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Context-Aware Environments for the Internet 
of Things 
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Abstract. This chapter discusses the challenges, state of the art, and future trends 
in context aware environments (infrastructure and services) for the Internet of 
Things, which is defined as a world-wide network of uniquely identified self-
organized and intelligent things. Intelligence means primarily the capability of 
things to be aware of the context in which they operate (time, geographic location, 
geographic dimension, situation, etc.) and to inter-cooperate with other things in 
the environment. The Chapter is structured in three sections. The first section, 
which frames the issues discussed in the rest of the chapter, is a systematic presen-
tation of the most relevant concepts and aspects related to the infrastructure and 
services for the Internet of Things. The second section presents relevant research 
works in the infrastructure, and up to date solutions and results regarding the in-
frastructure and services. The third section presents future trends and research di-
rections in the domain.  
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1   Introduction to Internet of Things Infrastructure and  
Services 

This section, which frames the issues discussed in the rest of the chapter, is a sys-
tematic presentation of the most relevant concepts, aspects and main issues related 
to the context-aware infrastructure and services for the Internet of Things (IoT). 
For the purpose of this chapter we adopt the IoT definition presented in [5]: 

“The Internet of Things (IoT) is an integrated part of the Future Internet and could be 
defined as a dynamic global network infrastructure with self-configuring capabilities 
based on standard and interoperable communication protocols where physical and vir-
tual “things” have identities, physical attributes, and virtual personalities and use  
intelligent interfaces, and are seamlessly integrated into the information network. In the 
IoT, “things” are expected to become active participants in business, information and 
social processes where they are enabled to interact and communicate among themselves 
and with the environment by exchanging data and information “sensed” about the  
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environment, while reacting autonomously to the “real/physical world” events and in-
fluencing it by running processes that trigger actions and create services with or without 
direct human intervention. Interfaces in the form of services facilitate interactions with 
these “smart things” over the Internet, query and change their state and any informa-
tion associated with them, taking into account security and privacy issues.” 

As part of the Future Internet, IoT aims to integrate, collect information from-, and 
offer services to a very diverse spectrum of physical things used in different do-
mains. "Things" are everyday objects for which IoT offers a virtual presence on 
the Internet, allocates a specific identity and virtual address, and adds capabilities 
to self-organize and communicate with other things without human intervention. 
To ensure a high quality of services, additional capabilities can be included such 
as context awareness, autonomy, and reactivity.  

This section starts with an introductory presentation of things and IoT infra-
structure and continues with the main functional aspects related to things' inter-
communication, the context model for the IoT and the event-driven mechanisms to 
sense, process, and exchange context data. Non-functional requirements for the 
IoT infrastructure are described in the end. 

Things are very diverse. Simple things, like books, can have Radio Frequency 
Identification - RFID tags that help tracking them without human intervention. For 
example, in an electronic commerce system, a RFID sensor network can detect 
when a thing leaves the warehouse and can trigger specific actions like inventory 
update or customer rewarding for buying a high end product [1]. In this simple 
case, RFIDs enable the automatic identification of things, the capture of their con-
text (for example the location) and the execution of corresponding actions if ne-
cessary. Sensors and actuators are used to transform real things into virtual objects 
[3] [5] with digital identities. In this way, things may communicate, interfere and 
collaborate with each other over the Internet [6]. Adding part of application logic 
to things transforms them into smart objects [15], which have additional capabili-
ties to sense, log and understand the events occurring in the physical environment, 
autonomously react to context changes, and intercommunicate with other things 
and people. A tool endowed with such capabilities could register when and how 
the workers used it and produce a financial cost figure. Similarly, smart objects 
used in the e-health domain could continuously monitor the status of a patient and 
adapt the therapy according to monitoring results. Smart objects can also be gen-
eral purpose portable devices like smart phones and tablets, that have processing 
and storage capabilities, and are endowed with different types of sensors for time, 
position, temperature, etc. Both specialized and general purpose smart objects 
have the capability to interact with people. 

The IoT includes a hardware, software and services infrastructure for things 
networking. IoT infrastructure is event-driven and real-time, supporting the con-
text sensing, processing, and exchange with other things and the environment. The 
infrastructure is very complex due to the huge number (50 to 100 trillion) of hete-
rogeneous, (possibly) mobile things that dynamically join and leave the IoT,  
generate and consume billions of parallel and simultaneous events geographically 
distributed all over the world. The complexity is augmented by the difficulty to 
represent, interpret, process, and predict the diversity of possible contexts. The  
infrastructure must have important characteristics such as reliability, safety,  
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survivability, security and fault tolerance. Also, it must manage the communica-
tion, storage and compute resources.  

The IoT infrastructure supports communication among things. This function 
must be flexible and adapted to the large variety of things, from simple sensors to 
sophisticated smart objects. More specific, things need a communication infra-
structure that is low-data-rate, low power, and low-complexity. Actual solutions 
are based on short-range radio frequency (RF) transmissions in ad-hoc wireless 
personal area networks (WPANs). A main concern of IoT infrastructure develop-
ers is supporting heterogeneous things [42] by adopting appropriate standards for 
the physical and media access control (MAC) layers, and for communication  
protocols. The protocol and compatible interconnection for the simple wireless 
connectivity with relaxed throughput (2 – 250 kb/s), low range (up to 100 m), 
moderate latency (10 – 50 ms) requirements and low cost, adapted to devices pre-
viously not connected to the Internet were defined in IEEE 802.15.4 [7]. Other 
similar efforts refer to industrial and vehicular applications - ZigBee [8], open 
standards for process control in industrial automation and related applications - 
ISA100.11a [9] and WirelessHART [10], and encapsulating IPv6 datagrams in 
802.15.4 frames, neighbor discovery and routing that allow sensors to communi-
cate with Internet hosts - 6LoWPAN [11]. The scope of IoT specialists is the 
worldwide network of interconnected virtual objects uniquely addressable and 
communicating through standard protocols.  

