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Abstract. The Fiat-Shamir transform is a well studied paradigm for
removing interaction from public-coin protocols. We investigate whether
the resulting non-interactive zero-knowledge (NIZK) proof systems also
exhibit non-malleability properties that have up to now only been stud-
ied for NIZK proof systems in the common reference string model: first,
we formally define simulation soundness and a weak form of simulation
extraction in the random oracle model (ROM). Second, we show that in
the ROM the Fiat-Shamir transform meets these properties under lenient
conditions. A consequence of our result is that, in the ROM, we obtain
truly efficient non malleable NIZK proof systems essentially for free.
Our definitions are sufficient for instantiating the Naor-Yung paradigm
for CCA2-secure encryption, as well as a generic construction for signa-
ture schemes from hard relations and simulation-extractable NIZK proof
systems. These two constructions are interesting as the former preserves
both the leakage resilience and key-dependent message security of the un-
derlying CPA-secure encryption scheme, while the latter lifts the leakage
resilience of the hard relation to the leakage resilience of the resulting
signature scheme.

1 Introduction

Zero-knowledge proof systems [26] are a powerful tool for designing crypto-
graphic primitives and protocols. They force malicious parties to behave accord-
ing to specification while allowing honest parties to protect their secrets. Non-
interactive zero-knowledge (NIZK) proofs [10] consist of a single proof message
passed from the prover to the verifier. They are particularly useful for designing
public-key encryption and signature schemes as the proof can be added to the
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ciphertext and signature respectively. Understanding the most efficient NIZK
proofs that are sufficiently strong, i.e., sufficiently non-malleable, for building
signature and encryption schemes with strong security properties is thus of fun-
damental importance in cryptography. It was shown by Goldreich and Oren [25]
that NIZK proofs are unattainable in the standard model. To avoid this im-
possibility result, one must rely on additional assumptions, such as common
reference strings [9] (CRS model) or idealizations of hash functions [7] (random
oracle model, ROM).

With the aim of finding the “right” definition in the non-interactive case,
several flavors of non-malleability [19] have been introduced for NIZK in the
CRS model [37,38,24,31]. The notion of simulation soundness, which bridges
soundness and zero knowledge, guarantees that soundness holds even after seeing
accepting proofs, for both true and false statements, produced by the simulator.
This strengthened soundness notion was first proposed by Sahai in [37], and later
improved by De Santis et al. [38]. The notion of simulation extraction [38,28]
in addition requires that accepting proofs allow to extract witnesses. Different
variants of simulation extraction have been proposed by [15,18].

Until recently, zero-knowledge in general and NIZK in particular were consid-
ered to be primarily of theoretical interest. Significant exceptions being efficient
Σ-protocols [16,17] and their non-interactive relatives based on the Fiat-Shamir
(FS) transform [21]. A Σ-protocol is a three-move interactive scheme where the
prover sends the first message and the verifier sends a random challenge as the
second message. In a nutshell, the Fiat-Shamir transform removes the interac-
tion by computing the challenge as the hash value of the first message and the
theorem that is being proven. Σ-protocols and the Fiat-Shamir transform are
widely used in the construction of efficient identification [21], anonymous cre-
dential [14], signature [35,1], e-voting schemes [8], and many other cryptographic
constructions [11,6,23].

Most work on the provable security of zero-knowledge has, however, been
conducted either on interactive proof systems in the plain model or on NIZK
in the CRS model, while practitioners often preferred Fiat-Shamir based NIZK
proofs for their simplicity and efficiency. The use of the Fiat-Shamir transform
was most thoroughly explored in the security proofs of signature schemes in
the random oracle model [35,1], but was otherwise often used heuristically. The
question thus arises whether one can lay sound foundations for the FS transform
in the light of recent research on CRS-based NIZKs. To this end, we provide non-
malleability definitions for NIZK in the random oracle model that closely follow
the established CRS-based definitions [28]. An earlier result oriented in the same
direction, but concerning a Σ-protocol for a specific language,1 was given by
Fouque and Pointcheval [23]. Their proof strategy relies on the forking lemma [35]
and (implicitly) on the fact that the Σ-protocol they consider has a particular
property called strong special honest-verifier zero-knowledge (SS-HVZK). Since
there exist Σ-protocols that do not satisfy the SS-HVZK property, Fouque

1 This is the language used in the Naor-Yung transform when the underlying encryp-
tion is the ElGamal scheme.
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and Pointcheval’s proof cannot be immediately extended to the general case.
Moreover, we make the random oracle explicit in our definition, which is crucial
as definitions in the random oracle model can be brittle [40].

Our first observation is that much less is required to show simulation sound-
ness for any FS-NIZK proof. Namely, in the random oracle model, simulation
soundness simply follows from the soundness and the HVZK properties of the
underlying interactive protocol. In particular, it is neither necessary to rely on
the forking lemma, nor on the strong property of SS-HVZK. We also show that
the proof strategy of [23], when generalized properly to any Σ-protocol, yields
something more than just simulation soundness. In fact, one gets some form of
simulation extractability, which we call weak simulation extractability. In a nut-
shell, full simulation extractability requires that even after seeing many simulated
proofs, whenever an adversary outputs a new accepted proof, we can build an al-
gorithm to extract a valid witness. Sometimes, such a strong extraction property
is called online extraction [22] because the extractor outputs a witness directly
after receiving the adversary’s proof. In comparison, our notion is weaker in that
it allows the extractor to fully control the adversary (i.e., rewind it).

