiently simple add-rotate-xor function, it is possible to derive a bijective
L that makes (1) satisfied. Up to a degree, the attack also covers general non-
linear finalization functions. However, it clearly does not cover all functions and
it remains an open problem to either close this gap or to come with a (possibly
impractical) F 2 compression function that provable achieves optimal collision
resistance. One direction may be to start from the compression function with
non-linear finalization f3 by Jetchev et al. [7], for which collision resistance up
to 22n/3 queries is proven.

4 Double Length Hashing with 3 E-calls

Motivated by the negative result of Sect. 3, we target the existence of double
length hashing with three block cipher calls. We introduce a family of double
length compression functions making three cipher calls that achieve asymptoti-
cally optimal 2n collision resistance and preimage resistance significantly beyond
the birthday bound (up to 23n/2 queries). We note that, although the preimage
bound is non-optimal, it closely approaches the generic bound dictated by the
pigeonhole-birthday attack (Sect. 2).

Let GF (2n) be the field of order 2n. We identify bit strings from {0, 1}n and
finite field elements in GF (2n) to define addition and scalar multiplication over
{0, 1}n. In the family of double block length functions we propose in this section,
the functions f1, f2, f3, f4 of Fig. 2 will be linear functions over GF (2n). For two
tuples x = (x1, . . . , xl) and y = (y1, . . . , yl) of elements from {0, 1}n, we define

by x·y their inner product
∑l

i=1 xiyi ∈ {0, 1}n.
Before introducing the design, we first explain the fundamental consideration

upon which the family is based. The security proofs of all DBL2n functions
known in the literature (cf. Table 1) crucially rely on the property that one
block cipher evaluation defines the input to the other one. For DBL2n functions
this can easily be achieved: any block cipher evaluation can take as input the
full 3n-bit input state (u, v, w). Considering the class of functions DBLn, and
F r of Fig. 2 in particular, this can impossibly be achieved: one block cipher
“processes” at most 2n out of 3n input bits. In our design, we slightly relax this
requirement, by requiring that any two block cipher evaluations define the input
to the third one. Although from a technical point of view one may expect that
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u v w

c1

A

a1·(u, v, c1)
a2·(u, v, c1, w)

a3·(u, v, c1)
a4·(u, v, c1, w)

y z

F 3
A(u, v, w) = (y, z), where:

c1 ← E(u, v) ,

k2 ← a1 ·(u, v, c1) ,
m2 ← a2 ·(u, v, c1, w) ,
y ← E(k2,m2) +m2 ,

k3 ← a3 ·(u, v, c1) ,
m3 ← a4 ·(u, v, c1, w) ,
z ← E(k3,m3) +m3 .

Fig. 3. The family of compression functions F 3
A where A is a 4× 4 matrix as specified

in the text. Arithmetics is done over GF (2n).

this change causes optimal collision resistance to be harder or even impossible
to be achieved, we will demonstrate that this is not the case due to new proof
techniques employed to analyze the collision resistance.

Based on this key observation we propose the compression function design F 3
A

of Fig. 3. Here,

A =

⎛⎜⎜⎝
a1
a2
a3
a4

⎞⎟⎟⎠ =

⎛⎜⎜⎝
a11 a12 a13 0
a21 a22 a23 a24
a31 a32 a33 0
a41 a42 a43 a44

⎞⎟⎟⎠ (2)

is a 4×4 matrix overGF (2n). Note that, provided A is invertible and a24, a44 �= 0,
any two block cipher evaluations of F 3

A define (the inputs of) the third one.
For instance, evaluations of the second and third block cipher fix the vector
A(u, v, c1, w)


, which by invertibility of A fixes (u, v, c1, w) and thus the first
block cipher evaluation. Evaluations of the first and second block cipher fix the
inputs of the third block cipher as a24 �= 0. For the proofs of collision and
preimage resistance, however, we will need to posit additional requirements on
A. As we will explain, these requirements are easily satisfied.

In the remainder of this section, we state our results on the collision resistance
of F 3

A in Sect. 4.1 and on the preimage resistance in Sect. 4.2.

4.1 Collision Resistance of F 3
A

We prove that, provided its underlying matrix A satisfies some simple conditions,
F 3
A satisfies optimal collision resistance. In more detail, we pose the following

requirements on A:
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• A is invertible;
• a12, a13, a24, a32, a33, a44 �= 0;
• a12 �= a32 and a13 �= a33.

We refer to the logical AND of these requirements as colreq.

Theorem 1. Let n ∈ {0, 1}n. Suppose A satisfies colreq. Then, for any positive
integral values t1, t2,

advcoll
F 3

A
(q) ≤ 2t22q + 3t2q + 11q + 3t1t

2
2 + 7t1t2

2n − q
+

q2

t1(2n − q)
+ 3 · 2n

(
eq

t2(2n − q)

)t2

. (3)

The proof is given in Sect. 5. The basic proof idea is similar to existing proofs in the
literature (e.g. [16,27]) and is based on the usage of thresholds t1, t2. For increasing
values of t1, t2 the first term of the bound increases, while the second two terms
decrease. Although the proof derives basic proof principles from literature, for the
technical part we deviate from existing proof techniques in order to get a bound
that is “as tight as possible”. In particular, we introduce the usage of wish lists in
the context of collisions, an approach that allows for significantly better bounds.
Wish lists have been introduced byArmknecht et al. [2] andLee et al. [11,13] for the
preimage resistance analysis of DBL2n functions, but they have never been used
for collision resistance as there never was a need to do so. Our analysis relies on
this proof methodology, but as for collisions more block cipher evaluations are in-
volved (one collision needs six block cipher calls while a preimage requires three)
this makes the analysis more technical and delicate.

The goal now is to find a good threshold between the first term and the latter
two terms of (3). To this end, let ε > 0 be any parameter. We put t1 = q and
t2 = 2nε (we can assume t2 to be integral). Then, the bound simplifies to

advcoll
F 3

A
(q) ≤ 5 · 22nεq + 10 · 2nεq + 11q

2n − q
+

q

2n − q
+ 3 · 2n

(
eq

2nε(2n − q)

)2nε

.

From this, we find that for any ε > 0 we have advcoll
F 3

A
(2n/23nε)→ 0 for n→∞.

Hence, the F 3
A compression function achieves close to optimal 2n collision security

for n → ∞. For n = 128, we evaluate the bound in more detail in [17]. The
advantage hits 1/2 for log2 q ≈ 118.3, relatively close to the threshold 127.5 for
q(q + 1)/22n. For larger values of n this gap approaches 0.

4.2 Preimage Resistance of F 3
A

In this section we consider the preimage resistance of F 3
A . Though we do not

obtain optimal preimage resistance—which is impossible to achieve after all, due
to the generic bounds of the pigeonhole-birthday attack (Sect. 2)—we achieve
preimage resistance up to 23n/2 queries, much better than the preimage bounds
on MDC-2 and MDC-4 [16], relatively close to the generic bound. Yet, for the
proof to hold we need to put slightly stronger requirements on A.
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• A −

⎛⎜⎜⎝B1
0 0
0 0

B2
0 0
0 0

⎞⎟⎟⎠ is invertible for any B1,B2 ∈
{( 0 0

0 0

)
,
( 1 0
0 0

)
,
( 1 0
0 1

)}
. In the

remainder, we write
[
B1

/
B2

]
to denote the subtracted matrix;

• a12, a13, a24, a32, a33, a44 �= 0;
• a12 �= a32, a13 �= a33, and a24 �= a44.

We refer to the logical AND of these requirements as prereq. We remark that
prereq⇒ colreq, and that matrices satisfying prereq are easily found. Simple
matrices complying with these conditions over the field GF (2128) are⎛⎜⎜⎝

0 1 2 0
1 0 0 1
0 2 1 0
0 0 0 2

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 1 1 0
1 1 0 1
0 2 3 0
1 0 2 2

⎞⎟⎟⎠ . (4)

These are the matrices corresponding to the compression functions of Fig. 1.
Here, we use x128 + x127 + x126 + x121 +1 as our irreducible polynomial and we
represent bit strings as polynomials in the obvious way (1 = 1, 2 = x, 3 = 1+x).
Note that the choice of matrix A influences the efficiency of the construction.
The first matrix of (4) has as minimal zeroes as possible, which reduces the
amount of computation.

Theorem 2. Let n ∈ {0, 1}n. Suppose A satisfies prereq. Then, for any positive
integral value t, provided t ≤ q,

advepre
F 3

A
(q) ≤ 6t2 + 18t+ 26

2n − 2
+ 4 · 2n

(
4eq

t2n

)t/2

+ 8q

(
8eq

t2n

) t2n

4q

. (5)

The proof is given in the full version of this paper [17]. As for the bound on the
collision resistance (Thm. 1), the idea is to make a smart choice of t to minimize
this bound. Let ε > 0 be any parameter. Then, for t = q1/3, the bound simplifies
to

advepre
F 3

A
(q) ≤ 6q2/3 + 18q1/3 + 26

2n − 2
+ 4 · 2n

(
4eq2/3

2n

)q1/3/2

+ 8q

(
8eq2/3

2n

) 2n

4q2/3

.

From this, we find that for any ε > 0 we have advepre
F 3

A
(23n/2/2nε) → 0 for n →

∞. Hence, the F 3
A compression function achieves close to 23n/2 preimage security

for n → ∞. For n = 128, we evaluate the bound in more detail in [17]. The
advantage hits 1/2 for log2 q ≈ 180.3, relatively close to the threshold 191.5 for
q2/23n. For larger values of n this gap approaches 0.

The result shows that F 3
A with A compliant to prereq satisfies preimage re-

sistance up to about 23n/2 queries. We note that our proof is the best possible
for this design, by demonstrating a preimage-finding adversary that with high
probability succeeds in at most O(23n/2) queries. Let α ∈ N. The adversary
proceeds as follows.
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• Make α2n queries to the block cipher corresponding to the bottom-left
position of Fig. 3. One expects to find α tuples (k2,m2, c2) that satisfy
m2 + c2 = y;

• Repeat the first step for the bottom-right position. One expects to find α
tuples (k3,m3, c3) satisfying m3 + c3 = z;

• By invertibility of A, any choice of (k2,m2, c2) and (k3,m3, c3) uniquely
defines a tuple (u, v, c1, w) for the F

3
A evaluation. Likely, the emerged tuples

(u, v, c1) are all different, and we find about α2 such tuples;
• Varying over all α2 tuples (u, v, c1), query (u, v) to the block cipher. If it
responds c1, we have obtained a preimage for F 3

A .

In the last round one expects to find a preimage if α2/2n = 1, or equivalently if
α = 2n/2. The first and second round both require approximately 23n/2 queries,
and the fourth round takes 2n queries. In total, the attack is done in approxi-
mately 2 · 23n/2 + 2n queries.

5 Proof of Thm. 1

The proof of collision resistance of F 3
A follows the basic spirit of [16], but crucially

differs in the way the probability bounds are computed. A new approach here
is the usage of wish lists. While the idea of wish lists is not new—it has been
introduced by Armknecht et al. [2] and Lee et al. [11,13] for double block length
compression functions, and used by Mennink [16] for the analysis of MDC-4—in
these works wish lists are solely used for the analysis of preimage resistance rather
than collision resistance. Given that in a collision more block cipher evaluations
are involved, the analysis becomes more complex. At a high level, wish lists rely
on the idea that in order to find a collision, the adversary must at some point
make a query that “completes this collision” together with some other queries
already in the query history. Wish lists keep track of such query tuples, and the
adversary’s goal is to ever obtain a query tuple that is in such wish list. A more
technical treatment can be found in the proof of Lem. 1.

We consider any adversary that has query access to its oracle E and makes
q queries stored in a query history Qq. Its goal is to find a collision for F 3

A , in
which it by definition only succeeds if it obtains a query history Qq that satisfies
configuration coll(Qq) of Fig. 4. This means,

advcoll
F 3

A
(q) = Pr (coll(Qq)) . (6)

For the sake of readability of the proof, we label the block cipher positions in
Fig. 4 as follows. In the left F 3

A evaluation (on input (u, v, w)), the block ciphers
are labeled 1L (the one on input (u, v)), 2L (the bottom left one), and 3L (the
bottom right one). The block ciphers for the right F 3

A evaluation are labeled
1R, 2R, 3R in a similar way. When we say “a query 1L”, we refer to a query that
in a collision occurs at position 1L.

For the analysis of Pr (coll(Qq)) we introduce an auxiliary event aux(Qq). Let
t1, t2 > 0 be any integral values. We define aux(Qq) = aux1(Qq)∨· · · ∨aux4(Qq),
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u v w

c1

A

a1·(u, v, c1)
a2·(u, v, c1, w)

a3·(u, v, c1)
a4·(u, v, c1, w)

y z

u′ v′ w′

c′1

A

a1·(u′, v′, c′1)
a2·(u′, v′, c′1, w′)

a3·(u′, v′, c′1)
a4·(u′, v′, c′1, w′)

y z

Fig. 4. Configuration coll(Q). The configuration is satisfied if Q contains six (possibly
the same) queries that satisfy this setting. We require (u, v, w) 	= (u′, v′, w′).

where

aux1(Qq) :
∣∣{(ki,mi, ci), (kj ,mj, cj) ∈ Qq : i �= j ∧ mi + ci = mj + cj

}∣∣ > t1 ;

aux2(Qq) : maxz∈{0,1}n

∣∣{(ki,mi, ci) ∈ Qq : a1 ·(ki,mi, ci) = z
}∣∣ > t2 ;

aux3(Qq) : maxz∈{0,1}n

∣∣{(ki,mi, ci) ∈ Qq : a3 ·(ki,mi, ci) = z
}∣∣ > t2 ;

aux4(Qq) : maxz∈{0,1}n

∣∣{(ki,mi, ci) ∈ Qq : mi + ci = z
}∣∣ > t2 .

By basic probability theory, we obtain for (6):

Pr (coll(Qq)) ≤ Pr (coll(Qq) ∧ ¬aux(Qq)) +Pr (aux(Qq)) . (7)

We start with the analysis of Pr (coll(Qq) ∧ ¬aux(Qq)). For obtaining a query
history that fulfills configuration coll(Qq), it may be the case that a query ap-
pears at multiple positions. For instance, the queries at positions 1L and 2R are
the same. We split the analysis of coll(Qq) into essentially all different possible
cases, but we do this in two steps. In the first step, we distinct among the cases a
query occurs in both words at the same position. We define for binary α1, α2, α3

by collα1α2α3(Q) the configuration coll(Q) of Fig. 4 restricted to

1L = 1R⇐⇒ α1 = 1 , 2L = 2R⇐⇒ α2 = 1 , 3L = 3R⇐⇒ α3 = 1 .

By construction, coll(Qq) ⇒
∨

α1,α2,α3∈{0,1} collα1α2α3(Qq), and from (6-7) we

obtain the following bound on advcoll
F 3

A
(q):

advcoll
F 3

A
(q) ≤

∑
α1,α2,α3

∈{0,1}

Pr (collα1α2α3(Qq) ∧ ¬aux(Qq)) +Pr (aux(Qq)) . (8)
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Note that we did not make a distinction yet whether or not a query occurs at
two “different” positions (e.g. at positions 1L and 2R). These cases are analyzed
for each of the sub-configurations separately, as becomes clear later. Probabil-
ities Pr (collα1α2α3(Qq) ∧ ¬aux(Qq)) for the different choices of α1, α2, α3 are
bounded in Lems. 1-4. The proofs are rather similar, and we only bound the
probability on coll000(Qq) in full detail (Lem. 1). A bound on Pr (aux(Qq)) is
given in Lem. 5. A part of the proof of Lem. 1, and the proofs of Lems. 2-5 are
given in [17].

Lemma 1. Pr (coll000(Qq) ∧ ¬aux(Qq)) ≤ t2q+7q+3t1t
2
2+3t1t2

2n−q .

Proof. Sub-configuration coll000(Qq) is given in Fig. 5. The block cipher queries
at positions a and !a are required to be different, and so are the ones are positions
b, !b and c, !c.

u v w

c1

A

a1·(u, v, c1)
a2·(u, v, c1, w)

a3·(u, v, c1)
a4·(u, v, c1, w)

y z

a

b c

u′ v′ w′

c′1

A

a1·(u′, v′, c′1)
a2·(u′, v′, c′1, w′)

a3·(u′, v′, c′1)
a4·(u′, v′, c′1, w′)

y z

!a

!b !c

Fig. 5. Configuration coll000(Q). We require (u, v, w) 	= (u′, v′, w′).

We consider the probability of the adversary finding a solution to configuration
coll000(Qq) such that Qq satisfies ¬aux(Qq). Consider the ith query, for i ∈
{1, . . . , q}. We say this query is a winning query if it makes coll000(Qi)∧¬aux(Qi)
satisfied for any set of other queries in the query history Qi−1. We can assume
the ith query does not make aux(Qi) satisfied: if it would, by definition it cannot
be a winning query.

Recall that, although we narrowed down the number of possible positions for
a winning query to occur (in coll000(Qq) it cannot occur at both 1L and 1R, at
both 2L and 2R, or at both 3L and 3R), it may still be the case that such a
query contributes to multiple “different” positions, e.g. 1L and 2R. Note that
by construction, a winning query can contribute to at most three block cipher
positions of Fig. 5. In total, there are 26 sets of positions at which the winning
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query can contribute at the same time. Discarding symmetric cases caused by
swapping (u, v, w) and (u′, v′, w′), one identifies the following 13 sets of positions:

S1 = {1L} , S4 = {1L, 2L} , S7 = {1L, 2R} , S10 = {1L, 2L, 3L} ,
S2 = {2L} , S5 = {1L, 3L} , S8 = {1L, 3R} , S11 = {1L, 2L, 3R} ,
S3 = {3L} , S6 = {2L, 3L} , S9 = {2L, 3R} , S12 = {1L, 2R, 3L},

S13 = {1L, 2R, 3R} .

Note that there are many more symmetric cases among these, but we are not
allowed to discard those as these may result in effectively different collisions.
For j = 1, . . . , 13 we denote by coll000:Sj (Q) configuration coll000(Q) with the
restriction that the winning query must appear at the positions in Sj . By basic
probability theory,

Pr (coll000(Qq) ∧ ¬aux(Qq)) ≤
13∑
j=1

Pr
(
coll000:Sj (Qq) ∧ ¬aux(Qq)

)
. (9)

coll000:S1(Qq). Rather than considering the success probability of the ith query,
and then sum over i = 1, . . . , q (as is done in the analysis of [4,5,6,7,9,12,16,21,26],
hence all collision security proofs of Table 1), the approach in this proof is to fo-
cus on “wish lists”. Intuitively, a wish list is a continuously updated sequence of
query tuples that would make configuration coll000:Sj (Qq) satisfied. During the
attack of the adversary, we maintain an initially empty wish list WS1 . Consider
configuration coll000(Q) with the query at position S1 = {1L} left out (see [17]
for a graphical intuition). If a new query is made, suppose it fits this configura-
tion for some other queries in the query history (the new query appearing at least
once), jointly representing queries at positions {2L, 3L, 1R, 2R, 3R}. Then the
corresponding tuple (u, v, c1) is added to WS1 . Note that this tuple is uniquely
determined by the queries at 2L and 3L by invertibility of A, but different com-
binations of queries may define the same wish. The latter does, however, not
invalidate the analysis: this is covered by the upper bound on WS1 that will be
computed later in the proof, and will simply render a slightly worse bound.

As we have restricted to the case the winning query only occurring at the
position of S1, we can assume a query never adds itself to a wish list3. Clearly,
in order to find a collision for F 3

A in this sub-configuration, the adversary needs
to wish for a query at least once. Suppose the adversary makes a query E(k,m)
where (k,m, c) ∈ WS1 for some c. We say that (k,m, c) is wished for, and the
wish is granted if the query response equals c. As the adversary makes at most q
queries, such wish is granted with probability at most 1/(2n − q), and the same
for inverse queries. By construction, each element from WS1 can be wished for
only once, and we find that the adversary finds a collision with probability at

most
|WS1 |
2n−q .

3 A winning query that would appear at multiple positions is counted in coll000:Sj (Qq)
for some other set Sj .
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Now, it suffices to upper bound the size of the wish list WS1 after q queries,
and to this end we bound the number of solutions to configuration coll000:Sj (Qq).
By ¬aux1(Qq), the configuration has at most t1 choices for 2L, 2R. For any such
choice, by ¬aux2(Qq) we have at most t2 choices for 1R. Any such choice fixes
w′ (as a24 �= 0), and thus the query at position 3R, and consequently z. By
¬aux4(Qq), we have at most t2 choices for 3L. The queries at positions 2L and
3L uniquely fix (u, v, c1) by invertibility of A. We find |WS1 | ≤ t1t

2
2, and hence

in this setting a collision is found with probability at most t1t
2
2/(2

n − q).

coll000:Sj(Qq) for j = 2, . . . , 13. In [17], Pr
(
coll000:Sj (Qq) ∧ ¬aux(Qq)

)
is

bounded by t1t
2
2/(2

n − q) for j = 2, 3, q/(2n − q) for j = 4, 5, 6, 10, 11, 12, 13,
t1t2/(2

n − q) for j = 7, 8, and (t1t2 + t2q)/(2
n − q) for j = 9.

The proof is now completed by adding all bounds in accordance with (9). � 

Lemma 2. Pr (coll100(Qq) ∧ ¬aux(Qq)) ≤ 2q+2t1t2
2n−q .

Lemma 3. Pr (collα1α2α3(Qq) ∧ ¬aux(Qq)) ≤ t22q+t2q+q+t1t2
2n−q for α1α2α3 ∈

{010, 001}.

Lemma 4. Pr (collα1α2α3(Qq) ∧ ¬aux(Qq)) = 0 when α1 + α2 + α3 ≥ 2.

Lemma 5. Pr (aux(Qq)) ≤ q2

t1(2n−q) + 3 · 2n
(

eq
t2(2n−q)

)t2
.

From (8) and the results of Lems. 1-5 we conclude the bound of (3). This com-
pletes the proof of Thm. 1.

6 Conclusions

In the area of double block length hashing, where a 3n-to-2n-bit compression
function is constructed from n-bit block ciphers, all optimally secure construc-
tions known in the literature employ a block cipher with 2n-bit key space. We
have reconsidered the principle of double length hashing, focusing on double
length hashing from a block cipher with n-bit message and key space. Unlike in
the DBL2n class, we demonstrate that there does not exist any optimally se-
cure design with reasonably simple finalization function that makes two cipher
calls. By allowing one extra call, optimal collision resistance can nevertheless be
achieved, as we have proven by introducing our family of designs F 3

A .
In our quest for optimal collision secure compression function designs, we had

to resort to designs with three block cipher calls rather than two, which moreover
are not parallelizable. This entails an efficiency loss compared to MDC-2, MJH,
and Jetchev et al.’s construction. On the other hand, our family of functions
is based on simple arithmetic in the finite field: unlike constructions by Stam
[25,26], Lee and Steinberger [14], and Jetchev et al. [7], our design does not make
use of full field multiplications. The example matrices A given in (4) are designed
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to use a minimal amount of non-zero elements. We note that specific choices of
A may be more suited for this construction to be used in an iterated design.

This work provides new insights in double length hashing, but also results
in interesting research questions. Most importantly, is it possible to construct
other collision secure F 3 constructions (beyond our family of functions F 3

A), that
achieve optimal 25n/3 preimage resistance? Given the negative collision resistance
result for a wide class of compression functions F 2, is it possible to achieve
optimal collision security in the iteration anyhow? This question is beyond the
scope of this work. On the other hand, in line with ideas of [18], is it possible
to achieve an impossibility result for F 3 restricted to the xor-only design (where
f1, . . . , f4 only xor their parameters)?
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Bicliques for Permutations:

Collision and Preimage Attacks in Stronger
Settings
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Abstract. We extend and improve biclique attacks, which were recently
introduced for the cryptanalysis of block ciphers and hash functions.
While previous attacks required a primitive to have a key or a message
schedule, we show how to mount attacks on the primitives with these
parameters fixed, i.e. on permutations. We introduce the concept of sliced
bicliques, which is a translation of regular bicliques to the framework with
permutations.

The new framework allows to convert preimage attacks into collision
attacks and derive the first collision attacks on the reduced SHA-3 finalist
Skein in the hash function setting up to 11 rounds. We also demonstrate
new preimage attacks on the reduced Skein and the output transforma-
tion of the reduced Grøstl. Finally, the sophisticated technique of message
compensation gets a simple explanation with bicliques.

Keywords: Skein, SHA-3, hash function, collision attack, preimage
attack, biclique, permutation, Grøstl.

1 Introduction

Meet-in-the-middle attacks have been known in cryptanalysis at least since the
analysis of Double-DES [9], but got less attention in 90s and early 2000s because
of more difficult key schedules in contemporary block ciphers. They regained
prominence with the introduction of the splice-and-cut framework by Aoki and
Sasaki for hash functions [2, 23]. Aoki and Sasaki considered various designs
and demonstrated how to construct pseudo-preimages for compression functions
based on block ciphers. Pseudo-preimages can be converted to regular preimages,
though this reduces the advantage previously gained over brute force.

While the first splice-and-cut attacks were quite simple, they quickly became
more sophisticated as cryptanalysts tried to increase the number of rounds bro-
ken [1, 24]. That number for the first attacks was determined by the length
of chunks — two sections of a primitive each independent of its own set of
key/message bits called neutral bits. For example, two DES calls in Double-DES
are chunks each independent of half of the key. Later research showed how to
start the attack with a sophisticated construction (so called initial structure)
over several rounds to increase the total number of rounds in the attack [3, 24],

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 544–561, 2012.
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which culminated in the concept of bicliques [16]. While initial structures relied
on slow diffusion, bicliques do not need that condition. In turn, they translated
the condition on internal states being suitable for meet-in-the-middle attacks to
the requirements on how these states map to each other under different sub-
transformations.

Bicliques. The new biclique technique [8, 16] led to a few surprising attacks
on AES, though many of them had only a constant factor improvement over
exhaustive search. The attack has influenced those reducing the security level
of the full Square [18], Kasumi [13], IDEA [15]. All these attacks need a small
but noticeable number of operations to test a single key, and in our opinion they
have smaller potential. Indeed, even a single operation for each key implies a
lower bound on the complexity which is not far from exhaustive search. Also
from the technical point of view, the use of bicliques in those settings is not
much different from earlier use of initial structures.

From Parametrized Transformations to Permutations. The key/message sched-
ule is a crucial element in the biclique attacks. In Section 2 we show how to
enumerate N message candidates with only 2

√
N states.

However, there are several settings where an attacker can not manipulate a
scheduled parameter, or there is no schedule at all. For example, preimage attacks
on blockcipher-based hash functions first consider a compression function and
produce pseudo-preimages, and then run a computationally expensive meet-in-
the-middle attack to produce real preimages. If an attacker wants to reduce the
cost by avoiding the second step, then he has to assign the chaining value (CV)
with the original initial value (IV). If the compression function is based on the
Matyas-Meyer-Oseas mode with EK as a block cipher,

F (CV,M) = ECV (M)⊕M,

where M stands for a message block, then the attacker analyze the permutation
EIV (·).

Another example is the SHA-3 finalist Grøstl with output transformation x←
Truncate(x⊕ P (x)), where P is a fixed permutation. Therefore, the translation
of the biclique technique to permutations is quite promising.

Permutations have been subject to a few recent attacks [22, 30], which use a
predecessor of biclique — initial structure. A natural question is whether the
more general concept of bicliques can be carried out to this setting and even if
so whether the advantages of long bicliques can be used similarly to AES.

Collisions for the MMO-Based Primitives. While the Matyas-Meyer-Oseas
(MMO) and Davies-Meyer (DM) modes are equally resistant to generic at-
tacks [7], they are way more different when dedicated methods are considered.
Collision attacks typically fix the chaining value, so in the DM mode

F (CV,M) = EM (CV )⊕ CV
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an attacker is able to manipulate the round injections through the modification of
M , while in the MMOmode he is able to choose only the input. From our point of
view, famous collision attacks on the MD4/SHA family [5,29] demonstrate that
the first setting is much more friendly to the attacker. Indeed, the most powerful
collision search method — differential cryptanalysis — works with related-key
characteristics in the DM mode, and with regular characteristics in the MMO
mode. Related-key attacks on the full AES [6] hint that the former setting is
more suitable.

The hash function Skein follows the MMO mode and is an object of our analy-
sis. The existing near-collision attacks on the compression function of Skein [4,26]
are essentially free-start collisions, i.e. they inject the difference in the chaining
value or the tweak. Therefore, we conclude that mounting a regular collision
attack on the hash function based on MMO is quite difficult. The very recent
pseudo-collision attack [17] on Skein is a great step forward, as we discuss in the
further text.

Our Contributions

In Section 2 we introduce a new notion of sliced biclique as a translation of
a regular biclique to permutations. The new concept helps to carry out the
meet-in-the-middle attacks and the biclique technique to permutations without
modifiable parameters. We call parameters both keys and messages.

We improve a very recent technique of finding pseudo-collisions with pseudo-
preimages and show how to get regular collision attacks on the MMO-based
primitives (Section 4). We obtain the first collision attacks on the reduced round
Skein hash function (Section 5). The new attacks are also translated to new
preimage attacks on Skein (see the extended version of this paper [14]).

Then we consider the output transformation of the SHA-3 finalist Grøstl-256
and derive the first shortcut 6-round attack (Section 6). Finally, we analyze a
procedure from earlier meet-in-the-middle attacks called message compensation
(Section 7). Previously ad-hoc, it gets a clear interpretation as a sliced biclique
(see the details in the extended version) [14]).

2 Splice-and-Cut Attacks and Bicliques

Splice-and-cut attacks [2, 23] were designed as a preimage search method. A
simple splice-and-cut attack is applied to the Davies-Meyer-based compression
function F :

F (CV,M) = EM (CV )⊕ CV,

where CV is a chaining value, M is a message block, EK(·) is a block cipher.
An attacker is given an n-bit hash value H and has to find a preimage M . The
preimage search is organized as follows. The attacker partitions the message
space into sets, which are represented as two-dimensional array of messages
{M [i, j]}, and process each set independently. Given {M [i, j]}, he selects an
internal state S and an internal variable v such that v as a function of S in one
direction does not depend on i, and in the other direction does not depend on j:
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S v
M [∗, j]M [i, ∗] M [i, ∗]

CV H

Then he assigns S with an arbitrary value and computes v in the forward direc-
tion for all possible j (denoted by −→v j) and in the other direction for all possible
i (denoted by {←−v i}), computing CV and using H on the way. The overlap of the
resulting two sets yields preimage candidates which are tested on the full state
width. The indices i and j typically belong to [0; 2d−1] for some d, which yields
the matching probability 22d−n for a single set {M [i, j]}, and the complexity
2n−d for the pseudo-preimage search. To find a full preimage the adversary gen-
erates 2d/2 pseudo-preimages, computes 2n−d/2 CVs out of the initial value, and
checks for a matching pair. The total complexity is 2n−d/2+1 without optimiza-
tions (which are not always possible), so only d ≥ 3 provides an advantage over
brute force.

The basic attack was carried out to other modes and even block ciphers. For
the latter, the encryption oracle plays the role of the feedforward to link the
input and the output.

A biclique is an extension for the first step of the attack, which is based upon
an earlier informal concept of initial structure [3, 24]. Instead of a single state
S, a biclique is defined over a sub-cipher — a part of the primitive, typically
several rounds long — and for a particular group of keys or messages that are
subject to test. A biclique over f for parameters {M [i, j]} is pair of state sets

{Qi}, {Pj}

such that

Qi
M [i,j]−−−−→

f
Pj . (1)

A biclique tests parameters {M [i, j]} in the same way as in the basic attack.
The matching variable v is computed in both directions:

Qi vCV H

M [i, ∗]
Pj

M [∗, j] M [i, ∗]

biclique

The condition (1) guarantees that if M [i, j] is a preimage then the computa-
tions from Pj and Qi meet in a biclique exactly as at the matching point.

The crucial property of a biclique is that it enumerates 22d parameters with
only 2d+1 internal states. The value d is called dimension of a biclique, and the
number of rounds in f — length of a biclique.

The computational advantage of a biclique attack is the same as in the basic
attack, and hence is proportional to the dimension.
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3 Bicliques for Permutations

The simplest way to turn a permutation into a preimage-resistant function is to
xor the input to the output:

F (x) = E(x)⊕ x. (2)

Our goal is to construct a preimage search algorithm, which recovers x from
given H = F (x). We proceed as follows.

Using a specific algorithm, we select a sub-permutation g within E and an
internal state V in E but not in g. Denote the input state of g by Q, and the
output state of g by P . We partition the space of all states into sets {Qi,j}, which
we represent as a two-dimensional array of states. Here i, j are d-bit values for
some d. We test independently each set if it contains a state that correspond to
a valid preimage x. Let us denote the g-image of Qi,j by Pi,j :

Qi,j
g−→ Pi,j .

We will explain how to choose g and partition of Q in a subsection ”Construction
algorithms”, and it will also become clear why we use two indices to enumerate
states Q.

The rest of this section is devoted to finding an improved way to test a single
set of states. A straightforward way to check if one of {Qi,j} is a solution to (2)
is to compute for each i, j the state V two times. First, as a function of P in the

forward direction, let us denote this computation by
−→
F . Second, compute V as

a function of Q in the backward direction: computing x, then E(x) = H ⊕ x,

and then V ; let us denote this computation by
←−
F . Hence we check if

∃i, j : −→
F (Pi,j) =

←−
F (Qi,j). (3)

This algorithm is equivalent to the exhaustive search and requires 22d computa-
tions of E.

The complexity can be reduced as follows. Let v ⊆ V be an internal variable,

and
−→
fv and

←−
fv be the projections of

−→
F and

←−
F , resp., to v. We say that the states

Qi,j and Pi,j form a sliced biclique, if the following conditions hold:

∀i, j ←−
fv(Qi,j) =

←−
fv(Qi,0);

∀i, j −→
fv(Pi,j) =

−→
fv(P0,j).

Therefore, the necessary condition in Equation (3) can be reformulated as fol-
lows:

∃i, j : −→
F (Pi,j) =

←−
F (Qi,j) =⇒ ∃i, j : −→

fv(Pi,j) =
←−
fv(Qi,j) ⇐⇒

⇐⇒ ∃i, j : −→
fv(P0,j) =

←−
fv(Qi,0). (4)
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Let us denote
−→
fv(P0,j) by

−→vj and
←−
fv(Qi,0) by

←−vi . Hence one of {Qi,j} is a solution
if

∃i, j : −→vj =←−vi . (5)

To check it we need to call
−→
fv and

←−
fv 2d times each, which is less than 2d calls of

E. The computations are depicted in Figure 1. The matching candidates yields
a pair (i, j) and the state Qi,j , which we retest as a preimage candidate. For the
full attack we need to partition the full input domain into the groups of size 22d

and construct bicliques for them.
If the complexity of constructing a biclique and retesting the false alarms is

small compared to 2d, then 22d states are tested with complexity 2d, and the set
of all n-bit states is tested with complexity 2n−d. In the most of our attacks we
test only a subset of states of cardinality 2r with complexity 2r−d The parameter
d is called a dimension of sliced biclique.

Q1,1

input output

Input/output relation

v

Q1,0

Q0,1

Q0,0

P1,1

P0,1

P1,0

P0,0

g
−→
fv

←−
fv

Fig. 1. Sliced biclique for a permutation

Construction Algorithms. Let us describe a construction algorithm for sliced
bicliques, and then discuss its modifications. First we choose (below we will
explain how) state Q0,0 and two sets of differences {Δi} and {∇j}, i, j > 0. We
construct a biclique where

Qi,j = Qi,0 ⊕Δj ; (6)

Pi,j = P0,j ⊕∇i. (7)

We proceed as follows

1. Compute P0,0 ← g(Q0,0).
2. Set Q0,j ← Q0,0 ⊕Δj , compute P0,j for all j > 0.
3. Set Pi,j ← P0,j ⊕∇i, compute Qi,j for all i, j.

Hence Equation (7) is fulfilled by definition, and we need to prove Equation (6).
We claim that it is fulfilled if the states Q0,0, Qi,0, Qi,j, Q0,j form a boomerang
quartet [28] over f with differences Δi and ∇j , as demonstrated in Figure 2, a).
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Indeed, Q0,j = Q0,0 ⊕Δj by definition. We also have

Pi,j = g(Q0,j)⊕∇i; Pi,0 = g(Q0,0)⊕∇i.

Therefore, g−1(Pi,j)⊕ g−1(Pi,0) = Qi,j ⊕Qi,0 = Δi if

(Q0,0, Qi,0, Qi,j, Q0,j) — boomerang quartet. (8)

In order to figure out sufficient conditions for the latter statement to hold, we
consider two groups of differential trails. The trails in the first group are called
Δ-trails and describe the evolution of differences Δj :

Qi,0
g−→ Pi,0;

Qi,j
g−→ Pi,j .

=⇒ Δj → Pi,0 ⊕ Pi,j .

The trails in the second group are called ∇-trails and describe the evolution of
differences ∇i:

P0,j
g−1

−−→ Q0,j;

Pi,j
g−1

−−→ Qi,j .
=⇒ ∇i → Q0,j ⊕Qi,j .

As proved in [16], Condition (8) holds with probability 1 if the Δ- and ∇-trails
share no active nonlinear elements (Figure 2, b)). Such bicliques are called based
on non-interleaving trails. A straightforward way to achieve this property is
to select Δj and ∇i so that their diffusion is minimum. A more sophisticated
approach is to choose the state Q0,0 so that the diffusion is minimum.

If Δ- and ∇-trail share nonlinear elements, we say that such bicliques are
based on interleaving trails.

Q0,0

g

P0,0

g

Δj

Q0,j

P0,j ∇i

∇i

Pi,0

Pi,j

Δj
Qi,0

Qi,j

g

g

Δj

∇i

gQ P

a) b)
Biclique states as a boomerang quartet. Non-interleaving differential trails in g.

Fig. 2. Differential properties of sliced biclique
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4 Framework of New Preimage and Collision Attacks on
Skein

The SHA-3 finalist Skein [10] employs the Matyas-Meyer-Oseas mode to con-
struct a compression function. It takes the block cipher Threefish (denoted by
EK(·)) and computes:

F (CV, T,M) = ECV,T (M)⊕M,

where CV is the chaining value, and T is the tweak value. Due to difficulties in
mounting collision attacks on the MMO mode, the only published attack on the
Skein hash function is the preimage attack [16] based on regular bicliques. The
parameter M [i, j] in the biclique equation (1) is the chaining value. As a result,
in the preimage attack on the compression function the attacker has to work
with multiple CV’s to get a pseudo-preimage. A full preimage requires another
meet-in-the-middle procedure (Section 2). The first step must have complexity
2n−3 or smaller to yield an advantage over brute-force, which implies that only
bicliques of dimension 3 or larger should be used.

Equipped with the concept of sliced bicliques, we can fix the chaining value
and attack the permutation EIV (). Hence we can generate full preimages without
the pseudo-preimage step. The complexity drops to 2n−d instead of 2n+1−d/2,
and restrictions on the biclique dimension do not hold anymore. Meet-in-the-
middle attacks on the first call of the MMO and similar modes exist [22,30], but
do not use the long biclique approach yet, and were not applied to Skein.

Collision Attacks. A more interesting property of the MMO mode comes out if
we consider a very recent pseudo-collision attack which uses regular bicliques [17].
The method produces pseudo-collisions out of biclique preimage attacks as fol-
lows. Assume we have a biclique of dimension d and are able to match deter-
ministically on some l hash value bits. Then the adversary generates partial
pseudo-preimages to a hash value with these l bits equal to an arbitrarily chosen
constant h. Hence 22d−l l-bit partial pseudo-preimages to h can be generated
with cost 2d. Note that they collide on l output bits. The adversary generates
2n/2−l/2 such preimages and expect a pair of them to collide on the remaining
(n − l) bits by the birthday paradox. Since chaining values and schedule in-
puts are not fixed in the attack, this yields a pseudo-collision with the expected
complexity 2(n/2−l/2)+(d)−(2d−l) = 2n/2+l/2−d. The approach both for DM and
MMO modes.

The optimal d satisfies the equation d = 2d − l, which implies d = l. The
attack is optimal if all preimages are generated out of a single biclique, which
implies

l = n/2− l/2 ⇔ l = n/3.

Hence the minimum complexity of collision search is 2n/3.
Again, the chaining value can be fixed in the MMO mode if we apply the

sliced biclique concept. Then we can generate real collisions instead of pseudo-
collisions. However, we can break fewer rounds compared to the pseudo-collision
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attacks. The reason is the diffusion of differences Δ and ∇ to the whole state
while computing v, whereas in the regular biclique attack the effect of those
differences is postponed. Nevertheless, our approach is more interesting, since
the real collision attacks are considered a much stronger setting as compared to
pseudo-collisions (cf. collisions for MD5).

Memory. The straightforward version of the attack requires to store all the
pseudo-preimages generated, which makes the memory complexity be of the same
order as the time complexity. However, as the preimage step is non-deterministic,
we can employ memoryless collision search methods [27], which multiply the time
complexity by a small constant. Therefore, all the attacks described in the further
text, except for the marginal ones, have memoryless equivalents.

5 Collision Attacks on Skein

Here we present the first collision attacks on the reduced Skein hash function.
The MMO mode is considered to be difficult for collision search, since most
methods require a fixed chaining value when attacking the compression function.
Since the round injections in the MMO mode come from the chaining value,
the cryptanalyst has no freedom there, and hence is unable to construct local
collisions, apply message modification techniques, etc.. As a result, previous
attacks on Skein [4, 26] dealt with the compression function only. The attacks
are grouped according to the number of rounds covered by a biclique. Though we
aim for the maximal dimension and the number of rounds attacked, for clarity we
do not push the concept to the extreme and try to avoid complicated bicliques.
Hence our attacks can be improved in the future.

Short Description of Skein. We consider three members of the Skein hash func-
tion family: Skein-512, Skein-256, and Skein-512-256. Skein-512 [10] operates on
the internal state of eight 64-bit words, while Skein-256 works with a state of
four words. We denote the state words by S0, S1, . . . , S7. All the versions have
72 rounds. Skein-512-256 merely truncates the output of Skein-512 to 256 bits.
Each round of Skein-512 consists of four (two in Skein-256) simple transforma-
tions called MIX:

y0 = x0 + x1 (mod 264);

y1 = (x1 ≪R(d mod 8)+1,j
)⊕ y0.

where R is a constant depending on the round number d. The invocations of
MIX are followed by a word permutation and, every four rounds, also by an
addition of a linear function of the chaining value and the tweak (constants in
our scenario).

The only published attack on the Skein hash function is a preimage attack [16]
on 22 rounds of Skein-512.
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5.1 Skein-512

As few as three rounds of Skein-512 are required to diffuse the contents of a single
word to the full state. As a result, the bicliques based on non-interleaving trails
are likely to cover two rounds only. We present bicliques of different kind that
are capable to cover up to 4 rounds, and give some hints on how to construct
longer bicliques.

2-Round Biclique. Our first examples deal with short bicliques of high dimension.
As a result, the attacks have a significant advantage over brute-force. We use an
additional enumeration of rounds in a biclique, starting with 0.

We use an algorithm from Section 3 with non-interleaving trails. We choose
an arbitrary Q0,0 and construct bicliques of dimension 64 out of the following
differences Δ and ∇:

Δj = 0 0 0 0 0 j 0 0 after MIX in round 0 of the biclique. j = 1 . . . 264 − 1

∇i = 0 0 0 0 0 0 i 0 after MIX in round 2 of the biclique. i = 1 . . . 264 − 1

It is easy to check that the Δ- and ∇-trails do not share active non-linear com-
ponents and hence produce a biclique (Figure 3).
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Fig. 3. Non-interleaving differential trails in a sliced biclique of dimension 64 in
Skein-512

Only three rounds are required to diffuse a 64-bit word onto the full state.
Hence we expect the matching part be two rounds long in both directions. A
straightforward attack on 6 rounds uses a biclique in rounds 2-4 of Skein and
word S1 of the output of the 6-round transformation as the matching variable v
(Figure 4).
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Fig. 4. Matching in 6-round Skein-512

However, we extend it by one round with the idea of the indirect partial
matching [1]. Consider the state word S0 after round 6 as a function of Pi,j . It
is easy to check that

Pi,j = P0,j ⊕ i =⇒ S0(Pi,j) = S0(P0,j) + i.

Therefore, if we set v = S0, we get −→vi,j = −→v0,j + i. As a result,

∃i, j : −→vi,j =←−vi,j ⇔ ∃i, j : −→vj =←−vi + i,

which can be checked with complexity 264. Hence we generate 264 64-bit partial
preimages with cost about 264.

To produce new bicliques, we generate a new Q0,0 and repeat the procedure.
Full 7-round collisions are found within 2(512−64)/2 = 2224 partial preimages with
the cost 2224. Since the total number of states Q needed for the attack is less
than 2256, it is unlikely that two identical states are produced.

Collisions on the fewer rounds can be found with bicliques of dimension 128.
These bicliques are two rounds long, but the diffusion in the matching part
takes one round less in each direction, which gives only a 5-round collision. The
complexity is 2192.

3-Round Biclique. If we decrease dimension to 20 and lower, the diffusion takes
more than three rounds. As a result, we can construct 3-round bicliques of di-
mension close to 20. We use an algorithm with non-interleaving trails with some
modifications.

First, we carefully choose the position of the biclique in the compression func-
tion and bits where the difference is applied in Q and P . Since the rotation
constants in each MIX function are distinct, the diffusion properties may change
significantly when we shift the biclique over rounds and the active bits over
the 64-bit word. The best configuration we have found places the biclique in
rounds 5–7 (or 8k rounds further, because the rotation constants repeat every
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8 rounds), where the states Q are defined before the MIX operation in round 5,
and the states P are defined after the MIX operation in round 7. The Δ- and
∇-differences are defined for as follows:

Δj = 0 0 0 0 0 0 j ! 45 0 j = 1 . . . 219 − 1

∇i = 0 i 0 0 0 0 0 0 i = 1 . . . 219 − 1

For d < 19 we simply set the most significant bits of Δ and ∇ to zero. We
additionally require that the least 45 significant bits of the word S6 in Q be
equal to 0 in order to trails from interleaving. There is no other restriction on
Q, so we can generate the states Q0,0 in message sets simply by changing the
words S0, . . . , S3. Since we need less than 2256 states, it is unlikely that there
would be a collision. This configuration produces a 3-round sliced biclique. Note
that reducing dimension does not make the trails to interleave.

The length of the matching part decreases as the dimension grows. We have
checked the diffusion on a PC and figured out that the matching part covers 7
rounds for d = 17. In this configuration we match on bits 30–33 of word S2 and
bits 20–32 of word S3 of input to the compression function. The matching is not
deterministic, as for some bits the difference is equal to zero with probability
pi < 1. We have calculated the type-I error probability as

∏
i pi = 0.6 and

conclude that probability 0.4 we miss a solution. Therefore, the total complexity
is about two times larger compared to the deterministic case and is equal to
about 2248

For d = 10 the matching part takes 8 rounds. The matching variable consists
of bits 17–21 of word S0 and bits 24–31 of word S2. The type-I error probability
does not exceed 0.2, and the total complexity is 2251. The other values are given
in Table 1.

4-Round Biclique. A regular biclique in the preimage attack on Skein [16] covers
4 rounds with two key additions. If we consider these rounds without the key
addition, we get exactly a sliced biclique of the same dimension. The diffusion
in the matching part will be slightly different because of the rotation constants,
but we still can bypass 10 rounds. Though the cost of the biclique construction is
quite expensive — 2209 — there are 815 bit degrees of freedom left, of which 303
are in the internal state. We propose to use this freedom to amortize the biclique
construction cost and generate new Q0,0, so that a 14-round partial preimage is
found with complexity 23. Full collisions are found with complexity 2254.5.

Longer Bicliques. Bicliques of dimension 1 can be constructed up to 8 rounds,
but the advantage over brute-force attacks is really marginal. Another problem
is that the construction cost of a single biclique is very high, and we are unaware
of how to exploit the degrees of freedom over so many rounds given no freedom
in the injections.
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Table 1. Collision attacks on reduced Skein with large memory requirements (close
to the computational complexity). Memoryless attacks add a small constant to the
exponent.

Skein-256 Skein-512

Rounds Complexity Rounds Complexity

2 285 5 2192

4 296 7 2224

8 2120 10 2248

9 2124 11 2251

12 2126.5 14 2254.5

5.2 Skein-256

Diffusion in Skein-256 is generally faster, because the internal state consists of
four words only. Typically it takes one round less to affect the whole state.
As a result, non-interleaving biclique trails and the matching part are shorter.
We figured out that collision attacks on Skein-256 with bicliques of the same
dimension lag 2-3 rounds behind the attacks on Skein-512. For instance, bicliques
of dimension 64 and 128 cover one round only, and the matching part is two
rounds shorter. This results in 2-round collisions with complexity 285 and 4-
round collisions with complexity 296.

Bicliques of smaller dimension are found to be less sensitive to the smaller
state size. The low-dimension attacks for Skein-512 lose two rounds when being
translated to Skein-256 (Table 1).

The biclique construction, including trail details and partition of the state
space, is very similar to that in Skein-512, so we do not give much details. The
2-round biclique yields 2- and 4-round attacks, which correspond to 5- and 7-
round attacks on Skein-512. The 3-round biclique with dimension 17 yields an
8-round attack.

6 Certificational Preimage Attack on the Reduced Grøstl
Output Transformation

In this section we present a certificational attack, i.e. it has only a small ad-
vantage over the exhaustive search, on Grøstl [11] — a SHA-3 finalist with a
compression function not based on a block cipher. It invokes two permutations
P and Q, both AES-based, and updates the chaining value CV as follows:

CV ← CV ⊕Q(M)⊕ P (M ⊕ CV ),

whereM is a message block. The final call of the compression function is followed
by the output transformation

F (x) = Truncate(x⊕ P (x)),
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where the truncation operation takes half of the state to get 256- and 512-bit
outputs. Hence Grøstl-256 operates on a 512-bit state and permutations P and
Q, and Grøstl-512 operates on a 1024-bit state.

Permutations P and Q follow the AES design with very similar operations:
SubBytes, ShiftBytes, MixBytes (8-byte analogue of MixColumns), and Ad-
dRoundConstant. The ShiftBytes operation in Grøstl-256 rotates i-th row by i
positions to the left; details of the other operations are irrelevant for our attack.
The sequence SubBytes–ShiftBytes–MixBytes–AddRoundConstant–SubBytes is
equivalent to 8 (for Grøstl-256) parallel 64-bit Super S-boxes [12]. Due to the
design simplicity, Grøstl has been the target of numerous cryptanalytic at-
tacks [19, 21, 25], though only few of them violated collision or preimage re-
sistance of the hash function [20, 30]. The paper [30] addresses virtually the
same problem as we do, and obtains preimage attacks on the 5-round version of
the compression function, including the preimage attack on the 5-round output
transformation.

To run a preimage attack, and the first preimage attack in particular, it is
desirable to invert the output transformation of Grøstl. As it is also claimed to
be one-way, it serves as a natural target for sliced biclique attacks.

We adapt a differential view as it provides a simple explanation of the attack
in differential trails, making it similar to both rebound attacks [19] and recent
biclique attacks on AES. The main distinction is that there is no round without
a difference because there is no schedule. However, the difference expansion in
the outbound phase must be deterministic unless we have additional degrees of
freedom in the inbound phase.

Attack. We denote the internal states within 6 rounds from #1 to #13, as
depicted in Figure 5. We construct a sliced biclique of dimension 1 in states
#4–#9, which contains the Super S-box layer in states #5–#8. The matching
variable is a linear function of the variables in states #12 and #13 not affected
by Δ- and ∇-differences. The Δ-difference has a single active byte, marked as
lightblue. Its influence on the internal states within the matching part is also
depicted as lightblue in Figure 5. The ∇-difference and its influence are depicted
as green.

The matching condition is a linear function of the bytes not affected by the
differences. Let us elaborate on this statement. Consider the rightmost columns
of states #12 and #13 and denote them by A and B, respectively. Let us note
that B is a linear function of A. In turn, 7 bytes of A do not depend on i, and
7 bytes of B do not depend on j. If the state Qi,j corresponds to a preimage,
then a system of 8− (8− 7)− (8 − 7) = 6 linear equations should hold. All the
equations have form

Aj ⊕Bi = 0,

which is easily transformed to Equation (5).
We construct a sliced biclique based on interleaving trails. A biclique of di-

mension 1 is equivalent to a single boomerang quartet (Figure 2, left). In contrast
to attacks on Skein, all the four relevant differences are distinct.
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Fig. 5. Preimage attack on the reduced Grøstl-256 output transformation

Bicliques are constructed as follows. First, we arbitrarily choose Δ0,1 �= Δ1,1

and ∇1,0 �= ∇1,1, which are all active in one byte only, as specified earlier. We
construct the states {Qi,j}i,j=0,1, which satisfy the following equations:

Q0,0 ⊕Q0,1 = Δ0,1; Q1,0 ⊕Q1,1 = Δ1,1; (9)

P0,0 ⊕ P1,0 = ∇1,0; P0,1 ⊕ P1,1 = ∇1,1. (10)

First, we derive the differences in#5 and in#8.Thenwe reformulateEquations (9)
for each Super S-box, and solutions are found independently by exhaustive search
with a total complexity around 270. The solutions are then concatenated. For the
details, we refer to the long biclique attack on AES [8], which gives a description
of an equivalent algorithm.

The complexity is amortized as follows. Each Super S-box has 7 inactive input
S-boxes. There exist 256−8 = 248 alternative values for them which do not affect
the active output S-box. Hence we can generate 248·8 = 2392 sliced bicliques out
of a single one. As the hash value contains 256 bits only, we have enough freedom
for the attack. For each biclique, i.e. 22 states, we recompute only a portion of
the S-boxes in each round, with 2 · (8 + 16 + 2 + 7 + 56 + 8) = 194 S-boxes or
2−3 calls of the permutation. Hence the amortized cost of a single state test is
2−5, and the total attack complexity is 2251.

7 Message Compensation

The message compensation procedure [1, 16] instructs how to select message
groups in the splice-and-cut attack in case of a strong, nonlinear message sched-
ule. Existing applications are very ad-hoc and complicated. It is possible, how-
ever, to give a unified view on the message compensation problem and existing
solutions with bicliques for permutations. The majority of this section is left for
an extended version of this paper [14].

We propose the following algorithm a generic message schedule. Suppose
you construct a biclique in rounds N1–N2, and want to describe a message set
{M [i, j]} such that

1. Injections WN0 ,WN0+1, . . . ,WN1−1 do not depend on j;
2. Injections WN2+1,WN2+2, . . . ,WN3 do not depend on i.

We propose to construct a sliced biclique without a matching point in roundsN1–
N3. The difference Δj is defined before round N1. To satisfy the first condition,
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we assign the words of Δj that correspond to WN0 ,WN0+1, . . . ,WN1−1 to zero.
If some words are left undefined, then we get a freedom in these values and can
use it to manipulate the difference propagation in the Δ-trails.

We define ∇i after round N3. To satisfy the second condition, we assign the
words of ∇i that correspond toWN2+1,WN2+2, . . . ,WN3 to zero. Again, if some
words are undefined, we keep this freedom.

Finally, we construct a sliced biclique based on non-interleaving trails. We
use undefined parts of Δj and ∇i to control the diffusion on the word level, and
select M [0, 0] to control the diffusion, if necessary, on the bit level. We may also
choose other round indices for a biclique, if this makes the difference selection
more clear. We may also have to deal with other constraints like padding, which
further reduce the freedom in Δ and ∇. Finally, we may have to construct
a biclique based on interleaving trails, if non-interleaving ones are impossible
because of the diffusion.

8 Conclusions

We have introduced sliced bicliques as a new tool for the analysis of permutations
in the context of preimage and collision attacks. We have demonstrated that the
advantage in the number of rounds from the long biclique idea can be obtained
also for permutations. The application of our concept to different design has
interesting consequences.

First, our collision attacks on Skein demonstrate that the MMO mode may not
be as resistant to collision attacks and the differential cryptanalysis in particular
as it was considered. The fundament of our attacks is the new pseudo-collision
search technique that has been recently introduced. Though we employ some
elements of differential cryptanalysis, the details are completely different from
the famous collision attacks on the SHA family. Hence we suppose that the
potential of differential cryptanalysis for high-profile hash functions has not been
exhausted.

Secondly, our preimage attacks on the Grøstl output transformation show
that the concept of the Super S-box contributes not only to the biclique attacks
on the designs with the key schedule (AES), but also on the ones without the
schedule. We expect this type of attack to progress alongside with the future
techniques for the Super S-box.

Finally, we explained the message compensation in the biclique terms. We
expect that the designers of future meet-in-the-middle attacks on SHA-2 will be
able to provide a compact two-step description of their results. First, a biclique
in the schedule is constructed, and secondly, it is used to construct a biclique in
the state. We are looking forward to new techniques that would combine these
bicliques in an optimal way.

We leave a significant amount of targets for the future work. 7-round Grøstl-
256, 9- and 10-round Grøstl-512, Whirlpool, BLAKE are natural targets. Con-
struction of bicliques of high dimension out of interleaving trails remains an open
problem.
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Abstract. In this paper, improved cryptanalyses for the ISO standard
hash function Whirlpool are presented with respect to the fundamental
security notions. While a subspace distinguisher was presented on full
version (10 rounds) of the compression function, its impact to the se-
curity of the hash function seems limited. In this paper, we discuss the
(second) preimage and collision attacks for the hash function and the
compression function of Whirlpool. Regarding the preimage attack, 6
rounds of the hash function are attacked with 2481 computations while
the previous best attack is for 5 rounds with 2481.5 computations. Re-
garding the collision attack, 8 rounds of the compression function are
attacked with 2120 computations, while the previous best attack is for
7 rounds with 2184 computations. To verify the correctness, especially
for the rebound attack on the Sbox with an unbalanced Differential Dis-
tribution Table (DDT), the attack is partially implemented, and the
differences from attacking the Sbox with balanced DDT are reported.

Keywords: Whirlpool, preimage, collision, meet-in-the-middle, guess-
and-determine, local collision.

1 Introduction

Hash functions are taking important roles in various aspects of modern cryp-
tography. Since the collision resistance of MD5 and SHA-1 has been broken by
Wang et al. [1,2], cryptographers have looked for stronger hash function designs.
While various new designs are discussed in the SHA-3 competition [3], some of
existing hash functions seem to be much stronger than the MD4-family. Eval-
uating such hash functions is useful especially if they have been standardized
internationally.

For hash functions, three security notions are classically considered: Colli-
sion Resistance, Second-Preimage Resistance, and Preimage Resistance. Besides,
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cryptographers recently have considered various non-ideal properties. Although
considering such non-ideal properties is important especially for determining a
new standard, focusing on vulnerabilities that can be exploited in practice is
more important especially for evaluating hash functions in practice.

Whirlpool [4] is a 512-bit hash function proposed by Rijmen and Barreto in
2000. The compression function uses a 10-round AES based cipher with 8∗8-byte
internal states, and the output is computed with the Miyaguchi-Preneel mode
[5, Algorithm 9.43]. Whirlpool has been adopted by ISO [6] and NESSIE [7].

Regarding the collision attack, the rebound attack proposed by Mendel et al.
[8] is very effective with respect to the differential attack against AES based
structure. Indeed, Mendel et al. presented a 4-round collision attack on the
hash function and a 5-round collision attack on the compression function of
Whirlpool. Many improved techniques of the rebound attack have been devised
such as start-from-the-middle technique [9], linearized match-in-the-middle tech-
nique [9], super-(S)box analysis [10,11], and multiple-inbound technique [11,12].
Besides, for the AES based structure with 8 ∗ 8 state including Whirlpool, more
techniques have been proposed such as hyper-Sbox analysis [13], non-full-active
super-Sbox analysis [14], efficient list-merging technique [15], and three inbound
rounds [16]. Several practical results are given for round-reduced algorithms and
intermediate rounds in [9,17,18]. This paper exploits the differences in both of
data processing part and key schedule part. Some similarities can be seen in the
analysis on AES-256 [19] and two analysis on Grøstl [20,21].

Regarding the preimage attack, meet-in-the-middle (MitM) attack with the
splice-and-cut technique proposed by Aoki and Sasaki [22] has been actively
discussed. Several papers proposed improved techniques [23,24]. For the preimage
attack against the AES based structure, Sasaki showed a second preimage attack
on 5 rounds of Whirlpool [25]. Later, Wu et al. improved its complexity and
extended it to the preimage attack [26]. Note that Bogdanov et al. showed an
attack on 10-round AES in hashing modes with the biclique technique [27].
Because this attack exploits the weakness in the AES key-schedule, the attack is
specific to AES and cannot be directly applied to other AES based primitives.

Our Contributions. In this paper, we improve cryptanalyses on Whirlpool
with respect to the fundamental security notions. The main results are a 6-
round preimage attack on the hash function and an 8-round collision attack on
the compression function. The results are summarized in Table 1.

Our preimage attack is based on the previous 5-round MitM attacks [25,26].
The number of attacked rounds is extended by applying the guess-and-determine
approach during the MitM attack. Moreover, we increase the number of free
bits for each chunk by exploiting the freedom degrees of the key, while previous
attacks fix the key as a constant. More precisely, the key schedule function shares
the same round function with the data process procedure, and thus we separate
the key schedule function in the same way with the data process function.

Our collision attack is based on the rebound attack. We use the key difference
to cancel the difference in the data part, while previous work avoided inserting
differences to the key schedule. This leads to a differential path with a high
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Table 1. Summary of attack results

Type Target #Rounds Time Mem. Ref. Remarks

Fundamental

Preimage
Hash

5 2481.5 264 [26]

Properties

Function

5 2448 296 Ours
5 2465 O(1) Ours Memoryless MitM
6 2481 2256 Ours
6 2504 O(1) Ours Memoryless MitM

Second
Hash

5 2504 28 [25]

Preimage
Function

5 2448 264 [26]
5 2464 O(1) Ours Memoryless MitM
6 2481 2256 Ours
6 2504 O(1) Ours Memoryless MitM

Collision

Hash 4 264 28 [9]
Function 5 2120 264 [10]

Compress.

7 2184 28 [28] semi-free-start

Function

7 2120 2128 [28] semi-free-start
4 28 28 Ours free-start
7 264 28 Ours free-start
8 2120 28 Ours free-start

Other
Near-collision

Compress. 9 2176 28 [28]

Properties
Function 9 2112 2128 [28]

Distinguisher
Compress. 10 2188 28 [28]
Function 10 2121 2128 [28]

probability. In this paper, we implement our 4-round collision attack which only
requires 28 computations. Because all previous collision attacks require at least
264 computations even for a small number of rounds, this is the first example
of the collision for a reduced compression function. We also partially implement
the 7-round collision attack. We show an example of the 40-byte near-collision.

2 Specification and Notations

Whirlpool [4] takes any message with less than 2256 bits as input, and outputs a
512-bit hash value. It adopts the Merkle-Damg̊ard structure. The input message
M is padded into a multiple of 512 bits. In details, the 256-bit binary expression
of the bit length � is padded according to the MD-strengthening, i.e. M‖1‖0∗‖�.
The padded message is divided into 512-bit blocks M0‖M1‖ · · · ‖MN−1. Let Hn

be a 512-bit chaining variable. First, an initial value IV is assigned to H0. Then,
Hn+1 ← CF(Hn,Mn) is computed for n = 0, 1, . . . , N − 1, where CF is a com-
pression function. HN is produced as the hash value of M . CF uses an AES
based block-cipher Ek, which takes a 512-bit chaining variable Hi as a key and
a 512-bit message block Mi as a plaintext. The output of CF is computed by
the Miyaguchi-Preneel mode, i.e. EHi(Mi)⊕Mi ⊕Hi.

Inside the block cipher Ek, an internal state is represented by an 8 ∗ 8 byte
array. At first, Hi is assigned to the key value k0. Then, ten 512-bit subkeys
k1, k2, . . . , k10 are generated by the key-schedule function defined as follows:

kn+1 ← AC ◦MR ◦ SC ◦ SB(kn), for n = 0, 1, . . . , 9.
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- SubBytes(SB): applies the Substitution-Box to each byte.
- ShiftColumns(SC): cyclically shift the j-th column downwards by j bytes.
- MixRows(MR): multiply each row of the state matrix by an MDS matrix.
- AddRoundConstant(AC): XOR a 512-bit constant defined in the specification.

For the data processing part, Mi is assigned to the plaintext p. Then, the
whitening operation is performed and the result is stored into a variable s0,
i.e. s0 ← k0 ⊕ p. The output s10 of the block cipher is computed as follows,
where AddRoundKey(AK) takes the XOR with kn+1.

sn+1 ← AK ◦MR ◦ SC ◦ SB(sn), for n = 0, 1, . . . , 9.

Notations. Byte positions in a state S are denoted by integer numbers 0, 1, . . . ,
63, where the byte 8j + i corresponds to the byte in the i-th row and the j-th
column of the state #S, and is denoted by #S[8j+i]. We denote the initial state
for the data processing part in round x by #DxI . Then, states immediately after
SB, SC, MR, and AR in round x are denoted by #DxSB , #DxSC , #DxMR, and
#DxAK , respectively. Obviously, #DxAK is identical with #D(x+1)I . Similarly,
we use the notations #KxI ,#KxSB, #KxSC , #KxMR, and #KxAC for the
key schedule part. We often denote several bytes of state #S by #S[a, b, . . .],
e.g. 8 bytes in the right most column are denoted by #S[56, 57, . . . , 63]. We also
use the following notations to denote specific byte positions.

- #S[row(i)]: 8 byte-positions in the i-th row of state #S
- #S[SC(row(i))]: 8 byte-positions which SC is applied to #S[row(i)]
- #S[SC−1(row(i))]: 8 byte-positions which SC−1 is applied to #S[row(i)]

3 Related Work

3.1 Meet-in-the-Middle (Second) Preimage Attack on Whirlpool

In FSE 2011, Sasaki proposed the first MitM preimage attack on AES-like primi-
tives [25]. Two main techniques were introduced: initial structure in an AES-like
permutation and partial-matching across an MixColumn operation. As a direct
application, a second preimage attack is found on 5-round Whirlpool hash func-
tion in [25]. In FSE 2012, Wu et al. improved the complexity of 5-round second
preimage attack on Whirlpool [26] by exploiting more freedom degrees in the
data state. They successfully represent the chunk separations by several essen-
tial integer parameters, and launched an automatic exhaustive search. Moreover,
they also proposed a method to deal with the message padding and extended
the attack into a first preimage attack.

3.2 Rebound Attack and Start-from-the-Middle Technique

The rebound attack was introduced by Mendel et al. [8]. If it is applied to
Whirlpool, the 2-round path 8 → 64 → 8 can be satisfied only with 28 compu-
tations. The path for rounds S and S +1 is described in Fig. 1. First, an 8-byte
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Fig. 1. Rebound and start-from-the-middle techniques

difference at #S + 1MR is randomly chosen, and it is propagated to #S + 1SB.
Then, a single-byte difference at one of the active bytes at #SSB is randomly
chosen, and it is propagated to 8 bytes of #S + 1I . For each S-box in round
S+1, randomly given input and output differences have solutions (paired values
conforming the path) with probability about 2−1, and the average number of
solutions is 2. Hence, if we choose 28 differences for the single byte at #SSB, we
obtain 28 solutions for the corresponding 8 S-boxes. By iterating it for 8 active
bytes at #SSB, we obtain 28 solutions for each i of #SSB[SC−1(row(i))].

The start-from-the-middle technique is an improved procedure for the rebound
attack, which was proposed by Mendel et al. [9]. It satisfies a 3-round differential
path with the same complexity as the rebound attack. After obtaining 28 solu-
tions for each i of #SSB[SC−1(row(i))] with the rebound attack, each solution
is computed until #S− 1MR[SC−1(row(i))]. For each i, 127 kinds of differences
are obtained at #S − 1MR. Then, a single-byte difference at #S − 1SB is cho-
sen. The attacker propagates it to #S − 1MR, and checks whether the 8-byte
difference can be produced from the solutions of the rebound attack. Because
there are 127 kinds of the differences for each i, the 8-byte differences can be
produced with probability about 2−8. Therefore, by choosing 28 differences at
#S − 1SB, we expect to find the desired difference. In summary, the 3-round
differential path 1→ 8→ 64→ 8 can be satisfied with a complexity of 28.

