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Preface

Indocrypt 2012, the 13th International Conference on Cryptology in India, took
place during December 9–12, 2012. It was hosted by the Indian Statistical In-
stitute in Kolkata. The Indocrypt series of conferences began in 2000 under the
leadership of Bimal Roy. This series is now well established as an international
forum for presenting high-quality cryptography research.

This year 99 papers were submitted for consideration. The authors of the
submitted papers were from institutions across 25 countries and five continents.

As in previous years, the submission deadline was split into two: authors were
required to register titles and abstracts by July 23, 2012, while final versions
of papers had to be submitted by July 28. During that week the titles and
abstracts were made available to the Program Committee (PC) to enable them
to select their preferred articles for review. Most papers were refereed by three
committee members, and papers co-authored by a PC member were refereed by
five committee members. We thank Tanja Lange for hosting the ichair system,
which was used to manage submissions and online discussions, on her Web server.

The review stage was very tight, with only three weeks for reviewing papers
and only two weeks (August 20 to September 1) for the online discussions. It
was a difficult challenge for the 33 PC members and 86 sub-reviewers to give
every paper a fair assessment in such a short time. A total of 313 referee reports
were written, and 314 comments were posted on the online discussions. At the
end of the discussion process 28 papers were accepted for the proceedings (five
of them conditionally accepted subject to successful revision according to referee
suggestions). Authors were notified on September 3 and had around 2 weeks to
revise their papers according to the suggestions of the referees.

We would like to thank all the authors of submitted papers for supporting
the Indocrypt conference. The best way to support a conference is to submit
papers to it and attend it. We also wish to thank the members of the PC and
their sub-reviewers (a list is given here) for devoting their time and knowledge
to the selection of papers.

The proceedings include the revised versions of the 28 selected papers. Revi-
sions were not checked by the PC and the authors bear the full responsibility for
the contents of the respective papers. The proceedings also contain invited pa-
pers by Nigel Smart and Vinod Vaikuntanathan, as well as a one-page abstract
of the invited lecture by Orr Dunkelman.

The organization of the conference involved many individuals. We express
our heart-felt gratitude to the General Chair, Bimal Roy, Director of Indian
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Statistical Institute, Kolkata, and Subhamoy Maitra for taking care of the
actual hosting of the conference. Members of the Cryptology Research Group at
the Indian Statistical Institute provided invaluable secretarial support. Finally,
we would like to acknowledge Springer for their active cooperation and timely
production of the proceedings.

December 2012 Steven Galbraith
Mridul Nandi
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Table of Contents XIII

Compact Hardware Implementations of the Block Ciphers mCrypton,
NOEKEON, and SEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358

Thomas Plos, Christoph Dobraunig, Markus Hofinger,
Alexander Oprisnik, Christoph Wiesmeier, and Johannes Wiesmeier

Elliptic Curve

Efficient Arithmetic on Elliptic Curves in Characteristic 2 . . . . . . . . . . . . . 378
David Kohel

A New Model of Binary Elliptic Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
Hongfeng Wu, Chunming Tang, and Rongquan Feng

Analysis of Optimum Pairing Products at High Security Levels . . . . . . . . 412
Xusheng Zhang and Dongdai Lin

Constructing Pairing-Friendly Genus 2 Curves with Split Jacobian . . . . . 431
Robert Dry�lo

Digital Signature

Faster Batch Forgery Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
Daniel J. Bernstein, Jeroen Doumen, Tanja Lange, and
Jan-Jaap Oosterwijk

Implementing CFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
Gregory Landais and Nicolas Sendrier

Symmetric Key Design and Provable Security

SipHash: A Fast Short-Input PRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Jean-Philippe Aumasson and Daniel J. Bernstein

A Novel Permutation-Based Hash Mode of Operation FP and the Hash
Function SAMOSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

Souradyuti Paul, Ekawat Homsirikamol, and Kris Gaj

Resistance against Adaptive Plaintext-Ciphertext Iterated
Distinguishers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

Aslı Bay, Atefeh Mashatan, and Serge Vaudenay

Sufficient Conditions on Padding Schemes of Sponge Construction and
Sponge-Based Authenticated-Encryption Scheme . . . . . . . . . . . . . . . . . . . . . 545

Donghoon Chang

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565



How to Compute on Encrypted Data

Vinod Vaikuntanathan�

University of Toronto
vinodv@cs.toronto.edu

Abstract. A fully homomorphic encryption scheme enables computa-
tion of arbitrary functions on encrypted data. Fully homomorphic en-
cryption has long been regarded as cryptography’s prized “holy grail”
– extremely useful yet rather elusive. Starting with the groundbreaking
work of Gentry in 2009, the last three years have witnessed numerous
constructions of fully homomorphic encryption involving novel mathe-
matical techniques, and a number of exciting applications. We will take
the reader through a journey of these developments and provide a glimpse
of the exciting research directions that lie ahead.

1 Introduction

Encryption has traditionally been viewed as a mechanism that enables secure
communication, namely the problem of transmitting a message from Alice to
Bob over a public channel while keeping it hidden from an eavesdropper. In
particular, Public-key Encryption – conceived in the seminal work of Diffie and
Hellman [DH76] and first constructed by Rivest, Shamir and Adleman [RSA83]
– provides a way for Alice to encrypt a message into a ciphertext using Bob’s
public key, and for Bob to decrypt the ciphertext to obtain the message using
his secret key. In this view of encryption schemes, access to encrypted data is
all or nothing – having the secret decryption key enables one to learn the entire
message, but without the decryption key, the ciphertext is completely useless.

This state of affairs raises an intriguing question, first posed by Rivest, Adle-
man and Dertouzos in 1978: Can we do arbitrary computations on data while it
remains encrypted, without ever decrypting it? This asks for the seemingly fan-
tastical ability to perform computations on encrypted data without being able
to “see” the data. Such ability also gives rise to a number of useful applica-
tions including the ability to privately outsource arbitrary computations to the
“cloud” and the ability to store all data encrypted and perform computations
on encrypted data, decrypting only when necessary.

� Supported by an NSERC Discovery Grant and by DARPA under Agreement number
FA8750-11-2-0225. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright notation thereon.
The views and conclusions contained herein are those of the author and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of DARPA or the U.S. Government.

S. Galbraith and M. Nandi (Eds.): INDOCRYPT 2012, LNCS 7668, pp. 1–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fully Homomorphic encryption (FHE) is a special type of encryption system
that permits arbitrarily complex computation on encrypted data. Long regarded
as a “holy grail” of cryptography, fully homomorphic encryption was first shown
to be possible in the recent, breakthrough work of Gentry [Gen09a, Gen09b]. We
will take the reader through a journey of the fascinating mathematical techniques
underlying these developments, which in turn raise a number of exciting new
questions in cryptography.

Organization of this Survey. In this survey, we focus on the recent develop-
ments in fully homomorphic encryption, starting from the work of Brakerski and
Vaikuntanathan [BV11b]. For more on the early work on homomorphic encryp-
tion and its history, we refer the reader to expository writings [Gen10a, Vai11] on
the subject as well as the original papers [Gen09a, Gen09b, DGHV10, SV11]. We
also describe a few applications of fully homomorphic encryption and a (highly
incomplete) list of research directions. Our intention in this short survey is to
give the reader a taste of the main ideas and developments in this area, while
referring to the original works for detailed expositions.

2 Gentry’s Blueprint for FHE

Gentry’s work showed not only the first fully homomorphic encryption scheme,
but a general method (a “blue-print”) to construct such systems. This blue-
print has been instantiated with a number of cryptographic assumptions, yielding
progressively simpler and more efficient schemes [DGHV10, SV10, SS10, BV11a].

Notwithstanding the elegance and generality of the blue-print, schemes con-
structed along these lines suffer from a number of deficiencies, including the
reliance on a host of non-standard cryptographic assumptions, and severe limi-
tations on efficiency. In Section 3, we describe new developments in fully homo-
morphic encryption that solve some of these issues.

Gentry’s construction has three components.

Step 1: Somewhat Homomorphic Encryption. The first step in Gentry’s blueprint
is to construct a somewhat homomorphic encryption (SWHE) scheme, namely
an encryption scheme capable of evaluating “low-degree” polynomials homomor-
phically. More precisely, letting κ be the security parameter, the scheme is able
to evaluate �-variate polynomials for some � = poly(κ) where each monomial has
degree at most κε (for some constant ε < 1). Starting with Gentry’s scheme,
the ciphertexts in all subsequent constructions contain some “noise” that in-
creases during homomorphic operations. Homomorphic multiplication increases
the noise significantly more than addition, and thus the limitation on low-degree
polynomials.

Step 2: The Bootstrapping Theorem. The somewhat homomorphic encryption
unfortunately falls well short of evaluating arbitrary functions on encrypted
data. To obtain an FHE, Gentry provided a remarkable bootstrapping theorem
which states that given an SWHE scheme that can evaluate its own decryption
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function (plus an additional operation), one can transform it into a “leveled”
FHE scheme, in a completely generic way. Such an SWHE scheme is called a
bootstrappable encryption scheme. Furthermore, if we are willing to make an
additional assumption – namely that it is safe to encrypt the leveled FHE se-
cret key under its own public key, a requirement that is referred to as “circular
security” – then the transformation gives us a “pure” (as opposed to “leveled”)
FHE scheme. Bootstrapping “refreshes” a ciphertext by running the decryption
function on it homomorphically, using an encrypted secret key (given in the
evaluation key), resulting in a reduced noise.

For a formal definition of a bootstrappable encryption scheme and Gentry’s
bootstrapping theorem, we refer the reader to [Gen09b, Gen09a, Vai11].

Step 3: Squashing the Decryption Circuit. The final piece in the puzzle is to de-
termine if we can apply the bootstrapping theorem to the known SWHE schemes,
namely determine if they are in fact capable of evaluating their own decryption
circuits (plus some). Surprisingly, as if by a strange law of nature, this turned
out to not be the case for all the (then available) SWHE schemes. For example,
the decryption circuits in the schemes of [Gen09b, DGHV10, SV11] turn out

to have degree Ω̃(κ) which is larger than their homomorphic capacity, namely
polynomials of degree O(κε) for some ε < 1.

Thus, the final step is to squash the decryption circuit of the SWHE scheme,
namely transform the scheme into one with the same homomorphic capacity
but a decryption circuit that is simple enough to allow bootstrapping. Gen-
try [Gen09b] showed a way to do this by adding a “hint” about the secret key
to the evaluation key. The hint is a large set of elements that has a secret sparse
subset that sums to the original secret key. In order to ensure that the hint
does not reveal damaging information about the secret key, the security of this
transformation relies on a new “sparse subset sum” assumption. The sparsity
pushes the decryption complexity at the cost of the additional assumption. This
approach can be adapted to the later schemes [DGHV10, SV10, BV11a] as well,
and it crucially utilizes the fact that the decryption equation of these schemes
is (almost) a linear equation in the secret key.

2.1 Other Instantiations

A number of other works construct FHE schemes following this framework, es-
sentially by building various instantiations of the SWHE scheme. Gentry’s orig-
inal construction [Gen09b] of an SWHE scheme was based on (a variant of) the
bounded distance decoding problem on ideal lattices drawn according to a cer-
tain distribution.1 In a subsequent work, Gentry [Gen10b] showed a worst-case
to average-case reduction for this problem, thus basing the security of his scheme
on a worst-case problem over ideal lattices. Smart and Vercauteren [SV10] con-
struct an SWHE scheme, following Gentry’s construction closely, but basing it on

1 Roughly speaking, ideal lattices correspond to a geometric embedding of ideals in a
number field. For a formal definition, see [Gen09b, LPR10].
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the average-case hardness of a “small principal ideal problem” (unlike [Gen09b],
there is no known worst-case to average-case connection for this problem). Brak-
erski and Vaikuntanathan [BV11a] showed yet another scheme based on the
average-case hardness of the “Ring Learning with Errors” (Ring LWE) problem
which, by the results of Lyubashevsky, Peikert and Regev [LPR10], is as hard
as various standard worst-case problems on ideal lattices. This scheme, in addi-
tion, has very simple and efficient algorithms. See [GH11b, CMNT11, NLV11]
for other variants and optimizations.

All these schemes then go through the squashing and bootstrapping trans-
formations to construct FHE, and therefore, they all have to rely on the sparse
subset sum assumption.

3 A New Era of Fully Homomorphic Encryption

Gentry’s blueprint and its instantiations leave open a number of important ques-
tions.

First, all the constructions based on the blueprint rely on multiple complex-
ity assumptions, the most problematic of them being the little-studied “sparse
subset sum assumption” used in squashing the decryption circuit. Is this as-
sumption necessary? In addition, the constructions use ideals in various rings
either explicitly or implicitly [DGHV10]. Ideals are a natural mathematical ob-
ject to construct fully homomorphic encryption since they natively support both
addition and multiplication operations, but are they necessary for FHE? A final
concern is that all the constructions ultimately rely on the hardness of approx-
imating lattice problems to within a subexponential factor (in the dimension n
of the lattice). Can we base security on the hardness of approximation in the
polynomial range?

Secondly, schemes that follow Gentry’s blueprint turn out to have inherent effi-
ciency limitations (see [BGV12] for an argument to this effect). When speaking of
efficiency, we are interested in the length of the ciphertext (per bit encrypted) and
the keys, and the time it takes to encrypt and decrypt. More importantly, it turns
out that the bottleneck in practical deployments of FHE is the per-gate evalua-
tion time, defined as the ratio of the time it takes to evaluate a circuit C homo-
morphically to the time it takes to evaluate C on plaintext inputs. The schemes
that follow Gentry’s blue-print [Gen09b, DGHV10, GH11b, SV10, BV11b] have
a per-gate evaluation time of Ω(κ4) (where κ is the security parameter), even
by fairly generous estimates.

A series of new works address these concerns. In particular, Brakerski and
Vaikuntanathan [BV11b] show that (leveled) FHE can be based on the hardness
of the much more standard “learning with error” (LWE) problem introduced by
Regev [Reg05] which, by the results of Regev [Reg05] and Peikert [Pei09] is as
hard as solving various short vector problems on arbitrary (not ideal) lattices in
the worst case. In effect, they show how to obtain a direct construction of a boot-
strappable encryption scheme without having to squash the decryption circuit
and thus, without relying on the non-standard sparse subset sum assumption.
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In a concurrent work, Gentry and Halevi [GH11a] show how to get rid of squash-
ing as well, using a completely different technique. Their construction still relies
on ideal lattices.

In a recent development, Brakerski, Gentry and Vaikuntanathan [BGV12]
build on (a refinement of) the main technique in [BV11b] to construct an FHE
scheme with asymptotically linear efficiency (namely, a per-gate computation

time of Õ(κ)) under the assumption that short vector problems on arbitrary
lattices are hard to approximate to within a slightly super-polynomial factor
(more precisely, nO(logn) where n is the dimension of the lattice) in the worst-
case.

We now describe the ideas behind the work of [BGV12] which builds on
[BV11b] and, at the time of writing, constitutes the state-of-the-art in fully
homomorphic encryption, both in terms of the mildness of assumptions as well
as efficiency.

3.1 The BGV Result

The starting point for our description of the scheme is a somewhat homomor-
phic encryption scheme based on “Ring LWE” [LPR10] (although the scheme
can be instantiated with a number of other SWHE schemes in the literature).
The scheme works over the rings R = Z[x]/(f(x)) where f(x) is an irreducible
polynomial of degree n and Rq = R/qR where q is a prime modulus. An addi-
tional parameter is an “error distribution” χ over R that outputs polynomials
with “small coefficients”. As before, we describe a secret-key system with mes-
sage space R2 := R/2R, for simplicity.

– SH.Keygen(1κ): Sample sk := s ← Rq to be a polynomial with small coeffi-
cients chosen from the error distribution χ.

– SH.Enc(sk, μ ∈ R2): Sample a ← Rq at random, and a polynomial e with
small coefficients from an error distribution χ. Output c := (a, as+2e+μ).

– SH.Dec(sk, c = (a,b)): Compute μ̃ := b − as over Rq and output μ := μ̃
(mod 2).

As before, the success of decryption is contingent on the noise in the cipher-
text being “small enough”. Homomorphic operations in this scheme increase the
noise – multiplication more than addition – and the noise after homomorphically
evaluating a multivariate polynomial with degree D and A monomials turns out
to be O(A·nO(D)). In other words, the noise increases exponentially in the degree
of the polynomial.

The key contribution in the work of [BGV12] is a new noise-management
technique that keeps the noise in check by reducing it after homomorphic oper-
ations, without bootstrapping. Essentially, the noise will grow to O(A · nO(d)),
where d is the depth of the circuit computing the polynomial. Since the degree
D of a circuit is usually exponentially larger than its depth d, we achieve an
exponential improvement in the homomorphic capacity.
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The key technical tool they use for noise management is the “modulus switch-
ing” technique developed by Brakerski and Vaikuntanathan [BV11b], the essence
of which is captured in the following lemma.

In words, the lemma says that an evaluator, who does not know the secret
key s but instead only knows a bound on its length, can transform a ciphertext
c modulo q into a different ciphertext c′ modulo p while preserving correctness
– namely, (c′s (mod p)) (mod 2) = (cs (mod q)) (mod 2). The transformation
from c to c′ involves simply scaling by (p/q) and rounding appropriately! Most
interestingly, if s is short and p is sufficiently smaller than q, the “noise” in the
ciphertext actually decreases – namely,

|c′s (mod p)| < |cs (mod q)|

Lemma 1. Let p and q be two odd moduli, and let c = (a,b) be a ciphertext
modulo q. Define c′ = (a′,b′) to be the integer vector closest to (p/q) · c =
((p/q)·a, (p/q)·b) such that c′ = c mod 2. Then, for any s with |b−as mod q| <
q/2− (q/p) · �1(s), we have

(b′ − a′s mod p) mod 2 = (b− as mod q) mod 2

and |b′ − a′s mod p| < (p/q) · |b− as mod q|+ �1(s)

where �1(s) is the �1-norm of (the co-efficient vector corresponding to) s.

Amazingly, this trick permits the evaluator to reduce the magnitude of the noise
without knowing the secret key, and without bootstrapping. In other words,
modulus switching gives us a very powerful and lightweight way to manage the
noise in FHE schemes!

The BGV Noise Management Technique. At first, it may look like modulus
switching is not a very effective noise management tool. If p is smaller than q,
then of course modulus switching may reduce the magnitude of the noise, but it
reduces the modulus size by essentially the same amount. In short, the ratio of
the noise to the “noise ceiling” (the modulus size) does not decrease at all. Isn’t
this ratio what dictates the remaining homomorphic capacity of the scheme, and
how can potentially worsening (certainly not improving) this ratio do anything
useful?

In fact, it’s not just the ratio of the noise to the “noise ceiling” that’s im-
portant. The absolute magnitude of the noise is also important, especially in
multiplications. Suppose that q ≈ xk, and that you have two mod-q SWHE ci-
phertexts with noise of magnitude x. If you multiply them, the noise becomes x2.
After 4 levels of multiplication, the noise is x16. If you do another multiplication
at this point, you reduce the ratio of the noise ceiling (i.e. q) to the noise level
by a huge factor of x16 – i.e., you reduce this gap very fast. Thus, the actual
magnitude of the noise impacts how fast this gap is reduced. After only log k
levels of multiplication, the noise level reaches the ceiling.

Now, consider the following alternative approach. Choose a ladder of gradually
decreasing moduli {qi ≈ q/xi} for i < k. After you multiply the two mod-q
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ciphertexts, switch the ciphertext to the smaller modulus q1 = q/x. As the
lemma above shows, the noise level of the new ciphertext (now with respect to
the modulus q1) goes from x2 back down to x. (Let’s suppose for now that �1(s)
is small in comparison to x so that we can ignore it.) Now, when we multiply two
ciphertexts (wrt modulus q1) that have noise level x, the noise again becomes
x2, but then we switch to modulus q2 to reduce the noise back to x. In short,
each level of multiplication only reduces the ratio (noise ceiling)/(noise level) by
a factor of x (not something like x16). With this new approach, we can perform
about k (not just log k) levels of multiplication before we reach the noise ceiling.
We have just increased (without bootstrapping) the number of multiplicative
levels that we can evaluate by an exponential factor!

This exponential improvement is enough to achieve leveled FHE without
squashing or bootstrapping. For any polynomial k, we can evaluate circuits of
depth k. The performance of the scheme degrades with k – e.g., we need to set
q = q0 to have bit length proportional to k – but it degrades only polynomially
with k.

Performance-wise, this scheme trounces previous (bootstrapping-based) FHE
schemes (at least asymptotically; the concrete performance remains to be seen).
Instantiated with ring-LWE, it can evaluate L-level arithmetic circuits with per-
gate computation Õ(κ · L3) – i.e., computation quasi-linear in the security pa-
rameter. Since the ratio of the largest modulus (namely, q ≈ xL) to the noise
(namely, x) is exponential in L, the scheme relies on the hardness of approxi-
mating short vectors to within an exponential in L factor. The performance can
be improved further using batching tricks.

In essence, the new noise management technique allows us to evaluate expo-
nentially deeper circuits at the same cost as before. Combining this technique
with bootstrapping gives us further performance gains and allows us to base se-
curity on better assumptions – namely, the hardness of approximating shortest
vector to a quasi-polynomial factor (in the dimension n). See [BGV12] for more
details.

Brakerski’s Refinement. Brakerski [Bra12] showed a conceptually simpler version
of the BGV scheme, together with improvements in the complexity assumptions.
His construction does away with the need for the ladder of moduli and instead
works with a single modulus throughout. In essence, his construction highlights
the essential use of the modulus reduction technique, namely as a better way of
doing homomorphic multiplication. For more details, we refer the reader to his
work [Bra12].

Multi-key Homomorphism. In a homomorphic encryption scheme, we can com-
pute functions on (many) ciphertexts, all encrypted under the same key. We
need to go beyond this when working in a multi-user setting. Assume that Al-
ice and Bob store their encrypted medical records in the cloud. Of course, they
use independent public / private key pairs since they do not trust each other.
How can the cloud compute a joint function on both their inputs, encrypted un-
der different keys? Lopéz-Alt, Tromer and Vaikuntanathan [LTV12] introduce



8 V. Vaikuntanathan

the notion of multi-key homomorphic encryption where an evaluator can com-
pute any function on inputs encrypted under multiple unrelated public keys.
Of course, Alice and Bob have to cooperate in order to decrypt the evaluated
ciphertext. They showed a construction of multi-key FHE, based on the NTRU
encryption scheme [HPS98] and leveraging the techniques in [BGV12].

4 Applications of Fully Homomorphic Encryption

Aside from the multitude of scenarios where it is beneficial to keep all data
encrypted and to perform computations on encrypted data, fully homomorphic
encryption has been used to solve a number of other problems in cryptography.
We briefly describe a number of such problems.

4.1 Verifiably Outsourcing Computation

While fully homomorphic encryption enables a client to privately outsource the
computation of any function to a server, it does not provide any correctness
guarantees whatsoever. In particular, the server could potentially compute a
different function on the client’s encrypted input, without the client noticing it.
Indeed, a practical concern is that cloud computing services have the financial
incentive to perform a much cheaper (and incorrect!) computation than what
the client outsourced, especially if they can get away with it undetected. Verifi-
able Computation (VC) is the problem of outsourcing computation to a server
where the client can verify the correctness of the answer, without spending much
computational effort. Ideally, we like this process to be non-interactive, namely,
we allow a message from the client to the server communicating his input (and
perhaps additional information) and a second message back from the server to
communicate the result of the computation together with a “proof” that the
computation was performed correctly.

Verifiability and Privacy in the setting of outsourcing computation seem to
be orthogonal constraints. Yet, Gennaro, Gentry and Parno [GGP10] and sub-
sequently, Chung, Kalai and Vadhan [CKV10] showed how to use fully homo-
morphic encryption in an essential way to construct a non-interactive verifiable
computation protocol for any function. In their protocol, the verifier is efficient
in an amortized sense. Namely, the prover and the verifier run an expensive
pre-processing phase which they can then re-use for polynomially many protocol
executions. Thus, even though the off-line computational cost of the verifier is
large, this is amortized by many executions in which his per-execution on-line
cost is small (in particular, independent of the complexity of the function).

We refer the reader to [GGP10, CKV10, AIK10] for details on these solutions,
and [Mic00, GKR08, Rot09] for other related work on this problem.

4.2 Short Non-Interactive Zero-Knowledge Proofs

In a non-interactive zero-knowledge (NIZK) proof system [BFM88, FLS99] for
an NP language (say, Circuit SAT), a prover and a verifier have a Boolean
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circuit C on n variables, and the prover wishes to convince the verifier that
there is a satisfying input to C, namely an input x such that C(x) = 1, without
revealing any (more) information about x itself. NIZK proof systems have been
extremely useful in constructing various fundamental cryptographic primitives
such as secure signatures [BG89] and public-key encryption schemes that resist
chosen ciphertext (CCA) attacks [NY90, RS91, DDN00].

In all the known constructions of non-interactive zero-knowledge proof sys-
tems [BFM88, FLS99, GOS06b, GOS06a], the size of the proof is poly(|C|, |x|),
which is rather large compared to the size of the (non zero-knowledge)NP proof,
namely the witness x itself. A natural question to ask is: can we design NIZK
proof systems where the size of the proof depends only on the size of the witness
(namely, x) and not on the size of the statement (namely, C)? Fully Homomor-
phic Encryption provides an affirmative answer to this question, as noted by
Gentry [Gen09a].

In a nutshell, the idea is that FHE reduces the problem of constructing a NIZK
proof for Circuit SAT to constructing a NIZK proof for a “simpler” language.
The prover chooses the public key pk for an FHE scheme, prepares encryptions
ψi ← FHE.Enc(pk, xi) of the bits of the satisfying assignment x, and constructs
ψ∗ = FHE.Eval(evk, C, ψ1, . . . , ψn). The task of the prover is now reduced to
constructing a NIZK proof π∗ to show that ψ∗ is an encryption of 1 together
with proofs πi that the input encryptions ψi are well-formed, all of which are
statements whose size is independent of the size of the circuit C. The proof
consists of ψ1, . . . , ψn together with (π1, . . . , πn, π

∗). The verifier, upon receipt of
the entire proof, checks the NIZK proofs of well-formedness π1, . . . , πn, computes
ψ∗ = FHE.Eval(evk, C, ψ1, . . . , ψn) and then checks the NIZK proof π∗. Note
that this procedure crucially relies on the fact that the homomorphic evaluation
algorithm FHE.Eval is deterministic.

4.3 Other Applications

Another important application of FHE schemes is in constructing efficient and
minimally interactive secure multi-party computation (MPC) protocols where,
in addition, the burden of the computation rests on a designated party (called
the “cloud”), and the rest of the parties (called the “clients”) do very little by
way of computation. Asharov et al. [AJLA+12] showed how to obtain an efficient
MPC protocol of this form by leveraging a key homomorphism property of the
schemes of [BV11b, BV11a, BGV12].

Other applications of fully homomorphic encryption include Private Infor-
mation Retrieval (PIR) schemes [OS07, Gen09a, BV11b], Proxy Re-encryption
[Gen09a], Key Dependent Message (KDM)-secure encryption schemes [App11],
leakage-resilient cryptography [JV10], Oblivious RAMs [GO96] and One-time
Programs [GKR08]. We refer the reader to the original papers for more details.
Some of these applications do not require the full power of FHE – for PIR,
it is sufficient to have a somewhat homomorphic encryption scheme capable of
evaluating simple database indexing functions.
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5 Open Problems and Future Directions

The study of fully homomorphic encryption has led to a number of new and
exciting concepts and questions, as well as a powerful tool-kit to address them.
We conclude this survey by describing a number of research directions related
to FHE and more generally, the problem of computing on encrypted data.

5.1 Can Fully Homomorphic Encryption Be Practical?

While Gentry’s original construction was viewed as being impractical, recent
constructions and implementation efforts have drastically improved the efficiency
of fully homomorphic encryption. The initial implementation efforts focused on
Gentry’s original scheme and its variants [SV10, GH11b, SV11, CMNT11] which
seemed to pose rather inherent efficiency bottlenecks. Later implementations
leverage the recent algorithmic advances [BV11a, BV11b, BGV12] that result
in asymptotically better FHE systems, as well as new algebraic techniques to
improve the concrete efficiency of these schemes [NLV11, GHS11, SV11].

A significant hurdle to the practicality of fully homomorphic encryption is
that it is designed to work with a circuit model of computation and is inherently
not suited to work with uniform models such as Turing machines and RAM
machines. To illustrate this, assume that you are given an encryption of a positive
integer x and you are asked to homomorphically compute the following program
on Enc(x): “while (x< 106) x++;”. The techniques we have at our disposal
require us to flatten this program into a circuit resulting in a huge blow-up in
size.

The problem is conceptually even deeper than this. Consider, instead, the
program “while (x< 106) // do nothing”. Depending on the value of x, this
computation either terminates immediately or does not terminate at all. The
question, then, is – given an encrypted x, how long will you run the computation?
The fundamental source of difficulty is the existence of data-dependent loops in
general programs. Clearly, the process of running a programwith data-dependent
loops on an encrypted input in an effective way leaks some information about
the input. In this case, it is the information on whether x < 106 or not. The
question is, can we define and achieve the minimal information that we have to
leak to perform effective homomorphic computations.

5.2 FHE from Other Assumptions

The state of the art (non-leveled) FHE schemes rely on the bootstrapping tech-
nique and consequently, some form of the circular security assumption. A central
question in this area is whether such an assumption is in fact necessary.

All the constructions of fully homomorphic encryption to date derive their se-
curity from the hardness of various lattice problems. Can we build FHE schemes
from the traditional number theoretic machinery? Are there FHE schemes whose
security can be based on the hardness of factoring? How about the hardness of
computing discrete logarithms? At the time of this writing, we do not have any
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hint as to whether such constructions are possible, or whether there are inherent
limitations. We believe this is a very interesting avenue to pursue.

Yet another interesting question along these lines is to determine what sort of
FHE schemes can be based on “general assumptions”. Private Information Re-
trieval seems intimately connected to FHE schemes. In particular, PIR schemes
can be used to homomorphically evaluate decision trees. A special type of (com-
munication efficient) PIR scheme was used by Ishai and Paskin [IP07] to ho-
momorphically evaluate branching programs. Furthermore, it is easy to see that
PIR gives us an inefficient homomorphic encryption scheme for arbitrary func-
tions. This is because one could write down the truth table of any function, treat
it as a database and use a PIR scheme to retrieve the appropriate entry of the
database. These observations point to a deeper connection between these two
primitives, which we believe is worth exploring.

5.3 Non-malleability and Homomorphic Encryption

Homomorphism and Non-malleability are antipodal properties of an encryption
scheme. Homomorphic encryption schemes permit anyone to transform an en-
cryption of a message m into an encryption of f(m) for non-trivial functions
f . Non-malleable encryption, on the other hand, prevents precisely this sort of
thing – it requires that no adversary be able to transform an encryption of m
into an encryption of any “related” message. In reality, what we need is a com-
bination of both properties that selectively permit homomorphic computations.
Namely, the evaluator should be able to homomorphically compute any function
from some pre-specified class Fhom, yet she should not be able to transform an
encryption ofm into an encryption of f(m) for any f /∈ Fhom. Thus, the question
is: Can we control what is being (homomorphically) computed?

Formalizing this notion turns out to be tricky. Boneh, Segev and Waters
[BSW12] propose the notion of targeted malleability – a candidate formalization
of such a requirement – as well as constructions of such encryption schemes.
Their encryption scheme is based on a strong “knowledge of exponent-type”
assumption, and allows iterative evaluation of at most t functions, where t is
a pre-specified constant. Improving their construction as well as the underlying
complexity assumptions is an important open problem.

Furthermore, it is interesting to extend the definition of non-malleability to
allow for chosen ciphertext attacks. Consider, for example, implementing an en-
crypted targeted advertisement system that generates advertisements depending
on the contents of a user’s e-mail. Since the e-mail is stored encrypted (with the
user’s public key), the e-mail server performs a homomorphic evaluation and
computes an encrypted advertisement to be sent back to the user. The user de-
crypts it, and performs an action depending on what she sees. Namely, if the
advertisement is relevant, she might choose to click on it, but otherwise, she will
ignore it. Now, if the e-mail server is privy to this information, namely whether
the user clicked on the ad or not, they can use this as a restricted ”decryption
oracle” to break the security of the user’s encryption scheme and perhaps even
recover her secret key. Such attacks are ubiquitous whenever we compute on
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encrypted data, almost to the point that CCA security seems like a necessity.
Yet, it is easy to see that chosen ciphertext secure (CCA2-secure) homomorphic
encryption schemes cannot exist. To resolve this conundrum, we need an appro-
priate definition of security “CCA2-like” security for homomorphic encryption
and constructions that achieve the definition.

5.4 FHE and Functional Encryption

Homomorphic encryption schemes permit anyone to evaluate functions on en-
crypted data, but the evaluators never see any information about the result. Is is
possible to construct an encryption scheme where a user can compute f(m) in the
clear from an encryption of a message m, but she should learn no other informa-
tion aboutm (including the intermediate results in the computation of f)? Thus,
the question is: Can we control what the evaluator can see? Such an encryption
scheme is called a functional encryption scheme, first defined by Sahai and Wa-
ters [SW05] and explored in a number of works ([KSW08, BSW12, AFV11] and
many others). Although these constructions work for several interesting families
of functions (such as monotone formulas and inner products), constructing a
fully functional encryption scheme is wide open.

More generally, what we need is a new, broad vision for encryption systems that
provide us with fine-grained control over what one can see and what one can
compute on data.
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Abstract. In this talk, we show some interesting relations between the
problem of attacking multiple encryption schemes and attacking knap-
sack systems. The underlying relation, of problems of a bicomposite na-
ture, allows introducing a series of algorithms for the dissection of these
problems, thus offering significantly better time/memory tradeoffs than
previously known algorithms.

For the case of finding the keys used in a multiple-encryption scheme
with r independent n-bit keys, previous error-free attacks required time
T and memory M satisfying TM = 2rn. Our new technique yields the
first algorithm which never errs and finds all the possible keys with a
smaller product of TM (e.g., for 7-encryption schemes in time T = 24n

and memory M = 2n). The improvement ratio we obtain increases in
an unbounded way as r increases, and if we allow algorithms which can
sometimes miss solutions, we can get even better tradeoffs by combining
our dissection technique with parallel collision search (offering better
complexities than the parallel collision search variants).

After discussing multiple encryption, we show that exactly the same
algorithm can be used to offer attacks on knapsacks, which work for any
knapsack, that offer the best known time-memory tradeoff curve. This
algorithm can be used to handle also more general types of knapsacks, in-
volving a combination of modular additions, XORs, and any T-functions.
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Abstract. We develop a new methodology to assess cryptographic key
strength using cloud computing, by calculating the true economic cost
of (symmetric- or private-) key retrieval for the most common crypto-
graphic primitives. Although the present paper gives both the current
(2012) and last year’s (2011) costs, more importantly it provides the tools
and infrastructure to derive new data points at any time in the future,
while allowing for improvements such as of new algorithmic approaches.
Over time the resulting data points will provide valuable insight in the
selection of cryptographic key sizes.1

1 Introduction

An important task for cryptographers is the analysis and recommendation of pa-
rameters, crucially including key size and thus implying key strength, for cryp-
tographic primitives; clearly this is of theoretic and practical interest, relating
to the study and the deployment of said primitives respectively. As a result,
considerable effort has been, and is being, expended with the goal of providing
meaningful data on which such recommendations can be based. Roughly speak-
ing, two main approaches dominate: use of special-purpose hardware designs, in-
cluding proposals such as [15,16,38,39] (some of which have even been realised),
and use of more software-oriented (or at least less bespoke) record setting com-
putations such as [4,5,13,18]. The resulting data can then be extrapolated using
complexity estimates for the underlying algorithms, and appropriate versions of
Moore’s Law, in an attempt to assess the longevity of associated keys. In [20]
this results in key size recommendations for public-key cryptosystems that of-
fer security comparable to popular symmetric cryptosystems; in [24] it leads to
security estimates in terms of hardware cost or execution time. Existing work
for estimating symmetric key strengths (as well as other matters) is discussed in
[40].

It is not hard to highlight disadvantages in these approaches. Some special-
purpose hardware designs are highly optimistic; they all suffer from substantial
upfront costs and, as far as we have been able to observe, are always harder

1 We see this as a living document, which will be updated as algorithms, the Amazon
pricing model, and other factors change. The current version is V1.1 of May 2012;
updates will be posted on http://www.cs.bris.ac.uk/~nigel/Cloud-Keys/

S. Galbraith and M. Nandi (Eds.): INDOCRYPT 2012, LNCS 7668, pp. 17–39, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.cs.bris.ac.uk/~nigel/Cloud-Keys/
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to get to work and use than expected. On the other hand, even highly spec-
ulative designs may be useful in exploring new ideas and providing insightful
lower bounds. Despite being more pragmatic, software-oriented estimates do not
necessarily cater adequately for the form or performance of future generations
of general-purpose processors (although so far straightforward application of
Moore’s Law is remarkably reliable, with various dire prophecies, such as the
“memory wall”, not materialising yet). For some algorithms, scaling up effort
(e.g., focusing on larger keys) requires no more than organisational skill com-
bined with patience. Thus, record setting computation that does not involve
new ideas may have little or no scientific value: for the purposes of assessing key
strength, a partial calculation is equally valuable. For some other algorithms,
only the full computation adequately prepares for problems one may encounter
when scaling up, and overall (in)feasibility may thus yield useful information.
Finally, for neither the hardware- nor software-oriented approach, is there a uni-
form, or even well understood, metric by which “cost” should be estimated. For
example, one often overlooks the cost of providing power and cooling, a foremost
concern for modern, large-scale installations.

Despite these potential disadvantages and the fact that papers such as [20]
and [24] are already a decade old, their results have proved to be quite resilient
and are widely used. This can be explained by the fact that standardisation of
key size requires some sort of long term extrapolation: there is no choice but to
take the inherent uncertainty and potential unreliability for granted. In this pa-
per we propose to complement traditional approaches, using an alternative that
avoids reliance on special-purpose hardware, one time experiments, or record cal-
culations, and that adopts a business-driven and thus economically relevant cost
model. Although extrapolations can never be avoided, our approach minimises
their uncertainty because whenever anyone sees fit, he/she can use commodity
hardware to repeat the experiments and verify and update the cost estimates.
In addition we can modify our cost estimates as our chosen pricing mechanism
alters over time.

The current focus on cloud computing is widely described as a significant long-
term shift in how computing services are delivered. In short, cloud computing
enables any party to rent a combination of computational and storage resources
that exist within managed data centers; the provider we use is the Amazon Elas-
tic Compute Cloud [3], however others are available. The crux of our approach
is the use of cloud computing to assess key strength (for a specific cryptographic
primitive) in a way that provides a useful relationship to a true economic cost.
Crucially, we rely on the fact that cloud computing providers operate as busi-
nesses: assuming they behave rationally, the pricing model for each of their
services takes into account the associated purchase, maintenance, power and re-
placement costs. In order to balance reliability of revenue against utilisation, it
is common for such a pricing model to incorporate both long-term and supply
and demand driven components. We return to the issue of supply and demand
below, but for the moment assume this has a negligible effect on the longer-term
pricing structure of Amazon in particular. As a result, the Amazon pricing model
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provides a valid way to attach a monetary cost to key strength. A provider may
clearly be expected to update their infrastructures and pricing model as tech-
nology and economic conditions dictate; indeed we show the effact of this over
the last 18 months or so. However, by ensuring our approach is repeatable, for
example using commodity cloud computing services and platform-agnostic soft-
ware (i.e., processor non-specific), we are able to track results as they evolve over
time. We suggest this, and the approach as a whole, should therefore provide a
robust understanding of how key size recommendations should be made.

In Section 2 we briefly explain our approach and those aspects of the Amazon
Elastic Compute Cloud that we depend on. In Section 3 we describe our analysis
applied to a number of cryptographic primitives, namely DES, AES, SHA-2, RSA
and ECC. Section 4 and Section 5 contains concluding remarks. Throughout, all
monetary quantities are given in US dollars.

2 The Amazon Elastic Compute Cloud

Amazon Elastic Compute Cloud (EC2) is a web-service that provides computa-
tional and storage resource “in the cloud” (i.e., on the Internet) to suit the specific
needs of each user. In this section we describe the current (per May 2012) EC2
hardware platform and pricing model, and compare it with the previous (per Feb
2011) pricing model, from a point of view that is relevant for our purposes.

EC2 Compute Units. At a high level, EC2 consists of numerous installations
(or data centers) each housing numerous processing nodes (a processor core with
some memory and storage) which can be rented by users. In an attempt to qualify
how powerful a node is, EC2 uses the notion of an EC2 Compute Unit, or ECU
for short. One ECU provides the equivalent computational capacity of a 1.0-1.2
GHz Opteron or Xeon processor circa 2007, which were roughly state of the art
when EC2 launched. When new processors are deployed within EC2, they are
given an ECU-rating; currently there are at least four different types of core,
rated at 1, 2, 2.5 and 3.25 ECUs. The lack of rigour in the definition of an ECU
(e.g., identically clocked Xeon and Opteron processors do not have equivalent
computational capacity) is not a concern for our purposes.

Instances. An instance refers to a specified amount of dedicated compute ca-
pacity that can be purchased: it depends on the processor type (e.g., 32- or
64-bit), the number of (virtualised) cores (1, 2, 4 or 8), the ECU-rating per
core, memory and storage capacity, and network performance. There are cur-
rently thirteen different instances, partitioned into the instance types termed
“standard” (std), “micro”, “high-memory” (hi-m), “high-CPU” (hi-c), “cluster
compute” (cl-C), and “cluster GPU” (cl-G). The later two cluster types are in-
tended for High Performance Computing (HPC) applications, and come with 10
Gb ethernet connections; for all other instance types except micro, there are two
or three subinstances of different sizes, indicated by “Large (L)”, “Extra Large
(EL)” and so on. Use of instances can be supported by a variety of operating
systems, ranging from different versions of Unix and Linux through to Windows.
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Pricing Model. Instances are charged per instance-hour depending on their
capacity and the operating system used. In 2007 this was done at a flat rate of
$ 0.10 per hour on a 1.7 GHz processor with 1.75 GB of memory [1]; in 2008 the
pricing model used ECUs charged at the same flat rate of $ 0.10 per hour per
ECU [2]. Since then the pricing model has evolved [3]. Currently, instances can be
purchased at three different price bands, “on-demand”, “reserved” and “spot”,
charged differently according to which of four different geographic locations one
is using (US east coast, US west coast, Ireland or Singapore).

On-demand pricing allows purchase of instance-hours as and when they are
needed. After a fixed annual (or higher three year) payment per instance, re-
served pricing is significantly cheaper per hour than on-demand pricing: it is
intended for parties that know their requirements, and hence can reserve them,
ahead of when they are used. Spot pricing is a short-term, market determined
price used by EC2 to sell off unused capacity. In 2012, the “reserved” instances
(which is of more interest for our purposes) were further divided into light,
medium and heavy utilization bands), and discount of at least 20% is available
for those spending at least two million dollars or more.

Table 1. Instance Technical Specifications

Instance cores
ECUs total M2050 RAM

per core ECUs GPUs GB

standard L 2 2 4 0 7.5
high-memory EL 2 3.25 6.5 0 17.1
high-CPU EL 8 2.5 20 0 7
cluster compute

(not specified)
33.5 0 23

cluster GPU 33.5 2 22

For all instances and price bands, Windows usage is more expensive than
Linux/Unix and is therefore not considered. Similarly, 32-bit instances are not
considered, because for all large computing efforts and price bands 32-bit cores
are at least as expensive as 64-bit ones. To enable a longitudinal study we restrict
to the five remaining relevant instances which were available in both 2011 and
2012, and which are most suited to our needs. In Table 1 we present the technical
specification of these instances.

Table 2 lists the current pricing of the relevant remaining instances in both
Feb 2011 and Feb 2012, of which k-fold multiples can be purchased at k times the
price listed, for any positive integer k. Although of course there is a clear upper
bound on k due to the size of the installation of the cloud service. To simplify
our cost estimate we ignore this upper bound, and assume that the provider will
provide more capacity (at the same cost) as demand increases. One thing is clear
is that prices have dropped over the preceeding twelve months, the question is
by how much. Separate charges are made for data transfer and so on, and the
table does not take into account the 20% discount for large purchases.
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Table 2. February 2011 and 2012 US east coast instance pricing, in US dollars, using
64-bit Linux/Unix

Instance
2011 2012

on-dem. reserved on-dem. reserved
per fixed payment per hour per fixed payment per hour
hour 1 yr 3 yr 1 yr 3 yr hour 1 yr 3 yr 1 yr 3 yr
δ α τ ε1 ε2 δ α τ ε1 ε2

std L $0.34 $910 $1400 $0.120 $0.120 $0.32 $780 $1200 $0.060 $0.052
hi-m EL $0.50 $1325 $2000 $0.170 $0.170 $0.45 $1030 $1550 $0.088 $0.070
hi-c EL $0.68 $1820 $2800 $0.240 $0.240 $0.66 $2000 $3100 $0.160 $0.140
cl-C $1.60 $4290 $6590 $0.560 $0.560 $1.30 $4060 $6300 $0.297 $0.297
cl-G $2.10 $5630 $8650 $0.740 $0.740 $2.10 $6830 $10490 $0.494 $0.494

With, for a given instance, δ, α, τ , ε1, ε3 the four pricing parameters as
indicated in Table 2 and using Y for the number of hours per year, it turns out
that we have

1.962(τ + 3ε3Y ) < 3δY < 2.032(τ + 3ε3Y ) (2011 prices)
2.351(τ + 3ε3Y ) < 3δY < 3.489(τ + 3ε3Y ) (2012 prices)

}
(1)

That is, for any instance using on-demand pricing continuously for a three year
period was approximately two times (now three times) as expensive as using
reserved pricing with a three year term for the entire three year period. Further-
more, for all instances reserved pricing for three consecutive (or parallel) annual
periods was approximately 1.3 times (now 1.5 times) as expensive as a single
three year period:

1.292(τ + 3ε3Y ) < 3(α+ ε1Y ) < 1.305(τ + 3ε3Y ) (2011 prices)
1.416(τ + 3ε3Y ) < 3(α+ ε1Y ) < 1.594(τ + 3ε3Y ) (2012 prices)

}
(2)

There are more pricing similarities between the various instances. Suppose that
one copy of a given instance is used for a fixed number of hours h. We assume
that h is known in advance and that the prices do not change during this period
(cf. remark below on future developments). Which pricing band(s) should be
used to obtain the lowest overall price depends on h in the following way. For
small h use on-demand pricing, if h is larger than a first cross-over point γα but
at most one year, reserved pricing with one year term must be used instead.
Between one year and a second cross-over point γτ one should use reserved
pricing with one year term for a year followed by on-demand pricing for the
remaining h− Y hours, but for longer periods up to three years one should use
just reserved pricing with a three year term. After that the pattern repeats. This
holds for all instances, with the cross-over values varying little among them, as
shown below.

The first cross-over value γα satisfies δγα = α + ε1γα and thus γα = α
δ−ε1

.

The second satisfies α+ ε1Y + δ(γτ −Y ) = τ + ε3γτ and thus γτ = (δ−ε1)Y+τ−α
δ−ε3

.
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For the 2011 prices we find γα ≈ 4100 and γτ ≈ Y + 2200 in all price instances.
But for 2012 there is more variation between the cut-off points.

Our Requirements and Approach. For each cryptographic primitive studied,
our approach hinges on the use of EC2 to carry out a negligible yet representative
fraction of a certain computation. Said computation, when carried to completion,
should result in a (symmetric- or private-) key or a collision depending on the
type of primitive. For DES, AES, and SHA-2 this consists of a fraction of the
symmetric-key or collision search, for RSA it is small parts of the sieving step and
the matrix step of the Number Field Sieve (NFS) integer factorisation method,
and for ECC it is a small number of iterations of Pollard’s rho method for the
calculation of a certain discrete logarithm.

Note that in each case, the full computation would require at least many thou-
sands of years when executed on a single core2. With the exception of the NFS
matrix step and disregarding details, each case allows embarrassing parallelisa-
tion with only occasional communication with a central server (for distribution
of inputs and collection of outputs). With the exception of the NFS sieving and
matrix steps, memory requirements are negligible. Substantial storage is required
only at a single location. As such, storage needs are thus not further discussed.
Thus, modulo details and with one exception, anything we could compute on a
single core in y years, can be calculated on n such cores in y/n years, for any
n > 0.

Implementing a software component to perform each partial computation on
EC2 requires relatively little upfront cost with respect to development time. In
addition, execution of said software also requires relatively little time (compared
to the full computation), and thus the partial computation can be performed
using EC2’s most appropriate pricing band for short-term use; this is the only
actual cost incurred. Crucially, it results in a reliable estimate of the number of
ECU years, the best instance(s) for the full computation, and least total cost (as
charged by EC2) to do so (depending on the desired completion time). Obviously
the latter cost(s) will be derived using the most appropriate applicable long-term
pricing band.

Minimal Average Price. Let μ(h) denote the minimal average price per hour
for a calculation that requires h hours using a certain fixed instance. Then we
have

μ(h) =

⎧⎪⎪⎨⎪⎪⎩
δ for 0 < h ≤ γα (constant global maximum)
α
h + ε for γα < h ≤ Y (with a local minimum at h = Y )
α+εY+(h−Y )δ

h for Y < h ≤ γτ (with a local maximum at h = γτ )
τ
h + ε for γτ < h ≤ 3Y (with the global minimum at h = 3Y ).

For h > 3Y the pattern repeats, with each three year period consisting of four
segments, reaching decreasing local maxima at h = 3kY + γα, decreasing local

2 The processor type can be left unspecified but quantum processors are excluded; to
the best of our knowledge and consistent with all estimates of the last two decades,
it will always take at least another decade before such processors are operational.
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minima at h = 3kY + Y , decreasing local maxima at h = 3kY + γτ , and the
global minimum at h = 3kY + 3Y , for k = 1, 2, 3, . . .. For all relevant instances,
Figure 1 depicts the graphs of the minimal average prices for periods of up to
six years, per ECU, in both 2011 and 2012.
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Fig. 1. Feb 2011 (top) and Feb 2012 (bottom) minimal average prices per hour per
ECU, in US dollars, as a function of the number of years required by the calculation.

Consequences. Given the embarrassingly parallel nature and huge projected
execution time of each full computation, the above implies that we can always
reach lowest (projected) cost by settling for a three year (projected) completion
time. Faster completion would become gradually more expensive until comple-
tion time τ

αY > Y is reached3, at which point one should switch right away to
a shorter completion time of one year; faster than one year again becomes grad-
ually more expensive until γα is reached, at which point the cost has reached

3 Note that τ
α
≈ 1.5, so τ

α
Y is about a year and a half for all instances.
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its (constant) maximum and the completion time is only limited (from below)
by the number of available on-demand copies of the required instance. We stress
yet again that this all refers to projected computation, none of which is actu-
ally completed: all we need is an estimate of the cost of completion, possibly
depending on the desired completion time.

Thus assume that using a certain fixed EC2-instance, a full-scale security as-
sessment is expected to take y years for a y that will be at least many thousands.
The full computation can be completed using that instance by purchasing about
y/3 copies of it using reserved pricing with a three year term, and to use each
copy for the full three year period. Whether or not this (i.e., doing this full com-
putation over the three year period) is also optimal for that instance depends
on issues beyond our control (such as changed pricing and inflation) and is com-
mented on below. Using the same instance, the entire calculation can also be
completed in one year at ≈ 1.5 (resp. ≈ 1.3 for 2011 prices) times higher cost
(cf. Inequalities (2)), or at three times (resp. double) the cost in an arbitrarily
short period of time (assuming enough copies of the instance are available in
EC2, cf. Inequality (1)).

With all instances behaving so similarly over time for the different price bands,
the best instance for a particular calculation is selected by taking the one with
the lowest hourly rate per ECU as long as it provides adequate memory and
network bandwidth per core. From Table 2 and the description of our needs, it
follows that the high-CPU EL instance will be most useful to us: using EC2 for
a computation that is estimated to require y ECU years for some large y will
cost about $ 0.66yY

2.5·20 ≈ 115y (resp. $ 0.68yY
2·20 ≈ 150y) (cf. Inequality (1)) if we can

afford to wait three years until completion. Completing it in a year will cost
about $ 170y (resp. $ 195y) (cf. Inequality (2)), and doing it as fast as possible
will cost $ 290y (resp. $ 300y) (cf. Inequality (1)).

In a similar fashion we derive costs $ 1.30yY
2.4·33.5 ≈ 140y, $ 210y and $ 340y (resp.

$ 210y, $ 272y and $ 420y) for a y ECU year calculation done in three years,
one year, and “ASAP”, respectively, using EC2 cluster-compute instances, and
costs $ 0.45yY

3.4·6.5 ≈ 180, $ 270y and $ 605y (resp. 340y, $ 440y and $ 675y) for high-
memory EL instances. Thus, cluster compute and high-memory EL instances are
approximately 20% and 50%-100% (resp. 40% and 120% for 2011 prices) more
expensive than high-CPU EL instances. Note we have not in the above taken
into account the 20% discount for large usage of reserved instances in the 2012
prices.

Accommodating Future Developments. As one can see prices and pricing
models will change over time, and so may security assessment strategies and their
interaction with advances in processor design and manufacture. In particular,
one could imagine that if a party decided to use the Amazon cloud for key
recovery or collision search then the increase in demand would induce Amazon
to increase the instance costs. However, we assume that the effect of such supply
and demand on the pricing is relatively constant over a long period of time.
Thus, we assume the non-spot prices are a relatively accurate reflection of the
actual economic cost to Amazon (bar a marginal profit) of providing the service.
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The cost estimates produced by our approach are valid at the moment they
are calculated (in the way set forth above), but cannot take any future devel-
opments into account. However, this problem can be mitigated by adopting an
open source model for the software components and using (as far as is sensi-
ble) platform-agnostic programming techniques; for example, this permits the
software to maintain alignment with the latest algorithmic and processor devel-
opments, and to add or remove primitives as and when appropriate (cf. [37]).
Almost all our test software used has been made available on a web-site which
will be updated, as years pass by, with the latest costs:

http://www.cs.bris.ac.uk/~nigel/Cloud-Keys/

EC2 versus Total Cost of Ownership (TCO). The approach set forth above
associates a monetary cost to key strength, but does so at negligible actual
cost; this is useful for many purposes. However, no key recovery nor collision
is completed. The question remains, if one desires to complete a computation,
whether doing so on EC2 is less expensive than acquiring a similar platform and
operating it oneself.

TCO includes many costs that are hard to estimate. Nevertheless, the fol-
lowing may be useful. At moderate volume, a dual node server with two pro-
cessors, each with twelve 1.9 GHz cores, and 32 GB of memory per node can
be purchased for approximately $ 8000. This implies that at that fixed cost ap-
proximately 2 · 2 · 12 · 1.9 = 91.2 ECUs with 1 1

3 GB of memory per core can be
purchased. At $ 20

91.2 · 8000 ≈ 1750 per 20 ECUs this compares favourably to the
fixed three year payment τ = 3100 for the 20 ECUs of EC2-instance high-CPU
EL. Power consumption of the above server is estimated to be bounded by 600
Watts. Doubling this to account for cooling and so on, we arrive at approxi-
mately 265 Watts for 20 ECUs, thus about a quarter kWh. At a residential rate
of $ 0.25 per kWh we find that running our own 20 ECUs for three years costs
us $ 1750 + 3Y 265

1000 · 0.25 ≈ 3500, as opposed to $ 3100 + 3Y · 0.16 ≈ 7304 for
EC2’s high-CPU EL.

Although in low-volume such a server could be supported without additional
infrastructure, in high-volume they require a data center and maintenance per-
sonnel; this also implies lower electricity rates and quantum discount for acqui-
sition however. Given expected cost and lifespan of infrastructures and salary
costs, it is not unreasonable to estimate that TCO is at most one half of the cost
of EC2. We conclude that full computations are still best conducted on one’s
own equipment.

3 Results

In this section we detail the application of our approach to five different cryp-
tographic primitives: the block ciphers DES and AES, the cryptographic hash
function SHA-2, and the public-key cryptosystems RSA and ECC. The first is
chosen for historic reasons, whilst the others are the primitives of choice in many
current applications.

http://www.cs.bris.ac.uk/~nigel/Cloud-Keys/
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For each of the five primitives, the fastest methods to recover the symmetric-
key (DES and AES), to find a collision (SHA-2), or to derive the private-key
(RSA and ECC) proceed very similarly, though realised using entirely different
algorithms. In each algorithm, a huge number of identical computations are per-
formed on different data; they can be carried out simultaneously on almost any
number (and type) of client cores. With one exception (the NFS matrix step,
as alluded to above), each client operates independently of all others, as long
as there are central servers tasked with distributing inputs to clients and col-
lecting their outputs. Furthermore, for each client the speed at which inputs are
processed (and outputs produced, if relevant) is constant over time: a relatively
short calculation per type of client along with a sufficiently accurate estimate of
the number of inputs to be processed (or outputs to be produced, if relevant)
suffices to be able to give a good indication of the total computational effort
required.

The client-server approach has been common in a cryptographic context
since the late 1980s, originally implemented using a variety of relatively crude
application-specific, pre-cloud approaches [9,23] (that continue to the present
day [5,19]), and later based on more general web-based services such as [8] that
support collaborative compute projects (such as [28]). Thus, for each primitive
under consideration, the problem of managing the servers is well understood.
Additionally, the computational effort expended by said servers is dwarfed by
the total computation required of the clients. As a result, in this section we
concentrate on a series of experiments using the client software only: for each
primitive, we execute the associated client software for a short yet representative
period of time on the most appropriate on-demand EC2 instance, use the results
to extrapolate the total key retrieval cost using the corresponding reserved EC2
instance, and relate the result to a discussion of prior work.

We implemented a software component to perform each partial computation
on EC2, focusing on the use of platform-agnostic (i.e., processor non-specific)
programming techniques via ANSI-C. In particular, we used processor-specific
operations (e.g., to cope with carries efficiently) only in situations where an
alternative in C was at least possible; in such cases we abstracted the operations
into easily replaceable macros or used more portable approaches such as compiler
intrinsics where possible. As motivated above, the goal of this was portability
and hence repeatability; clearly one could produce incremental improvements
by harnessing processor-specific knowledge (e.g., of instruction scheduling or
register allocation), but equally clearly these are likely to produce improvement
by only a (small) constant factor and may defeat said goal.

3.1 DES

We first examine DES (which is considered broken with current technology) to
provide a baseline EC2 cost against which the cost of other key retrieval efforts
can be measured.

Prior Work. As one of the oldest public cryptographic primitives, DES has had
a considerable amount of literature devoted to its cryptanalysis over the years.
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Despite early misgivings and suspicions about its design and the development of
several new cryptanalytic techniques, the most efficient way to recover a single
DES key is still exhaustive search. This approach was most famously realised by
Deep Crack developed by the EFF [15]. Designed and built in 1998 at a cost of
$ 200,000, this device could find a single DES key in 22 hours. Various designs,
often based on FPGAs, have been presented since specifically for DES key search.
The most famous of these is COPACOBANA [16], which at a cost of $ 10,000 can
perform single DES key search in 6.4 days on average. One can also extrapolate
from suitable high-throughput DES implementations. For example [34] presents
an FPGA design, which on a Spartan FPGA could perform an exhaustive single
DES key search in 9.5 years. Using this design, in [40][p. 19] it is concluded that
a DES key search device which can find one key every month can be produced
for a cost of $ 750. Alternatively, using a time-memory trade-off [33], one can do
a one-time precomputation at cost comparable to exhaustive key search, after
which individual keys can be found at much lower cost: according to [32] a DES
key can be found in half an hour on a $ 12 FPGA, after a precomputation that
takes a week on a $ 12,000 device.

DES Key Search. In software the most efficient way to implement DES key
search is to use the bit-sliced implementation method of Biham [6]. In our exper-
iments we used software developed by Matthew Kwan4 for the RSA-sponsored
symmetric-key challenge eventually solved by the DESCHALL project in 1997.
Our choice was motivated by the goal of using platform-agnostic software im-
plementations of the best known algorithms.

Given a message/ciphertext pair the program searches through all the keys
trying to find the matching key. On average one expects to try 255 keys (i.e.,
one half of the key space) until a match is found. However in the bit-slice imple-
mentation on a 64-bit machine one evaluates DES on the message for 64 keys
in parallel. In addition there are techniques, developed by Rocke Verser for the
DESCHALL project, which allow one to perform an early abort if one knows
a given set of 64 keys will not result in the target ciphertext. For comparison
using processor extensions, we implemented the same algorithm on 128 keys in
parallel using the SSE instructions on the x86 architecture.

DES Key Search on EC2.Using EC2 we found that y, the expected number of
years to complete a DES calculation on a single ECU, was y = 97 using a vanilla
64-bit C implementation, and y = 51 using the 128-bit SSE implementation.
Combined with our prior formulae of $ 115y, $ 170y and $ 290y (resp. $ 150y,
$ 195y and $ 300y) for high-CPU EL instances, we estimate the cost of using
EC2 to recover a single DES key as in Table 3. The values are so low that the
Amazon bulk discount has not been applied, however we see that the cost of
obtaining a DES key over a three year period has fallen by 25% in the last year.
However, obtaining the DES key almost instantly has only fallen by 5%.

In comparing these to earlier figures for special-purpose hardware, one needs
to bear in mind that once a special-purpose hardware device has been designed

4 Available from http://www.darkside.com.au/bitslice/

http://www.darkside.com.au/bitslice/
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Table 3. Cryptanalytic Strength of DES on EC2

ECU Estimated Key Retrieval Cost
Implementation 2011 Prices 2012 Prices

Technique Years 3 Years 1 Year ASAP 3 Years 1 Year ASAP

Vanilla C 97 $14,550 $18,915 $29,100 $11,155 $16,490 $28,130
SSE Version 51 $7,650 $9,945 $15,300 $5,865 $8,670 $14,790

and built, the additional cost of finding subsequent keys after the first one is
essentially negligible (bar the maintenance and power costs). Thus, unless time-
memory trade-off key search is used, the cost-per-key of specialised hardware
is lower than using EC2. We repeat that our thesis is that dedicated hardware
gives a point estimate, whereas our experiments are repeatable. Thus as long as
our costs are scaled by an appropriate factor to take into account the possibility
of improving specialised hardware, our estimates (when repeated annually) can
form a more robust method of determining the cost of finding a key.

We end with noting that whilst few will admit to using DES in any appli-
cation, the use of three-key triple DES (or 3DES) is widespread, especially in
the financial sector. Because the above cost underestimates the cost of 255 full
DES encryptions (due to the early abort technique), multiplying it by 2112 lower
bounds the cost for a full three-key 3DES key search (where the factor of 3 in-
curred by the three distinct DES calls can be omitted by properly ordering the
search).

3.2 AES

Prior Work. Since its adoption around ten years ago, AES has become the
symmetric cipher of choice in many new applications. It comes in three vari-
ants, AES-128, AES-192, and AES-256, with 128-, 192-, and 256-bit keys, re-
spectively. The new cipher turned out to have some unexpected properties in
relation to software side-channels [30], which in turn triggered the development
of AES-specific instruction set extensions [17]. Its strongest variant, AES-256,
was shown to have vulnerabilities not shared with the others [7]. These develop-
ments notwithstanding, the only known approach to recover an AES key is by
exhaustive search. With an AES-128 key space of 2128 this is well out of reach
and therefore it is not surprising that there seems little work on AES specific
hardware to realise a key search. One can of course extrapolate from efficient
designs for AES implementation. For example using the FPGA design in [41]
which on a single Spartan FPGA can perform the above exhaustive key search
in 4.6 · 1023 years, the authors of [40] estimate that a device can be built for
$ 2.8 · 1024 which will find an AES-128 key in one month.

AES Key Search on EC2. In software one can produce bit-slice versions of
AES using the extended instruction sets available on many new processors [25].
However, in keeping with our principle of simple code, which can be run on
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multiple versions of today’s computers as well as future computers, we decided
to use a traditional AES implementation in our experiments. We found the
estimated number of years y on a single ECU to finish a single AES computation
was y ≈ 1024. Using high-CPU EL instances our costs become (rounding to the
nearest order of magnitude) those give in Table 4.

Table 4. Cryptanalytic Strength of AES on EC2

Algorithm
ECU Estimated Key Retrieval Cost
Years 3 Years / 1 Year / ASAP

AES-128 1024 ≈ $1026

Again our comments for DES concerning the cost of specialised hardware
versus our own estimates apply for the case of AES, although in the present
case the estimates are more closely aligned. However, in the case of AES the
new Westmere 32nm Intel core has special AES instructions [17]. It may be
instructive to perform our analysis on the EC2 service, once such cores are
available on this service5. Whilst a 3-to-10 fold performance improvement for
AES encryption using Westmere has been reported; our own experiments on our
local machines only show a two fold increase in performance for key search.

3.3 SHA-2

Prior Work. The term SHA-2 denotes a family of four hash functions; SHA-
224, SHA-256, SHA-384 and SHA-512. We shall be concentrating on SHA-256
and SHA-512; the SHA-224 algorithm only being introduced to make an algo-
rithm compatible with 112-bit block ciphers and SHA-384 being just a truncated
version of SHA-512. The three variants SHA-256, SHA-384 and SHA-512 were
standardised by NIST in 2001, with SHA-224 being added in 2004, as part of
FIPS PUB 180-2 [26]. The SHA-2 family of algorithms is of the same algorithmic
lineage as MD4, MD5 and SHA-1.

Cryptographic hash functions need to satisfy a number of security properties;
for example preimage-resistance, collision resistance, etc. The property which
appears easiest to violate for earlier designs, and which generically is the least
costly to circumvent, is that of collision resistance. Despite the work on crypt-
analysis of the related hash functions MD4, MD5 and SHA-1 [43,44,45,46,42],
the best known methods to find collisions for the SHA-2 family still are the
generic ones. Being of the Merkle-Damg̊ard family each of the SHA-2 algorithms
consists of a compression function, which maps b-bit inputs to h-bit outputs,
and a chaining method. The chaining method is needed to allow the hashing of
messages of more than b bits in length. The input block size b = 512 for SHA-256
but b = 1024 for SHA-384 and SHA-512. The output block size h is given by the
name of the algorithm, i.e., SHA-h.

5 As of April 2012 none of the 64-bit instances we ran on the EC2 service had the
Westmere 32nm Intel core on them.
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SHA-2 Collision Search. The best generic algorithm for collision search is
the parallel “distinguished points” method of van Oorschot and Wiener [29].
In finding collisions this method can be tailored in various ways; for example
one could try to obtain two meaningful messages which produce the same hash
collision. In our implementation we settle for the simplest, and least costly, of
all possible collision searches; namely to find a collision between two random
messages.

The collision search proceeds as follows. Each client generates a random ele-
ment x0 ∈ {0, 1}h and then computes the iterates xi = H(xi−1) where H is the
hash function. When an iterate xd meets a given condition, say the last 32-bits
are zero, we call the iterate a distinguished point. The tuple (xd, x0, d) is returned
to a central server and the client now generates a new value x0 ∈ {0, 1}h and
repeats the process. Once the server finds two tuples (xd, x0, d) and (yd′ , y0, d

′)
with xd = yd′ a collision in the hash function can be obtained by repeating the
two walks from x0 and y0.

By the birthday paradox we will find a collision in roughly
√
π · 2h−1 appli-

cations of H , with n clients providing an n-fold speed up. If 1/p of the elements
of {0, 1}h are defined to be distinguished then the memory requirement of the

server becomes O(
√
π · 2h−1/p).

SHA-2 Collision Search on EC2. We implemented the client side of the
above distinguished points algorithm for SHA-256 and SHA-512. On a single
ECU we found that the expected number of years needed to obtain a collision
was given by the “ECU Years” values in Table 5, resulting in the associated
collision finding costs, where again we round to the nearest order of magnitude
and use high-CPU EL instances. Note, that SHA-256 collision search matches
the cost of AES-128 key retrieval, as one hopes would happen for a well designed
hash function of output twice the key size of a given well designed block cipher.

Table 5. Cost of SHA-2 Collision on EC2

Algorithm
ECU Estimated Collision Search Cost
Years 3 Years / 1 Year / ASAP

SHA-256 1024 ≈ $1026

SHA-512 1063 ≈ $1063

3.4 RSA

NFS Background. As the oldest public key algorithm, RSA (and hence inte-
ger factorisation) has had a considerable amount of research applied to it over
the years. The current best published algorithm for factoring integers is Cop-
persmith’s variant [12] of the Number Field Sieve method (NFS) [22]. Based on
loose heuristic arguments and asymptotically for n→∞, its expected run time
to factor n is

L(n) = exp((1.902 + o(1))(log n)1/3(log logn)2/3),
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where the logarithms are natural. For the basic version, i.e., not including Cop-
persmith’s modifications, the constant “1.902” is replaced by “1.923”. To better
understand and appreciate our approach to get EC2-cost estimates for NFS, we
need to know the main steps of NFS. We restrict ourselves to the basic version.

Polynomial Selection. Depending on the RSA modulus n to be factored, se-
lect polynomials that determine the number fields to be used.

Sieving Step. Find elements of the number fields that can be used to derive
equations modulo n. Each equation corresponds to a sparse k-dimensional
zero-one vector, for some k ≈

√
L(n), such that each subset of vectors that

sums to an all-even vector gives a 50% chance to factor n. Continue until at
least k + t equations have been found for a small constant t > 0 (hundreds,
at most).

Matrix Step. Find at least t independent subsets as above.
Square Root. Try to factor n by processing the subsets (with probability of

success ≥ 1− (12 )
t).

Because L(n) number field elements in the sieving step have to be considered
so as to find k + t ≈

√
L(n) equations, the run time is attained by the sieving

and matrix steps with memory requirements of both steps, and central storage
requirements, behaving as

√
L(n). The first step requires as little or as much

time as one desires – see below. The run time of the final step behaves as
√
L(n)

with small memory needs.
The set of number field elements to be sieved can be parcelled out among

any number of independent processors. Though each would require the same
amount

√
L(n) of memory, this sieving memory can be optimally shared by any

number of threads; smaller memories can be catered-for as well at small efficiency
loss. Although all clients combined report a substantial amount of data to the
server(s), the volume per client is low. The resulting data transfer expenses
are thus not taken into account in our analysis below. The matrix step can be
split up in a small number (dozens, at most) of simultaneous and independent
calculations. Each of those demands fast inter-processor communication and
quite a bit more memory than the sieving step (though the amounts are the
same when expressed in terms of the above L-function).

It turns out that more sieving (which is easy, as sieving is done on indepen-
dent processors) leads to a smaller k (which is advantageous, as it makes the
matrix step less cumbersome). It has been repeatedly observed that this effect
diminishes, but the trade-off has not been analysed yet.

Unlike DES, AES, or ECC key retrieval or SHA-2 collision finding methods,
NFS is a multi-stage method which makes it difficult to estimate its run time. As
mentioned, the trade-off between sieving and matrix efforts is as yet unclear and
compounded by the different platforms (with different EC2 costs) required for
the two calculations. The overall effort is also heavily influenced by the properties
of the set of polynomials that one manages to find in the first step. For so-
called special composites finding the best polynomials is easy: in this case the
special number field sieve applies (and the “1.902” or “1.923” above is replaced
by “1.526”). For generic composites such as RSA moduli, the situation is not so
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clear. The polynomials can trivially be selected so that the (heuristic) theoretical
NFS run time estimate is met. As it is fairly well understood how to predict a
good upper bound for the sieving and matrix efforts given a set of polynomials,
the overall NFS-effort can easily be upper bounded. In practice, however, this
upper bound is too pessimistic and easily off by an order of magnitude. It turns
out that one can quickly recognise if one set of polynomials is “better” than some
other set, which makes it possible (combined with smart searching strategies
that have been developed) to efficiently conduct a search for a “good” set of
polynomials. This invariably leads to substantial savings in the subsequent steps,
but it is not yet well understood how much effort needs to be invested in the
search to achieve lowest overall run time.

The upshot is that one cannot expect that for any relevant n a shortened
polynomial selection step will result in polynomials with properties representa-
tive for those one would find after a more extensive search. For the purposes of
the present paper we address this issue by simply skipping polynomial selection,
and by restricting the experiments reported below to a fixed set of moduli for
which good or reasonable polynomials are known – and to offer others the pos-
sibility to improve on those choices. The fixed set that we consider consists of
the k-bit RSA moduli RSA-k for k = 512, 768, 896, 1024, 2048 as originally pub-
lished on the now obsolete RSA Challenge list [35]. That we consider only these
moduli does not affect general applicability of our cost estimates, if we make
two assumptions: we assume that for RSA moduli of similar size NFS requires a
similar effort, and that cost estimates for modulus sizes between 512 and 2560
bits other than those above follow by judicious application of the L-function.
Examples are given below. We find it hazardous to attach significance to the
results of extrapolation beyond 2560.

Prior Work. Various special purpose hardware designs have been proposed for
factoring most notably TWINKLE [38], TWIRL [39] and SHARK [14]. SHARK
is speculated to do the NFS sieving step for RSA-1024 in one year at a total
cost of one billion dollars. With the same run time estimate but only ten million
dollars to build and twenty million to develop, plus the same costs for the ma-
trix step, TWIRL would be more than two orders of magnitude less expensive.
Not everyone agrees, however, that TWIRL can be built and will perform as
proposed.

In 1999 NFS was used to factor RSA-512 [10] using software running on com-
modity hardware. Using much improved software and a better set of polynomials
the total effort required for this factorisation would now be about 3 months on a
single 2.2GHz Opteron core. In 2009, this same software version of NFS (again
running on regular servers) was used to factor RSA-768 [18]. The total effort of
this last factorisation was less than 1700 years on a single 2.2GHz Opteron core
with 2 GB of memory: about 40 years for polynomial selection, 1500 years for
sieving, 155 years for the matrix, and on the order of hours for the final square
root step. The matrix step was done on eight disjoint clusters, with its compu-
tationally least intensive but most memory demanding central stage done on a
single cluster and requiring up to a TB of memory for a relatively brief period of
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time. According to [18], however, half the amount of sieving would have sufficed.
Combined with the rough estimate that this would have doubled the matrix
effort and based on our first assumption above, 1100 years on a 2.2GHz core
will thus be our estimate for the factoring effort of any 768-bit RSA modulus.
Note that the ratio 1100

0.25 = 4400 of the efforts for RSA-768 and RSA-512 is of

the same order of magnitude as L(2768)
L(2512) ≈ 6150 (twice omitting the “o(1)”), thus

not providing strong evidence against our second assumption above.

Factoring on EC2. Based on the sieving and matrix programs used in [18] we
developed two simplified pieces of software that perform the most relevant siev-
ing and matrix calculations without outputting any other results than the time
required for the calculations. Sieving parameters (such as polynomials defining
the number fields, as described above) are provided for the fixed set of moduli
RSA-512, RSA-768, RSA-896, RSA-1024 and RSA-2048. For the smallest two
numbers they are identical to the parameters used to derive the timings reported
above, for both steps resulting in realistic experiments with threading and mem-
ory requirements that can be met by EC2. For RSA-896 our parameters are
expected to be reasonable, but can be improved, and RSA-896 is small enough
to allow meaningful EC2 sieving experiments. For the largest two numbers our
parameter choices allow considerable improvement (at possibly substantial com-
putational effort spent on polynomial selection), but we do not expect that it
is possible to find parameters for RSA-1024 or RSA-2048 that allow realistic
sieving experiments on the current EC2: for RSA-1024 the best we may hope
for would be a sieving experiment requiring several hours using on the order of
100 GB of memory, increasing to several years using petabytes of memory for
RSA-2048.

The simplified matrix program uses parameters (such as the k value and the
average number of non-zero entries per vector) corresponding to those for the
sieving. It produces timing and cost estimates only for the first and third stage
of the three stages of the matrix step. The central stage is omitted. For RSA-512
and RSA-768 this results in realistic experiments that can be executed using an
EC2 cluster instance (possibly with the exception of storage of the full RSA-768
matrix). For the other three moduli the estimated sizes are beyond the capacity
of EC2. It is even the case that at this point it is unclear to us how the central
stage of the RSA-2048 matrix step should be performed at all: with the approach

Table 6. RSA Sieving Step

Modulus Instance
ECU Estimated Sieving Cost
Years 3 Years 1 Year ASAP

RSA-512 high-CPU
EL

{
0.36 N/A N/A $107

RSA-768 1650 $190,000 $280,000 $480,000
RSA-896

high-mem
EL

⎧⎨
⎩

1.5 · 105 $2.2 · 107 $3.3 · 107 $9.1 · 107
RSA-1024 2 · 10 6 $2 .9 · 10 8 $4 .3 · 10 8 $1 .2 · 10 9

RSA-2048 2 · 10 15 $≈ 10 17
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Table 7. RSA Matrix Step

Modulus Instance
ECU Estimated Matrix Cost
Years 3 Years 1 Year ASAP

RSA-512 high-CPU EL 0.1 N/A N/A $30
RSA-768

cluster
compute

⎧⎪⎪⎨
⎪⎪⎩

680 $95,000 $142,000 $231,000
RSA-896 3 · 10 4 $3 .3 · 10 6 $5 .0 · 10 6 $1 .0 · 10 7

RSA-1024 8 · 10 5 $8 .9 · 10 7 $1 .3 · 10 8 $2 .7 · 10 8

RSA-2048 8 · 10 14 $≈ 10 17

used for RSA-768 the cost of the central stage would by far dominate the overall
cost, whereas for the other three moduli the central stage is known or expected
to be negligible compared to the other two.

Table 6 and Table 7 list the most suitable ECU instance for each program
and the five moduli under consideration so far, and the resulting timings and
EC2 2012 cost estimates (including 20% discount where appropriate, i.e. for one
and three year costs of over two million dollars) for RSA-512, RSA-768, and
RSA-896. The figures in italics (RSA-896 matrix step, both steps for RSA-1024
and RSA-2048) are just crude L-based extrapolations6.

The rough cost estimate for factoring a 1024-bit RSA modulus in one year
is of the same order of magnitude as the SHARK cost, without incurring the
SHARK development cost and while including the cost of the matrix step.

3.5 ECC

Prior Work. The security of ECC (Elliptic Curve Cryptography) relies on
the hardness of the Elliptic Curve Discrete Logarithm Problem (EC-DLP). In
1997 Certicom issued a series of challenges of different security levels [11]. Each
security level is defined by the number of bits in the group order of the elliptic
curve. The Certicom challenges were over binary fields and large prime fields, and
ranged from 79-bit to 359-bit curves. The curves are named with the following
convention. ECCp-n refers to a curve over a large prime field with a group order
of n bits, ECC2-n refers to a similar curve over a binary field, and ECC2K-n
refers to a curve with additional structure (a so-called Koblitz curve) with group
order of n bits over a binary field.

The smaller “exercise” challenges were solved quickly: in December 1997 and
February 1998 ECCp-79 and ECCp-89 were solved using 52 and 716 machine
days on a set of 500 MHz DEC Alpha workstations, followed in September
1999 by ECCp-97 in an estimated 6412 machine days on various platforms from
different contributors. The first of the main challenges were solved in November
2002 (ECCp-109) and in April 2004 (ECC2-109). Since then no challenges have
been solved, despite existing efforts to do so.

6 We note the huge discrepancy between EC2-factoring cost and the monetary awards
that used to be offered for the factorizations of these moduli [35].
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ECC Key Search. The method for solving EC-DLP is based on Pollard’s
rho method [31]. Similar to SHA-2 collision search, it searches for a collision
between two walks. We first define a deterministic “pseudorandom” walk on
the group elements; each client starts such a walk, and then when they reach a
distinguished point, the group element and some additional information is sent
back to a central server. Once the servers received two identical distinguished
points one can solve the EC-DLP using the additional information. We refer to
[29] for details.

ECC Key Search on EC2. Because most deployed ECC systems, including
the recommended NIST curves, are over prime fields, we focus on elliptic curves
defined over a field of prime order p. We took two sample sets: the Certicom
challenges [11] which are defined over fields where p is a random prime (ECC-
p-X), and the curves over prime fields defined in the NIST/SECG standards
[27,36], where p is a so-called generalised Mersenne prime (secpX-r1), thereby
allowing more efficient field arithmetic. Of the latter we took the random curves
over fields of cryptographically interesting sizes listed in the table below.

All of the curves were analysed with a program which used Montgomery arith-
metic for its base field arithmetic. The NIST/SECG curves were also analysed
using a program which used specialised arithmetic, saving essentially a factor of
two. Table 8 summarises the costs of key retrieval using high-CPU EL EC2 in-
stances in May 2012, rounded to the nearest order of magnitude for the larger p.
We present the costs for the small curves for comparison with the effort spent
in the initial analysis over a decade ago. Note that general orders of magnitude
correlate with what we expect in terms of costs related to AES, SHA-2, etc.

Table 8. Cryptanalytic Strength of ECC on EC2

Curve Name ECU Estimated Key Retrieval Cost
Name Years 3 Years / 1 Year / ASAP

ECCp-79 3.5 days N/A / N/A / $ 2
ECCp-89 104 days N/A / N/A / $82
ECCp-97 5 $580 / $850 / $1,500
ECCp-109 300 $35,000 / $51,000 / $87,000
ECCp-131 106 ≈ $108

ECCp-163 1010 ≈ $1012

ECCp-191 1015 ≈ $1017

ECCp-239 1022 ≈ $1024

ECCp-359 1040 ≈ $1042

secp192-r1 1015 ≈ $1017

secp224-r1 1020 ≈ $1022

secp256-r1 1025 ≈ $1027

secp384-r1 1044 ≈ $1046
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4 Extrapolate

Comparing the current pricing model to EC2’s 2008 flat rate of $ 0.10 per hour
per ECU, we find that prices have dropped by a factor of three (short term) to six
(three year). This shaves off about two bits of the security of block ciphers over
a period of about three years, following closely what one would expect based on
Moore’s law. The most interesting contribution of this paper is that our approach
allows anyone to measure and observe at what rate key erosion continues in the
future. A trend that may appear after doing so for a number of years could
lead to a variety of useful insights – not just concerning cryptographic key size
selection but also with respect to the sanity of cloud computing pricing models.

In future versions of this paper these issues will be elaborated upon in this
section. Right now the required data are, unavoidably, still lacking.

5 Can One Do Better?

If by better one means can one reduce the overall costs of breaking each cipher
or key size, then the answer is yes. This is for a number of reasons: Firstly one
could find a different utility computing service which is cheaper; however we
selected Amazon EC2 so as to be able to repeat the experiment each year on
roughly the same platform. Any price differences which Amazon introduce due
to falling commodity prices, or increased power prices, are then automatically
fed into our estimates on a year basis. Since it is unlikely that Amazon will cease
to exist in the near future we can with confidence assume that the EC2 service
will exist in a year’s time.

Secondly, we could improve our code by fine tuning the algorithms and adopt-
ing more efficient implementation techniques. We have deliberately tried not to
do this. We want the code to be executed next year, and the year after, on
the platforms which EC2 provides, therefore highly specialised performance im-
provements have not been considered. General optimisation of the algorithm can
always be performed and to enable this we have made the source code available
on a public web site, http://www.cs.bris.ac.uk/~nigel/Cloud-Keys/. How-
ever, we have ruled out aggressive optimisations as they would only provide a
constant improvement in performance and if costs to break a key are of the order
of 1020 dollars then reducing this to 1018 dollars is unlikely to be that significant
in the real world.

Finally, improvements can come from algorithmic breakthroughs. Although
for all the algorithms we have discussed algorithmic breakthroughs have been
somewhat lacking in the last few years, we intend to incorporate them in our
code if they occur.
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Abstract. We present unified combinatorial characterizations of com-
pleteness for 2-party secure function evaluation (SFE) against passive
and active corruptions in the information-theoretic setting, so that all
known characterizations appear as special cases.

In doing so we develop new technical concepts. We define several no-
tions of isomorphism of SFE functionalities and define the “kernel” of an
SFE functionality. An SFE functionality is then said to be “simple” if
and only if it is strongly isomorphic to its kernel. An SFE functionality
F ′ is a core of an SFE functionality F if it is “redundancy free” and is
weakly isomorphic to F . Then:

– An SFE functionality is complete for security against passive cor-
ruptions if and only if it is not simple.

– A deterministic SFE functionality is complete for security against
active corruptions if and only if it has a core that is not simple. We
conjecture that this characterization extends to randomized SFE as
well.

We further give explicit combinatorial characterizations of simple SFE
functionalities.

Finally, we apply our new notions of isomorphism to reduce the prob-
lem of characterization of trivial functionalities (i.e., those securely real-
izable without setups) for the case of general SFE to the same problem
for the case of simple symmetric SFE.

1 Introduction

Two party secure function evaluation (SFE) is a fundamental concept in mod-
ern cryptography. In a seminal work, Kilian [Kil88] introduced the notion of a
complete function for SFE: given access to an ideally secure implementation of
a complete function, every SFE function can be securely implemented using a
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protocol, without relying on any computational assumptions. He showed that
the oblivious transfer functionality (OT) is complete for secuity against active
corruption. Earlier results [GMW87,GV87,HM86] already implied that OT is
complete for security against passive corruption. Since then several works have
characterized which functions are complete, under passive and active corruption,
in the information-theoretic setting. While complete functionalities are in a sense
the “most complex” functionalities, at the other extreme are the trivial function-
alities which are not useful as setups, because they can be securely realized from
scratch.

In this work we develop a unified framework for stating these results in the
information-theoretic setting. Unlike previous characterizations, we do not give
separate characterizations for SFE with one output or two outputs1 or for sub-
classes of deterministic and randomized SFE. We summarize our definitions and
characterizations below. For simplicity, we restrict ourselves to “finite” func-
tionalities through out, though the results do extend to functionalities with
polynomial-sized domains (but not necessarily exponential-sized domains).

Our Results. We define strong and weak isomorphisms among SFE functionali-
ties (Definition 5). We also use the notion of the kernel of an SFE functionality
(Definition 3). We define an SFE functionality to be simple if it is strongly
isomorphic to its kernel. For characterizing completeness and triviality against
active corruption, we define an SFE functionality F ′ to be a core of an SFE
functionality F if it is “redundancy free” and is weakly isomorphic to F .
Completeness. For the case of completeness for security against passive adver-
saries (passive-completeness, for short), we obtain a complete characterization
by piecing together and extending known results for symmetric and asymmetric
SFE. In the case of (standalone or UC) security against active corruption, we
identify a gap in the known characterizations, but our unified presentation gives
a natural conjecture to fill this gap.

Our characterizations for completeness are as follows.

– A (possibly randomized) SFE functionality is passive-complete if and only
if it is not simple (e.g. Theorem 1).

– A deterministic SFE functionality is UC or standalone-complete if and only if
it has a core that is not simple (Theorem 2). The same characterization holds
for UC/standalone-completeness of “channel” functionalities as well. We con-
jecture that this characterization holds for UC/standalone-completeness of
all SFE functionalities.

Triviality. It has been known that a deterministic SSFE functionality is passive-
trivial if and only if it is “decomposable” and is active-trivial if and only if it
is “saturated” [Kus89,MPR09,KMR09]. These characterizations were extended

1 SFE functionalities which produce only one output have been considered in the
literature either in the form of“symmetric” SFE (a.k.a. SSFE, which give the output
to both parties) or in the form of “asymmetric” SFE (which give the output to only
one party).
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to general (not necessarily symmetric) SFE in [KMR09]. Our contribution is in
characterizing passive-triviality for general (not necessarily symmetric) SFE in
terms of characterization of passive-triviality for SSFE, in a manner that applies
to both deterministic and randomized SFE. Briefly, we show that:

– An SFE functionality F is passive-trivial if and only if it is simple and its
kernel (which is a simple SSFE functionality) is passive-trivial.

– An SFE functionality is standalone-trivial if and only if it has a simple core
whose kernel (which is a simple SSFE functionality) is standalone-trivial.

Interestingly, the characterization of passive-trivial and standalone-trivial ran-
domized SFE still remains open. If this characterization is carried out for simple
SSFE functionality, then our results show how to extend it to general SFE.

We heavily rely on prior work which gave characterizations of completeness
and triviality for various special cases. Our main contribution is perhaps in iden-
tifying how the different results can be unified using arguably elegant definitions.
For instance, we unify the characterization of UC- and standalone-completeness
for deterministic SFE [KM11] and for randomized channels [CMW04]; further
our formulation gives a plausible conjecture for extending these characterizations
to all SFE functionalities.

Related Work. The first complete functionality that was discovered was Obliv-
ious Transfer. It was shown to be complete in the information-theoretic set-
ting, against passive adversaries in [GMW87,GV87,HM86], and against active
adversaries in [Kil88] (and explicitly extended to UC security in [IPS08]). All
subsequent completeness results build on this.

Completeness (w.r.t. security against passive and active corruption) was char-
acterized in [Kil91,Kil00,CK88,CMW04,KM11], for subclasses of SFE function-
alities. We observe that a result in [MOPR11] implicitly extended the charac-
terization of completeness w.r.t. security against passive corruption to all SFE
functionalities. (Our simpler characterization is proven based on these results.)

On the front of triviality, seminal results in secure multi-party computation
established that all functionalities are trivial for passive and standalone secu-
rity, either under computational assumptions [Yao86,GMW87] or, in the setting
involving more than two parties, under restrictions on how many parties can
be corrupted [CCD88,BGW88]. These results are mostly not applicable for the
setting we are considering (information-theoretic security for two-party com-
putation). [Kus89] introduced the notion of “decomposability” and used it to
characterize passive-trivial functionalities. Initial proofs considered only perfect
security [Kus89,Bea89], but later results extended this to the case of statisti-
cal security [MPR09,KMR09]. Triviality for UC-security has a relatively simpler
characterization and is well-understood [CKL03,PR08].

2 Preliminaries

A two-party secure function evaluation (SFE) functionality F(fA, fB) is a trusted
party whose behavior is specified using two functions fA : X × Y × R → ZA
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and fB : X × Y × R → ZB. The trusted party takes inputs x ∈ X from Alice
and y ∈ Y from Bob, samples a private local randomness r

$← R and evaluates
a = fA(x, y, r) and b = fB(x, y, r), the respective outcomes of Alice and Bob. A
deterministic SFE is one for which |R| = 1.

We consider, in the information-theoretic setting, security against adversaries
who may be passive (a.k.a. honest-but-curious) or active (a.k.a. byzantine, or
malicious). In the latter case, the adversary could be standalone (does not inter-
act with the environment during the course of the protocol, except via protocol
input/output for reactive functionalities), or not. Correspondingly, we have three
notions of security: passive security, standalone security and UC security. In set-
tings involving active adversaries we consider security with abort (if either party
is corrupt, the functionality delivers the output of the corrupt party first and
then delivers the output to the honest party when instructed by the corrupt
party); guaranteed output security notions are beyond the scope of this work.

We adopt the following useful categories of SFE from the literature:

– Symmetric SFE (SSFE), for which fA = fB. That is, both the parties get
the same output.

– Asymmetric SFE, for which either fA or fB is a constant function. In other
words, only one party gets output. A special case of an asymmetric SFE is
a channel in which the party receiving the output has no input (i.e., if fB is
not a constant function, then |Y | = 1).

– There are SFE functionalities which fall into neither of these classes. Some-
times we will use the term general SFE to stress that we are considering an
SFE which is not necessarily of the above two types.

We restrict ourselves to the universe of finite SFE functionalities: the input and
output spaces are finite — that is, have size O(1), as a function of the security
parameter. In particular, the maximum number of bits needed to represent the
input to the parties (and, in the case of randomized functionalities, the number
of bits in the random tape of the functionality) does not grow with the security
parameter. We remark that for simplicity we considered the distribution over
R to be uniform (but |R| need not be a power of 2). However, any fixed arbi-
trary distribution (which does not change with the security parameter) could be
considered, without affecting our results.

Security Notions and Hybrids. The real-ideal paradigm for security [GMW87]
is used to define security for multi-party computation. Informally, a protocol
securely realizes a functionality if, for every adversary attacking the actual pro-
tocol in the real world, there is a corresponding ideal world adversary (called
the simulator) which can achieve the same effect in any environment. Depending
on the type of the security required, the capabilities of the adversary vary. We
consider three kinds of security: security against passive adversaries (passive-
security, for short), security against active adversaries (standalone-security) and
Universally Composable security (UC-security). In passive-security the adver-
sary follows the protocol exactly and the ideal world adversary (simulator) does
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not alter the input it sends to the functionality. In standalone security the ad-
versary can actively corrupt the parties, but it does not interact with the outside
environment during the course of the protocol execution.

We consider secure realization of functionalities in presence of “setups” as
well. A G-hybrid is a world where trusted implementation of the functionality G is
accessible to both parties. In the real world, parties can communicate via private
communication channel (like the plain model) as well as invoke evaluations of
G. In the ideal world, the simulator pretends to provide the access of such a
setup to the adversary. A protocol π in the G-hybrid, represented as πG , securely
realizes a functionality F if for every real world adversary, there exists an ideal
world simulator which can simulate identical behavior.

If a functionality has a secure protocol (in some security model) without
any setup (i.e., the functionality is realizable in that security model), then it
is of no value as a setup, as the access to such an ideal functionality can be
replaced by an implementation. We shall refer to such functionalities as trivial
functionalities (for the corresponding security model or reduction). In terms of
reducibility, a trivial functionality reduces to every functionality. At the other
extreme, we can consider functionalities to which every functionality reduces.
Such functionalities, any of which can replace any other setup, are called complete
functionalities (for the corresponding security model or reduction).

For brevity, we shall write “passive-trivial,” “UC-complete,” etc. to stand for
“trivial w.r.t. reductions that are secure against passive adversaries,” “complete
w.r.t. reductions that are UC-secure” etc.

3 Definitions: Isomorphism, Kernel, Simple SFE and
Core

In this section, we define the terms useful in stating unified completeness results
for 2-party SFE in various security notions.

3.1 Graph of an SFE Functionality

Given a 2-party SFE F(fA, fB) we define a bipartite graph G(F) as follows.

Definition 1 (Graph of a 2-party SFE). Given a SFE functionality F(fA, fB),
its corresponding graph G(F) is a weighted bipartite graph constructed as fol-
lows. Its partite sets are X × ZA and Y × ZB. For every (x, a) ∈ X × ZA and
(y, b) ∈ Y × ZB, the edge joining these two vertices is assigned weight

wt
(
(x, a), (y, b)

)
:=

Pr
r

$←R

[
fA(x, y, r) = a ∧ fB(x, y, r) = b

]
|X × Y | .

The choice of the normalizing constant 1/|X × Y | is arbitrary. For this partic-
ular choice of constant, we can view the weight of an edge as representing the
joint-distribution probability of input-output pairs seen by the two parties when
(x, y, r) $←X × Y ×R.
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We remark that such representations have appeared in the literature for a
long time. In particular, on squaring the (the unweighted version of) the above
bipartite graph, the two parts separate into two characteristic graphs as defined
by Witsenhausen [Wit76] for the correlated source which samples input-output
pairs for the two parties. The bipartite graph itself, but again for correlated
sources, has appeared in later works, both in information theory (e.g. [KTRR03])
and in cryptography (e.g. [WW06]). The graph G(F) as defined above for SFE
functionalities was considered in [MOPR11] (for proving the result mentioned in
Footnote 3).

For a combinatorial characterization of what we shall define as a simple SFE
functionality, the following definition will be useful.
Definition 2 (Product Distribution Graph). A weighted bipartite graph
with partite sets U and V and weight function wt is a product distribution
graph if there exist
1. non-empty partitions {U1, . . . , Un} and {V1, . . . , Vn} of U and V respectively,

and
2. probability distributions p over U , q over V , and c over [n],

such that for all u ∈ U and v ∈ V , the weight on edge (u, v) is given by

wt(u, v) =

{
pu · qv/ck if ∃k ∈ [n], s.t. ck > 0, and u ∈ Uk, v ∈ Vk,
0 otherwise.

Intuitively, a bipartite graph G is a product distribution graph if sampling an
edge of G corresponds to first sampling a connected component of G, and then
within that component further sampling two nodes independently from the two
partite sets of the component. Thus when u ∈ Uk and v ∈ Vk, wt(u, v) =
ck · (pu/ck) · (qv/ck), where ck is the probability of selecting the kth component
and pu/ck (resp. qv/ck) is the probability of sampling u (resp. v) conditioned on
selecting the kth component.

Given an SFE functionality F , it is convenient to define an associated SSFE
functionality as the “common information” that Alice and Bob both get from F
[MOPR11].
Definition 3 (Kernel— Common-information in a SFE). The kernel of a
SSFE F is a symmetric SFE which takes inputs x and y from the parties, samples
r

$←R and computes a = fA(x, y, r) and b = fB(x, y, r). Then it outputs to both
parties the connected component of G(F) which contains the edge

(
(x, a), (y, b)

)
.

Note that the kernel of F is a symmetric functionality and is randomized only
for randomized SFE F . For example, let F be (possibly biased) symmetric coin
tossing functionality. Its kernel is a randomized functionality and, incidentally,
is identical to F itself. Further, kernel of a kernel is the kernel itself.

3.2 Isomorphisms

We introduce a couple of notions of isomorphism between SFE functionalities,
which we use in all our subsequent definitions. The definitions of isomorphism
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presented here are refinements of a notion of isomorphism in [MOPR11], which
in turn was preceded by similar notions (restricted to deterministic SFE) in
[KMR09,MPR09].

Crucial to defining isomorphism is the following notion of “locality” for a
protocol:

Definition 4 (Local Protocol). In a local protocol for F which uses G as a
setup, each party maps her F-input to a G-input, calls G once with that input
and, based on her local view (i.e. her given F-input, the output of G, and possibly
local randomness), computes her final output, without any further communication
between the parties.

Definition 5 (Isomorphism). We say that F and G are strongly isomorphic
to each other if there exist two local protocols π1 and π2 such that:

1. πG1 UC-securely realizes F and πF2 UC-securely realizes G;
2. πG1 passive-securely realizes F and πF2 passive-securely realizes G; and
3. F and G have the same input domains, and in πG1 and πF2 , the parties invoke

the given functionality with the same input as they get from the environment.

F and G are said to be isomorphic to each other if conditions 1 and 2 are satisfied.
F and G are said to be weakly isomorphic to each other if condition 1 is satisfied.

A few remarks on the definition mentioned above are in order.
1. It is not hard to see that Condition 1, which is required by all three defini-

tions of isomorphisms, is equivalent to the (seemingly weaker) condition obtained
by replacing UC-security with standalone security. This is because of the nature
of a local reduction.

2. Condition 2 might seem weaker than Condition 1 since the former requires
security against a weaker adversary. But security against a weaker adversary is
not always a weaker requirement, since it requires that the ideal-world adver-
saries (simulators) are also weaker (passive, in this case).

3. All these notions of isomorphism are equivalence relations. In particular,
they are transitive due to secure composition of local reductions (under all three
notions of security).

4. Another consequence of secure composition is that isomorphism (and hence
strong isomorphism) preserves UC and standalone reducibility, as well as re-
ducibility against passive adversaries, between functionalities, and weak iso-
morphism preserves UC and standalone reducibility (but not necessarily pas-
sive reducibility) between functionalities. For example, if F UC-securely (resp.,
standalone-securely or passive-securely) reduces to G, and F and F ′ are iso-
morphic to each other, and G and G′ are isomorphic to each other, then F ′
UC-securely (resp., standalone-securely or passive-securely) reduces to G′.

As we shall see shortly, an important property of an SFE functionality is
whether or not it is (strongly) isomorphic to its kernel.

Definition 6 (Simple SFE). A (possibly randomized) SFE functionality F is
said to be simple if it is strongly isomorphic to its kernel.
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We shall see from our characterizations that the above definition remains unal-
tered if strong isomorphism is replaced by isomorphism (see Lemma 3). However,
for deriving the characterizations, it is convenient to use the stricter notion of
isomorphism in this definition.

Though Definition 6 is in terms of isomorphism, below we give an explicit
combinatorial characterization of simple SFE functionalities. This combinato-
rial characterization will be useful in seeing how our definition unifies several
definitions in the literature for special cases (in Section 3.3).

Lemma 1. The following statements are equivalent.

1. F is simple.
2. G(F) is a product distribution graph.
3. For any nodes u0, u1 ∈ X × ZA and v0, v1 ∈ Y × ZB, the weights in G(F)

satisfy
wt(u0, v0)wt(u1, v1) = wt(u0, v1)wt(u1, v0)

We prove Lemma 1 in Appendix A.

3.3 Special Cases of Simple SFE

The definition of simple functionalities that we presented above unifies several
definitions that appeared in the literature for special classes of functionalities.

– Deterministic Symmetric SFE. The first instance where simple func-
tionalities were identified was for the special case of deterministic symmetric
SFE: in this case a functionality is not simple if and only if the matrix rep-
resenting the function f has an “OR minor” (i.e., ∃x0, x1, y0, y1, z0, z1 with
z0 �= z1 and f(xa, yb) = za∨b, for a, b ∈ {0, 1}) [Kil91].

– Randomized Symmetric SFE. In [Kil00] this was generalized to random-
ized symmetric SFE functionality: in this case (as described in Appendix B)
a functionality is not simple iff ∃x0, x1, y0, y1, z such that

Pr[f(x0, y0) = z] > 0; and Pr[f(x0, y1) = z] > 0; and
Pr[f(x0, y0) = z] · Pr[f(x1, y1) = z] �= Pr[f(x1, y0) = z] · Pr[f(x0, y1) = z].

It is easy to see that this is a generalization of the previous definition by
setting z = z1.

– Randomized Asymmetric SFE. In [Kil00], the characterization of simple
functionalities, specialized to the case of randomized asymmetric SFE too
appears. Kilian gives a combinatorial condition for being non-simple, but also
notes (the more intuitive characterization) that the condition does not hold
(i.e., the functionality is simple) if and only if the functionality has a passive-
secure protocol which involves a single deterministic message from Alice to
Bob. Equivalently, a (possibly randomized) asymmetric SFE is simple if and
only if it is strongly isomorphic to a deterministic functionality in which Bob
has no input.
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– Deterministic SFE. Another generalization, this time to deterministic,
but general (not necessarily symmetric or asymmetric) SFE, appears in
[KM11]: as described in Appendix B, a deterministic SFE functionality is
not simple iff it has an “OT-core”: i.e., there are inputs x, x′ for Alice
and y, y′ for Bob such that fA(x, y) = fA(x, y′), fB(x, y) = fB(x′, y) and(
fA(x′, y), fB(x, y′)

)
�=
(
fA(x′, y′), fB(x′, y′)

)
.

All these special cases of the definition of simple functionalities were identified
to characterize complete functionalities (see Theorem 1 and Theorem 2).

3.4 Redundant Inputs and Core of an SFE Functionality

To study security against active adversaries alone (i.e., not also against passive
adversaries) it is useful to have a notion of “redundant” inputs of an SFE func-
tionality that will never be needed by an active adversary. Combinatorial defi-
nitions of redundancy have appeared in the literature before for special classes
of SFE functionalities, but our definition is in terms of weak isomorphism and
applies to all SFE functionalities.

To state our definition we use the following notation. Given a function f :
X × Y × R → Z, and x ∈ X (resp. y ∈ Y ), let f |X\{x} (resp. f |Y \{y}) denote
the function obtained by restricting f to the domain (X\{x}) × Y × R (resp.
X × (Y \{y})× R). For a functionality F(fA, fB), and x ∈ X (resp. y ∈ Y ), let
F|X\{x} (resp. F|Y \{y}) denote the functionality F ′(fA|X\{x}, fB|X\{x}) (resp.
F ′(fA|Y \{y}, fB|Y \{y})).
Definition 7 (Redundant Inputs). A functionality F with input domain
X × Y is said to have a redundant input x ∈ X (resp. y ∈ Y ) if F is weakly
isomorphic to F|X\{x} (resp. F|Y \{y}). F is said to be redundancy-free if it has
no redundant inputs.

We highlight two special cases:

– For deterministic SFE functionalities, Alice’s input x is redundant iff there is
an input x′ �= x that dominates x: i.e., Alice can substitute x′ for x without
Bob noticing (i.e., for all inputs y of Bob, fB(x, y) = fB(x′, y)) while still
allowing her to calculate her correct output (i.e., there is a deterministic
mapping Tx,x′ such that for all inputs y of Bob, fA(x, y) = Tx,x′(fA(x′, y))).

– For (possibly randomized) asymmetric functionalities (in which only Bob
receives a non-constant output), Alice’s input x is redundant iff Alice could
instead send a “convex combination” of other inputs to achieve the same
effect for Bob. That is, there exists x1, . . . , xk ∈ X , r1, . . . , rk ∈ R with x �∈
{x1, . . . , xk},

∑
i ri = 1 and for all y ∈ Y , we have fB(x, y) ≡∑i rifB(xi, y).

In the previous expression, the output of fB(·, ·) is interpreted as a proba-
bility distribution over ZB (equivalently, a stochastic vector in R

|ZB |).

Definition 8 (Core). An SFE functionality F ′ is said to be a core of an SFE
functionality F if F and F ′ are weakly isomorphic to each other and F ′ is
redundancy-free.
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For any SFE functionality, one can find a core by successively removing from its
domain, one at a time, inputs that are redundant (based on the set of inputs
that have not been removed yet). To see this, note that if F ′ is obtained by
removing a single redundant input from the domain of F , then by definition of
being redundant, F and F ′ are weakly isomorphic to each other. This process
must terminate after a constant number of steps, since the domains are finite. By
transitivity of weak isomorphism the final redundancy free functionality obtained
is indeed weakly isomorphic to F and hence a core of F .

From this and the transitivity of weak isomorphism, it follows that the core of
F is unique up to weak isomorphism. In fact, for the two special cases of deter-
ministic SFE and randomized channel SFE that are required in Theorem 2 and
Theorem 4, the core of F is unique with respect to (plain) isomorphisms whose
input mapping is a bijection. For the former case, this was explicitly observed
in [KM11] (where a core of F was called the redundancy-free version of F). For
the latter case, consider the set of points in R

|ZB | denoting the probability dis-
tributions of fB(x); then the inputs in a core correspond to the vertices of the
convex-hull of this set of points. (If the points for multiple values of x coincide
on a vertex of the convex-hull, a core will retain exactly one of these inputs.)

To characterize active security, one will typically consider only a core of the
functionality. Redundancy-free functionalities also have the convenient property
that a protocol for a redundancy-free functionality that is secure against active
adversaries is also secure against passive adversaries:2

Lemma 2. If F is redundancy-free, then any protocol for F that is standalone-
secure is also passive-secure.

Note that this is not true in general (i.e., when F has redundant inputs). In a
general active-secure protocol, the simulator for a passively corrupt adversary
may not be a passive ideal adversary.
Proof: Let π be such a protocol for F . It suffices to show that in π, the simulator
for a passive adversary is without loss of generality passive itself. By symmetry,
consider a passive dummy adversary A for Alice, which runs the protocol hon-
estly and outputs its entire view. Note that A receives an actual input x from
the environment.

Let S be the simulator for A. Let x denote the input provided by the environ-
ment, and let Ex denote the event that S sends something other than x to F . If
for all x, Ex is negligible, then we are essentially done. We can modify S to always
send x to F ; the interaction’s outcome changes only by a negligible amount and
hence the modified S is a passive ideal adversary and a valid simulator for A.

Otherwise, fix an x such that Ex is non-negligible. Then there is a way to
condition the randomness of S so that Ex always occurs, and the outputs reported
by both parties is indistinguishable from the correct output, for all possible
inputs of Bob. Call the resulting simulator Sx. Then the following is a local
2 Thus redundancy-free functionalities are a special case of what are called “deviation-

revealing functionalities” [PR08], a notion that is defined more generally for reactive
functionalities.
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protocol for F using F|X\{x}: Bob runs the dummy protocol; if Alice’s input
is not x, then she runs the dummy protocol. If Alice’s input is x, she runs Sx

and reports the prescribed output of the simulated adversary. The properties
established for Sx show that this is a secure protocol for F in which Alice never
uses input x. Since there is always a local protocol for F|X\{x} using F , we
have that F and F|X\{x} are weakly isomorphic, so x is redundant in F . This
contradicts the redundancy-freeness of F , so this case cannot happen. �

4 Completeness of Two Party Functionalities

The first complete functionality that was discovered was Oblivious Transfer. It
was shown to be complete against passive adversaries in [GMW87,GV87,HM86],
and against active adversaries in [Kil88] (and explicitly extended to UC security
in [IPS08]). All subsequent completeness results build on this.

We have a full understanding of SFE functionalities that are complete under
security against passive adversaries.

Theorem 1. A finite (possibly randomized) 2-party SFE functionality is passive-
complete in the information theoretic setting if and only if it is not simple.

The first step towards such a characterization was taken by Kilian, for the special
case of deterministic symmetric SFE [Kil91]. As mentioned before, for this case
the complete functionalities are those with an OR minor. Later, Kilian extended
it to the setting of randomized, symmetric SFE functionalities, and also for
randomized asymmetric SFE functionalities [Kil00]. [KM11] includes the case of
deterministic general SFE. We observe that a result in [MOPR11] can be used
to obtain the complete characterization.3 Our proof below directly uses Kilian’s
characterization (rather than extending Kilian’s protocol as in [MOPR11]) along
with Lemma 1.
Proof: [Proof of Theorem 1]

For the first direction, suppose for contradiction that F is passive-complete
and it is simple. This implies that K, the kernel of F , is also passive-complete.
Now, we shall invoke the completeness characterization of randomized symmetric
functionalities SFE by Kilian [Kil00] to show that K is not complete. Let Ux,k :=
({x} × ZA) ∩ Uk be the set of nodes in the k-th connected component of G(F)
which are of the form u = (x, a) for some a ∈ ZA. The probability that a
randomly sampled edge lies in the k-th component and its corresponding Alice
and Bob inputs are x and y, respectively, is:
3 [MOPR11] extends the protocol in [Kil00] for asymmetric SFE to show that if an

SFE functionality F is not (strongly) isomorphic to its kernel, then it is complete
for security against passive adversaries. (Though the statement in [MOPR11] is not
in terms of strong isomorphism, the protocols that establish completeness of F only
uses the condition of F not being strongly isomorphic to its kernel.) On the other
hand, a functionality which is (strongly) isomorphic to its kernel is not complete,
since the kernel (which is an SSFE) is itself simple and hence not complete by one
of the characterizations in [Kil00].
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(u′,v′)∈Ux,k×Vx,k

wt(u′, v′).

But wt(u′, v′) = pu′ · qv′/ck, because G(F) is a product distribution graph. So,
the previous probability expression can be re-written as:⎛⎝ ∑

u′∈Ux,k

pu′

⎞⎠×
⎛⎝ ∑

v′∈Vy,k

qv′

⎞⎠ 1
ck

= Px,k ×Qy,k.

Now it is easy to verify that:

Pr[k|x0, y0]·Pr[k|x1, y1] = |X × Y |2Px0,kPx1,kQy0,kQy1,k = Pr[k|x0, y1]·Pr[k|x1, y0],

for every k ∈ [n] and (x, y) ∈ X × Y . By [Kil00], this implies that K is not a
passive-complete SSFE.

Next, we prove the more interesting direction: if F is not simple then F is
passive-complete. For this it is enough to show how to use F to passive-securely
realize a channel C in which Alice has two inputs 0 and 1, and the distributions
D0 and D1 of the output that Bob receives on input 0 and 1 respectively are
such that they are not identical, but nor do they have disjoint supports. This
is because by a characterization in Kilian [Kil00], such asymmetric non-trivial
channels are passive-complete.

First we describe the channel C we shall securely realize using F . By Lemma 1
we know that G(F) is not a product distribution graph. Given u ∈ X × ZA, we
can consider the following distribution Du over Y ×ZB. The probability of a node
v ∈ Y ×ZB induced by Du is: wt(u, v)/

∑
v′∈Y×ZB

wt(u, v′). Since, G(F) is not a
product distribution graph, there is some connected component with two nodes
u, u′ ∈ X×ZA such that Du and Du′ are not identical distributions over Y ×ZB.
Since u and u′ are connected, there is a path (u = û0, v̂0, û1, v̂1, . . . , ût = u′) in
G(F). Then there must exist ûi, ûi+1 such that Dûi and Dûi+1 are not identical.
Let D0 = Dûi and D1 = Dûi+1 . Then D0 and D1 are not identical, but their
supports intersect (at v̂i).

Now we describe how to securely realize the channel C by invoking F several
times. For convenience, let u0 = ûi and u1 = ûi+1 so that Db = Dub

for b ∈
{0, 1}. For b ∈ {0, 1}, let pb be the probability that when F is invoked with
random inputs (x, y) $←X × Y , Alice sees outcome a and (x, a) = ub. We know
that min{p0, p1} ≥ 1/|X × Y ×R| = Θ(1). To implement the channel, Alice and
Bob invoke the functionality F with uniformly drawn inputs κ times, where κ
is the security parameter. Let I0 and I1 be the set of indices of the executions
where Alice’s input-output pair is u0 and u1 respectively. With probability at
least 1 − 2−Ω(κ) both these sets are non-empty. To send a bit b via channel C,
Alice sends a random index i

$← Ib to Bob and Bob interprets his corresponding
input-output pair in the i-th invocation of F as the output of the channel. It is
not hard to show that this is a passive-secure realization of C. �

A consequence of the above characterizations is the following lemma which
gives an alternate definition for a simple functionality (where strong isomorphism
in Definition 6 is replaced by isomorphism).
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Lemma 3. An SFE functionality F is simple if and only if it is isomorphic to
its kernel.

Proof: Clearly, if F is simple, i.e. strongly isomorphic to its kernel K, then it
is also isomorphic to its kernel. For the converse, assume for contradiction that
F is isomorphic to its kernel K but F is not simple. Since F is not simple, by
Theorem 1, F is passive-complete. F is isomorphic to K implies that K itself is
passive-complete. But kernel of K is identical to K and, hence, they are strongly
isomorphic to each other. This implies that K is simple and passive complete —
a contradiction by Theorem 1. �

For the case of active corruption, in standalone as well as the UC setting,
a characterization of complete functionalities is known for special cases. This
was first shown for the special case of deterministic, asymmetric SFE (in which
fA is the constant function) by Kilian [Kil00]. The complete characterization
for deterministic SFE — including the extension to UC security — is due to
Kraschewski and Müller-Quade [KM11], who phrased it in terms of the presence
of an OT-core (see Section 3.3). For the case of channels (i.e., asymmetric SFE
in which only one party has an input and only the other party gets an output),
UC and standalone-completeness was characterized in [CK88,CMW04].4 Our
characterization unifies these two results into a common characterization.

Theorem 2. A finite 2-party SFE functionality that is

– deterministic, or
– a channel

is UC or standalone-complete in the information theoretic setting if and only if
it has a core that is not simple.

Proof: We rely on the characterizations of [KM11] and [CMW04] to prove this
result.

First consider the case of deterministic 2-party SFE. Kraschewski and Müller-
Quade [KM11] showed that F is UC or standalone-complete if and only if the
“redundancy-free version” of F has an OT-core (see Section 3.3). For determin-
istic SFE F , a redundancy-free version of F in the sense of [KM11] is the same
as a core of F , (and in fact is isomorphic to every core of F). Also, as discussed
in Section 3.3, a deterministic SFE has an OT-core if and only if it is not simple.
Thus the characterization of [KM11] can be recast as saying that a deterministic
SFE F is UC or standalone-complete if and only if it has a core that is not
simple (and equivalently, every core of F is not simple).

Next we consider the case of channels. Crépeau, Morozov and Wolf [CMW04]
showed that complete channels are exactly those channels for which, after remov-
ing “redundant inputs,” the resulting channel is “non-trivial.” As we described
after Definition 8, for an asymmteric SFE, and in particular for a channel SFE F ,
4 [CMW04] does not explicitly deal with UC-security. However the simulator implicit

in the analysis of the protocol in [CMW04] is a straightline simulator, and can be
used to argue UC-completeness as well.
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redundancy-free version of F in the sense of [CMW04] is isomorphic to every core
of F . Here a trivial channel is what [Kil00] characterized as non-simple (random-
ized) asymmetric SFE (see Section 3.3). Thus the characterization of [CMW04]
too can be recast as saying that a deterministic SFE F is standalone-complete if
and only if it has a core that is not simple (and equivalently, every core of F is
not simple). The proof in [CMW04] can be extended to cover UC-completeness
as well. �

Extending this characterization to cover randomized SFE remains an open
problem. We conjecture that the same characterization as in Theorem 2 holds
for all SFE (and not just deterministic SFE or channel SFE).

5 Characterizing Trivial SFE

There are three main classes of trivial SFE functions, depending on the type of
security. The simplest 2-party functionalities are the ones which are trivial under
UC security. The functionalities are equivalent to noiseless channels [CKL03]. A
much richer class of functionalities is obtained by considering triviality under
information theoretic passive security (this section), and triviality under infor-
mation theoretic standalone active security (Section 5.2. We focus on these two
low-complexity classes below. These two classes have been characterized only re-
stricted to deterministic functionalities. Our characterization reduces the prob-
lem of characterizing triviality of general SFE functionalities to the problem of
characterizing triviality of simple SSFE functionalities. We remark that it still
remains open to give a combinatorial characterization of trivial SSFE outside of
determinsitic SFE.

5.1 Passive Trivial SFE

Theorem 3. A finite 2-party SFE functionality F is passive-trivial in the in-
formation theoretic setting if and only if it is simple and its kernel (which is a
simple SSFE functionality) is passive-trivial.

Proof: If F is simple, then it is strongly isomorphic to its kernel. Hence, if the
latter is passive-trivial, then so is F .

The other direction is a simple consequence of Theorem 1. If F is not simple,
then by Theorem 1, it is passive-complete. A passive-complete functionality is
not passive-trivial (as otherwise, all functionalities will be passive-trivial, which
is not the case). �

An interesting special case of this appeared in [Kil00]: for an asymmetric
deterministic SFE, its kernel is simply a constant functionality and is passive-
trivial. Hence an asymmetric SFE is passive-trivial if and only if it is simple.
That is, any asymmetric SFE is either passive-trivial or is complete.
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5.2 Standalone Trivial SFE Functionalities

Theorem 4. A finite 2-party SFE functionality is UC- or standalone-trivial in
the information theoretic setting if and only if it has a simple core whose kernel
(which is a simple SSFE functionality) is respectively UC or standalone-trivial.

Proof: We give the proof for standalone-triviality; the argument for UC-triviality
is similar.

Suppose a finite 2-party SFE functionality F has a simple core F ′ whose
kernel K is standalone-trivial. Since, F ′ is simple, i.e. strongly isomorphic to
K, and K is standalone trivial, we conclude that F ′ is also standalone trivial.
Since F is weakly-isomorphic to F ′ and weak isomorphism preserves standalone
triviality, F itself is standalone trivial.

To see the converse, suppose F is a standalone-trivial SFE. Let F ′ be a core
of F . Standalone triviality of F implies that F ′ is also standalone trivial. Now,
Lemma 2 implies that F ′ is also passive trivial and, in particular, it is not passive
complete. By Theorem 1, F ′ is simple. Now, the core K of F ′ is standalone trivial
because F is weakly isomorphic to F ′ and F ′ is strongly isomorphic to K.