The IoT architecture supports physical things' integration in Internet and the 
complex interaction flow of services triggered by event occurrences. Objects identi-
fication, sensing and connecting capabilities form the basis for the development of 
independent cooperative services and applications that address key features of the 
IoT architecture: Service Orientation, Web-base, distributed processing, easy inte-
gration via native XML and SOAP messaging, component-base, open access, N-
tiered architecture, support for vertical and horizontal scalability [13]. Specific Web 
services help the physical objects to “become active participants in business 
processes” [14]. They interact with the corresponding virtual objects over the Inter-
net, query and change objects’ state, and process other associated information. The 
new key features for the IoT architecture include persistent messaging for the high-
est availability, complete security and reliability for total control and compliance, 
platform independence and interoperability (more specific for middleware). 

 

Fig. 1 Layered Networking for IoT 
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IoT infrastructure considers extended process functionality, pathways and 
layered networks as main components. These layers (see Fig. 1) refer to: real-time 
Data Collecting and Pre-Processing, which aims to support any available or 
emerging technology and offer uniform interfaces to upper layers; Processing and 
reporting environment data according to specific rules and data packing; efficient 
data transportation over the Network; support for Enterprise Application devel-
opment; and application exposure and integration in the Internet. The IoT infra-
structure supports object-connected technologies for “Human-to-Objects” and 
“Objects-to-Objects” communications [2] [4]. The communication platforms are 
heterogeneous, ad-hoc, and opportunistic.  

As mentioned previously, IoT is a large heterogeneous collection of things, 
which differ from each other. Even things that have the same nature, construction, 
and properties can differ from one another by their situation or context. Context 
means the conditions in which things exist in other words their surrounding world. 
Since virtual things in IoT are interconnected, the meaning of the data they ex-
change with other things and people becomes clear only when it is interpreted in 
the thing’s context. This is why the IoT infrastructure runs reliably and perma-
nently to provide the context as a “public utility” to IoT services [31]. For human 
users, the context is the information that characterizes user’s interaction with In-
ternet applications plus the location where this interaction occurs, so that the  
service can be adapted easily to users’ preferences, For things, we need another 
approach. A very suggestive example is given in [33]. The authors explain the 
case of a plant that is the target of an automatic watering service. In order to con-
trol the watering dosages and frequency, the service has to sense the dryness status 
of the plant, to use the domain knowledge of plants and find their watering “prefe-
rences”, and to ask the weather prediction service about the chances of rain in the 
next days. So, the context of a thing includes information about thing’s environ-
ment and about the thing itself [33]. 
 

 

Fig. 2 Context-aware services 

Several context modeling and reasoning techniques are known today [34], some 
of them being based on knowledge representation and description logics. Ontolo-
gy-based models can describe complex context data, allow context integration 
among several sources, and can use reasoning tools to recognize more abstract 
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contexts. Ontologies provide a formal specification of the semantics of context da-
ta that stay at the base of knowledge sharing among different things in IoT. In ad-
dition, ontological reasoning can derive new context. Ontology-based models can 
be used to organize IoT infrastructure context-aware services as a fabric structured 
into multiple levels of abstraction (see Fig. 2) starting with collecting information 
from physical sensors (called low level context), which could be meaningless and 
consequently not useful to applications. Next, higher-level context is derived by 
reasoning and interpretation. Finally, context is exploited by triggering specific ac-
tions [31].  

The IoT infrastructure combines the context model with event-based organiza-
tion of services that support the collection, transmission, processing, storage and 
delivery of context information. In the event-driven architecture vocabulary, 
events are generated by different sources, event producers, when for example a 
context change is significant and must be propagated to target applications, which 
are event consumers. Producers and consumers are loosely coupled by the asyn-
chronous transmission and reception of events. They don't have to know and ex-
plicitly refer each other. In addition, the producers don't know if the transmitted 
events are consumed ever. A publish/subscribe mechanism is used to offer the 
events to the interested consumers. Other components are the event channels for 
communication, and event processing engines for complex event detection. Com-
ponents for event specification, event management, and for the integration of the 
event-driven system with application belong also to the IoT infrastructure.  

There are also non-functional requirements associated with IoT infrastructure 
[1]: large scale integration, interoperability between heterogeneous things, fault 
tolerance and network disconnections, mobility, energy saving, reliability, safety, 
survivability, protection of users’ personal information (e.g., location and prefe-
rences) against security attacks, QoS and overall performance, scalability, self-* 
properties and transparency. 

Development issues for IoT infrastructure are directly related to Service 
Oriented Architecture (SOA), Collaborative Decision Making (CDM), Cloud 
Computing, Web 2.0 (and Future Internet) and Semantic Web. The support of 6A 
connectivity (Anything, Anyone, Anytime, Any Place, Any Service, and Any 
Network) becomes the most important key feature for adding sense to the Internet 
of Things [13].  

2   Context Aware Internet of Things Infrastructure 

This section presents up to date solutions and research results regarding the struc-
ture, characteristics, and services for context aware IoT infrastructure.  

Sensors in IoT are used to collect various data such as biomedical information, 
environment temperature, humidity, and ambient noise level. The data provided 
by such sensors can be used by customized context-aware applications and servic-
es, capable to adapting their behavior to their running environment. However,  
sensor data exhibits high complexity (e.g., due to the huge volumes and inter-
dependency relationships between sources), dynamism (e.g., updates performed in 
real-time and data that can age until it becomes useless), accuracy, precision and 
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timeliness. An IoT system should not concern itself with the individual pieces of 
sensor data: rather, the information should be interpreted into a higher, domain-
relevant concept. For example, sensors might monitor temperature, humidity, 
while the information needed by a watering actuator might be that the environ-
ment is dry. This higher-level concept is called a situation, which is an abstract 
state of affairs interesting to applications [19]. 

2.1   Situational Awareness 

Situations are generally representations (simple, human understandable) of sensor 
data. They shield the applications from the complexities of sensor readings, sensor 
data noise and inferences activities. However, in large-scale systems there may be 
tens or hundreds of situations that applications need to recognize and respond to. 
Underlying these situations will be an even greater number of sensors that are 
used in situation identification. A system has a significant task of defining and 
managing these situations. This includes capturing what and how situations are to 
be recognized from which pieces of contexts, and how different situations are re-
lated to each other. The system should know, for example, which situations can or 
cannot occur: a room hosting a “scientific event” and an “academic class” at the 
same time); otherwise, inappropriate adaptive behavior may occur. Temporal or-
der between situations is also important, such as the inability of a car to go directly 
from a situation of ‘parked’ to ‘driving on a highway’. Given the inherent inaccu-
racy of sensor data and the limitations of inference rules, the detection of situa-
tions is imperfect. 

