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Abstract. In this paper we study a differential fault attack against
ciphers having the same physical structure as in the Grain family. In
particular we demonstrate our attack against Grain v1, Grain-128 and
Grain-128a. The existing attacks by Berzati et al. (HOST 2009), Kar-
makar et al. (Africacrypt 2011) and Banik et al. (CHES 2012) assume a
fault model that allows them to reproduce a fault at a particular register
location more than once. However, we assume a realistic fault model in
which the above assumption is no longer necessary, i.e., re-injecting the
fault in the same location more than once is not required. In addition,
towards a more practical framework, we also consider the situation in
which more than one consecutive locations of the LFSR are flipped as
result of a single fault injection.

Keywords: Differential fault attacks, Grain v1, Grain-128, Grain-128a,
LFSR, NFSR, Stream Cipher.

1 Introduction

Fault attacks have received serious attention in cryptographic literature for more
than a decade [1,2]. Such attacks on stream ciphers have gained momentum ever
since the work of Hoch and Shamir [10] and this model of cryptanalysis, though
optimistic, could successfully be employed against a number of proposals. Fault
attacks study the mathematical robustness of a cryptosystem in a setting that
is weaker than its original or expected mode of operation. A typical attack
scenario [10] consists of an adversary who injects a random fault (using laser
shots/clock glitches [14, 15]) in a cryptographic device as a result of which one
or more bits of its internal state are altered. The faulty output from this altered
device is then used to deduce information about its internal state/secret key.
In order to perform the attack, the adversary requires certain privileges like
the ability to re-key the device, control the timing of the fault etc. The more
privileges the adversary is granted, the more the attack becomes impractical and
unrealistic.

The Grain family of stream ciphers [4, 8, 9] has received a lot of attention
and it is in the hardware profile of eStream [3]. In all the fault attacks reported
so far [5, 6, 12] on this cipher, the adversary is granted far too many privileges
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to make the attacks practical. In fact the designers of Grain themselves have
underlined a set of reasonable privileges that may be granted to the adversary
while performing the fault attack. Unfortunately, all the existing fault attacks on
the Grain family exploited additional assumptions. In this regard, let us refer to
the following quote from the designers of Grain [8, Section 6.5] (see also similar
comments in [9, Section IV D] and [4, Section 4.4]):

“If an attacker is able to reset the device and to induce a single bit fault many
times and at different positions that he can correctly guess from the output
difference, we cannot preclude that he will get information about a subset of
the state bits in the LFSR. Such an attack seems more difficult under the (more
realistic) assumption that the fault induced affects several state bits at (partially)
unknown positions, since in this case it is more difficult to determine the induced
difference from output differences.”

Required Required Required Not Required

No Yes No No

Yes Yes Yes Upto 3-bit
toggle allowed

Required Required Required Required

Allowed Allowed Allowed Allowed

This work[5][12][6]

Multiple
fault at
same

location
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Single bit
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Fault

Timing

Multiple
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Fig. 1. Differential Fault Attack on Grain: Survey of Fault Models

In the published fault attacks [5, 6, 12] on Grain, it has been assumed that
attacker has the ability to inject a single bit fault in the same register location
over and over again. This is clearly rather optimistic and does not follow the
fault model prescribed by the designers. In our work, we have assumed that
the adversary has only those privileges that have been allowed by the designers,
i.e., we follow the exact fault model provided by the designers and demonstrate
that in such a scenario too, the adversary can not only recover “a subset of the
LFSR state bits” but also recover the secret key. Furthermore, we consider a
situation in which the adversary is unable to induce a single bit toggle every
time he injects a fault. The best he can do is to ‘influence’ upto k bits in random
but consecutive LFSR locations without knowing the exact number of bits the
injected fault has altered or their locations. We show that for certain small values
of k, even under this added constraint the secret key can be recovered. The idea
used here is that, with very high confidence, the adversary should be able to
identify the situations when the injected fault alters the binary value in only a
single register location. He can then use the algorithms described for a single
location identification and proceed with the attack.
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In this work we assume that the adversary has the following privileges: (a)
he can reset the cipher with the original Key-IV and restart cipher operations
as many times he wishes; this is not a problem if the device ouputs different
faulty ciphertexts of the same or known messages and such a model has been
used in [5, 6, 11, 12] (actually the attack model requires the original and several
faulty key-streams), (b) he has full control over the timing of fault injection,
and (c) he can inject a fault that may affect upto k consecutive LFSR locations
but he is unaware of the exact number of bits altered or their locations. In this
work we have concentrated on the cases till k = 3. As pointed out earlier, these
assumptions about the fault model are far more realistic and practical than the
ones assumed in [5, 6, 12].

Organization of this paper. In this section, we continue with a detailed
description of the Grain family. In Section 2, we introduce certain tools and
definitions that will help us launch the attack. To demonstrate the attack, ini-
tially we assume that the attacker is able to induce a single bit toggle at any
random LFSR location. The fault location identification routine is explained in
Section 3. The general strategy to attack a cipher with the physical structure
of Grain is outlined in Section 4. Section 5 demonstrates the attacks on Grain
v1, Grain-128 and Grain-128a. In Section 6, we explore a stricter fault model in
which the attacker is able to flip the binary values of upto 3 consecutive LFSR
locations. Section 7 concludes the paper.

1.1 Brief Description of Grain Family

Any cipher in the Grain family consists of an n-bit LFSR and an n-bit NFSR
(see Figure 2). The update function of the LFSR is given by the equation yt+n =
f(Yt) = yt ⊕ yt+f1 ⊕ yt+f2 ⊕ · · · ⊕ yt+fa , where Yt = [yt, yt+1, . . . , yt+n−1] is an
n-bit vector that denotes the LFSR state at the tth clock interval and f is a
linear function on the LFSR state bits obtained from a primitive polynomial
in GF (2) of degree n. The NFSR state is updated as xt+n = yt ⊕ g(Xt) =
yt ⊕ g(xt, xt+τ1 , xt+τ2 , . . . , xt+τb). Here, Xt = [xt, xt+1, . . . , xt+n−1] is an n-bit

NFSR LFSR

g(Xt) f(Yt)

h(Xt, Yt)/

/

zt

⊕

⊕

Fig. 2. Structure of Stream Cipher in Grain Family
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Table 1. Grain at a glance