Note that if any core of F is standalone trivial, then so are all cores. Because
F is weakly isomorphic to both cores and standalone triviality of one of them
shall entail standalone triviality of the other core. �

References

Bea89. Beaver, D.: Perfect privacy for two-party protocols. In: Feigenbaum, J.,
Merritt, M. (eds.) Proceedings of DIMACS Workshop on Distributed Com-
puting and Cryptography, vol. 2, pp. 65–77. American Mathematical So-
ciety (1989)

BGW88. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended ab-
stract). In: Simon, J. (ed.) STOC, pp. 1–10. ACM (1988)

CCD88. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure
protocols. In: Simon, J. (ed.) STOC, pp. 11–19. ACM (1988)

CK88. Crépeau, C., Kilian, J.: Achieving oblivious transfer using weakened secu-
rity assumptions (extended abstract). In: FOCS, pp. 42–52. IEEE (1988)

CKL03. Canetti, R., Kushilevitz, E., Lindell, Y.: On the Limitations of Universally
Composable Two-Party Computation Without Set-Up Assumptions. In:
Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer,
Heidelberg (2003)

CMW04. Crépeau, C., Morozov, K., Wolf, S.: Efficient Unconditional Oblivious
Transfer from Almost Any Noisy Channel. In: Blundo, C., Cimato, S. (eds.)
SCN 2004. LNCS, vol. 3352, pp. 47–59. Springer, Heidelberg (2005)

GMW87. Goldreich, O., Micali, S., Wigderson, A.: How to play ANY mental game.
In: Aho, A.V. (ed.) STOC, pp. 218–229. ACM (1987); See [Gol04, ch. 7]
for more details

Gol04. Goldreich, O.: Foundations of Cryptography: Basic Applications. Cam-
bridge University Press (2004)



A Unified Characterization of Completeness and Triviality for SFE 55

GV87. Goldreich, O., Vainish, R.: How to Solve Any Protocol Probleman Ef-
ficiency Improvement. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS,
vol. 293, pp. 73–86. Springer, Heidelberg (1988)

HM86. Haber, S., Micali, S.: Unpublished Manuscript (1986)
IPS08. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding Cryptography on Obliv-

ious Transfer – Efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS,
vol. 5157, pp. 572–591. Springer, Heidelberg (2008)

Kil88. Kilian, J.: Founding cryptography on oblivious transfer. In: Simon, J. (ed.)
STOC, pp. 20–31. ACM (1988)

Kil91. Kilian, J.: A general completeness theorem for two-party games. In: Kout-
sougeras, C., Vitter, J.S. (eds.) STOC, pp. 553–560. ACM (1991)

Kil00. Kilian, J.: More general completeness theorems for secure two-party com-
putation. In: Frances Yao, F., Luks, E.M. (eds.) STOC, pp. 316–324. ACM
(2000)

KM11. Kraschewski, D., Müller-Quade, J.: Completeness Theorems with Con-
structive Proofs for Finite Deterministic 2-Party Functions. In: Ishai, Y.
(ed.) TCC 2011. LNCS, vol. 6597, pp. 364–381. Springer, Heidelberg (2011)

KMR09. Künzler, R., Müller-Quade, J., Raub, D.: Secure Computability of Func-
tions in the IT Setting with Dishonest Majority and Applications to Long-
Term Security. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp.
238–255. Springer, Heidelberg (2009)

KTRR03. Koulgi, P., Tuncel, E., Regunathan, S.L., Rose, K.: On zero-error coding
of correlated sources. IEEE Transactions on Information Theory 49(11),
2856–2873 (2003)

Kus89. Kushilevitz, E.: Privacy and communication complexity. In: FOCS, pp.
416–421. IEEE (1989)

MOPR11. Maji, H.K., Ouppaphan, P., Prabhakaran, M., Rosulek, M.: Exploring the
Limits of Common Coins Using Frontier Analysis of Protocols. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 486–503. Springer, Heidelberg
(2011)

MPR09. Maji, H.K., Prabhakaran, M., Rosulek, M.: Complexity of Multi-party
Computation Problems: The Case of 2-Party Symmetric Secure Function
Evaluation. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 256–
273. Springer, Heidelberg (2009)

PR08. Prabhakaran, M., Rosulek, M.: Cryptographic Complexity of Multi-Party
Computation Problems: Classifications and Separations. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 262–279. Springer, Heidelberg
(2008)

Wit76. Witsenhausen, H.S.: The zero-error side information problem and chro-
matic numbers (corresp.). IEEE Transactions on Information The-
ory 22(5), 592–593 (1976)

WW06. Wolf, S., Wullschleger, J.: Oblivious Transfer Is Symmetric. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer,
Heidelberg (2006)

Yao86. Yao, A.C.-C.: How to generate and exchange secrets. In: FOCS, pp. 162–
167. IEEE Computer Society (1986)



56 H.K. Maji, M. Prabhakaran, and M. Rosulek

A Proof of Lemma 1

Proof: We shall show the following implications: (1) ⇒ (3) ⇒ (2) ⇒ (1).
In fact, first we shall show (2) ⇔ (3) because this result gives a local test to
check whether a graph is product distribution graph or not, which could be of
independent interest.

Proof of (2) ⇒ (3): Let G(F) be the graph of functionality F and {U1, . . . , Un}
and {V1, . . . , Vn} be the partition of the left and right partite sets of the con-
nected components. The only interesting case is when there exists a k ∈ [n]
such that u0, u1 ∈ Uk and v0, v1 ∈ Vk; otherwise wt(u0, v0)wt(u1, v1) = 0 =
wt(u0, v1)wt(u1, v0) and condition 3 holds trivially. Let pu and qv be the distri-
butions over U and V respectively and ck be the distribution over the connected
components of G(F). Now, we have: wt(u0, v0)wt(u1, v1) = pu0qv0×pu1qv1 / c2

k =
pu0qv1 × pu1qv0 / c2

k = wt(u0, v1)wt(u1, v0).

Proof of (3) ⇒ (2): Let Uk and Vk be the partite sets of the k-th component of
the graph. Let W be the sum of weights on all edges of the graph and Wk be the
sum of weights of edges in the k-th component. We define ck as the distribution
over the partitions such that probability of k ∈ [n] is Wk/W . We represent the
weight of the edge between i and j node as wt(i, j). The probability distribution
over the edges is wt∗(i, j) = wt(i, j)/W . We define the weight of the node i ∈ U as
pi =

∑
j′∈V wt(i, j′)/W . It is easy to observe that pi is a probability distribution

over U . Similarly, define the probability of j ∈ V as qj =
∑

i′∈U wt(i′, j)/W .
Now, consider i ∈ Uk and j ∈ Vk and evaluate the expression pi × qj/ck:

pi × qj/ck =

⎛⎝∑
j′∈V

wt(i, j′)

⎞⎠×(∑
i′∈U

wt(i′, j)

)
× 1

WkW

=

⎛⎝∑
j′∈Vk

wt(i, j′)

⎞⎠×(∑
i′∈Uk

wt(i′, j)

)
· 1
WkW

=
∑

(i′,j′)∈Uk×Vk

wt(i, j′)wt(i′, j)
1

WkW

=
∑

(i′,j′)∈Uk×Vk

wt(i, j)wt(i′, j′)
1

WkW

= (wt(i, j)/W )× (Wk/Wk) = wt∗(i, j)

Finally, we show the equivalence of F being simple with the other two statements.
In the following, we shall represent the kernel of F as K.

Proof of (1) ⇒ (3): Suppose we are given a local protocol πF which securely
realizes F in the K hybrid. By definition, parties invoke K with the same input
as their input for F ; and this protocol is passive, standalone and UC secure.
Consider the experiment where x

$←X and y
$←Y . We shall condition our analysis
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on the output of K being k in the real protocol, when inputs to Alice and Bob
are x and y. The probability that Alice outputs a is denoted by p̃k(x, a), since πF
is a local protocol. Similarly, the probability that Bob outputs b is represented
by q̃k(y, b).

Let ck be the probability that K gives k as output to both parties when x
$←X

and y
$← Y . Note that ck is the sum of weights on edges in the k-th component

in G(F). The probability of edge joining u = (x, a) and v = (y, b) in the real
world execution is w̃t(u, v) = ck × p̃k(u)q̃k(v), for every u ∈ Uk and v ∈ Vk.

By security of the protocol, we can claim that:5∣∣w̃t(u, v) − wt(u, v)
∣∣ ≤ negl(κ)

⇔ |ckp̃k(u)q̃k(v) − wt(u, v)| ≤ negl(κ)

Consider drawing an edge from G(F) with probability equal to the weight on
the edge. Let pk(u) be the probability that Alice’s node is u = (x, a), condi-
tioned on the event that an edge in the kth component is selected. Formally,
pk(u) =

∑
v′∈Vk

wt(u, v′)/ck. Similarly, we define qk(v) =
∑

u′∈Uk
wt(u′, v)/ck.

By security of the protocol, we can claim that |p̃k(u), pk(u)| ≤ negl(κ) and
|q̃k(v), qk(v)| ≤ negl(κ). Here we use union bounds over Vk and Uk respectively.

Thus, we can conclude that

|ckpk(u)qk(v) − wt(u, v)| ≤ negl(κ)

Note that the function wt(·, ·) assigns values which are integral multiples of
1/|X × Y ×R|. Therefore, ck, pk(u) and qk(v) are also integral multiples of
1/|X × Y ×R|. So, if ckpk(u)qk(v) is not equal to wt(u, v), then

|ckpk(u)qk(v) − wt(u, v)| ≥ 1
|X × Y ×R| which is non-negligible

Thus, we can conclude that wt(u, v) = ckpk(u)qk(v) and this trivially satisfies
condition 3 (alternately, interpret pk(u)ck as the distribution over U and qk(v)ck

as the distribution over V ).
Proof of (2) ⇒ (1): Let the distribution over U and V be pu and qv respectively;
and the distribution over the connected components be ck. From the product
distribution guarantee we have wt(u, v) = pu · qv/ck.

1. Computing F in K hybrid (Protocol πF ): We provide the algorithm for Alice;
and Bob’s algorithm is symmetrically defined. On input x, Alice sends x to
K setup and receives the connected component k as output. Given x and k
there is distribution over her output dx,k(a) as induced by the edges in the
k-th component of G(F). She locally samples her outcome according to this
distribution. Formally, the probability of her output being a is:

5 Since F is a finite functionality, the probability of an edge in G(F), when evalu-
ated with random input, is at least 1/|X × Y ×R|. Thus, significant fraction of the
soundness error in a particular edge propagates as soundness error in the overall
experiment where x

$←X and y
$← Y .
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p(x,a)∑
(x,a′)∈Uk

p(x,a′)

2. Computing K in F hybrid (Protocol πK): Again, we provide Alice’s algo-
rithm. On input x, Alice sends x to F setup and receives her output a.
Given (x, a) there is a unique k such that the node (x, a) lies in the k-th
component of G(F). Alice outputs k.

Below we prove the security of these protocols. For simplicity, we shall assume
that in the first protocol (and in the simulation for the second) it is possible to
sample an outcome exactly according to a requisite distribution. In general this is
not true (for instance, when the probabilities involved have binary infinite binary
expansions). But this assumption can be removed by carrying out the sampling
to within an exponentially small error (using polynomially many coins); this
affects the security error only by an exponentially small amount.

Proofs for Protocol πF : Let us argue the correctness of the protocol. Define
Wx,y(k) as the weight of edges in k-th component of G(F) when Alice and Bob
inputs are x and y respectively; and Wx,y =

∑
k∈[n] Wx,y(k). Consider the event

that the edge connecting (x, a) and (y, b) in G(F) lies in the k-th connected com-
ponent. In both real and ideal worlds the probability of this event is Wx,y(k)/Wx,y.
Now, we shall analyze the probability of joint distribution of (x, a) and (y, b) con-
ditioned on this event. Let Ux,k be the subset of the k-th connected component’s
left partite set which have Alice input x. Similarly, define Vy,k. The probability of
the edge connecting u = (x, a) and v = (y, b) in the ideal world is:

wt(u, v)
Wx,y(k)

The probability of the edge connecting u and v in the real world is:

pu∑
u′∈Ux,k

pu′
× qv∑

v′∈Vy,k
qv′

=
wt(u, v)
Wx,y(k)

This shows that the protocol πF is perfectly correct.
For security, we shall construct a simulator for Alice. Malicious Bob’s case

is analogous. When malicious Alice is invoked with inputs x, she sends x̃ to K.
The simulator, who is implementing the setup K, forwards x̃ to the external F
functionality. It receives an outcome ã from the external functionality. Next, the
simulator sends the connected component in G(F) which contains the vertex
(x̃, ã). Simulation is perfect because the probability of malicious Alice seeing k̃
in real and ideal work is exactly Wx̃,y(k̃)/Wx̃,y.

Proofs for Protocol πK: The correctness of the protocol is trivial. Both in the
real and ideal world, the probability of k being the output when Alice and Bob
have inputs x and y respectively is Wx,y(k)/Wx,y.

For security, we shall construct a simulator for malicious Alice. When mali-
cious Alice is invoked with inputs x, she sends x̃ to F . The simulator, who is
implementing the setup F , forwards x̃ to the external K functionality and re-
ceives the connected component k̃ from the external functionality. It samples a
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node ũ = (x̃, ã) from Ux̃,k̃ according to the distribution pũ and sends ã as the
output of F . The simulation is perfect (up to sampling exactly with the requi-
site probabilities) because the probability of malicious Alice seeing ã in the real
world is: ∑

v′∈Vy,k̃
wt(ũ, v′)

Wx̃,y

While the probability of the same event in the simulation is:

Wx̃,y(k̃)
Wx̃,y

× pũ∑
u′∈Ux̃,k̃

pu′
=

Wx̃,y(k̃)
Wx̃,y

×
ck

∑
v′∈Vy,k̃

wt(ũ, v′)

ck

∑
(u′,v′)∈Ux̃,k̃×Vy,k̃

wt(u′, v′)

=
Wx̃,y(k̃)
Wx̃,y

×
∑

v′∈Vy,k̃
wt(u, v′)

Wx̃,y(k̃)

This is identical to the previous expression. �

B Special Cases of Simple SFE

For the special case (possibly randomzied) SSFE functionalities, note that each
connected component in the graph of an SSFE functionality has the same output
value z. So we observe that Kilian’s condition that ∃x0, x1, y0, y1, z such that

Pr[f(x0, y0) = z] > 0; and Pr[f(x0, y1) = z] > 0; and
Pr[f(x0, y0) = z] · Pr[f(x1, y1) = z] �= Pr[f(x1, y0) = z] · Pr[f(x0, y1) = z].

can be rephrased as follows: there exists some connected component in the graph
of the functionality that is not a product distribution, or equivalently, the func-
tionality is not simple. In terms of the above values x0, x1, y0, y1, z, this com-
ponent (with output z) has nodes (x0, z), (y0, z), (x0, z), (x1, z). They are con-
nected because the edges ((x0, z), (y0, z)) and ((x0, z), (y1, z)) are present, and
(x1, z) is connected with them either by the edge ((x1, z), (y0, z)) or by the edge
((x1, z), (y1, z)) (i.e., it is not the case that Pr[f(x1, y1) = z] = Pr[f(x1, y0) =
z] = 0). This connected component is not a product distribution, because if
it were, then Pr[f(x0, y0) = z] Pr[f(x1, y1) = z] = pA(x0, z)pA(x1, z)pB(y0, z)
pB(y1, z) = Pr[f(x1, y0) = z] Pr[f(x0, y1) = z], for some functions pA and pB.

To see the simplification in the case of deterministic SFE, note that in the
graph of a deterministic SFE, a connected component must be a complete bi-
partite graph to have a product distribution. So, to not be a product graph,
there must be two distinct nodes (x, a), (x′, a′) on the left and two nodes (y, b),
(y′, b′) on the right such that there are edges ((x, a), (y, b)), ((x, a), (y′, b′)),
((x′, a′), (y, b)), but the edge ((x′, a′), (y′, b′)) is not present. That is, there are
inputs x �= x′ for Alice and y �= y′ for Bob6 such that fA(x, y) = fA(x, y′),
fB(x, y) = fB(x′, y) and (fA(x′, y′), fB(x′, y′)) �= (fA(x′, y), fB(x, y′)) (i.e., ei-
ther fA(x′, y) �= fA(x′, y′) or fB(x, y′) �= fB(x′, y′) or both). That is the tuple
(x, x′, y, y′) is an OT-core.
6 If x = x′, then a = fA(x, y) = fA(x′, y) = a′ and (x, a) and (x′, a′) are not distinct;

similarly if y = y′ then b = b′.
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ciphertext and signature respectively. Understanding the most efficient NIZK
proofs that are sufficiently strong, i.e., sufficiently non-malleable, for building
signature and encryption schemes with strong security properties is thus of fun-
damental importance in cryptography. It was shown by Goldreich and Oren [25]
that NIZK proofs are unattainable in the standard model. To avoid this im-
possibility result, one must rely on additional assumptions, such as common
reference strings [9] (CRS model) or idealizations of hash functions [7] (random
oracle model, ROM).

With the aim of finding the “right” definition in the non-interactive case,
several flavors of non-malleability [19] have been introduced for NIZK in the
CRS model [37,38,24,31]. The notion of simulation soundness, which bridges
soundness and zero knowledge, guarantees that soundness holds even after seeing
accepting proofs, for both true and false statements, produced by the simulator.
This strengthened soundness notion was first proposed by Sahai in [37], and later
improved by De Santis et al. [38]. The notion of simulation extraction [38,28]
in addition requires that accepting proofs allow to extract witnesses. Different
variants of simulation extraction have been proposed by [15,18].

Until recently, zero-knowledge in general and NIZK in particular were consid-
ered to be primarily of theoretical interest. Significant exceptions being efficient
Σ-protocols [16,17] and their non-interactive relatives based on the Fiat-Shamir
(FS) transform [21]. A Σ-protocol is a three-move interactive scheme where the
prover sends the first message and the verifier sends a random challenge as the
second message. In a nutshell, the Fiat-Shamir transform removes the interac-
tion by computing the challenge as the hash value of the first message and the
theorem that is being proven. Σ-protocols and the Fiat-Shamir transform are
widely used in the construction of efficient identification [21], anonymous cre-
dential [14], signature [35,1], e-voting schemes [8], and many other cryptographic
constructions [11,6,23].

Most work on the provable security of zero-knowledge has, however, been
conducted either on interactive proof systems in the plain model or on NIZK
in the CRS model, while practitioners often preferred Fiat-Shamir based NIZK
proofs for their simplicity and efficiency. The use of the Fiat-Shamir transform
was most thoroughly explored in the security proofs of signature schemes in
the random oracle model [35,1], but was otherwise often used heuristically. The
question thus arises whether one can lay sound foundations for the FS transform
in the light of recent research on CRS-based NIZKs. To this end, we provide non-
malleability definitions for NIZK in the random oracle model that closely follow
the established CRS-based definitions [28]. An earlier result oriented in the same
direction, but concerning a Σ-protocol for a specific language,1 was given by
Fouque and Pointcheval [23]. Their proof strategy relies on the forking lemma [35]
and (implicitly) on the fact that the Σ-protocol they consider has a particular
property called strong special honest-verifier zero-knowledge (SS-HVZK). Since
there exist Σ-protocols that do not satisfy the SS-HVZK property, Fouque

1 This is the language used in the Naor-Yung transform when the underlying encryp-
tion is the ElGamal scheme.
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and Pointcheval’s proof cannot be immediately extended to the general case.
Moreover, we make the random oracle explicit in our definition, which is crucial
as definitions in the random oracle model can be brittle [40].

Our first observation is that much less is required to show simulation sound-
ness for any FS-NIZK proof. Namely, in the random oracle model, simulation
soundness simply follows from the soundness and the HVZK properties of the
underlying interactive protocol. In particular, it is neither necessary to rely on
the forking lemma, nor on the strong property of SS-HVZK. We also show that
the proof strategy of [23], when generalized properly to any Σ-protocol, yields
something more than just simulation soundness. In fact, one gets some form of
simulation extractability, which we call weak simulation extractability. In a nut-
shell, full simulation extractability requires that even after seeing many simulated
proofs, whenever an adversary outputs a new accepted proof, we can build an al-
gorithm to extract a valid witness. Sometimes, such a strong extraction property
is called online extraction [22] because the extractor outputs a witness directly
after receiving the adversary’s proof. In comparison, our notion is weaker in that
it allows the extractor to fully control the adversary (i.e., rewind it).

Our contribution. Our contributions are threefold. First, we formally define the
notions of zero-knowledge (which holds trivially for the Fiat-Shamir transform),
simulation soundness, and simulation extractability for NIZKs in the random
oracle model. Second, we show that simulation soundness and a weak form of
simulation extractability come for free if one uses the FS-transform for turning
Σ-protocols into NIZK proof systems. Third, we investigate the consequences of
this result by showing that our definitions are sufficient for instantiating the
Naor-Yung paradigm for constructing CCA2-secure encryption schemes, and
generic construction for signature schemes from hard relations and simulation-
extractable NIZK proof systems [18]. These two constructions are particularly
interesting as the former preserves both leakage resilience and key-dependent
message security of the underlying CPA-secure encryption scheme, while the
latter lifts the leakage resilience of the hard relation to the leakage resilience of
the resulting signature scheme. To our knowledge, these are the most efficient
schemes having such properties, if one is willing to rely on the ROM.2

Related work. The only other efficient transform for Σ-protocols yielding simu-
lation soundness (again in the random oracle model) is Fischlin’s transform [22]
which is designed with the purpose of online extraction and is less efficient than
the classical Fiat-Shamir transform. Therefore, it would be interesting to in-
vestigate whether Fischlin’s transform achieves a stronger form of simulation
extractability. We notice that in the interactive case, a general transform from
any Σ-protocol to an (unbounded) simulation-sound Σ-protocol using one-time
signatures has been proposed [24]. In the common reference string model the
most efficient simulation-sound or simulation extractable NIZK proof system are

2 In particular we obtain as a special case the Alwen et al. [4] leakage-resilient signature
scheme based on the Okamoto identification scheme.
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based on Groth-Sahai proofs [29]. One has however to pay the price of proving a
structure-preserving CCA secure encryption [18] (for true-simulation extraction)
or a structure-preserving signature scheme [3] (for full simulation extraction).

2 Preliminaries

Notation. Let k be a security parameter. A function ν is called negligible if
ν(k) ≤ k−c for any c > 0 and sufficiently large k. Given two functions f, g, we
write f ≈ g if there exists a negligible function ν such that |f(k)− g(k)| < ν(k).
Given an algorithm A, y ← A(x) means that y is the output of A on input x;
when A is randomized, then y is a random variable. We write AH to denote the
fact that A has oracle access to some function H . PPT stands for probabilistic-
polynomial time. A decision problem related to a language L ⊆ {0, 1}∗ consists
in determining whether a string x is in L or not. Given an instance x, we say
that A decides (or recognizes) L if, after a finite number of steps, the algorithm
halts and outputs A(x) = 1 if x ∈ L, otherwise A(x) = 0. (Sometimes, we may
call “theorem” a string belonging to the language at hand.) We can associate
to any NP-language L a polynomial-time recognizable relation RL defining L
itself, that is L = {x : ∃w s.t. (x,w) ∈ RL}, where |w| ≤ poly(|x|). The string w
is called a witness or certificate for membership of x ∈ L. For NP, w corresponds
to the non-deterministic choices made by A.

Interactive protocols. An interactive proof system (IPS) for membership in L is
a two-party protocol, where a prover wants to convince an efficient verifier that
a string x belongs to L. In a zero-knowledge interactive proof system, a prover P
can convince a verifier V that x ∈ L without revealing anything beyond the fact
that the statement is indeed true. Informally, this means that V cannot exploit
the interaction with P for gaining extra-knowledge. Such a property is formalized
by requiring the existence of an efficient algorithm S, the zero-knowledge simu-
lator, which produces messages indistinguishable from conversations between an
honest prover P and a malicious verifier V∗. Besides the zero-knowledge property,
any proof system satisfies two standard requirements: proving true statements
is always possible, while it should be infeasible to convince the verifier to accept
a false statement as correct. These two conditions are called completeness and
soundness respectively. Related to the concept of interactive proof systems, but
even more subtle, is the notion of proof of knowledge. In a proof of knowledge
(PoK), P wants to convince V that he knows a secret witness which implies the
validity of some assertion, and not merely that the assertion is true. To formalize
the fact that a prover actually “knows something”, we require that there exists
an efficient algorithm E , called knowledge extractor, that when given complete
access to the program of the prover can extract the witness.

An IPS or an interactive PoK is called public-coin when the verifier’s moves
consist merely of tossing coins and sending their outcomes to the prover. (In
contrast, in a private-coin IPS the verifier does not need to show the outcome
of the coins to the prover [27].) We are mainly interested in a specific class of
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Prover P(x,w; 1k) Verifier V(x; 1k)
α ← P0(x,w; ρ)

α−→
β←− β

$← V0(x, α)

γ ← P1(α, β, x,w; ρ)
γ−→ Accept iff V1(x, α, β, γ) = 1

Fig. 1. A Σ-protocol for a language L

public-coin interactive PoK systems for NP-languages, called Σ-protocols. Here,
the parties involved share a string x belonging to a language L ∈ NP and the
prover also holds a witness w for membership of x ∈ L. Thus, the prover P
wants to convince the verifier V that it “knows” a witness w for x, i.e. that x
is in the language, without revealing the witness itself. Σ-protocols have a 3-
move shape where the first message α, called commitment, is sent by the prover
and then, alternatively, the parties exchange the other messages β and γ, called
(respectively) challenge and response. The interaction is depicted in Figure 1.
Besides the standard properties held by any IPS, Σ-protocols satisfy a flavour of
zero-knowledge — called honest-verifier zero knowledge (HVZK) — saying that
an honest verifier taking part in the protocol does not learn anything beyond
the validity of the theorem being proven.

Definition 1 (Σ-protocols). A Σ-protocol Σ = (P ,V) for an NP-language L
is a three-round public-coin IPS where P = (P0,P1) and V = (V0,V1) are PPT
algorithms, with the following additional proprieties:

Completeness. If x ∈ L, any proper execution of the protocol between P and
V ends with the verifier accepting P’s proof.

Honest-Verifier Zero Knowledge (HVZK). There exists an efficient algo-
rithm S, called zero-knowledge simulator, such that for any PPT distin-
guisher D = (D0,D1) and for any (x,w) ∈ RL, the view of the following
two experiments, real and simulated, are computationally indistinguishable:

Experiment ExprealΣ,D (1k)
(x,w, δ)← D0(1

k)
π ← 〈P(x,w; 1k),V(x; 1k)〉
Output D1(π, δ)

Experiment ExpsimΣ,D(S, 1k)
(x,w, δ)← D0(1

k)
π ← S(x, 1k)
Output D1(π, δ)

where 〈P(x,w),V(x)〉 denotes the verdict returned at the end of the interac-
tion between P and V on common input x and private input w.

Soundness. If x /∈ L then any malicious (even unbounded) prover P∗ is ac-
cepted only with negligible probability.

Special soundness. There exists an efficient algorithm E, called special ex-
tractor, such that given two accepting conversations (α, β, γ) and (α, β′, γ′)
for a string x, where β �= β′, then w ← E(α, β, γ, β′, γ′, x) is such that
(x,w) ∈ RL.

The special soundness property is strong enough to imply both soundness and
that Σ-protocols are PoK [17]. Sometimes Σ-protocols are required to meet
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stronger notions of HVZK. We discuss these notions and implications and non
implications between them in the full version [20].

A non-standard condition that many Σ-protocols satisfy, introduced by Fis-
chlin in [22], requires that responses are quasi unique, i.e. given an accepting
proof it should be infeasible to find a new valid response for that proof.

Definition 2 (Quasi unique responses). A Σ-protocol has quasi unique re-
sponses if for any PPT A and for any security parameter k it holds:

Prob[(x, α, β, γ, γ′)← A(1k) : V(x, α, β, γ) = V(x, α, β, γ′) = 1 ∧ γ �= γ′] ≈ 0.

A Σ-protocol has unique responses if the probability above is zero. The latter
condition, defined by Unruh in [39], is also known as strict soundness.

Min-entropy of commitments. Following [1,2], we use the concept of min-entropy
to measure how likely it is for a commitment to collide with a fixed value.

Definition 3 (Min-entropy of commitment). Let k be a security parameter
and L be an NP-language with relation RL. Consider a pair (x,w) ∈ RL and
let (P ,V) be an arbitrary three-round IPS. Denote with Coins(k) the set of coins
used by the prover and consider the set A(x,w) = {P0(x,w; ρ) : ρ← Coins(k))}
of all possible commitments associated to w. The min-entropy function asso-
ciated to (P ,V) is defined as ε(k) = min(x,w)(− log2 μ(x,w)),where the mini-
mum is taken over all possible (x,w) drawn from RL and μ(x,w) is the maxi-
mum probability that a commitment takes on a particular value, i.e., μ(x,w) =
maxα∈A(x,w)(Prob[P0(x,w; ρ) = α : ρ← Coins(k))]).

We say that (P ,V) is non-trivial if ε(k) = ω(log(k)) is super-logarithmic in k.
Often, the commitment is drawn uniformly from some set. In order for (P ,V)
to be non-trivial, this set must have size exponential in k. Notice that most of
natural Σ-protocols meet such a condition and, in fact, non-triviality is quite
easy to achieve, e.g. by appending redundant random bits to the commitment.

Forking lemma. To prove our second main result, we make use of the following
version of the forking lemma, which appeared in [6].

Lemma 1 (General forking lemma). Fix an integer Q and a set H of size
h ≥ 2. Let P be a randomized program that on input y, h1, . . . , hQ returns a pair,
the first element of which is an integer in the range 0, . . . , Q and the second
element of which we refer to as a side output. Let IG be a randomized algorithm
that we call the input generator. The accepting probability of P, denoted acc, is
defined as the probability that J ≥ 1 in the experiment y ← IG;h1, . . . , hQ ←
H; (J, s)← P(y, h1, . . . , hQ).

The forking algorithm FP associated to P is the randomized algorithm that on
input y proceeds as follows.

Algorithm FP(y)
Pick coins ρ for P at random
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h1, . . . , hQ ← H
(I, s)← P(y, h1, . . . , hQ; ρ)
If I = 0 return (0,⊥,⊥)
h′I , . . . , h

′
Q ← H

(I ′, s′)← P(y, h1, . . . , hI−1, h
′
I , . . . , h

′
Q; ρ)

If (I = I ′) ∧ (hI �= h′I) return (1, s, s′) else return (0,⊥,⊥)

Let ext = Prob[b = 1 : y ← IG; (b, s, s′)← FP(y)], then ext ≥ acc
(

acc
Q − 1

h

)
.

3 Properties of NIZKs in the Random Oracle Model

Removing interaction. The Fiat-Shamir transform was originally designed to
turn three-round identification schemes into efficient signature schemes. As Σ-
protocols are an extension of three-round identification schemes, it is not sur-
prising that they can be considered as a starting point for the Fiat-Shamir
transform. The Fiat-Shamir paradigm applies to any Σ-protocol (and more gen-
erally to any three-round public-coin proof system): We start from an interactive
protocol (P ,V) and remove the interaction between P and V by replacing the
challenge, chosen at random by the verifier, with a hash value H(α, x) computed
by the prover, where H is a hash function modeled as a random oracle. Thus,
the interactive protocol (P ,V) is turned into a non-interactive one: The resulting
protocol, denoted (PH ,VH), is called Fiat-Shamir proof system.

Throughout this paper, we refer to the so called explicitly programmable ran-
dom oracle model [40] (EPROM) where the simulator is allowed to program the
random oracle explicitly. We model this by defining the zero-knowledge simulator
S of a non-interactive zero-knowledge proof system as a stateful algorithm that
can operate in two modes: (hi, st)← S(1, st, qi) takes care of answering random
oracle queries (usually by lazy sampling) while (π, st)← S(2, st, x) simulates the
actual proof. Note that calls to S(1, · · · ) and S(2, · · · ) share the common state
st that is updated after each operation.

Definition 4 (Unbounded non-interactive zero knowledge). Let L be a
language in NP. Denote with (S1,S2) the oracles such that S1(qi) returns the
first output of (hi, st) ← S(1, st, qi) and S2(x,w) returns the first output of
(π, st)← S(2, st, x) if (x,w) ∈ RL. We say a protocol (PH ,VH) is a NIZK proof
for language L in the random oracle model, if there exists a PPT simulator S
such that for all PPT distinguishers D we have

Prob[DH(·),PH(·,·)(1k) = 1] ≈ Prob[DS1(·),S2(·,·)(1k) = 1],

where both P and S2 oracles output ⊥ if (x,w) /∈ RL.

A well known fact is that, in the random oracle model, the Fiat-Shamir transform
allows to efficiently design digital signature schemes [21] and non-interactive
zero-knowledge protocols. In fact, an appealing characteristic of this transform
is that many properties of the starting protocol are still valid after applying
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it. In particular, it has been proven that the Fiat-Shamir transform turns any
three-round public-coin zero-knowledge interactive proof system into a NIZK
proof system [7]. It is straightforward to prove that the same holds when the
starting protocol is ZK only with respect to a honest verifier, as stated in the
following Theorem.

Theorem 1 (Fiat-Shamir NIZKs). Let k be a security parameter. Consider
a non-trivial three-round public-coin honest-verifier zero-knowledge interactive
proof system (P ,V) for a language L ∈ NP. Let H be a function with range
equal to the space of the verifier’s coins. In the random oracle model the proof
system (PH ,VH), derived from (P ,V) by applying the Fiat-Shamir transform,
is unbounded non-interactive zero-knowledge.

Proof (sketch). To prove that the proof system (PH ,VH) is non-interactive zero-
knowledge it is sufficient to show that there exists a simulator S as required in
Definition 4. This can be done by invoking the HVZK simulator associated with
the underlying interactive proof system. In particular, S works as follows:

– To answer query q = (x, α) to S1, S(1, st, q) lazily samples a lookup table
TH kept in state st. It checks whether TH(q) is already defined. If this is the
case, it returns the previously assigned value; otherwise it returns and sets
a fresh random value (of the appropriate length).

– To answer query x to S2 (respectively S ′
2), S(2, st, x) calls the HVZK simu-

lator of (P ,V) on input x to obtain a proof (α, β, γ). Then, it updates TH in
such a way that β = TH(x, α). If TH happens to be already defined on this
input, S returns failure and aborts.

We call this simulator canonical. The main result of Fiat-Shamir [21] (expressed
for their particular identification protocol) is that S is a “good” NIZK simulator.
The crucial step in the proof is that the starting protocol (P ,V) is non-trivial
(cf. Definition 3), thus the probability of failure in each of the queries to S ′

2 is
upper-bounded by Prob[failure] ≤ 2−ε(k), which is negligible in k. ��

Simulation soundness. The soundness property of a proof system ensures that
no malicious prover can come up with an accepting proof for a string that does
not belong to the language in question (i.e., for a false theorem). However, it
is not clear whether this condition still holds after the attacker observes valid
proofs for adaptively chosen (true or false) statements. The notion of simulation
soundness deals with this case.

Definition 5 (Unbounded simulation soundness). Let L be a language in
NP. Consider a proof system (PH ,VH) for L, with zero-knowledge simulator
S. Denote with (S1,S ′

2) the oracles such that S1(qi) returns the first output of
(hi, st) ← S(1, st, qi) and S ′

2(x) returns the first output of (π, st) ← S(2, st, x).
We say that (PH ,VH) is simulation sound with respect to S in the random oracle
model, if for all PPT adversaries A the following holds:

Prob[(x�, π�)← AS1(·),S′
2(·) : (x�, π�) /∈ T ∧ x� /∈ L ∧ VS1(x�, π�) = 1] ≈ 0,
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where T is the list of pairs (xi, πi), i.e., respectively queries asked to and proofs
returned by the simulator.

We stress that the above definition relies crucially on the zero-knowledge prop-
erty of (PH ,VH), as we use a probability experiment that defines a property
of S to define a property about (PH ,VH). In particular the definition is most
meaningful for a simulator S for which the simulation of the random oracle of
S1 is consistent with a truly random oracle H . Also note that S ′

2 allows A to
ask for simulated proofs of false statements.

The possibility to request proofs of false statements has an interesting conse-
quence: simulation soundness holds only with respect to specific simulators and
not in general for all NIZK simulators. In particular, one can construct a NIZK
proof system (PH ,VH) that is simulation sound with respect to a simulator S
but for which there exists a valid NIZK simulator Ŝ, such that (PH ,VH) cannot
be simulation sound with respect to Ŝ. To see this, consider a VH that accepts
all proofs if H(0) = 0. Ŝ simulates a consistent random oracle until it receives
a proof of a false statement (one of which could be hard-coded in Ŝ or easy to
recognize) at which point it sets TH(0) = 0. Note that a similar counterexample
exists for CRS-based NIZK [28]: Ŝ2 can simply return the simulation trapdoor
when queried on a false statement.

Simulation extractability. Combining simulation soundness and knowledge ex-
traction, we may require that even after seeing (polynomially) many simulated
proofs, whenever A makes a new proof it is possible to extract a witness. This
property is called simulation extractability, and implies simulation soundness.
Indeed, if we can extract a witness from the adversary’s proof even with small
probability, then obviously the statement must belong to the language in ques-
tion. We introduce a weaker flavor of simulation extractability which we call weak
simulation extractability. The main difference with full simulation extractability
is that the extractor EA is now given complete control over the adversary A,
meaning that it is allowed to rewind A and gets to see the answers of (S1,S ′

2).
Moreover, we require that if A outputs an accepting proof with some probability,
then EA can extract with almost the same probability.

Definition 6 (Weak simulation extractability). Let L be a language in NP.
Consider a NIZK proof system (PH ,VH) for L with zero-knowledge simulator
S. Let (S1,S ′

2) be oracles returning the first output of (hi, st)← S(1, st, qi) and
(π, st) ← S(2, st, x) respectively. We say that (PH ,VH) is weakly simulation-
extractable with extraction error ν and with respect to S in the random oracle
model, if for all PPT adversaries A there exists an efficient algorithm EA with
access to the answers TH , T of (S1,S ′

2) respectively such that the following holds.
Let:

acc = Prob
[
(x�, π�)← AS1(·),S′

2(·)(1k; ρ) : (x�, π�) �∈ T ;VS1(x�, π�) = 1
]

ext = Prob
[
(x�, π�)← AS1(·),S′

2(·)(1k; ρ);

w� ← EA(x�, π�; ρ, TH , T ) : (x�, π�) �∈ T ; (x�, w�) ∈ RL
]
,
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where the probability space in both cases is over the random choices of S and the
adversary’s random tape ρ. Then, there exist a constant d > 0 and a polynomial
p such that whenever acc ≥ ν, we have ext ≥ 1

p (acc− ν)d.

The above definition is inspired by similar notions in the context of proofs of
knowledge [5,30,39]. The value ν is called extraction error of the proof system.
We omit for better readability that values acc, ext, p, ν all depend on the security
parameter k. Note that a non-negligible extractor error can be made exponen-
tially small by sequential repetitions (see the full version [20] for a proof).

Proposition 1 (Extraction error amplification). Let (PH ,VH) be a weakly
simulation extractable NIZK proof system with extraction error ν. Then, the
proof system (P ′H ,V ′H) obtained by repeating sequentially (PH ,VH) for a num-
ber n of times yields a weakly simulation extractable NIZK proof system with
extraction error νn.

It is useful to look at the relation between weak simulation extractability and
the following stronger property modeling online-extraction.

Definition 7 (Full Simulation extractability). Let L be a language in NP.
Consider a NIZK proof system (PH ,VH) for L with simulator S. Let (S1,S ′

2) be
oracles returning the first output of (hi, st)← S(1, st, qi) and (π, st)← S(2, st, x)
respectively. We say that (PH ,VH) is strongly simulation extractable with re-
spect to S in the random oracle model, if there exists an efficient algorithm E
such that for all PPT adversaries A the following holds. Let:

Prob
[
w� ← E(st, x�, π�) : (x�, π�)← AS1(·),S′

2(·)(1k; ρ);

(x�, π�) �∈ T ; VS1(x�, π�) = 1; (x�, w�) /∈ RL
]
≈ 0

where T is the list of transcripts (xi, πi) returned by the simulator and the prob-
ability space is over the random choices of S and the adversary’s randomness ρ.

4 On the Non-malleability of the Fiat-Shamir Transform

4.1 Simulation Soundness

We now show that NIZK proofs obtained via the Fiat-Shamir transform from
any IPS of the public-coin type additionally satisfying the HVZK property are
simulation sound. Since Σ-protocols are a special class of HVZK public-coin
IPSs, we get as a corollary that Fiat-Shamir NIZK proofs obtained from Σ-
protocols are simulation-sound.

Theorem 2 (Simulation soundness of the Fiat-Shamir transform). Con-
sider a non-trivial three-round public-coin HVZK interactive proof system (P ,V)
for a language L ∈ NP, with quasi unique responses. In the random oracle model,
the proof system (PH ,VH) derived from (P ,V) via the Fiat-Shamir transform is
a simulation-sound NIZK with respect to its canonical simulator S.
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Proof. We assume that (PH ,VH) is a non-interactive zero-knowledge proof sys-
tem with the simulator S described in the proof of Theorem 1, and show that
(PH ,VH) is simulation sound. We proceed by contradiction. Suppose there exists
a PPT adversary A that breaks the simulation soundness of the non-interactive
protocol with non-negligible probability

ε := Prob
[
(x�, π�)← AS1(·),S′

2(·) : (x�, π�) /∈ T ∧ x� /∈ L ∧ VS1(x�, π�) = 1
]
.

In such a case, we are able to build two reductions P̂ and P∗ which, by using A
as a black-box, violate either the quasi unique response or the soundness proper-
ties of the underlying interactive protocol (P ,V) respectively, contradicting our
hypothesis. Recall that S1 simulates answers to the RO, while S ′

2 replies with an
accepting proof π. Without loss of generality we assume that whenever adversary
A succeeds and outputs an accepting proof (α�, γ�), she has previously queried
the oracle S1 on input (x�, α�). The argument for this is that it is straightfor-
ward to transform any adversary that violates this condition into an adversary
that makes one additional query to S1 and wins with the same probability.

A simple but crucial observation is that adversary A may have learned α� by
querying the oracle S ′

2 on input x� or might have computed it itself. We denote
the first by the event proof, the second by the event proof. As these events are
mutually exclusive and exhaustive, we have:

Prob[A wins] = Prob[A wins ∧ proof] + Prob[A wins ∧ proof].

Now we have two different cases to analyze, each of them corresponding to the
probability in the expression above.

In the first case (when proof happens), we assume that x� is asked to S ′
2 and

the answer is a proof of the type (α�,−). We show how to use an adversary A
that makes use of (x�, α�) in its fake proof to build a reduction P̂ . In this way
we bound Prob[A wins ∧ proof] by the probability that P̂ wins in breaking the
quasi unique response property.

Consider an algorithm P̂ which runs A internally as a black-box. Thus, P̂
sees all queries A makes to the oracles S1 and S ′

2 and produces their answers.
The internal description of P̂ follows:

– P̂ answers S1 and S ′
2 and keeps lists TH and T respectively as the real

simulator S would.
– When A outputs a fake proof (α�, γ�) for x�, P̂ looks through its lists T and
TH until it finds (x�, (α�, γ)) and ((x�, α�), β) respectively;

– It returns (x�, α�, β, γ�, γ).

We claim that algorithm P̂ breaks the quasi unique response property. Indeed,
the proof produced by A is accepting by VH on common input x�. On the other
hand, the proof (α�, γ) is given by the simulator, therefore it must be accepting
for x�. Given this, it holds VH(x�, α�, γ�) = VH(x�, α�, γ) = 1, that means

V(x�, α�, H(x�, α�), γ�) = V(x�, α�, H(x�, α�), γ) = 1,
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where H(x�, α�) = β. The conclusion is that either γ = γ�, that is excluded
since A cannot win by printing a simulated proof, or algorithm P̂ succeeds in
breaking the quasi unique response property. We obtain:

Prob[A wins ∧ proof] = Prob[P̂ wins] ≤ negl(k).

In case proof does not happen, we can use adversary A that does not query S ′
2

with input x� to build a reduction P∗ and bound Prob[A wins ∧ proof] by
the probability Prob[P∗ wins] · Q of breaking the soundness of the underlying
interactive scheme. P∗ runs A as a black-box and has to simulate its environment
by answering the queries to S1 and S ′

2 in a consistent way. More precisely, P∗

works as follows. It guesses uniformly at random an index j ∈ [Q] and replies to
queries to S1 and S ′

2 in the following way:

1. Answer query (xi, αi) to S1:
(a) Query 1 ≤ i ≤ j − 1: Returns H(xi, αi) if it is already defined; otherwise

it samples a random value βi and sets H(xi, αi) := βi.
(b) Query j: Runs the protocol with the honest verifier V for statement xj ,

using as a commitment the value αj . Obtains challenge βj from V and
program the oracle as H(xj , αj) := βj . The answer to A’s query is βj .

(c) Query j + 1 ≤ i ≤ Q: Proceed as in Step 1a.

2. Answer query x to S ′
2: Run the HVZK simulator of the interactive protocol

on input x to obtain an accepting proof (α, β, γ), and program the oracle
H in such a way that H(x, α) := β. If the NIZK simulator returns failure,
which happens when H(x, α) is already defined, output failure and abort,
otherwise output (α, γ).

3. Answer V ’s challenge: Let x�, (α�, γ�) be the instance and the proof output
by A. Return γ� to V as the response to challenge βj in step 1b.

We need to estimate the probability that P∗ succeeds in breaking the soundness
of the interactive scheme (P ,V) in terms of the probability that A outputs an
accepting proof (α�, γ�) for a false statement x�. Suppose that (x�, α�) has been
asked to the random oracle as the j�-th query and we have j = j�, i.e., P∗

guesses the correct index for which A outputs an accepting proof for a false
statement x�. In such a case, P∗ breaks the soundness of (P ,V). Hence, we get:

Prob[P∗ wins] = Prob[A wins ∧ j = j� ∧ proof]

= Prob[A wins ∧ proof] · Prob[j = j�],

where the second equality comes from the fact that P∗ guesses j� correctly
indipendently of the event that A is successful and proof happens. Since the
index j is chosen at random in [Q], we have Prob[P∗ wins] = 1

Q ·Prob[A wins ∧
proof]. Whenever P∗ wins, it breaks the soundness of the interactive scheme: by
hypothesis, this happens only with negligible probability. Therefore:

Prob[A wins ∧ proof] = Q · Prob[P∗ wins] ≤ negl(k).
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Now we can bound the probability that A succeeds. As we assume, A breaks the
simulation soundness of the scheme with non-negligible probability ε:

Prob[A wins] ≤ Prob[A wins ∧ proof] + Prob[A wins ∧ proof] ≤ negl(k),

thus ε ≤ negl(k), that is a contradiction. ��

On the quasi-unique responses condition. We remark that assuming (P ,V) has
quasi-unique responses is not an artifact of the proof. In fact, without this prop-
erty, proofs would be malleable and breaking the simulation soundness would
be an easy task. Consider a FS-NIZK proof system for which responses are not
quasi-unique. An efficient adversary A can always query the simulator on input
a false statement x�, obtaining a simulated proof S ′

2(x
�) → π� = (α�, β�, γ�).

Given π�, A might be able to find, with non-negligible probability, a new re-
sponse γ�� �= γ� such that (α�, β�, γ��) is also accepting. Hence, the scheme
cannot be simulation sound.

4.2 Weak Simulation Extractability

The argument Fouque and Pointcheval use in [23] to show that the proof system
they consider is simulation sound is roughly as follows. Assume there exists an
adversary A which outputs a pair (x�, π�) breaking the simulation soundness,
as in the experiment of Definition 5. Then, one can invoke a suitable version of
the forking lemma to show that it is possible to “extract” a witness w� for x�

from such an adversary, contradicting the fact that x� is false. The reduction
simulates the list T for A in the simulation soundness experiment, in particular
one needs to fake accepting proofs for (adaptively chosen and potentially false)
theorems selected by the attacker. In order to do so, Fouque and Pointcheval
(implicitly) rely on the SS-HVZK property. The next theorem is a generaliza-
tion of the above strategy which does not rely on the SS-HVZK property and
indeed applies to arbitrary languages. Moreover, we are able to prove a stronger
statement, namely that Fiat-Shamir proofs satisfy weak simulation extractabil-
ity (and not only simulation soundness). For simplicity the following theorem
assumes (perfect) unique responses, but could be generalized using the same
reduction as for Theorem 2.

Theorem 3 (Weak simulation extractability of the Fiat-Shamir trans-
form). Let Σ = (P ,V) be a non-trivial Σ-protocol with unique responses for a
language L ∈ NP. In the random oracle model, the NIZK proof system ΣFS =
(PH ,VH) resulting by applying the Fiat-Shamir transform to Σ is weakly sim-
ulation extractable with extraction error ν = Q

h for the canonical simulator S.
Here, Q is the number of random oracle queries and h is the number of elements
in the range of H. Furthermore, the extractor EA needs to run AS1(·),S′

2(·) twice,
where A and EA are both defined in Definition 6.

Proof. Let S be the canonical zero-knowledge simulator described in the proof
of Theorem 2. Denote with (x�, α�, γ�) the pair statement/proof returned by
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AS1(·),S′
2(·); we describe an extractor EA, able to compute a witness w� by rewind-

ing A once.
We want to exploit the general forking lemma1. In order to do so, we define

program P(1k, h1, . . . , hQ; ρP) as follows: P virtually splits ρP into two random
tapes ρ and ρS (e.g. by using even bits for ρ and odd bits for ρS) and runs
internally AS1(·),S′

2(·) with randomness ρ. P uses values (h1, . . . , hQ) to simulate

fresh answers of S1, and ρS to simulate answers of S2. If AS1(·),S′
2(·) outputs

(x�, (α�, γ�)), P checks that it is a valid proof and not in T (otherwise it returns
(0,⊥)). Then, because of the unique response property, (x�, α�) must correspond
to some fresh query to S1 and P outputs (J, (x�, α�, γ�)), where J > 0 is the index
corresponding to the random oracle query (x�, α�). We say that P is successful
whenever J ≥ 1, and we denote with acc the corresponding probability. Given
program P, we consider two related runs of P with the same random tape but
different hash values, as specified by the forking algorithm FP of Lemma 1.
Denote with (I, (x�, α�, γ�)) ← P(1k, h1, . . . , hQ; ρ) and (I ′, (x��, α��, γ��)) ←
P(1k, h1, . . . , hI−1, h

′
I , . . . , h

′
Q; ρ) the two outputs of A in these runs. By the

forking lemma we know that with probability ext ≥ acc(acc/Q−1/h) the forking
algorithm will return indexes I, I ′ such that I = I ′, I ≥ 1 and hI �= h′I .

Notice that since FP’s forgeries are relative to the same random oracle query
I = I ′, we must have x� = x�� and α� = α��; on the other hand we have hI �= h′I .
We are thus in a position to invoke the special extractor E for the underlying
proof system, yielding a valid witness w� ← E(α�, hI , γ

�, h′I , γ
��, x�) such that

(x�, w�) ∈ RL.
Assume now that acc ≥ ν. By applying the general forking lemma1 we obtain

that ext ≥ acc2/Q− acc/h. Since Q is polynomial while h is exponentially large
in the security parameter, for sure Q

h < 1 (in particular, it is negligible in k). As

ν := Q
h , we have:

acc2

Q
− acc

h
=

1

Q
(acc2 − acc · ν).

Now, since acc ≥ ν, we have acc · ν ≥ ν2, that is ν2 − acc · ν ≤ 0. Hence,

1

Q
(acc2 − acc · ν) ≥ 1

Q
(acc2 − 2acc · ν + ν2) =

1

Q
(acc− ν)2.

The previous inequality matches the definition of weak extractability with values
p = Q and d = 2. ��

5 Applications

In the literature there is a large number of applications for simulation-sound
or extractable NIZKs. One of the first request for simulation soundness comes
from the setting of public key encryption, for the design of encryption schemes
with chosen-ciphertext security using the Naor-Yung (NY) paradigm [34]. At a
high level, the NY works as follows: given two key pairs (sk , pk) and (sk ′, pk ′)
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for CPA-secure encryption schemes Π and Π ′ respectively, a ciphertext consists
of two encryptions c, c′ of the same message m, under different keys pk , pk ′,
and a NIZK proof π that both c and c′ encrypt m. In order to achieve security
against adaptive chosen-ciphertext attacks (CCA2), the underlying NIZK must
be simulation-sound. While achieving CCA2 security is probably one of the most
prominent application of simulation soundness, simulation-sound or extractable
proofs have been used, e.g., to build also leakage-resilient signatures or KDM
secure encryption. In this section, we review some important applications of such
proof systems and show how our result provides more efficient constructions in
the ROM or generalizes earlier results that use the Fiat-Shamir transform.

5.1 Leakage Resilience

Simulation-sound and simulation-extractable NIZK proofs have been very use-
ful in constructing leakage-resilient encryption and signature schemes [18,32,33].
Here, we consider these works and show that our result immediately yields effi-
cient leakage-resilient schemes in the random oracle model.

Leakage-resilient signatures. A signature scheme is leakage resilient if it is hard to
forge a signature even given (bounded) leakage from the signing key. Obviously,
this requires that the amount of leakage given to the adversary has to be smaller
than the length of the secret key, as otherwise the leakage may just reveal such
a key, trivially breaking the security of the signature scheme.

We instantiate the generic construction of leakage-resilient signatures based on
leakage-resilient hard relations and simulation-extractable NIZKs of [18] using
the Fiat-Shamir transform. Let R be a λ-leakage-resilient hard relation with
sampling algorithm GenR (for detailed definitions, see the full version [20]). Let
(PH ,VH) be a NIZK argument3 for relation R′ defined by R′((pk ,m), sk) ⇔
R(pk , sk). Consider the following signature scheme:

KeyGen(1k) : Calls (pk , sk)← GenR(1k) and returns the same output.
Sign(sk ,m) : Outputs σ ← PH((pk ,m), sk).4

Vrf(pk ,m, σ): Verifies the signature by invoking VH((pk ,m), σ).

Notice that σ ← PH((pk ,m), sk) is a NIZK proof for the hard relation obtained
by applying the Fiat-Shamir transform.

We chose to state the theorem below using an argument system as this is
the minimal requirement under which leakage resilience of the scheme can be
proven. Since our FS-based protocols are weakly simulation-extractable NIZK
proof systems, they automatically satisfy the hypothesis of Theorem 4.

Theorem 4. If R is a 2λ-leakage-resilient hard relation and (PH ,VH) is a
weakly simulation-extractable NIZK argument with negligible extraction error

3 As opposed to a proof system where soundness needs to hold unconditionally, in an
argument system it is sufficient that soundness holds with respect to a computation-
ally bounded adversary.

4 Note that m is part of the instance being proven.
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for relation R′((pk ,m), sk) ⇔ R(pk , sk), then the above scheme is a λ-leakage-
resilient signature scheme in the random oracle model.

The proof of the theorem from above follows the one of Theorem 4.3 in [18].
A couple of subtleties arise, though. The main idea of the proof is to build a
reduction from an adversary A breaking λ-leakage resilience of the signature
scheme to an adversary B breaking the hardness of the 2λ-leakage-resilient hard
relation R. Roughly speaking, in the reduction B is given some instance pk and
simulates the signing queries of A by using the zero-knowledge simulator of the
NIZK, and the leakage queries by using the leakage oracle for the relation R.
At some point A outputs a forgery σ� and B invokes the extractor of Theo-
rem 3 to get sk� ← EA(pk , σ�). The first issue is that we are only guaranteed
weak simulation-extractability, whereas the proof of [18] relies on full simulation-
extractability. 5 However, this is not a problem because we just need to show
that B outputs a valid witness with non-negligible probability. A second issue
involves the extractor of Theorem 3, which needs to rewind A once and, thus, to
simulate twice its environment (including the leakage queries). This causes the
loss of a factor 2 in the total amount of tolerated leakage. We refer the reader
to the full version [20] for the details.

We emphasize that the leakage-resilient signature scheme of Alwen et al. [4],
obtained by applying the Fiat-Shamir transform to the Okamoto identification
scheme, follows essentially the above paradigm. Here, one may view the public
and secret keys of the Okamoto ID scheme form an instance of a leakage-resilient
hard relation, while the NIZK proof corresponds to the Fiat-Shamir transform
applied to the Okamoto identification protocol.

Naor-Yung with leakage. The definition of IND-CPA and IND-CCA security of
an encryption scheme can be extended to the leakage setting by giving the ad-
versary access to a leakage oracle. Naor and Segev [33] show that the Naor-Yung
paradigm instantiated with a simulation-sound NIZK allows to leverage CPA-
security to CCA-security even in the presence of leakage. In other words, if Π
is CPA-secure against λ-key-leakage attacks, the encryption scheme obtained by
applying the Naor-Yung paradigm to (Π,Π), using a simulation-sound NIZK,
is CCA2-secure against λ-key-leakage attacks. In the full version [20] we revisit
their proof in the ROM, dealing with the issue that the leakage queries can po-
tentially depend on H . We stress that for the proof only simulation soundness is
needed (i.e., our result from Theorem 2) and not weak simulation extractability.

In what follows, we propose a concrete instantiation of the result above, rely-
ing on the BHHO encryption scheme from [12]. Let G be a group of prime-order

q. For randomly selected generators g1, . . . , g

$← G, the public key is a tuple

pk = (g1, . . . , g
, h), where h =
∏


i=1 g
zi
i for a secret key sk = (z1, . . . , z
) ∈

Z

q. To encrypt a message m ∈ G, choose a random r

$← Zq and output
c = (c1, . . . , c
+1) = (gr1 , . . . , g

r

 ,m · hr). The message m can be recovered by

computing m = c
+1 · (
∏


i=1 c
zi
i )−1.

5 Actually, they rely on a weaker property called true simulation-extractability [18].
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Assuming that the DDH problem is hard in G, Naor and Segev [33] showed
that the BHHO encryption scheme is CPA-secure against λ-key-leakage attacks

for any � = 2 + λ+ω(log k)
log q , where k is the security parameter. Applying the

Naor-Yung paradigm, consider the language:

L =
{
(c, pk , c′, pk ′) : ∃r, r′ ∈ Zq,m ∈ G s.t.

c = (gr1 , . . . , g
r

 , h

r ·m), c′ = (gr
′

1 , . . . , g
r′


 , h
′r′ ·m)

}
,

where c = (c1, . . . , c
+1) and c
′ = (c′1, . . . , c

′

+1) are BHHO encryptions with ran-

domness r and r′, using public keys pk = (g1, . . . , g
, h) and pk ′ = (g1, . . . , g
, h
′)

respectively. The pair w = (r, r′) is a witness for a string x = (c, pk , c′, pk ′) ∈ L.
Consider the following interactive protocol Σ = (P ,V) for the above language:

1. P chooses s, s′ at random from Zq and computes the commitment:

�α = ((α1, ..., α
), (α
′
1, ..., α

′

), α

′′) = ((gs1, ..., g
s

 ), (g

s′

1 , ..., g
s′


 ), hs · (h′)s′).

2. The verifier V chooses a random challenge β
$← Zq.

3. The prover computes the response �γ = (γ, γ′) = (s− β · r, s′ + β · r′).
4. Given a proof π = (�α, β,�γ), the verifier V checks that:

(α1, . . . , α
) = (gγ1 · c
β
1 , . . . , g

γ

 · c

β

 )

(α′
1, . . . , α

′

) = (gγ

′

1 · (c′1)−β , . . . , gγ
′


 · (c′
)−β)

α′′ = hγ · (h′)γ
′
· (c
+1 · (c′
+1)

−1)β .

In the full version [20] we prove that the above protocol is a Σ-protocol for the
language L. With the Naor-Yung paradigm applied to the BHHO encryption
scheme we get a ciphertext (c, c′, π) consisting of 4� + 3 elements in G plus 2
elements in Zq. Moreover, the fact that the BHHO encryption scheme is CPA-
secure against key leakage together with the result of Naor-Segev, show that the
above instantiation is CCA-secure against key-leakage attacks.

Corollary 1. Let k be a security parameter. Assuming that the DDH problem
is hard in G, the Naor-Yung paradigm applied to the BHHO encryption scheme
yields an encryption scheme that is CCA-secure against λ-key-leakage attacks in

the random oracle model for λ = � log q(1− 2

 −

ω(log k)

 log q ) = L(1− o(1)), where L

is the length of the secret key. An encryption consists of 4� + 3 elements in G
plus 2 elements in Zq.

5.2 Key-Dependent Message Security

Key-dependent message (KDM) security of a public-key encryption scheme re-
quires that the scheme remains secure even against attackers allowed to see
encryptions of the value f(sk), where f ∈ F for some class of functions F .

Camenisch, Chandran and Shoup [13] show that a variation of the Naor-Yung
paradigm instantiated with a simulation-sound NIZK can still leverage CPA-
security to CCA-security, even in the context of KDM security. We revisit their
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proof in the random oracle model in the full version [20]. Also in this case, only
simulation soundness is needed for the proof.

Roughly, for some function family F , if Π is KDM[F ]-CPA secure and Π ′

is CPA-secure, the scheme Π ′′ obtained by applying the Naor-Yung paradigm
to (Π,Π ′) — i.e., an encryption of m ∈ M is a tuple c′′ = (c, c′, π) where c
encrypts m under Π , c′ encrypts m under Π ′ and π is a simulation-sound NIZK
proof that c and c′ encrypt the same message — is KDM[F ]-CCA secure.

Let sk i[j] denote the j-th bit of sk i. The BHHO encryption scheme was the
first KDM-CPA secure encryption scheme, with respect to the class of all pro-
jection functions F↓ = Fread ∪ Fflip, where

Fread =
{
fi,j : �sk → sk i[j]

}
i,j

and Fflip =
{
fi,j : �sk → 1− sk i[j]

}
i,j
.

More generally, when the message space is a linear space over Zq, we define the
function class PJ (F↓) as the class of all affine combinations of elements in F↓.

Now we can instantiate the general transform of [13] as follows. We choose

Π to be BHHO, Π ′ to be ElGamal (say with pk ′ = h′ = g
z′
1

1 ) and we build a
Σ-protocol Σ′ for the Naor-Yung language relative to Π and Π ′. Protocol Σ′

can be easily derived from protocol Σ of the last section, by just compressing
the commitment as in �α = ((gs1, . . . , g

s

 ), g

s′

1 , h
s · (h′)s′) (and simplifying the

verification procedure accordingly). Hence, Theorem 2 yields the following result.

Corollary 2. Assuming that the DDH problem is hard in G, the Naor-Yung
paradigm instantiated with BHHO and ElGamal encryption schemes yields a
KDM[PJ (F↓)]-CCA secure encryption scheme in the random oracle model.
An encryption consists of �+ 3 elements in G plus 3 elements in Zq.

Beyond Naor-Yung. Another paradigm that yields chosen-ciphertext security
from NIZKs, based on proving knowledge of the plaintext, was suggested by
Rackoff and Simon [36]. Such a construction is somewhat more natural and
more efficient than the twin-encryption paradigm: a message m is encrypted
(only once) under a CPA-secure encryption scheme, and a NIZK proof of knowl-
edge of the plaintext is attached to the ciphertext. However, (to the best of
our knowledge) truly efficient constructions for sufficiently strong NIZK proofs
of knowledge are not available even using random oracles. One can hope that
using the weaker from of extractability afforded by the Fiat-Shamir transform
one could at least obtain NM-CPA secure encyption, and this is indeed what is
aimed at in the ongoing work of [8].

Acknowledgments. We thank Marc Fischlin and Ivan Damg̊ard for the useful
feedbacks provided on earlier versions of the paper.
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Abstract. The BB84 protocol is used by Alice (the sender) and Bob
(the receiver) to settle on a secret classical bit-string by communicating
qubits over an insecure quantum channel where Eve (the Eavesdropper)
can have access. In this paper, we revisit a well known eavesdropping
technique against BB84. We claim that there exist certain gaps in un-
derstanding the existing eavesdropping strategy in terms of cryptanalytic
view and we try to bridge those gaps in this paper.

First we refer to the result where it is shown that in the six-state
variant of the BB84 protocol (Bruß, Phys. Rev. Lett., 1998), the mutual
information between Alice (the sender) and Eve (the eavesdropper) is
higher when two-bit probe is used compared to the one-bit probe and
hence the two-bit probe provides a stronger eavesdropping strategy. How-
ever, from cryptanalytic point of view, we show that Eve has the same
success probability in guessing the bit transmitted by Alice in both the
cases of the two-bit and the one-bit probe. Thus, we point out that hav-
ing higher mutual information may not directly lead to obtaining higher
probability in guessing the key bit.

It is also explained in the work of Bruß that the six-state variant of
the BB84 protocol is more secure than the traditional four-state BB84.
We look into this point in more detail and identify that this advantage is
only achieved at the expense of communicating more qubits in the six-
state protocol. In fact, we present different scenarios, where given the
same number of qubits communicated, the security comparison of the
four and six-state protocols is evaluated carefully.
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1 Introduction

Establishing a common secret key between two parties at a distance is a pre-
requisite for executing a symmetric key cryptographic protocol between them.
The seminal paper by Diffie and Hellman [9] presents a nice idea in this direction
using the Discrete Logarithm problem. However, the pioneering work of Shor [17]
showed that the key distribution [9] as well as the public key crypto-systems like
RSA [16] and ECC [11] are not secure in the quantum computing model. On the
other hand, there are lattice and coding theory based public key algorithms [4]
that are believed to be secure in the quantum computing model and these are
the main focus in the domain of post-quantum cryptography. However, these
algorithms are quite complex and considerable works are going on for efficient
implementation of such schemes on low end devices. In this regard, it is notable
that provably secure quantum key distribution protocols exist and amongst them
BB84 [1] is the first and the most cited one. It has not only been verified exper-
imentally [3] in laboratory, but now-a-days some companies are manufacturing
devices [15] to implement this protocol. In this scenario, it is important to study
various eavesdropping models for these protocols and this is the motivation for
our current work.

The famous BB84 protocol [1] relies on the conjugate bases Z = {|0〉, |1〉}
and X = {|+〉, |−〉}, where |+〉 = |0〉+|1〉√

2
and |−〉 = |0〉−|1〉√

2
. Alice randomly

selects one of the two orthogonal bases and encodes 0 and 1 respectively by
a qubit prepared in one of the two states in each base. To be specific, Alice
encodes 0 to |0〉 or |+〉, and 1 to |1〉 or |−〉, depending on the chosen basis Z
or X respectively. Bob measures the qubits one by one, randomly selecting the
basis from the same set of bases. After the measurement, Alice and Bob publicly
announce the sequence of bases used by them and discard the bases that do
not match. They identify the sequence of bits corresponding to the bases that
match and the resulting bit string, followed by error correction and privacy
amplification [2], becomes the common secret key.

Fuchs et al. (Phy. Rev. A, 1997) presented an optimal eavesdropping strategy
on the four-state BB84 protocol. Later, Bruß (Phys. Rev. Lett., 1998) described

the use of the basis
{

|0〉+ı|1〉√
2

, |0〉−ı|1〉√
2

}
(ı =

√
−1) along with the above two

to show that the BB84 protocol with three conjugate bases (six-state protocol)
provides improved security. Bruß had also shown that for the six-state protocol,
the mutual information between Alice (the sender) and Eve (the eavesdropper)
is higher when two-bit probe is used compared to the one-bit probe and hence
provides a stronger eavesdropping strategy. In this paper, we revisit the problem
towards a critical and concrete analysis in terms of Eve’s success probability in
guessing the qubits that Alice has sent.

The security of the BB84 protocol is based on the fact that if one wants to dis-
tinguish two non-orthogonal quantum states, then obtaining any information is
only possible at the expense of introducing disturbance in the state(s). There are
several works in the literature, e.g., [6,7,10], that studied the relationship between
“the amount of information obtained by Eve” and “the amount of disturbance
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created on the qubits that Bob receives from Alice”. There are also several mod-
els for analysis of these problems. As example, Eve can work on each individual
qubit as opposed to a set of qubits studied together. While the first one is called
the incoherent attack [10], the second one is known as the coherent attack [7]. In
this paper, we study the incoherent attack.

Another interesting issue in specifying the eavesdropping scenario is whether
there will be equal error probability at Bob’s end corresponding to different
bases. If this is indeed equal, then we call it symmetric and that is what we
concentrate on here. It creates certain constraint on Eve in terms of extracting
information from the communicated qubits, as the disturbance created on the
qubits that Bob receives should be equal for all the bases. That is, as far as Alice
and Bob are concerned, the interference by Eve will produce a binary symmetric
channel between them, with an error probability that we will denote by D. There
is also another model where this is not equal and then we call the eavesdropping
model as asymmetric. Different error rates for different bases would be a clear
indication to Alice and Bob that an eavesdropper (Eve) is interfering in the
communication line. One may refer to [7] for details on this and it has been
commented in the same paper that given any asymmetric attack (coherent or
incoherent), one can always get a symmetric attack that can match the results
of the non-symmetric strategy.

In both [10,6], the security of BB84 is analyzed in terms of the mutual infor-
mation between Alice and Eve. When measuring her probe, Eve has two choices.
One option is that she measures both her qubits - this is referred as a two-bit
probe. Alternatively, she can either measure only one of her two qubits [5,6] or
may interact with one qubit at her disposal - both of these lead to identical
results and therefore we refer any one of them as one-bit probe. In [6], it was
claimed that the eavesdropping using the two-bit probe provides identical infor-
mation to Eve using the one-bit probe in case of four-state protocol; however,
for the six-state protocol, the two-bit probe leaks more information to Eve than
the one-bit probe.

1.1 Organization of the Paper

In Section 2, we revisit the background material in detail. Sections 3 and 4
contain our main contributions. We re-examine the security in the light of Eve’s
success probability of guessing what was sent by Alice. In practice, Eve’s goal
is to determine the secret key bits that Alice sends to Bob. Eve’s individual
probes and hence individual guesses are independent. After measurement of the
i-th probe, Eve makes a guess of the i-th secret key bit, i.e., she has to decide
whether the i-th bit was 0 or 1. If her decided bit matches with what Alice
has sent, then we call it a success, else it is an error. Eve’s strategy would
be to minimize the error probability in her guess, i.e., to maximize the success
probability.

The mutual information between Alice and Eve gives a theoretical measure
about the average information contained in the random variable associated with
one of them about the random variable associated with the other. However, from
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the point of view of guessing the secret key established between Alice and Bob,
Eve’s success probability is a more practical parameter of cryptanalytic interest
than the mutual information between Alice and Eve. The difference between the
attacker’s success probability and the probability of random guess (in this case,
the probability of random guess is 1

2 ) gives the attacker’s advantage.
In Section 3, we present an analysis of the success probabilities of the four-

state and the six-state protocols and show that there is no extra advantage of
the two-bit probe over the one-bit probe in the six-state protocol. We show that
these two probes do not differ in terms of success probability of Eve’s guess
about the bits sent by Alice, though the mutual information is different.

In Section 4, we propose a multi-round version of the BB84 protocol. Using
this strategy, Alice and Bob can decrease Eve’s advantage. Though the concept
is similar to privacy amplification [2], we study the multi-round communication
as part of the key distribution steps from a different viewpoint as follows. Both
in the traditional 4-state BB84 protocol [1] and in the six-state one [6], Bob
measures first and then Alice publishes the bases she used. Thus, while the six-
state protocol is more secure than the four-state one, the disadvantage of the
six-state scheme is that, on an average, only one-third of the qubits are kept
and the rest two-third are discarded, which is worse than in the case of four-
state scheme, where half of the received qubits are discarded. Hence, for a fair
comparison between our multi-round versions of these two protocols, we must
ensure that the same number of qubits communicated between Alice and Bob
and in the end, the secret keys established are of the same bit length. In this
setting, we critically evaluate the security parameters of both the protocols.

2 Review of Optimal Eavesdropping [6,10]

In this part, we study a generic version of BB84 with the bases {|0〉, |1〉} and
{|ψ〉, |ψ⊥〉}, where |ψ〉 = a|0〉 + b|1〉 and |ψ⊥〉 = b∗|0〉 − a∗|1〉. We characterize
the values of a, b based on the eavesdropping model presented in [6,10]. We take
each of a, b nonzero, as otherwise both the base will coincide (up to rotation).
It is also trivial to see that |a|2 + |b|2 = 1 from normality condition. Under
the symmetric incoherent optimal eavesdropping strategy [6,10], we get certain
constraints on a, b as given in Theorem 1 in the next section. If one takes a state
|ψ〉 such that the conditions on a, b as given in Theorem 1 are not admitted,
then the symmetric attack of [10] needs to be modified properly.

Following [19], let {|φi〉|i = 1, . . . , N} and {|Φi〉|i = 1, . . . , N} be two or-
thonormal bases for an N dimensional Hilbert space. Such a pair of bases will
be called conjugate, if and only if |〈φi|Φj〉|2 = 1

N for any i, j. Here 〈φi|Φj〉 is
the inner product between |φi〉, |Φj〉. The case N = 2 is considered here. The
analysis with non-conjugate bases has been presented by Phoenix [13] and it has
been shown that the original proposal of [1] using the conjugate bases provides
the optimal security.

In the absence of eavesdropper or any channel noise, Bob exactly knows the
state that has been sent by Alice, if measured in the correct basis. However,
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Eve’s interaction does not allow that to happen. Consider the scenario when
Alice sends one of two orthogonal states |ψ〉 and |ψ⊥〉 to Bob and Eve has her
own initial two-qubit state |W 〉. Eve’s interaction with the state being sent from
Alice to Bob can be modeled as the action of a unitary operator U on three
qubits as follows.

U(|ψ〉, |W 〉) =
√
F ′|ψ〉|E′

00〉+
√
D′|ψ⊥〉|E′

01〉,
U(|ψ⊥〉, |W 〉) =

√
D′|ψ〉|E′

10〉+
√
F ′|ψ⊥〉|E′

11〉. (1)

Thus, when Alice sends |ψ〉 (respectively |ψ⊥〉), then Bob receives |ψ〉 (respec-
tively |ψ⊥〉) with probability F ′ (this is called fidelity) and receives |ψ⊥〉 (respec-
tively |ψ〉) with probability D′ (this is called disturbance). One may note that
F ′ +D′ = 1.

After Bob measures the qubit he receives, Eve tries to obtain information
about Bob’s qubit. As example, if Eve obtains |E′

00〉 after measurement, she
knows that Bob has received |ψ〉. The problem with Eve is that, if she tries to
extract such information with certainty, then |E′

00〉, |E′
01〉, |E′

10〉 and |E′
11〉 need

to be orthogonal and in that case the error probability D′ at Bob’s end will
be very high and Bob will abort the protocol. Thus all of |E′

00〉, |E′
01〉, |E′

10〉,
|E′

11〉 cannot be orthogonal and Eve has to decide the relationship among these
2-qubit states for optimal eavesdropping strategy.

Now let us consider the case for the {|0〉, |1〉} basis.

U(|0〉, |W 〉) =
√
F |0〉|E00〉+

√
D|1〉|E01〉,

U(|1〉, |W 〉) =
√
D|0〉|E10〉+

√
F |1〉|E11〉. (2)

The case for the generalized basis {|ψ〉, |ψ⊥〉} has already been expressed in (1).
As we are studying the symmetric attack here, we consider that the fidelity F
and the disturbance D are same for all the cases, i.e., F = F ′ and D = D′.

We have considered |ψ〉 = a|0〉+ b|1〉 and |ψ⊥〉 = b∗|0〉 − a∗|1〉, where a, b are
nonzero. Hence, by linearity and then using Equation (2), we get

U(|ψ〉, |W 〉) = aU(|0〉, |W 〉) + bU(|1〉, |W 〉)
= |0〉(a

√
F |E00〉+ b

√
D|E10〉) + |1〉(a

√
D|E01〉+ b

√
F |E11〉). (3)

Substituting |ψ〉 = a|0〉 + b|1〉 and |ψ⊥〉 = b∗|0〉 − a∗|1〉 in the first one of
Equation (1), we obtain

U(|ψ〉, |W 〉) = |0〉(a
√
F |E′

00〉+ b∗
√
D|E′

01〉) + |1〉(b
√
F |E′

00〉 − a∗
√
D|E′

01〉). (4)

Equating the right hand sides of Equations (3) and (4), we get
√
F |E′

00〉 =
√
F
(
|a|2|E00〉+ |b|2|E11〉

)
+
√
D (ab∗|E01〉+ a∗b|E10〉) , (5)

√
D|E′

01〉 = ab
√
F (|E00〉 − |E11〉)−

√
D
(
a2|E01〉 − b2|E10〉

)
. (6)

Similarly, comparing two different expressions for U(|ψ⊥〉, |W 〉), we get
√
D|E′

10〉 = a∗b∗
√
F (|E00〉 − |E11〉) +

√
D
(
b∗2|E01〉 − a∗2|E10〉

)
, (7)

√
F |E′

11〉 =
√
F
(
|b|2|E00〉+ |a|2|E11〉

)
−
√
D (ab∗|E01〉+ a∗b|E10〉) . (8)
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As explained in [10,7], for a symmetric attack, we have the following constraints.

(i) The scalar products 〈Eij |Ekl〉 and 〈E′
ij |E′

kl〉, are such that 〈Eij |Ekl〉 =
〈Ekl|Eij〉 and 〈E′

ij |E′
kl〉 = 〈E′

kl|E′
ij〉, for i, j, k, l ∈ {0, 1}. This assumption

implies that all the inner products must be real.
(ii) Any element of {|E00〉, |E11〉} is orthogonal to any element of {|E01〉, |E10〉}.

Similar orthogonality condition holds between the pairs {|E′
00〉, |E′

11〉} and
{|E′

01〉, |E′
10〉}.

(iii) Further, we take 〈E00|E11〉 = 〈E′
00|E′

11〉 = x, 〈E01|E10〉 = 〈E′
01|E′

10〉 = y,
where x, y are real. It is evident that all the other inner products are zero
due to the orthogonality conditions.

We have 〈E′
00|E′

01〉 = 0 and replacing them as in (5) and (6), we get

ab(|a|2 − |b|2)(1 − x)−D
[
ab
(
|a|2 − |b|2

)
(2− x) +

(
a3b∗ − a∗b3

)
y
]
= 0. (9)

From (9) we get the following

D =
ab
(
|a|2 − |b|2

)
(1− x)

ab (|a|2 − |b|2) (2− x) + (a3b∗ − a∗b3) y
. (10)

The expression of D in (10) is not defined when the denominator is zero. Given

y �= 0, the denominator of (10) is 0 if and only if
(
|a| = |b| = 1√

2

)
AND(

arg(ab ) ≡ 0 mod π
2

)
. Under this condition, we get that a = ±b or ±ıb.

When a = ±b or ±ıb, D cannot be calculated from (10) as the denominator
will be zero. However, taking 〈E′

01|E′
01〉 = 1 and putting there the expression of

|E′
01〉 from (6), we get the value of D as follows

D =
1− x

2− x+ y
, when a = ±b (11)

=
1− x

2− x− y
, when a = ±ıb. (12)

Now consider the case when denominator of D in (10) is not zero. It has already
been considered that 〈E′

00|E′
10〉 = 0. Now replacing them as in (5) and (7) and

plugging in the value of D from (10), we get (1 − x)y
(
a2b∗2 − a∗2b2

)
= 0.

We have considered that 〈E00|E11〉 = 〈E′
00|E′

11〉 = x, and 〈E01|E10〉 =
〈E′

01|E′
10〉 = y, where both x, y are real. Thus, it is natural to consider that

0 < x, y < 1; otherwise, the vectors will be either orthogonal or the same. In
such a situation, from (1− x)y

(
a2b∗2 − a∗2b2

)
= 0, we get

(
a2b∗2 − a∗2b2

)
= 0,

i.e., ab∗ = ±a∗b. This holds if and only if a = ±rb,±ırb, where r = |a|
|b| �= 1. The

r = 1 case has already been taken care of.
For r �= 1, when we put a = ±rb in (10), we get D = 1−x

2−x+y , as given in (11)

already. Now taking the inner product of both sides of (6) and (7) and putting

D = 1−x
2−x+y , we get 〈E′

01|E′
10〉 =

(
(b∗)2 + (a∗)2

)2
y which has been assumed to

be y. Thus,
(
(b∗)2 + (a∗)2

)2
= 1, and given a = ±rb, we obtain either both a, b

are real of both a, b are imaginary.
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However, for r �= 1, if we put a = ±ırb in (10), we get D = 1−x
2−x−y as in (12).

Then following the similar manner as before, we get one of a, b is real and the
other one is imaginary. Thus we have the following result.

Theorem 1. Consider symmetric incoherent eavesdropping with 0 < x, y < 1,
on the BB84 protocol with the bases |0〉, |1〉 and |ψ〉 = a|0〉 + b|1〉, |ψ⊥〉 =
b∗|0〉 − a∗|1〉. We have (i) D = 1−x

2−x+y if and only if a, b are either both real or

both imaginary and (ii) D = 1−x
2−x−y if and only if one of a, b is real and the other

one is imaginary.

Theorem 1 identifies that for such eavesdropping where BB84 protocol is imple-
mented with the bases |0〉, |1〉 and |ψ〉, |ψ⊥〉, the form of |ψ〉 is restricted given
0 < x, y < 1. When r �= 1, then the bases |0〉, |1〉 and |ψ〉, |ψ⊥〉 cannot be conju-
gate. To have conjugate bases, one must take r = 1, i.e., |a| = |b| = 1√

2
. As the

simplest example, it is natural to consider a = b = 1√
2
, which gives |ψ〉 = |0〉+|1〉√

2

and |ψ⊥〉 = |0〉−|1〉√
2

that has indeed been used in BB84 protocol [1]. On such

conjugate bases, the eavesdropping idea of [10] works that we discuss in the next
section.

In [10], the conjugate bases |0〉, |1〉 and |0〉+|1〉√
2

, |0〉−|1〉√
2

have been considered.

That is in this case, a = b = 1√
2
and D = 1−x

2−x+y , as in Equation (11).

In [6], three conjugate bases |0〉, |1〉; |0〉+|1〉√
2

, |0〉−|1〉√
2

and |0〉+ı|1〉√
2

, |0〉−ı|1〉√
2

have

been exploited for the BB84 protocol. Thus, while considering a = b = 1√
2
one

gets D = 1−x
2−x+y , but in case of a = 1√

2
, b = ı√

2
we obtain D = 1−x

2−x−y . To have

the symmetric attack possible, we need 1−x
2−x+y = 1−x

2−x−y and thus y = 0. For

y = 0, both (11) and (12) reduce to

D =
1− x

2− x
. (13)

However, there are complex numbers a, b, where |a| = |b| = 1√
2
, but a �= ±b,±ıb

and in those case a, b are not as given in Theorem 1. As example, one can take,
|ψ〉 = 1+ı

2 |0〉+
1√
2
|1〉 and |ψ⊥〉 = 1√

2
|0〉− 1−ı

2 |1〉. Symmetric attack in the attack

model of [6,10] is not directly possible in these cases when y is nonzero. However,
if Eve uses a phase-covariant cloner or orients her probes appropriately, then she
can mount the same attack. Thus, by no choice of a, b, Alice and Bob can avoid
the symmetric attack on the four-state protocol.

3 Eavesdropper’s Success Probability as a Function of
Disturbance at Receiver End

In this part, we critically revisit the attack models of [10] and [6] in the light
of success probability of Eve’s guess about the qubit that was actually sent by
Alice. In the analysis, we require to compute the probabilities of different related
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events. These probabilities form the components for the mutual information be-
tween Alice and Eve as well as the success probability for Eve’s guess. First in
Section 3.1, we compute these individual probabilities and for the sake of com-
pleteness show the calculation of mutual information also. Next in Section 3.2,
we derive the success probabilities of Eve’s guess for various cases and discuss
how they give different insight from mutual information.

We introduce a few notations for the sake of our analysis. Let A,B, V be the
random variables corresponding to the bit sent by Alice, the bit received by Bob
and the outcome observed by Eve due to her measurement. Eve performs the
measurement after Alice and Bob announce their bases. After the announcement,
Eve discards the probes corresponding to the qubits for which Alice and Bob’s
bases do not match and works with the probes corresponding to the bases that
match. For one-bit probe, Eve measures her second qubit in the bases Z or
X , as used by Alice. Similarly, for two-bit probe, Eve measures in the bases
{|00〉, |01〉, |10〉, |11〉} when Alice and Bob use the Z basis and she measures in
the basis {|++〉, |+−〉, | −+〉, | − −〉} when Alice and Bob use the X basis. In
this paper, we calculate all probabilities considering the Z basis only. Symmetry
gives the same results when theX basis is used. Hence, without loss of generality,
V can be assumed to be in {0, 1} for one-bit probe, and it can be assumed to
be in {00, 01, 10, 11} for two-bit probe. In the subsequent discussion, we use the
term Eve’s observation to denote the observed outcome V of her measurement.

3.1 Probability Analysis and Mutual Information

We follow the standard definitions of mutual information and conditional entropy
from information theory [8]. The mutual information between Alice and Bob is
given by

IAB = H(A)−H(A|B), (14)

and the mutual information between Alice and Eve is given by

IAV = H(A)−H(A|V ), (15)

where H(·) is the Shannon entropy function.
We assume that Alice randomly generates the bits to be transmitted, so that

P (A = 0) = P (A = 1) = 1
2 . Hence H(A) = − 1

2 log2(
1
2 )−

1
2 log2(

1
2 ) = 1. Also,

P (B = 0 | A = 1) = P (B = 1 | A = 0) = D and
P (B = 0 | A = 0) = P (B = 1 | A = 1) = 1−D.

Hence, P (B = 0) = P (B = 1) = 1
2 and the conditionals P (A | B) are identical

with the conditionals P (B | A). Thus,
H(A | B = 0) = H(A | B = 1) = −D log2(D)− (1 −D) log2(1 −D) and
H(A | B) = P (B = 0)H(A | B = 0) + P (B = 1)H(A | B = 1)
= −D log2(D)− (1−D) log2(1−D). So from Equation (14) we have

IAB = 1 +D log2(D) + (1−D) log2(1−D). (16)

Recall that (one may refer to Section 2 for details) the general unitary transfor-
mation designed by Eve is as follows:
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U(|0〉, |W 〉) =
√
F |0〉|E00〉+

√
D|1〉|E01〉, and

U(|1〉, |W 〉) =
√
D|0〉|E10〉+

√
F |1〉|E11〉, where F = 1−D.

If we rewrite the interactions expressed in [10, Equations 50-51] in our notation,
we obtain the following expressions for |Eij〉’s.

|E00〉 =
√
1−D |00〉+|11〉√

2
+
√
D |00〉−|11〉√

2
, |E01〉 =

√
1−D |01〉+|10〉√

2
−
√
D |01〉−|10〉√

2
,

|E10〉 =
√
1−D |01〉+|10〉√

2
+
√
D |01〉−|10〉√

2
, |E11〉 =

√
1−D |00〉+|11〉√

2
−
√
D |00〉−|11〉√

2
.

For i ∈ {0, 1}, by Bayes’ Theorem, Eve’s posterior probability
P (A = i | V = v) of what Alice sent is given by

P (A = i) · P (V = v | A = i)

P (V = v)
=

P (A = i) · P (V = v | A = i)∑
j=0,1

P (A = j) · P (V = v | A = j)

=
P (V = v | A = i)

P (V = v | A = 0) + P (V = v | A = 1)
.(17)

Again, the likelihoods P (V = v | A = i) are computed as

P (B = 0 | A = i)P (V = v | A = i, B = 0)

+P (B = 1 | A = i)P (V = v | A = i, B = 1)

= P (B = 0 | A = i)P (V = v | Ei0) + P (B = 1 | A = i)P (V = v | Ei1).(18)

After the announcement of the bases in the BB84 protocol, Eve measures her
qubit in the corresponding bases. The likelihoods for the attack in [10] when
computed using Equation (18) turns out to be as shown in Table 1 below.

Table 1. Values of P (V = v | A = i) = P (A = i | V = v) for the attack model of [10]

V = 0 V = 1

A = 0 1
2
+

√
D(1−D) 1

2
−

√
D(1−D)

A = 1 1
2
−

√
D(1−D) 1

2
+

√
D(1−D)

Marginal of V 1
2

1
2

For example, P (V = 0 | A = 0) is given by P (B = 0 | A = 0)P (V =

0 | E00)+P (B = 1 | A = 0)P (V = 0 | E01) = (1−D)·
(

1√
2

(√
1−D +

√
D
))2

+

D ·
(

1√
2

(√
1−D +

√
D
))2

= 1
2 +
√
D(1−D) = f(D), say.

Note that since P (A = 0) = P (A = 1) = 1
2 , the half of the sum of each

column in Table 1 gives the marginal probability of V for that column. In
Equation (17), putting the value of P (V = v | A = i) from Table 1, we
find that the posteriors are identical with the corresponding likelihoods. Hence
H(A | V = 0) = H(A | V = 1) = −f(D) log2 f(D)− (1− f(D)) log2 (1− f(D)).
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Also, from Table 1, we have P (V = 0) = P (V = 1) = 1
2 , giving H(A|V ) =

P (V = 0)H(A | V = 0) + P (V = 1)H(A | V = 1) = −f(D) log2 f(D) −
(1− f(D)) log2 (1− f(D)). Substituting in Equation (15), we have

IAV = 1 + f(D) log2 f(D) + (1− f(D)) log2 (1− f(D)) . (19)

Note that the above computation is shown assuming a one-bit probe. It is easy
to show that, for the four-state protocol, the one-bit and the two-bit probes give
identical mutual information between Alice and Eve. The expression for this
mutual information is given by Equation (19) which matches with [10, Equation
65].

Next, the interactions of [6, Equations 9-15], when expressed in our notations,
become |E00〉 = β|10〉+

√
1− |β|2|01〉, |E01〉 = |00〉, |E10〉 = |11〉, and |E11〉 =√

1− |β|2|10〉 + β|01〉. From Equation (13) (Section 2), we obtain, D = 1−x
2−x ,

which gives, x = 1−2D
1−D . Noting that, x = 〈E00|E11〉, we get

|β|2 =
1

2

(
1 +

√
D(2− 3D)

1−D

)
. (20)

Technically, the square-root in Equation (20) should be written with a ± sign.
However, for simplicity, we show all calculation with the + sign here. The cal-
culation with the − sign would be similar.

Table 2. Values of P (V = v | A = i) = P (A = i | V = v) for one-bit probe of [6]

V = 0 V = 1

A = 0 D + (1−D)|β|2 1−D − (1−D)|β|2
A = 1 1−D − (1−D)|β|2 D + (1−D)|β|2

Marginal of V 1
2

1
2

Table 3. Values of P (V = v | A = i) for two-bit probe of [6]

V = 00 V = 01 V = 10 V = 11

A = 0 D 1−D − (1−D)|β|2 (1−D)|β|2 0

A = 1 0 (1−D)|β|2 1−D − (1−D)|β|2 D

Marginal of V D
2

1−D
2

1−D
2

D
2

For one-bit probe, the likelihoods for [6] when computed using Equation (18)
turns out to be as shown in Table 2.

From Equation (17), we find that in this case also, the posteriors are identical
with the corresponding likelihoods.
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Table 4. Values of P (A = i | V = v) for two-bit probe of [6]

V = 00 V = 01 V = 10 V = 11

A = 0 1 1− |β|2 |β|2 0

A = 1 0 |β|2 1− |β|2 1

Marginal of V D
2

1−D
2

1−D
2

D
2

For ease of calculation, let us denote

f1(D) = D + (1−D)|β|2 =
1

2

(
1 +D +

√
D(2− 3D)

)
. (21)

Hence H(A | V = 0) = H(A | V = 1) can be written as −f1(D) log2 f1(D) −
(1− f1(D)) log2 (1− f1(D)).

Also, from Table 2, we have P (V = 0) = P (V = 1) = 1
2 , giving H(A|V ) =

P (V = 0)H(A | V = 0) + P (V = 1)H(A | V = 1) = −f1(D) log2 f1(D) −
(1− f1(D)) log2 (1− f1(D)). Substituting in Equation (15), we have

IAV
1 = 1 + f1(D) log2 f1(D) + (1− f1(D)) log2 (1− f1(D)) . (22)

This expression matches with [6, Equation 18].
Now, consider the two-bit probe. The likelihoods for [6] when computed using

Equation (18) turns out to be as shown in Table 3.
From Equation (17), the posteriors are computed as given in Table 4. Hence

H(A | V = 00) = H(A | V = 11) = 0 and H(A | V = 01) = H(A | V = 10) =
−|β|2 log2 |β|2−

(
1− |β|2

)
log2
(
1− |β|2

)
= h(D) (say). Thus,H(A|V ) = P (V =

00)H(A | V = 00) + P (V = 01)H(A | V = 01) + P (V = 10)H(A | V = 10) +
P (V = 11)H(A | V = 11) = D

2 ·0+
1−D
2 ·h(D)+ 1−D

2 ·h(D)+D
2 ·0 = (1−D)·h(D).

Substituting in Equation (15), we have

IAV
2 = 1− (1 −D)h(D). (23)

Again, this matches with [6, Equation 17].
If one plots the curves of IAV , IAV

1 and IAV
2 against D, one can find that for

all values of D ∈ (0, 12 ), the relation IAV
1 < IAV

2 < IAV holds. From this, it is
concluded in [6] that the six-state protocol is more secure than the four-state
protocol. Moreover, within the six-state protocol, two-bit probe helps Eve in
obtaining more mutual information than the one-bit probe. However, we present
a different view on both of these claims.

3.2 Optimal Success Probability and Its Implications

We introduce a few relevant definitions first and then proceed with the analysis.

Definition 1. A strategy S of the Eavesdropper is a function of her observa-
tion v such that for each v, it produces a unique guess S(v) about the bit sent by
Alice to Bob.
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Definition 2. For some observation v, if the Eavesdropper’s guess matches with
the bit sent by Alice, i.e., if S(v) = A, we call this event a success.

Definition 3. For some observation v, if the Eavesdropper’s guess does not
match with the bit sent by Alice, i.e., if S(v) �= A, we call this event a failure
or an error.

Thus, the conditional error probability of Eve is given by P (error | V = v) =
P (S(v) �= A | V = v) and the error probability of Eve is given by

P (error) =
∑
v

P (V = v)P (error | V = v)

=
∑
v

P (V = v)P (S(v) �= A | V = v). (24)

The success probability of Eve is given by P (success) = 1− P (error).

Definition 4. If P (success) is the success probability of the Eavesdropper in
guessing the bit sent by Alice through some strategy S, and P (prior) is the prob-
ability denoting the Eavesdropper’s prior knowledge about the bit sent by Alice
before applying any strategy, then the advantage of the Eavesdropper for the
particular strategy is defined as A(D) = |P (success)− P (prior)| .

Since Alice chooses the bit to be sent uniformly at random over {0, 1}, in our
case P (prior) = 1

2 and so A(D) =
∣∣P (success)− 1

2

∣∣ .
Maximizing the success probability or the advantage is equivalent to minimiz-

ing the error probability. Note that Eve’s success or error probability is a feature
of the particular strategy devised by Eve. Her goal is to choose the best possible
strategy in determining the secret key.

Definition 5. Out of all possible strategies, the one giving the maximum suc-
cess probability or the minimum error probability, is called the optimal strat-
egy Sopt. The corresponding success (or error) probability is called the optimal
success (or error) probability of the Eavesdropper and the corresponding
advantage is called the optimal advantage of the Eavesdropper.

In the result below, we formulate how Eve can decide the optimal strategy.

Theorem 2. The optimal strategy is given by

Sopt(v) = argmax
i

P (A = i | V = v) ,

and the corresponding optimal success probability is given by

Popt(success) =
∑
v

max
i

P (A = i, V = v) ,

where the notation argmax
i

denotes the particular value iopt of the argument i

which maximizes the above conditional probability across all values i.
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Proof. Since P (V = v) is independent of the strategy S, an optimum strategy
that minimizes P (error) must minimize P (S(v) �= A | V = v) for each v, as
per Equation (24). In other words, for each v, it should maximize P (S(v) =
A | V = v). This means that S(v) should produce a guess i ∈ {0, 1} for which
P (A = i|V = v) is maximum. For the particular observation v, denote this
optimal value of i by iopt(v). With this optimal strategy the optimal error prob-
ability turns out to be Popt(error) =

∑
v P (V = v)P (A �= iopt(v) | V = v) =∑

v P (A �= iopt(v), V = v) and the optimal success probability becomes

Popt(success) = 1− Popt(error) = 1−
∑

v P (A �= iopt(v), V = v)
=

∑
v P (A = iopt(v), V = v). Hence the result follows. ��

Since P (A = 0) = P (A = 1) = 1
2 , if we multiply each likelihood in Tables 1, 2

and 3 by 1
2 , we get the corresponding joint probabilities P (A = i, V = v)’s

and the optimal success probability is given by summing the maximum joint
probability (corresponding to the row iopt(v)) for each column v.

Thus, for the attack model of [10], the optimal success probability is computed
from Table 1 as

P 4-state
opt (success) =

1

2

(
1

2
+
√
D(1 −D)

)
+

1

2

(
1

2
+
√
D(1−D)

)
=

1

2
+
√
D(1−D) = f(D). (25)

It can be easily shown that, like the mutual information, the success probabilities
are also the same in both the probes (one-bit and two-bit) for the four-state
protocol.

Since the six-state protocol [6] has different mutual information between Alice
and Eve for the one-bit and the two-bit probes, one may be tempted to conclude
that Eve has different success probabilities in these two probes. However, we
are going to show that this is not the case. In spite of having different mutual
information, both the probes lead to the same success probability for the six-
state protocol.

For the one-bit probe of the six-state protocol [6], the optimal success proba-
bility is computed from Table 2 as

P 6-state
opt1 (success) =

1

2

(
D + (1−D)|β2|

)
+

1

2

(
D + (1 −D)|β|2

)
= D + (1 −D)|β|2 = f1(D). (26)

Note that in the above derivation, we have used the fact that D+(1−D)|β|2 ≥
1−D−(1−D)|β2|, which follows from D+(1−D)|β2| ≥ 1

2 as per Equation (21).
For the two-bit probe of [6], the optimal success probability is computed from

Table 3 as

P 6-state
opt2 (success) =

1

2
·D +

1

2
· (1−D)|β|2 + 1

2
· (1−D)|β|2 + 1

2
·D

= D + (1−D)|β|2 = f1(D). (27)
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Note that in the above derivation, we have used the fact that (1 − D)|β|2 ≥
1−D − (1 −D)|β2|, which follows from |β2| ≥ 1

2 as per Equation (20).
Hence, we have the following result.

Theorem 3. For all D ∈ (0, 12 ),

P 6-state
opt1 (success) = P 6-state

opt2 (success) < P 4-state
opt (success).

In Figure 1, we plot (as functions of the disturbance D) the optimal mu-
tual information between Alice and Eve (on the left) and the optimal success
probability of Eve’s guess (on the right).

Fig. 1. Optimal mutual information and optimal success probability as a function of
disturbance D

As an illustrative example, we show the values of the probabilities forD = 1
6 in

Table 5. The optimal success probability in one-bit probe is given by 5
6 ·

1
2+

5
6 ·

1
2 =

Table 5. Values of P (A = i | V = v) for D = 1
6
for both one- and two-bit probes of [6]

One-bit Probe Two-bit Probe
V = 0 V = 1 V = 00 V = 01 V = 10 V = 11

A = 0 5
6

1
6

1 1
5

4
5

0

A = 1 1
6

5
6

0 4
5

1
5

1

Marginal of V 1
2

1
2

1
12

5
12

5
12

1
12

5
6 and that in two-bit probe turns out to be the same: 1· 1

12+
4
5 ·

5
12+

4
5 ·

5
12+1· 1

12 =
5
6 . But the mutual information in the first case is 1+ 5

6 log2
5
6 +

1
6 log2

1
6 = 0.3500

and in the second case is 1 + 5
6 ·
(
4
5 log2

4
5 + 1

5 log2
1
5

)
= 0.3984.
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According to Definition 4, the optimal advantages of the eavesdropper in the
four-state and in the six-state protocols are respectively given by

A4(D) =
√
D(1−D). (28)

A6(D) =
D +

√
D(2 − 3D)

2
. (29)

Thus, though Eve has more mutual information in the two-bit probe, that does
not give any extra cryptographic advantage in guessing the bit sent by Alice.
So from the point of view of cryptanalysis, both the one-bit probe and two-bit
probe are equivalent even in the six-state BB84.

4 Comparing Four and Six-State Protocols Considering
Same Number of Qubits

For BB84 with four states, on average half of the qubits communicated by Alice
to Bob is discarded due to mismatch in their bases. For the six-state protocol,
the expected number of discarded qubits is two-third of the total number of
qubits communicated. So for a fair comparison, we must take the same values of

1. the length of the secret key established, and
2. the total number of qubits communicated

in both the protocols. To establish a secret key of length n bits, the four-state
protocol must communicate around 4n qubits (in the practical scenario, the exact
number is little more than 4n) and the six-state protocol must communicate
around 6n qubits (practically little more than that). Therefore, in order to match
the total number of bits communicated, the four-state protocol may be repeated
3t times and the six-states protocol should be repeated 2t times for any positive
integer t.

With the above motivation, we define a variant of BB84, called m-BB84 in
Table 6. In this protocol, Alice and Bob establish m different keys of the same
length by running m independent instances of BB84 and finally establish the
actual secret key by bitwise XOR-ing the individual keys together. The main
idea behind this scheme is the fact that when several biased bits are XOR-
ed together, the bias in the XOR output bit becomes smaller than the bias of
each bit. The concept is in the direction to privacy amplification [2]. However,
the motivation here is to compare the four-state and six-state protocol under
the same footage. Any post-processing including privacy amplification can be
performed on the string produced by the multi-round BB84.

The bias in Kj, the j-th bit of the final key K, depends on the biases in the
j-th bits of the individual keys. We can use the Piling-up Lemma [18] stated
below to compute the bias in Kj . We present the proof also for the sake of
completeness.
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Table 6. Multi-round BB84 Protocol with parameter (number of rounds) m

Protocol m-BB84

1. Alice and Bob run m independent instances of BB84.

(The instances may either be run sequentially,

or they may be run in parallel through separate channels).

2. Suppose they establish m many n-bit secret keys, namely,

k1, k2, . . . , km. Let ki,j be the j-th bit of the key ki established

in the i-th instance of BB84, for 1 ≤ i ≤ m, 1 ≤ j ≤ n.
3. The j-th bit of the final secret key K is given by

Kj = k1,j ⊕ k2,j ⊕ · · · ⊕ km,j, for 1 ≤ j ≤ n.

Lemma 1 (Piling-up Lemma). Let εi be the bias in the binary random vari-
able Xi, i = 1, 2, . . . ,m, i.e., P (Xi = 0) = 1

2 + εi and P (Xi = 1) = 1
2 − εi. Then

the bias in the random variable X1⊕X2⊕ · · · ⊕Xm is given by 2m−1ε1ε2 . . . εm,
considering the individual random variables as independent.

Proof. The result trivially holds for m = 1. For m = 2, we have

P (X1 ⊕X2 = 0) = P (X1 = 0, X2 = 0) + P (X1 = 1, X2 = 1)

=

(
1

2
+ ε1

)(
1

2
+ ε2

)
+

(
1

2
− ε1

)(
1

2
− ε2

)
=

1

2
+ 2ε1ε2

and hence the bias is 22−1ε1ε2. Assume that the result holds for m = �, i.e., the
bias in XOR of � variables is given by δ = 2
−1ε1ε2 . . . εl. Now, for k = � + 1,
taking Y = X1 ⊕ X2 ⊕ · · · ⊕ X
, we can apply the result for k = 2 to obtain
the bias in Y ⊕X
+1 as 2δε
+1 = 2
ε1ε2 . . . ε
+1. Hence, by induction, the result
holds for any m. ��

Now, we can formulate the optimal advantage of the adversary for m-BB84 as
follows.

Theorem 4. For a disturbance D in each qubit of the individual instances of
BB84, the optimal advantages of the adversary in guessing a bit of the final key

of m-BB84 are given by A4(D,m) = 2m−1
(√

D(1 −D)
)m

, and A6(D,m) =

1
2

(
D +

√
D(2− 3D)

)m
corresponding to the four-state and the six-state proto-

cols respectively.

Proof. For any bit position j, the computation of the bias follows in the same
manner. Hence, without loss of generality, fix a bit position j. Corresponding to
this position, there are m key bits, each having the same bias εi, 1 ≤ i ≤ m. The
value of this bias is given by Equation (28) for the four-state protocol and by
Equation (29) for the six-state protocol. By substituting these expressions for εi
in Lemma 1, the result follows. ��

Note that Equations (28) and (29) can be considered as special cases of Theo-
rem 4 with m = 1, i.e., they represent A4(D, 1) and A6(D, 1) respectively.
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In principle, the higher the value of m, the greater is the reduction of Eve’s
advantage. However, one should keep in mind that with increasing m, the effec-
tive disturbance perceived by Bob also increases. We can formulate this by the
following result.

Theorem 5. For a disturbance D in the channel for each qubit of the individual
instances of BB84, the effective disturbance perceived by Bob for each bit of the
final key of m-BB84 is given by Δ(D,m) = 1

2 − 2m−1
(
1
2 −D

)m
.

Proof. A disturbanceD corresponds to a no-error (success) probability of 1−D =
1
2 +
(
1
2 −D

)
, i.e., a bias of

(
1
2 −D

)
at Bob’s end. For any bit position j, the

computation follows in the same manner. Hence, without loss of generality, fix a
bit position j. Corresponding to this position, there are m key bits, each having
the same bias εi =

(
1
2 −D

)
, 1 ≤ i ≤ m. By Lemma 1, the equivalent bias

(of no-error) for the j-th bit (and so for each bit) of the final key is given by
2m−1

(
1
2 −D

)m
. Thus, the equivalent no-error probability for each bit of the

final key is given by s = 1
2 + 2m−1

(
1
2 −D

)m
. The equivalent disturbance is

given by 1− s. ��

As discussed already, for fair comparison we should always compare four-state
3t-BB84 with six-state 2t-BB84 for any fixed integral value of t. Because of
Theorem 5, higher t means more error for Alice and Bob. Hence, we would
restrict our subsequent discussion for t = 1, i.e, we would compare the four-state
3-BB84 with the six-state 2-BB84, though in principle similar comparison holds
for any t.

We consider three scenarios for our comparative study. Let D4 and D6 denote
the disturbances in each qubit of the individual instances of the four and the six-
state protocols respectively. For comparison in equal footing, we take D6 = D
and express all the other quantities in terms of D.

4.1 Scenario 1: Equal Disturbance in Each Qubit of the Individual
Instances of Four-State and Six-State BB84

Here, D4 = D6 = D. In Figure 2 (top), we plot the optimal advantages of Eve
and the effective disturbances of Bob as a function of the disturbance D for
D ∈ [0, 12 ].

As pointed out in [6], one can note that for all D ∈ [0, 0.5], A4(D, 1) >
A6(D, 1). That is, the eavesdropper can obtain more information in the tradi-
tional 4-state BB84 [1] than the 6-state modification [6]. However, we note that
A4(D, 3) ≤ A6(D, 2) for D ≤ 0.27 (up to two decimal places). Thus, at the
expense of same number of qubits, for the range of disturbance ≤ 0.27, the four-
state BB84 is more secure (as eavesdropper obtains less information) than the
six-state BB84 in the model we discussed above. But this greater security comes
at the cost of greater effective disturbance at Bob’s end, as depicted by the plot.

As a numerical example, consider D = 0.1. Then A4(D, 1) = 0.3, which
is more than A6(D, 1) = 0.2562. Again, A4(D, 3) = 0.108, which is less than
A6(D, 2) = 0.1312, implying that the four-state 3-BB84 is more secure. However,
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Fig. 2. Eavesdropper’s advantages and Bob’s disturbances against D6 = D, for three
cases: Scenario 1 (top), Scenario 2 (middle) and Scenario 3 (bottom)
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its effective disturbance Δ(D4, 3) = 0.244 is more than that of the six-state 2-
BB84 one, which is Δ(D6, 2) = 0.18.

4.2 Scenario 2: Equal Effective Disturbance in Each Bit of the Final
Key of Four-State and Six-State BB84

In this scenario, we consider that Eve chooses different values of D4 and D6 so
that the effective disturbances Δ(D4, 3) and Δ(D6, 2) are equal. Using The-

orem 5, we can write Δ(D4, 3) = 1
2 − 22

(
1
2 −D4

)3
, and Δ(D6, 2) = 1

2 −
2
(
1
2 −D6

)2
. Equating the right hand sides and substituting D6 = D, we ob-

tain D4 = 1
2 −
(

1
2

(
1
2 −D

)2) 1
3

. Now we plot Eve’s optimal advantages A4(D4, 3)

and A6(D6, 2) using Theorem 4 and the quantities for Bob’s disturbances in
Figure 2 (middle). Note that for the entire range of D, the four-state 3-BB84 is
more secure than the six-state 2-BB84.

As a numerical example, consider D6 = 0.1. Then Δ(D6, 2) = 0.18. For
Δ(D4, 3) to have the same value, we must have D4 = 0.0691. For the single
instance, we have A4(D4, 1) = 0.2536 to be marginally less than A6(D6, 1) =
0.2562, but for multiple instances with the same number of qubits, A4(D4, 3) =
0.0653 is much less than A6(D6, 2) = 0.1312.

4.3 Scenario 3: Equal Advantages for Eve for Four-State 3-BB84
and Six-State 2-BB84

From Theorem 4, we have A4(D4, 3) = 22
(√

D4(1 −D4)
)3

, and A6(D6, 2) =

1
2

(
D6 +

√
D6(2− 3D6)

)2
. Equating the right hand sides and substituting D6 =

D, we obtain D4 = 1
2 −

1
2

√
1−
(
D +

√
D(2 − 3D)

) 4
3

. In Figure 2 (bottom), we

plot Bob’s effective disturbances Δ(D4, 3) and Δ(D6, 2) using Theorem 5, along
with Eve’s advantages. Here also, the four-state protocol offers more (individual
as well as effective) disturbance at Bob’s end than the six-state one.

As a numerical example, consider D6 = 0.1. Then A6(D6, 2) = 0.1312. For
A4(D4, 3) to have the same value, we must have D4 = 0.1159. The effective
disturbances are Δ(D4, 3) = 0.2734 > Δ(D6, 2) = 0.18. Also, for the single
instances, A4(D4, 1) = 0.3201 > A6(D6, 1) = 0.2562.

5 Conclusion

In this paper, we revisit the symmetric incoherent eavesdropping strategy of
Fuchs et al. [10] and Bruß [6] on the four and the six-state BB84 protocols
respectively in the light of the success probability of Eve. We show that both the
one-bit and the two-bit probes in the six-state have the same success probability
for Eve. Further, we critically compare the security issues in the four and the
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six-state protocols when same number of qubits are used in both the cases.
Though the theoretical results of [6] as well as ours are correct, our results are
placed from the cryptanalytic viewpoint of optimal eavesdropping and thus the
interpretation is different from what claimed in [6].
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Our second construction (with a function independent input encod-
ing phase) makes use of a fully homomorphic encryption scheme. A nat-
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pler and weaker primitives?”. Towards that end, we show that any such
construction would imply a secure two-party computation protocol with
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ity independent of the size of the function being computed).
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1 Introduction

Secure multi-party computation allows a set of n parties to compute a joint func-
tion of their inputs while keeping their inputs private. The first general solutions
for the problem of secure computation were presented by Yao [Yao86] for the
two-party case (with security against semi-honest adversaries) and Goldreich,
Micali and Wigderson [GMW87] for the multi-party case (with security against
malicious adversaries). These (and subsequent) protocols for secure computation
were designed under the assumption that the local computations done by each
of the parties on their private data are opaque.

In recent years, a vibrant area of research dealing with “leakage on the local
computations” has emerged. This is a well motivated direction since sometimes,
the local computations are not fully opaque and real world adversaries can exploit
leakage from side channel attacks. There has been rapid progress on developing
cryptographic primitives resilient against leakage of internal state in various
models. There have been proposals of leakage resilient pseudorandom generators,
public key encryption scheme, signature scheme, identity based encryption, etc
(see [DP08], [FKPR10], [NS09] and the references therein). While significant
progress has been made on designing cryptographic primitives secure in the
presence of leakage, to our knowledge, there has not been any work on designing
cryptographic protocols which tries to relax the assumption that the honest
party machines are black-boxes with all internal computation hidden from the
adversary.1 In particular, while the protocol is running, what if the adversary
manages to obtain a side channel allowing it to peek inside the honest party
machines (in addition to completely corrupting some of the parties)? Can one
still design secure computation protocols in this setting?

Our Results. We study the question of designing leakage-resilient secure com-
putation protocols in this work. Our model is that of only computation leaks
information with a leak-free input encoding phase. In more detail, our model has
the following two phases.

We first assume an offline phase called the input encoding phase. This phase
can be run in isolation and the parties need not be connected to the network.
Hence, this phase is assumed to be free of any leakage. In this phase, each party
encodes its input in a specified format. The encoding may or may not depend
upon the function that needs to be jointly computed by the parties later on.

Then finally, we have a secure computation phase in which the parties ex-
change messages with each other. In this phase, the adversary gets access to a
leakage oracle which allows it to download a function of the computation tran-
script produced by an honest party to compute the next outgoing message (this

1 Please see the end of this section for a discussion of the concurrent independent
work.
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is, of course in addition to be able to completely corrupt a subset of the parties).
If in any given round, the computation transcript “touches” only a subset of the
bits of the encoded input (stored as a result of the input encoding phase), the
leakage can depend only on that subset of the bits (i.e., only computation leaks
information [MR04]).

Note that to hope to be able to have secure computation protocols, an input
encoding phase is indeed necessary. This is because the security is violated even
if a single bit of the initial input of an honest party is leaked to the adversary.
Furthermore, if the adversary can later download a function of the entire en-
coded input, it can at least download a single bit of the initial input. Hence
the assumption “only computation leaks information” also appears to be nec-
essary. We emphasize that the security guarantees our protocols should satisfy
correspond the standard ideal world (with no leakage allowed in the ideal world).

We present two main constructions of secure computation protocols in the
above model. Our first construction is based only on the existence of (semi-
honest) oblivious transfer. This construction employs an encoding phase which
is dependent of the function to be computed (and the size of the encoded input is
dependent on the size of the circuit of the function to be computed). Our second
construction has an input encoding phase independent of the function to be
computed. Hence in this construction, the parties can simple encode their input
and store it as soon as it is received and then later on run secure computation
for any function of their choice.

Both of the above constructions, somewhat surprisingly, tolerate complete
leakage in the secure computation phase. That is, the adversary can fully observe
the entire computation transcripts of the honest parties in the secure computa-
tion phase (including the bits of the encoded input that were used in running
the protocol).

Our second construction (with function independent input encoding) makes
use of a fully homomorphic encryption (FHE) scheme [Gen09] (see also
[vDGHV10], [Gen10]). A natural question that arises is “can a leakage-resilient
secure computation protocol with function independent input encoding phase be
based on simpler and weaker primitives?”. In fact, can we even have a leakage-
resilient secure computation protocol (based on weaker primitives) where the
size of the encoded input is independent of the size of the circuit of the function
to be computed? Towards that end, we show that any such construction would
imply a secure two-party computation protocol with sub-linear communication
complexity (in fact, communication complexity independent of the size of the
function being computed). Note that constructing such a protocol was a central
open problem in the field of secure computation (until a construction for FHE
was proposed by Gentry [Gen09]). Currently, the only known way to construct
a sub-linear communication complexity secure computation protocol is to rely
on a FHE scheme.

Finally, we also show how to extend our constructions for the continual leak-
age case where there is: a one time leak-free input encoding phase, a leaky secure
computation phase which could be run multiple times for different functionalities
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(but the same input vector), and, a leaky refresh phase after each secure compu-
tation phase where the input is “re-encoded”. As before, the secure computation
phase can tolerate complete leakage. However in the refresh phase, the leakage
is bounded by a parameter t (which can be any apriori chosen polynomial in the
security parameter).

Our Techniques. Our primary tool is to construct and store a number of garbled
circuits in the input encoding phase and use them later on in the secure com-
putation phase. For simplicity, we focus on the two-party case; similar ideas are
applicable to the multi-party setting as well. The idea of our first construction is
as follows. We compile any given (semi-honest) secure computation protocol Π
into a leakage-resilient one as follows. In the input encoding phase, every party
creates and stores a number of garbled circuits corresponding to the next mes-
sage function of the underlying protocol. In the secure computation phase, the
outgoing message of a party is computed as an output of one of the these gar-
bled circuits. To evaluate such a garbled circuit, only the appropriate wire keys
are “read” from the encoded input (one for each input wire of the garbled cir-
cuit). Now the computation transcript of the secure computation phase consists
primarily of the transcript of evaluation of such garbled circuits (one for each
round). However such evaluation transcripts can be simulated and hence the
only valuable information that is revealed from leakage is the output of such a
garbled circuit, which is just the next output message in the underlying protocol
Π (there are caveats like a party needs to keep secret state between the rounds
which can be dealt with using standard ideas). This idea is similar in spirit to
the ones used to construct one-time programs [GKR08]. In one-time programs,
the security is based on the fact that only the appropriate wire keys are read
from the given hardware tokens. Hence, one-time programs enable secure evalu-
ation computation of a (non-interactive) function in the only-computation leaks
information model.

The above idea “almost works” except for the following (rather subtle) prob-
lem. The real adversary A (given to us) expects to see the leakage along with
every message it receives and then may adaptively decide the next outgoing
message.

– To use the simulator SΠ , we need to construct an adversary A′ for the
protocol Π on which SΠ can be run.

– One natural high level idea is to construct another adversary A′ for Π using
the real adversary A. To use A, the new adversary A′ will produce all the
leakage to be given toA internally by constructing a simulated garbled circuit
for each round. Hence now it seems SΠ can be simply run on A′ (which is
now a new adversary for the same protocol Π).

– The simulator SΠ of the underlying protocol Π may work by rewinding A′.
However once A′ is rewound by SΠ in any given round, for that round, A′

ends up giving to A multiple evaluation transcripts of the same simulated
garbled circuit (on different inputs). However since we know how to prove the
indistinguishability of a simulated garbled circuit from a real one only if the
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garbled circuit is evaluated once, our hybrid arguments completely break
down. In more detail, once our simulator starts rewinding in the hybrid
experiments, we can no longer rely on the indistinguishability of the real
garbled circuit execution from a simulated one.2

– An initial idea to solve this problem is to have A′ generate the simulated
garbled circuit from scratch (to be given to A) every time the protocol in
rewound in a given round. However now since the machine A′ needs to be
aware of when it is being rewound and be allowed to change its random
tape every time it is rewound, the success of the simulator SΠ is no longer
guaranteed.

Our final idea to solve this problem continues to be to generate the simulated
garbled circuit from scratch every time the protocol in rewound in a given round.
Since the adversary of the underlying protocol A′ needs to be aware of when it
is being rewound, and cannot be allowed to change its random tape every time
it is rewound, the simulator applies a PRF on the current view to choose new
random tape for A′ for the rest of the execution after rewinding.

For our second construction, we first use FHE for the evaluation of the nextmes-
sage function and hence end up with the next message to be sent in an encrypted
form. We then use a garbled circuit (constructed in the input encoding phase) to
get this next message decrypted. This is as opposed to directly using a garbled cir-
cuit to perform the entire computation. Hence the garbled circuit generated in the
input encoding phase need only be able to decrypt ciphertexts of size dependent
only the size of the messages in the protocolΠ (and independent of the complex-
ity of the next message function in particular). Finally, our underlying protocolΠ
has communication complexity (i.e., message sizes) independent of circuit size of
the function to be computed (and dependent only the security parameter and the
size of the input). Such a construction forΠ can be obtained again by using FHE
and Kilian’s efficient PCP based on zero-knowledge arguments [Kil95]. This con-
struction also suffers from similar caveats relating to adversary choosing the next
outgoing message adaptively on the leakage (and the solutions to these problems
make use of the same ideas as in the previous construction).