The research topics on situation identification for IoT involve several issues 
[20]. First, representation deals with defining logic primitives used to construct a 
situation’s logical specification. In representation, logical primitives should cap-
ture features in complex sensor data (e.g., acceleration data), scope knowledge 
(e.g., a spatial map or social network), and different relationships between situa-
tions. Also, an IoT system is assumed to be highly dynamic. New sensors can be 
introduced, that bring new types of context. Therefore, the logical primitives 
should be flexibly extensible, such as new primitives to not cause modifications or 
produce ambiguous meanings to existing ones. 

Specification deals with defining the logic behind a particular situation. This 
can be acquired by experts or learned from training data. It typically relies on a 
situation model with a priori expert knowledge, on which reasoning is applied 
based on the input sensor data. For example, in logic programming [37] the key 
underlying assumption is that knowledge about situations can be modularized or 
digitized. An example adapted from [21], which defines a situation when a room 
is detected as being occupied, can be specified as follows: 

 
Occupied(room) = ∃t1, t2, event|reservedBy(person, t1, t2) 

•((t1 ≤ timenow() ∧ (timenow() ≤ t2 ∨ isnull(t2))) ∨((t1 ≤ timenow() ∨ isnull(t1)) ∧ timenow() ≤ t2)) 
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These initial works have been advanced to a more formal approach by Loke et al. 
[22]. The authors proposed a declarative approach to represent and reason with 
situations at a higher level of abstraction. The approach uses logical programming 
in Prolog to embed situations. For example a situation in_meeting_now of a user 
entity E is defined on two situations with_someone_now and 
has_entry_for_meeting_in_diary can be defined as:  

 
if in_meeting_now(E) then 

with_someone_now(E), 
has_entry_for_meeting_in_diary(E). 

if with_someone_now(E) then 
location*(E, L), people_in_room*(L, N) , N > 1. 

if has_entry_for_meeting_in_diary(E) then 
current_time*(T1) , 
diary*(E, ‘meeting’, entry(StartTime, Duration)), 
within_interval(T1, StartTime, Duration).

 
Each of these situations is defined on sensor predicates. For example, 
with_someone_now refers to two sensor predicates: location*(E, L) that re-
turns the location of the entity, and people_in_room*(L, N) that returns the 
number of people in the location. These predicates refer to lower-level context, as 
detected by various sensors. In this way, situation programs can be made amena-
ble to formal analysis, and the inference procedure of reasoning about situations is 
decoupled from the acquisition procedure of sensor readings.  

2.2   Other Representation Approaches 

Other logic theories, such as situation calculus [38], have also been used to infer 
situations in IoT systems. Kalyan et al. [23] introduce a multi-level situation 
theory, where an intermediate level micro situation is introduced between infons 
and situations. An infon embodies a discrete unit of information for a single entity 
(e.g., a customer or a product), while a situation makes certain infons factual and 
thus supports facts. Micro situations are composed of these entity-specific infons, 
which can be explicitly obtained from queries or implicitly derived from sensors 
and reasons. Situations are considered as a hierarchical aggregation of micro situa-
tions and situations. This work aims to assist information reuse and support ease 
of retrieving the right kind of information by providing appropriate abstraction of 
information.  

Spatial and temporal logic has also been applied to represent and reason on spa-
tial and temporal features and constraints of context and situations. Augusto et al. 
[24] introduce the temporal operators ANDlater and ANDsim in Event–
Condition–Action rules, upon which temporal knowledge on human activities can 
be specified. Considering the sensor events at_kitchen_on (the activation of the 
RFID sensors in the kitchen), tkRK_on (the activation of the RFID sensor while 
the user is passing through the door between the kitchen and the reception area), 
and no_movement_detected (sensing of no movement), the following rule  
specifies a situation of a user ‘fainting’:  
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IF at_kitchen_on ANDlater tdRK_on ANDlater no_movement_detected 
THEN assume the occupant has fainted

 
Also, ontologies have increasingly gained attention as a generic, formal and expli-
cit way to capture and specify the domain knowledge with its intrinsic semantics 
through consensual terminology and formal axioms and constraints. They provide 
a formal way to represent sensor data, context, and situations into well-structured 
terminology. Based on the modeled concepts, developers can define logical speci-
fications of situations in rules. An exemplar rule on an activity ‘sleeping’ is given 
in [25]: 

 
(?user rdf:type socam:Person), 
(?user, socam:locatedIn, socam:Bedroom), 
(?user, socam:hasPosture, ‘LIEDOWN’), 
(socam:Bedroom, socam:lightLevel, ‘LOW’), 
(socam:Bedroom, socam:doorStatus, ‘CLOSED’) 
-> (?user socam:status ‘SLEEPING’)

 
Ontologies, together with their support for representation formalisms, can support 
reasoning, including detecting inconsistency, or deriving new knowledge. An on-
tological reasoner can be used to check consistency in a class hierarchy and con-
sistency between instances, e.g. whether a class is being a subclass of two classes 
that are declared as disjoint or whether two instances are contradictory to each 
other (such as a person being detected in two spatially disjoint locations at the 
same time). Given the current sensor data, the reasoner will derive a new set of 
statements. In the above ‘sleeping’ example, if the reasoner is based on a forward-
chaining rule engine, it can match the conditions of this rule against the sensor in-
put. If all the conditions are satisfied, the reasoner will infer the conclusion of the 
rule. The reasoning will terminate if the status of the user is inferred, when the sta-
tus of the user is set to be the default inference goal in this reasoner. 

Other solutions are based on the Dempster–Shafer theory (DST) [39], a ma-
thematical theory of evidence, which propagates uncertainty values and conse-
quently provides an indication of the certainty of inferences. The process of using 
DST is described as follows. First, developers apply expert knowledge to con-
struct an evidential network that describes how sensors lead to activities. The  
left-hand side of Fig. 3 below describes that the sensors on the cup and fridge are 
connected to context information (e.g., ‘cup used’). Such context information can 
be further inferred or composed to higher-level context. The composition of con-
text information points to an activity (e.g., ‘Get drink’) at the top. Developers can 
use such an approach to determine the evidence space and degree of belief in an 
evidence. For example, in Fig. 3, the values on the arrows represent the belief  
in particular sensor (also called the uncertainty of sensor observations). Generally, 
in reasoning situations are inferred from a large amount of imperfect sensor data. 
In reasoning, one of the main processes is called situation identification - deriving 
a situation by interpreting or fusing several pieces of context in some way. Speci-
fying and identifying situations can have a large variability depending on factors 
such as time, location, individual users, and working environments [26]. This 
makes specification-based approaches relying on models of a priori knowledge 
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impractical to use. Machine learning techniques have been widely applied to 
learning complex associations between situations and sensor data. However, the 
performance of reasoning is usually undermined by the complexity of the underly-
ing sensor data. 