Our contribution. Our contributions are threefold. First, we formally define the
notions of zero-knowledge (which holds trivially for the Fiat-Shamir transform),
simulation soundness, and simulation extractability for NIZKs in the random
oracle model. Second, we show that simulation soundness and a weak form of
simulation extractability come for free if one uses the FS-transform for turning
Σ-protocols into NIZK proof systems. Third, we investigate the consequences of
this result by showing that our definitions are sufficient for instantiating the
Naor-Yung paradigm for constructing CCA2-secure encryption schemes, and
generic construction for signature schemes from hard relations and simulation-
extractable NIZK proof systems [18]. These two constructions are particularly
interesting as the former preserves both leakage resilience and key-dependent
message security of the underlying CPA-secure encryption scheme, while the
latter lifts the leakage resilience of the hard relation to the leakage resilience of
the resulting signature scheme. To our knowledge, these are the most efficient
schemes having such properties, if one is willing to rely on the ROM.2

Related work. The only other efficient transform for Σ-protocols yielding simu-
lation soundness (again in the random oracle model) is Fischlin’s transform [22]
which is designed with the purpose of online extraction and is less efficient than
the classical Fiat-Shamir transform. Therefore, it would be interesting to in-
vestigate whether Fischlin’s transform achieves a stronger form of simulation
extractability. We notice that in the interactive case, a general transform from
any Σ-protocol to an (unbounded) simulation-sound Σ-protocol using one-time
signatures has been proposed [24]. In the common reference string model the
most efficient simulation-sound or simulation extractable NIZK proof system are

2 In particular we obtain as a special case the Alwen et al. [4] leakage-resilient signature
scheme based on the Okamoto identification scheme.
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based on Groth-Sahai proofs [29]. One has however to pay the price of proving a
structure-preserving CCA secure encryption [18] (for true-simulation extraction)
or a structure-preserving signature scheme [3] (for full simulation extraction).

2 Preliminaries

Notation. Let k be a security parameter. A function ν is called negligible if
ν(k) ≤ k−c for any c > 0 and sufficiently large k. Given two functions f, g, we
write f ≈ g if there exists a negligible function ν such that |f(k)− g(k)| < ν(k).
Given an algorithm A, y ← A(x) means that y is the output of A on input x;
when A is randomized, then y is a random variable. We write AH to denote the
fact that A has oracle access to some function H . PPT stands for probabilistic-
polynomial time. A decision problem related to a language L ⊆ {0, 1}∗ consists
in determining whether a string x is in L or not. Given an instance x, we say
that A decides (or recognizes) L if, after a finite number of steps, the algorithm
halts and outputs A(x) = 1 if x ∈ L, otherwise A(x) = 0. (Sometimes, we may
call “theorem” a string belonging to the language at hand.) We can associate
to any NP-language L a polynomial-time recognizable relation RL defining L
itself, that is L = {x : ∃w s.t. (x,w) ∈ RL}, where |w| ≤ poly(|x|). The string w
is called a witness or certificate for membership of x ∈ L. For NP, w corresponds
to the non-deterministic choices made by A.

Interactive protocols. An interactive proof system (IPS) for membership in L is
a two-party protocol, where a prover wants to convince an efficient verifier that
a string x belongs to L. In a zero-knowledge interactive proof system, a prover P
can convince a verifier V that x ∈ L without revealing anything beyond the fact
that the statement is indeed true. Informally, this means that V cannot exploit
the interaction with P for gaining extra-knowledge. Such a property is formalized
by requiring the existence of an efficient algorithm S, the zero-knowledge simu-
lator, which produces messages indistinguishable from conversations between an
honest prover P and a malicious verifier V∗. Besides the zero-knowledge property,
any proof system satisfies two standard requirements: proving true statements
is always possible, while it should be infeasible to convince the verifier to accept
a false statement as correct. These two conditions are called completeness and
soundness respectively. Related to the concept of interactive proof systems, but
even more subtle, is the notion of proof of knowledge. In a proof of knowledge
(PoK), P wants to convince V that he knows a secret witness which implies the
validity of some assertion, and not merely that the assertion is true. To formalize
the fact that a prover actually “knows something”, we require that there exists
an efficient algorithm E , called knowledge extractor, that when given complete
access to the program of the prover can extract the witness.

An IPS or an interactive PoK is called public-coin when the verifier’s moves
consist merely of tossing coins and sending their outcomes to the prover. (In
contrast, in a private-coin IPS the verifier does not need to show the outcome
of the coins to the prover [27].) We are mainly interested in a specific class of
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Prover P(x,w; 1k) Verifier V(x; 1k)
α← P0(x,w; ρ)

α−→
β←− β

$← V0(x, α)
γ ← P1(α, β, x,w; ρ)

γ−→ Accept iff V1(x, α, β, γ) = 1

Fig. 1. A Σ-protocol for a language L

public-coin interactive PoK systems for NP-languages, called Σ-protocols. Here,
the parties involved share a string x belonging to a language L ∈ NP and the
prover also holds a witness w for membership of x ∈ L. Thus, the prover P
wants to convince the verifier V that it “knows” a witness w for x, i.e. that x
is in the language, without revealing the witness itself. Σ-protocols have a 3-
move shape where the first message α, called commitment, is sent by the prover
and then, alternatively, the parties exchange the other messages β and γ, called
(respectively) challenge and response. The interaction is depicted in Figure 1.
Besides the standard properties held by any IPS, Σ-protocols satisfy a flavour of
zero-knowledge — called honest-verifier zero knowledge (HVZK) — saying that
an honest verifier taking part in the protocol does not learn anything beyond
the validity of the theorem being proven.

Definition 1 (Σ-protocols). A Σ-protocol Σ = (P ,V) for an NP-language L
is a three-round public-coin IPS where P = (P0,P1) and V = (V0,V1) are PPT
algorithms, with the following additional proprieties:

Completeness. If x ∈ L, any proper execution of the protocol between P and
V ends with the verifier accepting P’s proof.

Honest-Verifier Zero Knowledge (HVZK). There exists an efficient algo-
rithm S, called zero-knowledge simulator, such that for any PPT distin-
guisher D = (D0,D1) and for any (x,w) ∈ RL, the view of the following
two experiments, real and simulated, are computationally indistinguishable:

Experiment ExprealΣ,D (1k)
(x,w, δ)← D0(1

k)
π ← 〈P(x,w; 1k),V(x; 1k)〉
Output D1(π, δ)

Experiment ExpsimΣ,D(S, 1k)
(x,w, δ)← D0(1

k)
π ← S(x, 1k)
Output D1(π, δ)

where 〈P(x,w),V(x)〉 denotes the verdict returned at the end of the interac-
tion between P and V on common input x and private input w.

Soundness. If x /∈ L then any malicious (even unbounded) prover P∗ is ac-
cepted only with negligible probability.

Special soundness. There exists an efficient algorithm E, called special ex-
tractor, such that given two accepting conversations (α, β, γ) and (α, β′, γ′)
for a string x, where β 
= β′, then w ← E(α, β, γ, β′, γ′, x) is such that
(x,w) ∈ RL.