Grain v1 Grain-128 Grain-128a
n 80 128 128

m 64 96 96

Pad FFFF FFFFFFFF FFFFFFFE

f(·) yt+62 ⊕ yt+51 ⊕ yt+38 yt+96 ⊕ yt+81 ⊕ yt+70 yt+96 ⊕ yt+81 ⊕ yt+70
⊕yt+23 ⊕ yt+13 ⊕ yt ⊕yt+38 ⊕ yt+7 ⊕ yt ⊕yt+38 ⊕ yt+7 ⊕ yt
xt+62 ⊕ xt+60 ⊕ xt+52
⊕xt+45 ⊕ xt+37 ⊕ xt+33
xt+28 ⊕ xt+21 ⊕ xt+14 yt ⊕ xt ⊕ xt+26⊕ yt ⊕ xt ⊕ xt+26⊕
xt+9 ⊕ xt ⊕ xt+63xt+60⊕ xt+56 ⊕ xt+91 ⊕ xt+96⊕ xt+56 ⊕ xt+91 ⊕ xt+96⊕
xt+37xt+33 ⊕ xt+15xt+9 xt+3xt+67 ⊕ xt+11xt+13 xt+3xt+67 ⊕ xt+11xt+13

g(·) xt+60xt+52xt+45 ⊕ xt+33 ⊕xt+17xt+18 ⊕ xt+27xt+59 ⊕xt+17xt+18 ⊕ xt+27xt+59
xt+28xt+21 ⊕ xt+63xt+60 ⊕xt+40xt+48 ⊕ xt+61 ⊕xt+40xt+48 ⊕ xt+61
xt+21xt+15 ⊕ xt+63xt+60 xt+65 ⊕ xt+68xt+84 xt+65 ⊕ xt+68xt+84
xt+52xt+45xt+37 ⊕ xt+33 ⊕xt+88xt+92xt+93xt+95
xt+28xt+21xt+15xt+9⊕ ⊕xt+22xt+24xt+25⊕
xt+52xt+45xt+37xt+33 xt+70xt+78xt+82
xt+28xt+21
yt+3yt+25yt+46 ⊕ yt+3
yt+46yt+64 ⊕ yt+3yt+46 xt+12xt+95yt+95 ⊕ xt+12 xt+12xt+95yt+94 ⊕ xt+12

h(·) xt+63 ⊕ yt+25yt+46xt+63⊕ yt+8 ⊕ yt+13yt+20 ⊕ xt+95 yt+8 ⊕ yt+13yt+20 ⊕ xt+95
yt+46yt+64xt+63 ⊕ yt+3 yt+42 ⊕ yt+60yt+79 yt+42 ⊕ yt+60yt+79
yt+64 ⊕ yt+46yt+64 ⊕ yt+64
xt+63 ⊕ yt+25 ⊕ xt+63
xt+1 ⊕ xt+2 ⊕ xt+4⊕ xt+2 ⊕ xt+15 ⊕ xt+36⊕ xt+2 ⊕ xt+15 ⊕ xt+36⊕

zt xt+10 ⊕ xt+31 ⊕ xt+43 xt+45 ⊕ xt+64 ⊕ xt+73 xt+45 ⊕ xt+64 ⊕ xt+73
xt+56 ⊕ h ⊕xt+89 ⊕ yt+93 ⊕ h ⊕xt+89 ⊕ yt+93 ⊕ h

vector that denotes the NFSR state at the tth clock interval and g is a non-
linear function of the NFSR state bits. The output key-stream is produced by
combining the LFSR and NFSR bits as zt = xt+l1 ⊕ xt+l2 ⊕ · · ·⊕ xt+lc ⊕ yt+i1 ⊕
yt+i2 ⊕ · · · ⊕ yt+id ⊕ h(yt+h1 , yt+h2 , . . . , yt+he , xt+j1 , xt+j2 , . . . , xt+jw ). Here h is
a non-linear Boolean function.

Key Scheduling Algorithm (KSA). The Grain family uses an n-bit key K,
and an m-bit initialization vector IV , with m < n. The key is loaded in the
NFSR and the IV is loaded in the 0th to the (m − 1)th bits of the LFSR. The
remaining mth to (n − 1)th bits of the LFSR are loaded with some fixed pad
P ∈ {0, 1}n−m. Then, for the first 2n clocks, the key-stream bit zt is XOR-ed to
both the LFSR and NFSR update functions.

Pseudo-Random key-stream Generation Algorithm (PRGA).After the
KSA, zt is no longer XOR-ed to the LFSR and the NFSR but it is used as the
Pseudo-Random key-stream bit. Thus, during this phase, the LFSR and NFSR
are updated as yt+n = f(Yt), xt+n = yt ⊕ g(Xt).

2 Tools and Definitions

2.1 Differential Grain

Let S0 = [X0||Y0] ∈ {0, 1}2n be the initial state of the Grain family PRGA and
S0,Δφ

be the initial state which differs from S0 in an LFSR location φ ∈ [0, n−1].

The task is to ascertain how the corresponding internal states in the tth round
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St and St,Δφ
will differ from each other, for some integer t > 0. One such tool

appeared in [6], but our approach is improved and more involved. We present
the following algorithm which we will call D-Grain that takes as input the
difference location φ ∈ [0, n − 1] and the round r, and returns (i) a set of r
integer arrays χt, for 0 ≤ t < r, each of length c + d, (ii) a set of r integer
arrays Υt, for 0 ≤ t < r, each of length e + w and (iii) an integer array ΔZ of
length r. Note that as defined in Section 1.1, c, d are the number of NFSR, LFSR
bits (respectively) which are linearly added to the output function h. Further,
w, e are the number of NFSR, LFSR bits (respectively) that are input to the
function h.

Now consider the corresponding generalized differential engine Δφ-Grain with
an n-cell LFSR ΔL and an n-cell NFSR ΔN . All the elements ofΔL andΔN are
integers. We denote the tth round state of ΔL as ΔLt = [ut, ut+1, . . . , ut+n−1]
and that of ΔN as ΔNt = [vt, vt+1, . . . , vt+n−1]. Initially all the elements of
ΔN,ΔL are set to 0, with the only exception that the cell numbered φ ∈ [0, n−1]
of ΔL is set to 1. The initial states ΔN0, ΔL0 are indicative of the differ-
ence between S0 and S0,Δφ

and we will show that the tth states ΔNt, ΔLt
are indicative of the difference between St and St,Δφ

. ΔL updates itself as
ut+n = ut + ut+f1 + ut+f2 + · · ·+ ut+fa mod 2 and ΔN updates itself as vt+n =
ut+2 ·OR(vt, vt+τ1 , vt+τ2 , . . . , vt+τb). The rationale behind the update functions
will be explained later. Here OR is a map from Z

b+1 → {0, 1} which roughly
represents the logical ‘or’ operation and is defined as

OR(k0, k1, . . . , kb) =

{
0, if k0 = k1 = k2 = · · · = kb = 0,
1, otherwise.