 

 

Fig. 3 An example of situation inferring using Dempster-Shafer theory (from [40]) 

Bayesian networks have been applied in many context-aware systems. For ex-
ample, in [27] the authors present a solution to infer a user’s current activity from 
sensors within a room, which provide several contexts (e.g., several sensors track 
people within a house, the light level and noise level in rooms are monitored by 
other sensors). But, such a Bayesian network cannot model the causal relationship 
between the status context of one particular user, his/her location, and the status of 
the micro oven for example, because of the breaking of the independence assump-
tion in naïve Bayes. A better approach consists in the use Hidden Markov Models 
(HMMs) [28]. HMMs statistical models where a system being modeled is as-
sumed to be a Markov chain that is a sequence of events. A HMM is composed of 
a finite set of hidden states and observations that are generated from states. For 
example, a HMM where each state represents a single activity (e.g., ‘prepare din-
ner’, ‘go to bed’, ‘take shower’, and ‘leave house’) is presented in [28]. They 
represent observations in three types of characterized sensor data that are generat-
ed in each activity, which are raw sensor data, the change of sensor data, the last 
observed sensor data, and the combination of them. The HMM is trained to obtain 
the three probability parameters, where the prior probability of an activity 
represents the likelihood of the user starting from this activity; the state transition 
probabilities represent the likelihood of the user changing from one activity to 
another; and the observation emission probabilities represent the likelihood of the 
occurrence of a sensor observation when the user is conducting a certain activity. 

Unlike this approach, [29] employs the use of neural networks in learning activ-
ities (e.g., static activities like ‘sitting’ and ‘working at a PC’, and dynamic activi-
ties like ‘running’ and ‘vacuuming’) from acceleration data. A similar idea was 
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further applied to detect bump holes as cars runs on street, using accelerometer 
sensors inside the vehicle [41]. The acceleration data is collected from a wireless 
sensing tri-axial accelerometer module, from which eight features are extracted, 
including the mean value, the correlation between axes, and the energy that is used 
to discriminate between activities.  

Finally, Support Vector Machines (SVM) [12] is a relatively new method for clas-
sifying both linear and nonlinear data. An SVM uses a nonlinear mapping to trans-
form the original training data into a higher dimension. Within this new dimension, it 
searches for the linear optimal separating hyper-plane that separates the training data 
of one class from another. With an appropriate nonlinear mapping to a sufficiently 
high dimension, data from two classes can always be separated. SVMs are good at 
handling large feature spaces since they employ over fitting protection, which does 
not necessarily depend on the number of features. Kanda et al [30] use SVMs to cate-
gorise motion trajectories (such as ‘fast’, ‘idle’, and ‘stop’) based on the velocity, di-
rection, and shape features extracted from various sensors (within a car for example). 
Different types of sensor data lead to different techniques to analyze them. Numerical 
data, for example, can be used to infer motions like ‘walking’ or ‘running’ from acce-
leration data. Situation identification at this level is usually performed in learning-
based approaches, which uncover complicated associations (e.g., nonlinear) between 
continuous numerical data and situations by carving up ranges of numerical data 
(e.g., decision tree) or finding an appropriate algebraic function to satisfy or ‘explain’ 
data (e.g., neural networks or SVMs). Specification-based approaches can apply if the 
association between sensor data and situations are rather explicit and can be 
represented in logic rules. Situations can also be recognized from categorical features; 
for example, inferring a room’s situation - ‘meeting’ or ‘presentation’ — from the 
number of persons co-located in the room and the applications running in the com-
puter installed in the room. This higher-level of situation identification can be per-
formed using either specification- or learning-based approaches.  

Uncertainty can also exist in the use of oversimplified rules that are defined in 
an ad hoc way. In representing uncertainty of rules, Web Ontology Language 
(OWL), a family of knowledge representation languages for authoring ontologies 
endorsed by W3C, can be extended with a conditional probabilistic class to en-
code the probability that an instance belongs to a class respectively given that it 
belongs to another class. Although good at expressing uncertainty, these qualita-
tive approaches need to be combined with other machine-learning techniques to 
quantify the uncertainty to be used in situation identification. Learning-based ap-
proaches have a stronger capability to resolve uncertainty by training with the 
real-world data that involves noise. These approaches not only learn associations 
between sensor data and situations, but also the effect that the uncertainty of sen-
sor data has on the associations. For example, the conditional probabilities learned 
in Bayes networks include the reliability of sensor data as well as the contribution 
of the characterized sensor data in identifying a situation. 

2.3   Architectural Issues 

A popular architectural model for IoT is composed of autonomous physical/ 
digital objects augmented with sensing, processing, and network capabilities.  
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Unlike RFID tags, smart objects carry an application logic that let them sense their 
local situation and interact with the environment through actuators. They sense, 
log, and interpret what’s occurring within themselves and the work, act on their 
own, intercommunicate with each other, and exchange data [17]. 

According to the scenarios illustrated in [17], the architectural differences in 
the way smart objects understand (sense, interpret or react to) events, and interact 
with their environment in terms of input, output, control and feedback, classify 
them as either activity-aware objects, policy-aware objects or process-aware ob-
jects. A process-aware object represents the most accomplished type, and charac-
terizes: awareness (a process-aware object understands the operational process 
that is part of and can relate the occurrence of real-work activities and events to 
these processes), representation (its model consists of a context-aware workflow 
model that defines timing and ordering or work activities), and interaction (a 
process-aware object providers workers with context-aware guidance about tasks, 
deadlines, and decisions). 