Finally, we prove that any leakage-resilient secure computation protocol CΠ

with function independent input encoding implies a secure two-party compu-
tation protocol Σ with computation complexity independent of the size of the
circuit being computed. The main idea we use to construct such a low commu-
nication complexity protocol is for the protocol participant of Σ to internally
emulate the parties of CΠ but partition the load of emulating such parties in a
highly “unbalanced” way. In more detail, the second party in Σ does much of
the work of emulating both parties of the protocol CΠ . This leads to the second
party knowing about the internal state of both parties in the protocol CΠ ; how-
ever here we can rely on the leakage-resilience of CΠ to argue security. The only

2 The problem of additional leakage while a simulator rewinds the adversary has also
been observed in the context of leakage-resilient zero-knowledge [GJS11]. In [GJS11],
such leakage in fact translated to additional leakage in the ideal world. For a com-
parison of our work to [GJS11], please see the end of this Section.
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communication is when the second party needs to read some bits of the encoded
input of the first party in CΠ .

Concurrent Independent Work. Independent of our work, leakage resilient secure
computation protocols have been proposed in the “plain” model where there is
no leakage-free offline phase and the adversary may ask for leakage on the entire
memory [GJS11], [DHP11], [BCH11]. These works necessarily relax the security
definition by allowing leakage on the input in the ideal world and hence are
incomparable to ours.

2 Preliminaries and Model

2.1 Definition - Leakage Resilient Secure Computation

We model the leakage during the computation, by giving the adversary access
to a leakage oracle.

Definition 1. Leakage Oracle: Given a computation s (we assume s is given
by a Boolean circuit) and λ, 0 ≤ λ ≤ 1, a leakage oracle Oλ

s is defined as follows.
For an input w, oracle Oλ

s (w) evaluates the queried PPT function on the tran-
script of the computation of s on w, where w includes the input and randomness
to the computation. Specifically, let τ(s, w) denote the transcript of computation
of s on w, i.e., it consists of the input, output, and all the intermediate values
in the circuit during the computation. Let h be any PPT leakage function whose
output length is at most a λ-fraction of its input length. Now, on query h, Oλ

s (w)
responds with h(τ(s, w)). We call Oλ

s = {Oλ
s (w)}w the λ-bounded leakage oracle

for s, where w ranges over all possible inputs to circuit s.
When λ = 1, we call this the complete leakage oracle for s and omit the

superscript.

We now give a formal definition of security against malicious adversaries in the
presence of leakage in the ideal/real simulation paradigm. The execution in the
ideal and real world are as follows:

Execution in the Ideal Model

Inputs: Each party obtains an input; the ith party’s input is denoted by xi; we
assume that the inputs are of the same length n. The adversary A receives an
auxiliary-input z.

Send Inputs to Trusted Party: The honest party Pj sends its received input
xj to the trusted party. A malicious party may depending on its input (as well
as on its coin tosses and the auxiliary input) either abort or send some other
input of the same length to the trusted party.

Trusted Party Answers the First Party: In case the trusted party received
the input pair, (u1, u2), the trusted party first replies to the first party with
f(u1, u2).

Trusted Party Answers the Second Party: In case the first party is mali-
cious, it may depending on its input and the trusted party’s answer, decide to
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abort the trusted party. In this case, the trusted party sends abort to the second
party. Otherwise, the trusted party sends f(u1, u2) to the second party.

Outputs: An honest party always outputs the message it obtained from the
trusted party. A malicious party may output any arbitrary (probabilistic
polynomial-time computable) function of the initial input and the message ob-
tained from the trusted party.

Definition 2. The output of honest party and the adversary in an execution of
the above model is denoted by
IDEALf,A(z)(x1, x2).

Execution in the Real Model

Let P1 and P2 be two parties trying to securely compute functionality f :
({0, 1}∗)2 → ({0, 1}∗)2. W.l.o.g., let P1 be the corrupt party (P2 is honest).
We want to model leakage from the honest party P2. Note that we only need
to consider leakage from honest parties. Let A be a PPT adversary controlling
malicious party P1. The adversary A can deviate from the protocol in an ar-
bitrary way. In particular, A can access leakage from P2 via its leakage oracle
throughout the execution of the protocol. In addition, A’s behavior may depend
on some auxiliary input z. More details follow.

Our real world execution proceeds in two phases: a leakage-freeEncoding phase
and a Secure Computation Phase in which leakage may occur. In the Encoding
phase, each party Pi, locally computes an encoding of its input and any other
auxiliary information. The adversary has no access to the leakage oracle during
the encoding phase. In the Secure Computation phase, the parties begin to
interact, and the adversary gets access to the leakage from the local computation
of P2. Specifically, let s2 be a circuit describing the internal computation of P2.
The circuit s2 takes as input the history of protocol execution of the secure
computation phase so far, and some specified bits of the encoded input, and
outputs the next message from P2 and the new internal state of P2. Thus, by
Definition 1, the leakage is accessible to the adversary via the oracle Os2 , which
we abbreviate by O2. Thus, at the end of round j of the protocol, A can queryO2

for any PPT function hj applied on the transcript of the jth round computation

of the honest party P2. We denote this leakage information by lj2.
We consider two variants of the above model: one in which the Encoding

phase can depend on the function to be computed, and another stronger model
in which the leakage-free Encoding phase is independent of the function.

Definition 3. We define REALOλ

π,A(z)(x1, x2, κ) to be the output pair of the
honest party and the adversary A from the real execution of π as defined above
on inputs (x1, x2), auxiliary input z to A, with oracle access to Oλ

2 , and security
parameter κ.

Definition of Security

Definition 4. Let f, π, be as described above. Protocol π is said to securely
compute f in the presence of λ− leakage if for every non-uniform probabilistic



On-Line/Off-Line Leakage Resilient Secure Computation Protocols 107

polynomial-time pair of algorithms A = (A1, A2) for the real model, there exists
a non-uniform probabilistic polynomial-time pair S = (S1, S2) for the ideal model
such that

IDEALf,S(z)(x1, x2)
c≡ REALOλ

π,A(z)(x1, x2, κ)

where x1, x2, z ∈ {0, 1}∗, such that |x1| = |x2| and |z| = poly(|x1|). When λ = 1,
protocol π is said to securely compute f in the presence of complete leakage.

The model for the multi-party setting is analogous to one given above for the
two-party case. For lack of space, the details of the definition for the multi-party
case are provided in the full version.

3 The Basic Construction

We give a compiler that transforms any semi-honest secure multiparty protocol
into a leakage resilient multiparty protocol secure against malicious parties and
resilient against complete leakage (λ = 1) from honest parties. For simplicity,
we describe our results for the two party case. They can be naturally extended
to the multiparty case using known techniques. We sketch such an extension in
the full version.

The high level idea of the compiler is to garble the “Next Message” functions
of a two party computation protocol in a leakage-free preprocessing phase. The
internal states of the parties are maintained in an encrypted form using a se-
mantically secure public key encryption scheme. The private input of each party
is included as part of that party’s initial (encrypted) state. All updates to the
internal states are also performed on the corresponding ciphertexts. The garbled
circuit of the Next Message function of a party acts on its encrypted internal
state and the message from the other party to produce its new (encrypted) state
and the message to be sent to the other party.

We start with any protocol Π secure against malicious adversaries, which is
compiled by the compiler C. Let t be the number of rounds in Π . The compiled
protocol CΠ is secure against malicious adversaries in the presence of complete
leakage.

3.1 The Compiler

– Input: P1 has input x1 ∈ {0, 1}n and P2 has input x2 ∈ {0, 1}n.
– Encoding phase: This is done in a leakage-free setting. For concreteness,

we assume that in the original protocol Π , P1 sends the first message. We
use the notation mj

i to denote the jth message sent by party i. Thus jth
message from party P1 followed by jth message from party P2 constitutes
the jth round.
Party P1 does the following:

1. Initialize the secret state st01 with the private input x1 and private ran-
dom tape for the protocol Π .
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2. Choose a public key and secret key pair (pk1, sk1) of an Encryption
scheme E.
(pk1, sk1)← KeyGen(1κ)

3. Encrypt the initial secret state st01 under pk1.
E[st01]← Encrypt(pk1, st

0
1)

4. Let mj
1 ← NextMsgj1(m

j−1
2 , stj−1

1 ) be the Next Message function of Π to

compute the jth message mj
1 that is to be sent to P2. Let NextMsgCj

1

be the circuit with the following functionality for j �= t. It has the keys
pk1 and sk1 hardcoded and takes as input mj−1

2 , E[stj−1
1 ]. It decrypts

E[stj−1
1 ], executes NextMsgj1(m

j−1
2 , stj−1

1 ), and hence computes the next

message of P1 asm
j
1. It outputs this next message and the new encrypted

state (E[stj1],m
j
1) and halts. For j = t, the circuit NextMsgCj

1 takes the
encrypted state and the message received, computes the message to be
sent, updates the state, and outputs the state in the clear.
E[stj1],m

j
1 ← NextMsgCj

1(m
j−1
2 , E[stj−1

1 ]).
5. For every round j, using the garbled circuit construction of Yao, gar-

ble the circuit NextMsgCj
1(m

j−1
2 , E[stj−1

1 ]) to get the garbled circuit

NextMsgGCj
1.

P2 acts symmetrically.
– Secure Computation Phase: This runs the leakage resilient protocol
CΠ(x1, x2) defined below.
The parties emulate the underlying protocol Π , by replacing every call to
the Next Message function by an invocation of the corresponding garbled
circuit computed during the preprocessing phase.
Party P1 does the following:
1. In round j, evaluate the garbled circuit NextMsgGCj

1 under the wire keys

corresponding to the input mj−1
2 , E[stj−1

1 ]. That is, from the encoded

input, only the wire keys corresponding to the input mj−1
2 , E[stj−1

1 ] are
“touched”.

E[stj1],m
j
1 ← NextMsgGCj

1(m
j−1
2 , E[stj−1

1 ])

2. Send mj
1 to the other party.

3. Update the secret state with E[stj1] and wait for the next message from
P2 if it exists; otherwise halt.

P2 acts symmetrically.

4 Proof of Security

Theorem 1. Assuming Π securely computes f in the malicious model, the pro-
tocol CΠ securely computes f as in Definition 4 for λ = 1.

The proof constructs a simulator (ideal world adversary) whose output is com-
putationally indistinguishable from the view of the real world adversary in an
actual run of the protocol. The simulator will access the real world adversary
and a trusted party.
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4.1 Description of the Simulator

W.l.o.g., we assume P1 is corrupt. Let A be the adversary controlling the corrupt
party. We describe the simulator S.

– Let SΠ be the simulator for the protocol Π . We construct an adversary A′

for the underlying protocol Π , on which SΠ can be run.
– Observe that the behavior ofA′ is the same asA, except thatA expects to see

the leakage along with every message it receives. The simulator constructs an
adversaryA′ forΠ and runs SΠ onA′. For each round j, S givesA the round
j message mj

2 that SΠ gives A′. Whenever SΠ rewinds A′, S rewinds A.
Along with each message, the simulator also gives A, the associated leakage
that it computes in the following way.

– The simulator picks a key pair (pk1, sk1) of the Encryption scheme E. Let
E[m] denote the encryption of a message m under pk1.

– Throughout, with every message mj
2 that S sends to the adversary, it also

sends the associated leakage lj2 which S computes in the following way: In
round j, S picks a random string randj . It then constructs a fake garbled cir-

cuit of the Next Message function ofΠ that always outputsmj
2 and E[randj ].

S evaluates this fake garbled circuit under the wire keys corresponding to
inputs mj−1

1 and E[randj−1], and sets lj2 to the transcript of this evaluation.
The evaluation transcript consists of garbled gate tables of every gate in the
circuit, output decryption table, and a single garbled value for every wire
in the circuit. Whenever S rewinds A and is required to give leak-
age for the same round again, it constructs a fresh fake garbled
circuit as opposed to giving the evaluation transcript of the same one on a
different input. Now since the adversary of the underlying protocol A′ needs
to be aware of when it is being rewound, and cannot be allowed to change
its random tape every time it is rewound, S applies a PRF on the current
view to choose new random tape for A′ for the rest of the execution after
rewinding. In more detail, the random tape for the rest of the execution of
A′ after being rewound is set to PRF (view). The view consists of the con-
catenation of input, random tape, messages received so far. This takes care
of the fact that the underlying adversary A′ cannot be allowed to change its
random tape every time it is rewound, and guarantees that the randomness
is fresh for each execution. This idea is similar to how Resettable protocols
are constructed [CGGM00].

The above idea works for any general rewinding strategy that SΠ may employ,
and the success of the simulator S is guaranteed.

We prove the indistinguishability of the views going from the real protocol
to the simulated one through a series of hybrids. We prove that the real pro-
tocol view is indistinguishable from that in the simulated execution by proving
indistinguishability between every pair of successive hybrids. The detailed proof
appears in Appendix A.1.

An extension to the multi-party case can be found in the full version.
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5 Construction with Function Independent Encoding

We now give a construction of another compiler such that the input encoding
phase is independent of the function f to be computed. To do this, we start with
a generic protocol Π with round complexity and communication complexity
independent of the function to be computed. We then use a compiler C in a
similar way as before to transform Π into a protocol CΠ that is secure against a
malicious adversary in the presence of complete leakage. Recall that the secure
computation phase is subject to complete leakage, i.e., all the data and internal
states of local computations in the online phase are completely visible to the
adversary, whereas the input encoding phase is leakage-free.

5.1 The Generic Protocol Π

Our generic two party computation protocol Π , which is secure against semi-
honest adversaries, is constructed based on a Fully Homomorphic Encryption
(FHE) scheme E.

1. Input: P1 has input x1 ∈ {0, 1}n and P2 has input x2 ∈ {0, 1}n
2. P1 generates a key pair for FHE scheme E and sends the public key to P2.

(pk, sk)← KeyGen(1κ)
3. P1 encrypts her input and sends the ciphertext to P2.

E[x1]← Encrypt(x1, pk)
4. P2 encrypts his input and evaluates the circuit C homomorphically.

E[f(x1, x2)]← Eval(C, E[x1], E[x2], pk)
P2 sends E[f(x1, x2)] to P1.

5. P1 decrypts to obtain f(x1, x2). She sends f(x1, x2) to P2.

It is clear that the communication complexity of the above protocol Π depends
only on the size of the input n and the security parameter κ and is independent
of the function f (in particular, independent of the size of the circuit C).

5.2 Compiler C

The protocolΠ described above is compiled with Kilian’s efficient WI arguments
based on PCP to enforce honest behavior [Kil95], and this protocol is compiled
with our compiler C to produce the compiled protocol CΠ .

– Input Encoding Phase: This phase is independent of the function to be
computed.
1. Party i chooses a key pair (pki, ski) of an FHE E = (KeyGen,Encrypt,

Decrypt, Eval).
(pki, ski)← KeyGen(1κ)

2. The initial internal state st0i of Party i is initialized with the private
input and randomness of Pi for the execution of Π . It is then encrypted
under the chosen key pki.

E[st0i ]← Encrypt(pki, st
0
i )
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3. Let Decrypt(ski, c) be the decryption circuit of the FHE scheme for
Party i. Using the Garbled circuit construction of Yao, garble the de-
cryption circuit to get DecGCi. Let t be the number of rounds in the
protocol Π . Construct t independent garbled circuits of Decrypt(ski, c).
Let DecGCj

i denote the garbled decryption circuit of Party i to be used
in round j. The length of the ciphertext that the garbled circuit should
handle as the input is the length of the messages in Π . Thus it is poly-
nomial in the security parameter and the input size and independent of
f .

– Secure Computation Phase:
P1 does the following:
1. Encryption: Let mj−1

2 be the message received. Party P1 encrypts the
received message under its own public key.

E[mj−1
2 ]← Encrypt(pk1,m

j−1
2 )

2. Homomorphic evaluation: Let NextMsgj1 be the circuit description of
the next message function used by Party P1 in round j in protocol Π .
This circuit is evaluated homomorphically to get an encryption of mj

1 in
round j.

(E[mj
1], E[stj1])← Eval(E[stj−1

1 ], E[mj−1
2 ], NextMsgj1)

3. Garbled circuit evaluation: Party 1 decrypts E[mj
1] by evaluating the

Garbled circuit DecGCj
1 under the wire keys corresponding to input

E[mj
1].

mj
1 ← DecGCj

1(sk1, E[mj
1])

4. Party P1 sends mj
1 to P2.

5. Party P1 updates the secret state to E[stj1].
Party P2 acts symmetrically.

The security guarantees of the protocol CΠ are stated in the following theorem.

Theorem 2. The protocol CΠ is secure against complete leakage, as in Defini-
tion 4, with an encoding phase independent of the function to be computed.

The proof of this theorem follows from ideas similar to that in theorem 1 and
due to space limitations, we give the proof in the full version.

5.3 Extension to Multiparty Case

We now sketch an extension of CΠ to the multi-party case. The underlying
semi-honest secure protocol Π which we compile is as follows.

– The parties run a multi-party protocol for the following functionality: The
functionality takes as input, the vector of inputs of all the parties. It gener-
ates the key pair for a fully homomorphic encryption scheme E. The func-
tionality encrypts the input of each party and generates n-out-of-n secret
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shares of the decryption key. Each party gets as output, encryption of the
inputs of all parties, the public key, and a share each of the secret key.

– The first party now evaluates the circuit homomorphically to get the en-
crypted output.

E[C(x1, . . . , xn)]← Eval(E[x1], . . . , E[xn], C)

– The parties now run a multi-party protocol for the following functionality.
The functionality takes as input the secret shares of the decryption key of
each party, and outputs the decrypted output.

The above protocol is compiled as in the two-party case with Kilian’s efficient
WI arguments based on PCP to enforce honest behavior [Kil95]. This is compiled
with compiler C as discussed in 5.2 to get a leakage resilient multi-party protocol
CΠ .

6 Is FHE Necessary for a Construction with Function
Independent Encoding?

Our protocol CΠ in the previous section uses Fully Homomorphic Encryption as
a component to realize function-independent encoding. In this section, we ad-
dress the question if this is necessary. We show that leakage resilience with func-
tion independent encoding implies two-party secure computation with a com-
munication complexity that is independent of the function to be computed. In
particular, given a leakage resilient protocol CΠ that securely computes f in
the presence of complete leakage and uses a function-independent encoding, we
construct a secure two party computation protocolΣ whose communication com-
plexity is independent of f . Realizing the latter task was a major open question
and is currently known to be possible only if one uses FHE. Thus, being able
to avoid FHE in building a leakage resilient protocol with function-independent
encoding would have an alternative solution to this open question that does not
rely on FHE.

In what follows, we denote by P1 and P2 the players in the leakage resilient
protocol CΠ and by p1 and p2 the players in the communication-efficient protocol
Σ. Given CΠ we show how to build Σ. The protocol Σ is secure against semi-
honest adversaries which do not deviate from the protocol, but they may only
try to get more information than they are authorized to. This can be extended
to the malicious case by compiling Σ using PCP-based efficient zero knowledge
arguments to prove honest behavior ([GMW87], [Kil95]). (The communication
complexity of Kilian’s argument system is independent of the complexity of
verifying the statement in question.)

Protocol Σ: Parties p1 and p2 with respective inputs x1 and x2 wish to jointly
compute f(x1, x2).

– Input Encoding Phase: The parties encode their input (and random tape)
locally exactly as per the instructions of the protocol CΠ (see encoding phase
of section 5.2). Let m be the size of the encoded input.
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– Secure Computation Phase: Party p2 runs the programs of both parties P1

and P2 in protocol CΠ . That is, p2 internally runs the parties P1 and P2 of
CΠ . Whenever party p2 needs to read a bit of the encoded input of Party
1, it queries p1 with the index, and gets the encoded input bit. Party p2
computes the output f(x1, x2), and sends the output to party p1.

Security of Σ: Here we only provide a proof sketch of the security of the protocol
Σ. The details are straightforward.

Party p1 is corrupt: We first consider the case when p1 is corrupt. All p1
learns in the execution of Σ is the indices queried by p2. We observe that a
dishonest P1 learns this and the leakage in the protocol CΠ . Thus, the view of
dishonest p1 in Σ is a strict subset of the view of dishonest P1 in CΠ . By the
security of CΠ , protocol Σ is secure.

Party p2 is corrupt: In the case when p2 is dishonest, the view of p2 consists
of the entire view of P2 in CΠ and the view of P1 in CΠ in the secure computation
phase. This is exactly the same as the view of a dishonest P2 in the presence of
the leakage oracle. By the leakage resilience of CΠ , protocol Σ is secure when
p2 is dishonest.

Thus, we conclude that Σ is secure two-party computation protocol.

Communication complexity of Σ: The communication complexity is the maxi-
mum number of queries from p2 to p1. If the size of the encoded input is m, then
the communication complexity of the protocol Σ is O(m logm), independent of
the size of the circuit being evaluated for f . Even the protocol secure against
malicious adversaries has communication complexity independent of f , due to
Kilian’s PCP based construction of zero knowledge argument. Thus, we have

Theorem 3. For two party computation, if there exists a leakage-resilient secure
protocol with function-independent encoding, then there exists a secure protocol
(against malicious adversaries) with communication complexity independent of
the function being computed.

7 Continual Leakage Resilient Protocol

We now construct a protocol which runs the input encoding phase just once,
and runs the computation phase of the protocol more than once without having
to run the leak-free phase again.

The Model. The ideal and the real model remain similar to the one time com-
putation case (see Section 2). The main difference in the ideal world is that now
there are k interactions: the parties interact k times, and compute a different
functionality of the same inputs xi. That is fj(x1, x2) is the functionality com-
puted in the jth interaction with the trusted party. In the real model, apart from
the leakage-free encoding phase and a leaky secure computation phase, there is
a refresh phase as well. The adversary is allowed bounded leakage (of up to t
bits) in each refresh phase. Between every secure computation phase, there is a
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refresh phase. However the leakage free encoding phase is only one time. More
details are provided in appendix B.

Our compiler starts with the protocol Π and produces the compiled protocol
CΠ .

– Input Encoding phase: This phase is independent of the function to be
computed. The first three steps of this phase remain the same as before.
1. Party i chooses a key pair (pki, ski) of an FHE E = (KeyGen,Encrypt,

Decrypt, Eval).
(pki, ski)← KeyGen(1κ)

2. The initial internal state st0i of Party i is initialized with the private input
and randomness of Pi for the execution of ΠINT. It is then encrypted
under the chosen key pki.

E[st0i ]← Encrypt(pki, st
0
i )

3. Let Decrypt(ski, c) be the decryption circuit of the FHE scheme for
Party i. Using the Garbled circuit construction of Yao, garble the de-
cryption circuit to getDecGCi. Let r be the number of rounds in the pro-
tocol ΠINT. Construct r independent garbled circuits of Decrypt(ski, c).
Let DecGCj

i denote the garbled decryption circuit of Party i to be used
in round j. The length of the ciphertext that the garbled circuit should
handle as the input is the length of the messages inΠINT. Thus it is poly-
nomial in the security parameter and the input size and independent of
f .

4. Virtual Player Initialization. Each party i initializes 3t + 1 virtual
players (where t is the leakage bound of the refresh step). The virtual
player j holds a share ski[j] of the secret key ski as input. In other
words, at this stage, the party simply divides the secret key ski into
3t + 1 shares {ski[1], . . . , ski[3t + 1]} (using an additive secret sharing
scheme) and stores these shares.

– Secure Computation phase:
This phase remains the same as before. P1 does the following:
1. Encryption: Let mj−1

2 be the message received. Party P1 encrypts the
received message under its own public key.

E[mj−1
2 ]← Encrypt(pk1,m

j−1
2 )

2. Homomorphic evaluation: Let NextMsgj1 be the circuit description of
the next message function used by Party P1 in round j in protocol ΠINT.
This circuit is evaluated homomorphically to get an encryption of mj

1 in
round j.

(E[mj
1], E[stj1])← Eval(E[stj−1

1 ], E[mj−1
2 ], NextMsgj1)

3. Garbled circuit evaluation: Party 1 decrypts E[mj
1] by evaluating the

Garbled circuit DecGCj
1 under the wire keys corresponding to input

E[mj
1].

mj
1 ← DecGCj

1(sk1, E[mj
1])
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4. Party P1 sends mj
1 to P2.

5. Party P1 updates the secret state to E[stj1].
Party P2 acts symmetrically.

– Refresh Phase:
Let F be the following 3t+ 1-party (randomized) functionality:
• It takes as input ski[j] from player j for j ∈ [3t+ 1]. It reconstructs the
secret key ski.

• It computes 3t+1 shares of ski using fresh randomness (using an additive
secret sharing scheme as before). Denote the j-th share by sk′i[j]. It gives
sk′i[j] as output to the j-th player.

• It also computes, for every round, a garbled circuit for decryption of a
ciphertext using ski (as constructed in the leakage-free encoding phase).
More precisely, it constructs r independent garbled circuits forDecrypt(ski, c)
and outputs that to each player.

Party P1 does the following. It internally runs the BGW protocol (guaran-
teing security for semi-honest players) [BOGW88] among the 3t+1 players.
The players hold inputs ski[1], . . . , ski[3t+1] and run the BGW protocol for
the functionality F . The internal computation of each player is modeled as a
separate sub-computation. Hence, the adversary is allowed to ask for leakage
individually on each of the 3t+1 subcomputation as well as on the protocol
transcript generated by the (virtual) interaction.

Note that The j virtual players started with shares ski[1], . . . , ski[3t+ 1]
and ended with new shares sk′i[1], . . . , sk

′
i[3t + 1] using which the refresh

phase can be run again. Furthermore, at the end of Refresh phase, P1 has r
independent garbled circuits of Decrypt(ski, c) (obtained as output by each
player), and hence the Secure Computation phase can be run again.

Sketch of Proof of security. The security guarantees of the protocol CΠ are
stated in the following theorem:

Theorem 4. The protocol CΠ is secure against λ-continual leakage as in Defi-
nition 7 tolerating complete leakage in the secure computation phase, and t bits
of leakage in the refresh phase, where t can be any apriori fixed polynomial in
the security parameter κ.

We construct a simulator and prove that the output is computationally indis-
tinguishable from the view of a real world adversary in an actual run of the
protocol. The simulator proceeds by simulating the Secure computation and the
Refresh phase of each execution.

Simulation in the Secure Computation phase: The description of the simulator
in this phase is the same as described in section 2.

Simulation during the Refresh phase: Since the adversary is restricted to t-bits
of leakage, it can request leakage from at most t of the 3t+ 1 subcomputations.
Invoke the BGW simulator to simulate the view of the adversary by corrupting
these (at most) t players and constructing their view.

The indistinguishability of the views follows from theorem 2 and the security
of the BGW construction [BOGW88].
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A The Basic Construction: Missing Details

A.1 Indistinguishability Argument for Theorem 1

We prove the indistinguishability of the views going from the real protocol to
the simulated one through a series of hybrids. We prove that the real proto-
col view is indistinguishable from that in the simulated execution by proving
indistinguishability between every pair of successive hybrids.

– Hybrid H0: This is the output distribution of a real execution of the pro-
tocol. Clearly, H0 is identical to
REALO2

CΠ ,A(z)(x̄, κ).

– Hybrid H1: This is identical to H0 except in the leakages. The simulator
replaces the leakage in the following way: A fake garbled circuit, ĜC of the
Next message function of the honest party in protocol Π is constructed that
always outputs the correct next message and the encrypted state as in the
previous hybrid. The leakage is set to the evaluation transcript of this fake
circuit. The leakage in all rounds is replaced by this simulated leakage.

In distribution H1,i, the first i leakages are evaluation of fake circuits, and
the rest are real. We have the sub hybrids H1,0, . . . , H1,t with H1,0 = H0

and H1,t = H1.

Indistinguishability from H0, H0
c≡ H1: The two hybrids differ only in the

leakage. H0 consists of the evaluation of correct garbled circuits whereas, in
H1, fake garbled circuits are evaluated. For contradiction, assume there is a
distinguisher D and a polynomial p, such that

|Pr[D(H1,0) = 1]− Pr[D(H1,t) = 1]| > 1

p(κ)

it follows that, ∃i such that,

|Pr[D(H1,i) = 1]− Pr[D(H1,i+1) = 1]| > 1

tp(κ)

Two neighbouring hybrids H1,i and H1,i+1 differ only in the i + 1st tran-
script. The i+1st transcript is the evaluation of real Garbled circuit in H1,i,
whereas it is simulated inH1,i+1. A distinguisher can be constructed that can

distinguish between the distribution ensemble consisting of ĜC and a single
garbled value for each input wire, and the distribution ensemble consisting
of a real garbled version of C, together with garbled values corresponding to
the real input. This contradicts the security of Yao’s garbled circuit protocol.

– Hybrid H2: This is the same as H1, except that in the leakages: the sim-
ulator changes the output of the fake garbled circuit to the encryption of a
random string instead of the correct encrypted state. S internally maintains
the correct state to honestly run Π , but only in the leakage, the fake garbled
circuit outputs the encryption of a random string. In distribution H2,i, the
fake garbled circuits of the first i leakages output the encryption of a random
string, and the rest are real. H2,0 is the same as H1, and hybrid H2,t is H2.
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Indistinguishability from H1, H1
c≡ H2: Assume the existence of a dis-

tinguisher D that can distinguish between H2,0 and H2,t it follows that, ∃i
such that, D that can distinguish between H2,i and H2,i+1 Two neighbour-
ing hybrids H2,i and H2,i+1 differ only in the i+ 1st transcript. The i+ 1st
transcript is the evaluation of a fake garbled circuit that outputs the correct
encrypted state in H2,i and encryption of a random string in H2,i+1. D can
be used to distinguish two ciphertexts under the encryption scheme E. This
contradicts the semantic security of E.

– Hybrid H3: In this experiment, S simulates the execution of Π . Let SΠ

be the simulator for the underlying protocol Π . S runs SΠ which rewinds
A′ and extracts the input. S forwards to A, the protocol messages that SΠ

simulates and gives to A′. The output of the fake garbled circuits in the
leakage are also changed from the correct next message to the ones output
by SΠ .

Indistinguishability from H2, H2
c≡ H3: The hybrids H3 and H2 differ

in the protocol messages. In H2, the protocol Π is run honestly whereas in
H3, the protocol messages as simulated by SΠ is used. If there is is a PPT
distinguisher that can distinguish between H3 andH2, then the distinguisher
D can be used to distinguish between a real execution of protocol Π and
a simulated one, which contradicts the security of Π . Indistinguishability
therefore follows from the security of Π .

Therefore H3
c≡ H0. The hybrid H3 is the same as the execution of the simulator

S, and we have seen that H0 is the real execution of CΠ . It follows that CΠ is
secure as per Definition 4.

IDEALf,S(z)(x̄, κ)
c≡ REALO2

CΠ ,A(z)(x̄, κ)

B Continual Leakage Resilient Protocol: The Model

Execution in the Ideal Model
k interactions: The parties interact k times, and compute a different function-
ality of the same inputs xi. That is fj(x1, x2) is the functionality computed in
the jth interaction with the trusted party.

Definition 5. The outputs of honest party and the adversary in k executions of
the above model is denoted by

IDEALk,f,A(z)(x1, x2).

Execution in the Real Model. Our real world execution proceeds in three
phases: a leakage-free Encoding phase and a Secure Computation Phase and a
Refresh Phase in which leakage may occur. In the Encoding phase, each party Pi,
locally computes an encoding of its input and any other auxiliary information.
The adversary has no access to the leakage oracle during the encoding phase. In
the Secure Computation phase, the parties begin to interact, and the adversary
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gets access to the leakage from the local computation of P2. Specifically, let s2 be
a circuit describing the internal computation of P2. The circuit s2 takes as input
the history of protocol execution of the secure computation phase so far, and
some specified bits of the encoded input, and outputs the next message from P2

and the new internal state of P2. Thus, by Definition 1, the leakage is accessible
to the adversary via the oracle Os2 , which we abbreviate by O2. Thus, at the end
of round j of the protocol, A can query O2 for any PPT function hj applied on
the transcript of the jth round computation of the honest party P2. We denote
this leakage information by lj2. After each execution, the parties run a Refresh
phase. The adversary continues to have access to the leakage oracle during the
Refresh phase. After Refresh, the protocol, that is the Secure Computation phase
can be run again on the same input. Specifically, the Encoding phase is run just
once in the beginning for k executions of the protocol. The Refresh phase is run
after each execution of the Secure Computation phase.

Definition 6. We define REALOλ

k,π,A(z)(x1, x2, κ) to be the output pairs of the
honest party and the adversary A from k real executions of π as defined above
on inputs (x1, x2), auxiliary input z to A, with oracle access to Oλ

2 , and security
parameter κ.

Definition of Security

Definition 7. Let f, π, be the executions in the ideal world and the real world
as described above. Protocol π is said to securely compute f in the presence of λ−
continual leakage if for every non-uniform probabilistic polynomial-time pair of
algorithms A = (A1, A2) for the real model, there exists a non-uniform proba-
bilistic polynomial-time pair S = (S1, S2) for the ideal model such that

IDEALk,f,S(z)(x1, x2)
c≡ REALOλ

k,π,A(z)(x1, x2, κ)

for a polynomial number of executions k, where x1, x2, z ∈ {0, 1}∗, such that
|x1| = |x2| and |z| = poly(|x1|). When λ = 1 in the Secure Computation phase,
protocol π is said to securely compute f in the presence of complete leakage.
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Abstract. In masking schemes, leakage squeezing is the study of the op-
timal shares’ representation, that maximizes the resistance order against
high-order side-channel attacks. Squeezing the leakage of first-order Bool-
ean masking has been problematized and solved previously in [8]. The
solution consists in finding a bijection F that modifies the mask, in such
a way that its graph, seen as a code, be of greatest dual distance. This
paper studies second-order leakage squeezing, i.e. leakage squeezing with
two independent random masks. It is proved that, compared to first-order
leakage squeezing, second-order leakage squeezing at least increments
(by one unit) the resistance against high-order attacks, such as high-
order correlation power analyses (HO-CPA). Now, better improvements
over first-order leakage squeezing are possible by relevant constructions
of squeezing bijections. We provide with linear bijections that improve
by strictly more than one (instead of one) the resistance order. Specifi-
cally, when the masking is applied on bytes (which suits AES), resistance
against 1st-order (resp. 2nd-order) attacks is possible with one (resp.
two) masks. Optimal leakage squeezing with one mask resists HO-CPA
of orders up to 5. In this paper, with two masks, we provide resistance
against HO-CPA not only of order 5 + 1 = 6, but also of order 7.
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– X can be deterministically reconstructed from all the shares, while
– no information on X can be retrieved knowing strictly less than d+1 shares.
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In this case, sometimes referred to as perfect masking, it has been shown that:

– arbitrary computations can be carried out (see for instance [18]), and that
– the leaked information is nonzero, but decreases exponentially as O

(
σ−2×d

)
,

where σ2 is the variance of the noise that characterizes the measurement
process [7].

Besides, it has been often reported that the cost overhead of masking, in terms
of program executable file size or running time for software applications and
in terms of implementation area for hardware applications, is too high for its
adoption in real-world products. Therefore, the optimization of masking is of
great practical importance.

The typical behavior of computing devices is to leak a non-injective and noisy
function of the shares. It is usually modeled as a deterministic function of the
shares plus an additive white Gaussian noise (AWGN). This model is justified
by the fact that an attacker can only measure an aggregated function of each
computing element’s leakage, such as the total current drawn by the circuit.
This means that the measurement indeed consists in the sum of the individual
leakages of each processed bit, that can be partitioned into:

– the sum of the individual leakages of the bits of the sensitive variable X
(which is obviously non-injective, as it projects words of identical Hamming
weight onto the same image), and

– the sum of the individual leakages of each non-sensitive variable bits (that
obeys a multinomial distribution, well approximated by a normal law).

Depending on the execution platform, the leakage of one bit can be modelled
according to:

– its activity (the leakage is observed when the bit changes values), or
– its value (the leakage differs according to the bit’s state).

Without loss of generality, we assume the first kind of leakage, which corresponds
to the behavior of CMOS logic. The second kind of leakage is a particular case
where the previous value is constant and null. Additionally, it can be assumed
that every bit of a sensitive variable leaks an identical amount, irrespective of its
neighbors. These assumptions lead to the so-called Hamming distance leakage
model, i.e. a model in which the attacker records the noisy version of the sum
of bitflips occurring in X .

This model might not comply exactly with the actual real-world leakage.
One research direction is to study the impact of imperfections in the model
(because of chip’s design variability), that can be quantified for instance with
the “perceived information” [17] metric. Another research direction is to do the
most of “off-the-shelf” imperfect hardware. For instance, in the case when the
countermeasure designer can influence the chip’s manufacturing, he can ask that
the indistinguishability of the bits and their non-interference explicitly figure
in the product specifications. Technically, these requirements can be met; as a
matter of fact, the gates that hold the bits of X :
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– can be different instances of the same register flip-flop, constrained to have
an identical fanout, and

– can be placed far away one from each other, with their output routing wires
adequately shielded from nearby aggressors, so as to reduce their cross-talk.

Experimental feedback (from in silico measurements) indicates that those con-
straints are realistic [22]; for instance, in dual-rail logics, such constraints are
enforced [21], with varied efficiency in a “static setup” (i.e. the only entropy
comes from the data). However, in a “dynamic setup”, such as masking, these
constraints can definitely improve the trustworthiness on the accuracy of the
leakage model.

Glitching is another flaw that limits the efficiency of the masking countermea-
sures; it is a “logical” coupling (as opposed to the “technological” nature of the
cross-talk) that produces a higher-order leakage, not captured in the model. For
example, it is reported in [11] a glitch that combines the two shares of a first-
order countermeasure, thereby unintentionally disclosing one bit of X through
the leakage function L . The designer can opt to hide the computations in a
synchronous memory table, that evaluates the output at once [20]. In such con-
dition, no glitch is possible, since glitches stem from a race between two signals
that converge to the inputs of a gate. However, tables are expensive. Nonethe-
less, it is possible to break the tables into smaller elements, provided each of
them remain glitch-free. This is possible if every computing element receives its
inputs simultaneously. Such strategy can be implemented at the gate-level if ev-
ery gate is clocked and the combinational logic behaves like a very fast pipeline,
as explained in [12]. Also, the designer can take advantage of recent works about
“threshold implementations” [14] or “multi-party computation” [16], that both
aim at securing masked combinational logic against insidious leakage conveyed
by glitches. Their principle is to partition the combination functions into non-
interfering submodules that compute on d shares or less, which denies all possi-
bility of glitchy recombination that could disclose (all or part of) the sensitive
variable X . In the other case when the countermeasure designer must use an
already hard-wired circuit, then profiling can be used to characterize to which
extent the leakage conditions are satisfied. The stochastic method [19] allows
to precisely assess the leakage model. Notably, first-order coefficients should be
checked to be as equal one to each other as possible, and second-order coefficients
as small as possible [5] with respect to first-order coefficients. Eventually, it is
known that in implementations with combinational logics (e.g. the sbox of the
DPA contest v2 [3]), the Hamming distance 0 signs much less than the others.
The reason is that the combinational nets of the sbox are already prepositioned,
and thus the next identical computation does not require to recompute them. On
tables, this “memory effect”, also termed “clockwise collision” [6], is less visible,
as all accesses, even identical consecutive ones, draw some current due to the
dynamic character of lookups.

In the sequel, we assume that the leakage L is equal, or close enough, to the
assumed model. In this case, the security of the masking countermeasure can be
greatly enhanced. Notably, the indiscernibility and the non-interference of the
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bits can be taken advantage of to reach (d+1)th-order security with strictly less
than d+1 shares. This strategy is called “leakage squeezing” [9]. It can be seen as
a constructive combination of masking (through the splitting of X into shares)
and of hiding (through the leakage function L properties, namely the leakage
in Hamming distance). The figure 1, whose layout is inspired from [10, p. 12],
illustrates the symbiosis of themasking and hiding countermeasures tactics in the
leakage squeezing. Roughly speaking, masking is a “software” countermeasure,
in that it is implemented by the designer (in assembly language or hardware
description language), whereas hiding is a “hardware” countermeasure, in that
it is a native property of the device.

Intermediate values of the
cryptographic algorithm

Intermediate values
processed by the device

Power consumption of the
cryptographic device

Masking
countermeasure

countermeasure
Hiding

Leakage

squeezing

X

S0, · · · , Sd

L (S0, · · · , Sd)

Fig. 1. Principle of the leakage squeezing, that takes on attributes from both the
“masking” and the “hiding” strategies

A masking scheme involves a group (X ,⊥), where X is the support of the sen-
sitive variable X and ⊥ an internal composition law. By definition of a group,
the zero element 0 is neutral, i.e. ∀X ∈ X , X ⊥ 0 = 0⊥X = X , and for all
element X ∈ X , there is an opposite element denoted by −X ∈ X that satisfies
X ⊥−X = −X ⊥X = 0. Several conventions can be adopted; in the most com-
monly encountered one, the sensitive variable is obtained as X = S0⊥ · · · ⊥Sd.
Under this assumption, S1, · · · , Sd are independent uniformly distributed ran-

dom variables on X , and S0
.
= X ⊥⊥d

i=1−Si. In digital circuits, the set X is
made up of vectors of n bits. For example, n = 8 in AES, that manipulates
bytes; also, n = 4 for DES, since it is usually the output of the sboxes that are
targeted. Classical examples of masking are:

– Boolean masking, with (Fn
2 ,⊕), or

– arithmetic masking, with (Z2n ,�), where � represents the modular addition.

In this paper, we will be making use of Boolean masking, as it lessens the degra-
dation of performances in the context of hardware implementations: bits are
masked one by one, hence the impact of the masking on the critical path is low-
ered (in particular, we avoid the carry propagation inherent to the arithmetic
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masking). Also, in Fn
2 , the opposite of a share −Si is the share itself (−Si = Si),

hence the masking and demasking hardware can be factored.
The rest of this paper is structured as follows. In Sec. 2, we explain briefly

the rationale about first-order leakage squeezing. Its extension to second-order
leakage squeezing is tackled with in Sec. 3. In this section, we show that this
generalization is not trivial. Nonetheless, we manage to characterize the adequate
bijections and present some interesting solutions. Eventually, conclusions and
perspectives are in Sec. 4. A case study on linear second-order leakage squeezing
is given in Appendix A for n = 8. This last section details some practicalities:
the article remains self-contained even without reading it.

2 Reminder on Leakage Squeezing

In this section, we recall the prior art on leakage squeezing at the destination
of the reader who is not already acquainted with the notions introduced in [8]
by Maghrebi et al. The gist of the article is Sec. 3; so this section can be safely
skipped by the reader interested mainly in the progress over the state-of-the-art.

2.1 Leakage Squeezing in the Hamming Distance Model

The principle of first-order leakage squeezing is sketched in Fig. 2. The functional
computation is carried out on the sensitive variable X , that is mixed with a
random uniformly distributed mask (also of n-bit size) denoted byM . The shares
are (S0, S1) = (X ⊕M,M). As opposed to straightforward first-order masking,
the shares are not held as such in registers. Instead, the two registers containX⊕
M (i.e. S0) and F (M) (i.e. F (S1)). The function F must be a bijection, so that
the mask value can be recovered from F (S0). In Fig. 2, the computational logic
is concealed in memory tables (to ensure a glitch-free computation). However,
any other “more optimized” (tables with 2n-bit addresses are expensive) logic
would also be suitable. The computation is conducted in such a way to respect
the invariant:

X = S0︸︷︷︸
Masked data path

⊕ S1︸︷︷︸
Mask path

. (1)

The scheme presented in Fig. 2 allows to compute (X ′,M ′) from (X,M) in one
clock cycle:

– X ′ = C(X) is a combinational function of X , where C : Fn
2 → Fn

2 is the
expected functionality,

– M ′ = R(M) is the mask refresh function. Two options are possible: either
the mask M ′ is derived from M deterministically through R : Fn

2 → Fn
2 , or

it disregards M and it is drawn fresh from a true random number entropic
source.

After one iteration, the invariant condition of Eqn. (1) is still met:X ′ = S′
0⊕S′

1 =
(X ′ ⊕M ′)⊕ F−1 ◦ F (M ′).
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In a hardware setup, the shares leak in the Hamming distance model. The
leakage is thus equal to L = HW((X⊕M)⊕ (X ′⊕M ′))+HW(F (M)⊕F (M ′)),
that can be rewritten as L = HW(Z ⊕M ′′) + HW(F (M) ⊕ F (M ⊕M ′′)) =
HW(Z ⊕M ′′, DM ′′F (M)). In this expression:

– HW is the Hamming weight function,
– Z is the difference between two consecutive values of the masked data (Z

.
=

X ⊕X ′),
– M ′′ is the difference between two consecutive values of the mask (M ′′ .

=
M ⊕M ′) and

– DY F (X) is the Boolean derivative of F in direction Y taken at point X .

n bits

X ⊕M F (M)
a b

n bits

C R

F

a′ b′
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leakage L

F−1

Combinational
glitch-free logic
(e.g. memory)

Initial values of
the registers

Final values of
the registers

X

X ′

M

M ′

n bits
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X ′ ⊕M ′ F (M ′)
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Fig. 2. Setup of the first-order masking countermeasure with bijection F

In the rest of this section, we recapitulate in one single page the key steps
described extensively in [8] to find the first-order optimal leakage squeezing.
The paper [8] is thus hereafter only surveyed, to highlight the reasoning. The
section 3 will conduct step-by-step an accurate and self-contained analysis of the
two-mask case.

It is shown in [8] that this leakage function is unexploitable by a dth-order
correlation power analysis if all the terms E[HW(Z⊕M ′′)p×HW(DM ′′F (M))q |
Z = z], whatever p, q such as p+ q ≤ d do not depend on z. In this expression,
the capital letters represent random variables, and E is the expectation operator.
The condition on F is equivalent to finding a bijection F : Fn

2 → Fn
2 that satisfies:

∀a ∈ Fn
2
∗, �HWp(a) = 0 or �E[HWq ◦D(·)F (M)](a) = 0 . (2)

The term HWp (resp. HWq) represents the Hamming weight function raised at
the power of p ∈ N (resp. q ∈ N). The “hat” symbol represents the Fourier trans-

form, that turns a function f : Fn
2 → Z into f̂ : Fn

2 → Z, x �→
∑

y∈Fn
2
f(y)(−1)y·x.
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Eventually this expression, E[HWq ◦D(·)F (M)] designates the function:

E[HWq ◦D(·)F (M)] : Fn
2 → Z

m′′ �→ E[HWq ◦Dm′′F (M)] = 1
2n

∑
m HWq(Dm′′F (m)) .

The Eqn. (2) can be simplified, as Theorem 1 below is proved in [8, Appendix
A.1].

Theorem 1. ∀a ∈ Fn
2 , ∀p ∈ N, �HWp(a) = 0 ⇐⇒ HW(a) > p .

So the condition for the leakage squeezing to reach order d is simply to have: for
all a ∈ Fn

2
∗ and for all p such that HW(a) ≤ p and for all q such as q ≤ d − p,

�E[HWq ◦D(·)F (M)](a) = 0.
This condition is also equivalent to (refer to forthcoming Lemma 1 at page 130):

∀p, ∀(a, b) such that HW(a) ≤ p and HW(b) ≤ d− q, we have�(b · F )(a) = 0 .

As shown in [8, Sec. 4], this condition can be related to “complementary informa-
tion set” codes (also known as CIS codes [1]). It is equivalent that the indicator
of the graph {(x, F (x));x ∈ Fn

2} of F is d-th order correlation immune.

2.2 Leakage Squeezing in the Hamming Weight Model

If the device leaks in Hamming weight, then the relations are still valid if we
replace the derivativeD( · )F of F by F itself. Such an analysis is conducted in [7].
It is also worthwhile mentioning that if F is linear, the two problems are the
same, because DmF (x) = F (x⊕m)⊕F (x) = F (x⊕m⊕x) = F (m), irrespective
of x. This property is important, as a recent scholar work has shown empirically
that on FPGAs, both Hamming distance and Hamming weight leakage models
should be envisioned [13].

3 Second-Order Leakage Squeezing

3.1 Goal

In this section, an improvement of the leakage squeezing where two masks are
used is studied. More precisely,

– the masked data (X⊕M1⊕M2, also noted X⊕M , where M
.
=M1⊕M2) is

processed as is, i.e. through a bijection that is the identity (denoted by Id),
– the first mask (M1) is processed through bijection F1 and
– the second mask (M2) is processed through bijection F2.

This second-order masking scheme is illustrated in Fig. 3. With respect to the
first-order masking scheme (Fig. 2 – described in § 2.1), the processing of the
masked sensitive data is unchanged, and only the masks processing differs: each
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Fig. 3. Setup of the second-order leakage squeezing masking countermeasure with bi-
jections F1 and F2

mask can be seeded independently and evolves from a different diversification
function (noted R1 and R2).

The leakage function is thus:

L = HW((X⊕M1⊕M2)⊕(X ′⊕M ′
1⊕M ′

2), F1(M1)⊕F1(M
′
1), F2(M2)⊕F2(M

′
2)) .

As previously, Z
.
= X ⊕ X ′, and furthermore we denote: M ′′

1
.
= M1 ⊕M ′

1 and
M ′′

2
.
= M2 ⊕M ′

2. Hence the leakage:

L = HW(Z ⊕M ′′
1 ⊕M ′′

2 , F1(M1)⊕ F1(M1 ⊕M ′′
1 ), F2(M2)⊕ F2(M2 ⊕M ′′

2 ))

= HW(Z ⊕M ′′
1 ⊕M ′′

2 , DM ′′
1
F1(M1), DM ′′

2
F2(M2)) . (3)

3.2 Motivation

It could be argued that the security brought by first-order leakage squeezing is
already high enough, and resisting at still higher orders is a superfluous refine-
ment. Admittedly, it has seldom been question of high-order attacks of order
strictly greater than two in the abundant public literature.

However, searching for greater security can be motivated by “forward secu-
rity” concerns. Secure elements (e.g. smartcards, RFID chips, hardware security
modules, etc.) contain high-value secrets, and cannot be upgraded. Therefore,
one can imagine buying one of these today, and having it attacked with to-
morrow’s know-how. For instance, with the advance of science, measurements
apparati will have a lower noise figure and a greater vertical resolution in the
future, thereby reducing the noise in side-channel acquisitions. Now, it is known
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that the limiting factor for the high-order attacks is the noise variance [24]. Also,
it is now well understood how to combine partially successful side-channel at-
tacks with brute force search [2,23]. Therefore, computer-assisted side-channel
attacks might greatly enhance what can be done today. Thus, to avoid tomor-
row successful attacks of orders greater of one, two, or more orders than what
is possible today, precautions must be envisioned today. A parallel can be made
with the evolution of:

– the key size of block ciphers,
– the modulus size of asymmetric primitive, or
– the internal state of hash functions.

Those have continuously been increasing over the last years. Besides, the reg-
ulation in terms of security compliance standards is always one step ahead the
state-of-the-art attacks. Consequently, it is not absurd that side-channel resis-
tance of very high order be demanded soon (e.g. with the forthcoming standard
ISO/IEC 17 825), hence an incentive for the research in really high-order coun-
termeasures.

Finally, some products supporting second-order countermeasures are already
deployed in the field. The second-order leakage squeezing can be mapped in the
devices of this installed base at virtually no extra cost, and so the application of
this method in real products does not require further architectural development
costs. The sole modification is the entry of the masking material in the (F1, F2)
bijections, and their leaving at the end of the cryptographic application.

3.3 Formalization of Second-Order Leakage Squeezing

The attack fails at order d if ∀i ≤ d,E
(
(L | Z = z)

i
)
= E
(
L i | Z = z

)
does

not depend on z. Indeed, the attacker has thus no bias to relate the leakage at
order i ≥ 1 to the (predictable and key-dependent) sensitive variable Z. Now,
the goal of the attacker is to exhibit a bias in E

(
L d | Z = z

)
for an exponent

d as small as possible, because the noise in L d evolves as
(
σ2
)d

[24], where σ2

is the variance of the noise (for d = 1). Taking into account the formula of L
from Eqn. (3), we have the following expression for E

(
L i | Z = z

)
:

E
((

HW(Z ⊕M ′′
1 ⊕M ′′

2 , DM ′′
1
F1(M1), DM ′′

2
F2(M2))

)i | Z = z
)

=
1

24n

∑
m′′

1 ,m
′′
2

∑
m1,m2

(
HW(z ⊕m′′

1 ⊕m′′
2 , Dm′′

1
F1(m1), Dm′′

2
F2(m2))

)i

=
1

24n

∑
m′′

1 ,m
′′
2

m1,m2

⎛⎜⎝HW(z ⊕m′′
1 ⊕m′′

2)︸ ︷︷ ︸
Term #0

+HW(Dm′′
1
F1(m1))︸ ︷︷ ︸

Term #1

+HW(Dm′′
2
F2(m2))︸ ︷︷ ︸

Term #2

⎞⎟⎠
i

.

This equation can be developed, to yield a sum of products of the three terms.
Let us denote by p, q and r the degrees of each term, that satisfy p+ q + r = i.



Leakage Squeezing of Order Two 129

So attacks fail at order d if for all p, q and r such as p+ q + r ≤ d, the function

z �→ f(z)
.
=
∑

m′′
1 ,m

′′
2

∑
m1,m2

HWp(z ⊕m′′
1 ⊕m′′

2) · HWq(Dm′′
1
F1(m1)) · HWr(Dm′′

2
F2(m2))

=
∑

m′′
1 ,m

′′
2

HWp (z ⊕m′′
1 ⊕m′′

2 ) ·
∑
m1

HWq
(
Dm′′

1
F1(m1)

)
·
∑
m2

HWr
(
Dm′′

2
F2(m2)

)
=
∑

m′′
1 ,m

′′
2

HWp (z ⊕m′′
1 ⊕m′′

2 ) · E[HWq
(
Dm′′

1
F1(M1)

)
] · E[HWr

(
Dm′′

2
F2(M2)

)
]

=
{
HWp ⊗ E[HWq ◦D(·)F1(M1)] ⊗ E[HWr ◦D(·)F2(M2)]

}
(z) (4)

is constant. From Eqn. (4), we see that every term to be kept constant is a
double convolution product.

Keeping f constant is equivalent to having the Fourier transform f̂ of f null
everywhere but in zero. The Fourier transform turns a convolution product into
a product; therefore,

f̂ =�HWp · �E[HWq ◦D(·)F1(M1)] · �E[HWr ◦D(·)F2(M2)] .

In summary, to resist at order d, we are attempting to find two bijections F1

and F2 such as:

∀a ∈ Fn
2
∗, �HWp(a) = 0 or �E[HWq ◦D(·)F1(M)](a) = 0

or �E[HWr ◦D(·)F2(M)](a) = 0 , (5)

for every triple of integers p, q and r such as p+ q+ r ≤ d, d being the targeted
protection order.

The Fourier support of a function ψ : Fn
2 → Z is the set

{
a ∈ Fn

2 ; ψ̂(a) �= 0
}
.

The equation (5) expresses the fact that the Fourier supports of HWp, E[HWq ◦
D(·)F1(M)] and E[HWr ◦D(·)F2(M)] intersect only in the singleton {0}.

3.4 Gaining at Least One Order with Two Masks Instead of One

It is a well known property that adding one mask increases the security by one
order [24]. We here prove that the same benefit can be expected from the leakage
squeezing.

Proposition 1. Let F1 be a bijection such that the security is reached at order d
with one mask. Then, by introducing a second mask processed through whatever
bijection F2, the security is reached at order at least d+ 1.

Proof. Let (p, q, r) be any triple of integers such as p+ q + r ≤ d+ 1. Then:

– if r = 0, �HWr ◦D(·)F2 =�1 ◦D(·)F2 = �1 = δ is a Kronecker symbol function,
hence null for all a �= 0,
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– otherwise, r > 0 and for all p, q, we have p+ q ≤ d+ 1− r (by hypothesis),

and so p + q ≤ d. Thus, we have�HWp(a) ·�HWq ◦ F1(a) = 0, which implies

that either�HWp(a) = 0 or�HWq ◦ F1(a) = 0 for a �= 0. ��

3.5 Problem Equivalent Formulation in Terms of Boolean Theory

We shall need the next lemma, which was already more or less explicit in [8].

Lemma 1. Let F : Fn
2 → Fn

2 be any function, let q be an integer such that

0 < q < n and let a ∈ Fn
2 be nonzero. We have

∑
z,m HWq′(F (m) ⊕ F (m ⊕

z))(−1)a·z = 0 for every 0 < q′ ≤ q if and only if �b · F (a) = 0 for every b ∈ Fn
2

such that HW(b) ≤ q.

Proof. According to [8, Eqn. (15)], we have:∑
z,m

HWq′(F (m)⊕ F (m⊕ z))(−1)a·z = (6)

1

2q′

q′∑
j=0

(
q′

j

)
nq′−j(−1)j

∑
k1+···+kn=j

(
j

k1, · · · , kn

)⎛⎝∑
x∈Fn

2

(−1)(⊕n
i=1kiei)·F (x)+a·x

⎞⎠2

.

Since, for b = ⊕n
i=1kiei, we have

∑
x∈Fn

2
(−1)(⊕n

i=1kiei)·F (x)+a·x = −2�b · F (a), the
condition “�b · F (a) = 0 for every b ∈ Fn

2 such that HW(b) ≤ q” is then clearly

sufficient. Conversely, let the condition “�b · F (a) = 0 for every b ∈ Fn
2 such that

HW(b) ≤ k” be denoted by P (k). We prove P (k) by induction on k ∈ N. P (0) is
clearly satisfied since a �= 0. Assume that P (k) is satisfied for some 0 ≤ k ≤ q−1,

then applying the hypothesis with q′ = k + 1 implies that�b · F (a) = 0 for every
b such that HW(b) = k + 1 since we have only squares in (6) multiplied by
coefficients which are all of the same sign and P (k + 1) is then satisfied. This
completes the proof by induction. ��

Incidentally, we remark that the Theorem 1 of previous Sec. 2.1 is also an im-
mediate consequence of Lemma 1 with F = Id.

We characterize now Eqn. (5) in terms of Fourier transform.

Proposition 2. Let F1 and F2 be two permutations of Fn
2 and d an integer

smaller than n. The condition:

∀a �= 0, ∀(p, q, r), (7)

(p+ q + r ≤ d) =⇒

⎧⎪⎨⎪⎩
�HWp(a) = 0 or∑

z,m HWq(F1(m)⊕ F1(m⊕ z))(−1)a·z = 0 or∑
z,m HWr(F2(m)⊕ F2(m⊕ z))(−1)a·z = 0 .
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is satisfied if and only if:

∀a ∈ Fn
2 , a �= 0, ∃q, r/

⎧⎪⎨⎪⎩
HW(a) + q + r = d− 1,

∀b ∈ Fn
2 ,HW(b) ≤ q =⇒�b · F1(a) = 0,

∀c ∈ Fn
2 ,HW(c) ≤ r =⇒�c · F2(a) = 0.

(8)

Proof. Condition (7) is satisfied for every (p, q, r) such that p+ q + r ≤ d if and

only if it is satisfied when p is minimal such that�HWp(a) �= 0, r is minimal such
that

∑
z,m HWr(F2(m) ⊕ F2(m ⊕ z))(−1)a·z �= 0 and p + q + r ≤ d. We know

that the minimum value of p such that�HWp(a) �= 0 equals HW(a). Let r be the
minimal element defined above. Condition (7) implies then:

∀q ≤ d− HW(a)− r,
∑
z,m

HWq(F1(m)⊕ F1(m⊕ z))(−1)a·z = 0.

According to Lemma 1, this latter condition is equivalent to ∀b,HW(b) ≤ d −
HW(a)− r =⇒�b · F1(a) = 0 and we obtain the condition:

∀a �= 0, ∃r/
{
∀b,HW(b) ≤ d− HW(a)− r =⇒�b · F1(a) = 0,

∀c,HW(c) < r =⇒�c · F2(a) = 0.

Now, let us replace r by r′ .= r−1. Thus HW(c) < r is equivalent to HW(c) ≤ r′,
and condition HW(a) + q + r = d is equivalent to HW(a) + q + r′ = d− 1. This
shows that Eqn. (8) is necessary. Clearly it is also sufficient. ��

It is clear from Proposition 2 that any choice of F2 allows to increase by one the
resistance order provided by F1 (this has already been mentioned in Sec. 3.4).
Indeed, let us denote by d1 the maximal order of resistance of F1 in the one

mask situation. Then, ∀a �= 0, ∀p, q, p + q ≤ d1 =⇒�b · F1(a) = 0. By reference
to Eqn. (8), for a given a �= 0, we choose:

• q = d1−HW(a), thus ∀b ∈ Fn
2 ,HW(b) ≤ q =⇒�b · F1(a) = 0 (by definition of

d1).

• r = 0, thus ∀c ∈ Fn
2 ,HW(c) ≤ r =⇒�c · F2(a) = 0 (indeed, c = 0, hence

�c · F2(a) = δ(a) = 0 since a �= 0).

Consequently, Eqn. (8) is met with d = d1 + 1.
So, one strategy can be to start from F1, the optimal solution with one mask

(this solution is known from [8]), and then to choose F2 so as to increase as much
as possible the resistance degree. Another strategy is to find F1 and F2 jointly.
This problem seems not to be a classical one in the general case. In the next
section, we show however that it becomes a problem of coding theory when F1

and F2 are linear.
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3.6 Solutions When F1 and F2 Are Linear

In this section, F1 and F2 are assumed to be linear. For every b, x ∈ Fn
2 , we have

b · F1(x) = F t
1(b) · x, where F t

1 is the so-called adjoint operator of F1, that is,
the linear mapping whose matrix is the transpose of the matrix of F1. Then,

for every nonzero a ∈ Fn
2 , we have�b · F1(a) = − 1

2

∑
x∈Fn

2
(−1)(F t

1(b)⊕a)·x, which
equals −2n−1 �= 0 if F t

1(b) = a and is null otherwise. Let us denote by L1 (resp.

L2) the inverse of mapping F t
1 (resp. F t

2). Then
�b · F1(a) (resp.�c · F2(a)) equals

−2n−1 �= 0 if b = L1(a) (resp. if c = L2(a)) and is null otherwise.
Let also a �= 0. From Eqn. (8) of Proposition 2, we can choose:

• q = HW(L1(a))− 1 and
• r = HW(L2(a))− 1.

Thus d = min {HW(a) + HW(L1(a)) + HW(L2(a))− 1; a �= 0}, which is exactly
the minimal distance of the code {(x, Lt

1(x), L
t
2(x));x ∈ Fn

2} (of rate 1/3 and
with three disjoint information sets) minus the number 1.

Example for Linear F1 and F2 for n = 8. The optimal linear codes of
length 8 × 3 = 24 and of dimension 8 have minimal distance 8. For instance,
code [24, 8, 8] is a subcode of code [24, 12, 8], that is itself the extension of the
quadratic-residue (QR) code of length 23.

By properly arranging the bits in the codewords, the generator matrix can
write

(
I8 Lt

1 Lt
2

)
, where:

Lt
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 1

1 0 0 0 0 1 1 1

1 0 1 1 1 0 0 1

1 0 1 1 1 0 1 0

1 0 1 1 1 1 1 0

0 1 1 0 0 1 1 1

0 1 0 1 0 1 1 1

0 1 0 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, Lt

2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 1 1 0

0 0 0 1 1 0 1 0

1 1 1 1 0 1 1 1

1 0 1 0 0 0 0 1

1 1 0 1 1 0 1 0

1 1 1 1 0 0 0 1

1 1 1 1 1 1 1 0

1 0 0 0 1 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

Those matrices are of full rank, namely 8, and their inverses are:

(Lt
1)

−1 = (L−1
1 )t =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 1 0 0 0

1 0 1 1 1 1 1 1

1 0 0 1 0 0 1 1

1 0 0 1 0 1 0 1

1 0 1 1 1 1 1 0

0 0 0 1 1 0 0 0

1 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (Lt

2)
−1 = (L−1

2 )t =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1 1 1

0 1 0 0 1 1 1 1

1 1 1 0 1 0 1 1

0 1 0 1 1 0 1 1

1 1 0 1 1 1 1 0

1 1 1 0 0 0 0 1

1 1 0 0 0 1 0 1

1 1 1 1 1 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The technique to find those matrices is described in Appendix A.
We note that the binary linear code {(x, F1(x));x ∈ F8

2} has minimal distance
3, and that the binary linear code {(x, F2(x));x ∈ F8

2} has minimal distance 4.
So those two codes are non-optimal, because the best linear code of length 16
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and dimension 8 has minimal distance 5 [8, Tab. 1 in §4.1]. This noting justifies
that it is indeed relevant to search for the bijections doublet (F1, F2) together
instead of one after the other, independently. It also suggests that non-linear
codes might still achieve better.

Example for Linear F1 and F2 for n = 4. It is also possible to construct a
rate 1/3 linear code of dimension 4 with three distinct information sets, which
is suitable to protect DES. This solution generates two bijections, that jointly
allow to resist high-order attacks of order 1 to 5 inclusive.

Security Validation. An implementation with a leakage function L is vulner-
able at order d if E[(L − E[L ])

d | Z = z] depends on z, i.e. if the variance of

this random variable is strictly positive (Var[E[(L − E[L ])
d | Z]] > 0). In this

case, the asymptotic HO-CPA correlation coefficient ρ
(d)
opt, equal to [15, Eqn. (15)

at page 802]:

ρ
(d)
opt

.
=

√
Var[E[(L − E[L ])

d | Z]]
Var[(L − E[L ])d]

, (10)

is non-zero. The table 1 gives the values of ρ
(d)
opt for the second-order Boolean

masking of bytes (n = 8), without and with leakage squeezing. The two vari-
ances involved in Eqn. (10) were computed using a multiprecision integer library;

therefore, when ρ
(d)
opt is reported as 0 (integer zero, not the approximated float-

ing number 0.000000), we really mean that E[(L − E[L ])
d | Z = z] does not

depend on z.
For the sake of comparison, we also report in this table the results obtained

with one mask. In such case, both the best linear and non-linear squeezing bi-
jection F can be characterized. It is relevant to consider the linear bijections F
as they allow an efficient protection against HO-CPA, whether the device leaks
in Hamming weight or distance. The best linear F for leakage squeezing with
one mask is secure against attacks of orders up to 4. It can be used with two
masks, thereby granting a security up to order 4 + 1 = 5. Our results, that are
not based on the extension of a single mask solution, is a security against HO-
CPA of orders up to 7. Therefore, our method provides a free advantage of two
orders. Now, with one mask, the best achievable security is gotten by the use of
a non-linear F . This function does only protect against attacks that exploit the
Hamming distance (and not the Hamming weight), but allows to reach a resis-
tance up to HO-CPA of order 5. here also, our linear solution with two masks is
better than merely this code used with one mask extended with another mask:
it protected at order up to 7 > 5 + 1. Besides, it is interesting to compare the
first nonzero correlation coefficients with and without leakage squeezing:

– with one mask, ρ
(d=2)
opt (no LS)/ρ

(d=5)
opt (LS) = 0.258199/0.023258≈ 11, and

– with two masks, ρ
(d=3)
opt (no LS)/ρ

(d=8)
opt (LS) = 0.038886/0.000446≈ 87.
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So, in front of leakage squeezing, not only the attacker shall conduct an attack
of much higher order, but also she will get a very degraded distinguisher value.

On n = 4 bits, the optimal first-order leakage squeezing is linear and allows to
reach resistance order of 3. The used optimal code is [8, 4, 4]. For the second-order
leakage squeezing, we can resort to the linear code [12, 4, 6], that improves by two
(6 − 4 = 2) orders (with only one additional mask) the resistance against HO-
CPA. By the trivial construct of Sec. 3.4, only one additional order of resistance
would have been gained. A summary of the results is shown in Tab. 2. The
improvement from the “straightforward” to the “squeezed” masking is of two
orders with one mask and three orders with two masks.

4 Conclusions and Perspectives

Leakage squeezing has been thoroughly studied in [8] in the context where one
sole mask is used. This paper investigates the potential of leakage squeezing
extension to second-order leakage squeezing, i.e. using two independent masks
instead of only one. Trivially, the addition of one mask increases the resistance
against HO-CPA by one order. Our analysis allows to characterize (in Proposi-
tion 2) the conditions to reach higher resistance. The optimal solutions are not
as easy to find as in the case with one mask. Nonetheless, for the special case
of linear bijections, we find that one solution (probably not optimal) consists in
finding a rate 1/3 linear code of maximal minimal distance with three disjoint
information sets. The optimal [24, 8, 8] linear code fulfills this condition, and
makes it possible to resist attacks of all orders from 1 to 7 included. Concretely
speaking, this result means that the same security level as a 7th-order attack is
attainable with 2 instead of 7 masks, thus at a much lower implementation cost.

Finding better, for instance non-linear, bijections, could allow to further im-
prove on top of these results. In particular, a thorough study of rate 1/2 codes
with two complementary information sets exists [1]. However, such work is miss-
ing in general for rate 1/d codes with d > 2 distinct information sets.

Another perspective is to integrate the second-order leakage squeezing with
“hyperpipelined” designs [12], “threshold implementations” [14] or “multi-party
computation” [16] masking schemes, so as to improve their order of resistance
while at the same time removing the latent leakage by glitches (if the logic is
not concealed in memories).
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A Isolation of Three Information Sets from Code [24, 8, 8]

If F1 and F2 are two linear bijections then the linear code {(x, F1(x), F2(x));x ∈
Fn
2} has {1, · · · , n}, {n + 1, · · · , 2n} and {2n+ 1, · · · , 3n} for information sets,

since the restriction of the generator matrix of this code to the columns indexed
in each of these three sets is invertible. Conversely, if a [3n, n, d] code C is
known with three disjoint information sets, then after rearranging the columns
of its generator matrix so that these three information sets are {1, · · · , n}, {n+
1, · · · , 2n} and {2n + 1, · · · , 3n}, we have C = {(φ0(x), φ1(x), φ2(x));x ∈ Fn

2}
where φ0, φ1 and φ2 are bijective. Then, by trading the dummy variable x for
y = φ0(x) through one-to-one function φ0, we get C = {(y, φ1 ◦ φ−1

0 (y), φ2 ◦
φ−1
0 (y)); y ∈ Fn

2} and we can take F1 = φ1 ◦ φ−1
0 and F2 = φ2 ◦ φ−1

0 .
One generator matrix for the [24, 8, 8] code can be obtained as a submatrix

of extended QR-code of length 231, such as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

←
−

1

←
−

2

←
−

3

←
−

4

←
−

5

←
−

6

←
−

7

←
−

8

←
−

9

←
−

1
0

←
−

1
1

←
−

1
2

←
−

1
3

←
−

1
4

←
−

1
5

←
−

1
6

←
−

1
7

←
−

1
8

←
−

1
9

←
−

2
0

←
−

2
1

←
−

2
2

←
−

2
3

←
−

2
4

0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 0
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 1 1 0
0 1 0 1 1 1 0 0 0 0 1 1 1 1 0 1 0 0 1 0 1 0 1 0
1 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 1 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0 1 0
1 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1 0 0 0
0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

1 See: http://www.mathe2.uni-bayreuth.de/cgi-bin/axel/codedb?extensioncode

id+39649+2+8 [4].

http://dx.doi.org/10.1109/DATE.2005.44
http://eprint.iacr.org/2011/610/
http://www.mathe2.uni-bayreuth.de/cgi-bin/axel/codedb?extensioncodeid+39649+2+8
http://www.mathe2.uni-bayreuth.de/cgi-bin/axel/codedb?extensioncodeid+39649+2+8
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The goal is to rearrange the columns of this matrix to get a form:(
M t

0 M t
1 M t

2

)
, (11)

where M0, M1 and M2 are 8 × 8 invertible matrices with elements in F2. The
research algorithm is as follows: first, an invertible 8×8 matrix (M0) is searched.
There are

(
24
8

)
= 735, 471 of them2. We find one M t

0 by considering the columns

�2, 9�. Second, the
(
16
8

)
= 12, 870 permutations of columns {1} ∪ �10, 24� are

tested for a partitioning into two invertible matrices
(
M t

1 M t
2

)
. For instance,M t

1

can be the columns {1, 10, 11, 12, 13, 15, 17, 18} and M t
2 the columns {14, 16} ∪

�19, 24�. Those define the three bijections φi : F8
2 → F8

2, x �→ Mi × x, for i ∈
{0, 1, 2}. After that, we get a generating matrix in systematic form

(
I8 Lt

1 Lt
2

)
;

The matrices Lt
1 and Lt

2 are defined as Lt
1 = M1×M−1

0 =
(
(M t

0)
−1 ×M t

1

)t
and

Lt
2 =M2 ×M−1

0 =
(
(M t

0)
−1 ×M t

2

)t
.

A priori, it was not clear whether or not the [24, 8, 8] code could be cut into
three disjoint information sets. However, in this case, it is, as just described, and
in a non-unique way. For instance, the same shape as Eqn. (11) can be obtained
by selecting forM t

0 the columns of index 0 modulo 3, forM t
1 the columns of index

1 modulo 3, and for M t
2 the columns of index 2 modulo 3. This partitioning is

not equivalent to the previous one, as the columns for the new matrices pick up
columns from all three previous ones. However, results in terms of correlation
coefficient (c.f. Eqn. (10)) are the same.

2 This amount of tries is still manageable on a standard desktop personal computer;
all the more so as, in practice, we find very quickly a solution as the number of
partitionings that yield an invertible 8×8 matrix is 310, 400 (which represents around
42% of the possible partitionings).
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firstname.familyname@unilim.fr

2 INSIDE Secure, Aix-en-Provence, France
firstname-first-letterfamilyname@insidefr.com

3 Oberthur Technologies, Pessac, France
c.giraud@oberthur.com

Abstract. In most efficient exponentiation implementations, recovering
the secret exponent is equivalent to disclosing the sequence of squaring
and multiplication operations. Some known attacks on the RSA exponen-
tiation apply this strategy, but cannot be used against classical blinding
countermeasures. In this paper, we propose new attacks distinguishing
squaring from multiplications using a single side-channel trace. It makes
our attacks more robust against blinding countermeasures than previous
methods even if both exponent and message are randomized, whatever
the quality and length of random masks. We demonstrate the efficiency
of our new techniques using simulations in different noise configurations.

Keywords: Exponentiation, Side-Channel Analysis, Collision, Correla-
tion, Blinding.

1 Introduction

Although crypto-systems are proven secure against theoretical cryptanalysis,
they can be easily broken if straightforwardly implemented on embedded de-
vices such as smart cards. Indeed, the so-called Side-Channel Analysis (SCA)
takes advantage of physical interactions between the embedded device and its
environment during the crypto-system execution to recover information on the
corresponding secret key. Examples of such interactions are the device power
consumption [16] or its electromagnetic radiation [10]. SCA can be mainly di-
vided into two kinds: Simple Side-Channel Analysis (SSCA) and Differential
Side-Channel Analysis (DSCA). The first kind aims at recovering information
on the secret key by using only one execution of the algorithm whereas DSCA
uses several executions of the algorithm and applies statistical analysis to the
corresponding measurements to exhibit information on the secret key.

Amongst crypto-systems threatened by SCA, RSA [20] is on the front line
since it is the most widely used public key crypto-system, especially in embedded

S. Galbraith and M. Nandi (Eds.): INDOCRYPT 2012, LNCS 7668, pp. 140–155, 2012.
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environment. Therefore, many researchers have published efficient side-channel
attacks and countermeasures specific to RSA over the last decade. Due to the
constraints of the embedded environment, countermeasures must not only resist
each and every SCA known so far but must also have the smallest impact in
terms of performance and memory consumption. Nowadays, the most common
countermeasure to prevent SSCA on RSA consists in using an exponentiation
algorithm where the sequence of modular operations leaks no information on the
secret exponent. Examples of such exponentiation are the square-and-multiply-
always [8], the Montgomery ladder [13], the Joye ladder [12], the square-always [7]
or the atomic multiply-always exponentiation [4]. The latter is generally favorite
due to its very good performance compared to the other non-atomic methods.
Regarding DSCA prevention, most common countermeasures consist in blinding
the modulus and/or the message, and the exponent [14,8]. Their effect is to
randomize the intermediate values manipulated during the exponentiation as
well as the sequence of squarings and multiplications. In this paper we denote
by blinded exponentiation an exponentiation using the atomic implementation
presented in [4] where modulus, message and exponent are blinded.

Today blinded exponentiation remain resistant to most SCA techniques. Only
the Big Mac attack presented by Walter [24] theoretically threatens this imple-
mentation, although no practical result has been ever published. Other attacks
introduced later partially threaten this implementation. First, Amiel et al. [1]
show how to exploit the average Hamming weight difference between squar-
ing and multiplication operations to recover the secret exponent. Their tech-
nique is efficient when the modulus and the message are blinded. However it
requires many exponentiation traces using a fixed exponent, so this attack can
be thwarted by the randomization of the exponent. To circumvent the blinded
exponentiation, they suggested to apply their attack on a single trace but did
not try it in practice. Clavier et al. present in [5] the so-called Horizontal Corre-
lation Analysis. They apply DSCA using the Pearson correlation coefficient [3]
on a single exponentiation side-channel trace. The exponent randomization has
no effect against this attack. Modulus and message blinding are efficient only if
random masks are large enough (32 bits or more).

Other attacks on the RSA exponentiation are not mentioned in our study as
they do not apply to the blinded exponentiation.

In this paper we propose new attacks on the blinded exponentiation which
make use of a single execution trace. We achieve this by introducing two new
distinguishers — the Euclidean distance and the collision correlation applied to
the long-integer multiplication — which allow to efficiently distinguish a squaring
from a multiplication operation without the knowledge of the message or the
modulus.

Roadmap. In Section 2, we recall some basics on RSA implementations on
embedded devices. In particular, we describe the attacks presented in [1,5,24]
and we show that one of them can be extended using the collision-correlation
technique. In Section 3, we present the principle of the so-called Rosetta analysis
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using two different distinguishers. In Section 4, we put into practice our attack
and we demonstrate its efficiency using simulated side-channel traces of long-
integer operations using a 32× 32-bit multiplier. Moreover, we also compare our
technique with previous attacks and show that it is more efficient especially on
noisy measurements. We discuss in Section 5 possible methods to counteract
Rosetta analysis. Finally, Section 6 concludes this paper.

2 Background

In this section, after presenting some generalities on RSA implementation in the
context of embedded environment, we present three of the most efficient side-
channel attacks published so far on RSA: the Big Mac attack published byWalter
at CHES 2001 [24], the one published by Amiel et al. at SAC 2008 [1] and the
Horizontal Correlation Analysis published at ICICS 2010 by Clavier et al. [5].
Also, we explain how the latter can be extended using a collision-correlation
technique.

2.1 RSA Implementation

The standard way of computing an RSA signature S of a message m consists of
a modular exponentiation with the private exponent: S = md mod N . The cor-
responding signature is verified by comparing the message m with the signature

S raised to the power of the public exponent: m
?
= Se mod N .

In order to improve its efficiency, the signature is often computed using the
Chinese Remainder Theorem (CRT). Let us denote by dp (resp. dq) the residue
d mod p− 1 (resp. d mod q − 1). To compute the signature, the message is raised
to the power of dp modulo p then to the power of dq modulo q. The corresponding
results Sp and Sq are then combined using Garner’s formula [11] to obtain the
signature: S = Sq + q(q−1(Sp − Sq) mod p).

If used exactly as described above, RSA is subject to multiple attacks from
a theoretical point of view. Indeed, it is possible under some assumptions to
recover some information on the plaintext from the ciphertext or to forge fake
signatures. To ensure its security, RSA must be used according to a protocol
which mainly consists in formatting the message. Examples of such protocols
are the encryption protocol OAEP and the signature protocol PSS, both of
them being proven secure and included in the standard PKCS #1 V2.1 [19].
Note that, as they do not require the knowledge of the exponentiated value, the
new attacks described in this paper also apply when either OAEP or PSS scheme
is used.

From a practical point of view, the RSA exponentiation is also subject to
many attacks if straightforwardly implemented. For instance, SSCA, DSCA or
collision analysis can be used to recover the RSA private key. SSCA aims at
distinguishing a difference of behavior when an exponent bit is a 0 or a 1.

DSCA allows a deeper analysis than SSCA by exploiting the dependency
which exists between side-channel measurements and manipulated data val-
ues [2]. To this end, thousands of measurements are generally combined using
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a statistical distinguisher to recover the secret exponent value. Nowadays, the
most widespread distinguisher is the Pearson linear correlation coefficient [3].

Finally, collision analysis aims at identifying when a value is manipulated
twice during the execution of an algorithm.

Algorithm 1 presents the classical atomic exponentiation which is one of the
fastest exponentiation algorithms protected against the SPA.

Algorithm 1. Atomic Multiply-Always Exponentiation

Input: x, n ∈ N, d = (dv−1dv−2 . . . d0)2
Output: xd mod n

1: R0 ← 1
2: R1 ← x
3: i ← v − 1
4: k ← 0
5: while i ≥ 0 do
6: R0 ← R0 ×Rk mod n
7: k ← k ⊕ di [⊕ stands for bitwise X-or]
8: i ← i−¬k [¬ stands for bitwise negation]

9: return R0

When correctly implemented, Alg. 1 defeats SSCA since squarings cannot be
distinguished from other multiplications on a side-channel trace, as depicted by
Fig. 1.

M M M M M M M M M

p
ow

er

time

. . .

Fig. 1. Atomic multiply-always side-channel leakage

To prevent the implementation of RSA exponentiation from DSCA, the two
main countermeasures published so far are based on message and exponent blind-
ing [8,14]. Instead of computing straightforwardly S = md mod n, one rather
computes S̃ = (m + k0 · n)d+k1·ϕ(n) mod 2λ · n where ϕ denotes the Euler’s to-
tient and k0 and k1 are two λ-bit random values, then finally reduce S̃ modulo
N to obtain S. Using such a blinding scheme with a large enough λ (32 bits are
generally considered as a good compromise between security and cost overhead),
the relationship between the side-channel leakages occurring during an exponen-
tiation and the original message and exponent values is hidden to an adversary,
therefore circumventing DSCA.
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As the modular exponentiation consists of a series of modular multiplications,
it relies on the efficiency of the modular multiplication. Many methods have been
published so far to improve the efficiency of this crucial operation. Amongst
these methods, the most popular are the Montgomery, Knuth, Barrett, Sedlack
or Quisquater modular multiplications [17,9]. Most of them have in common
that the long-integer multiplication is internally computed by repeatedly calling
a smaller multiplier operating on t-bit words. A classic example is given in Alg. 2
which performs the schoolbook long-integer multiplication using a t-bit internal
multiplier giving a 2t-bit result. The decomposition of an integer x in t-bit words
is given by x = (x
−1x
−2 . . . x0)b with b = 2t and � = �logb(x)� + 1.

Algorithm 2. Schoolbook Long-Integer Multiplication

Input: x = (x�−1x�−2 . . . x0)b, y = (y�−1y�−2 . . . y0)b
Output: x× y

1: for i = 0 to 2�− 1 do
2: zi ← 0

3: for i = 0 to �− 1 do
4: R0 ← 0
5: R1 ← xi

6: for j = 0 to �− 1 do
7: R2 ← yj
8: R3 ← zi+j

9: (R5R4)b ← R3 +R2 ×R1 +R0

10: zi+j ← R4

11: R0 ← R5

12: zi+� ← R5

13: return z

In the rest of this section we recall some previously published attacks on
atomic exponentiations which inspired our new technique detailed in Section 3.

2.2 Attacks Background

Distinguishing Squarings from Multiplications in Atomic Exponen-
tiation. In [1] Amiel et al. present a specific DSCA aimed at distinguishing
squaring from other multiplications in the atomic exponentiation. They observe
that the average Hamming weight of the output of a multiplication x× y has a
different distribution whether:

– the operation is a squaring performed using the multiplication routine, i.e.
x = y, with x uniformly distributed in

[
0, 2
t − 1

]
;

– or the operation is an actual multiplication, with x and y independent and
uniformly distributed in

[
0, 2
t − 1

]
.
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Thus, considering a device with a single long-integer multiplication routine used
to perform either x× x or x× y, a set of N side-channel traces computing mul-
tiplications with random operands can be distinguished from a set of N traces
computing squarings, provided that N is sufficiently large to make the two distri-
bution averages separable. This attack can thus target an atomic exponentiation
such as Alg. 1 even in the case of message and modulus blinding. Regarding the
exponent blinding, authors suggest that their attack should be extended to suc-
cess on a single trace but do not give evidence of its feasibility. We thus study
this point in the following of the paper.

Horizontal Correlation Analysis. Correlation analysis on a single atomic
exponentiation side-channel trace has been published in [5] where the message is
known to the attacker but the exponent is blinded. This attack called horizontal
correlation analysis requires only one exponentiation trace to recover the full
RSA private exponent.

Instead of considering the whole k-th long-integer multiplication side-channel
trace T k as a block, the authors consider each inner side-channel trace segment
corresponding to a single-precision multiplication on t-bit words. For instance,
if the long-integer multiplication is performed using Alg. 2 on a device provided
with a t-bit multiplier, then the trace T k of the k-th long-integer multiplication
x × y can be split into �2 trace segments T k

i,j , 0 ≤ i, j < �, each of them repre-
senting a single-precision multiplication xi × yj . More precisely, for each word
yj of the multiplicand y, the attacker obtains � trace segments T k

i,j, 0 ≤ i, j < �,

corresponding to a multiplication by yj . The slicing of T k into trace segments
T k
i,j is illustrated on Fig. 2.
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Fig. 2. Horizontal side-channel analysis on exponentiation

In the horizontal correlation analysis the attacker is able to identify whether
the k-th long-integer operation T k is a squaring or a multiplication by computing
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the correlation factor between the series of Hamming weights of each t-bit word
mj of the message m and the series of corresponding sets of � trace segments
T k
i,j , 0 ≤ i, j < �. This correlation factor is expected to be much smaller when the

long-integer operation is a squaring (i.e. R0 ← R0×R0 in Alg. 1) than when it is a
multiplication bym (i.e. R0 ← R0×R1). The correlation factor can be computed
by using the Pearson correlation coefficient ρ(H,T k) where H = (H0, . . . , H
−1),
with Hj = (HW(mj), . . . ,HW(mj)), HW(mj) standing for the Hamming weight
of mj and T k = (T k

0 , . . . , T
k

−1) with T

k
j = (T k

0,j, . . . , T
k

−1,j).

Big Mac Attack. Walter’s attack needs, as our technique, a single exponen-
tiation side-channel trace to recover the secret exponent. For each long-integer
multiplication, the Big Mac attack detects if the operation performed is either
R0 × R0 or R0 × m. The multiplications xi × yj — and corresponding trace
segments T k

i,j — can be easily identified on the side-channel trace from their

specific pattern which is repeated �2 times in the long-integer multiplication
loop. A template side-channel trace is computed (either from the precomputa-
tions or from the first squaring operation) to characterize the manipulation of
the message during the long-integer multiplication. The Euclidean distance be-
tween the template trace and each long-integer multiplication trace T k is then
computed. If it exceeds a threshold then the attack concludes that the operation
is a squaring, or a multiplication by m otherwise.

Walter uses the Euclidean distance but we noticed that other distinguisher
could be used. In the following section, we extend the Big Mac attack using a
collision-correlation technique.

2.3 Big Mac Extension Using Collision Correlation

A specific approach for SCA uses information leakages to detect collisions be-
tween data manipulated in algorithms. A side-channel collision attacks against
a block cipher was first proposed by Schramm et al. in 2003 [22]. More recently
Moradi et al. [18] proposed to use a correlation distinguisher to detect collisions
in AES. The main advantage of this approach is that it is not necessary to de-
fine a leakage model as points of traces are directly correlated with other points
of traces. Later, Clavier et al. [6] presented two collision-correlation techniques
defeating different first order protected AES implementations. The same year,
Witteman et al. [25] applied collision correlation to public key implementation.
They describe an efficient attack on RSA using square-and-multiply-always expo-
nentiation and message blinding. All these techniques require many side-channel
execution traces. In this section, we extend Walter’s Big Mac attack using the
collision correlation as distinguisher instead of the Euclidean distance.

We consider a blinded exponentiation and use the fact that the second and
third modular operations in an atomic exponentiation are respectively 1∗ m̃ and
m̃ ∗ m̃, where m̃ is the blinded message. The trace of the second long-integer
multiplication yields � multiplication segments for each word m̃j of the blinded
message. Considering the k-th long-integer multiplication, k > 3, we compute
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the correlation factor between the series of � trace segments T 2
j — each one being

composed of the � trace segments T 2
i,j involved in the multiplication by m̃j —

and the series of � trace segments T k
j . Since the blinded value of the message

does not change during the exponentiation, a high correlation occurs if the k-th
long-integer operation is a multiplication, and a low correlation otherwise. Once
the sequence of squarings and multiplications is found, the blinded exponent
value is straightforwardly recovered. Notice that recovering the blinded value of
the secret exponent is not an issue as it can be used to forge signature as well
as its non-blinded value.

This attack also works if we use the trace segments T 3
j of the third long-

integer operation instead of the trace segments T 2
j . One can also combine the

information provided by the second and third long-integer operations to improve
the attack.

Remark. As the original Big Mac, this attack also applies to the CRT RSA
exponentiation since no information is required on either the message or the
modulus. This is of the utmost importance since, to the best of our knowledge,
this is the first practical attack on a CRT RSA fully blinded (message, modulus
and exponent) atomic exponentiation.

3 ROSETTA: Recovery Of Secret Exponent by
Triangular Trace Analysis

3.1 Attack Principle

The long-integer multiplication LIM(x, y) in base b = 2t is given by the classical
schoolbook formula:

x× y =


−1∑
i=0


−1∑
j=0

xiyjb
i+j

and illustrated, with for instance � = 4 by the following matrix M :

M =

⎛⎜⎜⎝
x0y0 x0y1 x0y2 x0y3
x1y0 x1y1 x1y2 x1y3
x2y0 x2y1 x2y2 x2y3
x3y0 x3y1 x3y2 x3y3

⎞⎟⎟⎠
In the case of a squaring, then x = y and the inner multiplications become:

S =

⎛⎜⎜⎝
x0x0 x0x1 x0x2 x0x3
x1x0 x1x1 x1x2 x1x3
x2x0 x2x1 x2x2 x2x3
x3x0 x3x1 x3x2 x3x3

⎞⎟⎟⎠
We consider four observations to design our new attacks, assuming a large enough
multiplier size t ≥ 16:
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(Ω0) LIM(x, y) s.t. x = y ⇒ Prob(xi × yi are squaring operations) = 1 ∀i
(Ω1) LIM(x, y) s.t. x �= y ⇒ Prob(xi × yi are squaring operations) ≈ 0 ∀i
(Ω2) LIM(x, y) s.t. x = y ⇒ Prob(xi × yj = xj × yi) = 1 ∀i �= j.
(Ω3) LIM(x, y) s.t. x �= y ⇒ Prob(xi × yj = xj × yi) ≈ 0 ∀i �= j.

From observations (Ω0) and (Ω1) one can apply the attack presented in [1] on
a single trace as suggested by the authors. The main drawback is that only �
such operations are performed during a LIM which represents a small number
of trace segments. It is likely to make the attack inefficient for small modulus
lengths (with respect to the multiplier size t).

From observations (Ω2) and (Ω3) we notice that collisions between xi×yj and
xj × yi for i �= j can be used to identify squarings from other multiplications.
Moreover, LIM(x, y) provides �2 − � operations xi × yj , i �= j, thus (�2 − �)/2
couples of potential collisions. This represents a fairly large number of trace
segments. The principle of our new attack consists in detecting those internal
collisions in a single long-integer operation to determine whether it is a squaring
or not. Visually, we split the matrix M into an upper-right and a lower-left
triangles of terms, thus we call this technique a triangle trace analysis.

We present in the following two techniques to identify these collisions on a
single long-integer multiplication trace. The first analysis uses the Euclidean dis-
tance distinguisher and the second one relies on a collision-correlation technique.

3.2 Euclidean Distance Distinguisher

We use as distinguisher the Euclidean distance between two sets of points on a
trace as Walter [24] in the Big Mac analysis. In order to exploit properties (Ω2)
and (Ω3) we proceed as follows. For each LIM(x, y) operation we compute the
following differential side-channel trace:

TED =
2

�2 − �

∑
0≤i<j<


√
(Ti,j − Tj,i)2

If the operation performed is a squaring then the single-precision multiplications
xi× yj and xj × yi store the same value in the result register (or in the memory)
at the end of the operation. The side-channel leakage of the result storage of
both operations should thus be similar. On the other hand, if x �= y, products
differ and the side-channel leakage should present less similarities. Assuming a
side-channel leakage function linear in the Hamming weight of the data manip-
ulated, a squaring should result in E(TED) ≈ 0, whereas we should expect a
significantly higher value (about t/2 for each of the product halves) in the case
of a multiplication.

3.3 Collision-Correlation Distinguisher

We define the two following series of trace segments, where the ordering of cou-
ples (i, j) is the same for the two series:
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Θ0 = {Ti,j s.t. 0 ≤ i < j ≤ �− 1}
Θ1 = {Tj,i s.t. 0 ≤ i < j ≤ �− 1}

Each set includes N = (�2 − �)/2 trace segments of base b multiplications.
In order to determine the operation performed by the LIM we compute the

Pearson correlation factor between the two series Θ0 and Θ1 as described in [6]:

ρ̂Θ0,Θ1(t) =
Cov(Θ0(t), Θ1(t))

σΘ0(t)σΘ1(t)

=
N

∑
(Ti,j(t)Tj,i(t))−

∑
Ti,j(t)

∑
Tj,i(t)√

N
∑

(Ti,j(t))2 − (
∑
Ti,j(t))2

√
N

∑
(Tj,i(t))2 − (

∑
Tj,i(t))2

where summations are taken over all couples 0 ≤ i < j ≤ �− 1.
In case of a squaring operation, a much higher correlation value ρ̂Θ0,Θ1 is

expected than in case of a multiplication. Computing this correlation value for
each LIM operation allows to determine its nature and to recover the sequence
of exponent bits.

Remark. Contrary to differential analysis on symmetric ciphers, each exponent
bit requires to distinguish one hypothesis out of only two, instead of for instance
256 considering a differential attack on AES. Thus fixing a decision threshold
is easier when dealing with the exponentiation. This has already been observed
when applying DPA or CPA on RSA [2,15] compared to DES or AES.

4 Comparison of the Different Attacks

In order to validate these two techniques, we generated simulated side-channel
traces for a classical 32× 32-bit multiplier. As generally considered in the liter-
ature, we assume a side-channel leakage model linear in the Hamming weight of
the manipulated data — here xi, yj , and xi × yj — and add a white Gaussian
noise of mean μ = 0 and standard deviation σ. We build simulated side-channel
traces based on the Hamming weight of the data manipulated in the multiplica-
tion operation such that each processed single-precision multiplication generates
four leakage points HW(xi), HW(yj), HW(xi× yj mod b), and HW(xi× yj ÷ b),
where ÷ stands for the Euclidean quotient.

Besides validating our two Rosetta variants — the Euclidean distance distin-
guisher (Rosetta ED) and the collision-correlation one (Rosetta CoCo) — we
compare Rosetta with other techniques discussed previously, namely the classi-
cal Big Mac, the Big Mac using collision correlation (Big Mac CoCo), and the
single trace variant of the Amiel et al. attack presented at SAC 2008.

We proceed in the following way: we randomly select two �-bit integers x and
y. Then we generate the side-channel traces of the multiplication LIM(x, y) and
of the squaring LIM(x, x).
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Each different attack is eventually applied and we keep trace of their success or
failure to distinguish the squaring from the multiplication. Finally, we estimate
the success rate of each technique by running 1 000 such experiments. These
tests are performed for three different noise standard deviation values1: from no
noise (σ = 0) to a strong one (σ = 7).

Characterisation and Threshold. A threshold for the attack must be se-
lected for each technique to determine whether the targeted operation is a mul-
tiplication or a squaring. Using simulated side-channel traces, it was possible to
determine the best threshold value for each technique. Without any knowledge
on the component, it is more difficult to fix those threshold values. The attacks
could be processed with guess on these thresholds, for instance selecting 0.5 for
the collision correlation, but it could not reach optimal efficiency or fail. It is
then preferable to determine the best threshold values through a characteriza-
tion phase of the multiplier, either with an access to an open sample or using
the public exponentiation calculation as suggested in [2].

Results. We obtain the success rates given in tables 1 (σ = 0), 2 (σ = 2) and
3 (σ = 7) for different key lengths ranging from 512 bits to 2048 bits. Figures 3
and 4 present a graphic comparison of these results for σ = 0 and σ = 7.

Table 1. Success rate with a null noise, σ = 0

Technique 512 bits 768 bits 1024 bits 1536 bits 2048 bits

Big Mac [24] 0.986 0.990 0.993 0.994 0.995

SAC 2008 [1] 0.533 0.618 0.734 0.858 0.897

Big Mac CoCo (§2.3) 0.999 1.00 1.00 1.00 1.00

Rosetta ED (§3.2) 1.00 1.00 1.00 1.00 1.00

Rosetta CoCo (§3.3) 1.00 1.00 1.00 1.00 1.00

Table 2. Success rate with a moderate noise, σ = 2

Technique 512 bits 768 bits 1024 bits 1536 bits 2048 bits

Big Mac [24] 0.767 0.775 0.807 0.816 0.818

SAC 2008 [1] 0.546 0.629 0.717 0.805 0.855

Big Mac CoCo (§2.3) 0.981 0.998 0.999 1.00 1.00

Rosetta ED (§3.2) 1.00 1.00 1.00 1.00 1.00

Rosetta CoCo (§3.3) 1.00 1.00 1.00 1.00 1.00

1 Regarding the standard deviation of the noise, a unit corresponds to the side-channel
difference related to a one bit difference in the Hamming weight.
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Table 3. Success rate with a strong noise, σ = 7

Technique 512 bits 768 bits 1024 bits 1536 bits 2048 bits

Big Mac [24] 0.557 0.577 0.621 0.614 0.632

SAC 2008 [1] 0.551 0.577 0.623 0.662 0.702

Big Mac CoCo (§2.3) 0.737 0.855 0.909 0.963 0.981

Rosetta ED (§3.2) 0.711 0.821 0.878 0.953 0.992

Rosetta CoCo (§3.3) 0.685 0.816 0.906 0.992 0.997

Fig. 3. Success rate of the different attacks with no noise

Fig. 4. Success rate of the different attacks with a strong noise, σ = 7
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Results Interpretation. We observe that with no noise (cf. Table 1) all tech-
niques are efficient when applied to large modulus bit lengths (1536 bits or more).
For smaller modulus lengths, the SAC 2008 technique is inefficient (probability
of success close to 0.5) as expected since the number of useful operations in that
case is too small.

In case of a noisy component, we observe that the original Big Mac and the
attack from SAC 2008 are not efficient, their probability of success is about 0.5–
0.7. Big Mac analysis using collision correlation, and both Rosetta techniques
start to be efficient from 1024-bit operands and are very efficient for 1536-bit
and 2048-bit operands.

Our study demonstrates that these three last techniques are the most efficient
ones and represent a more serious threat for blinded exponentiation than the
original Big Mac.

From Partial to Full Exponent Recovery. Depending on the component,
on the leakage and noise level of the chip, we observe that the success rate of the
attack varies and may reveal too few information to recover the whole exponent
value. In the case where uncertainty remains on some exponent bits, the attack
from Schindler and Itoh [21] may help to reveal them. If necessary, Rosetta
analysis can thus be advantageously combined with this technique to completely
recover the exponent.

5 Countermeasures

As for the other attacks considered in this paper, both Rosetta techniques we
introduced present the following interesting properties: (i) they make use of
a single side-channel trace and, (ii) they do not require the knowledge of the
message nor of the modulus. As a consequence they are applicable even when
the classical set of blinding countermeasures (message, modulus, exponent) is
implemented and whatever the size of the random values used.

A first idea to prevent these attacks is to improve the message blinding by
randomizing it before each long-integer multiplication, for instance by adding
the modulus n or a multiple thereof to the message. At this point, it is worth
noticing a specific difference between both Rosetta and other attacks. Rosetta
can distinguish a squaring from a multiplication without using any template
or previous leakage. This is not the case with the other techniques — except
for the single trace variant of the SAC 2008 attack which we demonstrate not
to be efficient in the previous section. The consequence is that Rosetta is still
applicable even when this improved blinding is implemented.

We recall hereafter three existing countermeasures that we believe to with-
stand all the techniques presented in this paper.

Shuffled Long-Integer Multiplication. In [5], a long integer multiplication algo-
rithm with internal single-precision multiplications randomly permuted is pre-
sented. More details are given in [23, Sec. 2.7]. This countermeasure makes
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Rosetta analysis virtually infeasible as indices i, j of multiplication xi × yj are
not known anymore.

Always True Multiplication. This solution consists in ensuring that multiplica-
tion operands are always different (or different with high probability). To achieve
this objective, before each multiplication LIM(x, y), both operands x and y are
randomized by x� = x+ r1.n and y� = y + r2.n. If r1 �= r2, two equal operands
x and y are traded for x� and y� with x� �= y� and the operation LIM(x�, y�) is
not a squaring.

Square-Always algorithm. The square-always algorithm presented in [7] pro-
cesses any multiplication using two squarings. As for the solution of using multi-
plications of different terms only, Rosetta does not apply. Regular atomic square
always algorithms can be used to prevent SSCA. Exponent blinding counter-
measure must be associated with this solution.

6 Conclusion

We present in this study new side-channel methods — the Big Mac using collision
correlation and the two Rosetta techniques — allowing to distinguish a squaring
from a multiplication when the same long-integer multiplication algorithm is
used for both operations. They can be used to recover an RSA secret exponent
— both in standard or CRT mode — with a single execution side-channel trace.
We compare our new techniques with other single trace side-channel analyses
and demonstrate that they are more efficient than previous ones, especially on
noisy measurements. We show that classical combination of message, modulus
and exponent blindings is not sufficient to counteract our analysis and we suggest
more advanced countermeasures. As a conclusion, we quote Colin Walter to recall
the very interesting property of these attacks: ”The longer the key length, the
easier the attacks.”.
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Abstract. Hamsi-256 is a cryptographic hash functions submitted by
Küçük to the NIST SHA-3 competition in 2008. It was selected by NIST
as one of the 14 round 2 candidates in 2009. Even though Hamsi-256
did not make it to the final round in 2010 it is still an interesting tar-
get for cryptanalysts. Since Hamsi-256 has been proposed, it received a
great deal of cryptanalysis. Besides the second-preimage attacks on the
hash function, most cryptanalysis focused on non-random properties of
the compression function or output transformation of Hamsi-256. Inter-
estingly, the collision resistance of the hash or compression function got
much less attention. In this paper, we present a collision attack on the
Hamsi-256 compression function with a complexity of about 2124.1 .

Keywords: hash function, differential cryptanalysis, collision attack.

1 Introduction

In recent years, significant advances in the field of hash function research have
been made which had a formative influence on the landscape of hash functions.
Especially the work on MD5 and SHA-1 [19,20] has convinced many cryptog-
raphers that these widely deployed hash functions can no longer be considered
secure. As a consequence, researchers are evaluating alternative hash functions in
the SHA-3 initiative organized by NIST [16]. The goal is to find a hash function
which is fast and still secure within the next few decades.

Many new and interesting hash functions have been proposed. Hamsi-256 [12],
proposed by Küçük, was one of the 64 submissions to the SHA-3 competition
from which 51 submissions were selected for the first round in 2008 and 14
of them advanced to the second round in 2009. Hamsi-256 was one of them.
Even though Hamsi-256 was not selected as one of the five finalists in 2010,
mainly because of the second-preimage attacks, it is still an interesting target for
cryptanalysts. In this work, we focus on the collision resistance on the Hamsi-256
compression function, which in turn gives new insights in the collision resistance
of the hash function.

Previous Analysis. Hamsi-256 received a great deal of cryptanalysis during
the ongoing SHA-3 competition. However, the only analysis of the Hamsi-256
hash function itself is due to Dinur and Shamir [8,9] and Fuhr [10]. Both attacks
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are algebraic attacks targeting the second-preimage security of the hash function.
The attacks are based on the observation that it is sufficient to show that one
of the hashed output bits is wrong to discard a possible second-preimage. Since
the output bits of the compression function of Hamsi-256 can be described by
low degree polynomials, it is faster to compute a small number of output bits
by a fast polynomial evaluation technique than with the original algorithm. The
results are second-preimage attacks on Hamsi-256 with a complexity of about
2247 and 2251.3, respectively. But then again, one still needs to test 2256 inputs to
find a second preimage as in the generic case. In other words, the attacks are a
clever way to speed up brute force search. We want to note that in a similar way
also the complexity of a generic collision search for the compression function
of Hamsi-256 can be improved, resulting in an attack complexity of 2125 [8].
Moreover, in [13] Küçük showed a collision attack for a simplified version of the
Hamsi-256 compression function, ignoring the message expansion.

Most other attacks published so far are differential attacks targeting the
compression function or output transformation of Hamsi-256. Practical near-
collisions for the compression function have been shown in [1,14,17,18] and a
distinguisher for the compression function has been presented in [6]. Further-
more, non-random properties for the underlying permutation of the Hamsi-256
compression function and output transformation have been demonstrated in [1,4]
and a distinguisher for the output transformation of Hamsi-256 has been de-
scribed in [1].

Our Contribution. In this work, we present a collision attack for the Hamsi-
256 compression function. Our collision attack is based on the attack of Çalik
and Turan [6] and has a complexity of about 2124.1 compression function evalu-
ations. The main idea of the attack is very simple. We extend the approach of
Çalik and Turan, which was originally used to show non-random properties in
the compression function. This is then used to fix some output bits of the com-
pression function to a predefined value faster than in the generic case. Finally,
we use a birthday attack on the remaining bits to construct a collision for the
compression function of Hamsi-256. Even though the complexity of the attack is
very high, namely 2124.1 compression function evaluations, it demonstrates that
the compression function of Hamsi-256 is not collision resistant and gives new
insights in the security of Hamsi-256. However, it has to be noted that the attack
cannot be extended to the hash function.

Outline. The remainder of the paper is organized as follows. In Section 2, we
give a short description of the Hamsi-256 compression function. In Section 3,
we describe the distinguishing attack of Çalik and Turan on Hamsi-256, since
it is the basis for our collision attack. We present our new attack strategy in
Section 4 and apply it to the Hamsi-256 compression function in Section 5.
Finally, we conclude in Section 6.
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2 Description of Hamsi-256

Hamsi-256 is a cryptographic hash function proposed by Küçük [12] which has
been submitted to the SHA-3 competition in 2008. It is an iterated hash function
based on the Merkle-Damg̊ard design principle [7,15] and produces a 256-bit hash
value. Like most hash functions, Hamsi-256 iterates a compression function f to
compute the hash value. It takes a 32-bit message blockMi and a 256-bit chaining
value hi−1 as input and outputs a 256-bit chaining value hi. In the following, we
give a brief overview of the compression function of Hamsi-256 (see Figure 1).

M1 h0

Concatenation

⊕

Truncated non-linear

Permutation P

M

⊕⊕

Fig. 1. The compression function of Hamsi-256 [12]

Message Expansion. The message expansion of Hamsi-256 uses a linear code
to expand the 32-bit message word Mi into eight 32-bit words m0,m1, . . . ,m7,
i.e. 256 bits. The (128, 16, 70) linear code defined over F4 used in the message
expansion ensures that any difference in the message word Mi will lead to dif-
ferences in at least 70 of the 128 columns of the initial state. For a detailed
description of the message expansion we refer to [12].

Concatenation. The 256-bit expanded message (m0, · · · ,m7) and the 256-bit
chaining value hi−1 = (c0, . . . , c7) are concatenated to form the 512-bit initial
state (see Figure 2). We want to note that the initial state can be considered as
both a 4× 4 matrix of 32-bit words and 128 columns each consisting of 4 bits.

m0 m1 c0 c1

c2 c3 m2 m3

m4 m5 c4 c5

c6 c7 m6 m7

Fig. 2. The initial state of the Hamsi-256 compression function after concatenation

Non-linear Permutation. The non-linear permutation P used in the Hamsi-256
compression function is composed of 3 rounds. In each round the round trans-
formation updates the state by means of a sequence of transformations:
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Addition of Constants. Predefined constants and a round counter is xored
to the whole state. For the value of the constants we refer to [12].

Substitution. Each of the 128 columns of the state (each 4 bits) is updated by
the 4-bit s-box of the block cipher Serpent [2].

Diffusion. The linear transformation L of the block cipher Serpent, which ac-
cepts four 32-bit input words, and outputs four 32-bit words is applied to
the four independent diagonals of the state.

A detailed description of the s-box and the linear transformation L is given
in [12] and the differential properties of the s-box and linear transformation of
Hamsi-256 have been studied for instance in [1] among others.

Truncation and Feed-Forward. Finally, after the application of the permu-
tation P the second and fourth rows of the state are discarded and the initial
chaining value is xored to the truncated state resulting in the initial chaining
value for the next iteration or the input to the output transformation to com-
pute the final hash value. For the description of the output transformation of
Hamsi-256 we refer to [12].

3 Attack of Çalik and Turan

In this section, we briefly describe the distinguishing attack of Çalik and Tu-
ran [6] on the Hamsi-256 compression function, since our collision attack builds
upon it. The attack is a differential attack exploiting the fact that for a given
input difference not all the output bits of the compression function are affected.
This results in a distinguisher for the compression function. Since the message
expansion of Hamsi-256 uses a (128, 16, 70) linear code, any difference in the mes-
sage will lead to differences in at least 70 of the 128 columns of the initial state.
In other words, at least 70 s-boxes will be active in the initial state. Therefore,
Çalik and Turan consider only differences in the chaining value in their analysis.
Furthermore, they restrict themselves to differences in only one column, i.e. one
active s-box, in the initial state. Since each column of the initial state contains
two bits of the chaining value (see Figure 2), three non-zero differences can be
injected to a column: these differences can be 2x, 8x or ax for columns 0-63 and
1x, 4x or 5x for columns 64-127.

To find the output bits that are not affected by one of the 3·128 possible input
differences the authors trace the differences through the round transformations of
Hamsi-256 and mark all the bits of the internal state that could have a difference.
If there are any unmarked bits in the state after 3 rounds, then one knows that
these bits are not affected by the initial difference. However, due to the feed-
forward, some of these unaffected bit positions may coincide with the difference in
the initial state, resulting in bits that will always change. However, in the paper
the authors do not make a distinction between these two cases (and neither will
we) and use for both cases the term unaffected bits.
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As noted by Çalik and Turan the number of unaffected output bits depends
on the Hamming weight of the difference in the initial state. For the differences
with Hamming weight 2, i.e. 5x and ax, the number of unaffected bits is higher.
The reason for this is that differences with Hamming weight 1, i.e. 1x, 2x, 4x and
8x, will lead to a difference with Hamming weight at least 2 at the output of
the s-box in round 1, whereas a difference of Hamming weight 2 can lead to a
difference with Hamming weight 1, resulting in a sparser difference at the output
of round 1. Hence, it is not surprising that one could find 64 solutions with at
least one unaffected output bit using an initial difference with Hamming weight
2, cf. [6, Table 4], while no solution could be found using an initial difference
with Hamming weight 1. An example with two unaffected output bits and an
initial difference with Hamming weight 2 is given in Figure 3.

00000000 00000000 00000000 00000000
01000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
01000000 00000000 00000000 00000000

00000000 00000000 00000000 00000000
01000000 00000000 00000000 00000000
01000000 00000000 00000000 00000000
01000000 00000000 00000000 00000000

00000000 00000010 00000082 40000000
02000000 00000000 00000000 10000000
01020000 00000000 00000000 00200000
80000000 00000004 00000000 00000000

83020000 00000014 00000082 50200000
83020000 00000014 00000082 50200000
83020000 00000014 00000082 50200000
83020000 00000014 00000082 50200000

08771d1a 60f028b1 2e19419f c58be9a0
06041549 800028e8 02050105 b0608008
831e5403 68008abd 0e0415ff f0e2e020
8b000141 49000a0c 00285100 10438828

8f7f5d5b e9f0aafd 2e3d55ff f5ebe9a8
8f7f5d5b e9f0aafd 2e3d55ff f5ebe9a8
8f7f5d5b e9f0aafd 2e3d55ff f5ebe9a8
8f7f5d5b e9f0aafd 2e3d55ff f5ebe9a8

ffffffff ffffffff ffffffff ffffffff
fffebfff f7f7ffff 7efffbff ffffdfff
ffffffff ffffffff ffffffff f5ffffff
fffeffd7 fff77eff defbfff7 fdf7fcfe

ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff f5ffffff

Round 1 Substitute

Round 1 Diffuse

Round 2 Substitute

R
o
u
n
d
2
D
iff
u
se

Round 3 Substitute

Round 3 Diffuse

Truncate

Fig. 3. Propagation of affected bits for the initial difference ax inserted to column 7 of
the initial state [6]

Another factor that influences the number of unaffected output bits are the
values of the message bits in the column with the initial difference. By imposing
some additional restrictions on the message bits one could observe more unaf-
fected output bits. The reason for this is that for certain choices of the message
bits the Hamming weight of the difference at the output of the s-box might be
smaller. This results in a sparser difference at the output of round 1. By choos-
ing the message bits carefully, Çalik and Turan could find 8 solutions with two
unaffected bits at the output using an initial difference with Hamming weight 1,
cf. [6, Table 3]. Furthermore, also for an initial difference with Hamming weight
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2 the number of solutions as well as the number of unaffected bits can be in-
creased by choosing the message bits accordingly. For instance, in the example
given in Figure 3 the number of unaffected output bits can be increased to 9
bits by setting the message bits in column 7 to 0x. By additionally also impos-
ing conditions on the chaining bits in column 7, i.e. 0x or 3x, the number of
unaffected bits can be increased to 62.

Based on these differential properties of the compression function Çalik and
Turan describe several attacks on Hamsi-256 in the original paper. First, they
show a distinguishing attack on the compression function that needs only a
few compression function evaluations. Then, they present a message-recovery
attack for the compression function with a complexity of 210.5 and a pseudo-
preimage attack with complexity of about 2254.25. For a detailed description of
these attacks we refer to [6].

In this work, we will use these differential properties of the compression func-
tion to show a collision attack for the Hamsi-256 compression function. We de-
scribe the basic idea of the attack in the next section.

4 Basic Attack Strategy

In this section, we present the basic attack strategy employed by our new attack
to construct collisions in the compression function of Hamsi-256. It is based
on the concept of neutral bits [3] and auxiliary differentials [11], which were
originally used to speed up differential collision attacks on hash functions.

The main idea of our attack is quite simple. Assume we can find a distinct in-
put differences (in the following referred to as auxiliary differentials), where each
difference only affects a few output bits of the compression function. Further,
we assume that there exists at least b output bits (for the sake of simplicity say
bits 0, 1, . . . , b− 1) that are not affected by any of these a auxiliary differences.
Then this can be used to find 2a partial preimages for these b output bits of
the compression function with a complexity of about 2a + 2b, compared to the
generic case of 2a+b compression function evaluations.

Let v1, . . . , va denote the a auxiliary differentials not affecting the first b out-
put bits of the compression function and assume for the sake of simplicity that
we want to fix these b output bits to 0. Then the attack can be summarized as
follows.

1. Choose random values for the chaining input hi−1 and the message input mi.
If necessary fulfilling all conditions imposed by the a auxiliary differentials
v1, . . . , va.

2. Compute the output of the compression function hi and check if the b output
bits of hi are correct
– If all b bits are 0 then continue with step 3
– else go back to step 1
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3. Use the a auxiliary differentials v1, . . . , va to generate 2a additional solutions
where the first b output bits of the compression function are also 0

h
(d)
i = hi ⊕

a⊕
j=1

dj · vj

with d = (d1, . . . , da) ∈ {0, 1}a.

Note that we need to repeat step 1-2 about 2b times to find a correct hi, resulting
in a complexity of about 2b compression function evaluations to finish step 1
and 2. Since step 3 has a complexity of 2a, the final complexity of the attack is
2a+2b compression function evaluations. But then again, we found 1+2a partial
preimages where the first b output bits (0, 1, . . . , b − 1) are 0 with complexity
of 2a + 2b. This can now be used to construct a collision for the compression
function faster than in the generic case.

Since we can find about 2a partial preimages for the first b with a complexity
of 2a + 2b (instead of 2a+b) we can combine this with a birthday attack to
find a collision for the compression function faster than in the generic case. By
repeating the attack about t times with t = 2(n−b)/2−a we get t · 2a = 2(n−b)/2

outputs where the first b bits collide and due to the birthday paradox we expect
to find at least one pair of outputs where also the remaining n − b bits collide.
The result is a collision attack on the compression function with a complexity
of about t · (2a + 2b) = 2n/2 · (2−b/2 + 2b/2−a) compression function evaluations.

Clearly the complexity of the attack depends the value of a and b. For the
above computed complexity we can easily observe that the value

2−b/2 + 2b/2−a =
2b−a + 1

2b/2

is minimized if in the numerator we have a ≥ b, and in the denominator we have
b as large as possible, so basically a = b. The main question is now which values
of a and b we can expect in our attack. On the one hand this number depends on
the size of the set S containing all auxiliary differentials, and on the other hand
on the number of affected output bits of each of these auxiliary differentials in
the set. Moreover, also the number of conditions imposed on the message bits
by the auxiliary differentials might be a limiting factor, since this is only 32 bits
in the case of the Hamsi-256 compression function.

4.1 Probabilistic Considerations

In the following, we denote by [n] the integer interval {1, 2, . . . , n}, by 2[n] we

mean the set of all subsets of [n] and by
(
[n]
k

)
all subsets of [n] of size k. We are

looking at subsets of
(
[n]
k

)
because on average, the number of unaffected output

bits is ≈ k in our applications. Furthermore, we assume that the auxiliary differ-
entials are independent and that the unaffected bits of each auxiliary differential
are randomly distributed.
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We want to investigate the probability P (N,n, k, b) that a set S ⊆
(
[n]
k

)
of size

N of auxiliary differentials contains a subset S′ of size a such that the elements
si ∈ S′ satisfying ∣∣∣∣∣

a⋂
i=1

si

∣∣∣∣∣ ≥ b . (1)

Now we have

P (N,n, k, b) ≤
(
N

a

)
·

k∑
j=b

Pr(n, k, j) (2)

where Pr(n, k, j) denotes the probability that a randomly chosen subsets si ∈(
[n]
k

)
satisfy |

⋂a
i=1 si| = j. The exact distribution is hard to compute, however

we can come up with the following approximation. Since each set si has size
k, we assume that a randomly chosen element e ∈ [n] is contained in si with
probability k/n. Thus, the probability for a randomly chosen element e ∈ [n] to
be contained in

⋂a
i=1 si is p = (k/n)a. From this we deduce that

k∑
j=b

Pr(n, k, j) =

k∑
j=b

(
n

j

)
pj(1− p)n−j

which in turn leads to

P (N,n, k, r) ≤
(
N

a

)
·

k∑
j=b

(
n

j

)
pj(1− p)n−j (3)

5 Application to Hamsi-256

In this section, we will discuss the application of the attack strategy described
in the previous section to the Hamsi-256 compression function. Therefore, we
first need to find a set S of auxiliary differentials that only affect a few output
bits of the compression function of Hamsi-256. Then we need to find a subset
of a auxiliary differentials not affecting the same b output bits (for large values
of a and b). To construct the set S it seems natural to use the same differen-
tials as Çalik and Turan in their distinguishing attack described in Section 3.
However, since we are aiming for a large value of a and b, in order to increase
the effectiveness of the attack, we are only interested in auxiliary differentials
where the number of unaffected output bits is large. This already rules out all
auxiliary differentials with an initial difference of Hamming weight 1. For these
cases the maximum number of unaffected output bits is at most 2 (see Section 3).
However, auxiliary differentials with an initial difference of Hamming weight 2
might be a good choice, in particular since the number of unaffected output bits
can be increased to up to 62 bits by imposing some additional conditions on the
chaining and message bits (see Section 3).