The special soundness property is strong enough to imply both soundness and
that Σ-protocols are PoK [17]. Sometimes Σ-protocols are required to meet
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stronger notions of HVZK. We discuss these notions and implications and non
implications between them in the full version [20].

A non-standard condition that many Σ-protocols satisfy, introduced by Fis-
chlin in [22], requires that responses are quasi unique, i.e. given an accepting
proof it should be infeasible to find a new valid response for that proof.

Definition 2 (Quasi unique responses). A Σ-protocol has quasi unique re-
sponses if for any PPT A and for any security parameter k it holds:

Prob[(x, α, β, γ, γ′)← A(1k) : V(x, α, β, γ) = V(x, α, β, γ′) = 1 ∧ γ 
= γ′] ≈ 0.

A Σ-protocol has unique responses if the probability above is zero. The latter
condition, defined by Unruh in [39], is also known as strict soundness.

Min-entropy of commitments. Following [1,2], we use the concept of min-entropy
to measure how likely it is for a commitment to collide with a fixed value.

Definition 3 (Min-entropy of commitment). Let k be a security parameter
and L be an NP-language with relation RL. Consider a pair (x,w) ∈ RL and
let (P ,V) be an arbitrary three-round IPS. Denote with Coins(k) the set of coins
used by the prover and consider the set A(x,w) = {P0(x,w; ρ) : ρ← Coins(k))}
of all possible commitments associated to w. The min-entropy function asso-
ciated to (P ,V) is defined as ε(k) = min(x,w)(− log2 μ(x,w)),where the mini-
mum is taken over all possible (x,w) drawn from RL and μ(x,w) is the maxi-
mum probability that a commitment takes on a particular value, i.e., μ(x,w) =
maxα∈A(x,w)(Prob[P0(x,w; ρ) = α : ρ← Coins(k))]).

We say that (P ,V) is non-trivial if ε(k) = ω(log(k)) is super-logarithmic in k.
Often, the commitment is drawn uniformly from some set. In order for (P ,V)
to be non-trivial, this set must have size exponential in k. Notice that most of
natural Σ-protocols meet such a condition and, in fact, non-triviality is quite
easy to achieve, e.g. by appending redundant random bits to the commitment.

Forking lemma. To prove our second main result, we make use of the following
version of the forking lemma, which appeared in [6].

Lemma 1 (General forking lemma). Fix an integer Q and a set H of size
h ≥ 2. Let P be a randomized program that on input y, h1, . . . , hQ returns a pair,
the first element of which is an integer in the range 0, . . . , Q and the second
element of which we refer to as a side output. Let IG be a randomized algorithm
that we call the input generator. The accepting probability of P, denoted acc, is
defined as the probability that J ≥ 1 in the experiment y ← IG;h1, . . . , hQ ←
H; (J, s)← P(y, h1, . . . , hQ).

The forking algorithm FP associated to P is the randomized algorithm that on
input y proceeds as follows.

Algorithm FP(y)
Pick coins ρ for P at random
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h1, . . . , hQ ← H
(I, s)← P(y, h1, . . . , hQ; ρ)
If I = 0 return (0,⊥,⊥)
h′
I , . . . , h

′
Q ← H

(I ′, s′)← P(y, h1, . . . , hI−1, h
′
I , . . . , h

′
Q; ρ)

If (I = I ′) ∧ (hI 
= h′
I) return (1, s, s′) else return (0,⊥,⊥)

Let ext = Prob[b = 1 : y ← IG; (b, s, s′)← FP(y)], then ext ≥ acc
(

acc
Q −

1
h

)
.

3 Properties of NIZKs in the Random Oracle Model

Removing interaction. The Fiat-Shamir transform was originally designed to
turn three-round identification schemes into efficient signature schemes. As Σ-
protocols are an extension of three-round identification schemes, it is not sur-
prising that they can be considered as a starting point for the Fiat-Shamir
transform. The Fiat-Shamir paradigm applies to any Σ-protocol (and more gen-
erally to any three-round public-coin proof system): We start from an interactive
protocol (P ,V) and remove the interaction between P and V by replacing the
challenge, chosen at random by the verifier, with a hash value H(α, x) computed
by the prover, where H is a hash function modeled as a random oracle. Thus,
the interactive protocol (P ,V) is turned into a non-interactive one: The resulting
protocol, denoted (PH ,VH), is called Fiat-Shamir proof system.

Throughout this paper, we refer to the so called explicitly programmable ran-
dom oracle model [40] (EPROM) where the simulator is allowed to program the
random oracle explicitly. We model this by defining the zero-knowledge simulator
S of a non-interactive zero-knowledge proof system as a stateful algorithm that
can operate in two modes: (hi, st)← S(1, st, qi) takes care of answering random
oracle queries (usually by lazy sampling) while (π, st)← S(2, st, x) simulates the
actual proof. Note that calls to S(1, · · · ) and S(2, · · · ) share the common state
st that is updated after each operation.

Definition 4 (Unbounded non-interactive zero knowledge). Let L be a
language in NP. Denote with (S1,S2) the oracles such that S1(qi) returns the
first output of (hi, st) ← S(1, st, qi) and S2(x,w) returns the first output of
(π, st)← S(2, st, x) if (x,w) ∈ RL. We say a protocol (PH ,VH) is a NIZK proof
for language L in the random oracle model, if there exists a PPT simulator S
such that for all PPT distinguishers D we have

Prob[DH(·),PH(·,·)(1k) = 1] ≈ Prob[DS1(·),S2(·,·)(1k) = 1],

where both P and S2 oracles output ⊥ if (x,w) /∈ RL.

A well known fact is that, in the random oracle model, the Fiat-Shamir transform
allows to efficiently design digital signature schemes [21] and non-interactive
zero-knowledge protocols. In fact, an appealing characteristic of this transform
is that many properties of the starting protocol are still valid after applying
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it. In particular, it has been proven that the Fiat-Shamir transform turns any
three-round public-coin zero-knowledge interactive proof system into a NIZK
proof system [7]. It is straightforward to prove that the same holds when the
starting protocol is ZK only with respect to a honest verifier, as stated in the
following Theorem.