Let χt = [vt+l1 , vt+l2 , . . . , vt+lc , ut+i1 , ut+i2 , . . . , ut+id ] and Υt = [ut+h1 , ut+h2 ,
. . . , ut+he, vt+j1 , vt+j2 , . . . , vt+jw ]. Note that χt (respectively Υt) is the set of cells
in Δφ-Grain which corresponds to the bits that are linearly added to the output
function h (respectively, input to h) in the tth PRGA stage of the actual cipher.

If V is a vector having non-negative integral elements, then V � β, (for some
positive integer β), implies that all elements of V are less than or equal to β.
The tth key-stream element Δzt produced by this engine is given as

Δzt =

⎧⎨
⎩

0, if Υt = 0 AND χt � 1 AND |χt| is even
1, if Υt = 0 AND χt � 1 AND |χt| is odd
2, otherwise.

Here 0 denotes the all zero vector, and | · | denotes the number of non-zero ele-
ments in a vector. Initially ΔN0, ΔL0 represent the difference of S0 and S0,Δφ

.
As the PRGA evolves, the only non-zero element (having value 1) of ΔL propa-
gates and so does the difference between St and St,Δφ

. Since the LFSR in Grain
is updated by a linear function, whenever the difference between St and St,Δφ

is
fed back via the update function, a 1 is fed back in ΔL. Now when the difference
between St and St,Δφ

propagates to some NFSR tap location τi (for some value
of t), then this difference may or may not be fed back, depending on the nature
of the Boolean function g and the current state St. Hence in such a case the
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propagation of the differential is probabilistic. Note that in all such situations,
either the integer 2 or 3 is fed back in ΔN as is apparent from the update
equation for vt+n. Therefore if

1. some cell in ΔLt or ΔNt is 0, then the corresponding bits are equal in St
and St,Δφ

with probability 1;
2. some cell in ΔLt or ΔNt is 1, then the corresponding bits are different in St

and St,Δφ
with probability 1;

3. some cell in ΔLt or ΔNt is 2 or 3, then that the corresponding bits are
different in St and St,Δφ

with some probability 0 < pd < 1.

Also, note that if Υt is 0, then all the bits of St and St,Δφ
that provide inputs to

the non-linear function h are the same (for all choices of S0). If all elements of χt
are less than or equal to 1, then each one of the elements of St and St,Δφ

which
linearly adds on to the output function h to produce the output key-stream bit
is either equal or different with probability 1. When both these events occur, the
key-stream bits produced by St and St,Δφ

are definitely the same if |χt| is an
even number, as an even number of differences cancel out in GF(2). When this
happens, Δφ-Grain outputs Δzt = 0. If |χt| is an odd number, then the key-
stream bits produced by St and St,Δφ

are different with probability 1. In this
case Δzt = 1. In all other cases, the difference of the key-stream bits produced
by St and St,Δφ

is equal to 0 or 1 with some probability, and then Δzt = 2.
We describe the routine D-Grain(φ, r) in Algorithm 1 which returns the arrays
χt, Υt for 0 ≤ t < r and ΔZ = [Δz0, . . . , Δzr−1].

Input: φ: An LFSR location ∈ [0, n− 1], an integer r(> 0);
Output: An integer array ΔZ of r elements;
Output: Two integer arrays χt, Υt for 0 ≤ t < r ;

[u0, u1, . . . , un−1]← 0, [v0, v1, . . . , vn−1]← 0, uφ ← 1, t← 0;
while t < r do

Υt ← [uh1
, uh2

, . . . , uhe , vj1 , vj2 , . . . , vjw ] ;
χt ← [vl1 , vl2 , . . . , vlc , ui1 , ui2 , . . . , uid

];

if Υt = 0 AND χt � 1 then
if |χt| is EVEN then

Δzt ← 0;
end
if |χt| is ODD then

Δzt ← 1;
end

end
else

Δzt ← 2;
end
t1 ← u0 + uf1

+ uf2
+ . . . + ufa mod 2;

t2 ← u0 + 2 · OR(v0, vτ1 , vτ2 , . . . , vτb );
[u0, u1, . . . , un−2, un−1]← [u1, u2, . . . , un−1, t1];
[v0, v1, . . . , vn−2, vn−1]← [v1, v2, . . . , vn−1, t2];
t = t+ 1;

end
ΔZ = [Δz0, Δz1, . . . , Δzr−1];
Return [χ0, χ1, . . . , χr−1], [Υ0, Υ1, . . . , Υr−1], ΔZ

Algorithm 1. D-Grain(φ, r)
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2.2 Derivative of a Boolean Function

Certain properties of Boolean functions have been exploited for the fault attack
described in [5]. We use some other properties of the Boolean functions to mount
our attack and these are described here. A q-variable Boolean function is a
mapping from the set {0, 1}q to the set {0, 1}. One important way to represent a
Boolean function is by its Algebraic Normal Form (ANF). A q-variable Boolean
function h(x1, . . . , xq) can be considered to be a multivariate polynomial over
GF (2). This polynomial can be expressed as a sum of products representation
of all distinct k-th order products (0 ≤ k ≤ q) of the variables. The number of
variables in the highest order product term with nonzero coefficient is called the
algebraic degree, or simply the degree of h and denoted by deg(h). Functions of
degree at most one are called affine functions.

Definition 1. Consider a q-variable Boolean function F and any vector α ∈
{0, 1}q. We refer to the function F (x + α) as a translation of F . The set of all
possible translations of a given function F is denoted by the term ‘Translation
Set’ and by the symbol AF . Since a q-variable function can have at most 2q

translations, the cardinality of AF is atmost 2q.

Definition 2. Consider a q-variable Boolean function F and its translation set
AF . Any GF(2) linear combination F̂ of the functions in AF , i.e., F̂ (x) =
c1F (x ⊕ α1) ⊕ c2F (x ⊕ α2) ⊕ · · · ⊕ ciF (x ⊕ αi), where c1, c2, . . . , ci ∈ {0, 1} is
said to be a derivative of F . If F̂ happens to be an affine Boolean function and
c1 = c2 = · · · = ci = 1 then the set of vectors π = [α1, α2, . . . , αi] is said to be
an affine differential tuple of F . If none of the vectors in π is 0 then π is said
to be a weight i affine differential tuple of F otherwise π is said to be a weight
(i− 1) affine differential tuple.

3 Differential Fault Analysis of the Grain Family

In this section, we assume that the attacker has the ability to induce exactly
a single bit toggle at a random LFSR location by applying a fault. Later, in
Section 6, we will consider a more practical fault model in which an injected
fault toggles more than one consecutive bits in LFSR locations.