In total we found 198 auxiliary differentials with an initial difference of Ham-
ming weight 2. As shown in Figure 5 in the appendix the number of unaffected
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output bits is on average 30. Note that since we are interested in large values of a
and b, we only considered auxiliary differentials where the number of unaffected
output bits is at least 10. Now assuming that these 198 auxiliary differentials are
independent and randomly distributed, we can use (3) with k = 30 to estimate
a, b ≈ 4 that can be used in our collision attack on the Hamsi-256 compression
function.

However, the auxiliary differentials in the set S are not independent nor
randomly distributed. By doing a brute-force search we found a solution with
a = b = 6 resulting in a collision attack on the Hamsi-256 compression function
with complexity of about 2126 compression function evaluations. The six auxil-
iary differentials including the necessary conditions on the chaining and message
bits are given in Table 1 and the affected output bits for these six auxiliary
differentials are shown in Table 4 in the appendix. Note that the 10 conditions
imposed by the six auxiliary differentials on the message bits can be fulfilled
by solving a set of linear equations. This is due to the fact that the message
expansion of Hamsi-256 is linear.

Table 1. The six auxiliary differentials used in our attack including all conditions on
the chaining and message bits. Note that none of them affects the output bits 131, 200,
201, 202, 237, 238.

i
1 2 3 4 5 6

column 1 2 38 39 110 111
difference ax ax ax ax 5x 5x

message bits 2x 2x 3x 1x 2x, 3x 2x, 3x
chaining bits 1x, 2x 1x, 2x 1x, 2x 1x, 2x 0x, 3x 1x, 2x

5.1 Improving the Attack

To improve the attack described above we need to find a subset of size a of
auxiliary differentials not affecting the same b output bits for larger values of
a and b. Therefore, we need to find a set S of auxiliary differentials, where the
number of unaffected output bits is larger than 30 on average. To find such
auxiliary differentials we need to consider initial differences with more than only
one active column at the input of the first round. This significantly increases the
search space, but also the complexity to generate the set S. However, since we
are interested in auxiliary differentials which are affecting only a few output bits,
the search space and hence the complexity can be reduced by only considering
initial differences leading to a sparse difference at the input of round 2. To be
more precise, we restrict ourselves to initial differences resulting in a single bit
difference (one active column) at the input of round 2. One example of such an
auxiliary differential with only a single bit difference in column 96 at the input
of round 2 is given in Figure 4.

Considering only auxiliary differentials resulting in a singe bit difference at
the input of round 2 has several advantages. First of all since only one column
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00000000 00000000 20000000 00002000
04000000 00000000 00000000 00000000
00000000 00000000 20000000 00002000
04000000 00000000 00000000 00000000

00000000 00000000 00000000 00002000
04000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 20000000 00000000

00000000 00000000 00000000 80000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

00000000 00000000 00000000 80000000
00000000 00000000 00000000 80000000
00000000 00000000 00000000 80000000
00000000 00000000 00000000 80000000

00000800 00004100 00000020 08060000
00002000 00000000 00000008 00000001
20000000 00001400 10000000 81000001
00000200 00000000 00400000 00000040

20002a00 00005500 10400028 89060041
20002a00 00005500 10400028 89060041
20002a00 00005500 10400028 89060041
20002a00 00005500 10400028 89060041

fa15dab1 fea0cfd7 d5f4d362 3bbeed3c
c0157641 0e80aa81 b5e00458 120ea493
6045fefe 220affef 7570d578 8fbe0dcb
9815063e 14aaa080 21d49408 8310a0d5

fa15dab1 fea0cfd7 d5f4d362 3bbeed3c
6045fefe 220affef 7570d578 8fbe0dcb

Round 1 Substitute

Round 1 Diffuse

Round 2 Substitute
R
o
u
n
d
2
D
iff
u
se

Round 3 Substitute

Round 3 Diffuse

Truncate

Fig. 4. Propagation of affected bits for the initial difference 1x inserted to column 96
at the input of round 2. Note that some conditions on the chaining and message bits
in the column 5, 66 and 114 have to be fulfilled in order to guarantee that there will
be only a single bit difference in the column 96 at the input of round 2.

is active at the input of round 2, this results in sparse auxiliary differentials
affecting only a few output bits. Second, due to the fact that the difference at
the input of round 2 has Hamming weight 1, this results in at most 7 active
columns at the input of round 1. Note that a difference with a higher Hamming
weight would result in more active columns, complicating the attack. Moreover,
a disadvantage is that the number of conditions on the chaining and message
bits, that need to be fulfilled to guarantee that the auxiliary differential holds,
would increase. For example the auxiliary differential given in Figure 4 needs
3 conditions on the chaining bits and 5 conditions on the message bits (see
Table 2).

Table 2. Detailed information for the auxiliary differential used in the example given
in Figure 4

column 5 66 114

difference ax 5x 5x
message bits 0x 0x 0x, 1x
chaining bits 1x, 2x 1x, 2x 1x, 2x

The best way to find the auxiliary differentials is to start with a single bit
difference at the input of round 2 and then compute backward. Due to the
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properties of the linear layer, one will get 2 to 7 active columns at the input of
round 1, resulting in 2-7 conditions on the chaining bits and 3-13 conditions on
the message bits. We want to note that since the message input of Hamsi-256 is
only 32 bits the increased number of message bit conditions might be the limiting
factor for the attack. In Table 3 we list all the auxiliary differentials that result
in a single bit difference at the input of round 2. As can be seen in the table the
number of unaffected output bits for all the 192 auxiliary differentials is in the
range between 100 and 130 bits with an average of 110 bits as shown in Figure 6
in the appendix.

Table 3. List of all possible auxiliary differentials with only a single bit difference at
the input of round 2

input round 2 output input message

difference column # unaffected bits # active columns # conditions

1x
98, . . . , 100 102–103 2 3

96, 97; 101, . . . , 127 100–125 3 5

2x

29, . . . , 31 111–116 3 5

25, . . . , 28 113–114 4 7

0, . . . , 24 107–129 7 13

4x 32, . . . , 95 100–125 3 6

8x
61, . . . , 63; 93, . . . , 95 111–116 4 7

32, . . . , 60; 64, . . . , 62 107–129 5 9

Assuming again that the 192 auxiliary differentials are independent and ran-
domly distributed and the number of unaffected output bits is 110. Then, as
above from (3) we would expect to find a solution with a, b ≈ 10.

This is very close to our result, by using a brute-force search we found a =
10 auxiliary differentials not affecting the same b = 9 output bits resulting in
an attack complexity of about 2124.1 compression function evaluations. The 10
auxiliary differentials and the list of the affected output bits for each auxiliary
differential are given in Table 5 and Table 6 in the appendix.

However, the results of the attack described in the previous section would
suggest that there might solutions for larger values of a and b than estimated by
(3), since the auxiliary differentials are not independent nor random. Indeed, if
we ignore the conditions imposed by the auxiliary differentials on the message
bits, then we could find a = 14 auxiliary differentials not affecting the same
b = 14 output bits, however we were not able to find a confirming message
input. The reason for this is that we need to fulfill on average about 7 conditions
on the message bits per auxiliary differential, while the message input of Hamsi-
256 is only 32 bits. Note that for the attack described in the previous section,
we had in total only 10 message bit conditions for the 6 auxiliary differentials
all together.
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6 Conclusion

In this work, we have analyzed the Hamsi-256 compression function with respect
to its collision resistance. By exploiting non-random properties of the compres-
sion function we could show a collision attack with a complexity of about 2124.1.
The attack is an extension of the distinguishing attack of Çalik and Turan com-
bined with the idea of neutral bits and auxiliary differentials originally used to
speed up existing differential collision attacks. Even though the complexity of
our attack is very high and close the the generic case it gives some new insights
in the security of Hamsi-256.
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Fig. 5. Number of unaffected bits at the output of the compression function with
an initial difference of Hamming weight 2. Note that this does not include auxiliary
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are not useful for our attack.
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Table 4. Affected output bits for the 6 auxiliary differentials used in our collision
attack on the Hamsi-256 compression function

i
output

affected bits # unaffected bits

1
7bbfff3f fe1dfaff febaefdf f7fdf7e7

53
cfbfdfcf 615fffff 2e1affef f7f1fd7b

2
bddfff9f fe0efd7f ff5d77ef fbfefbf3

56
e5dfefe7 a0afffff 970d7ff7 fbf8febd

3
3fbfefbf fbddfff9 ffe0efd7 fff5d77e

58
cfbf8feb 6c7dfefe a21affff 7f70d7ff

4
9fdff7df fceebffc fff077eb 7ffaebbf

62
e5dfc7f5 263eff7f d10d7fff bfb86bff

5
fbffff3f fe1dffff ffffffff fffff7e7

29
efffffef e1ffffff 3e1fffef fff1fdfb

6
fdffff9f ff0effff ffffffff fffffbf3

30
e7fffff7 f0ffffff 9f0ffff7 fff8fefd

ffffffff ffffffff ffffffff ffffffff
6

efffffff ffffffff ff1fffff fff9ffff
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Fig. 6. Number of unaffected bits at the output of the compression function with a
single bit difference, i.e. 1x, 2x, 4x or 8x, at the input of round 2
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Table 5. List of auxiliary differentials used in our collision attack on the Hamsi-256
compression function including all conditions on the message and chaining bits. Note
that all conditions on the message bits can be fulfilled be setting the 32-bit message
block Mi = {12, 51, aa, 05} prior to the application of the message expansion.

1

column 3 4 64 112
difference ax ax 5x 5x

message bits 2x 0x 2x 0x, 1x
chaining bits 0x, 3x 0x, 3x 0x, 3x 1x, 2x

2

column 3 10 11 38 67 71 119

difference ax ax ax ax 5x 5x 5x
message bits 2x 3x 3x 1x 1x 1x 2x, 3x
chaining bits 0x, 3x 1x, 2x 0x, 3x 0x, 3x 1x, 2x 0x, 3x 1x, 2x

3

column 3 38 67
difference ax ax 5x

message bits 2x 1x 1x
chaining bits 0x, 3x 0x, 3x 1x, 2x

4

column 3 64 112
difference ax 5x 5x

message bits 2x 2x 0x, 1x
chaining bits 0x, 3x 0x, 3x 1x, 2x

5

column 4 39 68
difference ax ax 5x

message bits 0x 3x 2x
chaining bits 0x, 3x 0x, 3x 1x, 2x

6

column 10 71 119
difference ax 5x 5x

message bits 3x 1x 2x, 3x
chaining bits 1x, 2x 0x, 3x 1x, 2x

7

column 11 72 120
difference ax 5x 5x

message bits 3x 2x 0x, 1x
chaining bits 0x, 3x 0x, 3x 1x, 2x

8

column 16 42 45 52 90
difference ax ax ax ax 5x

message bits 0x 3x 0x 2x 0x, 1x
chaining bits 1x, 2x 0x, 3x 1x, 2x 1x, 2x 1x, 2x

9

column 50 85 114

difference ax 5x 5x
message bits 2x 1x 2x
chaining bits 1x, 2x 0x, 3x 0x, 3x

10

column 63 67 89 92 105
difference ax 5x 5x 5x 5x

message bits 3x 1x 2x 0x 2x, 3x
chaining bits 1x, 2x 1x, 2x 1x, 2x 1x, 2x 1x, 2x
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Table 6. Affected output bits for the 10 auxiliary differentials used in our improved
collision attack on the Hamsi-256 compression function

i
output

affected bits # unaffected bits

1
8777dda7 1f02ab16 ffd419fa 5abe9a0c

114
7177c1b9 8008bfde f8415ffd 0e3e1aaf

2
4f0eefbb 2c3e8576 f5ffa833 18b57d34

109
7067ef83 bd18917f ebfe82bf 4a1c7c35

3
8316afa6 69e19cf7 d58fc0ae 7eb9f506

119
8143ab86 6a1c7d70 f7a3022f 6d7fd057

4
e8576ac7 fa833f5f 57d34d8b eefbb4f0

100
8117fbf9 e82bffbf d58355e1 7ef8372e

5
418b57d3 b4f08e7b 6ac7e857 3e5c3a83

125
50a1d5c3 352e3cb8 e9d18117 26bfe82b

6
8fc0aad5 bff5067e 16afa69b e1ddf769

108
a0122ff7 7e1057ff c3af86ab 4c7df06e

7
c7e0556a 5ffa833f 8b57d34d f0eebbb4

109
d00917fb bf082bff e1d7c355 263ef837

8
8316afa6 69e19cf7 c583c0ae 7eb9f506

123
81438b86 6a1c7d70 f7a3022f 6d7fd057

9
ea0cfd7f 5f4d362d bbeed3c3 a15d8b1f

102
a0affeff 160d5787 fb60dcb9 245fefe6

10
ea0cfd7f 5f4d062d bbeed3c3 a15d8b0f

107
a0affeff 160d5787 fb60dcb9 245fef46

efffffff ffffbfff ffffffff ffffffff
9

f1ffffff ff3fffff ffffdfff 7fffffff
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Abstract. We study the complexity of multicollision attacks on gen-
eralized iterated hash functions. In 2004 A. Joux showed that the size
of a multicollision on any iterated hash function can be increased expo-
nentially while the amount of work (or, equivalently, the length of the
collision messages) grows only linearly. In Joux’s considerations it was es-
sential that each message block was used only once when computing the
hash value. In 2005 M. Nandi and D. Stinson generalized Joux’s method
to iterated hash functions where each message block could be employed
at most twice and in an arbitrary order. In the following year J. Hoch and
A. Shamir further extended Joux’s ideas, this time to so called ICE hash
functions that scan the input message any fixed number of times in an
arbitrary order. It was proved that by increasing the work polynomially,
exponentially large multicollision sets could be created. The informal at-
tack algorithm of Hoch and Shamir was more rigorously described in [8]
where also the amount of work of the attack algorithm (and, as well,
the length of the multicollision messages) was more precisely evaluated.
In [10] new combinatorial results were proved which allowed a consider-
ably more efficient collision set construction. In this paper we introduce
a new set of tools for the combinatorial analysis of long words in which
the number of occurrences of any symbol is restricted by a fixed con-
stant. By applying these tools we are able to further shorten the length
of the collison messages in an any fixed size collision set leading to a
good deal smaller attack complexity. Finally, we study the structure of
efficient rules for compression in bounded generalized iterated hash func-
tions (called ICE hash functions in [4]).

1 Introduction

The design principles for message hashing proposed by Merkle and Damgård
[2, 11] are applied in most of the contemporary hash functions widely used in
practise. However, insecurities have been found and verified in many of these
functions [3, 6, 7, 13, 15–17]. Several of the flaws come from the weaknesses in
the underlying finite compression apparatus. In recent years, rigorous theoretical
study has also found some weaknesses in the iterative structure itself [1].

S. Galbraith and M. Nandi (Eds.): INDOCRYPT 2012, LNCS 7668, pp. 172–190, 2012.
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In the following we shall describe the attack procedure on bounded general-
ized iterated hash functions; as the method is fairly complicated, we skip the
exact characterization and illustrate the algorithm with simple but nontrivial
examples.

Suppose first that we wish to create a usual Joux’s multicollision of 2r mes-
sages in an iterated hash function f+ based on the finite compression function
f : {0, 1}n × {0, 1}m → {0, 1}n of length n and block size m, m > n. Then the
compression rule can be described by the sequence 1 · 2 · · · r which tells us that
the hash value of the message x = x1x2 · · ·xr of r blocks is calculated so that

– each block xi is deployed exactly once in the process; and
– the blocks are used in the order x1, x2, . . . , xr.

Certainly the hash value of x with initial value h0 is f+(h0, x). A 2r–collision on
f+ can now be found as follows [5]. We start from the initial value h0 and search
two distinct message blocks b1, b′1 such that f(h0, b1) = f(h0, b

′
1) and denote

h1 = f(h0, b1). By the birthday paradox, the expected number of queries on f is
ã 2

n
2 , where ã is approximately 2.5. Then, for each i = 2, 3, . . . , r, we continue by

searching message blocks bi and b′i such that bi �= b′i and f(hi−1, bi) = f(hi−1, b
′
i)

and stating hi = f(hi−1, bi). Now the set C = {b1, b
′
1} × {b2, b

′
2} × · · · × {br, b

′
r}

is 2r-collision in f+. The expected number of queries on f is clearly ã r2
n
2 , i.e.,

the work the attacker is expected to do is only r times greater than the work
she or he has to do to find a single 2-collision. The size of the multicollision set
grows exponentially while the work increases only linearly.

More complex compression rules can be developed. Consider messages whose
length is l blocks. Let α = i1i2 · · · is where each ij is in Nl = {1, 2, . . . , l}. Then
the compression rule α tells us that, given an l block message x = x1x2 · · ·xl,
the hash value of x is calculated by compressing the message blocks in the order
xi1 , xi2 , . . . , xis . More accurately, the hash value of x (under the rule α and with
initial value h0) is fα(h0, x1x2 · · ·xl) = f+(h0, xi1xi2 · · ·xis).

Suppose now that in our compression function the parameter n = 3 and the
hash values of messages of length l = 18 blocks are to be calculated. Certainly
the length 3 of the hash value is ridiculously small, but the stress is on the
principles of the attack method. Assume furthermore that our hash function is
3–bounded (i.e., each block can be deployed at most three times) and that the
compression rule is given by:

α = 15 · 2 · 7 · 8 · 4 · 18 · 13 · 1 · 17 · 10 · 14 · 9 · 11 · 6 · 3 · 5 · 12 · 16·
11 · 4 · 18 · 1 · 5 · 3 · 16 · 8 · 2 · 14 · 17 · 6 · 9 · 10 · 7 · 12 · 13 · 15·
16 · 7 · 9 · 1 · 8 · 2 · 10 · 5 · 3 · 17 · 18 · 15 · 11 · 12 · 6 · 14 · 4 · 13

We wish to create a 4-collision in fα. Let

α1 = 15 · 2 · 7 · 8 · 4 · 18 · 13 · 1 · 17 · 10 · 14 · 9 · 11 · 6 · 3 · 5 · 12 · 16 ,
α2 = 11 · 4 · 18 · 1 · 5 · 3 · 16 · 8 · 2 · 14 · 17 · 6 · 9 · 10 · 7 · 12 · 13 · 15 , and
α3 = 16 · 7 · 9 · 1 · 8 · 2 · 10 · 5 · 3 · 17 · 18 · 15 · 11 · 12 · 6 · 14 · 4 · 13 .

Note that α = α1α2α3 and that each symbol of N18 occurs in each of the words
α1, α2, and α3 exactly once. We shall proceed as follows. As in the basic Joux’s
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attack, we create a 218–collision in fα1 with initial value h0. Let b1, b
′
1, b2, b

′
2,

. . ., b18, b
′
18 be pairs of message blocks such that bi �= b′i for i = 1, 2, . . . , 18 and

fα1(h0, z1) = fα1(h0, z2) for all z1, z2 ∈ C0 := {b1, b
′
1}×{b2, b

′
2}×· · ·×{b18, b

′
18}.

The expected number of calls of the compression function f is certainly at most
ã · 18 · 2 3

2 . Let

β1 = 11 · 4 · 18 , β2 = 1 · 5 · 3 , β3 = 16 · 8 · 2
β4 = 14 · 17 · 6 , β5 = 9 · 10 · 7 , β6 = 12 · 13 · 15 .

The collision set C0 is large enough to induce (with initial value h0) a 2–collision
in fα1β1 , a 22–collision in fα1β1β2 , . . ., a 26–collision in fα1β1β2···β6 = fα1α2 . Let
C1 ⊆ C0 be the 26–collision in fα1α2 (with initial value h0).

Let γ1 = 16·7·9·1·8·2·10·5·3 and γ2 = 17·18·15·11·12·6·14·4·13. Then each
symbol in the words β1, β4, and β6 occurs only in γ2 and, as well, each symbol
in β2, β3, and β5 occurs only in γ1. This, and the fact that C1 is sufficiently
large, induce a 2–collision in fα1α2γ1 and a 22–collision in fα1α2γ1γ2 = fα. The
expected number of compression function calls to create a 4–collision on fα is at
most 3 · ã · 18 · 2 3

2 .
The nested attack method described in the previous example can be general-

ized and applied to any bounded iterated hash function. Note that the respective
compression rules (one rule for each message length in blocks) are generally not
of such a favorable form as in our example. However, as our generalized iterated
hash function is bounded, we can, by choosing a sufficiently long compression
rule α, always find an arbitrarily large subalphabet A of alph(α) such that the
projection πA(α) is of the required favorable form and induces a collision set of
arbitrary size. The longer is α, the longer are messages in the collision set, and
the more complex is our attack. So it is in our best interests to be able to choose
the compression rule α as short as possible. By carefully analyzing the combina-
torial properties of long compression rules in bounded generalized iterated hash
functions, we can do this and thus decrease the length of the colliding messages.

One more remark is still to the purpose. When constructing the collision set,
our attack method focuses only on message blocks corresponding to the elements
of the active alphabet A. All message blocks linked to symbols in alph(α) \ A
are replaced by a fixed constant message block.

We shall now recall the earlier work on this subject.
In [12] Nandi and Stinson considered 2-bounded iterated hash functions. They

were able to show that the attacker can create 2k-collision with

O(k2 · ln k · [n + ln ln(2k)] · 2 n
2 )

compression function calls.
In the article [4] the results of [12] were further generalized. It was shown

that it is possible to create 2k-collision in any q-bounded generalized iterated
hash function with O(g(n, q, k) 2

n
2 ) compression function calls, where g(n, q, k)

is function of n, q and k which is polynomial with respect to n and k.
The results of [4] were studied more rigorously in [8], where it was shown,

that the approach offered in [4] meant that the expected number of compression
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function calls needed to create 2k-collision for q–bounded generalized iterated
hash function would be at most

ã · q · 222q−3
k(2q−3)22q−1

n(q−1)222q−1 · 2 n
2 .

A fresh approach and novel tools were created in [10]. It was shown that it is pos-
sible to create 2k-collision in any q-bounded generalized iterated hash function
with expected number of compression function calls at most

ã · q · k(2q−3)2q

n(q−1)22q · 2 n
2 .

Finally, in this work we will once again improve the methodology and we are
able to prove that the expected number of compression function calls needed to
create a 2k-collision is at most

ã · q · 5q−2 · 2�log2 n	 (q+4)q(q−1)
6 +�log2 k	q · 2 n

2 .

Note that above the expected numbers of compression function calls all are of the
form ã · q · g(n, q, k) ·2 n

2 ; here g(n, q, k) is, in fact, the length of collision messages.
This paper is organized in the following way. In the second section some

preliminaries are given. Then the attack algorithm is a bit more rigorously de-
scribed and our main result concerning the message complexity is given. The
fourth section contains our combinatorial toolbox needed for the complexity
considerations. The paper ends with a short conclusion.

2 Basic Concepts and Notation

This section contains helpful background information: Preliminaries on finite
strings and hash functions are briefly gone through.

2.1 Prerequisites on Alphabets and Words

Let Z the set of all integers, N the set of all natural numbers, and N+ = N \ {0}.
For each i ∈ N+, denote Ni = {1, 2, . . . , l}. For any finite set S, let |S| be the
cardinality of S that is to say, the number of elements in S. Given a nonnegative
real number x, denote by �x� the integer part of x.

An alphabet is any finite, nonempty set of abstract symbols called letters or
symbols. Let A be an alphabet. A word (over A) is any finite sequence of symbols
(in A). Thus, assuming that w is a word over A, we can write w = x1x2 · · ·xn,
where n is a nonnegative integer and xi ∈ A for i = 1, 2, . . . , n. Here n is
the length |w| of w. Notice that n may be equal to zero; then w is the empty
word, often denoted by ε, which contains no letters. For each a ∈ A, let |w|a
be the number of occurrences of the letter a in w, and let alph(w) denote the
set of all letters occurring in w at least once. The powers of the word w are
defined recursively as: w0 = ε, w1 = u, and wi+1 = wiw for i ∈ N+. Let
w+ = {wi | i ∈ N+}. Given q ∈ N+, the word w is q–restricted if |w|a ≤ q for
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all a ∈ alph(w). The word w is a permutation of A, if alph(w) = A and |w|a = 1
for each a ∈ A (i.e., the alphabet of w is A and w is 1–restricted).

For each n ∈ N, denote by An the set of all words of length n over A. Let A∗

be the set of all words over A and A+ = A∗ \ {ε}.
The projection morphism πB from A∗ into B∗, where B ⊆ A is nonempty, is

defined by πB(c) = c if c ∈ B and πB(c) = ε if c ∈ A \B. Given a word w over
the alphabet A, define the word (w)B as follows: (w)B = ε if πB(w) = ε and
(w)B = a1a2 · · ·as if πB(w) ∈ a+

1 a+
2 · · · a+

s , where s ∈ N+, a1, a2, . . . , as ∈ B,
and ai �= ai+1 for i = 1, 2, . . . , s− 1.

2.2 Prerequisites in Hash Functions and Their Security Properties

Let us first contemplate traditional hash functions. Call any word over the binary
alphabet {0, 1} a message. A hash function (of length n, where n ∈ N+ ) is a
mapping H : {0, 1}∗ → {0, 1}n. An ideal hash function H : {0, 1}∗ → {0, 1}n is
a (variable input length) random oracle: for each x ∈ {0, 1}∗, the value H(x) ∈
{0, 1}n is chosen uniformly at random.

Let k ≥ 2 be an integer. A k-collision in the hash function H is a k-element
subset C of set {0, 1}∗ such that H(x) = H(y) for all x, y ∈ C. Any 2-collision is
also called a collision.

There are three basic security properties of hash functions: collision resistance,
preimage resistance and second preimage resistance. Historically, the properties
are defined as follows.

Collision Resistance. It is computationally infeasible to find x, x′ ∈ {0, 1}∗,
x �= x′, such that H(x) = H(x′).

Preimage Resistance. Given any y ∈ {0, 1}n, it is computationally infeasible
to find x ∈ {0, 1}∗ such that H(x) = y.

Second Preimage Resistance. Given any x ∈ {0, 1}∗, it is computationally
infeasible to find x′ ∈ {0, 1}∗, x �= x′, such that H(x) = H(x′).

We wish to have more rigorous definitions to the security properties above,
especially to collision resistance, and employ the random oracle model. According
to the (generalized) birthday paradox, given any hash function H of length n
(random oracle hash functions included), a k-collision can in H be found (with
probability approx. 1

2 ) by hashing (k!)
1
k 2

n(k−1)
k messages [14].

Two remarks can be made immediately:

• In the case k = 2 approximately
√

2 · 2 n
2 hashings (queries on f) are

needed; intuitively most of us would expect the number to be around
2n−1.
• Given an integer k ≥ 2, when n is sufficiently large, finding a (k + 1)-

collision consumes much more resources than finding a k-collision.

We finally state a new security property for hash functions. The characterization
is not yet totally rigorous. It is, however, important for our further considera-
tions.
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Multicollision Resistance. The hash function H is k-collision resistant, k ≥ 2
an integer, if to find a k-collision in H is (approximately) as difficult as to find
an k-collision in any random oracle hash function G of length n.

2.3 Generalized Iterated Hash Functions

All practical hash functions use iterative structures.
Let m, n ∈ N+ be such that m > n. Then H = {0, 1}n is the set of hash values

(of length n) and B = {0, 1}m is the set of message blocks (of length m). Any
w ∈ B+ is a message. Given a mapping f : H × B → H , call f a compression
function (of length n and block size m).

Define the function f+ : H×B+ → H inductively as follows. For each h ∈ H ,
b ∈ B and x ∈ B+, let f+(h, b) = f(h, b) and f+(h, b x) = f+(f(h, b), x). Note
that f+ is nothing but an iterative generalization of the compression function f .

Let l ∈ N+ and α be a word such that alph(α) ⊆ Nl = {1, 2, . . . , l}. Then
α = i1i2 · · · is, where s ∈ N+, s ≥ l, and ij ∈ Nl for j = 1, 2, . . . , s. Define the
iterated compression function fα : H ×Bl → H (based on α and f) by

fα(h, b1b2 · · · bl) = f+(h, bi1bi2 · · · bis)

for each h ∈ H and b1, b2, . . . , bl ∈ B. Here clearly α only declares how many
times and in which order the message blocks b1, b2, . . . , bl are used when creating
the (hash) value fα(h, b1b2 . . . bl) of the message b1b2 · · · bl.

Given an integer k ≥ 2 and h0 ∈ H , a k-collision (with initial value h0) in the
iterated compression function fα is a set C ⊆ Bl such that the following holds:

1. The cardinality of C is k;
2. For all u, v ∈ C we have fα(h0, u) = fα(h0, v); and
3. For any pair of distinct messages u = u1u2 · · ·ul and v = v1v2 · · · vl in C

such that ui, vi ∈ B for i = 1, 2, . . . , l, there exists j ∈ alph(α) for which
uj �= vj .

For each j ∈ N+, let now αj ∈ N
+
j be such that alph(αj) = Nj . Denote α̂ =

(α1, α2, . . .). Define the generalized iterated hash function (gihf, for short) Hα̂,f :
H ×B+ → H (based on α̂ and f) as follows: Given the initial value h0 ∈ H and
the message x ∈ Bj , j ∈ N+, let

Hα̂,f (h0, x) = fαj (h0, x) .

Thus, given any message x of j blocks and hash value h0, to obtain the value
Hα̂,f(h0, x), we just pick the word αj from the sequence α̂ and compute fαj (h0, x).
For more details, see [8] and [4].

The gihf Hα̂,f is q–bounded, q ∈ N+, if for each l ∈ N+, no letter alph(αl)
occurs in αl more than q times. A generalized iterated hash function is bounded
if it is q–bounded for some q ∈ N+.

Remark 1. A traditional iterated hash function H : B+ → H based on f (with
initial value h0 ∈ H) can of course be defined by H(u) = f+(h0, u) for each
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u ∈ B+. On the other hand H is a generalized iterated hash function Hα̂,f :
H × B+ → H based on α̂ and f where α̂ = (1, 1 · 2, 1 · 2 · 3, . . .) and the initial
value is fixed as h0. Certainly H (as a gihf) is 1-bounded.

Given k ∈ N+ and h0 ∈ H , a k-collision in the generalized iterated hash function
Hα̂,f (with initial value h0) is a set C of k messages such that for all u, v ∈ C,
|u| = |v| and Hα̂,f (h0, u) = Hα̂,f (h0, v). Now suppose that C is a k-collision in
Hα̂,f with initial value h0. Let l ∈ N+ be such that C ⊆ Bl, i.e., the length
of each message in C is l. Then, by definition, for each u, v ∈ C, the equality
fαl

(h0, u) = fαl
(h0, v) holds. Since alph(αl) = Nl (and thus each symbol in Nl

occurs in alph(α)), the set C is a k-collision in fαl
with initial value h0. Thus, a

k-collision in the generalized iterated hash function Hα̂,f necessarily by definition,
is a k-collision in the iterated compression function fαl

for some l ∈ N+.
Now, in our security model, the attacker tries to find a k-collision in Hα̂,f . We

assume that the attacker

• knows how Hα̂,f depends on the compression function f (i.e., she/he
knows α̂);
• sees the compression function f as a black box (i.e., she/he does not

know anything about the internal structure of f); and
• can make (any number of) queries (pairs (h, b) ∈ H × B) on f and get

the respective responses (values f(h, b) ∈ H).

What do we mean by an attack? A k-collision attack on Hα̂,f is a probabilistic
procedure (based on the birthday paradox) that finds a k-collision in Hα̂,f with
probability equal to one for any initial value h0.

The (message) complexity of a k-collision attack on Hα̂,f is the expected num-
ber of queries on f required to get a k-collision Hα̂,f .

3 Attacking Bounded Generalized Iterated Hash
Functions

Below we describe a general attack procedure on generalized iterated hash func-
tions informally, for details we refer to [8].

3.1 Nested Multicollision Attack Schema (NMCAS)

Recall that in a generalized iterated hash function Hα̂,f the mapping f : {0, 1}n×
{0, 1}m → {0, 1}n is a compression function and α̂ = (α1, α2, . . .) is a sequence
of words such that alph(αl) = Nl for each l ∈ N+.

Procedure Schema NMCAS

Input: A generalized iterated hash function Hα̂,f , an initial value h0 ∈ {0, 1}n,
a positive integer k.
Output: A 2k-collision in Hα̂,f .
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Step 1: Choose (a large) l ∈ N+. Consider the lth element αl of the sequence
α̂. Let αl = i1i2 · · · is, where s ∈ N+ and ij ∈ Nl for j = 1, 2, . . . , s.
Step 2: Fix a (large) set of active indices Act ⊆ Nl = {1, 2, . . . , l}.
Step 3: Factorize the word αl into nonempty strings appropriately, i.e., find
p ∈ {1, 2, . . . , s} and βi ∈ N

+
l such that αl = β1β2 · · ·βp.

Step 4: Based upon the active indices, create a large multicollision in fβ1 .
More exactly, find message block sets M1, M2, . . . , Ml satisfying the following
properties.
(i) If i ∈ Nl \ Act, then the set Mi consists of one constant message block

ω.
(ii) If i ∈ Act, then the set Mi consists of two different message blocks mi1

and mi2.
(iii) The set M = M1M2 · · ·Ml = {u1u2 · · ·ul

∣∣ui ∈Mi for i = 1, 2, . . . , l} is
a 2|Act|-collision in fβ1 with initial value h0.

Step 5: Based on the set C1 = M , find message sets C2, C3, . . . , Cp such that
(iv) Cp ⊆ Cp−1 ⊆ · · · ⊆ C1 = M .
(v) For each j ∈ {1, 2, . . . , p} the set Cj is a (large) multicollision in fβ1β2···βj

with initial value h0.
(vi) |Cp| = 2k.
Step 6: Output Cp.

Cosider a q–bounded generalized iterated hash function Hα̂,f where the com-
pression function f is of length n and block size m. Suppose that l ∈ N+,
p ∈ {1, 2, . . . , q} and A ⊆ alph(αl), |A| = np−1 are such that the following
properties are satisfied:

(Q1) αl possesses a factorization αl = β1β2 · · ·βp where A ⊆ alph(βi) for
i = 1, 2, . . . , p; and

(Q2) for any i ∈ {1, 2, . . . , p− 1}, if (βi)A = z1z2 · · · znp−ik is a factorization
of (βi)A such that |alph(zj)| = ni−1 for j = 1, 2, . . . np−ik and (βi+1)A =
u1u2 · · ·unp−i+1k is a factorization of (βi+1)A such that |alph(uj)| = ni

for j = 1, 2, . . . np−i+1k, then for each j1 ∈ {1, 2, . . . , np−ik}, there exists
j2 ∈ {1, 2, . . . , np−i−1k} such that alph(zj1) ⊆ alph(uj2).

Then, following the NMCAS–procedure (and the attack construction described
more rigorously in in [8]), the property (Q1) allows the attacker to construct a
2|A|-collision C1 in fβ1 with any initial value h0 so that the expected number
of queries on f is at most ã|β1| 2 n

2 . The property (Q2) ensures that based on
the multicollision guaranteed by (Q1), the attacker can proceed and, for i =
2, 3, . . . , p, create a 2np−ik-collision Ci in fβ1β2···βi so that the expected number of
queries on f is at most ã|β1β2 · · ·βi| 2 n

2 . Thus finally a 2k-collision of complexity
ã|α| 2 n

2 in Hα̂,f is generated. We refer to Section 5 in [8] for the details of the
attack as a statistical experiment.

On the basis of our combinatorial results (culminating to Theorem 6) the
following can be proved:
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Theorem 1. Let m, n and q be positive integers such that m > n and q ≥ 2,
f : {0, 1}n × {0, 1}m → {0, 1}n a compression function, and α̂ = (α1, α2, . . .)
a q-bounded sequence of words such that alph(αl) = Nl for each l ∈ N+. Then,
for each k ∈ N+, there exists a 2k-collision attack on the generalized iterated
hash function Hα̂,f such that the expected number of queries on f is at most
ã · q · 5q−2 · 2�log2 n	 (q+4)q(q−1)

6 +�log2 k	q · 2 n
2 .

Proof. Choose di = �log2 n� for i = 1, 2, . . . , q − 1, and dq = �log2 k�. Then∑q
i=1(q − i + 1) i di =

∑q−1
i=1 (q − i + 1) i �log2 n� + q �log2 k�

= (q+4)q(q−1)
6 �log2 n� + q �log2 k� .

Let l = 5q−2 · 2�log2 n	 (q+4)q(q−1)
6 +�log2 k	q · 2 n

2 . Now Corollary 3 (and Theorem 6)
imply that the properties (Q1) and (Q2) hold. ��
The previous theorem implies that, given q, k ∈ N+, then for sufficiently large
n, no q-bounded generalized iterated hash function is 2k-collision resistant.

3.2 Attacks in Practice

We can now shortly compare the upper bounds offered in the different articles.
Let us assume, that we want to create 2k−collision against q−bounded hash
function. Articles [4, 8] prove that the total complexity of the attack will be less
than 2.5 · q · 222q−3

k(2q−3)22q−1
n(q−1)222q−1

2
n
2 .

This means that if we assume that for example n = 256, k = 4 and q = 3 we
get the expected number of compression function calls is less than

2.5 · 3 · 2223−3
4(23−3)223−1

256(3−1)2223−1
2

256
2 = 7.5 · 28630.

It is immediately clear that if complexity is this high, the attack has no practical
significance. The more efficient way to create the permutations offered by [9]
lowers the complexity of the attack to 2.5 · q · k(2q−3)2q

n(q−1)22q

2
n
2 and thus for

the values n = 256, k = 4 and q = 3 the complexity drops dramatically to
2.5 · 3 · 43·23

2562223
2

256
2 = 7.5 · 2432. However it is easy to see that even this is

well beyond the complexity required to complete the preimage attack.
In this article we have however once again lowered the upper bound of the

attack significantly to less than 2.5 · q · 5q−22�log2 n	 (q+4)q(q−1)
6 +�log2k	q · 2 n

2 .
Our new upper bound gives us (for n = 256, k = 4 and q = 3) the complexity

of 7.5 · 5 · 2190. This is clearly well below the complexity 16
√

16! · 2240 offered by
the brute force attack (see article [14]).

4 Combinatorial Considerations

We now derive the main combinatorial results needed to prove that our multic-
collision attack construction can be realized efficiently. Note that, when study-
ing unavoidable regularities in long words with bounded number of symbol
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occurrences, we give up the use of classical combinatorial results such as Dil-
worth’s Theorem and (generalized) Hall’s matching Theorem applied in [4] and
in [8, 10, 12]. Instead, we develop a completely new approach which is based
purely on concepts of combinatorics on words. The properties of so called non-
separable words appear to be of utmost importance.

4.1 On Nonseparable Words

Let α be a word, A ⊆ alph(α), and s ∈ N+. We say that the word α is (s, A)
–separable if there exists a factorization α = α1α2 of α such that |alph(α1) ∩
alph(α2) ∩ A| ≥ s. The word α is (s, A)–nonseparable if A ⊆ alph(α) and α is
not (s, A)–separable.

The word α is s–separable (s–nonseparable, respectively) if α is (s, alph(α))–
separable ((s, alph(α))–nonseparable, resp.) Let us list three simple properties
of nonseparable words.

Lemma 1. Let s be a positive integer, A an alphabet and α an (s, A)–nonsepar-
able word. Then the following holds.

(a) Each subword β of α is (t, B)–nonseparable for any integer t ≥ s and
set B ⊆ A.

(b) There exists a factorization α = βγ of α such that |[alph(β)\alph(γ)]∩
A| ≥ � |A|2 � − s and |[alph(γ) \ alph(β)] ∩A| ≥ � |A|2 � − s.

(c) Suppose that |A| ≥ d s where d ∈ N+. Then there exists a factorization
α = α1α2 · · ·αd of α such that for each i ∈ {1, 2, . . . , d} there exists a
symbol ai ∈ A such that ai ∈ alph(αi) but ai /∈ alph(α1α2 · · ·αi−1) and
ai /∈ alph(αi+1αi+2 · · ·αd).

Proof. The claim of (a) follows directly from the definition.
To prove (b), let α = βγ be a factorization of α such that alph(β) contains

occurrences of exactly � |A|2 � symbols in A. Then γ contains occurrences of at least
� |A|2 � symbols in A. Since α is (s, A)–nonseparable, |alph(β)\alph(γ)| ≥ � |A|2 �−s

and |alph(γ) \ alph(β)| ≥ � |A|2 � − s.
Consider finally (c). Let α = α1α2 · · ·αd be a factorization of α such that

for all i ∈ {1, 2, . . . , d}, αi contains at least s symbols that do not occur in the
word α1α2 · · ·αi−1. Since |A| ≥ d s, the factorization can always be found. Since
α is (s, A)–nonseparable, each factor of it is as well. Thus for i ∈ {1, 2, . . . , d},
there exists a ∈ alph(αi) \ alph(α1α2 · · ·αi−1) such that a does not occur in
αi+1αi+2 · · ·αd. The claim follows. ��
Let now s and p be positive integers. Define the function T p

s : Z→ Z by

T p
s (x) = � x

2p
� − 2s .

We then define, for each k ∈ N+, the function T
(p,k)
s : N→ N by

T (p,k)
s (x) = T p

s (T p
s (· · · (T p

s (x)) · · ·)) .
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Here on the right side the function T p
s is applied k times, i.e.,

T (p,k)
s = T p

s ◦ T p
s ◦ · · · ◦ T p

s︸ ︷︷ ︸
k times

.

What follows now is a series of quite technical lemmata in which the structural
properties of (a sequence) of nonseparable words are gradually fortified. We
apologize the numerous new notations and strenuous and detailed treatment;
they allow us, however, to give the proofs in an accurate form contrary to the
state of affairs in many security papers. For space reasons, proofs of some results
are omitted and later presented in the full version of the paper.

The first result is a generalization of item b of Lemma 1 for a sequence of
nonseparable words.

Lemma 2. Let p and s be positive integers, A an alphabet, and α1, α2, . . . , αp a
sequence of (s, A)–nonseparable words. Then there exist sets A1, A2 ⊆ A and, for
each i ∈ {1, 2, . . . , p}, a factorization αi = αi,1αi,2 of αi as well as a permutation
σi of 1, 2 such that

1. A1 ⊆ alph(α1,σi(1)) and A2 ⊆ alph(α1,σi(2));

2. A1 ∩ alph(αi,σ1(2)) = ∅ and A2 ∩ alph(αi,σi(1)) = ∅; and

3. |A1| ≥ T p
s (|A|) and |A2| ≥ T p

s (|A|).

Proof. We proceed by induction on p. Consider the case p = 1. Let α1,1α1,2 be a
factorization of α1 such that |alph(α1,1)∩A| ≥ � |A|2 � and |alph(α1,2)∩A| ≥ � |A|2 �.
Then, since α1 is (s, A)–nonseparable, we have |alph(α1,1)∩ alph(α1,2)∩A| < s.
This implies that |[alph(α1,1) \ alph(α1,2)] ∩ A| ≥ � |A|2 � − s and |[alph(α1,2) \
alph(α1,1)] ∩ A| ≥ � |A|2 � − s. Choose A1 = [alph(α1,1) \ alph(α1,2)] ∩ A and
A2 = [alph(α1,2)\alph(α1,1)]∩A. Let furthermore σ1 be the identity permutation
of 1, 2. Since � |A|2 � − s ≥ T 1

s (|A|), the claims 1, 2, and 3 are satisfied.
Suppose then that p = k + 1, k ∈ N+. Consider the sequence of words

α1, α2, . . . , αk. By the induction hypothesis, there exist A′1, A′2 ⊆ A and, for
each i ∈ {1, 2, . . . , k}, a factorization αi = αi,1αi,2 of αi and a permutaion σi of
1, 2 such that A′1, A

′
2 and σi (for i = 1, 2, . . . , k) satisfy the properties 1,2, and

3.
Let αk+1 = αk+1,1αk+1,2 be a factorization of αk+1 and i1, i2 distinct elements

in {1, 2} such that

|alph(αk+1,i1 )∩A′1| ≥
⌊

1
2
� |A|

2k
�
⌋
− s and |alph(αk+1,i2 )∩A′2| ≥

⌊
1
2
� |A|

2k
�
⌋
− s .

Let σk+1 be the permutation of 1, 2 such that σk+1(1) = i1 and σk+1(2) = i2.
Denote

A1 = [alph(αk+1,i1)\alph(αk+1,i2)]∩A′
1 and A2 = [alph(αk+1,i2)\alph(αk+1,i1)]∩A′

2 .



Generalized Iterated Hash Fuctions Revisited 183

Clearly A1 and A2 as well as the permutations σ1, σ2, . . . , σk+1 satisfy the claims
1 and 2. Since αk+1 is (s, A)-nonseparable, we have

|A1| ≥
⌊

1
2
� |A|

2k
�
⌋
− 2s and |A2| ≥

⌊
1
2
� |A|

2k
�
⌋
− 2s .

Since |A| ≥ 2k+1� |A|
2k+1 �, the relations⌊

1
2
� |A|

2k
�
⌋
≥

⌊
1
2
· 2 · � |A|

2k+1
�
⌋

= � |A|
2k+1

�

hold, so we deduce that |A1| ≥ � |A|2k+1 � − 2s and |A2| ≥ � |A|2k+1 � − 2s. Since
T p

s (|A|) = � |A|2k+1 � − 2s, also the condition 3 holds and we are done. ��
In our future considerations we need a much stronger tool than the previous
lemma can provide. The factorization of each nonseparable word α1, α2, . . . , αp

in Lemma 2 should be refined and the common alphabets for refinements created.

Theorem 2. Let p and s be positive integers, A an alphabet, and α1, α2, . . . , αp

a sequence of (s, A)–nonseparable words. Then, given d ∈ N+, there exist al-
phabets A1, A2, . . . , A2d ⊆ A and, for each i ∈ {1, 2, . . . , p}, a factorization
αi = αi,1αi,2 · · ·αi,2d of αi, and a permutation σi of 1, 2, . . . , 2d such that for
each j ∈ {1, 2, . . . , 2d}

1. Aj ⊆ alph(αi,σ(j))

2. Aj ∩ alph(αi,j′ ) = ∅ for each j′ ∈ {1, 2, . . . , 2d}, j′ �= σ(j); and

3. |Aj | ≥ T
(p,d)
s (|A|).

Proof. Proceed by induction on d. In the case d = 1 our theorem restates the
result of Lemma 2.

Consider the case d = k + 1, where k ∈ N+. Apply Lemma 2 to the words
α1, α2, . . . , αp to obtain the alphabets A1, A2 ⊆ A, and, for each i ∈ {1, 2, . . . , p}
a permutation δi of 1, 2 and a factorization αi = ωi,1ωi,2 of αi such that the
conditions 1, 2, and 3 of the lemma hold (when σi is replaced by δi and the
words αi,1, αi,2 by words ωi,1, ωi,2, respectively). Certainly |A1|, |A2| ≥ T p

s (|A|).
Apply the induction hypothesis to the words ω1,δ1(1), ω2,δ2(1), . . ., ωp,δp(1) to

obtain alphabets B1, B2, . . . , B2k ⊆ A1, and for each i ∈ {1, 2, . . . , p} a factor-
ization ωi,δi(1) = βi,1βi,2 · · ·βi,2k of αi,δi(1) and a permutation μi of 1, 2, . . . , 2k

such that for each j ∈ {1, 2, . . . , 2k}
Bj ⊆ alph(βi,μ(j))

Bj ∩ alph(βi,j′ ) = ∅ for each j′ ∈ {1, 2, . . . , 2k}, j′ �= μi(j); and

|Bj | ≥ T
(p,k)
s (|A1|).

Apply the induction hypothesis once more, now to ω1,δ1(2), ω2,δ2(2), . . ., ωp,δp(2),
to obtain alphabets C1, C2, . . . , C2k ⊆ C, and, for each i ∈ {1, 2, . . . , p}, a
factorization ωi,δi(2) = γi,1γi,2 · · · γi,2k of γi and a permutation ρi of 1, 2, . . . , 2k

such that for each j ∈ {1, 2, . . . , 2k}
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Cj ⊆ alph(γi,ρ(j))

Cj ∩ alph(γi,j′ ) = ∅ for each j′ ∈ {1, 2, . . . , 2k}, j′ �= ρi(j); and

|Cj | ≥ T
(p,k)
s (|A2|).

Note that |Bj |, |Cj | ≥ T
(p,k)
s (T 1

s (|A|)) = T
(p,k+1)
s (|A|) for j = 1, 2, . . . , 2k. Let

Aj = Bj and A2k+j = Cj for j = 1, 2, . . . , 2k. Let i ∈ {1, 2, . . . , p}. Define the fac-
torization αi = αi,1αi,2 · · ·αi,2k+1 of α1 and the permutation σi of 1, 2, . . . , 2k+1

as follows. If δi(1) = 1 and δi(2) = 2, then αi,j = βi,j , αi,2k+j = γi,j and
σi(j) = μi(j) and σi(2k + j) = ρi(j) for j = 1, 2, . . . , 2k. If δi(1) = 2 and
δi(2) = 1, then αi,j = γi,j , αi,2k+j = βi,j and σi(j) = ρi(j) and σi(2k+j) = μi(j)
for j = 1, 2, . . . , 2k.

Clearly the claims 1, 2, and 3 of our theorem are satisfied with these choices
when p = k + 1. The induction is thus extended and the proof is complete. ��
Note that in the above theorem properties 1 and 2 imply that the sets A1, A2, . . . ,
A2d are pairwise disjoint.

Let p and s be positive integers. For each d ∈ N+, denote Ds(p, d) = 2p d +
2 s

∑d
i=1 2p i. Then obviously Ds(p, 1) = 2p+2 s 2p and D(p, d+1) = 2p [D(p, d)+

2 s] = 2p D(p, d) + 2p+1s for any d ∈ N+.
It is quite straightforward to see that

T (p,d)
s (Ds(p, d)) = (T p

s ◦ T p
s ◦ · · · ◦ T p

s︸ ︷︷ ︸
k times

)(Ds(p, d)) = 1 .

Obviously Ds(p, d) is the smallest positive integer x such that T
(p,d)
s ∈ N+.

Corollary 1. Let p, s and d be positive integers and A an alphabet such that
|A| ≥ Ds(p, d). Assume furthermore that α1, α2, . . . , αp are (s, A)–nonseparable
words. Then there exists a subalphabet B of A such that |B| = 2d and (αi)B is
a permutation of B for all i ∈ {1, 2, . . . , p}.
Proof. Omitted. ��
Let s, r ∈ N+ and (p1, di) ∈ N

2
+ for i = 1, 2, . . . , r. Define the function T

⊗r
i=1(pi,di)

s :
N → N by T

⊗r
i=1(pi,di)

s = T
(p1,d1)
s ◦ T

(p2,d2)
s · · ·T (pr,dr)

s . Then, for each x ∈ N+,
the following holds:

T
⊗r

i=1(pi,di)
s (x) = T (p1,d1)

s (T (p2,d2)
s (· · · (T (pr,dr)

s (x)) · · ·)) .

It goes without saying that T
⊗r

i=1(pi,di)
s is an increasing function. Note further-

more that T
⊗r

i=1(pi,di)
s = T

(p1,d1)
s if r = 1.

The main result of this section further generalizes Theorem 2 and captures
the stepwise refinement of factorizations for i nonseparable words α1, α2, . . . , αi,
i = p, p− 1, . . . , 2, 1.

Theorem 3. Let p and s be positive integers, A an alphabet, and α1, α2, . . . , αp

a sequence of (s, A)–nonseparable words. Given d1, d2, . . . , dp ∈ N+, there exists
sets Ai,j ⊆ A (i = 1, 2, . . . , p; j = 1, 2, . . . , 2

∑ p
l=i dl) such that
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1. for each i ∈ {1, 2, . . . , p} and j ∈ {1, 2, . . . , 2
∑ p

l=i dl}

|Ai,j | ≥ T
⊗p

l=i(i,di)
s (|A|) ;

2. for each i ∈ {2, 3, . . . , p} and j ∈ {1, 2, . . . , 2
∑p

l=i dl} there exist exactly
2di−1 indices j′ ∈ {1, 2, . . . , 2

∑p
l=i−1 dl} such that Ai−1,j′ ⊆ Ai,j; and

3. for each i ∈ {1, 2, . . . , p} there exists a factorization

αi = αi,1αi,2 · · ·αi,2
∑ p

l=i
dl

of αi and a permutation σi of 1, 2, . . . , 2
∑p

l=i dl such that for all j ∈
{1, 2, . . . , 2

∑p
l=i dl}

(i) Ai,j ⊆ alph(αi,σi(j)); and
(ii) Ai,j ∩ alph(αi,r) = ∅ for all r ∈ {1, 2, . . . , 2

∑p
l=1 dl} such that

r �= σi(j).

Proof. Omitted. ��

Let s, r ∈ N+ and (pi, di) ∈ N
2
+ for i = 1, 2, . . . , r. We shall next study those

values x ∈ N+ for which T
⊗r

i=1(pi,di)
s (x) is a positive integer.

Define inductively

Ds(⊗r
i=1(pi, di)) = 1 if r = 0 ;

Ds(⊗r
i=1(pi, di)) = Ds(pr, dr) if r = 1 ;

Ds(⊗r
i=1(pi, di)) = 2prdr Ds(⊗r−1

i=1 (pi, di)) + 2 s
∑dr

i=1 2pri if r > 1 .

Oviously

Ds(⊗r
i=1(pi, di)) = 2

∑r
i=1 pidi + 2 s

[
2

∑r
i=2 pidi

∑d1
i=1 2p1i + 2

∑r
i=3 pidi

∑d2
i=1 2p2i+

+ · · ·+ 2prdr
∑dr−1

i=1 2pr−1i +
∑dr

i=1 2pri
]

.

Theorem 4. Let s, r ∈ N+ and (pi, di) ∈ N
2
+ for i = 1, 2, . . . , r. Then

T
⊗r

i=k+1(pi,di)
s (Ds(⊗r

i=1(pi, di))) = Ds(⊗k
i=1(pi, di))

for each k ∈ {0, 1, . . . , r − 1}.

Proof. Omitted. ��

Corollary 2. Let s, r ∈ N+ and (p1, di) ∈ N
2
+ for i = 1, 2, . . . , r. Then

T
⊗r

i=1(pi,di)
s (Ds(⊗r

i=1(pi, di))) = 1 .

On the basis of the facts above it should be clear that Ds(⊗r
i=1(pi, di)) is the

smallest number x ∈ N+ such that T
⊗r

i=1(pi,di)
s (x) is a positive integer.
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4.2 The Main Combinatorial Results

For practical reasons (in fact, to prove Corollary 3) we need to evaluate the size
of the number Ds(⊗p

i=1(i, di)).

Theorem 5. Let p, s and d1, d2, . . . , dp be positive integers. Then

Ds(⊗p
i=1(i, di)) ≤ (4 s + 1) 2

∑p
i=1 i di − 4 s .

Proof. Omitted. ��
Recall that for each q ∈ N+, a word α is q-restricted if |α|a ≤ q for all q ∈ alph(α).
Our main combinatorial result for attacking purposes can now be stated.

Theorem 6. Let q ≥ 2 and d1, d2, . . . , dq ≥ 1 be integers and s1, s2, . . . , sq

parameters defined as follows: sq = 2
∑q

j=1 j dj , sk = Dsk+1(⊗k
i=1(i, di)), for k =

2, 3, . . . , q−1, and s1 = 2d1s2. Let furthermore α be a q–restricted word such that
|alph(α)| ≥ s1. Then there exist p ∈ {1, 2, . . . , q}, a factorization α = α1α2 · · ·αp

of α, and alphabets Ai,j (i = 1, 2, . . . p; j = 1, 2, . . . , 2
∑p

k=1 dk) such that

1. for each i ∈ {1, 2, . . . p} and j ∈ {1, 2, . . . , 2
∑p

k=i dk}:

|Ai,j | ≥ 2
∑ i−1

k=1 k dk ;

2. for each i ∈ {2, 3, . . . , p} and j ∈ {1, 2, . . . , 2
∑p

k=i dk} there exist exactly
2di−1 indices l ∈ {1, 2, . . . , 2

∑p
k=i−1 dk} such that Ai−1,l ⊆ Ai,j ; and

3. for each i ∈ {1, 2, . . . , p} there exists a factorization

αi = αi,1αi,2 · · ·αi,2
∑ p

k=i
dk

of αi and a permutation σi of 1, 2, . . . , 2
∑p

k=i dk such that for all j ∈
{1, 2, . . . , 2

∑p
k=i dk}

(i) Ai,j ⊆ alph(αi,σi(j)); and
(ii) Ai,j ∩ alph(αi,l) = ∅ for all l ∈ {1, 2, . . . , 2

∑p
k=i

dk} such that
l �= σ(j).

Proof. We proceed stepwise as follows.
In the first step we ask whether or not the word α is s2–nonseparable, i.e.,

whether or not for each factorization α = β1β2, we have |alph(β1)∩ alph(β2)| <
s2. Suppose that α is s2–nonseparable. Let then α = α1α2 · · ·α2d1 be a factor-
ization of α such that for each i ∈ {1, 2, . . . , 2d1}, the word αi contains (at least)
s2 different symbols that do not occur in α1α2 · · ·αi−1. Since |alph(α)| ≥ 2d1s2,
the factorization always can be found. Let A1,i be the set of all symbols in
alph(αi) that do not occur in the word alph(α1 · · ·αi−1αi+1 · · ·α2d1 ). Since α
is s2–nonseparable, each of the sets A1,1, A1,1, A1,2, . . ., A1,2d1 is nonempty.
By choosing p = 1, we note that the claims of the theorem hold. We use here
convention

∑p−1
k=1 k dk =

∑0
k=1 k dk = 0, i.e., 2

∑p−1
k=1 k dk = 1.
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Suppose then that the word α is s2–separable. Let then α = α1α2 be a
factorization of α such that |alph(α1)∩alph(α2)| ≥ s2. Recall that, by definition,
s2 = Ds3(⊗2

i=1(i, di)).
In the second step, we ask whether or not there exists an alphabet B ⊆

alph(α1) ∩ alph(α2) such that one of the words α1 and α2 is (s3, B)–separable.
Suppose that this is not the case. Then each of the words α1 and α2 is (s3, A)–
nonseparable where A = alph(α1) ∩ alph(α2). Since |A| ≥ Ds3(⊗2

i=1(i, di)), the
claims hold by Theorem 3 and Theorem 4.

Assume that B ⊆ alph(α1) ∩ alph(α2) is an alphabet such that one of the
words α1, α2, say α2, is (s3, B)–separable. Let α2 = γ1γ2 be a factorization of
α2 such that |alph(γ1) ∩ alph(γ2) ∩B| ≥ s3. Redenoting α2 := γ1 and α3 := γ2,
we have α = α1α2α3 and | ∩3

i=1 alph(αi)| ≥ s3.
Continuing like this, we describe the general step k, k ∈ {1, 2, . . . , q} as follows.

Let α = α1α2 · · ·αk be a factorization of α such that | ∩k
i=1 alph(αi)| ≥ sk.

Assume first that k < q. Recall that sk = Dsk+1(⊗2k
i=1(i, di)). We pose the

question whether or not there exists an alphabet B ⊆ ∩k
i=1alph(αi) such that

one of the words α1, α2, . . . , αk is (sk+1, B)–separable. Suppose that this is not
the case. Then each of the words α1, α2, . . . , αk is (sk+1, A)–nonseparable where
A = ∩k

i=1alph(αi). Since |A| ≥ Dsk+1(⊗k
i=1(i, di)), the claims hold by Theorem

3 and Theorem 4.
Assume that B ⊆ ∩k

i=1alph(αi) is an alphabet such that one of the words
α1, α2, . . . , αk, say αk, is (sk+1, B)–separable. Let αk = ω1ω2 be a factorization
of αk such that |alph(ω1) ∩ alph(ω2) ∩ B| ≥ sk+1. Redenoting αk := ω1 and
αk+1 := ω2, we have α = α1α2 · · ·αk+1 and | ∩k+1

i=1 alph(αi)| ≥ sk+1.
Suppose that in the general step we have k = q. Then, since α is q-restricted,

we know that all the words α1, α2, . . . , αk are (1, A)–nonseparable where A =
∩q

i=1alph(αi). Since sq = 2
∑q

i=1 i si , we are again through by Theorems 3 and
4. ��
Corollary 3. Let q ≥ 2 and d1, d2, . . . , dq ≥ 1 be integers and α a q–restricted
word such that |alph(α)| ≥ 5q−22

∑q
i=1(q−i+1) i di . Let furthermore s1, s2, . . . , sq

be as in Theorem 6. Then |alph(α)| ≥ s1 and all the claims of Theorem 6 hold.

Proof. Omitted. ��
Let us further study permutations inside q–restricted words. The results are not
needed in our attack construction, but have independent combinatorial interest.
We wish to find a (good) upper and lower bound for the number N(m, q) defined
in the following theorem which is borrowed from [10].

Theorem 7. For all positive integers m and q there exists a (minimal) positive
integer N(m, q) such that the following is true. Let α be a q–restricted word
such that |alph(α)| ≥ N(m, q). Then there exist A ⊆ alph(α) with |A| = m and
p ∈ {1, 2, . . . , q} as well as words α1, α2, . . . , αp such that α = α1α2 · · ·αp and
for all i ∈ {1, 2, . . . , p}, the word (αi)A is a permutation of A.

In [10] the upper bound N(m, q + 1) ≤ N(m2 −m + 1, q) ≤ m2q

was attained.
The existence of N(m, q) was first (implicitely) proved in [4] where also the first
(very large) upper bound for it also was evolved.
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Lemma 3. Let p, s and d be integers such that d, p ≥ 2 and s ≥ 3. Then
Ds(p, d) = 2pd + 2 s

∑d
i=1 2pi ≤ 3s 2pd.

Proof. Obviously 2pd + 2 s
∑d

i=1 2pi = 2pd + 2 s 2p(d+1)−2p

2p−1 = 2pd[1 + 2s 1−2−pd

1−2−p ].

Since 2s 1−2−pd

1−2−p ≤ 8s
3 , the claim holds. ��

Theorem 8. Let m ≥ 2 and q ≥ 2 be integers and α be a q–restricted word
such that |alph(α)| ≥ 3q−22�log2 m	· q2−q+2

2 . Then there exist p ∈ {1, 2, · · · q}, a
factorization α = α1α2 · · ·αp of α and set A ⊆ alph(α) such that |A| = m and
(αi)A is a permutation of A for all i ∈ {1, 2, · · · , p}.
Proof. Analogous (although simpler) to that of Theorem 6. ��
As a consequence from Theorem 8, we get the following upper bound.

Corollary 4. For all integers m ≥ 2 and q ≥ 2 the inequality

N(m, q) ≤ 3q−2 · 2�log2 m	· q2−q+2
2

holds.

In the following we shall search a lower bound for N(m, q).
Given p, q ∈ N+, call a word α a P (m, q)-word if α is q-restricted and there

exists an alphabet A ⊆ alph(α), |A| = m, integer p ∈ {1, 2, . . . , q}, and permu-
tations σ1, σ2 . . . , σp of 1, 2, . . . , m such that

πA(α) ∈ a+
σ1(1)a

+
σ1(2) · · ·a+

σ1(m) · · · a+
σp(1)a

+
σp(2) · · · a+

σp(m)

We have shown that there exists a smallest positive integer N(m, q) such that
if α is q-restricted and |alph(α)| ≥ N(m, q) , then α is a P (m, q)-word. Let
T (m, q) = N(m, q) − 1. Then there exists a word β such that β is q-restricted
and |alph(β)| = T (m, q) , and β is not a P (m, q)-word.

Lemma 4. Let m ≥ 2 and q be positive integers and α a q-restricted word such
that α is not a P (m, q)-word. Assume furthermore that alph(α) = {a1, a2, . . . ,
an} where, for all i, j ∈ {1, 2, . . . , n}, i < j, the first occurrence of ai happens
before the first occurrence of aj in α. Let

w = w(a1, a2, . . . , an) = a1a2 . . . anan+1α

where an+1 is a new symbol. Then

1. w is not a P (m, q + 1)-word; and

2. for all i, j ∈ {1, 2, . . . , n}, we have πai,aj (w) /∈ {aiaj , ajai}.
Proof. Omitted. ��
We can immediately make the following conclusion.
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Corollary 5. Let n, q ∈ N+ and

a1,1, a1,2, . . . , a1,n+1, . . . , an−1,1, an−1,2 . . . , an−1,n+1

distinct symbols. Let w(·, ·, · · · , ·) be the consruction of the previous lemma.
Then the word

w(a1,1, a1,2, . . . , a1,n+1)w(a2,1, a2,2, · · · , a2,n+1) · · ·w(an−1,1, an−1,2, . . . , an−11,n+1)

is not a P (m, q + 1) word.

Corollary 6. For all m, q ∈ N+, the inequality

T (m, q + 1) ≥ (m− 1) (T (m, q) + 1)

holds.

Proof. In the construction of the lemma we add one letter to the word and the
(in the corollary) we make m− 1 copies of the word. ��
Theorem 9. For all m, q ∈ N+, m ≥ 2, thefollowing inequality holds:

N(m, q) ≥ m(m− 1)q−1 + (m− 1)q−2 + · · · + (m− 1) + 1

Proof. Let us prove by induction on q that

T (m, q) ≥ [m(m− 1)q−1 + (m− 1)q−2 + · · · + (m− 1) + 1]− 1 .

If q = 1, then T (m, q) = m − 1 = m(m − 1)0 − 1. Suppose that T (m, q) ≥
[m(m− 1)q−1 + (m− 1)q−2 + · · · + (m− 1) + 1]− 1. Then

T (m, q + 1) ≥ (m− 1)[m(m− 1)q−1 + (m− 1)q−2 + · · · + (m− 1) + 1]
= m(m− 1)q + (m− 1)q−1 + · · · + (m− 1) + 1− 1 .

Thus the induction is extended and N(m, q) ≥ m(m − 1)q−1 + (m − 1)q−2 +
· · · + (m− 1) + 1 for all positive integers m and q such that m ≥ 2. ��
Corollary 7. For all integers m ≥ 2 and q ≥ 2 the inequalities

m(m−1)q−1+(m−1)q−2+ · · · +(m−1)+1 ≤ N(m, q) ≤ 3q−2 ·2�log2 m	· q2−q+2
2

hold. Furthermore N(m, 2) = m2 −m + 1 for each integer m ≥ 1.

5 Conclusion

We have stated reasons to consider combinatorics on words from a fresh view-
point and taken some small steps in the new research frame. The results im-
ply more efficient attacks on generalized iterated hash functions and, from their
part, confirm the fact that the iterative structure possesses certain security weak-
nesses.
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Abstract. In this paper we study a differential fault attack against
ciphers having the same physical structure as in the Grain family. In
particular we demonstrate our attack against Grain v1, Grain-128 and
Grain-128a. The existing attacks by Berzati et al. (HOST 2009), Kar-
makar et al. (Africacrypt 2011) and Banik et al. (CHES 2012) assume a
fault model that allows them to reproduce a fault at a particular register
location more than once. However, we assume a realistic fault model in
which the above assumption is no longer necessary, i.e., re-injecting the
fault in the same location more than once is not required. In addition,
towards a more practical framework, we also consider the situation in
which more than one consecutive locations of the LFSR are flipped as
result of a single fault injection.

Keywords: Differential fault attacks, Grain v1, Grain-128, Grain-128a,
LFSR, NFSR, Stream Cipher.

1 Introduction

Fault attacks have received serious attention in cryptographic literature for more
than a decade [1,2]. Such attacks on stream ciphers have gained momentum ever
since the work of Hoch and Shamir [10] and this model of cryptanalysis, though
optimistic, could successfully be employed against a number of proposals. Fault
attacks study the mathematical robustness of a cryptosystem in a setting that
is weaker than its original or expected mode of operation. A typical attack
scenario [10] consists of an adversary who injects a random fault (using laser
shots/clock glitches [14, 15]) in a cryptographic device as a result of which one
or more bits of its internal state are altered. The faulty output from this altered
device is then used to deduce information about its internal state/secret key.
In order to perform the attack, the adversary requires certain privileges like
the ability to re-key the device, control the timing of the fault etc. The more
privileges the adversary is granted, the more the attack becomes impractical and
unrealistic.

The Grain family of stream ciphers [4, 8, 9] has received a lot of attention
and it is in the hardware profile of eStream [3]. In all the fault attacks reported
so far [5, 6, 12] on this cipher, the adversary is granted far too many privileges

S. Galbraith and M. Nandi (Eds.): INDOCRYPT 2012, LNCS 7668, pp. 191–208, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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to make the attacks practical. In fact the designers of Grain themselves have
underlined a set of reasonable privileges that may be granted to the adversary
while performing the fault attack. Unfortunately, all the existing fault attacks on
the Grain family exploited additional assumptions. In this regard, let us refer to
the following quote from the designers of Grain [8, Section 6.5] (see also similar
comments in [9, Section IV D] and [4, Section 4.4]):

“If an attacker is able to reset the device and to induce a single bit fault many
times and at different positions that he can correctly guess from the output
difference, we cannot preclude that he will get information about a subset of
the state bits in the LFSR. Such an attack seems more difficult under the (more
realistic) assumption that the fault induced affects several state bits at (partially)
unknown positions, since in this case it is more difficult to determine the induced
difference from output differences.”

Required Required Required Not Required

No Yes No No

Yes Yes Yes Upto 3-bit
toggle allowed

Required Required Required Required

Allowed Allowed Allowed Allowed

This work[5][12][6]

Multiple
fault at
same

location

Multiple IV
Initialization

Single bit
Fault

Control over
Fault

Timing

Multiple
Re-Keying

Fig. 1. Differential Fault Attack on Grain: Survey of Fault Models

In the published fault attacks [5, 6, 12] on Grain, it has been assumed that
attacker has the ability to inject a single bit fault in the same register location
over and over again. This is clearly rather optimistic and does not follow the
fault model prescribed by the designers. In our work, we have assumed that
the adversary has only those privileges that have been allowed by the designers,
i.e., we follow the exact fault model provided by the designers and demonstrate
that in such a scenario too, the adversary can not only recover “a subset of the
LFSR state bits” but also recover the secret key. Furthermore, we consider a
situation in which the adversary is unable to induce a single bit toggle every
time he injects a fault. The best he can do is to ‘influence’ upto k bits in random
but consecutive LFSR locations without knowing the exact number of bits the
injected fault has altered or their locations. We show that for certain small values
of k, even under this added constraint the secret key can be recovered. The idea
used here is that, with very high confidence, the adversary should be able to
identify the situations when the injected fault alters the binary value in only a
single register location. He can then use the algorithms described for a single
location identification and proceed with the attack.
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In this work we assume that the adversary has the following privileges: (a)
he can reset the cipher with the original Key-IV and restart cipher operations
as many times he wishes; this is not a problem if the device ouputs different
faulty ciphertexts of the same or known messages and such a model has been
used in [5, 6, 11, 12] (actually the attack model requires the original and several
faulty key-streams), (b) he has full control over the timing of fault injection,
and (c) he can inject a fault that may affect upto k consecutive LFSR locations
but he is unaware of the exact number of bits altered or their locations. In this
work we have concentrated on the cases till k = 3. As pointed out earlier, these
assumptions about the fault model are far more realistic and practical than the
ones assumed in [5, 6, 12].

Organization of this paper. In this section, we continue with a detailed
description of the Grain family. In Section 2, we introduce certain tools and
definitions that will help us launch the attack. To demonstrate the attack, ini-
tially we assume that the attacker is able to induce a single bit toggle at any
random LFSR location. The fault location identification routine is explained in
Section 3. The general strategy to attack a cipher with the physical structure
of Grain is outlined in Section 4. Section 5 demonstrates the attacks on Grain
v1, Grain-128 and Grain-128a. In Section 6, we explore a stricter fault model in
which the attacker is able to flip the binary values of upto 3 consecutive LFSR
locations. Section 7 concludes the paper.

1.1 Brief Description of Grain Family

Any cipher in the Grain family consists of an n-bit LFSR and an n-bit NFSR
(see Figure 2). The update function of the LFSR is given by the equation yt+n =
f(Yt) = yt ⊕ yt+f1 ⊕ yt+f2 ⊕ · · · ⊕ yt+fa , where Yt = [yt, yt+1, . . . , yt+n−1] is an
n-bit vector that denotes the LFSR state at the tth clock interval and f is a
linear function on the LFSR state bits obtained from a primitive polynomial
in GF (2) of degree n. The NFSR state is updated as xt+n = yt ⊕ g(Xt) =
yt ⊕ g(xt, xt+τ1 , xt+τ2 , . . . , xt+τb). Here, Xt = [xt, xt+1, . . . , xt+n−1] is an n-bit

NFSR LFSR

g(Xt) f(Yt)

h(Xt, Yt)/

/

zt

⊕

⊕

Fig. 2. Structure of Stream Cipher in Grain Family
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Table 1. Grain at a glance

Grain v1 Grain-128 Grain-128a
n 80 128 128

m 64 96 96

Pad FFFF FFFFFFFF FFFFFFFE

f(·) yt+62 ⊕ yt+51 ⊕ yt+38 yt+96 ⊕ yt+81 ⊕ yt+70 yt+96 ⊕ yt+81 ⊕ yt+70
⊕yt+23 ⊕ yt+13 ⊕ yt ⊕yt+38 ⊕ yt+7 ⊕ yt ⊕yt+38 ⊕ yt+7 ⊕ yt

xt+62 ⊕ xt+60 ⊕ xt+52
⊕xt+45 ⊕ xt+37 ⊕ xt+33
xt+28 ⊕ xt+21 ⊕ xt+14 yt ⊕ xt ⊕ xt+26⊕ yt ⊕ xt ⊕ xt+26⊕
xt+9 ⊕ xt ⊕ xt+63xt+60⊕ xt+56 ⊕ xt+91 ⊕ xt+96⊕ xt+56 ⊕ xt+91 ⊕ xt+96⊕
xt+37xt+33 ⊕ xt+15xt+9 xt+3xt+67 ⊕ xt+11xt+13 xt+3xt+67 ⊕ xt+11xt+13

g(·) xt+60xt+52xt+45 ⊕ xt+33 ⊕xt+17xt+18 ⊕ xt+27xt+59 ⊕xt+17xt+18 ⊕ xt+27xt+59
xt+28xt+21 ⊕ xt+63xt+60 ⊕xt+40xt+48 ⊕ xt+61 ⊕xt+40xt+48 ⊕ xt+61
xt+21xt+15 ⊕ xt+63xt+60 xt+65 ⊕ xt+68xt+84 xt+65 ⊕ xt+68xt+84
xt+52xt+45xt+37 ⊕ xt+33 ⊕xt+88xt+92xt+93xt+95
xt+28xt+21xt+15xt+9⊕ ⊕xt+22xt+24xt+25⊕
xt+52xt+45xt+37xt+33 xt+70xt+78xt+82
xt+28xt+21
yt+3yt+25yt+46 ⊕ yt+3
yt+46yt+64 ⊕ yt+3yt+46 xt+12xt+95yt+95 ⊕ xt+12 xt+12xt+95yt+94 ⊕ xt+12

h(·) xt+63 ⊕ yt+25yt+46xt+63⊕ yt+8 ⊕ yt+13yt+20 ⊕ xt+95 yt+8 ⊕ yt+13yt+20 ⊕ xt+95
yt+46yt+64xt+63 ⊕ yt+3 yt+42 ⊕ yt+60yt+79 yt+42 ⊕ yt+60yt+79
yt+64 ⊕ yt+46yt+64 ⊕ yt+64
xt+63 ⊕ yt+25 ⊕ xt+63
xt+1 ⊕ xt+2 ⊕ xt+4⊕ xt+2 ⊕ xt+15 ⊕ xt+36⊕ xt+2 ⊕ xt+15 ⊕ xt+36⊕

zt xt+10 ⊕ xt+31 ⊕ xt+43 xt+45 ⊕ xt+64 ⊕ xt+73 xt+45 ⊕ xt+64 ⊕ xt+73
xt+56 ⊕ h ⊕xt+89 ⊕ yt+93 ⊕ h ⊕xt+89 ⊕ yt+93 ⊕ h

vector that denotes the NFSR state at the tth clock interval and g is a non-
linear function of the NFSR state bits. The output key-stream is produced by
combining the LFSR and NFSR bits as zt = xt+l1 ⊕ xt+l2 ⊕ · · ·⊕ xt+lc ⊕ yt+i1 ⊕
yt+i2 ⊕ · · · ⊕ yt+id ⊕ h(yt+h1 , yt+h2 , . . . , yt+he

, xt+j1 , xt+j2 , . . . , xt+jw ). Here h is
a non-linear Boolean function.

Key Scheduling Algorithm (KSA). The Grain family uses an n-bit key K,
and an m-bit initialization vector IV , with m < n. The key is loaded in the
NFSR and the IV is loaded in the 0th to the (m − 1)th bits of the LFSR. The
remaining mth to (n − 1)th bits of the LFSR are loaded with some fixed pad
P ∈ {0, 1}n−m. Then, for the first 2n clocks, the key-stream bit zt is XOR-ed to
both the LFSR and NFSR update functions.

Pseudo-Random key-stream Generation Algorithm (PRGA).After the
KSA, zt is no longer XOR-ed to the LFSR and the NFSR but it is used as the
Pseudo-Random key-stream bit. Thus, during this phase, the LFSR and NFSR
are updated as yt+n = f(Yt), xt+n = yt ⊕ g(Xt).

2 Tools and Definitions

2.1 Differential Grain

Let S0 = [X0||Y0] ∈ {0, 1}2n be the initial state of the Grain family PRGA and
S0,Δφ

be the initial state which differs from S0 in an LFSR location φ ∈ [0, n−1].

The task is to ascertain how the corresponding internal states in the tth round
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St and St,Δφ
will differ from each other, for some integer t > 0. One such tool

appeared in [6], but our approach is improved and more involved. We present
the following algorithm which we will call D-Grain that takes as input the
difference location φ ∈ [0, n − 1] and the round r, and returns (i) a set of r
integer arrays χt, for 0 ≤ t < r, each of length c + d, (ii) a set of r integer
arrays Υt, for 0 ≤ t < r, each of length e + w and (iii) an integer array ΔZ of
length r. Note that as defined in Section 1.1, c, d are the number of NFSR, LFSR
bits (respectively) which are linearly added to the output function h. Further,
w, e are the number of NFSR, LFSR bits (respectively) that are input to the
function h.

Now consider the corresponding generalized differential engine Δφ-Grain with
an n-cell LFSR ΔL and an n-cell NFSR ΔN . All the elements ofΔL andΔN are
integers. We denote the tth round state of ΔL as ΔLt = [ut, ut+1, . . . , ut+n−1]
and that of ΔN as ΔNt = [vt, vt+1, . . . , vt+n−1]. Initially all the elements of
ΔN,ΔL are set to 0, with the only exception that the cell numbered φ ∈ [0, n−1]
of ΔL is set to 1. The initial states ΔN0, ΔL0 are indicative of the differ-
ence between S0 and S0,Δφ

and we will show that the tth states ΔNt, ΔLt

are indicative of the difference between St and St,Δφ
. ΔL updates itself as

ut+n = ut + ut+f1 + ut+f2 + · · ·+ ut+fa mod 2 and ΔN updates itself as vt+n =
ut+2 ·OR(vt, vt+τ1 , vt+τ2 , . . . , vt+τb). The rationale behind the update functions
will be explained later. Here OR is a map from Zb+1 → {0, 1} which roughly
represents the logical ‘or’ operation and is defined as

OR(k0, k1, . . . , kb) =

{
0, if k0 = k1 = k2 = · · · = kb = 0,
1, otherwise.

Let χt = [vt+l1 , vt+l2 , . . . , vt+lc , ut+i1 , ut+i2 , . . . , ut+id ] and Υt = [ut+h1 , ut+h2 ,
. . . , ut+he

, vt+j1 , vt+j2 , . . . , vt+jw ]. Note that χt (respectively Υt) is the set of cells
in Δφ-Grain which corresponds to the bits that are linearly added to the output
function h (respectively, input to h) in the tth PRGA stage of the actual cipher.

If V is a vector having non-negative integral elements, then V  β, (for some
positive integer β), implies that all elements of V are less than or equal to β.
The tth key-stream element Δzt produced by this engine is given as

Δzt =

⎧⎨⎩0, if Υt = 0 AND χt  1 AND |χt| is even
1, if Υt = 0 AND χt  1 AND |χt| is odd
2, otherwise.

Here 0 denotes the all zero vector, and | · | denotes the number of non-zero ele-
ments in a vector. Initially ΔN0, ΔL0 represent the difference of S0 and S0,Δφ

.
As the PRGA evolves, the only non-zero element (having value 1) of ΔL propa-
gates and so does the difference between St and St,Δφ

. Since the LFSR in Grain
is updated by a linear function, whenever the difference between St and St,Δφ

is
fed back via the update function, a 1 is fed back in ΔL. Now when the difference
between St and St,Δφ

propagates to some NFSR tap location τi (for some value
of t), then this difference may or may not be fed back, depending on the nature
of the Boolean function g and the current state St. Hence in such a case the
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propagation of the differential is probabilistic. Note that in all such situations,
either the integer 2 or 3 is fed back in ΔN as is apparent from the update
equation for vt+n. Therefore if

1. some cell in ΔLt or ΔNt is 0, then the corresponding bits are equal in St

and St,Δφ
with probability 1;

2. some cell in ΔLt or ΔNt is 1, then the corresponding bits are different in St

and St,Δφ
with probability 1;

3. some cell in ΔLt or ΔNt is 2 or 3, then that the corresponding bits are
different in St and St,Δφ

with some probability 0 < pd < 1.

Also, note that if Υt is 0, then all the bits of St and St,Δφ
that provide inputs to

the non-linear function h are the same (for all choices of S0). If all elements of χt

are less than or equal to 1, then each one of the elements of St and St,Δφ
which

linearly adds on to the output function h to produce the output key-stream bit
is either equal or different with probability 1. When both these events occur, the
key-stream bits produced by St and St,Δφ

are definitely the same if |χt| is an
even number, as an even number of differences cancel out in GF(2). When this
happens, Δφ-Grain outputs Δzt = 0. If |χt| is an odd number, then the key-
stream bits produced by St and St,Δφ

are different with probability 1. In this
case Δzt = 1. In all other cases, the difference of the key-stream bits produced
by St and St,Δφ

is equal to 0 or 1 with some probability, and then Δzt = 2.
We describe the routine D-Grain(φ, r) in Algorithm 1 which returns the arrays
χt, Υt for 0 ≤ t < r and ΔZ = [Δz0, . . . , Δzr−1].

Input: φ: An LFSR location ∈ [0, n − 1], an integer r(> 0);
Output: An integer array ΔZ of r elements;
Output: Two integer arrays χt, Υt for 0 ≤ t < r ;

[u0, u1, . . . , un−1] ← 0, [v0, v1, . . . , vn−1] ← 0, uφ ← 1, t ← 0;
while t < r do

Υt ← [uh1
, uh2

, . . . , uhe , vj1 , vj2 , . . . , vjw ] ;
χt ← [vl1 , vl2 , . . . , vlc , ui1 , ui2 , . . . , uid

];

if Υt = 0 AND χt  1 then
if |χt| is EVEN then

Δzt ← 0;
end
if |χt| is ODD then

Δzt ← 1;
end

end
else

Δzt ← 2;
end
t1 ← u0 + uf1

+ uf2
+ . . . + ufa mod 2;

t2 ← u0 + 2 · OR(v0, vτ1 , vτ2 , . . . , vτb );
[u0, u1, . . . , un−2, un−1] ← [u1, u2, . . . , un−1, t1];
[v0, v1, . . . , vn−2, vn−1] ← [v1, v2, . . . , vn−1, t2];
t = t + 1;

end
ΔZ = [Δz0, Δz1, . . . , Δzr−1];
Return [χ0, χ1, . . . , χr−1], [Υ0, Υ1, . . . , Υr−1], ΔZ

Algorithm 1. D-Grain(φ, r)
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2.2 Derivative of a Boolean Function

Certain properties of Boolean functions have been exploited for the fault attack
described in [5]. We use some other properties of the Boolean functions to mount
our attack and these are described here. A q-variable Boolean function is a
mapping from the set {0, 1}q to the set {0, 1}. One important way to represent a
Boolean function is by its Algebraic Normal Form (ANF). A q-variable Boolean
function h(x1, . . . , xq) can be considered to be a multivariate polynomial over
GF (2). This polynomial can be expressed as a sum of products representation
of all distinct k-th order products (0 ≤ k ≤ q) of the variables. The number of
variables in the highest order product term with nonzero coefficient is called the
algebraic degree, or simply the degree of h and denoted by deg(h). Functions of
degree at most one are called affine functions.

Definition 1. Consider a q-variable Boolean function F and any vector α ∈
{0, 1}q. We refer to the function F (x + α) as a translation of F . The set of all
possible translations of a given function F is denoted by the term ‘Translation
Set’ and by the symbol AF . Since a q-variable function can have at most 2q

translations, the cardinality of AF is atmost 2q.

Definition 2. Consider a q-variable Boolean function F and its translation set
AF . Any GF(2) linear combination F̂ of the functions in AF , i.e., F̂ (x) =
c1F (x ⊕ α1) ⊕ c2F (x ⊕ α2) ⊕ · · · ⊕ ciF (x ⊕ αi), where c1, c2, . . . , ci ∈ {0, 1} is
said to be a derivative of F . If F̂ happens to be an affine Boolean function and
c1 = c2 = · · · = ci = 1 then the set of vectors π = [α1, α2, . . . , αi] is said to be
an affine differential tuple of F . If none of the vectors in π is 0 then π is said
to be a weight i affine differential tuple of F otherwise π is said to be a weight
(i− 1) affine differential tuple.

3 Differential Fault Analysis of the Grain Family

In this section, we assume that the attacker has the ability to induce exactly
a single bit toggle at a random LFSR location by applying a fault. Later, in
Section 6, we will consider a more practical fault model in which an injected
fault toggles more than one consecutive bits in LFSR locations.

3.1 Obtaining the Location of the Fault

Let S0 ∈ {0, 1}2n be the initial state of the Grain family PRGA described in
Section 1.1 and S0,Δφ

be the initial state resulting after injecting a single bit

fault in LFSR location φ ∈ [0, n − 1]. Let Z = [z0, z1, . . . , z2n−1] and Zφ =

[zφ0 , z
φ
1 , . . . , z

φ
2n−1] be the first 2n key-stream bits produced by S0 and S0,Δφ

respectively. The task for the fault location identification routine is to determine
the fault location φ by analyzing the difference between Z and Zφ. Of course,
in Grain-128a the entire Z and Zφ are not available to the attacker. Thus, we
will deal with Grain-128a separately.
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Our approach to determine the fault location is an improvement over the one
presented in [5]. The basic idea used in [5] was the fact that if a fault is injected
in single LFSR location at the beginning of the PRGA, then at certain specific
PRGA rounds the key-stream bits are guaranteed to be equal. However, this
technique requires multiple fault injections at the same LFSR bit to conclusively
identify the fault location. In our work we utilize the added fact that due to a
single bit fault at the beginning of the PRGA, the key-stream bits at certain
other PRGA rounds are guaranteed to be different as well. This removes the
requirement for multiple single-bit fault injection at the same LFSR location.

Grain v1 and Grain-128. As in [5], we define a 2n bit vector Eφ over GF(2)
defined as follows. Let Eφ be the bitwise logical XNOR (complement of XOR)
of Z and Zφ, i.e., Eφ = 1⊕ Z ⊕ Zφ. Similarly we define Eφ = 1⊕ Eφ. Since S0

can have 2n+m values (each arising from a different combination of the n bit key
and m bit IV, the remaining n−m padding bits are fixed), each of these choices
of S0 may lead to different patterns of Eφ. The bitwise logical AND of all such
vectors Eφ is denoted as the First Signature vector Sgn1

φ for the fault location φ.

Similarly the bitwise logical AND of all such vectors Eφ is denoted as the Second
Signature vector Sgn2

φ for the fault location φ. Note that if Sgn1
φ(i) (Sgn2

φ(i))

is 1 for any i ∈ [0, 2n− 1] then the ith key-stream bit produced by S0 and S0,Δφ

is equal (different) for all choices of S0.
This implies that if ΔφZ = [Δφz0, Δφz1, . . . , Δφz2n−1] is the third output of

the routine D-Grain(φ, 2n), then

Sgn1
φ(i) =

{
1, if Δφzi = 0,
0, otherwise.

Sgn2
φ(i) =

{
1, if Δφzi = 1,
0, otherwise.

Grain-128a. Grain-128a has a different encryption strategy in which the first 64
key-stream bits and every alternate key-stream bit thereof is used to construct
the message authentication code and therefore unavailable to the attacker. To
circumvent this problem, in Grain-128a every re-keying is followed by a fault
injection at the beginning of round 64 of the PRGA instead of round 0. Hence the
vectors Z,Zφ are defined as Z = [z64, z66, . . . , z318] and Z

φ = [zφ64, z
φ
66, . . . , z

φ
318].

As before, we define E(φ) = 1 ⊕ Z ⊕ Zφ and E(φ) = 1⊕ E(φ) and Sgn1
φ, Sgn

2
φ

are defined as the bitwise AND of all possible E(φ), E(φ) respectively. Note that
if a fault is applied at a random LFSR location φ at the 64th PRGA round, then
the tth state of Δφ-Grain will align itself with the (64+ t)th state of Grain-128a.
This implies that if ΔφZ = [Δφz0, Δφz1, . . . , Δφz255] is the third output of the
routine D-Grain(φ, 256), then

Sgn1
φ(i) =

{
1, if Δφz2i = 0,
0, otherwise.

Sgn2
φ(i) =

{
1, if Δφz2i = 1,
0, otherwise.

3.2 Steps for Location Identification

The task for the fault identification routine is to determine the value of φ given
the vector Eφ. For any element V ∈ {0, 1}l, define the set BV = {i : 0 ≤ i <
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l, V (i) = 1} i.e. BV is the support of of V . Now define a relation! in {0, 1}l such
that for any two elements V1, V2 ∈ {0, 1}l, we will have V1 ! V2 if BV1 ⊆ BV2 .
Now we check the elements in BEφ

and BEφ
. By definition, these are the PRGA

rounds i during which zi = zφi and zi �= zφi respectively. By the definition of the
first and second Signature vector proposed above, we know that for the correct
value of φ, BSgn1

φ
⊆ BEφ

, BSgn2
φ
⊆ BEφ

and hence Sgn1
φ ! Eφ, Sgn

2
φ ! Eφ.

So our strategy would be to search all the n many first Signature vectors and
formulate the first candidate set Ψ0,φ = {ψ : 0 ≤ ψ ≤ n − 1, Sgn1

ψ ! Eφ}. If
|Ψ0,φ| is 1, then the single element in Ψ0,φ will give us the fault location φ. If not,
we then formulate the second candidate set Ψ1,φ = {ψ : ψ ∈ Ψ0,φ, Sgn

2
ψ ! Eφ}.

If |Ψ1,φ| is 1, then the single element in Ψ1,φ will give us the fault location φ. If
Ψ1,φ has more than one element, we will be unable to decide conclusively at this
stage.

However, the task is made simpler if we can access the faulty key-streams
Zφ and hence get Eφ for all φ ∈ [0, n − 1]. This is possible since our fault
model allows multiple re-keying with the same but unknown Key-IV. We need
to reset the cipher each time and then inject a fault at any random unknown
LFSR location at the beginning of the PRGA. By performing this process around
n ·

∑n
i=1

1
i ≈ n lnn, we can expect to hit all the LFSR locations in [0, n− 1] and

obtained n different faulty key-streams Zφ.
The remaining task is to label each Zφ with a unique φ ∈ [0, n − 1]. Using

the techniques outlined above for all the faulty key-streams, we will be able to
uniquely label them if (i) for all φ ∈ [0, n− 1], |Ψ1,φ| = 1, i.e., all the faulty key-
streams were assigned unique labels, or (ii) for all φi ∈ W = {φ1, φ2, . . . , φj},
|Ψ1,φi

| > 1 AND |Ψ1,φi
− W| = 1, where W = [0, n − 1] − W , i.e., W is the

set of labels that have already been assigned. The second condition states that
even if some faulty key-stream Zφi has not been labelled uniquely, its second
candidate set Ψ1,φi

(along with the element φi) must contain only those labels
that have already been uniquely assigned. Given a random key K ∈R {0, 1}n
and a random Initial Vector IV ∈R {0, 1}m the probability that all n faulty
key-streams can be labelled uniquely has been experimentally found to be 1 for
all the 3 ciphers Grain v1, Grain-128 and Grain-128a. The experiments were
performed over a set of 220 randomly chosen Key-IV pairs. We sum up the fault
location identification routine in the following steps.

A. Reset the cipher with the unknown key K and Initial Vector IV and record
the first 2n fault-free key-stream bits Z.

B. Reset the cipher again with K, IV , and inject a single bit fault in a random
LFSR location φ, 0 ≤ φ ≤ n− 1 at the beginning of the PRGA. Record the
faulty key-stream bits Zφ, calculate Eφ and Ψ1,φ

C. Repeat Step [B.] around n lnn times so that n different faulty key-stream
vectors corresponding to all LFSR locations φ ∈ [ 0, n− 1] are obtained and
calculate the corresponding Ψ1,φ vector.

D. Once all the faulty key-stream vectors have been labelled we proceed to the
next stage of the attack.
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4 Beginning the Attack

Let us first describe some notations that we will henceforth use.

1. St = [xt0, x
t
1, . . . , x

t
n−1 yt0, y

t
1, . . . , y

t
n−1] is used to denote the internal state

of the cipher at the beginning of round t of the PRGA. Thus xti (y
t
i) denotes

the ith NFSR (LFSR) bit at the start of round t of the PRGA. When t = 0,
we use S0 = [x0, x1, . . . , xn−1 y0, y1, . . . , yn−1] to denote the internal state
for convenience.

2. St,Δφ
is used to denote the internal state of the cipher at the beginning of

round t of the PRGA, when a fault has been injected in LFSR location φ at
the beginning of the PRGA round.

3. zφi denotes the key-stream bit produced in the ith PRGA round, after faults
have been injected in LFSR location φ at the beginning of the PRGA round.
zi is the fault-free ith key-stream bit.

4. ηt = [xtl1 , x
t
l2
. . . , xtlc , y

t
i1
, yti2 . . . , y

t
id
] is the set of elements in St which con-

tribute to the output key-stream bit function linearly and θt = [yth1
, yth2

,
. . . , ythe

, xtj1 , x
t
j2
, . . . , xtjw ] be the subset of St which forms the input to the

combining function h.
5. If v is an integer vector all elements of which are either 0 or 1, then we

express v as a vector over GF(2) and denote it by the symbol ṽ.
6. Ifw is a vector over GF(2) then P(w) denotes the GF(2) sum of the elements

of w.

Determining the LFSR. During PRGA, the LFSR evolves linearly and inde-
pendent of the NFSR. Hence, yti for any i ∈ [0, n−1] and t ≥ 0 is a linear function
of y0, y1, . . . , yn−1. Let S0 and S0,Δφ

be two initial states of the Grain PRGA
(as described in Section 1.1) that differ in only the LFSR location φ ∈ [0, n− 1].
Let [χ0,φ, χ1,φ, . . . , χ2n−1,φ], [Υ0,φ, Υ1,φ, . . . , Υ2n−1,φ], ΔφZ be the outputs of D-
Grain(φ, 2n).

Let [0, α1] be a weight 1 affine differential tuple of h, such that h(x)⊕ h(x⊕
α1) = h01(x) is a function of variables that takes input from LFSR locations only.

If, for some round t of the PRGA, we have χt,φ  1, Υt,φ  1 and Υ̃t,φ = α1, then
we can conclude that the tth round fault-free and faulty internal states St and
St,Δφ

differ deterministically in the bit locations that contribute to producing
the output key-stream bit at round t. In such a scenario, the GF(2) sum of the

fault-free and faulty key-stream bit at round t is given by zt⊕zφt = P(ηt)⊕h(θt)⊕
P(ηt ⊕ χ̃t,φ)⊕ h(θt ⊕ Υ̃t,φ) = P(χ̃t,φ)⊕ h(θt)⊕ h(θt ⊕ α1) = P(χ̃t,φ)⊕ h01(θt).

Note that in the above equation P(χ̃t,φ) ⊕ h01(θt) is an affine Boolean func-
tion in the LFSR state bits of St = [yt0, y

t
1, . . . , y

t
n−1] and hence [y0, y1, . . . , yn−1].

Since zt ⊕ zφt is already known to us, this gives us one linear equation in
[y0, y1, . . . , yn−1]. The trick is to get n such linear equations which are linearly
independent by searching over all possible values of φ and affine differential tu-
ples of h. Of course h may not have an affine differential tuple [0, α1] of weight

1 or even if it does Υ̃t,φ = α1 and χt,φ  1 may not hold for any t or φ. In such
situations, one can look at other higher weight affine differential tuples.
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Exploring Higher Weight Affine Differential Tuples. Consider λ many
fault locations φi ∈ [0, n−1]. Let [χ0,φi

, . . . , χ2n−1,φi
], [Υ0,φi

, . . . , Υ2n−1,φi
], Δφi

Z
be the λmany outputs ofD-Grain(φi, 2n) for i ∈ [1, λ]. Let [0, α1, α2, . . . , . . . , αλ]
be a weight λ (where λ is an odd number) affine differential tuple of h, such

that h(x) ⊕
⊕λ

i=1 h(x ⊕ αi) = H1(x) is a function of variables that takes in-
put from LFSR locations only. If for some round t of the PRGA, χt,φi

 
1, Υt,φi

 1 and Υ̃t,φi
= αi for all i ∈ [1, λ], then by the arguments out-

lined in the previous subsection, we conclude zt ⊕
⊕λ

i=1 z
φi

t = P(ηt) ⊕ h(θt) ⊕⊕λ
i=1

(
P(ηt ⊕ χ̃t,φi

)⊕ h(θt ⊕ Υ̃t,φi
)
)
=
⊕λ

i=1 P(χ̃t,φi
)⊕H1(θt).

Note that if λ is odd then we can not exploit differential tuples of the form
[α1, α2, . . . , . . . , αλ] where all αi �= 0 as an odd number of terms do not can-
cel out in GF(2). Instead, if [α1, α2, . . . , . . . , αλ] is a weight λ (λ is an even

number) affine differential tuple of h, such that
⊕λ

i=1 h(x ⊕ αi) = H2(x) is a
function of variables, that takes inputs from LFSR locations only, then by the

previous arguments we have
⊕λ

i=1 z
φi

t =
⊕λ

i=1

(
P(ηt ⊕ χ̃t,φi

)⊕ h(θt ⊕ Υ̃t,φi
)
)
=⊕λ

i=1 P(χ̃t,φi
)⊕H2(θt).

Note that each of the above cases gives us one linear equation in [y0, y1, . . . ,
yn−1]. We formally state the routine FLEL(λ) in Algorithm 2 that attempts to
find such linear equations by investigating weight λ affine differential tuples.

Solving the System. Ideally we should get n linearly independent equations
in [y0, y1, . . . , yn−1] to solve the LFSR. If a call to FLEL(1) does not give us
the requisite number of equations then we must call FLEL(2) and if required
FLEL(3) to obtain the required number of equations. Note that the number of
iterations in the outer most ‘for’ loop is of FLEL(λ) is

(
n
λ

)
≈ O(nλ), so beyond a

certain value of λ, it may not be practically feasible to call FLEL(λ). Assuming
that we have n outputs from the successive FLEL(λ) routines of the form

ti, [φ1,i, φ2,i, . . . , φλi,i], γi ⊕
⊕

n−1
j=0 ci,jyj, [α1,i, α2,i, . . . , αλi,i],

∀i ∈ [0, n−1], if λi is even. Else the last output will be of the form [0, α1,i, α2,i, . . . ,
αλi,i]. Then we can write the equations so obtained in matrix form LY = W ,
where L is the n×n coefficient matrix {ci,j} over GF(2), Y is the column vector
[y0, y1, . . . , yn−1]

t and W is a column vector. The ith element W (i) is given by

γi ⊕ zti ⊕
⊕λi

j=1 z
φj,i

ti , if λi is odd, and γi ⊕
⊕λi

j=1 z
φj,i

ti if λi is even, γi ∈ {0, 1}.
If the equations are linearly independent then L is invertible. Thus, the solu-

tion Y of the above system are obtained by computing L−1W . Both L and its
inverse may be precomputed and hence the solution can be obtained immediately
after recording the faulty bits.

Determining the NFSR. Once the LFSR state has been determined, we pro-
ceed to finding the NFSR state. Since the NFSR updates itself non-linearly,
the method used to determine the NFSR initial state will be slightly differ-
ent from the LFSR. If λ is odd, let [0, α1, α2, . . . , αλ] be a weight λ (where
λ is an odd number) tuple of h (not necessarily affine differential), such that
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Input: λ: An integer > 0;
Output: Set of Rounds t, locations [φ1, φ2, . . . , φλ], Affine expression in [y0, y1, . . . , yn−1];

Tuples [α1, . . . , αλ]

for φ1 = 0 to n − 1, φ2 = 0 to n − 1, . . . , φλ = 0 to n − 1 do
if All φj ’s are pairwise unequal then

for i = 1 to λ do(
[χ0,φi

, . . . , χ2n−1,φi
], [Υ0,φi

, . . . , Υ2n−1,φi
], Δφi

Z
)
= D-Grain(φi, 2n)

end
for t = 0 to 2n − 1 do

if χt,φi
 1 AND Υt,φi

 1, ∀i ∈ [1, λ] then
if λ is odd then

H1(x) = h(x)⊕λ
i=0 h(x⊕ Υ̃t,φi

) ;

if H1 is a function only on LFSR bits then1.1
Output Round t, Locations [φ1, φ2, . . . , φλ], Expression

⊕λ
i=1P(χ̃t,φi

) ⊕ H1(θt);

Output Tuple [0, Υ̃t,φ1
, . . . , Υ̃t,φλ

]

end

end
else

H2(x) = ⊕λ
i=0h(x⊕ Υ̃t,φi

) ;

if H2 is a function only on LFSR bits then1.2
Output Round t, Locations [φ1, φ2, . . . , φλ], Expression

⊕λ
i=1P(χ̃t,φi

) ⊕ H2(θt);

Output Tuple [Υ̃t,φ1
, . . . , Υ̃t,φλ

]

end

end

end

end

end

end

Algorithm 2. FLEL(λ)

h(x) +
⊕λ

i=1 h(x⊕ αi) = H1(x) = x′ ⊕H11(x) where x
′ is a variable that takes

input from an NFSR location and H11(x) is a function only on the LFSR vari-

ables. If for some round t of the PRGA χt,φi
 1 and Υt,φi

 1 and Υ̃t,φi
= αi

for all i ∈ [1, λ], then by the arguments outlined in the previous subsection we

conclude zt⊕
⊕λ

i=1 z
φi

t = P(ηt)⊕h(θt)⊕
⊕λ

i=1

(
P(ηt ⊕ χ̃t,φi

)⊕ h(θt ⊕ Υ̃t,φi
)
)
=⊕λ

i=1 P(χ̃t,φi
) ⊕ H1(θt) =

⊕λ
i=1 P(χ̃t,φi

) ⊕ H11(θt) ⊕ xtjr , for some r ∈ [1, w].
Since, the LFSR is already known, H11(θt) can be calculated and that leaves xtjr
as the only unknown in the equation, whose value is also calculated immediately
after recording the faulty bits and solving the LFSR.

The λ even case can be dealt with similarly. We can describe another routine
FLEN(λ) which will help in determining the NFSR state. This routine is similar
to the FLEL(λ) routine described in Algorithm 2. The only differences are that
line 1.1 will change to

if H1(x) = x′ ⊕H11(x) where x
′ is an NFSR term and H11(x) depends on

LFSR variables only.

Line 1.2 of Algorithm 2 will also change accordingly. With the help of FLEN (λ)
routine, we can obtain specific NFSR state bits at various rounds of operation of



A Differential Fault Attack on the Grain Family 203

the PRGA. Due to the shifting property of shift registers, the following equation
holds xti = xt+1

i−1. For example, calculating x3046 and x3250 is the same as determining
the two NFSR state bits of the internal state S30: x

30
46 and x3052.

Hence by using the FLEN (λ) for successive values of λ, one can obtain all
the n NFSR state bits of St for some t ≥ 0. Since the LFSR initial state of S0

is already known and due to the fact that the LFSR operates independent of
the NFSR in the PRGA, the attacker can compute the LFSR state bits of St

by simply running the Grain PRGA forward for t rounds and thus compute the
entire of St.

4.1 Finding the Secret Key and Complexity of the Attack

It is known that the KSA, PRGA routines in the Grain family are invertible
(see [6, 12]). Once we have all the bits of St, by running the PRGA−1 (inverse
PRGA) routine for t rounds one can recover S0. Thereafter the KSA−1 (inverse
KSA) routine can be used to find the secret key.

The attack complexity directly depends on the number of re-keyings to be
performed such that all of locations in [0, n− 1] of the LFSR are covered. Since
each re-keying is followed by exactly one fault injection, the expected number of
fault injection is n ·

∑n
i=1

1
i ≈ n · ln n. Thereafter, the attack requires one matrix

multiplication between an n×n matrix and an n×1 vector to recover the LFSR,
and solving a few equations to get the NFSR state. After this, t invocations of
the PRGA−1 and a single invocation of the KSA−1 gives us the secret key.

Note that, construction of the matrix L and running the FLEL(λ) and FLEN(λ)
can be done beforehand and thus do not add to the attack complexity. However,
these routines are a part of the pre-processing phase, the exact runtime of which
will depend on the nature of the functions g, h and also the choice of taps used
in the cipher design.

5 Attacking the Actual Ciphers

Now we will provide the details of the actual attack on Grain v1, Grain-128 and
Grain-128a.

Grain v1. In Grain v1 the non linear combining function is of the form h(s0, s1,
s2, s3, s4) = s1 ⊕ s4 ⊕ s0s3 ⊕ s2s3 ⊕ s3s4 ⊕ s0s1s2 ⊕ s0s2s3 ⊕ s0s2s4 ⊕ s1s2s4 ⊕
s2s3s4. Here only s4 corresponds to an NFSR variable. This function has 4
affine differential tuples of weight 1, only one of which ([0, α = 11001]) leads to

a derivative which is a function of only LFSR variables. However, Υ̃t,φ = α and
χt,φ  1 does not hold for any t or φ. Hence one needs to look at higher weight
tuples.

A call to FLEL(3) returns 78 linearly independent equations. The result is
given in Table 2. A call to FLEL(2) gives us the 2 other equations required to
solve the system. The result is shown in Table 3. One can verify that the linear
equations so obtained are linearly independent and thus LFSR can be solved
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Table 2. Output of FLEL(3) for Grain v1 (ADT implies Affine Differential Tuple)

t φ1 φ2 φ3 Range Expr. ADT

45 + i 62 + i 24 + i 70 + i i ∈ [0, 9]
55 + i 72 + i 16 + i 51 + i i ∈ [0, 7] 00000,
63 + i 13 + i 24 + i 59 + i i ∈ [0, 9] 00100,

73 + i 33 + i 26 + i 51 + i i ∈ [0, 10] yt46 00110,

84 + i 44 + i 37 + i 38 + i i ∈ [0, 6] 01000
91 + i 53 + i 44 + i 41 + i i ∈ [0, 8]
100 + i 70 + i 53 + i 60 + i i ∈ [0, 8]

109 79 71 69
77 + i 45 + i 51 + i 38 + i i ∈ [0, 5] 00000,

83 + i 72 + i 57 + i 44 + i i ∈ [0, 4] yt3 ⊕ yt25 ⊕ yt64 01100,

94 62 79 55 10000,
10110
00000,

95 78 63 56 yt3 ⊕ yt25 ⊕ yt46 ⊕ yt64 01001,

01100,
10110

Table 3. Output of FLEL(2) for Grain v1

t φ1 φ2 Range Expr. ADT

110 + i 64 + i 77 + i i ∈ [0, 1] yt46 00001,

11000

Table 4. Output of FLEN (1) for Grain v1

t φ1 Range Expr. ADT

55 + i 23 + i i ∈ [0, 14] 00000,

70 + i 77 + i i ∈ [0, 2] 1 ⊕ yt3 ⊕ yt46 ⊕ xt
63 01010

91 + i 62 + i i ∈ [0, 5]

Table 5. Output of FLEN (3) for Grain v1

t φ1 φ2 φ3 Range Expr. ADT

00000,

17 + i i 1 + i 20 + i i ∈ [0, 27] 1 ⊕ yt3 ⊕ yt46 ⊕ xt
63 00001,

00010,
45 + i 28 + i 13 + i 48 + i i ∈ [0, 9] 10000

00000,

73 + i 53 + i 33 + i 26 + i i ∈ [0, 17] 1 ⊕ yt3 ⊕ xt
63 00010,

00100,
00110

readily. A call each to FLEN(1) and FLEN (3) gives us all the NFSR bits of S80.
The output of these routines are given as in Tables 4 and 5. A look at these
tables shows that the attacker can calculate the values of xt63 for all t ∈ [17, 96].
This is equivalent to calculating x80i for all i ∈ [0, 79]. Thereafter, S0 and the
secret key may be obtained as per the techniques outlined in Section 4.1.

Grain-128. In Grain-128 the non linear combining function is of the form
h(s0, s1, . . . , s8) = s0s1 ⊕ s2s3 ⊕ s4s5 ⊕ s6s7 ⊕ s0s4s8. Only s0, s4 correspond
to the NFSR variables. This function has 4 affine differential tuples of weight 1
which produce derivatives on LFSR variables. A call to FLEL(1) produces all
the 128 equations needed to solve the LFSR. The output of this routine is given
in Table 6.

A call to FLEN(1) gives us all the NFSR bits of S12. The output of this
routine is in Table 7. Thus, FLEN (1) gives us xt12 for all t ∈ [0, 115], and xt95 for
all t ∈ [0, 11]. This is equivalent to all the NFSR state bits of S12. Thereafter, S0

and the secret key may be obtained as per the techniques outlined in Section 4.1.
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Table 6. Output of FLEL(1) for Grain-
128

t φ1 Range Expr. ADT

i 20 + i i ∈ [0, 107] yt13 000 000 000,

000 100 000

61 + i 50 + i i ∈ [0, 19] yt60 000 000 000,

000 000 010

Table 7. Output of FLEN (1) for Grain-
128

t φ1 Range Expr. ADT

i 8 + i i ∈ [0, 115] xt
12 000 000 000,

010 000 000

33 + i 75 + i i ∈ [0, 11] xt
95 000 000 000,

000 001 000

Table 8. Output of FLEL(1) for Grain-
128a

t φ1 Range Expr. ADT

6 + 2i 26 + 2i i ∈ [0, 50] yt13 000 000 000,

108 + 2i 70 + 2i i ∈ [0, 12] 000 100 000

2i 13 + 2i i ∈ [0, 33] yt20 000 000 000,

001 000 000

28 + 2i 107 + 2i i ∈ [0, 10] yt60 000 000 000,

50 + 2i 1 + 2i i ∈ [0, 18] 000 000 010

Table 9. Output of FLEN (1) for Grain-
128a

t φ1 Range Expr. ADT

50 + 2i 58 + 2i i ∈ [0, 34] 000 000 000,

120 + 2i 96 + 2i i ∈ [0, 15] xt
12 010 000 000

152 + 2i 102 + 2i i ∈ [0, 12]

2i 42 + 2i i ∈ [0, 42] xt
95 000 000 000,

86 + 2i 38 + 2i i ∈ [0, 4] 000 001 000

Grain-128a. In Grain-128a, the first 64 key-stream bits and every alternate
key-stream bit thereof are used to construct the message authentication code
and therefore unavailable to the attacker. To resolve this problem, in Grain-
128a every re-keying is followed by a fault injection at the beginning round 64
of the PRGA instead of round 0 and the goal of the attacker is to reconstruct
the internal state at the 64th instead of the 0th PRGA round. Note that if a
fault is applied at a random LFSR location φ at the 64th PRGA round, then
the tth state of Δφ-Grain will align itself with the (64 + t)th state of the actual
cipher. Hence, in a slight departure from the notation introduced in the previous
section we will call the 64th PRGA state S0 and all other notations are shifted
with respect to t accordingly (e.g., St refers to the (64 + t)th PRGA state etc).

The key-stream bit at every odd numbered round (after round 64 of the
PRGA) is used for making the MAC and is unavailable to the attacker. Hence
after calling FLEL(1) the attacker must reject all outputs with an odd value of
t. Even then the attacker obtains all the equations required to solve the LFSR.
The output is presented in Table 8. Similarly a call to FLEN (1) after rejecting
outputs with odd values of t, gives us 112 NFSR bits of S62. The output is given
in Table 9.

At this point, the attacker could simply guess the remaining 16 bits of S62

or give a call to FLEN(2) and thus increase the complexity of the preprocessing
stage. As it turns out, the attacker can do even better without going for these two
options. The 16 NFSR bits not determined at this point are x622i+1, for 0 ≤ i ≤ 15.
Let us now look at the equations for the key-stream bits z62+2j for j ∈ [0, 8],

z62+2j =
⊕

i∈B x62i+2j ⊕ x6215+2j ⊕ y6293+2j ⊕ h(θ62+2j),

where B = {2, 36, 45, 64, 73, 89}. Now, x6215+2j , j ∈ [0, 8] is the only unknown
in each of these equations and so its value can be calculated immediately. This
leaves us with the 7 unknown bits x621 , x

62
3 , . . . , x

62
13. In addition to the entries in

Table 9, FLEN (1) also gives the output
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t = 96 + 2i, φ1 = 48 + 2i, xt95, [0, 000 001 000], ∀i ∈ [0, 6].

This gives us the bits x96+2i
95 or equivalently x64+2i

127 for i ∈ [0, 6]. Let us write the
NFSR update function g in the form g(X) = x′⊕g′(X), where x′ corresponds to
the variable that taps the 0th NFSR location. Then looking at the NFSR update
rule for Grain-128a, we have

x64+2i
127 = y63+2i

0 ⊕ x63+2i
0 ⊕ g′(X63+2i) = y621+2i ⊕ x621+2i ⊕ g′(X63+2i),

∀i ∈ [0, 6]. Again, x621+2i, i ∈ [0, 6] is the only unknown in these equations and
so its value can be calculated immediately. This gives us all the NFSR bits of
S62. Using the techniques in Section 4.1, S0 can be calculated. Since this state
corresponds to the 64th PRGA state, the PRGA−1 routine needs to be run 64
more times before invoking the KSA−1 routine which would then reveal the
secret key.

6 When a Fault Injection Affects More Than One
Locations: Some Preliminary Observations

So far we have discussed an attack scenario where an injected fault flips exactly
one bit value at a random LFSR location. We now relax the requirements of
the attack, and assume a fault model that allows the user to inject a fault that
affects more than one locations. Our strategy is that, if the fault injection affects
more than one location, we will be able to identify that scenario, and will not
use those cases for further processing.

We consider the case when at most three consecutive locations can be dis-
turbed by a single fault injection. Thus, four cases are possible: (a) exactly one
LFSR bit is flipped (n cases), (b) 2 consecutive locations i, i + 1 of the LFSR
are flipped (n − 1 cases), (c) 3 consecutive locations i, i + 1, i + 2 of the LFSR
are flipped (n− 2 cases) and (d) locations i, i+2 are flipped but not i+1 (n− 2
cases). Studying such a model makes sense if we attack an implementation of
Grain where the LFSR register cells are physically positioned linearly one after
the other.

It is clear that such a fault model allows a total of n+n−1+2(n−2) = 4n−5
types of faults out of which only n are single bit-flips. We assume that each
of these 4n − 5 cases are equally probable. The success of our attack that we
have described in Section 4 will depend on the ability of the attacker to deduce
whether a given faulty key-stream vector has been produced as a result of a single
bit toggling of any LFSR location or a multiple-bit toggle. Thus, we need to
design a fault location identification algorithm that analyzes a faulty key-stream
and (i) if the faulty key-stream has been produced due to a single bit toggling
of any LFSR location, the algorithm should output that particular position, and
(ii) if the faulty key-stream has been produced due to multiple-bit toggling of
LFSR locations, the algorithm should infer that the faulty key-stream could not
have been produced due to a single bit toggle.
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To solve the problem, will use the same fault location identification technique
used in Section 3.2. For the method to be a success, the routine would return
the fault location numbers for all possible cases when a single LFSR location is
toggled (n out of 4n − 5 cases), and the empty set ∅ for all the other 3n − 5
cases. Let ps be the probability that the fault location identification technique
has succeeded (theoretically, the probability is defined over all possible Key-IV
pairs). By performing computer simulations over 220 randomly chosen Key-IV
pairs, the value of ps was found to be 0.99994 for Grain v1, 1.00 for Grain-128
and 0.993 for Grain-128a. Note that assuming this fault model increases the
number of re-keyings and hence fault injections to (4n− 5) · ln (4n− 5).

As the experiments show, the probability of the location identification tech-
nique failing is very small. In case the method fails for some particular Key-IV
pair, we reset the cipher with the same Key-IV and repeat the fault identifica-
tion routine and this time inject the fault at PRGA round 1 instead of 0 (round
66 for Grain-128a) and then try to reconstruct this first (66th for Grain-128a)
PRGA state using the methods outlined in Section 4. The probability that the
location identification routine will fail for both PRGA round 0 and 1 is (1−ps)2
(assuming independence) and is thus even smaller. In case the method fails for
both round 0 and 1, we repeat the routine on PRGA round 2 and so on.

7 Conclusion

In this paper we outline a general strategy to perform differential fault attack
on ciphers with the physical structure of Grain. In particular, the attack is
demonstrated on Grain v1, Grain-128 and Grain-128a. The attack also uses a
much more practical and realistic fault model compared to the fault attacks on
the Grain family reported in literature [5, 6, 12].
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Abstract. Feedback with Carry Shift Registers (FCSRs) have been first
proposed in 2005 by F. Arnault and T. Berger as a promising alternative
to LFSRs for the design of stream ciphers. The original proposal called
F-FCSR simply filters the content of a FCSR in Galois mode using a
linear function. In 2008, Hell and Johannson attacked this version using
a method called LFSRization of F-FCSR. This attack is based on the
fact that a single feedback bit controls the values of all the carry cells.
Thus, a trail of 0 in the feedback bit annihilates the content of the carry
register, leading to transform the FCSR into an LFSR during a sufficient
amount of time.

Following this attack, a new version of F-FCSR was proposed based on
a new ring FCSR representation that guarantees that each carry cell de-
pends on a distinct cell of the main register. This new proposal prevents
the LFSRization from happening and remains unbroken since 2009. In
parallel, Alaillou, Marjane and Mokrane proposed to replace the FCSR
in Galois mode of the original proposal by a Vectorial FCSR (V-FCSR)
in Galois mode.

In this paper, we first introduce a general theoretical framework to
show that Vectorial FCSRs could be seen as a particular case of classical
FCSRs. Then, we show that Vectorial FCSRs used in Galois mode stay
sensitive to the LFSRization of FCSRs. Finally, we demonstrate that
hardware implementations of V-FCSRs in Galois mode are less efficient
than those based on FCSRs in ring mode.
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F. Arnault and T. Berger proposed to replace the classical LFSRs by a FCSR
in Galois mode [5] to design a new stream cipher called F-FCSR. The content of
the FCSR is then linearly filtered to produce the output stream. Unfortunately,
in 2008, Hell and Johannson [13] found an attack called LFSRization of FCSRs
against the F-FCSR family of ciphers. This attack exploits the fact that a single
feedback bit controls all the carry bits. Then, F. Arnault et al. [8] proposed
in 2009 a new FCSR representation called ring representation that prevents
this attack. In the same research direction, Alaillou et al. in [1] proposed also
an alternative based on particular FCSRs called Vectorial FCSRs. They then
designed a stream cipher called Q-SIFR that uses a V-FCSR in Galois mode
linearly filtered to produce the output stream.