Adaptable Pervasive Flows [18] is a technology that model applications in a fa-
shion similar to classical service workflows, while being situated in the real world. 
A flow is a computer-based model that essentially consists of a set of actions, 
glued together by a plan (or control flow) which defines how the actions should be 
performed to achieve some goal under a set of constraints. Flows are explicitly tai-
lored (1) to being executed in pervasive environments, and (2) to being adaptable. 
They are situated in the real world, i.e., they are logically attached to entities, they 
can move with them through different contexts. While they are carried along, they 
model the behavior intended for the associated entity, and adapt the entity’s envi-
ronment to this behavior. Thus, when a mobile user carries a flow that specifies 
his prospective actions, the pervasive computing machinery in his environment 
will be set up for him by the flow. Since people may change their minds, and since 
artifacts and people may be subject to changes in the environment, the flow itself 
may also adapt to reflect such changes. This requires flows to be context-aware. 
They can take into account the context pertaining to their entity’s current envi-
ronment as well as the entity’s actual activities in order to dynamically adapt to 
changing situations. 

A context-aware infrastructure designed to support smart objects could help 
workers in construction industry by providing just-in-time information about re-
quired work activities [17]. To model the organizational process a workflow [18] 
can be used to define work activities in which the smart object is involved. Such a 
workflow can contain activities and transitions between activities. Transitions can 
be annotated with context conditions that refer to sensor or human input. A 
workflow continues along a transition if input satisfies a condition.  

The goal of JCAF [16] is to create a general-purpose, robust, event-based, ser-
vice-oriented infrastructure and a generic, expressive Java programming frame-
work for the deployment and development of context-aware IoT applications. The 
infrastructure is composed of a Context-awareness Runtime Infrastructure and a 
Context-awareness Programming Framework. Each Context Service is a long-
lived process analog to a J2EE Application Server. The service’s Entity Container 
manages an Entity with its Context information. An entity is a small Java program 
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that runs within the Context Service and responds to changes in its context. The 
life cycle of an entity is controlled by the container in which the entity has been 
added. The entity container handles subscribers to context events and notifies  
relevant clients on changes to entities.  

2.4   CAPIM Infrastructure 

An infrastructure that follows these concepts and the hierarchical view of func-
tions is presented in CAPIM [2], a platform for context aware IoT systems [31] 
that integrates smartphones for students and staff interactions in a university cam-
pus. The platform collects and manages a global context (of the surrounding 
space) by integrating capabilities of various sensors and actuators. Such sensors 
are aggregated using the sensing, processing and communication capabilities of 
smart objects, in particular smartphones. Smart objects can support the integration 
in Internet of parking lots, university restaurants, libraries, classrooms, administra-
tive offices, etc. and can communicate with each other and with smartphones for 
their exploitation in collaborative e-services dedicated to students and staff. Since 
smartphones become commodity hardware, used almost everywhere, having more 
sensing and computing capabilities in every-day situations is attractive for many 
reasons. Smartphones can sustain next-generation efforts of making the Internet of 
Things vision a reality – users and devices blend together smoothly in a single vir-
tual world where smartphone, coupled with other sensors and services from the 
environment, can optimize (e.g. by helping organizing tasks, contacts, etc.) and 
assist (e.g. with navigation, find information more quickly, access online data, 
etc.) users in everyday activities. These may refer to finding a vacant parking 
space in a parking lot that is closer to user’s office, classroom or actual car posi-
tion, assisting people parking and pay for parking, finding the best way towards a 
specific classroom, getting information about the activity in that room or about the 
number of people who are actually there, being notified about new publications 
available in the library or about the actual menu of the preferred restaurant, etc. 
This is a shift towards developing mobile context-aware services that are capable 
to recognize and pro-actively react to user’s own environment. Such context-
aware mobile applications can help things better interact between themselves and 
with their surrounding environments, and offer high quality information to people. 
This is the basis for a paradigm where the context is actively used by applications 
designed to take smarter and automated decisions: start the cooling system when 
the temperature raises above a specific threshold and there is a meeting in that 
room, mute the phone of users participating to the meeting, show relevant infor-
mation for the user’s current location, assist the user find its way in the campus, or 
automatically recommend events based on the user’s (possible learned) profile and 
interests.  

CAPIM is designed to support the construction of the next-generation context 
aware applications. It integrates services designed to collect context data (things’ 
location, profile, etc.). These smart services can be dynamically loaded by mobile 
things, and make use of the sensing capabilities provided by modern smart objects, 
including smartphones endowed with additional sensors. The data is collected and 
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aggregated into context instances. This is also possibly augmented with external 
and inferred data about situations, relations, and events. In addition, the platform 
includes a workflow engine designed to continuously evaluate the context and 
take automatically decisions or actions based on customized rules and particular 
context events.  

 

 
Fig. 4 CAPIMs’architecture 

CAPIM's architecture consists of four vertical layers (see Fig. 4). Each layer 
provides a specific function: (1) collecting context information, (2) storing and 
aggregation of context information, (3) construction of context-aware execution 
rules, and (4) visualization and user interaction. Each layer has several compo-
nents, making the infrastructure suitable for experimenting with a wide range of 
context-aware things, methods, techniques, algorithms, and technologies. CAPIM 
can be used to construct context-aware applications using a service-oriented com-
position approach: load a core container, instruct it to load the necessary context-
gathering services, deploy a corresponding context-aware business workflow, and 
call the actions to be executed when context is met. For example, the monitoring 
services are dynamically discovered, downloaded as needed, loaded and executed 
in the container. The first layer includes sets of monitoring services for collecting 
context data and first-stage storing on the local smart objects.  

Each monitoring service is packed in a digitally signed monitoring module. 
These modules are downloadable from remote repositories, resembling application  
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stores. The monitoring services can be developed/maintained by third party organ-
izations. For example, a manufacturer might build a module to collect data from 
sensors it is offering on the market, therefore integrating them within Internet.  

 

Fig. 5 Flow of monitoring information 

Each monitoring service is executed in a separate container. This allows separa-
tion of concerns (no service needs to know what other modules are deployed) and 
fault isolation. 

The monitoring flow (see Fig. 5) is under the control of a Context Manager, or-
chestrating the flow of information between the monitoring services. Depending 
on the function supported, the monitoring services are grouped in several catego-
ries. The Push and Pull monitoring services are directly responsible for collecting 
context information, usually directly from sensors. The Push service reacts to 
changes of the context, which in turn triggers notifications to the Context Manag-
er. The Pull service is periodically or on-request interrogated for the current values 
of the monitoring parameters. 