3.1 Obtaining the Location of the Fault

Let S0 ∈ {0, 1}2n be the initial state of the Grain family PRGA described in
Section 1.1 and S0,Δφ

be the initial state resulting after injecting a single bit

fault in LFSR location φ ∈ [0, n − 1]. Let Z = [z0, z1, . . . , z2n−1] and Zφ =

[zφ0 , z
φ
1 , . . . , z

φ
2n−1] be the first 2n key-stream bits produced by S0 and S0,Δφ

respectively. The task for the fault location identification routine is to determine
the fault location φ by analyzing the difference between Z and Zφ. Of course,
in Grain-128a the entire Z and Zφ are not available to the attacker. Thus, we
will deal with Grain-128a separately.
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Our approach to determine the fault location is an improvement over the one
presented in [5]. The basic idea used in [5] was the fact that if a fault is injected
in single LFSR location at the beginning of the PRGA, then at certain specific
PRGA rounds the key-stream bits are guaranteed to be equal. However, this
technique requires multiple fault injections at the same LFSR bit to conclusively
identify the fault location. In our work we utilize the added fact that due to a
single bit fault at the beginning of the PRGA, the key-stream bits at certain
other PRGA rounds are guaranteed to be different as well. This removes the
requirement for multiple single-bit fault injection at the same LFSR location.

Grain v1 and Grain-128. As in [5], we define a 2n bit vector Eφ over GF(2)
defined as follows. Let Eφ be the bitwise logical XNOR (complement of XOR)
of Z and Zφ, i.e., Eφ = 1⊕ Z ⊕ Zφ. Similarly we define Eφ = 1⊕ Eφ. Since S0

can have 2n+m values (each arising from a different combination of the n bit key
and m bit IV, the remaining n−m padding bits are fixed), each of these choices
of S0 may lead to different patterns of Eφ. The bitwise logical AND of all such
vectors Eφ is denoted as the First Signature vector Sgn1

φ for the fault location φ.

Similarly the bitwise logical AND of all such vectors Eφ is denoted as the Second
Signature vector Sgn2

φ for the fault location φ. Note that if Sgn1
φ(i) (Sgn2

φ(i))

is 1 for any i ∈ [0, 2n− 1] then the ith key-stream bit produced by S0 and S0,Δφ

is equal (different) for all choices of S0.
This implies that if ΔφZ = [Δφz0, Δφz1, . . . , Δφz2n−1] is the third output of

the routine D-Grain(φ, 2n), then

Sgn1
φ(i) =

{
1, if Δφzi = 0,
0, otherwise.

Sgn2
φ(i) =

{
1, if Δφzi = 1,
0, otherwise.

Grain-128a. Grain-128a has a different encryption strategy in which the first 64
key-stream bits and every alternate key-stream bit thereof is used to construct
the message authentication code and therefore unavailable to the attacker. To
circumvent this problem, in Grain-128a every re-keying is followed by a fault
injection at the beginning of round 64 of the PRGA instead of round 0. Hence the
vectors Z,Zφ are defined as Z = [z64, z66, . . . , z318] and Z

φ = [zφ64, z
φ
66, . . . , z

φ
318].

As before, we define E(φ) = 1 ⊕ Z ⊕ Zφ and E(φ) = 1⊕ E(φ) and Sgn1
φ, Sgn

2
φ

are defined as the bitwise AND of all possible E(φ), E(φ) respectively. Note that
if a fault is applied at a random LFSR location φ at the 64th PRGA round, then
the tth state of Δφ-Grain will align itself with the (64+ t)th state of Grain-128a.
This implies that if ΔφZ = [Δφz0, Δφz1, . . . , Δφz255] is the third output of the
routine D-Grain(φ, 256), then

Sgn1
φ(i) =

{
1, if Δφz2i = 0,
0, otherwise.

Sgn2
φ(i) =

{
1, if Δφz2i = 1,
0, otherwise.

3.2 Steps for Location Identification

The task for the fault identification routine is to determine the value of φ given
the vector Eφ. For any element V ∈ {0, 1}l, define the set BV = {i : 0 ≤ i <
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l, V (i) = 1} i.e. BV is the support of of V . Now define a relation� in {0, 1}l such
that for any two elements V1, V2 ∈ {0, 1}l, we will have V1 � V2 if BV1 ⊆ BV2 .
Now we check the elements in BEφ

and BEφ
. By definition, these are the PRGA

rounds i during which zi = zφi and zi 	= zφi respectively. By the definition of the
first and second Signature vector proposed above, we know that for the correct
value of φ, BSgn1

φ
⊆ BEφ

, BSgn2
φ
⊆ BEφ

and hence Sgn1
φ � Eφ, Sgn

2
φ � Eφ.

So our strategy would be to search all the n many first Signature vectors and
formulate the first candidate set Ψ0,φ = {ψ : 0 ≤ ψ ≤ n − 1, Sgn1

ψ � Eφ}. If
|Ψ0,φ| is 1, then the single element in Ψ0,φ will give us the fault location φ. If not,
we then formulate the second candidate set Ψ1,φ = {ψ : ψ ∈ Ψ0,φ, Sgn

2
ψ � Eφ}.

If |Ψ1,φ| is 1, then the single element in Ψ1,φ will give us the fault location φ. If
Ψ1,φ has more than one element, we will be unable to decide conclusively at this
stage.

However, the task is made simpler if we can access the faulty key-streams
Zφ and hence get Eφ for all φ ∈ [0, n − 1]. This is possible since our fault
model allows multiple re-keying with the same but unknown Key-IV. We need
to reset the cipher each time and then inject a fault at any random unknown
LFSR location at the beginning of the PRGA. By performing this process around
n ·∑n

i=1
1
i ≈ n lnn, we can expect to hit all the LFSR locations in [0, n− 1] and

obtained n different faulty key-streams Zφ.
The remaining task is to label each Zφ with a unique φ ∈ [0, n − 1]. Using

the techniques outlined above for all the faulty key-streams, we will be able to
uniquely label them if (i) for all φ ∈ [0, n− 1], |Ψ1,φ| = 1, i.e., all the faulty key-
streams were assigned unique labels, or (ii) for all φi ∈ W = {φ1, φ2, . . . , φj},
|Ψ1,φi | > 1 AND |Ψ1,φi − W| = 1, where W = [0, n − 1] − W , i.e., W is the
set of labels that have already been assigned. The second condition states that
even if some faulty key-stream Zφi has not been labelled uniquely, its second
candidate set Ψ1,φi (along with the element φi) must contain only those labels
that have already been uniquely assigned. Given a random key K ∈R {0, 1}n
and a random Initial Vector IV ∈R {0, 1}m the probability that all n faulty
key-streams can be labelled uniquely has been experimentally found to be 1 for
all the 3 ciphers Grain v1, Grain-128 and Grain-128a. The experiments were
performed over a set of 220 randomly chosen Key-IV pairs. We sum up the fault
location identification routine in the following steps.