Note that the behavior of the S-box is explained based on the S-box of AES.
Because the S-box of Whirlpool has a different property, the evaluation for AES
cannot be applied to Whirlpool directly. We later discuss this issue in Sect. 5.4.

3.3 Distinguisher for the Full Whirlpool Compression Function

Lamberger et al. proposed a distinguisher for the full Whirlpool compression
function [11,28]. The distinguished property is called subspace distinguisher.
The dimension of the input and output differences are defined before the analy-
sis starts. The attacker aims to find paired values whose dimension of differences
at input and output are lower than the defined ones. The core technique is run-
ning the rebound attack (8 → 64 → 8) at two parts independently without
determining the key value. Then, two results are connected and a long differ-
ential path (8 → 64 → 8 → 8 → 64 → 8) is satisfied by searching for an
appropriate key value. Although the distinguisher beautifully breaks the full-
round compression function, the impact is very limited. Nevertheless, collisions
on compression function are generated with this technique for 7 rounds with
(Time, Memory)= (2184, 28) or (2120, 2128).
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3.4 Local Collision on AES-Like Primitives

For a distinguisher for AES-256, Biryukov et al. introduced differences to both
the key and the data, and used the difference of round keys to cancel the differ-
ence of the internal states of the data process by the AddRoundKey operation,
i.e. the local collision occurs [19]. The local collisions may help the attacker to
build a high probability differential path on AES-like primitives.

4 Preimage Attack on 6-Round Whirlpool

4.1 Overview

Our first and main result is introducing the guess-and-determine approach to
MitM preimage attack on Whirlpool hash function, and successfully increase
one more attacked round. More specifically, during the independent chunk com-
putation, even one unknown input byte ofMixRow makes all the 8 output bytes
unknown, which is heavily unbalanced. So a chunk can guess a small number
of unknown bytes in order to significantly increase the number of known bytes
in the following rounds. Thus guess-and-determine approach is very effective for
preimage attack on Whirlpool.

Our second result is exploiting the freedom degree in the key to increase the
number of free bits in each chunk, and thus successfully reduce the complexity.
Since the key schedule of Whirlpool is the same with the data process, we can
separate the key schedule and the data process into two chunks in the same way,
which doubles the number of free bits in both chunks.

Our third result is that we propose not only a first preimage attack on hash
function with the lowest complexity, but also another memoryless preimage at-
tack. Compared to the brute force attack, the second attack requires the same
memory and a lower complexity. This is achieved by finding a last block attack
first and then linking the chaining values with a fixed-key attack on the compres-
sion function. Since both the last block attack and the fixed-key attack can be
implemented in a memoryless way [30], we obtain a memoryless first preimage
attack.

4.2 Preimage Attack on 6-Round Compression Function

The chunk separation used in the 6-round attack is illustrated in Fig. 2. Five
different colors are used to indicate the categories of the bytes. The gray bytes are
constants which come from the hash/output value or the initial structure. The
red/blue bytes belong to the backward/forward chunk, which can be determined
by the red/blue byte in the initial structure. The white bytes are affected by
both red and blue bytes and we can only determine their values after a partial
match is found. The purple bytes are the guessed bytes.

Since that each row of the state #D1MR has unknown bytes (in white color),
if we went further back through MR−1, all bytes would become unknown. The
values of 24 white bytes in row 0 to row 5 are guessed. Thus we can maintain 6
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Fig. 2. Chunk separation for the preimage attack on 6-round compression function

red bytes in each of top 6 rows of the state #D1SC . In the key state, we do not
guess the values, since the white key state #K1SC does not affect the matching
state through the feedforward operation.

All the possible values of the guessed bytes are used as extra freedom degrees
to build the lookup table for the MitM. But after a partial match is found, we
need to further check the correctness of the guessed values. More details about
the guessing technique can be found in the following section.

The Attack Algorithm. In order to evaluate the attack complexity, we need
to know the parameters: freedom degrees in red and blue bytes (Dr, Db), size of
the partial matching m and the number of guessed bits Dg. The explanation on
calculating freedom degrees/size of matching point and how the partial matching
works can be found in previous papers [25,26]. Here we omit these details due
to the limited space.

To summarize, the parameters for MitM attack in Fig. 2 are as follows. Free-
dom degrees in red bytes: Dr = 8 bytes = 64 bits (4 bytes in the key and 4
bytes in the data). Freedom degrees in blue bytes: Db = 32 bytes = 256 bits
(16 bytes in the key and 16 bytes in the data). Size of the guessed value (purple
bytes):Dg = 24 bytes = 192 bits. Size of the partial match: m = 32 bytes = 256
bits (only in the data). Size of the full match: n = 512 bits.

The attack algorithm is as follows:

Step 1. Randomly choose the values of the constants in the initial structure.
Step 2. For all the 2Dr values {ri} of the red bytes in the initial structure and

2Dg guessed values {gj}, go backward to the matching point and store all
2Dr+Dg partial matching values F (ri, gj) in a look-up table L.

Step 3. For all the 2Db values {bk} of the blue bytes in the initial structure, go
forward to obtain the partial matching value G(bk) and check if it is in L.
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Step 4. Once a partial match (ri, gj , bk) such that F (ri, gj) = G(bk) is found,
use (ri, bk) to compute and check if the guessed value gj is correct. If the
guess is correct, check if it is a preimage.

Step 5. Repeat the above steps 1-4 to find a preimage.

The complexity is explained as follows:

Step 2. It takes 2Dr+Dg computations and memory to build the look-up table.
Step 3. It takes 2Db computations to find all the 2Db+Dr+Dg−m partial matches.
Step 4. 2Db+Dr+Dg−m computations are needed to verify the correctness for all

the partial matches. There would be 2Db+Dr−m valid partial matches that
pass the correctness test, since the probability that gj is correct is 2−Dg .

Step 5. The probability that steps 1-4 succeed is 2Db+Dr−m · 2−(n−m) =
2Db+Dr−n. The above steps are repeated for 2n−Db−Dr times to find a
preimge.

Therefore, the complexity of the above algorithm is

2n−Db−Dr ·(2Dr+Dg +2Db+2Db+Dr+Dg−m) = 2n ·(2−Dr +2Dg−Db+2Dg−m) (1)

With the given parameters, the complexity is about 2512 · (2−64 + 2192−256 +
2192−256) ≈ 2448 compression function calls. Only step 2 requires 264+192 = 2256

memory.
It is observed that the pattern for the chunk separation can be represented

as several numbers: b= the number of blue rows in #D2MR, r= the number
of red rows in #D2I , w=the number of white rows in #D5SC , g=the number
of guessed rows in #D1MR. Then the parameters for the MitM attack can be
calculated as: Db = 16(b − r) bytes, Dr = 2w(8 − b) bytes, Dg = g(8 − r)
bytes and m = 8(g + (8 − w) − 8) = 8(g − w) bytes. In the following sections,
we will continue using the parameters of b, r, w and g to identify the pattern
for chunk separations. We searched for all the possible patterns of the chunk
separation by exhaustively enumerating the parameters b, r, w and g. Fig. 2 shows
the optimal complexity case (b, r, w, g = 6, 4, 2, 6). Note that the 6-round attack
is also applicable without using freedom degrees of the key.

Memoryless MitM Attacks. In [30], Morita et al. proposed the memoryless
MitM technique, which can be applied in our attack by designing the following
three functions:

1) a mapping from the partial matching value to the blue value,
2) a mapping from the partial matching value to the red (and purple) value,
3) a pseudo-random boolean switching function taking the partial matching

value as the input.

However, we found that the memoryless MitM has some limitations. The
memoryless MitM is very efficient to find one match, its complexity is lim-
ited by half of the matching size m and increases linearly with the number
of matches. Namely, at most 2max{0,min{Db−Dg ,Dr ,m/2−Dg}} computations can
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be saved using memoryless MitM. Using look-up tables, we can save at most
2max{0,min{Db−Dg ,Dr,m−Dg}} computations. This difference results in different
optimal chunk separations, which is considered in the following sections.

4.3 The First Preimage Attacks

A first preimage attack is the combination of a second preimage attack and
an attack on the last compression function which produces message block with
correct padding. In order to find optimal first preimage attacks, we need to
consider a lot of different attacks.

Two Types of Last Block Attacks. The first preimage attack must fulfill the
message length padding. In a fixed-key attack on the compression function, 10
padding bits can be chosen if the initial structure is placed at the beginning of
the encryption. This technique was used in [26]. The probability that a random
message block satisfies a constraint of the padding string is 2−9. Details are
explained in Appendix B.

In the chosen-key preimage attacks, the initial structure cannot be placed at
the beginning of the compression function. So the chosen padding technique is
not applicable. However, we can repeat the attack 29 times to obtain a valid last
message block.

Since Whirlpool uses 256-bit length padding and we just satisfied a small part
of it, the rest part of the length cannot be known before the attack. Therefore,
we need the expandable messages [31] to fulfill it.

Two Types of Second Preimages. In previous attacks, the key (chaining
value) is known before the attack. The preimage attack on the compression
function is to find a message block that connect two chaining values. The fixed-
key attack is equivalent to a second preimage attack if the input and output
chaining values are chosen consecutively from the known ones.

If the key is chosen, the value of the key (chaining value) can only be deter-
mined after the attack. Then we need to connect it to one of the known chaining
value. This is done using a MitM step on the chaining values.

Different Combinations for the First Preimage Attack. First, we ana-
lyzed all the 5/6-round fixed-/chosen-key attacks on compression functions and
turn them into second preimage and last-block attacks. Second, we considered
the fixed-key attacks with chosen padding and found more attacks on the last
message block. At last, we combine the second preimage attacks and the last-
block attacks to found the first preimage attacks with the lowest computations
and the lowest memory respectively.

The detailed results of all preimage attacks are summarized in Table 2. Note
that we can adjust the time-memory tradeoff by choosing different combinations
of second preimages and the last-block attacks or changing the tradeoff of MitM
on the chaining value for chosen key attacks.
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Table 2. Detailed Results on all preimage attacks on CF and hash function

5-Round Attacks b r w Db Dr m
Compression Second

Last Block Preimage
Function Preimage

chosen-key
- 5 4 2 128 96 128 2416, 296 2465, 296 2425, 296†

2448, 296†ml 4 3 1 128 64 128 2448, O(1) 2481, 232 2457, 232

fixed-key
- 4 3 2 64 64 64 2448, 264 2448, 264† 2457, 264

ml 5 4 2 64 48 128 2464, O(1) 2464, O(1)‡ 2473, O(1)
2465, O(1)‡fixed-key - 4 3 2 55 63 64 - - 2457, 255

chosen padding ml 5 4 2 54 48 128 - - 2464, O(1)‡

6-Round Attacks b r w g Db Dr Dg m
Compression Second

Last Block Preimage
Function Preimage

chosen-key
- 6 4 2 6 256 64 192 256 2448, 2256 2481, 2256† 2457, 2256†

2481, 2256†ml 7 6 2 6 128 32 96 256 2480, O(1) 2497, 216 2489, O(1)‡

fixed-key
- 6 5 1 2 64 16 48 64 2496, 264 2496, 264 2505, 264

ml 7 5 1 5 128 8 120 256 2504, O(1) 2504, O(1)‡ 2513, O(1)
2504, O(1)‡fixed-key - 6 4 1 3 118 16 96 128 - - 2496, 2112

chosen padding ml 7 6 1 3 54 8 48 128 - - 2506, O(1)

† : The attacks with the lowest computations.
‡ : The attacks with the lowest memory.
ml : The memoryless MitM attacks.

1st R 2nd R 3rd R 4th R 

1st R 2nd R 3rd R 4th R 

Key 

Data 

1st R 2nd R 3rd R 4th R 

1st R 2nd R 3rd R 4th R 

Key 

Data 

Fig. 3. Left: previous approach Right: our approach

5 Collision Attacks on the Compression Function

5.1 Overview

In order to generate collisions with previous rebound approaches, the state at the
beginning and the end must have the same differential form so that they can can-
cel each other with the feed-forward operation. This is a strong constraint. We
overcome this constraint by generating local collisions several times,i.e., cancel-
ing differences of the data by using differences of the key. The idea is illustrated
in Fig. 3. Because the diffusions for the data and key are identical, we can keep
the same differential form. This makes possible to use the differential path with
different differential forms between the beginning and the end.

The idea of using the key difference is advantageous not only for canceling
the output difference but also constructing a high probability differential path
by using the local collision. For example, we use the following differential path
for an 8-round collision attack. Here, “WH” represents the whitening operation.

Key: 64
WH−→ 64

1stR−→ 8
2ndR−→ 1

3rdR−→ 8
4thR−→ 64

5thR−→ 8
6thR−→ 1

7thR−→ 8
8thR−→ 64,

Data: 64
WH−→ 0

1stR−→ 8
2ndR−→ 1

3rdR−→ 8
4thR−→ 0

5thR−→ 8
6thR−→ 1

7thR−→ 8
8thR−→ 0 , (2)
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Whitening Round 1 Round 2

Round 3 Round 4

Round 5 Round 6

Round 7

SB SC MR

SC MRSB

SB SC MR AC

SB SC MR

SC MR

SB SC MR AC SB SC MR AC

SC MR AC

SB SC MR SB

SB SC MR AC SB

SB SC MR

SB SC MR AC

SB SC MR

SB SC MR AC

Fig. 4. Differential path for 7R attack. Grey bytes are active bytes. The inbound phase
for the data processing part is stressed by red squares.

where, the most expensive part (full active state) is avoided for the data process-
ing part to reduce the attack complexity and to keep enough freedom degrees.

We use a rebound-attack approach to search for the values. First, the values
for the key are searched. Then, the values for the data are searched for the fixed
key pairs. The complexity is a sum of two searching phases, not a product.

5.2 7-Round Collision Attack

We explain our 7-round collision attack, with 264 computations and memory to
store 28 state. The differential path is as follows. See its illustration in Fig. 4.

Key: 64
WH−→ 64

1stR−→ 8
2ndR−→ 1

3rdR−→ 8
4thR−→ 64

5thR−→ 8
6thR−→ 8

7thR−→ 64,

Data: 64
WH−→ 0

1stR−→ 8
2ndR−→ 1

3rdR−→ 8
4thR−→ 0

5thR−→ 8
6thR−→ 8

7thR−→ 0 .

The key and the plaintext should have the same difference so that the plaintext
difference can be canceled by the whitening operation. Then, we make a local
collision after the 4th round, and another local collision after the 7th round.

Searching Procedure for Key Schedule Part. The goal is finding a single
pair of key values satisfying the differential path for the key. The essential part
of this procedure is finding two values satisfying the middle three rounds, 1 →
8 → 64 → 8. This can be done with the Start-from-the-Middle attack [9]. The
complexity is only 28 computations and the amount of memory is 28 state. If
the middle three rounds are satisfied, the entire path are also satisfied by simply
extending the path by 2 rounds in backward and 2 rounds in forward. Because
this transformation is deterministic, the complexity for 7 rounds is unchanged.
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Round 2 Round 3 Round 4

Round 2 Round 3 Round 4

SB SC MR AC SB SC MR AC SB

SBSB SC MR SB

SB

SC MR

SB SC MR AC

SB SC MR SB

SC MR AC SB

SB SC MR AC

1st inbound phase for row(0) 2nd inbound phase for row(0)Merge inbounds

Equivalent Transformation

Fig. 5. Details of the inbound phase

Searching Procedure for Data Processing Part. This phase is performed
after the key values are fixed. The goal is finding a pair of plaintexts which
follow the differential path and generate a collision in the output. The procedure
is divided into the inbound phase and the outbound phase.

Inbound Phase. The inbound phase is from state #D2I to state #D4SB,
which are stressed by red squares in Fig. 4. For the inbound phase, we search
for the values with a similar approach to Mendel et al. [11]. The details of the
inbound phase are described in Fig. 5. Note that the key values are already fixed.
Hence, the differences for #2DI and #D4SB are uniquely fixed. First, we apply
an equivalent transformation to the third round, i.e. AK is performed between
SC and MR. Then, the inbound phase is further divided into three parts; first
inbound phase, second inbound phase, and merge two inbounds.

First Inbound Phase for Row 0: We aim to find 28 paired values that sat-
isfy the differential path between #D2I [SC−1(row(0))] and #D3SB[row(0)]
which are described by red in Fig. 5. We only compute a single row. The other
rows remain unfixed. The difference for 8 bytes at #D2I [SC−1(row(0))]
is fixed to the same as #K2I [SC−1(row(0))] so that the difference of
#D2I [SC−1(row(0))] can be canceled by AK−1 in the first round. Then,
for all 28 differences in #D2MR[0], we compute the corresponding 8-
byte difference at #D2SB[SC−1(row(0))]. The average probability that
the fixed difference at #D2I [SC−1(row(0))] and a computed one in
#D2SB[SC−1(row(0))] have solutions for all 8 bytes is 2−8. Because 28

differences are examined in #D2MR[0], one pair is expected to have solu-
tions and the number of obtained solutions is 28 on average. Finally, for all
28 solutions, we compute the corresponding 8 bytes at #D3SB[row(0)] and
store them in a list L1.

Second Inbound Phase for Row 0: This part is similar to the first inbound
phase. We aim to find 28 paired values that satisfy the differential path
between #D3SB[SC−1(row(0))] and #D4SB[row(0)] which are described
by yellow in Fig. 5. Again we only compute a single row. The difference for
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8 bytes at #D4SB[row(0)] is fixed to the same as #K4SB[row(0)] so that
it can be canceled after the AK operation in the fourth round. For all 28

differences in #D3SC [0], we compute the corresponding 8-byte difference at
#D4I [row(0)], and check if solutions exist between the fixed #D4SB[row(0)]
and computed #D4I [row(0)]. After 28 trials, we expect to obtain 28 solutions
on average. Finally, for 28 solutions, we compute the corresponding 8 bytes
at #D3SB[SC−1(row(0))] and store them in a list L2.

Merge Two Inbounds: One byte (in position 0) is overlapped in 8 bytes
stored in L1 and L2, hence we need to find the match. Both of value and
difference need to match, and thus the probability of the match is 2−16. Be-
cause 216 combinations of the results in L1 and L2 are available, we expect
to find a match. We use the other 49 unfixed bytes at #D3SB as freedom
degrees for the outbound phase. Because it can produce 249∗8 = 2392 values
for the outbound phase, finding one match is enough for this phase.

The complexity for the inbound phase is 28 computations for both of the first
and second inbound phases. A memory to store 28 state is required to generate
L1 and L2. In summary, with 28 computations and a memory to store 28 state,
up to 2392 solutions of the inbound phase can be produced.

Outbound Phase. Due to the inbound phase, the differential path is ensured
to be satisfied up to the fourth round. The outbound phase is a brute force
approach to satisfy the differential path after the fourth round by using solutions
of the inbound phase. The only probabilistic event for the outbound phase is the
cancelation of the difference at the final output. This occurs when the differences
for #D7SB[row(0)] is the same as #K7SB[row(0)]. Therefore, by examining 264

solutions of the inbound phase, we can obtain a collision at the final output.
In summary, a collision is generated with 264 in time and 28 in memory.

5.3 Extension to 8-Round Collision Attack and Other Variants

The 7-round attack in Sect. 5.2 can be extended to 8 rounds. The differential
path up to the 4th round is exactly the same as the one for the 7-round attack.
Therefore, the inbound part is unchanged. In the outbound phase, 8 → 8 → 64
is replaced with 8→ 1→ 8→ 64. The entire path is given in Eq.(2).

Because the attack procedure is very similar, we only mention the difference
from the 7-round attack. To search for the key values, we use the Start-from-

the-Middle approach. In this time, the differential propagation 8
6thR−→ 1 needs

to be satisfied probabilistically. Therefore, the complexity for the key schedule
part is 256 in time and 28 in memory. Note that the complexity can be improved
to 248 with the linearized match-in-the-middle technique [9]. Because this part
is not the bottle-neck, we omit its detailed explanation. Also note that only 1
result is enough because the data processing part can produce many solutions.

For the data processing part, the inbound phase is exactly the same as the
one for the 7-round attack, which requires 28 in time and 28 in memory, and can



Investigating Fundamental Security Requirements on Whirlpool 575

produce up to 2392 solutions. In the outbound phase, the probabilistic events

are the differential propagation 8
6thR−→ 1 and the differential cancelation at

the output state. Therefore, a collision for 8 rounds can be generated with a
complexity of 256+64 = 2120 computations and 28 state of memory.

It seems worth mentioning that our differential path is an iterative form;

Key: 64
x−→ 8

x+1−→ 1
x+2−→ 8

x+3−→ 64,

Data: 0
x−→ 8

x+1−→ 1
x+2−→ 8

x+3−→ 0 .

Therefore, constructing a differential path for 4n rounds or 4(n− 1) + 3 rounds
is possible. However, we cannot find the attack for three iterations (12-rounds
or 11-rounds) due to a too high complexity and too small freedom degrees.

Practical Near-Collision Attack on 7 Rounds. In some case, near-collisions
can be a real threat because hash values are used after the truncation. Our 7-
round attack in Sect. 5.2 can generate a 40-byte near-collision with a complexity
of 240 computations and 28 state of memory. For this attack, we only cancel the
difference in 5-bytes between #K7SB[row(0)] and #D7SB[row(0)]. Note that
the brute force attack for 40-byte near-collision takes 2160 computations, and
thus our attack is much faster. We also implemented the attack on a PC, and
confirmed that the attack could work correctly. An example of the generated
data is provided in Table 3 in Appendix C.

Practical Collisions on 4 Rounds. All previous attacks require at least
264 computations to generate a collision even for a small number of rounds.
Therefore, we investigate the practical collision attack on a small number of
rounds.

Our differential path generates a local collision after the fourth round, and
up to fourth round can be covered by the inbound phase. Therefore, we can
generate collisions of the 4-round Whirlpool compression function only with 28

computations and 28 state of memory. No extra practical example is given here
since the 7-round near-collision in Table 3 is also a 4-round collision.

5.4 Theory vs Practice: Implementation of Rebound Attacks

The DDT of the S-box is the core of the rebound attack, which provides an
efficient method for satisfying the differential paths. The S-box of Whirlpool is
not as balanced as the one in AES. For a non-zero difference pair, if there is
a conforming value, we call it a match. The matching probability of Whirlpool
S-box is lower than the one in AES.

The property of the Whirlpool S-box results in big differences between theory
and practice. Theoretically, one valid key pair is enough to find a match of the
MitM phase in the data processing part. But, practically, we tried 109 different
valid key pairs to find a solution for the data part. In every matching step, we
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have to try more times to find a match. So the complexity to find one solution
is increased. However, the expected number of solutions for a random difference
pair does not depend on DDT. Hence, the total complexity is not increased if we
need many solutions of the inbound phase. As a result, the complexity of our 7-
round and 8-round attacks is not affected, since the complexity mainly depends
on a lot of iterations in the outbound phase. The theoretical complexity of our
inbound phase for both key and data (to find a 4-round collision) is 28. Because
we only need one solution from the inbound phase, experiments show that the
practical complexity for the inbound phase is increased by 24 to 27 times.

6 Concluding Remarks

In this paper, we improved the attacks on Whirlpool with respect to the funda-
mental security notions. For the preimage attack, the number of attacked rounds
was extended by the guess-and-determine technique. Moreover, the complexity
was improved by exploiting the freedom in the key value. For the collision attack,
the difference was introduced in the key value, and a high probability differential
path was constructed by canceling the difference in the data with the difference
in the key. These results show several risks of using similar diffusions for the key
and data. These also indicate that Whirlpool is still secure in practice.
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19. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and Related-Key Attack
on the Full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
231–249. Springer, Heidelberg (2009)
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A Chunk Separation for Preimage Attack

Fig. 6. Chunk separation (b, r, w, g) = (7, 5, 1, 5) for the memoryless second preimage
attack on 6-round hash function

B On the Message Length Padding

In order to convert the attack on the compression function into an attack on
the hash function, we need to deal with the message padding first. For the
last message block, the lower half are the message length in binary expression.
Here, we use L to denote the message length. If the last bit of the fourth row
#M [row(3)] in the message block #M is 1, we can obtain that L ≡ 255mod 512.
So the last 9 bits of #M [row(7)] should be 011111111. If the last two bits of
#M [row(3)] are 10, we know that L ≡ 254 mod 512. So the last 9 bits of
#M [row(7)] should be 011111110. So, we can calculate the probability that a
random message block is a valid block with correct padding by adding up all the
probability for different suffix of the upper half of the message block:

256∑
i=1

2−(9+i) ≈ 2−9.

http://eprint.iacr.org/2010/198
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C Examples of Data Generated in the Experiments

Table 3. Collision for 4- and Near-Collision for 7-round Compression Function

Chaining Value Message Block Difference in Round 4 Difference in Round 7

7B A9 ED 44 E2 7A FE 2B
FD 53 A5 EE 97 A6 72 F3
FD 4E EF 3B F1 65 E8 64
B4 D0 84 01 F9 75 18 57
02 BB 5E 6F CA A3 E5 76
86 F2 38 76 2B 9B 7F 58
0E 80 06 67 58 65 90 0A
DD A7 64 C7 3A 6F ED AC

71 68 DA 09 4F B6 D0 B2
97 93 7B 9A FF 6C 41 BB
C0 BD AF 12 72 FD A4 17
30 82 86 46 FF 83 47 D0
99 D8 0E 3C 03 C5 8E 06
EE 78 EF 01 74 65 7D AF
84 03 52 1B C3 F7 F2 BC
95 C9 BD 81 20 26 12 57

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
42 6E 9E 0D 4F 4F 21 4F
7D CF 94 FA B2 7D 7D E9
FA B0 E9 4A 7D 59 B0 B0
00 00 00 00 00 00 00 00

9A CB 57 95 CE 6B F7 17
D9 35 99 D8 94 7D 35 F4
5E 1D 25 7F 45 10 E2 B2
00 0F B4 6A A0 10 89 A0
A6 16 D6 D4 6B 37 75 D4
B7 F8 03 25 F8 0D 9D 9D
E8 1D 70 13 40 0E 47 94
52 58 53 E9 D0 C2 B5 0E

90 0A 60 D8 63 A7 D9 8E
B3 F5 47 AC FC B7 06 BC
63 EE 65 56 C6 88 AE C1
84 5D B6 2D A6 E6 D6 27
3D 75 86 87 A2 51 1E A4
DF 72 D4 52 A7 F3 9F 6A
62 9E 24 6F DB 9C 25 22
1A 36 8A AF CA 8B 4A F5
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Abstract. In this article we describe new generic distinguishing and
forgery attacks in the related-key scenario (using only a single related-
key) for the HMAC construction. When HMAC uses a k-bit key, outputs an
n-bit MAC, and is instantiated with an l-bit inner iterative hash function
processing m-bit message blocks where m = k, our distinguishing-R
attack requires about 2n/2 queries which improves over the currently best
known generic attack complexity 2l/2 as soon as l > n. This means that
contrary to the general belief, using wide-pipe hash functions as internal
primitive will not increase the overall security of HMAC in the related-key
model when the key size is equal to the message block size. We also
present generic related-key distinguishing-H, internal state recovery and
forgery attacks. Our method is new and elegant, and uses a simple cycle-
size detection criterion. The issue in the HMAC construction (not present
in the NMAC construction) comes from the non-independence of the two
inner hash layers and we provide a simple patch in order to avoid this
generic attack. Our work finally shows that the choice of the opad and
ipad constants value in HMAC is important.

Keywords: HMAC, hash function, distinguisher, forgery, related-key.

1 Introduction

Hash functions are among the most important basic primitives in cryptography.
Informally, a hash function H is a function that takes an arbitrarily long message
M as input and outputs a fixed-length hash value of size n bits. Classical security
requirements are collision resistance and (second)-preimage resistance. Namely,
it should be impossible for an adversary to find a collision (two distinct messages
that lead to the same hash value) in less than 2n/2 hash computations, or a
(second)-preimage (a message hashing to a given challenge) in less than 2n hash
computations.

Hash functions are used in many applications such as digital signatures, mes-
sage integrity check and message authentication codes (MAC). A MAC is a
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function that takes a k-bit secret key K and an arbitrarily long message M as
inputs, and outputs a fixed-length tag of size n bits. A MAC algorithm should
also meet some security requirements. It should be impossible to recover the
secret key except by exhaustive search, and it should be computationally impos-
sible to forge a valid MAC without knowing the secret key, the message being
chosen by the attacker (existential forgery) or not (universal forgery).

MACs are crucial for many security systems and are often implemented with
the HMAC [3] algorithm, in particular for banking protocols or protocols securing
Internet connections (TLS and IPSEC). HMAC was designed by Bellare et al. in
1996 and is now widely standardized. It has the property to use an iterative hash
function as internal component (thus composed of an iterative application of a
compression function) and a proof of security is given in [2]: HMAC is a pseudo-
random function under the assumption that the compression function is itself a
pseudo-random function.

A trivial generic extension attack exists for HMAC: by asking for enough queries
to obtain an internal collision, the attacker can then add extra message blocks to
generate other colliding HMAC outputs, therefore breaking the existential forgery
security criterion. In order to avoid this issue, many other MACs constructions
have been proposed and analyzed [26,25,12], reaching a security beyond the n/2
birthday bound by using bigger hash function internal state sizes. For example,
the extension attack applied to an n-bit hash function with a 2n-bit internal
state requires 2n compression function calls.

In parallel to the recent impressive advances on standardized hash function
cryptanalysis, the community studied the possible impact on the security of HMAC
when instantiated with these standards (such as MD5 [19] or SHA-1 [21]). There
have been also some related-key analysis of HMAC instantiated with real hash
functions, but no generic attack is known in this model, i.e. without using any
weakness from the internal hash function used. Note that the HMAC proof [2] only
holds when considering a single-key scenario and says nothing in the related-key
model.

The cryptanalysts also looked at other attacks such as distinguishing-R and
distinguishing-H [15]. The aim of the former is to distinguish between a random
function and the HMAC construction, while the latter aims at distinguishing if
the compression function used inside a HMAC construction is a random function
or a specific compression function instance. It is widely believed that for the
ideal narrow-pipe hash function, the distinguishing-R should require about 2n/2

computations, while distinguishing-H should require about 2n.

Our Contributions. In this article we introduce a new type of related-key dis-
tinguisher and forgery attacks for HMAC based on cycle length detection, requiring
a birthday query complexity and only a single related-key. The attack complex-
ities are summarized in Table 1 together with previous work that analyzed the
HMAC instantiating a dedicated hash algorithm.

Our attacks work when the inner hash function is iterative (which is the case
for almost all known hash functions, and is necessary for HMAC anyway) and
when a special condition is met on the key input. This condition depends on the
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value of the HMAC constants opad and ipad (which shows for the first time the
importance in the choice of their values) and it is always fulfilled when the key
length k is equal to the message input length m of the compression function.
HMAC is defined to even handle cases where k > m and k = m is likely to happen
for example with lightweight hash functions for which the total internal state
size has to remain rather small. One can cite DM-PRESENT or H-PRESENT [7] hash
functions (PRESENT being already an ISO standard [6]), which have respectively
80 bits and 64 bits of message input for their compression function. Also, a
block cipher-based hash function using a common mode such as DaviesMeyer or
MatyasMeyerOseas [1] instantiated with the standardized AES [10] is also likely
to meet the condition k = m.

We emphasize that this work is the first that exploits related-keys to attack
HMAC when modeling the compression function as an ideal primitive. They are
also the first attacks applying on HMAC and not on NMAC, which helps to un-
derstand the security loss when going from the latter to the former. Finally,
our attacks are still applicable even when the internal hash function has a big
l-bit internal state, unlike the known generic distinguishing or forgery attacks
such as the extension attack. Note that many SHA-3 candidates are wide-pipe
(like the finalists [14,5,24]) and it is the current trend in hash functions designs.
Therefore, this work shows that a wide-pipe hash function used in HMAC can be
weaker than the one used in simple MAC constructions such as a secret-prefix
MAC and its strengthened version LPMAC [20]. In these schemes, the key (and
the message length) is simply prepended to the input message, and the hash
value is the MAC value. Due to the double size of the internal state, no attack
is known with a smaller complexity than 2n computations, while our attack on
HMAC is more efficient, requiring only 2n/2+1 computations.

After a description of HMAC in Section 2, we introduce the generic distinguishing-
R attack (requiring about 2n/2+1 computations) in Section 3, basis for the the
internal state recovery attack in Section 4, the forgery attack in Section 5 and the
distinguishing-H attack in Section 6. Finally, we discuss our results and propose
a simple method to patch HMAC in Section 7.

2 Description of HMAC

A Hash Function H is a function that takes an arbitrary length input message
M and outputs a fixed hash value of size n bits. When the hash function is
iterative (for example see the classical Merkle-Damg̊ard construction [17,11]),
the message M is first padded and then divided into blocks mi of m bits each.
Then, the message blocks are successively used to update an l-bit internal state
cvi (where l ≥ n) with a compression function h: cvi+1 = h(cvi,mi), and cv0 is
initialized to a fixed public value cv0 = IV . Once all the message blocks have
been processed, an output function g is applied to the last internal state value
cvi so as to eventually obtain hash = g(cvi). The output function therefore
transforms an l-bit value into an n-bit one.
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Table 1. Summary of the attack complexities

Previous attacks on HMAC with dedicated hash algorithm
Attack Key Setting Target Size #Rounds Attack Ref.

Dist.-H Single key MD4 128 Full 2121.5 [15]
Dist.-H Single key MD5 128 33/64 2126.1 [15]
Dist.-H Single key 3-pass HAVAL 128 Full 2228.6 [15]
Dist.-H Single key 4-pass HAVAL 128 102/128 2253.9 [15]
Dist.-H Single key SHA0 128 Full 2121.5 [15]
Dist.-H Single key SHA1 128 43/80 2121.5 [15]
Dist.-H Single key SHA1 128 50/80 2153.5 [18]
Inner key rec. Single Key MD4 128 Full 263 [9]
Inner key rec. Single Key SHA0 128 Full 284 [9]
Inner key rec. Single Key SHA1 128 34/80 232 [18]
Inner key rec. Single Key 3-pass HAVAL 128 Full 2122 [16]
Full key rec. Single Key MD4 128 Full 295 [13]
Full key rec. Single Key MD4 128 Full 277 [22]
Dist.-H Single Key MD5 128 Full 297 [23]
Dist.-H Related Key SHA1 128 58/80 2158.74 [18]

New generic attacks on HMAC

Attack Key Setting Target Old Generic New Generic Reference
Complexity Complexity

Dist.-R Related Key Wide-pipe 2l/2 2n/2+1 This paper

Dist.-H Related Key Narrow-pipe† 2n 2n/2+1 This paper

Dist.-H Related Key Narrow or Wide† 2n 2n/2+2 + 2l−n+1 This paper

Inner state rec. Related Key Narrow or Wide† 2n 2n/2+2 + 2l−n+1 This paper

Ex. forgery Related Key Narrow or Wide† 2n 2n/2+2 + 2l−n+1 This paper

†: For a wide-pipe hash function with l-bit internal state, our attacks improve over the old generic
complexity as long as l < 2n− 1.

The MAC Algorithm HMAC [3] is based on the NMAC construction that uses
two k-bit keys Kout and Kin. NMAC replaces the public IV of a hash function
H(IV,M) by a secret key K to produce a keyed hash function H(K,M). NMAC
is defined by:

NMAC(Kout,Kin,M) = H(Kout, H(Kin,M)).

Since in practice a hash function is used as a black-box and has a fixed IV, HMAC
simulates the keyed hash function H(K,M) of NMAC by prepending a secret key
blockK toM , and computingH(IV,K||M), where || denotes the concatenation.
Also, HMAC uses a single k-bit key K which is padded with zeros such that after
padding the key length is equal to a multiple of m bits. For simplicity of the
description and without loss of generality concerning our attacks, in the rest of
this article we assume that the key can fit in one compression function message
block k ≤ m, and thus the length of the padded key ism bits (the notation of the
keys therefore denotes the padded keys). Kin and Kout are defined by: Kin =
K ⊕ ipad = K ⊕ 0x3636 · · · 36 and Kout = K ⊕ opad = K ⊕ 0x5C5C · · · 5C,
where ipad and opad have the same length than a padded key. HMAC is defined
by:

HMAC(K,M) = H(IV,K ⊕ opad||H(IV,K ⊕ ipad||M)).
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Since the key padding in HMAC enforces that the first compression function call(s)
handles all and only the key material, we can rewrite

HMAC(K,M) = HK⊕opad(HK⊕ipad(M)) = HKout(HKin(M))

whereHK(X) represents the iterative hash function H for which the initial value
is changed to h(IV,K).

3 Generic Related-Key Distinguisher for HMAC

3.1 General Description

Before describing our attacks, we first emphasize that for the rest of the section
we will only use small n-bit messages M , such that after padding any message
fit into one compression function message input. In other words, |M ||pad| = m
and we will always compute a single compression function call in order to handle
the whole message M . This is represented in Figure 1 and we have

HMAC(K,M) = g(h(h(IV,K ⊕ opad), g(h(h(IV,K ⊕ ipad),M ||pad))||pad))
= fKout(fKin(M))

where fK(X) = g(h(h(IV,K), X ||pad)).
The general idea underlying our attacks came from the observation that, con-

trary to the case of NMAC, in HMAC the inner and outer functions are not fully inde-
pendent. Indeed, both inner and outer hash functions are the same function H ,
and the inner and outer keys are related by the relationKin⊕Kout = ipad⊕opad.

This is not an issue in the single key model, since when assuming the internal
inner and outer compression functions as ideal, no information will leak on their

Fig. 1. The computation of HMAC with an iterated hash function when the padded
message is small (|M ||pad| = m)
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output from this inner/outer key relation. However, in the related-key model
the situation is different. When assuming that the key size k is equal to the
padding size (thus one message block, i.e. k = m), then we can analyze what is
happening when we query HMAC(K,M) and HMAC(K ′,M) with the related key
K ′ = K ⊕ ipad⊕ opad. For the first query the oracle will reply

HMAC(K,M) = fK⊕opad(fK⊕ipad(M)) = fKout(fKin(M))

and for the second query the oracle will reply

HMAC(K ′,M) = fK′⊕opad(fK′⊕ipad(M))

= fK⊕ipad(fK⊕opad(M))

= fKin(fKout(M))

One can easily see that the two oracles are doing the same computation, except
that ipad and opad (or Kin and Kout) are inverted. In other words, we have two
oracles, one that applies fKin and then fKout (top figure below), and one that
does the opposite fKout and then fKin (bottom figure below).

This non-random property seems not easy to detect since the functions fKin

and fKout are parametrized with the secret key K, thus they are completely un-
known to the attacker. However, it is possible to detect it using a cycle detection
algorithm: the functions fKin ◦ fKout and fKout ◦ fKin have the same cycle struc-
ture. Indeed, it is easy to see that there is a one-to-one correspondence between
each cycle from fKin ◦ fKout and fKout ◦ fKin .

The attacker will start from an n-bit random input message, query the first
oracle (with keyK), and keep querying as new message the MAC he just received.
He continues to do so for about 2n/2 queries until he gets a collision among
the MACs received. This collision in fact represents a cycle in the successive
computations of fKin ◦ fKout and this first phase defined a first walk that we
denote walk A. In a second step the attacker finds also a cycle for the second
oracle computations (with key K ′ = K ⊕ ipad⊕ opad), i.e. for fKout ◦ fKin and
that defines walk B. Finally, since the number of MACs obtained from the first
and second oracle is big enough, there is a good chance that there is a collision
between a MAC from walk A and an internal value of a MAC from walk B (the
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internal value is the output of the first hash in HMAC). If so, then the cycle length
of the two cycles are necessarily the same since they follow exactly the same
computation path starting from the collision. This is depicted in Figure 2. An
attacker can use this criterion to distinguish between HMAC computations and
a randomly chosen function, since in the latter case there is only a very low
probability that the two cycles have the same length. We call the tail the part
of the walk that does not belong to the cycle and we denote ZA (resp. ZB) the
point where the tail enters the cycle for walk A (resp. walk B).

Fig. 2. The cycle structure built with access to oracles fKout ◦ fKin and fKin ◦ fKout

3.2 The Distinguisher

Let Fn
n be the set of functions from n bits to n bits. We denote FK and FK′

the two oracles on which the adversary A can make queries. The oracles are
instantiated either with FK = HMACK and FK′ = HMACK′ (with K being a
randomly chosen k-bit key and K ′ = K⊕ipad⊕opad) or with two independent
randomly chosen functions RK and RK′ from Fn

n . The goal of the adversary is
to distinguish between the two cases and its advantage is given by

Adv(A) = |Pr[A(HMACK , HMACK′) = 1]− Pr[A(RK , RK′) = 1]|

1st Phase (Walk A). The attacker first chooses a random small message MA

of size n bits and initializes qA0 = MA. Then, he will query FK(qA0 ) and store
the value obtained in qA1 . He continues by querying FK(qA1 ) and by storing the
answer in qA2 , etc. for 2

n/2 + 2n/2−1 iterations. If he observes a collision among
the queries during the process, the attacker stops. If no collision is found or if
the collision occurred in the 2n/2 first queries, the attacker outputs 0.

2nd Phase (Walk B). This phase is identical to the first phase, except that
the attacker queries the oracle FK′ instead of FK . We denote qBi the queries
asked during this phase and MB the starting message value.
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3rd Phase (Cycle Detection). Since each query is obtained by applying the
function FK (or FK′) on the previous query, a collision among the qAi (or among
the qBi ) naturally defines a cycle. If the cycle length of set A is equal to the cycle
length of set B, the attacker outputs 1, otherwise he outputs 0.

3.3 Complexity and Success Probability

1st and 2nd Phases (Walk A and B). We first compute the probability that
no collision is found when asking for the first 2n/2 queries in the first (or in the
second) phase. In the case of randomly chosen functions:

Pnc−rand =

2n/2∏
i=1

1− i

2n
/

2n/2∏
i=1

e−
i

2n = e−2n/2·(2n/2−1)/2n+1 / e−1/2.

In the case of HMAC computations, a collision can occur either because of a
collision on fKin or because of a collision on fKout . Therefore, we have

Pnc−hmac =

⎛⎝2n/2∏
i=1

1− i

2n

⎞⎠2

�

⎛⎝2n/2∏
i=1

e−
i

2n

⎞⎠2

=
(
e−2n/2·(2n/2−1)/2n+1

)2
� e−1.

Then, we compute the probability that when querying the 2n/2−1 remaining
elements, a collision will eventually be found in the first (or in the second)
phase:

Pc−rand = 1−
2n/2−1∏
i=1

(
1− 2n/2 + i

2n

)
/ 1−

2n/2−1∏
i=1

e−
2n/2+i

2n

= 1− e−2n/2−1/2n/2+2n/2−1·(2n/2−1−1)/2n+1 / 1− e−5/8.

Again, in the case of HMAC computations, a collision can occur either because of
a collision on fKin or because of a collision on fKout . Therefore, we have

Pc−hmac = 1−

⎛⎝2n/2−1∏
i=1

(
1− 2n/2 + i

2n

)⎞⎠2

/ 1−

⎛⎝2n/2−1∏
i=1

e−
2n/2+i

2n

⎞⎠2

= 1− (e−2n/2/2n/2+2n/2·(2n/2−1)/2n+1

)2 / 1− e−3.

To summarize, the probability of the attacker to not output 0 during both the
first and second phases is equal to (Pnc−rand · Pc−rand)

2 / 0.079 with randomly
chosen functions and to (Pnc−hmac · Pc−hmac)

2 / 0.122 with HMAC.

3rd Phase (Cycle Detection). We need to compute the probability that the
cycle found in walk A and in walk B have the same length, for both the HMAC

case and the randomly chosen functions case. We denote Pcl−hmac the former
and Pcl−rand the latter.
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When the oracles are instantiated with HMAC, we already explained that HMACK
and HMACK′ are related by their cycle structure. If there exists a collision between
a member of walk A and an internal value of a member of walk B, then we are
ensured that they will enter a cycle of the same length and the attacker will
output 1. Thus Pcl−hmac is the probability that such a collision occurs. Since
the first phase (resp. second phase) ensured that a collision occurs after 2n/2

queries, we are ensured that at least 2n/2 distinct elements exist in walk A (resp.
walk B). Therefore, the probability Pcl−hmac is lower bounded by

Pcl−hmac ≥ 1−
2n/2∏
i=1

(1− 2n/2

2n
) = 1−

2n/2∏
i=1

e
− 1

2n/2 = 1− e−1.

Now we need to evaluate the probability Pcl−rand that the cycles in walk A and
walk B have the same length for randomly chosen functions. Since we ensured
that the collision happens in the last 2n/2−1 elements instead of the first 2n/2

elements for walk A, there must exist some value zA, 1 ≤ zA ≤ 2n/2−1, such
that qA

2n/2+zA
is the first query colliding with some previous query in walk A.

So the cycle length of walk A is uniformly distributed between 1 and 2n/2 + zA.
Similarly for walk B, there exists a value zB, 1 ≤ zB ≤ 2n/2−1, such that the
cycle length of walk B is uniformly distributed between 1 and 2n/2+zB. Without
loss of generality, let zA be smaller than or equal to zB. Thus, the probability
that the cycles in walk A and walk B have the same length is given by

Pcl−rand =

2n/2+zA∑
i=1

1

2n/2 + zA
× 1

2n/2 + zB
<

1

2n/2
×

2n/2+zA∑
i=1

1

2n/2 + zA
= 2−n/2

Overall the advantage of the adversary is

Adv(A) = |Pr[A(HMACK , HMACK′) = 1]− Pr[A(RK , RK′) = 1]|
≥ |(Pnc−hmac · Pc−hmac)

2 · Pcl−hmac − (Pnc−rand · Pc−rand)
2 · Pcl−rand|

� (e−1 · (1− e−1.5))2 · (1− e−1) = 0.077

and it can be increased towards (1−e−1) = 0.63 by allowing the attacker to spend
a bit more computations in the first and second phases (instead of outputting 0,
he just starts the phase over until he succeeds).

The complexity of the distinguisher is about 2n/2 + 2n/2−1 computations for
each of the first and second phase, thus about 2n/2+1 computations in total.

As a proof of concept, we have implemented the attack for HMAC instantiated
with SHA-2 truncated to 32 bits and the results can be found in the full version
of the article.

4 Internal State Recovery Attack

In this section we extend the distinguisher from Section 3 and we present an
internal-state-recovery attack that will be useful for the latter sections show-
ing forgery and distinguishing-H attacks. These attacks are applicable to both
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narrow-pipe and wide-pipe hash functions under some conditions. As an exam-
ple for a narrow-pipe hash function without finalization g(·), i.e. SHA-256 and
SHA-512 [21], these attacks achieve a birthday-bound complexity 2n/2, thus sig-
nificantly reducing the expected complexity of 2n.

4.1 General Idea

We observe that if walk A and walk B follow the structure in Figure 2, then for
any query in the cycle of walk A, denoted as qA, the inner hash value HKin(q

A)
is necessarily equal to some query in the cycle of walk B, denoted as qB. The goal
is therefore to find this query among all #qB candidate values (all the members
of walk B that belong to the cycle). In other words, we would like to synchronize
the two cycles from walk A and walk B, which we already know have the same
length.

In general, even if we know that walk A and walk B have the same length
and are actually doing the same computations, it seems hard to synchronize the
two cycles because we do not know where the tail in walk A and in walk B is
entering the cycle. However, in the special case where the collision between walk
A and walk B happens in the tail (and not in the cycle), then we know that the
tails are entering the cycle at the same position (see Figure 3). In that case, the
cycles are directly synchronized and the attacker knows all the successive hash
output values for every computation in the cycle (he knows the output values of
all the HKin and HKout computed inside the cycle).

The first and second phases of the attack will be devoted to building a walk
A and walk B with a rather long tail, such that during the third phase there is
a good chance to get a collision between an element of the tail of walk A and an
element of the tail of walk B. In order to recover an internal state, he will focus
on one randomly chosen value belonging to the cycle, denoted qA, and its next

Fig. 3. Two walks A and B colliding and sharing a cycle. The left example shows
unsynchronized cycles (the collision happens in the cycle, thus ZA 	= ZB), the right
shows synchronized cycles (the collision happens before the cycle, in the tails, thus
ZA = ZB).
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hash output qB , with qB = H(Kin, q
A). Then he will try to guess the internal

hash value X = h(h(IV,Kin), q
A||pad1) that led to qB, i.e. g(X) = qB .

We assume that g(·) is easy to invert (given an output u, it is easy to find
all preimages leading to u) and that it is balanced (given an output value, there
exists 2l−n corresponding input values through g). Inverting g provides 2l−n

candidates Xi such that g(Xi) = qB. For each of these candidates, we will apply
a filter to remove the bad guesses. The filter is based on an offline extension of
the computation of HKin .

4.2 Detailed Procedure

1st Phase (Walk A). The attacker chooses a random small message MA of
size n bits and initializes qA0 = MA. Then he will query HMACK(qA0 ) and store
the value obtained in qA1 . He continues by querying HMACK(qAi ), and by storing
the answer in qAi+1 for i = 0, 1, . . . , 2n/2. If no cycle is generated (no collision

among the queries qAi ) or if the walk A generated has a tail smaller than 2n/2−2,
then the attacker chooses another random n-bit message as starting query qA0
and repeats the search procedure until a walk A with a cycle and a tail of at
least 2n/2−2 elements are found.

We evaluate the success probability of finding a proper walk A by trying
one set of 2n/2 iterative queries. First we would like the first 2n/2−1 elements be
distinct and the probability of this event is approximately e−1/8 (the evaluation is
similar to the one from Section 3, thus we omitted it here). Then the probability
that the last 2n/2−1 queries produce a cycle is approximately e−3/8. We evaluate
the probability that the tail of walk A has at least 2n/2 − 2 elements. Note that
we have guaranteed that the query qAi causing the first collision happens during
the i-th iteration, with i > 2n/2 − 1. Therefore, the probability that qAi does
not collide with the first 2n/2 − 2 elements is 1 − (2n/2−2/i) ≥ 1/2. Finally, we
conclude that by trying one set of 2n/2 iterative queries, the success probability
of generating a proper walk A is at least e−1/8 × e−3/8 × 1/2 / 0.303.

2nd Phase (Walk B). The procedure is identical to the first phase except that
the attacker is querying HMACK′ with K ′ = K ⊕ ipad⊕ opad instead of HMACK .
He obtains a walk B that has a cycle and whose tail contains at least 2n/2−2

elements with probability of about 0.303 (identical to 1st phase).

3rd Phase (Collision). The attacker checks that there is a collision between
an element from walk A and one from walk B, which can be done by verifying
that walk A and walk B have the same cycle length. He also wants this collision
to happen more exactly between a member of the tail of walk A and a member of
the tail of walk B. This event happens with probability 1−e−1 / 0.63 and if such
a collision occurs, then the cycles from walk A and walk B are synchronized. In
other words, the attacker knows that the tail in walk A entered the cycle at the
same position that the tail in walk B entered its own cycle and as a consequence
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he knows all the succesive internal values for the HMACK and HMACK′ computa-
tions belonging to the cycle. We denote qA, qB and qC three consecutive internal
states, that is qB = H(Kin, q

A), qC = H(Kout, q
B) and qC = HMACK(qA).

4th Phase (Recovery by Filtering). Given qA, qB and qC , known by the
attacker, the goal is now to recover the inner hash function internal state just
before applying the output function g. In other words, the attacker is trying
to recover X = h(h(IV,Kin), q

A||pad1), with g(X) = qB. He first inverts the
output function g from qB and gets 2l−n candidate values Xj .

The attacker chooses 2n/2 random distinct messages Mi, 0 ≤ i < 2n/2, such
that each qA||pad1||Mi||pad2 fits into exactly two message blocks. He queries the
messages qA||pad1||Mi to HMACK and look for collisions among the outputs. A
collision happens in inner hash with a probability 1−e−1/2. At the same time, we
want to avoid faulty collision, i.e. collision in the outer hash instead of the inner
hash, and this happens with probability e−1/2. We denote (M,M ′) the pair of
colliding message found and the success probability is (1−e−1/2)×e−1/2 / 0.23.

For each of the 2l−n candidate values Xj , the attacker computes the values
g(h(Xj ,M ||pad2)) and g(h(Xj,M

′||pad2)), and checks whether they are equal. If
it is the case, the attacker storesXj as a very likely candidate for the yet unknown
value of X . Since there are in total 2l−n candidate values, and the filter is of n-
bit, 2l−2n candidates will be stored. The attacker repeats the colliding messages
(M,M ′) search and the filtering process until only one candidate, namely the
real value of X , is left.

Overall, the complexity of the attack is less than 2n/2+2 queries, and 2l−n+1

offline computations. The success probability is around 0.303 × 0.303 × 0.63 ×
0.23 = 0.013. By repeating the phases from 2 and 4 several times, the success
probability will be increased.

5 Forgery Attacks

This section describes the related-key forgery attacks on HMAC. The adversary is
given access to two oracles HMACK and HMACK′=(K⊕ipad⊕opad). After interacting
with HMACK and HMACK′ , he outputs a message and MAC value (M,σ), such
that the message has not be queried for HMACK . If σ is a valid MAC value for
M through HMAC with key K, the adversary is said to have successfully forged
M for HMACK . More precisely, when the attacker is free to choose M it is an
existential forgery, while if the message is fixed by the challenger beforehand it
is a universal forgery.

A commonly known generic existential forgery attack on HMAC (even in the
single-key setting) is the so-called extension attack. The attacker first searches
for a pair of messages (M,M ′) colliding on the last l-bit internal state of the
inner hash (just before the application of the output function g in the inner hash
function call), then appends each of them with the same additional message block
X . Since the last internal state is the same for both messages (M,M ′), the two
computations of this extra message block X will also behave identically. Finally,
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by querying the HMAC value for one of the two messageM ||X , the attacker directly
forge the other one M ′||X by outputting the same MAC value. The complexity
of this existential forgery attack is around 2l/2 queries.

We extend the internal-state-recovery attack from Section 4 to an existential
forgery attack. The method is simple. Following the procedure in Section 4, the
attacker first recovers the internal state X during the HMACK computation of one
of the n-bit messages queried and we denote this message by M . Then, using
about 2l/2 computations, he generates offline a pair of distinct messagesM ′ and
M ′′ of the same length satisfying g(h(X,M ′||pad2)) = g(h(X,M ′′||pad2)), where
pad2 stands for the padding appended to the message M ||M ′ (or M ||M ′′) when
applying the hash function H . Finally, the attacker queries M ||pad1||M ′ to the
oracle HMACK and receives a value T ′, where pad1 stands for the padding added
to the message M when applying the hash function H . He can forge the MAC
value T ′′ for the messageM ||pad1||M ′′ through HMACK since T ′′ = T ′. The overall
complexity of this attack is 2n/2+2 queries and 2l−n + 2l/2 computations. Note
that in particular for the case l < 2n, our attack is faster than the commonly
known existential forgery attack requiring 2l/2 computations.

One can trivially extend this existential forgery attack to an ”almost-universal”
forgery attack, where the attacker can only choose the first block and the l/2
first bits of the second block of the message to be forged. In practice, this would
be very close to a universal forgery if one assumes that a few bytes of data in
the header of the messages to be MACed can be controlled by the attacker.

6 Distinguishing-H Attacks

This section proposes two distinguishing-H attacks in the related-key setting.
Let Fm+n

n be the set of functions from m + n bits to n bits. The attacker is
given access to two oracles HMACK and HMACK′ with K ′ = K ⊕ ipad⊕ opad. The
compression function of the HMAC oracles is instantiated either with a known
dedicated function h or with a random chosen function r from Fm+n

n , which
we denote (HMAChK , HMAC

h
K′) and (HMACrK , HMAC

r
K′) respectively. The goal of the

adversary is to distinguish between the two cases and its advantage is given by

Adv(A) =
∣∣Pr[A(HMAChK , HMAC

h
K′) = 1]− Pr[A(HMACrK , HMAC

r
K′) = 1]

∣∣ .
6.1 Distinguishing-H Attack I: Comparing Cycles Lengths

The distinguisher in Section 3 can be extended to a distinguishing-H attack, as
long as the finalization g(·) is bijective and invertible, for example the identity
function. Without loss of generality, we omit the output function g. The only
difference from the distinguisher in Section 3 will be that in order to produce
walk A and walk B we will make full-block long iterative queries, namely m-bit
queries, instead of n-bit queries. A graphical view of one iteration in a walk is
given in Figure 4. Let pad1 be the padding to an n-bit message and pad2 the
padding to an m-bit message. The attacker first chooses a small random n-bit
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value qA0 . He then queries qA0 ||pad1 to HMACK and receives X0. He computes
h(X0, pad2) offline and stores the output as qA1 . He continues to query qAi ||pad1,
receive Xi and apply h(Xi, pad2) offline to produce qAi+1. With the same pro-
cess, the attacker produces walk B, except that he queries HMACK′ instead of
HMACK .

If HMAC oracles are instantiated with h, then h(HMACK(·), pad2) is fKin ◦ fKout

and h(HMAC′K(·), pad2) is fKout ◦ fKin , where fKin and fKout are defined in Fig-
ure 4. So walk A and walk B have a good chance to have the structure explained
in Section 3 and depicted in Figure 2, leading to cycles of equal length. On
the other hand, if HMAC oracles are instantiated with r, walk A and walk B are
independent. Thus by detecting the cycles lengths, the adversary can distin-
guish (HMAChK , HMAC

h
K′) from (HMACrK , HMAC

r
K′). The complexity and the success

probability are identical to the ones for the distinguisher in Section 3.

Fig. 4. Distinguisher-H attack I

6.2 Distinguishing-H Attack II: Recovering Internal State

The internal state recovery attack in Section 4 can be extended to a distinguishing-
H attack as well. The adversary first regards the HMAC oracles as (HMAChK , HMAC

h
K′),

and applies the internal state recovery procedure from Section 4 to obtain an inter-
nal state valueX of some n-bit query qA in a walk. Then he searches offline a pair
of distinct messages (M,M ′) satisfying g(h(X,M)) = g(h(X,M ′)), which costs
2n/2 computations. Finally, he queries HMACK with qA||pad1||M and qA||pad2||M ′

to check whether the two MAC values collide. If they do the attacker outputs 1,
otherwise he outputs 0.

If the compression function is h, the probability that HMACK(qA||pad1||M) col-
lides with HMACK(qA||pad1||M ′) is equal to the success probability of recovering
X in the attack of Section 4. If the compression function is r, the probability
that HMACK(qA||pad1||M) = HMACK(qA||pad1||M ′) is negligible.

Overall, the complexity is 2n/2+2 queries, 2l−n+1 + 2n/2 offline computations
and the success probability is 0.013.
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7 Patching HMAC and Discussions

We emphasize again that the related-key issue depicted in this article only exists
when the attacker can query fKout ◦ fKin and fKin ◦ fKout with related-key rela-
tions, and therefore keep the two computation chains synchronized if a collision
happens. In the case of HMAC this is possible only when k = m or k = m − 1
since the last bit of ipad and opad are equal (otherwise, for a smaller key the
attacker can not build a proper related-key). This shows that the choice of
ipad and opad is not anecdotal. For example, if ipad and opad were very
similar, then our attacks would work for basically any key length. Also, we ob-
serve that our attacks are the first to apply to HMAC and not to NMAC, thus helping
the community to understand what security we loose when going from NMAC to
HMAC.

Even if our attack is only theoretical due to its high birthday complexity, it
is interesting to study how one can patch the scheme and avoid this related-key
issue. Since one of the best feature from HMAC is that it uses a hash function
as a black box, without any need to change the primitive implementation, our
goal is to find a patch that does not affect the hash function definition. Indeed,
an easy and efficient tweak would be for example to force different IVs for the
inner and outer instances of H in HMAC, but that would require modifying H ’s
implementation. We note that truncating the output of HMAC would also work
(the attacker would have to successively guess the truncated bits for each received
query in order to continue the computation chain), but we do not consider this
solution as satisfactory because reducing the output length will directly reduce
the expected generic security of the MAC algorithm.

A first try could be to xor some distinct constants to the inner and/or outer
hash message input in an attempt to separate the fKout and fKincomputations.
However, with such a patch, an attacker can adapt his query strategy and still
perform a modified version of the attack from Section 3 to maintain the compu-
tation chains synchronized.

Our proposed solution is instead to force an extra fixed bit (or byte) before the
input messageM . This patch would not harm much the efficiency of the scheme
since only one bit (or one byte) would be added to the message to hash for the
inner hash function call (actually the efficiency will be the same if the message
plus one bit still fit in the same number of message blocks). Also, this patch
can even be applied on top of HMAC, as a preprocessing phase before calling the
primitive, thus allowing to use existing HMAC libraries without having to modify
them.

The related-key distinguishing-R attack from Section 3 is thwarted because
now the inner and outer function are made distinct, even when querying with
keysK andK ′ = K⊕opad⊕ipad. The attacker can no more adapt the queries to
circumvent this countermeasure and keep the computation chains synchronized.
The security proofs of HMAC still hold with this patch since it is trivial to see that
any attack on this new proposal will also apply on HMAC.

Note that adding this extra bit (or byte) to the input of the outer hash
function instead of the inner one, in an attempt to not reduce the efficiency
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(in most cases the hash function output size n is much smaller than its message
input sizem and fit in one block, thus the efficiency would actually be very likely
to remain exactly the same), would not prevent the attack from Section 3 to be
applicable, since the attacker could simply adapt his query strategy: instead of
getting a value V from the HMAC oracle and then query this value V again etc.,
he could simply prepend a 0 to the received query 0||V before querying it again
and eventually get the K and K ′ computations synchronized again.

We observed that appending or prepending the extra bit to the message have
actually different impact on the security. For the former, the distinguishing-H
attack (approach I) from Section 6 can still apply in the case of a narrow pipe
internal hash function, while for the latter the attacker can no more play with
pad2 to absorb the prepended bit. Thus, our final proposal is to simply
prepend a 0 bit (or byte) to the input message of HMAC . Namely, this
new version HMAC’ would be defined as

HMAC
′(K,M) = HK⊕opad(HK⊕ipad(0||M)) = HKout(HKin(0||M)) = HMAC(K, 0||M)

Taking in account the fact that the related-key attacks described in this article
only work for special key length, we propose to apply our patch to HMAC only
when k = m or k = m− 1.

We leave as an open problem to find a patch that has no impact on the
efficiency (not even a single bit), without modifying the implementation of the
hash function H (thus without using distinct IVs for the outer and inner hash
calls).

As a final remark, we observe that for HMAC one should only consider related-
keys of the same length than the original key. Indeed, for HMAC one can easily
check that when the length of the key K is not a multiple of m, then the key
K ′ = K||0 is equivalent to K in the sense that HMACK(M) = HMACK′(M) for
any message M (this related-key relation is even valid in the formalization of
related-key attacks from Bellare and Kohno [4] since no two different keys have
the same related-key). This is due to the fact that the padding of the key (so that
its length becomes a multiple of m) is weak and do not distinguish between keys
of different length. A possible patch in order to avoid any equivalent key would
to simply pad the key with a 1 and as many zeros as needed (possibly none)
such that K||10 . . .0 is a multiple of m, instead of the original 0 . . . 0 padding.

8 Conclusion

In this article we introduced a new type of distinguishing-R, distinguishing-H,
internal state recovery and forgery attacks for HMAC in the related-key setting.
While the applicability of this attack is only theoretical, it uses a novel attack
angle, the cycle length. It is the first attack that applies on HMAC and not on
NMAC and it provides a better understanding of the role of the constants ipad
and opad. We also showed that our attacks can be avoided with a simple patch
that only prepends 1 bit or 1 byte to the head of a message.
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Abstract. The “five-card trick” invented by Boer allows Alice and Bob
to securely compute the AND function of their secret inputs using five
cards—three black cards and two red cards—with identical backs. This
paper shows that such a secure computation can be done with only four
cards. Specifically, we give a protocol to achieve a secure computation
of AND using only four cards—two black and two red. Our protocol is
optimal in the sense that the number of required cards is minimum.

1 Introduction

Assume that two honest-but-curious players Alice and Bob, who hold secret bits
a ∈ {0, 1} and b ∈ {0, 1}, respectively, wish to securely compute the AND func-
tion, that is, they want to learn the value of a∧b without revealing more of their
own secret bits than necessary. The “five-card trick” invented in 1989 by Boer [2]

achieves such a secure computation of AND using five cards ♣ ♣ ♣ ♥ ♥ . Now,
after over two decades since the invention of the five-card trick, this paper im-
proves upon the result: we show that the same secure computation can be done
using only four cards ♣ ♣ ♥ ♥ .

This paper begins with an overview of the five-card trick.

1.1 The Five-Card Trick

The “five-card trick” by Boer [2] is an elegant secure AND computation protocol

that uses three ♣ s and two ♥ s. Before going into the details of the protocol,
we first mention the properties of cards appearing in this paper.

All cards of the same type (♣ or ♥ ) are assumed to be indistinguishable

from one another. We use ? to denote a card lying face down. We also assume

that the back ? of each card is identical. To deal with Boolean values, we use
the following encoding:

♣ ♥ = 0, ♥ ♣ = 1. (1)

Given a bit x ∈ {0, 1}, a pair of face-down cards ? ? whose value is equal to
x (according to the encoding rule (1) above) is called a commitment to x, and
is expressed as

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 598–606, 2012.
c© International Association for Cryptologic Research 2012
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? ?︸ ︷︷ ︸
x

.

We now explain how to play the five cards in Boer’s secure AND protocol. First,
given two cards ♣ ♥ out of the five cards, Alice privately makes a commitment
to her secret bit a (without Bob’s knowing the order of the two cards); similarly,
Bob makes a commitment to the negation b̄ of his secret bit b. Then, with the
remaining one card ♣ , two commitments are put forth as follows:

? ?︸ ︷︷ ︸
a

♣ ? ?︸ ︷︷ ︸
b̄

.

It should be noted that the three cards in the middle would be ♣ ♣ ♣ only
when a = b = 1 (if the second and fourth cards from the left were turned over).

Next, Alice and Bob turn the centered card ♣ face down, and apply a random
cut, which is denoted by 〈·〉:

? ?︸ ︷︷ ︸
a

? ? ?︸ ︷︷ ︸
b̄

→
〈
? ? ? ? ?

〉
→ ? ? ? ? ? .

A random cut (also called a random cyclic shuffling) means that, as in the case
of usual card games, a random number of leftmost cards are moved to the right
without changing their order (of course, the random number must be unknown
to Alice and Bob); to implement this, it suffices that Alice and Bob take turns
cutting the deck until they are satisfied. Finally, Alice and Bob reveal all five
cards. Then, the resulting sequence is either

♣ ♣ ♥ ♥ ♣ or ♥ ♣ ♥ ♣ ♣ (2)

apart from cyclic rotations, where either the three ♣ s are “cyclically” consec-
utive or not. One can easily verify that the former case implies a ∧ b = 1, and
the latter case implies a ∧ b = 0.

This is the five-card trick, a simple and elegant secure AND protocol.

1.2 Our Result and Related Work

In this paper, we reduce the number of required cards by one, compared to the
five-card trick, as listed in Table 1. That is, given commitments

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

to Alice’s bit a and Bob’s bit b, our protocol needs no card other than the four
cards constituting the two commitments, i.e., it can securely evaluate the value
of a∧ b without the use of any additional card. Therefore, as long as one adopts
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Table 1. The five-card trick and our protocol with their performance

◦ Secure AND in a non-committed format

# of card types # of cards

Boer [2] (§1.1) 2 5

Ours (§2) 2 4

the encoding rule (1), our protocol is optimal in the sense that the number of
required cards is minimum because at least four cards are necessary for the two
inputs a and b.