This paper is devoted to the cryptanalysis of the Q-SIFR stream cipher pro-
posed in [1] and shows that Q-SIFR is sensitive to LFSRization attack. This
stream cipher is directly inspired from the family of F-FCSR stream ciphers,
but it is based on Vectorial FCSRs. We first present a general theoretical frame-
work for FCSRs that includes V-FCSRs. We then show that practical imple-
mentations of V-FCSRs lead to classical FCSRs in Galois mode. So, as classical
FCSRs, Q-SIFR suffers from LFSRization attack. Moreover, compared with the
latest version of F-FCSR [8], the proposed V-FCSR is not so efficient when
looking at hardware implementations.

This paper is organized as follows: in Section 1, we introduce some theoretical
background on n-adic topology. In Section 2, we present the family of Algebraic
Finite State Machines (AFSMs) and show that V-FCSRs could be seen as a
particular case of AFSMs. Section 3 is devoted to the practical implementations
of AFSMs and of V-FCSRs which are, in fact, general FCSRs as the ones de-
scribed in [3]. In Section 4, we recall the design of F-FCSR stream ciphers and
the LFSRization attack. Finally, in Section 5, we present our cryptanalysis of
Q-SIFR and compare the hardware performances of the latest version of FCSRs
and of V-FCSRs.

1 n-adic Topology in Some Polynomial Rings

Let p(X) ∈ Z[X ] be a monic polynomial of degree d. Let A be the algebra
A = Z[X ]/(p(X)). We identify the Z-module A with the set of polynomials of
degree less than d. Let n > 0 be a positive integer.

1.1 n-adic Expansion in A

Let n be a positive integer. Let mod n and div n be the maps defined over
Z by the Euclidean division: a = (a mod n)n + (a div n), 0 ≤ (a mod n) < n.
These maps can be naturally extended to Z[X ]: the two maps modn and divn
are defined by:

If q(X) =
∑r

i=0 qiX
i, then modn(q(X)) =

∑r
i=0(qi mod n)X i and

divn(q(X)) =
∑r

i=0(qi div n)X
i.

Clearly, q(X) = modn(q(X)) + n divn(q(X)). Under the choice of canonical
representatives of degree less than d for A = Z[X ]/(p(X)), we have modn(A) ⊂
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A and divn(A) = A. So, the restrictions of modn and divn to A define two
applications of A on A. Note that S = modn(A) is a finite set with nd elements,
and is a set of representatives of the quotient ring A/nA.

The ideal (n) = nA can be used to define a distance d in A :

d(q(X), r(X)) =

{
0 if q(X) = r(X),
2−k if q(X) �= r(X),

were k is the largest integer such that q(X)− r(X) ∈ (n)k (i.e. modnk(q(X) −
r(X)) = 0).

Since the intersection of ideals ∩i∈N∗((n)i) is zero in A, this distance is a dis-
tance in the mathematical sense of this word. In particular, it induces a topology
on A, the so-called n-adic topology.

Moreover, as usual, it is possible to define n-adic expansion of an element
q(X) ∈ A: this is the sequence seqn(q(X)) = (si(X))i∈N where si(X) =
modn(divni(q(X))). For the n-adic topology, the series associated to the n-adic
expansion of q(X) ∈ A converges to q(X) : q(X) =

∑∞
i=0 si(X)ni.

Finally, we can define An as the completion of A for the n-adic topology. It
is the set of formal series

{∑∞
i=0 si(X)ni | si(X) ∈ S

}
. Note that, if Zn denotes

the set of n-adic numbers, an element s(X) of An can be written in a unique

way s(X) =
∑d−1

j=0 ziX
i, zi ∈ Zn. In particular, Zd

n is isomorphic to An as
a Z-module, but multiplications of elements of An must be computed modulo
p(X).

1.2 Rational Expansions in An

Lemma 1. An element s(X) =
∑∞

i=0 si(X)ni ∈ An is invertible if and only if
s0(X) is invertible modulo p(X).

Proof. Suppose first that s0(X) is invertible modulo p(X). Let a(X) ∈ A such
that s0(X)a(X) = 1 in A. Set s′(X) = a(X)s(X) = 1 − nt(X), t(X) ∈ An.
Clearly, s′(X) is invertible and s′−1 =

∑∞
i=0 t(X)ini ∈ An. So, s(X) is invertible

in An.
Conversely, if s(X) is invertible in An, set t(X) = s(X)−1. It is easy to verify,

with obvious notations, that s0(X)t0(X) = 1 in A; i.e. s0(X) is invertible modulo
p(X).

Definition 1. We denote by Q the ring of fractions of A, i.e. the elements of
An of the form u/v, u, v ∈ A, v invertible in An.

As a direct consequence of Lemma 1, we obtain the following result:

Proposition 1. Q is the set of elements of the form u/(1− nv), u, v ∈ A.

The periodic elements of An are in Q. Indeed, if s(X) = r(X)
∑∞

i=0 n
Ti, r(X) =∑T−1

j=0 sj(X)nj for some T ∈ N, then s(X) = r(X)/(1 − nT ). In fact, one can
show that Q is exactly the set of ultimately periodic elements of An. It follows
from the fact that A/nA is finite.
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2 Algebraic Finite State Machine and Vectorial FCSRs

2.1 Algebraic Automata in A

Following the notion of Algebraic Feedback Shift Registers introduced in [11] and
the matrix approach for the theory of FCSRs presented in [3], we can generalize
these two approaches to define a matrix theory of algebraic automata in order
to generate the rational elements of An, i.e. the elements of Q.

Remember that S = modn(A) is the finite set of polynomials of degree strictly
less than d = deg(p(X)) and with coefficients in {0, ..., n− 1}.
Definition 2. An algebraic finite state machine (AFSM) of size k ∈ N∗ is an
automaton composed of

– A set of states (m, c) ∈ Sk ×Ak

– A transition function defined by a k × k matrix T with coefficients in S. If
the automaton is in state (m(t), c(t)) at time t, the transition function is
given by ⎧⎨⎩

z(t+ 1) = Tm(t) + c(t)
m(t+ 1) = modn(z(t+ 1))
c(t+ 1) = divn(z(t+ 1))

(1)

where modn(z(t)) (resp. divn(z(t))) is the k-tuple obtained by applying modn

(resp. divn) to each coordinate of z(t).

To simplify notations, we omitted the indeterminate X in formulas, for example
m0(t) is in fact a polynomial (m0(t))(X) ∈ A. Note that in this definition, m(t)
and c(t) are column vectors. By abuse of notation, m(t) and c(t) will refer either
to a column vector or a row vector, depending on the context.

By analogy with the FCSR automata explained in [3], the register
m(t) = (m0(t), ...,mk−1(t)) is called the main register and the register
c(t) = (c0(t), ..., ck−1(t)) is called the carry register.

By a method similar to the one developed in [3] Section 5, it is possible to show
that AFSMs are finite states machines. More precisely, it is possible to determine
a finite parallelogram V ⊂ Ak, such that if c(t) ∈ V then c(t+ 1) ∈ V .

The content of the cells of the main register is in S. We are interested by the
sequences observed in each cell of this register. These sequences are naturally
interpreted as n-adic elements, i.e. as elements of An.

Notations: we denote by M(t0) = (M0(t0), ...,Mk−1(t0)) ∈ Ak
n the k-tuple

of elements of An observed from time t0 in the main register. More precisely,
Mi(t0) =

∑
t≥t0

mi(t)n
t−t0 .

The main result of this section is the following theorem which is a straight-
forward generalization of Theorem 2 of [3].

Theorem 1. If the automaton is in the state (m(t0), c(t0)) at time t0, then

M(t0) =
adj(I − nT )

det(I − nT )
· (m(t0) + nc(t0))

where adj(U) denotes the adjoint of a matrix U , i.e. the transpose of cofactors
matrix of U , and I denotes the k × k identity matrix.
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In fact, if we set U = adj(I−nT )
det(I−nT ) , U is the inverse of (I − nT ). However, the

matrix adj(I − nT ) has its coefficients in A. Consequently, this theorem shows
that the sequences Mi = Mi(0) observed in each cell mi of the main register of
the automaton from an initial time t = 0 are all in Q. More precisely, if we set
q(X) = det(I−nT ), they are of the formMi = pi(X)/q(X) for some pi(X) ∈ A.
Moreover, modn(q(X)) = 1 and the polynomials pi(X) are explicitly given by
Theorem 1.

The classical binary FCSRs correspond to the particular case p(X) = X and
n = 2. The polynomial q(X) = det(I − nT ) is called the connection polynomial
of the AFSM.

2.2 Galois and Fibonnaci Modes for AFSMs

In the theories of LFSRs, FCSRs and AFSRs, there are two well-known particular
modes: the Fibonnaci mode, which refers to the linear recurrence sequences, and
the Galois mode, which corresponds to the rational development of series.

These automata are constituted of k cells which are linked by a circular shift.
This induces a “ring” structure of the matrix, i.e. Ti,i+1 = 1 for i = 1 to k − 1
and Tk,1 = 1. For the Fibonnaci mode, the other non-zero entries are on the last
row and for the Galois mode, the other non-zero entries are on the first column.

TG =

⎛⎜⎜⎜⎜⎜⎝
q1 1
q2 1 (0)
... (0)

. . .

qn−1 1
1 0 0 · · · 0

⎞⎟⎟⎟⎟⎟⎠ TF =

⎛⎜⎜⎜⎜⎜⎝
0 1
0 1 (0)
... (0)

. . .

0 1
1 q2 · · · qn−1 qn

⎞⎟⎟⎟⎟⎟⎠

2.3 Vectorial FCSR

In [15], A. Marjane and B. Allailou introduced the notion of Vectorial FCSRs (V-
FCSRs). The presentation in [15] is different from the one adopted here. However,
it is easy to verify that they correspond to the particular case of AFSMs over A
with:

– n = 2.

– p(X) = Xd −
∑d−1

i=0 εiX
i, with εi ∈ {0, 1}. Moreover, the polynomial p(X)

must be irreducible over GF (2).

– The matrix T is the companion matrix of q(X) = det(I − nT ) (i.e. the
automaton is in the so-called Fibonacci form, see [3] for more details).

The fact that p(X) is irreducible over GF (2) has absolutely no consequence
on the theory and the results obtained in [15]. The particular form for p(X) is
motivated by the fact that coefficients of T are in {0, 1} ⊂ Z, which leads to
simple calculus and implementations.
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3 Reduction of AFSM over A to Classical FCSRs

3.1 Arithmetic on A

As a Z-module, under the hypothesis that p(X) is unitary, A = Z[X ]/(p(X)) is

isomorphic to Zd by the identification of an element r(X) =
∑d−1

i=0 riX
i, ri ∈ Z

to the list r = (r0, ..., rd−1) ∈ Zd of its coefficients. Moreover, the multiplica-
tion in A by a fixed polynomial r(X) is Z-linear, so it admits a d × d matrix
representation.

For example, the multiplication by X in A corresponds to the companion
matrix MX of the polynomial p(X) in Zd.

MX =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . . . . 0
... 0 1 0

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . . 0

0 . . . . . . . . . 0 0 1
−p0 −p1 . . . . . . . . . . . . −pd−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
More generally, if r(X) =

∑d−1
i=0 riX

i in A, the corresponding multiplication

matrix in Zd is Mr(X) =
∑d−1

i=0 riM
i
X .

The norm of a polynomial r(X) ∈ A is the determinant of the matrix Mr(X):
norm(r(X)) = det(Mr(X)).

3.2 Practical Implementation of AFSM over A

The simplest way to implement an AFSM over A is to use the representation
with the d-tuples of elements of Z described in the previous section.

So, a k-tuple of elements of A becomes a k-tuple of d-tuple over Z, which can
be identified to an element of Zkd. To any k× k matrix T over A, we associate a
kd×kd matrix T over Z by replacing any entry r(X) of T by the matrix Mr(X).

Using this representation of AFSM, Definition 2 becomes

Definition 3. Let Sn be the set {0, ..., n− 1}. An algebraic finite state machine
(AFSM) of size k ∈ N∗ is an automaton composed of

– A set of states (m, c) ∈ Skdn × Zkd

– A transition function defined by a k × k matrix T with coefficients in S. Let
T be its corresponding kd × kd matrix over Z. If the automaton is in the
state (m(t), c(t)) at time t the transition function is given by⎧⎨⎩z(t+ 1) = Tm(t) + c(t)

m(t+ 1) = z(t+ 1) mod n
c(t+ 1) = z(t+ 1) div n

(2)

where z(t) mod n (resp. z(t)(div n)) is the kd-tuple obtained by applying
mod n (resp. (div n)) to each coordinate of z(t).
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3.3 Reduction of AFSMs to FCSRs

Definition 3 is a particular case of the well known matrix approach of FCSRs
presented in [3]. As explained in [3], the generalization from n = 2 to any integer
n is immediate.

So AFSMs of size k are nothing else than FCSRs of size kd, with the additional
constraint that the transition matrix T will be the image of a k× k matrix over
A.

As explained in [17], Theorem 1, if T is a matrix over Z which is the image
of a matrix T over A, the link between their determinants is the following:

det(T ) = norm(det(T )).

As a consequence, if the connection polynomial of an AFSM is q(X) = det(I −
nT ), the connection integer q′ = det(I − nT ) of the associated FCSR is q′ =
norm(q(X)) = det(Mq(X)).

If one can observe a rational series s(X) = p(X)/q(X) in a cell of an AFSM
with connection polynomial q(X), then the series s(X) can be decomposed as

s(X) =
∑d−1

j=0 s
(j)Xj, where s(j) is a rational element of Zn (the set of n-adic

numbers) of the form s(j) = p(j)/q′.

4 Pseudo-Random Generators Based on FCSRs

4.1 The Family of F-FCSRs Stream Ciphers

The first F-FCSR stream cipher was presented in 2005 [5]. Other versions have
been proposed later [4, 6–8, 10]. They are based on the iterations of an FCSR
automaton, which is filtered by a linear function in order to produce the pseudo-
random sequence. The resistance against most attacks is provided by the intrin-
sic non-linearity of the transition function which is quadratic. The resistance
to dedicated attacks (i.e. related to 2-adic properties) is insured by the linear
filter, which is also the best function to break the correlation attacks. Figure 1
gives a small example of a F-FCSR stream cipher based on a FCSR in Galois
mode.

F-FCSR versions until 2008 were based on FCSRs in Galois mode. This mode
corresponds to the automata with transition matrices of the form TG given in
Section 2.2. The version F-FCSR-H v2 [7] was one of the height finalists of the
eSTREAM European project [16]. Moreover, it was one of the four hardware
oriented stream ciphers proposed in the portfolio at the end of the project in
September 2008. Unfortunately, it was broken 3 months later [13]. We describe
this attack in more details in Subsection 4.2.
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m7 m6 m5 m4 m3 m2 m1 m0� � � �

XOR

S(t)

Fig. 1. A toy example of a filtered FCSR (F-FCSR) in Galois mode

The transition matrix of this FCSR in Galois mode is

TG =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
4.2 Weakness of F-FCSR Stream Ciphers Based on FCSRs in

Galois Mode

In Galois mode, there is a single cell m0 that controls all the feedbacks. If this
cell takes the value 0 during r clocks, most of the carry cells become null after
few iterations. If all the carry cells and the feedback cell are null, then the
transition function becomes linear. It is not possible that all the carry cells
are simultaneously null (see [9]), however they become null except one with a
non negligible probability. The cryptanalysis presented in [13] is based on this
observation.

4.3 FCSRs in Diversified Mode

Following this attack, a new version of FCSRs was presented in [8]. This is the
first introduction of a matrix representation of FCSRs as presented in Section 2.
A survey of this approach can be found in [3]. The main idea is to use matrices
with more random structure than those of Galois or Fibonnaci modes. For new
versions of F-FCSR [8, 10], the authors propose to use matrices with “ring”
structure: they have a 1 in the upper-diagonal and at the first position of the
last row, and at most two 1 by row and by column. In this way, it is impossible
to find two carry cells depending on a same feedback cell. This fact completely
discards the attack presented in [13], and new versions remain unbroken since
2009. Figure 2 presents a small example of the new FCSR version.
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m7 m6 m5 m4 m3 m2 m1 m0� � �

Fig. 2. A toy example of FCSR in ring (or diversified) mode

The transition matrix of this FCSR is

TR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

5 Cryptanalysis of Pseudo Random Generators Based on
Vectorial FCSRs

In [1] the authors propose to use a Vectorial FCSR in Galois mode to replace the
FCSR in Galois mode of F-FCSR v2 broken in [13]. In this section, we describe
this proposal. We then apply the reduction to FCSR automata presented in
Section 3. Using this new representation, we show that the stream cipher Q-
SIFR based on V-FCSRs in Galois mode remains sensitive to the attack of [13],
contrary to the new version of F-FCSR, F-FCSR-H v3 proposed in [8]. We finally
compare the hardware performances of Q-SIFR and of F-FCSR-16 v3.

5.1 Description of Q-SIFR

The stream cipher Q-SIFR presented in [1] is based on a V-FCSR. As an AFSM,
the parameters of the automaton are: n = 2, p(X) = X2 −X − 1, so d = 2, and
the matrix MX is

MX =

(
0 1
1 1

)
The size of the matrix over A is k = 160. Let q(X) = u+ vX with

u = −1993524591318275015328041611344215036460140087963 and

v = −1993524591318275015328041611344215036460140087860.

The automaton is in Galois form. More precisely, set d(X) = (1 − q(X))/2

and d(X) =
∑159

i=0 di(X)2i, di(X) ∈ S = {0, 1, X,X + 1}. The columns of the
transition matrix T of the VFCSR are
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– T t(1) = (d159(X), d158(X), ..., d0(X)),
– T t(2) = (10...0), T t(3) = (010...0), ...
– T t(160) = (00...010).

Since this matrix is the transpose of the companion matrix of q(X), one can
verify that det(I − 2T ) = q(X), so q(X) is the connection polynomial of the
AFSM.

A practical implementation of such a V-FCSR needs the construction of the
corresponding 320× 320 matrix T with coefficients in Z.

Since T is in Galois form (i.e. corresponds to a companion matrix), the
first two columns of T are obtained from the first column of T by replacing
each polynomial di(X) by the 2 × 2 matrix Mdi(X). The following columns are
T t(3) = (1000..00), T t(4) = (0100...00), T t(319) = (00...01000) and T t(320) =
(00...00100).

The values of T t(1), T t(1) and T t(2) are given in Appendix. A first remark
is the fact that the second column contains not only 0 and 1, but also a lot of
2. Consequently, the potential values of carry cells are not only 0 or 1 but also
2 or 3.

One can verify that

q̃ = det(I − 2T ) = 3974140296190695420616004753553979604200521

434082082527268932790276172312852637472641991806538949

corresponds to the value given in [15].
At each iteration, a linear filter extracts 16 bits of stream.

5.2 LFSRization Attack against Q-SIFR

We will describe in this section how we could apply the LFSRization technique
described in [13] against Q-SIFR.

First of all, as the transition matrix T previously described is in its Galois
form and because d = 2, all the carry cells of the practical implementation of
Q-SIFR only depend on the two least significant bits of the main register m0(t)
and m1(t). In constrate with the classical FCSRs in Galois mode and due to
the matrix form, we must take into account three possible kinds of carries as
described in [1]:

– Classical Carries: As in the classical FCSR case in Galois mode, V-FCSRs
could contain classical carries corresponding with the case where the two
values of the first two columns of T are of the form (0, 1) or (1, 0), i.e.
(T t(i, 1), T t(i, 2) = (0, 1) or (1, 0)). In this case, the corresponding updating
equations for the bits mi(t) and ci(t) are:

mi(t+ 1) = mi+1(t) + ci(t) +m0(t) mod 2

or mi+1(t) + ci(t) +m1(t) mod 2

ci(t+ 1) = mi+1(t) + ci(t) +m0(t) div 2

or mi+1(t) + ci(t) +m1(t) div 2
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according the feedback bit and with mi(t) ∈ {0, 1} and ci(t) ∈ {0, 1}. There
are 2 carries of this form for m0 and 3 carries of this form for m1 when
looking at T . Thus, we deduce the transition probability matrix between
the time t and t+1 for the content of ci(t) seen as a Markov chain under the
conditions that during k consecutive clocks, themi+1(t) values are uniformly
distributed and thatm0(t) and m1(t) are null (this happens with probability
2−2·k). The transition probability matrix is then for the two possible values
of ci(t):

M1 =

(
1 0

1/2 1/2

)
– Double Carries: If the first two columns of T are of the form (1, 1) i.e.

(T t(i, 1), T t(i, 2) = (1, 1)), then the updating equations for the bits mi(t)
and ci(t) are:

mi(t+ 1) = mi+1(t) + ci(t) +m0(t) +m1(t) mod 2

ci(t+ 1) = mi+1(t) + ci(t) +m0(t) +m1(t) div 2

with mi(t) ∈ {0, 1} and ci(t) ∈ {0, 1, 2}. In the same way, we deduce the
transition probability matrix of ci(t) between t and t+1 always considering
that m0(t) and m1(t) are null. The transition probability matrix is:

M2 =

⎛⎝ 1 0 0
1/2 1/2 0
0 1 0

⎞⎠
There are 82 carries of this form according to T .

– Triple Carries: If the first two columns of T are of the form (1, 2) i.e.
(T t(i, 1), T t(i, 2) = (1, 2)), then the updating equations for the bits mi(t)
and ci(t) are:

mi(t+ 1) = mi+1(t) + ci(t) +m0(t) + 2m1(t) mod 2

ci(t+ 1) = mi+1(t) + ci(t) +m0(t) + 2m1(t) div 2

with mi(t) ∈ {0, 1} and ci(t) ∈ {0, 1, 2, 3}. In the same way, we deduce the
transition probability matrix of ci(t) between t and t+1 always considering
that m0(t) and m1(t) are null. The transition probability matrix is:

M3 =

⎛⎜⎜⎝
1 0 0 0
1/2 1/2 0 0
0 1 0 0
0 1/2 1/2 0

⎞⎟⎟⎠
There are 81 carries of this form according to T .

Now, we are interested in computing the required number of clocks that will
cancel the content of the carry register under the hypothesis that m0(t) and
m1(t) are both null during k consecutive clocks. As noticed in [9], we could not
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completely cancel the content of the carry register but we could reach a carry
register of the form ct = (001100...00) ∈ Z320 that will make the content of the
main register affine.

To do so, we need to detail the behavior of each type of carry. For the classical
carries, we can see that when the two feedback bits m0(t) and m1(t) are 0, if the
carry bit ci(t) is 0, it will remain 0 and if the carry bit is 1, it becomes 0 with
probability 1/2. Thus, if m0(t) and m1(t) are null, we expect that the general
weight of the 5 classical carries will be divided by two after one clock and so on.
So, the required number of clocks to cancel the 5 classical carries is log2(5) ≈ 3.

For the double carries, the same reasoning holds: when the two feedback bits
m0(t) and m1(t) are 0, the value of the carry is either divided by two or the
same (only for the case ci(t) = 1 with probability 1/2). So, the required number
of clocks to cancel the 82 classical carries is two times the one for a classical
carry log2(2× 82) ≈ 8. For the triple carries, when the two feedback bits m0(t)
and m1(t) are 0, the value of the carry is divided by two or the same. So, the
required number of clocks to cancel the 81 classical carries is three times the one
required for the classical carry case, so we need log2(3 · 81) ≈ 8 clocks to cancel
the triple carries.

Thus, the content of the carry register will be (001100...00) after
max(3, 8, 8) = 8 iterations. This happens under the condition “the two feedback
bits m0(t) and m1(t) are 0” which happens with a probability of 2−2·8 = 2−16.

To complete the LFSRization attack, we need to maintain during a certain
number of clocks the state (001100...00) in the carry register to be able to solve
the system generated by the outputs. As Q-SIFR linearly outputs 16 bits of the
main register at each clock and as the number of unknowns is the size of the
main register (i.e. equal to 320 bits), we obtain a linear system of 320 equa-
tions and 320 unknowns as soon as 19 iterations under the condition “the two
feedback bits m0(t) and m1(t) are 0” are performed. This happens with prob-
ability 2−2∗19 = 2−38. The resolution of the system requires a time complexity
of about (320)2.807 operations using a smart Gaussian elimination. So the at-
tack requires the observation of 238+16 = 254 outputs and has a complexity of
254 × (320)2.807 ≈ 277.35 operations.

In [13], Hell and Johansson proposed an other method that stays valid in
our context to improve the complexity of the attack. This method relies on the
structure of the extracting filter. Indeed, the filter has a particular form that
allows subsystems resolution. More precisely, at each clock, the 16 output bits
are computed in the following way:

Z(t) =(z0(t), z1(t), · · · , z15(t)) = (m0(t)⊕m16(t)⊕m48(t)⊕ · · · ⊕m304(t),

m1(t)⊕m49(t)⊕ · · · , · · · ,m15(t)⊕ · · · )

Thus, we could pack the equations according to their byte structures: there
are 20 equations that only include the particular 20 bits m0, m16, · · · , m312,
there are 20 equations that only include the particular 20 bits m1, m17, · · · ,
m313, etc. So, we could build subsytems for those equations from the values
z0(t), z7(t + 1), · · · , z5(t + 19) and from z1(t), z0(t + 1), · · · , z6(t + 19), etc.
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Then the system resolution step could be simplified into the resolution of 16
subsystems of 20 linear equations leading to a complexity of the resolution step
of 16× (202.807) ≈ 216.13 operations instead of (320)2.807 ≈ 223.35 operations. So,
the overall complexity of the attack is then 270.13 operations.

In [13], the authors proposed a second improvement of their attack: they
remark that only 17 clocks under the condition “the two feedback bits m0(t)
and m1(t) are 0” are required instead of 19. This comes from the fact that at
t+18, if the feedback bits are not zeros, the content of the carry register at t+19
will no more be (001100...00) but something unknown. However, m(t + 19) is
only required to compute z(t+ 19): the knowledge of the carry register content
at t+ 19 is not necessary except for computing m(t+ 20) that is useless in our
case. This technique remains valid in our case, so we only need to maintain the
content of the carry register equal to (001100...00) during 17 clocks instead of
19. So, considering this last optimization, the complexity of the attack becomes
22·8+17·2× 16 · (20)2.807 ≈ 266.13 operations and we need to observe 250 outputs.

This attack allows us to recover the internal state of the V-FCSR at a par-
ticular time, say t. Using the method proposed in [13], it is also possible from
the state at time t denoted by p(t) to recover the key before the key/IV set up
especially if the IV is equal to 0. The idea is first to recover the initial state p(0)
at the end of the key/IV setup using the relation p(t) = p(0) · 2t mod q̃ and
then to solve a system of equations depending on the key bits. We think that
this method also works against Q-SIFR but as the key/IV schedule of Q-SIFR
is not completely specified in [1], we could not completely precise the system to
solve.

As we could not simulate the whole attack due to its complexity, we have
tested the veracity of the LFSRization of the carry register. We have observed
that in average, with a frequency of 2−19.93, the carry register remains equal to
(001100...00) during 11 consecutive clocks. Clearly, it seems that the LFSRiza-
tion attack proposed here has a sufficient probability to be mounted.

Consequently, contrary to the Q-SIFR authors claim, we have shown that the
LFSRization attack still works on Q-SIFR even if this attack is less efficient and
less impressive than in the case of F-FCSR-H v2 [7].

5.3 Comparing Hardware Implementations of Q-SIFR and of
F-FCSR-16 v3

In [8], the authors repaired not only F-FCSR-H (leading to F-FCSR-H v3) but
also F-FCSR-16 v3 which is a version of F-FCSR that outputs 16 bits at each iter-
ation. In this subsection, we are going to compare the hardware performances of
Q-SIFR and of this particular version of F-FCSR that have comparable through-
put.

The size of the matrix T of Q-SIFR is 320. The numbers of carry adders is
168. Among these carry cells, 5 are classical adders, 82 are double adders and
81 are triple adders. So, it is necessary to implement 5 + 2 · 82 + 2 · 81 = 331
simple adders. Leading to a total of 651 binary cells to implement the V-FCSR
of Q-SIFR.
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In comparison, the size of the ring matrix of F-FCSR-16 v3 is 256 with 130
carry cells. The full implementation of F-FCSR-16 v3 requires 386 binary cells.

Moreover, and when looking at other important hardware parameters such as
the critical path (i.e. the maximal number of gates crossed by a bit) and the fan-
out (i.e. the maximal number of connections at the output of a cell), F-FCSR-16
v3 is more efficient than Q-SIFR. Indeed, the length of the critical path is 3 for
Q-SIFR whereas it is equal to 2 for F-FCSR-16 v3 and the fan-out of QSIFR is
165 whereas it is equal to 2 for F-FCSR-16 v3.

So, in summary, F-FCSR-16 is not only more resistant to the LFSRization
attack than Q-SIFR but it has also a better hardware implementation.

6 Conclusion

In this paper, we have shown that the underlying V-FCSR used in the stream
cipher proposal Q-SIFR is nothing else than a particular FCSR used in Galois
mode. As already noticed in [13], Galois mode could not be used for stream
cipher design because of LFSRization attacks that stay efficient against Q-SIFR.
Moreover, practical hardware implementations of F-FCSR using V-FCSRs are
less efficient than the ones using a FCSR in ring mode.

So, we do not find in this paper an advantage to emphasize V-FCSRs rather
than ring FCSRs even when V-FCSRs are used in ring mode.
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Appendix

Value of the First Column of the Matrix T over A:
T t(1) = (0, x+1, 1, x+1, x, 0, 1, 0, x+1, 0, x+1, 0, 0, x+1, 0, 0, 0, 0, x+1, 0, x+
1, 0, x+1, x+1, x+1, 0, x+1, x+1, x+1, x+1, 0, 0, 0, 0, 0, 0, x+1, 0, 0, x+1, x+
1, 0, x+1, 0, x+1, 0, x+1, x+1, 0, x+1, x+1, 0, 0, 0, x+1, 0, x+1, x+1, x+1, x+
1, 0, x+1, 0, x+1, 0, x+1, 0, x+1, 0, 0, 0, x+1, 0, 0, x+1, x+1, x+1, 0, x+1, x+
1, x+1, x+1, 0, 0, 0, x+1, 0, 0, 0, x+1, x+1, 0, 0, 0, 0, x+1, x+1, 0, x+1, 0, 0, 0, x+
1, x+1, x+1, x+1, x+1, x+1, x+1, 0, 0, x+1, x+1, 0, 0, 0, 0, x+1, x+1, 0, 0, x+
1, x+1, 0, 0, x+1, 0, 0, x+1, x+1, x+1, x+1, x+1, x+1, x+1, x+1, x+1, 0, x+1, x+
1, x+1, 0, x+1, 0, 0, 0, 0, x+1, x+1, 0, 0, x+1, 0, x+1, x+1, x+1, 0, x+1, 0, x+1)

Value of the Columns 1 and 2 of the Corresponding Matrix T over Z:
T t(1) =
(0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1,
1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1,
0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1,
1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,
1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1,
1, 0, 0, 1, 1, 0, 0, 1, 1)

T t(2) =
(0, 0, 1, 2, 0, 1, 1, 2, 1, 1, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0,
0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, 1, 2, 1, 2, 1, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 2, 0, 0, 0, 0, 1, 2, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 1, 2, 0, 0, 1, 2, 1, 2, 0, 0, 0, 0,
0, 0, 1, 2, 0, 0, 1, 2, 1, 2, 1, 2, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0,
1, 2, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, 1, 2, 1, 2, 1, 2, 1, 2, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0,
1, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,
1, 2, 1, 2, 0, 0, 0, 0, 1, 2, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 0, 0, 0, 0, 1, 2, 1, 2, 0, 0, 0, 0,
1, 2, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, 1, 2,
0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 0, 0, 0, 0, 1, 2, 0, 0, 1, 2, 1, 2, 1, 2, 0, 0, 1, 2, 0, 0, 1, 2)
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Abstract. In this paper, we study the AES block cipher in the chosen-
key setting. The adversary’s goal of this security model is to find triplets
(m, m′, k) satisfying some properties more efficiently for the AES scheme
than generic attacks. It is a restriction of the classical chosen-key model,
since as it has been defined originally, differences in the keys are possible.
This model is related to the known-key setting, where the adversary
receives a key k, and tries to find a pair of messages (m,m′) that has
some property more efficiently than generic attacks. Both models have
been called open-key model in the literature and are interesting for the
security of AES-based hash functions.

Here, we show that in the chosen-key setting, attacking seven rounds
(resp. eight rounds) of AES-128 can be done in time and memory 28

(resp. 224) while the generic attack would require 264 computations as
a variant of the birthday paradox can be used to predict the generic
complexity. We have checked our results experimentally and we extend
them to distinguisers of AES-256.

Keywords: AES, Open-key Model, Chosen-key Distinguisher, Practical
Complexities.

1 Introduction

The Advanced Encryption Standard (AES) [16] is nowadays the subject of many
attention since attacks coming from hash function cryptanalysis have put its
security into question. Related-key attacks and meet-in-the-middle attacks that
begin in the middle of the cipher (also known as splice-and-cut attacks) have
been proposed to attack the full number of rounds for each AES versions [1,2,4],
while other techniques exist for smaller version [5]. This interesting connection
between hash functions and block ciphers shows that any improvement on hash
function cryptanalysis can be useful for attacking block ciphers and vice-versa.

In this work, we study another model that has been suggested to study the
security of hash functions based on AES components. Knudsen and Rijmen [9]
have proposed to consider known-key attacks since in the hash function domain,
the key is usually known and the goal is to find two input messages that satisfy
some interesting relations. In some setting, a part of the key can also be chosen
(for instance when salt is added to the hash function) and therefore, cryptan-
alysts have also consider the model where the key is under the control of the

S. Galbraith and M. Nandi (Eds.): INDOCRYPT 2012, LNCS 7668, pp. 225–243, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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adversary. The latter model has been called chosen-key model and both models
belong to the open-key model. The chosen-key model has been popularized by
Biryukov et al. in [2], since a distinguisher in this model has been extended to a
related-key attack on the full AES-256 version.

Related Work. Knudsen and Rijmen in [9] have been the firsts to consider
known-key distinguishers on AES and Feistel schemes. The main motivations for
this model are the following:

– if there is no distinguisher when the key is known, then there will also be no
distinguisher when the key is secret,

– if it is possible to find an efficient distinguisher, finding partial collision on
the output of the cipher more efficiently than birthday paradox would predict
even though the key is known, then the authors would not recommend the
use of such cipher,

– finally, such model where the key is known or chosen can be interesting to
study the use of cipher in a compression function for a hash function.

In the same work, they present some results on Feistel schemes and on the
AES. Following this work, Minier et al. in [14] extend the results on AES on the
Rijndael scheme with larger block-size.

In [2], Biryukov et al. have been the firsts to consider the chosen-key dis-
tinguisher for the full 256-bit key AES. They show that in time q · 267, it is
possible to construct q-multicollision on Davies-Meyer compression function us-
ing AES-256, whereas for an ideal cipher, it would require on average q ·2 q−1

q+1 128

time complexity. In these chosen-key distinguishers, the adversary is allowed to
put difference also in the key. Later, Nikolic et al. in [15], describe known-key
and chosen-key distinguishers on Feistel and Substitution-Permutation Networks
(SPN). The notion of chosen-key distinguisher is more general than the model
that we use: here, we let the adversary choose the key, but it has to be the
same for the input and output relations we are looking for. We do not consider
related-keys in this article. Then in [12], rebound attacks have been used to
improve known-key distinguishers on AES by Mendel et al. and in [8], Gilbert
and Peyrin have used both the SuperSBox and the rebound techniques to get
a known-key distinguisher on 8-round AES-128. Last year at FSE, Sasaki and
Yasuda show in [18] an attack on 11 Feistel rounds and collision attacks in hash-
ing mode also using rebound techniques, and more recently, Sasaki et al. studied
the known-key scenario for Feistel ciphers like Camellia in [17].

Our Results. In this paper, we study 128- and 256-bit reduced versions of AES
in the (single) chosen-key model where the attacker is challenged to find a key k
and a pair of messages (m, m′) such that m⊕m′ ∈ E and AESk(m)⊕AESk(m′) ∈
F , where E and F are two known subspaces. On AES-128, we describe in that
model a way to distinguish the 7-round AES in time 28 and the 8-round AES in
time 224. In the case of the 7-round distinguisher, our technique improves the
216 time complexity of a regular rebound technique [13] on the SubBytes layer
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by computing intersections of small lists. The 8-round distinguisher introduces
a problem related the SuperSBox construction where the key parameter is
under the control of the adversary. As for AES-256, the distinguishers are the
natural extensions of the ones on AES-128. Our results are reported in Table 1.
We have experimentally checked our results and examples are provided in the
appendices. We believe our practical distinguishers can be useful to construct
non-trivial inputs for the AES block cipher to be able to check the validity of
some theoretical attacks, for instance [7].

Outline of the Paper. The paper is organized as follows. We begin in Section 2
by recalling the AES and the concept of SuperSBox. Then in Section 3.1, we
precise the chosen-key model in the ideal case to be able to compare our dis-
tinguishers to the ideal scenario. Section 3.1 describes the main results of the
AES-128 and Section 4 shows how to apply similar results to the AES-256.

Table 1. Comparison of our results to previous ones on reduced-round distinguishers
of the AES-128 in the open-key model. Results from [1] are not mentioned since we
do not consider related-keys in this paper.

Target Model Rounds Time Memory Ideal Reference

AES-128

Known-key 7 256 - 258 � [9]
Known-key 7 224 216 264 [12]

Single-chosen-key 7 222 - 264 [3]
Single-chosen-key 7 28 28 264 Section 3.2

Known-key 8 248 232 264 [8]
Single-chosen-key 8 244 - 264 [3]

Single-chosen-key 8 224 216 264 Section 3.3

AES-256

Single-chosen-key 7 28 28 264 Section 4.1
Single-chosen-key 8 28 28 264 Section 4.2
Single-chosen-key 9 224 216 264 Section 4.3

� Claimed by the authors as a very inaccurate estimation of the [ideal] complexity.

2 Description of the AES

The Advanced Encryption Standard [16] is a Substitution-Permutation Network
that can be instantiated using three different key bit-lengths: 128, 192, and 256.
The 128-bit plaintext initializes the internal state viewed as a 4 × 4 matrix of
bytes as values in the finite field GF (28), which is defined via the irreducible
polynomial x8 + x4 + x3 + x + 1 over GF (2). Depending on the version of the
AES, Nr rounds are applied to that state: Nr = 10 for AES-128, Nr = 12 for
AES-192 and Nr = 14 for AES-256. Each of the Nr AES round (Figure 1)
applies four operations to the state matrix (except the last one where we omit
the MixColumns):
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– AddRoundKey (AK) adds a 128-bit subkey to the state.
– SubBytes (SB) applies the same 8-bit to 8-bit invertible S-Box S 16 times

in parallel on each byte of the state,
– ShiftRows (SR) shifts the i-th row left by i positions,
– MixColumns (MC) replaces each of the four column C of the state by

M × C where M is a constant 4 × 4 maximum distance separable circulant
matrix over the field GF (28), M = circ(2, 3, 1, 1).

AK SB

S

x
x
x
x

SR

C ← M × C

x
x

x
x

MC

wi−1 xi yi zi wi

Fig. 1. An AES round applies MC◦SR◦SB◦AK to the state. There are Nr = 10 rounds
in AES-128.

<<S
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(c) Naming.

Fig. 2. Key schedules of the variants of the AES (AES-128 and AES-256) – Naming
of bytes in a state
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After the Nr-th rounds has been applied, a final subkey is added to the internal
state to produce the ciphertext. The key expansion algorithm to produce the
Nr + 1 subkeys for AES-128 is described in Figure 2(a), and in Figure 2(b) for
the AES-256. We refer to the official specification document [16] for further
details.

SuperSBox. In [6], Rijmen and Daemen introduced the concept of SuperSBox
to study two rounds of AES. This transformation sees the composition SB ◦
AK(k) ◦MC ◦ SB as four parallel applications of a 32-bit S-Box, and has been
useful for several cryptanalysis works, see for instance [8,10]. Abusing notations,
in the sequel, we call SuperSBox keyed by the key k the transformation that
applies this composition to a single AES-column. In that context, the key k
which parameterized the SuperSBox is also a 32-bit AES-column. We denote
that operation by SuperSBoxk.

Notations. In this paper, we count the AES rounds from 0 and we refer to a
particular byte of an internal state x by x[i], as depicted in Figure 2(c). More-
over, as shown in Figure 1, in the ith round, we denote the internal state after
AddRoundKey by xi, after SubBytes by yi, after ShiftRows by zi and after
MixColumns by wi. To refer to the difference in a state x, we use the notation
Δx.

3 Chosen-Key Distinguishers

3.1 Limited Birthday Distinguishers

In this section, we precise the distinguishers we are using. Our first goal is to
distinguish the AES-128 from an ideal keyed-permutation in the chosen-key
model. We will derive distinguishers for AES-256 afterwards. We are interested
in the kind of distinguishers where the attacker is asked to find a key and a pair
of plaintext whose difference is constrained in a predefined input subspace such
that the ciphertext difference lies in an other predefined subspace.

Property 1. Given two subspaces Ein and Eout, a key k and a pair of messages
(x, y) verify the property on a permutation P if x + y ∈ Ein and P (x) + P (y) ∈
Eout.

This type of distinguisher looks like the limited birthday distinguishers intro-
duced by Gilbert and Peyrin in [8] with a very close lower bound proved in [15],
except that we allow the attacker more freedom; namely, in the choice of the key
bits. To determine how hard this problem is, we need to compare the real-world
case to the ideal scenario. In the latter, the attacker faces a family1 of pseudo-
random permutations F : K ×D −→ D, and would run a limited birthday dis-
tinguisher on a particular random permutation Fk to find a pair of messages

1 Where both K and D are {0, 1}128 in the case of AES-128.
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that conforms to the subspace restrictions of Property 1. The additional free-
dom of this setting does not help the attacker to find the actual pair of messages
that verifies the required property, because the permutation Fk has to be chosen
beforehand. Put it another way, the birthday paradox is as constrained as if the
key were known since no difference can be introduced in the key bits.

Therefore, even if we let the key to be chosen by the attacker, the limited
birthday distinguisher from [8] applies in the same way. For known Ein and
Eout, we denote ni = dim(Ein) and no = dim(Eout). In terms of truncated
differences, ni (resp. no) represents the number of independent active truncated
differences in the input (resp. output) of a random permutation Fk ∈ F (see
Figure 3). Both ni and no range in the interval between 0 and n, where n = 16
in the case of AES. Without loss of generality, we assume that ni ≤ no: the
attacker thus considers Fk rather than its inverse, as it is easier to collide on
n − no differences than on n − ni. The attacker continues by constructing two
lists L and L′ of 28ni plaintexts each by choosing a random value for the n− ni

inactive bytes of the input and considering all the ni active ones in Ein. With
a birthday paradox on the two lists L and L′, she expects a collision on at
most 2ni bytes of the ciphertexts. In the event that n− no ≥ 2ni, then n− 2ni

bytes have not a zero-difference in the ciphertext. Hence, we need to restart the
birthday paradox process about 28(n−no−2ni) times, which costs 28(n−no−ni) in
total. Otherwise, if n − no < 2ni, then a single birthday paradox with lists of
size 28(n−no)/2 is sufficient to get a collision on the n−no required bytes in time
28(n−no)/2.

ni

n

n0 n− n0

Fk

Fig. 3. Assuming ni ≤ no, the attacker searches for a pair of input to the random
permutation Fk differing in ni known byte positions such that the output differs in no

known byte positions. A gray cell indicates a byte with a truncated difference.

3.2 Distinguisher for 7-Round AES-128

We consider the 7-round truncated differential characteristic of Figure 4, where
the differences in both the plaintext and the ciphertext lie in subspaces of di-
mension four. Indeed, the output difference lies in a subspace of dimension four
since all the operations after the last SubBytes layer are linear. With respect
to the description of the distinguisher (Section 3.1), the time complexity to find
a pair of messages that conforms to those patterns in a family of pseudo-random
permutations is 264 basic operations.
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AK(0) SB SR MC

AK(1) SB SR MC

AK(2) SB SR MC

AK(3) SB SR MC

AK(4) SB SR MC

AK(5) SB SR MC

AK(6) SB SR MC

Round 0

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Fig. 4. The 7-round truncated differential characteristic used to distinguish the
AES-128 from a random permutation. Black bytes are active, white bytes are not.

The following of this section describes a way to build a key and a pair of
messages that conform to the restrictions in time 28 basic operations using a
memory complexity of 28 bytes. This complexity has to be compared to 216 op-
erations, which is the time complexity expected for a straightforward application
of the rebound attack [13] on the SubBytes layer of the AES. In that case, there
are 16 random differential transitions around the AES S-Box, which happens to
be all compatible2 with probability 2−16. Repeating with random differences 216

times, we expect to find a pair of internal states that conforms to the randomized
differences. In the following, we proceed slightly differently to reach a solution
in time 28.

In terms of freedom degrees, we begin by estimating the number of solutions
that we expect to verify the truncated differential characteristic. There are 16
bytes in the first message, 4 more independent ones in the second message and
16 others in the key: that makes 36 freedom degrees at the input. On a ran-
dom input, the probability that the truncated differential characteristic being
2 By compatible, we mean that we can find at least a pair of values that conforms to

the differential transition. In the case of the AES S-Box, for a random differential
transition δ → δ′, this is known to be possible with probability close to 1/2.
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followed depends on the amount of freedom degrees that we loose in probabilis-
tic transitions within the MixColumns transitions: 3 in round 0 to pass one
4 → 1 truncated transition, 12 in round 3 to pass four 4 → 1 transitions and 3
again in round 4 for the last 4→ 1 transition. In total, we thus expect

28×(16+4+16) 2−8×(3+12+3) = 28×18

triplets (m, m′, k) composed by a pair (m, m′) of messages and a key k to conform
to the truncated differential characteristic of Figure 4. Hence, we have 18 freedom
degrees left to find such a triplet.

First, we observe that whenever we find such a solution for the middle rounds
(round 1 to round 4), we are ensured that all the rounds will be covered as in
the whole truncated differential characteristic due to an outward propagation
occurring with probability 1. Hence, our strategy focuses on those rounds. The
context is similar to the rebound scenario, where we first solve the inbound phase
and then propagate it into the outbound phase.

z1

MC

ARK

x2

SB

y2

(Δ0, Δ1, Δ2, Δ3)

SR MC

ARK

x3

SB

y3

SR MC

ARK

x4

(δ0, δ1, δ2, δ3)

SB

y4

SR

MC

w4

Fig. 5. The 7-round distinguishing attack focuses of the middle rounds. Black bytes
have known values and differences, gray bytes have known values, hatched bytes have
known differences and white bytes have unknown values and/or differences.

To reduce the number of valid solutions, we begin by fixing some bytes
(Figure 5) to a random value: Δz1 and x2[0..3]. Therefore, we can deduce the
values and differences in the first column of x2 and y2, as well as the differ-
ence Δx3 by linearity. Let [Δ0, Δ1, Δ2, Δ3]T be the column-vector of deduced
differences in Δy2 and diag(δ0, δ1, δ2, δ3) the differences in the diagonal of Δx4.
Linearly, we can express the differences around the SubBytes layer of round
3 (see Figure 6). As a consequence, from the differential properties of the AES
S-Box, for i, j ∈ {0, . . . , 3}, Δj suggests 27 different values for δi: we store them
in the list Li,j .

Li,j =
{

δi

/
Δj → δi is possible

}
. (1)

Once done, we build the list Li, for i ∈ {0, . . . , 3}:

Li =
3⋂

j=0

Li,j =
{
δi

/
∀j ∈ {0, . . . , 3}, Δj → δi is possible

}
. (2)

Each Li,j being of size 27, we expect each Li to contain 24 elements.
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3Δ1

2Δ1

Δ1

Δ1

SB

Δx3

14δ0

13δ3

14δ2

13δ1
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9δ0

11δ3

9δ2

13δ2

14δ1

14δ0

14δ3

9δ3

11δ2

9δ1

11δ0

Δy3

Fig. 6. Differences around the SubBytes layer of round 3: each Δj is fixed, whereas
the δi are yet to be determined

We continue by setting Δx4[0] to random value in L0 and x4[0] to a random
value, which allow to determine the value and difference in y4[0]. Since the differ-
ence Δy4 can only take 28 values due to the MixColumns transition of round
4, we also deduce Δw4 and the remaining differences in Δy4. The knowledge of
Δy4 suggests 27 possible values for δi. As before, we store them in lists called Ti,
and we select a value for δi in Li ∩Ti (Figure 7). We expect each intersection to
contain about 23 elements. More rigorously, if we assume that the lists Li,j and
Ti are uniformly distributed, then the probability that L0, L1 ∩ T1, L2 ∩ T2 and
L3∩T3 are not empty is higher than 99.96% (see proof in Appendix C). Finally,
we compute the values in x3 and in the diagonal of x4.

z1

MC

ARK

x2

SB

y2

(Δ0, Δ1, Δ2, Δ3)

SR MC

ARK

x3

SB

y3

SR MC

ARK

x4

(δ0, δ1, δ2, δ3)

SB

y4

SR

MC

w4

Fig. 7. The 7-round distinguishing attack focuses of the middle rounds. Black bytes
have known values and differences, gray bytes have known values, hatched bytes have
known differences and white bytes have unknown values and/or differences.

We now need to find a key that matches the previous solving in the internal
states: we build a partial pair of internal states that conforms to the middle
rounds, but that sets 8 bytes on constraints in the key. Namely, if we denote ki

the subkey introduced in round i and ui = MC−1(ki), then both u3 and k4 have
four known bytes (see Figure 8). We start by fixing all the bytes marked by 1 in
u3 to random values: this allows to compute the values of all 2’s in the two last
columns of k3. By the column-wise operations of AES key schedule, we can get
the values of all bytes marked by 3. As for the 4’s, we get them since there are
four known bytes among the eight in the first columns of u3 and k3. Again, the
key schedule gives the 5’s and 6’s, and the MixColumns the 7’s. Finally, we
determine values for all the byte tagged by 8 from the key schedule equations.
By inverting the key schedule, we are thus able to compute the master key k.
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1
1

1

1
1

1
1

1

4
7
7
7

u3

MC

4
4
4
3

6
6
6
7

2
2
2
2

2
2
2
2

k3

KS

5
5
5

3
3

8

3

3
8

3
3
8

k4

Fig. 8. Generating a compatible key: gray bytes are known, and numbers indicate the
order in which we guess or determine the bytes

All in all, we start by getting a partial pair of internal states that conforms
to the middle rounds, continue by deriving a valid key that matches the partial
known bytes and determine the rest of the middle internal states to get the pair
on input messages. The bottleneck of the time and memory complexity occurs
when handling the lists of size at most 28 elements to compute intersections. Note
that those intersections can be done in roughly 28 operations by representing lists
by 256-bit numbers and then perform a logical AND.

In the end, we build a pair of messages (m, m′) and a key k that conforms to
the truncated differential characteristic of Figure 4 in time 28 basic operations,
where it costs 264 in the generic scenario. We note that among the 18 freedom
degrees left for the attack, we used only 10 by setting 10 bytes to random values,
such that we expect 28×8 = 264 solutions in total. All those solutions could be
generated in time 264 by iterating over all the possibilities of the bytes marked
by 1 in Figure 8.

We implemented the described algorithm to verify that it indeed works, and
we found for instance the triplet (m, m′, k) reported in Appendix A.

3.3 Distinguisher for 8-Round AES-128

We consider the 8-round truncated differential characteristic of Figure 9, where
the matrices of differences in both the plaintext and the ciphertext lie in the
same matrix subspaces of dimension four as before. Indeed, the output dif-
ference lies in a subspace of dimension four since all the operations after the
last SubBytes layer are linear. Again, the distinguisher previously described
(Section 3.1) claims that the time complexity to find a pair of messages that
conforms to those patterns in a family of pseudo-random permutations runs in
time 264 operations.

The following of this section describes a way to build a key and a pair of
messages that conform to the restrictions in time and memory complexity 224.
We note that it is possible to optimize the memory requirement to 216. As in
the previous section, there are 36 freedom degrees at the input, which shrink to
18 after the consideration of the truncated differential characteristic. Therefore,
we also expect 28×18 solutions in the end.

First of all, we observe that finding 224 triplets (m, m′, k) composed by a key
and a pair of internal states that conform to the rounds 2 to 5 is sufficient since



Faster Chosen-Key Distinguishers on Reduced-Round AES 235

AK(0) SB SR MC

AK(1) SB SR MC

AK(2) SB SR MC

AK(3) SB SR MC

AK(4) SB SR MC

AK(5) SB SR MC

AK(6) SB SR MC

AK(7) SB SR MC

Round 0

Round 1

Round 2

Round 3

Round 4

Round 5

Round 6

Round 7

Fig. 9. The 8-round truncated differential characteristic used to distinguish the
AES-128. Black bytes are active, white bytes are not.

the propagation in the outward rounds is done with probability 2−24 due to the
MixColumns transition of round 1. The following analysis consequently focuses
of those four middle rounds.

We now describe an instance of a problem that we use as a building block in
our algorithm, which is related to the keyed SuperSBox construction.

Problem 1. Let a and b two bytes. Given a 32-bit input and output differences
Δin and Δout of a SuperSBoxk for a unknown k, find all the pairs of AES-
columns (c, c′) and keys k such that:

i. c + c′ = Δin,
ii. SuperSBoxk(c) + SuperSBoxk(c′) = Δout,
iii. SuperSBoxk(c) = [a, b, �, �]T.

Considering the key k known and the case where there is no restriction on
the output bytes (iii), we would expect this problem to have one solution on
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average. Finding it would naively require 232 computations by iterating over the
232 possible inputs and check whether the output has the correct Δout known
difference. The additional constraints on the two output bytes reduce the success
of finding a pair (c, c′) of input to 2−16, but if we allow the four bytes in the key
k to be chosen, then we expect 216 solutions to this problem.

To find all of them in 216 simple operations, we proceed as follows (Figure 10):
the two output bytes a and b being known, we can deduce the values of the two
associated bytes before the last SubBytes, ã and b̃ respectively. We can also
deduce the difference in those bytes since the output difference is known. Then,
we guess the two unset differences at the input of the last SubBytes: the dif-
ferences then propagate completely inside the SuperSBox. At both SubBytes
layers, by the differential properties of the AES S-Box, we expect to find one
value on average for each of the six unset transitions. Consequently, the input
and output of the AddRoundKey operation are known, which determines the
four bytes of k. In the end, we find the 216 solutions of Problem 1 in time 216

operations.

Δin Δout

a

b

ã

b̃

SB MC ARK SB

Fig. 10. Black bytes have known values and differences, hatched bytes have known
differences and white bytes have unknown values and/or differences

To apply this strategy to the 8-round truncated differential characteristic of
Figure 9, we start by randomizing the difference Δy2, the difference Δw5 and
the values in the first column of w5. Due to the linear operations involved,
we deduce Δx3 = Δw2 from Δy2 and Δy4 from Δw4. To use the previous
algorithm, we randomize the values of the two first columns of w4 (situtation
in Figure 11). Doing so, the four columns of y4 are constrained on two bytes each
and have fixed differences. Consequently, the four SuperSBoxes between x3 and
y4 keyed by the four corresponding columns of k4 conforms to the requirements3
of Problem 1. In time and memory complexity 216, for i ∈ {0, 1, 2, 3}, we store
the 216 solutions for the ith SuperSBox associated to the ith column of x4 in
the list Li.

We continue by observing that the randomization of the bytes in w4 actually
sets the value of two diagonal bytes in k5, k5[0] and k5[5], which imposes con-
straints of the elements in the lists Li. We start by considering the 216 elements
3 The positions of the known output bytes differ, but the strategy applies in the same

way.
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x2
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y2
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z2
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w2

Round 2

KS

k3 ARK

x3

SB

y3

SR

z3

MC

w3

Round 3

KS

k4 ARK

x4

SB

y4

SR

z4

MC

w4

Round 4

k5 ARK

x5

SB

y5

SR

z5

MC

w5

Round 5

Fig. 11. Black bytes have known values and differences, gray bytes have known values,
hatched bytes have known differences and white bytes have unknown values and/or
differences

of L3, and for each of them, we learn the values x4[12..15] and k4[12..15]. Due
to the column-wise operations in the key schedule, we also deduce the value of
k4[0]. Filtering the elements of L0 which share that value of k4[0], we are left
with 28 elements for bytes x4[0..3] and k4[0..3]. At this point, we constructed
216+8 = 224 solutions in time 224 that we store in a list L0,3.

As k5[5] has been previously determined, we can deduce k4[5] = k5[5] + k5[1]
from the AES key schedule for each of the entry of L0,3. Again, this adds an 8-bit
constraint on the elements of L1: we expect 28 of them to match the condition
on k4[5]. In total, we could construct a list L0,1,3 of size 224+8 = 232, whose
elements would be the columns 0, 1 and 3 of x4 and k4, but as soon as we get
224 elements in that list, we stop and discard the remaining possibilities.

Finally, to ensure the correctness of the choice in the remaining column 2,
we need to consider the MixColumns operation in round 4 and the subkey k5.
Indeed, as soon as we choose an element in both L0,1,3 and L2, x4, k4 and k5

become fully determined, but we need to ensure that the values x5[10] and x5[15]
equal to the known ones. In particular, for x5[10], we have:

k4[10] + k5[6] = k5[10] (3)
= w4[10] + x5[10] (4)
= z4[8] + z4[9] + 2z4[10] + 3z4[11] + x5[10], (5)
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and for x5[15]:

k4[11] + k5[7] + k4[15] = k5[11] + k4[15] (6)
= k5[15] (7)
= w4[15] + x5[15] (8)
= 3z4[12] + z4[13] + z4[14] + 2z4[15] + x5[15], (9)

where (3), (6) and (7) come from the key schedule, (4) and (8) from the
AddRoundKey and (5) and (9) use the equations from the MixColumns.
Hence, for each element of L0,1,3, we can compute:

S(x4[8]) + k4[10] := x5[10] + k5[6] + S(x4[13]) + 2 S(x4[2]) + 3 S(x4[7]), (10)
k4[11] + 2 S(x4[11]) := k5[7] + k4[15] + 3 S(x4[12]) + S(x4[1]) + S(x4[6]) + x5[15]

(11)

and lookup in L2 to find 216 2−8×2 = 1 element that match those two byte
conditions. We create the list L by adding the found element from L2 to each
entry of L0,1,3.

All in all, in time and memory complexity 224, we build L of size 224 and
we now exhaust its elements to find one that passes the 2−24 probability of the
4 → 1 backward transition in the MixColumns of round 1. Indeed, an a → b
transition in the MixColumns layer cancels 4−b output bytes, so that it would
happen with probability 2−8(4−b) for a random input a. Consequently, we expect
to find a pair (m, m′) of messages and a key k that conforms to the 8-round
truncated differential characteristic of Figure 9 in time 224 when it requires 264

computations in the ideal case.
Among the 18 available freedom degrees available to mount the attack, we uses

17 of them, which means that we expect to have 28 solutions. We could have them
in time 232, but since we discarded 28 elements in the algorithm described, we get
only 1 in time 224. We note that it is possible to gain a factor 28 in the memory
requirements of our attack since we can implement the algorithm without storing
the lists L0, L0,3 and L0,1,3, by using hash tables for L1, L2 and L3.

We also implemented the described algorithm to verify that it indeed works,
and we found for instance the triplet (m, m′, k) reported in Appendix B.

4 Extention to AES-256

The two distinguishers described in the previous section can be easily extended
in distinguishers on the AES-256. The main idea is to use the 16 additional
freedom degrees in the key to extend the truncated differential characteristics
by introducing a new fully active round in the middle.

4.1 Distinguisher for 7-Round AES-256

The first step of the attack described in the 7-round distinguisher on AES-128
(Section 3.2) still applies in the case of AES-256 since it does not involve the
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key schedule. Then, we can generate a compatible key easily since there are
only two subkeys involved: we can just choose bytes of k3 and k4 as we want,
except the imposed ones, and deduce the master key afterwards. This yields to
a distinguisher with time and memory complexities around 28.

4.2 Distinguisher for 8-Round AES-256

We use a similar approach as the 7-round distinguisher on AES-128 of Section 3.2,
but the truncated differential characteristic has one more fully active round in
the middle4.

We begin by choosing values for Δz1 and x2[0..3]. This allows to deduce Δx2,
Δy2, and Δx3. Then, we also set random values for Δw5 and for the diagonal
of x5 to obtain both Δx5 and Δy4. Now, we find a value for Δx4, which is
compatible with Δx3 and Δy4. Indeed, we can not take an arbitrary value for
Δx4 because the probability that it fits is very close to 2−32. However, we can
find a correct value with the following steps:

1. Store the 27 possible values for Δx4[0] in a list L0.
2. In a similar way, make lists L1 with Δx4[1], L2 with Δx4[2] and L3 with

Δx4[3].
3. Choose a value for (x3[0], x3[5], x3[10], x3[15]) and compute Δx4[0..3].
4. If Δx4[0..3] is not in L0 × L1 × L2 × L3, then go back to step 3.

On average, we go back to the step 3 only
(
28−7

)4 = 24 times since lists are of
size 27. In the same way, we can obtain values for the other columns of x4.

At this point, we computed actual values in all those internal states, and we
need to generate a compatible key. Finding one can be done using the procedure
described in Figure Figure 12. Bytes tagged by 1 are chosen at random, odd steps
use the key schedule equations and even steps the properties of MixColumns.
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Fig. 12. Generating a compatible key: gray bytes are known, and numbers indicate
the order in which we guess or determine the bytes

4.3 Distinguisher for 9-Round AES-256

We begin as in Section 3.3 by choosing the difference Δy2, the difference Δw6

and the values in the first column of w6. Then, we deduce Δw2 = Δx3 from Δy2

and Δy5 from Δw5. In addition, we set x3 to a random value, which allows to
4 In that case, the truncated differential characteristic is thus the one from Figure 9.
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determine Δx4. In order to apply the result from Problem 1 again, we set the
values in two first columns of w5 to random values.

As before, for i ∈ {0, 1, 2, 3}, we store in the list Li the 216 possible values of
the i-th column of x5 and the i-th column of k5. Unlike previously, we also obtain
values of the i-th column of SR(k4), but the scenario of the attack still applies.
We start by observing that bytes of L0 allow to compute k4[1] and k4[13], which
are bytes of L3. Thus, we can merge L0 and L3 in a list L0,3 containing 216

elements. Then, we construct the list L0,2,3 containing 224 elements of L0,3×L2.
Finally, from bytes of L0,2,3, we can compute:

3z5[11] := k4[2] + S(k5[15]) + k4[6] + k4[10] + z5[8] + z5[9] + 2z5[10] + x6[10],
(12)

z5[14] + k4[3] := S(k5[12]) + k4[7] + k4[11] + k4[15] + 3z5[12] + z5[13] + 2z5[15] + x6[15].
(13)

As a consequence, we expect only one element of L1 to satisfy those two byte
conditions and so, we obtain 224 solutions for the middle rounds. All in all,
this yields to a distinguisher with a time complexity around 224 and a memory
requirement around 216 using the same trick given in Section 3.3.

5 Conclusion

In this paper, we study the Advanced Encryption Standard and show how to find
a pair of messages and a key that satisfy some property a lot more efficiently
than a generic attack based on the birthday paradox for both AES-128 and
AES-256. Our new results improve the previous claimed ones by reaching very
practical complexities, and give new insights of the open-key model for block
ciphers, and hash functions based on block ciphers.

On AES-128, we show efficient distinguishers for versions reduced to seven
and eight rounds, and verified in practice that they indeed work by implementing
the actual attacks. We describe precisely the algorithms to get the valid inputs,
and by applying the same strategy, we deduce similar results for AES-256.
Namely, we get efficient distinguishers on versions reduced to seven, eight and
nine rounds.
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A Solution for the 7-Round Truncated Differential
Characteristic on AES-128

Table 2. Example of a pair of messages (m,m′) that conforms to the 7-rounds trun-
cated differential characteristic for AES-128 of Section 3.2. The master key found by
the attack is: 93CA1344 10A7EBDF B659C8AF ECC59699. The lines in this array
contains the values of two internal states before entering the corresponding round, as
well as their difference.

Round m m′ m⊕m′

Init. E5FC5DFE 79A851F7 7EB9E366 51C3D9C5 F8FC5DFE 79C951F7 7EB96566 51C3D96E 1D000000 00610000 00008600 000000AB

0 76364EBA 690FBA28 C8E02BC9 BD064F5C 6B364EBA 696EBA28 C8E0ADC9 BD064FF7 1D000000 00610000 00008600 000000AB

1 65CC94D1 85BE1AD3 F3D75BF1 ACCBB8BD 8DCC94D1 85BE1AD3 F3D75BF1 ACCBB8BD E8000000 00000000 00000000 00000000

2 E93319CD 88F41390 10623230 F66BFBAD C92309FD 88F41390 10623230 F66BFBAD 20101030 00000000 00000000 00000000

3 89C79074 E09E6F44 F1DBAB2F F984FCC4 1404532A 09774F8D 24BF1AFA CD551921 9DC3C35E E9E920C9 D564B1D5 34D1E5E5

4 867A12E6 BF19139C 1C848362 400030D3 047A12E6 BF5B139C 1C847C62 400030D7 82000000 00420000 0000FF00 00000004

5 84606BEA 0E22D904 3BF29061 9F454807 4B606BEA 0E22D904 3BF29061 9F454807 CF000000 00000000 00000000 00000000

6 FF867544 274436AF 75ECC287 A6BF72F6 3C6A996B 274436AF 75ECC287 A6BF72F6 C3ECEC2F 00000000 00000000 00000000

End C49E4CB3 0C944043 D5ED6D3B 247E3843 2563B1AF 68F0EC8B A6788B48 EEF27E05 E1FDFD1C 6464ACC8 7395E673 CA8C4646

B Solution for the 8-Round Truncated Differential
Characteristic on AES-128

Table 3. Example of a pair of messages (m, m′) that conforms to the 8-round trun-
cated differential characteristic for AES-128 of Section 3.3. The master key found by
the attack is: 98C45623 6CA00686 301E836D 614DFAB0. The lines in this array
contains the values of two internal states before entering the corresponding round, as
well as their difference.

Round m m′ m⊕m′

Init. 9588B342 D43D04D4 AB298AE1 E43687DB 0B88B342 D46904D4 AB29D0E1 E4368728 9E000000 00540000 00005A00 000000F3

0 0D4CE561 B89D0252 9B37098C 857B7D6B 934CE561 B8C90252 9B37538C 857B7D98 9E000000 00540000 00005A00 000000F3

1 53FEBB0F 6BFF8E5E B471A8E3 1A2232A3 0EFEBB0F 6BFF8E5E B471A8E3 1A2232A3 5D000000 00000000 00000000 00000000

2 E9F44380 991A8ECB F7B18344 2C936CEB 65B2054A 991A8ECB F7B18344 2C936CEB 8C4646CA 00000000 00000000 00000000

3 2977F65C 3883EDEF 615D3C9E 5CE5384B 8F24A5A9 2398C0D9 10CEDEEF DFEEB0C3 A65353F5 1B1B2D36 7193E271 830B8888

4 BB1DB144 2BE947C3 5FCD89DF DF1CA0EB 82188658 42FFCAAE B337F0CA 09AB1513 3905371C 69168D6D ECFA7915 D6B7B5F8

5 C3E1961D 02A9713E 770A20D4 5470FA8F 8DE1961D 029B713E 770A3AD4 5470FA27 4E000000 00320000 00001A00 000000A8

6 D79D534C 33CC3861 76635DCD 548870C9 EB9D534C 33CC3861 76635DCD 548870C9 3C000000 00000000 00000000 00000000

7 D7F645C6 89358035 09847940 D831EFDE 0211A2F4 89358035 09847940 D831EFDE D5E7E732 00000000 00000000 00000000

End 16E58308 DFD78F11 A8B05B9D C0A0363E E49CFA83 D4DC9207 FC4CF3C9 9B3BF6FE F279798B 0B0B1D16 54FCA854 5B9BC0C0
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C Probability of Success

We are interested in the probability that the intersection of four or five subsets of
{1, . . . , 255} each of size 128 being empty.

To evaluate it, let P denote the set of subsets X ⊂ {1, . . . , 255} such that |X| = 128.
We also define:

T (n, k) := {(X1, . . . , Xn) ∈ Pn | |X1 ∩ . . . ∩Xn| = k} for n ≥ 1, k ≥ 0.

In others words, |T (n, k)|/|Pn| is the probability that the intersection of n elements
from P has a size equal to k.

Property 2. The cardinality of T (n, k) satisfies the following recurrence relation:{
|T (1, k)| = |P| if k = 128, 0 otherwise

|T (n + 1, k)| = ∑128
l=k |T (n, l)|( l

k

)(
255−l
128−k

)
for n ≥ 1, k ≥ 0.

Proof. First, we note that we can partition Pn by the sets:

T (n, Y ) := {(X1, . . . , Xn) ∈ Pn | X1 ∩ . . . ∩Xn = Y } for any subset Y ⊂
{1, . . . , 255}.
Then, we have:

|T (n + 1, k)| =
∑
Y

| {(X1, . . . , Xn+1) ∈ T (n, Y )× P | |Y ∩Xn+1| = k} |

=
∑
Y

|T (n, Y )| × | {X ∈ P | |Y ∩X| = k} |

If we fix a set Y ⊂ {1, . . . , 255}, then a set X ∈ P such that |X ∩ Y | = k is obtained
by choosing k elements in Y and 128− k elements in Y c. As a consequence, we obtain:

|T (n + 1, k)| =
∑
Y

|T (n, Y )|
(
|Y |
k

)(
255− |Y |
128− k

)

=

255∑
l=0

(
l

k

)(
255− l

128− k

) ∑
|Y |=l

|T (n, Y )|

Finally, we remark that {T (n,Y )}|Y |=l is a partition of T (n, l) and thus:

|T (n + 1, k)| =
255∑
l=0

(
l

k

)(
255− l

128− k

)
|T (n, l)|.

��

Using Maple, we found that the probability of failure of the distinguisher described in
Section 3.2 is:

T (4, 0)

|P|4 ×
(

T (5, 0)

|P|5
)3

≈ 0.04%.
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1 Introduction

The Camellia [1] block cipher has a 128-bit block length, a user key of 128, 192
or 256 bits long, and a total of 18 rounds when used with a 128-bit key and
24 rounds when used with a 192/256-bit key. It has a Feistel structure with
key-dependent logical functions FL/FL−1 inserted after every six rounds, plus
four additional whitening operations at both ends. Camellia is a CRYPTREC
e-government recommended cipher [8], a European NESSIE selected block ci-
pher [31], and an ISO international standard [19]. For simplicity, we denote by
Camellia-128/192/256 the three versions of Camellia that use 128, 192 and 256
key bits, respectively.

The security of Camellia has been analysed against a variety of cryptana-
lytic techniques, including differential cryptanalysis [5], higher-order differen-
tial cryptanalysis [20, 23], truncated differential cryptanalysis [20], impossible
differential cryptanalysis [3, 21], linear cryptanalysis [30], integral (square [9])
cryptanalysis [18,22], collision attack [33], boomerang attack [34], and rectangle
attack [4]; and many cryptanalytic results on Camellia have been obtained. In
summary, in terms of the numbers of attacked rounds, the best currently known
cryptanalytic results on Camellia with FL/FL−1 functions are the impossible
differential attacks on 11-round Camellia-128, 12-round Camellia-192 and 14-
round Camellia-256 [2,24], presented recently at FSE 2012 and ISPEC 2012; and
the best currently known cryptanalytic results on Camellia without FL/FL−1

functions are the impossible differential attacks on 12-round Camellia-128 [28],
14-round Camellia-192 [26] and 16-round Camellia-256 [26, 29].1

The meet-in-the-middle (MitM) attack [12] is a technique for analysing the
security of a block cipher. In this paper, we propose an extension of the MitM at-
tack, which we call the higher-order meet-in-the-middle (HO-MitM) attack. The
core idea of the HO-MitM attack is to use multiple plaintexts to cancel some
key-dependent component(s) or parameter(s) when constructing a basic unit
of so-called value-in-the-middle. Then we introduce a novel approach, that com-
bines integral cryptanalysis [18,22] with the MitM attack, to construct a few HO-
MitM properties for 5 and 6-round Camellia with FL/FL−1 functions, and finally
apply these properties to conduct HO-MitM attacks on 10-round Camellia-128
with FL/FL−1 functions, 11-round Camellia-192 with FL/FL−1 functions and

1 When our work was completed, the best previously published cryptanalytic results on
Camellia with FL/FL−1 functions were square attack on 9-round Camellia-128 [14],
impossible differential attack on 10-round Camellia-192 [7], and higher-order differ-
ential and impossible differential attacks on 11-round Camellia-256 [7, 16]; and the
best previously published cryptanalytic results on Camellia without FL/FL−1 func-
tions were impossible differential attacks on 12-round Camellia-128 [28], 12-round
Camellia-192 [25] and 15-round Camellia-256 [7]. We incorporate the newly emerging
main results in this revised version.
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Table 1. Main cryptanalytic results on Camellia

Cipher FL/FL−1Attack Type RoundsData Memory Time Source

Camellia- yes Integral(square) 9 248CP 253Bytes 2122Enc. [14]

128 Impossible diff. 10 2118CP 293Bytes 2118Enc. [26]

11 2120.5CP2115.5Bytes2123.8Enc. [2]§

11† 2122CP 2102Bytes 2122Enc. [24]§

HO-MitM 10 293CP 2109Bytes 2118.6Enc.Sect. 4.2

no Impossible diff. 12 2116.3CP273Bytes 2116.6Enc. [28]

Camellia- yes Impossible diff. 10 2121CP 2155.2Bytes2144Enc. [7]

192 10† 2121CP 2155.2Bytes2175.3Enc. [7]

11 2118CP 2141Bytes 2163.1Enc. [26]

12 2120.6CP2171.6Bytes2171.4Enc. [2]§

12† 2123CP 2160Bytes 2187.2Enc. [24]§

HO-MitM 11 278CP 2174Bytes 2187.4Enc.Sect. 4.3

11 294CP 2174Bytes 2180.2Enc.Sect. 4.3

no Impossible diff. 12‡ 2119CP 2124Bytes 2147.3Enc. [25]

14 2117CP 2122.1Bytes2182.2Enc. [26]

HO-MitM 14 2118CP 2166Bytes 2164.6Enc.Sect. 5.2

Camellia- yes Integral 10 260.5CP 263Bytes 2254.3Enc. [26,35]

256 Higher-order diff.11‡ 293CP 298Bytes 2255.6Enc. [16,26]

Impossible diff. 11† 2121CP 2166Bytes 2206.8Enc. [7]

13† 2123CP 2208Bytes 2251.1Enc. [24]§

14 2121.2CP2180.2Bytes2238.3Enc. [2]§

14 2120CC 2125Bytes 2250.5Enc. [24]§

HO-MitM 12 294CP 2174Bytes 2237.3Enc.Sect. 4.3

no Impossible diff. 15 2122.5KP2233Bytes 2236.1Enc. [7]

16 2123KP 2129Bytes 2249Enc. [26]

HO-MitM 16 2120CP 2230Bytes 2252Enc. Sect. 5.3

§: Newly emerging results; †: Include whitening operations; ‡: Can include whitening
operations by making use of an equivalent structure of Camellia.

12-round Camellia-256 with FL/FL−1 functions, all of which do not include the
whitening operations. At last, we use an existing approach to construct a few HO-
MitM properties for 7 and 8-round Camellia without FL/FL−1 functions, and
describe HO-MitM attacks on 14-round Camellia-192 without FL/FL−1 func-
tions and 16-round Camellia-256 without FL/FL−1 functions, both of which
do not include the whitening operations. Our HO-MitM results on Camellia-
128/192/256 with FL/FL−1 functions, which were among the first to achieve
the amounts of attacked rounds of the Camellia versions, show that as far as
the numbers of attacked rounds of Camellia with the FL/FL−1 functions are
concerned, the HO-MitM attack technique is more efficient than the advanced
cryptanalytic techniques studied, except impossible differential cryptanalysis; in
this latter case the HO-MitM attacks are now one or two rounds inferior to
the best newly emerging impossible differential cryptanalysis results from [2,24].
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Our HO-MitM results on Camellia-192/256 without FL/FL−1 functions, which
were among the first to achieve the amounts of attacked rounds of the Camellia
versions as well, match the best currently known cryptanalytic results for the
versions of Camellia. Table 1 summarises previous, our and the newly emerging
main cryptanalytic results on Camellia, where CP, CC and KP refer respectively
to the numbers of chosen plaintexts, chosen ciphertexts and known plaintexts,
Enc. refers to the required number of encryption operations of the relevant re-
duced version of Camellia, “yes” means “with FL/FL−1 functions”, and “no”
means “without FL/FL−1 functions”.

The remainder of the paper is organised as follows. In the next section, we
describe the notation and the Camellia block cipher. We define the HO-MitM
attack in Section 3 and present our HO-MitM attack results on Camellia in
Sections 4 and 5. Section 6 concludes this paper.

2 Preliminaries

In this section we give the notation used throughout this paper, and briefly
describe the Camellia block cipher.

2.1 Notation

The bits of a value are numbered from left to right, starting with 1. We use the
following notation throughout this paper.

⊕ bitwise logical exclusive OR (XOR) of two bit strings of the same
length

∩ bitwise logical AND of two bit strings of the same length
∪ bitwise logical OR of two bit strings of the same length
≪ left rotation of a bit string
|| bit string concatenation
◦ functional composition. When composing functions X and Y, X ◦Y

denotes the function obtained by first applying X and then Y
|X | the number of bits in a bit string X
X [i1, · · · , ij] a value made up of bits (i1, · · · , ij) of a bit string X

2.2 The Camellia Block Cipher

Camellia [1] employs a Feistel structure with a 128-bit block length and a variable
key length of 128, 192 or 256 bits. It uses the following five functions:

– S : {0, 1}64 → {0, 1}64 is a non-linear substitution constructed by applying
eight 8×8-bit S-boxes S1, S2, S3, S4, S5, S6, S7 and S8 in parallel to the input,
where S1 and S8 are identical, S2 and S5 are identical, S3 and S6 are identical,
and S4 and S7 are identical.
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– P : GF (28)8 → GF (28)8 is a linear permutation equivalent to multiplication
by a 8× 8 byte matrix P; the matrix P and its reverse P−1 are as follows.

P =

⎛⎜⎜⎜⎜⎝
1 0 1 1 0 1 1 1
1 1 0 1 1 0 1 1
1 1 1 0 1 1 0 1
0 1 1 1 1 1 1 0
1 1 0 0 0 1 1 1
0 1 1 0 1 0 1 1
0 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0

⎞⎟⎟⎟⎟⎠ , P
−1 =

⎛⎜⎜⎜⎜⎝
0 1 1 1 0 1 1 1
1 0 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 1 1 0 1 1 1 0
1 1 0 0 1 0 1 1
0 1 1 0 1 1 0 1
0 0 1 1 1 1 1 0
1 0 0 1 0 1 1 1

⎞⎟⎟⎟⎟⎠ .

– F : {0, 1}64×{0, 1}64 → {0, 1}64 is a Feistel function. If X and Y are 64-bit
blocks, F(X,Y ) = P(S(X ⊕ Y )).

– FL/FL−1 : {0, 1}64 × {0, 1}64 → {0, 1}64 are key-dependent linear func-
tions. If X = (XL||XR) and Y = (YL||YR) are 64-bit blocks, then FL(X,Y )
= ((((XL ∩ YL) ≪ 1 ⊕ XR) ∪ YR) ⊕ XL)||((XL ∩ YL) ≪ 1 ⊕ XR), and
FL−1(X,Y ) = (XL ⊕ (XR ∪ YR))||(((XL ⊕ (XR ∪ YR)) ∩ YL) ≪ 1⊕XR).

Camellia uses a total of four 64-bit whitening subkeys KWj ,
Nr−6

3 64-bit sub-

keys KIl for the FL and FL−1 functions, and Nr 64-bit round subkeys Ki,
(1 � j � 4, 1 � l � Nr−6

3 , 1 � i � Nr), all derived from an Nk-bit key K,
where Nr denotes the number of rounds which is 18 for Camellia-128 and 24 for
Camellia-192/256,Nk denotes the key length which is 128 for Camellia-128, 192
for Camellia-192 and 256 for Camellia-256. The key schedule is as follows. First,
two 128-bit strings KL and KR are generated from K in the following way: For
Camellia-128, KL is the 128-bit key K, and KR is zero; for Camellia-192, KL is
the left 128 bits of K, and KR is the concatenation of the right 64 bits of K and
the complement of the right 64 bits of K; and for Camellia-256, KL is the left
128 bits of K, and KR is the right 128 bits of K. Secondly, depending on the
key size, generate one or two 128-bit strings KA and KB from (KL,KR) by a
non-linear transformation; see [1] for detail. Finally, the subkeys are as follows.2

– For Camellia-128: K2 = (KA ≪ 0)[65 ∼ 128],K3 = (KL ≪ 15)[1 ∼
64],K9 = (KA ≪ 45)[1 ∼ 64],K10 = (KL ≪ 60)[65 ∼ 128],K11 = (KA ≪
60)[1 ∼ 64], · · ·.

– For Camellia-192/256: K1 = (KB ≪ 0)[1 ∼ 64],K2 = (KB ≪ 0)[65 ∼
128],K3 = (KR ≪ 15)[1 ∼ 64],K4 = (KR ≪ 15)[65 ∼ 128],K7 =
(KB ≪ 30)[1 ∼ 64],K8 = (KB ≪ 30)[65 ∼ 128],K12 = (KA ≪ 45)[65 ∼
128],K13 = (KR ≪ 60)[1 ∼ 64],K14 = (KR ≪ 60)[65 ∼ 128],K15 =
(KB ≪ 60)[1 ∼ 64],K16 = (KB ≪ 60)[65 ∼ 128],K17 = (KL ≪ 77)[1 ∼
64],K18 = (KL ≪ 77)[65 ∼ 128],K21 = (KA ≪ 94)[1 ∼ 64],K22 =
(KA ≪ 94)[65 ∼ 128],K23 = (KL ≪ 111)[1 ∼ 64], · · ·.

Below is the encryption procedure of Camellia, where P is a 128-bit plaintext,
represented as 16 bytes, and L0, R0, Li, Ri, L̂i and R̂i are 64-bit variables.

1. L0||R0 = P ⊕ (KW1||KW2)

2 Here we give only the subkeys concerned in this paper, (KA ≪ 0)[65 ∼ 128] repre-
sents bits (65, 66, · · · , 128) of (KA ≪ 0), and so on.
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2. For i = 1 to Nr:
if i = 6 or 12 (or 18 for Camellia-192/256),

L̂i = F(Li−1,Ki)⊕Ri−1, R̂i = Li−1;

Li = FL(L̂i,KI i
3−1), Ri = FL−1(R̂i,KI i

3
);

else
Li = F(Li−1,Ki)⊕Ri−1, Ri = Li−1;

3. Ciphertext C = (RNr
⊕KW3)||(LNr

⊕KW4).

We refer to the ith iteration of Step 2 in the above description as Round i, and
write Ki,j for the j-th byte of Ki, (1 � j � 8).

3 The Higher-Order Meet-in-the-Middle Attack

In this section, we first briefly recall the meet-in-the-middle (MitM) attack, and
then define the higher-order meet-in-the-middle (HO-MitM) attack.

3.1 The Meet-in-the-Middle Attack

The meet-in-the-middle (MitM) attack was introduced in 1977 by Diffie and
Hellman [12]. It usually treats a block cipher E : {0, 1}n × {0, 1}k → {0, 1}n
as a cascade of two sub-ciphers E = Ea ◦ Eb. The basic unit of input for the
MitM attack is a known-plaintext. Given a guess for the subkeys used in Ea and
Eb, if a plaintext produces just after Ea the same value as the corresponding
ciphertext produces just before Eb, then this guess for the subkeys is likely to be
correct; otherwise, this guess must be incorrect. Thus, we can find the correct
subkey, given a sufficient number of matching plaintext-ciphertext pairs. (The
concerned value-in-the-middle can be a truncated one in some circumstances.)

Suppose (P,C) is a known plaintext-ciphertext pair, and let Ka denote the
subkeys used in Ea,Kb denote the subkeys used in Eb, andK denote the subkeys
used in Ea and Eb. Obviously, max{|Ka|, |Kb|} � |K| � |Ka| + |Kb|. When
checking whether P produces the same value just after Ea as C produces just
before Eb, a straightforward approach is to guess Ka to partially encrypt P
through Ea, then guess Kb to partially decrypt C through Eb, and finally check
whether the two intermediate values match. This approach requires negligible
memory, and has a total time complexity of 2|K| partial encryptions/decryptions.
However, if the 2|K| partial encryptions/decryptions are greater than 2k full
encryptions, then this approach is slower than an exhaustive key search and
thus is not effective. Instead, a precomputation table may be helpful, just as in
[12], as we now describe.

We precompute Ea
Ka

(P ) for all possible candidates for Ka and store these
values in a hash table indexed by the values (and the overlapping bits between
Ka and Kb if any). Then, guess Kb to partially decrypt C through Eb, and
check whether the intermediate value matches a value in the precomputation
table. If so, the guess for Kb and the corresponding value for Ka are likely to
be correct; otherwise, the guess for Kb must be incorrect and we repeat the
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same process with a different guess for Kb. The off-line precomputation requires
a memory of n × 2|Ka| bits and has a time complexity of 2|Ka| partial encryp-
tions. Thus, this approach has a total time complexity of 2|Ka| + 2|Kb| partial
encryptions/decryptions.3 Therefore, the approach using a precomputation table
is efficient if the 2|Ka| + 2|Kb| partial encryptions/decryptions are smaller than
2k full encryptions.

Both the approaches described above work in a known-plaintext attack sce-
nario. Nevertheless, things may get better under a chosen-plaintext attack sce-
nario. In such an attack scenario, as used in [10], we are able to choose a structure
of plaintexts with a particular property, (e.g., a specific byte position takes all
the possible values in {0, 1}8 and the other 15 bytes are fixed); a desirable con-
sequence is that the matched (truncated) value-in-the-middle may be expressed
as a function of plaintext and a smaller number of unknown one-bit constants
than the number of possible candidates for Ka. As a result, we may generate
a precomputation table with a smaller memory and time complexity, and thus
give a more efficient attack.

The terminology “the meet-in-the-middle attack” has been abused somewhat
to mean a broader type of similar attacks where the matched (truncated) “value-
in-the-middle” can be not from the middle or any place of encryption/decryption
but is abstracted as the output of some function of plaintext and/or intermediate
values, though something like “the meet-in-the-middle-style attack” is more ap-
propriate to term this type of attacks. This is the case for our attacks presented
in this paper.

3.2 The HO-MitM Attack

Typically, in the MitM attack a basic unit of value-in-the-middle is obtained from
a known-plaintext. We note that we can use multiple plaintexts to construct a
basic unit of value-in-the-middle in a MitM attack; we call such an attack a
higher-order meet-in-the-middle (HO-MitM) attack. Specifically, the basic idea
of the HO-MitM attack can be described as follows, which is an extended ver-
sion of the basic idea of the MitM attack: It involves treating a block cipher E :
{0, 1}n×{0, 1}k → {0, 1}n as a cascade of two sub-ciphers E = Ea ◦Eb for some
Ea and Eb. Given a guess for the subkeys used in Ea and Eb, if the output of some
function4 (e.g., a truncated XOR sum) of the values that a set of chosen plain-
texts produces just after Ea is equal to the output of the same function of the val-
ues that the corresponding ciphertexts produce just before Eb, then this guess for
the subkeys is likely to be correct; otherwise, this guess must be incorrect. More

3 When being checked with a plaintext-ciphertext pair, a wrong guess for K will
survive with a probability of 2−n in the first approach, and a wrong guess for Kb

will survive with a probability of about 2|Ka |

2|Ka|+|Kb|−|K| × 2−n = 2|K|−|Kb|−n in the
approach using a precomputation table. Usually, one or more additional plaintext-
ciphertext pairs are required to filter out the right subkey, but generally the time
complexity associated with these additional plaintext-ciphertext pairs is negligible.

4 The function should have a distinguishing property.
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formally, suppose {P1, P2, · · · , Pl} is a set of l chosen plaintexts, {C1, C2, · · · , Cl}
is the set of the corresponding ciphertexts, and f : {0, 1}n×l → {0, 1}m (for a
specific value of m) is some function of l variables of n bits long each. Then,
given a guess (K∗

a ,K
∗
b ) for the subkeys (Ka,Kb) used respectively in Ea and

Eb, if f(Ea
K∗

a
(P1), E

a
K∗

a
(P2), · · · , Ea

K∗
a
(Pl)) = f((Eb

K∗
b
)−1(C1), (E

b
K∗

b
)−1(C2), · · · ,

(Eb
K∗

b
)−1(Cl)), then the subkey guess (K∗

a ,K
∗
b ) is likely to be correct; other-

wise, this subkey guess must be incorrect. This is easy to prove: If (K∗
a ,K

∗
b )

is the correct guess for (Ka,Kb), then Ea
K∗

a
(Pi) = Ea

Ka
(Pi) = (Eb

Kb
)−1(Ci) =

(Eb
K∗

b
)−1(Ci) must hold for all i = 1, 2, · · · , l. Thus, given a sufficient number of

sets of chosen plaintexts, we can find the correct subkey in a similar approach as
described for the MitM attack in Section 3.1. In particular, it resembles the ap-
proach based on the use of a precomputation table in a chosen-plaintext attack
scenario. (The definition also works under a known-plaintext attack scenario.)

From the above descriptions, it is easy to see that the fundamental distinction
between the basic ideas of the HO-MitM attack and the MitM attack lies in the
number of plaintexts used to construct a basic unit of value-in-the-middle: The
basic value-in-the-middle concerned in the MitM attack is obtained from a plain-
text (we note that it is obtained from two plaintexts in some previously published
MitM attacks, as discussed in Section 3.3), whiles the basic value-in-the-middle
concerned in the HO-MitM attack is obtained from multiple plaintexts; in other
words, while the basic input unit for the MitM attack is a known-plaintext, the
basic input unit of the HO-MitM attack is a set of chosen plaintexts.

At first glance, the HO-MitM attack might appear to be a trivial extension
of the MitM attack. Generally, we can easily convert a MitM attack to a HO-
MitM attack, if we do not consider the consequence caused by the increase of
the number of plaintexts in the basic input unit; however, the MitM attack
would outperform the HO-MitM attack, for it seems not necessary to use a
basic input unit with multiple plaintexts. But we observe that this is not always
the case and the HO-MitM attack can be advantageous in some circumstances,
because some key-dependent (or sometimes, not necessarily key-dependent but
unknown) component(s) or parameter(s) can be canceled when using more than
one plaintexts, depending on the cipher being attacked and how to choose these
plaintexts. Thus, we may reduce the number of subkeys required when computing
the concerned value-in-the-middle, or reduce the number of unknown parameters
in the approach using a precomputation table; this is the core of the HO-MitM
attack. As a consequence, the HO-MitM attack may have smaller computational
workload than the MitM attack, and even more significantly we may break more
rounds of a cipher, as shown by its application to Camellia in the following
sections.

How to construct a HO-MitM attack (which is equivalent to constructing the
f function to some extent) depends on the design of the cipher to be attacked.
In this paper, when constructing HO-MitM attacks for Camellia we use two
approaches to cancel some key-dependent component(s)/parameter(s). The first
approach, as described in Section 4.1, is to use an integral [18, 22] property,
and the HO-MitM attack obtained by this approach is actually a combination
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of integral cryptanalysis and the MitM attack (thus it is entitled to an alias
— the integral-meet-in-the-middle attack),5 and it is particularly applicable to
Camellia-like Feistel ciphers (i.e., Feistel ciphers with some function inserted af-
ter some round). The second approach, as described in Section 5.1, is to use a
general differential [5] property, and it has a broader applicability in block ciphers
with different structures, say substitution-permutation networks and Feistel net-
works. Notice that the second approach is not novel and has appeared under the
name of MitM attacks in the cryptanalytic literature as to be discussed in Sec-
tion 3.3. Anyway, the basic idea of the HO-MitM attack gives us more flexibility
to use a broader property, just provided that it allows us to use multiple plain-
texts to cancel some key-dependent parameters somehow, like those potentially
useful properties from higher-order differential cryptanalysis [20, 23], structural
cryptanalysis [6], etc.

Though we can call a HO-MitM attack with a basic input unit of l plaintexts
an l-th order MitM attack, we will not distinguish HO-MitM attacks with differ-
ent orders in this paper, and we only distinguish between the HO-MitM attack
and the MitM attack. The MitM attack corresponds to the special case l = 1
under our definition of the HO-MitM attack.

3.3 Related Work

We note that some previously published MitM attacks used a basic input unit
of two plaintexts, for example, in [11, 13, 32] the matched “value-in-the-middle”
was defined to be a difference between two (truncated) intermediate values with
respect to a chosen-plaintext pair, that is the basic input unit is a pair of chosen
plaintexts. Thus, by our definition, these attacks can be categorized as HO-MitM
attacks (with a basic input unit of two plaintexts). Some collision attacks, like
those in [15], are based on checking whether a pair of plaintexts produces the
same (truncated) intermediate value in an approach similar to one used for the
MitM attack in Section 3.1, and can be seen as a special case of HO-MitM attacks
with a basic input unit of two plaintexts, where the matched value-in-the-middle
is 0. Thus, the HO-MitM attack with a basic input unit of two plaintexts is not
novel, however, these attacks do not take full advantage of possible approaches to
cancel key-dependent parameters, and we use a basic input unit of 256 plaintexts
to cancel key-dependent parameters in Section 4.

Broadly speaking, integral cryptanalysis [18, 22] and higher-order differential
cryptanalysis [20, 23] are based on an idea which is similar to the basic idea of
the HO-MitM attack, but a distinction is that in these cryptanalyses we do not
need to guess any secret parameter when going through the rounds covered by
an integral distinguisher or a higher-order differential.

5 One may treat this combination as an extension of integral cryptanalysis, but we
think it is closer to the MitM attack in spirit, because at a high level it is based on
an attack principle similar to that for the MitM attack.
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4 HO-MitM Attacks on Reduced Camellia-128/192/256
with FL/FL−1 Functions

In this section, we describe 5 and 6-round HO-MitM properties of Camellia with
FL/FL−1 functions, and then present HO-MitM attacks on 10-round Camellia-
128 with FL/FL−1 functions, 11-round Camellia-192 with FL/FL−1 functions
and 12-round Camellia-256 with FL/FL−1 functions, all of which do not include
the whitening operations.

4.1 HO-MitM Properties for 5 and 6-Round Camellia with
FL/FL−1 Functions

We assume the 5-round Camellia is from Rounds 4 to 8 (including the FL/FL−1

functions between Rounds 6 and 7), and the 6-round Camellia is from Rounds
3 to 8; see Fig. 1-(a).

Proposition 1. Suppose a set of 216 sixteen-byte values X(i,j) = (X
(i,j)
L ||X(i,j)

R )
= (m1,m2,m3,m4,m5,m6,m7,m8, x

(i), y(j),m9,m10,m11,m12,m13,m14) with
x(i) and y(j) taking all the possible values in {0, 1}8 and the other 14 bytes
m1,m2, · · · ,m14 fixed to arbitrary values, (i, j = 1, · · · , 256). Then:

1. If Z(i,j) = (Z
(i,j)
L ||Z(i,j)

R ) is the result of encrypting X(i,j) using Rounds 4
to 8 with the FL/FL−1 functions between Rounds 6 and 7, then the 8-bit

value P−1(
⊕256

j=1 Z
(i,j)
R )[49 ∼ 56] can be expressed as a function of x(i) and

13 constant 8-bit parameters c1, c2, · · · , c13, written Φc1,c2,···,c13(x(i)).
2. If Z(i,j) = (Z

(i,j)
L ||Z(i,j)

R ) is the result of encrypting X(i,j) using Rounds 3
to 8 with the FL/FL−1 functions between Rounds 6 and 7, then the 8-bit

value P−1(
⊕256

j=1 Z
(i,j)
R )[41 ∼ 48] can be expressed as a function of x(i) and

21 constant 8-bit parameters c′1, c
′
2, · · · , c′21, written Θc′1,c

′
2,···,c′21(x

(i)).

These HO-MitM properties are obtained by using an integral property of Camel-
lia to cancel some key-dependent components FL−1, and the basic “value-in-
the-middle” is obtained from 256 plaintexts. Below we briefly describe where
the advantage comes from in the case of the HO-MitM attacks.

For expediency, when encrypting X(i,j), we denote by Y
(i,j)
t the value imme-

diately after the S operation of Round t, and by W
(i,j)
t the value immediately

after the P operation of Round t, (3 � t � 8).
From [35] we know the following integral property holds for Rounds 3 or 4 to

6 with FL/FL−1:

256⊕
j=1

FL−1(R̂
(i,j)
6 ,KI2) = 0. (1)

By the structure of the 5-round Camellia, we have

Z
(i,j)
R = FL−1(X

(i,j)
L ⊕W

(i,j)
5 ,KI2)⊕W

(i,j)
7 . (2)
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⊕
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(i,j)
6

L̂
(i,j)
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PS⊕
K5

Y
(i,j)
5 W

(i,j)
5

PS⊕
K6

Y
(i,j)
6 W

(i,j)
6

PS⊕
K7

Y
(i,j)
7 W

(i,j)
7

PS⊕
K8

Y
(i,j)
8 W

(i,j)
8

PS⊕
K3

Y
(i,j)
3 W

(i,j)
3 ⊕

⊕

⊕

X
(i)
L X

(i)
R

⊕

⊕

⊕

PS⊕
K1

Z
(i)
L Z

(i)
R

Y
(i)
1 W

(i)
1

L
(i)
7

L
(i)
6

L
(i)
2

L
(i)
1

R
(i)
1

R
(i)
2

R
(i)
6

R
(i)
7

PS⊕
K2

Y
(i)
2 W

(i)
2

PS⊕
K3

Y
(i)
3 W

(i)
3

PS⊕
K6

Y
(i)
6 W

(i)
6

PS⊕
K7

Y
(i)
7 W

(i)
7

PS⊕
K8

Y
(i)
8 W

(i)
8

(a): 5 and 6-round Camellia with FL/FL−1

...

5-round: 6-round: 7-round: 8-round:

(b): 7 and 8-round Camellia without FL/FL−1

Fig. 1. 5 and 6-round Camellia with FL/FL−1 and 7 and 8-round Camellia without
FL/FL−1

After applying the P−1 operation to Eq. (2) we get the following equation:

P−1(Z
(i,j)
R ) = P−1(FL−1(X

(i,j)
L ⊕W

(i,j)
5 ,KI2))⊕ Y

(i,j)
7 . (3)

Observe that X
(i,j)
L ⊕W

(i,j)
5 = R̂

(i,j)
6 . Thus, by Eqs. (1) and (3) we have

256⊕
j=1

P−1(Z
(i,j)
R ) = (

256⊕
j=1

P−1(FL−1(X
(i,j)
L ⊕W

(i,j)
5 ,KI2)))⊕ (

256⊕
j=1

Y
(i,j)
7 )

=

256⊕
j=1

Y
(i,j)
7 . (4)

For the 6-round Camellia, we have

Z
(i,j)
R = FL−1(X

(i,j)
R ⊕W

(i,j)
3 ⊕W

(i,j)
5 ,KI2)⊕W

(i,j)
7 . (5)
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After applying the P−1 operation to Eq. (5) and then by Eq. (1) we have

256⊕
j=1

P−1(Z
(i,j)
R ) = (

256⊕
j=1

P−1(FL−1(X
(i,j)
R ⊕W

(i,j)
3 ⊕W

(i,j)
5 ,KI2))) ⊕ (

256⊕
j=1

Y
(i,j)
7 )

=

256⊕
j=1

Y
(i,j)
7 . (6)

Now, observe that the key components FL−1(X
(i,j)
L ⊕W (i,j)

5 ,KI2) cancel out in

Eqs. (4) and (6). Thus we can compute
⊕256

j=1 P
−1(Z

(i,j)
R ) from the structure of

chosen inputs, without guessing the subkeys used in the FL−1 function. This is
the origin of the advantage of our HO-MitM attacks. Further, (as given in the

full version of this paper), a trivial but complex analysis shows that
⊕256

j=1 Y
(i,j)
7,7

can be expressed as a function of x(i) and 13 constant 8-bit parameters in the

5-round HO-MitM property, and
⊕256

j=1 Y
(i,j)
7,6 can be expressed as a function of

x(i) and 21 constant 8-bit parameters in the 6-round HO-MitM property.
In these 5 and 6-round HO-MitM properties, we can regard x(i) as a principle

variable and y(j) as a co-variable (note that y(j) is not really a variable, as we
use 256 specific values for it), where the co-variable y(j) is used mainly to cancel
the key-dependent component FL−1 under the integral property of Camellia.

4.2 Attacking 10-Round Camellia-128 with FL/FL−1 Functions

The 5-round HO-MitM property in Proposition 1-1 enables us to break 10-round
Camellia-128 with FL/FL−1 functions. The attacked rounds are from Rounds
2 to 11, and the procedure is as follows. Observe that P−1(Ri) = P−1(Li+1)⊕
S(Ri+1 ⊕Ki+1).

1. For each of 2104 possible values of the 13 constant 8-bit parameters c1, c2,
· · · , c13, precompute Φc1,c2,···,c13(z) sequentially for z = 0, 1, · · · , 31. Store
the 2104 32-byte sequences in a hash table LΦ.

2. Guess a value for (K2,K3,1,K3,2), and we denote the guessed value by
(K∗

2 ,K
∗
3,1, K

∗
3,2). Then for x = 0, 1, · · · , 31 and y = 0, 1, · · · , 255, choose

plaintext P (x,y) = (P
(x,y)
L , P

(x,y)
R ) in the following way, where α1, α2, · · · , α8,

β1, β2, · · · , β6 are randomly chosen 8-bit constants:

P
(x,y)
L =

⎛⎜⎜⎜⎜⎜⎝
S1(x⊕ K∗

3,1) ⊕ α1

S1(x⊕ K∗
3,1) ⊕ S2(y ⊕ K∗

3,2) ⊕ α2

S1(x⊕ K∗
3,1) ⊕ S2(y ⊕ K∗

3,2) ⊕ α3

S2(y ⊕ K∗
3,2) ⊕ α4

S1(x⊕ K∗
3,1) ⊕ S2(y ⊕ K∗

3,2) ⊕ α5

S2(y ⊕ K∗
3,2) ⊕ α6

α7

S1(x⊕ K∗
3,1) ⊕ α8

⎞⎟⎟⎟⎟⎟⎠

T

,
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P
(x,y)
R = P

⎛⎜⎜⎜⎜⎜⎝
S1(S1(x⊕ K∗

3,1) ⊕ α1 ⊕ K∗
2,1)

S2(S1(x⊕ K∗
3,1) ⊕ S2(y ⊕ K∗

3,2) ⊕ α2 ⊕ K∗
2,2)

S3(S1(x⊕ K∗
3,1) ⊕ S2(y ⊕ K∗

3,2) ⊕ α3 ⊕ K∗
2,3)

S4(S2(y ⊕ K∗
3,2) ⊕ α4 ⊕ K∗

2,4)
S5(S1(x⊕ K∗

3,1) ⊕ S2(y ⊕ K∗
3,2) ⊕ α5 ⊕ K∗

2,5)
S6(S2(y ⊕ K∗

3,2) ⊕ α6 ⊕ K∗
2,6)

S7(α7 ⊕ K∗
2,7)

S8(S1(x⊕ K∗
3,1) ⊕ α8 ⊕ K∗

2,8)

⎞⎟⎟⎟⎟⎟⎠

T

⊕

⎛⎜⎜⎜⎜⎝
x
y
β1

β2

β3

β4

β5

β6

⎞⎟⎟⎟⎟⎠
T

.

In a chosen-plaintext attack scenario, obtain the ciphertexts for the plain-
texts; we denote by C(x,y) the ciphertext for plaintext P (x,y).

3. Guess a value for (K9,7,K10,3,K10,4,K10,5,K10,6,K10,8,K11), and we denote
the guessed value by (K∗

9,7, K
∗
10,3,K

∗
10,4,K

∗
10,5,K

∗
10,6,K

∗
10,8,K

∗
11). Partially

decrypt every ciphertext C(x,y) with (K∗
10,3,K

∗
10,4,K

∗
10,5, K

∗
10,6,K

∗
10,8,K

∗
11)

to get the corresponding value for bytes (1, 2, · · · , 8, 15) just before Round

10; we denote it by (L
(x,y)
9 , R

(x,y)
9,7 ). Compute T (x) =

⊕255
y=0(P

−1(L
(x,y)
9 )[49 ∼

56]⊕S7(R
(x,y)
9,7 ⊕K∗

9,7)). Finally, check whether the sequence (T (0), T (1), · · · ,
T (31)) matches a sequence in LΦ; if so, record the guessed value (K∗

2 ,K
∗
3,1,

K∗
3,2,K

∗
9,7,K

∗
10,3, K

∗
10,4,K

∗
10,5,K

∗
10,6,K

∗
10,8,K

∗
11) and execute Step 4; other-

wise, repeat Step 3 with another subkey guess (if all the subkey possibilities
are tested in Step 3, repeat Step 2 with another subkey guess).

4. For every recorded value for (K10,3,K10,4,K10,5,K10,6,K10,8), exhaustively
search the remaining 11 key bytes.

The attack requires 32×256×280 = 293 chosen plaintexts. The one-off (i.e., one-
time) precomputation requires a memory of 2104 × 32 = 2109 bytes, and has a
time complexity of 2104×32×256×2× 1

10 ≈ 2114.7 10-round Camellia-128 encryp-
tions under the rough estimate that a computation of Φc1,c2,···,c13(z) equals 256×
2 = 512 one-round Camellia encryptions in terms of time. If the guessed value
(K∗

2 ,K
∗
3,1,K

∗
3,2) is correct, the input to Round 4 must have the form (m1,m2,m3,

m4,m5,m6,m7,m8, x, y, β1, β2, β3, β4, β5, β6), wherem1,m2, · · · ,m8 are indeter-
minate constants.

Step 2 has a time complexity of 280×32×256× 2+8
8×10 = 290 10-round Camellia-

128 encryptions. Given (K2,K3,1,K3,2), there are only 28 unknown bits for
(K9,7,K10,3, K10,4,K10,5,K10,6,K10,8,K11), thus Step 3 has a time complexity
of about 280+28× 32× 256× 8+5+1

8×10 ≈ 2118.5 10-round Camellia-128 encryptions.
In Step 3, if the guessed value (K∗

2 ,K
∗
3,1,K

∗
3,2,K

∗
9,7,K

∗
10,3,K

∗
10,4,K

∗
10,5,K

∗
10,6,

K∗
10,8,K

∗
11) is correct, the sequence (T

(0), T (1), · · · , T (31)) must match a sequence
in LΦ; if the guessed value (K∗

2 ,K
∗
3,1,K

∗
3,2,K

∗
9,7,K

∗
10,3,K

∗
10,4,K

∗
10,5,K

∗
10,6,K

∗
10,8,

K∗
11) is wrong, the sequence (T

(0), T (1), · · · , T (31)) matches a sequence in LΦ with

a probability of approximately 1 −
(
2104

0

)
(2−32×8)0(1 − 2−32×8)2

104 ≈ 2−32×8 ×
2104 = 2−152, (assuming the event has a binomial distribution). Consequently,
it is expected that about 280+28 × 2−152 = 2−44 values for (K2,K3,1,K3,2,K9,7,
K10,3,K10,4,K10,5,K10,6,K10,8,K11) are recorded in Step 3, meaning only the
correct subkey guess will be recorded. Since a total of 40 bits of KL can be
known from (K10,3,K10,4,K10,5,K10,6,K10,8), Step 4 takes at most 288 10-round
Camellia-128 encryptions to find the correct 128-bit user key.
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Therefore, the attack has a memory complexity of 2109 bytes and a total time
complexity of approximately 2118.6 10-round Camellia-128 encryptions.

4.3 Attacking 11-Round Camellia-192 with FL/FL−1 Functions and
12-Round Camellia-256 with FL/FL−1 Functions

Similarly, we can use the 6-round HO-MitM property given in Proposition 1-2
to break Rounds 7 to 17 or Rounds 13 to 23 of Camellia-192 with FL/FL−1

functions and to break Rounds 7 to 18 of Camellia-256 with FL/FL−1 func-
tions. The first 11-round Camellia-192 attack requires 294 chosen plaintexts and
a memory of 2174 bytes and has a time complexity of approximately 2180.2 11-
round Camellia-192 encryptions; the second 11-round Camellia-192 attack re-
quires 278 chosen plaintexts and a memory of 2174 bytes and has a time com-
plexity of approximately 2187.4 11-round Camellia-192 encryptions; and the 12-
round Camellia-256 attack requires 294 chosen plaintexts and a memory of 2174

bytes and has a time complexity of approximately 2237.3 12-round Camellia-256
encryptions. (The details are given in the full version of this paper.)

4.4 A Comparison

We have checked the corresponding MitM properties for the 5 and 6-round
Camellia with the FL/FL−1 functions, and our result is as follows. For a set
of 256 sixteen-byte valuesX(i) = (m1,m2,m3,m4,m5,m6,m7,m8, x

(i),m9,m10,
m11,m12,m13,m14,m15) with x(i) taking all the possible values in {0, 1}8 and
the other 15 bytes m1,m2, · · · ,m15 fixed to arbitrary values, (i = 1, · · · , 256),
then: If Z(i) = (Z

(i)
L ||Z

(i)
R ) is the result of encrypting X(i) using Rounds 4 to 8,

then P−1(Z
(i)
R )[49 ∼ 56] is a function of x(i) and 198 constant 1-bit parameters;

if Z(i) = (Z
(i)
L ||Z

(i)
R ) is the result of encrypting X(i) using Rounds 3 to 8, then

P−1(Z
(i)
R )[41 ∼ 48] is a function of x(i) and 264 constant 1-bit parameters.

Obviously, the numbers of constant 1-bit parameters involved in these MitM
properties are much larger than the numbers of constant 1-bit parameters in-
volved in the corresponding HO-MitM properties. Since they are even larger
than the key length of Camellia-192/256, it is not preferable to directly use
these MitM properties; otherwise, we would like to guess the key bits involved,
which are less than the numbers of constant 1-bit parameters involved in the
MitM properties. Nevertheless, the MitM properties may potentially become
useful in the case we consider only a portion of possible values for the constant
1-bit parameters under a data–memory–time tradeoff [17]; we have checked this
direction, and our results are as follows.

Suppose we only consider 1
2N1

of the 2264 (or 2198) possible values for the
264 (respectively, 198) constant 1-bit parameters in the 6-round (respectively,
5-round) MitM property. For each of the 2264−N1 (respectively, 2198−N1) possible
values for the 264 (respectively, 198) constant 1-bit parameters, we precompute
for N2 chosen inputs X(i). Then, we find we can use the 6-round MitM property
to break Rounds 7 to 18 of Camellia-256 with FL/FL−1 functions, where we
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use the 6-round MitM property from Rounds 9 to 14 and guess (K7,1,K7,2,K7,3,
K7,5,K7,8,K8,1,K15,6,K16,2,K16,3,K16,5,K16,7,K16,8,K17,K18) and a secret 8-
bit parameter δ (it has a similar meaning as the δ defined in Section 5.2).
The required plaintexts are chosen in a similar approach as in the 14-round
Camellia-192 attack in Section 5.2, and the attack procedure is similar to the
HO-MitM attack described in Section 4.2, except a major difference: In this
12-round Camellia-256 attack, for every guess of (K7,1,K7,2,K7,3,K7,5,K7,8,
K8,1, δ) we use 2N1+2 structures of N2 plaintexts P (x) to have a high success
probability of 98%. After a similar analysis to that for the HO-MitM attack in
Section 4.2, we know that the off-line precomputation phase requires a mem-
ory of N2 × 2264−N1 × 1

8 = N2 × 2261−N1 bytes and takes N2 × 2264−N1 × 3 ×
1
12 = N2 × 2262−N1 12-round Camellia-256 encryptions, and the key-recovery
phase requires 2N1+2 × 256 = 258+N1 chosen plaintexts and takes N2 × 2N1+2 ×
256+158 × 8+5+1

8×12 ≈ N2 × 2213.3+N1 12-round Camellia-256 encryptions (There
are only 158 unknown bits for (K15,6,K16,2,K16,3,K16,5,K16,7,K16,8,K17,K18)
given (K7,1,K7,2,K7,3,K7,5,K7,8,K8,1)). Therefore, when N1 = 24.35 and N2 =
64, the attack requires 282.35 chosen plaintexts and a memory complexity of
2242.65 bytes, and has a minimum time complexity of 2244.65 12-round Camellia-
256 encryptions. This MitM attack is slower than the HO-MitM attack on 12-
round Camellia-256 mentioned in Section 4.3 which is based on the corresponding
6-round HO-MitM property, and particularly its memory complexity is signifi-
cantly larger than that for the 12-round HO-MitM attack (2242.65 versus 2174).

The 6-round MitM property cannot lead to break 11-round Camellia-192 ef-
fectively. The 11-round Camellia-192 that the 5-round MitM property seems to
most possibly break are from Rounds 13 to 23, where we use the 5-round MitM
property from Rounds 16 to 20 and guess (K13,K14,K15,1,K21,7,K22,3,K22,4,
K22,5,K22,6,K22,8,K23). There are only 264 possible values for (K13,K14). For
every guess of (K13,K14,K15,1) we also use 2N1+2 structures of N2 plaintexts
P (x) to have a high success probability 98%. Similarly, the precomputation
phase requires a memory of N2 × 2198−N1 × 1

8 = N2 × 2195−N1 bytes and takes
N2 × 2198−N1 × 2 × 1

11 = N2 × 2196.6−N1 11-round Camellia-192 encryptions,
and the key-recovery phase requires N2 × 2N1+2 × 272 = N2 × 274+N1 chosen
plaintexts and takes N2 × 2N1+2 × 272+112 × 8+5+1

8×11 ≈ N2 × 2183.4+N1 11-round
Camellia-192 encryptions. Therefore, the smallest total time complexity hap-
pens when N1 = 6.6, which is N2 × 2191 11-round Camellia-192 encryptions,
and under this circumstance the data complexity is N2 × 280.6 chosen plain-
texts and the memory complexity is N2 × 2188.4 bytes. However, N2 should
be far larger than 2 to filter out a reasonable number of wrong candidates for
(K13, K14,K15,1,K21,7,K22,3,K22,4,K22,5,K22,6,K22,8,K23). This means the 5
or 6-round MitM property cannot be used to break 11-round Camellia-192 with
FL/FL−1 functions faster than exhaustive key search (unless some auxiliary
trick can be found to improve the attack), but anyway the corresponding 6-
round HO-MitM property can easily do so as briefed.

By any means the 5-round MitM property cannot be used to break 10-round
Camellia-128 with FL/FL−1 functions, not to mention the 6-round MitM prop-
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erty, but the corresponding 5-round HO-MitM property does so as presented in
Section 4.2.

This comparison shows that the HO-MitM attack technique can achieve some
advantages over the MitM attack technique in some circumstances. Besides, we
learn from Table 1 that the HO-MitM attack technique works better than in-
tegral cryptanalysis (including square cryptanalysis) for Camellia. That is, the
HO-MitM attack technique with the alias of the integral-meet-in-the-middle at-
tack can work better than either of its two constituents — integral cryptanalysis
and the MitM attack — in some circumstances. (Most recently, we observed
that there are 127 and 199 constant 1-bit parameters respectively for the 5 and
6-round HO-MitM properties obtained from the above 5 and 6-roundMitM prop-
erties by taking XOR between two inputs to cancel some constant parameters,
which can be used to break 11-round Camellia-192 and 12-round Camellia-256
but marginally break 10-round Camellia-128.) Anyway, a property of the FL−1

function can be exploited to obtain different 5 and 6-round MitM properties with
a smaller number of 1-bit constant parameters, that can be used to devise MitM
attacks on the same numbers of attacked rounds of the Camellia versions [27].

5 HO-MitM Attacks on Reduced Camellia-192/256
without FL/FL−1 Functions

In this section we give 7 and 8-round HO-MitM properties of Camellia without
FL/FL−1 functions, and then describe HO-MitM attacks on 14-round Camellia-
192 without FL/FL−1 functions and 16-round Camellia-256 without FL/FL−1

functions, both of which do not include the whitening operations.

5.1 HO-MitM Properties for 7 and 8-Round Camellia without
FL/FL−1 Functions

We construct these 7 and 8-round HO-MitM properties by using a general differ-
ential property to cancel some constant parameters, where the basic concerned
“value-in-the-middle” is obtained from two plaintexts. See Fig. 1-(b).

Proposition 2. Suppose a set of 256 sixteen-byte values X(i) = (X
(i)
L ||X

(i)
R ) =

(m1,m2,m3,m4,m5,m6,m7,m8, x
(i),m9,m10,m11,m12,m13,m14,m15) with x

(i)

taking all the possible values in {0, 1}8 and the other 15 bytes m1,m2, · · · ,m15

fixed to arbitrary values, (i = 1, · · · , 256). Let i1, i2 ∈ {1, 2, · · · , 256} and i1 �= i2,
then:

1. If Z(i) = (Z
(i)
L ||Z

(i)
R ) is the result of encrypting X(i) using 7-round Camellia

without FL/FL−1 functions, then P−1(Z
(i1)
R ⊕ Z

(i2)
R )[41 ∼ 48] can be ex-

pressed as a function of x(i1), x(i2) and 20 constant 8-bit parameters c1, c2, · · · ,
c20, written Γc1,c2,···,c20(x

(i1), x(i2)).

2. If Z(i) = (Z
(i)
L ||Z

(i)
R ) is the result of encrypting X(i) using 8-round Camellia

without FL/FL−1 functions, then P−1(Z
(i1)
R ⊕ Z

(i2)
R )[41 ∼ 48] can be ex-

pressed as a function of x(i1), x(i2) and 28 constant 8-bit parameters c′1, c
′
2, · · · ,

c′28, written Ψc′1,c
′
2,···,c′28(x

(i1), x(i2)).
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5.2 Attacking 14-Round Camellia-192 without FL/FL−1 Functions

We first remind the reader that compared with the above attacks, this attack as
well as the attack described in the next subsection uses a different approach to
choose plaintexts, that is, there is an additional secret parameter denoted by δ.
This approach to choose plaintexts/ciphertexts was introduced in [26].

The 7-round HO-MitM property in Proposition 2-1 can be used to attack
14-round Camellia-192 without FL/FL−1 functions. We attack Rounds 2 to 15
and use the 7-round HO-MitM property from Rounds 5 to 11, where we guess
(K2,K3,1,K3,2,K3,3,K3,5,K3,8,K4,1,K12,6,K13,2,K13,3,K13,5,K13,7,K13,8,K14,
K15), plus an additional secret 8-bit parameter δ which is defined to be δ =
γ1 ⊕ γ2 ⊕ γ3 ⊕ S4(γ4 ⊕K3,4)⊕ S6(γ5 ⊕K3,6)⊕ S7(γ6 ⊕K3,7), with γ1, γ2, · · · , γ6
being 6 randomly chosen 8-bit constants. Here, δ is used below to allow us to
have qualified inputs to Round 5 and know the values at byte (9) of the inputs
to Round 5, so that we can sort the computed sequences in the key-recovery
phase.