Theorem 1 (Fiat-Shamir NIZKs). Let k be a security parameter. Consider
a non-trivial three-round public-coin honest-verifier zero-knowledge interactive
proof system (P ,V) for a language L ∈ NP. Let H be a function with range
equal to the space of the verifier’s coins. In the random oracle model the proof
system (PH ,VH), derived from (P ,V) by applying the Fiat-Shamir transform,
is unbounded non-interactive zero-knowledge.

Proof (sketch). To prove that the proof system (PH ,VH) is non-interactive zero-
knowledge it is sufficient to show that there exists a simulator S as required in
Definition 4. This can be done by invoking the HVZK simulator associated with
the underlying interactive proof system. In particular, S works as follows:

– To answer query q = (x, α) to S1, S(1, st, q) lazily samples a lookup table
TH kept in state st. It checks whether TH(q) is already defined. If this is the
case, it returns the previously assigned value; otherwise it returns and sets
a fresh random value (of the appropriate length).

– To answer query x to S2 (respectively S ′2), S(2, st, x) calls the HVZK simu-
lator of (P ,V) on input x to obtain a proof (α, β, γ). Then, it updates TH in
such a way that β = TH(x, α). If TH happens to be already defined on this
input, S returns failure and aborts.

We call this simulator canonical. The main result of Fiat-Shamir [21] (expressed
for their particular identification protocol) is that S is a “good” NIZK simulator.
The crucial step in the proof is that the starting protocol (P ,V) is non-trivial
(cf. Definition 3), thus the probability of failure in each of the queries to S ′2 is
upper-bounded by Prob[failure] ≤ 2−ε(k), which is negligible in k. ��

Simulation soundness. The soundness property of a proof system ensures that
no malicious prover can come up with an accepting proof for a string that does
not belong to the language in question (i.e., for a false theorem). However, it
is not clear whether this condition still holds after the attacker observes valid
proofs for adaptively chosen (true or false) statements. The notion of simulation
soundness deals with this case.

Definition 5 (Unbounded simulation soundness). Let L be a language in
NP. Consider a proof system (PH ,VH) for L, with zero-knowledge simulator
S. Denote with (S1,S ′2) the oracles such that S1(qi) returns the first output of
(hi, st) ← S(1, st, qi) and S ′2(x) returns the first output of (π, st) ← S(2, st, x).
We say that (PH ,VH) is simulation sound with respect to S in the random oracle
model, if for all PPT adversaries A the following holds:

Prob[(x�, π�)← AS1(·),S′
2(·) : (x�, π�) /∈ T ∧ x� /∈ L ∧ VS1(x�, π�) = 1] ≈ 0,
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where T is the list of pairs (xi, πi), i.e., respectively queries asked to and proofs
returned by the simulator.

We stress that the above definition relies crucially on the zero-knowledge prop-
erty of (PH ,VH), as we use a probability experiment that defines a property
of S to define a property about (PH ,VH). In particular the definition is most
meaningful for a simulator S for which the simulation of the random oracle of
S1 is consistent with a truly random oracle H . Also note that S ′2 allows A to
ask for simulated proofs of false statements.

The possibility to request proofs of false statements has an interesting conse-
quence: simulation soundness holds only with respect to specific simulators and
not in general for all NIZK simulators. In particular, one can construct a NIZK
proof system (PH ,VH) that is simulation sound with respect to a simulator S
but for which there exists a valid NIZK simulator Ŝ, such that (PH ,VH) cannot
be simulation sound with respect to Ŝ. To see this, consider a VH that accepts
all proofs if H(0) = 0. Ŝ simulates a consistent random oracle until it receives
a proof of a false statement (one of which could be hard-coded in Ŝ or easy to
recognize) at which point it sets TH(0) = 0. Note that a similar counterexample
exists for CRS-based NIZK [28]: Ŝ2 can simply return the simulation trapdoor
when queried on a false statement.

Simulation extractability. Combining simulation soundness and knowledge ex-
traction, we may require that even after seeing (polynomially) many simulated
proofs, whenever A makes a new proof it is possible to extract a witness. This
property is called simulation extractability, and implies simulation soundness.
Indeed, if we can extract a witness from the adversary’s proof even with small
probability, then obviously the statement must belong to the language in ques-
tion. We introduce a weaker flavor of simulation extractability which we call weak
simulation extractability. The main difference with full simulation extractability
is that the extractor EA is now given complete control over the adversary A,
meaning that it is allowed to rewind A and gets to see the answers of (S1,S ′2).
Moreover, we require that if A outputs an accepting proof with some probability,
then EA can extract with almost the same probability.

Definition 6 (Weak simulation extractability). Let L be a language in NP.
Consider a NIZK proof system (PH ,VH) for L with zero-knowledge simulator
S. Let (S1,S ′2) be oracles returning the first output of (hi, st)← S(1, st, qi) and
(π, st) ← S(2, st, x) respectively. We say that (PH ,VH) is weakly simulation-
extractable with extraction error ν and with respect to S in the random oracle
model, if for all PPT adversaries A there exists an efficient algorithm EA with
access to the answers TH , T of (S1,S ′2) respectively such that the following holds.
Let:

acc = Prob
[
(x�, π�)← AS1(·),S′

2(·)(1k; ρ) : (x�, π�) 
∈ T ;VS1(x�, π�) = 1
]

ext = Prob
[
(x�, π�)← AS1(·),S′

2(·)(1k; ρ);

w� ← EA(x�, π�; ρ, TH , T ) : (x�, π�) 
∈ T ; (x�, w�) ∈ RL
]
,
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where the probability space in both cases is over the random choices of S and the
adversary’s random tape ρ. Then, there exist a constant d > 0 and a polynomial
p such that whenever acc ≥ ν, we have ext ≥ 1

p (acc− ν)d.

The above definition is inspired by similar notions in the context of proofs of
knowledge [5,30,39]. The value ν is called extraction error of the proof system.
We omit for better readability that values acc, ext, p, ν all depend on the security
parameter k. Note that a non-negligible extractor error can be made exponen-
tially small by sequential repetitions (see the full version [20] for a proof).

Proposition 1 (Extraction error amplification). Let (PH ,VH) be a weakly
simulation extractable NIZK proof system with extraction error ν. Then, the
proof system (P ′H ,V ′H) obtained by repeating sequentially (PH ,VH) for a num-
ber n of times yields a weakly simulation extractable NIZK proof system with
extraction error νn.

It is useful to look at the relation between weak simulation extractability and
the following stronger property modeling online-extraction.