A. Reset the cipher with the unknown key K and Initial Vector IV and record
the first 2n fault-free key-stream bits Z.

B. Reset the cipher again with K, IV , and inject a single bit fault in a random
LFSR location φ, 0 ≤ φ ≤ n− 1 at the beginning of the PRGA. Record the
faulty key-stream bits Zφ, calculate Eφ and Ψ1,φ

C. Repeat Step [B.] around n lnn times so that n different faulty key-stream
vectors corresponding to all LFSR locations φ ∈ [ 0, n− 1] are obtained and
calculate the corresponding Ψ1,φ vector.

D. Once all the faulty key-stream vectors have been labelled we proceed to the
next stage of the attack.



200 S. Banik, S. Maitra, and S. Sarkar

4 Beginning the Attack

Let us first describe some notations that we will henceforth use.

1. St = [xt0, x
t
1, . . . , x

t
n−1 yt0, y

t
1, . . . , y

t
n−1] is used to denote the internal state

of the cipher at the beginning of round t of the PRGA. Thus xti (y
t
i) denotes

the ith NFSR (LFSR) bit at the start of round t of the PRGA. When t = 0,
we use S0 = [x0, x1, . . . , xn−1 y0, y1, . . . , yn−1] to denote the internal state
for convenience.

2. St,Δφ
is used to denote the internal state of the cipher at the beginning of

round t of the PRGA, when a fault has been injected in LFSR location φ at
the beginning of the PRGA round.

3. zφi denotes the key-stream bit produced in the ith PRGA round, after faults
have been injected in LFSR location φ at the beginning of the PRGA round.
zi is the fault-free ith key-stream bit.

4. ηt = [xtl1 , x
t
l2
. . . , xtlc , y

t
i1
, yti2 . . . , y

t
id
] is the set of elements in St which con-

tribute to the output key-stream bit function linearly and θt = [yth1
, yth2

,
. . . , ythe

, xtj1 , x
t
j2
, . . . , xtjw ] be the subset of St which forms the input to the

combining function h.
5. If v is an integer vector all elements of which are either 0 or 1, then we

express v as a vector over GF(2) and denote it by the symbol ṽ.
6. Ifw is a vector over GF(2) then P(w) denotes the GF(2) sum of the elements

of w.

Determining the LFSR. During PRGA, the LFSR evolves linearly and inde-
pendent of the NFSR. Hence, yti for any i ∈ [0, n−1] and t ≥ 0 is a linear function
of y0, y1, . . . , yn−1. Let S0 and S0,Δφ

be two initial states of the Grain PRGA
(as described in Section 1.1) that differ in only the LFSR location φ ∈ [0, n− 1].
Let [χ0,φ, χ1,φ, . . . , χ2n−1,φ], [Υ0,φ, Υ1,φ, . . . , Υ2n−1,φ], ΔφZ be the outputs of D-
Grain(φ, 2n).

Let [0, α1] be a weight 1 affine differential tuple of h, such that h(x)⊕ h(x⊕
α1) = h01(x) is a function of variables that takes input from LFSR locations only.

If, for some round t of the PRGA, we have χt,φ � 1, Υt,φ � 1 and Υ̃t,φ = α1, then
we can conclude that the tth round fault-free and faulty internal states St and
St,Δφ

differ deterministically in the bit locations that contribute to producing
the output key-stream bit at round t. In such a scenario, the GF(2) sum of the

fault-free and faulty key-stream bit at round t is given by zt⊕zφt = P(ηt)⊕h(θt)⊕
P(ηt ⊕ χ̃t,φ)⊕ h(θt ⊕ Υ̃t,φ) = P(χ̃t,φ)⊕ h(θt)⊕ h(θt ⊕ α1) = P(χ̃t,φ)⊕ h01(θt).

Note that in the above equation P(χ̃t,φ) ⊕ h01(θt) is an affine Boolean func-
tion in the LFSR state bits of St = [yt0, y

t
1, . . . , y

t
n−1] and hence [y0, y1, . . . , yn−1].

Since zt ⊕ zφt is already known to us, this gives us one linear equation in
[y0, y1, . . . , yn−1]. The trick is to get n such linear equations which are linearly
independent by searching over all possible values of φ and affine differential tu-
ples of h. Of course h may not have an affine differential tuple [0, α1] of weight

1 or even if it does Υ̃t,φ = α1 and χt,φ � 1 may not hold for any t or φ. In such
situations, one can look at other higher weight affine differential tuples.
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Exploring Higher Weight Affine Differential Tuples. Consider λ many
fault locations φi ∈ [0, n−1]. Let [χ0,φi , . . . , χ2n−1,φi ], [Υ0,φi , . . . , Υ2n−1,φi ], ΔφiZ
be the λmany outputs ofD-Grain(φi, 2n) for i ∈ [1, λ]. Let [0, α1, α2, . . . , . . . , αλ]
be a weight λ (where λ is an odd number) affine differential tuple of h, such

that h(x) ⊕ ⊕λ
i=1 h(x ⊕ αi) = H1(x) is a function of variables that takes in-

put from LFSR locations only. If for some round t of the PRGA, χt,φi �
1, Υt,φi � 1 and Υ̃t,φi = αi for all i ∈ [1, λ], then by the arguments out-

lined in the previous subsection, we conclude zt ⊕
⊕λ

i=1 z
φi

t = P(ηt) ⊕ h(θt) ⊕⊕λ
i=1

(
P(ηt ⊕ χ̃t,φi)⊕ h(θt ⊕ Υ̃t,φi)

)
=

⊕λ
i=1 P(χ̃t,φi)⊕H1(θt).

Note that if λ is odd then we can not exploit differential tuples of the form
[α1, α2, . . . , . . . , αλ] where all αi 	= 0 as an odd number of terms do not can-
cel out in GF(2). Instead, if [α1, α2, . . . , . . . , αλ] is a weight λ (λ is an even

number) affine differential tuple of h, such that
⊕λ

i=1 h(x ⊕ αi) = H2(x) is a
function of variables, that takes inputs from LFSR locations only, then by the

previous arguments we have
⊕λ

i=1 z
φi

t =
⊕λ

i=1

(
P(ηt ⊕ χ̃t,φi)⊕ h(θt ⊕ Υ̃t,φi)

)
=⊕λ

i=1 P(χ̃t,φi)⊕H2(θt).
Note that each of the above cases gives us one linear equation in [y0, y1, . . . ,

yn−1]. We formally state the routine FLEL(λ) in Algorithm 2 that attempts to
find such linear equations by investigating weight λ affine differential tuples.