For each possible value of the 20 one-byte parameters c1, c2, · · · , c20, precom-
pute Γc1,c2,···,c20(0, z) for z = 1, 2, · · · , 63 sequentially. Then for every guess of
(K2,K3,1,K3,2,K3,3,K3,5,K3,8,K4,1, δ), denoted by (K∗

2 ,K
∗
3,1,K

∗
3,2,K

∗
3,3,K

∗
3,5,

K∗
3,8,K

∗
4,1, δ

∗), choose 64 plaintexts P (x) = (P
(x)
L , P

(x)
R ) in the following way

(x = 0, 1, · · · , 63), where α1, α2, · · · , α5, β1, β2, · · · , β7 are randomly chosen 8-bit
constants:

P
(x)
L = P

⎛⎜⎜⎜⎜⎜⎝
S1(S1(x ⊕ K∗

4,1) ⊕ α1 ⊕ K∗
3,1)

S2(S1(x ⊕ K∗
4,1) ⊕ α2 ⊕ K∗

3,2)
S3(S1(x ⊕ K∗

4,1) ⊕ α3 ⊕ K∗
3,3)

γ1

S5(S1(x ⊕ K∗
4,1) ⊕ α4 ⊕ K∗

3,5)
γ2

γ3

S8(S1(x ⊕ K∗
4,1) ⊕ α5 ⊕ K∗

3,8)

⎞⎟⎟⎟⎟⎟⎠
T

⊕

⎛⎜⎜⎜⎜⎝
x⊕ δ∗

β1

β2

β3

β4

β5

β6

β7

⎞⎟⎟⎟⎟⎠
T

,

P
(x)
R = F(P

(x)
L ,K∗

2 )⊕

⎛⎜⎜⎜⎜⎜⎝
S1(x ⊕ K∗

4,1) ⊕ α1

S1(x ⊕ K∗
4,1) ⊕ α2

S1(x ⊕ K∗
4,1) ⊕ α3

γ4

S1(x ⊕ K∗
4,1) ⊕ α4

γ5

γ6

S1(x ⊕ K∗
4,1) ⊕ α5

⎞⎟⎟⎟⎟⎟⎠
T

.

If the guessed value for (K2,K3,1,K3,2,K3,3,K3,5,K3,8,K4,1, δ) is correct, the
input to Round 5 must have the form (m1,m2,m3,m4,m5,m6,m7,m8, x,m9,
m10,m11,m12,m13,m14,m15), where m1,m2, · · · , m15 are indeterminate con-
stants. The remaining steps are similar to the 10-round Camellia-128 attack.

There are 264+40 = 2104 possible values for (K2,K3,1,K3,2,K3,3,K3,5,K3,8,
K4,1) by the key schedule of Camellia-192, thus the attack requires 64×2104+8 =
2118 chosen plaintexts. Given (K2,K3,1,K3,2,K3,3,K3,5,K3,8,K4,1), there are
only 36 unknown bits for (K12,6,K13,2,K13,3,K13,5, K13,7,K13,8,K14,K15), so
the time complexity in the key recovery phase is approximately 2104+8+36×64×
8+8+5+1

8×14 ≈ 2151.7 14-round Camellia-192 encryptions. As a result, the attack

requires a memory of 2160×63 ≈ 2166 bytes, and its time complexity is dominated
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by the time complexity of a one-off precomputation of Γc1,c2,···,c20(0, z), which
is approximately 2160 × 64× 5× 1

14 ≈ 2164.6 14-round Camellia-192 encryptions
under the rough estimate that a computation of Γc1,c2,···,c20(0, z) equals 5 one-
round Camellia-192 encryptions in terms of time except a one-off computation
with connection to the value 0 for each (c1, c2, · · · , c20).

Since the attack’s time complexity is dominated by the time complexity of
the one-off precomputation Γc1,c2,···,c20(0, z), we can use a data–time–memory
tradeoff to slightly reduce the memory and time complexity by precomputing
only for a proportion of the 20 constant 8-bit parameters c1, c2, · · · , c20 and then
using more data to achieve a reasonable success probability: Such an attack
requires 2125 chosen plaintexts and a memory of 2161 bytes, and has a total
time complexity of 2160.3 14-round Camellia-192 encryptions, with a success
probability of 98%.

5.3 Attacking 16-Round Camellia-256 without FL/FL−1 Functions

Similarly, we can use the 8-round HO-MitM property given in Proposition 2-2
to break the first 16 rounds of Camellia-256 without FL/FL−1 functions, where
the 8-round HO-MitM property is used from Rounds 4 to 11, and we guess
(K1,K2,1,K2,2,K2,3,K2,5,K2,8,K3,1, δ,K12,6,K13,2,K13,3,K13,5,K13,7,K13,8,K14,
K15,K16), here δ is similar to the δ defined in Section 5.2. For each possible
value of the 28 one-byte parameters c′1, c′2, · · · , c′28, precompute Ψc′1,c

′
2,···,c′28(0, z)

for z = 1, 2, · · · , 63 sequentially. The one-off precomputation requires a memory
of 2224×63 ≈ 2230 bytes, and has a time complexity of 2224×64×5× 1

16 ≈ 2228.4

16-round Camellia-256 encryptions under the rough estimate that a computation
of Ψc′1,c

′
2,···,c′28 equals 5 one-round Camellia-256 encryptions in terms of time plus

a one-off computation with connection to the value 0 for each (c′1, c′2, · · · , c′28).
Given (K1,K2,1,K2,2,K2,3,K2,5, K2,8,K3,1), there are only 128 unknown bits for
(K12,6,K13,2,K13,3,K13,5,K13,7,K13,8,K14,K15,K16). After a similar analysis,
we learn that the attack requires at most 264+48+8 = 2120 chosen plaintexts and
has a total time complexity of approximately 2120+128 × 64× 8+8+8+5+1

8×16 ≈ 2252

16-round Camellia-256 encryptions.

5.4 A Comparison

When constructing the 7 and 8-round HO-MitM properties, we first obtain the

corresponding 7 and 8-roundMitM properties: The value-in-the-middleP−1(X
(i)
L

⊕Z(i)
R )[41 ∼ 48] = Y

(i)
2,6 ⊕ Y

(i)
4,6 ⊕ Y

(i)
6,6 in the 7-round MitM property can be ex-

pressed as a function of x(i) and 21 constant 8-bit parameters; and the value-

in-the-middle P−1(X
(i)
R ⊕ Z

(i)
R )[41 ∼ 48] = Y

(i)
1,6 ⊕ Y

(i)
3,6 ⊕ Y

(i)
5,6 ⊕ Y

(i)
7,6 in the

8-round MitM property can be expressed as a function of x(i) and 30 constant
8-bit parameters, (see Fig. 1-(b) for the undefined notation). Then, by taking
XOR under two plaintexts X(i1) and X(i2), we cancel the two constant terms

P−1(X
(i)
L )[41 ∼ 48] and Y

(i)
2,6 in the 7-round MitM property, and cancel the three
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constant terms P−1(X
(i)
R )[41 ∼ 48], Y

(i)
1,6 and Y

(i)
3,6 in the 8-round MitM property.

(The details are given in the full version of this paper.)
The 7 and 8-roundMitM properties can be respectively used to break 14-round

Camellia-192 without FL/FL−1 functions and 16-round Camellia-256 without
FL/FL−1 functions; the attacked rounds are the same as in the HO-MitM at-
tacks given in Sections 5.2 and 5.3, and the attack procedures are rather similar
as well, except that we use the following way to deal with the unknown 8-bit

parameterP−1(X
(i)
R )[41 ∼ 48] orP−1(X

(i)
L )[41 ∼ 48]: For a 64-byte sequence ob-

tained in the key-recovery phase, we XOR a possible value of P−1(X
(i)
R )[41 ∼ 48]

or P−1(X
(i)
L )[41 ∼ 48] to all 64 basic units of value-in-the-middle in the sequence

and then check the resulting sequence, and repeat this process for all the 256

possible values of P−1(X
(i)
R )[41 ∼ 48] or P−1(X

(i)
L )[41 ∼ 48].

Similarly, the MitM attack on 14-round Camellia-192 without FL/FL−1 func-
tions has a data complexity of 64× 2104+8 = 2118 chosen plaintexts, a memory
complexity of 64 × 221×8 = 2174 bytes and a time complexity of 64 × 221×8 ×
5 × 1

14 + 64 × 2112+36 × 8+8+5+1
8×14 ≈ 2172.6 14-round Camellia-192 encryptions.

The time complexity is dominated by the one-off precomputation, and we can
use a data–memory–time tradeoff to obtain a 14-round Camellia-192 attack with
a data complexity of 2118+7 = 2125 chosen plaintexts, a memory complexity of
2174−5 = 2169 bytes, a time complexity of 2172.6−5 + 2151.7+7 ≈ 2167.6 14-round
Camellia-192 encryptions and a success probability of 98%. The MitM attack on
16-round Camellia-256 without FL/FL−1 functions has a data complexity of at
most 2112+8 = 2120 chosen plaintexts, a memory complexity of 64×230×8 = 2246

bytes and a time complexity of 64×230×8×5× 1
16 +64×2120+128× 8+8+8+5+1

8×16 ≈
2252 16-round Camellia-256 encryptions. These MitM attacks are effective but
less efficient than the HO-MitM attacks described earlier.

6 Conclusions

In this paper, we have proposed an extension of the meet-in-the-middle (MitM)
attack, called the higher-order meet-in-the-middle (HO-MitM) attack; it is based
on using multiple plaintexts to cancel some key-dependent component(s) or
parameter(s) when constructing a basic unit of value-in-the-middle. We have
described a novel approach, which combines integral cryptanalysis with the
MitM attack, to construct HO-MitM attacks on 10-round Camellia-128 with
FL/ FL−1 functions, 11-round Camellia-192 with FL/FL−1 functions and 12-
round Camellia-256 with FL/FL−1 functions, all of which do not include the
whitening operations. The HO-MitM attack obtained by this approach can also
be called the integral-meet-in-the-middle attack, and it can work better than ei-
ther integral cryptanalysis or the MitM attack in certain circumstances. We have
used an existing approach to construct HO-MitM attacks on 14-round Camellia-
192 without FL/FL−1 functions and 16-round Camellia-256 without FL/FL−1

functions, both of which do not include the whitening operations.
The HO-MitM attack is a general cryptanalytic technique, and can potentially

be used to cryptanalyse other block ciphers, in particular the integral-meet-in-
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the-middle attack is applicable to Camellia-like Feistel ciphers (i.e. Feistel ciphers
with some function inserted after some round). An interesting direction for future
research is to investigate new approaches to construct HO-MitM attacks.

Acknowledgments. The authors would like to thank several anonymous ref-
erees for their comments on earlier versions of the paper.
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Abstract. The current paper presents rebound attacks on generalized
Feistel network (GFN) with double-SP functions, and show that double-
SP functions are weaker than single-SP functions when a number of
rounds is small. In 2011, Bogdanov and Shibutani showed that double-SP
functions for R rounds could generate more active bytes than single-SP
functions for 2R rounds, whenR approaches to infinity. Hence, double-SP
functions resist the differential and linear attacks more efficiently than
single-SP functions. However, in practice, R is relatively small, and thus a
comparison with dedicated attacks is also important. For 4-branch type-2
GFN with single-SP functions, the current best attack is up to 11 rounds
(22 SP-layers) while no result exists for double-SP functions. In this pa-
per, we present the first cryptanalysis for 4-branch type-2 GFN with
double-SP functions. Up to 6 rounds (24 SP-layers), we can find near-
collisions when such functions are instantiated in compression function
modes, e.g. Davies-Meyer mode. The attack is extended to 7 rounds (28
SP-layers) with respect to a non-ideal property. The important knowl-
edge provided with this paper is that including more active bytes does
not immediately indicate stronger security. This is because attackers may
control behaviors of several active S-boxes and mount efficient attacks.

Keywords: rebound attack, generalized Feistel network, double-SP,
single-SP, near-collision, known-key distinguisher, (controlled) active
S-box.

1 Introduction

Designing good block-ciphers and hash functions has been a challenging topic
for a long time. Various designs have been considered to achieve high security
and good performance. Feistel network and generalized Feistel network (GFN),
which are shown in Fig. 1, are widely used structures to build such primitives.
Specifically, GFN is known to be suitable for light-weight designs rather than
the standard Feistel network.

The core of these constructions is the design of the round function. One of
the most popular methods is combining an S-box transformation (S-layer) and
a linear transformation (P-layer). The round function that consists of a subkey
XOR, S-layer, and P-layer, is called a single-SP function.

S. Galbraith and M. Nandi (Eds.): INDOCRYPT 2012, LNCS 7668, pp. 265–282, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Left: Feistel network Right: 4-branch type-2 GFN

In 2011, Bogdanov and Shibutani [1] showed that 4-branch GFN with double-
SP functions was stronger than the one with single-SP functions against differen-
tial and linear cryptanalysis in terms of the number of active S-boxes, where the
double-SP function consists of a subkey XOR and two iterations of the S-layer,
and P-layer. Considering the fact that several designs adopt single-SP functions
but no design adopts double-SP functions, the result in [1] is a breakthrough
toward good block-cipher and hash function designs. [1] compares the security
of the single-SP and double-SP functions only from the viewpoint of the number
of active S-boxes. Therefore, comparing the single-SP and double-SP functions
from other perspectives is useful to enhance the design theory.

Note that good designs for Feistel network or its variant has been discussed ac-
tively in recent years. In 2010, Bogdanov analyzed round functions consisting of
one SP-layer and additional S-layer (SPS functions) [2]. Actually, SPS functions
are adopted by several designs, e.g., E2 [3] and Piccolo [4]. In 2011, Bogdanov
and Shibutani showed another result of double-SP functions for 3-branch GFN
[5]. Regarding the network, Generalized GFN was proposed in 2010 [6], and its
philosophy can be seen in several block ciphers, e.g., LBlock [7] and TWINE [8].
The security of source-heavy and target-heavy GFN is also discussed [9]. From
this background, the comparison of single-SP and double-SP functions would
be useful. Note that the hash function SHAvite-3 [10] adopts Feistel network
or 4-branch type-2 GFN using 3 AES rounds as a round function, which can
be viewed as a triple-SP function. Its security discussion, especially the rebound
attack by Minier et al. [11], is also useful to understand the security of the Feistel
scheme.

Recently cryptographers have paid attention to the security of block ciphers
when the key value is known to the attackers. Such an approach is called known-
key distinguisher, which was firstly discussed by Knudsen and Rijmen [12] and
partially formalized by Minier et al. [13]. If the analysis target is a compres-
sion function such as the Davies-Meyer (DM), Matyas-Meyer-Oseas (MMO) and
Miyaguchi-Preneel modes instantiating an internal block cipher, the known-key
distinguisher on the internal block cipher can be directly converted into a dis-
tinguisher on the compression function. For example, a known-key distinguisher
proposed by Mendel et al. [14] on 7-round AES can also be viewed as a distin-
guisher on AES-based compression function.

In 2011, Sasaki and Yasuda applied the rebound attack for the standard (2-
branch) Feistel ciphers with single-SP round functions in the known-key setting
[15]. They successfully mounted a distinguisher up to 11 rounds (including 11
SP-layers). Note that their results can be trivially extended to 4-branch type-2
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GFN with single-SP functions by simply running the same procedure for two
round functions in parallel. Therefore, for single-SP functions, up to 11 rounds
of 4-branch type-2 GFN (including 22 SP-layers) can be distinguished. In 2012,
Sasaki et al. improved the complexity of this attack [16]. However, the number
of attacked round is still 11.

The number of total S-boxes in R rounds with double-SP functions is the same
as the one in 2R rounds with single-SP functions. It is proved by [1] that, the
minimum number of active S-boxes in every 6 rounds for single-SP and double-
SP functions are 2(r+1)+2 and 6(r+1), respectively, where r is the number of
S-boxes included in a single S-layer, and r is bigger than one for the SP structure.
From this result, for any choice of r, 6-round double-SP functions always achieve
a bigger minimum number of active S-boxes than 12-round single-SP functions.
In [1], the security of single-SP and double-SP functions are compared regarding
the ratio of the number active S-boxes when the number of rounds,R, approaches
to infinity. While it is a reasonable approach in some sense, such a metric ignores
a constant factor of the number of active S-boxes. Because R is relatively small
in practice to obtain a good performance, we cannot ignore the constant factor
for evaluating specific designs. Therefore, comparing the security with dedicated
attacks is also important. For single-SP functions, the current best attack is up
to 11 rounds (22 SP-layers) while no result exists for double-SP functions.

Our Contributions

In this paper, we present the first cryptanalytic results for 4-branch type-2 GFN
with double-SP functions in order to compare the security of single-SP and
double-SP functions with respect to the number of attacked rounds. Our ap-
proach is a rebound attack. As a result of the analysis, we show that up to 6
rounds (24 SP-layers), we can find paired values whose input and output dif-
ferences are identical for a half of the state. The attack complexity is 2c round
function computations and a memory to store 2c internal state. The attack can be
used to find near-collisions when such functions are instantiated in compression
function modes. The attack can also be regarded as a known-key distinguisher
for the block cipher. We then extended the attack to 7 rounds (28 SP-layers)
with some artificial distinguished property. Compared to the current best attack
for single-SP functions, our attacks work for more SP-layers. This gives a differ-
ent view of the security of single-SP and double-SP functions compared to the
previous analysis by Bogdanov and Shibutani [1] discussing the security when
the number of rounds approaches to infinity.

The important knowledge provided with this paper is that including more
active bytes does not immediately indicate stronger security. This is because
attackers can control the behavior of several active S-boxes and mount efficient
attacks.

Note that our results do not contradict the claim [1]. It is obvious that the
number of rounds (or active S-boxes) which the attackers can control is limited.
Hence, as long as infinite rounds are considered, the impact of the attacker’s
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Fig. 2. Left: Double-SP round function Right: Simplified description

ability to control active S-boxes can be ignored. However, in practice, R is rela-
tively small to achieve a good performance. Then, the attacker’s ability cannot
be ignored. If one may design GFN with double-SP functions, we recommend
taking such impact into consideration.

Paper Outline

The paper is organized as follows. In Sect. 2, we give basic notions and review
previous work. We present our 6-round attacks on GFN with double-SP functions
in Sect. 3 We then extend the attack to 7 rounds in Sect. 4. Finally, we conclude
the paper in Sect. 5.

2 Preliminaries

2.1 Description of the Double-SP Round Function

We specify the double-SP round function used in the 4-branch generalized Feistel
network. Hereafter, we use the following notations.

N : The block length of the cipher (in bits),
n: The word size in bits, equal to the size of the input and output of the round

function, so that n = N/4,
c: The byte size in bits (In this paper the byte size is not fixed), equal to the

size of an S-box,
r: The number of S-boxes in a word, so that r = n/c.

Note that the design of the CLEFIA block-cipher [17] is close to the 4-branch
type-2 GFN with single-SP functions. CLEFIA uses the parameter

(N,n, c, r) = (128, 32, 8, 4). (1)

Eq. (1) is useful to consider the impact of the attack. In this paper, we often use
these parameters to demonstrate the complexities of our attacks.

The double-SP round function is depicted in Fig. 2, consisting of the five
operations: subkey XOR, S-box layer, permutation layer, S-box layer, and per-
mutation layer. Details of each operation are as follows.
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Subkey XOR: This layer computes the XOR of a round-function input and a
round key Ki.

S-box layer: This layer substitutes each byte value by using one or several S-
boxes; the S-boxes S1, S2, . . . , Sr may differ from each other. To simplify the
explanation, we explain our attacks based on the S-box which is designed to
be resistant to differential and linear cryptanalyses, like the ones used in AES
[18,19]. Hence, given a pair of randomly chosen input and output differences,
there exist paired values following the given input/output differences with a
probability of approximately 2−1. If exist, then the number of such paired
values is approximately two.

Permutation layer: This layer mixes values by multiplying the word value
and an r × r matrix P over F(2c) together. To simplify the explanation, we
make the assumption that the branch number of P is r+1, so that the total
number of active bytes in the input and output of P is always greater than
or equal to r + 1, as long as there is at least one active byte.

To simplify the analysis, we assume that all round functions are the same.

2.2 Comparison of Double-SP and Single-SP Functions in 4-Branch
Type-2 GFN

Bogdanov and Shibutani showed that instantiating double-SP functions in 4-
branch GFN is significantly more efficient with respect to differential and linear
cryptanalysis than instantiating single-SP functions in terms of the proportion
of the active S-boxes [1]. The metric to measure the resistance, Er, is defined as

Er = limR→∞
Ar,R

Sr,R
, where r is the number of S-boxes in a word, Sr,R is the total

number of S-boxes over R rounds, and Ar,R is the number of active S-boxes over
R rounds.

Therefore intuitively, the security of single-SP and double-SP functions can
be compared by counting the number of active S-boxes in 2R rounds for single-
SP functions and R rounds for double-SP functions. Forcing more active bytes
results in the stronger security. It is shown in [1] that Ar,R is 2(r + 1) + 2 for
single-SP functions in every 6 rounds and 6(r + 1) for double-SP functions in
every 6 rounds. Hence, the security is compared by 4(r + 1) + 4 and 6(r + 1),
which leads to the conclusion that instantiating double-SP functions is more
efficient than instantiating single-SP functions.

Note that the value of
Ar,R

Sr,R
for double-SP and single-SP functions are irrespec-

tive of the round number R as long as R is a multiple of 6. Hence, comparing
Ar,12

Sr,12

for single-SP functions and
Ar,6

Sr,6
for double-SP functions derives the same results

as the case R → ∞. Also note that 6(r + 1) is always bigger than 4(r + 1) + 4
as long as r > 1, which is usually satisfied.

2.3 Rebound-Attack Technique

The rebound attack was introduced by Mendel et al. [20]. An attacker tries to
find efficiently a pair of values that follows a pre-determined truncated differen-
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Fig. 3. Example of the inbound phase with 4-byte state (gray bytes are active)

tial path. The search procedure is divided into two phases: The inbound phase
and the outbound phase. The attacker generates sufficiently many paired values
that satisfy the truncated differential path of the inbound phase. This can be
done with a small complexity on average. These paired values are called start-
ing points. Then, the attacker computes the outbound phase with the generated
starting points and checks whether or not any of the starting points satisfies the
truncated differential path of the outbound phase. The attacker succeeds if he
finds a starting point conforming to the path of the outbound phase.

Let us explain the basic procedure of the inbound phase by using a 4-byte
(1 byte = 8 bits) state with an 8-bit S-box as an example. In this example, the
goal of an attacker is to find a pair of values (M,M ′) that satisfies the truncated
differential path 1→ 4→ 1 (one active byte diverging to four active bytes and
then converging to one active byte again) which is illustrated in Fig. 3.

The rebound attack can generate 28 pairs satisfying the differential path with
a complexity of approximately 28—in other words, each pair is generated with
a complexity of 1 on average. The detailed attack procedure is as follows:

1. For all 28 (more precisely, 28 − 1) possible differences of state #0, compute
the corresponding 4-byte differences of state #1 and store them in a table T .

2. Choose a difference of state #3 and compute the corresponding 4-byte dif-
ference of state #2. For each 4-byte difference in T , check whether or not the
computed 4-byte difference of state #2 can be output through the S-boxes
by looking up the differential distribution table (DDT). If the differences
match, output such paired values.

For a pair of randomly determined input difference ΔSin and output differ-
ence ΔSout, an equation S(x) ⊕ S(x ⊕ ΔSin) = ΔSout has approximately one
solution with a probability of approximately 2−1. If we find a solution x, then
we will automatically obtain two paired values (x, x ⊕ΔSin) and (x ⊕ΔSin, x)
that satisfy the differential propagation through the S-box. In this example there
are four S-boxes between state #1 and state #2. Therefore, if we have 24 pairs
of Δ#1 and Δ#2, then one of these pairs can be expected to have a solution
for each of the four S-boxes. Hence we obtain 24 paired values that satisfy the
truncated differential path of the inbound phase.

Consequently, for a difference of state #3 in the above procedure, there are
28 ·2−4 = 24 differences in T that have approximately one solution for each of the
four S-boxes. So we obtain 24 · 24 = 28 paired values that satisfy the truncated
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differential path (starting points). In other words, we can obtain one starting
point with a complexity of 1 on average.

We also need to count the number of starting points obtained. The above
procedure can be iterated for all 28 differences of state #3 in Step 2. As a result,
we obtain 28 · 28 = 216 starting points at maximum.

2.4 Previous Rebound Attack on Feistel-SP Ciphers

Sasaki and Yasuda applied the rebound attack for Feistel (2-branch) ciphers
with single-SP round function in the known-key setting [15]. They successfully
mounted a distinguisher up to 11 rounds with most of practical parameters of
(N, c). Their results can be trivially extended to 4-branch type-2 GFN ciphers
with single-SP round function by simply running the same procedure for two
round functions in parallel. Sasaki et al. later improved the complexity [16].
However, the number of attacked rounds is still 11.

In this paper, we use the results in [16,15] to compare the effect of attacks
against 4-branch type-2 GFN ciphers with single-SP round function and with
double-SP round function. Given the result that the current best attack does
not reach 12 rounds for single-SP round functions, the first goal of this paper is
attacking 6 rounds for double-SP functions.

3 6R Attack on Type-2 GFN with Double-SP Functions

In this section, we present a rebound attack for six rounds of 4-branch type-2
GFN with double-SP functions (including 24 SP-layers). In all attacks in this
paper, we assume that the key value is fixed to a randomly determined value
without any control of the attacker. Note that the current best attack for single-
SP functions only works for 11 rounds (including 22 SP-layers). Although the
differential path used in this attack activates many S-boxes, the attacker can
control their behavior, and successfully distinguish 6 rounds. The result indicates
that activating more S-boxes does not immediately result in the stronger security
against differential cryptanalysis because the attacker may be able to control the
behavior of active S-boxes.

3.1 Overview

Hereafter, we fix a system of notations as follows:

Xj: The j-th byte of a word X , where 1 ≤ j ≤ r and the size of Xj is c bits,
0: A word where all bytes are non-active,
1: A word where only one byte of the predetermined (j-th) position is active,
F: A word where all bytes are active.

Our attacks, for a randomly determined key value, amount to finding a pair
of values whose input difference is of the form (1,F,1,F) and whose output
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difference is also (1,F,1,F). The point is that our attacks can find such a pair
more efficiently than one could for a random permutation.

Recall that in rebound attacks, an attacker needs to construct a differen-
tial path and divide it into inbound and outbound phases. Here the truncated
differential path that we use is

(1,F,1,F)
1stR−−−→ (0,1,0,1)

2ndR−−−→

(1,0,1,0)
3rdR−−−→ (1,1,1,1)

4thR−−−→ (0,1,0,1)

5thR−−−→ (1,0,1,0)
6thR−−−→ (1,F,1,F)

which is shown in Fig. 11 in Appendix.
In the 6R attack, we use a 2-round truncated differential path for the inbound

phase. The difference propagates from (1,0,1,0) to (0,1,0,1) through the two
rounds (3rdR – 4thR). Our attack can find a pair of values following the 2-round
truncated differential path with a complexity of 2c in time and 2c in memory.

The outbound phase consists of two rounds in backward direction (2ndR –
1stR) and two rounds in forward direction (5thR – 6thR), in total four rounds.
In both directions, the differences propagate to (1,F,1,F), i.e., only one byte is
active in the first and third words.

Given any paired values satisfying the truncated differential path of the in-
bound phase, the truncated differential path of the outbound phase is satisfied
with a probability of 1. Hence, we need only one starting point from the in-
bound phase. Finally, we can find the pair that satisfies the entire path with a
complexity of 2c in time and 2c in memory.

This means that our attack works effectively, because for a random permuta-
tion such a pair cannot be found with that complexity. Namely, let us consider the
complexity to find a pair of values that has the differential form of (1,F,1,F) for
both of the input and output states in a random permutation. Attackers have
an access to both encryption and decryption oracles. For such attackers, this
problem is regarded as finding a 22(n−c)-bit collision. Because enough freedom
degrees are available to mount the birthday attack, this requires a complexity
of 2n−c.

Two-Round Inbound Phase. In this phase, our goal is to find a pair of values

whose difference will propagate as (1,0,1,0)
3rdR−−−→ (1,1,1,1)

4thR−−−→ (0,1,0,1).
We use the differential path depicted in Fig. 4.

In this analysis, we only need to analyze one round function. Then, we can
copy the result to the other three round functions. We set differences of the
form 1 for the word just before the first P-layer and immediately after the
second P-layer, i.e., (#A and #A′) in Fig. 4. The analysis becomes almost the
same as the one explained in Fig. 3. We propagate these differences through
the linear operations with actual word values undetermined. We then search for
a matched set of differences at the S-box operation in the middle. To connect
the results of four round functions, we need to ensure that the difference before
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Fig. 4. Two-round inbound phase

the first S-layer is the same as the difference after the second P-layer. This is
satisfied probabilistically. Finally, we can find word values that follow the desired
differential path of the two-round inbound phase. More specifically, our attack
procedure is as follows:

0. Choose a byte-position j (1 ≤ j ≤ r) in a word to be activated in the
differential form of 1.

1. For all 2c possible differences in word #A, compute the corresponding full-
byte differences after applying the P-layer and store the results in a table T .

2. For each of the 2c possible differences in word #A′, compute the corre-
sponding full-byte difference after applying the inverse permutation. For the
middle S-layer, check whether or not we can match the full-byte difference
evolved from Δ#A′ with 2c differences stored in T . This can be done by
looking up the DDTs.

3. We expect to find such 22c−r matched sets of differences, and thus we find
22c−r · 2r = 22c paired values that satisfy the truncated differential path
between #A and #A′. We then choose one of 22c pairs and fix word values
in accordance with the chosen differences. Also, the word values colored by
red in Fig. 4 are all fixed.

4. We check that the difference before the first S-layer is the same as the one
after the second P-layer. Namely, check the following:

ΔS−1(#A) = Δ#A′. (2)

If Eq. (2) is not satisfied, we go back to Step 3, and choose another values
from 22c possibilities.

5. After obtain one solution for (2), we copy the solution to the other three
round functions. Namely, we fix the word values between #B and #B′, #C
and #C′, and #D and #D′ in Fig. 4 to the same as the one between #A
and #A′. Because the difference among different round functions is only the
subkey value, the input and output differences for each round function are
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Fig. 5. Backward outbound phase for six-round attack

identical, i.e., ΔS−1(#A) = ΔS−1(#B) = ΔS−1(#C) = ΔS−1(#D) and
Δ#A′ = Δ#B′ = Δ#C′ = Δ#D′. Because ΔS−1(#A) = Δ#A′ due to
Eq. (2), the difference of these 8 words are identical.

6. Now all word values are fixed with satisfying the desired differences for the
two-round inbound phase. Moreover, all differences of the form 1 for the
input and output of the inbound phase are identical.

Let us estimate the time and memory complexities necessary for each of the
above steps. We also verify that the success probability of the inbound phase is
sufficiently high.

– Step 1 requires 2c computations and 2c memory.
– In Step 2, with a complexity of 2c, we can check the match of 22c pairs at

maximum. Because each match succeeds with a probability of 2−r, we can
expect to find 22c−r matched pairs as long as 2c ≥ r. Note that the parameter
in Eq. (1) satisfies 2c ≥ r. Also note that the match can be identified with
the meet-in-the-middle manner, thus the complexity of this step is 2c rather
than 22c.

– Eq. (2) is satisfied with probability 2−c. Therefore, Step 3 and 4 require 2c

1-round computations and negligible memory.
– Step 5 requires one computation for each round function.
– The total complexity is 2c round-function computations for Steps 1, 2, and 4

which are much lower than 2c 6-round 4-branch GFN computations. The
amount of required memory is 2c words for Step 1.

Outbound Phase. The outbound phase for the first and last two rounds are
shown in Fig. 5 and 6.

We explain the last two rounds in details. As a result of the inbound phase, we
obtain the difference (0,1,0,1) as an input to the 5th round. This propagates as

(0,1,0,1)
5thR−−−→ (1,0,1,0)

6thR−−−→ (1,F,1,F) with a probability of 1. Hence, n−c
bits in the first and third output words do not have any difference. Moreover,
the active-word differences of these two words are identical.
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Fig. 6. Forward outbound phase for six-round attack

The same applies to the differential propagation in backward direction for
the first 2 rounds. The difference reaches (1,F,1,F) after the 2 rounds with a
probability of 1.

Attack Summary and Its Impact. The inbound phase finds a starting point
with a time complexity of 2c using 2c memory. Given any solution of the inbound
phase, the outbound phase, with a probability of 1, generates a pair of values
that has a differential form of (1,F,1,F) for both plaintext and ciphertext.

The above attack can be viewed as a valid known-key distinguisher for block
ciphers. Let us compare the above complexity with the generic birthday bound
(2n−c). Then, the condition which our attacks can work more effectively than
the generic attack is derived as 2c < 2n−c. This gives us a condition

c <
n

2
, (3)

which is usually satisfied by taking into account current designs of SP-ciphers.
The attack can be used to generate near-collisions on half of the state when

double-SP functions are instantiated in some compression function modes.
Matyas-Meyer-Oseas (MMO) and Miyaguchi-Preneel modes provide efficient
ways to construct a compression function from a block cipher. They are among
the 12 secure schemes [21] of PGV style [22]. Let E be a block cipher, and let EK

denote its encryption algorithm with a key K. The MMO compression function
outputs Hi by computing

Hi = EHi−1(Mi−1)⊕Mi−1

for a message block Mi−1 and a previous chaining value Hi−1. Similarly, the
Miyaguchi-Preneel mode computes Hi by

Hi = EHi−1(Mi−1)⊕Mi−1 ⊕Hi−1,

given Mi−1 and Hi−1. In both modes,the XOR of the plaintext and ciphertext
of the internal cipher is computed to generate the output. In our attack, the
differential form of the plaintext and ciphertext are (1,F,1,F), and more over,
the difference of 1 in the first and third words are identical between plaintext and
ciphertext. Therefore, these are canceled each other in the final output, which
results in a near-collision on a half of the state.
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4 7R Attack on Type-2 GFN with Double-SP Functions

For a deeper understanding of the double-SP functions, we extend the six-round
known-key distinguisher in the previous section by one more round.

4.1 Overview

In this distinguisher, the distinguished property is somehow artificial. The at-
tacker, for a randomly determined key value, aims to find a pair of values where
the XOR of the first (resp. third) word in the plaintext and the third (resp. first)
word in the ciphertext is limited to the 2c pre-specified patterns.

The truncated differential path that we use for seven rounds is as follows;

(Y,F,X,F)
1stR−−−→ (0,Y,0,X)

2ndR−−−→ (X,0,Y,0)
3rdR−−−→

(F,X,F,Y)
4thR−−−→

(
Y⊕P (1),F,X⊕P (1),F

) 5thR−−−→
(
0,Y⊕P (1),0,X⊕P (1)

)
6thR−−−→

(
X⊕ P (1),0,Y ⊕ P (1),0

) 7thR−−−→
(
X⊕ P (1),F,Y ⊕ P (1),F

)
.

Note that X and Y are full-active differences determined in the middle of the
attack, and P (1) is a difference where 1 is processed through the P-layer. The
entire differential path is shown in Fig. 12 in Appendix.

In the 7R attack, the inbound phase covers three middle rounds and the
outbound phases covers the first and last two rounds, in total four rounds. Our
attack can find a pair of values following the three-round inbound phase with a
complexity of 23c−r in time and 2c in memory. The outbound phase is satisfied
with a probability of 1. Finally, we can find the pair that satisfies the entire
path with a complexity of 23c−r in time and 2c in memory. Note that, if the
above path is satisfied, XOR of the first (resp. third) word in the plaintext and
the third (resp. first) word in the ciphertext is form P (1) irrespective of the
difference X and Y, which only takes 2c pre-specified patterns.

Similarly to the six-round attack, finding such a pair for a random permutation
requires 2n−c queries. With the parameter in Eq. (1), 23c−r is 23·8−4 = 220 and
2n−c is 232−8 = 224. Hence, our attack is a valid distinguisher.

Three-Round Inbound Phase. The differential path of the three-round in-
bound phase is

(X,0,Y,0)
3rdR−−−→ (F,X,F,Y)

4thR−−−→
(
Y ⊕ P (1),F,X⊕ P (1),F

)
5thR−−−→

(
0,Y ⊕ P (1),0,X⊕ P (1)

)
which is depicted in Fig. 7. We start with the difference of the form 1 in words
#A and #A′ in Fig. 7, and then try to find matched sets of differences at the
S-boxes in the right-hand side of the 5th round. This computation is colored by
red in Fig. 7. Note that the difference in word #A′′ is always the same as the
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Fig. 7. 3-round inbound phase

one in #A, which is the form 1. We then do the same in words #B and #B′. So
far, paired values for red and blue bold lines in Fig. 7 are fixed and difference for
dotted lines are fixed. We then search for paired values between #C and #C′

(green) and #D and #D′ (yellow). This part can be analyzed in bytewise, and
thus efficient. Finally, we check the match of differences between #A and #C,
#B and #D, #A′′ and #C′, and #B′′ and #D′. These matches are satisfied
probabilistically. The detailed attack procedure is as follows:

0. Choose a byte-position j (1 ≤ j ≤ r) in a word to be activated in the
differential form of 1.

1. Randomly choose differences of the active byte in words #A and #A′. Then,
check if the solution exists for the sets of differences at the S-boxes in the
right-hand side of the 5th round. Repeat this procedure until a solution is
obtained. After solutions are obtained, choose one of them and fix words
depicted by bold red lines in Fig. 7 to the solution. Note that differences of
red dotted lines in Fig. 7 are also fixed though values are not determined
yet.

2. Do the same as step 1 for words #B and #B′. After this step, values and
differences for blue bold lines, and differences for blue dotted lines in Fig. 7
are fixed.

3. Randomly choose differences of the active byte in words #C and #C′. The
detailed analysis is shown in Fig. 8. Propagate these differences to the words
#C1 and #C2 described in Fig. 8.
(a) For each byte in #C1, try all possible 2c values and process the compu-

tation until #C2. Check if the corresponding difference at #C2 matches
the one propagated from #C′. Store all solutions for each byte.

(b) For each combination of the solutions for each byte, compute the paired
value until the words #C and #C′. Then, check if both of ΔS(#C) =
Δ#A and ΔS(#C′) = Δ#A′′.
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P-1 S-1 S P

#C #C’#C1 #C2

Bytewise analysis

fixed

K4, K9

Fig. 8. Bytewise analysis between #C and #C′

4. Repeat Steps 3 to 3b until two matches are satisfied by changing differences
of the active byte in words #C and #C′.

5. Do the same as Steps 3 to 4 for the words #D and #D′. After this step, all
words are fixed and we obtain the solution for the 3-round inbound phase.

Let us evaluate the time and memory complexities necessary for the above pro-
cedure:

– Step 1 requires at most 2c computations and 2c memory. As explained in
Sect. 3, we can expect to find matched pairs as long as 2c ≥ r,

– The solution of Step 1 can be copied in order to satisfy Step 2. Hence, the
complexity for Step 2 is negligible.

– For each fixed difference of Step 3, Step 3a requires 2c computations and pro-
duces 2r solutions. Then, Step 3b requires 2r computations. The probability
of the match with 2r trials in Step 3b is 2−2c+r.

– Step 3 is repeated 22c−r times, and each iteration requires 2c +2r computa-
tions. Thus, the complexity is 22c−r(2c + 2r).

– Step 5 is the same as Steps 3 to 4, which is 22c−r(2c + 2r) computations.

To sum up, we can find a starting point for the 3-round inbound phase with a
complexity of 22c−r(2c + 2r) ≈ 23c−r computations and at most 2c memory.

With the parameter in Eq. (1), 22 computations and 22 memory are enough to
find the match over 4 S-boxes in Step 1. The bottle-neck of the complexity is for
Steps 3 to 4 and Step 5, which is 216−4 ·(28+24) ≈ 220 half-round computations.

Outbound Phase. The outbound phase is a deterministic differential propa-
gation, which is shown in Fig. 9 and 10. Because it is straight-forward, we omit
the explanation. After the outbound phase, the plaintext difference becomes
(Y,F,X,F) and the ciphertext difference becomes

(
X⊕P (1),F,Y⊕P (1),F

)
,

where X and Y are full-active differences determined in the middle of the in-
bound phase.

Attack Summary and Its Impact. The inbound phase finds a starting point
with a time complexity of 22c−r(2c + 2r) using 2c memory. Given any solution
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Fig. 9. Backward outbound phase for seven-round attack

Fig. 10. Forward outbound phase for seven-round attack

of the inbound phase, the outbound phase, with a probability of 1, generates a
pair of values whose plaintext difference is the form of (Y,F,X,F) and cipher-
text difference is the form of

(
X⊕ P (1),F,Y ⊕ P (1),F

)
. Therefore, with that

complexity, we can find a pair of values where the XOR of the first (resp. third)
word in the plaintext and the third (resp. first) word in the ciphertext is form
P (1), which only takes 2c pre-specified patterns.

Similarly to the six-round attack, finding such a pair for a random permutation
requires 2n−c queries. With the parameter in Eq. (1), 23c−r is 23·8−4 = 220 and
2n−c is 232−8 = 224. Hence, our attack is a valid distinguisher.

5 Conclusion

In this paper, we have presented the first cryptanalytic results for 4-branch
type-2 GFN with double-SP functions. Our attack generates near-collision up to
6 rounds and forms a valid distinguisher up to 7 rounds of compression functions
consisting of double-SP functions. Compared to the current best attack (up to
11 rounds) for single-SP functions, our attack works for more SP-layers. The
attack exploits the fact that the attacker can control the behavior of several
active S-boxes, and can mount efficient attacks for a small number of rounds.
This gives a different view of the security of single-SP and double-SP functions
compared to the previous analysis by Bogdanov and Shibutani [1] discussing the
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security when the number of rounds approaches to infinity. We hope that the
analysis presented in this paper leads to the deeper understanding of double-
SP functions and future primitive designs will consider the impact of controlled
active S-boxes as well as the number of total active S-boxes.

One of the future possible research directions is extending the number of
attacked rounds. Although the complexity of our attack is very small, it seems
hard to extend the attack by a few more rounds due to the limited available
freedom degrees. Investigating the chosen-key scenario could solve the problem.

Another possible direction is implementing the attack to see the actual impact
to ciphers. However, there does not exist any concrete example of Feistel double-
SP functions even for 2-branch and generalized Feistel network. Hence, the best
way seems to borrow the parameters (N,n, c, r) and the MDS matrix from those
designs and to construct the imaginary designs in order to see the actual behavior
of the attacks.

Acknowledgments. The author would like to thank the anonymous reviewers
for many helpful comments.
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A Entire Differential Characteristics
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Fig. 11. Entire differential characteristic for six-round attack
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Abstract. Impossible differential cryptanalysis is a powerful technique
to recover the secret key of block ciphers by exploiting the fact that in
block ciphers specific input and output differences are not compatible.
This paper introduces a novel tool to search truncated impossible differ-
entials for word-oriented block ciphers with bijective Sboxes. Our tool
generalizes the earlier U-method and the UID-method. It allows to re-
duce the gap between the best impossible differentials found by these
methods and the best known differentials found by ad hoc methods that
rely on cryptanalytic insights. The time and space complexities of our
tool in judging an r-round truncated impossible differential are about
O(c · l4 · r4) and O(c′ · l2 · r2) respectively, where l is the number of words
in the plaintext and c, c′ are constants depending on the machine and the
block cipher. In order to demonstrate the strength of our tool, we show
that it does not only allow to automatically rediscover the longest trun-
cated impossible differentials of many word-oriented block ciphers, but
also finds new results. It independently rediscovers all 72 known trun-
cated impossible differentials on 9-round CLEFIA. In addition, it finds
new truncated impossible differentials for AES, ARIA, Camellia with-
out FL and FL−1 layers, E2, LBlock, MIBS and Piccolo. Although our
tool does not improve the lengths of impossible differentials for existing
block ciphers, it helps to close the gap between the best known results
of previous tools and those of manual cryptanalysis.

Keywords: word-oriented block ciphers, truncated impossible differen-
tials, difference propagation system, U-method, UID-method.

1 Introduction

Impossible differential cryptanalysis is one of the most popular cryptanalytic
tools for block ciphers. It was firstly proposed by Knudsen to analyze DEAL
[13] in 1998 and then extended by Biham et al. to attack IDEA [5] and Skip-
jack [4]. Unlike traditional differential cryptanalysis [7], which uses differential
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characteristics with high probabilities to recover the right key, impossible differ-
ential cryptanalysis is a sieving method which exploits differentials with prob-
ability zero to retrieve the right key by filtering out all wrong keys. Until now,
impossible differential cryptanalysis has shown its superiority over differential
cryptanalysis in many block ciphers such as IDEA, Skipjack, CLEFIA [22] and
AES [8].

Impossible differential cryptanalysis mainly consists of two steps. Firstly, an
attacker tries to find impossible differentials, that is, differentials that never oc-
cur. Then, after gaining a list of plaintext-ciphertext pairs, the attacker guesses
some subkey material involved in the outer rounds of the impossible differentials,
and then partially encrypts/decrypts each plaintext-ciphertext pair to check
whether the corresponding internal differences are identical to the input and
output differences of the impossible differentials. Once that happens, the guessed
subkey will be discarded. The right key will be recovered if we discard all wrong
keys.

Several factors influence the success of impossible differential cryptanalysis,
including the length of impossible differentials, specific input/output difference
patterns and the strength of one-round encryption/decryption. Among them,
the most important factor is the length of an impossible differential. The longer
the impossible differential is, the better the attack will be. Another important
factor is the input/output difference pattern when two impossible differentials
have the same length, because the new impossible differentials may well result
in improved attacks [26,16,9]. If we find more impossible differentials, we can
perform a successful attack or improve the time/data complexities of known
attacks with higher possibilities.

In Indocrypt 2003, Kim et al. [12] proposed the U-method to find impossi-
ble differentials for various block cipher structures with bijective round func-
tions. The U-method is based on the miss-in-the-middle approach (see 1-(a) of
Fig. 1): it first constructs two differentials with probability one from the encryp-
tion and decryption direction and subsequently demonstrates some contradic-
tions by combining them. In the U-method, the propagation of differences in a
block cipher (structure) is translated into simple matrix operations, and some
inconsistent conditions are used to detect impossible differentials. Luo et al. [17]
developed the idea of the U-method and proposed a more general method —
the UID-method. The UID-method removed some limitations in the U-method
and harnesses more inconsistent conditions to evaluate impossible differentials.
So far, the U-method and the UID-method have been employed as tool by some
block cipher designers to evaluate the security of their designs against impossible
differential cryptanalysis, for instance, LBlock [25] and Piccolo [21].

However, the U-method and the UID-method only focus on finding impossible
differentials with the miss-in-the-middle approach, which limits their power. An
example is illustrated in 1-(b) of Fig. 1. In this case, we cannot detect a contra-
diction in the match point of the two probability-one differentials, but instead
recover some useful information, which will feed back to the internal rounds to
produce a contradiction. The U-method and the UID-method fail to detect this
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Fig. 1. Basic idea of the miss-in-the-middle approach (1-(a)) and impossible differen-
tials with information feedback (1-(b))

kind of impossible differentials because they do not fully use the information in
the match point.

Indeed, the longest impossible differentials of many block ciphers known so
far are not found by the U-method and the UID-method, but constructed by ad
hoc approaches and the experience of cryptanalysts, such as 8-round MIBS [3], 6-
round E2 [24], 8-round Camellia without the FL and FL−1 layers [26,24] and all
72 9-round impossible differentials of CLEFIA listed in [23]. Almost all impossible
differentials of these block ciphers fall under the model of 1-(b) of Fig. 1, which
implies that they are beyond the abilities of the U-method and the UID-method.
Of course, ad hoc approaches also have some disadvantages. For example, it is
very computationally intensive to find even one impossible differential, and the
success of finding an impossible differential is highly dependent to the experience
of a cryptanalyst. Thus, they are not efficient and systematic in practice. Espe-
cially in designing a block cipher, one has to modify his/her design and frequently
re-evaluate its security against impossible differential cryptanalysis.

Our Contributions. In this work, we propose a new tool for automatically
finding impossible differentials of word-oriented block ciphers with bijective S-
boxes. The goals of our tool are to reduce the gap between previous automatic
tools (i.e., the U-method and the UID-method) and ad hoc approaches, and to
provide an automated method to find impossible differentials with a reduced
complexity. The development of attack algorithms to exploit these impossible
differentials is outside the scope of this paper; we leave it for further work.

Unlike the miss-in-the-middle approach, which splits a block cipher into two
parts factitiously, we treat it as an entirety. The inputs of our tool are some
constraints of the plaintext difference and the ciphertext difference, and a sys-
tem of equations that describes the propagation behavior when differences pass
through the inner primitives of a block cipher. Then, our tool predicts informa-
tion about unknown variables from the known ones iteratively, with probability
one in each step. Finally, it outputs a flag indicating whether a truncated dif-
ferential is impossible under several filtering conditions. The time and space
complexities of our tool in judging an r-round truncated impossible differential
are about O(c · l4 · r4) and O(c′ · l2 · r2) respectively, where l is the number of
words in the plaintext and c, c′ are constants depending on the machine and the
block cipher.
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Although our tool does not improve the lengths of impossible differentials for
existing block ciphers, it helps in reducing the gap between previous automatic
tools and ad hoc approaches. Experimental results also indicate that our tool is
efficient and systematic. It not only rediscovers the longest truncated impossible
differentials of many word-oriented block ciphers known so far, but also finds
new results. It independently rediscovers all 72 known truncated impossible dif-
ferentials on 9-round CLEFIA [23]. In addition, besides the best results known
so far, our tool finds new truncated impossible differentials for many other word-
oriented block ciphers, such as AES, Camellia [1] without FL and FL−1 layers,
MIBS [10], LBlock [25], ARIA [14], E2 [11] and Piccolo [21]. The number of new
truncated impossible differentials obtained by our tool is summarized in Table 1.

Table 1. Summary of new truncated impossible differentials (ID) obtained by our tool.
Camellia* is a variant of Camellia without FL and FL−1 layers.

Block Cipher Word unit Previous results In this paper
Round No. of IDs Round No. of IDs New IDs

AES byte 4 ([6,19,20,2,18]) 269,554 4 3,608,100 3,338,546
ARIA byte 4 ([26,16,9,15]) 156 4 94,416 94,260

Camellia* byte 8 ([26,24]) 3 8 4 1
E2 byte 6 ([24]) 1 6 56 55

MIBS nibble 8 ([3]) 2 8 8 6
LBlock nibble 14 ([25]) 64 14 80 16
Piccolo nibble 7 ([21]) 1 7 450 449

An interesting observation is that the U-method and the UID-method are
specific cases of our tool, and our tool is more powerful than them. A new
impossible differential of 8-round MIBS obtained by our tool is given to indicate
that our tool can find longer impossible differentials than the U-method and the
UID-method. Thus, we expect that our tool is useful in evaluating the security of
block ciphers against impossible differential cryptanalysis, especially when one
tries to design a word-oriented block cipher with bijective Sboxes.

Outline of This Paper. In Sect. 2, we discuss how to build difference propa-
gation systems, which describe the propagation behavior when differences pass
through the inner primitives of block ciphers. In Sect. 3, we discuss our idea to
find new impossible differentials. Then, a tool for automatically searching trun-
cated impossible differentials is proposed in Sect. 4. Experimental results are
also provided in this section. Finally, we compare our tool with the U-method
and the UID-method in Sect. 5 and conclude this paper in Sect. 6.

2 Difference Propagation System

Throughout this paper, we consider the exclusive-or difference, and we assume
that: (1) E is an r-round word-oriented block cipher with block length l · s bits
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(where s is the bit length of a word), that is, the plaintext and the ciphertext
of E are vectors in Fl

2s , and all inner operations of E consist only of calculations
over F2s ; (2) bijective Sboxes over F2s are the only nonlinear primitives of E ; (3)
all subkeys are exclusive-ored to the internal state. Thus, we do not consider the
subkey addition operation since it does not influence the propagation of differ-
ences. Although some block ciphers do not satisfy all the above conditions, e.g.,
IDEA, we believe that similar ideas can also be applied, with some modifications.

In this section, we discuss how to build a system of equations that describes
the propagation behavior when differences pass through the inner primitives of
a word-oriented block cipher. This system will be called difference propagation
system in the subsequent discussions.

2.1 Difference Propagation of Basic Primitives

Before studying block ciphers, we first investigate the difference propagation of
four basic primitives which are often employed as parts of a word-oriented block
cipher, namely the branching operation, the XOR-operation, the bijective Sbox
layer and the linear permutation layer. These primitives are illustrated in 1-(a),
1-(b) and 1-(c) of Fig. 2.

SupposeΔX = (Δxi)1≤i≤n,ΔY = (Δyi)1≤i≤n andΔZ = (Δzi)1≤i≤n are row
vectors in Fn

2s , the difference propagation of basic primitives can be described as
follows.

Lemma 1. (The branching operation.) For a branching operation (see 1-(a) of
Fig. 2), we have ΔX = ΔY = ΔZ. This equation can be written as 2n linear
equations Δxi ⊕Δyi = 0 and Δxi ⊕Δzi = 0.

Lemma 2. (The XOR-operation.) For an XOR-operation (see 1-(b) of Fig. 2),
we have ΔX ⊕ ΔY = ΔZ. This equation can be written as n linear equations
Δxi ⊕Δyi ⊕Δzi = 0.

Lemma 3. (The linear permutation layer.) A linear permutation (see 1-(c) of
Fig. 2) has matrix representation P = (pi,j)1≤i,j≤n over F2s , that is, ΔY T =
P · ΔXT , where ΔXT is the transposed vector of ΔX. This equation can be
written as n linear equations Δyi ⊕

�n
j=1 pi,j ·Δxj = 0.

Lemma 4. (The Sbox layer.) For an Sbox layer consisting of n bijective Sboxes
Si : F2s → F2s (see 1-(c) of Fig. 2), we build n formal equations Si(Δxi, Δyi) =
0.

Remark 1. Notice that Si(·, ·) is inherently a nonlinear map if we try to write its
concrete expression, since Si is a nonlinear bijective Sbox. Each pair (Δxi, Δyi)
with Pr(Δxi → Δyi) �= 0 in the Difference Distributed Table [7] of Si is a
solution of Si(Δxi, Δyi) = 0, which means that an input difference Δxi may
propagate to the output difference Δyi. However, in Lemma 4, we build a formal
equation for an Sbox without considering its concrete expression because the only
property used in our tool is that it is bijective.
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Fig. 2. Basic primitives of a block cipher: the branching operation (1-(a)), the XOR-
operation (1-(b)) and the bijective Sbox/linear permutation layer (1-(c)), and the two
most important classes of block ciphers: SPN ciphers (2-(a)) and Feistel ciphers with
SPN round function (2-(b))

2.2 Build Difference Propagation Systems

The two most important classes of block ciphers are SPN ciphers and Feistel
ciphers with SPN round functions (see 2-(a) and 2-(b) of Fig. 2). In this section,
we choose them as examples to display how to build difference propagation
systems.

SPN Cipher. One round of an SPN cipher typically has three layers (see 2-(a)
of Fig. 2): the SubkeyAddition layer, the Sbox layer and the linear permuta-
tion layer. As mentioned above, we omit the SubkeyAddition layer since it does
not influence the propagation of differences. Additionally, we can omit the last
linear permutation layer since it does not influence the length of an impossible
differential.

We denote by ΔXi = (ΔXi,j)1≤j≤l and ΔYi = (ΔYi,j)1≤j≤l the differences
before and after the Sbox layer of round i, respectively. Then, for an r-round
SPN cipher, we build a difference propagation system as follows:�

Sj(ΔXi,j , ΔYi,j) = 0 for 1 ≤ i ≤ r and 1 ≤ j ≤ l ,
ΔXT

i+1 ⊕ P ·ΔY T
i = 0 for 1 ≤ i ≤ r − 1 ,

(1)

where P is the matrix of linear permutation layer. This system contains 2 · l · r
unknown variables, l · r formal (and nonlinear) equations from Sbox layers and
l · (r− 1) linear equations (using Lemma 3). ΔX1 is the plaintext difference and
ΔYr is the ciphertext difference.

Feistel Cipher with SPN Round Functions. For an r-round Feistel ci-
pher (see 2-(b) of Fig. 2), we denote by ΔXi−1 = (ΔXi−1,j)1≤j≤ l

2
and ΔXi =

(ΔXi,j)1≤j≤ l
2
the differences of the right branch and the left branch of round
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i, respectively. Note that we assume that l is even. Thus, (ΔX1, ΔX0) is the
plaintext difference and (ΔXr+1, ΔXr) is the ciphertext difference.

The SPN round function typically has three layers: the SubkeyAddition layer,
the Sbox layer and the linear permutation layer.We introduceΔYi = (ΔYi,j)1≤j≤ l

2

to denote the difference after the Sbox layer of round i and ΔZi = (ΔZi,j)1≤j≤ l
2

to represent the output difference of F function in round i. Then, we build a
difference propagation system as follows:��� Sj(ΔXi,j , ΔYi,j) = 0 for 1 ≤ i ≤ r and 1 ≤ j ≤ l

2 ,
ΔZT

i ⊕ P ·ΔY T
i = 0 for 1 ≤ i ≤ r ,

ΔXi−1 ⊕ΔXi+1 ⊕ΔZi = 0 for 1 ≤ i ≤ r ,
(2)

where P is the matrix of the linear permutation layer in F . This system contains
l
2 · (3r + 2) unknown variables, l

2 · r formal (and nonlinear) equations and l · r
linear equations (using Lemma 2 and Lemma 3).

Other Block Ciphers. From Lemma 1 to Lemma 4, we know that a basic
primitive costs 3l variables and provides 2l equations at most. Thus, for one
round block cipher consisting of m basic primitives, we can build a difference
propagation system with 3l ·m variables and 2l ·m equations in the worst case.
In general, m is a small constant. For example, m is 2 in SPN ciphers (see 2-(a)
of Fig. 2) and m is 4 in Feistel ciphers with SPN round functions (see 2-(b) of
Fig. 2). Hence, for an r-round block cipher, we can build a difference propagation
system with O(c1 · r · l) variables and O(c2 · r · l) equations, where c1 and c2 are
constants depending on specific block ciphers.

3 Finding Impossible Differentials

In this section, we first introduce the basic idea of finding impossible differentials.
Then, we discuss how to predict information from a given difference propagation
system and how to detect contradictions. Finally, we briefly review the U-method
and the UID-method.

3.1 Basic Idea

The idea of finding impossible differentials in this paper is simple: given some
information of the plaintext difference and the ciphertext difference, we may
predict the information of new variables according to the difference propagation
system, yielding a new set of “known” variables. Then, new information may
again be predicted from these “known” variables. This process will continue until
we find a contradiction or we can no longer obtain any new information. Notice
that every prediction we made is deterministic (i.e., with probability one), which
implies that the system does not have any solution if a contradiction is found.
In other words, we obtain an impossible differential if a contradiction is detected
in the process of predicting information, under given plaintext difference and
ciphertext difference.
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3.2 Predict Information and Detect Contradictions

We can divide a difference propagation system into two subsystems — L and
NL. L includes all linear equations while NL contains all formal (and nonlinear)
equations from bijective Sboxes. Then, the information can be obtained with
probability one in the following two ways:

(i) Predict information from the linear system L. If system L has solutions,
then they can be solved by the Gauss-Jordan Elimination algorithm, which gets
solutions by firstly reducing the augmented matrix of L to row echelon form using
elementary row operations and then back-substituting until the entire solution is
found. The reduced augmented matrix after the back-substituting step represents
a linear system that is equivalent to the original. Then, we have the following
lemma.

Lemma 5. Suppose L has solutions and the reduced augmented matrix of L is
obtained, then

1) If an affine equation with only one variable, that is, ΔX ⊕ c = 0 (c is a
constant), is found in the reduced system of L, we have ΔX = 0 if c = 0
and ΔX �= 0 if c �= 0.

2) If a linear equation with two variables, that is, ΔX ⊕ΔY = 0, is found in
the reduced system of L, we have ΔX �= 0 if and only if ΔY �= 0.

(ii) Predict information from the nonlinear system NL. We have

Lemma 6. Suppose S is a bijective Sbox, ΔX is the input difference and ΔY
is the output difference. Then, ΔX is zero (respectively, nonzero) if and only if
ΔY is zero (respectively, nonzero).

According to the basic idea of finding impossible differentials, the strategy of
predicting information is clear now: predict information from system L and NL
alternately until a contradiction is found or we can no longer obtain any new
information. An impossible differential is detected by the following proposition:

Proposition 1. We denote by ΔP and ΔC the plaintext difference and the
ciphertext difference, respectively. Then, ΔP → ΔC is impossible if one of the
following two situations happens:

– I. The linear system L does not have any solution. That is, the rank of its
coefficient matrix is not equal to the rank of its augmented matrix.

– II. There exists a variable with both zero and nonzero values.

A tiny example of the second case is given below.

Example 1. Suppose the equations ΔY ⊕ ΔZ = 0 and S(ΔX,ΔY ) = 0 are
included in a difference propagation system, and we know that ΔX = 0 and
ΔZ �= 0 from the previous information. Then, in the next prediction, we know
that ΔY �= 0 from Lemma 5 while ΔY = 0 from Lemma 6, which is a contra-
diction.
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3.3 Related Work — The U-Method and the UID-Method

In this section, we briefly review the U-method and the UID-method. The spec-
ification of these tools can be found in [12] and [17].

Both the U-method and the UID-method mainly have three steps in find-
ing an impossible differential. First, both tools construct a characteristic matrix
which describes the propagation of differences in one round encryption/decryp-
tion. For example, for one round of Feistel structure (see 2-(b) of Fig. 2), we
have ΔXi+1 = F (ΔXi) ⊕ΔXi−1 and ΔXi = ΔXi, that is, (ΔXi+1, ΔXi)

T =

E · (ΔXi, ΔXi−1)
T , where E =

�
F 1
1 0

�
is the characteristic matrix of one round

encryption. The characteristic matrix D of one round decryption can be defined
similarly. Secondly, the U-method and the UID-method defined some operations
to calculate the multiplications between a characteristic matrix and a vector,
because the output difference after r1-round encryptions (resp., r2-round de-
cryptions) can be described as ΔU = Er1 · ΔPT (resp., ΔV = Dr2 ·ΔCT ). Fi-
nally, suppose ΔU = (Δuj)1≤j≤l and ΔV = (Δvj)1≤j≤l are two vectors which
should be combined in the miss-in-the-middle approach, the following filtering
conditions are used to detect contradictions.

Definition 1. (Definition 1 of [17]) Vectors ΔU and ΔV are inconsistent if
there exists a subset I ⊆ {1, 2, . . . , l} such that ⊕i∈I(Δui⊕Δvi) �= 0, where Δui
(respectively, Δvi and f = ⊕i∈I(Δui ⊕ Δvi)) is a linear XOR combination of
the four types of differences: zero difference, nonzero fixed difference, nonzero
unspecified difference and unknown difference. Especially, the U-method always
considers subsets that have exactly one index.

There are two main differences between the U-method and the UID-method.
First, the UID-method relaxes the 1-Property (i.e., the number of 1 entries in
each column of the characteristic matrix is zero or one) required in the U-method.
Secondly, the UID-method exploits a more general filtering condition to detect
contradictions than the U-method, which has shown in Definition 1. Thus, the
UID-method is more general than the U-method.

4 Algorithm to Find Truncated Impossible Differentials

In this section, we first sketch our algorithm in finding impossible differentials.
Then, we discuss some details of our algorithm. Finally, experimental results and
some discussions of our tool are introduced.

4.1 Sketch of Our Algorithm

After building a difference propagation system as (1) or (2), we first implement
it in a computer. Then, we choose a set of promising (ΔP,ΔC) pairs. Finally, for
each of these pairs, our algorithm judges whether it is an impossible differential
automatically, that is, our algorithm predicts information from the linear system
L and the nonlinear system NL alternately until a contradiction is found or



292 S. Wu and M. Wang

we can no longer obtain any new information. The outline of our algorithm is
shown in Algorithm 1. flag indicates whether ΔP → ΔC is impossible, and
index controls the termination of predicting information.

1 Implement the difference propagation system, i.e., L and NL, on a computer;
2 for every pair of (ΔP,ΔC) we choose do
3 flag:=false; index:=true;
4 while index do
5 if System L does not have any solution then
6 flag:=true; index:=false;

else
7 Predict information from the reduced augmented matrix of L;
8 Predict information from the nonlinear system NL;
9 if do not find new information then

10 index:=false;

else
11 if find a variable with both zero and nonzero values then
12 flag:=true; index:=false;

13 return flag;

Algorithm 1: The outline of our algorithm

In the subsequent sections, we will discuss some details of Algorithm 1, in-
cluding how we implement a difference propagation system on a computer, the
choices of the plaintext difference and the ciphertext difference, and a specific
algorithm for automatically judging a truncated impossible differential. Λ0 and
Λ1 are sets for storing variables with zero difference and nonzero differences in
a difference propagation system.

4.2 Implementation of a Difference Propagation System

Since a difference propagation system is divided into two parts — systems L and
NL in our tool, we discuss how to implement them on a computer, respectively.

Implement System L with a Matrix. System L can be written formally as
A · x = b, where A, b and B = [A|b] are called the coefficient matrix, constant
matrix and augmented matrix of this system respectively, x is the set of all
variables (in order) involved in the whole difference propagation system.

In the following example, we show that matrix A can be easily constructed if
we choose a proper order of variables.

Example 2. We consider Feistel ciphers with SPN round functions, that is, we
need to generate the coefficient matrix of linear equations in (2). Firstly, we may
simplify the second and third equations of (2) as

I1 ·ΔXT
i−1 ⊕ I2 ·ΔXT

i+1 ⊕ P ·ΔY T
i = 0 for 1 ≤ i ≤ r , (3)
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where I1 = I2 = I and I is the identity matrix. Notice that variables ΔZis are
eliminated in the simplified system. For a further step, the coefficient matrices
of ΔXT

i−1 and ΔXT
i+1 may be substituted by other matrices according to the

specification of the block ciphers.
Next, we fix the order of all variables, i.e., x, in the simplified system as

[ΔX0, ΔX1, ΔX2, ΔX3, . . . , ΔXr−1, ΔXr, ΔXr+1, ΔY1, ΔY2, . . . , ΔYr] . (4)

Finally, (3) can be represented as A · xT = 0, where

A =

�
I1 0 I2 0 · · · 0 0 0 P 0 · · · 0
0 I1 0 I2 · · · 0 0 0 0 P · · · 0
...

...
...

...
. . .

...
...
...

...
...
. . .

...
0 0 0 0 · · · I1 0 I2 0 0 · · · P

	

is a block matrix with r rows and 2r+2 columns. Now, A is a highly structured
matrix. We can easily generate it in a computer if we obtain the coefficient
matrices of ΔXi−1, ΔXi+1 and ΔYi in (3).

For iterative block ciphers with other structures, similar techniques can be
used to construct highly structured coefficient matrices.

A technical detail in solving a linear system is to dispose a zero variable. In
our tool, we keep the variable in the system while setting its coefficient matrix
(i.e, a column of A) to a zero vector. This method keeps the solutions of the
other variables unchanged and needs an additional space to store the value of
this variable. Variables with zero value will be stored in set Λ0. Notice that for
this method, B is a matrix with a fixed number of columns.

Implement System NL with a Table. Once the order of variables in x is
given, the i-th variable in x corresponds to the i-th column of A (and B). Then,
we can store equations of system NL with a simple table using the column
indexes of B. First, we initialize an empty table T , then for each equation in NL,
we add an element {v1, v2} to T , where v1, v2 are two integers (i.e., the column
indexes of B) indicating the two variables involved in the formal equation of an
Sbox. For example, if the order of variables in a Feistel cipher is fixed as that
in (4), then table T for formal equations in (2) is

T = [{ l
2
+
l

2
· (i− 1) + j,

l

2
· (r + 2) +

l

2
· (i− 1) + j} : 1 ≤ i ≤ r, 1 ≤ j ≤ l

2
] .

4.3 The Choices of the Plaintext Difference and the Ciphertext
Difference

According to the property of word-oriented block ciphers, a natural way is to
consider truncated differences. That is, for each word of ΔP = (ΔPi)1≤i≤l and
ΔC = (ΔCi)1≤i≤l, we assign an indicator to indicate the choice of its difference,
representing by 0 a word without difference and by 1 a word with a difference.
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In such representation, the indicator vectors of ΔP and ΔC are row vectors in
Fl
2, and the number of all possible combinations ofΔP andΔC is (2l−1)·(2l−1).
Notice that the value of ΔPi (or ΔCi) is zero if its indicator is 0, which

implies that, in a difference propagation system, the variable ΔPi (or ΔCi) can
be evaluated as zero. However, if the indicator of ΔPi (or ΔCi) is 1, we cannot
evaluate any specific value for ΔPi (or ΔCi). In this case, we just leave ΔPi

(or ΔCi) as an undetermined variable in a difference propagation system while
storing its indicator information. In our tool, we will add the variable ΔPi (or
ΔCi) to set Λ1.

4.4 Algorithm for Judging a Truncated Impossible Differential

Let p = [p1, p2, . . . , pl] (respectively, c = [c1, c2, . . . , cl]) be a vector, indicating
the variable positions of ΔP (respectively, ΔC) in x. Fox example, p = [ l2 +

1, l
2 + 2, . . . , l, 1, 2, . . . , l

2 ] if the order of variables in an r-round Feistel cipher is
fixed as given in (4), since [ΔX1, ΔX0] is the plaintext difference. MulCol(B,i,j)
is a function that multiplies the j-th column of matrix B with element i, and
ColSubMatrix(B, i, j) is the submatrix of B with columns from i to j.

Our algorithm takes the matrix B, table T , vector p, vector c, indicator vec-
tors of ΔP and ΔC as inputs, and then predicts information as described in
Algorithm 1 (i.e., from step 3 to step 12) automatically. Finally, it outputs a
flag indicating whether ΔP → ΔC is impossible, under the filter conditions
listed in Proposition 1. The specific description of our algorithm is shown in
Algorithm 2, and some sketches are listed as follows.

– In step 1, we introduce a new matrix B′ to protect the matrix B against
revision, because B can be re-used for different indicator vectors of ΔP and
ΔC (we also discuss it below in the remarks of Algorithm 2).

– From step 2 to step 6, our tool scans the indicator vectors of ΔP and ΔC,
and stores their information in Λ0 or Λ1. As mentioned in Sect. 4.2, if the
value of a variable is zero, then the corresponding column of B′ will be set
to a zero vector.

– From step 7 to step 17, our tool predicts information from system L and NL
alternately. This process is terminated if index is false, which implies that
a contradiction is found by using Proposition 1 or we can no longer obtain
any new information. Especially,

• in step 10 and step 11, our tool detects whether there is a type I contra-
diction of Proposition 1;

• in step 12, it preforms Gauss-Jordan Elimination algorithm to obtain
the reduced augmented matrix of the system L;

• in step 13, it predicts information from the reduced augmented matrix
of the system L and the system NL by calling the subprogram Pre-
dict Info;

• in step 15 and step 16, it detects whether there is a type II contradiction
of Proposition 1.
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– From step 18 to step 36, our tool predicts information from the reduced
augmented matrix of the system L and the system NL. Especially,
• in step 19, our tool defines a temp to represent whether it finally obtain
some new information in the information prediction;

• from step 20 to step 27, our tool scans all linear equations in the system
L and recovering information using Lemma 5;

• from step 28 to step 33, our tool predicts information from the system
NL using Lemma 6;

• in step 34 and step 35, the returned temp will be true if our tool recovers
some new information.

For an r-round word-oriented block cipher, we may obtain all r-round truncated
impossible differentials by enumerating all possible nonzero indicator vectors of
ΔP and ΔC. To obtain truncated impossible differentials with different lengths,
it only needs to try different round numbers.

Some remarks on our algorithm are given below.

1. Since the encryption process of a block cipher is deterministic, for a fixed
round number r, we only need to build the difference propagation system
once. So, matrix B, table T , vector p and vector c can be reused for different
indicator vectors of ΔP and ΔC. Thus, we introduce a new matrix B′ in
Algorithm 2 to protect the matrix B against revision.

2. Besides indicator vectors of ΔP and ΔC, some linear constraints between
nonzero variables in ΔP and ΔC can also be added while selecting the
initial constraints. Our tool still works in this case by translating all linear
constraints to row matrices firstly and then adding these rows to matrix B′.

3. Our tool only uses the bijective property of an Sbox to predict informa-
tion, without solving nonlinear systems. The most time-consuming steps are
calculating the rank of a matrix and solving a linear system.

Algorithm Complexity. Suppose B′ is a matrix withM rows and N columns.
The time consumption for computing rank(A′), rank(B′) and Gauss-Jordan
Elimination is about O(M2 ·N), and the time consumption for the subprogram
Predict Info is about O(M ·N). Algorithm 2 terminates if index is false. Oth-
erwise, at least one of sets Λ0 and Λ1 is updated after each while loop. According
to the pigeon-hole principle, there must be a type II contradiction mentioned
in Proposition 1 when |Λ0|+ |Λ1| > N . Therefore, while loop runs N + 1 times
at most. In summary, the time complexity of judging a truncated impossible
differential does not exceed O(M2 · N2). From Sect. 2.2, we know M is about
O(c1 · l · r) and N is about O(c2 · l · r). Thus, the time complexity of Algorithm 2
is about O(c · l4 · r4), where c is a constant depending on the machine and the
block cipher. The space complexity of Algorithm 2 is dominated by storing the
matrices B, B′ and A′. Thus, the space complexity is about O(M ·N), that is,
O(c′ · l2 ·r2), where c′ is also a constant depending on the machine and the block
cipher.
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Input: Matrix B, table T , vector p, vector c and indicator vectors of ΔP and ΔC.
Output: A flag indicates whether ΔP → ΔC is impossible.

1 B′ := B; Λ0 := ∅; Λ1 := ∅; n :=NumberOfColumns(B′);
// Initialize the truncated information of ΔP and ΔC . . .

// . . . using their indicator vectors SdeltaP and SdeltaC.

2 for i := 1 to l do

3 Λ1 := Λ1 ∪ {pi} if SdeltaP=1;
4 Λ0 := Λ0 ∪ {pi} and B′ :=MulCol(B′ , 0, pi) if SdeltaP=0;
5 Λ1 := Λ1 ∪ {ci} if SdeltaC=1;
6 Λ0 := Λ0 ∪ {ci} and B′ :=MulCol(B′ , 0, ci) if SdeltaC=0;

// Predict information and find contradictions.

7 flag := false; index :=true;
8 while index do

9 A′ :=ColSubMatrix(B′, 1, n − 1);
10 if rank(A′) 	= rank(B′) then

11 flag := true; index :=false;

else

// Gauss-Jordan Elimination.

12 B′ :=Reduced-row-echelon-form-of(B′);
13 < B′, Λ0, Λ1, temp >:= Predict Info(B′,T , Λ0, Λ1);
14 index := temp;
15 if Λ0 ∩ Λ1 	= ∅ then

16 flag := true; index :=false;

17 return flag.

18 Predict Info(B′,T , Λ0, Λ1);
19 n0 := |Λ0|; n1 := |Λ1|; temp :=false; n :=NumberOfColumns(B′);

// Predict information from matrix B′ using Lemma 5.

20 for i := 1 to NumberOfRows(B′) do

21 S := ∅;
22 for j := 1 to n − 1 do

23 S := S ∪ {j} if B′[i, j] 	= 0;
// A linear equation with form ΔX = 0.

24 if |S| = 1 and B′[i, n] = 0 then

25 Λ0 := Λ0 ∪ S; B′ :=MulCol(B′ , 0, j) for j ∈ S ;
// An equation with form ΔX ⊕ c = 0 (c 	= 0) or ΔX ⊕ ΔY = 0.

26 if (|S| = 1 and B′[i, n] 	= 0) or (|S| = 2, B′[i, n] = 0 and S ∩ Λ1 	= ∅) then

27 Λ1 := Λ1 ∪ S;

// Scan table T and use Lemma 6 to predict information.

28 for j := 1 to NumberOfElements(T ) do

29 if T [j] ∩ Λ0 	= ∅ and T [j] \ Λ0 	= ∅ then

30 B′ :=MulCol(B′, 0, e) for e ∈ T [j] \ Λ0;
31 Λ0 := Λ0 ∪ T [j];

32 if T [j] ∩ Λ1 	= ∅ then

33 Λ1 := Λ1 ∪ T [j];

34 if |Λ0| > n0 or |Λ1| > n1 then

35 temp :=true;

36 return < B′, Λ0, Λ1, temp >.

Algorithm 2: Evaluation of a truncated impossible differential
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4.5 Experimental Results

We apply our tool to find truncated impossible differentials for various byte-(or
nibble-)oriented block ciphers, such as the AES, CLEFIA, E2, Camellia without
FL and FL−1 layers, ARIA, LBlock, MIBS and Piccolo. All of these block
ciphers have l = 16. We may classify them into three groups according to their
underlying structures: SPN ciphers (AES and ARIA), Feistel ciphers (Camellia
without FL and FL−1 layers, LBlock, MIBS and E2), and generalized Feistel
ciphers (CLEFIA and Piccolo).

Our tool independently rediscovers all 72 known truncated impossible differ-
entials on 9-round CLEFIA. In addition, besides the best results known so far,
our tool finds new truncated impossible differentials for AES, Camellia without
FL and FL−1 layers, MIBS, LBlock, ARIA, E2 and Piccolo. The number of
new truncated impossible differentials obtained by our tool is summarized in
Table 1. Due to the lack of space, the specification of new results obtained by
our tool and the source code for searching truncated impossible differentials of
some block ciphers will be given in the full version.

4.6 Discussions

For our tool, the only thing we can confirm is that impossible differentials ob-
tained by our tool must be correct if one implements a difference propagation
system and our algorithm on a computer correctly, because the conditions of
judging an impossible differential are sufficient conditions.

However, our tool still has some limitations, which are also unsolved by the
U -method and the UID-method. First, the choice of truncated difference may
result in missing some impossible differentials. For example, ΔP → ΔC should
be an impossible differential if ΔP and ΔC are evaluated to some specific values,
but our tool may miss it if we only know the indicator information of ΔP and
ΔC. Secondly, our tool is not able to exploit any properties of the Sboxes beyond
the fact that they are bijective. Thus, we may also miss some impossible differ-
entials if we need some specific properties of an Sbox to detect these impossible
differentials. Finally, our tool may fail if a block cipher is not word-oriented or
uses an Sbox that is not bijective.

5 Comparison of Our Tool with the U-Method and the
UID-Method

In this section, we investigate the relationship of our tool with the U-method
and the UID-method.

On the one hand, we have

Proposition 2. The U-method and the UID-method are specific cases of our
tool.
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Proof. First, the characteristic matrices defined by the U-method and the UID-
method are specific forms of our difference propagation systems.

Secondly, the operations used in these tools (see Table 2 and 3 in [12], Table 1
and Definition 3 in [17]) are included in Lemma 5, Lemma 6 and the difference
propagation system. For example, in Table 3 of [12], the operation 1 · 1F = 1 ,
i.e., the result of a nonzero difference propagating through a nonlinear bijective
function (Sbox) is also a nonzero difference, is described in Lemma 6.

Finally, we show that a contradiction that is detected by the U-method or
the UID-method can also be found by our tool. From Definition 1, to detect an
impossible differential, we have to show that the final value of f = ⊕i∈I(Δui ⊕
Δvi) is a nonzero difference. However, the value of f is unpredictable if its final
expression contains a term with an unknown difference or two terms with nonzero
unspecified differences. And f is useless if it is a zero difference, or it contains
a term with a nonzero fixed difference and a term with a nonzero unspecified
difference. Thus, a useful f only consists of a single term with a nonzero fixed
difference or a nonzero unspecified difference. In our tool, we can build l linear
equations, i.e., Δui ⊕Δvi = 0 for 1 ≤ i ≤ l, in a difference propagation system
by introducing proper internal variables. These linear equations are included in
the subsystem L, then we have

(1) f = Δc, where Δc is a nonzero fixed difference. That is, a nonzero fixed
difference is in the linear space spanned by {Δui ⊕Δvi : 1 ≤ i ≤ l}. In this
case, we conclude that the rank of the coefficient matrix of L is not equal to
the rank of the augmented matrix of L. Thus, an impossible differential is
detected by case I of Proposition 1.

(2) f = Δa, where Δa is a nonzero unspecified difference. In this case, we
have known that there is a variable with nonzero unspecified difference, i.e.,
Δa �= 0, from previous information. Meanwhile, we obtain Δa = 0 if linear
system L is solved by the Gauss-Jordan Elimination algorithm. Thus, an
impossible differential is detected by case II of Proposition 1.

In summary, the U-method and the UID-method are specific cases of our tool.
��

On the other hand, our tool is more powerful than the U-method and the UID-
method. A new impossible differential of 8-round MIBS obtained by our tool
is given to illustrate that our tool finds longer impossible differentials. The U-
method and the UID-method fail to detect this impossible differential because
they do not fully use the information hiding in the match point of the two
probability-one differentials (see Fig. 1).

Example 3. MIBS is a nibble-oriented block cipher following the Feistel struc-
ture. It operates on 64-bit blocks, uses keys of 64 or 80 bits, and iterates 32 rounds
for both key sizes. Therefore, the plaintext/ciphertext can be represented with
a vector with 16 nibbles, i.e., l = 16.

The difference propagation system of r-round MIBS is�
S(ΔXi,j , ΔYi,j) = 0 for 1 ≤ i ≤ r and 1 ≤ j ≤ 8 ,

I1 ·ΔXT
i−1 ⊕ I2 ·ΔXT

i+1 ⊕ P ·ΔY T
i = 0 for 1 ≤ i ≤ r ,

(5)
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where I1 and I2 are the identity matrix, and P is the linear permutation layer
in round functions. Here,

P =


�����������

1 1 0 1 1 0 1 1
0 1 1 1 1 1 1 0
1 1 1 0 1 1 0 1
0 1 1 1 0 0 1 1
1 0 1 1 1 0 0 1
1 1 0 1 1 1 0 0
1 1 1 0 0 1 1 0
1 0 1 1 0 1 1 1

�����������
and its inverse P−1 =


�����������

0 1 0 1 0 1 1 1
1 0 0 1 1 0 1 1
1 0 1 1 1 1 0 0
0 1 1 0 1 1 1 0
0 1 1 1 1 0 1 1
1 1 0 1 1 1 0 1
1 0 1 0 1 1 1 1
1 1 1 1 0 1 1 0

�����������
.

Now, for given (ΔX1‖ΔX0) = (0, 0, 0, 0, 0, 0, 0, 0‖0, 0, a, 0, 0, 0, 0, 0) (a �= 0) and
(ΔX9‖ΔX8) = (0, 0, 0, 0, g, 0, 0, 0‖0, 0, 0, 0, 0, 0, 0, 0) (g �= 0), we can deduce the
internal state of MIBS round by round (see Fig. 3). After 4-round deductions in
the forward direction, we obtain that (ΔX5‖ΔX4) is

(e1, e2⊕b, e3⊕b, e4⊕b, e5⊕b, e6, e7⊕b, e8⊕b‖c1, c2, c3⊕a, c4, c5, c6, c7, c8) , (6)

where a, b and bt (t ∈ {2, 3, 4, 5, 7, 8}) are nonzero differences while ct, dt and
et (1 ≤ t ≤ 8) are unspecific differences. While in the backward direction, after
4-round deductions, we obtain that (ΔX5‖ΔX4) is

(i1, i2, i3, i4, i5⊕ g, i6, i7, i8‖k1⊕ h, k2⊕ h, k3⊕ h, k4, k5⊕ h, k6⊕ h, k7, k8) , (7)

where g, h and ht (t ∈ {1, 2, 3, 5, 6}) are nonzero differences while ii, jt and kt
(1 ≤ t ≤ 8) are unknown differences.

Now, if we combine (6) and (7) together and try to find a contradiction by
the filtering conditions of the U-method and the UID-method, we get nothing
because et and kt (1 ≤ t ≤ 8) are unknown differences. Thus, the U-method and
the UID-method can not detect this impossible differential.

However, our tool retrieves some important information by solving a system
of linear equations deduced from (6) and (7). Notice that from (6), we know
that ΔXT

4 = ΔZT
3 ⊕ ΔXT

2 = P · ΔY T
3 ⊕ ΔXT

2 , and we also have ΔXT
4 =

ΔZT
5 ⊕ΔXT

6 = P ·ΔY T
5 ⊕ P ·ΔY T

7 from (7). Thus, we get

P ·ΔY T
3 ⊕ΔXT

2 ⊕ P ·ΔY T
5 ⊕ P ·ΔY T

7 = 0 . (8)

It is equivalent to solve the following linear system

ΔY T
3 ⊕ P−1 ·ΔXT

2 ⊕ΔY T
5 ⊕ΔY T

7 = 0 . (9)

Since ΔY T
3 = (0, b2, b3, b4, b5, 0, b7, b8)

T , P−1 ·ΔXT
2 = (0, 0, a, a, a, 0, a, a)T and

ΔY T
7 = (0, 0, 0, 0, h, 0, 0, 0)T , we deduce that the first nibble and the six nibble

of ΔY5 are zero, that is, j1 = j6 = 0. From Lemma 6, we know i1 = i6 = 0.
For a further step, since ΔZT

6 = P · ΔY T
6 , we have i1 = h1 ⊕ h2 ⊕ h5, i6 =

h1 ⊕ h2 ⊕ h5 ⊕ h6. Now, i1 = i6 = 0 implies that h6 = 0, which contradicts with
h6 �= 0.

We observe that the U-method and UID-method fail to find any of the 6
impossible differentials of 8-round MIBS.



300 S. Wu and M. Wang

Fig. 3. A truncated impossible differential of 8-round MIBS

6 Conclusions

This paper presents an automated tool for finding truncated impossible dif-
ferentials of word-oriented block ciphers with bijective S-boxes. The U-method
and the UID-method are specific cases of our tool. Although our tool does not
improve the lengths of impossible differentials for existing block ciphers, it re-
duces the gap between previous automated tools (i.e., the U-method and the
UID-method) and ad hoc approaches. With the application of our tool, we not
only rediscover the longest truncated impossible differentials of many byte-(and
nibble-)oriented block ciphers known so far, but also find new results. Although
it is not clear whether new results found by our tool are useful to improve known
attacks or not, they bring more choices in designing attack algorithms. Hence it
may be possible to improve the known attacks.

To obtain a better tool in the future, one may find some more general filtering
conditions than those given in Proposition 1 or manage to exploit any properties
of the Sboxes beyond the fact that they are bijective.
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Abstract. The computing power of graphics processing units (GPU)
has increased rapidly, and there has been extensive research on general-
purpose computing on GPU (GPGPU) for cryptographic algorithms such
as RSA, ECC, NTRU, and AES. With the rise of GPGPU, commod-
ity computers have become complex heterogeneous GPU+CPU systems.
This new architecture poses new challenges and opportunities in high-
performance computing. In this paper, we present high-speed parallel
implementations of the rainbow method, which is known as the most
efficient time-memory tradeoff, in the heterogeneous GPU+CPU sys-
tem. We give a complete analysis of the effect of multiple checkpoints
on reducing the cost of false alarms, and take advantage of it for load
balancing between GPU and CPU. Our implementation with multiple
checkpoints requires no more time on average for resolving false alarms
and it actually finishes earlier than generating all online chains unlike
other implementations on GPU.

Keywords: Cryptanalysis, Cryptanalytic Time-Memory Tradeoff,
Rainbow Method, GPGPU, CUDA, Heterogeneous Computing.

1 Introduction

With the GPU’s rapid evolution from a graphics processor to a programmable
parallel processor, GPU is a many-core multi-threaded multiprocessor that excels
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at not only graphics but also computing applications. Today’s GPUs have hun-
dreds of parallel processor cores executing tens of thousands of parallel threads.
Using a large number of processors, GPUs are used for accelerating the per-
formance of mathematical and scientific works. General-purpose computing on
GPUs (GPGPU) was first introduced in 2006 by unveiling CUDA by NVIDIA [6].
CUDA enables programmers to easily control GPUs by writing programs similar
to C.

Recently, researchers and developers have enthusiastically adopted CUDA and
GPU computing for cryptographic algorithms. In 2007, Manavski et al. effi-
ciently implemented the Advanced Encryption Standard (AES) algorithm using
CUDA [22]. In 2008, Szerwinski and Güneysu made use of CUDA for GPGPU
processing of asymmetric cryptosystems (RSA, DSA, ECC) [27]. In 2009, Bern-
stein et al. showed that GPU can be used for cryptanalysis as well as imple-
mentation of cryptographic algorithms [9]. They implemented the elliptic-curve
method for integer factorization on GPUs. In 2010, NTRU cryptosystem was
implemented on CUDA by Hermans et al. [16].

One-way functions are fundamental tools for cryptography, and it is a hard
problem to invert them. There are three generic approaches to invert them.
The simplest approach is an exhaustive search. An attacker tries all possible
values until the pre-image is found; however, it needs a lot of time. Another
simple approach is a table lookup, in which an attacker precomputes the im-
ages of a one-way function for all possible pre-images and stores them in a
table. The attack can be carried out quickly, but a large amount of memory
is needed to store all precomputed values. Cryptanalytic time-memory trade-
offs [21,11,14,26,20,10,23,8,28,18] are compromise solutions between time and
memory. Cryptanalytic time-memory tradeoff was introduced by Hellman in
1980 [15]. Rivest proposed to apply distinguished points technique [13] to Hell-
man’s method which reduces the number of table lookup operations. In 2003,
a new method, which is referred to as rainbow method, was suggested by Oech-
slin [25]. The rainbow method saves a factor of two in the worst case time
complexity compared to Hellman’s method. Up until now, the rainbow method
is the most efficient time-memory tradeoff. Avoine et al. introduced a technique
detecting false alarms, called checkpoints [7]. Using the technique, the cost of
false alarms is reduced with a minute amount of memory.

With the rise of GPGPU, commodity computers are complex heterogeneous
GPU+CPU systems that provide high computational power [24,12]. The GPU
and CPU can execute in parallel and have their own independent memory sys-
tems connected through the PCIe bus. The GPU+CPU co-processing and data
transfers use the bidirectional PCIe bus. This new architecture poses new chal-
lenges and opportunities in high-performance computing.

In this paper, we propose high-speed parallel implementations of the rainbow
method in the heterogeneous GPU+CPU system through the analysis of the
behavior of time-memory tradeoffs. We give a complete analysis of the effect of
multiple checkpoints on reducing the cost of false alarms for the non-perfect rain-
bow table, and take advantage of it for load balancing between GPU and CPU.
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The proposed implementation requires no more time on average for resolving
false alarms by fully parallelizing the rainbow method on GPU and CPU. Our
implementation actually finishes earlier on average than generating all online
chains unlike other implementations on GPU. To the best of our knowledge, this
is the first work implementing the rainbow method in a heterogeneous system.

The rest of the paper is organized as follows. We begin with an overview
of modern GPUs and CUDA in Section 2, followed by a brief review of the
rainbow method in Section 3. In Section 4, we describe our fast implementations
in a heterogeneous GPU+CPU system. In Section 5, we analyze the checkpoint
technique. Finally, Section 6 presents the experimental results.

2 GPGPU and CUDA

While traditional GPUs were used for graphical applications, many modern
GPUs can deal with general parallel programs which had been performed nor-
mally on CPUs. CUDA [6] is NVIDIA’s software and hardware architecture
that enables GPUs to be programmed with a variety of high-level programming
languages, and it is a parallel computing architecture that is used to improve
computing performance by exploiting the power of GPU. NVIDIA has released
several improved versions of architectures since its first architecture, G80, and
the newest one is called Fermi [4], which was introduced in 2009.

One of the most attractive features of GPUs is that it has a large number
of processor cores. Basically, GPUs consist of a number of streaming multipro-
cessors (SM), and each SM contains multiple processor cores. The clock rate of
each core is relatively lower than that of a CPU core. In our experiment, we used
the GeForce GTX580 which belongs to the Fermi architecture. The GTX580 ac-
commodates 16 SMs, each of which consists of 32 processor cores operating in
the clock rate 1,544 MHz, as presented in Figure 1. Hence, the total number of
processor cores is 512.

One can program the GPU with a high-level programming language. We write
programs in CUDA C that supports the CUDA programming with a minimal
set of extensions to the C language. In the rest of this section, we will describe
the key features of the CUDA that we must take into account for programming.

Thread Hierarchy. One of the key abstractions of the CUDA is a hierarchy of
threads. By this abstraction, we can divide the whole problem into coarse-
grained subproblems, blocks, which can be solved independently in parallel.
A block can be further partitioned into fine-grained subproblems that can
also be solved in parallel within the block. This fine-grained subproblem
unit is called a thread. CUDA’s hierarchy of threads maps to a hierarchy of
processors on the GPU. An SM executes one or more blocks, and CUDA
cores in the SM execute threads.

Scheduling & Branch. The way threads are scheduled in GPUs is somewhat
different from that in CPUs. The unit of thread scheduling in SMs is a warp
which is a collection of 32 threads.
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L2 cache

Memory controller

DRAM (global memory)

Core 1 Core 2 · · · Core 32

Register file (32,768 x 32-bit)

64KB shared memory/L1 cache

��

��

��

GPU

SM 1
SM 2

...
SM 16

Fig. 1. Fermi architecture

Basically, all the threads within a single warp execute the same instruction
at the same time. However, multiple threads of the same warp may execute
serially. When they meet any flow control instruction such as if A else B,
they could take different execution paths. Then, different execution paths
within a warp are serialized. It is called warp serialization [5,6], which will
slow down the overall performance.

Memory. The physically separated place where CUDA threads are executed
is referred to as device, which includes the GPU. The host is where the C
program runs, and this includes the CPU. The host and device have their
own memory address space. The data to be processed are firstly loaded on
the host memory and then copied to the device memory, so that threads
running on the GPU can access the data. The processed data on the device
needs to be copied back to the host memory after the execution.

The device memory has a hierarchy and it consists of registers, shared
memory, caches and global memory. Registers are the fastest on-chip mem-
ory and the GTX580 contains about 32K registers for each stream multi-
processor. The global memory resides in the off-chip DRAM on the graphics
board. It has the longest access latency but has the largest space.

3 Rainbow Method

In this section, we summarize the rainbow method [25]. Let g be a one-way
function from N to H and Ri be a reduction function from H to N . The function
fi, defined by fi(x) = Ri(g(x)), maps N into N , where |N | = N .
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Fig. 2. A rainbow table

The rainbowmethod consists of two phases: precomputation and online phases.
In the precomputation phase, we randomly choose m start points in N , labeled
SP0, SP1, . . . , SPm−1. For each 0 ≤ i < m, we set

xi,0 = SPi,

and compute

xi,j = fj−1(xi,j−1), 1 ≤ j ≤ t

recursively. In other words, m chains of length t are produced starting from SPi

(0 ≤ i < m) as shown in Figure 2. The last element xi,t for each i-th chain is
called an end point (EPi). The pairs of the start and end points, (SPi, EPi), are
stored in a table, and they are sorted with respect to the end points. Note that
all intermediate points are discarded to reduce memory requirements.

In the online phase, given an image y0 = g(x0), we try to invert the one-way
function g(·) to find the pre-image x0, by generating online chains that start
from y0.

At the first iteration, the online chain of length one is generated by computing
y1 = Rt−1(y0) = ft−1(x0), and we check whether it is an end point on the table
by conducting a binary search. If y1 = EPi for some i, which is referred to as
an alarm, it means that x0 is next to EPi in Figure 2 or EPi has more than
one inverse images. The latter case is referred to as a false alarm. Therefore, we
regenerate a chain starting from SPi to compute xi,t−1, and check whether it is
a false alarm or not by computing g(xi,t−1) = y0. If g(xi,t−1) = y0, we find the
pre-image x0, which is equal to xi,t−1, and the online phase stops. If y1 �= EPi or
a false alarm occurred, then we compute y2 = ft−1(Rt−2(y0)), the online chain of
length two, and check whether it is an end point. The above process is repeated
until x0 is found or all t online chains fail to invert the given image y0.

The online phase of the rainbowmethod can be divided into three parts: online
chain, lookup and regenerating chain. The online chain procedure generates the
online chain of length i at the i-th iteration. The lookup procedure checks whether
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each of these is an end point (alarm) through a binary search in the rainbow
table. The regenerating chain procedure regenerates the chains of length (t −
i), starting from start points for resolving alarms. Because table lookup time
through a binary search is negligible in comparison to the one-way function
invocation time, the one-way function invocation is the dominant factor in the
overall cost of the rainbow method.

Note that the rainbow method is a probabilistic algorithm. That is, success
is not guaranteed and the success probability depends on the time and memory
allocated for cryptanalysis. If the pre-image x0 that we want to find exists in
the rainbow table, the rainbow method will succeed in finding it; Otherwise, it
will fail. The success probability can be computed by the equation presented in
[19,25]. In the case of failure, the online phase generates t online chains, and
it carries out t lookups. Also, it regenerates some chains starting from start
points whenever alarms occur in the lookup procedure. On the other hand, if
the rainbow method succeeds in finding the pre-image x0, it immediately stops
in the middle of the online phase.

4 Implementation in a Heterogeneous GPU+CPU
System

In this section, we describe our implementations in a heterogeneous GPU+CPU
system. Using both GPU and CPU, we implement the rainbow method in paral-
lel. The key factors for achieving good performance are: (i) eliminating the warp
serialization by splitting the online phase of the rainbow method, and (ii) load
balancing between GPU and CPU using checkpoints.

Before explaining our implementations, we first present the table used in our
experiment. Cryptographic hash algorithm SHA-1 was used as the one-way func-
tion. We assumed that our table is used for cracking passwords which consist of
lowercase, uppercase alphabets (a-z, A-Z) and numbers (0-9), and their lengths
are shorter than or equal to 7. That is, N = 62+622+ · · ·+627 ≈ 3.58× 1012 ≈
241.7. We created a single non-perfect1 rainbow table with 70% success proba-
bility, in which m = 80, 530, 636, t = 73, 403. For reasons of efficient memory
access, a start point of 'log2m( = 27 bits is stored in a 32-bit data type, uint32 t,
and an end point of 'log2N( = 42 bits2 is stored in a 64-bit data type, uint64 t.
Thus, the total size of the table is about 0.9 GB. We conducted our experiments
on an Intel i7 2.8GHz quad-core CPU and a GTX580 1544MHz 512-core GPU.
We used Microsoft Visual Studio 2008 environment on Window 7.

The naive implementation of the parallel rainbow method is that each thread
generates the corresponding online chain in parallel. That is, the i-th thread
(1 ≤ i ≤ t) generates the online chain of length i (the online chain procedure),
and it checks whether an alarm occurs (the lookup procedure). If an alarm occurs,
the i-th thread regenerates the chain of length (t− i) and it checks whether the

1 None of the colliding chains in the rainbow table are removed.
2 For the simple implementation, efficient storage techniques [19] such as the index file
and the end point truncation were not considered.
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Fig. 3. Implementation in a heterogeneous GPU+CPU system

element in the (t − i)-th column is x0 or a false alarm (the regenerating chain
procedure). We created 896 threads per SM, i.e., total 896×16 = 14, 336 threads.
Thus, at first, threads generate the online chains whose lengths are between 1
and 14,336, and some of them in which alarms occur regenerate the chains and
check whether each of these is a success or a false alarm. If some SM finishes
its workload, the next 896 online chains, whose lengths are between 14,337 and
15,232, are assigned to the SM. We call this implementation the Naive GPU.

Table 1 shows the execution time when it fails to find a pre-image. The sec-
ond row represents the time for executing all three procedures, and the third
row represents the time for executing the online chain and the lookup proce-
dures excluding the regenerating chain procedure. The third column in the table
represents the total length of the chains generated in the online chain and re-
generating chain procedures.

Table 1. Time of online phase when it fails

procedures time chain length

online chain+lookup+regenerating chain 258 sec 4.2 × 109

online chain+lookup 13 sec 2.7 × 109

Generally, the sum of the chain lengths in the regenerating chain procedure
is smaller than that of the lengths in the online chain procedure, because alarms
occur only in some of the online chains. [17] As can be seen in Table 1, the
sum of chain lengths in the online chain procedure (2.7 × 109) is larger than
that in the regenerating chain (1.5× 109). However, the regenerating chain pro-
cedure takes much more time than the online chain procedure in the Naive
GPU. This is because of warp serialization. Since alarms occur in some of the 32
threads within a warp, only these threads regenerate chains for resolving alarms.
Thus, the other threads within a warp should wait until the threads finish the
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regenerating chain procedure. We should eliminate the warp serialization to im-
prove the performance.

To solve this problem (warp serialization), we split the online phase of the
rainbow method into the online chain+lookup procedures (A) and the regener-
ating chain procedure (B). A is processed in the GPU, and B is processed in
the CPU, as in Figure 3. Each thread in the GPU (i) generates the online chain
assigned to itself and (ii) checks whether it is an end point (alarm). (iii) If an
alarm occurs, the number and the length of the corresponding chain are copied
to the alarm table in the host memory. At the same time, (i) the threads in the
CPU check whether the values copied from the GPU exist in the alarm table. (ii)
If so, they read the copied values and (iii) regenerate chains for resolving alarms.
By doing this, we can eliminate the warp serialization that occured in the Naive
GPU. We call this implementation the GPU+CPU.

The execution time of the GPU+CPU is shown in Table 2. The GPU processes
A in 13 seconds, whereas on the CPU it takes 102 seconds to process B. While
the workload on the GPU is heavier than that on the CPU, the computing power
of the GPU is much better than that of the CPU. Therefore, it is necessary to
reduce the workload on the CPU for the efficient GPU+CPU implementation.

Table 2. Time of online phase when it fails

online chain+lookup (GPU) regenerating chain (CPU) total

13 sec 102 sec 102 sec

We take advantage of checkpoints [7] for load balancing between GPU and
CPU. By decreasing the number of false alarms with checkpoints, we can reduce
the workload on the CPU. The more checkpoints we use, the less workload the
CPU have to process. In the following section, we analyze the performance im-
provement using checkpoints and their optimal positions. In Section 6, we present
the experimental results when the checkpoints are applied to the GPU+CPU.

5 Checkpoints

By using checkpoints [7], we can reduce the time for the regenerating chain
procedure. We store not only the start and end points of the chains in the
table but also the information of some intermediate points, i.e., checkpoints.
The least significant bits of the intermediate points are usually stored. Using
the information, we can detect false alarms in advance without regenerating the
chains starting from start points. If alarms occur, we compare the information
stored in the table with those of the online chain for each checkpoint. If they
differ at least for one checkpoint, we know for certain that this is a false alarm. In
[7], Avoine et al. analyzed the effect of checkpoints for the perfect rainbow table.
Analysis for the non-perfect rainbow table was done only for one checkpoint in
[17]. In this section, we analyze the performance improvement of checkpoints and
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Fig. 4. Sizes of the pre-images at the (t− k)-th column

their optimal positions when multiple checkpoints are used for the non-perfect
rainbow table.

The set of elements in the k-th column of the rainbow table is denoted by RTk.
Let c1, c2, . . . , cn (c1 < c2 < · · · < cn) be the positions of n 1-bit checkpoints.
That is, n checkpoints are located at (t − cj)-th columns of the table for j =
1, . . . , n.

First, at the k-th iteration (an online chain of length k is generated) for k ≤ c1,
the checkpoints cannot filter out false alarms. Thus, we assume that an alarm
is observed at the k-th iteration such that cj < k ≤ cj+1 for j = 1, . . . , n, where
cn+1 = t. This means that the pre-image x0 is in f−k

� (RTt), where f� is function
fj whose index j is not explicitly specified and f−k

� (RTt) is the set of pre-images
under fk

� (= f� ◦ · · · ◦ f�) of the end points RTt. As can be seen in Figure 4, the
following relations hold:

RTt−k ⊂ f
−(k−cj)
� (RTt−cj) ⊂ · · · ⊂ f

−(k−c1)
� (RTt−c1) ⊂ f−k

� (RTt).

We compute the probability of false alarms when checkpoints are used. If x0 ∈
RTt−k, x0 can be found. If x0 ∈ f

−(k−cj)
� (RTt−cj) \ RTt−k (Figure 5), a false

alarm always occurs. It is because the online chain starting from x0 is merged
with an precomputed chain in the rainbow table before the (t − cj)-th col-
umn, and j checkpoints are thus useless in detecting false alarms. If x0 ∈
f
−(k−cu)
� (RTt−cu) \ f

−(k−cu+1)
� (RTt−cu+1) for 1 ≤ u ≤ j − 1 (Figure 6), this

means that the online chain is merged with an chain in the table between cu and
cu+1. Hence, a false alarm occurs with probability 1/2j−u by (j−u) 1-bit check-
points, i.e., cu+1, . . . , cj . Finally, if x0 ∈ f−k

� (RTt)\f−(k−c1)
� (RTt−c1) (Figure 7),

a false alarm occurs with probability 1/2j.
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Fig. 7. Merge after c1

We now compute the improvement in the number of f� applications due to

checkpoints. Let z∗ = |RTt−k|, z0 = |f−k
� (RTt)|, and zj = |f−(k−cj)

� (RTt−cj )| for
j = 1, . . . , n. The probability that x0 ∈ f−(k−cj)

� (RTt−cj) \RTt−k is

1

N

∣∣∣f−(k−cj)
� (RTt−cj) \RTt−k

∣∣∣ = 1

N
(zj − z∗),

whereN is the size ofN . In this case, a false alarm always occurs. The probability

that x0 ∈ f−(k−cu)
� (RTt−cu) \ f

−(k−cu+1)
� (RTt−cu+1) is

1

N

∣∣∣f−(k−cu)
� (RTt−cu) \ f

−(k−cu+1)
� (RTt−cu+1)

∣∣∣ = 1

N
(zu − zu+1).

In this case, a false alarm occurs with probability 1/2j−u. The probability that

x0 ∈ f−k
� (RTt) \ f−(k−c1)

� (RTt−c1) is

1

N

∣∣∣f−k
� (RTt) \ f−(k−c1)

� (RTt−c1)
∣∣∣ = 1

N
(z0 − z1)

In this case, a false alarm occurs with probability 1/2j. Therefore, the expected
number of false alarms at the k-th iteration such that cj < k ≤ cj+1 (j =
1, . . . , n) can be written as

1

N

{
(zj − z∗) +

j−1∑
u=0

1

2j−u
(zu − zu+1)

}
. (1)

Also, the expected number of false alarms at the k-th iteration without check-
points is

1

N
(z0 − z∗). (2)

Hence, the expected decreasing number of false alarms at the k-th iteration due
to checkpoints is (2)− (1), which simplifies to

1

N

{
(1− 1

2j
)z0 −

j−1∑
u=0

1

2j−u
zu+1

}
. (3)
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According to Propositions 4 and 5 in [17], z0 ≈ m(1 + k), zu ≈ m(1 + k − cu).
Simplification of (3) using these approximations results in

m

N

j−1∑
u=0

( cu+1

2j−u

)
.

We shall write D(j) for this. At the k-th iteration such that cj < k ≤ cj+1, the
expected decreasing number of false alarms due to checkpoints is D(j) and the
number of f� applications for checking false alarms is t−k+13. The probability
that the k-th iteration is processed is equal to the probability to fail until the
(k − 1)-th iteration. This probability is

k−1∏
i=1

(
1− mt−i

N

)
,

where mj denotes the distinct number of elements in the j-th column of the
rainbow table, i.e., mj ≈ N

N/m+j/2 [7]. Therefore, the expected number of f�
applications that can be removed through n 1-bit checkpoints is

n∑
j=1

{ ∑
cj<k≤cj+1

(t− k + 1) ·D(j) ·
k−1∏
i=1

(
1− mt−i

N

)}
,

where cn+1 = t.
Table 3 shows the performance improvement due to the checkpoints and the

optimal positions of those, where N = 3.58 × 1012, m = 80, 530, 636, and t =
73, 403. The optimal positions represent the ratio from the rightmost column
of the table. We used Maple 12 [3] to obtain these positions. The number of
f� applications in the regenerating chain procedure without checkpoints can be
calculated from Theorem 3 of [17].

We made use of 22 1-bit checkpoints. BecauseN = 3.58×1012 ≈ 241.7, we used
uint64 t, which is the data type of 64 bits, to store an end point, as mentioned in
Section 4. An end point was stored in the lower 42 bits, and 22 1-bit checkpoints
were stored in the upper 22 bits which remained empty. Therefore, no additional
memory is needed to store the checkpoints. The 22 checkpoints are expected to
decrease the number of f� applications due to false alarms by about 84%. The
optimal positions of 22 checkpoints are 0.0416, 0.0633, 0.0855, 0.1083, 0.1316,
0.1556, 0.1802, 0.2056, 0.2318, 0.2589, 0.2870, 0.3162, 0.3465, 0.3783, 0.4117,
0.4470, 0.4845, 0.5247, 0.5684, 0.6168, 0.6718, and 0.7381.

6 Experimental Results

In this paper, we introduced three different kinds of implementations using the
GPU: naive GPU, GPU+CPU and GPU+CPU with checkpoints. Figure 8 also

3 Strictly speaking, one extra g application follows (t − k) number of f� applications
in order to check false alarms.
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Table 3. Expected numbers of f� applications (unit: t2) in the regenerating chain
procedure and performance improvement due to checkpoints at the optimal positions

# of checkpoints 1 2 3 4 5 6 7 8

# of f� applications
without checkpoints† (1)

0.1676

Reduced # of f� applica-
tions with checkpoints†

(2)
0.0354 0.0577 0.0732 0.0847 0.0936 0.1008 0.1066 0.1115

Improvement ((2)/(1)) 21.1% 34.4% 43.7% 50.5% 55.9% 60.1% 63.6% 66.5%

Optimal positions 0.2792 0.2123 0.1732 0.1470 0.1281 0.1136 0.1022 0.0930
0.3591 0.2827 0.2356 0.2028 0.1785 0.1597 0.1446

0.4179 0.3379 0.2863 0.2495 0.2216 0.1996
0.4637 0.3826 0.3287 0.2894 0.2590

0.5008 0.4199 0.3649 0.3239
0.5317 0.4517 0.3962

0.5579 0.4792
0.5806

† The f� applications in the online chain procedure are not included.

shows the experimental results using the CPU, as well as those of the three
implementations presented in this paper. In the case of the CPU, the i-th thread
generates the online chain of length i and regenerates the chain of length (t− i)
from a start point if an alarm occurs, as in the naive GPU. We used the i7
quad-core CPU for our experiment. Every experiment was carried out 50 times,
and numerical values in the figure represent the average times for searching a
pre-image.

There are several GPU-accelerated implementations of the rainbow method:
RainbowCrack [2] and Cryptohaze [1]. The overall performance of the rainbow
method depends on the implementations of the one-way function and the re-
duction function. Because their source codes are not publicly available, however,
direct comparisons are not possible. Also, our work does not focus on the opti-
mized implementations of these functions. Thus, we show the advantage of ours
through an indirect comparison with RainbowCrack and Cryptohaze. Assume
that the implementations of the one-way function and the reduction function
are the same. Then, the online chain procedures of all implementations will take
more or less the same time, since the parallelization of the online chain procedure
is straightforward. The time for the lookup procedure is negligible compared to
the other two procedures. We regard the time for the online chain procedure
as 100%, and measure the total time as its percentage. According to our ex-
periments, RainbowCrack and Cryptohaze take about 56% and 158% time for
the regenerating chain procedure, respectively. Therefore, RainbowCrack and
Cryptohaze take about 156% and 258% for the total time, since they regener-
ate chains for resolving false alarms after the online chain and lookup procedures
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Fig. 8. Timings for searching a pre-image. Each bar represents the average time for
the whole 50 experiments.

are finished. However, our method requires no more time on average for the
regenerating chain procedure because the online chain+lookup procedures and
the regenerating chain procedure are simultaneously executed in GPU and CPU.
Our GPU+CPU with checkpoints (12 seconds) actually finishes earlier on av-
erage than the worst case of the online chain+lookup procedures (13 seconds).
That is, our implementation takes about 92% on average for the total time.
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Abstract. Computations of small discrete logarithms are feasible even
in “secure” groups, and are used as subroutines in several cryptographic
protocols in the literature. For example, the Boneh–Goh–Nissim degree-
2-homomorphic public-key encryption system uses generic square-root
discrete-logarithm methods for decryption. This paper shows how to use
a small group-specific table to accelerate these subroutines. The cost
of setting up the table grows with the table size, but the acceleration
also grows with the table size. This paper shows experimentally that
computing a discrete logarithm in an interval of order � takes only 1.93 ·
�1/3 multiplications on average using a table of size �1/3 precomputed
with 1.21 · �2/3 multiplications, and computing a discrete logarithm in a
group of order � takes only 1.77 · �1/3 multiplications on average using a
table of size �1/3 precomputed with 1.24 · �2/3 multiplications.

Keywords: Discrete logarithms, random walks, precomputation.

1 Introduction

Fully homomorphic encryption is still prohibitively slow, but there are much
more efficient schemes achieving more limited forms of homomorphic encryp-
tion. We highlight Freeman’s variant [11] of the scheme by Boneh, Goh, and
Nissim [7]. The Boneh–Goh–Nissim (BGN) scheme can handle adding arbitrary
subsets of encrypted data, multiplying the sums, and adding any number of the
products. Freeman’s variant works in groups typically encountered in pairing-
based protocols. The scheme is vastly more efficient than schemes handling un-
limited numbers of additions and multiplications. Encryption takes only one
exponentiation, as does addition of encrypted messages; multiplication takes a
pairing computation.

The limitation to one level of multiplication means that polynomial expres-
sions of degree at most 2 can be evaluated over the encrypted messages, but
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this is sufficient for a variety of protocols. For example, [7] presented protocols
for private information retrieval, elections, and generally universally verifiable
computation. There are 395 citations of [7] so far, according to Google Scholar.

The BGN protocol does not have any built-in limit on the number of cipher-
texts added, but it does take more time to decrypt as this number grows. The
problem is that decryption requires computing a discrete logarithm, where the
message is the unknown exponent. If this message is a sum of B products of
sums of A input messages from the space {0, . . . ,M}, then the final message can
be essentially anywhere in the interval [0, (AM)2B]. This means that even if the
space for the input messages is limited to bits {0, 1}, the discrete-logarithm com-
putation needs to be able to handle the interval [0, A2B]. For “random” messages
the result is almost certainly in a much shorter interval, but most applications
need to be able to handle non-random messages.

Boneh, Goh, and Nissim suggested using Pollard’s kangaroo method for the
discrete-logarithm computation. This method runs in time Θ(�1/2) for an interval
of size �. This bottleneck becomes quite troublesome as A and B grow.

For larger message spaces, Hu, Martin, and Sunar in [18] sped up the discrete-
logarithm computation at the cost of expanding the ciphertext length and slow-
ing down encryption and operations on encrypted messages. They suggested
representing the initial messages by their residues modulo small coprime num-
bers d1, . . . , dj with

∏
di > (AM)2B, and encrypting these j residues separately.

This means that the ciphertexts are j times as long and that each operation on
the encrypted messages is replaced by j operations of the same type on the com-
ponents. The benefit is that each discrete logarithm is limited to [0, (Adi)

2B],
which is a somewhat smaller interval. The original messages are reconstructed
using the Chinese remainder theorem.

Contributions to BGN. This paper explains (Section 3) how to speed up
computations of small discrete logarithms, i.e., discrete logarithms in small in-
tervals. The speedup requires a one-time computation of a small group-specific
table. The speedup grows as the table grows; an interesting special case is a table
of size Θ(�1/3), speeding up the discrete logarithm to Θ(�1/3) group operations.
The space for the table (and the one-time cost for computing the table) is not a
problem for the sizes of � used in these applications.

Our experiments (Section 4) show discrete logarithms in an interval of order
� taking only 1.93 · �1/3 multiplications on average using a table of size �1/3.
Precomputation of the table used 1.21 · �2/3 multiplications. This paper also ex-
plains (Section 5) how to compress each table entry below lg � bits with negligible
overhead.

This algorithm directly benefits the BGN scheme for any message size M . As
an illustration, consider the common binary case M = 1, and assume A = B.
The cost of decryption then drops from Θ(A3/2) (superlinear in the number of
additions carried out) to just Θ(A), using a table of size Θ(A). The same speedup
means that [18] can afford to use fewer moduli, saving both space and time.

Further Applications of Discrete Logarithms in Small Intervals. Many
protocols use only degree-1-homomorphic encryption: i.e., addition without any
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multiplications. The pairing used in the BGN protocol is then unnecessary: one
can use a faster elliptic curve that does not support pairings. Decryption still
requires a discrete-logarithm computation, this time on the elliptic curve rather
than in a multiplicative group. These protocols can also use Paillier’s homo-
morphic cryptosystem, but elliptic curves provide faster encryption and smaller
ciphertexts.

As an example we mention the basic aggregation protocol proposed by Kur-
sawe, Danezis, and Kohlweiss in [21] to enable privacy for smart-meter power-
consumption readings. The power company obtains the aggregated consumptions∑
cj in the exponent as g

∑
cj , and compares this to its own measurement of the

total consumption c by checking whether logg(g
∑

cj/gc) lies within a tolerance
interval. This is another example of a discrete-logarithm computation in a small
fixed interval within a large, secure group; we use a small group-specific table
to speed up this computation, allowing larger intervals, more aggregation, and
better privacy. In cases of sufficiently severe cheating, the discrete logarithm will
be too large, causing any discrete-logarithm computation to fail; one recognizes
this case by seeing that the computation is running several times longer than
expected.

Applications of Discrete Logarithms in Small Groups. Another interest-
ing category of applications uses “trapdoor discrete-logarithm groups”: groups in
which computations of discrete logarithms are feasible with some trapdoor infor-
mation and hard otherwise. These applications include the Maurer–Yacobi ID-
based encryption system in [24], for example, and the Henry–Henry–Goldberg
privacy-preserving protocol in [16].

Maurer and Yacobi in [24, Section 4] introduced a construction of a trapdoor
discrete-logarithm group, with a quadratic gap between the user’s cost and the
attacker’s cost. It is generally regarded as preferable to have constructive appli-
cations be polynomial time and cryptanalytic computations exponential time,
but this quadratic gap is adequate for practical applications. A different con-
struction uses Weil descent with isogenies as trapdoor; see [27] for credits and
further discussion of both constructions.

The Maurer–Yacobi construction works as follows. Choose an RSA modulus
n = pq, where p−1 and q−1 have many medium-size factors—distinct primes �i
chosen small enough that a user knowing the factors of p− 1 and q− 1 can solve

discrete logarithms in each of these subgroups, using Θ(�
1/2
i ) multiplications

modulo p or q, but large enough that the p−1 method for factoring n, using Θ(�i)
multiplications modulo n, is out of reach. The group (Z/n)∗ is then a trapdoor
discrete-logarithm group. The trapdoor information consists of p, q, and the
primes �i. Note that the trapdoor computation here consists of computations of
discrete logarithms in small groups, not small intervals inside larger groups; this
turns out to make our techniques slightly more efficient.

Henry and Goldberg in [15] presented a fast GPU implementation of the trap-
door computation of discrete logarithms, using Pollard’s rho method. A simple
GMP-based implementation of our algorithm on a single core of a low-cost AMD
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CPU takes an order of magnitude less wall-clock time than the optimized GPU
implementation described in [15], for the same DLP sizes considered in [15], even
though the GPU is more than 30 times faster than the CPU core at modular
multiplications. Specifically, for a group of prime order almost exactly 248, our
experiments show a discrete-logarithm computation taking just 115729 ≈ 1.77 ·
216 multiplications on average, using a table of size 65536 = 216. Precomputation
of the table used 5333245354 ≈ 1.24 · 232 multiplications.