Definition 7 (Full Simulation extractability). Let L be a language in NP.
Consider a NIZK proof system (PH ,VH) for L with simulator S. Let (S1,S ′2) be
oracles returning the first output of (hi, st)← S(1, st, qi) and (π, st)← S(2, st, x)
respectively. We say that (PH ,VH) is strongly simulation extractable with re-
spect to S in the random oracle model, if there exists an efficient algorithm E
such that for all PPT adversaries A the following holds. Let:

Prob
[
w� ← E(st, x�, π�) : (x�, π�)← AS1(·),S′

2(·)(1k; ρ);

(x�, π�) 
∈ T ; VS1(x�, π�) = 1; (x�, w�) /∈ RL
]
≈ 0

where T is the list of transcripts (xi, πi) returned by the simulator and the prob-
ability space is over the random choices of S and the adversary’s randomness ρ.

4 On the Non-malleability of the Fiat-Shamir Transform

4.1 Simulation Soundness

We now show that NIZK proofs obtained via the Fiat-Shamir transform from
any IPS of the public-coin type additionally satisfying the HVZK property are
simulation sound. Since Σ-protocols are a special class of HVZK public-coin
IPSs, we get as a corollary that Fiat-Shamir NIZK proofs obtained from Σ-
protocols are simulation-sound.

Theorem 2 (Simulation soundness of the Fiat-Shamir transform). Con-
sider a non-trivial three-round public-coin HVZK interactive proof system (P ,V)
for a language L ∈ NP, with quasi unique responses. In the random oracle model,
the proof system (PH ,VH) derived from (P ,V) via the Fiat-Shamir transform is
a simulation-sound NIZK with respect to its canonical simulator S.
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Proof. We assume that (PH ,VH) is a non-interactive zero-knowledge proof sys-
tem with the simulator S described in the proof of Theorem 1, and show that
(PH ,VH) is simulation sound. We proceed by contradiction. Suppose there exists
a PPT adversary A that breaks the simulation soundness of the non-interactive
protocol with non-negligible probability

ε := Prob
[
(x�, π�)← AS1(·),S′

2(·) : (x�, π�) /∈ T ∧ x� /∈ L ∧ VS1(x�, π�) = 1
]
.

In such a case, we are able to build two reductions P̂ and P∗ which, by using A
as a black-box, violate either the quasi unique response or the soundness proper-
ties of the underlying interactive protocol (P ,V) respectively, contradicting our
hypothesis. Recall that S1 simulates answers to the RO, while S ′2 replies with an
accepting proof π. Without loss of generality we assume that whenever adversary
A succeeds and outputs an accepting proof (α�, γ�), she has previously queried
the oracle S1 on input (x�, α�). The argument for this is that it is straightfor-
ward to transform any adversary that violates this condition into an adversary
that makes one additional query to S1 and wins with the same probability.

A simple but crucial observation is that adversary A may have learned α� by
querying the oracle S ′2 on input x� or might have computed it itself. We denote
the first by the event proof, the second by the event proof. As these events are
mutually exclusive and exhaustive, we have:

Prob[A wins] = Prob[A wins ∧ proof] + Prob[A wins ∧ proof].

Now we have two different cases to analyze, each of them corresponding to the
probability in the expression above.

In the first case (when proof happens), we assume that x� is asked to S ′2 and
the answer is a proof of the type (α�,−). We show how to use an adversary A
that makes use of (x�, α�) in its fake proof to build a reduction P̂ . In this way
we bound Prob[A wins ∧ proof] by the probability that P̂ wins in breaking the
quasi unique response property.

Consider an algorithm P̂ which runs A internally as a black-box. Thus, P̂
sees all queries A makes to the oracles S1 and S ′2 and produces their answers.
The internal description of P̂ follows:

– P̂ answers S1 and S ′2 and keeps lists TH and T respectively as the real
simulator S would.

– When A outputs a fake proof (α�, γ�) for x�, P̂ looks through its lists T and
TH until it finds (x�, (α�, γ)) and ((x�, α�), β) respectively;

– It returns (x�, α�, β, γ�, γ).

We claim that algorithm P̂ breaks the quasi unique response property. Indeed,
the proof produced by A is accepting by VH on common input x�. On the other
hand, the proof (α�, γ) is given by the simulator, therefore it must be accepting
for x�. Given this, it holds VH(x�, α�, γ�) = VH(x�, α�, γ) = 1, that means

V(x�, α�, H(x�, α�), γ�) = V(x�, α�, H(x�, α�), γ) = 1,
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where H(x�, α�) = β. The conclusion is that either γ = γ�, that is excluded
since A cannot win by printing a simulated proof, or algorithm P̂ succeeds in
breaking the quasi unique response property. We obtain:

Prob[A wins ∧ proof] = Prob[P̂ wins] ≤ negl(k).

In case proof does not happen, we can use adversary A that does not query S ′2
with input x� to build a reduction P∗ and bound Prob[A wins ∧ proof] by
the probability Prob[P∗ wins] · Q of breaking the soundness of the underlying
interactive scheme. P∗ runs A as a black-box and has to simulate its environment
by answering the queries to S1 and S ′2 in a consistent way. More precisely, P∗

works as follows. It guesses uniformly at random an index j ∈ [Q] and replies to
queries to S1 and S ′2 in the following way:

1. Answer query (xi, αi) to S1:
(a) Query 1 ≤ i ≤ j − 1: Returns H(xi, αi) if it is already defined; otherwise

it samples a random value βi and sets H(xi, αi) := βi.
(b) Query j: Runs the protocol with the honest verifier V for statement xj ,

using as a commitment the value αj . Obtains challenge βj from V and
program the oracle as H(xj , αj) := βj . The answer to A’s query is βj .

(c) Query j + 1 ≤ i ≤ Q: Proceed as in Step 1a.

2. Answer query x to S ′2: Run the HVZK simulator of the interactive protocol
on input x to obtain an accepting proof (α, β, γ), and program the oracle
H in such a way that H(x, α) := β. If the NIZK simulator returns failure,
which happens when H(x, α) is already defined, output failure and abort,
otherwise output (α, γ).

3. Answer V ’s challenge: Let x�, (α�, γ�) be the instance and the proof output
by A. Return γ� to V as the response to challenge βj in step 1b.