Since the invention of the five-card trick, there have been several card-based
protocols for secure computation, as listed in Table 2. All these protocols produce
their output (say, a∧ b) in a committed format, i.e., their output is described as
a sequence like

? ?︸ ︷︷ ︸
a∧b

that follows the encoding rule (1) (and Alice and Bob have no knowledge about
the value than their own secret bits). In contrast, the five-card trick and our
protocol (given in Section 2) output the value of a∧b in a non-committed format;
the format of the output a∧ b differs from the format of inputs a and b, namely
the encoding rule (1) (recall the resulting sequences (2), which are completely
revealed to the public at the end of the protocol).

Table 2. The “committed format” protocols

◦ Secure AND in a committed format

# of card types # of cards avg. # of trials

Crépeau-Kilian [3] 4 10 6

Niemi-Renvall [7] 2 12 2.5

Stiglic [10] 2 8 2

Mizuki-Sone [4] 2 6 1

◦ Secure XOR in a committed format

# of card types # of cards avg. # of trials

Crépeau-Kilian [3] 4 14 6

Mizuki-Uchiike-Sone [5] 2 10 2

Mizuki-Sone [4] 2 4 1

Thus, all the card-based protocols are categorized into two types:
“non-committed format” protocols (Table 1) and “committed format” protocols
(Table 2); this paper addresses the former. Note that in Table 2 every protocol
whose average number of trials is more than 1 is a Las Vegas algorithm.

While card-based protocols might fall within the area of cryptography without
computers [7], recreational cryptography [1] or human-centric cryptography [6], we
believe that this type of research will help professional cryptographers intuitively
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explain to nonspecialists the nature of their constructed cryptographic protocols
(e.g. [9]). That is, card-based protocols would help ordinary people understand
what secure computations are, or, more fundamentally, what cryptography is.
Furthermore, it should be noted that some of the card-based protocols are im-
plemented and used in online games [8].

The remainder of this paper is organized as follows. In Section 2, we give
a description of our four-card secure AND protocol. In Section 3, we show the
correctness of our protocol, that is, we prove that our protocol securely computes
the AND function. This paper concludes in Section 4 with an open question.

2 Description of Our Protocol

In this section, we design a new card-based protocol that securely computes the
AND function using only four cards ♣ ♣ ♥ ♥ .

In Section 2.1, we first introduce the “random bisection cut” [4] used in our
protocol. We then describe our protocol in Section 2.2.

2.1 Random Bisection Cuts

As seen in Section 1.1, applying a random cut to a sequence of face-down cards
results in a sequence such that a random number of leftmost cards are moved to
the right without changing their order. Whereas, a “random bisection cut” [4]
works differently, as follows.

Given a deck of (an even number of) face-down cards, say

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

,

bisect it and randomly switch the resulting two decks; such a card shuffling
operation is called a random bisection cut. For the example above, a random
bisection cut, denoted by [ · ‖ · ], works as

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

→
[
? ?

∥∥∥ ? ?
]

→ ? ? ? ? ,

where the resulting deck of the four cards is either

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

or ? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
a

,

and each case occurs with probability of exactly 1/2.
Although at first glance a random bisection cut seems to be a little bit less

natural operation compared to a (normal) random cut, we hope that people will
feel a random bisection cut to be an easy-to-implement operation some day. If
Alice and Bob are not familiar with playing cards, then they may hold each
of the two bisected decks together using a clip before shuffling the two decks.
Alternatively, they may put each of the two decks into an envelope (without
changing the order of the cards), and shuffle the two envelopes.
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2.2 The Protocol

Given a commitment to Alice’s bit a and a commitment to Bob’s bit b, our
four-card AND protocol proceeds as follows.

1. Apply a random bisection cut:

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

→
[
? ?

∥∥∥ ? ?
]

→ ? ? ? ? .

2. Apply a random cut to the two cards in the middle, namely the second and
third cards:

? ? ? ? → ?

〈
? ?

〉
? → ? ? ? ? .

3. Reveal the second card.

(a) If the face-up second card is ♣ , then open the fourth card. We now have
either

? ♣ ? ♣ or ? ♣ ? ♥ .

The former case implies a ∧ b = 1, and the latter case implies a ∧ b = 0.
(b) If the face-up second card is ♥ , then open the first card. We now have

either
♣ ♥ ? ? or ♥ ♥ ? ? .

The former case implies a ∧ b = 0, and the latter case implies a ∧ b = 1.

As described above, our protocol makes one random bisection cut (in step 1) and
one random cut (in step 2). After those cuts, two cards are eventually revealed,
namely either (a) the second and fourth cards, or (b) the first and second cards,
depending on the result of revealing the second card in step 3. Note that if the
two face-up cards are the same type (♣ ♣ or ♥ ♥ ), then we have a ∧ b = 1;
otherwise, we have a ∧ b = 0.

We show why our protocol works in the next section.

3 Correctness of Our Protocol

In this section, we prove that the protocol given in the previous section securely
computes a ∧ b. First, in Section 3.1 we intuitively explain why our protocol
works. Then, we verify the correctness of our protocol in Section 3.2.

3.1 An Intuitive Sketch

Given a commitment

? ?︸ ︷︷ ︸
a

,
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note that each individual card constituting the commitment inherently has the
value of the bit a, that is, one can also write

?︸︷︷︸
a

?︸︷︷︸
ā

where an encoding rule for a single card is taken: ♣ expresses 0, and ♥ ex-
presses 1. Based on such a single-card encoding, commitments to a and b can be
expressed as:

?︸︷︷︸
a

?︸︷︷︸
ā

?︸︷︷︸
b

?︸︷︷︸
b̄

. (3)

Now, for the expression (3), skip step 1 in our protocol and directly apply step
2. That is, apply a random cut to the second and third cards:

?︸︷︷︸
a

〈
?︸︷︷︸
ā

?︸︷︷︸
b

〉
?︸︷︷︸
b̄

→ (i) ?︸︷︷︸
a

?︸︷︷︸
ā

?︸︷︷︸
b

?︸︷︷︸
b̄

or (ii) ?︸︷︷︸
a

?︸︷︷︸
b

?︸︷︷︸
ā

?︸︷︷︸
b̄

.

Next, applying step 3, reveal the second card. Assume that the face-up second
card is ♣ (as in step 3(a)), i.e.,

(i) ?︸︷︷︸
a

♣︸︷︷︸
ā

?︸︷︷︸
b

?︸︷︷︸
b̄

or (ii) ?︸︷︷︸
a

♣︸︷︷︸
b

?︸︷︷︸
ā

?︸︷︷︸
b̄

. (4)

Then, it means that either (i) ā = 0 or (ii) b = 0 (because ♣ = 0). If (i) ā = 0,
then a = 1 and hence a ∧ b = b; if (ii) b = 0, then a ∧ b = 0 = b. Therefore,
in either case, we have a ∧ b = b, and hence one can notice that the value of
a ∧ b = b can be obtained by revealing the fourth card

?︸︷︷︸
b̄

in the sequence (4). Actually, in step 3(a), the fourth card is opened. If it is ♣ ,

then b̄ = ♣ = 0 and hence a ∧ b = b = 1; if it is ♥ , then b̄ = ♥ = 1 and hence
a ∧ b = b = 0.

Thus, steps 2 and 3(a) surely compute the value of a ∧ b. One can similarly
verify the claim for the case of step 3(b). Therefore, steps 2 and 3 can provide at
least the value of a ∧ b. However, they also leak some secret information about
a and b; indeed, for example, when the second card revealed in step 3 was ♣ ,
we have ā = 0 or b = 0 (as seen above), and hence the fact of (a, b) �= (0, 1)
has been disclosed. Therefore, since executing only steps 2 and 3 is not secure,
our protocol applies a random bisection cut in step 1 to guarantee secrecy, as
intuitively explained below.
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Note first that adding step 1 never affects the computation outcome of exe-
cuting steps 2 and 3: after applying a random bisection cut in step 1, we have
either

? ?︸ ︷︷ ︸
a

? ?︸ ︷︷ ︸
b

or ? ?︸ ︷︷ ︸
b

? ?︸ ︷︷ ︸
a

, (5)

and then applying steps 2 and 3 to the sequence (5) always provides the value
of a ∧ b as shown above (because a ∧ b = b ∧ a).

To see that the secrecy is preserved by introducing a random bisection cut in
step 1, we enumerate all possibilities:

step 1 step 2

?︸︷︷︸
a

?︸︷︷︸
ā

?︸︷︷︸
b

?︸︷︷︸
b̄

↗
?︸︷︷︸
a

?︸︷︷︸
ā

?︸︷︷︸
b

?︸︷︷︸
b̄

→ ?︸︷︷︸
a

?︸︷︷︸
b

?︸︷︷︸
ā

?︸︷︷︸
b̄

↗
?︸︷︷︸
a

?︸︷︷︸
ā

?︸︷︷︸
b

?︸︷︷︸
b̄

?︸︷︷︸
b

?︸︷︷︸
b̄

?︸︷︷︸
a

?︸︷︷︸
ā

↘ ↗
?︸︷︷︸
b

?︸︷︷︸
b̄

?︸︷︷︸
a

?︸︷︷︸
ā

→ ?︸︷︷︸
b

?︸︷︷︸
a

?︸︷︷︸
b̄

?︸︷︷︸
ā

.

Therefore, opening the second card (in the rightmost sequence) means that one
of ā, b, b̄ and a is randomly revealed. Hence, opening the second card never leaks
any information about each of a and b.

3.2 Proof of Correctness

In this subsection, we prove that our protocol works correctly.
Recall that a random bisection cut

[
? ?

∥∥ ? ?
]
in step 1 and a random cut

?
〈
? ?

〉
? in step 2 are applied to the two commitments; one can enumerate,

as in Table 3, all possibilities of the four cards after each of steps 1 and 2. Note
that the cases (a, b) = (0, 1) and (a, b) = (1, 0) both fall in the same status
category after step 1 (and after step 2, of course).

Consider the actual execution of our protocol based on Table 3. After step
3, all possibilities can be enumerated as shown in Table 4. (Remember that the

second card is opened in step 3, and that if it is ♣ , then the fourth card is
opened; otherwise, the first one is opened.) Table 4 immediately implies that
our protocol surely computes the value of a ∧ b—if the two revealed cards are
the same type, then a ∧ b = 1; otherwise, a ∧ b = 0.

To verify the secrecy of the protocol, it suffices to show that

Pr[(0, 0) | ? ♣ ? ♥ ] = Pr[(0, 0) | ♣ ♥ ? ? ] = Pr[(0, 0) | a ∧ b = 0],
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Table 3. All possibilities of the four cards after each of steps 1 and 2

(a, b) initial after step 1 after step 2

(0, 0) ♣ ♥ ♣ ♥ ♣ ♥ ♣ ♥ ♣ ♣ ♥ ♥ or ♣ ♥ ♣ ♥

(0, 1) ♣ ♥ ♥ ♣ ♣ ♥ ♥ ♣ or ♥ ♣ ♣ ♥ ♥ ♣ ♣ ♥ or ♣ ♥ ♥ ♣

(1, 0) ♥ ♣ ♣ ♥ same as (0, 1) same as (0, 1)

(1, 1) ♥ ♣ ♥ ♣ ♥ ♣ ♥ ♣ ♥ ♣ ♥ ♣ or ♥ ♥ ♣ ♣

Table 4. All possibilities of the four cards after step 3

(a, b) initial after step 3

(0, 0) ♣ ♥ ♣ ♥ ? ♣ ? ♥ or ♣ ♥ ? ?

(0, 1) ♣ ♥ ♥ ♣ ? ♣ ? ♥ or ♣ ♥ ? ?

(1, 0) ♥ ♣ ♣ ♥ ? ♣ ? ♥ or ♣ ♥ ? ?

(1, 1) ♥ ♣ ♥ ♣ ? ♣ ? ♣ or ♥ ♥ ? ?

Pr[(0, 1) | ? ♣ ? ♥ ] = Pr[(0, 1) | ♣ ♥ ? ? ] = Pr[(0, 1) | a ∧ b = 0],

and

Pr[(1, 0) | ? ♣ ? ♥ ] = Pr[(1, 0) | ♣ ♥ ? ? ] = Pr[(1, 0) | a ∧ b = 0].

Let Pr[a = 0] = p and Pr[b = 0] = q. Then, we have Pr[(0, 0) | a ∧ b = 0] =
pq/(p+ q − pq). On the other hand,

Pr[(0, 0) | ? ♣ ? ♥ ] =
pq(1/2)

pq(1/2) + p(1− q)(1/2) + (1 − p)q(1/2)
,

as desired. For all the remaining cases, one can easily check the equality.

4 Conclusions

In this paper, we presented a four-card secure AND protocol whose output is in
a non-committed format. Since the existing protocol, namely the five-card trick,
requires five cards, we have succeeded in reducing the number of required cards
by one. Our protocol is optimal in the sense that at least four cards are required
for commitments to the inputs a and b.

Note that the OR function can also be securely computed by using four cards,

say, according to de Morgan’s law a ∨ b = ā ∧ b̄.
This paper showed a secure AND computation in a non-committed format

using only four cards. For the committed format case, the best known protocol
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[4] requires six cards as seen in Table 2. An intriguing open question is whether
there exists a “committed format” AND protocol that requires fewer than six
cards.
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Abstract. We construct a provably secure mix-net from any CCA2 secure cryp-
tosystem. The mix-net is secure against active adversaries that statically corrupt
less than λ out of k mix-servers, where λ is a threshold parameter, and it is robust
provided that at most min(λ− 1, k − λ) mix-servers are corrupted.

The main component of our construction is a mix-net that outputs the cor-
rect result if all mix-servers behaved honestly, and aborts with probability 1 −
O(H−(t−1)) otherwise (without disclosing anything about the inputs), where t
is an auxiliary security parameter and H is the number of honest parties. The
running time of this protocol for long messages is roughly 3tc, where c is the
running time of Chaum’s mix-net (1981).

1 Introduction

A mix-net, introduced by Chaum in 1981 [2], is a tool to provide anonymity for a group
of senders. The main application is electronic voting, in which each sender submits an
encrypted vote and the mix-net then outputs the votes in sorted order. Mix-nets have also
found applications in other areas, e.g., anonymous web browsing [6], payment systems
[13] and even as a building-block for secure multiparty computation [10].

A mix-net is constructed as a cryptographic protocol by invoking a set of mix-servers,
arranged in a series. The original mix-net proposed by Chaum works as follows. To
set up, each mix-server publishes a public key for an encryption system. Each sender
then publishes a “wrapped” message with several layers of encryption: starting with
the innermost layer—an encryption of her plaintext message using the last mix-server’s
public key—and ending with the outermost layer, encrypted using the first mix-server’s
public key. Once all senders have published their encrypted inputs, the mixing stage
begins. In turn, each mix-server receives the encrypted values output from the previous
server, “peels off” a layer of encryption, i.e., decrypts the values using his private key,
sorts the decrypted values and passes them on to the next mix-server in the chain. The
output of the final mix-server is the sorted list of the senders’ original inputs.

Chaum’s mix-net hides the correspondence between the input ciphertexts and the
output plaintexts, but even a single mix-server can undetectably modify the output or
refuse to take part in the protocol (forcing the protocol to abort without output). These
drawbacks have been addressed in previous work. The most widely researched line of
work is based on the idea of re-encryption mixes (originally proposed by Park, Itoh and
Kurosawa [19]); these rely on homomorphic encryption schemes whose ciphertexts can
be “re-randomized”. Using the homomorphic properties of the encryption scheme, it
is possible to generate very efficient zero-knowledge proofs that the mixing was per-
formed correctly (e.g., Neff [16] or Furukawa and Sako [4]). While the state-of-the-art

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 607–625, 2012.
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re-encryption mixes are both provably secure and efficient for short inputs, their reliance
on homomorphic properties limits them to a few specific encryption schemes.

1.1 Our Contribution

In this paper, we propose a new, efficient mix-net protocol that satisfies several highly-
desirable properties:

– Minimal Cryptographic Assumptions. Our protocol can be based on any CCA2-
secure cryptosystem, without requiring additional assumptions. In particular, we
do not require the underlying encryption to have homomorphic properties.

While interesting from a theoretical standpoint, this also has clear advantages
in practice, as it gives greater flexibility in the choice of encryption scheme. For
example, all currently practical homomorphic encryption schemes are susceptible
to attacks from quantum computers. Although we do not currently know how to
build quantum computers, it is important to take this vulnerability into account
when using a mix-net as part of an electronic election scheme: ballot privacy is
often required to be preserved for decades—these timeframes may be long enough
for the development of a working quantum computer.

Furthermore, the flexibility in the choice of encryption scheme makes it easy
to deal efficiently with long inputs, while there do exist mix-nets that can deal
with long inputs efficiently [11,17,5], these mixes require even more specialized
encryption schemes tailored specifically to that purpose.

– Provable Security. Many of the existing mixing protocols do not have formal proofs
of security. This may seem like a purely theoretical concern, but the history of cryp-
tographic protocols, and mix-nets in particular, shows that there is good reason to
distrust heuristic approaches. A notable example of this is the Randomized Par-
tial Checking (RPC) scheme of Jakobsson, Juels and Rivest [12] (our main “com-
petitor” in the field of generic CCA2-based mixes). The RPC scheme (and related
constructions) have been around for over a decade, and have already been used in
binding elections; however, recent work by Khazaei and Wikström [14] shows that
RPC contains a subtle but serious security flaw, which was consistently missed in
implementations. Other examples abound (see Section 1.2 for more).

In contrast, our protocol is proven secure in the Universal Composability frame-
work [1], a very strong notion of security that holds even when arbitrary additional
protocols are run concurrently. (If a cryptosystem which allows recovering the ran-
domness from a ciphertext using the secret key is used to implement the (non zero-
knowledge) proof of correct decryption, then the result only holds in the stand-alone
setting.)

– Full Security. The RPC scheme gains efficiency by relaxing slightly the security
requirements. It prevents corrupt mix-servers from undetectably modifying many
inputs of honest senders, but a malicious server can succeed in changing a con-
stant number of inputs with non-negligible probability. For some uses, this may
not be acceptable. RPC also relaxes the privacy guarantees: while the exact cor-
respondence between senders and their inputs is hidden, some information may
still be leaked. Our protocol, with comparable or better efficiency, provides full
simulation-based security.
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Our protocol is based on a new technique we call Trip-Wire Tracing (TWT). Our main
idea is to do away with zero-knowledge proofs (that would be costly for a generic
cryptosystem) used by existing protocols to guarantee correctness and replace them
with a virtual “trip wire” system: we insert “fake” inputs into the mix to act as trip
wires for catching misbehaving mix-servers (for more details, see Section 2).

Security Guarantees and Assumptions. The protocol preserves privacy and correctness
against active adversaries that statically corrupt less than λ mix-servers, where λ is a
threshold parameter, and it is robust provided that at most min(λ − 1, k − λ) mix-
servers are corrupted, where k is the number of mix-servers. As for all other mix-nets
in the literature, we assume the existence of an ideal bulletin board functionality (this
is equivalent to a broadcast channel). We also need an ideal functionality for shared
key generation. In the general case (when we can only assume a generic CCA2-secure
cryptosystem without any additional structure), this functionality would have to be im-
plemented using general MPC. However, if the chosen cryptosystem does have a more
efficient shared-key-generation protocol, it can be used instead (in any case, the bulk of
the work can always be carried out offline, in a preliminary key generation phase).

Finally, we need a functionality for proving that a ciphertext is correctly decrypted,
but it suffices that this protocol hides the secret key. This functionality can be realized
trivially if the cryptosystem allows recovery of the randomness (used to form the cipher-
text) using the secret key. In any case this protocol is only used to identify corrupted
parties and mix-servers, so during normal operation it is not used at all.

Limitations of Our Protocol. Our construction essentially uses privacy to ensure cor-
rectness (by hiding the “trip-wires” from malicious mix servers). Because a threshold
coalition of malicious servers can always violate privacy, our protocol loses correctness
as well in this case. This implies that our protocol cannot be “universally verifiable”
(i.e., verifiable by third parties who do not trust any of the mix servers). In compar-
ison, the state-of-the-art mix-nets based on homomorphic cryptosystems can provide
integrity (but not privacy) even if all mix-servers are corrupt.

We remark that RPC only allows a restricted form of universal verifiability, i.e.,
its relaxed correctness degrades further and allows an adversary that controls all mix-
servers to undetectably replace a notable number of ciphertexts.

1.2 Related Work

The literature on mix-nets and verifiable shuffling is extensive. Below, we mention a
small sample of particularly relevant works. Park, Itoh and Kurosawa [19] introduced
re-encryption mixes as a way to improve efficiency—the size of the ciphertexts and the
amount of work performed by senders does not depend on the number of mix-servers.
Sako and Kilian constructed the first universally-verifiable mix-net [22], where senders
can verify that the entire shuffle was performed correctly (and not just that their own
input was included in the output). Sako and Kilian’s construction was based on cut-and-
choose zero-knowledge proofs; Neff [16] and Furukawa and Sako [4] gave much more
efficient zero-knowledge proofs of shuffle for homomorphic cryptosystems. Many of
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the works in the field aim to improve the efficiency of the mix-net. Our construction in-
cludes ideas that appear in several previous papers: Jakobsson used the idea of “dummy
inputs” [9] and “repetition” [8] to increase correctness (although in a different way
than we do). Golle, Zong, Boneh, Jakobsson and Juels [7] considered mix-nets that are
“optimistic” (i.e., can be much more efficient in the case that no errors occur).

On the Importance of Formal Proofs. A recurring tale in the history of mix-net de-
sign is the proposal of a mix-net construction followed by discovery of security flaws.
Following Chaum’s seminal paper [2], Pfitzmann and Pfitzmann pointed out that Chau-
mian mixes are vulnerable to attack if the encryption scheme used is malleable [21].
The mix-net of Park et al. [19] was also shown to be vulnerable to similar attacks [20].
Jakobsson’s scheme of [8] was broken in [3]. His other scheme [9], was broken by
Mitomo and Kurosawa [15], who also suggested a fix; this in turn, in addition to the
schemes of Jakobsson and Juels [11], of Golle, Zong, Boneh, Jakobsson and Juels [7]
were all shown to be vulnerable (to various attacks) by Wikström [23].

While a formal proof of security is not an iron-clad guarantee that no vulnerabilities
will ever be found (proofs may have subtle errors, and assumptions may be shown to
be wrong), they do significantly improve the trust in the security of a cryptographic
scheme. In fact, the need for some of the components of our protocol only became
evident during the analysis of the protocol.

2 Informal Description of Our Protocol

We begin with an overview of our mix-net protocol and some intuition for why this
protocol is secure. The main component of our construction is a mix-net that outputs
the correct result if all mix-servers behave honestly, and aborts with overwhelming
probability otherwise—without disclosing anything about the inputs. At a high level,
our mix-net with abort protocol is a Chaumian mix-net with added verification. It is
parametrized with an auxiliary security parameter t and uses two Chaumian mix-nets
in sequence (one with “explicit verification” and one with “partial tracing”) and three
additional layers of encryption (labeled as “final”, “repetition” and “outer”). Figure 1
presents a schematic of our protocol.

Each sender encodes her message as a bundle of t ciphertexts: First, she encrypts
her plaintext message using the public key of the “final” layer of encryption and makes
t identical copies of it. Next, each copy is further encrypted using the public key of
the “repetition” encryption layer and then under the public keys of the mix-servers in
the two Chaumian mix-nets. Finally, the t encryptions are concatenated and encrypted
using the public key of the “outer” encryption layer. To generate the final list of inputs
to the mix-net, each mix-server adds a “dummy” encryption of zero to the list of inputs
submitted by the senders (the dummy input is constructed using the same operations as
the real inputs).

Once all parties have submitted their bundles, the decryptions proceed in the reverse
order. If all the parties are honest, there will be t identical copies of each innermost ci-
phertext before the final decryption takes place. In this case the dummies are traced and
removed, the duplicates are ignored, and only one instance of each sender’s innermost
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decrypt
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Chaum’s mix-net
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(repetition)
sort
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(final)

inputs
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Fig. 1. Execution of Protocol 4 with N = 3 senders, k = 3 mix-servers, and t = 2 repetitions,
where all parties are honest. Each party submits a bundle of two ciphertexts containing identical
innermost ciphertexts. The bundle is decrypted and split into two ciphertexts. All ciphertexts
are then individually shuffled in the two instances of Chaum’s mix-net. Then the first is verified
explicitly (revealing the permutation), the dummy ciphertexts are traced in the second (revealing
the paths of the dummies) and the output is decrypted and verified to contain t copies of each
ciphertext. If all tests passed, then a final round of decryption recovers the plaintexts.

ciphertext is decrypted. We stress that this is only an outline of the protocol. Additional
measures are taken for ensuring correctness and privacy.

To help give the intuition for our construction, we will describe a sequence of attacks
on the Chaumian mix-net and our corresponding modifications to the protocol that pre-
vent them. The final protocol is a composition of all these modifications. We start with
a “core” Chaumian mix, which ends up—after slight modifications—as the box labeled
“Chaum’s mix-net with partial tracing” in Figure 1. We call a set of ciphertexts contain-
ing identical innermost ciphertexts a copyset.

1. Elementary Error Handling. The first type of attack we consider is the introduc-
tion of “simple” errors that are publicly detectable. Invalid ciphertexts are simply
ignored. If there are duplicates of a ciphertext in the input to a mix-server, then
exactly one copy is considered part of the input and the rest is ignored.

2. Replication. In a Chaumian mix-net, any corrupt mix-server can change the output
undetectably by replacing an output ciphertext with a new one generated by the
malicious server (this new ciphertext can be completely valid, except for not being
a decryption of any input ciphertext). To prevent this attack, each sender submits t
independently formed ciphertexts of her message to the Chaumian mix-net.

To see why this replication technique helps prevent replacement attacks, con-
sider a corrupt mix-server that appears between two honest mix-servers in the mix-
net chain. In this case, the corrupt mix-server cannot identify which of the cipher-
texts encrypts the same messages due to the following two reasons.
(a) He does not know the secret key of the succeeding honest mix-sever, and hence

he can not fully decrypt the received ciphertexts and distinguish the copysets
based on the final decrypted values.

(b) The preceeding honest mix-server randomly permuted all of the ciphertexts
and hence he does not know which ciphertext originated from which sender.
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We prove that, if a CCA2 secure cryptosystem is used, t is sufficiently large, and
all messages are randomly chosen, then no efficient adversary between two honest
mix-servers can replace a proper subset of senders messages without detection.

3. Replication Cryptosystem. In a Chaumian mix-net, the last mix-server learns the
final output before anyone else. Thus, even with the replication trick, the final mix-
server can clearly cheat, since he can identify all copies of a plaintext. To prevent
this attack we modify the protocol by adding an additional “repetition” layer of
encryption, using a public key for which the secret key is shared between the mix-
servers.

Think of this as running the Chaumian mix-net on encrypted inputs rather than
plaintexts, i.e., each sender makes t encryptions of her input with the shared public
key of the “repetition” layer, and then uses the encrypted values as her “plaintexts”.
The output of the Chaumian mix-net is a list of ciphertexts encrypted with the
shared public key, which prevents the last mix-server from identifying identical
plaintexts and replacing all copies of a subset of the plaintexts. At the end of the
mixing, the shared secret key is recovered and decryption is performed publicly. In
Figure 1, this decryption step is the box labeled “decrypt (repetition)” right after
the Chaum’s mix-net with partial tracing.

4. Additional Mix-net with Explicit Verification. The first mix-server knows how to
partition the input messages into copysets (since he receives the messages directly
from the senders), hence he can replace all copies of a given plaintext undetectably.
To prevent this attack, we add a new, unmodified Chaumian mix-net (the box la-
beled “Chaum’s mix-net with explicit verification” in Figure 1) between the senders
and the first mix-server in the “main” mix-net. Recall that the Chaumian mix-net
does not give any correctness guarantees, but it does guarantee privacy if even a
single mix-server is honest. This is exactly what we need to put the first mix-server
in the Chaumian mix-net with partial tracing on an equal footing with the others in
the chain.

We rely on the privacy of the first Chaumian mix-net only to obtain correctness
via replication. Therefore, once the second Chaumian mix-net finishes his process
of mixing, the mix-servers can reveal the secret keys for the first Chaumian mix-
net and verify its correctness completely (hence the name “mix-net with explicit
verification”). If the verification fails, the guilty mix-server is publicly evident.

5. Dummy Values. If a corrupt mix-server in the second Chaumian mix-net wishes to
replace a proper subset of senders’ messages, he must guess the positions of the
copysets, but he can still undetectably replace all of the inputs with his own values.
To prevent this, we have every mix-server add a “dummy” value to the inputs of the
mix-net. These dummy values are treated identically to the senders’ inputs. Thus,
any mix-server attempting to replace the entire list of inputs would also be replac-
ing all dummy values. The mix-servers can “trace forward” the dummy values and
remove them from the final decrypted list if the trace completes successfully. There
is no privacy requirement for the dummy values; therefore, each mix-server can
simply reveal all the randomness used in the encryption of the initial dummy val-
ues. This reveals all the internal layers of encryption in a verifiable way, allowing
everyone to find the corresponding ciphertexts in each stage of the mix-net.
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6. Replication Verification and Error Tracing. We need to handle the case where some
of the final values, after recovering the shared secret key of the “repetition” encryp-
tion layer, do not have exactly t copies.

We now add another step to the protocol after decryption using the shared secret:
replication verification (this occurs in the part labeled “sort” in Figure 1) and error
tracing (this is not shown in Figure 1 since we assume all parties are honest). In the
replication verification step, the (honest) mix-servers verify that there are exactly t
duplicates of every output value. This clearly is the case if all servers and senders
are honest. If the verification fails, however, we need to figure out who is to blame
so that we can continue the protocol if it was just a corrupt sender. To do this, we
need to trace errors through the system in two ways:
(a) Backwards Tracing. After determining the messages with more or less than t

duplicates, we trace them backwards to identify their original senders. Since
each mix-server knows his own permutation, the backwards trace is easy to
do: each mix-server in turn (starting from the last one and going backwards)
publishes the “paths” taken by the traced messages along with a proof that the
decryption was performed correctly. If a broken copyset being traced contains
ciphertexts that were introduced by a cheating mix-server (i.e., ciphertexts that
are not valid decryptions of the mix-server’s inputs), the mix-server will not be
able to provide a valid trace and will be identified as a cheater at this point.

(b) Forward Tracing. If all the broken copysets were successfully traced back to
their sender, there are still two remaining possibilities for casting blame:

i. The mix-servers behaved honestly, and bad copysets were submitted by
corrupt senders.

ii. At least one ciphertext submitted by an honest party was replaced by a
corrupted mix-server. (This could be the case even if no cheating was dis-
covered during backwards tracing. To see this, consider the case that a
corrupt mix-server arbitrarily chooses t ciphertexts from honest senders
and replaces them with a valid copyset.)

To distinguish these two cases, we identify the senders from which the broken
copysets originated, and “trace forward” all the messages of these senders. This
is done similarly to the backwards tracing, but in reverse: starting from the first
mix-server and going forwards, each one in turn publishes the paths taken by
the traced messages along with a proof of correct decryption. If a mix-server
cheated, he will not be able to provide a valid trace—hence he will be fingered
as the culprit. On the other hand, if only the identified senders were cheating
(e.g., by not encrypting a valid copyset in the first place), we will be able to
trace the messages all the way to the output.

If the backwards and forward tracings complete successfully without identifying
a mix-server as culprit, the ciphertexts of the corrupt senders are removed from
the output (otherwise, the protocol outputs the identity of a guilty mix-server and
aborts).

7. Final Cryptosystem. As we have described in Step 6, to catch a misbehaving mix-
server we must sometimes trace messages of honest users through the system. Al-
though we abort the protocol in this case, we must still preserve the honest senders’
privacy. Therefore, we protect the senders’ messages with an additional layer of
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encryption (the last box labeled “decrypt (final)”). That is, a sender first encrypts
her message under the “final” public key and uses this encrypted message as an
input to the protocol as described so far. This innermost encryption layer is jointly
decrypted only if the protocol does not abort. If the protocol does abort, only the en-
crypted values are revealed and privacy is protected by the final layer of encryption.
The “final” layer of encryption also guarantees that the “plaintexts” of the protocol
we have sketched so far (without the “final” layer) are distinct for all honest senders
(and different from corrupt senders) with overwhelming probability.

8. Outer Cryptosystem. The protocol is still vulnerable to a subtle attack that uses the
error-tracing mechanism itself to violate sender privacy. The problem is that tracing
occurs in two additional indistinguishable cases:
(a) Corrupt senders collude to create “colliding” ciphertexts (i.e., after removing

some layers of encryption, the resulting ciphertexts are identical).
(b) Corrupt mix-server(s) collude with corrupt sender(s) to copy some of an honest

sender’s ciphertexts.
In both cases tracing will complete successfully (since no inputs were replaced in
the middle of the mix-net). Because in the first case the mix-servers are all honest,
we cannot simply abort if this situation occurs. On the other hand, in the second
case, we may be forced to trace an honest ciphertext from beginning to end (we
trace a broken ciphertext back to a corrupt sender, then trace forward all of that
sender’s inputs, which include a copy of an honest ciphertext). Since the corrupt
sender knows the identity of the sender from whom the ciphertext was copied, if
we decrypt that value the honest sender’s privacy is violated.

To prevent this, we add an “outer” layer of encryption (the box labeled “decrypt
(outer)”): under a public-key whose secret key is shared by all the mix-servers,
each sender formes a single “bundled” ciphertext. After all the ciphertext bundles
are received, the mix-servers recover the secret key of the outer cryptosystem and
the bundles are publicly decrypted and “split” into the separate copyset ciphertexts.
This countermeasure works due to the CCA2 security of the cryptosystem: CCA2
security ensures that no corrupt coalition of mix-servers and senders can make par-
tial copies of an honest sender’s copyset: either they copy a bundle in its entirety
(in which case they are removed due to being duplicates) or they create a bundle
that is completely independent of the honest senders’ bundles (in which case the
probability of a collision is negligible).

3 Notation

For an integer e, we denote the set {1, . . . , e} by [1, e]. The security parameter, n,
represented in unary, is an implicit input to all protocols and functionalities. Whenever
we say a quantity ε is negligible, we mean that it is negligible in the security parameter,
i.e., for every c > 0 we have ε(n) < n−c for all but finitely many n. We write x ∈ a
for a list a = (a1, . . . , ae) if and only if x ∈ {a1, . . . , ae}. The length of a is denoted
by |a|. For any index set I ⊂ [1, e] of size �, we write (ai)i∈I = (ai1 , . . . , ai�), where
I = {i1, . . . , i�} with i1 < i2 < · · · < i�. We say that a list b = (b1, . . . , b�) is a subset
of a and write b ⊂ a, if and only if {b1, . . . , b�} ⊂ {a1, . . . , ae} (with multiplicity).
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We use Sort(a) to denote the lexicographically sorted list of elements from a (with
multiplicity). We write a \ b for Sort({a1, . . . , ae} \ {b1, . . . , b�}) (with multiplicity in
the set difference). We also write a ◦ b for the concatenated list (a1, . . . , ae, b1, . . . , b�).
We denote by Unique(a) the sorted list where each element of a appears exactly once.

We denote a cryptosystem by CS = (Gen,Enc,Dec), where Gen, Enc, and Dec
denote the key generation algorithm, the encryption algorithm, and the decryption al-
gorithm respectively. To deal with nested encryption as needed in a Chaumian mix-net,
we simply assume that a plaintext of any length can be encrypted, but that indistin-
guishability only holds for plaintexts of the same length. We write c = Encpk (m, r) for
the encryption of a plaintextm using randomness r, and Decsk (c) = m for the decryp-
tion of a ciphertext c. We often view Enc as a probabilistic algorithm and drop r from
our notation. We assume that malformed ciphertexts are decrypted to a special symbol
different from all normal plaintexts.

We extend our notation to lists of plaintexts, ciphertexts and keys as follows. For
a plaintext m = (m1, . . . ,me) and a key pair (pk, sk) with pk = (pk1, . . . , pk �)
and sk = (sk1, . . . , sk �) we write c = Encpk (m), where c = (c1, . . . , ce) with
ci = Encpk1

(Encpk2
(· · ·Encpk�

(mi) · · · )). Similarly, m = Decsk (c) is defined by
mi = Decsk�

(Decsk�−1
(· · ·Decsk1

(ci) · · · )). We stress that when we use Enc as a
probabilistic algorithm with a list of messages or public keys, we assume that the ran-
dom values used in each encryption are chosen randomly and independently. We use the
notation a‖b for the concatenation of two bitstrings. We define the function Splitt(a) to
divide a bitstring a, whose length is a multiple of t, into t chunks of equals lengths and
turn it into a list, i.e., (a1, . . . , at) = Splitt(a1‖ . . . ‖at) when |ai|s are equal.

4 Definitions and Conventions

We consider a mix-net employing k mix-serversM1, . . . ,Mk that provide anonymity
for a group of N senders P1, . . . ,PN . Throughout, M and P denote the sets of all
mix-servers and senders respectively. We let JM ⊂ [1, k] and IP ⊂ [1, N ] denote the
index sets of corrupted mix-servers and senders respectively. We let J∗ ⊂ JM denote
the index set of mix-servers identified as corrupted so far. This set may grow throughout
an execution.

We present and analyze the main components of our mix-net in the universal com-
posability framework [1], with non-blocking adversaries, i.e., adversaries that do not
block the delivery of messages indefinitely. We use superscripts to distinguish different
functionalities and protocols, for example Fbb for a bulletin board and πc for Chaum’s
mix-net. The ideal adversary (simulator) of the ideal model is denoted by S. When there
is no ambiguity, we use the same notation for dummy parties and real parties.

We use a number of conventions to simplify the exposition. Whenever we say a party
“hands” a message to a functionality, we mean that the party sends the message to the
corresponding dummy party who will then forward it to the functionality. All our func-
tionalities capture distributed protocols where messages sent to more than one party
can be delayed arbitrarily by the adversary, and all such messages are also given to the
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adversary. Thus, when we say that a functionality hands a message to more than one
party, we mean that the message is passed to the adversary, who then schedules the de-
livery of the message to the parties. When a party “inputs” a message to a subprotocol,
we mean that he executes the algorithm of the corresponding party with the same mes-
sage. A party or protocol is said to “wait for” an input of a given form if any other input
is immediately returned to the sender. Similarly, a party can wait for a message to ap-
pear on the bulletin board. In practice this would be implemented using a time-out, after
which some default value is taken to be the message. Some of our functionalities give
an output before receiving any input, which makes no sense in an event-driven model
like the universal composability framework where execution starts by activating the en-
vironment. This is merely a useful convention, since we can easily fix this problem by
allowing parties to request the given data.

In all of our protocols, security holds only as long as the adversary corrupts less than
λ mix-servers, where 1 ≤ λ ≤ k is a parameter of the protocol. All our functionalities
and protocols may fail to give an output if more than min(λ− 1, k−λ) mix-servers are
corrupted. To capture the case λ ≥ k/2 with minimal notational overhead, we simply
assume that even a non-blocking simulator can block messages indefinitely in this case.

We use the subroutine Agree(Tag), parameterized by a label Tag, to simplify the
description of some of our ideal functionalities. The subroutine waits until each mix-
server Mj has submitted a pair (Tag,mj) for some message mj . If at least λ mix-
servers submitted identical mj , then the subroutine returns this value and otherwise it
halts the complete ideal functionality, e.g., the functionality could hand ⊥ to all parties
and ignore inputs from then on. The message mj can be an empty string in which case
the subroutine is only used to capture the robustness property of the functionality. In
Appendix A we give a formal definition of the subroutine Agree(Tag). We use the same
convention for protocols, i.e., if an ideal functionality used by the protocol aborts, then
the protocol aborts as well. These conventions allow us to capture the robustness of a
protocol by requiring a non-blocking simulator for a non-blocking adversary.

4.1 Useful Functionalities

Our results are given in a hybrid model with distributed key generation functionalities of
two types, a bulletin board functionality, and a proof of correct decryption functionality.
In Appendix B, formal descriptions of these functionalities are presented. The first key
generation functionality, Fkg

j , generates a public key pk j such that only the jth mix-
server knows the corresponding secret key sk j . The second functionality,Fdkg, differs
only in that no mix-server learns the secret key sk corresponding to the generated public
key pk . In both functionalities, any subset of λ mix-servers can recover the secret key.
The bulletin board functionality, denoted by Fbb, is used by parties to announce their
messages. That is, a message can be posted by any party and read by any other one. To
simplify the exposition, we simply say that a message is “published” when it appears on
the public bulletin board. The published message can not be deleted or modified once
posted. The proof of correct decryption functionality,Fpd

j , is used to prove that the jth
mix-server has correctly decrypted a known ciphertext into a known plaintext. A subset
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of λ mix-servers must agree on the pair of plaintext and ciphertext. Assuming that
the underlying cryptosystem allows the jth mix-server to recover the randomness used
during encryption from the ciphertext itself, the realization of the functionality becomes
trivial. In other words, the proof of correct decryption simply consists of revealing the
randomness used for encryption. Our main result, Theorem 1, holds if this solution is
employed, but only in a standalone model (see the full version of this paper for details).
In any case, proofs of correct decryption are only used to trace ciphertexts to identify
corrupted senders or mix-servers.

4.2 Mix-Nets

We use ideal mix-net functionalities similar to that in [24], but in a slightly simplified
form in that we assume that each sender submits exactly one input. Functionality 1
presents a natural mix-net. Our results are easy to generalize to the case where senders
can submit more than one input (this holds also for Functionality 2 and Functionality 3).

The protocol we construct does not quite implement the natural mix-net. Thus, we
present a relaxed mix-net (Functionality 2) which we are able to securely realize and
then argue that it still provides sufficient guarantees. The relaxed functionality first
hands the adversary (simulator) a public key. Then it waits for inputs from all the
senders, encrypts the messages of the honest senders, and then hands the resulting ci-
phertexts in sorted order to the adversary. The adversary is then asked to provide his
own inputs in encrypted form on behalf of corrupted senders. The final output is the
sorted decryption of the union of the ciphertexts computed by the functionality and
those provided by the adversary (after duplicates are removed). For technical reasons
the functionality uses several public keys and encrypts the messages under all keys.

This functionality provides unconditional privacy for honest senders. The relaxation
lies in the ability of an unbounded adversary to adaptively choose the messages of the
corrupted senders based on the set of inputs of the honest senders, but a CCA2-secure
cryptosystem prevents this for efficient adversaries.

We define a mix-net with abort (Functionality 3) that either gives a proper output or
aborts after identifying a mix-server as culprit (with no information about the submitted
messages at all). A relaxed mix-net can be constructed using such a mix-net with abort.
The mix-net with abort waits for inputs from all the senders and then outputs these
messages in encrypted form (as in the relaxed mix-net). Then it allows the mix-servers
to agree on a list of known corrupted mix-servers. Finally, the adversary decides if the
mix-net should abort or not. In the former case, the adversary must provide the index of
a previously unknown corrupted mix-server, and this is forwarded to all mix-servers. In
the latter case, the mix-net outputs the result like in the relaxed mix-net.

In the full version of this paper we describe a protocol using Functionality 3 that
securely realizes Functionality 2. The idea is to use λ instances of Functionality 3.
Each sender submits a copy of his input to all functionalities. The mix-servers then run
them sequentially until one produces an output without aborting. To ensure that this
scheme eventually gives an output, the mix-servers jointly keep track of the identified
corrupted mix-servers.
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Functionality 1 (Natural Mix-Net). The natural mix-net functionality Fmn exe-
cuting with dummy senders P , dummy mix-servers M and ideal adversary S pro-
ceeds as follows.

1. Let I = [1, N ]. While I �= ∅:
a) Wait for a message (Message,mi) with mi ∈ {0, 1}n from some dummy

sender Pi with i ∈ I .
b) Set I ← I \ {i} and hand (MessageReceived, i) to S.

2. Hand
(
Mixed, Sort(m1, . . . ,mN )

)
to S and M.

Functionality 2 (Relaxed Mix-Net). The relaxed mix-net functionality Fmn exe-
cuting with dummy senders P , dummy mix-servers M and ideal adversary S pro-
ceeds as follows.

1. Hand
(
PublicKeys, (pk �)

λ
�=1

)
to S, where (pk �, sk�) = Gen(1n).

2. Let I = [1, N ]. While I �= ∅:
a) Wait for a message (Message,mi) with mi ∈ {0, 1}n from some dummy

sender Pi with i ∈ I .
b) Set I ← I \ {i} and hand (MessageReceived, i) to S.

3. Let L� = Sort
((
Encpk�

(mi)
)
i∈[1,N ]\IP

)
. Hand

(
HonestCiphertexts, (L�)

λ
�=1

)
to S and wait to get back (CorruptCiphertexts, L′, �∗), where |L′| ≤ |IP | and
1 ≤ �∗ ≤ λ.

4. Hand (SecretKey, sk �∗) to S and
(
Mixed, Sort

(
Decsk�∗ (Unique(L�∗ ◦ L′))

))
to

M.

Functionality 3 (Mix-Net With Abort). The mix-net with abort functionality
Fmna executing with dummy senders P , dummy mix-servers M, and ideal adver-
sary S proceeds as follows.

1. Generate (pk , sk) = Gen(1n) and hand (PublicKey, pk ) to S.
2. Let I = [1, N ]. Then while I �= ∅:

a) Wait for a message (Message,mi) with mi ∈ {0, 1}n from some dummy
sender Pi with i ∈ I .

b) Set I ← I \ {i}, let vi = Encpk (mi), and hand (MessageReceived, i) to S.
3. Wait for a common input J∗ ⊂ JM from dummy mix-servers, i.e., J∗ ←

Agree(Culprits).
4. Let L = Sort

(
(vi)i∈[1,N ]\IP

)
and wait for a message EncryptPlaintexts

from S. Then hand (HonestCiphertexts, L) to S and wait to receive
(CorruptCiphertexts, L′) where |L′| ≤ |IP |, or (Culprit, d) where d ∈ JM \J∗.
In the latter case, hand (Culprit, d) to M and halt.

5. Hand (SecretKey, sk) to S and
(
Mixed, Sort

(
Decsk (Unique(L ◦ L′))

))
to M.

5 Chaum’s Mix-Net

Consider Chaum’s original mix-net [2] with λmix-servers in the chain. Each mix-server
Mj generates a key pair (pk j , sk j) and a sender wraps her message mi in λ layers
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of encryptions and submits a ciphertext ci = Encpk1

(
Encpk2

(
· · ·Encpkλ

(mi) · · ·
))

.
Then the mix-servers form an initial list L0 = (ci)i∈[1,N ], and sequentially peel off
layers of encryptions after removing the duplicates. That is, for j = 1, . . . , λ, the jth
mix-server computes Lj = Sort

(
Decskj

(Unique(Lj−1))
)
. Thus, Unique(Lλ) is the

sorted list of plaintexts without duplicates. This mix-net is neither secure against active
adversaries nor robust, but it nevertheless forms the basis of our constructions. We for-
malize this in Protocol 1 below and later extend it in two different ways in Protocol 2
and Protocol 3. We assume that the main protocol (Protocol 4) keeps track of the set J∗

of indices of identified corrupted mix-server so far, see Step 3 of Protocol 1 below.

Protocol 1 (Chaum’s Mix-Net, πc).
Mix-servers. The jth mix-server Mj proceeds as follows when executing with
functionalities Fbb, and Fkg

1 , . . . ,Fkg
λ .

1. Wait for (PublicKey, pk �) from Fkg
� for � = 1, . . . , λ. Let pk = (pk1, . . . , pkλ)

and output (PublicKey, pk). Wait for (SecretKey, sk j) from Fkg
j if j ∈ [1, λ].

2. Wait for an input (Culprits, J∗). For � = 1, . . . , λ: if � ∈ J∗, then hand Recover
to Fkg

� and wait for a response (SecretKey, sk �).
3. Wait for an input (Ciphertexts, L0). For � = 1, . . . , λ do the following and

output
(
Mixed,Unique(Lλ)

)
:

(a) If � ∈ J∗ or � = j, then set L� = Sort
(
Decsk�

(Unique(L�−1))
)
, and

publish (Decryption, L�).
(b) Otherwise, wait until M� publishes (Decryption, L�) (or we published L�,

since sk � was recovered), where |L�| = |Unique(L�−1)|.

Protocol 2 and Protocol 3 formalize the two nested mix-nets used in our main proto-
col. Recall from Section 2 that the first protocol is an optimistic execution of Chaum’s
mix-net. The privacy of this mix-net is only required to temporarily randomize the input
to the second mix-net. This is needed to argue that it is hard to replace all ciphertexts
submitted by a non-empty proper subset of the honest senders without being identi-
fied as a cheater. When Protocol 3 has completed, the optimistic execution is verified
explicitly by simply recovering the secret keys of all mix-servers.

Protocol 2 (Chaum’s Mix-Net with Explicit Verification, πcev).
Mix-servers. The jth mix-serverMj when executing with functionalitiesFbb, and
Fkg

1 , . . . ,Fkg
λ , first runs Chaum’s mix-net (Protocol 1) and then proceeds as follows.

4. Wait for an input Verify. Then for � = 1, . . . , λ, where � �∈ J∗:
(a) If � = j, then publish (SecretKey, sk j).
(b) If � �= j and � �∈ J∗, then wait until M� publishes (SecretKey, sk �), and

halt with output (Culprit, �) if sk � does not correspond to pk � or if L� �=
Sort

(
Decsk�

(Unique(L�−1))
)
.

5. Halt with output (SecretKey, sk), where sk = (sk1, . . . , skλ).

In our second variant of Chaum’s mix-net (Protocol 3), the mix-servers proceed op-
timistically, but in contrast to Protocol 2 they do not later verify the complete execution
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explicitly. Instead, they trace a subset of ciphertexts backwards and forwards through
the mix-net and reveal how they are decrypted in the process. In the main protocol a
small subset of dummy ciphertexts (submitted by the mix-servers) are always traced
forward to show that these were processed correctly. As explained in Section 2, the idea
is that starting from the randomly permuted output of Protocol 2, the adversary must
avoid modifying the traced ciphertexts to avoid detection. In other words, to cheat with-
out detection, a corrupted mix-server can not simply replace all ciphertexts. However,
tracing starts by tracing any ciphertexts that do not have exactly t copies backwards
to distinguish the case where a corrupted sender submits a malformed set of cipher-
texts from the case where a corrupted mix-server processes his input incorrectly. Only
then are the dummies, and possibly additional ciphertexts, traced forwards through the
mix-net.

Protocol 3 (Chaum’s Mix-Net with Partial Tracing, πcpt).
Mix-servers. The jth mix-server Mj , when executing with functionalities Fbb,
Fkg

1 , . . . ,Fkg
λ , and Fpd

1 , . . . ,Fpd
λ , runs Chaum’s mix-net (Protocol 1), hands

(SecretKey, sk j) to Fpd
j if j ∈ [1, λ], and then proceeds as follows.

4. Backward Tracing. Wait for an input (TraceB, Bλ), where Bλ is the list of ci-
phertexts to be traced backwards. For � = λ, . . . , 1 do the following and then
output (Traced, B0):
(a) ExpandB� to a list B′

� by adding the removed duplicates, i.e., the expanded
list B′

� includes all copies in L� of every ciphertext occurring in B�.
(b) If � ∈ J∗ or � = j, then identify B�−1 ⊂ L�−1 such that B′

� =
Decsk�

(
B�−1) and publish (TracedB, B�−1). Otherwise, wait until M�

publishes (TracedB, B�−1) with B�−1 ⊂ L�−1.
(c) If � /∈ J∗, then hand (Verify, B′

�, B�−1) to Fpd
� and halt with (Culprit, �) if

it returns False.
5. Forward Tracing. Wait for an input (TraceF, F0), where F0 is the ciphertexts to

be traced forward. For � = 1, . . . , λ do the following and then halt with output
(Traced, Fλ):

(a) Let F ′
�−1 = Unique(F�−1).

(b) If � ∈ J∗ or � = j, then let F� = Decsk�
(F ′

�−1) and publish (TracedF, F�).
Otherwise, wait until M� publishes (TracedF, F�) with F� ⊂ L�.

(c) If � /∈ J∗, then hand (Verify, F�, F
′
�−1) to Fpd

� and halt with (Culprit, �) if
it returns False.

Forward tracing of the dummy ciphertext list F0, a subset of the input list L0 submit-
ted by the mix-servers, is done in the natural way. For � = 1, . . . , λ, the �th mix-server
computes F� = Decsk�

(
Unique(F�−1)

)
and proves that he did so correctly. The other

mix-servers verify the proof and that F� ⊂ L�.
Backward tracing of a listBλ, a subset of the output list Unique(Lλ), is more compli-

cated in that we must invert the process of duplicate removal. For � = λ, . . . , 1, all mix-
servers first expand B� into a list B′

� by including all copies in L� of each ciphertext in
B�, and then the �th mix-server computesB�−1 ⊂ L�−1 such that B′

� = Decsk�

(
B�−1)
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and proves that this relation holds. Thus, the expansion is the inversion of how Unique
removed duplicates of traced ciphertexts during processing.

The correctness of the decryption for the jth mix-server is verified using the proof
of correct decryption functionality Fpd

j . Notice that for the dummies, it suffices that
each mix-server simply reveals the randomness used to encrypt his own dummy inputs.
However, for senders’ inputs this may not be possible for a general cryptosystem since
the randomness is chosen by the corresponding sender and may not be known to the
decrypting mix-server. Nevertheless, one possible incarnation of our protocol uses a
cryptosystem that allows recovering the randomness used during encryption from the
ciphertext itself during decryption. In this case, the proof of correct decryption used
during tracing simply consists of revealing the randomness.

6 Constructing a Mix-Net with Abort

We are now ready to present the details of our mix-net with abort in Protocol 4. We use
two nested instances of Chaum’s mix-net: one with explicit verification (Protocol 2), and
one with partial tracing (Protocol 3). The lists of public keys of these mix-nets are denoted
by pk cev and pkcpt, each of which containsλ keys. Each sender encrypts her messagemi

once using the additional joint “final” public key pk f to form a ciphertextvi. This layer of
encryption hides the inputs of the honest senders if the execution aborts. The ciphertext
vi is then encrypted independently t times with the additional joint “replication” public
key pk r. Recall that this prevents the last mix-server in Chaum’s mix-net with partial
tracing (Protocol 3) from identifying all ciphertexts submitted by the same sender. The
resulting ciphertexts are then encrypted using the lists pk cpt and pk cev of public keys
of the two instances of Chaum’s mix-net. Finally, the t encryptions are concatenated to
form one plaintext chunk and then encrypted using the “outer” public keypko, which pre-
vents a dishonest sender (with the collusion of some dishonest mix-servers) from partially
copying an honest sender’s submission to break his privacy. In addition to the ciphertexts
submitted by senders, each mix-server submits a dummy encryption of the zero message
computed like a sender’s ciphertext. These ciphertexts prevent a corrupt mix-server from
replacing all ciphertexts instead of guessing the positions of all ciphertexts submitted by
a subset of the senders.

To process the ciphertexts, the mix-servers first remove the “outer” layer of encryp-
tion by jointly recovering the corresponding secret key sko. Then they execute the two
instances of Chaum’s mix-net in sequence. We stress that the t ciphertexts of each
sender are processed independently at this stage. Then the secret keys in skcev (cor-
responding to pkcev) are recovered and the mix-servers verify the execution of the first
mix-net explicitly. The “replication” secret key sk r corresponding to pk r is then recov-
ered and all ciphertexts are decrypted. Finally, the processing in the second mix-net
is verified for: (1) all ciphertexts of which there are not exactly t copies (backward
tracing), and (2) all dummy ciphertexts submitted by mix-servers and all ciphertexts
intersecting with the ciphertexts traced backwards (forward tracing). If there is any in-
consistency, the corrupted mix-server is identified and the execution aborts. If there is
no inconsistency, then the “final” secret key sk f corresponding to pk f is recovered and
the innermost layer of encryption is removed to reveal the plaintexts.
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Theorem 1 captures security of Protocol 4. If we use a cryptosystem that allows
recovering the randomness used for encryption, then our result still holds, but only in
the standalone model where the simulator is allowed to rewind. The full version details
this variation of the scheme.

Protocol 4 (Mix-Net with Abort πmna). This protocol is executed with a bulletin
board Fbb, a mix-net with explicit verification πcev, a mix-net with partial tracing
πcpt, and distributed key generation functionalities Fdkg

o , Fdkg
r and Fdkg

f .

Senders. The ith sender Pi proceeds as follows on input mi ∈ {0, 1}n.

1. Wait until λ of the mix-servers have published identical list
(PublicKeys, pko, pk cev, pkcpt, pk r, pk f). If no such list exists, then abort.

2. Let vi = Encpk f (mi).
3. Let ui,s = Encpkcev (Encpkcpt(Encpkr(vi))), for s = 1, . . . , t.
4. Let ui = Encpko(ui,1‖ · · · ‖ui,t) and publish (Ciphertext, ui).

Mix-servers. The jth mix-serverMj proceeds as follows on input J∗
j .

1. Public Keys. Wait for public keys: (PublicKey, pko) from Fdkg
o ,

(PublicKey, pk cev) from πcev, (PublicKey, pkcpt) from πcpt,
(PublicKey, pk r) from Fdkg

r , and (PublicKey, pk f) from Fdkg
f . Then publish

(PublicKeys, pko, pk cev, pkcpt, pk r, pk f). Wait until λ of the mix-servers have
published the same list, or abort if no such list can be found.

2. Input Ciphertexts. Wait until every Pi has published her encrypted mes-
sage (Ciphertext, ui). Let uN+j be an encryption of zero as computed by a
sender and publish (Ciphertext, uN+j). Wait until every M� has published
(Ciphertext, uN+�) and let Lin = Unique(u1, . . . , uN+k).

3. Culprits Agreement. Publish (Culprits, J∗
j ) and wait until λ of the mix-servers

have published identical (Culprits, J∗), or abort if no such set J∗ can be found.
Input (Culprits, J∗) to πcev and πcpt.

4. Decrypt and Split. Hand Recover to Fdkg
o and wait for a response

(SecretKey, sko). Let Lo =©u∈LinSplitt
(
Decsko(u)

)
.

5. Chaum’s Mix-Net. Input (Ciphertexts, Lo) to πcev and wait for an output
(Mixed, Lcev).

6. Chaum’s Mix-Net. Input (Ciphertexts, Lcev) to πcpt, and wait for an output
(Mixed, Lcpt).

This protocol is completed on the next page.

Theorem 1. Let CS be a CCA2 secure cryptosystem. Then Protocol 4 securely realizes
Functionality 3 with respect to static active adversaries that corrupt less than λ of the
mix-servers and any number of senders, provided that t is chosen such that H−(t−1) is
negligible, where H > 1 is the number of honest parties.

Due to our conventions in Section 4 and the definition of Functionality 3, the theorem
also captures the robustness of the protocol, i.e., it gives an output provided that at most
min(λ− 1, k − λ) parties are corrupted.
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Protocol 4 (Continued, including verifications.).
7. Verifications.

(a) Explicit Verification. Input Verify to πcev. If it outputs (Culprit, d), then halt
with this output, and otherwise let (SecretKey, skcev) be the output.

(b) Replication Check. Hand Recover to Fdkg
r and wait for a response

(SecretKey, sk r). Compute Lr = Decskr(Lcpt) and let B be the ciphertexts
in Lcpt that do not have exactly t copies after decryption with sk r.

(c) Backwards Tracing. Input (TraceB, B) to πcpt. If it outputs (Culprit, d),
then halt with this output, and otherwise let (TracedB, B′) be the out-
put. Let L′ be the list of all u ∈ Lin such that πcev on input(
Ciphertexts, Splitt(Decsko(u))

)
would output (Mixed, B′′) with B′ ∩

B′′ �= ∅.
(d) Forward Tracing. Let F be the list such that πcev on input (Ciphertexts, L′◦

L′′), where L′′ = ©�∈[1,k]Splitt
(
Decsko(uN+�)

)
, would give an output

(Mixed, F ). Input (TraceF, F ) to πcpt. If it outputs (Culprit, d), then halt
with this output. Otherwise, let (TracedF, F ′) be the output.

8. Final Decryption. Hand Recover to Fdkg
f and wait for a response

(SecretKey, sk f). Let Lr′ = Unique
(
Decskr(Lcpt \ F ′)

)
and halt with output(

Mixed, Sort(Decsk f (Lr′))
)
.

7 Conclusion

We construct a provably secure mix-net that unlike many other mix-nets in the litera-
ture do not require any homomorphic properties from the cryptosystem. This is a clear
advantage for those concerned that quantum computers can be constructed in the future.
In contrast to the only previous proposed mix-net based on any cryptosystem [12], our
construction enjoys not only provable security but also full privacy and correctness. Our
mix-net is fast there are many senders and plaintexts are large.
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A Agreement Subroutine

Subroutine 1 (Agree(Tag)).

1. Set J ← {1, . . . , k}.
2. While J �= ∅:

a) Wait for a message (Tag,mj) from the dummy mix-serverMj with j ∈ J .
b) Set J ← J \ {j} and hand (TagReceived, j,mj) to S.

3. Return the value in (mj)j∈[1,k] that has been submitted by λ of the mix-servers.
If no such value exists, hand ⊥ to M and halt the main functionality.

http://eprint.iacr.org/2012/063
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B Functionalities Implemented by General MPC

Functionality 4 (Key Generation with VSS). The key generation with VSS func-
tionalityFkg

j executing with dummy mix-serversM and ideal adversaryS proceeds
as follows.

1. Generate (pk , sk) = Gen(1n), hand (PublicKey, pk ) to S and M, and
(SecretKey, sk) to Mj , and wait until dummy mix-servers agree to recover, i.e.,
run Agree(Recover).

2. Hand (SecretKey, sk) to S and M.

Functionality 5 (Distributed Key Generation with VSS). The distributed key
generation with VSS functionalityFdkg executing with dummy mix-serversM and
ideal adversary S proceeds as follows.

1. Generate (pk , sk) = Gen(1n).
2. Hand (PublicKey, pk) to S and M, and wait until dummy mix-servers agree to

recover, i.e., run Agree(Recover).
3. Hand (SecretKey, sk) to S and M.

Functionality 6 (Bulletin board). Executing with dummy sendersP , dummy mix-
servers M and ideal adversary S, the bulletin board functionality Fbb keeps a pri-
vate and a publica database and proceeds as follows.

1. Upon receiving a message (Tag,m) from a party P ∈ P ∪M, hand (P, Tag,m)
to S and write (P, Tag,m) on the private database. Ignore any further message
(Tag,m′) from the party P .

2. Upon receiving a message (P, Tag,m) from S, see if (P, Tag,m) already ex-
ists in the private database. If so, then write (P, Tag,m) on the public database.
Ignore any further message (P, Tag,m) from S.

a The contents of the public database is known to all parites. In our protocols, parties need
to wait until a specific party P publishes (Tag,m) on the bulletin board. This means that,
they wait until (P, Tag,m) appears on the public database.

Functionality 7 (Proof of Correct Decryption). The proof of correct decryption
functionality Fpd

j executing with dummy mix-servers M and ideal adversary S
proceeds as follows.

1. Wait for an input (SecretKey, sk) from dummy mix-server Mj and then hand
(SecretKey, j) to S.

2. Wait for a common input (m, c) from dummy mix-servers, i.e., (m, c) =
Agree(Verify), and send True or False to S and M depending on if m =
Decsk (c) or not.
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Abstract. The Fiat-Shamir transformation is the most efficient con-
struction of non-interactive zero-knowledge proofs.

This paper is concerned with two variants of the transformation that
appear but have not been clearly delineated in existing literature. Both
variants start with the prover making a commitment. The strong vari-
ant then hashes both the commitment and the statement to be proved,
whereas the weak variant hashes only the commitment. This minor
change yields dramatically different security guarantees: in situations
where malicious provers can select their statements adaptively, the weak
Fiat-Shamir transformation yields unsound/unextractable proofs. Yet
such settings naturally occur in systems when zero-knowledge proofs
are used to enforce honest behavior. We illustrate this point by show-
ing that the use of the weak Fiat-Shamir transformation in the Helios
cryptographic voting system leads to several possible security breaches:
for some standard types of elections, under plausible circumstances, ma-
licious parties can cause the tallying procedure to run indefinitely and
even tamper with the result of the election.

On the positive side, we define a form of adaptive security for
zero-knowledge proofs in the random oracle model (essentially
simulation-sound extractability), and show that a variant which we call
strong Fiat-Shamir yields secure non-interactive proofs.

This level of security was assumed in previous works on Helios and our
results are then necessary for these analyses to be valid. Additionally, we
show that strong proofs in Helios achieve non-malleable encryption and
satisfy ballot privacy, improving on previous results that required CCA
security.

1 Introduction

Zero-knowledge proofs of knowledge allow a prover to convince a verifier that
she holds information satisfying some desirable properties without revealing any-
thing else. To be useful, such proof systems should satisfy completeness (the
prover can convince the verifier that a true statement is indeed true) and sound-
ness (the prover cannot convince the verifier that a false statement is true).
Zero-knowledge proofs can either be interactive or non-interactive; for the latter
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the prover only sends his proof and the verifier decides to accept or reject the
statement without any further interaction.

The focus of this paper is on the most common and efficient construction
of non-interactive proofs, namely the Fiat-Shamir heuristic [1]. Here, one begins
with an interactive sigma protocol, a special type of three-move protocol in which
the prover sends a commitment, the verifier answers with a random challenge
and the prover completes the protocol with a response. The idea behind the
transformation is simple and appealing: have the prover compute the message
of the verifier as the hash of the message sent by the prover — if the hash is
modelled as a random oracle the message computed this way should look random
as in an interactive execution, hence the properties of the original proof system
should somehow be preserved.

The transformation appears in the literature in two different forms, depending
on what is hashed. In the formalization of Bellare and Rogaway [2], which we
refer to as the weak Fiat-Shamir transformation (wFS), the hash takes only the
prover’s first message as input. Other papers e.g. [3,4] suggest including the
statement to be proved in the hash input. In the remainder of the paper we call
this the strong Fiat-Shamir transformation (sFS).

Contributions. The contributions of this paper fall into two main categories.
First we identify weaknesses of the weak (sic!) Fiat-Shamir transformation and
show that in applications it can be a serious source of insecurity. Secondly, we
provide several positive results regarding the strong Fiat-Shamir transformation
and its uses in applications.

Insecurity of wFS and Attacks on Helios. Our first results show that the security
proofs commonly given for Fiat-Shamir proofs do not hold when applied to weak
proofs and when the prover can chose his statement(s) to prove adaptively. This
may or may not render a protocol using them insecure, as a protocol may have
other means of dealing with adaptivity. For example, in the original application
to identification protocols, weak proofs are sufficient.

As an example where weak proofs do not yield security, we consider Helios
[5,6], a cryptographic voting protocol that has been used in practice. Versions
of Helios have been employed, for example, for the election of the president of
the Université catholique de Louvain [6], the Princeton University Undergrad-
uate Student Government [7] and the board of the IACR [8]. We focus on the
zero-knowledge protocols implemented since Helios 2.0 [6] for elections based on
homomorphic tallying, which are still used in the latest version of Helios as doc-
umented on [9] at the time of writing. In brief, those elections work as follows.
Trustees first jointly generate an election public key, using NIZK proofs to make
sure that this key actually includes contributions from all trustees. Then, to cast
a ballot, a voter encrypts a vote and attaches NIZK proofs that the vote is le-
gal. All ballots are placed on a publicly readable bulletin board. Eventually, the
election administrators homomorphically add all ballots, decrypt the result and
use NIZK to prove the correctness of their actions. The encryption scheme is ex-
ponential ElGamal and the particular NIZKs involved are obtained by applying
the weak Fiat-Shamir transformation to the Schnorr [10], Chaum-Pedersen [11]
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and disjunctive Chaum-Pedersen protocols (and variants thereof). These proofs
are used to guarantee that the privacy of the votes rests on all trustees, to en-
force that voters create ballots containing valid votes and to prevent dishonest
administrators from claiming a wrong result. We show that the use of the wFS
transformation is the source of three types of insecurity:

a) breaking verifiability by allowing colluding administrators to cast a single
ballot that is not well-formed and contains any chosen number of votes for a
specific candidate,

b) breaking liveness of the system by allowing colluding administrators to fail
providing the election outcome while proving that they behave honestly, or
by allowing voters to cast a random vote which leads to tallying taking su-
perpolynomial time, and

c) breaking privacy by allowing the casting of related ballots that do not contain
mere copies of previously submitted ciphertexts.