Solving the System. Ideally we should get n linearly independent equations
in [y0, y1, . . . , yn−1] to solve the LFSR. If a call to FLEL(1) does not give us
the requisite number of equations then we must call FLEL(2) and if required
FLEL(3) to obtain the required number of equations. Note that the number of
iterations in the outer most ‘for’ loop is of FLEL(λ) is

(
n
λ

) ≈ O(nλ), so beyond a
certain value of λ, it may not be practically feasible to call FLEL(λ). Assuming
that we have n outputs from the successive FLEL(λ) routines of the form

ti, [φ1,i, φ2,i, . . . , φλi,i], γi ⊕
⊕

n−1
j=0 ci,jyj, [α1,i, α2,i, . . . , αλi,i],

∀i ∈ [0, n−1], if λi is even. Else the last output will be of the form [0, α1,i, α2,i, . . . ,
αλi,i]. Then we can write the equations so obtained in matrix form LY = W ,
where L is the n×n coefficient matrix {ci,j} over GF(2), Y is the column vector
[y0, y1, . . . , yn−1]t and W is a column vector. The ith element W (i) is given by

γi ⊕ zti ⊕
⊕λi

j=1 z
φj,i

ti , if λi is odd, and γi ⊕
⊕λi

j=1 z
φj,i

ti if λi is even, γi ∈ {0, 1}.
If the equations are linearly independent then L is invertible. Thus, the solu-

tion Y of the above system are obtained by computing L−1W . Both L and its
inverse may be precomputed and hence the solution can be obtained immediately
after recording the faulty bits.

Determining the NFSR. Once the LFSR state has been determined, we pro-
ceed to finding the NFSR state. Since the NFSR updates itself non-linearly,
the method used to determine the NFSR initial state will be slightly differ-
ent from the LFSR. If λ is odd, let [0, α1, α2, . . . , αλ] be a weight λ (where
λ is an odd number) tuple of h (not necessarily affine differential), such that
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Input: λ: An integer > 0;
Output: Set of Rounds t, locations [φ1, φ2, . . . , φλ], Affine expression in [y0, y1, . . . , yn−1];

Tuples [α1, . . . , αλ]

for φ1 = 0 to n− 1, φ2 = 0 to n − 1, . . . , φλ = 0 to n− 1 do
if All φj ’s are pairwise unequal then

for i = 1 to λ do(
[χ0,φi

, . . . , χ2n−1,φi
], [Υ0,φi

, . . . , Υ2n−1,φi
], Δφi

Z
)
= D-Grain(φi, 2n)

end
for t = 0 to 2n− 1 do

if χt,φi
� 1 AND Υt,φi

� 1, ∀i ∈ [1, λ] then
if λ is odd then

H1(x) = h(x)⊕λ
i=0 h(x⊕ Υ̃t,φi

) ;

if H1 is a function only on LFSR bits then1.1
Output Round t, Locations [φ1, φ2, . . . , φλ], Expression

⊕λ
i=1P(χ̃t,φi

)⊕H1(θt);

Output Tuple [0, Υ̃t,φ1
, . . . , Υ̃t,φλ

]

end

end
else

H2(x) = ⊕λ
i=0h(x⊕ Υ̃t,φi

) ;

if H2 is a function only on LFSR bits then1.2
Output Round t, Locations [φ1, φ2, . . . , φλ], Expression

⊕λ
i=1P(χ̃t,φi

)⊕H2(θt);

Output Tuple [Υ̃t,φ1
, . . . , Υ̃t,φλ

]

end

end

end

end

end

end

Algorithm 2. FLEL(λ)

h(x) +
⊕λ

i=1 h(x⊕ αi) = H1(x) = x′ ⊕H11(x) where x
′ is a variable that takes

input from an NFSR location and H11(x) is a function only on the LFSR vari-

ables. If for some round t of the PRGA χt,φi � 1 and Υt,φi � 1 and Υ̃t,φi = αi
for all i ∈ [1, λ], then by the arguments outlined in the previous subsection we

conclude zt⊕
⊕λ

i=1 z
φi

t = P(ηt)⊕h(θt)⊕
⊕λ

i=1

(
P(ηt ⊕ χ̃t,φi)⊕ h(θt ⊕ Υ̃t,φi)

)
=⊕λ

i=1 P(χ̃t,φi) ⊕ H1(θt) =
⊕λ

i=1 P(χ̃t,φi) ⊕ H11(θt) ⊕ xtjr , for some r ∈ [1, w].
Since, the LFSR is already known, H11(θt) can be calculated and that leaves xtjr
as the only unknown in the equation, whose value is also calculated immediately
after recording the faulty bits and solving the LFSR.

The λ even case can be dealt with similarly. We can describe another routine
FLEN(λ) which will help in determining the NFSR state. This routine is similar
to the FLEL(λ) routine described in Algorithm 2. The only differences are that
line 1.1 will change to

if H1(x) = x′ ⊕H11(x) where x
′ is an NFSR term and H11(x) depends on

LFSR variables only.

Line 1.2 of Algorithm 2 will also change accordingly. With the help of FLEN (λ)
routine, we can obtain specific NFSR state bits at various rounds of operation of
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the PRGA. Due to the shifting property of shift registers, the following equation
holds xti = xt+1

i−1. For example, calculating x3046 and x3250 is the same as determining
the two NFSR state bits of the internal state S30: x

30
46 and x3052.

Hence by using the FLEN (λ) for successive values of λ, one can obtain all
the n NFSR state bits of St for some t ≥ 0. Since the LFSR initial state of S0

is already known and due to the fact that the LFSR operates independent of
the NFSR in the PRGA, the attacker can compute the LFSR state bits of St
by simply running the Grain PRGA forward for t rounds and thus compute the
entire of St.

4.1 Finding the Secret Key and Complexity of the Attack

It is known that the KSA, PRGA routines in the Grain family are invertible
(see [6, 12]). Once we have all the bits of St, by running the PRGA−1 (inverse
PRGA) routine for t rounds one can recover S0. Thereafter the KSA−1 (inverse
KSA) routine can be used to find the secret key.