The context information is sent to Filter, Storage and Networking services. The 
Filter service subscribes to specific context information. The Context Manager 
forwards the data of interest to the Filter service, which in turns can produce new 
context information (possible from multiple data sources). Such a construction al-
lows for first-stage aggregation of context information. 

The Storage service can keep data locally for better serving the context-
execution rules. Finally, the Networking service is responsible for sending the col-
lected context information remotely to aggregation services (the Remote Context 
Repository component located in the next layer). Here we can experiment with 
different network protocols and methods of sending data, whilst balancing be-
tween costs and energy-consumption. 

Each monitoring service is also responsible for a particular type of monitoring 
information. Thus, these services fall into different categories: location, profile, 
hardware.  

The second layer deals with the aggregation and storing of context data. The 
components at this layer are running in a server environment, mainly because the 
aggregation involves collecting data from multiple fixed and mobile sources. Also 
it involves higher computational capabilities that are available on smart things and 
user’s smartphone without interfering with his/her own activities. The components 
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are distributed, and we envision a scheme where several such servers collect data 
based on a localization approach. 

At this layer the information is received from several context sources. It is fur-
ther organized based on concepts from a predefined model. At his layer the data is 
organized according to the proposed Context Model. For example, the data from 
several sensors (GSM, WiFi, Bluetooth) is aggregated into current Location, and 
the user can experiment with various location algorithms. The user’s characteris-
tics are organized based on a FOAF and semantic technologies [16]. We therefore 
are able to aggregate data into models describing actual relations between users, 
inferring information about their interests and activities. In an academic environ-
ment this allows defining rules specific to users interested in particular research 
area, or belonging to particular classes.  

This layer also provides an abstraction that can be used by all applications to 
access context information. The domain described by the model acts as a contract 
between the middleware system and consumer applications. The information and 
services offered by the contextualization services are consumed by two sorts of 
applications. Autonomous applications can use the services directly to access con-
text information. They control entirely the reaction to context changes.  

In addition, we define a third layer, which uses context Rule actions. Changes 
in the context may trigger different actions on the smart things according to a pre-
defined rule set. The rules are expressed in an XML-based format and are stored 
in a remote repository. Things are therefore able to dynamically load and execute 
locally specific rules, depending on context. An example of such a rule is pre-
sented in Fig. 6, which notifies the interested and available user about an event in 
the field of Distributed Systems. The main rule consists of two standard rules 
combined by the logical operator AND. The first rule retrieves context informa-
tion regarding user agenda or university timetable.  

 
<rules-config> 
      <rule-definitions> 
            <rule-def name="DistributedSystemEventNotification"  
                  action="category.EVENT_NOTIFICATION"> 
                  <rule name="userIsFree" /> 
                  <operator name="AND" /> 
                  <rule name="userHasInterest" /> 
            </rule-def> 
      </rule-definitions> 
      <rule-implementations> 
            <rule-impl name="userIsFree" class="rules.StringFieldEquals"> 
                  <property name="argField" value="CURRENT_ACTIVITY"/> 
 <property name="target" value="free"/> 
 </rule-impl> 
      </rule-implementations> 
      <rule-implementations> 
            <rule-impl name="userHasInterest"  
                  class="rules.StringFieldContainedInList"> 
                  <property name="argField" value="INTERESTS"/> 
                  <property name="target" value="Distributed Systems"/> 
            </rule-impl> 
      </rule-implementations> 
</rules-config> 

Fig. 6 Example of a context rule 
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Finally, the fourth layer is responsible with the applications, expressed as rules 
and actions, which can be used for orientation, information and recommendation 
purposes. At this layer there are local utilities that can help with context-triggered 
actions. There are also the applications that use the context data to improve re-
sponse to stimulus (an interior or exterior request). An application can react to 
changes in the current context and take specific actions depending on some prede-
fined rules. For this, conditions are evaluated period as the data is retrieved. Third 
party applications and services can use the API provided by the context-aware 
services. They can use functions for obtaining particular context data, using filters, 
or can subscribe for context data. They can also declare new execution rules for 
users to install on their mobile devices. 

2.5   CAPIM Context Model 

The CAPIM’s context model (Fig. 7) characterizes the situation of an entity. Enti-
ty describes any person, place, or object that is considered relevant to the interac-
tion between the user and the environment. In accordance, the context is the  
collection of information used in some particular form. Thus, the context model 
includes external data (relative to the environment of the mobile device executing 
the application, such as location, proximity) or internal information (to the device, 
such available disk space, battery, capabilities, etc.). The proposed context model 
aggregates this information into a unique set of data. The context is build based on 
all detectable and relevant attributes of the mobile wireless device, the applica-
tion’s user, the device’s surrounding environment, and the interaction between 
mobile devices (creating an ad-hoc social interaction map). 

 

 

Fig. 7 CAPIM’s context model 

The context model is hierarchical. On the first layer is the device object (thing) 
grouping together location, time, identity of a possibly user (in case of smart-
phones), and the information gathered from various hardware sensors. The device 
object also provides static information about the device, such as its identifier,  
operating system and platform, etc.  
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Location is obtained from several sources. For out-door location we use the 
GPS or GSM capabilities of the device. For in-door location we combine informa-
tion received from several sensors, such as GSM cells, Wi-Fi access points, and 
hardware devices capable of recognizing Bluetooth pairing. The platform also al-
lows experimenting with various in-door locality algorithms and solutions. In this 
case first the user constructs a module (if one is not already available) for collect-
ing information from sensors. It then aggregates the information into a recogniza-
ble form of location data (e.g., the user is in front of a predefined room). 

For smartphone, the context information includes information about the user. 
User's identity is made available from the certificates installed on the mobile 
smartphone. When the user’s identity is found, it is augmented with other informa-
tion, such as the user’s profile and activities. User’s activities are discovered from 
his/her agenda, or from the user’s academic schedule (if the user is a student, 
based on his certificate the schedule is discovered by interrogating the university’s 
data management system). The profile context could include information related 
to user’s research interests, academic interests, or social interests. For the research 
interests a special service collects and aggregates data from scientific research da-
tabases and provides a set of features including automatic collection of informa-
tion, guided and focused retrieval of researcher profiles, aggregation and storage 
of structured data in time, aggregated and personalized view of collected  
information.  