The first two of these attacks are undetectable under normal circumstances.
While our focus is on Helios which is our motivating application, in the full ver-

sion of our paper we also show attacks against schemes constructed via the Naor-
Yung paradigm and via the encrypt-then-prove construction: when using proofs
derived throughwFS these constructionsmay yieldmalleable encryption schemes.

Security of Strong Fiat-Shamir and Applications. The problems that we have
identified in the use of the wFS do not apply to proofs obtained through the
strong version of the transformation. It is then natural to ask what level of
security does one get from these proofs. We provide several results. First, we
formulate a security notion for non-interactive zero-knowledge proofs of knowl-
edge which captures adversaries that can choose their statements adaptively. In
essence, this notion is the analogue of simulation-sound extractability defined by
Groth in the common reference string model [12]. Informally, a malicious prover
is allowed to see simulated proofs (of potentially fake statements) and aims to
provide valid looking proofs for adaptively chosen statements in such a way that
an extractor cannot obtain witnesses. Interestingly, our definition is not simply a
rehashing of the notion in [12]. In the random-oracle model, extraction requires
the rewinding of the prover (as opposed to merely using a trapdoor) and in turn,
this implies complex interaction between the adversary, the simulator and the
extractor. We then show that applying sFS to Σ-protocols results in protocols
that are simulation-sound extractable. Our result seems to be the first thorough
investigation on the precise security guarantees offered by such proofs.

As a first application of this result, we investigate the security of non-malleable
encryption schemes that are built by combining an IND-CPA encryption scheme
with a proof of knowledge of the randomness used in the encryption process.
We refer to this construction as the Enc+PoK approach. A well-known instanti-
ation is the TDH0 scheme introduced and studied by Shoup and Gennaro [13].
Intuitively the construction should achieve IND-CCA security but so far, all at-
tempts have failed to confirm or disprove this under natural assumptions (e.g.,
DDH in the random oracle model) [14,15]. As a consequence, the form of non-
malleability ensured by Enc+PoK schemes is, surprisingly, still unknown. We
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provide a lower-bound on the answer to this question: if the proof of knowledge
used in the encryption process is simulation-sound extractable, then the result-
ing scheme is NM-CPA secure. An immediate corollary is that the TDH0 scheme
is NM-CPA secure in the random oracle model under the DDH assumption.

We then turn to the analysis of ballot privacy in Helios. Prior work shows that
ballot privacy is guaranteed if the encryption scheme used in the construction is
IND-CCA [16,17]. Since ballots in Helios use the Enc+PoK paradigm (which, as
discussed above, is not known to be IND-CCA) a natural suggestion is then to
replace it with something stronger. For example, Bernhard et al. suggested ap-
plying the Naor-Yung transformation to the underlying ElGamal encryption [17],
while Bulens et al. used a variant of the TDH2 scheme [18]. These modifications
both substantially increase the computational costs of the system and require
major changes in the implementation.

Our final result is to show that although the NM-CPA notion is strictly weaker
than IND-CCA [19], it is sufficient to ensure ballot privacy. In particular a minor
tweak of the Enc+PoK construction currently used in Helios where we replace
wFS with its strong counterpart and check for repeated ciphertexts is sufficient.
The change that we require is easily accomplished by including additional el-
ements in the inputs of the hash function and preserves the current level of
efficiency.

2 The Fiat-Shamir/Blum Transformation

In this section we introduce the two variants of the Fiat-Shamir heuristic that we
analyze. We start by fixing notation and recalling some standard notions. In the
following we let R ⊆ P({0, 1}∗×{0, 1}∗) be an efficiently computable relation. R
defines a language LR = {Y ∈ {0, 1}∗|∃w : R(w, Y )} in NP. We further assume
that there is a well-defined set Λ ⊇ L decidable in polynomial time.1

A non-interactive proof system for language LR is a pair algorithms (Prove,
Verify). Such a proof system is complete for LR if for every (w, Y ) ∈ R, with
overwhelming probability if π ← Prove(w, Y ) then Verify(Y, π) = 1. We define
soundness of such proof systems (the property that a cheating prover cannot
make the verifier accept a false statement) later in the paper. Here we recall the
notion of zero-knowledge in the random oracle model [20].

In this setting, a simulator S for a proof system is an algorithm in charge of
answering random oracle queries and producing valid proofs for any statement
Y ∈ Λ with respect to this oracle. In particular, it can “patch” the oracle to
create its simulated proofs. Such a simulator responds to the following queries:

1 Suppose that L is the set of DDH triples (Ga, Gb, Gab) over some group G. Then
Λ could be G3. The reason for defining this formally is that we will later expect
our zero-knowledge simulator to produce valid “proofs” for some “false statements”,
but which ones? Can it produce a proof for the statement consisting of the empty
string, for example? We use Λ as the class of statements on which the simulator can
produce proofs.
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H(s) S maintains a list of oracle query/response pairs. For repeated queries, S
answers consistently; for fresh queries, S draws a random value r, adds (s, r)
to its list and returns r.

Simulate(Y ) For Y ∈ Λ, the simulator returns a proof π such that Verify(Y, π) =
1 if the verifier uses the simulator for its oracle queries. S can add
query/response pairs to its oracle list to process a simulation query.

Definition 1 (Zero-Knowledge). A proof system is zero-knowledge if there
is a simulator S such that no adversary who can make queries to the random
oracle and queries of the form create-proof(w, Y ) can distinguish the following
two settings with non-negligibly better than 1/2 probability.

1. Random oracle queries are answered by a random oracle. In response to
create-proof(w, Y ), the challenger checks that R(w, Y ). If not, he returns ⊥.
Otherwise, he returns Prove(w, Y ).

2. The challenger runs a copy of the simulator S. It forwards random ora-
cle queries to S directly. For create-proof(w, Y ), the challenger checks if
R(w, Y ) holds: if not, the challenger returns ⊥; if it holds, the challenger
sends Simulate(Y ) to S and returns the result to the adversary.

Sigma Protocols. A sigma protocol for a language LR is a protocol for two parties,
a prover and a verifier. Both share a statement Y ∈ LR as input and the prover
may additionally hold a witness w.

The prover begins by sending a value A known as the commitment. The
verifier replies with a challenge c drawn uniformly from a fixed challenge set.
The prover finishes the protocol with a response f whereupon the verifier applies
a deterministic algorithm Verify to Y,A, c and f which can accept or reject this
execution.

A sigma protocol is correct (w.r.t. LR) if the prover, on input a pair (w, Y )
satisfying R and interacting with the verifier who has input Y , gets the verifier
to accept with probability 1.

A sigma protocol has special honest verifier zero knowledge if there is an
algorithm Simulate that takes as input a statement Y ∈ Λ, challenge c and
response f and outputs a commitment A such that Verify(Y,A, c, f) = 1 and
furthermore, if c and f where chosen uniformly at random from their respective
domains then the triple (A, c, f) is distributed identically to that of an execution
between the prover and the verifier. Notice that the verifier is supposed to work
with statements that may be false.

A sigma protocol has special soundness if there is an algorithm Extract that
takes as input a statement Y and any two triples (A, c, f) and (A′, c′, f ′) such
that both verify w.r.t. Y , A = A′ and c �= c′, and returns a witness w such that
R(w, Y ).

The Fiat-Shamir Transformation. The Fiat-Shamir transformation [1] (which
[2] attributes to Blum) is a technique to make sigma protocols non-interactive
using a cryptographic hash function. There are two commonly used descriptions
of this technique that we call weak and strong Fiat-Shamir and which we describe
together in the following definition.
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Definition 2 (Fiat-Shamir Transformation). Let Σ = (ProveΣ ,VerifyΣ) be
a sigma protocol and H a hash function. The weak Fiat-Shamir transformation
of Σ is the proof system wFSH(Σ) = (Prove,Verify) defined as follows:

Prove(w, Y ) Run ProveΣ(w, Y ) to obtain commitment A. Compute c← H(A) .
Complete the run of ProverΣ with c as input to get the response f . Output
the pair (c, f).

Verify(Y, c, f) Compute A from (Y, c, f), then run VerifyΣ(Y,A, c, f).

The strong Fiat-Shamir transformation of Σ, i.e., sFS(Σ) = (Prove,Verify) is
obtained as above with the difference that c is computed by c← H(Y,A).

3 Pitfalls of the Weak Fiat-Shamir Transformation

We now describe various standard protocols in which the use of the weak Fiat-
Shamir transformation can have undesirable effects. We illustrate these effects
through several new practical attacks on various components of the Helios voting
system, which relies on these protocols.

Schnorr Proofs. The Schnorr [10] signature scheme is the weak Fiat-Shamir
transformation of the Schnorr identification protocol. In a group G of order q
generated by G, it proves knowledge of an exponent x satisfying the equation
X = Gx for a known X . Viewing (x,X) as a signing/verification key pair and
including a message in the hash input yields a signature of knowledge.

To create a proof, the prover picks a random a← Zq and computes A = Ga.
He then hashesA to create a challenge c = H(A). Finally he computes f = a+cx;
the proof is the pair (c, f) and the verification procedure consists in checking

the equation c
?
= H(G

f

Xc ).
The weak Fiat-Shamir transformation can safely be used here, as discussed

in previous analysis [10,21], since the public key X is selected first and given as
input to the adversary who tries to produce a forgery.

However, if the goal of the adversary is to build a valid triple (X, c, f) for any
X of his choice, then this protocol is not a proof of knowledge anymore unless
the discrete logarithm problem is easy in G. Suppose indeed that there is an
extractor K that, by interacting with any prover P that provides a valid triple
(X, c, f), extracts x = logG(X). This extractor can be used to solve an instance
Y of the discrete logarithm problem with respect to (G, G) as follows: use Y as

the proof commitment, compute c = H(Y ), choose f ← Zq and set X = (G
f

Y )
1
c .

Since the proof (Y, c, f) passes the verification procedure for statement X , the
extractor K should be able to compute x = logG(X) by interacting with our
prover. We now observe that, by taking the discrete logarithm in base G on
both sides of the definition of X , we obtain the solution logG(Y ) = f − cx to
the discrete logarithm challenge.

Application to Helios. Schnorr proofs are used during the key generation pro-
cedure of Helios as a way to prevent trustees from choosing their public key as
a function of the public key of the other trustees, which could give them the
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possibility to select the election private key at will and to decrypt all individual
votes [22]. While the scenario above shows that trustees who publish a public key
together with a Schnorr proof for that public key do not necessarily know the
corresponding private key, the fact that our scenario does not allow the prover to
choose his statement (but just to compute it as a function of the elements of the
proof) does not seem to give rise to any practical attack. These weak Schnorr
proofs would, however, break the proof of ballot privacy that we give later in
this paper (assuming strong proofs).

Chaum-Pedersen Proofs. Chaum and Pedersen [11] introduced a proof of dis-
crete logarithm equality, which they make non-interactive using the strong form
of the Fiat-Shamir transformation. More precisely, given two group elements
(G,X), a prover who knows the discrete logarithm x = logG(X) can prove that
two group elements (R,S) satisfy the relation logG(X) = logR(S) as follows. He
picks a random a ← Zq, computes A = Ga, B = Ra, c = H(R,S,A,B) and
f = a + cx. The proof is the pair (c, f) and the verification procedure consists

in checking the equation c
?
= H(R,S, G

f

Xc ,
Rf

Sc ).
We observe that this proof is not sound anymore if it is used as a proof

that three elements (X,R, S) are such that logG(X) = logR(S), that is, if the
prover also has the possibility to choose X in the process of building his proof.
Indeed, a prover could select (a, b, r, s) ← Z4

q at random, compute A = Ga,

B = Gb, R = Gr and S = Gs from which he can compute c = H(R,S,A,B) and
f = b+cs

r . He now completes the proof by computing x = (f − a)/c and setting

X = Gx. Now, we observe that logG(X) = s
r + b−ar

rc while logR(S) =
s
r , which

differ with overwhelming probability.

Application to Helios. Chaum-Pedersen proofs instantiated with the weak Fiat-
Shamir transformation (that is, c = H(A,B)) are used during the ElGamal
decryption procedure of Helios, in order to demonstrate that the decryption of
the product of the votes that is computed by the trustees is consistent with the
public key. More precisely, given a public key X and a ciphertext (R,S) that
encrypts the sum of all votes, a trustee is required to compute T = Rx where
x = logG(X) and to publish it together with a Chaum-Pedersen proof that
logG(X) = logR(S). The ElGamal decryption is then computed as logG(S/T ).

In this proof, a malicious trustee does not have the possibility to choose his
private key at decryption time, but has the possibility to select T as part of
the proof computation process. He can do so as follows. Select (a, b) ← Z2

q at

random, compute the proof commitments A = Ga and B = Gb, the challenge
c = H(A,B) and the response f = a + cx. Eventually, compute the decryption

factor T = (R
f

B )
1
c . It is easy to verify that the proof (c, f) is valid for the tuple

(G,X,R, S), but that logR(T ) = x + ar−b
c , which will be different from x with

overwhelming probability. As a result, the decryption procedure will provide an
aberrant result: an essentially random element of Zq. This strategy provides a
way to build a denial of service attack against a Helios election, without anyone
being able to detect who was responsible.
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A more dangerous attack can be mounted if we assume that the trustees have
the possibility to passively eavesdrop on the randomness of all voters. Though
demanding, such an attack is still easier to mount and harder to detect than a
full active attack. We would expect the impact of such a scenario to be “only”
a complete loss of privacy by the voters but we show that it actually provides a
way for the trustees to announce any election outcome of their choice as soon as
they can actively corrupt a single voter (which can happen simply if a trustee is
a voter himself).

Consider an election with trustees who would like to announce the election
outcome m. These trustees select a private key x and publish the public key
X . They also select (a, b) ← Z2

q , compute A = Ga, B = Gb, c = H(A,B) and
f = a+cx. Then all the voters submit their votes, except the corrupted one who
waits until the last minute of the election. At that time, the trustees compute the
product of all encrypted votes that have been submitted and obtain a ciphertext
(R′, S′) = (Gr′ , Gm′ · Gxr′) for some values r′ and m′ that they can compute

using the randomness of the voters. They now compute r = b+c(m′−m)
f−cx , as well

as a ciphertext (Gr−r′ , Gx(r−r′)) which is an encryption of 0 for which they can
compute a proof of validity since they know r − r′. This ciphertext and proof
are submitted by the corrupted voter, with the effect that the product of all
encrypted votes is (R,S) = (Gr, Gm′ · Gxr). It can now be verified that (c, f)
form a valid proof that logG(X) = logR(

S
Gm ), which indicates that m is the

outcome of the election.

Disjunctive Chaum-Pedersen Proofs. Disjunctive proofs allow proving
that one of two statements holds without revealing which one is correct. These
proofs have numerous applications. For instance, they can be used by a voter to
demonstrate that a ciphertext he produced is an encryption of either 0 or 1 (but
nothing else), expressing whether or not he supports a candidate.

Suppose that a voter builds an exponential ElGamal ciphertext (R,S) with
respect to public key X and wants to prove that it encrypts 0 or 1. We consider
the case where it is an encryption of 1 (the other case is similar). First, the voter
simulates a proof that logR(S) = x by selecting a random proof (c0, f0) ← Z2

q

and computing A0 = Gf0/Rc0 and B0 = Xf0/Sc0 . Then he selects a1 ← Zq,
computes A1 = Ga1 , B1 = Xa1, c = H(A0, B0, A1, B1), c1 = c − c0 and f1 =
a1+c1r. The proof consists of (c0, c1, f0, f1) and verification consists of verifying

whether c0 + c1 = H(G
f0

Rc0
, X

f0

Sc0
, G

f1

Rc1
, Xf1

(S/G)c1 ).

Application to Helios. The proof we just described is exactly the one used in
Helios to guarantee that voters encode at most one vote for each candidate and
it exhibits weaknesses that are similar to those described above, but with an even
more dangerous effect. Consider an election organized by corrupted trustees who
would like to influence the election outcome by adding (or removing)m approvals
to a candidate of their choice. These trustees now have the freedom to choose
any public key and ciphertext of their choice that would allow them to compute
an encryption of m and to prove that it is an encryption of 0 or 1. They can
achieve this as follows.
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They first select (a0, b0, a1, b1) ← Z4
q , from which they compute the com-

mitments A0 = Ga0 , B0 = Gb0 , A1 = Ga1 , B1 = Gb1 , the challenge c =

H(A0, B0, A1, B1) and the private key x = (b0+cm)(1−m)−b1m
a0(1−m)−a1m

and the public

key X = Gx. Using this public key, they select a random encryption of m by
selecting r ← Zq and computing (R,S) = (Gr, GmXr). Eventually, they com-
pute the challenges c1 = b1−a1x

1−m and c0 = c− c1 and the responses f0 = a0 + c0r
and f1 = a1 + c1r. It can be verified that (c0, c1, f0, f1) form a proof that (R,S)
encrypt 0 or 1, while it actually encrypts an arbitrary m.

Furthermore, it can be observed that this proof, like the others that we pre-
sented above, is indistinguishable from a regular one.

Other attack possibilities exist, based on the same techniques. For instance,
a voter who does not know the election private key can build a ciphertext that
encrypts a random value in Zq and prove that it encrypts 0 or 1, which would
make the decryption procedure fail. We do not know however whether it is
possible to build such a proof in a way that is indistinguishable from a regular
one.2

Encrypt + PoK. Adding a proof of knowledge of the plaintext/randomness to
a ciphertext in an IND-CPA secure public key encryption scheme is a common
way to yield a non-malleable encryption scheme.3 We formalise this construction
and show that using wFS does not yield non-malleable encryption.

Definition 3 (Encrypt+PoK). Let E = (KeyGen,Enc,Dec) be a public-key
encryption scheme. Let R((m, r), (Y, pk)) := (Y = Enc(pk,m; r)) be the relation
that Y is an encryption of m with randomness r for public key pk, let Λ be the
ciphertext space (or some suitable superset thereof) and let P = (Prove,Verify)
be a NIZK-PoK for this relation.

The Encrypt+PoK transformation EP is the following encryption scheme.

KeyGen’ Run KeyGen.
Enc’(pk,m) Draw some randomness r and create a ciphertext E = Enc(pk,m; r).

Create a proof π ← Prove(pk,E,m, r). The ciphertext is the pair (E, π).
Dec’(sk, E, π) First run Verify(pk,E, π). If this fails (returns 0), output ⊥ and

halt. Otherwise, return Dec(sk, E).

Consider the ElGamal encryption scheme with weak Schnorr proofs of the ran-
domness used for encryption (which would allow one to extract the message),
which would be a weak variant of the TDH0 scheme [13]. In other words, a
ciphertext for a message M under public key X is (Gr ,M · Xr, c, f) where
c = H(Gf/(Gr)c). We can rerandomise such a ciphertext (R,S, c, f) by picking
a random u and setting the new ciphertext to be (R ·Gu, S ·Xu, c, f + cu). The
new plaintext is the same as the old one as S/Rx =M ·Xr+u/(Gr+u)x =M and

the proof still verifies as c = H
(

Gf+cu

(Gr+u)c

)
= H

(
Gf

(Gr)c

)
. Clearly, this encryption

scheme is malleable.
2 Our current technique involves setting c0 = 0. While such a ballot passes the current
Helios verifier, this could be detected in an audit.

3 Though the exact form of non-malleability that is provided is unclear [13].
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Application to Helios. The same rerandomisation technique can be applied to
current Helios ballots, giving a ballot privacy attack in the style of Cortier and
Smyth [23] (based on the same principles as the attacks described in [24,25].) He-
lios ballots contain ElGamal ciphertexts (R,S) with disjunctive Chaum-Pedersen
proofs (c0, c1, f0, f1). To rerandomise such a ciphertext, pick a random u and set
R′ = R · Gu, S′ = S · Y u, f ′

0 = f0 + c0u and f ′
1 = f1 + c1u. Unlike previously

known rerandomisation techniques, this one does not make use of a repeated El-
Gamal ciphertext or proof. It can be detected however by checking for repeated
hash values, just as for the previous attacks.

Further examples. The various attacks that we described above focus on ap-
plications to the Helios voting system, which uses the weak Fiat-Shamir trans-
formation in all proofs. We believe that these examples provide clear evidence
that the weak Fiat-Shamir transformation should not be used in that context:
in particular, we showed that malicious authorities can arbitrarily influence the
outcome of an election, which is in clear contradiction with the universal verifia-
bility properties expected from that system. In the next sections, we will focus on
the properties of the strong Fiat-Shamir transformation and show the benefits
that its adoption would provide for the Helios system.

We stress that there are various other contexts in which the weak Fiat-Shamir
transformation should not be used. For instance, similarly to our observation for
the weak variant of the TDH0 scheme, the scheme resulting from the Naor-Yung
transformation [26] applied to ElGamal encryption may become malleable if the
weak Fiat-Shamir transformation is used, contradicting the level of desired secu-
rity. We provide attacks against a concrete instantiation of that transformation
in the full version of our paper.

4 Simulation Sound Extractable Proofs

The examples discussed in the previous section show that the wFS transform
fails to offer even the most basic soundness properties in many contexts. We
now investigate the soundness properties of the sFS transform. More precisely,
we formulate the notion of simulation sound extractable proofs in the random
oracle model and show its applications to the sFS transformation. Our definition
draws inspiration from that of witness-extended emulation [4] in which the exis-
tence of an extractor is demanded such that for any adversary returning a vector
of statements and proofs, the extractor returns identically distributed elements
along with the witnesses to the proven statements. However, the definition is per-
haps more appropriately viewed as the analogue definition of simulation sound
extractability defined by Groth [12] which combines the simulation soundess
approach of Sahai [27], with proofs of knowledge [28].

We consider a malicious prover who may ask to see simulated proofs (as in
simulation-soundness). The extractor that we consider gets the transcript of a
run of the prover where the prover outputs several valid proofs together with
the transcipt of random oracle queries. His goal is to extract witnesses of these
proofs. In the process, we allow the extractor to invoke and communicate with
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copies of the prover that use the same randomness as the run it is trying to
extract from. This ability is what permits the knowledge extractor to fork the
prover’s execution without giving the extractor access to the coins of the prover.4

A bit more precisely, a malicious prover for a proof system P = (Prove,Verify)
is an algorithm A that expects access to two oracles: a hashing oracle and a
simulation oracle. Thus A may submit some string s and expects H(s) in return
and it may also make simulation calls Simulate(Y ) for any statement Y ∈ Λ and
expects to obtain a proof π such that Verify(Y, π) = 1. The prover returns a pair
of vectors (Y ,π).

Definition 4 (Simulation Sound Extractability). Let P be a zero-
knowledge proof system with simulator S. We say that P is simulation sound
extractable (SSE) if there exists an extractor K such that for every prover A, K
wins the following game with non-negligible probability.

1. (Initial run.) The game selects a random string ω for A. It runs an instance
of A with the simulator S until A makes his output and halts. If A does
not output any proofs, any of the proofs do not verify (w.r.t. the instance
of S used as the random oracle) or any of A’s statement/proof pairs (Y, π)
is such that π was the result of a Simulate(Y ) query, then K wins the game
directly.

2. (Extraction.) The game runs an instance of K, giving it the transcript of all
queries in the initial run and the produced (Y ,π) as input. K may repeatedly
make one type of query invoke in response to which the game runs a new
invocation of A on the same randomness ω that it chose for the initial run.
All queries made by these instances are forwarded to K who can reply to
them.

3. K wins the game if it can output a vector of witnesses w that match the
statements Y of the initial run, i.e. for all i we have R(wi, Yi).

The following theorem confirms that the strong Fiat-Shamir transformation
yields proof systems that satisfy the notion we described above.

Theorem 1. Let Σ be a sigma protocol with a challenge space that is expo-
nentially large in the security parameter, special soundness and special honest
verifier zero-knowledge. Then sFS(Σ) is zero-knowledge and simulation sound
extractable with respect to expected polynomial-time adversaries.

Applications. The Schnorr and Chaum-Pedersen protocols are clearly both sigma
protocols with special soundness and special honest verifier zero knowledge so
Theorem 1 applies and the sFS versions of these protocols are SSE proofs. For
disjunctive Chaum-Pedersen, the challenge is the actual c obtained from the
verifier and the response is the tuple f = (f0, f1). This is a sigma protocol with
special soundness and almost special honest verifier zero knowledge — almost,
because in our definition the simulator chooses c, f independently and uniformly

4 Although not necessary for this paper, hiding the adversary’s randomness from the
extractor can be helpful in other contexts to prove separation results.
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at random yet if c �= c0 + c1 then the resulting proof will not verify, patched
oracle or not. We could fix this by not sending c1 in the response and having the
verifier recompute c1 = c− c0. We will ignore this point as it is easy to see that,
if the simulator chooses c, f at random and then adjusts c0, all relevant theorems
still hold. In particular, the sFS transformation of disjunctive Chaum-Pedersen
is still a simulation-sound extractable proof.

Encrypt + PoK.

With this notion we can restore the folklore result that appending a PoK to
an IND-CPA scheme gives a NM-CPA one, if the PoK is simulation-sound ex-
tractable. For space reasons the proof is only in the full version of our paper.

Theorem 2. Let E be an IND-CPA secure encryption scheme and P be a simul-
ation-sound extractable NIZK-PoK for the encryption relation. Then EP is non-
malleable (NM-CPA) secure with respect to expected polynomial-time adversaries.

5 Ballot Privacy in Helios

In this section we propose a modification to Helios and prove that it satisfies
ballot privacy in the model of single-pass voting of Bernhard et al. [17].

Single-Pass Schemes. A single-pass voting scheme is a protocol consisting of
the following algorithms and execution protocol for a set V of voters, a set T of
trustees and a bulletin board B. The class of single-pass schemes includes not
only Helios [5] but also several other cryptographic voting schemes [29,30,27,31].
Single-pass voting models two of the most popular approaches to cryptographic
voting, homomorphic tallying and mix-nets. Voters need only read a single mes-
sage off the board (the election specification and public keys) and post a single
message (their ballot) in return. We assume some underlying voter authentica-
tion mechanism.5

Setup(1λ) is an algorithm to create public parameters for the election and secret
ones for all trustees.
Setup produces one public output Y known as the public key of the election
and a secret output xi for each trustee Ti in the set of trustees T . The secret
outputs of all trustees together are known as the secret key of the election.

Vote(id, v, Y ) is a probabilistic algorithm run by voters to prepare their votes
for submission. It takes as input a voter’s identity id, a vote v and public
information Y and outputs a ballot s← Vote(id, v, Y ).

Validate(b, s) models the algorithm run by the bulletin board during voting. Its
inputs are the current board state b and the submitted ballot s. It returns 1
if the submission is deemed valid (given the current state of the board) and
0 otherwise.

5 In the election of the president of UC Louvain [6] using Helios, authentication was
handled by the university’s existing infrastructure. As such it escapes cryptographic
modelling and we choose not to model authentication (in particular we do not wish
to assume a PKI).
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Tally(b) is a tallying protocol that is run by the trustees. Its inputs are the board
so far and the private data kept by the trustees from the setup phase.

Result(b) is a deterministic algorithm that takes a bulletin board b of a completed
election and returns the result of the election, or a special symbol ⊥ if the
board does not contain a valid result.

A single-pass scheme is executed as follows.

1. Setup phase. The trustees run the Setup algorithm and post the public key
Y to the bulletin board.

2. Voting phase. Each voter may proceed as follows or abstain. He reads public
key Y off the board and computes a ballot s← Vote(id, v, Y ) where id is his
identity and v is his vote, and submits s to the board.
The board runs Validate(b, s) on every submission it receives and appends
valid ones to its state.

3. Tallying phase. The trustees run the Tally protocol and may post to the
board.

A single-pass protocol is correct w.r.t. a result function ρ if as long as everyone
follows the protocol, with overwhelming probability (in the security parameter)
none of the algorithms abort, Result returns a result when executed on the board
at the end of the tallying phase and this result corresponds to ρ evaluated on
the votes cast by the voters.6

Ballot Privacy. We base our definition of ballot privacy on previous work
in this area by Bernhard et al. [17,32]. Ballot privacy is defined by means of a
cryptographic indistinguishability game. The new feature of our definition is that
it can deal with dishonest trustees; we introduce a simulator to handle tallying
in this case.

Definition 5 (Ballot Privacy). A single-pass protocol for n trustees and any
number of voters has ballot privacy against up tom < n dishonest trustees if there is
a simulator S such that for any efficient adversaryA, the advantage Pr[A wins ]−
1/2 against the following indistinguishability game is negligible (as a function of the
security parameter). The simulator S is given black-box access to the adversary A
and may invoke further copies of A using the same randomness as was used in the
main run in the security game. We assume static corruption of trustees: the sets of
honest and dishonest trustees are fixed in advance. The adversary can adaptively
choose voters to be honest or dishonest, however.

Setup Phase. The challenger picks a bit β ← {0, 1} uniformly at random. He
sets up two bulletin boards L and R. The adversary is given access to either
L if β = 0 or to R if β = 1.

The trustees jointly run theSetup protocol, the challenger playing thehonest
trustees and the adversary, the corrupt ones. This produces some output Y on
the visible board. The challenger then copies Y from the visible board to the
hidden one. If the setup phase fails to complete, the adversary loses the game.

6 One may also want ρ to operate on (v, id) pairs: in the Helios election at UC Louvain,
votes from students, faculty and staff were weighted differently.
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Voting Phase. The adversary may make two types of queries.
Vote(id, vL, vR) Queries. The adversary provides a voter identity id and

two votes (vL, vR). The challenger runs bL ← Vote(id, vL, Y ) and bR ←
Vote(id, vR, Y ), where Y is the public key of the election that can be
computed using Keys on the public information on the board from the
setup phase.
The ballots bL and bR are submitted to the corresponding boards which
process them normally (run Validate and append the ballot if it passes
validation).

Ballot(id, b) Queries. These are queries made on behalf of corrupt voters.
Here the adversary provides a ballot b. The challenger first submits b to
the board visible to the adversary, which validates it and appends it if
validation is successful. If the ballot successfully validates on the visible
board, the challenger also submits the ballot to the invisible board which
again validates the ballot and appends it if successful.

Tallying Phase. If the adversary sees the L board (β = 0) then tallying can
take place as normal. The trustees execute the Tally protocol, the challenger
playing the honest ones and the adversary, the dishonest ones.
If the adversary sees the R board, the challenger starts up the simulator S
and passes it both the L and R boards and the state of the honest trustees.
In the random oracle model, the simulator is responsible for the random
oracle from this point onwards (and gets a list of all previously queried
input/output pairs). The simulator acts on behalf of the honest trustees
from now onwards and may post to the board.

At the end of the game the adversary may make a guess of β and wins if his
guess is correct.

We propose to fix Helios by changing all proofs to their strong counterparts.
This allows us to state the following theorem. The proof along with a detailed
description of modified Helios in the single-pass model can be found in the full
version of our paper.

Theorem 3. In the random oracle model, the modified Helios (using strong
proofs) satisfies ballot privacy against up to m = n − 1 dishonest trustees, as-
suming that DDH is hard in the underlying group.

6 Conclusion

The prominence of Helios (it has been used in several real elections, notably in
the election of the IACR board of directors) justifies the level of attention it
has recently received. Results are divided between finding attacks against ballot
privacy (e.g. the method of casting related ballots [23,33] which we further refine
in this paper) and proposing modifications that enable rigorous security proofs
[23,17,34]. Our paper seems to be the natural convergence point. We identify the
use of weak Fiat-Shamir proofs as a source of attacks much stronger than all those
previously proposed: we have presented new and unforeseen consequences of
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these weak proofs and we have shown that switching to their strong counterpart
allows for a proof of ballot secrecy for Helios, and provides a crucial assumption
on which existing verifiability analyses of Helios rely [34]. In the process, we
have made several conceptual contributions: we have defined simulation sound
extractability in the random oracle model, proved that the strong Fiat-Shamir
transformation yields secure non-interactive zero-knowledge proofs of knowledge,
and justified the new notion through applications that include the Enc+PoK
paradigm.

In the remainder of this section we discuss two points that naturally arise
from our work.

Usability of wFS. Our results discourage the use of wFS proofs as they may lead to
failures in the systems that employ them. Nonetheless, the transformation works
well for its original application (and its generalizations [35]) in constructing signa-
ture schemes from identification schemes [1], since the statement (essentially the
verification key) is fixed in advance. It is interesting to find other settings where
wFS can actually be used safely. An intriguing possibility is to exploit malleability
of wFS proofs as, for example, in the recent work of Chase et al. [36] that relies on
controlledmalleability of (standardmodel) non-interactive zero-knowledge proofs.
A necessary first step in this direction is understanding precisely what is the level
of malleability of wFS proofs, which we leave for further work.

Practical impact of our attacks. As Helios in its current form has been used in
real elections, a discussion of the impact of our attacks in practice is in order.
We note that our attacks have been tested and succeeded on the current version
of the Helios system on http://vote.heliosvoting.org.

Our denial of service attacks may only have an impact on future elections:
as far as we know, all Helios elections led to the successful computation of a
tally. Regarding our attack on privacy, the scale and outcome of all known real-
world elections based on Helios rule out the possibility of effectively violating
the privacy of voters through ballot copying. We also checked the 2010 IACR
bulletin board and verified that it does not contain any copied ballot.

Our most realistic new attack challenges the verifiability of elections: we
showed that corrupted authorities colluding with a single voter can submit an
encryption of an arbitrary (positive or negative) number of approvals for any
candidate, and that this encryption is indistinguishable from a normal one. This
attack could have a decisive impact on approval elections, where the addition of a
reasonable number of votes for a single candidate can easily remain undetected.

Many important Helios elections did not use approval voting, though (e.g., the
UCL president election and the IACR 2010 election): in those elections, voters
were only allowed to select a limited number of candidates. The capability to
submit a single malicious ciphertext has a much more limited effect in that
case, due to the need to produce an overall proof of the validity of the ballot
besides the individual 0/1 proofs. In this context, two possibilities are left to an
attacker: either (1) cheat on an individual proof, that is, if allowed to choose up
to n candidates, encrypt n votes for a single candidate, 0 for all others, and the
overall proof could still be built normally; or (2) cheat on the overall proof, that

http://vote.heliosvoting.org
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is, select as many candidates as desired and fake the overall proof. The result
of these limited manipulations could not have changed the outcome of the two
particular elections mentioned above.

Extending our attack to more than a single ciphertext does not seem immedi-
ate. Indeed, our attack requires selecting the private key as a function of the hash
of all the commitments in one proof. As a result, building two proofs based on
different commitments would require using different election keys, which would
not be possible in a single election.

Our second most damaging attack relies on authorities that gain access to the
randomness that is used by all voters in order to encrypt their messages. This
could possibly be achieved by hiding a function that sends this randomness in the
JavaScript code sent by the Helios server to the voters for the ballot preparation,
or by forcing server-side encryption. Though more demanding, the effect of this
attack can also be more severe as the single actively corrupted voter now only
needs to submit a regular ballot.

In all cases, including for approval elections (such as the 2011 IACR election)
for which our first attack on verifiability applies, there remain possibilities to
remove the concerns that our attacks may raise. For instance, a (possibly inde-
pendent) set of trustees could be asked to run a mixnet on the ciphertexts posted
on the bulletin board of the considered elections, which could then be followed
by the individual decryption of all shuffled ballots. An invalid ballot would then
be detected immediately, and the trustees would not be able to cheat on the
decryption of a second ciphertext.

The existence of such a possibility shows that we still are in a better situation
than the one obtained with postal voting. Here, the trustees still have a possi-
bility to demonstrate that they did not manipulate the election. That would be
much harder for postal voting, where there is no practical way for the tallying
officers to demonstrate that the tally they announce actually corresponds to the
authentic ballots.
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Abstract. Sequential aggregate signature schemes allow n signers, in
order, to sign a message each, at a lower total cost than the cost of n in-
dividual signatures. We present a sequential aggregate signature scheme
based on trapdoor permutations (e.g., RSA). Unlike prior such propos-
als, our scheme does not require a signer to retrieve the keys of other
signers and verify the aggregate-so-far before adding its own signature.
Indeed, we do not even require a signer to know the public keys of other
signers!

Moreover, for applications that require signers to verify the aggregate
anyway, our schemes support lazy verification: a signer can add its own
signature to an unverified aggregate and forward it along immediately,
postponing verification until load permits or the necessary public keys
are obtained. This is especially important for applications where signers
must access a large, secure, and current cache of public keys in order to
verify messages. The price we pay is that our signature grows slightly
with the number of signers.

We report a technical analysis of our scheme (which is provably se-
cure in the random oracle model), a detailed implementation-level spec-
ification, and implementation results based on RSA and OpenSSL. To
evaluate the performance of our scheme, we focus on the target applica-
tion of BGPsec (formerly known as Secure BGP), a protocol designed for
securing the global Internet routing system. There is a particular need
for lazy verification with BGPsec, since it is run on routers that must
process signatures extremely quickly, while being able to access tens of
thousands of public keys. We compare our scheme to the algorithms
currently proposed for use in BGPsec, and find that our signatures are
considerably shorter nonaggregate RSA (with the same sign and verify
times) and have an order of magnitude faster verification than nonaggre-
gate ECDSA, although ECDSA has shorter signatures when the number
of signers is small.
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1 Introduction

Aggregate signatures schemes allow n signers to produce a digital signature that
authenticates n messages, one from each signer. This can be securely accom-
plished by simply concatenating together n ordinary digital signatures, individ-
ually produced by each signer. An aggregate signature is designed to maintain
the security of this basic approach, while having length much shorter than n in-
dividual signatures. To achieve this, many prior schemes e.g., [LMRS04,Nev08]
relied on a seemingly innocuous assumption; namely, that each signer needs to
verify the aggregate signature so far, before adding its own signature on a new
message. In this paper, we argue that this can make existing schemes unviable
for many practical applications, (in particular, for BGPsec [Lep12] / Secure BGP
[KLS00]) and present a new scheme based on trapdoor permutations like RSA
that avoids this assumption. In fact, our scheme remains secure even if a signer
does not know the public keys of the other signers.

1.1 Aggregate Signatures from Trapdoor Permutations

Boneh, Gentry, Lynn, and Shacham [BGLS03] introduced the notion of aggre-
gate signatures, in which individual signatures could be combined by any third
party into a single constant-length aggregate. The [BGLS03] scheme is based on
the bilinear Diffie-Hellman assumption in the random oracle model [BR93]. Sub-
sequent schemes [LMRS04,Nev08] were designed for the more standard assump-
tion of trapdoor permutations (e.g., as RSA [RSA78]), but in a more restricted
framework where third-party aggregation is not possible. Instead, the signers
work sequentially; each signer receives the aggregate-so-far from the previous
signer and adds its own signature.1

Lysyanskaya, Micali, Reyzin, and Shacham [LMRS04] constructed the first se-
quential aggregate signature scheme from trapdoor permutations, with a proof
in the random oracle model.2 However, their scheme has two drawbacks: the
trapdoor permutation must be certified (when instantiating the trapdoor per-
mutation with RSA, this means that each signer must either prove certain
properties of the secret key or else use a long RSA verification exponent), and
each signer needs to verify the aggregate-so-far before adding its own signature.
Neven [Nev08] improved on [LMRS04] by removing the need for certified trap-
door permutations, but the need to verify before signing remained. Indeed, a
signer who adds its own signature to an unverified aggregate in both [LMRS04]
and [Nev08] (or, indeed, in any scheme that follows the same design paradigm)
is exposed to a devastating attack: an adversary can issue a single malformed

1 The need for the random oracle model was removed by Lu, Ostrovsky, Sahai,
Shacham, and Waters [LOS+06], who constructed sequential aggregate signatures
from the bilinear Diffie-Hellman assumption; however, it is argued in [CHKM10]
that this improvement in security comes at a considerable efficiency cost. See
also [RS09,CSC09] for other proposals based on less common assumptions.

2 Bellare, Namprempre, and Neven [BNN07] showed how the schemes of [BGLS03]
and [LMRS04] can be improved through better proofs and slight modifications.
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aggregate to the signer, and use the signature on that malformed message to
generate a valid signature on a message that the signer never intended to sign
(we describe the attack in the full version of the paper [BGR11b]).

The nonsequential scheme of [BGLS03] does not, of course, require verifica-
tion before signing. The only known sequential aggregate scheme to not require
verification before signing is the history-free construction of Fischlin, Lehmann,
and Schröder [FLS11] (concurrent with our work), but it, like [BGLS03], requires
bilinear Diffie-Hellman.

Thus, the advantages of basing the schemes on trapdoor permutations (par-
ticularly a more standard security assumption and fast verification using low-
exponent RSA) are offset by the disadvantage of requiring verification before
signing. We argue below that this disadvantage is serious.

1.2 The Need for Lazy Verification

In applications with a large number of possible signers, the need to verify before
signing can introduce a significant bottleneck, because each signer must retrieve
the public keys of the previous signers before it can even begin to run its signing
algorithm. Worse yet, signers need to keep their large caches of public keys secure
and current: if a public key is revoked and a new one is issued, the signer must
first obtain the new key and verify its certificate before adding its own signature
to the aggregate.

A Key Application: BGPsec. Sequential aggregate signatures are particu-
larly well-suited for the BGPsec [Lep12] (formerly known as the Secure Border
Gateway Protocol (S-BGP) [KLS00]), a protocol being developed to improve
the security of the global Internet routing system. (This application was men-
tioned in several works, including [BGLS03,LOS+06,Nev08], and explored fur-
ther in [ZSN05].) In BGPsec, autonomous systems (ASes) digitally sign routing
announcements listing the ASes on the path to a particular destination. An an-
nouncement for a path that is n hops long will contain n digital signatures,
added in sequence by each AS on the path. (Notice that the length of the BG-
Psec message even without the signatures increases at every hop, as each AS
adds its name to the path, as well as extra information to the material in the
routing message like its “subject key identifier” — a cryptographic fingerprint
that is used to lookup its public key in the PKI [Lep12].) The BGPsec protocol
is faced with two key performance challenges:

1. Obtaining public keys. BGPsec naturally requires routers to have access to
a large number of public keys; indeed, a routing announcement can contain
information from any of the 41,000 ASes in the Internet [COZ08] (this num-
ber is according to the dataset retrieved in 2012). Certificates for public keys
are regularly rolled over to maintain freshness, and must be retrieved from
a distributed PKI infrastructure [Hus12]. Caching more than 41,000 public
keys is expensive for a memory-constrained device like a router (which often
does not have a hard drive or other secondary storage [KR06]). Furthermore,
whenever a router sees a BGPsec message containing a key that is not in
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its cache, it incurs non-trivial delay on certificate retrieval (from a distant
device that hosts the PKI) and verification.

2. Dealing with routing table “dumps”. When a link from a router to its neigh-
boring router fails, the router receives a dump of the full routing table,
often containing more than 300, 000 routes [CID], from it neighbors. Be-
cause routers are CPU- and memory-constrained devices, dealing with these
huge routing table dumps incurs long delays (up to a few minutes, even
with plain, insecure BGP [BHMT09]!). The delays are exacerbated if cryp-
tographic signing and verifying is added to the process, and even more so
when a router comes online for the first time (or after failure) and needs to
also retrieve and authenticate public keys for all the ASes on the Internet.

To deal with these issues, the BGPsec protocol gives a router the option to
perform lazy verification: that is, to immediately sign the routing announcement
with its own public key, and to delay verification until a later time, e.g., when
(a) it has time to retrieve the public keys of the other signers, or (b) when the
router itself is less overloaded and can devote resources to verification [DHS]. It
is important to note that lazy verification by one router need not hurt others: if
a router has not verified a given announcement, routers further in the chain can
verify it for themselves.

While there is legitimate concern that permitting lazy verification may cause
routers to temporarily adopt unverified paths, the alternative may be worse: for-
bidding lazy verification can lead to problems with global protocol convergence
(agreement on routes in the global Internet), because of routers that delay their
announcements significantly until they can verify signatures (e.g., during rout-
ing table dumps, or while waiting to retrieve a missing certificate). Such delays
create their own security issues, enabling easier denial of service attacks and
traffic hijacking during the long latency window. Thus, even though BGPsec
recommends that every router eventually verifies BGPsec messages, requiring
that routers always verify before signing and re-announcing BGPsec messages is
considered a nonstarter by the BGPsec working group [Sri12, Section 8.2.1]. Lazy
verification is written into the BGPsec protocol specification as follows [Lep12,
Section 7]:

...it is important to note that when a BGPSEC speaker signs an outgoing
update message, it is not attesting to a belief that all signatures prior to
its are valid.

Requirement: No Public Keys in the Signing Algorithm! Note that
the primary obstacle here is not only verification time (which can perhaps be
improved through batching and, anyway, can be considerably faster than signing
time when using low-exponent RSA), but also the need to obtain public keys.
Thus, lazy verification also requires that prior signers’ public keys are not used
in the signing algorithm (e.g., hashed with the message as in [LMRS04,Nev08]).
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Requirement: No Security Risk from Signing Unverified Aggregates!
As we already mentioned, a signer who adds its own signature to an unverified
aggregate in the schemes of [LMRS04] and [Nev08] is exposed to a devastating
attack. We already discussed how lazy verification may cause a signer to do so.
Moreover, even without lazy verification, BGPsec may sometimes require a signer
to add its own signature to an aggregate that is invalid. One such situation is
when a router knowingly adopts a path that fails verification—for example, if it
is the only path to a particular destination (the specification allows this [Lep12,
Section 5]). It will then add its own signature to the invalid one, because a
“BGPSEC router should sign and forward a signed update to upstream peers if
it selected the update as the best path, regardless of whether the update passed
or failed validation (at this router)” [Sri12, Section 8.2.1]. The need to sign a
possibly invalid aggregate also arises in the case each message is signed by two
different signature schemes (as will happen during transition times from one
signature algorithm to another), and “one set of signatures verifies correctly and
the other set of signatures fails to verify.” In such a case the signer should still
“add its signature to each of the [chains] using both the corresponding algorithm
suite” [Lep12, Section 7]. Even if all BGPsec adopters avoid lazy verification
and always verify before signing, these guidelines make it impossible to adopt an
aggregate signature scheme that does not permit signing unverified aggregates,
because of the possibility of attack. In other words, lazy verification is still needed
for security even if no one uses it for efficiency!

Our Goal. We note that lazy verification is permitted by the trivial solution
of concatenating individual ordinary signatures, by aggregate signature schemes
defined in [BGLS03], and by history-free aggregate signature schemes defined
in [FLS11]. All of the above schemes do not require the current signer to know
anything about the previous signers: neither their public keys nor the messages
they signed. 3 Our goal is to obtain the same advantages, while relying on a more
basic security assumption than the bilinear Diffie-Hellman of [BGLS03,FLS11]
and saving space as compared to the trivial solution.

3 Identity-based aggregate signatures [YCK04], [XZF05], [CLW05], [CLGW06],
[Her06], [GR06], [BGOY07], [HLY09], [SVSR10], [BJ10] also remove the need for
obtaining public keys and have been proposed for use in BGPsec. However, agreeing
on the secret-key-issuing authority for the global Internet seems politically infeasi-
ble. Moreover, on a technical level, the proposals either require interaction among
signers or are based on bilinear pairings. Interactive signatures would significantly
complicate the protocol. And if we are willing to rely on bilinear pairings, [BGLS03]
already gives us an excellent choice that allows for lazy verification.

Synchronized aggregate signatures (identity-based ones of [GR06] and regular ones
of [AGH10]) also allow for lazy verification, but require a common nonce for all
signers that, if repeated, breaks the security of the scheme. Implementing such a
nonce in BGPsec presents its own challenges, because each signer has to ensure it
never reuses a nonce, or else its secret key is at risk. The schemes are also pairing-
based.
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1.3 Overview of Our Contributions

We present a sequential aggregate signature scheme that is secure even with lazy
verification, based on any trapdoor permutation (such as RSA). Moreover, as in
the nonsequential scheme of [BGLS03] and the history-free scheme of [FLS11],
our signers do not need to know anything about each other—not even each
other’s public keys. To achieve this, we modify Neven’s scheme [Nev08] by ran-
domizing the H-hash function with a fresh random string per signer, which
becomes a part of the signature, similarly to Coron’s PFDH [Cor02] (Section 3).
Our modification allows each signer to sign without verifying, and without even
needing to know the public keys of all the signers that came before him, avoiding,
in particular, the attack on [LMRS04,Nev08].

Although the ultimate goal in aggregate signatures is to produce schemes
whose signature length is independent of the number of signers, signatures in
our scheme grow slightly with the number of signers. However (as also pointed
out by [Nev08]), while a constant-length aggregate signature is a theoretically
interesting goal, what usually matters in practice is the combined length of sig-
natures and messages, because that’s what verifiers receive: signatures rarely
live on their own, separately from the messages they sign. And the combined
length of messages, if they are distinct, grows linearly with the number of sign-
ers, so the total growth of the amount of information received by the verifier is
anyway linear. What matters, then, is how fast this linear growth is; below we
derive parameters that show it to be much smaller than when ordinary trapdoor-
permutation-based signatures are used as in the trivial solution.

We make the following contributions:

Generic Randomized Scheme. We present the basic version of our scheme,
which requires each signer to append a truly random string to the aggregate
(Section 3). Our scheme is as efficient for signing and verifying (per signer)
as ordinary trapdoor-permutation based signatures, like the Full-Domain-Hash
(FDH, [BR93, Section4]). We prove security (Section 4) in the random oracle
model, based on the same assumption of trapdoor permutations (or claw-free
permutations for a tighter security reduction) as in [Nev08]. Our security proof
is more involved, because the reduction cannot know the public keys of other
(adversarial) signers during the signature queries. We should note that our proof
technique also shows that Neven’s scheme need not hash other signer’s public
keys in the signing algorithm (however, Neven’s scheme still fails under lazy
verification).

Shortening the Randomness. We show that the per-signer random string can
be shorter if it is made input-dependent (Section 5), ensuring that a given signer
never produces two different signatures on the same input. The idea of input-
dependent randomness has been used before in signature schemes (e.g., [KW03,
Section 4]); however, our application requires a new combinatorial argument to
show security.

Instantiating with RSA. In the full version of the paper [BGR11b] we show
how to instantiate our schemes with practical trapdoor permutations like RSA,
which have slightly different domains for different signers.
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Detailed Specification. We provide a full, parameterized step-by-step speci-
fication of the truly-random and input-dependent-random versions of our signa-
ture when instantiated with RSA (see the full version of the paper [BGR11b],
where we also provide guidelines on choosing parameters such as bit lengths).

Implementation, Benchmarking and Practical Considerations. We im-
plement our specification as a module in OpenSSL (Section 6); the implementa-
tion is available from [BGR11a]. We compare our implementation’s performance
to other potential solutions that allow for lazy verification; namely, [BGLS03],
and the “trivial” solution of using n RSA or ECDSA signatures (the two algo-
rithms currently proposed for use in implementations of BGPsec [DHS]). When
evaluating signatures schemes for use with BGPsec, we consider compute time
as well as signature length. Thus, we show that our signature is shorter than
trivial RSA when there are n > 1 signers and shorter than trivial ECDSA when
there are n > 6 signers. (While our signature is longer than the constant-length
[BGLS03] signature, it benefits from relying on the better-understood security
assumption of RSA.) Moreover, our scheme enjoys the same extremely fast verify
times as RSA.

2 Preliminaries

Sequential Aggregate Signature Security. The security definition for ag-
gregate signatures (both original [BGLS03] and sequential [LMRS04]) is designed
to capture the following intuition: each signer is individually secure against exis-
tential forgery following an adaptive chosen-message attack [GMR88] regardless
of what all the other signers do. In fact, we will allow the adversary to give
the attacked signer arbitrary—perhaps meaningless—aggregate-so-far signatures
during the signature queries, thus making them adaptive “chosen-message-and-
aggregate” queries. We also allow the adversary, which we call “the forger,” to
choose the public keys of all the other signers and to place the single signer who
is under attack anywhere in the signature chain in the attempted forgery. This
single attacked signer does not know any public keys other than its own and
does not verify any aggregate-so-far given by the attacker.

Our formal definition, presented in the full version [BGR11b], is almost ver-
batim from [LMRS04], with one important difference needed to enable lazy ver-
ification: the public keys and messages of previous signers are not input to the
signing algorithm. Therefore, each signer, by signing a message, is attesting only
to that message, not to the prior signers’ messages and public keys. At a tech-
nical level, this change implies that in security game the forger, in its query
to ith signer, is required to supply only the aggregate-so-far signature allegedly
produced by the first i − 1 signers, but not the messages or public keys with
respect to which this aggregate was allegedly produced. And, of course, to be
considered successful, the forger must use a new message—in other words, it is
not enough to change a public key or message of someone else in the chain be-
fore the attacked signer (because such public keys and messages may not even be
well defined during the attack). This definition is exactly the one that is satisfied
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by the trivial solution of concatenating n individual signatures (and therefore
suffices, in particular, for BGPsec).

Fischlin, Lehmann, and Schröder [FLS11] propose a stronger security def-
inition for their “history-free” signatures (building on history-free MACs of
[EFG+10]), which prevents certain reordering and recombining of signatures.
Their definition thus has a security property that the trivial solution of concate-
nating n individual signatures does not have. Although this security property
is not needed in many applications (for example, in BGPsec reordering and
recombining of signatures is prevented simply by the protocol message struc-
ture, where each message must, for the purposes of functionality, include all
the signed information contained in previous messages), our signature scheme
in fact also prevents reordering and recombining that are of concern to [FLS11]:
see [BGR11b].

Cryptographic Primitives. We will use pseudorandom functions [GGM86];
the definition is omitted here because it is standard, but is presented in [BGR11b]
for the sake of completeness. We will denote by εPRF(q, t) the maximum insecurity
of PRF against any distinguisher who asks at most q queries and runs in time t.

We assume the reader is familiar with the trapdoor and claw-free permuta-
tions; we will denote by π the easy direction of the trapdoor permutation, by
π−1 the hard direction, and by ρ the function such that it is hard to find a
“claw” x, z with π(x) = ρ(z).

3 Our Basic Signature Scheme

The intuition behind our construction is as follows. Like [Nev08], we use a
random-oracle-based signature with message recovery, similar to PSS-R [BR96],
as a basic building block. Signatures with message recovery embed a portion of
the message into the signature, so it can be recovered on verification and does
not need to be sent explicitly. In our case, the signature outputs two values: the
output x of a trapdoor permutation and an additional hash value h. The ith

signer receives (xi−1, hi−1) from the previous signer and wants to sign a message
mi. To enable aggregation, we view (xi−1,mi) together as a “message” to be
signed with message recovery: we apply the signature with message recovery to
this pair, so that xi−1 is embedded into the signature and does not have to be
sent explicitly. The h portions of the signatures are exclusive-ored together for
aggregation.

So far, what we described is a slightly simplified version of the scheme from
[Nev08]. Note that verifying before signing is necessary in this scheme, because
the transformation from (xi−1, hi−1) to (xi, hi) is deterministic, invertible, and
can be performed by the adversary, except for the inversion of the trapdoor
permutation performed at the last step. As we show in [BGR11b], no scheme
constructed in this manner can permit lazy verification while protecting against a
chosen message attack. Thus, to enable lazy verification, we require each signer to
add a random string to the message, and concatenate and append these strings
to the signature. Because the adversary lacks a priori knowledge about these
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random strings, the chosen message attack becomes useless and we can prove
that this is sufficient to enable lazy verification.

Notation. We now describe the scheme precisely, using the following notation:

– Let mi be the message signed by signer i.
– Let trapdoor permutation πi be the public key of signer i and π−1

i be the cor-
responding secret key. We assume all permutations operate on bit strings of
length �π, i.e., have domain and range {0, 1}�π . (In the full version [BGR11b]
we remove the assumption that all permutations operate on the same do-
main. Section 6 uses this to instantiate π from the RSA assumption, where πi
is the easy direction, and π−1

i is the hard direction of the RSA permutation.)
– Let H (resp. G) be a cryptographic hash function (modeled as a random

oracle) that outputs �H -bit (resp. �π-bit) strings.
– Let �r be a parameter denoting the length of the randomness appended by

each signer.
– Let the notation ai denote a vector of values (a1, a2, ..., ai).
– Let ⊕ to denote bitwise exclusive-or. Exclusive-or is not the only operation

that can be used; any efficiently computable group operation with efficient
inverse can be used here.

– ε is a special character denoting the empty string; we assume ε ⊕ x = x for
any x.

Sign: The ith Signer’s algorithm

Require:
πi, π

−1
i ,mi, xi−1, hi−1

(where xi−1, hi−1 = ε, ε if
i = 1).

1: Draw ri
R← {0, 1}�r

2: ηi ← H(πi,mi, ri, xi−1)
3: hi ← hi−1 ⊕ ηi
4: gi ← G(hi)
5: yi = gi ⊕ xi−1

6: xi ← π−1
i (yi)

7: return ri, xi, hi {Note that
xi and hi go to the next
signer; all the ri values go to
the verifier, but only the last
signer’s xi and hi do.}

VerH,G: The Verification Algo-
rithm

Require: πn,mn, rn, xn, hn
1: for i = n, n− 1, ...., 2 do
2: yi ← πi(xi)
3: gi ← G(hi)
4: xi−1 ← gi ⊕ yi
5: ηi ← H(πi,mi, ri, xi−1)
6: hi−1 ← hi ⊕ ηi
7: if h1 = H(π1, r1,m1, ε) and
π1(x1) = G(h1) then

8: return 1
9: else

10: return 0

The ith signer’s signing algorithm has no dependency on the number of signers;
it takes in only the ith signers’ own public key and message and the aggregated
portion of the signature xi−1, hi−1. Moreover, the aggregated signature need not
be verified before it is signed. For verification, only a single xi and hi—namely,
the one from the last signer—is needed. However, every ri, from the first signer
to the last, is needed.
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4 Security Proof

We prove our scheme secure if G and H are modeled as random oracles and π
is a trapdoor permutation. The proof is easier to understand if π is additionally
claw-free (in particular, any homorphic permutation, such as RSA, is claw-free if
it is trapdoor). We therefore present the proof for the claw-free case. The more
general case is addressed in the full version [BGR11b]. Our proof shows how a
forger F on the aggregate signature scheme can be used to construct a reduction
R that finds a claw in claw-free pair (π∗, ρ∗). R has F forge a signature for victim
signer that uses permutation π∗, and then uses the resulting forgery to find the
claw in the claw-free pair. The structure of our reduction is similar to [Nev08];
however, while [Nev08] constructs a “sequential forger” from forger F and then
constructs reduction R from the sequential forger, our reduction must proceed
in one step (since the notion of a sequential forger is undefined if hash queries
do not include previous signers public keys).

F ’s Queries. We review what forger F expects to see on each one of its queries:

– H-Query. F asks query Q = (π,m, r, x) (where x may be ε) and expects to
see H(Q) = η.

– G-query. F asks query h, and expects to see g = G(h).
– Sign Query. F asks query (m,h, x) to be signed by π∗, and expects to see
r, h′, x′ back, where r looks uniform, h′ = h ⊕H(π∗,m, r, x), and π∗(x

′) =
G(h′)⊕ x.

– Forgery. Finally, F outputs a forgery, σ = πn,mn, rn, xn, hn where πn =
π∗. (Value n is chosen by F ).

Simplifying Assumptions about the Forger F . The following simplifies
our proof:

– We assume that the forger F forges the last signature in the signature chain;
in other words, πn = π∗ and mn is a new message never queried by F to the
signing oracle (whose public key is π∗). Indeed, any F can be easily modified
to do so: if π∗ and a new message mn′ are present in πn but at location
n′ < n, then we can run the verification algorithm loop for n− n′ iterations
to obtain xn′ , hn′ and output σ′ = πn′ ,mn′ , rn′ , xn′ , hn′ as the new forgery,
which will be valid if an only if σ was valid. Note that we do not assume
that π∗ (or any other public key) is present in the signature chain only once.

– We assume that before forger F outputs its forgery and halts, it makes hash
queries on all the hashes that will be computed during the verification of
its forgery. Moreover, we assume that the forger does not output an invalid
forgery; instead, it halts and outputs ⊥. Indeed, any F can be modified to
do so; simply run the verification algorithm upon producing the forgery, and
check that mn is different from every message asked in a sign query.

4.1 Description of the Reduction R

Data Structures Used by R. HT and GT Tables. The reduction R uses
‘programmable random oracles’, i.e., it chooses answers for random oracle
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queries. R keeps track of queries whose answers have already been decided in
two tables: HT for H and GT for G. We say HT(Q) = η if HT stores η as the
answer to a query Q, and HT(Q) = ⊥ if HT has no answer for Q (similar for
GT).

The HTree. The key challenge for the reduction is programming G, since G-
queries are made on sums ofH-query answers, rather than on individualH-query
answers. Thus the reduction keeps an additional data structure, the HTree, that
records responses to H-queries that may eventually be used as part of forger F ’s
forgery. (HTree is inspired by the graph G in [Nev08, Lemma 5.3].)

The HTree is a tree of labeled nodes that stores a subset of the queries in
HT. Each node in HTree (except the root) corresponds to an H-query that could
potentially appear in the forger F ’s final forgery σ; the queries asked during
verification of σ will appear on a path from one of the leaf nodes to the root
(unless a very unlikely event occurs). The HTree has a designated root node that
stores the value h0 = 0. We consider the root to be at depth 0. A node Ni at
depth i > 0 stores:

– a pointer to its parent node
– a query Qi = (πi,mi, ri, xi−1) (where xi−1 = ε if and only if i = 1),
– the ‘hash-response’ values ηi and hi (hi is the XOR of the values η1, . . . , ηi

on the path from the root to the node Ni; equivalently, hi−1⊕ηi, where hi−1

is stored in the parent node),
– an auxiliary value yi that is used to determine how future queries are added

to the HTree, computed as G(hi) ⊕ xi−1 (note that yi is the value to which
the signer would apply π−1

i ),
– if πi = π∗, an auxiliary value z that may be used to find a claw in (π∗, ρ∗).

Every node at depth i = 2 or deeper satisfies the relation πi−1(xi−1) = yi−1,
where πi−1 and yi−1 are stored at the node’s parent. New H-queries Q are added
as nodes to the HTree if they can satisfy this relation; we say that such a query
can be tethered to an existing node in the HTree. Intuitively, a query tethered
to Ni becomes a child of Ni in the HTree:

Definition 1 (Tethered queries). AnH-query Q containing x �= ε is tethered
to node Ni in the HTree if Ni stores πi, yi such that πi(x) = yi. If x = ε, then Q
is tethered to the root of the HTree.

The HTree’s Lookup function determines the HTree node to which query Q can
be tethered. We can argue that Lookup finds at most one node with high proba-
bility.) The HTree is populated via the Sim-H algorithm. The reduction R adds
an H-query Q to the HTree if and only if it is tethered to some node in the HTree
at the time that forger F makes the H-query. It is possible that some query Q is
not tethered at the time it is made, but becomes tethered at at later time (after
some new nodes are added to the HTree). However, we show that this is highly
unlikely.
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Algorithms Used Used by R. The reduction R uses the following algorithms,
which are formally specified in the full version [BGR11b].

G-Queries. R answers these queries using a simple algorithm Sim-G. Sim-G
returns GT(h) if it is already defined, or, if not, returns a fresh random value
and records it in the GT.

Sign-Queries. The reduction R answers queries (m,h, x) to be signed by π∗
using Sim-S. Since the reduction does not know the inverse of the challenge
permutation π−1

∗ , it ‘fakes’ a valid signature by carefully assigning certain entries
in random oracle tables HT,GT, and ABORTS if these entries in HT,GT have
been previously assigned. We are able to argue that Sim-S is unlikely to abort,
since the entries added to HT,GT by Sim-S depend on a fresh random value r
chosen as part of each signature query.

H-Queries. The reduction R answers these queries Q = (π,m, r, x) using
Sim-H. If there is an entry for Q in the HT, then Sim-H returns it. Otherwise, it
assigns a fresh random value η as HT(Q). Next, Sim-H needs to prepare for the
event that Q could lead to a forgery by the forger F , and thus needs to be stored
in the HTree. To do this, Sim-H uses the Lookup function to check if Q can be
tethered and thus should be added to the HTree. If Q can be tethered, Sim-H
adds a new node to the HTree containing Q, its hash response η, and an auxiliary
value y that is used by the Lookup function to tether future H-queries. In order
to ensure that HTree is a tree, it is important to ensure that y is a fresh random
value; Sim-H aborts if that’s not the case. Finally, if Q contains the challenge
permutation π∗, Sim-H adds a value z to the HTree node that FindClaw will
use to derive a claw from a valid forgery output by the forger F . To prepare
these values, Sim-H behaves almost as if it is ‘faking’ the answer to a sign-query,
except that instead of using the usual challenge permutation π∗ (as in Sim-S), it
uses the challenge permutation ρ∗ applied to z (so as to benefit from forger F ’s
forgery, which would invert π∗ on the output of ρ∗(z), thus producing a claw).
As in Sim-S, this involves carefully assigning certain entries in GT, and aborting
if these entries are already assigned. We are able to show that Sim-H is unlikely
to abort.

Finding a Claw. Finally, forger F outputs a forgery πn,mn, rn, xn, hn, where
πn = π∗. Recall that our simplifying assumptions mean that the forgery is
valid. The reduction R uses FindClaw to find a claw from the forgery. Because
we assumed all the queries for verifying σ have already been asked, the query
(π∗,mn, rn, xn−1) is in HT. Moreover, if the forgery is valid, then with high prob-
ability it is in the HTree as a child of the node storing (πn−1,mn−1, rn−1, xn−2),
which is in turn a child of the node storing (πn−2,mn−2, rn−2, xn−3), etc. This
holds because in a valid forgery, each H-query made during verification is teth-
ered to the next one, and all tethered queries are in the HTree with high proba-
bility. The value xn (from the forgery σ) and value zn (from HTree node of the
query Q = (π∗,mn, rn, xn−1)) constitute a claw.
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4.2 Analysis of the Reduction

Theorem 1. If a forger F succeeds with probability ε, then the reduction R finds
a claw for (π∗, ρ∗) in about the same running time as F with probability

ε− (qS + qH)(qS + qG + qH)2−�H − qS(qS + qH)2−�r − q2H2−�π (1)

where qH is the number of H-hash queries, qG is the number of G-hash queries,
and qS is the number of sign queries made by the forger F .

We prove this theorem in full version of the paper [BGR11b]. The proof hinges
on two key statements about the HTree. First, the probability that Lookup(x)
finds more than one HTree node is low (even though Lookup uses the functions π
stored in the nodes of the HTree, which do not have to be permutations, because
they are adversarially supplied and not certified like in [LMRS04]). Second, an
H-query that was not added to HTree is unlikely to become tethered at some
later time. Both statements rely on the fact that each time a query is placed on
the HTree, its y value is random and independent of every other y value.

5 Shorter Signatures via Input-Dependent Randomness

To shorten our signature, we now show how to reduce �r (the length of the ran-
domness appended by each signer). To do this, we replace the truly random r
from our basic scheme with an r that is computed as a function of the inputs to
the signer, and argue that it can be made shorter than the random r. Intuitively,
we are able to maintain security with a shorter r because a given signer never
produces two different signatures on the same input, thus limiting the informa-
tion that an adversary can see and exploit. Of course, this input-dependent r
need not be truly random; it suffices for a r to be a pseudorandom function of
the input.

5.1 Modifying the Scheme

We now compute r as a pseudorandom function (PRF) over the input (mi,
hi−1, xi−1) received by that signer i. Let PRFseed : {0, 1}∗ → {0, 1}�r be a PRF
with seed seed and insecurity εPRF(q, t) against adversaries asking q queries and
running in time t. Add a uniformly chosen seed to the secret key of the signer
and replace line 1 of the signing algorithm with r ← PRFseed(m,h, x).