We need to estimate the probability that P∗ succeeds in breaking the soundness
of the interactive scheme (P ,V) in terms of the probability that A outputs an
accepting proof (α�, γ�) for a false statement x�. Suppose that (x�, α�) has been
asked to the random oracle as the j�-th query and we have j = j�, i.e., P∗

guesses the correct index for which A outputs an accepting proof for a false
statement x�. In such a case, P∗ breaks the soundness of (P ,V). Hence, we get:

Prob[P∗ wins] = Prob[A wins ∧ j = j� ∧ proof]

= Prob[A wins ∧ proof] · Prob[j = j�],

where the second equality comes from the fact that P∗ guesses j� correctly
indipendently of the event that A is successful and proof happens. Since the
index j is chosen at random in [Q], we have Prob[P∗ wins] = 1

Q ·Prob[A wins ∧
proof]. Whenever P∗ wins, it breaks the soundness of the interactive scheme: by
hypothesis, this happens only with negligible probability. Therefore:

Prob[A wins ∧ proof] = Q · Prob[P∗ wins] ≤ negl(k).
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Now we can bound the probability that A succeeds. As we assume, A breaks the
simulation soundness of the scheme with non-negligible probability ε:

Prob[A wins] ≤ Prob[A wins ∧ proof] + Prob[A wins ∧ proof] ≤ negl(k),

thus ε ≤ negl(k), that is a contradiction. ��

On the quasi-unique responses condition. We remark that assuming (P ,V) has
quasi-unique responses is not an artifact of the proof. In fact, without this prop-
erty, proofs would be malleable and breaking the simulation soundness would
be an easy task. Consider a FS-NIZK proof system for which responses are not
quasi-unique. An efficient adversary A can always query the simulator on input
a false statement x�, obtaining a simulated proof S ′2(x�) → π� = (α�, β�, γ�).
Given π�, A might be able to find, with non-negligible probability, a new re-
sponse γ�� 
= γ� such that (α�, β�, γ��) is also accepting. Hence, the scheme
cannot be simulation sound.

4.2 Weak Simulation Extractability

The argument Fouque and Pointcheval use in [23] to show that the proof system
they consider is simulation sound is roughly as follows. Assume there exists an
adversary A which outputs a pair (x�, π�) breaking the simulation soundness,
as in the experiment of Definition 5. Then, one can invoke a suitable version of
the forking lemma to show that it is possible to “extract” a witness w� for x�

from such an adversary, contradicting the fact that x� is false. The reduction
simulates the list T for A in the simulation soundness experiment, in particular
one needs to fake accepting proofs for (adaptively chosen and potentially false)
theorems selected by the attacker. In order to do so, Fouque and Pointcheval
(implicitly) rely on the SS-HVZK property. The next theorem is a generaliza-
tion of the above strategy which does not rely on the SS-HVZK property and
indeed applies to arbitrary languages. Moreover, we are able to prove a stronger
statement, namely that Fiat-Shamir proofs satisfy weak simulation extractabil-
ity (and not only simulation soundness). For simplicity the following theorem
assumes (perfect) unique responses, but could be generalized using the same
reduction as for Theorem 2.

Theorem 3 (Weak simulation extractability of the Fiat-Shamir trans-
form). Let Σ = (P ,V) be a non-trivial Σ-protocol with unique responses for a
language L ∈ NP. In the random oracle model, the NIZK proof system ΣFS =
(PH ,VH) resulting by applying the Fiat-Shamir transform to Σ is weakly sim-
ulation extractable with extraction error ν = Q

h for the canonical simulator S.
Here, Q is the number of random oracle queries and h is the number of elements
in the range of H. Furthermore, the extractor EA needs to run AS1(·),S′

2(·) twice,
where A and EA are both defined in Definition 6.

Proof. Let S be the canonical zero-knowledge simulator described in the proof
of Theorem 2. Denote with (x�, α�, γ�) the pair statement/proof returned by
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AS1(·),S′
2(·); we describe an extractor EA, able to compute a witness w� by rewind-

ing A once.
We want to exploit the general forking lemma1. In order to do so, we define

program P(1k, h1, . . . , hQ; ρP) as follows: P virtually splits ρP into two random
tapes ρ and ρS (e.g. by using even bits for ρ and odd bits for ρS) and runs
internally AS1(·),S′

2(·) with randomness ρ. P uses values (h1, . . . , hQ) to simulate

fresh answers of S1, and ρS to simulate answers of S2. If AS1(·),S′
2(·) outputs

(x�, (α�, γ�)), P checks that it is a valid proof and not in T (otherwise it returns
(0,⊥)). Then, because of the unique response property, (x�, α�) must correspond
to some fresh query to S1 and P outputs (J, (x�, α�, γ�)), where J > 0 is the index
corresponding to the random oracle query (x�, α�). We say that P is successful
whenever J ≥ 1, and we denote with acc the corresponding probability. Given
program P, we consider two related runs of P with the same random tape but
different hash values, as specified by the forking algorithm FP of Lemma 1.
Denote with (I, (x�, α�, γ�)) ← P(1k, h1, . . . , hQ; ρ) and (I ′, (x��, α��, γ��)) ←
P(1k, h1, . . . , hI−1, h

′
I , . . . , h

′
Q; ρ) the two outputs of A in these runs. By the

forking lemma we know that with probability ext ≥ acc(acc/Q−1/h) the forking
algorithm will return indexes I, I ′ such that I = I ′, I ≥ 1 and hI 
= h′

I .
Notice that since FP’s forgeries are relative to the same random oracle query

I = I ′, we must have x� = x�� and α� = α��; on the other hand we have hI 
= h′
I .

We are thus in a position to invoke the special extractor E for the underlying
proof system, yielding a valid witness w� ← E(α�, hI , γ

�, h′
I , γ

��, x�) such that
(x�, w�) ∈ RL.

Assume now that acc ≥ ν. By applying the general forking lemma1 we obtain
that ext ≥ acc2/Q− acc/h. Since Q is polynomial while h is exponentially large
in the security parameter, for sure Q

h < 1 (in particular, it is negligible in k). As

ν := Q
h , we have:

acc2

Q
− acc

h
=

1

Q
(acc2 − acc · ν).