The user’s profile is provided in either a static form (for example, based on the 
certificate the user’s current academic profile can be easily extracted from the uni-
versity’s digital record database), or is inferred from social networks. For this, the 
application uses as data sources several social networks: Facebook, LinkedIn. 
These sources provide dynamic information about user’s interests for example. 
But they also provide information about social relations between users. So, instead 
of asking users to insert their social preferences again, we learn them from the us-
ers’ social networks and devise new connections based on the supplementary  
context information. This allows making queries to the system asking for the whe-
reabouts of the user’s current friends, representing users with current interests si-
tuated in the immediate proximity, or finding friends that can serve some specific 
events.  

The context also includes system information, collected from specific sensors 
for battery level, light intensity, accelerometer, etc. The hardware context includes 
information gathered from external sensors in the environment. 

CAPIM’s vision is to use the context information as part of the processes in 
which things are involved. The context can support the development of smart  
applications capable to adapt based on the data relevant to the location, identity, 
profile, activities, or environment (light, noise, speed, wireless networking capa-
bilities, etc.). We propose the use of a context model that includes these parame-
ters. Based on this model we propose building smart and social environments  
capable to adapt to context using mainly the sensing and processing capabilities of 
smart objects. 
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CAPIM uses a semantic-based context model, but other models are also sup-
ported. For example, data is collected as time series, for long-term and near  
real-time processing guarantees. The semantic model provides a vocabulary to 
represent knowledge about context and to describe specific situations. The Con-
text Ontology defines a common vocabulary to manage and share context data. 
The advantage of such an approach is sharing a common understanding of infor-
mation to users, devices and services, because the ontology includes machine-
interpretable definitions of basic concepts and relations. 

The aggregation and semantic services are running on server-side because the 
semantic aggregation involves collecting and aggregating together data from mul-
tiple sources. All things send context information to the aggregation service, 
where it is further managed and semantically organized. The aggregation service 
is also responsible to infer the stored data and send aggregated information back to 
things or applications. The aggregated semantic data is kept in a semantic data-
base. CAPIM’s repository implementation uses the Jena Semantic Web Toolkit. 
The framework provides functions to add, remove, query even to infer data on ge-
neric RDF models.  

The context ontology captures all context information and models the basic 
concepts of things, interests and activities, describing the relationships between 
these entities. For example, for the pervasive computing which can be divided in a 
collection of sub-domains (e.g. home domain, school domain), we composed our 
own ontology using domain-specific ontologies. Considering its specific characte-
ristics, CAPIM things’ characteristics are organized based on the FOAF ontology 
(Fig. 8). In this way one can describe things, contexts and activities, and relations 
to other things. To model a paper or a book, CAPIM uses the PUBL ontology, 
storing and linking in this way information such as authors, publishing company 
or the release date. To describe events, dates or locations CAPIM uses the ICAL 
and GEO / WAIL ontologies. 

The main benefit of using domain-specific ontologies is that one can dynami-
cally plug and unplug them from the model when the environment has changed. 
The CAPIM’s ontology is based on other, already implemented ones because in 
this way the redundancy can be avoided and the semantic stored data can be easier 
linked with other information on the Web. 

Using the context ontology in a CAPIM academic scenario, for example, one 
can query and infer the stored data finding out new useful information easier. To 
illustrate the modeling concept we can describe a typical scenario: to socialize, in 
a break, first year computer science student Tom wants to discuss about Semantic 
Web with his interested mates. For this he just needs to use CAPIM service. It will 
interrogate the aggregation service, which will send to device the required data. 
With a relational model, the service should have to iterate through all CAPIM us-
ers, to find their locations and their interests. This semantic model has all this data 
linked, so the result is obtained faster without being affect its validity. 
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<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
      xmlns:foaf="http://xmlns.com/foaf/0.1/" 
      xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"  
      xmlns:org="http://www.w3.org/ns/org#"> 
 
      <foaf:Person rdf:about="andreea.starparu"> 
            <org:memberOf rdf:resource="Gr341C3"/> 
            <foaf:name>Andreea Starparu</foaf:name> 
            <foaf:nick>andreea.starparu</foaf:nick> 
            <foaf:interest>Semantic_Web</foaf:interest> 
            <foaf:interest>Distributed Systems</foaf:interest> 
            <rdfs:subClassOf rdf:resource="prezentare_licenta"/> 
            <wail:location> 
                  <geo:Point> 
             <geo:lat>47.235</geo:lat> 
             <geo:long>25.581</geo:long> 
     </geo:Point> 
            </wail:location> 
      </foaf:Person> 
      <ical:vevent rdf:about="prezentare_licenta"/> 

            <ical:summary>thesis presentation</ical:summary> 
            <ical:dtstart rdf:datatype="xsd:data">2011-07-11</ical:dtstart> 
            <ical:dtend rdf:datatype="xsd:data">2011-07-15</ical:dtend> 
            <ical:location> 
                  <geo:Point> 
                        <geo:lat>47.235</geo:lat> 
                        <geo:long>25.581</geo:long> 

 </geo:Point> 
            </ical:location> 

      </ical:vevent> 
</rdf:RDF>

Fig. 8 Example of FOAF-based description of context in CAPIM 

 
<?xml version="1.0" encoding="UTF-8"?>  
<rules-config>  
      <rule-definitions>  
            <rule-def name="showRestaurantSuggestion"  
            action="category.PLACE_SUGGESTION"  
            parameter="restaurants">  
            <rule name="isLunchTime" />  
      </rule-def>  
</rule-definitions>  
<rule-implementations>  
      <rule-impl name="isLunchTime" class="rules.IntFieldBetween">  
            <property name="argField" value="TIME"/>  
            <property name="targetStart"  value="13"/>  
            <property name="targetEnd" value="14"/>  
      </rule-impl>  
</rule-implementations>  
</rules-config> 

Fig. 9 A context-based rule example 

2.6   Use Case 

A possible application of the proposed platform and context services is an auto-
mated support for people in an university, who may be endowed with a portable 
device which reacts to changes of context by (a) providing different information 
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contents based on the different interests/profiles of the visitor (student or profes-
sor, having scientific interests in automatic systems or computer science, etc.), and 
on the room he/she is currently in; (b) learning, from the previous choices formed 
by the visitor, what information s/he is going to be interested in the next; (c) pro-
viding the visitor with appropriate services – to see the user’s university records 
only if appropriate credentials are provided, to use the university’s intranet if the 
user is enrolled as stuff; (d) deriving location information from sensors which 
monitor the user environment; (e) provide active features within the various areas 
of the university, which alerts people with hints and stimuli on what is going on in 
each particular ambient. 