In the previous section, we found that �r must be long enough to tolerate
a security loss of qS(qH + qS)2

−�r (Theorem 1). As we show below, �r in the
modified scheme can be shorter, since it needs only to allow for a security loss of
approximately (qG + qH + qS + �Hq

2
S)2

−�r . This is an improvement if we assume
that qH ≈ qG (since both H and G are hash functions) and qS ! qH (since in
practice hash queries can be made offline, while signing queries need access to
an actual signer).
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5.2 Key Insight for the Security Proof

Using the reduction of Section 4, we had to choose r long enough to make
it unlikely that when a forger makes a sign query on (π∗,mi, xi−1, hi−1), the
algorithm Sim-S draws a random ri that collides with a previously made H-
query Qi = (π∗,mi, ri, xi−1). Indeed, if Qi was answered by ηi and the forger
chooses hi−1 so that hi (which is computes as hi−1⊕ηi) has already been queried
to G, then when r collides, the reduction would be prevented from programming
the random oracle G(hi). Making r depend on the forger’s input to the signer
means that the forger gets only one chance (rather than qS chances) to make this
happen for a given Qi, hi−1, and hi, because subsequent attemps by the forger
will use the same r.

We show in the full version [BGR11b] that the problem of proving this mod-
ified scheme secure hinges on the following combinatorial problem.

Combinatorial Problem. Suppose β values η1, . . . , ηβ are chosen uniformly at
random as �H-bit strings and given to an adversary, who then chooses α distinct
values h′1, . . . , h

′
α. The α× β-matrix ζ is constructed by XORing the η and the

h′ values. A collision in ζ is a set of entries that are all equal. What is the total
number of entries in the γ biggest collisions?

Theorem 2. With probability at least 1 − β22�H , the total size of the γ biggest
collisions in ζ is at most α+ (�h + 2)γ2.

The proof of this theorem, as well as the entire security analysis of the modified
scheme, are found in [BGR11b].

6 Implementation and Evaluation

In the full version of the paper [BGR11b] we present details of instantiating
our scheme with RSA (these include, in particular, dealing with the problem of
slightly different domains for each signer’s permutation). We implemented the
input-dependent-r version as a module in OpenSSL [ope]. The code is available
from [BGR11a].

Overview of Our Implementation. We instantiate the permutation π with
2048-bit RSA with public exponent 65537, hash H with SHA-256, full-domain
hash G with the industry-standard Mask Generating Function (MGF) using
SHA-256 [RSA02], and the pseudorandom function PRF with HMAC-SHA-256
[BCK96]. Instead of hashing the permutation π as-is inside the hash function
H , we replace it with a short fingerprint of the RSA public key computed using
SHA-256. Thus, we have parameters �π = 2048, �h = 256, and �r = 128; the �r
value is per signer, and each signer also adds one bit of information to deal with
the problem that RSA gives each signer a slightly different domain. Therefore,
the length of the aggregate signature for n signers is 2048+256+129n bits long
(see Table 1). We justify this choice of parameters in [BGR11b].
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Table 1. Benchmark results for n signers. Computed on a laptop with a Core i3
processor at 2.4GHz and 2GB RAM, running Ubuntu. The first three schemes were
implemented using OpenSSL [ope] (with SHA-256 hashing and RSA public exponent of
65537); the BGLS scheme was implemented using MIRACL [Sco11] (with the curve BN-
128 [BN05] and with precomputation on the curve generator but not on the public keys;
further precomputation on the public keys seems to improve verification performance
by up to 20% at the cost of additional storage). Results for specific values of n are not
exactly in proportion due to rounding.

2048-bit RSA Our scheme 256-bit ECDSA 256-bit BGLS

Signature length (bits) 2048n 2304 + 129n 512n 257

Length for n = 4.5 9216 2885 2304 257

Length for n = 7 14336 3207 3584 257

Sign time (ms) 11.8 11.9 2.3 1.9

Verify time (ms) 0.3n 0.3n 2.8n ≈ 18.9 + 6.6n

Verify time for n = 4.5 1.3 1.3 12.5 47.6

Verify time for n = 7 2.1 2.1 19.4 64.8

Evaluation. We compare the implementation described in the previous para-
graph to other signature schemes that allow for lazy verification. Table 1 contains
data on our scheme as well as the “trivial” solution of using n RSA signatures, the
solution of similarly using n ECDSA [Van92,IEE02] signatures (which are current
contenders for adoption in BGPsec [Sri12, Section 4.1]), and the aggregate scheme
of [BGLS03] (we do not compare against [FLS11], because it is a more complicated
version of [BGLS03], so [BGLS03] performs better than [FLS11], anyway). In ad-
dition to providing formulas in terms of the number n of signers, we show results
for specific values of n = 4.5 and n = 7. The value of 4.5 was chosen because
it is roughly the average length of an AS path for a well-connected router on the
Internet today (average length fluctuates with time and vantage point—see, e.g.,
here [Smi12]). We should note, however, that performance for higher than average
values of n is particularly important: transition to BGPsec is expected to be par-
ticularly problematic for weaker routers, which are more likely to be located to in
the less well-connected portions of the Internet, and that experience longer than
average paths. We therefore also show results for n = 7.

The table shows that the [BGLS03] scheme is a clear winner in terms of
signature length and signing time, but has considerably slower verification4.
It should be noted, however, that it is not being considered for the BGPsec
standard at this stage [Sri12, Section 4.1]: schemes relying on bilinear Diffie-
Hellman are not considered ready for worldwide deployment on the internet
backbone by the BGPsec working group, because a consensus has not emerged
on which curves provide the right tradeoff between security and efficiency (for
example, there is not a NIST-approved set of curves such as the one contained
in [NIS09, Appendix D] for non-pairing-based elliptic-curve cryptography). It

4 A more efficient pairing-based scheme of [WM08] with a constant total number of
pairings was shown insecure by [SVS+09].
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is also important to note that the time required to compute group operations
and bilinear pairings depends very heavily on the curve used; improvements for
various curves are produced frequently, and there is no generally accepted set of
curves or algorithms at this point. We believe that, assuming continued progress
to speed-up pairings on specific curves and sufficient confidence in the security
of bilinear Diffie-Hellman on these curves, the scheme of [BGLS03] (as improved
by [BNN07]) should be considered for real applications.

As far as the remaining three schemes are concerned, we observe that ECDSA
provides the shortest signatures when n < 6, while our scheme dominates the
three for n > 6 (as we already mentioned, performance for higher than average
n is particularly important.) We also observe that our scheme has computa-
tion time almost identical to simple RSA while having much shorter signatures
(RSA signature length is listed as a particular concern in [Sri12, Section 4.1.2]).
While ECSDA has the fastest signing time, the verification times for RSA and
our scheme are an order of magnitude faster than those of ECDSA. Note that,
for a router, the time required to sign does not depend on n, but the time re-
quired to verify grows linearly with n, so verification times are also of particular
importance to weaker routers at the edge of the network.

Thus, if one is interested in a scheme based on the standard assumption of
trapdoor permutations (albeit in the random oracle model), then our proposal
fits the bill. Moreover, even if one is willing to accept security of ECDSA (which
is not known to follow from any standard assumptions), our scheme may be
preferable based on fast verify times and comparable-length signatures. Our
scheme also has much faster verifying that pairing-based BGLS.

Acknowledgements. We thank Anna Lysyanskaya for help with the early
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and explanations, and the DHS S&T CSD Secure Routing project for many
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1012910, 1012798, and a gift from Cisco.
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Abstract. We construct a perfectly binding string commitment scheme
whose security is based on the learning parity with noise (LPN) assump-
tion, or equivalently, the hardness of decoding random linear codes. Our
scheme not only allows for a simple and efficient zero-knowledge proof of
knowledge for committed values (essentially a Σ-protocol), but also for
such proofs showing any kind of relation amongst committed values, i.e.,
proving that messages m0, . . . ,mu, are such that m0 = C(m1, . . . ,mu)
for any circuit C.

To get soundness which is exponentially small in a security parameter
t, and when the zero-knowledge property relies on the LPN problem with
secrets of length �, our 3 round protocol has communication complexity
O(t|C|� log(�)) and computational complexity of O(t|C|�) bit operations.
The hidden constants are small, and the computation consists mostly of
computing inner products of bit-vectors.

1 Introduction

Commitment schemes and zero-knowledge proofs are fundamental cryptographic
primitives. In this work we propose a simple string commitment scheme and show
efficient zero-knowledge proofs for any relation amongst committed values. The
security (more precisely, the computational hiding property) of our commitment
scheme relies on the learning parity with noise (LPN) assumption, or equivalently,
on the hardness of decoding random linear codes.

Commitment schemes. A commitment scheme allows a party to commit to a
message m by publishing a commitment σ, and this commitment can be opened
at a later point in time. The security properties required are called the hiding
and binding property. Hiding means that one cannot learn anything about the
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committed message m from the commitment σ, binding means that one cannot
open a commitment σ to two different messages m �= m′.

In our scheme, the commitment to a message m is simply the encoding of m
using a random linear code, with some noise added to the codeword. Exploiting
the linear structure of this scheme, we get simple and efficient zero-knowledge
proofs for linear and multiplicative relations of committed values.

Zero-knowledge proofs of knowledge. Zero-knowledge proofs of knowledge are
two party protocols, which allow a prover to convince a verifier that it knows
some secret piece of information, without the verifier being able to learn anything
about the secret value except for what is revealed by the claim itself.

The LPN assumption. The computationally hard problem underlying the secu-
rity (i.e., the computational hiding property) of our commitment scheme is the
learning parity with noise (LPN) assumption. This problem asks to distinguish
“noisy” linear equations A.s⊕ e from uniformly random. Here A is a “skinny”
public random binary k× � matrix, s is a uniformly random � bit secret and e is
a random vector of low weight (the exact distribution of e is discussed in §2.2).
The LPN problem has found numerous applications as the assumption underlying
provably secure cryptosystems, like secret-key [21,24,26,32] and public-key [36]
authentication schemes or symmetric encryption [1,18].

LPN based cryptosystems are interesting for theoretical and practical rea-
sons. On the one hand, the LPN problem is equivalent to the problem of de-
coding random linear codes, a problem that has been studied for over half a
century [5,6,7,28,35]. The best known algorithms need 2Θ(�/ log �) time and sam-
ples (the number of samples is given by the number k of rows of A) [7]. If
k = Θ(�) is linear in �, as it will be the case in this paper, the best algorithms
need exponential 2Θ(�) time. Furthermore, unlike most number-theoretic prob-
lems used in cryptography, the LPN problem is not known to become insecure
against quantum algorithms. On the practical side, LPN based cryptosystems
tend to be extremely simple and efficient, and thus are good candidates for
weak devices like RFID tags, where existing cryptographic algorithms cannot be
implemented due to constraints on code-size, running-time or memory.

1.1 Our Contributions

Commitments from LPN. In our scheme the commitment to a message m ∈ Iv

(where I def
= {0, 1}) is simply

Com(m) = A.(r‖m)⊕ e,

where A = A′‖A′′ ∈ Ik×(�+v) is a public random binary matrix, r ∈ I� is a
uniformly random vector and e ∈ Ik is a random low-weight vector. To open a

commitment σ, one reveals r,m, e and checks if σ
?
=A.(r‖m)⊕ e and e is low

weight. Here the length � = |r| is chosen such that the LPN problem with secrets
of length � is hard. The length v = |m| of the message can be arbitrary, but for
efficiency reasons it is best to choose it roughly of the same size as �.
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Setting k = Θ(v + �) large enough, the commitment scheme becomes com-
putationally hiding and perfectly binding (with overwhelming probability over
the choice of A). The binding property follows by the large distance of the code
generated by the random matrix A, the hiding property follows directly from
the LPN assumption which implies that A′.r ⊕ e is pseudorandom.

Zero-knowledge protocols for arbitrary circuits. We construct a zero-knowledge
proof of knowledge, which is basically a so called Σ-protocol, that allows to prove
knowledge of the message m hidden inside a commitment without revealing
anything about it. Furthermore, we give a protocol for proving that committed
messages m0,m1,m2 satisfy a linear relation m0 = X1.m1 ⊕X2.m2 (for any
square matrices X1,X2). Based on this protocol, we construct proofs for any
bitwise relations m0 = m1 ◦m2, where ◦ can be any bitwise relation like AND,
NAND, OR, NOR. As NAND is functionally complete, we can prove relations
m0 = C(m1, . . . ,mt) for any boolean circuit C.

For A ∈ Ik×m, the communication complexity of our proofs is Θ(k log k).
Setting v = �, we can set k = Θ(v + �) = Θ(v), thus the proofs are quasilinear
in the length of the committed messages. The soundness error of our protocol is
2/3. To get soundness errors of 2−16 and 2−32 as specified by the ISO/IEC-9798-5
standard we would need 28 and 55 repetitions, respectively.

As one application (which we bring up to compare our scheme to existing
schemes in the related work section below) consider an NP language L = {x :
∃w : R(x,w) = 1}. Our scheme can be used to prove knowledge of a witness
w for x ∈ L as follows: commit to m0 = w and m1 = 1 and prove that the
committed values satisfy the relation Cx(m0) = m1 where Cx(.) is the circuit
computing the NP relationR(x, .). This proofs avoid expensive Karp reductions
(to 3-coloring or Hamiltonian cycles) used in classical proofs.

1.2 Related Work

Our basic scheme for proving knowledge of a committed value is similar to
Stern’s [36] zero-knowledge proof of knowledge for the syndrome decoding prob-
lem, which can be seen as the “dual” of the LPN problem, and both are known
to be NP-complete [5]. Subsequent to Stern’s work, Véron [37] proposed a Σ-
protocol for proving knowledge of an LPN secret, but as we show in the full
version of this paper [23], there is a gap in the proof of the ZK property of his
protocol. Recently, several works have extended Stern’s protocol to construct
efficient identification schemes from various lattice-based and coding based as-
sumptions (see [9,10,27] and references therein). In particular, Cayrel et al. [10]
constructed an identification scheme with knowledge error 1/2 based on the q-ary
syndrome decoding problem. However, this improvement in the knowledge error
adds two additional rounds to the protocol, and thus their construction does
not decrease the total number of rounds required to reach a specified knowl-
edge error. Very recently, Asharov et al. [3] constructed Σ-protocols for various
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learning with errors (LWE) related languages. We note that the ZK property of
their protocols crucially relies on the ability to use large noise to “smudge out”
small differences in distributions. Unfortunately, this technique does not extend
to the setting of LPN (which is the focus of this work). We finally note that
all the aforementioned works only construct ZK protocols for specific languages
and, unlike our work, do not consider the general problem of constructing ZK
proofs for circuit satisfiability.

There is a large body of work on efficient interactive or non-interactive zero-
knowledge proofs and arguments, see, e.g., [8,13,14,15,20,22,25,30,31] and the
references therein. For ZK arguments (as opposed to proofs), where the sound-
ness property is only required to hold against computationally bounded malicious
provers, one can construct schemes which asymptotically only require polyloga-
rithmic communication (e.g., the interactive argument based on CRHFs [29] or
the non-interactive argument in the random-oracle model [33]). These schemes
rely on probabilistically checkable proofs (PCP), and are not really practical.

The beautiful work of Ishai et al. [22] on zero-knowledge proofs from secure
multiparty computation aims at a similar goal as this work. They show how to
construct ZK proofs from MPC; When instantiated with simple MPC protocols
like GMW [19] they get ZK proofs for showing knowledge of a witness w such that
R(x,w) = 1 with communication complexity O(ts), where 2−t is the soundness
error and s is the size of the circuit computing the relation R(x, .), which is
the same asymptotic behavior we get (as explained in the previous section).
Using protocols relying on sophisticated secret sharing schemes for constant-
size fields based on algebraic-geometric codes [11] they even get an asymptotic
communication complexity of O(s) + poly(t, log s), but due to the large hidden
constants in such codes this scheme will only be more efficient than the simpler
scheme for very large circuits.

A ZK proof for any NP relation can of course be used to prove any relation
amongst committed values, but in general this would be rather expensive as the
computation of the opening of the commitment must be part of the description
of the relation. In contrast, our ZK proofs work directly on committed values,
and we do not pay extra for this. Proving relations amongst committed values
has been considered before, see [15] and references therein. These works give
very efficient proofs for algebraic circuits over large fields, but are less suited
for circuits over very small ones, in particular, for Z2 as in boolean circuits. As
an application, consider the case where we need to prove that committed values
satisfy m0 = AES(m1,m2), i.e., m0 is the output of the AES block-cipher
under key m1 on input m2.

1.3 Outline

We introduce some notation and recapitulate the basic definitions required for
this paper in Section 2. In Section 3 we present a very simple commitment
scheme based on the hardness of the LPN problem. Protocols allowing one to



Commitments and Efficient Zero-Knowledge Proofs from LPN 667

prove knowledge of the content of such commitments, and relations among them,
are presented in Section 4. We finally conclude in Section 5.

2 Preliminaries

We use bold lower-case and upper-case letters like a,A to denote vectors and
matrices, respectively. Probabilistic polynomial time (PPT) algorithms are writ-
ten by sans-serif letters like A. Calligraphic letters like A always denote sets. We

write a
R← A if a was drawn uniformly at random from set A, a

R← χ if a was

drawn according to some probability distribution χ, and a
R←A if a is the output

of a randomized algorithm A.
We denote the set {0, 1} by I, thus Ik denotes the set of strings of length

k. The Hamming weight of a ∈ Ik is denoted by ‖a‖1 =
∑k

i=1 a[i]. With
Ikw = {a ∈ Ik : ‖a‖1 = w} we denote the set of all k-bit vectors of weight
exactly w. The all-zeros and all-ones vectors of length k are denoted by 0k and
1k, respectively. The concatenation of vectors a and b is written as a‖b. The
symmetric group on k elements (i.e., the set of all permutations on k elements)
is denoted Sk. For π ∈ Sk and a ∈ Ik, π(b) denotes the string a[i] = b[π(i)].

2.1 Commitment Schemes

Definition 2.1. A triple of algorithms (KGen,Com,Ver) is called a commitment
scheme if it satisfies the following:

– On input 1�, the key generation algorithm KGen outputs a public commitment
key pk.

– The commitment algorithm Com takes as inputs a message m from a message
space M and a commitment key pk, and outputs a commitment/opening pair
(c, d).

– The verification algorithm Ver takes a key pk, a message m, a commitment
c and an opening d and outputs 1 or 0.

The commitment scheme we construct satisfies the following security properties:

– Correctness : Ver evaluates to 1 whenever the inputs were computed by an
honest party, i.e.,

Pr[Ver(pk,m, c, d) = 1; pk
R← KGen(1�),m ∈M, (c, d)

R← Com(m, pk)] = 1

– Perfect binding : With overwhelming probability over the choice of the public

key pk
R← KGen(1�), no commitment c can be opened in two different ways,

i.e.,
(Ver(pk,m, c, d) = 1) ∧ (Ver(pk,m′, c, d′) = 1)⇒ m = m′

– Computational hiding: A commitment c computationally hides the commit-

ted message: with overwhelming probability over the choice of pk
R←KGen(1�),

for every m,m′ ∈M and (c, d)
R←Com(m, pk), (c′, d′)

R←Com(m′, pk) the dis-
tributions c and c′ are computationally indistinguishable.
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2.2 Learning Parity with Noise

The computational assumption underlying all our constructions is the learning
parity with noise (LPN) assumption. Below we define the decisional version of
LPN in a general form, not yet specifying the error distribution.

Definition 2.2. For k, � ∈ N, let χ be an error distribution over Ik. The deci-
sional (χ, �, k)-LPN problem is (s, ε)-hard if for every distinguisher D of size s:∣∣∣∣ Pr

x,A,e
[D(A,A.x⊕ e) = 1]− Pr

r,A
[D(A, r) = 1]

∣∣∣∣ ≤ ε

where A
R← Ik×�, e

R← χk, r
R← Ik, and x

R← I� is fixed and secret. The search
version is defined similarly, but we require that no D can find the secret x:∣∣∣∣ Pr

x,A,e
[D(A,A.x⊕ e) = x

∣∣∣∣ ≤ ε

In the standard definition of the LPN problem, the error distribution χ is the
Bernoulli distribution with some parameter 0 < τ < 1

2 , i.e., every bit e[i] is
chosen independently and identically distributed with Pr[e[i] = 1] = τ , we will
refer to this version as LPNτ . As mentioned in the introduction, for k = Θ(�)
as used in this paper, the search version of LPNτ is the same as the problem
of decoding random linear codes, and is believed to be exponentially hard. The
search and decision version of LPNτ are known to be equivalent [6,26], but to
show this search to decision reduction, the number of samples k in the decision
version must be much larger than in the search version (by a factor of Ω(�/ε)).
More recently, a sample preserving reduction has been shown [2, Lemma 4.4].
(cf. [34] for a more general treatment of sample preserving reductions).

Exact LPN. In this work we define a new version of the LPN problem, which we
call exact LPN or xLPN for short. Similar to LPNτ , xLPN is parameterized by
some noise parameter 0 < τ < 1

2 , and the (search or decision) xLPNτ problem is
defined exactly like LPNτ , except that the Hamming weight of the error vector
is exactly �kτ� (not of expected weight kτ as in LPNτ ). That is, e is sampled
uniformly at random from the set Ik�kτ�.

In this work, we assume the hardness of decisional xLPN.1 It is not hard to
see that search xLPNτ is hard iff search LPNτ is hard.2 Showing equivalence
of decisional xLPNτ and LPNτ version is more tricky. The classical search to
decision reduction for LPNτ from [6,26] does not work for xLPNτ , but the sample
preserving reduction [2, Lemma 4.4] does. Summing up, we have

1 The security of the basic commitment scheme can be based on decisional LPN, but
our Σ-protocols to prove relations amongst committed values “leak” the weight of
the error vectors. Thus, to be zero-knowledge, we need this value to be fixed.

2 Any D who outputs x with advantage ε for xLPNτ , will output the secret x with
advantage at least ε/

√
k of LPNτ , as the error vector sampled in LPNτ has weight

�kτ� with probability ≥ 1/
√
k, and conditioned on this being the case, the error

distribution is exactly the same as in xLPNτ .
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Proposition 2.3. The hardness of decisional xLPNτ (used in this paper) is poly-
nomially related to the hardness of search LPNτ .

The sample preserving reduction [2, Lemma 4.4] relies on the Goldreich-Levin
theorem, and as a consequence is not very tight. Although we do not know of
significantly more efficient attacks against xLPNτ than against LPNτ , if one in-
sists on basing the security of our schemes on the standard LPNτ assumption in
a provable manner, one must take the loss in the reduction into account, which
would result in rather large parameters. A protocol relying on the security of
the standard decisional LPNτ assumption can be found in the full version of this
paper. The protocol given there can be extended to prove arbitrary relations
amongst committed values, in the same manner as in the case of xLPNτ assump-
tion. However, this protocol is somewhat more complicated and has a worse
soundness error (4/5 as compared to 2/3), and thus requires roughly twice the
number of repetitions in order to achieve the same knowledge error.

As suggested in [26, Section 5], replacing the LPN assumption with an as-
sumption where we have a fixed upped bound on the weight of the error vector
(like it is the case in xLPN) would remove the completeness error (and thus
allows for more efficient instantiations) also for other LPN based schemes, like
HB type protocols. We thus think that investigating the exact hardness of the
xLPN-problem is of interest beyond the realm of this work.

2.3 Zero-Knowledge Proofs of Knowledge and Σ-Protocols

Informally, a zero-knowledge proof of knowledge is a two party protocol between
a prover P and a verifier V which allows the former to convince the latter that
it knows some secret piece of information without revealing anything about it.
A bit more precisely, in a zero-knowledge proof for a binary relation R, the
parties have common input y and the prover has private input w such that
(y, w) ∈ R. The protocol must then satisfy the following three properties: (i)
For an honest prover, the verifier always accepts (completeness). (ii) For every
potentially malicious verifier V∗ there exists a PPT simulator only taking y as an
input whose output is indistinguishable from conversations of V∗ with an honest
prover (zero-knowledge). (iii) From every prover P∗ which can make the verifier
accept with a probability larger than a threshold κ (the knowledge error), a w′

satisfying (y, w′) ∈ R can be extracted efficiently in a rewindable black-box way
(proof of knowledge). For a formal definition we refer to Bellare and Goldreich [4].

The protocols we are going to design in the following are all instantiations of
the following definition:

Definition 2.4 (Σ-Protocol). Let (P,V) be a two-party protocol, where V is
PPT, and let R be a binary relation. Then (P,V) is called a Σ-protocol for R
with challenge set C, public input y and private input w, if and only if it satisfies
the following conditions:

– 3-move form: The protocol is of the following form:
• The prover P computes a commitment t and sends it to V.
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• The verifier V draws a challenge c
R←C and sends it to P.

• The prover sends a response s to the verifier.
• Depending on the protocol transcript (t, c, s), the verifier accepts or re-
jects the proof.

The protocol transcript (t, c, s) is called accepting, if the verifier accepts the
protocol run.

– Completeness: The verifier V accepts whenever (y, w) ∈ R.
– Special soundness: There exists a PPT algorithm E (the knowledge ex-

tractor) which takes a set {(t, c, sc) : c ∈ C} of accepting transcripts with the
same commitment as inputs, and outputs w′ such that (y, w′) ∈ R.

– Special honest-verifier zero-knowledge: There exists a PPT algorithm
S (the simulator) taking y and c ∈ C as inputs, and which outputs triples
(t, c, s) whose distribution is (computationally) indistinguishable from accept-
ing protocol transcripts generated by real protocol runs.

It is well known that every Σ-protocol is also a proof of knowledge for the
same relation [16]. However, while in Σ-protocols the existence of a simulator is
only required for the honest verifier, zero-knowledge proofs require this existence
for arbitrary, potentially malicious, verifiers. This can be reached by applying
generic standard techniques to Σ-protocols, e.g., Damg̊ard et al. [17].

We note that our definition of Σ-protocols slightly differs from the standard
definition found in the literature [12,16]. For the special soundness property, it
is typically required that a valid witness can already be computed given any two
accepting conversations with the same commitment but different challenges. We
loosen this definition and only require that w′ can be computed given valid re-
sponses to all challenges for a fixed commitment t. It can easily be seen that the
aforementioned results showing that every Σ-protocol is also a proof of knowl-
edge still hold true. However, while for the standard definition the knowledge
error is given by 1/#C it is only given by 1− 1/#C for Definition 2.4.

3 Perfectly Binding String Commitments from LPN

Our commitment scheme is parameterized by the main security parameter � ∈ N,
0 < τ < 0.25, the message length v ∈ N and k ∈ O(� + v). Finally, we set
w = �τk�. The algorithms of the commitment scheme are then given as follows:

– KGen: The public commitment key consists of the matrix A = A′‖A′′ ∈
Ik×(�+v), where A′ R←Ik×� and A′′ R←Ik×v.

– Com: The commitment to a message m ∈ Iv is given by A.(r‖m)⊕e, where

r
R←I� and e

R←Ikw. The opening of the commitment is given by m and r.
– Ver: Given a commitment c, a message m′ and a randomness r′, a verifier

accepts if and only if e′ = c⊕A.(r′‖m′) has weight w.

Theorem 3.1. Let 0 < τ < 0.25, and �, k, v ∈ N be such that the decisional
xLPNτ problem (with secrets of length � and k samples) is hard. Let k = Θ(�+v)
be such that with overwhelming probability a randomly chosen generator matrix
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of a linear code A ∈ Ik×(�+v) has distance larger than 2w, i.e., ‖A.x‖1 > 2w
for all x ∈ I�+v. Then the above commitment scheme is perfectly binding and
computationally hiding.

Proof. The required security properties can be seen as follows:

Perfect binding. Assume, by contraposition, thatmi, ri, i = 1, 2 are two different
openings for a commitment c. That is, we have that ei = c ⊕ A.(ri‖mi) has
norm at most w for i = 1, 2. Thus we have that e1 ⊕ e2 = A.(r1‖m1 ⊕ r2‖m2)
is a codeword of length ‖e1 ⊕ e2‖1 ≤ ‖e1‖1 + ‖e2‖1 ≤ 2w, contradicting our
assumption on the distance of the code generated by A.

Computational hiding. We have that c = A′.r ⊕ e ⊕ A′′.m. By the xLPNτ -
assumption A′.r ⊕ e, and thus also c, is pseudorandom. � 

4 Zero-Knowledge Proofs of Knowledge

In this section we first construct a Σ-protocol, which on common input A and
y allows the prover to prove knowledge of a valid opening of y under the com-
mitment scheme presented in Section 3. The protocol borrows some basic ideas
from Stern [36], who gave a Σ-protocol for the syndrome decoding problem.

After presenting this basic protocol, we give two further Σ-protocols. The
first can be used to prove that committed strings satisfy any linear relation. The
second protocol can be used to show that committed strings satisfy any bitwise
relation like bitwise AND, NAND, OR or NOR. As NAND is functionally com-
plete, using this protocol we can construct Σ-protocols for any relation amongst
committed messages.

4.1 Proving Knowledge of a Valid Opening

The following Σ-protocol proves knowledge of a valid opening for commitments
of the form described in the previous section, i.e., it shows possession of r,m, e
such that y = A.(r‖m) ⊕ e for an error satisfying ‖e‖1 = w. For notational
convenience we will sometimes write s to denote the vector r‖m.

A first idea for such a protocol (which will not quite work) is to mimic
Schnorr’s protocol as follows: (1) the prover P commits to some value t0 =

A.v ⊕ f , (2) the verifier V sends a challenge c
R←{0, 1}, (3) the prover opens t0

(i.e., sends v,f ) if c = 0 and opens t0 ⊕ y (i.e., sends v ⊕ s,f ⊕ e) if c = 1.
If in this protocol f is sampled such that it has low weight, then e⊕ f leaks

information about e, and the protocol is not zero-knowledge. On the other hand,
if f is uniformly random (so e⊕f is independent of e), the protocol is not sound
(informally, all we can say is that from answers to both challenges we can extract
s′, e′ where y = A.s′ ⊕ e′, but e′ can have arbitrary weight, and finding such
a solution is trivial). In our protocol f is chosen uniformly at random, and to
ensure soundness we use a trick from Stern [36]. We additionally commit to a
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random permutation π ∈ Sk and to π(f ), π(f⊕e). On challenge c = 0 and c = 1
we now additionally make sure the openings are consistent with the committed
errors by opening π and either π(f ) (if c = 0) or π(f⊕e) (if c = 1). Moreover we
extend the challenge space from two to three. The extra challenge c = 2 is used
to verify that the weight of π(f )⊕π(f⊕e) = π(e) (and thus e) is small, this will
ensure soundness, as from valid answers to all three challenges we can extract
s′, e′ where y = A.s′ ⊕ e′ and e′ has low weight. Opening the commitments
to π(f ), π(f ⊕ e) on c = 2 does not hurt the ZK property, as π(f ), π(f ⊕ e)
contains no information about e except its weight.

The common input to P,V is A and y, P’s secret input is (e, s). The protocol
flow is then given as follows, where the commitment scheme Com(.) can be instan-
tiated by an arbitrary perfectly binding string commitment scheme, potentially
the scheme presented in Section 3 itself.

– P samples a permutation π
R←Sk at random.

It then draws v
R←I�+v, f

R←Ik, and then sends the following commitments
to the verifier V:

C0 ← Com(π′ = π, t0 = A.v ⊕ f)
C1 ← Com(t1 = π(f))
C2 ← Com(t2 = π(f ⊕ e))

– The verifier draws c
R← Z3 and sends it to P.

– Depending on the value of c, P opens the following commitments:

0. P opens C0, C1 by sending π′, t0, t1 and the associated random coins.
1. P opens C0, C2 by sending π′, t0, t2 and the associated random coins.
2. P opens C1, C2 by sending t1, t2 and the associated random coins.

– The verifier verifies the correctness of the openings received from the prover,
and additionally performs the following checks depending on the challenge
c:

0. V accepts, iff t0 ⊕ π′−1(t1)
?

∈ imgA and π′ ?

∈ Sk.
1. V accepts, iff t0 ⊕ π′−1(t2)⊕ y

?

∈ imgA.
2. V accepts, iff ‖t1 ⊕ t2‖1 = w.

Theorem 4.1. The above protocol is a Σ-protocol for the following relation:

RLPN = {((A,y), (r,m, e)) : y = A.(r‖m)⊕ e ∧ ‖e‖1 = w}

Proof. The 3-move form required for Definition 2.4 is clear. The remaining prop-
erties can be seen as follows.

Completeness. It is easy to see that an honest prover can always convince the
verifier. Depending on the challenge c, we get:

0. t0⊕π′−1(t1) = (A.v⊕f)⊕π−1(π(f )) = A.v ∈ imgA and π is a permutation.
1. t0⊕π′−1(t2)⊕y = (A.v⊕f)⊕π−1(π(f⊕e))⊕(A.s⊕e) = A.(v⊕s) ∈ imgA.
2. ‖t1 ⊕ t2‖1 = ‖π(f )⊕ π(f ⊕ e)‖1 = ‖π(f ⊕ f ⊕ e)‖1 = ‖π(e)‖1 = ‖e‖1 = w.
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Special Soundness. Assume that we have fixed values C0, C1, C2 and openings
for all challenges c ∈ Z3, such that the verifier accepts on all of them. Then,
by the assumed perfect binding property of the underlying commitment scheme
Com(.), we know that the openings to identical commitments must be identical
across different challenges.

By adding the verification equations for c = 0 and c = 1 we get that π′−1(t1⊕
t2) ⊕ y ∈ imgA and thus that y = A.s′ ⊕ π′−1(t1 ⊕ t2), where s′ = (r′‖m′)
is easy to compute. Now, using that ‖t1 ⊕ t2‖1 = w, we have a valid witness of
(A,y) is thus given by (r′,m′, π′−1(t1 ⊕ t2)).

Honest-Verifier Zero-Knowledge. In the following we describe an efficient simu-
lator S, which for each challenge c ∈ Z3 outputs an accepting protocol transcript
the distribution of which is computationally indistinguishable from real protocol
transactions with an honest prover for challenge c.

0. The simulator S computes C0 and C1 like an honest prover, and computes
C2 as a commitment to 0. Then, clearly, the distribution of C0, C1, π

′, t0, t1
is identical to that in real protocol transcripts. Furthermore, by the compu-
tational hiding property of the commitment scheme Com(.), the distribution
of C2 is computationally indistinguishable from that in real protocol runs.

1. For c = 1, the simulator draws π
R← Sk, a

R← Ik and b
R← I�+v. It sets

C0 = Com(π,A.b⊕y⊕a) and C2 = Com(π(a)). The value of C1 is computed
as commitments to 0. It easy to see that the openings of C0, C2 pass the
verification equations. To see the correctness of their distributions note that
t2 in the real protocol run and π(a) in the simulated run are perfectly uni-
form in Ik, and the permutations are also equally distributed both times.
Concerning the opening of C0, note the following: in the real protocol run,
we have t0 = A.v⊕f , where v is uniformly at random, and f = π−1(t2⊕e);
in the simulated transcript the content of C0 is given by A.(b⊕s)⊕ (a⊕e).
Now, v and b⊕s are both uniformly random, and the terms f and a⊕e are
uniquely determined by the contents of C0 and C2. Thus, the distributions of
C0, C2 and their openings are perfectly simulated. The distribution of C1 is
computationally indistinguishable by the assumed hiding property of Com(.).

2. Finally, for c = 2, the simulator draws a
R← Ik and b ← Ikw uniformly at

random. It computed C0 as a commitment to 0, C1 = Com(a) and C5 =
Com(a ⊕ b). As before, the distributions of C0 is computationally indistin-
guishable from real protocol runs by the binding property of Com(.), and C1

and C2 as well as their openings can easily be seen to perfectly simulate the
behavior of an honest prover. � 

4.2 Proving Linear Relations

We next describe a Σ-protocol which allows to prove that the messages hid-
den within commitments y1,y2,y2 (where yi = A.(ri‖mi) ⊕ ei) satisfy arbi-
trary linear relations. That is, X1.m1 ⊕ X2.m2 = m3 for arbitrary matrices
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X1,X2 ∈ Iv×v. The computational and communication complexity of the pro-
tocol is roughly the same as for proving the knowledge of the three committed
messages using the protocol from the previous section, proving that they also
satisfy the linear relation comes almost for free.

The high level idea of the protocol is as follows. P and V run the protocol from
the previous section to prove knowledge of m1,m2,m3 for all the messages in
parallel (but using the same challenge for all three). Recall that (oversimplifying
a bit by ignoring the issue with the errors, i.e., the challenge c = 2) this protocol
goes as follows: P commits to three random messages v1,v2,v3, and later opens
the vi’s (if c = 0) or vi ⊕mi (if c = 1). We change this protocol now a bit,
and instead choosing v3 at random we compute it as v3 = X1.v1 ⊕ X2.v2.

Moreover the verifier now additionally checks if v3
?
=X1.v1 ⊕X2.v2 (if c = 0)

and if (v3⊕m3)
?
=X1.(v1⊕m1)⊕X2.(v2⊕m2) (if c = 1). With these changes,

we get a stronger soundness property: not only can we extract the committed
messagesmi from accepting answers to both challenges, but they will also satisfy
m3 = X1.m1 ⊕X2.m2. At the same time the zero-knowledge property is not
weakened, except of course for leaking the fact that the mi’s satisfy this linear
relation.

The protocol flow is defined as follows:

– P samples permutations π1, π2, π3 at random.

It then draws v1,v2
R←Iv, u1,u2,u3

R←I�, f1,f2,f3
R←Ik, sets v3 = X1.v1⊕

X2.v2 and then sends the following commitments for i = 1, 2, 3 to the verifier
V:

Ci0 ← Com(π′
i = πi, ti0 = A.(ui‖vi)⊕ f i)

Ci1 ← Com(ti1 = πi(f i))
Ci2 ← Com(ti2 = πi(f i ⊕ ei))

– The verifier draws c
R← Z3 and sends it to P.

– Depending on the value of c, P opens the following commitments:

0. P opens Ci0, Ci1 by sending π′
i, ti0, ti1 and the associated random coins.

1. P opens Ci0, Ci2 by sending π′
i, ti0, ti2 and the associated random coins.

2. P opens Ci1, Ci2 by sending ti1, ti2 and the associated random coins.

– The verifier verifies the correctness of the openings received from the prover,
and additionally performs the following checks depending on the challenge
c:

0. V accepts, iff π′
i

?

∈ Sk, there exist solutions (ai, bi) ∈ I� × Iv to the
equations ti0 ⊕ π′−1

i (ti1) = A.(ai‖bi) and they satisfy b3 = X1.b1 ⊕
X2.b2.

1. V accepts, iff there exist solutions (ci,di) ∈ I� × Iv to the equations
ti0 ⊕ π′−1

i (ti2)⊕ yi = A.(ci‖di) and they satisfy d3 = X1.d1 ⊕X2.d2.

2. V accepts, iff ‖ti1 ⊕ ti2‖1 ?
= w.
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Theorem 4.2. The above protocol is a Σ-protocol for the following relation:

RLLPN =
{
((A,X1,X2,y1,y2,y3), (r1, r2, r3,m1,m2,m3, e1, e2, e3)) :

3∧
i=1

(
yi = A.(ri‖mi)⊕ ei ∧ ‖ei‖1 = w

)
∧ m3 = X1.m1 ⊕X2.m2

}
.

As we can turn any commitment y = A.(r‖m)⊕e for an (unknown) message m
into a commitment for the message m⊕x as y⊕A.(0�‖x) = A.(r‖(m⊕x))⊕e.
Our protocol directly implies a protocol for affine relations

RALPN =
{(

(A,X1,X2, {xi,yi}3i=1), ({ri,mi, ei}3i=1)
)
:

3∧
i=1

(
yi = A.(ri‖mi)⊕ ei ∧ ‖ei‖1 = w

)
∧ (m3 ⊕ x3) = X1.(m1 ⊕ x1)⊕X2.(m2 ⊕ x2)

}
.

In particular, this allows to prove that m1 = 1v ⊕m2, i.e., m1 is the bitwise
negation of m2. Furthermore, the protocol can be seen to directly generalize to
relations among more than 3 secret messages as well.

Proof. We do not give a full proof here, as it is very similar to that of Theo-
rem 4.1. Besides technicalities, the only difference is to prove that the extracted
witnesses indeed satisfy the required linear relation.

This can be seen as follows. From the verification equations of c = 0 and c = 1
we first get that yi = A.(ai⊕ci‖bi⊕di)⊕π′−1

i (ti1⊕ti2), where the second addend
has low weight by the same arguments as earlier. Using the linear relations among
the bi and the di we further get (b3⊕ d3) = X1.(b1⊕ d1)⊕X2.(b2⊕d2). Thus,
a valid witness is given by r′i = ai ⊕ ci, m

′
i = bi ⊕ di and e′i = π′−1

i (ti1 ⊕ ti2).
To see that the protocol is still honest-verifier zero-knowledge it suffices to

note that the only additional information the verifier learns is that the random
coins used in the protocol and the secret witnesses satisfy the linear relation
which is already part of the description of the relation RLLPN . The rest of the
protocol is just a parallel execution of independent instances of the protocol for
RLPN . � 

4.3 Proving Multiplicative Relations

Finally, we present a protocol which can be used to prove a bitwise relation
amongst commitments y1,y2,y3 (where yi = A.(ri‖mi)⊕ei). That is, it allows
one to prove that the messages satisfy m3 = m1 ◦m2. The main idea of the
protocol is to reduce the task of proving this multiplicative relation to a linear
one, which we showed how to solve in the last section.

In the protocol, which is given in detail below, the prover P first samples

vectors m̃1, m̃2, m̃3
R←I4v such that (1) m̃3 = m̃1◦m̃2 and (2) for all (a, b) ∈ I2
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the number of indices j ∈ {1, . . . , 4v} satisfying (m̃1[j], m̃2[j]) = (a, b) is exactly

v. Further, the prover draws a random matrix R
R← Iv×4v with full rank such

that each row has Hamming weight exactly 1 and such that R.m̃i = mi for
i = 1, 2, 3 (so R is a v× v permutation matrix with 3v additional zero columns).

Now P and V basically run the protocol from the previous section to prove
the linear relation R.m̃i = mi, with the crucial difference that the relation R is
not know to V, instead the prover additionally sends a commitment to R with
the first message. Moreover P sends commitments to the m̃i’s to V.

The challenge space is extended from Z3 to Z4 (but will later merge c = 2
and c = 3 and get back to 3). If c ∈ {0, 1, 2}, the prover opens the commitment
to R and sends the same answer as he would in the the protocol for proving
the linear relation R.m̃i = mi for the given c. If c = 3, the prover opens the

commitments to the m̃i’s, and V checks if m̃3
?
= m̃1 ◦ m̃2.

The soundness of this protocol follows as R.m̃i = mi and m̃3 = m̃1 ◦ m̃2

together imply the claimed statement m3 = m1 ◦m2.
The zero knowledge property holds as even though R together with the m̃i’s

determines the mi’s, each by itself is completely independent of the mi’s, and
we never open both.

Finally, we observe that in our protocol for proving linear relations, the verifier
does not need to know the linear relation R if c = 2. So we can collapse the
challenges c = 2 and c = 3 as described above, but not open R in this case.

Formally, the protocol flow is defined by the following algorithms:

– P samples m̃1, m̃2, m̃3
R←I4v such that m̃3 = m̃1 ◦m̃2 and such that for all

(a, b) ∈ I2 the number of indices j ∈ {1, . . . , 4v} satisfying (m̃1[j], m̃2[j]) =

(a, b) is exactly v. Further, the prover draws a random matrix R
R← Iv×4v

with full rank such that each row has at most Hamming weight 1 and such
that R.m̃i = mi for i = 1, 2, 3.
In the following we denote the jth v-bit block of m̃i by m̃j

i , i.e., m̃
j
i =

(m̃iu)
jv
u=(j−1)v+1. Similarly, Rj denotes the matrix given by columns (j −

1)v + 1 to jv of R.
In the remainder of this protocol description all computations are done for
i = 1, 2, 3 and j = 1, 2, 3, 4, respectively.

P draws r̃ji
R← I� and defines auxiliary images as ỹj

i = A.(r̃ji‖m̃
j
i ) ⊕ ẽji for

ẽji
R←Ikw. It then samples permutations πi, π

j
i ← Sk at random.

It then draws vj
i

R←Iv, ui,u
j
i

R←I�, f i,f
j
i

R←Ik, sets vi =
∑4

j=1 R
j .vj

i and
then sends the following commitments to the verifier V:

C̃ ← Com(ỹ′1
1 = ỹ1

1, . . . , ỹ
′4
3 = ỹ4

3) CR ← Com(R′ = R)

Ci0 ← Com(π′
i = πi, ti0 = A.(ui‖vi)⊕ f i)

Ci1 ← Com(ti1 = πi(f i)) Ci2 ← Com(ti2 = πi(f i ⊕ ei))

Cj
i0 ← Com(π′j

i = πji , t
j
i0 = A.(uj

i‖v
j
i )⊕ f j

i )

Cj
i1 ← Com(tji1 = πji (f

j
i )) Cj

i2 ← Com(tji2 = πji (f
j
i ⊕ ẽji ))

– The verifier draws c
R← Z3 and sends it to P.
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– Depending on the value of c, P opens the following commitments:
0. P opens Ci0, Ci1, C

j
i0, C

j
i1, CR by sending π′

i, ti0, ti1, π
′j
i , t

j
i0, t

j
i1,R

′ and
the associated random coins.

1. P opens Ci0, Ci2, C
j
i0, C

j
i2, C̃, CR by sending π′

i, ti0, ti2, π
′j
i , t

j
i0, t

j
i2, ỹ

′j
i ,R

′

and the associated random coins.
2. P opens Ci1, Ci2, C

j
i1, C

j
i2, C̃ by sending ti1, ti2, t

j
i1, t

j
i2, ỹ

′j
i and the asso-

ciated random coins.
– The verifier verifies the correctness of the openings received from the prover,

and additionally performs the following checks depending on the challenge
c:
0. V accepts, iff π′

i, π
′j
i

?

∈Sk, there exist solutions (ai, bi), (a
j
i , b

j
i ) ∈ I�×Iv

to the equations ti0 ⊕ π′−1
i (ti1) = A.(ai‖bi) and tji0 ⊕ (π′j

i )
−1(tji1) =

A.(aj
i‖b

j
i ), respectively, which satisfy bi =

∑4
j=1 R

′j.bji .
1. V accepts, iff R′ has full rank and each row has Hamming weight at most

1, and iff there exist solutions (ai, bi), (a
j
i , b

j
i ) ∈ I�×Iv to the equations

ti0⊕π′−1
i (ti2)⊕yi = A.(ai‖bi) and tji0⊕ (π′j

i )
−1(tji2)⊕ ỹ′j

i = A.(aj
i‖b

j
i ),

respectively, which satisfy bi =
∑4

j=1 R
′j .bji .

2. V accepts, iff ‖ti1 ⊕ ti2‖1 = ‖tji1 ⊕ tji2‖1
?
= w, ỹ′j

i
?
= A.(r̃ji‖m̃

j
i ) ⊕ ẽji ,

‖ẽji‖1
?
= w and m̃j

1 ◦ m̃
j
2

?
= m̃j

3.

Theorem 4.3. The above protocol is a Σ-protocol for the following relation:

RMLPN =
{
((A,y1,y2,y3), (r1, r2, r3,m1,m2,m3, e1, e2, e3)) :

3∧
i=1

(yi = A.(ri‖mi)⊕ ei ∧ ‖ei‖1 = w) ∧ m3 = m1 ◦m2

}
.

Proof. The 3-move form of the protocol is easy to see. Furthermore, completeness
directly follows from the construction and can easily be verified.

Special soundness. Concerning the special soundness of the protocol, note the
following. Using the same arguments as in the proof of Theorem 4.1, we can
extract openings m′

i, r
′
i and e′i of the yi, and similarly, we get m̃′j

i , r̃
′j
i and ẽ′ji

which are valid openings for the ỹ′j
i . Now, by the same arguments as in Theo-

rem 4.2 we can further infer that m′
i =

∑4
i=1 R

′j .m̃′j
i = R′.m̃′

i. Furthermore,
we know that m̃′

1 ◦ m̃′
2 = m̃′

3. Now, because of the special form of R′, we can
finally infer that the same relation must also be true for the m′

i.

Honest-verifier zero-knowledge. We do not give a full simulator here, but only
give the intuition why the protocol is zero-knowledge. Clearly, the m̃j

i are uni-
formly random in their domain, and do not leak any information about the mi,
as long as the matrix R is kept secret. Similarly, if the m̃j

i are kept secret, the
matrix R itself is a uniformly random matrix of full rank with the specified
restriction on the weight of its rows. Computationally this still holds true even
if the ỹj

i are revealed, as they are pseudorandom by Theorem 3.1. The zero-
knowledge property now follows from that of the protocol for RLLPN . � 
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4.4 Proving Arbitrary Relations

We finally briefly explain how one can use the protocols presented in this section
to prove that committed valuesm0,m1 satisfym0 = C(m1) for an arbitrary cir-
cuit C. Let C1, . . . , Cd denote the layers of C, i.e., C(m1) = Cd(. . . C1(m1) . . .),
where we assume that each Ci is either a linear function or a bitwise operation
(e.g., bitwise NAND). For simplicity we assume the number of input and output
wires to each Ci is �, where � is the length of the underlying LPN problem.

We use our string commitment scheme to commit to the values in the interme-
diate layers, i.e., to strings x1, . . . ,xd where x1 = m1,x2 = C1(m1), . . . ,xd =
C(m1) (note that we already have commitments to x1 = m1 and xd = m0).
Now we use our Σ-protocols to prove that xi+1 = Ci(xi) for i = 1 . . . d− 1.

The total communication complexity of this protocol is Θ(
∑
|Ci|� log �) =

Θ(|C|� log �), the soundness error is 2/3, and thus for most applications must be
lowered by (parallel) repetition.

5 Conclusions and Open Problems

We presented a very simple and efficient string commitment scheme, whose se-
curity is based on the hardness of the LPN-problem, or, equivalently, on the
hardness of decoding random linear codes. We further presented Σ-protocols
which allow one to prove arbitrary relations among secret values mi, i.e., m0 =
C(m1, . . . ,mu) for any circuit C. The size of a proof is only quasi-linear in the
length of the committed messages.

We introduced an “exact” version of the LPN-problem which is polynomially
equivalent to the standard LPN problem. This new assumption might be of inde-
pendent interest as basing existing LPN based schemes on this new assumptions
removes the completeness error (cf. §2 for a discussion).

It would be interesting to find protocols which already achieve a small knowl-
edge error in only run, and do not rely on repetitions. Furthermore, a tighter
reduction for the hardness of the decisional xLPN problem, in particular not
relying on the Goldreich-Levin theorem, would be desirable.

Acknowledgment. We are grateful to Petros Mol for helpful discussions on
the reduction for the hardness of the xLPN problem.
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Abstract. We introduce the notion of covert security with public ver-
ifiability, building on the covert security model introduced by Aumann
and Lindell (TCC 2007). Protocols that satisfy covert security guarantee
that the honest parties involved in the protocol will notice any cheating
attempt with some constant probability ε. The idea behind the model
is that the fear of being caught cheating will be enough of a deterrent
to prevent any cheating attempt. However, in the basic covert security
model, the honest parties are not able to persuade any third party (say,
a judge) that a cheating occurred.

Wepropose (and formally define) an extension of themodelwhere,when
an honest party detects cheating, it also receives a certificate that can be
published and used to persuade other parties, without revealing any in-
formation about the honest party’s input. In addition, malicious parties
cannot create fake certificates in the attempt of framing innocents.

Finally, we construct a secure two-party computation protocol for any
functionality f that satisfies our definition, and our protocol is almost as
efficient as the one of Aumann and Lindell. We believe that the fear of a
public humiliation or even legal consequences vastly exceeds the deterrent
given by standard covert security. Therefore, even a small value of the
deterrent factor ε will suffice in discouraging any cheating attempt.

1 Introduction

One of the main goals of the theory of cryptographic protocols is to find se-
curity definitions that provide the participants with meaningful guarantees and
that can, at the same time, be achieved by reasonably efficient protocols. Both
standard security notions lack one of these two properties: the level of security
offered by semi-honest secure protocols is unsatisfactory (as the only guaran-
tee is that security is achieved if all parties follow the protocol specification)
while malicious secure protocols (that offer security against arbitrarily behaving
adversaries) are orders of magnitude slower than semi-honest ones.
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In covert security, introduced by Aumann and Lindell in 2007 [AL07], the
honest parties have the guarantee that if the adversary tries to cheat in order to
break some of the security properties of the protocol (correctness, confidentiality,
input independence, etc.) then the honest parties will notice the cheating attempt
with some constant probability ε. Here, unlike the malicious model where the
adversary cannot cheat at all, the adversary can effectively cheat while taking
the risk of being caught. This relaxation of the security model allows protocol
designers to construct highly efficient protocols, essentially only a small factor
away from the efficiency of semi-honest protocols.

The main justification for covert security is that, in many practical applica-
tions, the relationship between the participants of the protocol is such that the
fear of being caught cheating is enough of a deterrent to avoid any cheating
attempt. For example, two companies that decide to engage in a secure compu-
tation protocol might value their reputation and the possibility of future trading
with the other company more than the possibility of learning a few bits of in-
formation about the other company’s input, and therefore have no incentive in
trying to cheat in the protocol at all.

However, a closer look at the covert model reveals that the repercussion of a
cheating attempt is somewhat limited: Indeed, if Alice tries to cheat, the protocol
guarantees that she will be caught by Bob with some predetermined probability,
and so Bob will know that Alice is dishonest. Nevertheless, Bob will not be able
to bring Alice in front of a judge or to persuade a third party Charlie that Alice
cheated, and therefore Alice’s reputation will only be hurt in Bob’s eyes and no
one else. This is due to the fact that Charlie has no way of telling apart the
situation where Alice cheated from the situation where Bob is trying to frame
Alice to hurt her reputation: Bob can always generate fake transcripts that will
be indistinguishable from a real interaction between a cheating Alice and Bob.

This becomes a problem, as the fact that only Bob knows that Alice has tried
to cheat may not be enough of a deterrent for Alice. In particular, consider the
scenario where there is some social asymmetry between the parties, for instance
if a very powerful company engages in a protocol with a smaller entity (i.e., a
citizen). If the citizen does not have any clear evidence of the cheating she will
not be able to get any compensation for the cheating attempt, as she will not
be able to sue the company or persuade any other party of the misbehavior –
who would believe her without any proof? This means that if we run a covert
protocol between these parties, the fact that a party can detect the cheating
may not be enough to prevent the more powerful one from attempting to cheat.

The scenario described above can be dramatically changed if, once a party
is caught cheating, the other party receives some undeniable evidence of this
fact, and this evidence can be independently verified by any third party. We
therefore introduce the notion of covert security with public verifiability where if
a party is caught cheating, then the honest parties receive a certificate – a small
piece of evidence – that can be published and used to prove to all those who
are interested that indeed there was a dishonest behavior during the interaction.
Clearly, this provides a stronger deterrent than the one given by covert security.
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Intuitively, we want cheating parties to be accountable for their actions i.e., if
a party cheats then everyone can be persuaded of this fact. At the same time, we
need also the system to be defamation-free in the sense that no honest parties
can be framed i.e., no party can produce a fake cheating certificate.

Towards Better Efficiency: Choosing the Right ε. In order to fully under-
stand the benefit of covert-security with public verifiability, consider the utilities
of a rational Alice, running a cryptographic protocol with Bob for some task. Let
(Uh, Uc, Uf , U

pub
f ) be real numbers modeling Alice utilities: Alice’s utility is Uh

when she runs the protocol honestly, and so both parties learn the output and
nothing else. If Alice attempts to cheat, she will receive utility Uc if the cheating
attempt succeeds. If the cheating attempt fails (i.e., Alice gets caught), the util-

ity received by Alice will be Uf in the standard covert security setting and Upub
f

in the setting with public verifiability. We assume that Uc > Uh > Uf > Upub
f ,

namely, Alice prefers to succeed cheating over the outcome of an honest ex-
ecution, prefers the latter over being caught cheating, and prefers losing her
reputation in the eye of one parties over losing it publicly.

Remember that, since the protocol is ε-deterrent, whenever Alice attempts to
cheat she will be caught with probability ε and succeed with probability 1 − ε.
Therefore, assuming that Bob is honest, Alice’s expected payoff is Uh when she
plays the honest strategy and ε · U ′

f + (1− ε) · Uc when she plays cheating, with

U ′
f ∈ {Uf , U

pub
f } depending on whether the protocol satisfies public verifiability

or not. Therefore if we set

ε >
Uc − Uh

Uc − U ′
f

then Alice will maximize her expected utility by playing honest. This implies
that the value of ε needed to discourage Alice from cheating is much higher in
the standard covert security setting than in our framework.

As the value of the deterrent factor ε determines the replication factor and
thus the efficiency of covert secure protocols, we believe that in practice using
covert security with public verifiability will lead to an increase in efficiency, as
the benefits obtained by the reduced replication factor will exceed the limited
price to pay for achieving the public verifiability property on top of the covert
secure protocol.

Main Ideas. It is clear that no solution to our problem exists in the plain model
and that we need to be able to publicly identify parties. We therefore set our
study in the public-key infrastructure (PKI) model, where the keys of all parties
are registered in some public database. Note that in practice this is not really
an additional assumption, as most cryptographic protocols already assume the
existence of authenticated point-to-point channels, that can be essentially only
implemented by having some kind of PKI and letting the parties sign all the
messages they exchange to each other.

At this point it might seem that the problem we are trying to solve is trivial,
and that the solution is simply to let all parties sign all the exchanged messages
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in a covert secure protocol. Here is why this näıve solution does not reach our
goal: As a first problem, we need to make sure that the adversary cannot abort as
a consequence of being caught cheating; think of a zero-knowledge (ZK) protocol
with one bit challenge, where the prover only knows how to answer to a challenge
c = 0. If the verifier asks for c = 1, the malicious prover has no reason to
reply with an invalid proof and will abort instead. Surely, the honest party will
suspect the prover of cheating but will have no certificate to show to a judge.
The problem of an adversary aborting as an escape from being caught cheating
was already raised in [AL07, Section 3.5], and the solution is to run all the cut-
and-choose via an oblivious transfer (OT): here the prover (acting as a sender)
inputs openings to all possible challenges and the verifier (acting as the receiver)
inputs his random challenge. Due to the security of the OT, the prover now
cannot choose whether to continue or abort the protocol as a function of the
verifier’s challenge. The prover needs to decide in advance whether to take the
risk of being caught, or abort before the execution of the OT protocol.

Secondly, we need to ensure that the published certificate does not leak infor-
mation about the honest party’s input: when the honest party detects cheating,
it computes a certificate as a function of its view i.e., the (signed) transcript
of the protocol, his input and his random tape. Therefore, this certificate may
(even indirectly) leak information about the input of the honest party. This is
clearly unsatisfactory and leads us to the following unfortunate situation: a party
knows that the other party has cheated, however, in order to prove this fact to
the public he is required to reveal to the adversary his private information.

For the sake of concreteness, consider a protocol where Alice chooses a key pair
(pk, sk) for a homomorphic encryption scheme E, and sends Bob (pk,Epk(x))
where x is Alice’s input. Later in the protocol, Alice and Bob use the homo-
morphic properties of E for a cut-and-choose; i.e., Bob sends the first message
of a ZK proof, Alice sends an encrypted challenge Epk(c) and Bob obliviously
computes the last message of the ZK proof for the challenge c, and signs all the
transcripts of the protocol. Alice finally decrypts and checks the validity of the
proof. Note that Bob cannot abort as a function of c (due to the semantic secu-
rity of the encryption scheme). If Bob cheats and Alice detects it, she receives
a proof, a signature on the (encrypted) incriminating messages. Alice can now
publish the transcript and her secret key sk in order to enable the judge to verify
that Bob cheated. However, once the certificate is made public, Bob will learn
the secret, decrypt the first ciphertext and learn x.

Moreover, a malicious Alice might have a strategy to compute a different secret
key sk′ that makes the signed ciphertext decrypt to some “illegal” message that
can be used to frame an innocent Bob. These examples show that things can
easily go wrong, and motivates the need for a formal study of covert security
with public verifiability.

Signed Oblivious Transfer. As a building block for our construction we intro-
duce a new cryptographic primitive, that we shall call signed oblivious-transfer.
In this primitive, the sender inputs two message (m0,m1) and a signature key
sk, and the receiver inputs a bit b. At the end of the protocol, the receiver will
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learn the message mb together with a signature on it, while the sender learns
nothing. That is, the receiver learns: (mb, Sigsk(b,mb)).

To see the importance of this tool in constructing protocols that satisfy covert
security with public verifiability it is useful to see how it can be used to fix the
problems with the zero-knowledge protocols described before. A very high level
description of the signed-OT based zero-knowledge protocol is: (1) First the
prover prepares the first message of the zero-knowledge protocol and sends it to
the verifier together with a valid signature on it; (2) Now the prover prepares
the answers to both challenges c = 0 and c = 1 and inputs them, together with
his secret key, to the signed OT; (3) The verifier inputs a random choice bit c
to the signed OT and receives the last message of the zero-knowledge protocol
together with a valid signature on it. The verifier checks this message and, if the
proof passes the verification, it outputs accept. On the other hand, if the proof
is invalid, the verifier can take the transcript of the protocol and send them to
any third party as an undeniable proof that the prover attempted to cheat.

Note that this works only because b is included in the signature. Had b not
be signed, the prover could input the simulated opening to both branches of
the OT. This makes the (signed) transcript look always legit (in particular,
it does not depend on the challenge bit b), and the verifier cannot persuade
a third party that the prover did not properly answer to his challenge. Also,
note that it is not enough to run a standard OT, where the prover inputs
(m0, Sig(0,m0)), (m1, Sig(1,m1)), as in this case the prover could cheat by send-
ing a valid signature on the valid opening, and no signature on the wrong opening
– it is crucial for the security of the protocol that the verifier is persuaded that
both signatures are valid, even if only one is received.

Our Model. Our security definition guarantees that when an honest party pub-
lishes the certificate, the adversary cannot gain any additional information from
this certificate even when it is combined with the adversary’s view, in a strong
simulation sense. This, together with the fact that in the strong explicit cheat
formulation of covert security a cheating party does not learn any information
about the honest party’s input and output, guarantees that the certificate does
not leak any unintentional information to anyone seeing the certificate (i.e., the
certificate can be simulated without the input/output of the honest party).

A covert secure protocol with public verifiability is composed of an “honest”
protocol and two extra algorithms to deal with cheating situations: the first
is used to produce a certificate when a cheating is detected, and the other to
decide whether a certificate is authentic or not. The requirements for the two
latter algorithms are the following: any time that an honest party outputs that
the other party is corrupted, the evaluation of the verification algorithm on
the produced certificate should output the identity of the corrupted party. In
addition, no one should be able to produce incriminating certificates against
honest parties.

Organization and Results. In Section 2, we define and justify the model of
covert security with public verifiability. In Section 3 we show how to construct
a signed-OT protocol: our starting point is the very efficient OT protocol due
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to Peikert, Vaikuntanathan and Waters [PVW08]. The resulting protocol is only
slightly less efficient than the protocol of PVW.

Signed-OT will also be the main ingredient in our protocol for two-party
secure computation using Yao’s garbled circuit, described in Section 4. Here
we show that for any two party functionality f , there exists an efficient covert
secure protocol with ε-deterrent and public verifiability. Our protocol is roughly
1/ε slower than a semi-honest secure protocol, and has essentially the same
complexity as an ε-deterrent secure protocol without public verifiability.

Technically, our starting point is the protocol presented in [AL07, Section 6.3]
(the variant where aborting is not considered cheating) the only differences with
the original protocol are that every call to an OT is replaced by a call to a signed-
OT, and that the circuit constructor will also send a few signatures in the right
places. We believe that this is a very positive fact as the resulting protocol is only
slightly less efficient than the original covert secure protocol, showing how covert
security with public verifiability offers a much greater deterrent to cheating than
standard covert security (as a cheater can face huge loss in reputation or even
legal consequences), while only slightly decreasing the efficiency of the protocol.

Related Work. The idea of allowing malicious parties to cheat as long as this
is detected with significant probability can be found in several works, e.g. [FY92,
IKNP03,MNPS04], and it was first formally introduced under the name of covert
security by Aumann and Lindell [AL07]. Since then, several protocols satisfying
this definition have been constructed, for instance [HL08,GMS08,DGN10]. It is
possible to add the public verifiability property to any of these protocols. Doing
so in the most efficient way is left as a future work.

2 Definitions

Preliminaries. A function μ(·) is negligible, if for every positive polynomial p(·)
and all sufficiently large n’s it holds that μ(n) < 1/p(n). A probability ensemble
X = {X(a, n)}a∈{0,1}∗;n∈N is an infinite sequence of random variables indexed by
a and n ∈ N. Usually, the value a represents the parties’ inputs and n the security
parameter. Two distributions ensembles X = {X(a, n)}a∈{0,1}∗;n∈N and Y =
{Y (a, n)}a∈{0,1}∗,n∈N are said to be computationally indistinguishable, denoted

X
c≡ Y , if for every non-uniform polynomial-time algorithm D there exists a

negligible function μ(·) such that for every a ∈ {0, 1}∗ and every n ∈ N,

|Pr [D (X(a, n)) = 1]− Pr [D (Y (a, n)) = 1]| ≤ μ(n)

We assume the reader to be familiar with the standard definition for secure
multiparty computation [Can00,Gol04].

Covert Security: Aumann and Lindell [AL07] present three possible defini-
tions for this notion of security, where the three definitions constitute a strict
hierarchy. We adopt the strongest definition that is presented, which is called
“strong explicit cheat formulation” (Section 3.4 in [AL07]).
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A protocol that is secure with respect to this definition is also secure with
respect to the two other suggested definitions. Informally, in this stronger for-
mulation, the adversary may choose to input a special input cheat to the ideal
functionality. The ideal functionality will then flip a coin and with probability
(1− ε) will give to the adversary full control: the adversary will learn the honest
party’s input and instruct the functionality to deliver any output of its choice.
However, with probability ε, the ideal functionality will inform the honest party
of the cheating attempt by sending him a special symbol corrupted, and crucially,
the adversary will not learn any information about the honest party’s input.

2.1 Covert Security with Public Verifiability

For the sake of simplicity, we will present the definition and the motivation for
the two-party case. The definition can be easily extended to the multi-party case.

Motivation: As discussed in the introduction, we work in the FPKI-hybrid
model where each party Pi registers a verification key vki for a signature scheme.
This key will be used to uniquely identify a party. Note that we do not require
parties to prove knowledge of their secret keys (i.e., the simulator will not know
these secret keys), so this is the weakest FPKI formulation possible [BCNP04].

We extend the covert security model of Aumann and Lindell [AL07] and
enhance it with the public verifiability property: As in covert security, if the
adversary chooses to cheat it will be caught with probability ε, and the honest
party outputs corrupted. However, in this latter case, the protocol in addition
provides this party an algorithm Blame to distil a certificate from its view in the
protocol. A third party who wants to verify the cheating (“the judge”) should
take the certificate and decide whether the certificate is authentic (i.e., some
cheater has been caught) or it is a fake (i.e., someone is trying to frame an
innocent). The verification is performed using an additional algorithm, which is
called Judgement. We require the verification procedure to be non-interactive,
which will enable the honest party to send the certificate to a judge or to publish
it on a public “wall of shame”.

In addition, as our interest is mainly to protect the interest of the honest
party, we want to make sure that the certificate of cheating does not reveal any
unnecessary information to the verifier. Therefore, we cannot simply publish the
view (transcript and random tape) of the honest party, as those might reveal
some information about the input or output of the honest party. In addition, we
need to remember that the adversary sees the certificate once it is published and
therefore we should take care that no one will be able to learn any meaningful
information from this certificate, even when combining it with the adversary’s
view. To capture this fact, we use the convention that when a party detects a
cheating, it creates the certificate and sends it to the adversary.