The attack complexity directly depends on the number of re-keyings to be
performed such that all of locations in [0, n− 1] of the LFSR are covered. Since
each re-keying is followed by exactly one fault injection, the expected number of
fault injection is n ·∑n

i=1
1
i ≈ n · ln n. Thereafter, the attack requires one matrix

multiplication between an n×n matrix and an n×1 vector to recover the LFSR,
and solving a few equations to get the NFSR state. After this, t invocations of
the PRGA−1 and a single invocation of the KSA−1 gives us the secret key.

Note that, construction of the matrix L and running the FLEL(λ) and FLEN(λ)
can be done beforehand and thus do not add to the attack complexity. However,
these routines are a part of the pre-processing phase, the exact runtime of which
will depend on the nature of the functions g, h and also the choice of taps used
in the cipher design.

5 Attacking the Actual Ciphers

Now we will provide the details of the actual attack on Grain v1, Grain-128 and
Grain-128a.

Grain v1. In Grain v1 the non linear combining function is of the form h(s0, s1,
s2, s3, s4) = s1 ⊕ s4 ⊕ s0s3 ⊕ s2s3 ⊕ s3s4 ⊕ s0s1s2 ⊕ s0s2s3 ⊕ s0s2s4 ⊕ s1s2s4 ⊕
s2s3s4. Here only s4 corresponds to an NFSR variable. This function has 4
affine differential tuples of weight 1, only one of which ([0, α = 11001]) leads to

a derivative which is a function of only LFSR variables. However, Υ̃t,φ = α and
χt,φ � 1 does not hold for any t or φ. Hence one needs to look at higher weight
tuples.

A call to FLEL(3) returns 78 linearly independent equations. The result is
given in Table 2. A call to FLEL(2) gives us the 2 other equations required to
solve the system. The result is shown in Table 3. One can verify that the linear
equations so obtained are linearly independent and thus LFSR can be solved
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Table 2. Output of FLEL(3) for Grain v1 (ADT implies Affine Differential Tuple)

t φ1 φ2 φ3 Range Expr. ADT

45 + i 62 + i 24 + i 70 + i i ∈ [0, 9]
55 + i 72 + i 16 + i 51 + i i ∈ [0, 7] 00000,
63 + i 13 + i 24 + i 59 + i i ∈ [0, 9] 00100,

73 + i 33 + i 26 + i 51 + i i ∈ [0, 10] yt46 00110,

84 + i 44 + i 37 + i 38 + i i ∈ [0, 6] 01000
91 + i 53 + i 44 + i 41 + i i ∈ [0, 8]
100 + i 70 + i 53 + i 60 + i i ∈ [0, 8]

109 79 71 69
77 + i 45 + i 51 + i 38 + i i ∈ [0, 5] 00000,

83 + i 72 + i 57 + i 44 + i i ∈ [0, 4] yt3 ⊕ yt25 ⊕ yt64 01100,

94 62 79 55 10000,
10110
00000,

95 78 63 56 yt3 ⊕ yt25 ⊕ yt46 ⊕ yt64 01001,

01100,
10110

Table 3. Output of FLEL(2) for Grain v1

t φ1 φ2 Range Expr. ADT

110 + i 64 + i 77 + i i ∈ [0, 1] yt46 00001,

11000

Table 4. Output of FLEN (1) for Grain v1

t φ1 Range Expr. ADT

55 + i 23 + i i ∈ [0, 14] 00000,

70 + i 77 + i i ∈ [0, 2] 1 ⊕ yt3 ⊕ yt46 ⊕ xt
63 01010

91 + i 62 + i i ∈ [0, 5]

Table 5. Output of FLEN (3) for Grain v1

t φ1 φ2 φ3 Range Expr. ADT

00000,

17 + i i 1 + i 20 + i i ∈ [0, 27] 1 ⊕ yt3 ⊕ yt46 ⊕ xt
63 00001,

00010,
45 + i 28 + i 13 + i 48 + i i ∈ [0, 9] 10000

00000,

73 + i 53 + i 33 + i 26 + i i ∈ [0, 17] 1 ⊕ yt3 ⊕ xt
63 00010,

00100,
00110

readily. A call each to FLEN(1) and FLEN (3) gives us all the NFSR bits of S80.
The output of these routines are given as in Tables 4 and 5. A look at these
tables shows that the attacker can calculate the values of xt63 for all t ∈ [17, 96].
This is equivalent to calculating x80i for all i ∈ [0, 79]. Thereafter, S0 and the
secret key may be obtained as per the techniques outlined in Section 4.1.

Grain-128. In Grain-128 the non linear combining function is of the form
h(s0, s1, . . . , s8) = s0s1 ⊕ s2s3 ⊕ s4s5 ⊕ s6s7 ⊕ s0s4s8. Only s0, s4 correspond
to the NFSR variables. This function has 4 affine differential tuples of weight 1
which produce derivatives on LFSR variables. A call to FLEL(1) produces all
the 128 equations needed to solve the LFSR. The output of this routine is given
in Table 6.

A call to FLEN(1) gives us all the NFSR bits of S12. The output of this
routine is in Table 7. Thus, FLEN (1) gives us xt12 for all t ∈ [0, 115], and xt95 for
all t ∈ [0, 11]. This is equivalent to all the NFSR state bits of S12. Thereafter, S0

and the secret key may be obtained as per the techniques outlined in Section 4.1.
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Table 6. Output of FLEL(1) for Grain-
128

t φ1 Range Expr. ADT

i 20 + i i ∈ [0, 107] yt13 000 000 000,

000 100 000

61 + i 50 + i i ∈ [0, 19] yt60 000 000 000,

000 000 010

Table 7. Output of FLEN (1) for Grain-
128

t φ1 Range Expr. ADT

i 8 + i i ∈ [0, 115] xt
12 000 000 000,

010 000 000

33 + i 75 + i i ∈ [0, 11] xt
95 000 000 000,

000 001 000

Table 8. Output of FLEL(1) for Grain-
128a

t φ1 Range Expr. ADT

6 + 2i 26 + 2i i ∈ [0, 50] yt13 000 000 000,

108 + 2i 70 + 2i i ∈ [0, 12] 000 100 000

2i 13 + 2i i ∈ [0, 33] yt20 000 000 000,

001 000 000

28 + 2i 107 + 2i i ∈ [0, 10] yt60 000 000 000,

50 + 2i 1 + 2i i ∈ [0, 18] 000 000 010

Table 9. Output of FLEN (1) for Grain-
128a

t φ1 Range Expr. ADT

50 + 2i 58 + 2i i ∈ [0, 34] 000 000 000,

120 + 2i 96 + 2i i ∈ [0, 15] xt
12 010 000 000

152 + 2i 102 + 2i i ∈ [0, 12]

2i 42 + 2i i ∈ [0, 42] xt
95 000 000 000,

86 + 2i 38 + 2i i ∈ [0, 4] 000 001 000

Grain-128a. In Grain-128a, the first 64 key-stream bits and every alternate
key-stream bit thereof are used to construct the message authentication code
and therefore unavailable to the attacker. To resolve this problem, in Grain-
128a every re-keying is followed by a fault injection at the beginning round 64
of the PRGA instead of round 0 and the goal of the attacker is to reconstruct
the internal state at the 64th instead of the 0th PRGA round. Note that if a
fault is applied at a random LFSR location φ at the 64th PRGA round, then
the tth state of Δφ-Grain will align itself with the (64 + t)th state of the actual
cipher. Hence, in a slight departure from the notation introduced in the previous
section we will call the 64th PRGA state S0 and all other notations are shifted
with respect to t accordingly (e.g., St refers to the (64 + t)th PRGA state etc).