Previous Work. Escott, Sager, Selkirk, and Tsapakidis in [9, Section 4.4]
showed experimentally that attacking a total of 2, 3, 4, 5 DLPs with the parallel
rho method took, respectively, 1.52, 1.90, 2.22, 2.49 times longer than solving just
one DLP. The basic idea, which [9] said “has also been suggested by Silverman
and Stapleton” in 1997, is to compute logg h1 with the rho method; compute
logg h2 with the rho method, reusing the distinguished points produced by h1;
compute logg h3 with the rho method, reusing the distinguished points produced
by h1 and h2; etc.

Kuhn and Struik in [20] analyzed this method and concluded that solving
a batch of L discrete logarithms in a group of prime order � reduces the cost
of an average discrete logarithm to Θ(L−1/2�1/2) multiplications—but only for
L � �1/4; see [20, Theorem 1]. Each discrete logarithm here costs at least
Θ(�3/8); see [20, footnote 5].

Hitchcock, Montague, Carter, and Dawson in [17, Section 3] viewed the com-
putation of many preliminary discrete logarithms logg h1, logg h2, . . . as a pre-
computation for the main computation of logg hk, and analyzed some tradeoffs
between the main computation time and the precomputation time. Two much
more recent papers, independent of each other, have instead emphasized tradeoffs
between the main computation time and the space for a table of precomputed
distinguished points. The earlier paper, [22] by Lee, Cheon, and Hong, pointed
out that these algorithms are tools not just for the cryptanalyst but for the
cryptographer, specifically for trapdoor discrete-logarithm computations. The
later paper, our paper [6], pointed out that these algorithms illustrate the gap
between the time and space taken by an attack and the difficulty of finding the
attack, causing trouble for security definitions in the provable-security literature.
Both [22] and [6] clearly break the Θ(�3/8)-time-per-discrete-logarithm barrier
from [20].

In this paper we point out that the same idea, suitably adapted, works not only
for discrete logarithms in small groups (“rho”) but also for discrete logarithms
in small intervals (“kangaroos”). This is critical for BGN-type protocols. We
also point out three improvements applicable to both the rho setting and the
kangaroo setting: we reduce the number of multiplications by a constant factor
by choosing the table entries more carefully; we further reduce the number of
multiplications by choosing the iteration function more carefully; and we reduce
the space consumed by each table entry. This paper includes several illustrative
experiments.
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2 Review of Generic Discrete-Logarithm Algorithms

This section reviews several standard “square-root” methods to compute discrete
logarithms in a group of prime order �. Throughout this paper we write the group
operation multiplicatively, write g for the standard generator of the group, and
write h for the DLP input; our objective is thus to compute logg h, i.e., the

unique integer k modulo � such that h = gk.
All of these methods are “generic”: they work for any order-� group, given

an oracle for multiplication (and assuming sufficient hash randomness, for the
methods using a hash function). “Square-root” means that the algorithms take
Θ(�1/2) multiplications on average over all group elements h.

Shanks’s Baby-Step-Giant-Step Method. The baby-step-giant-step method
[31] computes ��/W � “giant steps” g0, gW , g2W , g3W , . . . and then computes a
series of W “baby steps” h, hg, hg2, . . . , hgW−1. Here W is an algorithm pa-
rameter. It is easy to see that there will be a collision giW = hgj , revealing
logg h = iW − j.

Normally W is chosen as Θ(�1/2), so that there are O(�1/2) multiplications in
total; more precisely, as (1+o(1))�1/2 so that there are ≤ (2+o(1))�1/2 multipli-
cations in total. Interleaving baby steps with giant steps, as suggested by Pollard
in [29, page 439, top], obtains a collision after (4/3+o(1))�1/2 multiplications on
average. We have recently introduced a “two grumpy giants and a baby” variant
that reduces the constant 4/3; see [5].

The standard criticism of these methods is that they use a large amount of
memory, around �1/2 group elements. One can reduce the giant-step storage to,
e.g., Θ(�1/3) group elements by taking W as Θ(�2/3), but this also increases the
average number of baby steps to Θ(�2/3). This criticism is addressed by the rho
and kangaroo methods discussed below, which drastically reduce space usage
while still using just Θ(�1/2) multiplications.

Pollard’s Rho Method. Pollard’s original rho method [28, Section 1] computes
a pseudorandom walk 1, F (1), F (F (1)), . . .. Here F (u) is defined as gu or u2 or
hu, depending on whether a hash of u is 0 or 1 or 2. Each iterate Fn(1) then has
the form gyhx for some easily computed pair (x, y) ∈ (Z/�)2, and any collision
gyhx = gy

′
hx

′
with (x, y) �= (x′, y′) immediately reveals logg h. One expects

a sufficiently random-looking walk on � group elements to collide with itself
within O(�1/2) steps. There are several standard methods to find the collision
with negligible memory consumption.

Van Oorschot and Wiener in [35] proposed running many walks in parallel,
starting from different points gyhx and stopping each walk when it reaches a
“distinguished point”. Here a fraction 1/W of the points are defined (through
another hash function) as “distinguished”, where W is an algorithm parameter;
each walk reachesW points on average. One checks for collisions only among the
occasional distinguished points, not among all of the group elements produced.
The critical observation is that if two walks reach the same group element then
they will eventually reach the same distinguished point—or will enter cycles,
but cycles have negligible chance of appearing if W is below the scale of �1/2.
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There are many other reasonable choices of F . One popular choice—when
there are many walks as in [35], not when there is a single walk as in [28,
Section 1]— is a “base-g r-adding walk”: this means that the hash function has
r different values, and F (u) is defined as s1u or s2u or . . . or sru respectively,
where s1, s2, . . . , sr are precomputed as random powers of g. One then starts
each walk at a different power hx. This approach has several minor advantages
(for example, x is constant in each walk and need not be updated) and the major
advantage of simulating a random walk quite well as r increases. See, e.g., [30],
[33], and [5] for further discussion of the impact of r. The bottom line is that
this method finds a discrete logarithm within (

√
π/2+ o(1))�1/2 multiplications

on average.
The terminology “r-adding walk” is standard in the literature but the termi-

nology “base-g r-adding walk” is not. We use this terminology to distinguish a
base-g r-adding walk from a “base-(g, h) r-adding walk”, in which s1, s2, . . . , sr
are precomputed as products of random powers of g and h. This distinction is
critical in Section 3.

Pollard’s Kangaroo Method. An advantage of baby-step-giant-step, already
exploited by Shanks in the paper [31] introducing the method, is that it imme-
diately generalizes from computing discrete logarithms in any group of prime
order � to computing discrete logarithms in any interval of length � inside any
group of prime order p ≥ �. The rho method uses Θ(p1/2) group operations,
often far beyond Θ(�1/2) group operations.

Pollard in [28, Section 3] introduced a “kangaroo” method that combines the
advantages of the baby-step-giant-step method and the rho method: it takes only
Θ(�1/2) group operations to compute discrete logarithms in an interval of length
�, while still using negligible memory. This method

– chooses a base-g r-adding iteration function whose steps have average expo-
nents Θ(�1/2), instead of exponents chosen uniformly modulo �;

– runs a walk starting from gy (the “tame kangaroo”), where y is at the right
end of the interval;

– records the W th step in this walk (the “trap”), where W is Θ(�1/2); and
– runs a walk (the “wild kangaroo”) starting from h, checking at each step

whether this walk has fallen into the trap.

van Oorschot and Wiener in [35] proposed a parallel kangaroo method in which
tame kangaroos start from gy for many values of y, all close to the middle of the
interval, and a similar number of wild kangaroos start from hgy for many small
values of y. Collisions are detected by distinguished points as in the parallel rho
method, but the distinguished-point property is chosen to have probability con-
siderably higher than 1/W ; walks continue past distinguished points. The walks
are adjusted to avoid collisions between tame kangaroos and to avoid collisions
between wild kangaroos. Several subsequent papers have proposed refinements
of the kangaroo method, obtaining constant-factor speedups.

The Nechaev–Shoup Bound. Shoup proved in [32] that all generic discrete-
logarithm algorithms have success probability O(m2/�) after m multiplications.
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(The same bound had been proven by Nechaev in [25] for a more limited class
of algorithms, which one might call “representation oblivious” generic discrete-
logarithm algorithms.) All generic discrete-logarithm algorithms therefore need
Ω(�1/2) multiplications on average; i.e., the usual square-root discrete-logarithm
algorithms are optimal up to a constant factor. A closer look shows that the
lower bound is (2

√
2/3+o(1))�1/2, so both the baby-step-giant-step method and

the rho method are within a factor 2 + o(1) of optimal.
There are much faster discrete-logarithm algorithms (e.g., index-calculus al-

gorithms) for specific classes of groups. However, the conventional wisdom is
that these square-root algorithms are the fastest discrete-logarithm algorithms
for “secure” groups: a sensibly chosen elliptic-curve group, for example, or the
order-� subgroup of F∗

p for sufficiently large p.
In the rest of this paper we discuss algorithms that improve upon these square-

root algorithms by a non-constant factor. Evidently these improved algorithms
do not fit Shoup’s model of “generic” algorithms—but these improved algo-
rithms do apply to “secure” groups. The algorithms deviate from the “generic”
model by requiring an extra input, a small table that depends on the group but
not on the particular discrete logarithm being computed. The table is set up by
a generic algorithm, and if one views the setup and use of the table as a single
unified algorithm then Shoup’s bound applies to that algorithm; but if the table
is set up once and used enough times to amortize the setup costs then each use
of the table evades Shoup’s bound.

3 Using a Small Table to Accelerate Generic
Discrete-Logarithm Algorithms

This section explains how to use a small table to accelerate Pollard’s rho and
kangaroo methods. The table depends on the group, and on the base point g, but
not on the target h. For intervals the table depends on the length of the interval
but not on the position of the interval: dividing h by gA reduces a discrete
logarithm in the interval {A,A+ 1, . . . , A+ �− 1} to a discrete logarithm in the
interval {0, 1, . . . , �− 1}, eliminating the influence of A.

The speedup factor grows as the square root of the table size T . As T grows,
the average number of multiplications needed to compute a discrete logarithm
drops far below the ≈�1/2 multiplications used in the previous section.

The cost of setting up the table is larger than �1/2, also growing with the square
root of T . However, this cost is amortized across all of the targets h handled with
the same table. Comparing the table-setup cost (�T )1/2 to the discrete-logarithm
cost (�/T )1/2 shows that the table-setup cost becomes negligible as the number
of targets handled grows past T .

The main parameters in this algorithm are the table size T and the walk
length W . Sensible parameter choices will satisfy W ≈ α(�/T )1/2, where α is a
small constant discussed below. Auxiliary parameters are various decisions used
in building the table; these decisions are analyzed below.
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For simplicity we begin this section by describing a “basic algorithm” that
uses a small table to accelerate the rho method. We then describe speedups to
the basic algorithm, and finally a variant that uses a small table to accelerate
the kangaroo method.

The Basic Algorithm. To build the table, simply start some walks at gy

for random choices of y. The table entries are the distinct distinguished points
produced by these walks, together with their discrete logarithms.

It is critical here for the iteration function used in the walks to be independent
of h. A standard base-g r-adding walk satisfies this condition, and for simplicity
we focus on the case of a base-g r-adding walk, although we recommend that
implementors also try “mixed walks” with some squarings. Sometimes walks
collide (this happens frequently when parameters are chosen sensibly), so setting
up the table requires more than T walks; see below for quantification of this
effect.

To find the discrete logarithm of h using this table, start walks at hx for
random choices of x, producing various distinguished points hxgy, exactly as in
the usual rho method. Check for two of these new distinguished points colliding,
but also check for one of these new distinguished points colliding with one of the
distinguished points in the precomputed table. Any such collision immediately
reveals logg h.

In effect, the table serves as a free foundation for the list of distinguished
points naturally accumulated by the algorithm. If the number of h-dependent
walks is small compared to T (this happens when parameters are chosen sensibly)
then one can reasonably skip the check for two of the new distinguished points
colliding; the algorithm almost always succeeds from collisions with distinguished
points in the precomputed table.

Special Cases. The extreme case T = 0 of this algorithm is the usual rho
method with a base-g r-adding walk (or, more generally, the rho method with any
h-independent iteration function). However, our main interest is in the speedups
provided by larger values of T .

We also draw attention to the extreme case r = 1 with exponent 1, simply
stepping from u to gu. In this case the main “rho” computation consists of
taking, on average, W baby steps hx, hxg, hxg2, . . . and then looking up the
resulting distinguished point in a table. What is interesting about this case is its
evident similarity to the baby-step-giant-step method, but with the advantage
of carrying out a table access only after W baby steps; the usual baby-step-
giant-step method checks the table after every baby step. What is bad about
this case is that the walk is highly nonrandom, requiring Θ(�) steps to collide
with another such walk; larger values of r create collisions within Θ(�1/2) steps.

Recall from Section 1 the classic algorithm to solve multiple discrete loga-
rithms: for each k in turn, compute logg hk with the rho method, reusing the
distinguished points produced by h1, . . . , hk−1. The logg hk part of this com-
putation obviously fits the algorithm discussed here, with T implicitly defined
as the number of distinguished points produced by h1, . . . , hk−1. We empha-
size, however, that this is a special choice of T , and that the parameter curve
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(T,W ) used implicitly in this algorithm as k varies does not obey the relation-
ship W ≈ α(�/T )1/2 mentioned above. Treating T and W as explicit parameters
allows several optimizations that we discuss below.

Optimizing the Walk Length. Assume thatW ≈ α(�/T )1/2, and consider the
chance that a single walk already encounters one of the T distinguished points
in the table, thereby solving the DLP. The T table entries were obtained from
walks that, presumably, each covered about W points, for a total of TW points.
The new walk also covers about W points and thus has TW 2 ≈ α2� collision
opportunities. If these collision opportunities were independent then the chance
of escaping all of these collisions would be (1− 1/�)α

2� ≈ exp(−α2).
This heuristic analysis suggests that a single walk succeeds with, e.g., prob-

ability 1 − exp(−1/16) ≈ 6% for α = 1/4, or probability 1 − exp(−1/4) ≈ 22%
for α = 1/2, or probability 1 − exp(−1) ≈ 63% for α = 1, or probability
1− exp(−4) ≈ 98% for α = 2.

The same analysis also suggests that the end of the precomputation, finding
the T th point in the table, will require trying exp(1/16) ≈ 1.06 length-W walks
for α = 1/4, or exp(1/4) ≈ 1.28 length-W walks for α = 1/2, or exp(1) ≈ 2.72
length-W walks for α = 1, or exp(4) ≈ 54.6 length-W walks for α = 2.

The obvious advantage of taking very small α is that one can reasonably carry
out several walks in parallel. Taking (e.g.) α = 1/8 requires 64 walks on average,
and if one carries out (e.g.) 4 walks in parallel then at most 3 walks are wasted.
The most common argument for parallelization is that it allows the computa-
tion to exploit multiple cores, decreasing latency. Parallelization is helpful even
when latency is not a concern: for example, it allows merging inversions in affine
elliptic-curve computations (Montgomery’s trick), and it often allows effective
use of vector units in a single core. Solving many independent discrete-logarithm
problems produces the same benefits, but requires the application to have many
independent problems ready at the same time.

The obvious disadvantage of taking very small α is that the success probability
per walk drops quadratically with α, while the walk length drops only linearly
with α. In other words, chopping a small α in half makes each step half as
effective, doubling the number of steps expected in the computation. Sometimes
this is outweighed by the increase in parallelization (there are now four times
as many walks), but clearly there is a limit to how small α can reasonably be
taken.

Clearly there is also a limit to how large α can reasonably be taken. Doubling
α beyond 1 does not make each step twice as effective: an α = 1 walk already
succeeds with chance 63%; an α = 2 walk succeeds with chance 98% but is twice
as expensive.

We actually recommend optimizing α experimentally (and not limiting it to
powers of 2), rather than trusting the exact details of the heuristic analysis shown
above. A small issue with the heuristic analysis is that the new walk sometimes
takes only, say,W/2 steps, obtaining collisions with much lower probability than
indicated above, and sometimes 2W steps; the success probability of a walk
is not the same as the success probability of a length-W walk. A larger issue
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is that TW is only a crude approximation to the table coverage. Discarding
previously discovered distinguished points when building the table creates a bias
towards short walks, especially for large α; on the other hand, a walk finding
a distinguished point will rarely see all of the ancestors of that point, and in a
moment we will see that this is a controllable effect, allowing the table coverage
to be significantly increased.

Lee, Cheon, and Hong in [22, Lemma 1 and Theorem 1] give a detailed
heuristic argument that starting M walks in the precomputation will produce
T ≈ M(

√
1 + 2a − 1)/a distinct distinguished points, where a = MW 2/� (so

our α is (
√
1 + 2a − 1)1/2), and that each walk in the main computation then

succeeds with probability 1− 1/
√
1 + 2a (i.e., 1− 1/(α2 + 1)). In [22, page 13]

they recommend taking a = (1 +
√
5)/4 ≈ 0.809 (equivalently, α ≈ 0.786); the

heuristics then state that T ≈ 0.764M and that each walk in the main computa-
tion succeeds with probability 1− 1/

√
1 + 2a ≈ 0.382, so the main computation

uses W/0.382 ≈ 2.058(�/T )1/2 multiplications on average. We issue three cau-
tions regarding this recommendation. First, assuming the same heuristics, it is
actually better to take a = 1.5 (equivalently, α = 1); then the main computa-
tion uses just 2(�/T )1/2 multiplications on average. Second, our improvements
to the table coverage (see below) reduce the number of multiplications, and
this reduction is different for different choices of a (see our experimental results
in Section 4), rendering the detailed optimization in [22] obsolete. Third, even
though we emphasize number of multiplications as a simple algorithm metric,
the real goal is to minimize time; the parallelization issues discussed above seem
to favor considerably smaller choices of α, depending on the platform.

Choosing the Most Useful Distinguished Points. Instead of randomly gen-
erating T distinguished points, we propose generating more distinguished points,
say 2T or 10T or 1000T , and then keeping the T most useful distinguished points.
(This presumably means storing 2T or 10T or 1000T points during the precom-
putation, but we follow standard practice in distinguishing between the space
consumed during the precomputation and the space required for the output of
the precomputation. As an illustrative example in support of this practice, con-
sider the precomputed rainbow tables distributed by the A5/1 Cracking Project
[26]; the cost of local RAM used temporarily by those computations is much
less important than the network cost of distributing these tables to users and
the long-term cost of storing these tables.)

The natural definition of “most useful” is “having the largest number of ances-
tors”. By definition the ancestors of a distinguished point are the group elements
that walk to this point; the chance of a uniform random group element walking
to this point is exactly the number of ancestors divided by �.

Unfortunately, without taking the time to survey all � group elements, one
does not know the number of ancestors of a distinguished point. Fortunately,
one has a statistical estimate of this number: a distinguished point found by
many walks is very likely to be more useful than a distinguished point found
by fewer walks. This estimate is unreliable for a distinguished point found by
very few walks, especially for distinguished points found by just one walk; we
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thus propose using the walk length as a secondary estimate. (In our experiments
we computed a weight for each distinguished point as the total length of all
walks reaching the point, plus 4W per walk; we have not yet experimented with
modifications to this weighting.) This issue disappears as the number of random
walks increases towards larger multiples of T .

This table-generation strategy reduces the number of walks required for the
main discrete-logarithm computation. The table still has size T , and each walk
still has average length W , but the success probability of each walk increases.
The only disadvantage is an increase in the time spent setting up the table.

Interlude: The Penalty for Iteration Functions That Depend on h.
Escott, Sager, Selkirk, and Tsapakidis in [9, Section 4.4] chose an iteration func-
tion “that is independent of all theQis” (the targets hi): namely, a base-g r-adding
walk, optionallymixed with squarings. Kuhn and Struik in [20] said nothing about
this independence condition; instead they chose a base-(g, hk) r-adding walk. See

[20, Section 2.2] (“gaihbi”) and [20, Section 4] (“all distinguished points gajh
bj
i

that were calculated in order to find xi”). No experiments were reported in [20],
except for a brief comment in [20, Remark 2] that the running-time estimate in
[20, Theorem 1] was “a good approximation of practically observed values”.

Hitchcock, Montague, Carter, and Dawson in [17, page 89] pointed out that
“the particular random walk recommended by Kuhn and Struik”, with the
iteration function used for hk different from the iteration functions used for
h1, . . . , hk−1, fails to detect collisions “from different random walks”. They re-
ported experiments showing that a base-(g, hk) r-adding walk was much less
effective for multiple discrete logarithms than a base-g r-adding walk.

To understand this penalty, consider the probability that the main computa-
tion succeeds with one walk, i.e., that the resulting distinguished point appears
in the table. There are ≈�/W distinguished points, and the table contains T of
those points, so the obvious first approximation is that the main computation
succeeds with probability TW/�. If the table is generated by a random walk
independent of the walk used in the main computation then this approximation
is quite reasonable. If the table was generated by the same walk used in the
main computation then the independence argument no longer applies and the
approximation turns out to be a severe underestimate.

In effect, the table-generation process in [20] selects the table entries uni-
formly at random from the set of distinguished points. The table-generation
process in [9], [17], and [22] instead starts from random group elements and
walks to distinguished points; this produces a highly non-uniform distribution
of distinguished points covered by the table, biasing the table entries towards
more useful distinguished points. We go further, biasing the table entries even
more by selecting them carefully from a larger pool of distinguished points.

Choosing the Most Useful Iteration Function. Another useful way to
spend more time on table setup is to try different iteration functions, i.e., differ-
ent choices of exponents for the r-adding walk.

The following examples are a small illustration of the impact of varying
the iteration function. http://cr.yp.to/dlog/20120727-function1.pdf is a
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directed graph on 1000 nodes obtained as follows. Each node marked itself as
distinguished with probability 1/W where W = 10. (We did not enforce exactly
100 distinguished points; each node made its decision independently.) Each non-
distinguished node created an outgoing edge to a uniform random node. We then
used the neato program, part of the standard graphviz package [13], to draw
the digraph with short edges. The T = 10 most useful distinguished points are
black squares; the 593 nontrivial ancestors of those points are black circles; the
other 99 distinguished points are white squares; the remaining points are white
circles.

http://cr.yp.to/dlog/20120727-function2.pdf is another directed graph
obtained in the same way, with the same values of W and T but different distin-
guished points and a different random walk. For this graph the 10 most useful
distinguished points have 687 nontrivial ancestors, for an overall success prob-
ability of 697/1000 ≈ 70%, significantly better than the first graph and also
significantly above the 63% heuristic mentioned earlier.

These graphs were not selected as outliers; they were the first two graphs we
generated. Evidently the table coverage has rather high variance.

Of course, a larger table coverage by itself does not imply better performance:
graphs with larger coverage tend to have longer walks. We thus use the actual
performance of the resulting discrete-logarithm computations as a figure of merit
for the graph.

For small examples it is easy to calculate the exact average-case performance,
rather than just estimate it statistically. Our second sample graph uses, on av-
erage, 10.8506 steps to compute a discrete logarithm if walks are limited to 27
steps. (Here 27 is optimal for that graph. The graph has cycles, so some limit
or other cycle-detection mechanism is required. One can also take this limit into
account in deciding which distinguished points are best.) Our first sample graph
uses, on average, 11.2007 steps.

Adapting the Method to a Small Interval. We now explain a small set of
tweaks that adapt the basic algorithm stated above to the problem of computing
discrete logarithms in an interval of length �. These tweaks trivially combine with
the refinements stated above, such as choosing the most useful distinguished
points.

As in the standard kangaroo method, choose the steps s1, s2, . . . , sr as pow-
ers of g where the exponents are β�/W on average. We recommend numerical
optimization of the constant β.

Start walks at gy for random choices of y in the interval. As in the basic
algorithm, stop each walk when it reaches a distinguished point, and build a
table of discrete logarithms of the resulting distinguished points.

To find the discrete logarithm of h, start a walk at hgy for a random small
integer y; stop at the first distinguished point; and check whether the resulting
distinguished point is in the table. In our experiments we defined “small” as
“bounded by �/256”, but it would also have been reasonable to start the first
walk at h, the second at hg, the third at hg2, etc.
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We are deviating in several ways here from the typical kangaroo methods
stated in the literature. Our walks starting from gy can be viewed as tame
kangaroos, but our tame kangaroos are spread through the interval rather than
being clustered together. We do not continue walks past distinguished points. We
select the most useful distinguished points experimentally, rather than through
preconceived notions of how far kangaroos should be allowed to jump.

We do not claim that the details of this approach are optimal. However, this
approach has the virtue of being very close to the basic algorithm, and our
experiments so far have found discrete logarithms in intervals of length � almost
as quickly as discrete logarithms in groups of order �.

4 Experiments

This section reports several experiments with the algorithm described in Sec-
tion 3, both for small groups and for small intervals inside larger groups. To aid
in verification we have posted our software for a typical small-interval experiment
at http://cr.yp.to/dlog/cuberoot.html.

Case Study: A Small-Group Experiment. We began with several exper-
iments targeting the discrete-logarithm problem modulo pq described in [15,
Table 2, first line]. Here p and q are “768-bit primes” generated so that p − 1
and q − 1 are “248-smooth”; presumably this means that (p− 1)/2 is a product
of 16 primes slightly below 248, and similarly for (q−1)/2. The original discrete-
logarithm problem then splits into 16 separate 48-bit DLPs modulo p and 16
separate 48-bit DLPs modulo q.

What [15] reports is that a 448-ALU NVIDIA Tesla M2050 graphics card
takes an average of 23 seconds for these 32 discrete-logarithm computations,
i.e., 0.72 seconds for each 48-bit discrete-logarithm computation. The discrete-
logarithm computations in [15] use standard techniques, using more than 224

modular multiplications; the main accomplishment of [15] is at a lower level,
using the graphics card to compute 52 million 768-bit modular multiplications
per second.

The Tesla M2050 card is currently advertised for $1300. We do not own one;
instead we are using a single core of a 6-core 3.3GHz AMD Phenom II X6 1100T
CPU. This CPU is no longer available but it cost only $190 when we purchased
it last year.

We generated an integer p as 1+2�1�2 · · · �16, where �1, �2, . . . , �16 are random
primes between 248 − 220 and 248. We repeated this process until p was prime,
and then took � = �1. This � turned out to be 248 − 313487. We do not claim
that this narrow range of 48-bit primes is cryptographically secure in the context
of [15]; we stayed very close to 248 to avoid any possibility of our order-� DLP
being noticeably smaller than the DLP in [15]. We chose g as 2(p−1)/� in F∗

p.
For modular multiplications we used the standard C++ interface to the well-

known GMP library (version 5.0.2). This interface allows writing readable code
such as
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x = (a * b) % p

which turns out to run slightly faster than 1.4 million modular multiplications
per second on our single CPU core for our 769-bit p. This understates GMP’s
internal speeds— it is clear from other benchmarks that we could gain at least
a factor of 2 by precomputing an approximate reciprocal of p—but for our
experiments we decided to use GMP in the most straightforward way.

We selected T = 64 andW = 1048576; here α = 1/2, i.e.,W ≈ (1/2)(�/T )1/2.
Precomputing T table entries used a total of 80289876 ≈ 1.20TW ≈ 0.60(�T )1/2

multiplications; evidently some distinguished points were found more than once.
We then carried out a series of 1024 discrete-logarithm experiments, all targeting
the same h. Each experiment chose a random y and started a walk from hgy,
hoping that (1) the walk would reach a distinguished point within 8W steps and
(2) the distinguished point would be in the table. If both conditions were satis-
fied, the experiment double-checked that it had correctly computed the discrete
logarithm of h, and finally declared success.

These experiments used a total of 1040325443 ≈ 0.97 · 1024W multiplications
(not counting the occasional multiplications for the randomization of hgy and
for the double-checks) and succeeded 192 times, on average using 5418361 ≈
2.58(�/T )1/2 multiplications per discrete-logarithm computation. Note that the
randomization of hgy made these speeds independent of h.

More Useful Distinguished Points. We then changed the precomputation,
preserving T = 64 and W = 1048576 but selecting the T table entries as the
most useful 64 table entries from a pool of N = 128 distinguished points. This
increased the precomputation cost to 167040079 ≈ 1.24NW ≈ 1.24(�T )1/2 mul-
tiplications. We ran 4096 new discrete-logarithm experiments, using a total of
3980431381 ≈ 0.93·4096W multiplications and succeeding 1060 times, on average
using 3755123 ≈ 1.79(�/T )1/2 multiplications per discrete-logarithm computa-
tion.

The T 1/2 Scaling. We then reduced W to 262144, increased T to 1024, and
increased N to 2048. This increased the precomputation cost to 626755730 ≈
1.17NW ≈ 1.17(�T )1/2 multiplications. We then ran 8192 new experiments,
using a total of 2123483139 ≈ 0.99 · 8192W multiplications and succeeding 2265
times, on average using just 937520 ≈ 1.79(�/T )1/2 multiplications per discrete-
logarithm computation. As predicted the increase of T by a factor of 16 decreased
the number of steps by a factor of 4.

We also checked that these computations were running at more than 1.4 mil-
lion multiplications per second, i.e., under 0.67 seconds per discrete-logarithm
computation— less real time on a single CPU core than [15] needed on an entire
GPU. There was no noticeable overhead beyond GMP’s modular multiplications.
The precomputation for T = 1024 took several minutes, but this is not a serious
problem for a cryptographic protocol that is going to be run many times.

We then reduced W to 32768, increased T to 65536, and increased N to
131072. This increased the precomputation cost to 5333245354 ≈ 1.24NW ≈
1.24(�T )1/2 multiplications, roughly an hour. We then ran 4194304 experiments,



Computing Small Discrete Logarithms Faster 331

Table 4.1. Observed cost for 15 types of discrete-logarithm computations in a group of
order � ≈ 248. Each discrete-logarithm experiment used T table entries selected from N
distinguished points, and usedW = 524288 ≈ α(�/T )1/2. Each “main computation” ta-
ble entry reports, for a series of 220 discrete-logarithm experiments, the average number
of multiplications per successful discrete-logarithm computation, scaled by (�/T )1/2.
Each “precomputation” table entry reports the total number of multiplications to build
the table, scaled by (�T )1/2.

T 512 640 768 896 1024

α 0.70711 0.79057 0.86603 0.93541 1.00000

precomputation, N = T 0.84506 0.94916 1.11884 1.23070 1.34187
precomputation, N = 2T 1.89769 2.33819 2.74627 3.27589 3.66113
precomputation, N = 8T 15.7167 20.7087 26.1621 31.2112 36.9350

main computation, N = T 2.13856 2.03391 2.01172 1.98725 2.01289
main computation, N = 2T 1.62474 1.59358 1.58893 1.59218 1.61922
main computation, N = 8T 1.38323 1.40706 1.42941 1.46610 1.49688

using a total of 137426510228 ≈ 1.00 · 4194304W multiplications and succeeding
1187484 times, on average using just 115729 ≈ 1.77(�/T )1/2 multiplications per
discrete-logarithm computation—under 0.1 seconds.

Optimizing α. We then carried out a series of experiments with W = 524288,
varying both T and N/T as shown in Table 4.1. Each table entry is rounded to
6 digits. The smallest “main computation” table entry, 1.38314 for T = 512 and
N/T = 8, means (modulo this rounding) that a series of discrete-logarithm ex-
periments used 1.38314(�/T )1/2 multiplications per successful discrete-logarithm
computation. Each table entry involved 220 discrete-logarithm experiments, of
which more than 218 were successful, so each table entry is very likely to have
an experimental error below 0.02.

This table shows that the optimal choice of α depends on the ratio N/T ,
but also that rather large variations in α around the optimum make a relatively
small difference in performance. Performance is much more heavily affected by
increased N/T , i.e., by extra precomputation.

To better understand the tradeoffs between precomputation time and main-
computation time, we plotted the 15 pairs of numbers in Table 4.1, obtaining
Figure 4.3. For example, Table 4.1 indicates for T = 512 and N = 2T that
each successful discrete-logarithm computation took 1.62474(�/T )1/2 multipli-
cations on average after 1.89769(�T )1/2 multiplications in the precomputation,
so (1.89769, 1.62474) is one of the points plotted in Figure 4.3. Figure 4.3 suggests
that optimizing α to minimize main-computation time for fixed N/T does not
produce the best tradeoff between main-computation time and precomputation
time; one should instead decrease α somewhat and increase N/T . To verify this
theory we are performing more computations to fill in more points in Figure 4.3.

Small-Interval Experiments. Starting from the same software, we then made
the following tweaks to compute discrete logarithms in a short interval inside a
much larger prime-order group:
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Table 4.2. Observed cost for 15 types of discrete-logarithm computations in an interval
of length � = 248 inside a much larger group. Table entries have the same meaning as
in Table 4.1.

T 512 640 768 896 1024

α 0.70711 0.79057 0.86603 0.93541 1.00000

precomputation, N = T 0.85702 1.00463 1.14077 1.28112 1.41167
precomputation, N = 2T 1.99640 2.38469 2.81441 3.17253 3.61816
precomputation, N = 8T 15.5307 20.2547 25.2022 30.7112 36.7452

main computation, N = T 2.32320 2.21685 2.14892 2.10155 2.09915
main computation, N = 2T 1.66106 1.64183 1.63488 1.65603 1.66895
main computation, N = 8T 1.44377 1.44808 1.46581 1.49548 1.52502

– We replaced p by a “strong” 256-bit prime, i.e., a prime for which (p− 1)/2
is also prime. Of course, 256 bits is not adequate for cryptographic security
for groups of the form F∗

p, but it is adequate for these experiments.
– We replaced g by a large square modulo p.
– We replaced � by exactly 248, and removed the reductions of discrete loga-

rithms modulo �.
– We increased r, the number of precomputed steps, from 32 to 128.
– We generated each step as gy with y chosen uniformly at random between 0

and �/(4W ), rather than between 0 and �.
– We started each walk from hgy with y chosen uniformly at random between

0 and �/28, rather than between 0 and �.
– After each successful experiment, we generated a new target h for the fol-

lowing experiments.

For W = 131072, T = 4096, and N = 8192 the precomputation cost was
1337520628 ≈ 1.25NW ≈ 1.25(�T )1/2 multiplications. We ran 8388608 exper-
iments, using a total of 1100185139821 ≈ 1.00 · 8388608W multiplications and
succeeding 2195416 times, on average using 501128 ≈ 1.91(�/T )1/2 multiplica-
tions per discrete-logarithm computation.

For W = 32768, T = 65536, and N = 131072 the precomputation cost was
5214755468 ≈ 1.21NW ≈ 1.21(�T )1/2 multiplications. We ran 33554432 experi-
ments, using a total of 1097731367293 ≈ 1.00 · 33554432W multiplications and
succeeding 8658974 times, on average using just 126773 ≈ 1.93(�/T )1/2 multi-
plications per discrete-logarithm computation.

Table 4.2 reports the results of experiments for W = 524288 with various
choices of T and N/T , all using the same bounds �/(4W ) and �/28 stated above.
Comparing Table 4.2 to Table 4.1 shows that this approach to computing discrete
logarithms in an interval of length � uses— for the same table size, and essentially
the same amount of precomputation—only slightly more multiplications than
computing discrete logarithms in a group of order �.
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Fig. 4.3. Observed tradeoffs between precomputation time and main-computation
time in Table 4.1. Horizontal axis is observed average precomputation time, scaled by
(�T )1/2. Vertical axis is observed average main-computation time, scaled by (�/T )1/2.

5 Space Optimization

Each table entry described in Section 3 consists of a group element, at least
lg � bits, and a discrete logarithm, also lg � bits, for a total of at least 2T lg �
bits. This section explains several ways to compress the table to a much smaller
number of bits.

Many of these compression mechanisms slightly increase the number of
multiplications used to compute logg h. This produces a slightly worse trade-
off between the number of multiplications and the number of table entries, but
produces a much better tradeoff between the number of multiplications and the
number of table bits.

For comparison, [22, Table 2] took T = 586463 and W = 211 for a group of
size � ≈ 242, and reported about 2(�/T )1/2 multiplications per discrete-logarithm
computation, using 150 megabytes for the table. Previous sections of this paper
explain how to use significantly fewer multiplications for the same T ; this section
reduces the space consumption by two orders of magnitude for the same T , with
only a small increase in the number of multiplications. Equivalently, for the same
number of table bits, we use an order of magnitude fewer multiplications.
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Lossless Compression of Each Distinguished Point. There are several
standard techniques to reversibly compress elements of commonly used groups.
For example, nonzero elements of the “Curve25519” elliptic-curve group are
pairs (x, y) ∈ Fq ×Fq satisfying y2 = x3 +486662x2 + x; here q = 2255− 19 and
� ≈ 2252. This pair is trivially compressed to x and a single bit of y, for a total
of 256 ≈ lg � bits.

A typical distinguished-point definition states that a point is distinguished
if and only if its bottom lgW bits are 0. These lgW bits need not be stored.
This reduces the space for a distinguished elliptic-curve point to approximately
lg(�/W ) bits; e.g., (2/3) lg � bits for W ≈ �1/3.

The other techniques discussed in this section work for any group, not just
an elliptic-curve group.

Replacing Each Distinguished Point with a Hash. To do better we sim-
ply suppress some additional bits: we hash each distinguished point to a smaller
number of bits and store the hash instead of the distinguished point. This creates
a risk of false alarms, but the cost of false alarms is merely the cost of checking a
bad guess for logg h. Checking one guess takes only about (1+1/ lg lg �) lg � mul-
tiplications, and standard multiexponentiation techniques check several guesses
even more efficiently.

If each distinguished point is hashed to lg(T/γ) bits then one expects many
false alarms as γ increases past 1. Specifically, a distinguished point outside the
table has probability γ/T of colliding with any particular table entry (if the
hash behaves randomly), so it is expected to collide with γ table entries overall,
creating γ bad guesses for logg h. For a successful walk, the expected number
of bad guesses drops approximately in half, or slightly below half if the discrete
logarithms with each hash are sorted in decreasing order of utility.

If γ is far below W/ lg � then the cost of checking γ bad guesses is far below
W multiplications, the average cost of a walk. For example, if T is much smaller
than W then one can afford to hash each distinguished point to 0 bits: the table
then consists simply of T discrete logarithms, occupying T lg � bits, and one
checks the end of each walk against each table entry.

Compressing a Sorted Sequence of Hashes. It is well known that a sorted
sequence of n d-bit integers contains far fewer than nd bits of information when
n and d are not very small. “Delta compression” takes advantage of this by
computing differences between successive integers and using a variable-length
encoding of the differences. For random integers the average difference is close
to 2d/n and is encoded as slightly more than d − lg n bits if d ≥ lg n, saving
nearly n lg n bits.

Delta compression does not allow fast random access: to search for an integer
one must read the sequence from the beginning. This is not visible in this paper’s
multiplication counts, but it nevertheless becomes a bottleneck as T grows past
W . We instead use a simpler approach that allows fast random access: namely,
store the sorted sequence x1, x2, . . . , xn of d-bit integers as

– the sorted sequence x1, x2, . . . , xm of (d − 1)-bit integers where m is the
largest index such that xm < 2d−1; and
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– the sorted sequence xm+1 − 2d−1, xm+2 − 2d−1, . . . , xn − 2d−1 of (d− 1)-bit
integers.

To search for an integer s we search x1, . . . , xm for s if s < 2d−1 and search
xm+1 − 2d−1, . . . , xn − 2d−1 for s− 2d−1 if s ≥ 2d−1. The second search requires
a pointer to the second sorted sequence, i.e., a count of the number of bits used
to encode x1, x2, . . . , xm.

This transformation saves 1 bit in each of the n table entries at the expense of
a small amount of overhead. This is a sensible transformation if the overhead is
below n bits. The transformation is inapplicable if d = 0; we encode a sequence
of 0-bit integers as simply the number of integers.

Of course, we can and do apply the transformation recursively. The recursion
continues for nearly lgn levels if d ≥ lg n, again saving nearly n lg n bits. For
small d the compressed sequence drops to a fraction of n bits.

For example, if each distinguished point is hashed to d ≈ lg(4T ) bits, at the
expense of 1/4 bad guesses for each walk, then the hashes are compressed from
Td ≈ T lg(4T ) bits to just a few bits per table entry. If each distinguished point
is hashed to slightly fewer bits, at the expense of more bad guesses for each
walk, then the T hashes are compressed to fewer than T bits; in this case one
should concatenate the hashes with the discrete logarithms before applying this
compression mechanism.

Compressing Each Discrete Logarithm.We finish by considering two mech-
anisms for compressing discrete logarithms in the table. The first mechanism was
introduced in the ongoing ECC2K-130 computation; see [3]. The second mech-
anism appears to be new.

The first mechanism is as follows. Instead of choosing a random y and starting
a walk at gy, choose a pseudorandom y determined by a short seed. The seed
is about lg T bits, or slightly more if one tries more than T walks; for example,
the seed is about 3 times shorter than the discrete logarithm if T ≈ �1/3. Store
the seed as a proxy for the discrete logarithm of the resulting distinguished
point. Reconstructing the discrete logarithm then takes aboutW multiplications
to recompute the walk starting from gy. This reconstruction is a bottleneck
if distinguished points are hashed to fewer than lg T bits (creating many bad
guesses), and it slows down the main computation by a factor of almost 2 if α
is large, but if distinguished points are hashed to more than lg T bits and α is
small then the reconstruction cost is outweighed by the space savings.

The second mechanism is to simply suppress most of the bits of the discrete
logarithm. Reconstructing those bits is then a discrete-logarithm problem in a
smaller interval; solve these reconstruction problems with the same algorithm
recursively, using a smaller table and a smaller number of multiplications. For
example, communicating just 9 bits of an �-bit discrete logarithm means reducing
an �-bit DLP to an (�− 9)-bit DLP, which takes 1/8th as many multiplications
using a T/8-entry table (or 1/16th as many multiplications using a T/2-entry
table); if the number of bad guesses is sufficiently small then this is a good
tradeoff.
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Note that this second mechanism relies on being able to quickly compute
discrete logarithms in small intervals, even if the original goal is to compute
discrete logarithms in small groups.
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Abstract. We present novel implementations of the syndrome-based
hash function RFSB on an Atmel ATxmega128A1 microcontroller and a
low-cost Xilinx Spartan-6 FPGA. We explore several trade-offs between
speed and area/code size on both platforms and show that RFSB is
extremely versatile with applications ranging from lightweight to high
performance. Our lightweight microcontroller implementation requires
just 732 byte of ROM while still achieving a competitive performance
with respect to other established hash functions. Our fastest FPGA im-
plementation is based on embedded block memories available in Xilinx
Spartan-6 devices and runs at 0.21 cycles/byte, with a throughput of 5.35
Gbit/s. To the best of our knowledge, this is the first time the RFSB hash
function is implemented on either of these wide-spread platforms.

Keywords: RFSB, hash function, code-based cryptography, microcon-
troller, hardware, FPGA.

1 Introduction

Cryptographic hash functions are used in a broad range of applications where
mapping an arbitrary amount of data to a fixed length bit string is required.
Examples are digital signatures, messages authentication codes, data integrity
checks, and password protection. Prominent and widely deployed hash functions
such as MD5 [38], SHA-1 [37], and the SHA-2 family [37] are used in various
products and implementations whose security depends on the collision resistance
of those hash functions. However, over the last years (chosen-prefix) collision
attacks have been published for MD5 [42] [43] and SHA-1 [30] and are already
exploited in the real-world. Recently, a major attack based on MD5 collisions
was performed by the Flame espionage malware which injects itself into the
Microsoft Windows operating system. The malware code is signed by a rogue
Microsoft certificate and disguises itself as a Microsoft Windows update. The
rogue certificate was obtained using a previously unknown chosen-prefix collision
attack on a Microsoft Terminal Server Licensing Service certificate which still
used the MD5 algorithm [34].

Although the SHA-2 family withstands these attacks so far, its similar struc-
ture to SHA-1 raised concerns about its long term security. Therefore, the
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National Institute of Standards and Technology (NIST) announced the pub-
lic SHA-3 competition in the end of 2007 [36]. A total of 64 candidates entered
the competition, of which 14 advanced to the second round, and the last round
still has 5 competing candidates. Apart from their security the main selection
criteria are hardware and software speed as well as scalability. The SHA-3 com-
petition announcement explicitly demands efficiency in 8-bit microcontrollers
and in hardware.

Embedded 8-bit microcontrollers are a common representative of low-cost and
energy efficient computation units used in automotive applications, digital signa-
ture smart cards, wireless sensor networks and many more. Field-Programmable
Gate Arrays (FPGA) on the other hand allow reconfigurable implementations
of cryptography in hardware, usually yielding a much better performance than
achievable with 8-bit microcontrollers or PCs. FPGA device classes range from
low-cost (e.g., Xilinx Spartan family) to high-end high-speed (e.g., Xilinx Virtex
family). Since both microcontrollers and FPGAs are used for applications han-
dling sensitive data, efficiently computable cryptographic primitives are essential
for successful real-world applications.

Code-based cryptography offers a variety of cryptographic primitives that are
built upon the hardness of well-known NP-complete problems in coding theory.
The Fast Syndrome Based (FSB) hash function is a code-based hash function
that entered the SHA-3 competition but due to its inefficiency compared to
other candidates, FSB did not advance to the second round. The Really Fast
Syndrome-Based (RFSB) hash function is an improved version of FSB that aims
to overcome this problem.

Other cryptographic primitives based on codes are the McEliece [31], the
Niederreiter [35] or the Hybrid McEliece (HyMES) [11] asymmetric encryption
scheme. Digital signatures based on McEliece can be computed using CFS [14],
Parallel-CFS [17], or quasi-dyadic CFS [5] and even one-time signatures are
possible using the BMS-OTS scheme [6]. Code-based stream ciphers such as
SYND [20] and 2SC [32] also offer security reductions to the syndrome decoding
problem.

McEliece and Niederreiter have been reported to be efficiently implementable
in 8-bit microcontrollers [12][16][25][26] as well as in reconfigurable hardware [24]
[27][41]. Software and hardware implementations of the code-based signature
scheme CFS have been published as well [10][29].

1.1 Contribution

With code-based encryption and signature schemes proven to be feasible in hard-
and software, it still is an open question how code-based hash functions per-
form on these platforms. In this paper we set out to answer this question by
evaluating the feasibility and achievable performance of RFSB-509 in embed-
ded systems. We explore different design choices for embedded microcontrollers
and reconfigurable hardware using the wide-spread 8-bit microcontroller Atmel
ATxmega128A1 and a Xilinx Spartan-6 FPGA. We show that RFSB-509 can
be efficiently implemented on both platforms and that RFSB can, in contrast
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to its predecessor FSB, keep up with current SHA-3 candidates and hash stan-
dards. Source code for both platforms is made publicly available in order to allow
other researchers to use and evaluate our implementations1. To the best of our
knowledge this is the first work of its kind.

1.2 Organization

This paper is organized as follows. We present related work on code-based hash
functions and the history that led to the development of RFSB in Section 2.
After shortly recalling general specifications of the RFSB hash function, we
detail on the concrete parameter proposal RFSB-509 and give an implementors’
view on RFSB-509 in Section 3. Next, design considerations for implementations
on embedded microcontrollers and on reconfigurable hardware are evaluated in
Section 4 and Section 5. We present our result in Section 6 before we draw a
conclusion in Section 7.

2 Related Work on Code-Based Hash Functions

Augot, Finiasz, Gaborit, Manuel, and Sendrier entered the SHA-3 competition
with the Fast Syndrome Based (FSB) hash function [2] that relies on the syn-
drome decoding problem for linear codes. Previous attempts to build such a
hash function by Augot, Finiasz, and Sendrier [3][4], and Finiasz, Gaborit, and
Sendrier [18] turned out to be flawed and were consequently broken by Coron
and Joux [13], Saarinen [40], and Fouque and Leurent [19]. Hence, the FSB pa-
rameters were adjusted to withstand these attacks for the SHA-3 submission
and to date this parameter set remains unbroken. However, FSB did not ad-
vance to the second round of the SHA-3 competition mainly because of its lack
in efficiency compared to other submissions.

Meziani, Dagdelen, Cayrel, and Yousfi Alaoui use the ideas of FSB and com-
bine them with a sponge construction instead of the Merkle-Damg̊ard principle
to construct the S-FSB hash function [33]. Their main goal is to improve the
performance compared to FSB and they report a C implementation of S-FSB-
256 on an Intel Core 2 Duo CPU running at 183 cycles/byte. Compared to FSB
requiring 264 cycles/byte on the same CPU, S-FSB is about 30% faster but when
looking at the overall picture S-FSB is still an order of magnitude slower than
the current hash standard SHA-256 which runs at 15.49 cycles/byte on a similar
CPU according to eBASH2 [8].

Bernstein, Lange, Peters, and Schwabe introduce the Really Fast Syndrome-
Based (RFSB) hash function as an improved version of FSB and propose con-
crete parameters (RFSB-509) in [9]. The authors report an implementation of
RFSB-509 that outperforms the current hash standard SHA-256 on Intel Core 2

1 See our web page at http://www.sha.rub.de/research/projects/code/
2 (6fd); 2007 Intel Core 2 Duo E4600; 2 x 2400MHz; cobra, supercop-20111120.

http://www.sha.rub.de/research/projects/code/
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Quad Q9550 CPUs at 13.62 vs. 15.26 cycles/byte. According to the latest mea-
surements on eBASH3, new implementations allow to compute RFSB-509 even
faster at 10.64 cycles/byte while SHA-256 remains at 15.31 cycles/byte on the
same CPU.

Furthermore, a PC implementation of RFSB in Java and C is reported by
Rothamel and Weiel [39]. In addition to RFSB-509, the authors suggest param-
eter sets RFSB-227, RFSB-379, and RFSB-1019 and provide performance mea-
surements for all four sets. However, their results do not come anywhere close
to the speeds reported in the original RFSB paper (e.g., they report RFSB-509
to run at 120.5 cycles/byte on an Intel i7 CPU).

3 The RFSB Hash Function

The RFSB [9] hash function is constructed very similar to the FSB hash func-
tion [2], both are designed to be used inside a collision resistant hash function. A
fixed length compression function is combined with the Merkle-Damg̊ard domain
extender [15] to enable processing of an arbitrary amount of data. An initializa-
tion vector (IV) is compressed together with the first message block. The output
is used as chaining value together with the second message block and is again fed
into the compression function. This continues until the second to last message
block has been processed. The last block is padded by appending a single 1 bit
followed by sufficiently many zeros and a 64-bit message length counter. After all
input has been processed a final output filter (called final compression function
in FSB terms) is applied. In case of FSB Whirlpool is used as final compression
function, the authors of RFSB suggests to use SHA-256 or an AES-based output
filter. The basic hashing principle of FSB and RFSB is illustrated in Figure 1.

compression
function

compression
functionIV

... compression
function output filter hash

message block 1 message block 2 padded message block...

Fig. 1. Illustration of the hashing principle based on the Merkle-Damg̊ard domain
extender used by FSB and RFSB. The initialization vector (IV) is set to zero in RFSB
and the output filter is defined to be SHA-256.

3.1 The RFSB Compression Function

The RFSB compression function is defined by four parameters: an odd prime
r, positive integers b and w, and a compressed matrix of size 2b × r-bit. The

3 (10677); 2008 Intel Core 2 Quad Q9550; 4 x 2833MHz; berlekamp, supercop-
20120704.
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compression function takes a bw-bit string as input which is interpreted as a
sequence of 'bw/8( bytes (m1,m2, . . . ,mw) where each mi ∈

{
0, 1, . . . , 2b − 1

}
.

The output is a r-bit string that is interpreted as a sequence of 'r/8( bytes.
Both input and output are interpreted in little-endian format. The compressed
matrix consists of constants c [0] , c [1] , . . . , c

[
2b − 1

]
where each constant has a

length of r-bit. The uncompressed RFSB matrix is derived from these constants
by defining

ci [j] = c [j]x128(w−i), 1 ≤ i ≤ w, 0 ≤ j ≤ 2b − 1

in the ring F2 [x] /(x
r − 1) which essentially are rotations of the compressed

matrix constants.
The input is mapped to the output using the message bytes mi as indices of

the uncompress matrix constants ci. The constants are summed up by exclusive-
or addition to form the output as follows:

(m1,m2, . . . ,mw) �→ c1 [m1]⊕ c2 [m2]⊕ · · · ⊕ cw [mw] .

When using the compressed matrix notation the mapping from input to output
is given by:

(m1,m2, . . . ,mw) �→ c [m1]x
128(w−1) ⊕ c [m2]x

128(w−2) ⊕ · · · ⊕ c [mw]

in F2 [x] /(x
r − 1).

3.2 A Concrete Proposal: RFSB-509

RFSB-509 is a concrete parameter proposal by the designers of RFSB which
achieves good software speed. In the original paper RFSB-509 is assumed to
provide a collision resistance of more than 2128. The proposed parameters are
r = 509, b = 8, and w = 112. Hence, the RFSB-509 input message size is
896bit (112byte) and the output size is 509bit. The compressed matrix is of
size 2b × r = 256× 509 bit which roughly amounts to 16 kByte. A recent result
by Kirchner [28] suggests an improved generalized birthday attack which claims
to lower the complexity to about 279. Hence, the parameters need to be adjusted
if a collision resistance of 128-bit is required.

Each element of the compressed matrix is generated using a concatenation
of the ciphertexts output by four AES-128 calls with fixed all-zero key and a
plaintext which is a function of the index of the constant. We denote the AES
calls by y = AESk (x) with y being the 16-byte ciphertext, k being the 16-byte
key, and x being the 16-byte plaintext. The plaintext is set to zero except for
the last two bytes. The second to last byte is set to j which is the index of the
constant and 0 ≤ j ≤ 255. The last byte of the plaintext is a counter which
increases with each AES-128 call from 0 to 3. In total this results in a 512-bit
string

c′ [j] = AES0 (0, . . . , 0, j, 0) ||AES0 (0, . . . , 0, j, 1) || . . . ||AES0 (0, . . . , 0, j, 3)

which is reduced to
c [j] = c′ [j] mod x509 − 1
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to stay in the ring F2 [x] /(x
509−1). The 112-byte input block (m1,m2, . . . ,m112)

with each mi ∈ {0, 1, . . . , 255} is mapped to the 509-bit output by computing

(m1,m2, . . . ,m112) �→ c [m1]x
128(112−1) ⊕ c [m2]x

128(112−2) ⊕ · · · ⊕ c [m112]

in F2 [x] /(x
509 − 1).

3.3 RFSB-509 from an Implementors’ Point-of-View

When designing RFSB-509 for embedded systems a few aspects have to be con-
sidered beforehand. In the following we detail considerations and optimizations
for implementations of RFSB-509 in embedded devices.

At first, the constant matrix, although compressed, still has a size of 16 kByte
which poses a challenge in embedded systems where memory usually is scarce.
Due to the computability of the constants there are basically two choices that
can be made. Either memory is spent to store the table or each constant is,
probably multiple times, generated on-the-fly when needed. For the on-the-fly
generation one has to keep in mind that each constant requires four calls to the
AES-128 encryption function, thus a total of 4× 112 = 448 AES encryptions are
required during one compression.

When compressing a message block the rotations applied to each constant
depend on the position of the current message byte. For example the first com-
putation in RFSB-509 is c [m1]x

128(112−1) = c [m1]x
14208 which requires to ro-

tate c [m1] by 14208 bit positions. When using 512-bit wide registers the amount
of different rotations performed during RFSB compression can be reduced to
just four since 128 (112− i) ≡ 128i mod 512 ∈ {0, 128, 256, 384}. Using this
the RFSB compression of the first four messages bytes (m1,m2,m3,m4) can be
rewritten as

s1 = ROL384 (c [m1])⊕ ROL256 (c [m2])⊕ ROL128 (c [m3])⊕ c [m4]

where ROLj denotes a j-bit rotation to the left (towards the most significant
bit) of a 512-bit register. The four different rotations and their exclusive-or sum
can be seen as basic compression unit of RFSB-509, which can be generalized to

si = ROL384 (c [m4i+1])⊕ ROL256 (c [m4i+2])⊕ ROL128 (c [m4i+3])⊕ c [m4i+4] .

In order to process all 112 input message bytes this computation has to be
repeated 28 times. Adding up all intermediate results si then yields the output
of the compression function

compress509 (m1, . . . ,m112) =

27∑
i=0

si mod x509 − 1

=

27∑
i=0

4∑
j=1

ROL512−128j (c [m4i+j ]) mod x509 − 1
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Basic RFSB-509 compression unitBasic RFSB-509 compression unit

c[m1]

ROL256 ROL128 ROL0

...

fold

output

ROL384

c[m2] c[m3] c[m4] c[m109]

ROL256 ROL128 ROL0ROL384

c[m110] c[m111] c[m112]

.

.

.

Fig. 2. The basic compression unit in RFSB consists of looking up four constants,
rotating them according to their position by either 384, 256, 128, or 0 bits and xoring
the result. The fold unit represents the reduction modulo x509 − 1 by folding the three
most significant bits onto the three least significant bits.

where the sums are formed using exclusive-or addition. Figure 2 illustrates the
tree-like structure of the RFSB-509 compression function and shows the repeti-
tions of the basic compression unit.

One further important detail is the computation of the reduction modulo
x509 − 1 for 512-bit registers. It is achieved by folding the three most significant
bits onto the three least significant bits and setting the three most significant
bits to zero. Such a reduction does not pose a problem on both platforms and
can be realized at minimal cost.

4 Designing RFSB-509 for Embedded Microcontrollers

For our evaluations of RFSB-509 on an embedded microcontroller we use the
wide-spread 8-bit ATxmega microcontroller family from Atmel. These microcon-
trollers are low-cost yet powerful enough for a wide range of cryptographic and
non-cryptographic applications. Apart from the usual features available in this
kind of devices (analog to digital converter, digital to analog converter, timers,
counters, several communication interfaces, etc.) the ATxmega offers dedicated
hardware accelerators for the encryption standards DES and AES-128.

All following designs are split into three basic functions init, update, and
final. During init we reset the internal state, output and counter to zero. The
update function implements the Merkle-Damg̊ard domain extender, processes
new message blocks and updates the internal state accordingly until the last
message block is reached. The last message block is processed by the finalization
function which pads the message, appends the length counter, compresses the
message and sets the output when finished.



346 I. von Maurich and T. Güneysu

When designing RFSB-509 for embedded microcontrollers there are basically
two different ways of realizing the RFSB compression function. Either the con-
stants are stored in a table or the constants are generated on-the-fly when needed.
One can also think of a hybrid mode, where the constants are not stored in the
program memory but are generated and stored in volatile SRAM when starting
the device. We explore all three possibilities an give details about the design
approach for each version in the following. The AES- and ROM-based imple-
mentations are done on an Atmel ATxmega128A1 microcontroller while the
SRAM-based implementation is done on an Atmel ATxmega384C3 microcon-
troller.

4.1 On-the-Fly Constant Generation

When designing a small memory footprint version of RFSB-509, on-the-fly con-
stant generation is required since the compressed constant table would consume
16 kByte of program memory which would render a lightweight implementation
impossible. Especially the hardware AES-128 offered in ATxmega devices is use-
ful in such a setting. The AES-128 crypto module runs concurrently to the CPU
and takes 375 clock cycles after loading the key and the plaintext block into the
module to en-/decrypt a 128-bit block. When taking loading and storing of key,
plaintext and ciphertext into account, an AES-128 encryption takes about 500
clock cycles or 31.25 cycles/byte. Thus when running at its maximum frequency
of 32MHz the ATxmega is able to achieve a AES-128 encryption throughput of
about 8 Mbit/s.

Our small footprint implementation of the RFSB-509 hash function is built
around a parameterizable constant generation function that is capable of pro-
viding rotation widths of 0, 128, 256, and 384 bit. In each iteration the constant
generation function computes four AES encryptions. After each encryption the
ciphertext is transferred into 16 general purpose registers and immediately after-
wards the next plaintext and key (which is the all-zero key for all encryptions but
has to be reloaded before every encryption nevertheless) are loaded into the AES
module and the next encryption is triggered. While waiting for the next encryp-
tion to finish, we concurrently process the previous ciphertext by accumulating
it to the output and reducing the computed constant modulo x509 − 1. Thus,
we make use of otherwise wasted cycles while the next encryption is running in
parallel. In order to maintain a reasonable performance, parts of the implemen-
tation are unrolled, e.g., storing and loading data to and from the AES crypto
module is unrolled since this part is critical for the overall runtime.

If the constants would be generated using DES instead of AES-128, the per-
formance of the on-the-fly constant generation could be further improved. Since
the output length of DES is half the output length of AES-128, twice the amount
of DES calls would be required. However, at 16 cycles per DES encryption after
loading the key and plaintext to the corresponding registers, this would still be
an order of magnitude faster than AES-128 encryption on an ATxmega micro-
controller. Since the performance of the encryption function is the limiting factor
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in such an implementation, the overall performance would greatly benefit from
such an improvement.

Note, the short key length of DES and its vulnerability to brute-force attacks
does not pose a thread to the security of RFSB-509 since all plaintexts and keys
are already known by definition. As stated in the original RFSB paper: “The
full security of AES is certainly not required for RFSB: all that we need is a
function generating a few elements of F2 [x] /(x

r− 1) without any obvious linear
structure” [9].

4.2 ROM-Based Lookup Table

A total of 16 kByte of programmemory is required when storing the precomputed
constant table in the ROM of the microcontroller. Each of the 256 entries in the
table consists of 64 byte, thus we multiply each message byte by 26 (shifting the
message byte six times to the left) to compute the index of the required constant.
Instead of first reading out the constant and then rotating it according to the
position of the current message byte, we adjust the table pointer beforehand to
directly read out the rotated constant. This is possible since all rotation widths
are a multiple of 8 and the basic addressable unit in our 8-bit microcontroller is a
byte. For example if a constant has to be rotated by 384bit, we add 384

8 = 48 to
the current index, read out 16 constant bytes, then subtract 64 from the current
index and read out the remaining 48 constant bytes. Thus we achieve nearly free
rotations by only adjusting the table pointer.

This process is repeated for all message bytes and rotation widths, and after
all constants have been read out and accumulated, the result is reduced modulo
x509 − 1.

In our evaluation we explore two different approaches, a rolled and an unrolled
version. In the unrolled version we remove every loop inside the computation
of the basic compression unit which computes the intermediate output of four
consecutive message bytes with four different rotation widths applied to the read
out constants (cf. Figure 2).

4.3 RAM-Based Lookup Table

In order to estimate the maximum achievable performance in embedded micro-
controllers, we move the constants from the program memory into the faster
SRAM. Accessing a byte in the program memory of the ATxmega takes 3 clock
cycles while accessing the internal SRAM takes 2 clock cycles. Since 112× 64 =
7168 byte have to be looked up when hashing one message block, this small dif-
ference can have a larger impact on the overall runtime than one might expect on
first sight. The hashing itself is constructed similar to the previously described
setup, with some minor adjustments taking care of the modified memory loca-
tions.

For this evaluation we use the Atmel ATxmega384C3 microcontroller since it
offers 32 kByte of SRAM. Devices offering 8 or 16 kByte of SRAM do not suffice
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in this scenario since in addition to the constant table also the current state and
the next message block have to be held in the SRAM.

A remaining question is how to place the RFSB-509 constants into the SRAM.
Since SRAM is volatile memory, its content has to be reloaded after every power
cycle. As designers we are left with two choices. Either we store the constants in
the program memory as done in Section 4.2 and copy them into SRAM at every
power up, or we generate the constants once at every power up and directly
store them in the SRAM. The decision which of the proposed methods to use
basically depends on two factors. Firstly, it has to be considered how much time
is available after a power cycle before the hash function has to be used for the
first time. Generating the constants takes longer then just copying them from
program memory to SRAM. Secondly, it depends on the available program mem-
ory. The generation function takes up less space in program memory compared
to a 16kByte table. In our implementation, we generate the constants after each
power up, thus avoiding redundant tables in RAM and ROM.

Again we explore two approaches: a rolled and an unrolled version similar to
the previously described ROM-table design.

5 Designing RFSB-509 for Reconfigurable Hardware

For our evaluation of RFSB-509 in reconfigurable hardware we use the low-cost
Xilinx Spartan-6 device family. Spartan-6 devices are powerful, up-to-date FP-
GAs offering hundreds to (ten-)thousands of slices, where each slice contains
four 6-input lookup tables (LUT), eight flip-flops (FF), and surrounding logic.
In addition to the general purpose logic, embedded resources such as block mem-
ories (BRAM) and digital signal processors (DSP) are available. Yet Spartan-6
devices are about an order of magnitude cheaper than Xilinxs’ high-performance
devices families Virtex-5 and Virtex-6.

For the design of RFSB-509 in reconfigurable hardware, we again follow two
different strategies of implementing the lookup of compressed matrix constants.
In one architecture we generate the constants when needed using on-the-fly AES
computations, in the other architectures we make use of the available block
memories to store the matrix constants.

Since different choices for the constant lookups only affect the compression
function of RFSB, all implementations share the same top-level component that
takes care of handling the input and output of data through FIFOs and passes
the data and control signals to the Merkle-Damg̊ard construction which is also
the same for all hardware implementations. Thus we design a modular system
in which the compression function can be easily exchanged. We detail on the
different compression function designs in the following.

5.1 Implementing RFSB-509 Using Embedded Block Memories

Spartan-6 FPGAs feature dual-ported block memories (BRAM) each capable of
storing up to 18Kbit of data. They can be configured to represent one of five
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different memory types. For our purpose we choose to configure the BRAMs as
dual-port read-only memory (ROM) since we do not need the write capability.
In each clock cycle two separate values can be read from two different memory
addresses because of the BRAMs’ dual-port layout.

Minimal BRAM Consumption. Since the compressed matrix constant table
has a size of about 15.9Kbyte a theoretical minimum of 15.9·8

18 = 7.07 BRAMs is
required to store the full table. However, a wide-access port of 509 bit for each
constant is not natively supported by the BRAM primitives. The maximum
natively supported width is 32 bit (36 when using the parity bits) or 64 bit (72
when using the parity bits) when combining both ports. Thus, for achieving a
minimal block memory usage, we use eight BRAMs to store the constants as
shown in Figure 3.

c[0]511_480

c[0]479_448

c[1]511_480

c[1]479_448

c[255]511_480

c[255]479_448

.

.

.
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c[1]63_32
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.
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. . .512

32 bit

512

32 bit

BRAM 1 BRAM 8

Fig. 3. Our smallest table based FPGA implementation of RFSB-509 requires 8 block
memories configured as 512×32 bit dual-port ROM. Every BRAM holds a 64-bit chunk
of the 509-bit constants (prepended by three zero bits) split into two 32-bit parts. Since
two memory slots of each BRAM can be read out in one clock cycle, one constant can
be read out in one clock cycle.

We configure the BRAMs to store 512 values of 32 bit each, which is natively
supported. The RFSB constants are divided into eight 64-bit chunks and are
distributed to the BRAMs. The 64-bit chunks are again split and stored in
two consecutive memory slots. Hence, BRAM1 holds the topmost 64-bit of all
256 RFSB constants, BRAM2 the following 64-bit of all RFSB constants and
so forth.

The index into the table is the current message byte mi appended by a zero
and a one bit to address both memory slots. Because of the dual-port layout of
the block memories, both 32-bit memory slots can be read out simultaneously.
This is done for all block memories at the same time and the results are con-
catenated and rotated to form the demanded constant ROLx (c [mi]). Because
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of this set-up, a complete already rotated RFSB-509 constant is available in one
clock cycle.

We sequentially iterate over all input message bytes, accumulate the read out
constants and reduce the result after all message byte have been processed.

Due to its tree-like structure, RFSB allows for very scalable designs which
allow to process multiple message bytes in one clock cycle since the inputs to
the block memories are independent of each other. In the following we make
different proposals of how to implement multiple constant lookups in one clock
cycle.

Wide-Access Block Memories. Our next architecture uses block memories
with wide-access ports to provide the matrix constants. Creating a 256 × 509-
bit table using the Xilinx block memory generator results in 15 occupied 18Kbit
BRAMs. With this architecture it is possible to read out two RFSB-509 constants
in one clock cycle, thus reducing the necessary cycles spent for table lookups by
a factor of 2 to 56 cycles.

The internal compression module now handles two bytes at once and applies
two different rotations to the read out constants depending on the position of the
message byte in the input string. In the first mode, one constant is rotated by
384-bit, the second by 256-bit, in the second mode the first constant is rotated
by 128-bit and the second is not rotated. Both constants are accumulated to
the intermediate result, the rotation mode is switched with every input message
pair and after the complete input block has been processed, the result is reduced
modulo x509 − 1.

Multiple Table Instances. For high-performance applications we explore ar-
chitectures in which we instantiate multiple of the aforementioned wide-access
block memories containing the full constant table. We go only so far that we still
stay within reasonable (i.e., realizable on current Spartan-6 devices) resource
boundaries.

In the first setting we use two tables which allows to process four message bytes
in one clock cycle, essentially representing the basic compression unit introduced
in Figure 2. Furthermore, it is now possible to hardwire the rotations applied
to the constants because the output of each of the block memory ports only
handles either c [m4i+1], c [m4i+2], c [m4i+3], or c [m4i+4], 0 ≤ i ≤ 27. The two
tables require 29 block memories and again halve the required clock cycles to 28
for the constant lookups for one 112-byte input block.

In a second design we use four separate instances of the constant table, which
requires 58 BRAMs. It enables us to look up eight message bytes per clock cycle
and finish the lookups after 14 clock cycles.

The third design quadruples the amount of block memories to be able to hold
eight parallel instances of the constant table. This requires 116 BRAMs and
allows to lookup 16 constant at the same time which means all constants are
retrieved in just 7 clock cycles.
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5.2 Implementing RFSB-509 Using an AES Core

To cover all possible designs, we also include on-the-fly generation of the matrix
constants using an hardware AES core. Since the key is always fixed to the all-
zero key, the key-schedule does not have to be implemented as the round-keys
can be precomputed. This of course is only true if the AES core is not used by
other applications that require the key to be adjustable during runtime. The
AES core in use is a T-table based implementation that occupies eight block
memories for storing the tables.

The constant computation unit is built straightforward. It receives a message
byte and starts four consecutive encryptions with the respective input blocks
as described in Section 3.2. Each result is xored to an internal output signal
and after the fourth encryption is finished, a modular reduction is performed
and the constant is output. The higher level unit receives the constant, rotates
it according to the position of the current message byte and passes the next
message byte to the constant computation unit.

6 Results

All our implementations are verified against testvectors generated using the ref-
erence implementation of RFSB-509 by Schwabe which was submitted to the
ECRYPT Benchmarking of Cryptographic Systems (eBACS) [7].

The results for embedded microcontrollers are provided by the Atmel AVR
Studio 6, and the implementations are additionally tested in real hardware using
an AVR XPLAIN board equipped with an ATxmega128A1. In addition, the
microcontroller implementations feature a full padding unit.

The FPGA results are achieved using post place-and-route results from Xilinx
ISE Design Suite 14.1. As target device we use a Spartan-6 FPGA XC6SLX100,
but we stress that for all implementations smaller Spartan-6 FPGAs suffice.

The output filter is currently not implemented because a wide range of SHA-
256 implementation is already available in hard- and software. Neglecting the
output filter arguably does not effect the performance measurements when hash-
ing long messages since it is only applied once to the output of the RFSB-509
compression function.

In the following we present our microcontroller and FPGA results and com-
pare them to other hash function implementations on similar devices.

6.1 Embedded Microcontrollers

Table 1 shows the results of our implementations of RFSB-509 on the embedded
microcontrollerATxmega.The achievable performance ismeasured in cycles/byte,
where the amount of clock cycles required for calling the update function is divided
by 48 byte although in total 112 byte are hashed. This is due to the fact, that only
48 fresh message bytes enter each compression function because of the Merkle-
Damg̊ard construction. Thus, these figures give a realistic performance overview
when hashing long messages.
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Table 1. Results of RFSB-509 achieved on the embedded microcontroller Atmel
ATxmega128A1. *Results for the SRAM table based implementations are measured
on an ATxmega384C3.

Design ROM RAM Cycles/ Used Used
[byte] [byte] Byte ROM RAM

HW-AES 732 232 4753.1 0.5% 2.8%
ROM table 602+16384 232 1573.9 12.2% 2.8%
ROM table unrolled 3100+16384 232 1114.9 14.0% 2.8%
RAM table∗ 996 232+16384 1424.5 4.2% 50.7%
RAM table unrolled∗ 3494 232+16384 965.6 4.9% 50.7%

All implementations require 232 byte of RAM, split into 112-byte state, 48-
byte input, 64-byte output and an 8-byte counter. An additional 16 kByte of
SRAM are used by the SRAM-based table implementations to store the table.

The fastest implementation is running at 965.6 cycles/byte but is so far only
realizable in a few 8-bit microcontrollers since only newer devices meet the RAM
requirements. The fastest ROM-based implementation computes one RFSB-509
round at 1114.9 cycles/byte. The counterpart to the unrolled version does not
seem to be a good choice, since program memory at this size is not a problem for
current microcontrollers and spending an additional 2.5Kbyte of ROM seems to
be worth the 460 cycles/byte performance improvement.

Our smallest implementation, the one based on AES encryptions, only requires
732byte of ROM which falls into the lightweight cryptography category. If ROM
memory is scarce, the current version could be implemented even smaller since
some loops have been unrolled to improve the performance. Since for every con-
stant the AES encryption is called four times, 448 AES encryptions are needed
during compression. When assuming 500 clock cycles for each AES encryption
we get a lower bound of 224000 clock cycles or 4666.7 cycles/byte for the en-
cryptions, not counting rotations, modular reductions and the combination of
looked-up constants to form the output. Our result of 4753.1 cycles/byte comes
very close to this lower bound.

Although RFSB fits well on current embedded microcontrollers and performs
at a decent speed, beating implementations of the SHA-3 candidates is not pos-
sible due to memory requirements caused by the size of the matrix constant
table. When comparing the lightweight AES-based implementation to the re-
sults of a ECRYPT initiative that aims to provide a comprehensive collection of
lightweight implementations of hash functions [1], RFSB-509 beats well known
hash functions such as SHA-256, BLAKE-256, JH-256, and Skein-256 in terms
of code size and outperforms JH-256, and sponge-based construction such as
PHOTON and SPONGENT. However, it has to be noted that the other imple-
mentations do not use the crypto accelerators.
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6.2 Reconfigurable Hardware

Table 2 contains our FPGA results taken from the post place-and-route reports
which in contrast to post-synthesis figures take actual delays in hardware into
account. The different designs using BRAM tables are named RFSB-509 x where
x denotes the amount of used block memories.

Table 2. Results of RFSB-509 achieved on a Xilinx Spartan-6 XC6SLX100. We mea-
sure the occupied slices, used flip flops(FF), 6-input lookup tables (LUT), and the
maximum clock frequency f . From this we compute the cycles/byte, the throughput
(Tp), and for comparison the throughput to area ratio (Tp/Area).

Design Occ. Slice Slice 18Kbit f Cycles/ Tp Tp/Area

Slices FFs LUTs BRAM [MHz] Byte [Mbit/s] [Mbit/s
Slices

]

AES-based 1526 5793 4920 8 260.2 213.8 9.3 0.01
RFSB-509 8 1402 4621 4316 8 259.4 2.46 805.1 0.57
RFSB-509 15 1381 4106 4277 15 234.7 1.25 1,432.8 1.04
RFSB-509 29 1409 4101 4309 29 223.0 0.65 2,633.9 1.87
RFSB-509 58 1447 4070 3709 58 171.1 0.38 3,480.2 2.41
RFSB-509 116 2112 4071 4690 116 146.2 0.21 5,354.0 2.54

To measure the performance of our implementations we count the clock cy-
cles consumed for loading new message bits into the Merkle-Damg̊ard state,
compressing the current state and updating it accordingly. We divide the num-
ber of clock cycles by 48 instead of 112 byte since due to the Merkle-Damg̊ard
construction only 48 new message bytes enter each 112-byte compression. In ad-
dition, we compute the achieved throughput of each implementation as Tp =
clock frequency×8

cycles/byte . In terms of speed the amount of utilized block memories di-

rectly correlates with the performance. When using just 8 BRAMs a throughput
of 805.1 Mbit/s can be achieved. Our fastest implementation runs at 5.35 Gbit/s
and consumes 116 block memories. A designer is thus left with the decision of
how many block memory resources he is willing to spend for the hash function
or from a different perspective how many block memories have to be spent for a
certain performance goal.

We measure the required area on an FPGA in terms of occupied flip-flops,
LUTs, and BRAMs.We also include the number of occupied slices for comparison
even though this number has to be considered with care since the slice count itself
does not reveal the actual degree of used logic inside the slice and neglects the
number of occupied embedded resources (e.g., DSPs and BRAMs). The overall
slice count stays on the same level for nearly all of our implementations, only the
fastest implementation occupies more slices but the amount of used flip-flops and
LUTs does not increase on the same scale. This is due to fact that block memories
are spread out over the FPGA and are not located at only one designated area.
Usually this leaves more freedom of where to place an implementation on the
FPGA but when combining more than just a few BRAMs, the design is spread
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out leading to partly used slices. It also increases the critical path which explains
the decreasing clock frequency for the 58 and 116 BRAM variants.

Note, the performance and size of the AES-based design is inherently de-
pended on the underlying AES core. Nevertheless, using on-the-fly constant
generation on an FPGA does not seem to be a good choice since the required
resources are nearly the same as in our smallest BRAM implementation plus ad-
ditional logic for the AES core (393 flip-flops, 326 LUTs, 130 slices, 8 BRAMs,
and 21 clock cycles for one encryption). The performance however is two orders
of magnitude slower. The only scenario in which an AES-based implementation
could be favorable is a setting in which no block memories are present (which of
course would also require a non BRAM-based AES implementation).

We compare our results to a recent evaluation of the hardware performance
of the five SHA-3 finalists [21] and a recent implementation of the lattice-based
hash function SWIFFTX [22] in Table 3. When comparing the plain numbers one
has to keep in mind that our implementation results are achieved on low-cost
Xilinx Spartan-6 devices while the other results are measured using high-end
Xilinx Virtex-5 and Virtex-6 devices. Nevertheless, our implementations keep
up with most implementations and get only clearly beaten by the Keccak-256
hardware implementation.

Table 3. In this table our results are compared to other hash functions implemented
in hardware. The results of [21] are given for high-end Xilinx Virtex-6 devices, [22] for
Xilinx Virtex-5 and our results for the low-cost Xilinx Spartan-6.

Hash Function Occ. Tp Tp/Area Device

Slices [Gbit/s] [Mbit/s
Slices

] [Xilinx]

RFSB-509 58 1,447 3.48 2.41 Spartan-6
RFSB-509 116 2,112 5.34 2.54 Spartan-6
SWIFFTX [22] 16,645 4.85 0.29 Virtex-5
SHA-256 [21] 239 1.63 6.83 Virtex-6
Helion Fast SHA-256 [23] 214 1.5 7.01 Spartan-6
BLAKE-256 [21] 2,530 8.06 3.18 Virtex-6
Grøstl-256 [21] 898 4.20 4.68 Virtex-6
JH-256 [21] 849 5.41 6.37 Virtex-6
Keccak-256 [21] 1,474 18.80 12.76 Virtex-6
Skein-256 [21] 1,628 6.21 3.82 Virtex-6

7 Conclusion

In this work, we presented the first implementations of RFSB-509 for embedded
microcontrollers and reconfigurable hardware. Different designs from lightweight
to high speed implementations have been evaluated and proven to be feasible
on both platforms with competitive results in code size/area and performance.
Our result show that code-based hash functions are practical and can be used
in real-world application involving embedded systems.
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Abstract. Compact hardware implementations are important for enabling secu-
rity services on constrained devices like radio-frequency identification (RFID)
tags or sensor nodes where chip area is highly limited. In this work we present
compact hardware implementations of the block ciphers: mCrypton, NOEKEON,
and SEA. Our implementations are significantly smaller in terms of chip area than
the results available in related work. In case of NOEKEON, we even provide the
first hardware-implementation results of this algorithm at all. Our implementa-
tions are designed as stand-alone hardware modules, contain an 8-bit interface for
communication, and support encryption as well as decryption operation. We give
results for different datapath widths and evaluate also the impact of using shift
registers or latch-based memory instead of flip flops. The most-compact imple-
mentation of mCrypton requires 2 709 GEs when using a 130 nm CMOS process
technology from Faraday. NOEKEON and SEA consume 2 880 and 2 562 GEs,
respectively.

Keywords: low-resource hardware implementation, RFID, symmetric crypto-
graphy, block cipher, low power consumption, shift register, 8-bit interface.

1 Introduction

Compact hardware implementations of cryptographic algorithms are inevitable for re-
source-constrained devices where chip area has to be kept low. A prominent example
are radio-frequency identification (RFID) tags that will be used in the future Internet
of Things (IoT). The vision of the future IoT is to provide communication capabilities
to every object by equipping it with an RFID tag. Equipping every object with a tag
requires the tags to be produced in high volume and at low price to make them com-
petitive. Since chip area is a significant cost factor, such tags are designed towards low
resource usage.

In this work we present compact hardware implementations of the block ciphers:
mCrypton, NOEKEON, and SEA. For mCrypton and NOEKEON a key size of 128 bits
is used. SEA uses a key size of 96 bits (SEA96,8). The implementations are stand-alone
hardware modules that already include an interface for communication. With the inter-
face, commands are sent to the hardware modules (e.g., to start an encryption operation)
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and data is exchanged with them (e.g., to load the plaintext or to read the ciphertext). In
many publications, costs in terms of additional chip area and clock cycles introduced by
the interface are not considered when providing low-area hardware implementations. In
this work, we compare the impact of using shift-registers and scan-chain flip flops to
lower the overhead costs of the interface.

For each block cipher, we implement different datapath widths and optimization vari-
ants. Data and key are completely stored in the hardware modules. All modules support
encryption as well es decryption operation. Our most-compact implementations are in
the range of 2 562 to 2 880 GEs (one gate equivalent (GE) is the area consumed by
a two-input NAND gate) when using a 130 nm CMOS process technology, which is
significantly smaller than results given in related work.

The remainder of this paper is structured as follows. Section 2 describes the three
block ciphers in short. In Section 3 we outline the general optimization techniques to
lower the area requirements of our hardware circuits. Detailed implementation results
are provided in Section 4, followed by a short summary and comparison with related
work in Section 5. Conclusions are drawn in Section 6.

2 Description of the Block Ciphers

In this section we give a short description of the three block ciphers that we have used
for our low-resource implementations. The block ciphers are: mCrypton, NOEKEON,
and SEA. Block ciphers with different key lengths, state sizes, and structures have been
selected to allow a better comparison of the effects of our optimization techniques on
them (i.e., to evaluate if a technique suites better, e.g., for a certain block-cipher struc-
ture). Besides resource usage, security provided by the block ciphers has also been a
selection criteria.

2.1 mCrypton

mCrypton has been designed by Chae Hoon Lim and Tymur Korkishko in 2005 [13].
The authors aimed at developing a very resource-efficient algorithm suitable for con-
strained devices like RFID tags. The architecture is very similar to Crypton but a re-
design and simplification of all components has allowed a smaller implementation.
mCrypton is a 64-bit block cipher with support for three different key sizes: 64, 96,
and 128 bits. In our implementation we have used a key size of 128 bits (mCrypton-
128). The cipher is round based with each round consisting of four subsequent steps
called: Gamma, Pi, Tau, and Sigma. This round function is applied 12 times. In ad-
dition, a key-scheduling mechanism derives a round key from the cipher key for each
round. mCrypton provides a good security level. The best-known attack applies on 9
rounds of mCrypton and has been published by Mala et al. in 2012 [15].

The function Gamma used by mCrypton is a nonlinear substitution using four differ-
ent S-boxes to transform the input. Pi is a more complex column-wise bit permutation
using constants, AND and XOR operations followed by Tau. The function Tau is only
a permutation (column-to-row transposition) of the state. The last part of a round is the
key addition Sigma, which is the state XORed with the current round key. In order to
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derive the round key, mCrypton uses a key-scheduling mechanism. For encryption, the
key schedule uses round constants as well as AND and XOR operations to determine
the current round key. Afterwards, a permutation of the key register is performed. For
decryption an additional permutation Phi (consisting of the functions Tau and Pi) is
applied to derive the round key. For further details we refer to [13].

2.2 NOEKEON

The second block cipher that we have implemented is NOEKEON, which has been de-
signed by Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen in
2000 [4]. The cipher is based on a substitution-linear transformation network where
both block size and key size are fixed to 128 bits. NOEKEON mainly consists of a
simple round function that involves five operations: XOR with a round constant rconst,
Theta, Pi1, Gamma, and Pi2. All operations only rely on simple bit-wise Boolean op-
erations and cyclic shifts. The operation Theta also involves an XOR with the working
key, which is either the initial cipher key itself (direct mode) or the cipher key deduced
from using a key schedule (indirect mode). The key schedule in indirect mode applies
the NOEKEON cipher itself on the cipher key with a null string as working key. The
authors of the cipher recommend using the key schedule since it increases the resistance
against related-key attacks.

A full encryption or decryption operation of NOEKEON consists of 16 iterations
of the round function, followed by an additional application of Theta. Due to the self-
inverse structure of NOEKEON, implementing the decryption operation causes only
little overhead in terms of chip area. The best-known attack on NOEKEON applies
on 5 out of 16 rounds and has been published by Z’aba et al. in 2008 [19]. Related-
key attacks on both modes the direct one and the indirect one have been presented by
Knudsen et al. in 2001 [11].

2.3 SEA

SEA stands for Scalable Encryption Algorithm and is a round-based block cipher that
has been published by Standaert et al. in 2006 [17]. The block cipher has been designed
for software implementations with small throughput requirements and limited hardware
resources. One of the key features of SEA is the ability to adjust the algorithm to a
specific processor word size, which allows to run it efficiently on various platforms.
Block size and key size are equal and can be freely adjusted to an integer multiple of
6 times the word size. Besides the flexibility the algorithm also provides a very simple
structure that uses only operations like XOR, addition, and bit/word rotation. For this
work SEA96,8 with a block size of 96 bits and a word size of 8 bits has been chosen.

SEA uses a Feistel structure for both data and round-key calculation. Round keys
are generated symmetrically which means that the first round key equals the last one.
Because of this property there is no difference in the key schedule for encryption and
decryption operation (also no need to reload the key when processing multiple data
blocks). Data and round-key computation of SEA are quite similar, easing a compact
implementation of the block cipher. Four different basic operations are applied by SEA:
word/bit rotations, XOR computation, modulo addition, and an S-box transformation.
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The word-rotate functions R and R−1 rotate a complete branch at word level. The bit
rotate function r, which also works on word level, rotates the bits inside the words. The
S-box transformation operates on single bits of three different words at the same time.

In addition to software-based implementations, various publications have shown that
SEA is also well suited for hardware implementations on FPGAs [12] or ASICs [17].
This results from the fact that only simple logic operations and bit-wise shifts are used,
which can be efficiently realized in hardware. So far only little security-analysis results
of SEA are available. However, as the authors have reported in [17], several security
aspects have already been investigated and incorporated during the development process
of the block cipher, making it resistant against state-of-the-art cryptanalysis.

3 General Optimization Techniques

In order to minimize the area requirement of the block-cipher implementations, dif-
ferent optimization techniques have been used and combined. The first and often one
of the most powerful techniques concerns optimization on algorithmic level, e.g., to
use alternative representations or to rearrange the execution order of operations. Other
optimizations that are more general aim at changing the architecture or use advanta-
geous realizations on implementation level. Details about optimizations on algorithmic
level are explained individually for each algorithm in the result section. In this section
we focus on general optimizations such as reducing the datapath width, and shrinking
implementation costs of interface and data memory.

3.1 Datapath Width

The block ciphers presented in the previous section have been implemented with focus
on minimum area requirement. For this reason, implementations with different datapath
widths have been designed. Reducing the datapath width of an implementation has the
advantage that less hardware resources are required for realizing the required opera-
tions (e.g., less XOR gates, S-boxes or adders). However, designs with smaller datapath
widths have typically higher control complexity (i.e., larger control unit) and need often
also extra multiplexers that introduce additional area overhead.

Starting from full-size versions we scaled the datapath width down to minimum-
size versions. The full-size versions use the same datapath width as the state/key. The
minimum-size versions use a datapath width of 8 bits for NOEKEON/SEA and 4 bits
for mCrypton, respectively. Although full-size datapath implementations have already
been published for two of the selected block ciphers (mCrypton and SEA), we have
decided to reimplement them for allowing a fairer comparison. Typically, it is rather
difficult to compare implementations that have been obtained by using different synthe-
sis parameters and/or CMOS process technologies.

3.2 Realization of Interface

When a block-cipher module is used in an embedded device or an RFID tag for en-
crypting/decrypting data, it is not practical to have an interface with a data width equal
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to that of the state/key size. This is an aspect that is often ignored in related work, since
depending on the realization of the interface significant overhead costs in terms of area
requirements arise. Not only area requirement but also execution time and energy con-
sumption are strongly influenced by the interface. Many microcontrollers (e.g., AVR
from Atmel [3] or MSP430 from Texas Instruments [18]) that are available for embed-
ded applications provide interfaces with 8 or 16-bit data width, which requires that data
is exchanged byte/word wise with the block-cipher module.

All our block-cipher modules have an 8-bit AMBA APB interface [2] integrated. The
interface allows not only data exchange, but also sending of commands to the module
(e.g., to start a computation) as well as reading status information from it (e.g., whether
computation is finished). In that way, data is written to and read from the hardware mod-
ules in a byte-wise manner. A schematic overview of the AMBA interface is provided
in Figure 1. A single read or write operation requires two clock cycles. When applying
multiple operations on the same address, which is typically the case when writing or
reading data in a burst way, only the very first operation consumes two clock cycles.
Consecutive operations require only a single clock cycle, leading to a lower communi-
cation overhead. For handling a single block of data we get a communication overhead
of nAMBA clock cycles as stated in Equation 1. This communication overhead consists
of loading plaintext and key, starting the encryption/decryption operation, polling for
the end of the operation, as well as reading the result (ciphertext). When using for ex-
ample mCrypton with a 64-bit state and a 128-bit key, this results in a communication
overhead of 39 clock cycles.

nAMBA = (Byte numState + 1) · 2 + (Byte numKey + 1) + 4 (1)

A big disadvantage of such an interface are the additional area costs that result from
the integration of additional multiplexers that are necessary for loading data into the
state/key registers as well as selecting a single byte from the state register for reading
the result. Especially for larger datapath widths, additional area costs are significant
for two reasons. First, a larger datapath width implies larger additional multiplexers for
loading data into the state/key registers. Second, for a full-size datapath version, an out-
put multiplexer that selects a single byte from the state register is typically not required
for the block-cipher implementation itself and is therefore only used for the interface.
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For a minimal-datapath version on the other hand that operates on a single byte of the
state at once, such an output multiplexer is inherently used for the computation and
consequently causes no overhead costs when reused by the interface.

Instead of using standard flip flops and multiplexers for realizing the AMBA inter-
face as shown in Figure 1, we have also implemented a shift-register based variant with
so-called scan-chain flip flops. Using shift registers to lower the area requirement has
been proposed, e.g., by Hämäläinen et al. [9] and Moradi et al. [16]. A schematic
overview of the AMBA interface with shift registers is given in Figure 2. No output
multiplexer is required for reading the result, as data is simply shifted out byte-by-byte.
Moreover, using scan-chain flip flops has the advantage that also no extra multiplexers
are required for realizing the shift-register functionality. Scan-chain flip flops provide
the functionality to handle both shifting of data and loading of data in parallel. Looking
at the size of a scan-chain flip flop shows that it has a lower footprint than a standard
flip flop with an extra multiplexer, leading to further area savings (about 1 GE per bit
for our 130 nm CMOS technology).

3.3 Latch-Based Memory

Another design concept that helps reducing the area requirements of a hardware circuit
is using latches instead of flip flops. State and key are typically stored in flip flops (or
scan-chain flip flops), consuming around 6 GEs per bit (exact value depends on CMOS
technology and driving strength of flip flop). An alternative to flip flops for storing
data are latches, which have the advantage that they are smaller in size (1-2 GEs per
bit). However, using latches requires careful circuit design to obtain reliable results.
One such aspect that has to be considered is, for example, that input data needs to be
buffered in an extra register stage. Figure 3 and Figure 4 show the typical realization
of data memory with flip flops and latches, respectively (CG in the figures stands for
clock-gating cell). Due to the additional register stage for buffering the input data that
is written into the memory, the latch-based approach is only attractive when the input
data-bit width is rather small (e.g., for RAM-like memory structures). We have used
latch-based memory for our minimum-size datapath implementations to further reduce
the area requirements.
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4 Implementation Results

We have implemented stand-alone hardware modules of the block ciphers mCrypton,
NOEKEON, and SEA with focus on minimum area requirement. Encryption and de-
cryption functionality of all block ciphers are realized. Both state and key are
completely stored in the modules, requiring therefore no external storage memory or
input during computation. All implementations contain an 8-bit AMBA interface for
exchanging data and control information. The naming scheme of the implementations
consists of the datapath (DP) width in bits, the type of storage elements (i.e., flip flops
(FF), scan-chain flip flops (SC-FF) or latches (Lh)) used for state/key memory, the num-
ber of cycles per full round, and eventually further properties of the implementation.
Tables 1, 3, and 5 summarize the execution times of the implementations and list the
cycles consumed by the interface as well as by the computation of the block cipher
(algorithm) itself.

The block ciphers have been implemented in VHDL and synthesized for a 130 nm
CMOS standard-cell technology from Faraday with 1.2 volts supply voltage [5]. For
synthesis, we have used a semi-custom design flow working with Cadence RTL Com-
piler. Power simulations have been performed with Cadence First Encounter Power
Estimator (operates on extracted netlist and VCD file obtained from simulation). Ta-
bles 2, 4, and 6 provide an overview of the area values obtained for our implemen-
tations after synthesis and after place and route for the 130 nm technology as well as
power-consumption values.

4.1 mCrypton

Our first implementation of mCrypton is a one-cycle-per round version that uses a 64-bit
datapath for the state and a 128-bit datapath for the key schedule. The implementation
of Lim et al. [13] served as starting point, which uses a slightly different arrangement of
the operations than the original specification. The reason for this is that replacing Pi by
its transposed version PiT in the round function simplifies the overall structure, as shown
in Equation 2 (note that Gamma and its inverse commute, i.e., Gamma ◦ Tau is equal to
Tau ◦ Gamma). As suggested by the authors, we also instantiated only a single set of 16
4-bit S-boxes for realizing both Gamma and Gamma-1. The Gamma-1 operation is im-
plemented by simply rearranging the data (via Mix and Mix-1), saving around 300 GEs.
When using standard flip flops for state and key memory, 4 290 GEs are required for
this implementation (64DP FF 1cycle) as listed in Table 2. Using scan-chain flip flops
connected as 8-bit shift registers reduces the area to 3 835 GEs (64DP SC-FF 1cycle).
The variant with standard flip flops leads to a similar size than the implementation of
Lim et al. , whereas our module also contains already an 8-bit AMBA interface for com-
munication. An overview of the datapath with shift registers is provided in Figure 5.

A first optimization that can be applied concerns the key schedule. Three shift oper-
ations are used by the key schedule: Shift0 derives the initial state of the key register for
decryption operation from the cipher key, Shift1 and Shift2 are used for updating the key
register after each round for encryption and decryption, respectively. Instead of using
Shift0 , the initial state of the key register for decryption (corresponds to the last state of
the key register during encryption) can also be derived by applying the shift operation
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Shift1 that is used for updating the key register during encryption multiple times. This
reduces the size of multiplexer M4, but increases the time for decrypting data from 13
to 24 clock cycles. The impact of this measure on the overall size of the implementa-
tion is around 50 to 100 GEs, which as rather small (cf. 64DP FF 1cycle drvKey and
64DP FF 1cycle drvKey in Table 2).

mCrypton = Sigma ◦Gamma ◦ Pi ◦ Tau ◦ Sigma︸ ︷︷ ︸
12×

◦Tau ◦ Pi ◦ Tau

= Sigma ◦Gamma ◦ Tau ◦ PiT ◦ Sigma︸ ︷︷ ︸
12×

◦PiT

= Sigma ◦Gamma ◦ Tau ◦ PiT︸ ︷︷ ︸
12×

◦Sigma ◦ PiT

= Sigma ◦ Tau ◦Gamma ◦ PiT︸ ︷︷ ︸
12×

◦Sigma ◦ PiT (2)

Another concept to lowered the area requirement is splitting the datapath into three
parts, one for computing Sigma, one for PiT, and one for Tau and Gamma. In that way,
one round of mCrypton requires three clock cycles instead of one, but execution order
of operations can be rearranged as illustrated in Equation 3 when decrypting data. By
using this rearranged execution order, Phi transformation of the round keys is no longer
required (note that Phi is equal to PiT) when decrypting data. Hence, not only Phi can
be omitted but also multiplexer M5, saving around 400 GEs. The resulting implemen-
tations consume 3 858 GEs with standard flip flops (64DP FF 3cycles) and 3 425 GEs
with scan-chain flip flops (64DP SC-FF 3cycles). Figure 6 sketches the architecture of
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Table 1. Overview of the execution times of the mCrypton implementations

Implementation Interface
Encryption Decryption

Algorithm Interface Total Algorithm Interface Total
- - [Cycles] [Cycles] [Cycles] [Cycles] [Cycles] [Cycles]

64DP FF 1cycle 8-bit AMBA 13 39 52 13 39 52
64DP SC-FF 1cycle 8-bit AMBA (SR) 13 39 52 13 39 52
64DP FF 1cycle drvKey 8-bit AMBA 13 39 52 24 39 63
64DP SC-FF 1cycle drvKey 8-bit AMBA (SR) 13 39 52 24 39 63
64DP FF 3cycles 8-bit AMBA 38 39 77 38 39 77
64DP SC-FF 3cycles 8-bit AMBA (SR) 38 39 77 38 39 77
64DP FF 3cycles drvKey 8-bit AMBA 38 39 77 49 39 88
64DP SC-FF 3cycles drvKey 8-bit AMBA (SR) 38 39 77 49 39 88
16DP FF 12cycles 8-bit AMBA 152 39 191 152 39 191
16DP SC-FF 12cycles 8-bit AMBA (SR) 152 39 191 152 39 191
16DP FF 12cycles drvKey 8-bit AMBA 152 39 191 163 39 202
16DP SC-FF 12cycles drvKey 8-bit AMBA (SR) 152 39 191 163 39 202
4DP FF 207cycles 8-bit AMBA 2 637 39 2 676 3 021 39 3 060
4DP Lh 207cycles 8-bit AMBA 2 637 39 2 676 3 021 39 3 060
Lim et al. [13], 64DP FF 1cycle no 13 n/a 13 13 n/a 13

Table 2. Area and power-consumption values of the mCrypton implementations (for 130 nm)

Implementation
Synthesis Place&route Power

Control Datapath Total Control Datapath Total (at 100 kHz)
- [GEs] [GEs] [GEs] [GEs] [GEs] [GEs] [µW]

64DP FF 1cycle 97 4 042 4 139 97 4 193 4 290 1.08
64DP SC-FF 1cycle 42 3 661 3 703 40 3 795 3 835 1.05
64DP FF 1cycle drvKey 125 3 943 4 068 126 4 087 4 213 1.15
64DP SC-FF 1cycle drvKey 110 3 522 3 632 71 3 630 3 701 0.96
64DP FF 3cycles 128 3 619 3 747 128 3 730 3 858 0.72
64DP SC-FF 3cycles 74 3 257 3 331 71 3 354 3 425 0.78
64DP FF 3cycles drvKey 161 3 531 3 692 163 3 662 3 825 0.76
64DP SC-FF 3cycles drvKey 110 3 169 3 279 109 3 275 3 384 0.83
16DP FF 12cycles 216 2 983 3 199 215 3 131 3 346 0.79
16DP SC-FF 12cycles 91 2 575 2 666 85 2 674 2 759 0.68
16DP FF 12cycles drvKey 261 2 882 3 143 262 3 014 3 276 0.77
16DP SC-FF 12cycles drvKey 122 2 472 2 594 118 2 591 2 709 0.70
4DP FF 207cycles 616 2 127 2 743 619 2 343 2 962 0.68
4DP Lh 207cycles 585 1 982 2 567 587 2 197 2 784 0.58
Lim et al. [13], 64DP FF 1cycle n/a n/a 4 108 n/a n/a n/a n/a

the three-cycle-per-round variant. Again, Shift0 can be omitted when deriving the initial
state of the key register during decryption operation by applying Shift1 multiple times,
saving another 50 to 100 GEs.

Sigma(Phi(K12−i)) ◦ Tau ◦Gamma−1 ◦ PiT︸ ︷︷ ︸
i=0···11

◦Sigma(Phi(K0)) ◦ PiT =

PiT ◦ Sigma(K12) ◦ PiT ◦ Tau ◦Gamma−1 ◦ Sigma(K12−i)︸ ︷︷ ︸
i=1···12

(3)

The highly regular structure of mCrypton allows to independently handle a single row
of the state (note that we use PiT that operates row wise). This property makes it rather
easy to reduce the datapath width of the round function from 64 bits to 16 bits (i.e.,
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operating on a single row). Hence, only a quarter of the operations Sigma, PiT, and
Gamma has to be implemented. Moreover, by implicitly shifting the data 16 bits to the
right (via rewiring) within each round, no additional multiplexes are needed for select-
ing the proper row from the state, as illustrated in the schematic view of the architecture
in Figure 7. Only multiplexer M2 for selecting between transposed and not transposed
data and M4 for selecting the proper row from the round key are required. Computing
one round of mCrypton lasts 12 clock cycles, whereas each of the three operations is
sequentially applied four times on the state data. This results in 152 clock cycles for
encrypting and decrypting a data block, respectively (cf. Table 1). The reduced datap-
ath architecture brings an area gain of about 600 GEs. Hence, with standard flip flops
3 346 GEs are required (16DP FF 12cycles), with scan-chain flip flops connected as 8-
bit shift registers only 2 759 GEs (16DP SC-FF 12cycles). Deriving the initial state of
the key register during decryption operation (i.e., omitting Shift0) brings another gain
of 50 GEs.

The minimum-datapath version operates on 4 bits of the state and on 16 bits of the
key at once. Two additional registers for temporary storage are required, the 4-bit ACC
register and the 16-bit Temp register. An overview of the minimal datapath is given in
Figure 9. The state is stored in a RAM-like memory of 8 × 8 bits, and the key in a
RAM-like memory of 8 × 16 bits. The execution time significantly increases to more
than 200 cycles per round. Extracting the round key from the key register and apply-
ing Sigma consumes 57 cycles. Gamma and PiT require 32 and 96 cycles, respectively.
Key-register update consumes 22 cycles for encryption and 32 cycles for decryption.
For decryption operation another 264 cycles are required to derive the initial state of
the key register from the cipher key. The minimum-datapath implementation has a size
of 2 962 GEs when using standard flip flops (4DP FF 207cycles). When using a latch-
based memory for state and key memory, area requirement is lowered to 2 784 GEs
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(4DP Lh 207cycles). However, even with latch-based memory the design is still slightly
larger than the 12-cycle-per-round implementation. The main reason for this is the large
control unit of the minimum-datapath version, which consumes around 600 GEs, nulli-
fying all the area savings obtained by compacting the datapath.

4.2 NOEKEON

Datapath widths of 128, 32, and 8 bits have been implemented for NOEKEON. Indi-
rect version of NOEKEON is used, but in order to shorten computation time, we have
directly loaded the working key that has been derived from the cipher key into the hard-
ware modules. This simplification can be done since the working key is independent of
the processed data and constant for all rounds.

The straightforward implementation with 128-bit datapath computes a single round
within one clock cycle. Hence, encrypting a data block lasts 17 clock cycles (16 rounds
plus a final application of Theta). Decrypting data requires an additional cycle, as the
decryption key KD is first derived from the working key K. Deriving KD has the advan-
tage that Theta can be reused for decrypting data without the need for implementing
Theta-1 as well. The relation between Theta and Theta-1 is given in Equation 4. KD is
derived from K (which is loaded first into the state register) by applying Theta on K with
an all-zero value. The one-cycle-per-round architecture consumes 4 981 GEs with stan-
dard flip flops (128DP FF 1cycle) and 4 316 GEs (128DP SC-FF 1cycle) with scan-
chain flip flops as listed in Table 4. An overview of the datapath structure with scan-
chain flip flops is given in Figure 8. Around 150 GEs can be saved when externally
filling the key register (i.e., via the AMBA interface) with zeros before deriving KD

(cf. 128DP FF 1cycle extLoad and 128DP SC-FF 1cycle extLoad in Table 4), as this
allows to remove the AND gate at the output of the key register. However, externally
filling the key register increases execution time by 17 clock cycles when decrypting
data.

Theta−1(K, data) = Theta(KD, data) = Theta(Theta(0,K), data) (4)
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Table 3. Overview of the execution times of the NOEKEON implementations

Implementation Interface
Encryption Decryption

Algorithm Interface Total Algorithm Interface Total
- - [Cycles] [Cycles] [Cycles] [Cycles] [Cycles] [Cycles]

128DP FF 1cycle 8-bit AMBA 17 55 72 18 55 73
128DP SC-FF 1cycle 8-bit AMBA (SR) 17 55 72 18 55 73
128DP FF 1cycle extLoad 8-bit AMBA 17 55 72 18 72 90
128DP SC-FF 1cycle extLoad 8-bit AMBA (SR) 17 55 72 18 72 90
128DP FF-Lh 6cycles 8-bit AMBA 99 55 154 99 55 154
128DP SC-FF 6cycles 8-bit AMBA (SR) 99 55 154 99 55 154
128DP FF-Lh 9cycles 8-bit AMBA 148 55 203 148 55 203
128DP SC-FF 9cycles 8-bit AMBA (SR) 148 55 203 148 55 203
32DP FF-Lh 24cycles 8-bit AMBA 393 55 448 393 55 448
32DP SC-FF 24cycles 8-bit AMBA (SR) 393 55 448 393 55 448
8DP FF 225cycles 8-bit AMBA 3 669 55 3 724 3 669 55 3 724
8DP Lh 225cycles 8-bit AMBA 3 669 55 3 724 3 669 55 3 724

Table 4. Area and power-consumption values of the NOEKEON implementations (for 130 nm)

Implementation
Synthesis Place&route Power

Control Datapath Total Control Datapath Total (at 100 kHz)
- [GEs] [GEs] [GEs] [GEs] [GEs] [GEs] [µW]

128DP FF 1cycle 150 4 719 4 869 149 4 832 4 981 0.93
128DP SC-FF 1cycle 54 4 177 4 231 51 4 265 4 316 1.28
128DP FF 1cycle extLoad 151 4 588 4 739 149 4 699 4 848 0.87
128DP SC-FF 1cycle extLoad 55 4 046 4 101 51 4 115 4 166 1.19
128DP FF-Lh 6cycles 167 4 020 4 187 171 4 173 4 344 1.41
128DP SC-FF 6cycles 98 3 668 3 766 101 3 799 3 900 1.46
128DP FF-Lh 9cycles 197 3 740 3 937 198 3 964 4 162 1.43
128DP SC-FF 9cycles 128 3 396 3 524 128 3 517 3 645 1.25
32DP FF-Lh 24cycles 311 3 106 3 417 313 3 323 3 636 0.94
32DP SC-FF 24cycles 221 3 040 3 261 224 3 162 3 386 0.96
8DP FF 225cycles 511 2 386 2 897 513 2 520 3 033 0.78
8DP Lh 225cycles 487 2 137 2 624 489 2 391 2 880 0.67

Having a detailed look at the functions Theta and Gamma shows that they consist of
three sub parts, which we call Theta1, Theta2, Theta3, Gamma1, Gamma2, and Gamma3.
Gamma1 and Gamma3 are equal, Theta1 and Theta3 provide the same functionality
but operate on different data (cf. [4]). Hence, by sequentially computing Thetai and
Gammai, redundances in the datapath can be removed, leading to a more compact im-
plementation. Another advantage of computing Theta sequentially is that Theta-1 can
be easily realized with K instead of KD (i.e., computing KD is no longer required) by
reversing the execution order of the sub parts as shown in Equation 5. In that way,
computing one round of NOEKEON needs 6 clock cycles, reducing the area by about
500 GEs. The version with standard flip flops for the state memory and latches for the
key memory (latches can be used as the key is only loaded once at the beginning in 8-
bit blocks) consumes 4 344 GEs (128DP FF-Lh 6cycles). When using scan-chain flip
flops for both state and key memory, 3 900 GEs are needed (128DP SC-FF 6cycles).
The datapath of this version is sketched in Figure 10. Dividing the execution of a single
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round even further from 6 into 9 parts (i.e., 9 cycles per round are used as stated in
Table 3) brings another area gain of more than 200 GEs.

Theta1 ◦ Theta2(KD) ◦ Theta3 = Theta3 ◦ Theta2(K) ◦ Theta1 (5)

In the next step we have reduced the datapath width from 128 to 32 bits, which increases
the execution time to 24 cycles per round (9 for Theta, 3 for Pi1, 9 for Gamma, and 3 for
Pi2), but saving again 250 to 500 GEs. Theta and Gamma have been implemented in a
combined function as both use basically XOR operations that can be better reused in this
way. Two input multiplexers (M3 and M4) are used to independently select values for
the combined Theta-Gamma function and shifting of data. With the 32-bit architecture,
NOEKEON can be implemented with 3 636 GEs using standard flip flops for the state
memory and latches for the key memory (32DP FF-Lh 24cycles). Implementing both
memories with scan-chain flip flops connected as 8-bit shift registers leads to an area
requirement of only 3 386 GEs (32DP SC-FF 24cycles). An overview of the datapath
with scan-chain flip flops for state and key memory is depicted in Figure 11.

The minimum-datapath implementation of NOEKEON operates on 8 bits of the
state/key at once. The resulting design can be seen as a very simplified sequencer circuit
with a highly-optimized instruction set. Temporary results are placed in an 8-bit accu-
mulator (ACC) register. The sequences that need to be executed are hard coded within
the state machine. Writing to the state memory is only done in blocks of 8 bits. This
has allowed us to also use a latch-based register file (16 × 8-bit) for the state memory.
Utilizing latches instead of flip flops for both key memory and state memory results in
about 150 GEs of area savings. A schematic overview of the minimum datapath is given
in Figure 12. Bit shifts that are used within the functions Pi1 and Pi2 are only done on
a bit basis to avoid additional multiplexers. Other components of the datapath are OR,
AND, and XOR operations (each 8-bit wide) as well as several multiplexers. Executing
one round requires 225 clock cycles (69 for Theta, 40 for Pi1, 76 for Gamma, and 40
for Pi2). The implementation of NOEKEON with an 8-bit datapath is very compact and
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requires only 3 033 GEs with standard flip flops (8DP FF 225cycles) and 2 880 GEs
with latch-based memory (8DP Lh 225cycles). In contrast to mCrypton, using a mini-
mum datapath brings a significant area gain. The main reason for this is that NOEKEON
has no highly regular structure (e.g., columns/rows can be computed independently)
that would allow implementations with larger datapath width to implicitly select data
by simply rewiring instead of using extra multiplexers.

4.3 SEA

We have used the one-cycle-per-round architecture proposed by Macè et al. [14] as
starting point for the full-size datapath version. Hence, only 93 clock cycles are required
for encrypting or decrypting a data block (cf. Table 5). Additionally, an 8-bit AMBA in-
terface has been added as for all other implementations. Since we have synthesized our
design for a lower target clock frequency, the area requirement of our implementation
is only 3 445 GEs with standard flip flops (48DP FF 1cycle) and 2 854 GEs when using
scan-chain flip flops (48DP SC-FF 1cycle)—compared to 4 313 GEs without any inter-
face in [14]. Using scan-chain flip flops has significantly lowered the area requirement
of the implementation (by more then 600 GEs). The datapath of the one-cycle-per-round
architecture with scan-chain flip flops is depicted in Figure 13.

The first optimization measure that seems to be obvious when looking at the struc-
ture of SEA is using a combined datapath for both data and round-key computation.
By sequentially computing data and round key, execution time is roughly doubled, but
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Table 5. Overview of the execution times of the SEA implementations

Implementation Interface
Encryption Decryption

Algorithm Interface Total Algorithm Interface Total
- - [Cycles] [Cycles] [Cycles] [Cycles] [Cycles] [Cycles]

48DP FF 1cycle 8-bit AMBA 93 43 136 93 43 136
48DP SC-FF 1cycle 8-bit AMBA (SR) 93 43 136 93 43 136
48DP FF 2cycles comb 8-bit AMBA 185 43 228 185 43 228
48DP SC-FF 2cycles comb 8-bit AMBA (SR) 185 43 228 185 43 228
24DP FF 6cycles 8-bit AMBA 554 43 597 554 43 597
24DP SC-FF 6cycles 8-bit AMBA (SR) 554 43 597 554 43 597
8DP FF 31cycles 8-bit AMBA 2 871 43 2 914 2 871 43 2 914
8DP Lh 31cycles 8-bit AMBA 2 871 43 2 914 2 871 43 2 914
Macè et al. [14], 48DP FF 1cycle no 93 n/a 93 93 n/a 93
Macè et al. [14], 8DP FF 15cycles 8-bit 1 395 33 1 428 1 395 33 1 428

Table 6. Area and power-consumption values of the SEA implementations (for 130 nm)

Implementation
Synthesis Place&route Power

Control Datapath Total Control Datapath Total (at 100 kHz)
- [GEs] [GEs] [GEs] [GEs] [GEs] [GEs] [µW]

48DP FF 1cycle 125 3 182 3 307 128 3 317 3 445 1.35
48DP SC-FF 1cycle 78 2 682 2 760 76 2 778 2 854 1.16
48DP FF 2cycles comb 122 3 120 3 242 119 3 304 3 423 1.71
48DP SC-FF 2cycles comb 77 2 886 2 963 71 3 002 3 073 1.62
24DP FF 6cycles 180 2 701 2 881 183 2 856 3 039 1.39
24DP SC-FF 6cycles 123 2 444 2 567 125 2 539 2 664 1.22
8DP FF 31cycles 587 1 960 2 547 593 2 161 2 754 0.85
8DP Lh 31cycles 564 1 776 2 340 569 1 993 2 562 0.64
Macè et al. [14], 48DP FF 1cycle n/a n/a 3 758 n/a n/a 4 313 2.04
Macè et al. [14], 8DP FF 15cycles n/a n/a 3 925 n/a n/a 4 472 19.24

hardware components for modular addition, S-box operation, and XOR computation
can be shared (i.e., implemented only once). However, our implementation results show
that the additional multiplexers (M5, M6, M7) that are introduced by combining the dat-
apath of data and round-key computation nearly nullify the area gain or even lead to a
larger design. An overview of the combined datapath architecture is given in Figure 14.

Due to the regular structure of SEA, the combined datapath version mentioned above
can be adapted to an implementation with a datapath width of only 24 bits instead of
48 bits. A schematic view of the architecture of this adapted version is provided in Fig-
ure 15. The implementation requires no additional multiplexers (note that the size of M7
is halved compensating the introduction of M8). Switching of higher and lower parts of
left/right side of state/key is done implicitly by rewiring. Modular addition, S-box oper-
ation, bit rotation, and XOR computation can be independently applied on 24-bit blocks
of data. This allows reducing the area requirements to 3 039 GEs with standard flip flops
(24DP FF 6cycles) and 2 664 GEs with scan-chain flip flops (24DP SC-FF 6cycles) as
listed in Table 6. Computing one round of SEA requires 6 clock cycles with this ver-
sion. In the first cycle, R is applied on the left side of the state, followed by XORing it
with the lower part of the computed right side. In the second cycle the higher part of the
right side is XORed with the higher part of the left side. The round-key computation
consumes 4 cycles as we have to use a small trick for the word rotation. Looking on
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the datapath of the round-key computation part in Figure 13 shows that a word rotation
is applied on the right side before XORing it with the left side. As the word rotation
operates on 48 bits, a simple reduction of the round-key datapath to 24 bits is on first
sight not possible. We solve this issue by using the relation given in Equation 6. First, an
inverse word rotation is applied on the left side of the key in the third cycle (replaces the
word rotate on the right side). Now, lower and higher part of the right part are XORed
in a straightforward way in cycles four and five with the left part. In the sixth cycle,
a word rotation is applied on the left part, finalizing the round-key computation. The
change of the command sequence results in an execution time of 185 clock cycles for
encrypting or decrypting one block of data (without interface communication).

KeyLeft,i+1 = KeyLeft,i ⊕R(r(Sbox(KeyRight,i + Cnt)))

= R(R−1(KeyLeft,i)⊕ r(Sbox(KeyRight,i +Cnt))) (6)

By further reducing the datapath size to 1 byte we have obtained the minimum-datapath
version of SEA. The architecture of the minimum-datapath version is shown in Fig-
ure 16 and differs from the proposal presented in [14] (which sketches only the data-
path but provides no stand-alone implementation). Three temporary registers T0, T1,
and T2 are used to buffer the input data for the 8 S-boxes (since each S-box operates
on bits from three different bytes). T0 serves also as accumulator register. State as well
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as key memory are realized as RAM-like structures with 12 × 8 bits. Our approach re-
quires only 31 clock cycles per round, 19 cycles for handling the state data (7 for a
word/inverse word rotation, 6 for modular addition, and 6 for XORing) and 12 cycles
for updating the round key (6 for modular addition, and 6 for XORing). Hence, a full
encryption/ecryption process requires 2 871 GEs as stated in Table 5. The round-key
update is faster as the word rotation is done implicitly during XOR operation by proper
addressing. The minimum-datapath proposal in [14] for comparison requires 50 clock
cycles per round, which is significantly slower than our implementation. When using
a flip-flop-based memory, a chip size of 2 754 GEs is achieved (8DP FF 31cycles).
Interestingly, this version is only 100 GEs smaller than the one-cycle-per-round imple-
mentation with shift registers, and still larger than the combined variant with 24-bit
datapath. Main reasons are the large output multiplexers (M1 and M2) of state and key
memory and the significantly increased size of the controller. By replacing the flip-flop-
based memory with latches (8DP Lh 31cycles), the area requirement is further reduced
to 2 562 GEs, making it the by far smallest stand-alone hardware implementation of
SEA96,8 currently available.