The fact that the certificate is part of the view of the adversary means that the
simulator needs to include this certificate as a part of the view when it receives
corrupted from the ideal functionality. Remember that in this case the simulator
does not learn anything from the trusted party rather than the adversary got
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caught, and therefore this implies that our definition ensures that the certificate
cannot reveal the private information of the honest party.

Regarding the Judgement algorithm, we require two security properties: when-
ever an honest party outputs corrupted, running the algorithm on the certificate
will output the identity of the corrupted party. Moreover, no adversary (even
interacting with polynomially many honest parties) can produce a certificate for
which the verification algorithm outputs the identity of an honest party.

2.2 The Formal Definition

Let f be a two party functionality. We consider the triple (π,Blame, Judgement).
The algorithm Blame gets as input the view of the honest party (in case of cheat
detection) and outputs a certificate Cert . The verification algorithm, Judgement,
takes as input a certificate Cert and outputs the identity id (for instance, the
verification key) of the party to blame or none in the case of an invalid certificate.

The Protocol: Let π be a two party protocol. If an honest party detects a
cheating in π then the honest party is instructed to compute Cert = Blame(view)
and send it to the adversary.

Let realπ,A(z),i∗(x1, x2; 1
n) denote the output of the honest party and the

adversary on a real execution of the protocol π where P1, P2 are invoked with
inputs x1, x2, the adversary is invoked with an auxiliary input z and corrupts
party Pi∗ for some i∗ ∈ {1, 2}.

The Ideal World. The ideal world is exactly as [AL07, Definition 3.4]. Let
idealπ,A(z),i∗(x1, x2) denote the output of the honest party, together with the
output of the simulator, on an ideal execution with the functionality f , where
P1, P2 are invoked with inputs x1, x2, respectively, the simulator S is invoked
with an auxiliary input z and the corrupted party is Pi∗ , for some i∗ ∈ {1, 2}.

Notations. Let execπ,A(z)(x1, x2; r1, r2; 1
n) denote the messages and the out-

puts of the parties in an execution of the protocol π with adversary A on auxil-
iary input z, where the inputs of P1, P2 are x1, x2, respectively, and the random
tapes are (r1, r2). Let execπ,A(z)(x1, x2; 1

n) denote the probability distribution
of execπ,A(z)(x1, x2; r1, r2) where (r1, r2) are chosen uniformly at random. Let
output(execπ,A(z)(x1, x2)) denote the output of the honest party in the exe-
cution described above. We are now ready to define the security properties.

Definition 1 (covert security with ε-deterrent and public verifiability)
Let f , π, Blame and Judgement be as above. We say that (π,Blame, Judgement)
securely computes f in the presence of a covert adversary with ε-deterrent and public
verifiability if the following conditions hold:

1. (Simulatability with ε-deterrent:) The protocol π (where the honest
party broadcasts Cert = Blame(view) if it detects cheating) is secure against
a covert adversary according to the strong explicit cheat formulation with
ε-deterrent (see [AL07, Definition 3.4]).
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2. (Accountability:) For every ppt adversary A corrupting party Pi∗ for i∗ ∈
{1, 2}, there exists a negligible function μ(·) such that for all sufficiently large
x1, x2, z ∈ ({0, 1}∗)3 the following holds:
If output(execπ,A(z),i∗(x1, x2; 1

n)) = corruptedi∗ then:

Pr [Judgement (Cert) = idi∗ ] > 1− μ(n)

where Cert is the output certificate of the honest party in the execution.
3. (Defamation-Free:) For every ppt adversary A controlling i∗ ∈ {1, 2} and

interacting with the honest party, there exists a negligible function μ(·) such
that for all sufficiently large x1, x2, z ∈ ({0, 1}∗)3:

Pr [Cert∗ ← A; Judgement(Cert∗) = id3−i∗ ] < μ(n)

Every Malicious Secure Protocol Is Also Covert Secure with Public
Verifiability. As a sanity check, we note that any protocol that is secure against
malicious adversaries satisfies all of the above requirements, with deterrence
factor ε = 1−negl(n): aborting is the only possible malicious behavior. Therefore
the function Blame will never be invoked and the function Judgement outputs
none on every input. In other words, given that no cheating strategy can succeed
except with negligible probability, we have that by definition no one ever “cheats”
and no one can be “framed”.

3 Signed Oblivious Transfer

As discussed in the introduction, signed oblivious transfer (signed OT) is one of
the main ingredient in our construction. For the sake of presentation, one can
think of signed OT as a protocol implementing the following functionality:

(⊥; (mb, Sigsk(b,mb)))← F ((m0,m1, sk), (b, vk))

However it turns out that while this formulation certainly suffices for our goal, it
is not necessary for our secure two-party computation protocol in Section 4. In
particular, we don’t need the signature to be computed by the ideal functionality.
We therefore use a relaxed version of the signed OT functionality, that allows
a malicious sender to choose any two strings (σ∗

0 , σ
∗
1) and input them to the

functionality. If (σ∗
0 , σ

∗
1) are valid signatures on the messages (0,m0) and (1,m1)

respectively, the functionality delivers (mb, σ
∗
b ) to the receiver or abort otherwise.

In other words, we allow a corrupted sender to influence the randomness involved
in the generation of the signature, as long as it provides correct signatures for
both messages. See Functionality 1 for the formal description.

3.1 A PVW Compatible Signature Scheme

As a first step, we will construct a (somewhat contrived) signature scheme, de-
signed to combine efficiently with the OT protocol. Essentially, we are combining
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FUNCTIONALITY 1 (The Signed OT Functionality – FSignedOT
Π )

The functionality is parameterized by a signature Scheme Π = (Gen,Sig,Ver).

Inputs: The receiver inputs (vk, b) – a verification key together with a bit
b ∈ {0, 1}. The input of the sender is (m0,m1, sk, σ

∗
0 , σ

∗
1). An honest

sender is restricted to input (σ∗
0 , σ

∗
1) = (⊥,⊥).

Output: If (σ∗
0 , σ

∗
1) = (⊥,⊥) the functionality computes σ = Sigsk(b,mb)

and verifies that Vervk((b,mb), σ) = 1. It then outputs (mb, σ) to the
receiver or abort in case where the verification fails.
If (σ∗

0 , σ
∗
1) 	= (⊥,⊥) the functionality outputs (mb, σ

∗
b ) to the receiver if

Vervk((0,m0), σ
∗
0) = 1 and Vervk((0,m0), σ

∗
0) = 1 or abort otherwise.

a signature scheme Π ′ = (Gen′, Sig′,Ver′) with a computationally binding com-
mitment Com = (Setup,Com,Open) (we do not need the commitment to be
hiding). The verification key vk of the combined scheme is the same as the ver-
ification key of the original scheme vk′. On input a message m, the combined
signature algorithm Sig chooses a random commitment key ck = Setup(1n) and
a string r, compute the commitment (c, d) = Comck(m; r) and outputs:

(ck, d, c, Sig′sk(ck, c))← Sigsk(m) . (1)

On input (m, (ck, d, c, σ)), the verification algorithm Ver outputs 1 if and only
if Openck(c, d) = m and Vervk((ck, c), σ) = 1. Unforgeability of the combined
scheme follows from the unforgeability of the original scheme together with the
binding property of the commitment scheme. (Note that here is the signer creates
both the commitment key and the commitment itself – differently from the
standard game for computationally binding commitments, where the receiver
needs to generate the key.) See the full version for details.

We present the commitment scheme that we use in the above template. Let
(G, q) be a prime order group where the DDH assumption is believed to hold.
Define the randomized function RAND(g0, h0, g1, h1) = (u, v), where u =
(g0)

s · (h0)
t and v = (g1)

s · (h1)t and s, t ∈R Zq. Observe that if (g0, h0, g1, h1)
is a DDH tuple for some x (i.e, there exists an x such that g1 = gx0 and h1 = hx0)
then u is distributed at random in G and v = ux. In case where (g0, h0, g1, h1)
is not a DDH tuple (i.e, logg0 g1 �= logh0

h1) then the pair (u, v) is distributed
uniformly at random in G2. See [PVW08] for more details. The commitment
scheme is as follows:

– The Setup Algorithm Setup: On input security parameter 1n, the setup
chooses a DDH tuple (g0, h0, g1, h1) in G and defines ck = (g0, h0, g1, h1).

– The Commitment Algorithm Comck: On input message (b,m) ∈ {0, 1}×
G, the Com algorithm chooses a random r ∈R Zq and computes (g, h) =
(gb, hb)

r and (ub, vb) = RAND(gb, g, hb, h), wb = m · vb, (u1−b, w1−b) ∈R

G2. Then, it defines c = (g, h, u0, w0, u1, w1) and the decommitment value
d = (r; (b,m)).
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– The Opening Algorithm Openck(c, d): On input key ck = (g0, h0, g1, h1),
commitment c = (g, h, u0, w0, u1, w1) and decommitment d = (r; (b,m)), the
opening algorithm checks that (g, h) = (gb, hb)

r and wb = m · urb . If so it
outputs (b,m), otherwise ⊥.

Claim 1. Assuming computing discrete logarithms is hard in G, the scheme
(Setup,Com,Open) is computationally binding.

Proof Sketch: To see that the scheme is binding, observe that there is a unique
mapping between r and (b,m) in the following way: given a commitment c =
(g, h, u0, w0, u1, w1) and the decommitment r, we search for b for which (g, h) =
(gb, hb)

r. Given (r, b), the messagem is defined as: wb ·(ub)−r. Therefore, the only
way that an adversary can break the binding property of a given commitment
c is by finding r′ for which (g, h) = (gr

′

1−b, h
r′

1−b). But, to find such an r′ the
adversary needs to break the discrete logarithm assumption.

Our PVW compatible signature scheme Π = (Gen, Sig,Ver) is the a combination
of the signature scheme Π ′ and the commitment scheme Com as defined in
Eq. (1). We conclude:

Corollary 1. If Π ′ = (Gen′, Sig′,Ver′) is an existentially unforgeable under
an adaptive chosen-message attack signature scheme and the discrete logarithm
problem is hard in (G, g0, q), then Π = (Gen, Sig,Ver) is also existentially un-
forgeable under an adaptive chosen-message attack.

3.2 PVW-Based Signed OT

We present the protocol for signed OT in Protocol 1, combining the PVW OT
protocol with the signature scheme described above. Like the original OT pro-
tocol [PVW08], our signed OT protocol can be extended in the straightforward
way to an 1-out-of-� signed OT (see the full version). Note that the overall pro-
tocol is just the DDH-based instantiation of the PVW OT framework with the
following differences (clearly marked in the protocol description): (1) The sender
chooses the “CRS” (g0, h0, g1, h1) and proves that it is a DDH tuple. (Remember
that in this case the receiver’s message hides his choice bit statistically). (2) The
sender signs all the messages it sends to the receiver.

Note that the Com algorithm is distributed, in the sense that both parties
contribute to the input and randomness: in particular the receiver chooses b
while the sender specifies (m0,m1) without knowing which message is going to
be chosen.

Lemma 1. Let Π = (Gen, Sig,Ver) be the PVW-compatible signature scheme

defined above. Then, Protocol 1 securely implements the FSignedOT
Π -functionality

in the presence of a malicious adversary.
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PROTOCOL 1 (Signed One-out-of-Two OT Protocol)

Setup: This step can be done once and reused for multiple runs of the OT:
The sender S chooses (g0, h0) ∈R G2 and a random α ∈R Zq and compute
g1 = gα0 and h1 = hα

0 . The sender sends (g0, h0, g1, h1) to the receiver
R and gives a zero-knowledge proof-of-knowledge that (g0, h0, g1, h1) is a
DDH tuple.

Choose: R chooses random r ∈R Zq, computes g = (gb)
r, h = (hb)

r and
sends (g, h) to S;

Transfer: The sender operates in the following way:
1. S computes (u0, v0) = RAND(g0, g, h0, h) and (u1, v1) =

RAND(g1, g, h1, h);
2. S sends R the values (u0, w0) where w0 = v0 ·m0, and (u1, w1) where

w1 = v1 ·m1;
3. (diff) S sends to the receiver

σ′ = Sig′sk′((g0, h0, g1, h1), (g, h, u0, w0, u1, w1));

Retrieve: (diff) Let vk = vk′. R checks that σ′ is a valid signature on the
transcript of the protocol. If so, R outputs: mb = wb · (ub)

−r and (diff)

σ = ((g0, h0, g1, h1), (r; (b,mb)), (g, h, u0, w0, u1, w1), σ
′) .

Otherwise, it outputs abort.

Proof Sketch: As discussed in Corollary 1, σ is a proper signature on the
message (b,mb), and therefore the correct functionality is implemented when
both parties are honest.

The proof of security of the underlying OT protocol is by now standard and
can be found in [PVW08,HL10]. When the receiver is corrupted, the simulator
plays as an honest sender except that it chooses instead a non-DDH tuple in
step “Setup” (i.e., some (g0, g

x
0 , g1, g

y
1)) and then, given the pair (g, h) and using

the trapdoor (x, y), it can extract the receiver input’s bit b by finding whether h

equals gx or gy. It then sends b to the functionality FSignedOT
Π . Clearly, adding the

signature σ′ does not break any security property of the original OT protocol (it
is easy to see that any attack to this protocol can be reduced to an attack to the
original protocol, where the reduction will simply produce this extra signature).

For the case of a corrupted sender, the simulator plays as an honest receiver
(with b = 1) except that it extracts α from the zero-knowledge proof in step
“Setup”. Using this trapdoor, it can compute both messages m0,m1 (as in the
proof of the original protocol). Then, it computes the two signatures σ∗

0 , σ
∗
1 as

follows:

σ∗
0 = ((g0, h0, g1, h1), (α · r, (0,m0)), (g, h, u0, w0, u1, w1), σ

′)

σ∗
1 = ((g0, h0, g1, h1), (r, (1,m1)), (g, h, u0, w0, u1, w1), σ

′)

In order to see that these are valid signatures on (0,m0), (1,m1) respectively,
recall that (g, h) = (g1, h1)

r = (g0, h0)
α·r. This implies that α · r is a valid

opening of c for (0,m0) whereas r is the opening of c for (1,m1). Finally, it is
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easy to see that the distribution of the constructed signatures are the same as
in the real execution.

4 Two-Party Computation with Publicly Verifiable
Covert Security

The protocol is an extension of the two party protocol of [AL07], which is based
on Yao’s garbled circuit protocol for secure two-party computation. We will start
with an informal discussion of the ways that a malicious adversary can cheat
in Yao’s protocol1 and we will present the (existing) countermeasures to make
sure that such attacks will be detected with significant probability, thus leading
to covert security. Finally we will describe how to add the public verifiability
property on top of this. The ways that a malicious adversary can cheat in Yao’s
protocol are as follows:

1. Constructing bad circuits: To prevent P1 from constructing a circuit that
computes a function different than f , P1 constructs � independent garbled
circuits and P2 checks �−1 of them. Therefore if P1 cheats in the construction
of the circuits, P2 will notice this with probability > 1− 1/�. To make sure
P1 cannot abort if it is challenged on an incorrect circuit, we run the cut-
and-choose through a 1-out-of-� signed OT, so that P2 will always receive
some (signed) opening of the circuits that can be used to prove a cheating
attempt to a third party.

2. Selective failure attack on P2’s input values: When P2 retrieves its
keys (using the OT protocol), P1 may take a guess g at one of the inputs
bits of P2. Then, it may use some string r instead of the valid key k1−g, as
input to the OT protocol. Now, in case where that P1 guesses correctly and
indeed the input bit equals g, P2 receives kg and does not notice that there
was anything wrong. However, in case the guess is incorrect, P1 receives r
instead of k1−g which is an invalid key and thus it aborts. In both cases, the
way P2 reacts completely reveals this input bit. This problem can be fixed
by computing a different circuit, where P2’s input is an m-out-of-m linear
secret sharing of each one of the input bits of P2. Now every m−1 input bits
of P2 to the protocol are uniformly random and therefore P2 will get caught
with probability 1−2−m+1 if it attempts to guess (the encoding of) an input
bit. By using a signed OT we will ensure that P2 receives a certificate on the
wrong keys if P1 cheats.

LetCom denote a perfectly-binding commitment scheme, whereCom(x; r) denotes
a commitment to x using randomness r. (GenENC,Enc,Dec) is a semantically secure
symmetric encryption scheme. (Gen, Sig,Ver) is an existentially unforgeable signa-
ture scheme under an adaptive chosen-message attack. Note that it is crucial that
everymessage is signed together with some extra-informationabout the role of this

1 We assume the reader to be familiar with Yao’s garbled circuit protocol. See [LP09]
for more details and full proof of security.
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message (i.e., with unique identifiers for the parties executing the protocols, the in-
stance of the protocol,which type ofmessage in the protocol,which gate/wire label
is the message associated too etc.) but we will neglect these extra information in
the description of our protocol for the sake of simplicity.

PROTOCOL 2 [Two-Party Secure Computation]

Inputs: Party P1 has input x1 and Party P2 has input x2, where |x1| = |x2|. In
addition, both parties have parameters � and m, and a security parameter n. For
simplicity, we will assume that the length of the inputs are n. (diff) Party P1

knows a secret key sk for a signature scheme and P2 received the corresponding
verification key vk from the FPKI.

Auxiliary Input: Both parties have the description of a circuit C for inputs
of length n that computes the function f . The input wires associated with x1 are
w1, . . . , wn and the input wires associated with x2 are wn+1, . . . , w2n.

The Protocol2

1. Parties P1 and P2 define a new circuit C′ that receives m+ 1 inputs x1, x
1
2,

. . . , xm2 each of length n, and computes the function f(x1,⊕m
i=1x

i
2). Note

that C′ has n+mn input wires. Denote the input wires associated with x1 by
w1, . . . , wn, and the input wires associated with xi2 by wn+(i−1)m, . . . , wn+im

for i = 1, . . . , n.
2. P2 chooses m− 1 strings x12, . . . , x

m−1
2 uniformly and independently at ran-

dom form {0, 1}n, and defines xm2 =
(
⊕m−1

i=1 x
i
2

)
⊕x2, where x2 is P2’s original

input. Observe that ⊕m
i=1x

i
2 = x2.

3. For each i = 1, . . . ,mn and β = 0, 1, party P1 chooses � encryption keys by
running GenENC(1

n) for � times. Denote the jth key associated with a given
i and β by kjwn+i,β

.

4. P1 and P2 invoke the mn times the (diff) FSignedOT
Π functionality with the

following inputs: In the ith execution, party P1 inputs the pair:([
k1wn+i,0, . . . , k

�
wn+i,0

]
,
[
k1wn+i,1, . . . , k

�
wn+i,1

])
and party P2 inputs the bit xi2 (P2 receives the keys

[
k1
wn+i,xi

2
, . . . , k�

wn+i,xi
2

]
and a signature on this as output). If P2 output in the OT is aborti, then it
outputs aborti and halts.

5. Party P1 constructs � garbled circuits GC1, . . . , GC� using independent ran-
domness for the circuit C′ described above. The keys for the input wires
wn+1, . . . , wn+mn in the garbled circuits are taken from above (i.e., the keys
associated with wn+i are k

j
wn+i,0

and kjwn+i,1
). The keys for the inputs wires

w1, . . . , wn are chosen randomly, and are denoted in the same way. P1 sends
the � garbled circuits to P2 (diff) together with a signature on those.

2 The description of the protocol is almost verbatim from [AL07] to help the reader
identify the few (clearly marked) differences between our protocol and the original
protocol.
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6. P1 commits to the keys associated with its inputs. That is, for every i =
1, . . . , n, β = 0, 1 and j = 1, . . . , �, party P1 computes (diff):

cjwi,β
= Com

(
kjwi,β

; rji,β

)
, σjwi,β

= Sigsk(c
j
wi,β

)

The commitments and the signatures are sent as � vectors of pairs (one vector
for each circuit); in the jth vector the ith pair is {(cjwi,0

, σjwi,0
), (cjwi,1

, σjwi,0
)}

in a random order (the order is randomly chosen independently for each
pair). (diff) Party P2 verifies that all the signatures are correct. If not, it
halts and outputs abort1.

7. P2 chooses a random index γ ∈R {1, . . . , �}.
8. (diff) P1 and P2 engage in a

(
�
1

)
-signed OT, where P2 inputs γ and, for i =

1, . . . , �, P1 inputs as the ith message of the signed OT all of the keys for the
inputs wires in all garbled circuits except for GCi, together with the associated
mappings and the decommitment values. P1 sends also decommitments to the
input keys associated with its input for the circuit GCi.
P2 receives the openings for �− 1 circuits (all but GCγ) together with a sig-
nature on them. P2 receives also the decommitments and the keys associated
with P1’s input for circuit GCγ together with signatures on them. If any of
the signatures are incorrect, it halts and outputs abort1.

9. P2 checks that:
– That the keys it received for all GCj , j �= γ, indeed decrypt the circuits

and the decrypted circuits are all C′. (diff) If not, add key = wrongCircuit
to its view.

– That the decommitment values correctly open all the commitments cjwi,β

that were received, and these decommitments reveal the keys kjwi,β
that

were sent for P1’s wires. (diff) If not, add key = wrongDecommitment
to its view.

– That the keys received in the signed OT in Step 4 match the appro-
priate keys that it received in the opening. (diff) If not, add key =
selectiveOTattack to its view.

If all check pass, proceed to the next step, else (diff), P2 computes Cert =
Blame(view2) (see the description of Blame for its output on different key
values), it publishes Cert and output corrupted1.

10. P2 checks that the values received are valid decommitments to the commit-
ments received above. If not, it outputs abort1. If yes, it uses the keys to
compute C′(x1, z2) = C′(x1, x

1
2, . . . , x

m
2 ) = C(x1, x2), and outputs the result.

Theorem 1. Let � and m be parameters in the protocol that are both upper-
bound by poly(n), and set ε = (1 − 1/�)(1 − 2−m+1), and let f be a probabilis-
tic polynomial-time function and let π denote Protocol 2. Then, assuming the
DDH assumption, security of the commitment scheme, signature scheme and
symmetric encryption scheme as described above, (π,Blame, Judgement) securely
computes f in the presence of covert adversaries with ε-deterrent and public
verifiability (i.e, satisfies Definition 1).
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ALGORITHM 1 (The Blame Algorithm – Blame)

Input: The view of a honest party view, containing an error tag key.

Output: A certificate Cert = (id, key,message, σ).

The Algorithm:

– Case 1: key = wrongCircuit: Let j be the smallest index s.t. the garbled
circuit GCj is not a garbling of C′. Let message be the commitment to

GCj concatenated with the opening obtained via the
(�
1

)
-signed OT in

Step 8, and σ the signature on these messages.
– Case 2: key = wrongDecommitment: Let message be (c, x, r) be a com-

mitment where c 	= Com(x; r) and σ the signatures on c and (x, r).
– Case 3: key = selectiveOTattack: let message be a garbled circuit GCi and

two keys to one of its input gates. Let σ be the signature on the circuit
and the signatures on the keys obtained in Step 8.

On any other case, output ⊥.

ALGORITHM 2 (The Public Verification Algorithm – Judgement)

Input: A certificate Cert = (id, key,message, σ).

Output: The identity id or none.

The Algorithm: If σ is not a valid signature on the message message ac-
cording to verification key vkid halt and output none. Else:

– Case 1: key = wrongCircuit: Parse message as a garbled circuit GC and
the randomness r used to generate it. If GC is not an encryption of the
circuit computing C′ using randomness r output id or none otherwise.

– Case 2: key = wrongDecommitment: Parse message as (c, x, r). If c 	=
Com(x; r) output id or none otherwise.

– Case 3: key = selectiveOTattack: Parse message as a circuit GC and two
keys ki, kj for an input gate g of the circuit GC. If ki, kj do not decrypt
the gate g output id or none otherwise.

Note that even for very small replication factors this construction gives reason-
able level of deterrence factor e.g., � = 3 and m = 3 lead to ε = 50%. We can
now proceed to the proof.

Proof Sketch: We show that our protocol satisfies each one of the properties
as in Definition 1. We will use the similarity between our protocol and the one
of [AL07] to argue for covert security with ε-deterrent.

Corrupted P2. Our protocol achieves security in the presence of a malicious
P2. The security follows from the FSignedOT

Π -functionality (that as we have seen,
can be implemented efficiently with malicious security) and the same reasoning
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as in [AL07], with the exception that here we use a fully secure malicious OT
instead of a a covert. We are therefore left with the case where P1 is corrupted.

Simulatability with ε-deterrent. Our protocol is in fact the same protocol
as in [AL07], with the following differences: (1) In Steps 5 and 6, P1 sends
its messages together with a signature on those. (2) In Steps 4 and 8, signed
OT is used instead of standard OT. (3) In Step 9, if P2 outputs corruptedi,
then it sends Cert = Blame(view2) to the adversary. Let π0 be the protocol
of [AL07, Section 6.3] and π1, π2, π3 the protocols after the changes explained in
bullets 1, 2, 3 respectively.

Protocols π1 and π2 differ from π0 only because P1 signs the messages it sends
to P2. In the full version, we show that if π is a covert secure protocol with
ε-deterrent and π′ is the same protocol as π with the only change that parties
sign on all the message they send, then π′ is also a covert secure protocol with
ε-deterrent. We therefore conclude that π2 is also a covert secure protocol with
ε-deterrent.

The only difference between π3 and π2 is that if P2 outputs corrupted1, then
the adversary learns the certificate Cert . In the full version, we show that this
extra information can be simulated as well and so the overall protocol is covert
protocol with ε-deterrent.

Accountability. Accountability follows from the description of the protocol
π and the Blame, Judgement algorithms: an adversarial P1 who constructs one
faulty circuit must decide before the oblivious transfer in Step 9 if it wishes to
abort (in which case there is no successful cheating) or if it wishes to proceed
(in which case P2 will receive an explicitly invalid opening and a signature on
it). Note that due to the security of the oblivious transfer, P1 cannot know what
value γ party P2 inputs, and so cannot avoid being detected.

Once the honest party outputs the certificate, it contains all the necessary
information that caused the party to decide on the corruption. The verification
algorithm Judgement performs exactly the same check as the honest party, and
so accountability holds.

Defamation-Free. We need to show that for every ppt adversary A control-
ling i∗ ∈ {1, 2} and interacting with the honest party, there exists a negligible
function μ(·) such that for all sufficiently large x1, x2, z ∈ ({0, 1}∗)3:

Pr [Cert∗ ← A; Judgement(Cert∗) = id3−i∗ ] < μ(n)

The above holds from the security of the signature scheme. Since Judgement
never outputs the identity of P2 and may just output the identity of P1, the
only interesting case is when the adversary controls P2 and succeeds in creating
a forged certificate Cert∗ for which Judgement(Cert∗) = id1. Since P1 is honest,
it follows the protocol specifications and creates all the circuits correctly, consis-
tent and open the commitments correctly. Remember also that every signature
the honest P1 produces contains meta-information about the message (such as
identity of the participating parties, protocol unique identifier, message identifier
etc.) to ensure that a corrupted P ∗

2 cannot mix and match signatures obtained
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during different protocols to create a forged certificate. Therefore, if the adver-
sary produces a certificate that passes the verification, it must have forged one
of the messages. A more formal argument appears in the full version.

Acknowledgements. The authors would like to thank Yehuda Lindell for
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References

AL07. Aumann, Y., Lindell, Y.: Security Against Covert Adversaries: Efficient
Protocols for Realistic Adversaries. In: Vadhan, S.P. (ed.) TCC 2007.
LNCS, vol. 4392, pp. 137–156. Springer, Heidelberg (2007)

BCNP04. Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable
protocols with relaxed set-up assumptions. In: FOCS, pp. 186–195. IEEE
Computer Society (2004)

Can00. Canetti, R.: Security and composition of multiparty cryptographic proto-
cols. J. Cryptology 13(1), 143–202 (2000)

DGN10. Damg̊ard, I., Geisler, M., Nielsen, J.B.: From Passive to Covert Security
at Low Cost. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp.
128–145. Springer, Heidelberg (2010)

FY92. Franklin, M.K., Yung, M.: Communication complexity of secure computa-
tion (extended abstract). In: STOC, pp. 699–710 (1992)

GMS08. Goyal, V., Mohassel, P., Smith, A.: Efficient Two Party and Multi Party
Computation Against Covert Adversaries. In: Smart, N.P. (ed.) EURO-
CRYPT 2008. LNCS, vol. 4965, pp. 289–306. Springer, Heidelberg (2008)

Gol04. Goldreich, O.: Foundations of Cryptography, Basic Applications, vol. 2.
Cambridge University Press (2004)

HL08. Hazay, C., Lindell, Y.: Efficient Protocols for Set Intersection and Pat-
tern Matching with Security Against Malicious and Covert Adversaries.
In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer,
Heidelberg (2008)

HL10. Hazay, C., Lindell, Y.: Efficient secure two-party protocols: Techniques and
constructions. Springer (2010)

IKNP03. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending Oblivious Transfers
Efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–
161. Springer, Heidelberg (2003)

LP09. Lindell, Y., Pinkas, B.: A proof of security of yao’s protocol for two-party
computation. J. Cryptology 22(2), 161–188 (2009)

MNPS04. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party
computation system. In: USENIX Security Symposium, pp. 287–302 (2004)

PVW08. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient
and Composable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008.
LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)



A Unified Framework for UC from Only OT

Rafael Pass1, Huijia Lin2, and Muthuramakrishnan Venkitasubramaniam3

1 Cornell University, Ithaca NY 14850, USA
2 MIT and Boston University, Boston, MA, 02138, USA
3 University of Rochester, Rochester, NY 14611, USA

Abstract. In [1], the authors presented a unified framework for con-
structing Universally Composable (UC) secure computation protocols,
assuming only enhanced trapdoor permutations. In this work, we weaken
the hardness assumption underlying the unified framework to only the
existence of a stand-alone secure semi-honest Oblivious Transfer (OT)
protocol. The new framwork directly implies new and improved UC fea-
sibility results from only the existence of a semi-honest OT protocol in
various models. Since in many models, the existence of UC-OT implies
the existence of a semi-honest OT protocol.

Furthermore, we show that by relying on a more fine-grained anal-
ysis of the unified framework, we obtain concurrently secure computa-
tion protocols with super-polynomial-time simulation (SPS), based on
the necessary assumption of the existence of a semi-honest OT protocol
that can be simulated in super-polynomial times. When the underlying
OT protocol has constant rounds, the SPS secure protocols constructed
also have constant rounds. This yields the first construction of constant-
round secure computation protocols that satisfy a meaningful notions of
concurrent security (i.e., SPS security) based on tight assumptions.

Anotable corollary following fromournewunifed framwork is that stand-
alone (or bounded-concurrent) password authenticated key-exchange pro-
tocols (PAKE) can be constructed from only semi-honest OT protocols;
combined with the result of [2] that the existence of PAKE protocols im-
plies that of OT, we derive a tight characterization of PAKE protocols.

1 Introduction

The notion of secure multi-party computation allows m mutually distrustful par-
ties to securely compute a functionality f(x̄) = (f1(x̄), ..., fm(x̄)) of their cor-
responding private inputs x̄ = x1, ..., xm, such that party Pi receives the value
fi(x̄). Loosely speaking, the security requirements are that the parties learn
nothing more from the protocol than their prescribed output, and that the out-
put of each party is distributed according to the prescribed functionality. This
should hold even in the case that an arbitrary subset of the parties maliciously
deviates from the protocol.

Shortly after the notion was proposed, strong results were established for
secure multi-party computation. Specifically, it was shown that any probabilis-
tic polynomial-time computable multi-party functionality can be securely com-
puted, assuming existence of enhanced trapdoor permutations [3, 4]. The original

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 699–717, 2012.
c© International Association for Cryptologic Research 2012
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setting in which secure multi-party protocols were investigated, however, only
allowed the execution of a single instance of the protocol at a time; this is the
so called stand-alone setting. A more realistic setting, is one which allows the
concurrent execution of protocols. In the concurrent setting, many protocols are
executed at the same time. This setting presents the new risk of a coordinated
attack in which an adversary interleaves many different executions of a protocol
and chooses its messages in each instance based on other partial executions of the
protocol. The strongest (but also most realistic) setting for concurrent security—
called Universally Composable (UC) security [5]—considers the execution of an
unbounded number of concurrent protocols, in an arbitrary, and adversarially
controlled, network environment. Unfortunately, security in the stand-alone set-
ting does not imply security in the concurrent setting. In fact, without assuming
some trusted set-up, the traditional simulation-based notion of concurrent secu-
rity, and in particular UC security, cannot be achieved in general [6–8].

To circumvent the broad impossibility results, two distinct veins of research
can be identified in the literature.

Trusted Set-Up Models: A first vein of work initiated by Canetti and Fis-
chlin [6] and Canetti, Lindell, Ostrovsky and Sahai [9] (see also e.g., [10–13])
considers constructions of UC-secure protocol using various trusted set-up
assumptions, where the parties have limited access to a trusted entity.

Relaxed Models of Security: Another vein of work considers relaxed models
of security such as quasi-polynomial simulation [14–16] or input-indistinguish-
ability [17]. These works circumvents the use of trusted set-ups, but, only
provide weak guarantees about the computational advantages gained by an
adversary in a concurrent execution of the protocol.

In [1], we provided a general unified framework to construct UC-secure proto-
cols in both trusted set-up models and relaxed security models. In more detail,
we showed that for any such model, the construction of UC protocols for re-
alizing any multi-party functionality reduces to the construction of a so-called
“UC-puzzle” and a so-called strongly non-malleable witness indistinguishable
(SNMWI) argument of knowledge. Intuitively, a “UC-puzzle” is a protocol
that has the property that no adversary can successfully complete the puzzle
and also obtain a trapdoor, but there exists a simulator who can generate (cor-
rectly distributed) puzzles together with trapdoors; and a SNMWI argument
ensures that no man-in-the-middle adversary can correlate the witness it uses
in a proof with the witness in the proof it receives1. They we showed that a
SNMWI argument can be implemented using any non-malleable commitment
scheme; therefore the task of realizing UC security in any model reduces to the
task of constructing a “UC-puzzle” in that model, which can be easily achieved
in almost all previously considered set-up and relaxed security models. Further-
more, in many models, we showed that the existence of a “UC-puzzle” is also
necessary; in a sense, the notion of “UC-puzzle” characterizes the “minimal”
set-up and relaxation of security needed for achieving UC security.

1 A SNMWI argument can be viewed as an analogy of non-malleable commitments
in the context of strongly WI proofs [18].
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In this work, we focus on a different dimension: Namely, given the minimal set-
up and relaxation of security need for UC, what is the “minimal” computational
assumption additionally needed for constructing UC secure protocols. In [1], the
construction of UC protocols from “UC-puzzles” is based on the existence of en-
hanced trapdoor-permutations (TDP’s), whereas stand-alone secure multi-party
computation protocols can be constructed based on the minimal assumption of
the existence of stand-alone secure semi-honest OT protocols [19, 20], which
clearly also is a necessary assumption. This immediately raises the following
question.

Can we base UC security on the minimal assumption of the existence of
a semi-honest OT protocol?

1.1 Previous Works

Immediately after the work of [1], there has been several works trying to address
this problem in specific models.

In KRA and CRS model: Damgard, et al. [21] showed that UC security can be
achieved assuming only semi-honest OT protocols in the key registration (KR),
and common reference string (CRS), as well as uniform reference string (URS)
models. Their constructions in the KR, and the more generalized arbitrary KR
(A-KR), models achieve optimal round complexity, which have the same number
of rounds as the underlying semi-hoest OT protocol (up to a constant factor).
However, the round-complexity of their construction in the CRS and URS model
grows linearly with the number of players in the protocol execution. Further-
more, their construction in the CRS and URS model only implements an ideal
functionality F in a single session, meaning every execution of their protocol
needs to invoke the CRS functionality to obtain an independently sampled ref-
erence string. In contrast, previous constructions of UC secure protocol in the
CRS model directly implements the multi session extension of F [1, 9] so that
different protocol executions may share the same CRS.

In the Fcoin−toss hybrid model: In the context of characterizing functionalities
that are complete for achiveing UC security, Maji, Prabhakaran and Rosulek
[22] showed that the ideal two-party coin-tossing functionality Fcoin−toss is “com-
plete”, in the sense that, assuming the existence of semi-honest OT protocols,
practically all functionalities2 can be UC-securely realized when players have
access to the Fcoin−toss functionality, with the same round complexity as the OT
protocol.

In the tamper-proof hardware model: Goyal et. al. showed that in the model
where players can generate and exchange tamper-proof hardware tokens, UC
security can be achived assuming the weaker assumption of one-way functions
or even unconditionally, in a constant-number of rounds.

The above mentioned previous works try to weaken the assumptions that UC
security is based on using different techniques and exploiting different features

2 More precisely, all well-formed functionalities can be UC-securely realized.
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of the specific models under consideration. This immediately raises the question
whether we can achieve UC security from semi-honest OT protocol in a generic
way as in [1], independent of the specifics of different set-up or relaxed security
models.

Can we base UC security only on the existence of semi-honest OT pro-
tocols, generically?
Furthermore, can we achieve so with optimal round complexity?

Such a generic construction would not only help us identify and undersand the
key elements needed for achieving UC security, also allow us to obtain new UC-
feasibility results in other models easily.

Furthermore, one common limitation of the previous results is that they all
used the trusted set-ups in a strong way so that different protocol executions
have different and independent “trapdoors”, which makes UC security relatively
easy to achieve. Let us explain the intuition. In order to construct a protocol
secure in the concurrent setting, we need to establish two properties: Concur-
rent simulation, that is, the simulator can simulate messages from the honest
players in many concurrent sessions for the adversary, and concurrent simulation-
soundness, that is the adversary even when receiving simulated messages cannot
break the security of the protocol against honest players. The concurrent simu-
lation property can be established easily as long as there is a single trapdoor (or
correlated trapdoors) shared by all protocol executions; the simulator can simply
use that trapdoor to simulate. The concurrent simulation-soundness property,
on the other hand, is much harder to establish, and often involves the use of
non-malleable primitives to ensure independence of different protocol executions
as in [1, 9, 23]. However, in the case where different sessions have independent
trapdoors, concurrent simulation-soundness can be obtained “for free”, as re-
ceiving simulated messages (containing information of one trapdoor) does not
help the adversary obtain other trapdoors; hence, the security of the protocol
w.r.t. the honest players remains.

Indeed, all previous works use the trusted set-up to generate independent
trapdoors for different protocol executions. In the CRS (resp. URS) model, [21]
constructed protocols that implement a general functionality F in a single ses-
sion, meaning that each executions of their protocol invokes the CRS (resp.
URS) functionality independently, which yields independent trapdoors (that is,
independent secrets associated with different CRS’s (resp. URS’s)). In the KR
and A-KR model of [21], every player is registered with a valid public key that
has a corresponding secret key; furthermore, the secret key of any honest player
is hidden even if the adversary obtains the secret keys of all other players. Nat-
urally, the secret keys of players are used as independent trapdoors. The same
happens in the tamper-proof hardware token model, where the freshly generated
hardware tokens in each session yield independent trapdoors for different ses-
sion. Finally, in the ideal coin-tossing hybrid model, the Fcoin−toss functionality
is used to sample an independent URS in every session.

However, in many “weaker” models, there is only a single trapdoor (or corre-
lated trapdoors) across many protocol executions. Then the techniques used in
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previous works no longer apply, and the protocol construction needs to explicitly
“inject” independence to establish simulation soundness. Such set-up models in-
clude the CRS model, when the protocol construction directly implements the
multi-session extension of functionalities, the single imperfect string (sunspot)
model [13], the timing model [24] and the bounded concurrency model [25]. Fur-
thermore, the super-polynomial time simultion model also share the same flavor:
Though each protocol execution session may generate its own trapdoor (for in-
stance, the pre-image of a randomly sampled image of a one-way function),
receiving information of the trapdoor in one session, obtained via the super-
polynomial time power of the simulator, does facilitate the adversary breaking
the trapdoor in other sessions, as the adversary may create correlation between
trapdoors in different sessions. Naturally, the question left open by previous
works is,

Can we construct UC secure protocols when there are only correlated
trapdoors, based on the existence of semi-honest OT protocols?

1.2 Our Results

In this work, we answer both questions above affirmatively. We improve upon the
result in [1] to obtain a new unified framework for constructing UC secure pro-
tocols, assuming only the existence of semi-honest OT protocols. More precisely,
the main theorem that we establish is:

Theorem 1 (Unified Framework from OT, Informal). Assume the exis-
tence of a t1(·)-round UC-secure puzzle Σ using some set-up T , and the exis-
tence of a t2(·)-round stand-alone secure semi-honest oblivious-transfer protocol.
Then, for every m-ary functionality f , there exists a O(t1(·) + t2(·))-round pro-
tocol Π—using the same set-up T—that UC-realizes the multi-session extension
of f .

We remark that since our main theorm is general and only requires the security
model to admit a single UC-puzzle, the unified framework we provide encom-
passes both models where there are only correlated trapdoors, as detailed below.

Trusted Set-up Models: As shown in [1], many trusted set-up models admit
constant-round UC-puzzles assuming the existence of one-way functions. Thus,
our unified framework immediately yields UC feasibility results from only semi-
honest OT, in a wide range of set-up models.

Corollary 1 (Trusted Set-up Models). Assume the existence of a t(·)-round
stand-alone secure semi-honest oblivious-transfer protocol. Then, for every m-
ary functionality f , there exists a O(t(·))-round protocol Π that UC-realizes the
multi-session extension of f in the following models:

– Tamper proof hardware model [26],

– Key registration (KR) model [10]
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– Chosen common reference string (C-CRS) model [9], any common reference
string (A-CRS) model [21], and uniform reference string (URS) model [9],

– Timing model [24],

– Multi-string model [27],

– Single imperfect string (sun-spot) model [13] (assuming additionally the ex-
istence of collision resistence hash functions).

We compare our results with previous works. In the tamper-proof hardware
model (line 1), our feasibility result is weaker than that of [28], which achieved
UC unconditionally. In the key-registrationmodels (line 2), we re-prove the result
in [21]. In the CRS and URS models (line 3), we obtain new feasibility results
that implement directly the multi-session extension of functionalities, instead of
implementing only in single session as in [21]; furthermore, we improve the round
complexity to that of the OT protocol, whereas in [21] the round-complexity
grows linearly with the number of players in the protoccol execution. In the rest
of set-up models (line 4 to 6) that only admit correlated trapdoors, we obtain
new UC feasilibity results from only semi-honest OT.

Optimal Round-Complexity: We remark that round-complexity of our construc-
tiondepends solely on and is at the same order as that of the underlying semi-honest
OT protocol. Therefore, assuming the existence of a constant-round semi-honest
OTprotocol,we obtain constant-roundUC secure protocols in all abovementioned
models.

Sufficient and Necessary Assumption for UC Security: Our main theorem shows
that t-round semi-honest OT protocols are sufficient for UC security in various
models. In fact, it is also necessary in many models. As shown in [21, 29], t-round
UC secure computation in the key registration, CRS and URS models (line 1
and 2) implies t-round semi-honest OT; since the single-CRS, and single-URS
models are strictly weaker than their one-CRS-per-session and one-URS-per-
session versions, the implication also holds in these two models. It is easy to
see that the same is true in the timing model. Therefore, our result yields a
tight characterization of the feasibility of t-round UC secure computation (from
Ω(t)-round semi-honest OT) in the key-registration, CRS, URS, single-CRS,
single-URS and timing models.

Super-Polynomial Time Simulation Model. In a super-polynomial time
simulation model with simulation time T—T can be, say, quasi-polynomial time
(QPT) or sub-exponential time (subEXP)—assuming the existence of a one-way
function that is hard to invert in polynomial time, but easy to invert (with prob-
ability 1) in T time, there exists a one-message UC-puzzle in T -time simulation
model3. Note that when considering subEXP time simulation, the assumption of

3 The UC puzzle simply consists of one message from the sender is the image of a ran-
dom string through that one-way function. It is hard for polynomial time adversary
to break the puzzle (i.e., obtain a pre-image), but easy for a T -time simulator.
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one-way functions invertable in subEXP time is simply implied by the existence
of any one-way functions4. Therefore, applying our main theorem5, we have:

Corollary 2 (Super-Polynomial Time Simulation Models). Assume the
existence of a t(·)-round stand-alone secure semi-honest oblivious-transfer pro-
tocols secure for subEXP-time. Then, for every m-ary functionality f , there
exists a O(t(·))-round protocol Π that realizes f with subEXP-time-simulation
security. Furthermore, the real and ideal executions are indistinguishable to all
subEXP-time distinguishers.

This result weakens the assumptions that SPS secure protocols can be relied on:
Previous constructions either requires strong complexity assumptions [15, 16] or
the existence of enhanced trapdoor permutations secure against super-polynom-
ial time [1].

Moreover, Our subEXP-secure protocols have optimal round-complexity. The
construction relies on the existence of semi-honest OT protocols that are secure
for subEXP time (i.e., semi-honest OT protocol that are simulatable by subEXP-
time simulator and the simulation is indistinguishable to the real execution to
subEXP-time distinguishers). This assumption is in fact necessary, in order to
achieve the strong security guarantees provided by our unified framework: Pro-
tocols constructed through our unified framework admits simulation (i.e., the
ideal world execution) that are indistinguishable from the real execution not
only to all polynomial time distinguishers, but also to distinguishers with the
same running time as the simulator; we call this strong SPS-security.

Constant-Round SPS Security from Poly-Time Secure OT. As discussed above,
strong SPS security necessarily relies on super-polynomial time hard OT proto-
col. We show that, in fact, the use of super-polynomial time hardness assumption
can be circumvented, when considering a weaker notion of security called plain
SPS-security, where the simulator may take super-polynomial time, but the sim-
ulation produced is only indistinguishable w.r.t. polynomial time. (In fact, this
is the security guarantee achieved in the first two positive results of SPS security
in [15, 16], although they still requried super-polynomial time hardness assump-
tions.) Given a semi-honest OT protocol that is simulatable in subEXP-time
but only indistinguishable to PPT distinguishers—call it a subEXP-simulatable
semi-honest OT protocol—we have,

Theorem 2 (Plain SPS-Security from Polynomial-Time OT). Assume
the existence of a t(·)-round stand-alone secure subEXP-simulatable semi-honest

4 Every one-way function can be inverted in exponential time using brute force. There-
fore, by appropriately scale down the security parameter, we obtain one-way func-
tions that can be inverted in sub-exponential time.

5 The informal statement of our unified framework in Theorem 1 does not explicitly
specify the complexity of the simulator and distinguisher, nor their relationship with
the hardness of the OT in the assumption. More precisely, our unified framework
holds for arbitrary classes Csim of simulators and distinguishers, assuming an OT
protocol that is secure for Csim. See Section 3 for a formal treatment of the security
definition and statement of our unified framework in Theorem 3.
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oblivious-transfer protocol. Then, for every m-ary functionality f , there exists
a O(t(·))-round protocol Π that realizes f with plain subEXP-time-simulation
security.

Recently, Canetti, Lin, and Pass in [30] showed how to achieve plain SPS-security,
assuming only enhanced trapdoor permutations; however, their construction
requires polynomially many communication rounds, whereas our construction
yields constant-round protocols assuming that the underlying OT protocol has
constant rounds. In concurrent and independent work, Garg, Goyal, Jain and
Sahai [31], also present a construction of constant-round SPS secure protocols;
but they additionally assume the existence of collision resistant hash functions
besides from that of semi-honest OT.6 Finally, we remark that our assumption is
again tight: secure protocols with plain subEXP-time-simulation security imply
OT protocols that can be simulated using subEXP time.

Password-Key Exchange from OT. As another application of our unified
framework, we consider another line of relaxation—bounded concurrency—that
is, in the concurrent execution of protocols, there is a priori bound on the total
number of sessions that may coexist at any time point. This line of relaxation
has been previously considered in several works [8, 25, 32, 33]; they showed
how to construct bounded-concurrent secure computation using non black-box
techniques, based on the existence of collision resistant hash functions. We show
that in fact, the model of bounded concurrency can be cast as a special case of our
generalized model of UC security, by considering a restricted class of environment
that respects the bound m2 on the total number of concurrent executions, and
additionally only exchanges a bounded number m1 of messages with the the
adversary. We call this the (m1,m2)-bounded concurrency model. Therefore, by
constructing a O(m1+m2) UC-puzzle in this model, we immediately obtain the
following feasibility result.

Corollary 3 (Bounded Concurrency Model ). Let m and m′ be any poly-
nomial. Assume the existence of constant-round stand-alone secure semi-honest
oblivious-transfer protocol. Then, for every m-ary functionality f , there exists a
O(m1 +m2)-round protocol Π that securely realizes f in the (m1,m2)-bounded
concurrency model.

Lindell [34] showed that O(m) communication rounds are necessary for security
in the (m, 0)-bounded concurrency model, when relying on black-box simulation
techniques; therefore, our construction achieves the optimal round-complexity.
Furthermore, it is shown in [35] that the existence of t-round two-party compu-
tation protocols in the (2, 0)-bounded concurrency model implies the existence of
t Password-Authenticated Key-Exchange (PAKE) protocols. Therefore, we ob-
tain O(t)-round PAKE protocols from any t-round semi-honest OT. Combined
with the result of Nguyen [2] that t-round PAKE implies O(t)-round OT, this

6 Their proof techniques, however, are significantly different, and it would seem that
an advantage of their approach is that they not rely on non-uniform reductions to
an as large extent as we do.
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resolves the complexity of PAKE protocols. Previous constructions of PAKE pro-
tocols assume stronger assumptions, namely, the existence of enhanced trapdoor
permutations and collision resistant hash functions [35]. Another related work
due to Goyal, Jain and Ostrovsky [36] considered a weaker notion of security7,
and constructed PAKE protocols satisfying the weaker notion in the unbounded
concurrent setting based on collision resistant hash functions.

1.3 Outline

We refer the reader to [1] for a formal definition of the generalized model of
UC-security, and notions of UC-puzzle and SNMWI protocols. In Section 2
provide an overview of our techniques. In Section 3, we present our main result
that general UC security can be based on sh-OT protocols, and provide a proof
sketch. The remaining results and formal proofs will appear in the full version.

2 Techniques

2.1 The LPV Approach

By relying on previous results [4, 9, 25, 33, 37] the construction of a UC secure
protocol for realizing any multi-party functionality reduces to the task of realiz-
ing the “ideal Zero-Knowledge functionality”, which amounts to constructing a
zero-knowledge protocol that is both concurrently simulatable and concurrently
simulation-extractable—namely, we can concurrently extract a witness from ev-
ery convincing proof given by the adversary, even if it receives multiple concurrent
simulated proofs. The “simulation” part is usually easy to achieve; as shown in [1],
it suffices to provide the simulator a single “trapdoor”. This is formalized by the
notion of a UC-puzzle in [1], which, intuitively, is a protocol that has the property
that no adversary can successfully complete the puzzle and also obtain a trapdoor,
but there is a simulator who can generate puzzle transcripts (distributed statis-
tically close to real transcripts) together with trapdoors; the former is called the
soundness property and the latter called the statistical simulation property. How-
ever, obtaining “simulation-soundness” it significantly harder. In [1], the authors
achieve this in two steps: First construct a “special-purpose” zero-knowledge pro-
tocol that is concurrently simulation-sound—namely, even if an adversary receives
multiple concurrent simulated proofs, it can not prove any false statements; then,
strengthen security to get simulation-extractability.

The first step relies on a primitive called strong non-malleable witness-indist-
inguishable (SNMWI) arguments, which captures the non-malleability property
w.r.t. stronglywitness indistinguishable proofs. Informally, a SNMWI argument
ensures that no man-in-the-middle adversary can correlate the witness it uses in a

7 More precisely, the security notion of [36] is defined through the simulation paradigm
where the simulator may rewind the trusted functionality, for instance, the ideal
PAKE functionality, for a limited number of times, whereas we achieve full security
without rewinding. On the other hand, their protocols are secure in unbounded
concurrent setting, however, ours are only secure in bounded concurrent setting.
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proof with the witness in the proof it receives. It is shown in [1] that SNMWI ar-
guments can be constructed fromnon-malleable commitments. At a high-level, the
simulation-sound protocol follows the Feige-Shamir paradigm, in which the veri-
fier first sends a UC-puzzle to establish a “trapdoor” (that is, the puzzle answer),
and then the prover proves that either the statement is true or it knows a trap-
door, using a SNMWI argument8. In essence, the UC-puzzle enables concurrent
simulation: A simulator can simulate the puzzle executions with the verifier to ob-
tain corresponding answers, and then use them as trapdoors to successfully simu-
late the SNMWI arguments.On the other hand, the SNMWI property ensures
simulation-soundness: Even if the adversary receives SNMWI proofs using the
trapdoors as “fake witnesses”, the adversary does not do the same.

The second step in [1] enhances the security by employing the compilation
technique of [33, 37, 38], which transforms a concurrently simulation-sound pro-
tocol into one that is concurrently simulation-extractable, using enhanced trap-
door permutations (TDP).

2.2 UC-Security from Semi-honest OT

In this work, we weaken the assumption that UC security relies on, by provid-
ing a new compilation technique for transforming a simulation-sound protocol
into a simulation-extractable one, relying only on stand-alone semi-honest obliv-
ious transfer (sh-OT) protocols. Our compilation technique uses similar ideas as
that in [21, 22] that achieves extractability using OT; furthermore, interestingly,
though our compilation technique is non-black-box, it is inspired by the black-
box compilation technique used in [39, 40] for transforming a sh-OT protocol
into one secure against malicious adversaries (m-OT protocol). At a very high-
level, we use the idea of having an OT execution with two random inputs at the
prover’s side (acting as the sender) and fixed input index 1 at the verifier’s side
(acting as the receiver), and later letting the prover use the second random input
to hide the witness. This idea leads to a simple protocol as, even if the verifier
deviates from the honest behavior in the OT execution, it learns no information
of the witness; therefore, it suffices to require the verifier to prove of its honest
behavior after the OT execution (instead of giving a proof after every message
in the OT execution as the standard technique requires). Next we explain our
compilation technique in more details.

First, it follows from standard techniques that the existence of a sh-OT proto-
cols implies the existence of a full-fledged OT protocol against malicious adver-
saries (m-OT for short). Then given a simulation-sound ZK (ssZK) protocol, our
compilation technique outputs a protocol 〈P, V 〉 as follows: In the first stage, the
prover and the receiver participates in an execution of a m-OT protocol where
the prover acts as the OT sender using two random inputs r1 and r2 and the
verifier acts as the OT receiver choosing the first input; in the second stage, the

8 The actually protocol is more complicated, as the notion of SNMWI arguments are
only defined with respect to languages with unique witness. But for an intuitive expla-
nation of high-level ideas here, we omit the complication.
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verifier proves that it has used input index 1 in the OT execution using the ssZK
protocol; if the proof is accepting, the prover then sends the witness w padded
with the second random input w ⊕ r2 in the third stage, followed by a proof in
the fourth stage that this message XOR’ed with the second sender’s input in
the OT execution is indeed a valid witness of the statement being proved using
again the ssZK protocol. The high level idea of the protocol 〈P, V 〉 is simple.
First of all, it is concurrently simulatable: To simulate a proof of statement x,
a simulator can send a random string in the third stage in place of w ⊕ r2 and
“cheats” in the proof in the last stage by relying on the concurrent-simulation
property of the ssZK protocol; (it acts honestly in the first two stages). To see
that 〈P, V 〉 is further concurrently simulation-extractable, consider a man-in-
the-middle adversary that receives many proofs, referred to as the left proofs,
and gives many proofs, referred to as the right proofs, concurrently. We construct
a simulator-extractor (which eventually corresponds to the simulator of our UC
secure protocols) that concurrently simulates all the left proofs as described
above and extracts a witness from every convincing right-proof as follows: In a
right proof, the simulator-extractor (acting as the verifier) chooses the second
input in the OT execution and “cheats” in the proof in the second stage rely-
ing again on the concurrent simulation property of the ssZK protocol; it then
recovers the witness by simply XORing the third stage message with the second
input it obtains in the OT execution. To show that simulator-extractor always
extracts valid witnesses from the adversary, it boils down to show that the ad-
versary is never able to prove a false statement using the ssZK protocol, even
amid simulation, which essentially relies on the simulation-soundness property
of the ssZK protocol.

However, some subtleties arise: The simulator-extractor simulates for the ad-
versary both proofs of the ssZK protocol and OT executions. The simulation-
soundness property only guarantees that the adversary cannot cheat when re-
ceiving simulated proofs of the ssZK protocols, but not simulated OT executions.
(This problem is in the same spirit as the problems encountered in [41–43] when
using non-malleable commitments as a sub-protocol in a larger protocol.) To solve
this problem, we enhance the security of our ssZK protocol so that it is also
simulation-sound w.r.t. the OT protocol—namely, even when the adversary re-
ceivesmany simulated executions of the OTprotocol, it still cannot prove any false
statement. In fact, we will design a protocol that is simulation-sound both w.r.t.
itself and to any protocols with a fixed bounded number of rounds; this is achieved
by relying on a notion of k-robust SNMWI protocol, which is a SNMWI pro-
tocol that additionally guarantees that no adversary can correlates the witness
it uses in a proof with the “secret” in a k-round interaction it participates in,
provided that messages in that interaction are indistinguishable (when generated
with different secrets). This notion is in analogy to the notion of k-robust non-
malleable commitments [42]; and as we show, can be realized using a k-robust
non-malleable commitment scheme. Then since as shown in [42], k-robust non-
malleable commitment can be constructed from the minimal assumption of OWF,
so can k-robust SNMWI protocols. Finally, we remark that this problem of



710 R. Pass, H. Lin, and M. Venkitasubramaniam

robustness is not present in [1]; there, the compilation technique of [25, 33, 37] only
implicitly requires the ssZK protocol to be simulation-soundw.r.t. non-interactive
protocols, which is satisfied by any ssZK protocol that is an argument of knowl-
edge (as required by the compilation technique).

An additional issue that we encounter is that for the above argument to go
through, we need the OT protocol to satisfy some additional properties. More
precisely, recall that the proof of concurrently simulatability of 〈P, V 〉 requires
showing that as long as the adversary can prove that it has acted honestly in
the OT execution with input 1, the sender’s second random input is completely
hidden. At a first glance, it seems that this follows directly from the security
against malicious receiver of the OT protocol. However, it may be possible for
a malicious receiver to obtain the second input in the OT execution, but later
explain its behavior with input 1. Fortunately, the security property that we need
is exactly captured by the notion of defensible privacy for the receiver introduced
by [39], which, roughly speaking, ensures that as long as a malicious receiver can
output a good “defense”—that is, explaining its behavior as an honest receiver
with input b and random tape σ—at the end of the OT execution, then the
honest sender’s other input b′ �= b must remain hidden. Furthermore, to show
that 〈P, V 〉 is simulation extractable, we need the OT protocol to satisfy that
as long as a malicious sender can output a good “defense”, with inputs r1, r2
and random tape σ′, after an OT execution, the honest receiver with input
b must obtain rb. To formalize this security property, we adapt the notion of
defensible privacy of [39] to consider the correctness requirement; we called it
the defensible correctness property. Therefore, our compilation technique relies
on a m-OT protocol that is defensibly private for the receiver and defensibly
correct for the sender; we show that such a protocol is implied by the existence
of sh-OT protocols.

Constant-round SPS-security from polynomial-time hard sh-OT: In [1], the
authors constructed SPS-secure protocols with strong indistinguishability: Real-
world executions of these protocols are indistinguishable to ideal-world simula-
tions, against distinguishers of the same time complexity of the simulator, which
is super-polynomial. To obtain a model of security that can be implemented
in constant rounds from standard polynomial time harness assumptions (in the
plain model), we weaken the generalized model of UC security in [1] to require
only plain indistinguishability against PPT distinguishers. However, even with
this weakening, at the first glance, it is still unclear how to achieve plain-SPS-
security from only polynomial time hardness assumptions. Let us illustrate the
difficulty using the above described protocol 〈P, V 〉 that implements the ideal
ZK functionality.

In order to simulate the view of and extract witnesses from aman-in-the-middle
adversary, the simulator-extractor of 〈P, V 〉 simulates all the ssZK proofs to the
adversary, as well as all the OT executions it participates in. The latter can be
simulated efficiently, but, the concurrent simulation of the ssZK arguments takes
super-polynomial time in the SPS-model. Then it seems that in order to apply the
security guarantees of the sh-OT protocol and the simulation soundness property
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of the ssZK protocol (to show that the view of the adversary is indistinguishable
and it never proves any false statement), we need the security of the sh-OT and
ssZK protocols to hold against super-polynomial machines, (since the adversary,
though a PPT machine itself, receives many simulated proofs generated in super-
polynomial time). Roughly, this is the technical reasonwhy the LPVprotocol relies
on super-poly hardness assumption.

To get around this problem, we exploit the structure of the ssZK protocol
constructed in [1]. Recall that it consists of a UC-puzzle execution where the
verifier establishes a trapdoor, followed by a proof using the SNMWI argument
that either the statement is true or a trapdoor is known. The key observation
is that when simulating a proof of this protocol, only the simulation of the UC
puzzle takes super-polynomial time; once a trapdoor is obtained, the rest of the
simulation can be done efficiently. Therefore, if we modify the protocol 〈P, V 〉
to have the puzzle executions in the two ssZK proofs sent at the beginning of
the protocol—call it the preamble phase of the protocol—we obtain a protocol
〈P ′, V ′〉 that has the same property: Only the preamble phase of the protocol
takes super-polynomial time to simulate (the rest can be simulated efficiently
given the puzzle answers). With this simple change, now we only need the sh-OT
and SNMWI protocols to be secure for polynomial-time. To illustrate our idea,
consider first the stand-alone setting. To show that 〈P ′, V ′〉 is zero-knowledge,
we rely on the “hiding” property of the sh-OT and the SNMWI protocols;
since the simulation of the preamble phase happens before them, and thus the
puzzle answers can be fixed non-uniformly, it suffices to rely on “hiding” against
non-uniform PPT machines.

We use the same idea to prove the concurrent security of 〈P ′, V ′〉: Establish
the simulation-extractability property of 〈P ′, V ′〉 in a sequence of hybrids that
gradually simulate each session in two steps (the preamble phase first and then
the rest) in a clever order. More precisely, consider a man-in-the-middle adver-
sary that participates in m proofs; order all the proofs according to the sequence
in which their preamble phases completes. Then consider a sequence of 2m+ 1
hybrids H0, . . . , H2m+1’s, where in hybrid H2i the first i sessions are simulated,
and in hybrids H2i+1 and H2(i+1) (in addition to the first i sessions) the pream-

ble phase and the rest of the (i + 1)th session are simulated respectively. To
show that 〈P ′, V ′〉 is simulation-extractable, it boils down to prove that every
two subsequent hybrids are indistinguishable and the adversary never proves a
false statement using the SNMWI argument in all hybrids. From hybrid H2i

to H2i+1 this follows directly from the statistical simulation property of the UC-
puzzles. From hybrid H2i+1 to H2(i+1), this relies on the security of the sh-OT

and SNMWI protocol executions in the (i + 1)th session; since in these two
hybrids, only puzzles in the first i + 1 sessions are simulated, which happens
before the OT and SNMWI executions in the (i+1)th session and can be fixed
non-uniformly, we only need the security of the OT and SNMWI protocols to
hold against non-uniform PPT machines. Given that SNMWI arguments are
implied by sh-OT protocols, 〈P ′, V ′〉 implements the ideal ZK functionality with
plain-SPS-security based on only polynomial-time hard sh-OT protocols.
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Now, it seems that by simply combining 〈P ′, V ′〉 with previous constructions
of UC secure protocols Π that uses the ideal ZK functionality IdealZK [4, 9, 25,
33, 37], we can obtain constant-round plain-SPSsecure computation from sh-OT
protocols. Unfortunately, previous constructions rely on the existence of sh-OT
protocols; if composing them with 〈P ′, V ′〉 in the straightforward way—replacing
every IdealZK call inΠ with an invocation of 〈P ′, V ′〉—for the composed protocol
Π ′ = Π IdealZK/〈P ′,V ′〉 to be secure in general, we need Π to be secure against
super-poly time, which requires super-poly hard sh-OT! To address this, we
modify the composed protocol Π ′ as we did to the protocol 〈P, V 〉: Consider a
protocol Π ′′ that is identical to Π ′ except that all the puzzle-executions in the
invocations of 〈P ′, V ′〉 are executed in parallel at the beginning of the protocol,
call this again the preamble phase of the protocol; now Π ′′ has the property
that only its preamble phase takes super-polynomial time to simulate, and the
rest can be simulated efficiently with puzzle answers. Therefore, by considering
a similar sequence of hybrids as in the proof of 〈P ′, V ′〉, we prove the security
of Π ′′.

UC-security with bounded concurrency: Let (m1,m2)-bounded concurrency de-
note a scenario where the UC environment communicates in at most m1 rounds
with the adversary, and when at mostm2 executions of some protocol take place.
It follows from our unified framework that to construct secure computation pro-
tocols in this model, the key is to construct a UC-puzzle. Towards this, let us
first examine a simple case where during the execution of any session, the total
number of messages the adversary receives that do not belong to any UC-puzzle
is bounded by a fixed number m. (These messages include ones from the envi-
ronment and ones belonging to the non-puzzle part of the other sessions.) In this
case, we can design the UC-puzzle as follows: The puzzle receiver sends the im-
age f(r) of a random value r through a OWF, followed by m+1 witness hiding
proof of knowledge (POK) of r; the answer to this puzzle is simply a pre-image
of f(r). It follows from the one-wayness of f and the witness-hiding property of
the proofs that no adversary (acting as a puzzle receiver) can complete a puzzle
and obtain an answer. But, there is a puzzle simulator that can simulate many
concurrent puzzle executions with an adversary (acting as the puzzle sender) and
extract an answer immediately after each accepting puzzle: The simulator emu-
lates the puzzle receivers for the adversary honestly, and rewinds the adversary
at one of the POK’s to extract an answer. Since in this simple case, there are
more,m+1, POK’s than the numberm of other non-puzzle messages, there must
be one POK from which the simulator can rewind to extract an answer without
needing to simulate any non-puzzle messages (messages belong to a puzzle can be
simulated trivially by following the honest receiver strategy in the rewindings).
Finally, we show that, in fact, this simple case always holds. As we will see later,
secure computation protocols produced by our framework contains a constant
number c of non-puzzle messages if the underlying sh-OT protocol has constant
rounds. Therefore, in the (m1,m2)-bounded concurrent model, the total number
of non-puzzle messages is bounded by m1 + cm2, yielding O(m1 + m2)-round
bounded concurrent secure computation protocols.



A Unified Framework for UC from Only OT 713

3 UC Security Based on Stand-Alone Semi-honest OT

We consider the (Cenv, Csim)-UC-model introduced in [1]. The model extends the
framework of universal composability [5]. The key difference from UC lies in
that in UC, the environment is modeled as a non-uniform PPT machine and
the ideal-model adversary (or simulator) as a uniform PPT machines, whereas
in the general model, the environment and the simulator are allowed to be from
arbitrary complexity classes Cenv and Csim respectively. (Note, however, that the
adversary is still uniform PPT .) One important affect of this change is that the
UC composition theorem [5] no longer holds; as a result, the stand-alone security
of a protocol does not directly imply the concurrent security. In remedy, in the
general model, an environment executing a protocol π can start many instances
of the protocol, and thus implementing a functionality F in the general model
means directly implementing the multi-session extension F̂9 of F . We focus only
on static adversaries. Let cl(Cenv, Csim) represent the closure of Cenv and Csim that
includes all computations by PPT oracle Turing machinesM with oracle access
to Cenv, Csim. In this section, we prove the following main technical theorem.

Theorem 3. Assume the existence of a tP -round (Cenv, Csim)-secure UC-puzzle
in a G-hybrid model, and a tOT -round stand-alone sh-OT protocol secure w.r.t
cl(Csim, Cenv). Then, for every “well-formed” functionality F , there exists a O(tP+
tOT )-round protocol Π in the G-hybrid model that (Cenv, Csim)-UC-realizes F .