The proposed context-aware platform can be used for the experimental evalua-
tion of many solutions. Users can evaluate methods for gathering context informa-
tion, for aggregating data using semantics, ontologies. In addition, the platform  
allows experimenting with complementary context-aware solutions. Consider for 
example a security component designed to offer a session establishment mechan-
ism, along with session verification processes. Services might use it to verify the 
identity/authorization of the user currently being the possession of the smartphone. 
A session can be established through HTTPS using certificate authentication. The 
solution can, for example, allow users to unlock doors within a building without 
the requirement of using a physical key or any other replacements (smartcards, 
swipe cards, etc.). All that is required is a smartphone present in the proximity of 
the door and a valid user X.509 certificate installed within the phone. 

 

Fig. 10 Expanded notification (up), followed by suggestion of nearby restaurants (down)  
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Another example is based on the rule described in Fig. 9. In this example the 
context is evaluated. When it is lunch time (anywhere between 13 and 14 hour), 
the rules triggers an action which, based on the user’s current location and using 
Internet services, finds all restaurants nearby. A notification is then brought up. If 
the user is interested he can access more details about the suggested nearby restau-
rants. In another situation, the application observes that the user is in a free time 
interval according to his/her agenda and place (location), and also that the weather 
is sunny (using weather Internet services). According to the user’s settings it can 
suggest parks nearby, or other similar outdoor activities close to the user’s current 
location. An example of an execution of the rule is presented in Fig. 10. As a re-
sult of the execution, the user is presented with a notification and restaurants  
suggestions nearby current location. 

3   Future Trends and Research Directions in Internet of 
Things Infrastructure and Services 

Internet of Things is not yet a reality, "but rather a prospective vision of a number 
of technologies that, combined together, could in the coming 5 to 15 years drasti-
cally modify the way our societies function" [13]. The evolution of the IoT on 
medium and long term unleashed a huge interest and gave rise to many research 
projects, workshops, and conferences, and to the elaboration of reports and survey 
papers. In this section we discuss the aspects related to the IoT infrastructure and 
services with emphasis on the main challenges. 

It is estimated [32] that IoT will have to accommodate over 50,000 billion ob-
jects of very diverse types and technologies. Standardization and interoperability 
will be mandatory for interfacing them with the Internet. New media access tech-
niques, communication protocols and standards shall be developed to make thing 
communicate with each other and people. One approach would be the encapsula-
tion of smart wireless identifiable devices and embedded devices in web services. 
Some initiatives regarding Web services and things’ context [33], interacting with 
the SOA-Based Internet [35], efficient REST-based communications among  
embedded systems [36] and others demonstrate the high potential of this solution. 
They also show enhancing the quality of service aspects like response time,  
resource consumption, throughput, availability, and reliability is possible. The  
discovery and use of knowledge about services’ availability and of pub-
lish/subscribe/notify mechanisms would also contribute to improving the man-
agement of complex thing structures.  

The huge number of things will make their management a very difficult task. 
One solution is enhanced monitoring facilities to track things and people, and 
gather information about their status and situation to support informed decisions. 
Another one is to enable things' adaptation, autonomous behavior, intelligence, 
robustness, and reliability. They could be based on new general centralized or dis-
tributed organizational architectures or on endowing things with self-* capabilities 
in various forms: self-organization, self-configuration, self-Healing, self-
optimization, and self-protection. As an example, in the BIONETS European 
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project [17], evolutionary techniques are embedded in system components to 
achieve fully autonomic behavior and to properly solve networking and service 
management issues. 

New services shall be available for persistent distributed knowledge storing and 
sharing, and new computational resources shall be used for complicated tasks ex-
ecution. Actual forecasts indicate that in 2015 more than 220 Exabytes of data col-
lected from sensors, tracking systems or generated by smart things will need to be 
stored [32]. At the same time, optimal distribution of tasks between smart objects 
with high capabilities and the IoT infrastructure shall be found. Since the volumes 
and rates of these data are very dynamic, elastic Clouds are the best candidates for 
storing them. Obviously, Clouds can be also used for rapid processing of informa-
tion and results delivery to the end user. 

New mechanisms and protocols will be needed for privacy and security issues 
at all IoT levels including the infrastructure. Solutions for stronger security could 
be based on models employing the context-aware capability of things, and on the 
capabilities of the wireless channels to ensure security.  

New methods are required for energy saving and energy efficient self-
sustainable systems. Researchers will look for new power efficient platforms and 
technologies and will explore the ability of smart objects to harvest energy from 
their surroundings. 

4   Conclusions and Remarks 

Actual evolution of the Internet of Things towards connecting every thing on the 
planet in a very complex and large environment gives raise to high demanding re-
quirements, which challenge the actual and future research. The continuously in-
creasing volume of data collected from and exchanged among things will require 
highly scalable environments able to support the high resulting network traffic, 
and offer the necessary storage capacity and computing power for data preserva-
tion and transformation. Communication protocols are needed to enable not only 
the high capacity traffic but also maintain the connectivity between things even in 
case of transient disconnection of wired or wireless links. Also, new solutions 
should be found for efficiently store, search and fetch the data manipulated in 
these environments.   

The chapter addresses new research and scientific challenges in context-aware 
environments for IoT. They refer first to the identification, internal organization, 
provision of context information, intelligence, self-adaptation, and autonomic be-
havior of individual things. Then, actual research and main challenges related to 
IoT infrastructure are discussed, with emphasis on services for context awareness, 
inter-communication, interoperability, inter-cooperation, self-organization, fault 
tolerance, energy saving, compute and storage services, and management of things 
collections and structures. Finally, future trends and research directions for the IoT 
infrastructure are discussed including performance, monitoring, reliability, safety, 
survivability, self-healing, transparency, availability, privacy, and others.  
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