Now, since acc ≥ ν, we have acc · ν ≥ ν2, that is ν2 − acc · ν ≤ 0. Hence,

1

Q
(acc2 − acc · ν) ≥ 1

Q
(acc2 − 2acc · ν + ν2) =

1

Q
(acc− ν)2.

The previous inequality matches the definition of weak extractability with values
p = Q and d = 2. ��

5 Applications

In the literature there is a large number of applications for simulation-sound
or extractable NIZKs. One of the first request for simulation soundness comes
from the setting of public key encryption, for the design of encryption schemes
with chosen-ciphertext security using the Naor-Yung (NY) paradigm [34]. At a
high level, the NY works as follows: given two key pairs (sk , pk) and (sk ′, pk ′)
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for CPA-secure encryption schemes Π and Π ′ respectively, a ciphertext consists
of two encryptions c, c′ of the same message m, under different keys pk , pk ′,
and a NIZK proof π that both c and c′ encrypt m. In order to achieve security
against adaptive chosen-ciphertext attacks (CCA2), the underlying NIZK must
be simulation-sound. While achieving CCA2 security is probably one of the most
prominent application of simulation soundness, simulation-sound or extractable
proofs have been used, e.g., to build also leakage-resilient signatures or KDM
secure encryption. In this section, we review some important applications of such
proof systems and show how our result provides more efficient constructions in
the ROM or generalizes earlier results that use the Fiat-Shamir transform.

5.1 Leakage Resilience

Simulation-sound and simulation-extractable NIZK proofs have been very use-
ful in constructing leakage-resilient encryption and signature schemes [18,32,33].
Here, we consider these works and show that our result immediately yields effi-
cient leakage-resilient schemes in the random oracle model.

Leakage-resilient signatures. A signature scheme is leakage resilient if it is hard to
forge a signature even given (bounded) leakage from the signing key. Obviously,
this requires that the amount of leakage given to the adversary has to be smaller
than the length of the secret key, as otherwise the leakage may just reveal such
a key, trivially breaking the security of the signature scheme.

We instantiate the generic construction of leakage-resilient signatures based on
leakage-resilient hard relations and simulation-extractable NIZKs of [18] using
the Fiat-Shamir transform. Let R be a λ-leakage-resilient hard relation with
sampling algorithm GenR (for detailed definitions, see the full version [20]). Let
(PH ,VH) be a NIZK argument3 for relation R′ defined by R′((pk ,m), sk) ⇔
R(pk , sk). Consider the following signature scheme:

KeyGen(1k) : Calls (pk , sk)← GenR(1k) and returns the same output.
Sign(sk ,m) : Outputs σ ← PH((pk ,m), sk).4

Vrf(pk ,m, σ): Verifies the signature by invoking VH((pk ,m), σ).

Notice that σ ← PH((pk ,m), sk) is a NIZK proof for the hard relation obtained
by applying the Fiat-Shamir transform.

We chose to state the theorem below using an argument system as this is
the minimal requirement under which leakage resilience of the scheme can be
proven. Since our FS-based protocols are weakly simulation-extractable NIZK
proof systems, they automatically satisfy the hypothesis of Theorem 4.

Theorem 4. If R is a 2λ-leakage-resilient hard relation and (PH ,VH) is a
weakly simulation-extractable NIZK argument with negligible extraction error

3 As opposed to a proof system where soundness needs to hold unconditionally, in an
argument system it is sufficient that soundness holds with respect to a computation-
ally bounded adversary.

4 Note that m is part of the instance being proven.
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for relation R′((pk ,m), sk) ⇔ R(pk , sk), then the above scheme is a λ-leakage-
resilient signature scheme in the random oracle model.

The proof of the theorem from above follows the one of Theorem 4.3 in [18].
A couple of subtleties arise, though. The main idea of the proof is to build a
reduction from an adversary A breaking λ-leakage resilience of the signature
scheme to an adversary B breaking the hardness of the 2λ-leakage-resilient hard
relation R. Roughly speaking, in the reduction B is given some instance pk and
simulates the signing queries of A by using the zero-knowledge simulator of the
NIZK, and the leakage queries by using the leakage oracle for the relation R.
At some point A outputs a forgery σ� and B invokes the extractor of Theo-
rem 3 to get sk� ← EA(pk , σ�). The first issue is that we are only guaranteed
weak simulation-extractability, whereas the proof of [18] relies on full simulation-
extractability. 5 However, this is not a problem because we just need to show
that B outputs a valid witness with non-negligible probability. A second issue
involves the extractor of Theorem 3, which needs to rewind A once and, thus, to
simulate twice its environment (including the leakage queries). This causes the
loss of a factor 2 in the total amount of tolerated leakage. We refer the reader
to the full version [20] for the details.

We emphasize that the leakage-resilient signature scheme of Alwen et al. [4],
obtained by applying the Fiat-Shamir transform to the Okamoto identification
scheme, follows essentially the above paradigm. Here, one may view the public
and secret keys of the Okamoto ID scheme form an instance of a leakage-resilient
hard relation, while the NIZK proof corresponds to the Fiat-Shamir transform
applied to the Okamoto identification protocol.

Naor-Yung with leakage. The definition of IND-CPA and IND-CCA security of
an encryption scheme can be extended to the leakage setting by giving the ad-
versary access to a leakage oracle. Naor and Segev [33] show that the Naor-Yung
paradigm instantiated with a simulation-sound NIZK allows to leverage CPA-
security to CCA-security even in the presence of leakage. In other words, if Π
is CPA-secure against λ-key-leakage attacks, the encryption scheme obtained by
applying the Naor-Yung paradigm to (Π,Π), using a simulation-sound NIZK,
is CCA2-secure against λ-key-leakage attacks. In the full version [20] we revisit
their proof in the ROM, dealing with the issue that the leakage queries can po-
tentially depend on H . We stress that for the proof only simulation soundness is
needed (i.e., our result from Theorem 2) and not weak simulation extractability.

In what follows, we propose a concrete instantiation of the result above, rely-
ing on the BHHO encryption scheme from [12]. Let G be a group of prime-order

q. For randomly selected generators g1, . . . , g�
$← G, the public key is a tuple

pk = (g1, . . . , g�, h), where h =
∏�

i=1 g
zi
i for a secret key sk = (z1, . . . , z�) ∈

Z�
q. To encrypt a message m ∈ G, choose a random r

$← Zq and output
c = (c1, . . . , c�+1) = (gr1 , . . . , g

r
� ,m · hr). The message m can be recovered by

computing m = c�+1 · (
∏�

i=1 c
zi
i )−1.