3.1 Proof of Theorem 3

Recall that the IdealZK functionality parameterized with a language L imple-
ments the function ZKL ((x,w), x) = (⊥, b), where b = 1 if w is a valid witness
for the membership of x in L and 0 otherwise. Then Theorem 3 follows from the
following two lemmas.

Lemma 1 (IdealZK-Lemma). Assume the existence of t-round stand-alone se-
cure sh-OT secure w.r.t cl(Cenv, Csim). Then, for every well-formed functionality
F , there exists a O(t)-round protocol Π in the ZK-Hybrid model that (Cenv, Csim)-
UC-realizes F .

Lemma 2 (Puzzle-Lemma). Let Π ′ be a protocol in the IdealZK model. As-
sume the existence of a (Cenv, Csim)-secure tP -round puzzle 〈S,R〉 in a G-hybrid
model, a tOT -round stand-alone sh-OT protocol 〈SOT , ROT 〉 that is secure w.r.t
cl(Csim, Cenv), and a tWI -round tOT -robust SNMWI protocol 〈Ps, Vs〉 secure
w.r.t cl(Csim, Cenv). Then, there exists a O(tP + tWI + tOT )-round protocol Π
in the G-hybrid that (Cenv, Csim)-UC emulates Π ′.

The first lemma is implicit in previous works [4, 9, 25, 44] for normal UC-
security (i.e., (n.u.PPT , PPT )-UC-security) and can be easily extended to the

9 Informally speaking, F̂ emulates many independent copies of F running concur-
rently; see [1, 9] for a formal definition.
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general (Cenv, Csim)-UC model assuming stand-alone sh-OT protocol secure w.r.t
cl(Csim, Cenv); we omit the proof (see [1] for a similar proof assuming TDP’s).
Next, towards proving the puzzle lemma, we provide a general transformation
that transforms any protocol Π in the ZK-Hybrid model into a protocol Π ′ in the
real model using a special-purpose zero-knowledge protocol that is “concurrently
simulatable” and “concurrently simulation-extractable”.

Special-purpose ZK Protocol 〈P, V 〉. The construction of 〈P, V 〉 relies on the fol-

lowing three building blocks; all with security against class cl(Cenv, Csim). (1) A t′-
round m-OT protocol 〈SOT , ROT 〉 that is defensibly private for the receiver and
defensibly correct for the sender; it follows from standard techniques [4, 18] that
such a protocol exists assuming tOT -round sh-OT protocols, and t′ = O(tOT ).
(2) A t′-robust SNMWI protocol 〈Ps, Vs〉; it follows from a similar proof as
in [1] that such a protocol exists assuming OWF’s and the round-complexity is
of O(t′). (We defer the formal construction and proof of such m-OT and robust
SNMWI to the full version.) (3) A (Cenv, Csim)-secure puzzle (〈S,R〉,R) in a
G hybrid model. For simplicity of exposition, our description below rely on a
statistically binding commitment scheme com that has unique decommitment,
that is the transcript of the commitment not only uniquely decides the value
committed to inside but also the decommitment with overwhelming probability;
but the protocol can be easily modified to work with any arbitrary statistically
binding commitment (see the full version for more details). Then, the special-
purpose ZK protocol 〈P, V 〉 for a NP relation RL proceeds as follows: To prove
a statement x, the prover and verifier with identities idP and idV , and additional
auxiliary input w = RL(x) for the prover, interacts in six stages.

Stage 1: The Prover and Verifier participate in a puzzle-interaction where the
Verifier assumes the role of the sender and the Prover as the receiver. Let
transV→P be the transcript of the messages exchanged.

Stage 2: The Prover and Verifier participate in a second puzzle-interaction with
the roles reversed, i.e. the Prover is the sender and the Verifier is the receiver.
Let transP→V be the transcript of the messages exchanged.

Stage 3: The Prover first selects two random string r1, r2 ∈ {0, 1}n. Then the
Prover and Verifier interact using 〈SOT , ROT 〉, where the Prover is the sender
with inputs (r1, r2) and the Verifier is the receiver with input 1. Let transOT

be the transcript of the messages exchanged.

Stage 4: The Verifier commits to s using com. Then it proves using the protocol
〈Ps, Vs〉 and identity idV , the statement that it either committed to a string
s that contains a valid witness establishing the verifiers input as index 1 in
transOT and the string output by the receiver at the end of the Stage 3
protocol or a string s such that (s,transP→V ) ∈ R.

Stage 5: The Prover sends the string r = r2 ⊕ w in the clear.

Stage 6: The Prover commits to s′ using com. Then the prover proves using the
protocol 〈Ps, Vs〉 and identity idP , the statement that it either committed to
a string s′ that establishes that the inputs used by the prover in transOT is
(r1, r2) such that r2⊕r ∈ RL(x) or a string s

′ such that (s′,transV→P ) ∈ R.
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Realizing the IdealZK-functionality: Given any protocol Π ′ in ZK-Hybrid model
and the special-purpose zero-knowledge protocol 〈P, V 〉, the protocol Π in the
real model is constructed from Π ′ by instantiating the IdealZK functionality
using 〈P, V 〉. All invocations of the IdealZK functionality in which Pi provers to
Pj a statement x using witness w is replaced with an subroutine call of 〈P, V 〉
between Pi and Pj where Pi proves the statement x using witness w to Pj , using
identities idP = i and idV = j respectively. The formal security proof that Π
emulates Π ′ in the ZK-Hybrid will appear in the full version.
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Abstract. The GLV method of Gallant, Lambert and Van-
stone (CRYPTO 2001) computes any multiple kP of a point P
of prime order n lying on an elliptic curve with a low-degree
endomorphism Φ (called GLV curve) over Fp as kP = k1P +
k2Φ(P ),with max{|k1|, |k2|} ≤ C1

√
n, for some explicit constant C1 > 0.

Recently, Galbraith, Lin and Scott (EUROCRYPT 2009) extended this
method to all curves over Fp2 which are twists of curves defined over
Fp. We show in this work how to merge the two approaches in or-
der to get, for twists of any GLV curve over Fp2 , a four-dimensional
decomposition together with fast endomorphisms Φ, Ψ over Fp2 act-
ing on the group generated by a point P of prime order n, result-
ing in a proven decomposition for any scalar k ∈ [1, n] given by
kP = k1P + k2Φ(P ) + k3Ψ(P ) + k4ΨΦ(P ) with maxi(|ki|) < C2 n

1/4,
for some explicit C2 > 0. Remarkably, taking the best C1, C2, we obtain
C2/C1 < 412, independently of the curve, ensuring in theory an almost
constant relative speedup. In practice, our experiments reveal that the
use of the merged GLV-GLS approach supports a scalar multiplication
that runs up to 50% times faster than the original GLV method. We
then improve this performance even further by exploiting the Twisted
Edwards model and show that curves originally slower may become ex-
tremely efficient on this model. In addition, we analyze the performance
of the method on a multicore setting and describe how to efficiently
protect GLV-based scalar multiplication against several side-channel at-
tacks. Our implementations improve the state-of-the-art performance of
point multiplication for a variety of scenarios including side-channel pro-
tected and unprotected cases with sequential and multicore execution.

Keywords: Elliptic curves, GLV-GLS method, scalar multiplication,
Twisted Edwards curve, side-channel protection, multicore computation.

1 Introduction

The Gallant-Lambert-Vanstone (GLV) method is a generic approach to speed
up the computation of scalar multiplication on some elliptic curves defined over
fields of large prime characteristic. Given a curve with a point P of prime or-
der n, it consists essentially in an algorithm that finds a decomposition of an

X. Wang and K. Sako (Eds.): ASIACRYPT 2012, LNCS 7658, pp. 718–739, 2012.
c© International Association for Cryptologic Research 2012



Four-Dimensional Gallant-Lambert-Vanstone Scalar Multiplication 719

arbitrary scalar multiplication kP for k ∈ [1, n] into two scalar multiplications,
with the new scalars having only about half the bitlength of the original scalar.
This immediately enables the elimination of half the doublings by employing the
Straus-Shamir trick for simultaneous point multiplication.

Whereas the original GLV method as defined in [10] works on curves over Fp

with an endomorphism of small degree (GLV curves), Galbraith-Lin-Scott (GLS)
in [8] have shown that over Fp2 one can expect to find many more such curves by
basically exploiting the action of the Frobenius endomorphism. One can there-
fore expect that on the particular GLV curves, this new insight will lead to
improvements over Fp2 . Indeed the GLS article itself considers four-dimensional
decompositions on GLV curves with nontrivial automorphisms (corresponding
to the degree one cases) but leaves the other cases open to investigation.

In this work, we generalize the GLS method to all GLV curves by exploiting
fast endomorphisms Φ, Ψ over Fp2 acting on a cyclic group generated by a point P
of prime order n to construct a proven decomposition with no heuristics involved
for any scalar k ∈ [1, n]

kP = k1P + k2Φ(P ) + k3Ψ(P ) + k4ΨΦ(P ) with max
i

(|ki|) < Cn1/4

for some explicitly computable C. In doing this we provide a reduction algorithm
for the four-dimensional relevant lattice which runs in O(log2 n) by implementing
two Cornacchia-type algorithms [6,22], one in Z, the other in Z[i]. The algorithm
is remarkably simple to implement and allows us to demonstrate an improved
C = O(

√
s) (compared to the value obtained with LLL which is only Ω(s3/2)).

Thus, it guarantees a relative speedup independent of the curve when moving
from a two-dimensional to a four-dimensional GLV method over the same un-
derlying field. If parallel computation is available then the computation of kP
can possibly be implemented (close to) four times faster in this case. When mov-
ing from two-dimensional GLV over Fp to the four-dimensional case over Fp2 ,
our method still guarantees a relative speedup that is quasi-uniform among all
GLV curves (see Section 7 for details). In fact, we present experimental results
on different GLV curves that demonstrate that the relative speedup between
the original GLV method and the proposed method (termed GLV-GLS in the
remainder) is as high as 50%.

Twisted Edwards curves [2] are efficient generalizations of Edwards curves [7],
which exhibit high-performance arithmetic. By exploiting this curve model, Gal-
braith, Lin and Scott showed in [9] that the GLS method can be improved in
practice a further 10%, approximately (see also [19,18]). They also described
how to write down j-invariant 0 and 1728 curves in Edwards form to combine
a 4-dimensional decomposition with the fast arithmetic provided by this curve
model. We exploit this approach and, most remarkably, lift the restriction to
those special curves and show that in practice the GLV-GLS curves discussed in
this work may achieve extremely high-performance and become virtually equiv-
alent in terms of speed when written in Twisted Edwards form.

In the last years multiple works have incrementally shown the impact of using
the GLS method for high performance [8,19,13]. However, it is still unclear how
well the method behaves on settings where side-channel attacks are a threat. Since
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it is usually assumed that required countermeasures once in place degrade perfor-
mance significantly, it is also unclear if the GLS method would retain its current
superiority in the case of side-channel protected implementations. Here, we study
this open problem and describe how to protect implementations based on the GLV-
GLSmethodagainst timing attacks, cache attacks and similar ones and still achieve
very high performance. The techniques discussed naturally apply to GLV-based
implementations in general. Finally, we discuss different strategies to implement
GLV-based scalar multiplication on modern multicore processors, and include the
case in which countermeasures against side-channel attacks are required.

The presented implementations corresponding to the GLV-GLS method
improve the state-of-the-art performance of point multiplication for all the cases
under study: protected and unprotected versions with sequential and parallel
execution. For instance, on one core of an Intel Core i7-2600 processor and at
roughly 128 bits of security, we compute an unprotected scalar multiplication in
only 91,000 cycles (which is 1.34 times faster than a previous result reported by
Hu, Longa and Xu in [13]), and a side-channel protected scalar multiplication
in only 137,000 cycles (which is 1.42 times faster than the protected implemen-
tation presented by Bernstein et al. in [3]).

Related Work. Recently, a paper by Zhou, Hu, Xu and Song [28] has shown
that it is possible to combine the GLV and GLS approaches by introducing a
three-dimensional version of the GLV method, which seems to work to a certain
degree, with however no justification but through practical implementations.
The first author together with Hu and Xu [13] studied the case of curves with
j-invariant 0 and provided a bound for this particular case. Our analysis supple-
ments [13] by considering all GLV curves and providing a unified treatment.

2 The GLV Method

In this section we briefly summarize the GLV method following [25]. Let E be
an elliptic curve defined over a finite field Fq and P be a point on this curve
with prime order n such that the cofactor h = #E(Fq)/n is small, say h ≤ 4.
Let us consider Φ a non trivial endomorphism defined over Fq and X2 + rX + s
its characteristic polynomial. In all the examples r and s are actually small
fixed integers and q is varying in some family. By hypothesis there is only one
subgroup of order n in E(Fq), implying that Φ(P ) = λP for some λ ∈ [0, n− 1],
since Φ(P ) has order dividing the prime n. In particular, λ is obtained as a root
of X2 + rX + s modulo n.

Define the group homomorphism (the GLV reduction map)

f : Z× Z→ Z/n
(i, j) �→ i+ λj (mod n) .

Let K = ker f. It is a sublattice of Z×Z of rank 2 since the quotient is finite. Let
k > 0 be a constant (depending on the curve) such that we can find v1, v2 two
linearly independent vectors of K satisfying max{|v1| , |v2|} < k

√
n, where |·|
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denotes the rectangle norm1. Express (k, 0) = β1v1 + β2v2, where βi ∈ Q. Then
round βi to the nearest integer bi = �βi� = �βi + 1/2� and let v = b1v1 + b2v2.
Note that v ∈ K and that u def

= (k, 0)−v is short. Indeed by the triangle inequality
we have that

|u| ≤ |v1|+ |v2|
2

< k
√
n .

If we set (k1, k2) = u, then we get k ≡ k1 + k2λ (mod n) or equivalently kP =
k1P + k2Φ(P ), with max(|k1|, |k2|) < k

√
n.

In [25], the optimal value of k (with respect to large values of n, i.e. large
fields, keeping X2 + rX + s constant) is determined. Let Δ = r2 − 4s be the
discriminant of the characteristic polynomial of Φ. Then the optimal k is given
by the following result2 .

Theorem 1 ([25, Theorem 4]). Assuming n is the norm of an element of
Z[Φ], then the optimal value of k is

k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√
s

2

(
1 +

1

|Δ|

)
, if r is odd,

√
s

2

√
1 +

4

|Δ| , if r is even.

3 The GLS Improvement

In 2009, Galbraith, Lin and Scott [8] realised that we do not need to have
Φ2 + rΦ + s = 0 in End(E) but only in a subgroup of E(F) for a specific finite
field F. In particular, considering Ψ = Frobp the p-Frobenius endomorphism of
a curve E defined over Fp, we know that Ψm(P ) = P for all P ∈ E(Fpm). While
this tells nothing useful if m = 1, 2, it does offer new nontrivial relations for
higher degree extensions. The case m = 4 is particularly useful here.

In this case if P ∈ E(Fp4)\E(Fp2) then Ψ2(P ) = −P and hence on the
subgroup generated by P , Ψ satisfies the equation X2 + 1 = 0. This implies
that if Ψ(P ) is a multiple of P (which happens as soon as the order n of P is
sufficiently large, say at least 2p), we can apply the GLV approach and split again
a scalar multiplication as kP = k1P + k2Ψ(P ), with max(|k1|, |k2|) = O(

√
n).

Contrast this with the characteristic polynomial of Ψ which is X2 − apX + p
for some integer ap, a non-constant polynomial to which we cannot apply as
efficiently the GLV paradigm.

For efficiency reasons however one does not work with E/Fp4 directly but
with E′/Fp2 isomorphic to E over Fp4 but not over Fp2 , that is, a quadratic

1 The rectangle norm of (x, y) is by definition max(|x|, |y|). As remarked in [25], we
can replace it by any other metric norm. We will use the term “short" to denote
smallness in the rectangle norm.

2 There is a mistake in [25] in the derivation of k for odd values of r. This affects [25,
Corollary 1] for curves E2 and E3, where the correct values of k are respectively 2/3
and 4

√
2/7 .
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twist over Fp2 . In this case, it is possible that #E′(Fp2) = n ≥ (p − 1)2 be
prime. Furthermore, if ψ : E′ → E is an isomorphism defined over Fp4 , then the
endomorphism Ψ = ψ Frobp ψ

−1 ∈ End(E′) satisfies the equation X2 + 1 = 0
and if p ≡ 5 (mod 8) it can be defined over Fp.

This idea is at the heart of the GLS approach, but it only works for curves
over Fpm with m > 1, therefore it does not generalise the original GLV method
but rather complements it.

4 Combining GLV and GLS

Let E/Fp be a GLV curve. As in Section 3, we will denote by E′/Fp2 a quadratic
twist Fp4-isomorphic to E via the isomorphism ψ : E → E′. We also suppose
that #E′(Fp2) = nh where n is prime and h ≤ 4. We then have the two
endomorphisms of E′, Ψ = ψ Frobp ψ

−1 and Φ = ψφψ−1, with φ the GLV
endomorphism coming with the definition of a GLV curve. They are both de-
fined over Fp2 , since if σ is the nontrivial Galois automorphism of Fp4/Fp2 , then
ψσ = −ψ, so that Ψσ = ψσ Frobσp

(
ψ−1

)σ
= (−ψ) Frobp(−ψ−1) = Ψ , mean-

ing that Ψ ∈ EndFp2
(E′). Similarly for Φ, where we are using the fact that

φ ∈ EndFp(E). Notice that Ψ2 + 1 = 0 and that Φ has the same characteristic
polynomial as φ. Furthermore, since we have a large subgroup 〈P 〉 ⊂ E′(Fp2)
of prime order, Φ(P ) = λP and Ψ(P ) = μP for some λ, μ ∈ [1, n − 1]. We
will assume that Φ and Ψ , when viewed as algebraic integers, generate disjoint
quadratic extensions of Q. In particular, we are not dealing with Example 1 from
Appendix A, but this can be treated separately with a quartic twist as described
in Appendix B of the full version of this article [21].

Consider the biquadratic (Galois of degree 4, with Galois group Z/2 × Z/2)
number field K = Q(Φ, Ψ). Let oK be its ring of integers. The following analysis
is inspired by [25, Section 8].

We have Z[Φ, Ψ ] ⊆ oK . Since the degrees of Φ and Ψ are much smaller when
compared to n, the prime n is unramified in K and the existence of λ and μ
above means that n splits in Q(Φ) and Q(Ψ), namely that n splits completely
in K. There exists therefore a prime ideal n of oK dividing noK , such that its
norm is n. We can also suppose that Φ ≡ λ (mod n) and Ψ ≡ μ (mod n). The
four-dimensional GLV-GLS method works as follows.

Consider the GLV-GLS reduction map F defined by
F : Z4 → Z/n

(x1, x2, x3, x4) �→ x1 + x2λ+ x3μ+ x4λμ (mod n) .

If we can find four linearly independent vectors v1, . . . , v4 ∈ kerF , with
maxi |vi| ≤ Cn1/4 for some constant C > 0, then for any k ∈ [1, n − 1] we
write

(k, 0, 0, 0) =

4∑
j=1

βjvj ,

with βj ∈ Q. As in the GLV method one sets v =
∑4

j=1�βj�vj and

u = (k, 0, 0, 0)− v = (k1, k2, k3, k4) .



Four-Dimensional Gallant-Lambert-Vanstone Scalar Multiplication 723

We then get

kP = k1P + k2Φ(P ) + k3Ψ(P ) + k4ΨΦ(P ) with max
i

(|ki|) ≤ 2Cn1/4 . (1)

We focus next on the study of kerF in order to find a reduced basis v1, v2, v3, v4
with an explicit C. We can factor the GLV-GLS map F as

Z4 f−−−−→ Z[Φ, Ψ ]
reduction−−−−−−−−−−−→

mod n ∩ Z[Φ, Ψ ]
Z/n

(x1, x2, x3, x4) �−→ x1 + x2Φ+ x3Ψ + x4ΦΨ �−→x1 + x2λ+ x3μ+ x4λμ (mod n).

Notice that the kernel of the second map (reduction mod n∩ Z[Φ, Ψ ]) is exactly
n ∩ Z[Φ, Ψ ]. This can be seen as follows. The reduction map factors as

Z[Φ, Ψ ] −→ oK −→ oK/n ∼= Z/n

where the first arrow is inclusion, the second is reduction mod n, corresponding
to reducing the xi’s mod n ∩ Z = nZ and using Φ ≡ λ, Ψ ≡ μ (mod n). But the
kernel of this map consists precisely of elements of Z[Φ, Ψ ] which are in n, and
that is what we want.

Moreover, since the reduction map is surjective, we obtain an isomorphism
Z[Φ, Ψ ]/n∩Z[Φ, Ψ ] ∼= Z/n which says that the index of n∩Z[Φ, Ψ ] inside Z[Φ, Ψ ] is
n. Since the first map f is an isomorphism, we get that kerF = f−1(n∩Z[Φ, Ψ ])
and that kerF has index [Z4 : kerF ] = n inside Z4.

We can also produce a basis of kerF by the following observation. Let Φ′ =
Φ− λ, Ψ ′ = Ψ − μ, hence Φ′Ψ ′ = ΦΨ − λΨ − μΦ+ λμ. In matrix form,⎛⎜⎜⎝

1
Φ′

Ψ ′

Φ′Ψ ′

⎞⎟⎟⎠ =

⎛⎜⎜⎝
1 0 0 0
−λ 1 0 0
−μ 0 1 0
λμ −μ −λ 1

⎞⎟⎟⎠
⎛⎜⎜⎝

1
Φ
Ψ
ΦΨ

⎞⎟⎟⎠
Since the determinant of the square matrix is 1, we deduce that Z[Φ, Ψ ] =
Z[Φ′, Ψ ′]. But in this new basis, we claim that

n ∩ Z[Φ′, Ψ ′] = nZ+ ZΦ′ + ZΨ ′ + ZΦ′Ψ ′ .

Indeed, reverse inclusion (⊇) is easy since Φ′, Ψ ′, Φ′Ψ ′ ∈ n and so is n, because n
divides noK is equivalent to n ⊇ noK . On the other hand, the index of both sides
inZ[Φ′, Ψ ′] is n, which can only happen, once an inclusion is proved, if the two sides
are equal. Using the isomorphism f , we see that a basis of kerF ⊂ Z4 is therefore
given by

w1 = (n, 0, 0, 0), w2 = (−λ, 1, 0, 0), w3 = (−μ, 0, 1, 0), w4 = (λμ,−μ,−λ, 1) .

The LLL algorithm [17] then finds, for a given basis w1, . . . , w4 of kerF , a re-
duced3 basis v1, . . . , v4 in polynomial time (in the logarithm of the norm of the
wi’s) such that (cf. [5, Theorem 2.6.2 p.85])
3 The estimates are usually given for the Euclidean norm of the vectors. But it is easy

to see that the rectangle norm is upper bounded by the Euclidean norm.
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4∏
i=1

|vi| ≤ 8 [Z4 : kerF ] = 8n . (2)

Lemma 1. Let Φ and Ψ be as defined at the beginning of this section,

N : Z4 → Z

(x1, x2, x3, x4) �→
∑

i1,i2,i3,i4≥0
i1+i2+i3+i4=4

bi1,i2,i3,i4x
i1
1 x

i2
2 x

i3
3 x

i4
4

be the norm of an element x1+x2Φ+x3Ψ+x4ΦΨ ∈ Z[Φ, Ψ ], where the bi1,i2,i3,i4 ’s
lie in Z. Then, for any nonzero v ∈ kerF , one has

|v| ≥ n1/4( ∑
i1,i2,i3,i4

i1+i2+i3+i4=4

|bi1,i2,i3,i4 |
)1/4

. (3)

Proof. For v ∈ kerF we have N(v) ≡ 0 (mod n) and if v �= 0 we must therefore
have |N(v)| ≥ n. On the other hand, if we did not have (3), then every component
of v would be strictly less than the right-hand side and plugging this upper bound
in the definition of |N(v)| would yield a quantity < n, a contradiction. � 

Let B be the denominator of the right-hand side of (3), then (2) and (3) imply
that

|vi| ≤ 8B3 n1/4 i = 1, 2, 3, 4 . (4)

Remark 1. In our case, where Ψ2 + 1 = 0 and Φ2 + rΦ + s = 0, we get as norm
function

x41 + s2x42 + x43 + s2x44 − 2rx31x2 − 2rsx1x
3
2 − 2rx33x4 − 2rsx3x

3
4+

(r2 +2s)x21x
2
2 +2x21x

2
3 +(r2− 2s)x21x

2
4+(r2− 2s)x22x

2
3 +2s2x22x

2
4 +(r2 +2s)x23x

2
4

− 2rx21x3x4 − 2rsx22x3x4 − 2rx1x2x
2
3 − 2rsx1x2x

2
4 + 8sx1x2x3x4 ,

and therefore

B =
(
4 + 4s2 + 8s+ 8|r|+ 8|r|s+ 2(r2 + 2s) + 2|r2 − 2s|

)1/4
. (5)

From (1) and (4) we have proved the following theorem.

Theorem 2. Let E/Fp be a GLV curve and E′/Fp2 a twist, together with the
two efficient endomorphisms Φ and Ψ , where everything is defined as at the start
of this section. Suppose that the minimal polynomial of Φ is X2 + rX + s = 0.
Let P ∈ E′(Fp2) be a generator of the large subgroup of prime order n. There
exists an efficient algorithm, which for any k ∈ [1, n] finds integers k1, k2, k3, k4
such that

kP = k1P + k2Φ(P ) + k3Ψ(P ) + k4ΨΦ(P ) with max
i

(|ki|) ≤ 16B3n1/4

and
B =

(
4 + 4s2 + 8s+ 8|r|+ 8|r|s+ 2(r2 + 2s) + 2|r2 − 2s|

)1/4
.
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4.1 Uniform Improvements

The previous analysis is only the first step of our work. It shows that the GLV-
GLS method works as predicted in a four-way decomposition on twists of GLV
curves over Fp2 . However, the constant B3 involved is rather large and, hence,
does not guarantee a non-negligible gain when switching from 2 to 4 dimensions
(especially on those GLV curves with more complicated endomorphism rings).
A much deeper argument, which we develop in the full version of this article,
allows us to prove the following result.

Theorem 3. When performing an optimal lattice reduction on kerF , it is pos-
sible to decompose any k ∈ [1, n] into integers k1, k2, k3, k4 such that

kP = k1P + k2Φ(P ) + k3Ψ(P ) + k4ΨΦ(P ) ,

with maxi(|ki|) < 103(
√
1 + |r| + s)n1/4.

The significance of this theorem lies in the uniform improvement of the constant
16B3, which is Ω(s3/2) in Theorem 2, to a value that is an absolute constant
times greater than the minimal bound for the 2-dimensional GLV method (The-
orem 1). Hence, this guarantees in practice a quasi-uniform improvement when
switching from 2-dimensional to 4-dimensional GLV independently of the curve.

To prove Theorem 3, first note that Lemma 1 gives a rather poor bound
when applied to more than one vector, as is done three times for the proof of
Theorem 2. A more direct treatment of the reduced vectors of kerF becomes
necessary, and this is done via a modification of the original GLV approach. This
results into a new, easy-to-implement lattice reduction algorithm which employs
two Cornacchia-type algorithms [5, Section 1.5.2], one in Z (as in the original
GLV method), the other one in Z[i] (Gaussian Cornacchia). The new algorithm
is presented in Appendix B. The main difficulty lies in controlling arguments
of complex numbers in the Gaussian Cornacchia algorithm and is technically
rather delicate. This difficulty does not exist in the original GLV algorithm, as
taking absolute values suffices to get the desired bounds. We refer to the full
version [21] for details.

Remark 2. In the case of the LLL algorithm, we have not managed to demon-
strate a bound as good as the one obtained with our lattice reduction algorithm.

Remark 3. Nguyen and Stehlé [23] have produced an efficient lattice reduction
in four dimensions which finds successive minima and hence produces a decom-
position with relatively good bounds. Our algorithm represents a very simple
and easy-to-implement alternative that may be ideal for certain cryptographic
libraries.

5 GLV-GLS Using the Twisted Edwards Model

The GLV-GLS method can be sped up in practice by writing down GLV-GLS
curves in the Twisted Edwards model. Note that arithmetic on j-invariant 0
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Weierstrass curves is already very efficient. However, some GLV curves do not
exhibit such high-speed arithmetic. In particular, curves in Examples 3-6 from
Appendix A have Weierstrass coefficients a4 · a6 �= 0 for curve parameters a4
and a6 and hence they have more expensive point doubling (even more if we
consider the extra multiplication by the twisted parameter u when using the GLS
method). So the impact of using Twisted Edwards is expected to be especially
significant for these curves. In fact, if we consider that suitable parameters can
be always chosen the use of Twisted Edwards curves isomorphic to the original
Weierstrass GLV-GLS curves uniformizes the performance of all of them.

Let us illustrate how to produce a Twisted Edwards GLV-GLS curve with the
GLV curve from Example 4, Appendix A. First, consider its quadratic twist over
Fp2

E′/Fp2 : x3 − 15

2
u2x− 7u3 = (x + 2u) · (x2 − 2ux− 7

2
u2)

The change of variables x1 = x+ 2u transforms E′ into

y2 = x31 − 6ux21 +
9u2

2
x1 .

Let β = 3u/
√
2 ∈ Fp2 and substitute x1 = βx′ to get

1

β3
y2 = x′3 − 6u

β
x′2 + x′

and this is a Montgomery curve MA,B : Bv2 = u3+Au2+u, where A �= ±2, B �=
0, with

B =
1

β3
=

2
√
2

27u3
, A = −6u

β
= −2

√
2 .

The corresponding Twisted Edwards GLV-GLS curve is then Ea,d : ax
2 + y2 =

1 + dx2y2 with

a =
A+ 2

B
= 27u3

(√
2

2
− 1

)
, d =

A− 2

B
= −27u3

(√
2

2
+ 1

)
.

The map E′ → Ea,d is

(x, y) �→
(
x+ 2u

βy
,
x+ 2u− β

x+ 2u+ β

)
= (X,Y )

with inverse

(X,Y ) �→
(
β − 2u+ (β + 2u)Y

1− Y
,

1 + Y

(1 − Y )X

)
.

We now specify the formulas for Φ and Ψ , obtained by composing these endo-
morphisms on the Weierstrass model with the birational maps above. We found
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an extremely appealing expression in the case when u = 1+ i and i2 = −1. Then
β = 3u/

√
2 = 3ζ8 where ζ8 is a primitive 8th root of unity. We have

Φ(X,Y ) =

(
− (ζ38 + 2ζ28 + ζ8)XY 2 + (ζ38 − 2ζ28 + ζ8)X

2Y
,
(ζ28 − 1)Y 2 + 2ζ38 − ζ28 + 1

(2ζ38 + ζ28 − 1)Y 2 − ζ28 + 1

)
and

Ψ(X,Y ) =

(
ζ8X

p,
1

Y p

)
.

In this case
a = 54(ζ38 − ζ28 + 1) , d = −54(ζ38 + ζ28 − 1) .

Finally, one would want to use the efficient formulas given in [12] for the case
a = −1. After ensuring that −a be a square in Fp2 , we use the map (x, y) �→
(x/
√
−a, y) to convert to the isomorphic curve −x2 + y2 = 1 + d′x2y2, where

d′ =−d/a.

6 Side-Channel Protection and Parallelization of the
GLV-GLS Method

Given the potential threat posed by attacks that exploit timing information to
deduce secret keys ([16,4]), many works have proposed countermeasures to min-
imize the risks and achieve the so-called constant-time execution during crypto-
graphic computations. In general, to avoid leakage the execution flow should be
independent of the secret key. This means that conditional branches and secret-
dependent table lookup indices should be avoided [15]. There are five key points
that are especially vulnerable during the computation of scalar multiplication:
inversion, modular reduction in field operations, precomputation, scalar recoding
and double-and-add execution.

A well-known technique that is secure and easy to implement for inverting
any field element a consists of computing the exponentiation ap−2 mod p using
a short addition chain for p− 2.

To protect field operations, one may exploit conditional move instructions
typically found on modern x86 and x64 processors (a.k.a. cmove). Since condi-
tional checks happen during operations such as addition and subtraction as part
of the reduction step it is standard practice to replace conditional branches with
the conditional move instruction. Luckily, these conditional branches are highly
unpredictable and, hence, the substitution above does not only makes the execu-
tion constant-time but also more efficient in most cases. An exception happens
when performing modular reduction during a field multiplication or squaring,
where a final correction step could happen very rarely and hence a conditional
branch may be more efficient.

In the case of precomputation, recent work by [15] and later by [3] showed
how to enable the use of precomputed points by employing constant-time table
lookups that mask the extraction of points. In our implementations (see Section
7), we exploit a similar approach based on cmove and conditional vector instruc-
tions instead, which is expected to achieve higher performance on some platforms
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than implementations based on logical instructions (see Listing 1 in [15]). Note
that it is straightforward to enable the use of signed-digit representations that
allow negative points by performing a second table lookup between the point
selected in the first table lookup and its negated value.

To protect the scalar recoding and its corresponding double-and-add algo-
rithm, one needs a regular pattern execution. Based on a method by [24], Joye
and Tunstall [14] proposed a constant-time recoding that supports a regular ex-
ecution double-and-add algorithm that exploits precomputations. The nonzero
density of the method is 1/(w − 1), where w is the window width. Therefore,
there is certain loss in performance in comparison with an unprotected version
with nonzero density 1/(w+ 1). In GLV-based implementations one has to deal
with more than one scalar, and these scalars are scanned simultaneously during
multi-exponentiation. So there are two issues that arise. First, how are the sev-
eral scalars aligned with respect to their zero and nonzero digit representation?,
and second, how do we guarantee the same representation length for all scalars
so that no dummy operations are required? The first issue is inherently solved by
the recoding algorithm itself. The input is always an odd number, which means
that, from left to right, one obtains the execution pattern (w − 1) doublings, d
additions, (w − 1) doublings, d additions, . . . , (w − 1) doublings and d addi-
tions, for d-dimensional GLV. For dealing with even numbers, one may employ
the technique described in [14] in a constant-time fashion, namely, scalars ki that
are even are replaced by ki+1 and scalars that are odd are replaced by ki+2 (the
correction, also constant-time, is performed after the scalar multiplication com-
putation using d point additions). Solution to the second issue was also hinted
by [14]. The reader is referred to the full paper version for the modified recoding
algorithm that outputs a regular pattern representation with fixed length. Note
that in the case of Twisted Edwards one can alternatively use unified addition
formulas that also work for doubling (see [2,12] for details). However, our anal-
ysis indicates that this approach is consistently slower because of the high cost
of these unified formulas in comparison to doubling and the extra cost incurred
by the increase in constant-time table lookup accesses.

6.1 Multicore Computation and Its Side-Channel Protection

Parallelization of scalar multiplication over prime fields is particularly difficult
on modern multicore processors. This is due to the difficulty to perform point
operations concurrently when executing the double-and-add algorithm from left
to right. From right to left parallelization is easier but performance is hurt be-
cause the use of precomputations is cumbersome. Hence, parallelization should
be ideally performed at the field arithmetic level. Unfortunately, current multi-
core processors still impose a severe overhead for thread creation/destruction.
During our tests we observed overheads of a few thousands of cycles on mod-
ern 64-bit CPUs (that is, much more costly than a point addition or doubling).
Given this limitation, for the GLV method it seems the ideal approach (from
a speed perspective) to let each core manage a separate scalar multiplication
with ki. This is simple to implement, minimizes thread management overhead
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and also eases the task of protecting the implementation against side-channel
attacks since each scalar can be recoded using Algorithm 4 [21, App. E]. Using d
cores, the total cost of a protected d-dimensional GLV l-bit scalar multiplication
(disregarding precomputation) is about l/d doublings and l/((w − 1) · d) mixed
additions. A somewhat slower approach (but more power efficient) would be to
let one core manage all doublings and let one or two extra cores manage the
additions corresponding to nonzero digits. For instance, for dimension four and
three cores the total cost (disregarding precomputation) is about l/d doublings
and l/((w−1) ·d) general additions, always that the latency of (w−1) doublings
be equivalent or greater than the addition part (otherwise, the cost is dominated
by non-mixed additions).

7 Performance Analysis and Experimental Results

For our analysis and experiments, we consider the five curves below: two GLV
curves in Weierstrass form with and without nontrivial automorphisms, their
corresponding GLV-GLS counterparts and one curve in Twisted Edwards form
isomorphic to the GLV-GLS curve E′

3 (see below).

– GLV-GLS curve with j-invariant 0 in Weierstrass form E′
1/Fp2

1
: y2 = x3+9u,

where p1 = 2127 − 58309 and #E′
1(Fp2

1
) = r, where r is a 254-bit prime.

We use Fp2
1
= Fp1 [i]/(i

2 + 1) and u = 1 + i ∈ Fp2
1
. E′

1 is the quadratic
twist of the curve in Example 2, Appendix A. Φ(x, y) = λP = (ξx, y) and
Ψ(x, y) = μP = (u(1−p)/3xp, u(1−p)/2yp), where ξ3 = 1 mod p1. We have
that Φ2 + Φ+ 1 = 0 and Ψ2 + 1 = 0.

– GLV curve with j-invariant 0 in Weierstrass form E2/Fp2 : y2 = x3+2, where
p2 = 2256 − 11733 and #E2(Fp2) is a 256-bit prime. This curve corresponds
to Example 2, Appendix A.

– GLV-GLS curve in Weierstrass form E′
3/Fp2

3
: y2 = x3 − 15/2 u2x − 7u3,

where p3 = 2127 − 5997 and #E′
3(Fp2

3
) = 8r, where r is a 251-bit prime. We

use Fp2
3
= Fp3 [i]/(i

2 + 1) and u = 1 + i ∈ Fp2
3
. E′

3 is the quadratic twist
of a curve isomorphic to the one in Example 4, Appendix A. The formula
for Φ(x, y) = λP can be easily derived from ψ(x, y), and Ψ(x, y) = μP =
(u(1−p)xp, u3(1−p)/2yp). It can be verified that Φ2 + 2 = 0 and Ψ2 + 1 = 0.

– GLV-GLS curve in Twisted Edwards form E′
T3/Fp2

3
: −x2 + y2 =

1 + dx2y2, where d = 170141183460469231731687303715884099728 +
116829086847165810221872975542241037773i, p3 = 2127 − 5997 and
#E′

T3(Fp2
3
) = 8r, where r is a 251-bit prime. We use again Fp2

3
= Fp3 [i]/(i

2+
1) and u = 1 + i ∈ Fp2

3
. E′

T3 is isomorphic to curve E′
3 above and was ob-

tained following the procedure in Section 5. The formulas for Φ(x, y) and
Ψ(x, y) are also given in Section 5. It can be verified that Φ2 + 2 = 0 and
Ψ2 + 1 = 0.

– GLV curve E4/Fp4 : y2 = x3 − 15/2 x − 7, where p4 = 2256 − 45717 and
#E4(Fp4) = 2r, where r is a 256-bit prime. This curve is isomorphic to the
curve in Example 4, Appendix A.
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Let us first analyze the performance of the GLV-GLS method over Fp2 in com-
parison with the traditional 2-GLV case over Fp. We assume the use of a pseudo-
Mersenne prime with form p = 2m−c, for small c (for our targeted curves, groups
with (near) prime order cannot be constructed using the attractive Mersenne
prime p = 2127 − 1). Given that we have a proven ratio C2/C1 < 412 that is
independent of the curve, the only values left that could affect significantly a
uniform speedup between GLV-GLS and 2-GLV are the quadratic non-residue β
used to build Fp2 as Fp[i]/(i

2− β), the value of the twisted parameter u and the
cost of applying the endomorphisms Φ and Ψ . In particular, if |β| > 1 a few extra
additions (or a multiplication by a small constant) are required per Fp2 multi-
plication and squaring. Luckily, for all the GLV curves listed in Appendix A one
can always use a suitably chosen modulus p so that |β| can be one or at least very
close to it. Similar comments apply to the twisted parameter u. In this case, the
extra cost (equivalent to a few additions) is added to the cost of point doubling
always that the curve parameter a in the Weierstrass equation be different to
zero (e.g., it does not affect j-invariant 0 curves). In the case of Twisted Edwards,
we applied a better strategy, that is, we eliminated the twisted parameter u in
the isomorphic curve. The cost of applying Φ and Ψ does depend on the chosen
curve and it could be relatively expensive. If computing Φ(P ), Ψ(P ) or ΨΦ(P )
is more expensive than point addition then its use can be limited to only one
application (i.e., multiples of those values −if using precomputations− should
be computed with point additions). Further, the extra cost can be minimized by
choosing the optimal window width for each ki.

To illustrate how the parameters above affect the performance gain we detail
in Table 1 estimates for the cost of computing scalar multiplication with our
representative curves. In the remainder, we use the following notation: M, S, A
and I represent field multiplication, squaring, addition and inversion over Fp,
respect., and m, s, a and i represent the same operations over Fp2 . Side-channel
protected multiplication and squaring are denoted by ms and ss. We consider
the cost of addition, substraction, negation, multiplication by 2 and division by
2 as equivalent. For the targeted curves in Weierstrass form, a mixed addition
consists of 8 multiplications, 3 squarings and 7 additions, and a general addition
consists of 12 multiplications, 4 squarings and 7 additions. For E′

1 and E2, a
doubling consists of 3 multiplications, 4 squarings and 7 additions, and for E′

3

and E4, a doubling consists of 3 multiplications, 6 squarings and 12 additions.
For Twisted Edwards we consider the use of mixed homogeneous/extended ho-
mogeneous projective coordinates [12]. In this case, a mixed addition consists of
7 multiplications and 7 additions, a general addition consists of 8 multiplications
and 6/7 additions and a doubling consists of 4 multiplications, 3 squarings and
5 additions. We assume the use of interleaving [10] with width-w non-adjacent
form (wNAF) and the use of the LM scheme for precomputing points on the
Weierstrass curves [20] (see also [18, Ch. 3]).

According to our theoretical estimates, it is expected that the relative speedup
when moving from 2-GLV to GLV-GLS be as high as 50%, approximately. To con-
firm our findings, we realized full implementations of the methods. Experimental
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Table 1. Operation counts and performance for scalar multiplication at approximately
128 bits of security. To determine the total costs we consider 1i=66m, 1s=0.76m and
1a=0.18m for E′

1, E
′
3 and E′

T3; and 1I=290M, 1S=0.85M and 1A=0.18M for E2 and E4.
The cost ratio of multiplications over Fp and Fp2 is M/m=0.91. These values and the
performance figures (in cycles) were obtained by benchmarking full implementations
on a single core of a 3.4GHz Intel Core i7-2600 (Sandy Bridge) processor.

Curve Method Operation Count Total Cost Gain Performance Gain

E′
1(F

p21
) 4-GLV-GLS, 32pts. 2i + 617m + 404s + 847a 1209m 51% 99,000cc 53%

E2(Fp2 ) 2-GLV, 16pts. 1I + 904M + 690S + 1240A 2004M≈1824m - 151,000cc -

E′
T3(F

p2
3
) 4-GLV-GLS, 16pts. 1i + 742m + 225s + 767a 1117m 97% 91,000cc 102%

E′
3(F

p2
3
) 4-GLV-GLS, 16pts. 2i + 678m + 581s + 1200a 1468m 50% 121,000cc 52%

E4(Fp4 ) 2-GLV, 16pts. 1I + 950M + 970S + 1953A 2416M≈2199m - 184,000cc -

results, also displayed in Table 1, closely follow our estimates and confirm that
speedups in practice are about 52%. Most remarkably, the use of the Twisted Ed-
wards model pushes performance even further. In Table 1, the expected gains for
E′
T3 are 31% and 97% in comparison with 4-GLV-GLS and 2-GLV in Weierstrass

form (respect.). In practice, we achieved similar speedups, namely, 33% and 102%
(respect.). Likewise, a rough analysis indicates that a Twisted Edwards GLV-GLS
curve for a j-invariant 0 curve would achieve roughly similar speed to E′

T3, which
means that in comparison to its corresponding Weierstrass counterpart the gains
are 9% and 66% (respect.). This highlights the impact of using Twisted Edwards
especially over those GLV-GLS curves relatively slower in the Weierstrass model.
Timings were registered on a single core of a 3.4GHz Intel Core i7-2600 (Sandy
Bridge) processor.

Let us now focus on curves E′
1, E2 and E′

T3 to assess performance of im-
plementations targeting four scenarios of interest: unprotected and side-channel
protected versions with sequential and multicore execution. Operation counts for
computing a scalar multiplication at approximately 128 bits of security for the
different cases are displayed in Table 2. The techniques to protect and parallelize
our implementations are described in Section 6. In particular, the execution flow
and memory address access of side-channel protected versions are not secret and
are fully independent of the scalar. For our versions running on several cores we
used OpenMP. We use an implementation in which each core is in charge of one
scalar multiplication with ki. Given the high cost of thread creation/destruction
this approach guarantees the fastest computation in our case (see Section 6 for
a discussion). Note that these multicore figures are only relevant for scenarios
in which latency rather than throughput is targeted. Finally, we consider the
cost of constant-time table lookups (denoted by t) given its non-negligible cost
in protected implementations.

Focusing on curve E′
1, it can be noted a significant cost reduction when switch-

ing from non-GLV to a GLV-GLS implementation. The speedup is more than
twofold for sequential, unprotected versions. Significant improvements are also
expected when using multiple cores. A remarkable factor 3 speedup is expected
when using GLV-GLS on four cores in comparison with a traditional execution
(listed as non-GLV).
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Table 2. Operation counts for scalar multiplication at approximately 128 bits of secu-
rity using curves E′

1, E2 and E′
T3 in up to four variants: unprotected and side-channel

protected implementations with sequential and multicore execution. To determine the
total costs we consider 1i=66m, 1s=0.76m and 1a=0.18m for unprotected versions of E′

1

and E′
T3; 1i=79ms, 1ss=0.81ms and 1a=0.17ms for protected versions of E′

1 and E′
T3;

t=0.83ms for E′
1 (32pts.); t=1.28ms for E′

T3 (36pts.); t=0.78ms for E′
T3 (20pts.); and

1I=290M, 1S=0.85M and 1A=0.18M for E2. In our case, M/m=0.91 and ms/m=1.11.
These values were obtained by benchmarking full implementations on a 3.4GHz Intel
Core i7-2600 (Sandy Bridge) processor.

Curve Method Protection # Cores Operation Count Total Cost

E′
T3(F

p23
) 4-GLV-GLS, 16pts. no 1 1i + 742m + 225s + 767a 1117m

E′
T3(F

p2
3
) 4-GLV-GLS, 36pts. yes 1 1i + 1014ms + 217ss + 997a + 68t 1525ms≈1693m

E′
T3(F

p2
3
) 4-GLV-GLS, 16pts. no 4 1i + 420m + 198s + 484a 724m

E′
T3(F

p2
3
) 4-GLV-GLS, 20pts. yes 4 1i + 503ms + 196ss + 532a + 22t 848ms≈941m

E′
1(F

p21
) 4-GLV-GLS, 32pts. no 1 2i + 617m + 404s + 847a 1209m

E′
1(F

p21
) 4-GLV-GLS, 36pts. yes 1 2i + 849ms + 489ss + 1001a + 68t 1630ms≈1809m

E′
1(F

p21
) 4-GLV-GLS, 32pts. no 4 2i + 371m + 316s + 593a 850m

E′
1(F

p21
) 4-GLV-GLS, 36pts. yes 4 2i + 425ms + 335ss + 637a + 17t 977ms≈1084m

E′
1(F

p21
) non-GLV, 8pts. no 1 2i + 1169m + 1169s + 2141a 2575m

E2(Fp2 ) 2-GLV, 16pts. no 1 1I + 904M + 690S + 1240A 2004M≈1824m
E2(Fp2 ) 2-GLV, 16pts. no 2 1I + 681M + 615S + 1103A 1692M≈1540m

In general for our targeted GLV-GLS curves, the speedup obtained by us-
ing four cores is in between 42%-80%. Interestingly, the improvement is greater
for protected implementations since the overhead of using a regular pattern
execution is minimized when distributing computation among various cores. Re-
markably, protecting implementations against timing attacks increases cost in
between 28%-52%, approximately. On the other hand, in comparison with curve
E2, an optimal execution of GLV-GLS on four cores is expected to run 1.81
faster than an optimal execution of the standard 2-GLV on two cores.

To confirm our findings we implemented the different versions using curvesE′
1,

E2 and E′
T3. To achieve maximum performance and ease the task of paralleliz-

ing and protecting the implementations, we wrote our own standalone software
without employing any external library. For our experiments we used a 3.4GHz
Intel Core i7-2600 processor, which contains four cores. The timings in terms
of clock cycles are displayed in Table 3. As can be seen, closely following our
analysis GLV-GLS achieves a twofold speedup over a non-GLV implementation
on a single core. Parallel execution improves performance by up to 76% for side-
channel protected versions. In comparison with the non-GLV implementation,
the four-core implementation runs 3 times faster. Our results also confirm the
lower-than-expected cost of adding side-channel protection. Sequential versions
lose about 50% in performance whereas parallel versions only lose about 28%.
The relative speedup when moving from 2-GLV to GLV-GLS on j-invariant 0
curves is 53%, closely following the theoretical 50% estimated previously. Four-
core GLV-GLS supports a computation that runs 81% faster than the standard
2-GLV on two cores. Finally, in practice our Twisted Edwards curve achieves up
to 9% speedup on the sequential, non-protected scenario in comparison with the
efficient j-invariant 0 curve based on Jacobian coordinates.
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Table 3. Point multiplication timings (in clock cycles), 64-bit processor

Curve Method Protection # Cores Core i7

E′
T3(Fp23

) 4-GLV-GLS, 16pts. no 1 91,000

E′
T3(Fp23

) 4-GLV-GLS, 36pts. yes 1 137,000

E′
T3(Fp23

) 4-GLV-GLS, 16pts. no 4 61,000

E′
T3(Fp23

) 4-GLV-GLS, 20pts. yes 4 78,000

E′
1(Fp21

) 4-GLV-GLS, 32pts. no 1 99,000

E′
1(Fp21

) 4-GLV-GLS, 36pts. yes 1 145,000

E′
1(Fp21

) 4-GLV-GLS, 32pts. no 4 70,000

E′
1(Fp21

) 4-GLV-GLS, 36pts. yes 4 89,000

E′
1(Fp21

) non-GLV, 8pts. no 1 201,000

E2(Fp2) 2-GLV, 16pts. no 1 151,000
E2(Fp2) 2-GLV, 16pts. no 2 127,000

Let us now compare our best numbers with recent results in the literature. Fo-
cusing on one-core unprotected implementations, the first author together with
Hu and Xu reported in [13] 122,000 cycles for a j-invariant 0 Weierstrass curve
on an Intel Core i7-2600 processor. We report 91,000 cycles with the GLV-GLS
Twisted Edwards curve E′

T3, improving that number in 34%. We benchmarked
on the same processor the side-channel protected software recently presented by
Bernstein et al. in [3], and obtained 194,000 cycles. Thus, our protected imple-
mentation, which runs in 137,000 cycles, improves that result in 42%. Our result
is also 12% faster than the recent implementation by Hamburg [11]. Recent im-
plementations on multiple cores are reported by Taverne et al. in [27]. However,
they do not explore the 128-bit security level in their implementations and, hence,
results are not directly comparable. They also report a protected implementa-
tion of a binary Edwards curve that runs in 225,000 cycles on a Core i7-2600
machine, which is 64% slower than our corresponding result. Since the advent of
the carryless multiplier on recent Intel processors, it has been suspected that the
only curves able to get performance as good as the GLV-GLS method over large
prime characteristic fields are Koblitz curves over binary fields. In fact, Aranha
et al. [1] very recently presented an implementation of the Koblitz curve K-283
that runs in 99,000 cycles on an Intel Core i7-2600, which is 9% slower than our
GLV-GLS Twisted Edwards curve E′

T3 (unprotected sequential execution). We
remark that such performance for a binary elliptic curve can only be attained
on very recent processors that possess the so-called carryless multiplier. Aranha
et al. do not report timings for side-channel protected implementations. To the
best of our knowledge, we have presented the first scalar multiplication imple-
mentation running on multiple cores that is protected against timing attacks,
cache attacks and several others.
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8 Conclusion

We have shown how to generalize the GLV scalar multiplication method by
combining it with Galbraith-Lin-Scott’s ideas to perform a proven almost
fourfold speedup on GLV curves over Fp2 . We have introduced a new and
easy-to-implement reduction algorithm, consisting in two applications of the
extended Euclidean algorithm, one in Z and the other in Z[i]. The refined bound
obtained from this algorithm has allowed us to get a relative improvement
from 2-GLV to 4-GLV-GLS quasi-independent of the curve. Our analysis
and experimental results on different GLV curves show that in practice one
should expect speedups close to 50%. We improve performance even further
by exploiting the Twisted Edwards model over a larger set of curves and show
that this approach is especially significant to certain GLV curves with slow
arithmetic in the Weierstrass model. This makes available to implementers new
curves that achieve close to optimal performance. Moreover, we have shown
how to protect GLV-based implementations against certain side-channel attacks
with relatively low overhead and carried out a performance analysis on modern
multicore processors. Our implementations of the GLV-GLS method improve
the state-of-the-art performance of point multiplication for multiple scenarios:
unprotected and side-channel protected versions with sequential and parallel
execution.
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A Examples

We give a few examples of GLV curves, which are curves defined over C with
complex multiplication by a quadratic integer of small norm, corresponding to
an endomorphism φ of small degree4. They make up an exhaustive list, up to
isomorphism, in increasing order of endomorphism degree up to degree 3. While
the first four examples appear in the previous literature, the next ones (degree
3) are new and have been computed with the Stark algorithm [26].

Example 1. Let p ≡ 1 (mod 4) be a prime. Define an elliptic curve E over Fp

by
y2 = x3 + ax .

If β is an element of order 4, then the map φ defined in the affine plane by

φ(x, y) = (−x, βy)

is an endomorphism of E defined over Fp with End(E) = Z[φ] ∼= Z[
√
−1], since

φ satisfies the equation5

φ2 + 1 = 0 .

Example 2. Let p ≡ 1 (mod 3) be a prime. Define an elliptic curve E over Fp

by
y2 = x3 + b .

If γ is an element of order 3, then we have an endomorphism φ defined over Fp

by
φ(x, y) = (γx, y) ,

and End(E) = Z[φ] ∼= Z[ 1+
√
−3

2 ], since φ satisfies the equation

φ2 + φ+ 1 = 0 .

4 By small we mean really small, usually less than 5. In particular, for cryptographic
applications, the degree is much smaller than the field size.

5 This is the only case when we cannot apply Lemma 1. It needs a separate treatment,
given in [21], Appendix B.
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Example 3. Let p > 3 be a prime such that −7 is a quadratic residue modulo p.
Define an elliptic curve E over Fp by

y2 = x3 − 3

4
x2 − 2x− 1 .

If ξ = (1 +
√
−7)/2 and a = (ξ − 3)/4, then we get the Fp-endomorphism φ

defined by

φ(x, y) =

(
x2 − ξ

ξ2(x− a)
,
y(x2 − 2ax+ ξ)

ξ3(x− a)2

)
,

and End(E) = Z[φ] ∼= Z[ 1+
√
−7

2 ], since φ satisfies the equation

φ2 − φ+ 2 = 0 .

Example 4. Let p > 3 be a prime such that −2 is a quadratic residue modulo p.
Define an elliptic curve E over Fp by

y2 = 4x3 − 30x− 28

together with the Fp-endomorphism φ defined6 by

φ(x, y) =

(
−2x2 + 4x+ 9

4(x+ 2)
, y

2x2 + 8x− 1

4
√
−2(x+ 2)2

)
.

We have End(E) = Z[φ] ∼= Z[
√
−2] since φ satisfies the equation

φ2 + 2 = 0 .

Example 5. Let p > 3 be a prime such that −11 is a quadratic residue modulo
p. We define the elliptic curve E over Fp

y2 = x3 − 13824

539
x+

27648

539

with a = (1 +
√
−11)/2 and the endomorphism φ defined by

φ(x, y) =((
− 539

5184a+
539
1728

)
x3 +

(
28
27a−

35
18

)
x2 +

(
− 92

9 a+
8
3

)
x+ 1728

77 a+ 192
77(

2695
5184a−

539
864

)
x2 +

(
− 217

54 a+
49
18

)
x+ 64

9 a−
4
3

, y(
3773

373248a−
18865
995328

)
x3 +

(
− 2695

20736a+
539
3456

)
x2 +

(
7

432a−
91
144

)
x+ 20

27a+
1
9(

− 18865
1492992a+

116963
995328

)
x3 +

(
7007
20736a−

539
432

)
x2 +

(
− 791

432a+
581
144

)
x+ 74

27a−
35
9

)

such that End(E) = Z[φ] ∼= Z[ 1+
√
−11
2 ]. The characteristic polynomial of φ is

φ2 − φ+ 3 = 0 .

6 We take the opportunity to correct a typo found and transmitted in many sources,
where a y factor was absent in the second coordinate. Its sign is irrelevant.
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Example 6. Let p > 3 be a prime such that −3 is a quadratic residue mod p.
We define the elliptic curve E over Fp

y2 = x3 − 3375

121
x+

6750

121

with the endomorphism φ defined by

φ(x, y) =

(
−

1331x3 − 10890x2 + 81675x − 189000

33(11x − 45)2
, y

1331x3 − 16335x2 + 7425x + 43875

3
√
−3(11x − 45)3

)

such that7 End(E) = Z[φ] ∼= Z[
√
−3]. The characteristic polynomial of φ is

φ2 + 3 = 0 .

B A New Four-Dimensional Lattice Reduction Algorithm

Algorithm 1 (Cornacchia’s GCD algorithm in Z)

Input: n ≡ 1 (mod 4) prime, 1 < μ < n such that μ2 ≡ −1 (mod n).
Output: ν = ν(R) + iν(I) Gaussian prime dividing n, such that νP = 0.

1. initialize:
r0 ← n, r1 ← μ, r2 ← n,
t0 ← 0, t1 ← 1, t2 ← 0,
q ← 0.

2. main loop:
while r22 ≥ n do

q ← �r0/r1�,
r2 ← r0 − qr1, r0 ← r1, r1 ← r2,
t2 ← t0 − qt1, t0 ← t1, t1 ← t2.

3. return:
ν = r1 − it1, ν(R) = r1, ν(I) = −t1

7 This is the first example where the endomorphism ring is not the maximal order
of its field of fractions. It can be summarily seen as follows: End(E) ⊇ Z[

√
−3].

If not equal, then it must be the full ring of integers Z[ 1+
√−3
2

]. This would imply
that j = 0, as there is only h(−3) = 1 isomorphism class of elliptic curves with

complex multiplication by Z[ 1+
√−3
2

], given in Example 2 (see [26] for an abridged
description of the theory of complex multiplication). This is clearly not the case
here. Alternatively, one can see that there would exist a nontrivial automorphism (a

primitive cube root of unity) corresponding to −1+
√−3
2

. A direct computation then
shows this is impossible.
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Algorithm 2 (Cornacchia’s algorithm in Z[i] - compact form)

Input: ν Gaussian prime dividing n rational prime, 1 < λ < n such
that λ2 + rλ + s ≡ 0 (mod n).
Output: Two Z[i]-linearly independent vectors v1 & v2 of kerF ⊂
Z[i]2 of rectangle norms < 51.5(

√
1 + |r| + s)n1/4.

1. initialize:
If λ2 ≥ 2n then

r0 ← λ,
else

r0 ← λ+ n,
r1 ← ν, r2 ← n,
s0 ← 1, s1 ← 0, s2 ← 0,
q ← 0.

2. main loop:
while |r2|4(1 + |r|+ s)2 ≥ n do

q ← closest Gaussian integer to r0/r1,
r2 ← r0 − qr1, r0 ← r1, r1 ← r2,
s2 ← s0 − qs1, s0 ← s1, s1 ← s2.

3. return:
v1 = (r0,−s0), v2 = (r1,−s1)
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Abstract. Together with masking, shuffling is one of the most fre-
quently considered solutions to improve the security of small embed-
ded devices against side-channel attacks. In this paper, we provide a
comprehensive study of this countermeasure, including improved imple-
mentations and a careful information theoretic and security analysis of
its different variants. Our analyses lead to important conclusions as they
moderate the strong security improvements claimed in previous works.
They suggest that simplified versions of shuffling (e.g. using random start
indexes) can be significantly weaker than their counterpart using full per-
mutations. We further show with an experimental case study that such
simplified versions can be as easy to attack as unprotected implementa-
tions. We finally exhibit the existence of “indirect leakages” in shuffled
implementations that can be exploited due to the different leakage mod-
els of the different resources used in cryptographic implementations. This
suggests the design of fully shuffled (and efficient) implementations, were
both the execution order of the instructions and the physical resources
used are randomized, as an interesting scope for further research.

1 Introduction

Already in the first Differential Power Analysis (DPA) paper, Kocher et al.
mentioned time randomization as a possible solution to improve security against
side-channel attacks [15]. Following, different countermeasures have been pro-
posed to exploit this idea, e.g. relying on the addition of random delays [7,31],
shuffling the execution order of independent operations [13,26], or more gener-
ally, trying to build a non-deterministic processor [4,19]. As usual in side-channel
attacks, the main question regarding these solutions is: “to what extent do they
improve security and at which cost?”. In this paper, we propose a comprehensive
treatment of this question in the case of the shuffling countermeasure.

For this purpose, we start with the efficiency issue. In general, shuffling can be
applied to any set of independent operations. The SubBytes layer of 16 S-boxes
in the AES Rijndael is a typical example. Randomizing such operations can be
done in different ways. Taking the extreme cases, either the S-boxes are executed
according to a Random Permutation (RP) among 16! possible ones, or they are
executed from a Random Start Index (RSI) among 16 possible ones, that is then
incremented. This difference is nicely illustrated with previous works on shuffled
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implementations of the AES. In a first paper from 2006 [13], the authors use par-
tial shuffling and first-order masking based on S-box pre-computation. Whereas
masking is applied to the whole cipher, shuffling is only applied to the first and
last rounds. Furthermore, the RSI approach is pursued, for performance reasons.
In a second work from Rivain et al., higher-order masking is implemented and
shuffling is mainly based on the RP approach [26]. Yet, for the MixColumns
operations, only the (first-order masked) columns are shuffled, accounting for
8! possible permutations. That is, thanks to the first-order masking, they have
8 positions that can be shuffled, vs. 4 if MixColumns was not masked, and 16
for the other AES transforms. Implementation details are not given in [26], but
we assume that this choice is again motivated by performance reasons, with a
MixColumn operation implemented with xtime tables [10]. Apart from those
works, shuffling was also applied to hardware implementations with 8- or 32-bit
datapaths, where RSI is usually preferred as it nearly comes for free [11,20,22].

Following this state-of-the art, our first contribution is to improve the perfor-
mances of software implementations using the RP approach. In this respect, we
start from the observation that in an unprotected block cipher implementation,
one usually keeps as much data as possible in the processor registers, in order
to minimize RAM access. By contrast, once random access to these registers is
required (as in shuffled implementations), RAM usage is inevitable. This implies
that any register access becomes a serial of load and store operations, resulting
in major performance overheads. We mitigate these overheads by exploiting a
different technique, which consists in manipulating the program flow. It allows
us to operate on registers while at the same time randomizing the sequence of
operations. In practice, we present two approaches: the first one changes the
program flow “on-the-fly”, while the other one re-writes the program memory
prior to execution. The latter approach can be viewed as an adaptation of the
self-modifying codes used in software engineering [2], also applied to counteract
side-channel attacks in [1]. Our new solutions come with contrasted performance
results. Namely, the on-the-fly proposal minimizes the overall cycle count, while
the program memory manipulations allow very efficient online encryption at the
cost of long (possibly offline) pre-computations. For illustration, we apply these
proposals (and previously published ones) to the AES Furious implementation
available from [23]. Besides, we also investigate the efficient generation of (small)
random permutations in low-cost microcontrollers. That is, we take a well known
optimal algorithm for permutation generation and modify it slightly, in order to
improve its performances. As a result, we are able to generate close-to-uniform
permutations, and obtain an efficient alternative to proposals such as [8].

Next, we investigate the security of shuffling against side-channel attacks.
Here, we start from the observation that the existing literature usually evaluates
the impact of shuffling based on a so-called “integrated DPA” (aka windowing
attack), introduced in [7] and applied, e.g. in [26,30]. Intuitively, if the manipula-
tion of a sensitive variable is spread over t time samples, its correlation with the
actual leakages will be reduced by a factor

√
t using such an attack, instead of t

without integration. Integrating is a convenient tool for evaluation as it can be
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directly used to estimate the data complexity of a DPA using Mangard’s formu-
las [17]. Yet, a possible limitation of this technique is that it treats the RSI and
RP cases in the same way. Hence, a natural question is to determine whether
these two approaches are indeed equivalent in general, or if advanced evaluation
tools can be used to put forward additional weaknesses for RSI implementations.
Our results regarding this question are summarized as follows.

First, we specialize the information theoretic and security analysis from [28] to
the context of shuffled implementations. It allows us to confirm that integrated
DPA is indeed suboptimal compared to a Bayesian exploitation of the leakages.
While our worst-case evaluations rely on profiled attacks [6,27], we believe they
are important to moderate claims of strong security improvements provided by
shuffling (e.g. the data complexity increases by a factor 360 in [4]). In particular,
these results complement the previous work of Asiacrypt 2010 [29], in which such
an information theoretic and security analysis was performed for masking. As a
result and for the first time, we obtain lower bounds for the data complexity of
standard side-channel attacks against shuffled implementations.

Second, we notice that security evaluations for masking always combine the
leakage corresponding to the masked data and its masks, e.g. [21,24]. Quite
surprisingly, and to the best of our knowledge, the impact of such a scenario has
not been investigated in the case of shuffling. Therefore, we include the possibility
of a leakage on the permutation (or start index) manipulated when shuffling.
We show that as soon as some information is leaked about them, attacks against
RSI- and RP-based implementations become significantly different, the RSI case
being much easier to attack, for computational reasons.

Finally, we observe that direct leakages about the start index or permutations
naturally arise in practice and can be exploited. More surprisingly, we also show
the existence of “indirect leakages”, coming from the different power consump-
tion models of the hardware resources manipulating the key bytes. For example,
since the 16 registers used in our shuffled Furious implementations have (slightly)
different models, marginalizing the distribution of the observed leakage over the
16 AES key bytes provides information about which S-box is computed.

Summarizing, we observe that all previous works on shuffling reduced the size
of the permutation set for some of the operations in the protected algorithm.
Hence, our results bring the important cautionary note that time complexity is
critical in the security evaluation of this countermeasure, as permutations with
a small size can be enumerated which leads to exploitable weaknesses. In this
respect, an implementation protected with RSI-based shuffling can sometimes be
as weak as an unprotected one. As for the RP-based solution, we recall that it can
be used as a noise amplifier for leaking devices, but never as a noise generator.

2 Efficient Implementations

This section explores the software design space for shuffling the AES on an Atmel
ATMega644P microcontroller [3]. We first describe an efficient way to obtain
close-to-uniform permutations in this device. Next, we show how to obtain an
AES implementation for which every transform can be shuffled according to
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such permutations, including MixColumns (and the key scheduling algorithm if
needed). Afterwards, we describe different implementations: a basic one relying
on a previously proposed “double indexing” method, and two optimized ones
relying on randomized execution path and program memory. We finally provide
precise performance evaluations and a comparison with previous works.