The key-stream bit at every odd numbered round (after round 64 of the
PRGA) is used for making the MAC and is unavailable to the attacker. Hence
after calling FLEL(1) the attacker must reject all outputs with an odd value of
t. Even then the attacker obtains all the equations required to solve the LFSR.
The output is presented in Table 8. Similarly a call to FLEN (1) after rejecting
outputs with odd values of t, gives us 112 NFSR bits of S62. The output is given
in Table 9.

At this point, the attacker could simply guess the remaining 16 bits of S62

or give a call to FLEN(2) and thus increase the complexity of the preprocessing
stage. As it turns out, the attacker can do even better without going for these two
options. The 16 NFSR bits not determined at this point are x622i+1, for 0 ≤ i ≤ 15.
Let us now look at the equations for the key-stream bits z62+2j for j ∈ [0, 8],

z62+2j =
⊕

i∈B x62i+2j ⊕ x6215+2j ⊕ y6293+2j ⊕ h(θ62+2j),

where B = {2, 36, 45, 64, 73, 89}. Now, x6215+2j , j ∈ [0, 8] is the only unknown
in each of these equations and so its value can be calculated immediately. This
leaves us with the 7 unknown bits x621 , x

62
3 , . . . , x

62
13. In addition to the entries in

Table 9, FLEN (1) also gives the output
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t = 96 + 2i, φ1 = 48 + 2i, xt95, [0, 000 001 000], ∀i ∈ [0, 6].

This gives us the bits x96+2i
95 or equivalently x64+2i

127 for i ∈ [0, 6]. Let us write the
NFSR update function g in the form g(X) = x′⊕g′(X), where x′ corresponds to
the variable that taps the 0th NFSR location. Then looking at the NFSR update
rule for Grain-128a, we have

x64+2i
127 = y63+2i

0 ⊕ x63+2i
0 ⊕ g′(X63+2i) = y621+2i ⊕ x621+2i ⊕ g′(X63+2i),

∀i ∈ [0, 6]. Again, x621+2i, i ∈ [0, 6] is the only unknown in these equations and
so its value can be calculated immediately. This gives us all the NFSR bits of
S62. Using the techniques in Section 4.1, S0 can be calculated. Since this state
corresponds to the 64th PRGA state, the PRGA−1 routine needs to be run 64
more times before invoking the KSA−1 routine which would then reveal the
secret key.

6 When a Fault Injection Affects More Than One
Locations: Some Preliminary Observations

So far we have discussed an attack scenario where an injected fault flips exactly
one bit value at a random LFSR location. We now relax the requirements of
the attack, and assume a fault model that allows the user to inject a fault that
affects more than one locations. Our strategy is that, if the fault injection affects
more than one location, we will be able to identify that scenario, and will not
use those cases for further processing.

We consider the case when at most three consecutive locations can be dis-
turbed by a single fault injection. Thus, four cases are possible: (a) exactly one
LFSR bit is flipped (n cases), (b) 2 consecutive locations i, i + 1 of the LFSR
are flipped (n − 1 cases), (c) 3 consecutive locations i, i + 1, i + 2 of the LFSR
are flipped (n− 2 cases) and (d) locations i, i+2 are flipped but not i+1 (n− 2
cases). Studying such a model makes sense if we attack an implementation of
Grain where the LFSR register cells are physically positioned linearly one after
the other.

It is clear that such a fault model allows a total of n+n−1+2(n−2) = 4n−5
types of faults out of which only n are single bit-flips. We assume that each
of these 4n − 5 cases are equally probable. The success of our attack that we
have described in Section 4 will depend on the ability of the attacker to deduce
whether a given faulty key-stream vector has been produced as a result of a single
bit toggling of any LFSR location or a multiple-bit toggle. Thus, we need to
design a fault location identification algorithm that analyzes a faulty key-stream
and (i) if the faulty key-stream has been produced due to a single bit toggling
of any LFSR location, the algorithm should output that particular position, and
(ii) if the faulty key-stream has been produced due to multiple-bit toggling of
LFSR locations, the algorithm should infer that the faulty key-stream could not
have been produced due to a single bit toggle.
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To solve the problem, will use the same fault location identification technique
used in Section 3.2. For the method to be a success, the routine would return
the fault location numbers for all possible cases when a single LFSR location is
toggled (n out of 4n − 5 cases), and the empty set ∅ for all the other 3n − 5
cases. Let ps be the probability that the fault location identification technique
has succeeded (theoretically, the probability is defined over all possible Key-IV
pairs). By performing computer simulations over 220 randomly chosen Key-IV
pairs, the value of ps was found to be 0.99994 for Grain v1, 1.00 for Grain-128
and 0.993 for Grain-128a. Note that assuming this fault model increases the
number of re-keyings and hence fault injections to (4n− 5) · ln (4n− 5).

As the experiments show, the probability of the location identification tech-
nique failing is very small. In case the method fails for some particular Key-IV
pair, we reset the cipher with the same Key-IV and repeat the fault identifica-
tion routine and this time inject the fault at PRGA round 1 instead of 0 (round
66 for Grain-128a) and then try to reconstruct this first (66th for Grain-128a)
PRGA state using the methods outlined in Section 4. The probability that the
location identification routine will fail for both PRGA round 0 and 1 is (1−ps)2
(assuming independence) and is thus even smaller. In case the method fails for
both round 0 and 1, we repeat the routine on PRGA round 2 and so on.

7 Conclusion

In this paper we outline a general strategy to perform differential fault attack
on ciphers with the physical structure of Grain. In particular, the attack is
demonstrated on Grain v1, Grain-128 and Grain-128a. The attack also uses a
much more practical and realistic fault model compared to the fault attacks on
the Grain family reported in literature [5, 6, 12].
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