5 Actually, they rely on a weaker property called true simulation-extractability [18].
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Assuming that the DDH problem is hard in G, Naor and Segev [33] showed
that the BHHO encryption scheme is CPA-secure against λ-key-leakage attacks

for any � = 2 + λ+ω(log k)
log q , where k is the security parameter. Applying the

Naor-Yung paradigm, consider the language:

L =
{
(c, pk , c′, pk ′) : ∃r, r′ ∈ Zq,m ∈ G s.t.

c = (gr1 , . . . , g
r
� , h

r ·m), c′ = (gr
′

1 , . . . , gr
′

� , h′r′ ·m)
}
,

where c = (c1, . . . , c�+1) and c′ = (c′1, . . . , c
′
�+1) are BHHO encryptions with ran-

domness r and r′, using public keys pk = (g1, . . . , g�, h) and pk ′ = (g1, . . . , g�, h
′)

respectively. The pair w = (r, r′) is a witness for a string x = (c, pk , c′, pk ′) ∈ L.
Consider the following interactive protocol Σ = (P ,V) for the above language:

1. P chooses s, s′ at random from Zq and computes the commitment:

�α = ((α1, ..., α�), (α
′
1, ..., α

′
�), α

′′) = ((gs1, ..., g
s
� ), (g

s′
1 , ..., gs

′
� ), hs · (h′)s

′
).

2. The verifier V chooses a random challenge β
$← Zq.

3. The prover computes the response �γ = (γ, γ′) = (s− β · r, s′ + β · r′).
4. Given a proof π = (�α, β,�γ), the verifier V checks that:

(α1, . . . , α�) = (gγ1 · c
β
1 , . . . , g

γ
� · c

β
� )

(α′
1, . . . , α

′
�) = (gγ

′
1 · (c′1)−β , . . . , gγ

′
� · (c′�)−β)

α′′ = hγ · (h′)γ
′
· (c�+1 · (c′�+1)

−1)β .

In the full version [20] we prove that the above protocol is a Σ-protocol for the
language L. With the Naor-Yung paradigm applied to the BHHO encryption
scheme we get a ciphertext (c, c′, π) consisting of 4� + 3 elements in G plus 2
elements in Zq. Moreover, the fact that the BHHO encryption scheme is CPA-
secure against key leakage together with the result of Naor-Segev, show that the
above instantiation is CCA-secure against key-leakage attacks.

Corollary 1. Let k be a security parameter. Assuming that the DDH problem
is hard in G, the Naor-Yung paradigm applied to the BHHO encryption scheme
yields an encryption scheme that is CCA-secure against λ-key-leakage attacks in

the random oracle model for λ = � log q(1− 2
� −

ω(log k)
� log q ) = L(1− o(1)), where L

is the length of the secret key. An encryption consists of 4� + 3 elements in G

plus 2 elements in Zq.

5.2 Key-Dependent Message Security

Key-dependent message (KDM) security of a public-key encryption scheme re-
quires that the scheme remains secure even against attackers allowed to see
encryptions of the value f(sk), where f ∈ F for some class of functions F .

Camenisch, Chandran and Shoup [13] show that a variation of the Naor-Yung
paradigm instantiated with a simulation-sound NIZK can still leverage CPA-
security to CCA-security, even in the context of KDM security. We revisit their
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proof in the random oracle model in the full version [20]. Also in this case, only
simulation soundness is needed for the proof.

Roughly, for some function family F , if Π is KDM[F ]-CPA secure and Π ′

is CPA-secure, the scheme Π ′′ obtained by applying the Naor-Yung paradigm
to (Π,Π ′) — i.e., an encryption of m ∈ M is a tuple c′′ = (c, c′, π) where c
encrypts m under Π , c′ encrypts m under Π ′ and π is a simulation-sound NIZK
proof that c and c′ encrypt the same message — is KDM[F ]-CCA secure.

Let sk i[j] denote the j-th bit of sk i. The BHHO encryption scheme was the
first KDM-CPA secure encryption scheme, with respect to the class of all pro-
jection functions F↓ = Fread ∪ Fflip, where

Fread =
{
fi,j : �sk → sk i[j]

}
i,j

and Fflip =
{
fi,j : �sk → 1− sk i[j]

}
i,j

.

More generally, when the message space is a linear space over Zq, we define the
function class PJ (F↓) as the class of all affine combinations of elements in F↓.

Now we can instantiate the general transform of [13] as follows. We choose

Π to be BHHO, Π ′ to be ElGamal (say with pk ′ = h′ = g
z′
1

1 ) and we build a
Σ-protocol Σ′ for the Naor-Yung language relative to Π and Π ′. Protocol Σ′

can be easily derived from protocol Σ of the last section, by just compressing
the commitment as in �α = ((gs1, . . . , g

s
� ), g

s′
1 , hs · (h′)s

′
) (and simplifying the

verification procedure accordingly). Hence, Theorem 2 yields the following result.

Corollary 2. Assuming that the DDH problem is hard in G, the Naor-Yung
paradigm instantiated with BHHO and ElGamal encryption schemes yields a
KDM[PJ (F↓)]-CCA secure encryption scheme in the random oracle model.
An encryption consists of �+ 3 elements in G plus 3 elements in Zq.

Beyond Naor-Yung. Another paradigm that yields chosen-ciphertext security
from NIZKs, based on proving knowledge of the plaintext, was suggested by
Rackoff and Simon [36]. Such a construction is somewhat more natural and
more efficient than the twin-encryption paradigm: a message m is encrypted
(only once) under a CPA-secure encryption scheme, and a NIZK proof of knowl-
edge of the plaintext is attached to the ciphertext. However, (to the best of
our knowledge) truly efficient constructions for sufficiently strong NIZK proofs
of knowledge are not available even using random oracles. One can hope that
using the weaker from of extractability afforded by the Fiat-Shamir transform
one could at least obtain NM-CPA secure encyption, and this is indeed what is
aimed at in the ongoing work of [8].

Acknowledgments. We thank Marc Fischlin and Ivan Damg̊ard for the useful
feedbacks provided on earlier versions of the paper.
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