Permutation Generation. The first building block of a shuffled implemen-
tation is a permutation generator. From a sequence S := {1, . . . , n}, a uniform
permutation can be produced in linear time [14]. The original algorithm iterates
over every element Si (with i from 0 to n − 2), and swaps it with a random
element from the remaining tail, i.e. {Si, . . . , Sn−1}. However, sampling from
{i, . . . , n − 1} needs either a modulo operation and a random number greater
than n to start from, or an approach with probabilistic run-time. We avoided this
performance drawbacks by sampling from {0, . . . , n− 1}. Permuting a sequence
of 16 entries following this algorithm takes 362 cycles on our device, using 8 bytes
of randomness. It still allows to generate all permutations, but with a slight bias
that decreases with the size of the permuted set. To estimate the impact of this
bias for different sizes of the permutation set N , we systematically sampled 108

permutations generated with this method, and built histograms with N ! bins.
We then estimated the Euclidean distance between these biased histograms and
a uniform distribution. In addition, we compared this situation with the one
obtained with a quite minimum side-channel leakage. Namely, we assumed that
the Hamming weight of the first entry of a (uniformly generated) permutation
is known to be the least informative one (i.e. with half of the bits set to one). As
can be observed in Table 1, the bias due to this small side-channel information
is already significantly larger than the one due to the permutation generation
algorithm. Furthermore, actual leakages in Sections 3 and 4 affect all the per-
mutation entries, which further reduces the bias of the permutation generation
algorithm compared to the one caused by physical information. Eventually, we
will show in the next sections that exploiting these biases in a side-channel at-
tack where we shuffle among 16! possible permutations is computationally hard.
Therefore, we conclude that our performance optimized algorithm should not
lead to a significant security reduction of the shuffling countermeasure.

Table 1. Bias of the optimized permutation algorithm vs. bias of a small SCA leakage

N 3 4 5 6 7 8 9

Perm. generation 0.04535 0.03522 0.02034 0.00993 0.00430 0.00170 0.00063
Small SCA Leak. 0.28868 0.20412 0.07454 0.03726 0.01627 0.00643 0.00234

Obtaining Independent Operations. Applying shuffling to an implementa-
tion requires finding sets of independent operations. In the AES case, sets of 16
independent operations naturally arise from the AddRoundKey and SubBytes
transforms. By contrast, the situation is a little bit trickier for ShiftRows and
MixColumns. For example, implementing ShiftRows requires one extra byte of
storage in an unprotected implementation, and two in the case of RSI-based shuf-
fling (i.e. when the permutation is “monotonous”, which restricts the number of
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permutations to 16). But if 16 independent operations are desired, 16 bytes of
temporary storage are required. As for MixColumns, four additional registers are
sufficient if the state is processed column-wise, but this would then account for 4!
permutations. Hence, having 16 independent operations again requires 16 bytes
of temporary storage. Since our device has only 32 registers, some of which be-
ing already occupied, RAM usage becomes inevitable for shuffling. Besides, the
key schedule has only four independent operations by default. This is because
within one key schedule round, there are only four S-box executions. Thus, the
smallest number of indistinguishable operations is four. Yet, applications requir-
ing on-the-fly key expansion also need an appropriate SPA protection to prevent
attacks such as [16]. In these cases, we interleaved the real key schedule with
three dummy key schedules, in order to obtain 16 shuffleable operations.

Basic Implementation with Double Indexing. Direct shuffling requires an
indirect indexing of the operands. That is, a counter is used to index a permu-
tation vector, and the result is used to index the operand vector. Thus, instead
of operating on registers directly, two RAM accesses are required for each (read
or write) access to operands. This naturally leads to quite large cycle counts,
as in AVR devices, load and store operations take two cycles (compared to one
cycle for arithmetic and logic operations). Implementing a fully shuffled AES
this way results in an execution time of 30 202 cycles, excluding the key sched-
ule. In the following we propose two different strategies in order to improve on
these figures. In both cases, instructions are shuffled rather than data location,
in order to allow register usage. Precisely, we are still limited by the number
of available registers when performing certain transforms. But contrary to the
double indexing proposal we do not always access RAM when operating on inter-
mediate data. The first solution changes the execution path on-the-fly while the
second actually rewrites the program memory (i.e. assuming that this re-writing
is pre-computed, this solution can be seen as a simplified one-time program [12]).

Optimized Implementation with Randomized Execution Path. For this
implementation, the assembly code of every (compound of) round transform(s)
is split into 16 independent blocks of instructions. Each of the 16 blocks is aug-
mented with a label. This allows us to identify its address in ROM. Furthermore,
every transform is associated with an array of 17 16-bit words, where the first
16 words hold the addresses of the 16 blocks, and the 17th holds the address of
the return instruction. The array content is initialized with the addresses of the
labels at compile time. Finally, we append a flow-control macro to each of the
16 blocks. This macro performs three things: fetch an address from the array,
advance the pointer to the next array entry, and jump to the fetched address.

During the execution of the cipher, we first re-order the first 16 addresses in
the array, according to a previously generated permutation. Then, when we enter
a transform, we set a pointer to the beginning of the array and execute the flow-
control macro. This causes the execution of the first block and sets a pointer to
the address of the next block. The flow-control macro is executed 16 times, until
it finally looks up the address of the return instruction. In practice, we defined
several sets of transforms and therefore need an address array for each of them.
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The first one is the compound of AddRoundKey, SubBytes, and ShiftRows.
This transform reads the state from RAM and stores the result into the register
file. The next one performs MixColumns and stores the result back to RAM.
Afterwards, we perform one iteration of the key schedule. Similar to ShiftRows
and MixColumns, this implies additional memory requirements, because of the
RotWord operation. We finally need a standalone AddRoundKey layer for the
last round. As each of the address arrays need 17x2 bytes, we have an additional
RAM use of 170 bytes (for technical reasons, the key schedule uses two 17x2-
byte address arrays). Permuting each of these arrays takes 205 cycles, implying
an overhead of 1225 cycles. Eventually, for every set of transforms, we need to
load an address and jump to this address 17 times, each of which takes 6 cycles.
Together with the preamble to set up the array pointer, it leads to an additional
overhead of 108 cycles for each of these compounds of transforms.

Optimized Implementation with Randomized Program Memory. For
this implementation, we used the self-programming capabilities of the
ATMega644p microcontrollers. As the shuffling applies to independent opera-
tions, and as for each operation, the state bytes are always stored in the same
registers or RAM locations, the execution order of the operations can be per-
muted by modifying the data corresponding to these locations in program mem-
ory. In our target controller, the program memory has to be modified one page
(i.e. 256 bytes) at a time. Hence, the shuffling can be prepared in five steps.
First, the page is transferred from program memory to the RAM. Afterwards,
the bytes of code corresponding to state-byte locations are modified according
to the permutation vector. Then, the previous version of the page is erased from
program memory, and the new page is loaded into a page buffer. Finally, this
page buffer is written in program memory. This process is executed before each
AES execution. The main advantage of this solution is that after pre-processing
of a shuffled program memory, the execution time of the AES is nearly the same
as for the unprotected implementation. Minor differences come from the fact
that we need to have independent operations, which implies to use RAM for
the storage of some intermediate results. Its main drawback is the long pre-
computation time, which accounts for approximately 18 milliseconds indepen-
dently of the clock frequency. This comes from the time-consuming instructions
used to erase program memory and write page buffer in memory (4.5 millisecond
per page writen or erased [9]), and the low granularity of these instructions (i.e.
working at the page level) in the Atmel controllers. More flexible devices (e.g.
devices with ARM architectures) would allow to improve this limitation. Note
also that our target Atmel’s EEPROM allows only for 10 000 re-write cycles,
which could possibly lead to DoS attacks. If this is an issue, and depending on
the actual available ROM, different areas can be used randomly and increase
the number of possible encryptions by some factor. Again, alternative devices
could be considered to relax this limitation. For example, the ARM LPC214x
series allows already for 100 000 cycles. Note finally that, as this implementation
mainly makes sense if pre-processing is allowed, it is naturally executed with a
pre-computed key scheduling.



746 N. Veyrat-Charvillon et al.

Implementation Results. The performance results of our implementations
are compared with previous works in Table 2. Namely, we use the AES Furious
as reference. As for protected implementations, we considered the basic one based
on double indexing and the ones of Herbst et al. and Rivain et al. However, as
mentioned above, they do not allow direct comparison. Herbst et al. only protect
the outer rounds (one and ten) with RSI-based shuffling, but implement masking
for all the rounds and the key schedule. Rivain et al. implement higher-order
masking and use a “simplified” shuffling for the MixColumns operation (they
also work on a different 8051-based architecture). The implementation for which
we give cycle numbers is not masked except for MixColumns. By contrast, our
implementations use log-table based polynomial multiplication, and are able to
shuffle all bytes during MixColumns. Not surprisingly, our implementation based
on double indexing is the slowest. Its performance is comparable to the one of
Rivain et al. Manipulating the program counter allows us to get a performance
improvement of almost a factor five and, excluding the key scheduling, leads to
encryption time only twice as slow as Rijndael Furious. As previously mentioned,
the larger overheads when executing the key scheduling come from the need to
execute additional dummy schedulings, in order to keep a permutation among
16! for this part of the implementation. Finally, the randomized programmemory
allows the fastest online encryption (i.e. excluding program re-writing).

Table 2. Implementation result comparison

Implementation Clock cycles RAM [byte]

Furious [23] 2 739 176
Furious with KS [23] 3 546 176
Herbst et al. [13] 11 845 -
Rivain et al. [26] 29 400 -

Dbl. ind. 30 202 240
Dbl. ind. with KS 46 395 132
Rand. exec. path 6 934 394
Rand. exec. path with KS 14 834 302
Rand. prog. mem. 3299 (+�18 msec) 480

3 Evaluation Framework

We now move to the security analysis of the shuffling countermeasures and its
variants. For this purpose, we rely on the evaluation framework from [28] and
adapt it to capture the specificities of shuffled implementations. In order to have
a fair understanding of the strengths and weaknesses of the countermeasure, we
pay a particular attention to worst-case (profiled) attacks. But for completeness,
we also compare them with the integrated DPA used in previous works.

Notations. Variables are denoted with capital letters, sampled values with
lowercase letters and functions with sans serif fonts. We consider the standard
DPA attacks described in [18] and illustrate our notations with the case of the
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AES Rijndael. In this context, the adversary tries to recover a 16-byte master
key k = {k0, k1, . . . , k15}, from a leakage corresponding to the first key addition
and S-box layers. In attacks against unprotected implementations, each S-box is
executed at a well defined time instant, giving rise to key leakages defined as:

L0


Sbox(k0 ⊕X0), L1


Sbox(k1 ⊕X1),
L2


Sbox(k2 ⊕X2) . . .

That is, we have 16 leakage points (or cycles) Lc (where c is the cycle index) and
16 subkeys ks. If we denote the part of the master key that is manipulated at time
c with a variable Sc, we straightforwardly have Sc = c in this unprotected case.
Note that the variable nature of the leakages comes both from possible noise in
the measurements and the variable (known) inputs Xi. By contrast, in the case
of a shuffled implementation, the execution order of the S-box computations is
randomized according to a permutation P, leading to key leakages of the form:

L0


Sbox(kP(0) ⊕XP(0)), L1


Sbox(kP(1) ⊕XP(1)),
L2


Sbox(kP(2) ⊕XP(2)) . . .

That is, we have Sc = P(c) with P the secret permutation that is re-generated
for every new input block, e.g. with the algorithm in Section 2. In this protected
case, not only leakage about the S-box execution may be obtained, but also
leakage on the permutation used in the shuffled implementation. In theory, an
attack could exploit sixteen “direct” permutation leakages denoted as L′

c


Sc.
Such notations allow us to reflect both the RSI- and RP-based shuffling methods.

In the first case, we have P(c) = c+τ (mod 16), with τ
R←− [0 : 15]. In the second

case, P is directly picked up among the set of all 16! permutations, i.e. P
R←− P16.

Information Theoretic Analysis. As a first step in our evaluation, we perform
an information theoretic analysis that is aimed to capture the worst-case security
of an implementation. In general, and for a fixed key byteKs, we assume that the
adversary can observe a leakage vector L = {L0, L1, . . . , L15}. The goal of this
evaluation is to obtain an accurate estimation of the mutual information1:

MI(Ks;L, X) = H[Ks]−
∑
k

Pr[Ks = k]
∑
x

Pr[X = x]

·
∫
l

Pr[L = l|Ks = k,X = x] · log2 Pr[Ks = k|L = l, X = x] dl.

In this equation, the term Pr[Ks = k|L = l, X = x] is directly obtained from
Pr[L = l|Ks = k,X = x] using Bayes’ theorem. Hence, it is this last conditional
leakage probability that is most critical to evaluate. For convenience, we will
ignore the variable X in the rest of the paper, as it is assumed to be known for
all computations. Next, we will consider two main evaluation scenarios.

1 As discussed in [25], this mutual information can only be perfectly estimated when
the evaluator knows the exact leakage model of his target device. This only happens
in simulated analyses (e.g. as will be performed in the next section). Whenever a
practical evaluation is carried out, it is formally a “perceived information” that is
evaluated, with the goal to be as close as possible to the mutual information.
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1. No Permutation Leakage, i.e. the adversary gets 16 leakage cycles, and
each of them could correspond to the target subkey with probability 1/16.
That is:

Pr[L = l|Ks = k] =
∑
c

1

16
Pr[Lc = lc|Ks = k].

We will refer to this attack as case (1.a). Besides, and as mentioned in intro-
duction, a usual trick to attack shuffled implementations is to integrate over the
leakage cycles. In this case, the adversary defines a variable L =

∑
c Lc, and

performs the attack against this variable. It boils down to consider 15 cycles out
of 16 as “algorithmic noise”. We will refer to this attack as case (1.b).

2. Leakage on the Permutation. In the same way as all the shares are as-
sumed to leak in a masked implementation, it is natural to assume that the
manipulation of a permutation may leak in a shuffled implementation. In prac-
tice, such leakages usually appear each time the permutation is manipulated in
the microcode, e.g. when fetching the Sc’th part of the key, or when jumping to
the Sc’th piece of code computing an S-box. We now show how to perform an
information theoretic evaluation in these cases. As previously, the impact of dif-
ferent implementations of the countermeasure affects the term Pr[L = l|Ks = k].
For this purpose, we start with the following general formulation:

Pr[L = l|Ks = k] =
∑
c

f(c, s, l′)∑
c′ f(c

′, s, l′)
Pr[Lc = lc|Ks = k],

with l′ the vector of 16 leakages on the previously defined variable Sc (indi-
cating the part of the master key used at time c). The function f essentially
indicates how the knowledge available about this variable can be exploited by
the adversary, as witnessed by the five examples that we now describe.

2.a. Unprotected implementation. In this case, we have f(c, s, l′) = 1 if c = s and 0
otherwise (i.e. the adversary knows exactly where each key byte is manipulated).

2.b. Direct template attack. In this case, we just add the permutation leakage
in the conditional probabilities, yet without making any difference between the
RSI and RP cases, by computing f(c, s, l′) = Pr[L′

c = l′c|Sc = s]. Note that the
case with no permutation leakage corresponds to f(c, s, l′) = 1/16.

2.c. Taking advantage of RSI. Here, the the adversary exploits the fact that only
16 permutations are possible (out of the 16! ones), which can be enumerated.

Hence, he can compute: f(c, s, l′) =
∏15

i=0 Pr[L
′
i = l′i|Si = (s− c+ i) mod 16].

Contrary to the RSI case, using a RP implies that the permutation is picked
up randomly among the 16! / 244, which is significantly harder to enumerate.
Hence, our following experiments will additionally consider two heuristic solu-
tions that can be used to mitigate this issue and attack more efficiently.

2.d. Restricted enumeration against RP. In this case, the function f is identical
to the exhaustive one, i.e. f(c, s, l′) =

∑
p

∏15
i=0 Pr[L

′
i = l′i|Si = p(i)], but the

sum only goes over an enumerable subset of most probable p’s. A beam search is
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used for this purpose [32]. This is a breadth-first search that limits the number of
nodes (i.e. permutations in the sum) by pruning the least probable ones, which

is done by weighting permutations p’s with
∏15

i=0 Pr[L
′
i = l′i|Si = p(i)].

2.e. Excluding heuristic. One alternative option to simplify the enumeration is to
consider that whenever Sc = s, we have that c �= c′ implies Sc′ �= Sc. This can be
reflected with: f(c, s, l′) = Pr[L′

c = l′c|Sc = s] ·
∏

c′ �=c (1− Pr[L′
c′ = l′c|Sc′ = s]),

which, up to normalization, is equivalent to:

f(c, s, l′) =
Pr[L′

c = l′c|Sc = s]

1− Pr[L′
c = l′c|Sc = s]

.

Overall, an intuition on the security of different implementations is obtained by
quantifying the number of possible execution orders considered by the adversary
(which may be more than the actual number of permutations, if attacks do not
fully exploit their structure). In the unprotected case, only one order can occur.
For the direct template attack, the adversary does not combine the different Sc
informations and we implicitly have 1616 possible execution orders. In the RSI
case, we exploit the fact that only 16 permutations are possible. The attack enu-
merating all possible permutations lists all 16! hypotheses. Finally, the excluding
heuristic implicitly allows 16× 1515 ones. This situation can be seen as an error
correcting problem where 16 noisy values are transmitted, that can be integers
from 0 to 15. The security of the countermeasure relies on a large probability
of decoding error. In the RSI case, we only have 16 possible codewords, which
gives us a very resilient code, lowering the probability of errors and thereby the
strength of the countermeasure. For a RP, we have 16! codewords over a space of
1616 possible transmissions, hence increasing the probability of decoding errors.

As far as performing these attacks/evaluations in practice is concerned, case
(a) is a classical template attack for which the computational complexity is usu-
ally neglected. Carrying out attacks/evaluations where L′ is exploited naturally
requires to build additional templates. Yet, the computational complexity of
cases (b), (c) and (e) can also be neglected, as they only imply a few additional
arithmetic operations. In fact, only case (d) may require intensive computations,
if all permutations with non-negligible likelihood (with respect to L′) are taken
into account by the beam search. As will be shown in the next section, increasing
the noise gradually implies that all permutation candidates have more similar
likelihoods. Hence, this last attack is only applicable for low noise levels.

Security Analysis. The second step of our evaluation is to perform a security
analysis. It allows measuring the extent to which the different strategies listed
have a strong impact on the data complexity of successful side-channel attacks.
For this purpose, we apply template attacks with the key selected as:

k̃ = argmax
k∗

q∏
j=1

Pr[Lj = lj ,L′j = l′
j |Ks = k∗],

and we compute their success rate, in function of the data complexity q.
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4 Simulated Experiments

In order to gauge the impact of the proposed formulations and attacks, we
first lead various experiments against simulated AES implementations. For this
purpose, we re-use the notations introduced in the previous section and as-
sume that the adversary is provided with a key leakage vector L with elements
Lc = HW(Sbox(kP(c) ⊕XP(c))) + N (0, σ2), and possibly a permutation leakage
vector L′ with elements of the form L′

c = HW(Sc) + N (0, σ2). In both cases,
the second term is a Gaussian distributed random noise, with variance σ2 that
we will use as a parameter of our evaluations. Using these notations, there are
various contexts that could be investigated. As illustrated in Table 3, we classify
them among two axes: the target device and the adversary’s means.

Table 3. Classification of the attacks

Target devices
Unp. RSI shuf. RP shuf.

adversary’s
means

L
unp-ta

(2.a)
int-ta (1.b)
uni-ta (1.a)

L,L′
dpleak-ta (2.b)

L,L′
rsienum-ta (2.c)

resenum-ta (2.d)
+ comp. excluding-ta (2.e)

As far as the target device is concerned, we considered the case of an un-
protected implementation for reference, an RSI-based shuffled implementation
and a RP-based shuffled implementation. As far as the adversary’s means are
concerned, we first analyzed attacks where only the key leakage vector L is
available. Next we evaluated attacks where the permutation leakage vector L′ is
additionally provided. Finally, we quantified the efficiency gains obtained when
exploiting computational power, in order to enumerate (i.e. sum over) the pos-
sible permutations. Overall, this gives rise to seven attacks:

1. Template attack against the unprotected implementation (unp-ta), i.e. the
straightforward case where S-boxes are executed in deterministic order.

2. Template attack against integrated leakages (int-ta), i.e. the attack against
shuffled implementations previously used, e.g. in [7,26,30].

In these two first cases, template attacks and correlation DPA are essentially
equivalent given that they exploit the same leakage model [18]. For coherence,
we will keep on using template attacks everywhere. But as the experiments in
Section 5 target a microcontroller with strong Hamming weight leakage depen-
dencies, simpler (non-profiled) attacks would naturally apply as well. By con-
trast, the following attacks explicitly take advantage of a Bayesian description.

3. Template attack with uniform Sc (uni-ta). In this case, the adversary follows
the Bayesian strategy but does not exploit any information on the permu-
tation (i.e. he assumes a uniform prior on the leakage cycles). Hence, the
attacks still have identical efficiencies in the RSI and RP cases.
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4. Template attack with direct permutation leakage (dpleak-ta). It corre-
sponds to the attack (2.b) described in the previous section. Here, the leak-
age vector L′ is simply added in the adversary’s conditional probabilities.
But again, it does not distinguish between the RSI and RP cases.

5. Template attack with permutation leakage enumerating the RSI permuta-
tions (rsienum-ta). It corresponds to the attack (2.c) in the previous sec-
tion, where the adversary takes advantage of the 16 permutations that a
RSI-based shuffling tolerates to combine its permutation leakages.

6. Template attacks with restricted enumeration (resenum-ta). It corresponds
to the attack (2.d) described in the previous section. A beam search [32] is
performed to enumerate the most likely permutations.

7. Template attacks with excluding heuristic (excluding-ta). It corresponds
to the attack (2.e) in the previous section, where the likelihood of the per-
mutations is weighted by simply excluding duplicates.

unp-ta
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uni-ta

dpleak-ta

rsienum-tarsienum-ta

excluding-taexcluding-ta

resenum-taresenum-ta
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Fig. 1. Mutual information versus noise variance

The result of a simulated information theoretic analysis for these different attacks
is given in Figure 1, in function of the noise variance. Several observations can be
highlighted. First, and as usual in such worst-case evaluations, the asymptotic
trend only appears for large noise levels. In this respect, the main conclusion is
that (unlike masking [29]), the slope of the MI curves is the same for both the
unprotected and all the shuffled implementations. Intuitively, it suggests that
shuffling can (at best) be used to amplify the noise existing in side-channel mea-
surements (i.e. imply a shift of the IT curves). Besides, one can observe that
for lower noise levels, significant differences arise between the different scenarios
of Table 3. For example, it is interesting to note that even without exploiting
permutation leakage, the integrated attack is less efficient than the template
attack with uniform prior. It confirms that this integrated attack is subopti-
mal in a profiled case, and is not suited to evaluate the worst-case security of
an implementation in low-noise scenarios. Quite naturally, the distance between
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integrated and stronger attacks increases as permutation leakage becomes avail-
able. In this setting, the amount of information extracted is quite dependent on
countermeasure implemented. If the RSI approach is chosen (and this informa-
tion is exploited computationally), the implementation turns out to be as weak
as an unprotected one until noise levels beyond σ2 = 20. By contrast, in the RP
case, the noise amplification happens earlier. In this respect, it is worth to notice
the limited difference between the dpleak-, excluding-, and resenum-tas for
RP-shuffled implementations, the latter ones only bringing a small advantage.
We also observe that as expected, the resenum-ta could only be launched until
noise levels of approximately σ2 = 2−2: beyond this threshold, the large amount
of permutations to enumerate with the beam search turned out to be hardly
tractable. This last fact confirms the expectation in Section 2 that the small
bias resulting from our efficient permutation generation algorithm should not
lead to significantly improved side-channel attacks.

Note that the insecurity of RSI-based shuffling (and, to a lower extent, RP-
based shuffling) for low noise levels has to be interpreted with care. What our
analysis shows is not that the start index or permutation is trivially revealed
with a template-based SPA (as the number of permutation candidates in the
beam search already explodes when σ2 = 2−2). It is really the fact that the
16 leakage samples of the permutation can be exploited jointly that make these
countermeasures weak. In other words, what these results show is the importance
of computational power in the evaluation of shuffling: summing over 16 cases is
easy, summing of 16! ones is harder, as highlighted by the different curves of the
rsienum-ta and excluding-/resenum-ta information theoretic evaluations.

As a complement of information theoretic analyzes, we performed a security
analysis, and computed the success rates of our different attacks, in function
of the number of plaintexts measured by the adversary. This allows translating
the IT curves of Figure 1 into data complexities. For illustration, we selected
three different noise variances, corresponding to low (i.e. σ2 = 2−3), middle (i.e.
σ2 = 20) an large (i.e. σ2 = 23) noise levels (where large refers to the fact that the
IT curves are merging at this stage). The results of these simulated experiments
are given in Figure 2 and confirm the previous observations. We again observe
the weakness of the RSI-based shuffling in the low noise level case, and the lower
efficiency of the integrated attack. The success rate curves also exhibit the slight
advantage of the heuristic enumeration when exploiting the leakage of a RP for
the smallest noise level, as well as the better behavior of the (computationally
cheap) excluding heuristic when the noise increases (again, the resenum-ta

evaluation could only be performed in the low noise case, i.e. upper figure).

5 Practical Experiments

The previous simulated attacks naturally raise the question whether our attacks
similarly apply to real world implementations. In order to validate our conclu-
sions, we also performed these attacks against shuffled implementations of the
AES, based on the randomized execution path technique of Section 2.
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Fig. 2. Success rates of simulated attacks, σ2 = 2−3 (top), 20 (middle), 2+3 (bottom)
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Our target device is an 8-bit Atmel microcontroller, and our measurement
setup was monitoring the voltage variations of this target device over a small
resistor inserted in our supply circuit, with a digital oscilloscope. Based on this
setup, we profiled our implementation and built the probability distributions
of the vectors L and L′. That is, we first estimated 16 templates correspond-
ing to the leakages of the permutation indexes c, i.e. Pr[L′

c|Sc = s]. Next, we
constructed 16 × 16 templates for the key leakages at the output of the S-
box, i.e. Pr[Lc|Ks = k], for each value of c and s. The reason for having the
16 × 16 sets of key leakage templates is that these leakages behave differently
when, at a given point in time, different subkeys are used. That is, we have
Pr[Lc|Ks1 ] �= Pr[Lc|Ks2 ] if s1 �= s2, and Pr[Lc1 |Ks] �= Pr[Lc2|Ks] if c1 �= c2.
This fact is due to the slightly different power consumptions of different regis-
ters and memory accesses of the Furious implementation in our target device.

In order to limit the profiling efforts, our templates were kept univariate and
constructed with the stochastic approach from [27], using the Hamming weight of
the S-box outputs as base vectors. Interestingly, the fact that different key bytes
give rise to different templates leads to indirect leakages on the permutation.
That is, we have Pr[Lc|Ks1 ] �= Pr[Lc|Ks2 ] for a fixed cycle c. By summing over
the 256 key candidates, we can then obtain marginal probabilities Pr[Lc = lc|Ks]
for all key byte indexes s. This directly leads to useful information of the type:

Pr[Sc = s|Lc = lc] =
Pr[Lc = lc|Ks]∑
s′ Pr[Lc = lc|Ks′ ]

·

Furthermore, this information is directly reflected in all the Bayesian attacks,
without any modification of the descriptions in Section 3 (including uni-ta for
which direct permutation leakages are ignored). That is, just the fact that we
built 16× 16 templates for different s and c values allows to exploit it.

The success rates of our experimental attacks are illustrated in Figure 3,
where the noise level corresponds to σ2 = 3.25. We observe that in this real
case study, the RSI-based shuffled implementation remains as easy to attack as
an unprotected one, in our worst-case evaluation setting. Besides, we note that
the indirect leakage is quite useful for the template attack with uniform prior.
One important consequence of this indirect leakage is that the uni-ta could also
apply to our countermeasure with randomized program memory, even if the pre-
computation was performed in a perfectly secure (i.e. leakage-free) environment.
Interestingly, we also remark that the integrated attack is less efficient than in
our simulated experiments, and is stuck to very low success rate for the data
complexities we considered (yet, it eventually succeeded for larger number of
measurements). This can be explained by two main reasons. First, the leakages
on the permutation extracted with our templates (including the indirect ones)
was larger than in our simulations, which naturally increases the gap between the
integrating attack and the others. Second, the fact that different Atmel resources
leak according to different models creates an additional noise for the integrating
attack, due to a modeling error (i.e. these differences are lost after integration).
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Fig. 3. Success rate of actual attacks on an ATMEL AVR implementation

6 Conclusions

In this paper, we first proposed two new implementations of the shuffling counter-
measure in small (e.g. 8-bit) microcontrollers. They respectively allow improved
performances in terms of overall cycle count and online cycle count. Next, we
provided the first comprehensive evaluation of the shuffling countermeasure, in-
cluding worst-case Bayesian attacks. For this purpose, we described intuitive
formulas capturing the different variants of shuffling, and integrated them in a
general evaluation framework from Eurocrypt 2009. These evaluation tools al-
lowed us to show that previously used integrated attacks may not be enough for
assessing the security of a shuffled implementations. We put forward that sim-
plifying the permutation generation (e.g. by using RSI rather than RP) can lead
to a complete breakdown of the countermeasure if not too noisy measurements
are available (which turned out to be verified in a practical case study). We
also explained the computational origin of these weaknesses (i.e. their relation
with the total amount of permutations that are considered in the countermea-
sure). Finally, we exhibited that indirect leakages may be available in shuffled
implementations, due to the different leakage models of different resources. This
suggest an interesting scope of further research. Namely, since our results show
that randomizing the order of instructions in cryptographic implementations is
not always sufficient, can we design efficient ways to randomize both the execu-
tion order and the physical resources used in a cryptographic implementation?
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Abstract. A recent trend in cryptography is to formally prove the leak-
age resilience of cryptographic implementations – that is, one formally
shows that a scheme remains provably secure even in the presence of
side channel leakage. Although many of the proposed schemes are secure
in a surprisingly strong model, most of them are unfortunately rather
inefficient and come without practical security evaluations nor imple-
mentation attempts. In this work, we take a further step towards clos-
ing the gap between theoretical leakage resilient cryptography and more
practice-oriented research. In particular, we show that masking counter-
measures based on the inner product do not only exhibit strong theo-
retical leakage resilience, but moreover provide better practical security
or efficiency than earlier masking countermeasures. We demonstrate the
feasibility of inner product masking by giving a secured implementation
of the AES for an 8-bit processor.

Keywords: Inner product masking, AES, Leakage resilience.

1 Introduction

Side channel attacks (SCA) are among the most relevant threats for the se-
curity of implementations of cryptographic algorithms. Since the introduction
of timing attacks to the research community in the late 1990s [22], more side
channels have been discovered [13,23,25] and more powerful attacks have been
developed [4,6,14]. It was soon clear that masking, i.e. concealing all sensitive
intermediate values of a computation with random data, is an excellent way to
prevent certain types of attacks [5,19]. As opposed to other countermeasures
aiming at introducing noise in the side channel, e.g. random delays, random
order execution, dummy operations, etc., one can formally argue the security
masking provides.

The idea of dth order masking is to split every sensitive intermediate value in
the implementation into d+1 random shares, and to compute the algorithm on
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these shares while maintaining that each tuple of d shares is independent of any
sensitive value. The challenge is not to devise the masking scheme itself, i.e. to
determine how a sensitive intermediate value is split, but rather to define the
masked operations that process the independent shares, while still preserving
the correctness of the computation. A dth order masked implementation can, in
theory, always be broken by a d + 1th order side channel attack, i.e. an attack
that exploits side channel leakage of d + 1 intermediate values in the masked
implementation. However, given a sufficient amount of noise, attacking a dth

order masked implementation becomes exponentially more difficult in d [5]. Mo-
tivated by this result, dth order masking schemes (that can be implemented at
any order d) based on boolean masking [27] and polynomial masking [18,24] have
been recently proposed. Unfortunately, their security has so far been evaluated
mainly by practice-oriented researchers, while a formal proof-driven analysis is
either missing or is given only in a very weak security model.

In the theory community, masking-based countermeasures are analyzed within
the framework of leakage resilient circuit compilers introduced by Ishai et al. [20].
A circuit compiler takes as input an arbitrary circuit C computing over some
finite field and outputs a protected circuit C′ that has the same functionality as
C but comes with built-in security against certain classes of leakages. For the
circuit compiler of [20] it can be shown that an adversary that learns up to d
intermediate values during the computation of the transformed circuit C′ does
not learn anything beyond black-box access. That is, for instance, if C is an AES
circuit then its implementation C′ exhibits the standard black-box security even
in the presence of side-channel leakage (in the given model).

The circuit compiler of Ishai et al. based on boolean masking with d masks
has been recently extended, and a similar compiler (based on any linear secret
sharing scheme) protecting against broader classes of leakages has been intro-
duced [11]. Despite this progress, it has been suggested that masking schemes
with greater algebraic complexity yield better resistance against side channel
attacks. As boolean masking schemes only achieve weak provable security guar-
antees, attempts have been made to seek for alternatives. First examples are
the compilers of Juma and Vahlis [21] and Goldwasser and Rothblum [15] which
use as underlying masking a public key encryption scheme, i.e. every sensitive
variable is encrypted with a suitable public key encryption scheme. While such
compilers achieve strong security guarantees, namely, protection against any
polynomial-time computable leakage function, they suffer from poor efficiency
and rather provide theoretical feasibility results than a way towards a practical
solution.

In two recent works [10,16], it was shown that such strong theoretical security
guarantees can be achieved without relying on public-key encryption schemes.
Instead, these works propose a purely information theoretic solution based on
the inner product. While asymptotically these constructions are comparable to
schemes based on public key encryption, they have the potential to achieve much
better real-world efficiency as they only require simple algebraic operations. In
this work, we show that this is indeed the case, if one is willing to accept a weaker
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security model. In a nutshell, our work shows that advances in leakage resilient
cryptography can indeed have implications to real-world implementations and
may even provide better practical security or efficiency than existing schemes.

Contributions. We rely on ideas of Dziembowski and Faust [10] for the in-
ner product (IP) masking, and adjust the masked operations to improve their
efficiency. As we are particularly interested in a secure implementation of the
Advanced Encryption Standard (AES), we can exploit the linearity of the squar-
ing operation in the underlying finite field F28 . Moreover, we slightly simplify
the masked multiplication operation of [10]. All these changes are done without
affecting the theoretical security analysis. The bulk of our efficiency improve-
ments, however, comes from using a simpler method to refresh a masked secret.
Such a refreshing scheme takes as input a masked secret and outputs a masking
of the same value with completely fresh randomness. The construction that we
use in our implementation is essentially a simple variant of a scheme proposed
in [9]. As such simple schemes only satisfy weaker security properties, we need to
make additional restrictions to get a sound theoretical security analysis. We pro-
vide further details on how our changes affect the security and what additional
assumptions are required in Section 4.

We also evaluate the security of the IP masking for practical parameters, i.e.
when the number of shares is small. Our practical analysis reveals that the in-
formation leakage of IP masking is more than two orders of magnitude smaller
than that of boolean masking for low levels of noise and the same number of
shares. Finally, we detail how the AES can be implemented in a secure way
using the IP masking scheme, and we provide an implementation and perfor-
mance results to demonstrate its correctness and feasibility. We show that in
particular non-linear operations in the IP masked domain, e.g. multiplication,
clearly outperform polynomial-based masking solutions that enjoy similar alge-
braic complexity.

2 Inner Product Masking

In this section we introduce the circuit model assumed for the execution of
the masked calculations, and we provide a detailed description of the masking
scheme and its building blocks, including a complexity analysis and a comparison
to other masking schemes.

Circuit Model. Following the model of Dziembowski and Faust [9,10], we con-
sider that the target device running the masked computations contains two sep-
arate processors. Each of these processors, in the following referred to as left
processor (PL) and right processor (PR), executes a part of the masked opera-
tions. Communication between processors is performed via a bidirectional data
bus. Such a model is introduced in order to provide a framework to analyze the
security of the masking scheme. As will be further explained in the following
sections, its main purpose is to facilitate the assumption that PL and PR have
completely independent side channel leakage, i.e. an adversary can only retrieve
information specific to each physical processor. Notice that from a practical point
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of view, the required independent side-channel leakage can also be obtained by
temporal (rather than physical) separation of the masked computations, e.g. in
the context of sequential software implementations on a single processor.

Overview. The IP masking scheme can be instantiated to secure operations
in any finite field |F| ≥ 2, such that all elements and operations in F can be
mapped to and performed in the masked domain. This feature is extremely
useful in the context of securing cryptographic applications, as the underlying
field of the masking scheme can be adapted according to the characteristics of the
cryptographic algorithm and/or the target platform. Without loss of generality,
and driven by our goal to implement the AES, we provide in the following an
efficient instantiation of the IP masking scheme for the field F28 of characteristic
two.

Notation. We represent field elements with upper-case letters, e.g. X ∈ F28 ,
and we use ⊕ to denote field addition and ⊗ to denote field multiplication.
Vectors are represented with bold upper-case letters, e.g. X ∈ Fn

28 such that
X = (X1, . . . , Xn). For two vectors X,Y ∈ Fn

28 we denote by X ⊕ Y the
vector addition in Fn

28 calculated as (X1 ⊕ Y1, . . . , Xn ⊕ Yn). The inner product
〈X,Y 〉 ∈ F28 is calculated as

⊕n
i=1Xi ⊗ Yi.

Construction. In the IP masking scheme each sensitive variable X ∈ F28 is
split into an even number of 2n shares such that:

X = L1 ⊗R1 ⊕ . . .⊕ Ln ⊗Rn. (1)

We denote L = (L1, . . . , Ln) as left vector and R = (R1, . . . , Rn) as right vector.
A variable X is represented in the masked domain as (L,R), and can be re-
covered by calculating the inner product of these two vectors, e.g. X = 〈L,R〉.
In order to prevent a practically exploitable bias between the shares and the
masked value, it is required that elements of L belong to F28 \ {0}. We define
n ≥ 2 as the security parameter of our masking scheme.

Note that IP masking is a generalization of previously published masking
schemes. Indeed, one trivially derives boolean masking from Eq. (1) by e.g.
setting all elements in L (resp. R) to one. Multiplicative masking [2] can be
achieved by setting n = 2 and either of the shares L2 and/or R2 (resp. L1

and/or R1) to zero. Affine masking, described in [12] as V = (A⊗X)⊕B, can
be obtained by fixing n = 2, L1 = L2 = A−1, R1 = V , and R2 = B. Finally,
as a secret variable in polynomial masking [18,24] is given by an interpolation
polynomial in the Lagrange form, such masking scheme can be obtained by
considering all elements in L to be public Lagrange coefficients.

Algorithm 1 depicts the procedure IPMask() to convert a variable X into the
IP masked domain as two vectors (L,R) of size n. The function rand() returns a
random element in F28 , whereas the function randNonZero() returns a random
element in F28 \ {0}. The function IPUnmask() to convert a masked variable
(L,R) of size n back to X consists in calculating the inner product X = 〈L,R〉.
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Algorithm 1. Masking a variable: (L,R)← IPMask(X)

Input: variable X ∈ F28

Output: masked variable (L,R)
Ensure: X = 〈L,R〉

L1 ← randNonZero()
for i = 2 to n do

Li ← randNonZero();Ri ← rand()
end for
R1 ← (X ⊕

⊕n
i=2 Li ⊗Ri)⊗ L−1

1

2.1 Operations in the Masked Domain

After introducing how to convert variables between F28 and the IP masked do-
main, we need to provide a set of high-level functions that allows us to operate
directly on the masked variables. In order to fulfill our security requirements,
computations regarding the left vector L of masked variables should be executed
in the left processor PL, whereas calculations regarding R should be carried out
in the right processor PR. Moreover, the condition that elements of the vector
L are different than zero must be inherited by all operations in order to avoid
output masked values from being biased.

In the following we make use of a special operation called IPHalfMask(), which
on input a variable X and a vector L calculates the corresponding vector R such
that X = 〈L,R〉. It is thus a simplified version of Algorithm 1 for which the left
vector L is already given and thus elements Li do not need to be sampled.

Another operation that will be often used is IPRefresh(). This operation,
depicted in Algorithm 2, takes as input a masked variable (L,R) and returns
a new one (L′,R′) such that 〈L,R〉 = 〈L′,R′〉. The purpose of the refreshing
is to pump new randomness into the masking scheme. Algorithm 2 is tailored
particular to work for the field F28 . For a generalization we refer the reader to [9].

Algorithm 2. Refresh vector: (L′,R′)← IPRefresh(L,R)

Input: vector L in processor PL, vector R in processor PR

Output: vector L′ in processor PL, vector R
′ in processor PR

Ensure: 〈L,R〉 = 〈L′,R′〉
PL PR

A ∈R Fn
28

L′ = L⊕A
A−−−−−−−→ X = IPUnmask(A,R)
X←−−−−−−−

B = IPHalfMask(X,L′) B−−−−−−−→ R′ = R⊕B

Although not clearly specified in Algorithm 2, it is necessary that the vector
A sampled by PL is such that the resulting elements of L′ are non-zero. In other
words, we need to ensure that Ai �= Li for all 1 ≤ i ≤ n. Details on how to
implement this step efficiently, in constant time and flow are given in Section 5.
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Addition. The procedure IPAdd() to calculate the addition of two masked vari-
ables is depicted in Algorithm 3. This algorithm requires a three vector ad-
ditions, two joint executions of IPRefresh(), one of IPUnmask(), and one of
IPHalfMask().

Algorithm 3. Masked addition: (X ,Y )← IPAdd((L,R), (K,Q))

Input: vectors L and K in processor PL, vectors R and Q in processor PR

Output: vector X in processor PL, vector Y in processor PR

Ensure: 〈X,Y 〉 = 〈L,R〉 ⊕ 〈K,Q〉
PL PR

(A,B)←IPRefresh(K,Q⊕R)⇐===========================⇒
(C,D)←IPRefresh(L⊕K,R)⇐===========================⇒

Z←IPUnmask(C,D)⇐===========================⇒
Y ←IPHalfMask(Z,A)⇐===========================⇒

X = A Y = Y ⊕B

Notice that it might be the case that the component L ⊕K in the second
execution of IPRefresh() has elements equal to zero. While this is a source of
first-order leakage in IP masking, i.e. the probability Pr(Z = 0|(Li ⊕Ki) = 0)
is twice than that for any other value of Z, it is in this particular case not
exploitable by an attacker. This is because Pr(〈X,Y 〉|Z = 0) is uniformly dis-
tributed, i.e. knowing that the intermediate value Z is zero does not give any
information about the sensitive output value (X,Y ).

Addition of a Constant. The procedure IPAddConst() to add a constant
Z ∈ F28 to a masked variable (L,R) can be carried out more efficiently than
Algorithm 3. Let (L,R) and Z be the input operands, and (X,Y ) the output
masked variable. Addition of a constant can be simply calculated by letting
X = L and Y = R, except for the first element Y1 = (R1 ⊕ Z)⊗ L−1

1 .

Multiplication. The procedure IPMult() to calculate the multiplication of two
masked variables is depicted in Algorithm 4. This algorithm requires 2n2 initial
field multiplications, one execution of IPRefresh() with input/output vectors
of size n2, one execution of IPUnmask() with input vectors of size n2 − n, one
execution of IPHalfMask(), and one final vector addition.

Multiplication by a Constant. The procedure IPMulConst() to multiply a
masked variable (L,R) by a constant Z ∈ F28 is efficiently computed in IP
masking. Let (L,R) and Z be the input operands, and (X,Y ) be the output
masked variable. Multiplication by a constant can be performed by letting X =
L and calculating Y = (R0 ⊗ Z, . . . , Rn ⊗ Z). As will be further explained in
Section 4, it is not necessary to execute IPRefresh() after IPMulConst().
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Algorithm 4. Masked multiplication: (X,Y )← IPMult((L,R), (K,Q))

Input: vectors L and K in processor PL, vectors R and Q in processor PR

Output: vector X in processor PL, vector Y in processor PR

Ensure: 〈X,Y 〉 = 〈L,R〉 ⊗ 〈K,Q〉
PL PR

for i = 1 to n do for i = 1 to n do
for j = 1 to n do for j = 1 to n do

Ũi∗n+j ← Li ⊗Kj Ṽi∗n+j ← Ri ⊗Qj

(U,V )←IPRefresh(Ũ ,Ṽ )⇐==============================⇒
A = (U1, . . . , Un) B = (V1, . . . , Vn)
C = (Un+1, . . . , Un2) D = (Vn+1, . . . , Vn2)

Z←IPUnmask(C,D)⇐===============================⇒
Y ←IPHalfMask(Z,A)⇐===============================⇒

X = A Y = Y ⊕B

Squaring. The procedure IPSquare() can be carried out quite efficiently in
the masked domain given that we work over a field of characteristic 2. Let the
input masked variable be (L,R). The output masked variable (X ,Y ) can be
calculated by squaring all elements of each vector independently, i.e. Xi = (Li)

2

and Yi = (Ri)
2. The masked squaring operation does not require refreshing the

masks, and can be thus carried out with only 2n field squarings.

2.2 Complexity of Operations

The complexity of the main operations in the IP masked domain, namely ad-
dition and multiplication, is given in Table 1. We also provide a comparison
with some masked operations that can be implemented at any order d, recently
published in the literature for boolean and polynomial masking schemes, namely
[18,24,27]. The complexity numbers are given in terms of d for all the schemes,
where d indicates the number of random values in each masked variable. Recall
that in IP masking, this number of random values is given by d = 2n− 1, with
n ≥ 2.

As shown in Table 1, the complexity of the addition operation in IP masking
is slightly larger than in the other proposed methods. This is mainly due to
the internal use of the IPRefresh() operation which, as opposed to the other
masking schemes, involves several field multiplications. However, the results ob-
tained for the multiplication operation are favourable for IP masking. In partic-
ular, both polynomial masked multiplications have complexity O(d3) while IP
masked multiplications have complexity O(d2). The boolean masked multipli-
cation has a similar complexity but, as we will show in the next sections, the
masking scheme itself provides considerable less security from both practical and
theoretical points of view.
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Table 1. Complexity of IP masked operations and comparison to dth order boolean
masked operations and polynomial masked operations in the literature

Masked Operations in F28

Operation Scheme ⊕ ⊗ x−1 Rand

ADDITION

Boolean [27] d + 1 - - -

Polynomial [18] d + 1 - - -

Polynomial [24] d + 1 - - -

Inner Product (13d + 1)/2 3d + 3 3 (7d + 3)/2

MULTIPLICATION

Boolean [27] d2 + d + 1 2d2 + 2d - (d2 + d)/2

Polynomial [18] 2d3 + 7d2 + d 2d3 + 5d2 + 5d - 2d2 + d

Polynomial [24] 4d3 + 8d2 + 7d + 2 4d3 + 8d2 + 3d - 2d2 + d

Inner Product (5d2 + 12d − 9)/4 (5d2 + 10d + 5)/4 2 (3d2 + 8d − 3)/4

3 Security Evaluation

In this section we evaluate the SCA resistance of IP masking and compare it
to that of other masking schemes that can be implemented at any order, e.g.
boolean masking and polynomial masking. We focus the analysis on the masking
schemes themselves, i.e. we analyze the leakage of the shares of one masked
value. We will show in the next section that the security relevant properties of
IP masking carry over to the basic operations in the masked domain.

Attack Order. We begin the evaluation by deriving the minimum order for an
attack against IP masking. For this we need the following definitions:

Definition 1: We say that a variable is sensitive, if it is an intermediate result in
an implementation that leaks through side channels, and if it is a function of the
input (resp. output), the key and possibly other constants that is not constant
with respect to the key [27].

Definition 2: We say that a masking scheme is dth order SCA secure, if every
tuple of d or less shares is independent of the variable that is masked. Accord-
ingly, a masked implementation of an algorithm is dth order SCA secure, if every
tuple of d or less intermediate variables is independent of any sensitive variable.

1st order SCA resistance. Clearly, IP masking with n ≥ 2 is 1st order SCA secure.
This is a simple consequence of the fact that, even if the value of one of the shares
inL orR is known (in the worst case oneRi is known to be zero such thatLi⊗Ri =
0), the value of the variable that is masked is still information theoretically hidden
by the ⊕ with n− 1 terms that are all uniformly distributed over F28 .

2nd order SCA resistance. IP masking with n = 2 is not 2nd order SCA secure.
This is because the product of two values is determined to be zero if one of the
values is zero. Multiplicative masking [2] suffers from the same problem [17].
Suppose that the values of R1 and R2 are known to be zero. Then, L1⊗0⊕L2⊗
0 = s = 0. This leads to a bias in the distribution p(S = s|R1 = r1, R2 = r2),
and the mutual information I(s; (R1, R2)) is non-zero.

dth order SCA resistance. IP masking with 2n = d+1 is SCA secure up to n− 1th

(or d+1
2 − 1th) order, but not secure against nth (or d+1

2

th
) order SCA. Following
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the above examples, as long as the product of one pair (Li, Ri), i ∈ {1, . . . , n} is
unknown, the value of the variable s that ismasked is still information theoretically
hidden. On the other hand, if ∀i ∈ {1, . . . , n} the value of Ri is known to be zero,
then the value of s is known to be zero. However, the probability that this case
occurs is small and decreases rapidly with increasing n. More precisely, it is (2−8n).

In summary, IP masking with 2n = d+ 1 can, in theory, be broken by a nth

order SCA. On the other hand, similar to polynomial masking, it creates a much
more complex relation between the shares than boolean masking, which is known
to be more difficult to exploit. Hence, we expect IP masking with 2n = d+ 1 to
provide much higher security in practice than boolean masking of order d+1, i.e.
with the same number of random masks. Following this line, we opt to consider
the leakage of all 2n or d + 1 shares in the following analysis, since an attack
exploiting all shares is more powerful in an information theoretic sense, unless
the noise levels are extremely high.

In polynomial masking half of the shares are non-zero public constants and the
other half are random and secret masks. In particular, there is no direct correspon-
dence to the notion of a masked variable. In the rest of the paper we refer only to
the random and secret shares, and their number determines the masking order.
For example, polynomial masking of order d− 1 uses d random and secret shares,
and can theoretically be broken by a dth order SCA. We will compare polynomial
masking of order d − 1 with boolean masking of order d (d + 1 shares, d masks)
and with IP masking of order 2n = d+1 (d+1 shares, dmasks). One could expect
IP masking with 2n = d + 1 to provide a similar level of security as polynomial
masking of order d − 1, i.e. both schemes should provide similar security when
they use the same number of random and secret masks.

Information Leakage. As motivated and done in previous works [12,24,28,29],
we use the mutual information between a variable and the leakage of all shares of
its masked representation as a figure of merit. We estimate it using simulations.
For IP masking, we set n = 2 and let R2 ∈R F28 and L1, L2 ∈R F28 \ {0} such
that S = L1⊗R1⊕L2⊗R2. Boolean masking uses d+1 shares (M1, . . . ,Md, V )
where theMi ∈R F28 and V is computed such that S =M1⊕ . . .⊕Md⊕V holds.
We evaluate boolean masking for d ∈ {1, 2, 3}. Polynomial masking uses d shares
(Y1, . . . , Yd) with Yi ∈R F28 and d public Lagrange coefficients (β1, . . . , βd) with
βi ∈R F28 \ {0} and pairwise distinct [18]. We evaluate polynomial masking for
d ∈ {2, 3}.

To quantify the amount of information leaked, we need to model the relation
between the value of a variable and its physical leakage. We follow the approach
that is usual in the literature [12,24,29]: we model that a variable leaks its Ham-
ming weight, that each share leaks independently of all other shares, and that
the leakage of each share is affected by independent Gaussian noise. The latter
serves to mimic the noise effects that affect physical measurements. Putting this
together, we model the leakage of IP masking as

Leak(L,R) = (HW(L1) + n1,HW(R1) + n2,HW(L2) + n3,HW(R2) + n4) ,
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the leakage of boolean masking as

Leak(M1, . . . ,Md, V ) = (HW(M1) + n1, . . . ,HW(Md) + nd,HW(V ) + nd+1)

and the leakage of polynomial masking as

Leak(Y1, . . . , Yd) = (HW(Y1) + n1, . . . ,HW(Yd) + nd)

where the ni are independent Gaussian variables with mean zero and standard
deviation σ. The mutual information is then I(S; Leak(L,R)), I(S; Leak(M1, . . . ,
Md, V ) resp. I(S; Leak(Y1, . . . , Yd)). The number of measurements that a Tem-
plate Attack [6], i.e. the worst case scenario of a profiled attack, requires to
achieve a given success probability is directly related to this mutual information
via c · I(·; ·)−1, where the constant c is related to the success probability [29].

Figure 1 shows plots of the mutual information (log10) between S and the
information leaked by all shares of its masked representation, over increasing
noise levels σ, for all masking schemes considered1 2.
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Fig. 1. Mutual information (log10) over increasing noise standard deviation σ for dif-
ferent masking schemes

The figure shows that IP masking with n = 2 leaks consistently less than
boolean masking with d ∈ {1, 2, 3} across the range of tested noise levels, which
confirms our expectation. The advantage is more pronounced for low noise levels,
where e.g. for σ = 0.2 the information leakage of IP masking is about 2.5 orders
of magnitude(!) smaller than that of boolean masking. As expected, polynomial
masking with d = 2 leaks consistently more than IP masking with n = 2. Poly-
nomial masking with d = 3 provides a level of security very similar to IP masking

1 Note that the mutual information values we computed for boolean masking are
consistent with Figure 1 in [12] and Figure 3 in [24]. One has to take into account
that the Y-axis in those figures is erroneously labeled log10 while it should be logn [1].

2 For polynomial masking with d = 3, reasonably accurate estimation of the mutual
information values for high noise levels is beyond our computational budget.
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with n = 2 for low noise levels. However, contrary to what one could expect,
for high noise levels, polynomial masking with d = 3 leaks less than IP masking
with n = 2. There are several possible explanations for this observation. For
instance, IP masking with n = 2 involves two field multiplications while poly-
nomial masking with d = 3 involves three field multiplications, i.e. the algebraic
complexity of the masking is greater. Furthermore, IP masking with n = 2 is 1st

order SCA secure while polynomial masking with d = 3 is 2nd order SCA secure.
It is known that leakage of lower order is easier to exploit, in particular with
increasing noise [29]. We leave the careful analysis of the observed difference in
information leakage as an open question for future research.

Discussion. Our evaluation shows that IP masking with n = 2 provides high
security even if there is little noise. However, although the simulated scenario
(Hamming weight leakage, independent leakage of each share, Gaussian noise)
is standard in the practice-oriented literature, it is synthetic and in particular
meets the requirement of the masking schemes for independent leakage perfectly.
It can be hard to achieve this for real-world implementations that are affected
by effects such as coupling (we show in the extended version [3] that glitches do
not affect the security of IP masking). Clearly, our evaluation does not allow to
blindly assume that an implementation of IP masking is secure. What it shows
is the level of security that a secure implementation of IP masking can provide.
An interesting topic for future research is to analyze the security provided by
a real-world implementation, and to analyze how violating a requirement, e.g.
independent leakage, affects practical security.

4 Theoretical Security Analysis

In this section, we review some formal security properties of the IP masking. We
give the basic security properties of the masking scheme itself, including very
strong security guarantees with respect to non-adaptive leakages, and argue that
these properties carry over to the basic operations in the masked domain. In the
full version [3] we discuss further relaxations, and argue that our construction
provides security against glitches similar to the results given in [24].

Notation. In the following we let F be a finite field, and we typically consider
row vectors. We define the statistical distance between two random variables
A,B over some set X as

Δ(A;B) :=
∑
x∈X

1/2 |Pr[A = x]− Pr[B = x]| .

4.1 Security Properties of IP Masking

We have argued in Section 3 that even for small n, IP masking is robust to
(noisy) Hamming weight leakage from the different shares of the masking. In
this section, we back up these observations with a theoretical analysis showing
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strong security properties for IP masking that cannot be achieved, e.g. by linear
masking schemes such as Boolean masking or masking schemes based on Shamir
secret sharing. The analysis strongly relies on techniques and results from [10,11].
We repeat here part of the arguments where changes to the construction and
model are required to get practical constructions. For a more formal analysis and
full proof details the reader is referred to [10]. We emphasize that the theoretical
analysis will typically require n > 130 to get meaningful security bounds.

As mentioned in Sect. 2, we assume that the device that runs the masked
computation has two processors, PL and PR, leaking independently. Let SL de-
note the state of processor PL and SR the state of processor PR (resp.), then the
adversary may interact with Ω(SL, SR) by sending functions fL and fR to the
oracle and getting back fL(SL) and fR(SR). The only additional requirement
that we make is that an adversary will not learn more than λ bits from each
processor PL and PR. We call such an adversary λ-limited and denote the pro-
cess of the adversary interacting with the leakage oracle by (A� Ω(L,R)). For
simplicity, we always assume that the output of A in the above leakage game
is f1

L(SL), f
2
L(SL), . . . , f

1
R(SR), f

2
R(SR), . . .. We emphasize that by modeling leak-

age in this way, we allow it to depend on any intermediate value that may be
computed during the computation of the two processors.

To analyze the security of an IP masked value S from some finite field F, we
set SL := L and SR := R, where (L,R)←IPMaskn(S), and let the adversary
interact with theΩ(L,R) leakage oracle. The following lemma was proven in [10].

Lemma 1. Let n ∈ N and let F be such that n ≥ log(|F|). For any 1/2 > δ >
0, γ > 0, any two secrets S, S′ ∈ F and any (unbounded) λ-limited adversary A
we have

Δ((A� Ω(IPMaskn(S))) , (A� Ω(IPMaskn(S
′))) ≤ ε,

where λ = (1/2− δ)n log |F| − log γ−1 − 1 and ε = 2(|F|3/2−nδ + |F|γ).
Informally, the lemma says that for any two (different) secrets S, S′ no adversary
can distinguish between leakage from a masking of S and a masking of S′.

As a special case, this gives us the following corollary when the underlying
field is F28 , namely:

Corollary 1. Let n ∈ N, then for any two secrets S, S′ ∈ F28 and any λ-limited
adversary A, we have

Δ((A� Ω(IPMaskn(S))) , (A� Ω(IPMaskn(S
′))) ≤ ε,

where λ = 3n and ε ≤ 213−0.1n + 2−n.

Proof. Set δ := 0.1 and γ := 2−0.2n, then we get λ = 3.2n− 0.2n− 1 = 3n and
ε ≤ 213−0.1n + 2−n. � 

Corollary 1 says that for sufficiently large n an adversary may learn up to 3n
bits from each processor without being able to distinguish between a masking
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of S and S′. We notice that the bound on the statistical distance only gets
meaningful, when n > 130, which, of course, is impractical.

One may ask if we can get stronger security guarantees for the masking scheme
if we restrict our focus to certain special cases. To this end consider the case that
the adversary cannot query adaptively the leakage oracle, i.e. he may learn only
fL(L) and fR(R). In this case, it is easy to show that from the fact that the inner
product is a strong randomness extractor [7,26], we can give to the adversary
the entire L and up to 3n bits of R, and still it will be hard to decide whether
(L,R) was sampled from IPMaskn(S) or IPMaskn(S

′).

Comparison with Linear Masking Schemes. We notice that linear masking
schemes, such as the additive masking over finite fields [20,27], cannot achieve
such strong security properties in our security model. Consider a secret S ∈ F
that is masked by vectors (L,R) such that (L,R) are uniformly random in F2n

subject to the constraint that S =
∑

i Li +
∑

iRi. If we consider an adversary
that can interact with Ω(L,R) then already a single field element of leakage
entirely breaks the security: f(L) may reveal

∑
i Li, while g(R) reveals

∑
iRi,

which together reveal S completely.
For fields of characteristic 2 such as F28 already a single bit of leakage suffices

to learn information about the secret! Recall that in characteristic 2 fields addi-
tion works bit-wise. Similar arguments work for the polynomial masking based
on Shamir secret sharing introduced in [18], as Lagrange polynomial interpola-
tion is linear. Hence, such masking schemes can be broken in our model.

We emphasize that our leakage model includes certain classes of leakages that
are very frequently used in practice, e.g. to model power consumption. One
example is the Hamming weight leakage model. Of course, our theoretical anal-
ysis includes Hamming weight leakages as an adversary can learn the Hamming
weight of a masked value and still the masked value remains information theo-
retically hidden. More precisely, as shown in Corollary 1 the IP masking remains
provably secure even if an adversary learns L completely and 3n bits of R. As
Hamming weight is a linear function we can compute the Hamming weight of
(L,R) from just the Hamming weight of L and R separately. Notice that the
Hamming weight of R can be compressed to < 4 logn bits, while according to
Corollary 1 we are allowed to learn 3n bits of R. We emphasize that an adver-
sary may even learn the individual Hamming weight of each share R1, . . . Rn of
the right vector and still the IP masking remains secure. This is easy to see as
we can describe the Hamming weight of the n shares for sufficiently large n by
at most n log(8) = 3n bits, which according to Corollary 1 an adversary may
learn from R. We emphasize that for additive masking schemes, such as Boolean
masking, it is not known whether such strong security guarantees hold.

4.2 Security of Masked Operations

So far, we looked at the robustness of the IP masking scheme in the presence
of independent leakage, when we mask a secret value (or several secret values)
and store the left part L on processor PL, while R is stored on processor PR. In
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the following, we “lift” the security analysis from just masking the secret state,
e.g. the key of the AES, to arbitrary computation with masked values. More
precisely, we describe why leakage from operations on masked values will not
help to learn more about the masked value than just the leakage from a single
masking. This can be viewed as a reduction from the security of “complicated”
masked computation, to the security of a single masked value. The details of this
analysis can be found in the full version.

In the security proof, we follow Dziembowski and Faust [10] and show two
simple properties for the basic masked operations. These properties were in-
troduced in [11] and are called rerandomizing and reconstructability. The first
guarantees that for a masked operation the encoded output of the operation is
distributed as a uniformly and independently sampled encoding. We show in the
full version that all our masked operations satisfy this property. We notice that
the algorithms for squaring and multiplication by a constant require only local
computation, and hence do not require a refreshing.

To show reconstructability for a masked operation, we need to build a recon-
structor. A reconstructor is a simulator that given the operations’s masked inputs
and outputs can reproduce the internal computation of the operation. The main
requirement is that leakage from the reconstructor’s output distribution (namely
the internal computation) is indistinguishable from the leakage obtained from a
real execution of the operation. At an intuitive level, this property guarantees
that leakage from the internals of a masked operation will not reveal “more”
information about the underlying secret than just the leakage from the masked
inputs and outputs itself.

For practical reasons, we slightly adapt the construction of [10]. The three
main differences are as follows: (1) the way in which we refresh masked secrets,
(2) dedicated efficient masked operations for squaring and multiplication by a
constant, and (3) a simplified masked multiplication operation (instead of a
NAND we only build a simple multiplication). We discuss some details below.
A more thorough discussion is deferred to the full version.

In the implementation, we use Algorithm 2 to refresh a masking of (L,R),
which is a simple variant of the scheme given in [10]. To enable a security proof,
we will in the following assume that the refreshing does not leak. This is re-
quired as Dziembowski and Faust show a theoretical attack on a similar refresh-
ing scheme in [9]. Unfortunately, their attack also applies on the refreshing from
Algorithm 2. The attack presented in [9] recovers the masked secret and requires
an adversary to learn for n consecutive rounds the exact value of 3 field ele-
ments. While in theory such an attack completely breaks the masking scheme,
we emphasize that for a real-world adversary it is very hard to learn the ex-
act value of field elements. If learning the exact value of 3 field elements over
n consecutive rounds is possible, then from a practical point of view it seems
hard to argue why the adversary should not be able to learn the exact value
of all 2n shares in one round of the refreshing. Notice also that practical SCA
attacks typically require some knowledge of the inputs/outputs of the algorithm.
For the refreshing algorithm this is not possible as both inputs and outputs are
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unknown and random. This makes attacking the refreshing a hard target. One
may ask why we do not use alternative approaches of provably secure refreshing
as presented in [9] and [16]. Our choice is motivated by practical limitations as
existing refreshing schemes result in a quadratic blow-up.

5 Performance Evaluation

In this section we evaluate the performance and correctness of IP masking. We
provide a general overview on how to implement the IP masking building blocks
on an 8-bit embedded platform, and describe how to use them to protect an
implementation of the AES.

5.1 Implementation of Masked Operations

The 8-bit Atmel AVR ATMega128 [8] is chosen as target platform. This device
provides an advanced RISC architecture with 133 low-level instructions and it
offers 128 kBytes of flash program memory and 4 kBytes of internal SRAM. The
independent side channel leakage required by our model is in our implementation
achieved by temporal separation, i.e. instead of using two physically separated
processors PL and PR, we use a single 8-bit processor and we ensure independent
leakage by not overlapping their respective operations.

For the sake of optimization, we have implemented all operations in assembly
language. The ATMega128 does not provide an internal random number genera-
tor to implement the rand() and randNonZero() functionalities. Therefore, and
only for the purposes of evaluating the implementation, the required random
bytes are provided to the microcontroller externally previous to the encryption
process. We note that modern devices with built-in TRNG or PRNG elements
running in parallel would allow to generate such randomness internally.

Addition in F28 is carried out in a single clock cycle via the available XOR in-
struction, whereas the rest of field operations (multiplication, inversion, raisings
to the power of 2) are implemented via lookup tables, requiring a total of 1,536
bytes in program memory. Besides the squaring, we have also implemented as
lookup tables the rising to the powers of 4 and 16 required in the power function
of the AES SubBytes step (see extended version for more details [3]). On devices
with limited program memory these raisings can be alternatively carried out by
consecutive squarings, effectively saving 512 bytes of program memory.

Special care has been taken in order to make the implementation not only
time-constant, but flow-constant i.e. conditional execution paths, which can be a
potential source of side channel leakage, have been avoided. A typical example of
a function with conditional execution is the multiplication in F28 using log/alog
tables. This method only works when both input operands are different than zero;
otherwise, the result of the multiplication must be equal to zero. Implementing
this routine in constant flow requires to calculate the potential outputs of all
conditional paths, and thus it ends up requiring 22 clock cycles.

Worth mentioning is the implementation of the first part of Algorithm 2 for
mask refreshing, namely sampling a vector A such that Ai �= Li for 1 ≤ i ≤ n.
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This step is carried out as follows for each element Ai. First, we sample two
elements A′

i ∈ F28 and A′′
i ∈ F28 \ {0}. If A′

i �= Li we simply set Ai = A′
i;

otherwise, we assign Ai = A′
i ⊕A′′

i . Independently of the sampled values A′
i and

A′′
i , this conditional statement ensures that i) the final value Ai is different than

Li, and ii) the final value of Ai is uniformly distributed over F28 . Needless to
say, such implementation is also performed in constant flow execution to prevent
conditional execution branches.

5.2 Application to the AES

We have implemented and verified the correctness of a protected instance of
AES using the IP masking scheme with n = 2. Due to space restrictions, we
provide a high-level description about how to apply IP masking to the AES in
the extended version of this work [3]. As shown in Table 2, our implementation
requires around 1.9 · 106 clock cycles to perform a protected AES encryption
(including on-the-fly key schedule calculation).

Table 2. Performance evaluation (in clock cycles) of AES round transformations and
AES encryption with IP masking scheme with n = 2

AddRoundKey
SubBytes SubBytes

ShiftRows MixColumns Full AES
(Inverse) (Aff.Transf.)

8,796 45,632 72,128 200 27,468 1,912,000

We stress that these results should not be simply taken as an indicator to
judge the practicality of IP masking, as they are obtained using a legacy general-
purpose device without any type of hardware enhancements. If multiplication in
F28 was available in the instruction set of the controller our timing for AES
encryption would be instantly reduced to less than a million cycles. This could
be achieved e.g. by providing instruction set extensions to the target device.

6 Conclusion

This work narrows the gap between the fields of theoretical leakage resilient
cryptography and practice-oriented research, and it represents a first joint step
towards the development and evaluation of common masking schemes. Although
the levels of security required for each model differ considerably, we expect tighter
bounds that allow to lower the value of the security parameters as the theory of
leakage resilient cryptography advances. At the same time, technology advances
steadily and what was impractical yesterday will be “normal” tomorrow. As a
consequence one might expect that schemes such as IP masking can become
practical for higher security levels.
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