5 Summary of Implementation Results

In this section we summarize in short the achieved results of our block-cipher imple-
mentations. All hardware modules support encryption and decryption functionality and
contain already an 8-bit AMBA interface for communication. In order to lower the
area requirements of the implementations, optimization techniques on different lev-
els (e.g., algorithmic or architectural level) are applied. For selected implementation
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Table 7. Comparison of performance values of selected implementation variants for different
CMOS process technologies

Block cipher Implementation
CMOS Area Energy Throughput Energy- A-T
techn. (after P&R) cons. (at 100 kHz) per-bit product

- - [nm] [GEs] [nJ] [kbits/s] [pJ] [k1
a]

mCrypton

64DP SC-FF 1cycle

130

3 835 0.54 123.08 8 31
64DP SC-FF 3cycles 3 425 0.60 83.12 9 41
16DP SC-FF 12cycles drvKey 2 709 1.35 33.51 21 81
4DP Lh 207cycles 2 784 15.55 2.39 243 1 164
64DP SC-FF 1cycle

180

3 979 1.85 123.08 29 32
64DP SC-FF 3cycles 3 593 2.27 83.12 35 43
16DP SC-FF 12cycles drvKey 2 760 4.76 33.51 74 82
4DP Lh 207cycles 2 769 49.37 2.39 771 1 158
64DP SC-FF 1cycle

350

3 694 11.13 123.08 174 30
64DP SC-FF 3cycles 3 370 13.12 83.12 205 41
16DP SC-FF 12cycles drvKey 2 594 28.38 33.51 443 77
4DP Lh 207cycles 2 534 330.75 2.39 5 168 1 060
Lim et al. [13], 64DP FF 1cycle 130 4 108 - 492.31b - 8b

NOEKEON

128DP FF 1cycle

130

4 981 0.67 177.78 5 28
128DP SC-FF 6cycles 3 900 2.25 83.12 18 47
32DP SC-FF 24cycles 3 386 4.30 28.57 34 119
8DP Lh 225cycles 2 880 25.04 3.44 196 838
128DP FF 1cycle

180

5 427 2.72 177.78 21 31
128DP SC-FF 6cycles 4 170 8.74 83.12 68 50
32DP SC-FF 24cycles 3 692 15.90 28.57 124 129
8DP Lh 225cycles 2 862 69.19 3.44 541 833
128DP FF 1cycle

350

4 597 18.42 177.78 144 26
128DP SC-FF 6cycles 3 813 54.12 83.12 423 46
32DP SC-FF 24cycles 3 376 98.92 28.57 773 118
8DP Lh 225cycles 2 604 459.91 3.44 3 593 758

SEA

48DP SC-FF 1cycle

130

2 854 1.57 70.59 16 40
48DP SC-FF 2cycles 3 073 3.69 42.11 38 73
24DP SC-FF 6cycles 2 664 7.28 16.08 76 166
8DP Lh 31cycles 2 562 18.74 3.29 195 778
48DP SC-FF 1cycle

180

2 941 5.77 70.59 60 42
48DP SC-FF 2cycles 3 151 14.46 42.11 151 75
24DP SC-FF 6cycles 2 714 26.84 16.08 280 169
8DP Lh 31cycles 2 569 55.31 3.29 576 780
48DP SC-FF 1cycle

350

2 679 31.35 70.59 327 38
48DP SC-FF 2cycles 2 845 82.22 42.11 856 68
24DP SC-FF 6cycles 2 492 137.49 16.08 1 432 155
8DP Lh 31cycles 2 300 361.34 3.29 3 764 698
Macè et al. [14], 48DP FF 1cycle

130
4 313 - 103.23b - 42b

Macè et al. [14], 8DP FF 15cycles 4 472 - 6.72 - 665

AES-128
Feldhofer et al. [8] 350 3 400 - 12.40 - 274
Hämäläinen et al. [9] 130 3 875c - 80.00b - 48b

XTEA Feldhofer et al. [7] 350 2 636 - 9.08 - 290
HIGHT Hong et al. [10] 250 3 048 - 200.00b - 15b

variants we also provide results for a 180 nm CMOS technology from Faraday [6] and
a 350 nm CMOS technology from AMS [1]. The results are listed in Table 7. Note
that all results are obtained by using a common tool chain, which eases comparability.
Additionally, computed performance values such as energy consumption, energy-per-
bit values, throughput, and size-time (AT) product are given. As expected, energy con-
sumption significantly decreases when feature size shrinks. Size of the implementations
in terms of GEs is also influenced by the CMOS technology. Using the 350 nm tech-
nology leads to even more-compact implementations (between 2 300 and 2 603 GEs for

a k1 is given in GEs × s/kbits (smaller is better).
b Pure execution time of the algorithm without communication overhead of an interface.
c Estimated value when supporting encryption and decryption functionality (according to [9]).
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the most-compact algorithm implementations), whereas the 180 nm technology results
in slightly larger GE values (with respect to the 130 nm technology). We also compare
area, throughput and AT product with other low-resource block ciphers that have a simi-
lar security level (i.e., key size) and implement encryption and decryption functionality.
Energy consumption and energy-per-bit values are omitted for implementations from
related work as a fair comparison (e.g., different supply voltage or power-simulation
tools) is hardly possible.

Comparing our results with related work clearly illustrates that our area-optimized
hardware modules are much more compact than currently published implementations of
these algorithms. In case of NOEKEON we even provide the first stand-alone hardware
implementations at all. SEA is the algorithm with the lowest area requirement. Although
SEA and mCrypton have the same memory footprint (i.e., number of bits needed to store
key and state), SEA is cheaper in hardware. mCrypton has a higher throughput as SEA
since it uses less rounds. Note that the throughput of SEA could be further improved
when encrypting/depcrypting multiple data blocks, as reloading the key is not necessary
(due to the symmetry property of SEA). NOEKEON on the other hand has the highest
throughput as it operates on the largest block size and uses also a rather small number
of rounds.

Another important observation is that using a shift-register based interface with scan-
chain flip flops can significantly lower the area requirements of a circuit. As we have
seen for mCrypton and SEA that have both a rather regular structure, implementa-
tions with shift-registers and larger datapath width can even be smaller than minimum-
datapath versions with rather long execution times and much higher energy consump-
tion. Especially for embedded devices like sensor-enabled RFID tags that are powered
by a battery, energy consumption is an important criterion. Last but not least, using
latch-based memory if possible is advantageous as it lowers not only the area require-
ment, but also the power consumption of the cryptographic module.

6 Conclusions

In this work we presented hardware implementations of the block ciphers mCrypton,
NOEKEON, and SEA with focus on low-area design. Implementations with different
datapath widths and various optimization levels are provided. All hardware modules
contain already an 8-bit interface for communication. We further show that using a shift-
register based approach with scan-chain flip flops is advantageous in terms of chip size
for realizing the interface. Another observation is that replacing flip-flop-based memory
by latches can lower both area requirement and power consumption. Our implementa-
tions are the most-compact one of these algorithms that are available so far. When using
a 130 nm CMOS technology, SEA requires only 2 562 GEs, followed by mCrypton and
NOEKEON with 2 709 and 2 880 GEs, respectively. In case of NOEKEON we even
provide the first results of stand-alone hardware implementations.
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Institut de Mathématiques de Luminy
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Abstract. We present normal forms for elliptic curves over a field of
characteristic 2 analogous to Edwards normal form, and determine bases
of addition laws, which provide strikingly simple expressions for the
group law. We deduce efficient algorithms for point addition and scalar
multiplication on these forms. The resulting algorithms apply to any el-
liptic curve over a field of characteristic 2 with a 4-torsion point, via an
isomorphism with one of the normal forms. We deduce algorithms for
duplication in time 2M + 5S + 2mc and for addition of points in time
7M + 2S, where M is the cost of multiplication, S the cost of squar-
ing, and mc the cost of multiplication by a constant. By a study of the
Kummer curves K = E/{[±1]}, we develop an algorithm for scalar mul-
tiplication with point recovery which computes the multiple of a point
P with 4M + 4S + 2mc + mt per bit where mt is multiplication by a
constant that depends on P .

1 Introduction

The last five years have seen significant improvements in the efficiency of known
algorithms for arithmetic on elliptic curves, spurred by the introduction of the
Edwards model [11] and its analysis [1,2,13]. Previously, it had been recognized
that alternative models of elliptic curves could admit efficient arithmetic [8],
but the fastest algorithms could be represented in terms of functions on elliptic
curves embedded in P2 as Weierstrass models.

Among the best alternative models one finds a common property of symmetry.
They admit a large number of (projective) linear automorphisms, often given
by signed or scaled coordinate permutations. An elliptic curve with j-invariant
j �= 0, 123 admits only {[±1]} as automorphism group fixing the identity element.
However, as a genus 1 curve, it also admits translations by rational points, and
a translation morphism τQ(P ) = P +Q on E is projectively linear, i.e. induced
by a linear transformation of the ambient projective space, if and only if E is
a degree n model determined by a complete linear system in Pn−1 and Q is in
the n-torsion subgroup. As a consequence the principal models of cryptographic
interest are elliptic curves in P2 with rational 3-torsion points (e.g. the Hessian
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models) and in P3 with 2-torsion or 4-torsion points (e.g. the Jacobi quadratic
intersections and Edwards model), and unfortunately, the latter models do not
have good reduction to characteristic 2. The present work aims to fill this gap.

A rough combinatorial explanation for the role of symmetry in efficiency is
the following. Suppose that the sum of x = (x0 : · · · : xr) and y = (y0 : · · · : yr)
is expressed by polynomials (p0(x, y) : · · · : pr(x, y)) of low bidegree, say (2, 2),
in xi and yj . Such polynomials form a finite dimensional space. A translation
morphism τ given by scaled coordinate transformation on E determines a new
tuple (p0(τ(x), τ

−1(y)) : . . . , pr(τ(x), τ
−1(y))). If (p0(x, y) : · · · : pr(x, y)) is

an eigenvector for this transformation then it tends to have few monomials. In
the case of Hessian, Jacobi, Edwards, and similar models, there exist bases of
eigenvector polynomial addition laws such that the pj achieve the minimal value
of two terms.

Section 2 recalls several results, observations, and conclusions of Kohel [17]
on symmetries of elliptic curves in their embeddings. As illustration, Section 3
recalls the main properties of the Edwards model as introduced by Edwards [11],
reformulated by Bernstein and Lange [1] with twists by Bernstein et al. [2],
and properties of its arithmetic described in Hisil et al. [13] and Bernstein and
Lange [3].

This background motivates the introduction and classification of new mod-
els for elliptic curves in Section 4, based on imitation of the desired properties
of Edwards curves, and in Section 5 we present new elliptic curve models, the
Z/4Z-normal form and the split μμ4-normal form, which satisfy these proper-
ties. In Section 6 we classify all symmetric quartic elliptic curves in P3 with a
rational 4-torsion point, up to projective linear isomorphism.1 In particular we
prove that any such curve is linearly isomorphic to one of these two models. In
Section 7 we determine the polynomial addition laws and resulting complexity
for arithmetic on these forms. Finally Section 8 develops models for the Kum-
mer curve K = E/{[±1]} and exploits an embedding of E in K 2 in order to
develop a Montgomery ladder for scalar multiplication with point recovery. Sec-
tion 9 summarizes the new complexity results for these models in comparison
with previously known models and algorithms. An appendix gives the addition
laws for a descended μμ4-normal form that allows us to save on multiplications
by constants involved in the curve equation.

Notation

In what follows we use M and S for the complexity of multiplication and squar-
ing, respectively, in the field k, and mc for a multiplication by a fixed (possibly
small) constant c (or constants ci).

2 For the purposes of complexity analysis we
ignore field additions.

1 Note that any quartic plane model has a canonical extension to a nonsingular quartic
model in P

3 by extending to a complete linear system.
2 When the small constant is a bounded power of a fixed constant we omit the squar-
ings or products entailed in its construction and continue to consider cO(1) a fixed
constant.
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When describing a morphism ϕ : X → Y given by polynomial maps, we write

ϕ(x) =

⎧⎪⎨⎪⎩
(
p1,0(x) : · · · : p1,n(x)

)
,

...(
pm,0(x) : · · · : pm,n(x)

)
,

to indicate that each of the tuples of polynomials (pi,0(x), . . . , pi,n(x)) defines the
morphism on an open neighborhood Ui ⊂ X , namely on the complement of the
common zeros pi,0(x) = · · · pi,m(x) = 0, that any two agree on the intersections
Ui ∩ Uj , and that the union of the Ui is all of X .

For the projective coordinate functions on Pr, with r > 3, we use Xi and so
x = (X0 : · · · : Xr) represents a generic point. We also use Xi for their restriction
to a curve E, in which case the Xi are defined modulo the defining ideal of E.
In the product Pr × Pr, we continue to write x for the first coordinate and use
(x, y) for a generic point in Pr × Pr, where y = (Y0 : · · · : Yr).

2 Elliptic Curves with Symmetries

We consider conditions for an elliptic curve embedding in Pr to admit many pro-
jective linear transformations, or symmetries. In what follows, we recall standard
definitions and conclusions drawn from Kohel [17] (reformulated here without
the language of invertible sheaves). The examples of Hessian curves and Edwards
curves3 play a pivotal role in motivating [17] and further examples (see Bernstein
and Lange [3], Joye and Rezaeian Farashahi [14], Kohel [17, Section 8]) suggest
that such symmetries go hand-in-hand with efficient forms for their arithmetic.4

The automorphism group of an elliptic curve E is a finite group, and if
j(E) �= 0, 123, this group is { [±1] }. Inspection of standard projective mod-
els for elliptic curves shows that the symmetry group can be much greater. The
disparity is explained by the existence of subgroups of rational torsion. The au-
tomorphism group of an elliptic curve is defined to be the automorphisms of the
curve which fix the identity point, which does not include translations. For any
rational torsion point T , the translation-by-T map τT is an automorphism of the
curve, which may give rise to the additional symmetries.

We restrict to models of elliptic curves given by complete linear systems of a
given degree d. Basically, such a curve is defined by E ⊂ Pr such that r = d− 1,
E is not contained in any hyperplane, and any hyperplane H intersects E in
exactly d points, counted with multiplicities. For embedding degree 3, such a

3 In particular my discussions of symmetries with Bernstein and Lange motivated a
study of symmetries in the unpublished work [5] (see the EFD [6]) on twisted Hessian
curves, picked up by Joye and Rezaeian Farashahi [14] after posting to the EFD).
This further led the author to develop a general framework for symmetries and to
classify the linear action of torsion in [17].

4 By efficient forms, we mean sparse polynomials expressions with small coefficients.
These may or may not yield the most efficient algorithms, as seen in comparing the
evaluation of similarly sparse addition laws for the Edwards and Z/4Z-normal forms.
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curve is given by a single homogeneous form F (X,Y, Z) of degree 3, and for
degree 4 we have an intersection of two quadrics in P3. Quartic plane models
formally lie outside of this scope — they are neither nonsingular nor given by a
complete linear system — but determine a unique degree 4 elliptic curve in P3

after completing the basis of functions. As in the case of the Edwards curve, we
always pass to this model to apply the theory.

Definition 1. Let E ⊂ Pr be an elliptic curve embedded with respect to a com-
plete linear system. We say that E is a symmetric model if [−1] is induced by a
projective linear transformation of Pr.

We next recall a classification of symmetric embeddings of elliptic curves (cf. Ko-
hel [17, Lemma 2] for the statement in terms of invertible sheaves).

Lemma 2. Let E ⊂ Pr be an elliptic curve over k embedded with respect to
a complete linear system. There exists a point S in E(k) such that for any
hyperplane H in Pr not containing E, the set of points in the intersection E ∩
H = {P0, . . . , Pr}, in E(k̄), counted with multiplicity, sum to S. The model is
symmetric if and only if S is in the subgroup E[2] of 2-torsion points.

Definition 3. Let E be a degree d embedding in Pr with respect to a complete
linear system, and let S be the point as in the previous lemma. We define the
embedding divisor class of E to be (d− 1)(O) + (S).

We describe here the classification of elliptic curves with projective embedding,
up to linear isomorphism, rather than isomorphism.5 The notion of isomorphisms
given by linear transformations plays an important role in the addition laws, since
such a change of variables gives an isomorphism between the respective spaces
of addition laws of fixed bidegree (m,n), as described in Kohel [17, Section
7]. For a point T , we denote the translation-by-T morphism by τT , given by
τT (P ) = P + T . We now recall the classification of symmetries which arise from
the group law [17, Lemma 5].

Lemma 4. Let E ⊂ Pr be embedded with respect to the complete linear system
of degree d and let T be in E(k̄). The translation-by-T morphism is induced by
a projective linear automorphism of Pr if and only if dT = O.

Similarly, we recall the classification of projective linear isomorphisms between
curves in Pr (see Kohel [17, Lemma 3] for a slightly stronger formulation).

Lemma 5. Let E1 and E2 be isomorphic elliptic curves embedded in Pr with
respect to complete linear systems of the same degree d. An isomorphism ϕ :
E1 → E2 is induced by a projective linear transformation if and only if ϕ(S1) =
S2, where Si ∈ Ei(k) determine the embedding divisor classes (d− 1)(O) + (Si)
of the embeddings.

5 In recent cryptographic literature, there has been a trend to refer to existence of a
birational equivalence. In the context of elliptic curves, by definition nonsingular pro-
jective curves, this concept coincides with isomorphism, and we want to identity the
subclass of isomorphisms which are linear with respect to the coordinate functions
of the given embedding.
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Remark. By definition, an isomorphism ϕ : E1 → E2 of elliptic curves takes
the identity of E1 to the identity of E2. It may be possible to define a projective
linear transformation from E1 to E2 which does not respect the group identities
(hence is not a group isomorphism).

3 Properties of the Edwards Normal Form

In this section we suppose that k is a field of characteristic different from 2.
To illustrate the symmetry properties of the previous section and motivate the
analogous construction in characteristic 2, we recall the principal properties of
the Edwards normal form, summarizing work of Edwards [11], Hisil et al. [13],
and Bernstein and Lange [3]. We follow the definitions and notation of Kohel [17],
defining the twisted Edwards normal form E/k in P3:

cX2
1 +X2

2 = X2
0 + dX2

3 , X0X3 = X1X2, O = (1 : 0 : 1 : 0).

Edwards Model for Elliptic Curves

In 2007, Edwards introduced a new model for elliptic curves [11], defined by the
affine model

x2 + y2 = a2(1 + z2), z = xy,

over any field k of characteristic different from 2. The complete linear system
associated to this degree 4 model has basis {1, x, y, z} such that the image (1 :
x : y : z) is a nonsingular projective model in P3:

X2
1 +X2

2 = a2(X2
0 +X2

3 ), X0X3 = X1X2,

with identity O = (a : 0 : 1 : 0), as a family of curves over k(a) We hereafter refer
to this model as the split Edwards model. Bernstein and Lange [1] introduced
a rescaling to descend to k(d) = k(a4), and subsequently (with Joye, Birkner,
and Peters [2]) a quadratic twist by c, to define the twisted Edwards model with
O = (1 : 0 : 1 : 0):

cX2
1 +X2

2 = X2
0 + dX2

3 , X0X3 = X1X2.

The twisted Edwards model in this form appears in Hisil et al. [13] (as extended
Edwards coordinates), which provides the most efficient arithmetic. We next
recall the principal properties of the Edwards normal form (with c = 1).

Symmetry Properties

1. The embedding divisor class is 3(O) + (S) where S = 2T .
2. The point T = (1 : −1 : 0 : 0) is a rational 4-torsion point.
3. The translation–by–T and inverse morphisms are given by:

τT (X0 : X1 : X2 : X3) = (X0 : −X2 : X1 : −X3),
[−1](X0 : X1 : X2 : X3) = (X0 : −X1 : X2 : −X3).
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4. The model admits a factorization s ◦ (π1 × π2) through P1 × P1, where

π1(X0 : X1 : X2 : X3) =

{
(X0 : X1),
(X2 : X3)

, π2(X0 : X1 : X2 : X3) =

{
(X0 : X2),
(X1 : X3).

and s is the Segre embedding

s((U0 : U1), (V0 : V1)) = (U0V0 : U1V0 : U0V1 : U1V1).

Remark. The linear expression for [−1] implies that the embedding is sym-
metric. This linearity is a consequence of the form of the embedding divisor
3(O)+ (S), in view of Lemma 2. In addition the two projections are symmetric,
in the sense that they are stable under [−1]. This is due to the fact that the
divisors 2(O) = π∗

1(∞) and (O) + (T ) = π∗
2(∞) are symmetric.

A Remarkable Factorization

Hisil et al. [13] discovered amazingly simple bilinear rational expressions for the
affine addition laws, which can be described as a factorization of the addition
laws through the isomorphic curve in P1 × P1 (see Bernstein and Lange [3] for
further properties). As a consequence of the symmetry of the embedding and
its projections, the composition of the addition morphism μ : E × E −→ E
with each of the projections πi : E → P1 admits a basis of bilinear defining
polynomials. For π1 ◦ μ π1 ◦ μ, respectively, we have{

(X0Y0 + dX3Y3, X1Y2 +X2Y1),
(cX1Y1 +X2Y2, X0Y3 +X3Y0)

}
and

{
(X1Y2 −X2Y1, −X0Y3 +X3Y0),
(X0Y0 − dX3Y3, −cX1Y1 +X2Y2)

}
·

Addition laws given by polynomial maps of bidegree (2, 2) are recovered by
composing with the Segre embedding. This factorization led the author to prove
dimension formulas for these addition law projections and classify the exceptional
divisors [17]. In particular, this permits one to prove a priori the form of the
exceptional divisors described in Bernstein and Lange [3, Section 8], show that
these addition laws span all possible addition laws of the given bidegree, and
conclude their completeness.

4 Axioms for a D4-Linear Model

The previous sections motivate the study of symmetric quartic models of elliptic
curves with a rational 4-torsion point T . For such a model, we obtain a 4-
dimensional linear representation of D4

∼= 〈[−1]〉� 〈τT 〉, induced by the action
on the linear automorphisms of P3. Here we give characterizations of elliptic
curve models for which this representation is given by coordinate permutation.

Suppose that E/k is an elliptic curve with char(k) = 2 and T a rational 4-
torsion point. In view of the previous lemmas and the properties of Edwards’
normal form, we consider reasonable hypotheses for a characteristic 2 analog.
We note that in the Edwards model, τT acts by signed coordinate permutation,
which we replace with a permutation action in characteristic 2.
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1. The embedding of E → P3 is a quadratic intersection.
2. E has a rational 4-torsion point T .
3. The group 〈[−1]〉� 〈τT 〉 ∼= D4 acts by coordinate permutation, and in par-

ticular τT (X0 : X1 : X2 : X3) = (X3 : X0 : X1 : X2).
4. There exists a symmetric factorization of E through P1 × P1.

Combining conditions 3 and 4, we assume that E lies in the skew-Segre image
X0X2 = X1X3 of P1 × P1. In order for the representation of τT to stabilize the
image of P1 × P1, we have

P1 × P1 −→ P3,

whose image is X0X2 = X1X3, in isomorphism with P1 × P1 by the projections

π1(X0 : X1 : X2 : X3) =

{
(X0 : X1),
(X3 : X2),

, π2(X0 : X1 : X2 : X3) =

{
(X0 : X3),
(X1 : X2).

Secondly, up to isomorphism, there are two permutation representations of D4,
both having the same image. The two representations are distinguished by the
image of [−1], up to coordinate permutation, being one of the two

[−1](X0 : X1 : X2 : X3) = (X3 : X2 : X1 : X0) or (X0 : X3 : X2 : X1).

Considering the form of the projection morphisms π1 and π2, we see that only
the first of the possible actions of [−1] stabilizes π1 and π2, while the second
exchanges them. In the next section we are able to write down a normal form
with D4-permutation action associated to each of the possible actions of [−1].

5 Normal Forms

The objective of this section is to introduce elliptic curve models which satisfy
the desired axioms of the previous section. After their definition we list their main
properties, whose proof is essentially immediate from the symmetry properties
of the model. We first present the objects of study over a general field k before
passing to k of characteristic 2. Additional details of their construction can be
found in the talk notes [18] where they were first introduced.

Definition 6. An elliptic curve E/k in P3 is said to be in Z/4Z-normal form
if it is given by the equations

X2
0 −X2

1 +X2
2 −X2

3 = eX0X2 = eX1X3,

with identity O = (1 : 0 : 0 : 1).

The Z/4Z-normal form is the unique model, up to linear isomorphism (see The-
orem 12), satisfying the complete set of axioms of the previous section. If we
drop the condition for the factorization through P1×P1 (condition 4), we obtain
the following normal form, which admits the alternative action of [−1].
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Definition 7. An elliptic curve C/k in P3 is said to be in split μμ4-normal form
if it is given by the equations

X2
0 −X2

2 = c2X1X3, X
2
1 −X2

3 = c2X0X2,

with identity O = (c : 1 : 0 : 1).

These normal forms both have good reduction in characteristic 2. The Z/4Z-
normal form admits a rational 4-torsion point T = (1 : 1 : 0 : 0), and the
isomorphism

〈T 〉 = {(1 : 0 : 0 : 1), (1 : 1 : 0 : 0), (0 : 1 : 1 : 0), (0 : 0 : 1 : 1)} ∼= Z/4Z

gives the name to curves in this form.
On the split μμ4-normal form, the point T = (1 : c : 1 : 0) is a rational 4-torsion

point, and if char(k) �= 2 and there exists a primitive 4-th root of unity i in k,
then R = (c : i : 0,−i) is a rational 4-torsion point (dual to T under the Weil
pairing) such that 〈T,R〉 = C[4]. The subgroup

〈R〉 = {(c : 1 : 0 : 1), (c : i : 0 : −i), (c : −1 : 0 : −1), (c : −i : 0 : i)} ∼= μμ4

is a group (scheme) isomorphic to the group (scheme) μμ4 of 4-th roots of unity,
which gives the name to this normal form. The nonsplit variant (see Remark
following Corollary 21) descends to any subfield containing c4, does not neces-
sarily have a rational 4-torsion point, but in the application to elliptic curves
over finite fields of characteristic 2, every such model can be put in the split
form. The action of the respective points T by translation gives the coordinate
permutation action which we desire, the dual subgroup 〈R〉 degenerates in char-
acteristic 2 to the identity group {O} = {(c : 1 : 0 : 1)}, and the embedding
divisor 3(O) + (S), where S = 2R, degenerates to 4(O). Hereafter we consider
these models only over a field of characteristic 2.

We now formally state and prove the main symmetry properties of the new
models over a field of characteristic 2 with analogy to the Edwards model.

Theorem 8. Let E/k be a curve in Z/4Z-normal form over a field of charac-
teristic 2.

1. The embedding divisor class is 3(O) + (S) where S = (0 : 1 : 1 : 0) = 2T .
2. The point T = (1 : 1 : 0 : 0) is a rational 4-torsion point.
3. The translation–by–T and inverse morphisms are given by:

τT (X0 : X1 : X2 : X3) = (X3 : X0 : X1 : X2),
[−1](X0 : X1 : X2 : X3) = (X3 : X2 : X1 : X0).

4. E admits a factorization through P1 × P1, where

π1(X0 : X1 : X2 : X3) =

{
(X0 : X1),
(X3 : X2),

, π2(X0 : X1 : X2 : X3) =

{
(X0 : X3),
(X1 : X2).
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More precisely, if (U0, U1) and (V0, V1) are the coordinate functions on P1 × P1,
the product morphism π1×π2 determines an isomorphism E → E1, where E1 is
the curve (U0+U1)

2(V0 +V1)
2 = c U0U1V0V1, whose inverse is the restriction of

the skew-Segre embedding ((U0 : U1), (V0 : V1)) −→ (U0V0 : U1V0 : U1V1 : U0V1).

Proof. The correctness of the forms for [−1] and τT follow from the fact that they
are automorphisms, that the asserted map for [−1] fixes O and that for τT has no
fixed point, and that τT (O) = T . Since τ4T = 1, it follows that T is 4-torsion. The
hypersurface X0 +X1 +X2 +X3 = 0 cuts out the subgroup 〈T 〉 ∼= Z/4Z, which
determines the embedding divisor class as 3(O)+(S) where S = O+T+2T+3T =
2T ∈ E[2]. The factorization is determined by the automorphism group, and the
image curve can be verified by elementary substitution. ��

Lemma 9. The Z/4Z-normal form is isomorphic to a curve in Weierstrass
form Y (Y +X)Z = X(X + c−1Z)2. The linear map (X : Y : Z) = (X1 +X2 :
X2 : c(X0 +X3)) defines the isomorphism except at O.

Proof. The existence of a linear map is implied by Kohel [17, Lemma 3], and
the exact form of this map can be easily verified. The exceptional divisor of the
given rational map follows since X1 = X2 = 0 only meets the curve at O. ��

Theorem 10. Let C/k be a curve in μμ4-normal form over a field of character-
istic 2.

1. The embedding divisor class of C is 4(O).

2. The point T = (1 : c : 1 : 0) is a rational 4-torsion point.

3. The translation–by–T and inverse morphisms are given by:

τT (X0 : X1 : X2 : X3) = (X3 : X0 : X1 : X2),
[−1](X0 : X1 : X2 : X3) = (X0 : X3 : X2 : X1).

Proof. As in Theorem 8, the correctness of automorphisms is implied by action
on the points O and T , and the relation τ4T = 1 shows that T is 4-torsion. Since
the hyperplanes Xi = 0 cut out the divisors 4(Ti+2) where Tk = kT , and T is
4-torsion, this gives the form of the embedding divisor class. ��

Lemma 11. An elliptic curve in split μμ4-normal form is isomorphic to the curve
Y (Y + X)Z = X(X + c−2Z)2 in Weierstrass form. The linear map (X : Y :
Z) = (c(X1 +X3) : X0+ cX1+X2 : c

4X2) defines the isomorphism except at O.

Proof. As above, the existence of a linear map is implied by Kohel [17, Lemma 3],
and the exact form of this map can be easily verified. The exceptional divisor of
the given rational map follows since X2 = 0 only meets the curve at O. ��

Remark. The rational maps of Lemma 9 and 11 extend to isomorphisms, but
there is no base-point free linear representative for these isomorphisms.
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6 Isomorphisms with Normal Forms

Let Ec2 denote an elliptic curve in Z/4Z-normal form and Cc a curve in μμ4-
normal form. By Lemmas 9 and 11, the curves Ec2 and Cc are isomorphic, but
by classification of their embedding divisor classes in Theorems 8 and 10, it
follows from Lemma 4 that there is no linear isomorphism between them. In this
section we obtain a classification of curves over with rational 4-torsion point and
make the isomorphism explicit for Ec2 and Cc.

Theorem 12. Let X/k be an elliptic curve over a field k of characteristic 2,
with identity O and k-rational point T of order 4, and suppose that c is an
element of k such that j(X) = c8.

1. There exists a unique isomorphism of X over k to a curve Ec2 in Z/4Z-
normal form sending O to (1 : 0 : 0 : 1) and T to (1 : 1 : 0 : 0).

2. There exists a unique isomorphism of X over k to a curve Cc in split μμ4-
normal form sending O to (c : 1 : 0 : 1) and T to (1 : c : 1 : 0).

If X is embedded as a symmetric quartic model in P3, then either the isomor-
phism of X with Ec2 or the isomorphism with Cc is induced by a linear auto-
mophism of P3.

Proof. The j-invariants of Ec2 and Cc are each c8 (�= 0 since X is not super-
singular by existence of a 2-torsion point), which implies the existence of the
isomorphisms over the algebraic closure. The rational 4-torsion point T fixes the
quadratic twist, hence the isomorphism is defined over k. Since there is a unique
2-torsion point S = 2T , the embedding divisor of X in P3 is either 3(O) + (S)
or 4(O) by Lemma 2. In the former case, the isomorphism to Ec2 is linear, and
in the latter case the isomorphism to Cc is linear by Lemma 5. ��

The following theorem classifies the isomorphisms between Ec2 and Cc.

Theorem 13. Let Cc be an elliptic curve in split μμ4-normal form and Ec2 an
elliptic curve in Z/4Z-normal form. Then there exists an isomorphism ι : Cc →
Ec2 determined by the projections

π1 ◦ ι((X0 : X1 : X2 : X3))=

{
(cX0 : X1 +X3),
(X1 +X3 : cX2),

π2 ◦ ι((X0 : X1 : X2 : X3))=

{
(X0 +X2 : cX1),
(cX3 : X0 +X2).

The morphism to Ec2 is recovered by composing π1 × π2 with the skew-Segre
embedding. The inverse morphism is given by

ι−1(X0 : X1 : X2 : X3) =

⎧⎪⎪⎨⎪⎪⎩
(X0X1 +X2X3 : cX2

2 : X0X1 + c2X1X2 +X2X3 : cX2
1 ),

(X0X3 : (X2 +X3)
2 : X1X2 : (X0 +X1)

2),
((X0 +X3)

2 : cX2X3 : (X1 +X2)
2 : cX0X1),

(cX2
3 : X0X3 +X1X2 + c2X2X3 : cX2

2 : X1X2 +X0X3).

Neither ι nor its inverse can be represented by a projective linear transformation.
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Proof. This correctness of this isomorphism can be verified explicitly (e.g. as
implemented in Echidna [19]). The nonexistence of a linear isomorphism is a
consequence of Lemma 4 and the classification of the embedding divisor classes
in Theorems 8 and 10. ��

7 Addition Law Structure and Efficient Arithmetic

The interest in alternative models of elliptic curves has been driven by the simple
form of their addition laws — the polynomial maps which define the addition
morphism μ : E×E → E as rational maps. In this section we determine bases of
simple forms for the addition laws of the Z/4Z-normal form and of the μμ4-normal
form.

The verification that a system of putative addition laws determines a well-
defined morphism can be verified symbolically. In particular we refer to the
implementations of these models and their addition laws in Echidna [19] (in the
Magma [21] language) for a verification that the systems are consistent and define
rational maps. The dimensions of the spaces of given bidegree are known a priori
by Kohel [17], as well as their completeness as morphisms. By the Rigidity
Theorem [22, Theorem 2.1], a morphism μ of abelian varieties is the composition
of a homomorphism and translation. In order to verify that μ : E×E → E is the
addition morphism, it suffices to check that the restrictions of μ to E×{O} and
{O} × E agree with the restrictions of π1 and π2, respectively. Similarly, for a
particular addition law of bidegree (2, 2), the exceptional divisors, on which the
polynomials of the addition law simultaneously vanish, are known by Lange and
Ruppert [20] and the generalizations in Kohel [17] to have components of the
form ΔP = {(P + Q,Q) | Q ∈ E}. Consequently, as pointed out in Kohel [17]
(Corollary 11 and the Remark following Corollary 12), the exceptional divisors
can be computed (usually by hand) by intersecting with E × {O}.

Addition Law Structure for the Z/4Z-Normal Form

Theorem 14. Let E/k, char(k) = 2, be an elliptic curve in Z/4Z-normal form:

(X0 +X1 +X2 +X3)
2 = cX0X2 = cX1X3.

Bases for the bilinear addition law projections π1 ◦μ and π2 ◦μ are, respectively:{
(X0Y3 +X2Y1, X1Y0 +X3Y2),
(X1Y2 +X3Y0, X0Y1 +X2Y3)

}
and

{
(X0Y0 +X2Y2, X1Y1 +X3Y3),
(X1Y3 +X3Y1, X0Y2 +X2Y0)

}
·

Addition laws of bidegree (2, 2) are recovered by composition with the skew-Segre
embedding s((U0 : U1), (V0 : V1)) = (U0V0 : U1V0 : U1V1 : U0V1). Each of
these basis elements has an exceptional divisor of of the form 2ΔnT for some
0 ≤ n ≤ 3.
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Proof. That the addition laws determine a well-defined morphism is verified
symbolically.6 The morphism is the addition morphism since the substitution
(Y0, Y1, Y2, Y3) = (1, 0, 0, 1), gives the projection onto the first factor. By sym-
metry of the spaces in Xi and Yi, the same holds for the second factor.

The form of the exceptional divisor is verified by a similar substitution. For
example, for the exceptional divisor X1Y2 + X3Y0 = X0Y1 + X2Y3 = 0, we
intersect with (Y0, Y1, Y2, Y3) = (1, 0, 0, 1) to find X3 = X2 = 0, which defines
the unique point T = (1, 1, 0, 0) with a multiplicity of 2, hence the exceptional
divisor is 2ΔT . The other exceptional divisors are determined similarly. ��

Remark. We observe that the entire space of addition laws of bidgree (2, 2)
is independent of the curve parameters. This is not a feature of the Edwards
addition laws.

Corollary 15. Addition of generic points on E can be carried out in 12M.

Proof. Since each of the pairs is equivalent under a permutation of the input
variables it suffices to consider the first, which each require 4M. Composition
with the skew-Segre embedding requires an additional 4M, which yields the
bound of 12M. ��

Evaluation of the addition forms along the diagonal yields the duplication for-
mulas.

Corollary 16. Let E = Ec be an elliptic curve in Z/4Z-normal form. The
duplication morphism on E is given by

π1 ◦ [2](X0 : X1 : X2 : X3)= (X0X3 +X1X2 : X0X1 +X2X3),
π2 ◦ [2](X0 : X1 : X2 : X3)= ((X0 +X2)

2 : (X1 +X3)
2),

composed with the skew-Segre embedding.

This immediately gives the following complexity for duplication.

Corollary 17. Duplication on E can be carried out in 7M+ 2S.

Proof. The pair (X0X3 +X1X2, X0X1 +X2X3) can be computed with 3M by
exploiting the usual Karatsuba trick using the factorization of their sum:

(X0X3 +X1X2) + (X0X1 +X2X3) = (X0 +X2)(X1 +X3).

After the two squarings, the remaining 4M come from the Segre morphism. ��

6 In Echidna [19], the constructor is EllipticCurve C4 NormalForm after which
AdditionMorphism returns this morphism as a composition.
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Addition Law Structure for the Split μμ4-Normal Form

Theorem 18. Let C be an elliptic curve in split μμ4-normal form:

(X0 +X2)
2 = c2X1X3, (X1 +X3)

2 = c2X0X2.

A basis for the space of addition laws of bidegree (2, 2) is given by:⎧⎪⎪⎨⎪⎪⎩
(
(X0Y0 +X2Y2)

2, c(X0X1Y0Y1 +X2X3Y2Y3), (X1Y1 +X3Y3)
2, c(X0X3Y0Y3 +X1X2Y1Y2)

)
,(

c(X0X1Y0Y3 +X2X3Y1Y2), (X1Y0 +X3Y2)
2, c(X0X3Y2Y3 +X1X2Y0Y1), (X0Y3 +X2Y1)

2
)
,(

(X3Y1 +X1Y3)
2, c(X0X3Y1Y2 +X1X2Y0Y3), (X0Y2 +X2Y0)

2, c(X0X1Y2Y3 +X2X3Y0Y1)
)
,(

c(X0X3Y0Y1 +X1X2Y2Y3), (X0Y1 +X2Y3)
2, c(X0X1Y1Y2 +X2X3Y0Y3), (X1Y2 +X3Y0)

2
)
.

⎫⎪⎪⎬⎪⎪⎭
The exceptional divisor of each addition law is of the form 4ΔnT .

Proof. As for the Z/4Z-normal form the consistency of the addition laws is ver-
ified symbolically7 and the space is known to have dimension four by Kohel [17].
Evaluation of the first addition law at (Y0, Y1, Y2, Y3) = (c, 1, 0, 1) gives

(c2X2
0 , c

2X0X1, (X1 +X3)
2, c2X0X3).

Using (X1 + X3)
2 = c2X0X2, after removing the common factor c2X0, this

agrees with projection to the first factor, and identifies the exceptional divisor
4ΔS where S is the 2-torsion point (0 : 1 : c : 1) with X0 = 0. ��

Corollary 19. Addition of generic points on C can be carried out in 7M+2S+
2mc.

Proof. – Evaluate (Z0, Z1, Z2, Z3) = (X0Y0, X1Y1, X2Y2, X3Y3) with 4M.
– Evaluate (X0Y0 +X2Y2)

2 = (Z0 + Z2)
2 with 1S.

– Evaluate (X1Y1 +X3Y3)
2 = (Z1 + Z3)

2 with 1S.
– Evaluate (X0Y0 +X2Y2)(X1Y1 +X3Y3) = (Z0 + Z2)(Z1 + Z3) followed by

X0X1Y0Y1 +X2X3Y2Y3 = Z0Z1 + Z2Z3

X0X3Y0Y3 +X1X2Y1Y2 = Z0Z3 + Z1Z2

using 3M, exploiting the linear relation (following Karatsuba):

(Z0 + Z2)(Z1 + Z3) = (Z0Z1 + Z2Z3) + (Z0Z3 + Z1Z2).

After two scalar multiplications by c, we obtain 7M+2S+ 2mc for the compu-
tation using the first addition law. ��

Specializing this to the diagonal we find defining polynomials for duplication.

Corollary 20. The duplication morphism on an elliptic curve C in split μμ4-
normal form is given by

[2](X0 : X1 : X2 : X3) =
((X0 +X2)

4 : c(X0X1 +X2X3)
2 : (X1 +X3)

4 : c(X0X3 +X1X2)
2).

7 The Echidna [19] constructor is EllipticCurve Split Mu4 NormalForm after which
AdditionMorphism returns this morphism as a composition.
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This gives an obvious complexity bound of 3M+6S+2mc for duplication, how-
ever we note that along the curve we have the following equivalent expressions:

c2(X0X1 +X2X3)
2 = (X0 +X2)

4 + c−4(X1 +X3)
4 + F 2,

c2(X0X3 +X1X2)
2 = (X0 +X2)

4 + c−4(X1 +X3)
4 +G2,

for F = (X0 + cX3)(cX1 +X2) and G = (X0 + cX1)(X2 + cX3), and that

F +G = c(X0 +X2)(X1 +X3).

This leads to a savings of 1M+ 1S from the naive analysis, at the cost of extra
multiplications by c.

Corollary 21. Duplication on C can be carried out in 2M+ 5S+ 7mc.

Proof. We describe the evaluation of the forms of Corollary 20, using the equiv-
alent expressions. Setting (U, V,W ) = ((X0 +X2)

2, (X1 +X3)
2, (X0 + cX1)

2),

G2 = (U + c2V +W )WP and F 2 = G2 + c2UV,

from which the duplication formula can be expressed as:

(cU2 : U2+c−4V 2+(U+c2V+W )W+c2UV : cV 2 : U2+c−4V 2+(U+c2V+W )W ).

We scale by c4 to have only integral powers of c, which gives the

– Evaluate (U, V,W ) = ((X0+X2)
2, (X1+X3)

2, (X0+ cX1)
2) with 3S+1mc.

– Evaluate c5(X0 +X2)
4 = c5U2 with 1S+ 1mc, storing U

2.
– Evaluate c5(X1 +X3)

4 = c5V 2 with 1S+ 1mc, storing V
2.

– Evaluate c2V , c2UV , (U + c2V +W )W with 2M+ 1mc, then set

c4(X0 +X2)
4 + (X1 +X3)

4 = c4U2 + V 2,
c4G2 = c4(U + c2V +W )W,
c4F 2 = c4G2 + c6UV,

using 3mc, followed by additions. This gives the asserted complexity. ��

Remark. The triple (U, V,W ), up to scalars, can be identified with the variables
(A,B,C) of the EFD [6] in the improvement of Bernstein et al. [4] to the dupli-
cation algorithm of Kim and Kim [16] in “extended López-Dahab coordinates”
with a2 = 0. In brief, the extended López-Dahab coordinates defines a curve
Y 2 = (X2 + a6)XZ, in a (1, 2, 1, 2)-weighted projective space with coordinate
functions X , Y , Z, Z2. We embed this in a standard P3, with embedding divisor
class 4(O), by the map (X2, Y,XZ,Z2). By Lemma 5 this is linearly isomorphic
to the curve C in split μμ4-normal form. One derives an equivalent complexity
for duplication on this P3 model, and duplication on C differs only by the cost
of scalar multiplications involved in the linear transformation to C.

We remark that this can be interpretted as a factorization of the duplication
map as follows. Letting D be the image of C given by (U, V,W ) in P2, the Kim
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and Kim algorithm can be expressed as a composition C
ϕ−−→ D

ψ−−→ C where
ϕ and ψ are each of degree 2, with ϕ purely inseparable and ψ separable. The
curve D is a singular quartic curve in P2, given by a well-chosen incomplete
linear system. The nodal singularities of D are oriented such that the resolved
points have the same image under ψ. The omission of a fourth basis element of
the complete linear system allows one to save 1S in its computation.

In order to best optimize the multiplications by scalars, we can apply a co-
ordinate scaling. The split μμ4-normal descends to a (non-split) μμ4-normal form
over any subfield containing the parameter s = c−4, by renormalization of coor-
dinates:

s(X1 +X3)
2 +X0X2, (X0 +X2)

2 = X1X3.

In this form the duplication polynomials require fewer multiplications by con-
stants:(

(X0 +X2)
4 : (X0 +X2)

4 + s2(X1 +X3)
4 + (X0 +X3)

2(X1 +X2)
2 :

s(X1 +X3)
4 : (X0 +X2)

4 + s2(X1 +X3)
4 + (X0 +X1)

2(X2 +X3)
2
)
,

yielding 2M+ 5S+ 2ms.

Addition Law Projections for the Split μ4-Normal Form

Let C = Cc be an elliptic curve in μμ4-normal form and E = Ec2 be an elliptic
curve in Z/4Z-normal form. In view of Theorem 13, there is an explicit isomor-
phism ι : C → E, determined by the application of the skew-Segre embedding
to the pair of projections πi : C → P1:

π1((X0 : X1 : X2 : X3)) =

{
(cX0 : X1 +X3),
(X1 +X3 : cX2),

π2((X0 : X1 : X2 : X3)) =

{
(X0 +X2 : cX1),
(cX3 : X0 +X2).

The first projection π1 determines a map to C/〈[−1]〉 ∼= P1, and the second
projection π2 satisfies π2 ◦ [−1] = σ ◦ π2, where σ((U0 : U1)) = (U1 : U0).
As a consequence of the addition law structure of Theorem 18, the addition law
projections C×C → P1 associated to these projections take a particularly simple
form.

Corollary 22. If πi : C → P1 are the projections defined above, the addition
law projections π1 ◦ μ and π2 ◦ μ are respectively spanned by{

(X0Y0 +X2Y2, X1Y1 +X3Y3),
(X1Y3 +X3Y1, X2Y0 +X0Y2)

}
and

{
(X0Y3 +X2Y1, X1Y0 +X3Y2),
(X1Y2 +X3Y0, X0Y1 +X2Y3)

}
·

Proof. The addition law projections can be verified in Echidna [19]. ��

The skew-Segre embedding of P1 × P1 in P3 induces a map to the isomorphic
curve E in Z/4Z-normal form, rather than the μμ4-normal form. These addition
law projections play a central role in the study of the Kummer arithmetic in
Section 8, defined more naturally in terms of E.
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8 Kummer Quotients and the Montgomery Ladder

For an abelian variety A, the quotient variety K (A) = A/{[±1]} is called the
Kummer variety of A. We investigate explicit models for the Kummer curves
K (E) and K (C) where E = Ec2 and C = Cc are isomorphic elliptic curves
in Z/4Z-normal form and μμ4-normal form, respectively. The objective of this
study is to obtain a Montgomery ladder [23] for efficient scalar multiplication
on these curves. Such a Montgomery ladder was developed for Kummer curves
(or lines since they are isomorphic to the projective line P1) in characteristic 2
by Stam [24]. More recently Gaudry and Lubicz [12] developed efficient pseudo-
addition natively on a Kummer line K = P1 by means of theta identities.
Neither the method of Stam nor Gaudry and Lubicz provides recovery of points
on the curve. We show that for fixed P , the morphism E → K ×K sending
Q to (Q,Q− P ), used for initialization of the Montgomery ladder, is in fact
an isomorphism with its image. As a consequence we rederive the equations of
Gaudry and Lubicz for pseudo-addition, together with an algorithm for point
recovery. In addition, knowledge of the curve equation (in K ×K ) permits the
trade-off of a squaring for a multiplication by a constant depending on the base
point P (see Corollary 26).

Kummer Curves

We consider the structure of K (E) = E/{[±1]} and K (C) = C/{[±1]} for
elliptic curves E = Ec2 in Z/4Z-normal form and C = Cc in split μμ4-normal
form, respectively. The former has a natural identification with P1 equipped
with the covering π1 : E → K (E), given by

(X0 : X1 : X2 : X3) �→
{
(X0 : X1),
(X3 : X2).

The latter quotient has a plane model K (C) : Y 2 = c2XZ in P2 obtained by
taking the [−1]-invariant basis {X0, X1 + X3, X2}. For E = Ec2 and C = Cc

as above, the isomorphism ι : C → E of Theorem 13 induces an isomorphism
ι : K (C)→ K (E) = P1 of Kummer curves given by

ι(X : Y : Z) =

{
(cX : Y ),
(Y : cZ),

with inverse (U0 : U1) �→ (U2
0 : cU0U1 : U2

1 ). Hereafter we fix this isomorphism,
and obtain the covering morphism C → K (E):

(X0 : X1 : X2 : X3) �→
{
(cX0 : X1 +X3),
(X1 +X3 : cX2).

We denote this common Kummer curve by K , to distinguish the curve with
induced structure from the elliptic curve covering (by both E and C) from P1.
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Montgomery Endomorphism

The Kummer curve K (of an arbitrary elliptic curve E) no longer supports an
addition morphism, however scalar multiplication [n] is well-defined, since [−1]
commutes with [n]. We investigate the general construction of the Montgomery
ladder for the Kummer quotient. For this purpose we define the Montgomery
endomorphism E × E → E × E:(

2 0
1 1

)
(Q,R) = (2Q,Q+R).

In general this endomorphism, denoted ϕ, is not well-defined on K ×K . Instead,
for fixed P ∈ E(k) we consider

ΔP = {(Q,R) ∈ E × E | Q−R = P} ∼= E,

and let K (ΔP ) be the image ofΔP in K ×K , which we call a Kummer-oriented
curve. In what follows we develop algorithmically the following observations (see
Theorems 23, 24, and 25):

1. The morphism ΔP → K (ΔP ) is an isomorphism for any P �∈ E[2].
2. The Montgomery endomorphism is well-defined on K (ΔP ).

By means of the elliptic curve structure on ΔP determined by the isomorphism
E → ΔP given by Q �→ (Q,Q − P ), the Montgomery endomorphism is the
duplication morphism (i.e. ϕ(Q,Q − P ) = (2Q, 2Q − P )). On the other hand,
the Montgomery endomorphism allows us to represent scalar multiplication on
P symmetrically as a sequence of compositions. Precisely, we let ϕ0 = ϕ, let
σ be the involution σ(Q,R) = (−R,−Q) of ΔP , which induces the exchange
of factors on K (ΔP ), and set ϕ1 = σ ◦ ϕ ◦ σ. For an integer n with binary
representation nrnr−1 . . . n1n0 we may compute nP by the sequence

ϕn0 ◦ ϕn1 · · · ◦ ϕnr−1(P,O) = ((n+ 1)P, nP ),

returning the second component.
This composition representation for scalar multiplication on E×E is a double-

and-always-add algorithm [9], which provides a symmetry protection against
side-channel attacks in cryptography (see Joye and Yen [15, Section 4]), but is
inefficient due to insertion of redundant additions. When applied to K (ΔP ), on
the other hand, this gives a (potentially) efficient algorithm, conjugate duplica-
tion, for carrying out scalar multiplication. In view of this, K (ΔP ) should be
thought of as a model oriented for carrying out efficient scalar multiplication on
a fixed point P in E(k).

The Kummer-Oriented Curves K (ΔP )

Let E = Ec2 be a curve in Z/4Z-normal form, let P = (t0 : t1 : t2 : t3) be a
fixed point in E(k), and let K (ΔP ) be the Kummer-oriented curve in K 2, with
coordinate functions ((U0, U1), (V0, V1)).
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Theorem 23. The Kummer-oriented curve K (ΔP ) in K 2, for P = (t0 : t1 :
t2 : t3), has defining equation

t20(U0V1 + U1V0)
2 + t21(U0V0 + U1V1)

2 = c2t0t1U0U1V0V1.

If P is not a 2-torsion point, the morphism κ : E → K (ΔP ), defined by Q �→
(Q,Q− P ), is an isomorphism, given by

π1 ◦ κ(X0 : X1 : X2 : X3)= (U0 : U1)=

{
(X0 : X1),
(X3 : X2),

π2 ◦ κ(X0 : X1 : X2 : X3)= (V0 : V1) =

{
(t0X0 + t2X2 : t3X1 + t1X3),
(t1X1 + t3X3 : t2X0 + t0X2),

with inverse

π1 ◦ κ−1((U0 : U1), (V0 : V1))= (U0 : U1)

π2 ◦ κ−1((U0 : U1), (V0 : V1))=

{
(t1U0V0 + t2U1V1 : t0U0V1 + t3U1V0),
(t3U0V1 + t0U1V0 : t2U0V0 + t1U1V1).

Proof. The form of κ follows from the definition of the addition law. The equa-
tion for the image curve can be computed by taking resultants, and verified
symbolically. The composition of κ with projection onto the first factor is the
Kummer quotient of degree 2. However, for all P not in E[2], the inverse mor-
phism induces a nontrivial involution

(Q,Q− P ) �−→ (−Q,−Q− P ) = (Q,Q+ P )

on K (ΔP ). Consequently the map to K (ΔP ) has degree one, and being non-
singular, gives an isomorphism. ��

Remark. We observe that K (ΔP ) = K (Δ−P ) in K 2, but that a change of
base point changes κ by [−1].
The isomorphism of Ec2 with Cc lets us derive the analogous result for curves
in μμ4-normal form.

Theorem 24. Let C = Cc be an elliptic curve in split μμ4-normal form with
rational point S = (s0 : s1 : s2 : s3). The Kummer-oriented curve K (ΔS) in
K 2 is given by the equation

s0(U0V1 + U1V0)
2 + s2(U0V0 + U1V1)

2 = c(s1 + s3)U0U1V0V1.

If S is not a 2-torsion point, the morphism λ : C → K (ΔS) is an isomorphism,
and defined by

π1 ◦ λ(X0 : X1 : X2 : X3)=

{
(cX0 : X1 +X3),
(X1 +X3 : cX2),

π2 ◦ λ(X0 : X1 : X2 : X3)=

{
(s0X0 + s2X2 : s1X1 + s3X3),
(s3X1 + s1X3 : s2X0 + s0X2),

with inverse λ−1((U0 : U1), (V0 : V1)) equal to
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{
((s1 + s3)U

2
0V0 : (s0U

2
0 + s2U

2
1 )V1 + cs1U0U1V0 : (s1 + s3)U

2
1V0 : (s0U

2
0 + s2U

2
1 )V1 + cs3U0U1V0),

((s1 + s3)U
2
0V1 : (s2U

2
0 + s0U

2
1 )V0 + cs3U0U1V1 : (s1 + s3)U

2
1V1 : (s2U

2
0 + s0U

2
1 )V0 + cs1U0U1V1).

Proof. The isomorphism ι : Ec2 → Cc sending S to T = (t0 : t1 : t2 : t3) induces
the isomorphism (s0 : s1+s3 : s2) = (t20 : ct0t1 : t21), by which we identify K (ΔP )
and K (ΔS). The form of the morphism λ follows from the form of projective
addition laws of Corollary 22, and its inverse can be verified symbolically. ��

We now give explicit maps and complexity analysis for the Montgomery endo-
morphism ϕ(Q,R) = (2Q,Q+R), on the Kummer quotient K (ΔP ) (or K (ΔS)
setting (t0 : t1) = (cs0 : s1 + s3) = (s1 + s3 : cs2)). In view of the application to
scalar multiplication on E or C, this gives an asymptotic complexity per bit of
n, for computing [n]P .

Theorem 25. The Montgomery endomorphism ϕ is defined by:

π1 ◦ ϕ((U0 : U1), (V0 : V1)) = (U4
0 + U4

1 : cU2
0U

2
1 ),

π2 ◦ ϕ((U0 : U1), (V0 : V1)) = (t1(U0V0 + U1V1)
2 : t0(U0V1 + U1V0)

2).

The sets of defining polynomials are well-defined everywhere and the following
maps are projectively equivalent modulo the defining ideal:

(t1(U0V0 + U1V1)
2 : t0(U0V1 + U1V0)

2)
= (t0(U0V0 + U1V1)

2 : t1(U0V0 + U1V1)
2 + c t0(U0V0)(U1V1))

= (t0(U0V1 + U1V0)
2 + c t1(U0V1)(U1V0) : t1(U0V1 + U1V0)

2).

Assuming the point normalization with t0 = 1 or t1 = 1, this immediately gives
the following corollary.

Corollary 26. The Montgomery endomorphism on K (ΔP ) can be computed
with 4M+ 5S+ 1mt + 1mc or with 4M+ 4S+ 1mt + 2mc.

The formulas so obtained agree with those of Gaudry and Lubicz [12]. The first
complexity result agrees with theirs and the second obtains a trade-off of one mc

for one S using the explicit equation of K (ΔP ) in K 2. Finally, the isomorphisms
of Theorems 23 and 24 permit point recovery, hence scalar multiplication on the
respective elliptic curves.

9 Conclusion

We conclude with a tabulation of the best known complexity results for doubling
and addition algorithms on projective curves (taking the best reported algorithm
from the EFD [6]). We include the Hessian model, the only cubic curve model,
for comparison. It covers only curves with a rational 3-torsion point. Binary
Edwards curves [4] cover general ordinary curves, but the best complexity result
we give here is for d1 = d2 which has a rational 4-torsion point. Similarly, the
López-Dahab model with a2 = 0 admits a rational 4-torsion point, hence covers
the same classes, but the fastest arithmetic is achieved on the quadratic twists
with a2 = 1. The results here for addition and duplication on μμ4-normal form
report the better result (in terms of constant multiplications m) for the non-split
μμ4 model (see the remark after Corollary 21 and Corollary 28 in the appendix).
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Curve model Doubling Addition
Z/4Z-normal form 7M+ 2S 12M
Hessian 6M+ 3S 12M
Binary Edwards 2M+ 5S+ 2m 16M+ 1S+ 4m
López-Dahab (a2 = 0) 2M+ 5S+ 1m 14M+ 3S
López-Dahab (a2 = 1) 2M+ 4S+ 2m 13M+ 3S
μμ4-normal form 2M+ 5S+ 2m 7M+ 2S

This provides for the best known addition algorithm combined with essentially
optimal doubling. We note that binary Edwards curves with d1 = d2 and the
López-Dahab model with a2 = 0 and have canonical projective embeddings in
P3 such that the transformation to μμ4-normal form is linear, so that, conversely,
these models can benefit from the efficient addition of the μμ4-normal form.
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11. Edwards, H.: A normal form for elliptic curves. Bulletin of the American Mathe-
matical Society 44, 393–422 (2007)

12. Gaudry, P., Lubicz, D.: The arithmetic of characteristic 2 Kummer surfaces and of
elliptic Kummer lines. Finite Fields and Their Applications 15(2), 246–260 (2009)

13. Hisil, H., Wong, K.K.-H., Carter, G., Dawson, E.: Twisted Edwards Curves Re-
visited. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 326–343.
Springer, Heidelberg (2008)

http://www.hyperelliptic.org/EFD/


398 D. Kohel

14. Farashahi, R.R., Joye, M.: Efficient Arithmetic on Hessian Curves. In: Nguyen,
P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 243–260. Springer,
Heidelberg (2010)

15. Joye, M., Yen, S.-M.: The Montgomery Powering Ladder. In: Kaliski Jr., B.S.,
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Appendix

By means of a renormalization of variables, the split μμ4-normal form can be put
in μμ4-normal form (X0 +X2)

2 = X1X3, s(X1 +X3)
2 = X0X2, where s = c−4.

This form loses the elementary symmetry given by cyclic permutation of the
coordinates, but by the Remark following Corollary 21, we are able to save on
multiplications by scalars in duplication. This renormalization gives the following
addition laws (as a consequence of Theorem 18), and give an analogous savings
for addition.

Theorem 27. Let C be an elliptic curve in μμ4-normal form: A basis for the
space of addition laws of bidegree (2, 2) is given by:⎧⎪⎪⎨⎪⎪⎩

(
(X0Y0 +X2Y2)

2, X0X1Y0Y1 +X2X3Y2Y3, s(X1Y1 +X3Y3)
2, X0X3Y0Y3 +X1X2Y1Y2

)
,(

X0X1Y0Y3 +X2X3Y1Y2, (X1Y0 +X3Y2)
2, X0X3Y2Y3 +X1X2Y0Y1, (X0Y3 +X2Y1)

2
)
,(

s(X1Y3 +X3Y1)
2, X0X3Y1Y2 +X1X2Y0Y3, (X0Y2 +X2Y0)

2, X0X1Y2Y3 +X2X3Y0Y1
)
,(

X0X3Y0Y1 +X1X2Y2Y3, (X0Y1 +X2Y3)
2, X0X1Y1Y2 +X2X3Y0Y3, (X1Y2 +X3Y0)

2
)
.

⎫⎪⎪⎬⎪⎪⎭·
The absence of the constant s in the 2nd and 4th addition laws permits us to
save the 2m in the computation of addition.

Corollary 28. Addition of generic points on C can be carried out in 7M+2S.

Proof. After evaluating (Z0, Z1, Z2, Z3) = (X0Y1, X1Y2, X2Y3, X3Y0) in the last
addition law, the algorithm follows that of Corollary 19. ��

http://eprint.iacr.org/2007/181
http://echidna.maths.usyd.edu.au/echidna/index.html
http://magma.maths.usyd.edu.au/
http://www.jmilne.org/math/CourseNotes/av.html
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Abstract. In this paper, we present a new model of elliptic curves over
finite fields of characteristic 2. We first describe the group law on this
new binary curve. Furthermore, this paper presents the unified addition
formulas for new binary elliptic curves, that is the point addition formulas
which can be used for almost all doubling and addition. Finally, this
paper presents explicit addition formulas for differential addition.

Keywords: Elliptic curve, point multiplication, unified addition law,
differential addition, cryptography.

1 Introduction

Elliptic curve cryptography (ECC) was first proposed by Koblitz [8] and Miller
[13]. In recent years, ECC has gained widespread exposure and acceptance. One
of the key operations of ECC is the scalar multiplication, i.e., to compute kP
by giving a point P on the curve and an integer k. In the last twenty years,
there are a lot of techniques introduced in the literature to improve the scalar
multiplication of ECC. Two types of elliptic curves are mainly used to implement
ECC: elliptic curve over large prime fields and elliptic curve over finite fields of
characteristic 2.

A well known elliptic curve model is Weierstrass model, and many efficient
formulae for this model can be found in [1,6,7,9,11,16,14] etc.. Let K = F2m be
a finite field of characteristic 2, a non-supersingular elliptic curve over K can be
written in Weierstrass form [18,12]

E/F2m : y2 + xy = x3 + ax+ b

with a, b ∈ F2m and b �= 0. There are alternate models of elliptic curves, such as
binary Edwards curves and binary Huff curves, have been proposed for usage in
cryptography. Expressing an elliptic curve with these models can lead to more
efficient arithmetics. These curves can also lead to improved security because
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they have unified addition and doubling laws, which can reduce information
leakage through side channels.

A binary Edwards curve [2] over F2m is the affine curve

Ed1,d2 : d1(x + y) + d2(x
2 + y2) = xy + xy(x+ y) + x2y2

with d1, d2 ∈ K and d1 �= 0, d2 �= d21 + d1. This curve is symmetric in x and
y and thus has the property that if (x1, y1) is a point on the curve then so
is (y1, x1). The dedicated doubling formulas for binary Edwards curves using
2M + 6S + 3D, where M is the cost of a field multiplication, S is the cost of
a field squaring, and D is the cost of multiplying by a curve parameter. The
projective addition formulas for binary Edwards curve using 18M + 2S + 7D.
For differential addition, i.e., addition of points with known difference, which is
the basic step in a Montgomery ladder, uses 5M + 5S + 1D when the known
difference is given in affine form.

A binary Huff curve [10] over F2m is the affine curve

ax(y2 + y + 1) = by(x2 + x+ 1)

with a, b ∈ K and a �= b. This curve is not symmetric in x and y. The dedicated
doubling formulas for binary Huff curves using 6M +2D. The projective unified
addition formulas for binary Huff curve using 15M+2D. The differential addition
uses 5M + 4S + 2D.

In the spirit of [2] and [10], we introduce a new model of elliptic curves

St : x
2y + xy2 + txy + x+ y = 0

over F2m . This curve is symmetric in x and y. The dedicated doubling formulas,
the projective unified addition formulas, and the differential addition and dou-
bling formulas for this new binary curve are described. Our addition formulas
and differential-addition formulas are extremely fast: for example, the dedicated
doubling formula uses 3M + 6S + 1D. The projective unified addition formula
uses 12M + 4S + 2D. The basic step in a Montgomery ladder for a differential
addition and doubling cost 5M + 5S + 1D or 5M + 4S + 2D.

This paper is organized as follows. In Section 2 a new model of binary curves
and their birational equivalence with Weierstrass model are presented. In Sec-
tion 3, the group law on this new binary curve is described. Explicit addition
and doubling formulas are given in Sections 4 and 5 respectively. In Section 6,
differential addition and doubling formulas are given. Finally, we conclude in
Section 7.

2 A New Model of Binary Edwards Curves

Let K be a field of characteristic 2. Consider the set of projective points (X :
Y : Z) ∈ P2(K) satisfying the equation

St : X
2Y +XY 2 + tXY Z +XZ2 + Y Z2 = 0 (1)
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where t ∈ K and t �= 0. The tangent line at (1 : 1 : 0) is X + Y + tZ = 0 , which
intersects the curve with multiplicity 3, so that (1 : 1 : 0) is an inflection point of
St. The partial derivatives of the curve equation are Y 2+tY Z+Z2, X2+tXZ+Z2

and tXY . A singular point (X1 : Y1 : Z1) must have Y 2
1 + tY1Z1 + Z2

1 =
X2

1 + tX1Z1 + Z2
1 = tX1Y1 = 0, and therefore X1 = Y1 = Z1 = 0 since t �= 0.

Therefore, St is nonsingular. The affine form of the curve is

St : x
2y + xy2 + txy + x+ y = 0.

Denote St(K) as

St(K) = {(x, y) ∈ K2|x2y + xy2 + txy + x+ y = 0} ∪ {(1 : 0 : 0), (0 : 1 : 0), (1 : 1 : 0)}

by a slight abuse notation.
Note that the variant form x2y + xy2 + axy + b(x + y) = 0 is isomorphic to

x2y+xy2+txy+(x+y) = 0 via the change of variables (x, y)→ (ax/
√
b, ay/

√
b)

with t = a/
√
b, and the curve x2y + xy2 + xy + b(x + y) = 0 is isomorphic to

x2y + xy2 + txy + (x+ y) = 0 by (x, y)→ (x/
√
b, y/

√
b) with t = 1/

√
b.

The new curve x2y + xy2 + xy + b(x + y) = 0 looks similar to the binary
Edwards curve EB,b,0 : b(x + y) = xy + xy(x + y) + x2y2 without the quartic
term. Hence, we call this new curve a new binary Edwards curve model. The
generalized form Sa,b : x2y + xy2 + axy + (x + y) + b(x2 + y2) = 0 of St is
isomorphic to v2 + uv = u3 + (b/a)u2 + a−8(1 + ab). So one can change Sa,b to
the form d1(x+ y) + d2(x

2 + y2) = xy + xy(x+ y).

2.1 Birational Equivalence with Weierstrass Model

Let St : x
2y+xy2+ txy+x+ y = 0 be defined over the finite field F2m . Then St

is birational equivalent to the Weierstrass elliptic curve v2 + uv = u3 +
1

t8
over

F2m via the change of variables ϕ(x, y) = (u, v), where

u =
x+ y

t2(x+ y + t)
, and v =

x+ y + t2x+ t

t4(x+ y + t)
.

The inverse map is ψ(u, v) = (x, y), where x = t4v+1
t3u+t and y = t4(u+v)+1

t3u+t . Note
that x+ y + t = 0 lead to x+ y = 0, thus t = 0, hence, the rational map covers
all points and defines an isomorphism.

In projective coordinates, the corresponding projective transformations from

X2Y +XY 2+ tXY Z+XZ2+Y Z2 = 0 to V 2W +UVW = U3+
1

t8
W 3 is given

by (X : Y : Z) �→ (U : V :W ), where⎧⎨⎩ U = t2(X + Y ),
V = X + Y + t2X + tZ,
W = t4(X + Y + tZ).
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The inverse transformation is (U : V :W ) �→ (X : Y : Z), where⎧⎨⎩
X = t4V +W,
Y = t4(U + V ) +W,
Z = t3U + tW.

The above change of variables map the element (1 : 1 : 0) on St to the identity
element (0 : 1 : 0) on the Weierstrass curve.

Note that the curve x2y+ xy2 + xy+ b(x+ y) = 0 is isomorphic to v2 + uv =
u3 + b4 via the change of variables

x =
v + b2

u+ b
, and y =

u+ v + b2

u+ b
.

Lemma 1. An elliptic curve E defined over F2m satisfies 4 | #E(F2m) if and only
if E is isomorphic to an elliptic curve of the form x2y + xy2 + txy + x+ y = 0.

Proof. For any a ∈ F∗
2m , there exists a t such that St : x

2y+xy2+txy+x+y = 0
is isomorphic to v2 + uv = u3 + a. We only need to prove that an elliptic curve
E defined over F2m satisfies 4 | #E(F2m) if and only if E is isomorphic to a curve
of the form Wa : v2 + uv = u3 + a.

Assume that E is isomorphic to Wa : v2 + uv = u3 + a. For any point
P = (x, y) ∈ Sa with P �= (0 : 1 : 0), (0,

√
a), we have x �= 0. Therefore the

number of points on Wa is #Wa(F2m) = 2 + 2#{t ∈ F2m |t2 + t = x+ a
x2 , x �= 0}.

The equation t2 + t = x+ a
x2 has a solution if and only if Tr(x+ a

x2 ) = 0, that

is, Tr(x) = Tr(
√
a
x ). Note that #{x ∈ F∗

2m |Tr(x) = Tr(
√
a
x )} is an odd number

since x �→
√
a
x is an involution on F∗

2m with precisely one fixed point. Actually,
the point ( 4

√
a,
√
a) belongs to Wa and has order 4. Hence 4 | #E(F2m).

Conversely, if 4 | #E(F2m), then E is ordinary, and has an equation E :
y2+xy = x3 + rx2 + a after a suitable choice of coordinates, where r ∈ F2m . We
can change v2+uv = u3+a to a standard form Ea : y2+xy = x3+ bx2+a with
some b ∈ F2m . The curve E is isomorphic to Ea if and only if Tr(r) = Tr(b). If
E is not isomorphic to Ea, then Tr(r) �= Tr(b) and t = a. Thus E is a quadratic
twist of Ea and #Ea(F2m) + #E(F2m) = 2m+1 + 2 ≡ 2 (mod 4). ��

3 The Addition Law

Let C be a nonsingular cubic curve defined over a field K, and let O be a point
on C(K). For any two points P and Q, the line through P and Q meets the cubic
curve C at one more point, denoted by PQ. With a point O as zero element and
the chord-tangent composition PQ we can define the group law P + Q by the
relation P +Q = O(PQ), this means that P +Q is the third intersection point
on the line through O and PQ. This makes C(K) into an abelian group with O
as zero element and −P = P (OO). If O be an inflection point then −P = PO
and OO = O.
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Note that (1 : 1 : 0) is an inflection point on the curve St. Define O = (1 : 1 : 0)
as the neutral element. Let P = (x1, y1) be a finite point on the curve St. The
inverse of P is therefore defined as −P = PO, that is −P = (y1, x1). For the
points at infinity, we obtain −(0 : 1 : 0) = (1 : 0 : 0) and −(1 : 0 : 0) = (0 : 1 : 0).
Observe that (0 : 0 : 1) is of order 2.

Let P = (x1, y1) ∈ St be a finite point. The third point of intersection of
the tangent line to the curve at P is R := PP . Then [2]P = OR. After some
calculation, whenever defined, we get [2]P = (x3, y3) with

x3 =
t(1 + x21)

x21 + y21 + x21y
2
1 + t2x21 + x41

, and y3 =
t(1 + y21)

x21 + y21 + x21y
2
1 + t2y21 + y41

.

(2)

For the points at infinity, we have 2(0 : 1 : 0) = (0 : 0 : 1) and 2(1 : 0 : 0) = (0 :
0 : 1).

Let P = (x1, y1) and Q = (x2, y2) ∈ St be two finite points with P �= Q.
As explained above, the addition of P and Q is given by P + Q = O(PQ).
Then, whenever defined, we obtain the dedicated point addition formula P +Q =
(x3, y3) as

x3 =
x1 + y1 + x2 + y2 + x1y2(x1 + y1 + t) + x2y1(x2 + y2 + t)

(x1 + x2)(x1 + y1 + x2 + y2)
,

y3 =
x1 + y1 + x2 + y2 + x1y2(x2 + y2 + t) + x2y1(x1 + y1 + t)

(y1 + y2)(x1 + y1 + x2 + y2)
.

(3)

For infinite points, we also have (0 : 1 : 0) + (1 : 0 : 0) = (1 : 1 : 0), (0 : 1 :
0) + (0 : 0 : 1) = (0 : 1 : 0) and (1 : 0 : 0) + (0 : 0 : 1) = (1 : 0 : 0).

If P = (x1, y1) is a finite point and Q is a point at infinity or Q is (0 : 0 : 1),
we have the following formulas whenever defined.⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(x1 : y1 : 1) + (1 : 0 : 0) = (y1 :
1

x1
: 1),

(x1 : y1 : 1) + (0 : 1 : 0) = (
1

y1
: x1 : 1),

(x1 : y1 : 1) + (0 : 0 : 1) = (
x1y1 + ty1

x1
: x1 + t : 1).

We can also delete t from the above dedicated addition formula and get the fol-
lowing dedicated addition formula which is independent of the curve parameters.

x3 =
(y1 + y2)(y1x2 + y2x1)

y1y2(x1 + x2)(x1 + y1 + x2 + y2)
, y3 =

(x1 + x2)(y1x2 + y2x1)

x1x2(y1 + y2)(x1 + y1 + x2 + y2)
.

(4)

Note that if (x1, y1) is on the curve x2y+xy2+txy+x+y = 0, then so do ( 1
x1
, y1),

(x1,
1
y1
), and ( 1

x1
, 1
y1
) whenever defined. We have (x1, y1) + ( 1

x1
, y1) = (0 : 1 : 0)

when x1 �= 0, and (x1, y1) + (x1,
1
y1
) = (1 : 0 : 0) when y1 �= 0.
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The following facts will be useful in the sequal sections.

(x1, y1) + (
1

x1
,
1

y1
) = 2(y1,

1

x1
) =

(
(1 + y21)(1 + x21y

2
1)

tx21(1 + y21)
,
(1 + x21)(1 + x21y

2
1)

ty21(1 + x21)

)
.

and (x1, y1)− (
1

x1
,
1

y1
) = (0, 0).

After some calculation, we can get the following unified point addition formula.
Let (x1, y1) + (x2, y2) = (x3, y3). Then

x3 =
(x1x2 + y1y2)(y1 + y2) + ty1y2(1 + x1x2)

(x1x2 + y1y2)(1 + y1y2)
,

y3 =
(x1x2 + y1y2)(x1 + x2) + tx1x2(1 + y1y2)

(x1x2 + y1y2)(1 + x1x2)
.

(5)

One can prove that the addition law corresponds to the usual addition law on an
elliptic curve in Weierstrass form. That is, fix (x1, y1), (x2, y2), (x3, y3) ∈ St(K),
if (x1, y1) + (x2, y2) = (x3, y3), then ϕ(x1, y1) + ϕ(x2, y2) = ϕ(x3, y3). The cor-
responding Sage[17] script is given in Appendix A.

Completeness of the Addition Law
Let P = (x1, y1) and Q = (x2, y2) be points on St. From formula (5), the
addition law is defined when the denominators (x1x2 + y1y2)(1 + y1y2) and
(x1x2 + y1y2)(1 + x1x2) are non-zero.

If 1 + y1y2 = 0, then y2 = 1
y1
, and Q ∈ {(x1, 1

y1
), ( 1

x1
, 1
y1
)}. If 1 + x1x2 = 0,

then x2 = 1
x1
, and Q ∈ {( 1

x1
, y1), (

1
x1
, 1
y1
)}.

Lemma 2. Let P = (x1, y1) and Q = (x2, y2) on the curve St. If x1x2 + y1y2 =
0, then Q = ( 1

x1
, 1
y1
) or Q = −P .

Proof. If x1x2 + y1y2 = 0, then x1x2 = y1y2. If x1x2 = y1y2 = 1, then Q =
( 1
x1
, 1
y1
). If x1x2 = y1y2 = a �= 0, 1, then x2 = a/x1, y2 = a/y1. Since x

2
1y1 +

x1y
2
1 + tx1y1 + x1 + y1 = 0,

1

x21y1
+

1

x1y21
+

t

x1y1
+

1

x1
+

1

y1
= 0 and

a2

x21y1
+

a2

x1y21
+

ta

x1y1
+

1

x1
+

1

y1
= 0.

Therefore,
1

x21y1
+

a2

x21y1
+

1

x1y21
+

a2

x1y21
+

t

x1y1
+

ta

x1y1
= 0.

Hence x1 + a2x1 + y1 + a2y1 + tx1y1 + tax1y1 = 0 and x1 + y1 = tx1y1

1+a . Thus

x1y1 = a since x1 + y1 = tx1y1

x1y1+1 . From x1x2 = y1y2 = a and x1y1 = a, we get
x2 = y1 and y2 = x1. That is, Q = −P . ��

Note that if P = (x1, y1) and Q ∈ {( 1
x1
, y1), (x1,

1
y1
), ( 1

x1
, 1
y1
)}, then P + Q =

(0 : 1 : 0), (1 : 0 : 0) or (0 : 0 : 1). Therefore, we have the following theorem.



A New Model of Binary Elliptic Curves 405

Theorem 3. Let the curve St : x2y + xy2 + txy + x + y = 0 be defined over
F2m and let G ⊂ St(F2m) be a subgroup that does not contain points (0 : 1 : 0),
(1 : 0 : 0) or (0 : 0 : 1). Then the unified addition formula is complete.

In particular, the addition formula is complete in a subgroup of odd order, since
all points (0 : 1 : 0), (1 : 0 : 0) and (0 : 0 : 1) have even order.

Projective Formula. We now present the projective version of the addition
formula. For P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2), Let P +Q = (X3 : Y3 :
Z3). Then the projective version of formula (3) is

X3 = (Y1Z2 + Y2Z1) · (Z1Z
2
2(X1 + Y1) + Z2

1Z2(X2 + Y2)
+X1Y2Z2(X1 + Y1 + tZ1) +X2Y1Z1(X2 + Y2 + tZ2)),

Y3 = (X1Z2 +X2Z1) · (Z1Z
2
2 (X1 + Y1) + Z2

1Z2(X2 + Y2)
+X1Y2Z1(X2 + Y2 + tZ2) +X2Y1Z2(X1 + Y1 + tZ1)),

Z3 = (X1Z2 +X2Z1)(Y1Z2 + Y2Z1)(X1Z2 + Y1Z2 +X2Z1 + Y2Z1).

(6)

The projective version of the unified formula (5) is

X3 = (X1X2 + Z1Z2) · ((X1X2 + Y1Y2)(Y1Z2 + Y2Z1) + tY1Y2(Z1Z2 +X1X2)),

Y3 = (Y1Y2 + Z1Z2) · ((X1X2 + Y1Y2)(X1Z2 +X2Z1) + tX1X2(Z1Z2 + Y1Y2)),

Z3 = (X1X2 + Y1Y2)(X1X2 + Z1Z2)(Y1Y2 + Z1Z2).
(7)

4 Explicit Addition Formulas

In this section, explicit formulas for affine addition, projective addition, and
mixed addition on the binary curve St are presented.

Affine Addition. Given (x1, y1) and (x2, y2) on the curve St : x
2y+xy2+txy+

x+ y = 0, we have the following formulas by using the formula (3) to compute
the sum (x3, y3) = (x1, y1) + (x2, y2) if it is defined:

w1 = x1 + y1 + t, w2 = x2 + y2 + t, A = x1y2, B = x2y1,
C = A · w1, D = B · w2, E = (A+B) · (w1 + w2) + C +D,
F = (x1 + x2) · (y1 + y2), G = (x1 + x2)

2 + F, H = (y1 + y2)
2 + F

x3 = (w1 + w2 + C +D)/G, y3 = (w1 + w2 + E)/H.

These formulas cost 2I + 8M + 2S, where I is the cost of a field inversion, M
is the cost of a field multiplication, and S is the cost of a field squaring. We
will use D to denote the cost of a multiplication by a curve parameter. One can
replace 2I with 1I+3M by using Montgomery’s inversion trick. Then the affine
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addition costs 1I + 11M . Note that the cost of additions and squaring in F2m

can be neglected.
By the formula (5), we have the following algorithm to compute the sum

(x3, y3) = (x1, y1) + (x2, y2) if it is defined:

A = x1 · x2, B = y1 · y2, C = (A+B) · (y1 + y2), D = (A+ B) · (x1 + x2),
E = A · B, F = B + E, G = A+ E, H = A+B + E +B2,
J = A+B + E +A2, x3 = (C + tF )/H, y3 = (D + tG)/J.

This algorithm costs 2I + 7M + 2D + 2S or 1I + 10M + 2D+ 2S, the 2D here
is two multiplications by t.

Projective Addition. Given points (X1 : Y1 : Z1) and (X2 : Y2 : Z2) on the
curve St, the following algorithm can compute the sum (X3 : Y3 : Z3) = (X1 :
Y1 : Z1) + (X2 : Y2 : Z2) by using the unified formula (7) if it is defined.

A = X1 ·X2, B = Y1 · Y2, C = Z1 · Z2,
D = (X1 + Z1) · (X2 + Z2) +A+ C,
E = (Y1 + Z1) · (Y2 + Z2) +B + C,
X3 = (A+ C) · ((A+B) ·E + tB · (A+ C)),
Y3 = (B + C) · ((A+B) ·D + tA · (B + C)),
Z3 = (A+B) · (A+ C) · (B + C).

This algorithm costs 13M + 2D, where the 2D is multiplications by the curve
parameter t.

Since the squaring in F2m can be neglected, we have the following algorithm
to compute the sum.

A = X1 ·X2, B = Y1 · Y2, C = Z1 · Z2, D = (X1 + Z1) · (X2 + Z2) + A+ C,
E = (Y1 + Z1) · (Y2 + Z2) +B + C, F = (A+ C)2, G = (B +C)2, H = A · (B + C),
I = B · C, J = A2, K = B2, X3 = (J +H + I) ·E + tB · F,
Y3 = (H +K + I) ·D + tA ·G, Z3 = (J +H + I) · (B + C).

This algorithm costs 12M + 4S + 2D, where the 2D is multiplication by the
curve parameter t.

Mixed Addition. The mixed addition is to compute (X3 : Y3 : Z3) = (X1 :
Y1 : Z1)+(x2, y2) by given (X1 : Y1 : Z1) and (x2, y2) on the curve St. From pro-
jective addition algorithm we can get the mixed addition which costs 12M +D
by using the formula (6) since Z2 = 1. However, by using the formula (7), the
mixed addition costs 11M + 2D.

Comparison with Previous Works. The following comparison shows that our
addition formulas are more efficient than binary Edwards curves and Weierstrass
curves.

The projective addition formulas of binary Edwards curves in [2] cost 21M +
1S + 4D, or 18M + 2S + 7D when the curve parameters are small. The fastest
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formulas cost 16M +1S+4D when the parameters d1 = d2 for binary Edwards
curves. The best operation counts 13M + 4S for Weierstrass curves with pro-
jective coordinates reported in Explicit-Formulas Database [1]. The projective
addition formulas of binary Huff curves in [10] cost 15M + 2S + 2D. Therefore,
our formulas are more faster than the formulas in the literature.

5 Doubling

The doubling formulas on the binary curve St will be described in this section.

Affine Doubling. Let P = (x1, y1) be a point on St, and assume that the sum
2(x1, y1) is defined. From unified formula (5) we get

2P = 2(x1, y1) =

(
ty21(1 + x1)

2

(x21 + y21)(1 + y21)
,

tx21(1 + y1)
2

(x21 + y21)(1 + x21)

)
.

From (x1 + y1)(1+ x1)(1+ y1) = x1(1+ y21)+ y1(1+ x1)
2 + x21 + y21, we have the

following algorithm to compute 2P :

A = y1 · (1 + x21), B = x1 · (1 + y21), D = (A+B + x21 + y21)
−1,

E = tD2, x3 = E ·A2, y3 = E ·B2.

The algorithm costs 1I +4M +5S+D, where the 1D is the multiplication by t.

Projective Doubling. Let P = (X1, Y1, Z1) and 2P = (X3, Y3, Z3). From the
unified formula (5) we get

2P =
(
tY 2

1 (X
2
1 + Z2

1)
2, tX2

1 (Y
2
1 + Z2

1 )
2, (X2

1 + Y 2
1 )(X

2
1 + Z2

1 )(Y
2
1 + Z2

1 )
)

=
(
Y 2
1 (X

2
1 + Z2

1)
2, X2

1 (Y
2
1 + Z2

1 )
2, (1/t)(X2

1 + Y 2
1 )(X

2
1 + Z2

1 )(Y
2
1 + Z2

1)
)
.

Since

(X2
1+Y

2
1 )(X

2
1+Z

2
1 )(Y

2
1 +Z

2
1 )=

(
Y1(X

2
1 + Z2

1) +X1(Y
2
1 + Z2

1 ) + Z1(X
2
1 + Y 2

1 )
)2
,

This leads to the following doubling algorithm.

A = X2
1 , B = Y 2

1 , C = Z2
1 , D = Y1 · (A+ C), E = X1 · (B + C)

X3 = D2, Y3 = E2, Z3 = (1/t)(D + E + Z1 · (A+B))2.

This algorithm costs 3M + 6S + 1D, where the 1D is the multiplication by 1/t.

Comparison with Previous Works. We compare our addition formulas of
new binary curve with other models of elliptic curves. The following comparison
(Table 1) shows that the new binary curve are competitive to binary Edwards
curves, binary Huff curves, binary Hessian curves and Weierstrass curves.

We denote Edwards coordinates by E , projective coordinates by P , and ex-
tended López-Dahab coordinates [11] by L.
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Table 1. Comparisons of points operations in binary fields

Models Addition Doubling

L, Weierstrass [1] 13M+4S 2M+4S+2D

E , Binary Edwards [2] 18M+2S+7D 2M+6S+3D

E , Binary Edwards, d1 = d2 [2] 16M+1S+4D 2M+5S+2D

E , Binary Huff [10] 13M+3S+2D 6M+5S+2D

P , Hessian curve [4] 12M 6M+3S+2D

P , new model in this paper 12M+4S+2D 3M+6S+1D

6 Differential Addition

In this section, fast explicit formulas for w-coordinate differential addition on
the curve St : x

2y + xy2 + txy + x+ y = 0 will be presented. We can define the
w-function in two ways, where w(P ) = x+ y or w(P ) = xy for P = (x, y). Note
that w(−P ) = w(P ) since −(x, y) = (y, x). In the following we only present
explicit formulas of differential addition and doubling for w-coordinates with
w(P ) = xy.

Differential addition means computing Q + P by giving P,Q, and Q − P
or computing 2P by giving P . A general differential point addition consists
in calculating w(P + Q) from w(P ), w(Q) and w(Q − P ) for some coordinate
function w. Montgomery [15] developed a method, called Montgomery ladder,
allowing faster scalar multiplication than usual methods. Montgomery presented
fast formulas for u-coordinate differential addition on non-binary elliptic curves
v2 = u3 + a2u

2 + u. The Montgomery ladder can compute u(mP ), u((m+ 1)P )
efficiently by giving u(P ), and is one of the most important methods to compute
the scalar multiplication. Bernstein et al. [2] presented a fast w-coordinate differ-
ential addition on binary Edwards curves by using the idea of the Montgomery
ladder.

More concretely, write Q − P = (x1, y1), P = (x2, y2), Q = (x3, y3), 2P =
(x4, y4) and Q + P = (x5, y5), and write wi = xiyi for i = 1, 2, 3, 4, 5. We will
present fast explicit formulas to compute w(P +Q) and w(2P ) from w(P ), w(Q)
and w(Q − P ).

From Section 5, we know that the doubling formula is

2P = 2(x, y) =

(
ty2(1 + x2)

(x2 + y2)(1 + y2)
,

tx2(1 + y2)

(x2 + y2)(1 + x2)

)
.

Let w1 = w(P ). Then w(2P ) =
t2x2y2

(x2 + y2)2
. Thus we have w4 =

1 + w4
2

t2w2
2

.

By a tedious but straightforward calculation, we can get that

w1 + w5 =
t2w2w3

w2
2 + w2

3

and w1w5 =
1+ w2

2w
2
3

w2
2 + w2

3

.
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Cost of Affine w-Coordinate Differential Addition and Doubling. The
explicit addition formulas

A = w2
2 , B = w2

3 , C = w2w3, D = (A+B)−1, and
w5 = w1 + t2C ·D

cost 1I+2M+2S+1D, where the 1D is a multiplication by the curve parameter
t2. The explicit doubling formulas

A = w2
2 , B = A2, C = t2A, D = C−1, and

w4 = (1 +B) ·D

cost 1I+1M+2S+1D, where the 1D is a multiplication by the curve parameter
t2. The total cost of a differential addition and doubling is 2I + 3M + 4S + 2D,
or I + 6M + 4S + 2D with Montgomery’s inversion trick.

Cost of Projective w-Coordinate Differential Addition. Assume that
w1, w2, w3 are given as fractions W1/Z1,W2/Z2,W3/Z3 and that w4, w5 are to
be output as fractions W4/Z4,W5/Z5.

The explicit addition formulas

A = W2 · Z3, B = W3 · Z2, C = (A+B)2,
W5 = t2A · Z1 ·B +W1 · C, Z5 = Z1 · C

cost 6M +1S+1D, where the 1D is a multiplication by the curve parameter t2.
From the w1w5 formula, we have alternate formulas

A = Z2 · Z3, B =W2 · w3, C = (A+B)2,
D = (W2 + Z2) · (W3 + Z3) +A+B,
W5 = Z1 · C, Z5 =W1 ·D2

which cost 5M + 2S for differential addition.

Cost of Mixed w-Coordinate Differential Addition and Doubling. As-
sume that w1, w2, w3 are given as fractions W1/Z1,W2/Z2,W3/Z3 and that
w4, w5 are to be output as fractions W4/Z4,W5/Z5, where Z1 = 1. The explicit
mixed addition formulas

A = W2 · Z3, B = W3 · Z2, C = (A+B)2,
W5 = t2A ·B + w1 · C, Z5 = C

use 4M + 1S + 1D, where the 1D is multiplication by the curve parameter t2.
From the w1w5 formula, we have alternate formulas

A = Z2 · Z3, B =W2 · w3, C = (A+B)2,
D = (W2 + Z2) · (W3 + Z3) +A+B,
W5 = C, Z5 = w1 ·D2

which cost 4M + 2S for mixed differential addition.
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Moreover, the explicit doubling formulas

A =W 2
2 , C = Z2

2 ,
W4 = (A+ C)2, Z4 = t2A · C

cost 1M + 3S + 1D, where the 1D is multiplication by the curve parameter t2.
Thus, the total cost of differential addition and doubling is 5M + 4S + 2D or
5M + 5S + 1D.

Table 2. Comparisons of differential addition over binary fields

Models differential doubling differential addition Total

Weierstrass [1] 1M+3S+1D 4M+1S 5M+4S+1D

Binary Edwards [2] 1M+3S+1D 4M+1S+1D 5M+4S+2D

Binary Huff [10] 1M+3S+1D 4M+2S 5M+5S+1D

Hessian curve [4] 1M+3S+1D 4M+1S+1D 5M+4S+2D

Gaudry and Lubicz [5] 1M+3S+1D 4M+2S 5M+5S+1D

The new model in this paper 1M+3S+1D 4M+2S 5M+5S+1D
or 4M+1S+1D or 5M+4S+2D

7 Conclusion

In this paper, we firstly introduce a new model of elliptic curve over binary
fields. The new curve can be seen as a new model of binary Edwards curves by
canceling the quartic term. Furthermore we propose explicit formulas for the
addition, doubling and differential addition. We believe that this new model of
elliptic curves is worthy of consideration in elliptic curve cryptography.
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u2=(x2+y2)/(tˆ2*(x2+y2+t))

v2=(x2+y2+tˆ2*x2+a+b)/(tˆ4*(x2+y2+t))
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v3=(x3+y3+tˆ3*x3+t)/(tˆ4*(x3+y3+t))

lam=(v1+v2)/(u1+u2)

u4=lamˆ2+lam=u1+u2

v4=v1+lam*(u1+u4)+u4

S(numerator(u3-u4))==0

S(numerator(v3-v4))==0
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Abstract. In modern pairing implementations, considerable researches
target at the optimum pairings at different security levels. However, in
many cryptographic protocols, computing products or quotients of pair-
ings is needed instead of computing single pairings. In this paper, we
mainly analyze the computations of fast pairings on Kachisa-Schaefer-
Scott curves with embedding degree 16 (KSS16) for the 192-bit security
and Barreto-Lynn-Scott curves with embedding degree 27 (BLS27) for
the 256-bit security, and then compare the cost estimations for imple-
menting products and quotients of pairings at the 192 and 256-bit secu-
rity levels. Being different from implementing single pairings, our results
show that KSS16 curves could be most efficient for computing products
or quotients of pairings for the 192-bit security; and for the 256-bit secu-
rity, BLS27 curves might be more efficient for computing products of no
less than 25 pairings, otherwise BLS24 curves are much more efficient. In
addition, for the fast pairing computation on BLS27 curves, we propose
faster Miller formulas in both affine and projective coordinates on curves
with only cubic twist and embedding degree divisible by 3.

Keywords: pairing computation, Miller’s algorithm, BLS curve, KSS
curve.

1 Introduction

Bilinear pairing has performed an important role in modern public key cryp-
tography and led to so-called pairing-based cryptography. Considerable works
focus on constructions and implementations of bilinear pairings, and the speed
records for implementing pairings have been greatly improved, e.g. a pairing on
Barreto-Naehrig curves (BN, [5]) for the 128-bit security can be implemented
under 2 million cycles on 64-bit desktop platforms [2]. So there are real needs to
find the optimum pairings at different security levels.

Currently at high levels of security, asymmetric pairings admitting higher
embedding degrees are more fit for implementing. For example, the optimal ate
pairing on BN curves is perfectly suitable for the 128-bit security, and the speed
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of its performance has been improved unceasingly [28,7,2]. For the 256-bit se-
curity, the ate pairing on Barreto-Lynn-Scott curves [4] with embedding degree
24 (BLS24) are recommended by Scott [30] and studied by Costello, Lauter
and Naehrig [11]. In contrast, for the 192-bit security, Scott mentioned that
the optimum choice of pairing-friendly curves is not straightforward, and rec-
ommended Kachisa-Schaefer-Scott curves [21] with embedding degree 18 or 16.
More recently, however, Aranha et al. [1] compared the implementations of single
pairings derived from KSS18, BN, BLS12 and BLS24 curves at the 192-bit secu-
rity level. Surprisingly their result shows that the ate pairing on BLS12 curves
has the fastest implementation. Table 1 shows the currently suitable choices of
pairings for the 128, 192, 256-bit security.

Table 1. Recommended choices of pairings at high security levels

Security level Bits of r Bits of pk bpk/br = ρk Pairing
128-bit 256 3072 12 BN optimal ate [30]
192-bit 384 8192 21 1

3 BLS12 ate [1]
256-bit 512 15360 30 BLS24 ate [30]

However, as noticed in [30], pairings in protocols are often used as products
or quotients of pairings. So there are also needs to analyze optimum pairing
products and quotients. As far as we know, for the 128-bit security no other
known pairings could be competitive with the optimal ate pairing on BN curves.
Thus it still perfectly fits for implementing products and quotients of pairings.
But for the 192 and 256-bit security, the situations are relatively complicated.

Our motivation of choosing the optimum pairing products is that products of
pairings benefit frommore loop reduction than they do from a higher degree twist.
Regardless of security levels, the cost for ate-like Miller loop is decided by the loop
length and the high-degree twist formulas, so the sextic twist and optimal ate pair-
ing are preferred. But, in ate-like Miller loop, since decreasing the total number of
full extension field operations could have a greater influence than decreasing the
size of the field where the subfield operations take place with high-degree twist
technique, then the cost for ate-like Miller loop may be reduced further when tak-
ing a balance between the twisting degree and the reduction of loop length. In this
paper, we show that two ignored curves, namely KSS16 and BLS27 curves, could
admit fast ate-like pairings with much more efficient Miller loop at the 192 and
256-bit security levels. Thus, the fast ate-like pairings on these curves could be
optimum for computing products and quotients of pairings in some situations.

First, in Section 3 we propose a new denominator elimination to derive new
Miller formulas for ate-like pairings in both affine and projective coordinates on
pairing-friendly curves with cubic twist. Our formulas not only extend the study
of affine coordinates for pairing computation by Lauter et al. [24], but also work
more efficiently compared with the previous work [10] for ate-like pairings on
pairing-friendly curves with cubic twist.

Then, we give the first detailed cost estimations for computing the optimal
ate pairing on BLS27 curves for the 256-bit security, and KSS16 curves for the
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192-bit security. Concretely, in Section 4 we carefully analyze the choices of field
extensions and twists for BLS27 curves, and estimate the costs for computing
the ate pairing on BLS27 curves with our new affine Miller formulas. In Section
5 we use a linear algebra method for constructing optimal pairings on a parame-
terized complete family of pairing-friendly curves, to give an optimal ate pairing
on KSS16 curves. Further we provide an efficient computation of the final expo-
nentiation of the optimal ate pairing on KSS16 curves, and estimate the total
costs for this pairing computation.

At last, we provide the comparisons for computing products and quotients
of pairings at the 192 and 256-bit security levels. We show that for the 192-bit
security KSS16 curves are the most efficient choices for implementing products of
pairings and quotients of two pairings among other recommended curves: BLS12,
KSS18, and BN curves; for the 256-bit security, BLS27 curves might be better
than BLS24 curves when implementing products of no less than 25 pairings, but
in other cases BLS24 curves are the more suitable choices.

2 Background

Let p > 3 be a prime and let E be an elliptic curve defined over Fp with short
Weierstrass equation E : y2 = x3 + ax + b, and point at infinity O. Let r be a
prime factor of #E(Fp) = p − t + 1 and let k > 1 be the smallest integer such
that r|pk − 1 named the embedding degree with respect to r. Elliptic curves
having small embedding degrees and large prime-order subgroups are known as
pairing-friendly elliptic curves. To construct an ordinary elliptic curve E with a
given embedding degree k, one finds parameters r, t, p satisfying the CM equation
4p− t2 = Dy2 where D is a square-free integer called the CM discriminant, and
then make use of the CM method to solve the curve equation. For efficiency,
define the ρ-value ρ = log2(q)/ log2(r) ≥ 1, and the ideal ρ-value is ρ = 1.

In current pairing implementations, asymmetric pairings are usually preferred.
When k > 1, let G1 = E[r]∩Ker(πp−1) and G2 = E[r]∩Ker(πp−p) denote two
eigenspaces of the p-th Frobenius endomorphism πp : (x, y) �→ (xp, yp), and let
GT ⊂ F∗

pk denote the group of r-th roots of unity. There are many improvements

on pairings from G1 ×G2 to GT , such as the ate pairing [19]

aT : G2 ×G1 → GT , (Q,P ) �→ fT,Q(P )(q
k−1)/r,

where T = t − 1 and fT,R is a Fqk -rational function with divisor div(fT,Q) =
T (Q) − ([T ]Q) − (T − 1)(O). Let E′ over Fqk/d be a twist of degree d of E
given by y2 = x3 + aω4x+ bω6 for some ω ∈ Fqk , and the twisting isomorphism
is ψ : E′ → E, (x′, y′) �→ (x′/ω2, y′/ω3) with the inverse ψ−1 : E → E′,
(x, y) �→ (ω2x, ω3y). Thus G1 and G2 can be represented by their image under
ψ−1 as G′

1 ⊆ E′(Fqk)[r] and G′
2 = E′(Fqk/d)[r]. Costello et al. [10] showed that

the ate pairing computation can be moved entirely on the twist by using the
twisting isomorphism. So the ate pairing can be transformed as

a′T : G′
2 ×G′

1 → GT , (Q
′, P ′) �→ fT,Q′(P ′)(q

k−1)/r.
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Miller [27] proposed an algorithm to evaluate fm,P (Q) in a double-and-add
manner, and nowadays the algorithm is widely used in an extended double-and-
add manner. Let m = mL2

L + · · · +m12 +m0 > 0 with mi ∈ {−1, 0, 1}, and
initialize R = P , f = 1, then compute fm,P (Q) as

for j from L− 1 downto 0 do
f ← f2 · fDBL(R) = f2 · lR,R(Q)/v2R(Q); R← 2R; (DBL)
if mj = 1 then
f ← f · fADD(R,P ) = f · lR,P (Q)/vR+P (Q); R← R+ P ; (ADD)

elif mj = −1 then
f ← f/fADD(R,P ) = f · vR(Q)/l−R,P (Q); R← R− P ;

return f = fm,P (Q).

where lR1,R2 is the line passing through points R1, R2 with divisor div(lR1,R2) =
(R1) + (R2) + (−(R1 +R2))− 3(O), and vR is the vertical line passing through
point R with divisor div(vR) = (R) + (−R)− 2(O).

Up to now, the most efficient ate-like pairing is given from Vercauteren’s
work [32] (also see [18]), namely optimal ate pairing, which can be computed in
approximately 1

ϕ(k) log2 r basic Miller iterations. For λ = mr with r � m, and

let λ = h(p) =
∑l

i=0 cip
i (h(χ) ∈ Z[χ]), and let si =

∑l
j=i cip

i, if mkpk−1 �≡
((pk − 1)/r) ·

∑l
i=0 icip

i−1 (mod r), then a nondegenerate pairing is defined as

ah : G2 ×G1 → GT , (Q,P ) �→
l∏

i=0

fpi

ci,Q
(P ) ·

l−1∏
i=0

lsi+1Q,[cipi]Q(P )

vsiQ(P )
.

Using a lattice-based method, one may obtain an optimal h(χ) such that each
coefficient of h(χ) satisfies | ci |≤ r1/ϕ(k). For example, optimal ate pairings for
BN and KSS18 curves are given in [32] concretely, and especially the ate pairings
on BLS curves are optimal (see [1]).

3 New Miller Formulas Using Cubic Twists

The denominator elimination with quadratic twist [3] greatly simplifies pairing
computation so that almost all pairing computations focus on curves with even
embedding degrees. Recently, pairing-friendly curves with embedding degree 9
and 15 studied by Lin et al. [26] and El Mrabet et al. [13] attract attention to
produce fast Miller formulas using cubic twist. For curves of the from y2 = x3+b
admitting embedding degree divisible by 3, Lin et al. first observed that

1

vR(S)
=

1

xS − xR
=
x2S + xSxR + x2R

y2S − y2R
,

which leads to a denominator elimination with cubic twist since (y2S−y2R) lies in
a subfield. Later, Costello et al. [10] refined the projective formulas in this case
using more efficient optimization.
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In order to computing pairing on BLS27 curves in this paper, we will propose
new Miller formulas using cubic twist. At high security levels, Lauter et al. [24]
showed that in the ate-like pairing implementation the formulas in affine coordi-
nates are faster than the best currently known formulas in projective coordinates.
However, they only analyzed the case of even embedding degree and quadratic
or sextic twist. In this section we present both new faster affine and projective
Miller formulas of the ate-like pairing on the curve of the from y2 = x3 + b with
cubic twist and embedding degree k divisible by 3.

3.1 Affine Miller Formulas

We first analyze the case of k divisible by 6 and then extend the result to the
case of odd k divisible by 3. Since E/Fp has the sextic twist E′/Fpk/6 , we take
P = (xP , yP ) ∈ G1 = E(Fp)[r] and Q

′ = (x′Q, y
′
Q) ∈ G′

2 ⊂ E′(Fpk/6)[r]. Then we

have P ′ = ψ−1(P ) = (xPω
2, yPω

3) with twisting map ψ : E′ : y2 = x3 + bω6 →
E, (x′, y′) �→ (x′/ω2, y′/ω3), where {1, ω, . . . , ω5} are used as the basis of Fpk

over Fpk/6 in favor of the representation of the Miller function.
We give a new denominator elimination method for computing the ate-like

pairing on the cubic twist as follows. For R1 = (x1, y1), R2 = (x2, y2), R3 =
R1+R2 = (x3, y3) ∈ 〈Q′〉, we utilize the equivalent line function lR1,−R3 instead
of lR1,R2 to compute the Miller linear function fR1,R2 = lR1,−R3/vR3 in affine
coordinates. Take the regular addition formulas x3 = λ2 − x1 − x2 and y3 =
λ(x2 − x3) − y2, where λ = 3x21/2y1 if R1 = R2 and λ = (y2 − y1)/(x2 − x1)
otherwise. Then we have

fR1,R2 =
lR1,−R3

vR3

=
y + y3 − λ(x− x3)

x− x3
=

y + y3
x− x3

− λ

and obtain a new function f ′
R1,R2

= (y − y3)fR1,R2 without the denominator

f ′
R1,R2

=
y2 − y23
x− x3

− λ(y − y3) = x2 + x3x+ x23 − λ(y − y3).

On the cubic twist E′, the y-values of P ′ andQ′ belong to the subfield Fpk/3 . Thus
the evaluations of f ′

R1,R2
(P ′) and the original Miller function fR1,R2(P

′) are the
same under the final exponentiation. Then the new Miller function f ′

R1,R2
(P ′)

can be formalized as

f ′
R1,R2

(P ′) = x23 + λy3 − λyPω
3 + x3xPω

2 + x2Pω
4.

Furthermore, we introduce new affine coordinates (x, y, t) = (x, y, x2) to compute
the Miller doubling and addition steps as follows, and let Mi, Si, and Ii denote
multiplication, squaring, and inversion in field Fpi .

Doubling steps in affine coordinates. With the precomputation of x2P , the formu-
las for computing the doubling and the Miller function require 1Ik/6 +3Mk/6 +

2Sk/6 +
k
3M1 by computing the following sequence of operations.

A = 3t1, B = 2y1, C = B−1, D = A ·C, x3 = D2−2x1, y3 = D · (x1−x3)−y1,
t3 = x23, E = D · y3, F = t3 + E, G = −D · yP , H = x3 · xP .
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Addition steps in affine coordinates. The point addition and affine function can
be computed as follows by costing 1Ik/6 + 3Mk/6 + 2Sk/6 +

k
3M1.

A = (x2 − x1)
−1, B = A · (y2 − y1), x3 = B2 − x1 − x2, y3 = B · (x2 − x3)− y2,

t3 = x23, C = B · y3, D = t3 + C, E = −B · yP , F = x3 · xP .

When k is an odd integer divisible by 3, we have G′
2 ⊂ E′(Fpk/3)[r] and y3,

yPω
3 ∈ Fpk/3 . In both doubling and addition steps, when precomputing yPω

3,
λy3 − λyPω

3 = λ(y3 − yPω
3) can be computed with 1Mk/3 instead of 1Mk/6 +

k
6M1 in the case of 6|k. Thus both our Miller doubling and addition steps require

1Ik/3 + 3Mk/3 + 2Sk/3 +
k
3M1.

1

3.2 Projective Miller Formulas

Our new denominator elimination can also be used to derive new efficient pro-
jective formulas. First, we transform f ′

DBL(R1)
(P ′) and f ′

ADD(R1,Q′)(P
′) to the

homogeneous forms FDBL(R1)(P
′) and FADD(R1,Q′)(P

′). Using the projective
formulas for scalar multiplication in [10], where Z3 = 8Y 3

1 Z1 for point doubling,
and Z3 = −Z1Z2(Z1X2 −X1Z2)

3 for point addition, we prefer to compute

F ′
DBL(R1)

(P ′) = (Z2
3 )FDBL(R1)(P

′)

= X2
3 + 12X2

1Y
2
1 (Y3 − Z3yPω

3) + 2X3Z3(
xP
2
ω2) + Z2

3(x
2
Pω

4)

F ′
ADD(R1,Q′)(P

′) = (Z2
3 )FADD(R1,Q′)(P

′)

= X2
3 − Z1Z2(Z1X2 −X1Z2)

2(Z1Y2 − Y1Z2)(Y3 − Z3yPω
3)

= +2X3Z3(
xP
2
ω2) + Z2

3 (x
2
Pω

4).

We introduce new coordinates (X,Y, Z, T, U) = (X,Y, Z,X2, Z2) to compute
the point doubling and Miller function F ′

DBL(R1)
(P ′) as follows.

A = Y 2
1 , B = 3b·U1, C = (X1+Y1)

2−T1−A, D = (Y1+Z1)
2−A−U1, E = 3B,

X3 = C · (A− E), Y3 = (A+ E)2 − 3(2B)2, Z3 = 4A ·D, T3 = X2
3 , U3 = Z2

3 ,
F = (X3 + Z3)

2 − T3 − U3, G = 3C2, H = Z3 · yPω3, L0 = G · (Y3 −H) + T3,
L1 = F · (xP /2), L2 = U3 · (x2P ).

Similarly, the point addition and Miller function F ′
ADD(R1,Q′)(P

′) can be com-
puted in the new coordinates as the following sequence of operations.

A = X1 ·Z2, B = Y1 ·Z2, C = Z1 ·Z2, D = A−Z1 ·X2, E = B−Z1 ·Y2, F = D2,
G = E2, H = D ·F, I = F ·A, J = H +C ·G− 2I, K = C ·F ·E, X3 = D · J,
Y3 = E ·(I−J)−H ·B, Z3 = C ·H, T3 = X2

3 , U3 = Z2
3 , L = (X3+Z3)

2−T3−U3,
M = Z3 · yPω3, L0 = T3 −K · (Y3 −M), L1 = L · (xP /2), L2 = U3 · (x2P ).

1 When R1 = P and R2 = R−P and R3 = R, the formulas for l−R,P /vR = lP,R−P /vR
are similar and require the same cost.
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Denote α = ωk and since there are field representations Fpk = Fpk/6(ω) and

Fpk/3 = Fpk/6(ω3), and Z3 · yP is of the form
∑k/3

i=0 biω
3i, then the multiplication

of Z3 · yP by ω3 gives the form of bk/3α +
∑k/3−1

i=0 biω
3(i+1). When α is small,

this multiplication by ω3 is just a rotation of the vector representing the field
element with respect to basis ω3 and nearly free. Then computation of Z3 ·yPω3

in our formulas costs k
3M1.

With the precomputation of xP /2 and x2P , computing the projective Miller
doubling formulas requires 3Mk/3 + 9Sk/3 + kM1 + 1M3b. And when taking
Z2 = 1, then the operations for the projective Miller mixed addition formulas
cost 12Mk/3 + 5Sk/3 + kM1.

Comparison. We give the comparison of operation counts of our affine and pro-
jective formulas and the currently fastest projective formulas in [10] in Table 2.
From our comparison, our projective formulas for DBL are faster than those in
[10]. Although our projective formulas for mADD is a little shower than those in
[10],2 our formulas for both DBL and mADD could be a little faster than those
in [10] since the percentage of S is larger for our formulas.

Assume that Sk/3 ≥ 0.8Mk/3 and the inversion-to-multiplication ratioRk/3 =
Ik/3/Mk/3 ≤ 5.6, our affine formulas are better than projective ones. This case
could happen when Fpk is a special larger extension field, e.g. in the case of
k = 27 in Table 3.

Table 2. Operation counts in the ate-like Miller loop with cubic twist

3|k coordinates M1 Ik/3 Mk/3 Sk/3 M(·)
DBL new affine k/3 1 3 2 –
DBL new proj. k – 3 9 1M(3b)

DBL proj. [10] k – 6 7 1M(b)

ADD new affine k/3 1 3 2 –
mADD new proj. k – 12 5 –
mADD proj. [10] k – 13 3 –

DBL+mADD new proj. 2k – 15 14 1M(3b)

DBL+mADD proj. [10] 2k – 19 10 1M(b)

4 Pairing Computation on BLS27 Curves

In this section we consider such a family of BLS curves [4] which has embedding
degree 27 and ρ-value 10/9, and is parameterized by

r(z) = 1
3 (z

18 + z9 + 1),
t(z) = z + 1,
p(z) = 1

3 (z − 1)2(z18 + z9 + 1) + z.
(1)

2 For fast computations, one can not simply use our formulas for DBL and the formulas
from [10] for mADD, since in that case the latter formulas need additional 2Sk/3.
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Note that the ate pairing derived from the above curve family has the opti-
mal loop length [log2(t(z) − 1)] = [log2 z] ≈ [ 1

ϕ(k) log2 r(z)]. In addition, as the

recommended BLS24 curves at the 256-bit security level, the BLS27 curves we
considered also exactly match the recommended ratio bpk/br = 30 at the 256-bit
security level.

4.1 Choices of Finite Field Fp27 and Twists

For the parameters (1), when 3|z18 + z9 + 1, then we have z ≡ 1 (mod 3), i.e.
z = 3γ+1 for some γ, and transform that p(γ) = 3γ2 ·

(
(3γ+1)18 +(3γ+1)9 +

1
)
+ 3γ + 1. According to the definition given by Benger and Scott [6], Fp27 is

a towering-friendly field due to p(γ) ≡ 1 (mod 3), and can be constructed from
Theorem 4 in [6]. First, according to Euclid’s algorithm, we find that p(γ) =
a(γ)2+3b(γ)2, where a(γ) = 3

2γ+1 and b(γ) = 19683γ10+59049γ9+78732γ8+
61236γ7 + 30618γ6 + 10206γ5 + 2268γ4 + 324γ3 + 27γ2 + 3

2γ.
When γ takes an odd value, we define new Z-polynomials A(γ) = 2a(γ) and

B(γ) = 2
3b(γ), and then we have 4p(γ) = A(γ)2 + 27B(γ)2, where A(γ) and

B(γ) are uniquely determined up to sign according to Proposition 8.3.2 in [20].
In this case we can construct the extension of Fp27 directly by using the same
technique in [11].

Proposition 1. Let p(γ), A(γ), and B(γ) be defined as above. For a given γ,
let p be prime and congruent to 1 modulo 3. If γ is an odd integer, then the
binomial t27 − 2 is irreducible in Fp[t].

Proof. From Proposition 9.6.2 in [20], for a prime p ≡ 1 (mod 3), 2 is a cubic
residue modulo p if and only if there exist integers C and D so that p = C2 +
27D2. Since 4p = A2 + 27B2 with uniquely determined A and B, then 2 is a
cubic residue modulo p if and only if both A and B are even. Equivalently one
only needs to verify A or B to be even. Since A(γ) = 3γ + 2, it follows that A
is even if and only if γ is even. Hence, when γ is odd, we conclude that t27 − 2
is irreducible in Fp[t] from Theorem 4 in [6]. ��

When γ takes an even value, take γ = 2γ′, and define new Z-polynomials a′(γ′) =
a(γ) and b′(γ′) = b(γ) satisfying p(γ) = a′(γ′)2 +3b′(γ′)2. Using Euler’s criteria
for cubic residues of small integers [25], we know that 3 is a cubic residue if and
only if 9|b(γ′), or 9|(a(γ′)±b(γ′)). Immediately another irreducible binomial can
be found from the following proposition.

Proposition 2. Assume that γ = 2γ′ takes an even integer and p = a′(γ′)2 +
3b′(γ′)2. If 9 does not divide b′(γ′) and a′(γ′) ± b′(γ′), the binomial t27 − 3 is
irreducible in Fp[t].

Searching even values of γ so that p represents primes with the help of a com-
puter, we find that nearly two-thirds of these γ satisfy the conditions in the
above proposition.

On the other hand, the element α used for constructing Fpk can define the
dth twist element δ ∈ Fpk/d in favor of the efficient pairing computation. For the
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BLS27 curves, we prefer α = 2 or 3 in Proposition 1 or Proposition 2 to define
ω = α1/27 or ω = α5/27 ∈ Fp27 , and then the twisting isomorphism is given as
ψ : E′ : y2 = x3 + b · ω6 → E : y2 = x3 + b, (x, y) �→ (x/ω2, y/ω3).

4.2 Computation in the Miller Loop

We choose the parameter z as 228 +227 +225 +28− 23 so that r(z) has a prime
factor of 516 bits and p(z) is a prime of 573 bits, and the corresponding curve
equation is y2 = x3 − 2. According to Proposition 1, since (z − 1)/3 is an odd
integer, Fp27 can be constructed as Fp[t]/(t

27 − 2), and furthermore the cubic

twist curve has the equation y2 = x3 − 2δ with δ = 22/9 ∈ Fp9 .
Note that Lauter et al. [24] recommended to use affine formulas at high secu-

rity levels, and Scott [30] holds the currently fastest speed of pairing computation
at 256-bit security level by using affine formulas. Hence, in the Miller loop we can
compute the Miller function fz,Q(P ) costing 28 doubling steps (affine formulas),
4 mixed addition steps (affine formulas), 27 squarings in Fp27 , 30 multiplications
in Fp27 , and 1 inversion in Fp27 .3

4.3 Final Exponentiation

For the parameters (1), the final exponentiation of the ate pairing has the fac-
torization (p27 − 1)/r = (p9 − 1)(p18 + p9 + 1)/r = (p9 − 1) · d, where the power
of d is called the hard part. Since p(z) = 1

3 (z − 1)2 · r(z) + z = (z − 1)2 · r + z,
we obtain a recursion relation pm+1 = r · (z − 1)2 · pm + z · pm, and therefore
expand the parameter polynomial of the hard part to the base p as

(p18 + p9 + 1)/r = (z − 1)2 · (p9 + z9 + 1) · (p8 + z · p7 + · · ·+ z7 · p+ z8) + 3.

For the output of the Miller loop f ∈ Fp27 , we compute M = f (p9−1) and then

M1 = Mp8 ·Mzp7 ·Mz2p6 ·Mz3p5 ·Mz4p4 ·Mz5p3 ·Mz6p2 ·Mz7p ·Mz8

,

M2 =M
(z−1)2

1 , M3 = Mz9

2 ·Mp9

2 ·M2, M4 = M3 ·M3.

Thus the total calculations of the final exponentiation require 1 inversion in Fp27 ,
17 powers of z, 2 powers of z−1, 11 multiplications in Fp27 , and p, p2, p3, p4, p5,
p6, p7, p8-Frobenius and 2 p9-Frobenius maps, where the cost for M3 is luckily
included in computing Mz, and especially for any cyclotomic subgroup element

M0 ∈ GΦ27(p) we can compute M−1
0 as Mp18

0 +Mp9

0 to avoid a full inversion.

4.4 Cost Estimation

Here the Karatsuba method is used for our estimation in Table 3. Since p is a
prime of 573 bits, the costs of the base field Fp can be in terms of a 573 bits

3 Note that z has one negative coefficient −1, we need a full inversion to compute
f/fADD in the case of odd embedding degree.
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multiplication (m573), squaring (s573), and inversion (i573), Let M, S, I denote

multiplication, squaring, inversion in Fp27 , and m̃, s̃, ĩ denote multiplication,
squaring, inversion in Fp9

Table 3. Operation costs for computing the ate pairing on the BLS27 curve

Operation Costs (Karatsuba)

m̃ Multiplication in Fp9 36m573

s̃ Squaring in Fp9 36s573
Inversion in Fp3 [24] 1i573 + 9m573 + 2s573

ĩ Inversion in Fp9 1i573 + 63m573 + 14s573
I Inversion in Fp27 1i573 + 387m573 + 86s573

Formulas for DBL or mADD 1̃i+ 3m̃+ 2s̃+ 9m573

Exponentiation by z 28S+ 5M+ 36m573

Exponentiation by z − 1 28S+ 6M+ 36m573

p/p2/p4/p5/p7/p8-Frobenius 26m573

p3/p6/p9-Frobenius 18m573

The Miller loop cost is 28(3m̃+2s̃+ 1̃i+9m573)+ 4(3m̃+2s̃+ 1̃i+9m573)+
27(6s̃) + 30(6m̃) + 1i573 + 387m573 + 86s573 = 12627m573 + 8670s573 + 33i573.
And the final exponentiation cost is 1I+ 17(28 · 6s̃+ 5 · 6m̃+ 36m573) + 2(28 ·
6s̃+ 6 · 6m̃+ 36m573) + 11(6m̃) + 228m573 = 24627m573 + 114998s573 + 1i573.
Thus the total cost is 37254m573 + 123668s573 + 34i573.

5 Pairing Computation on KSS16 Curves

In this section we give a detailed analysis of computing the optimal ate pairing
on KSS16 curve recommended by Scott [30] at the 192-bit security level, which
has embedding degree 16 and ρ-value 5/4 and is parameterized by

r(z) = z8 + 48z4 + 625,
t(z) = 1

35 (2z
5 + 41z + 35),

p(z) = 1
980 (z

10 + 2z9 + 5z8 + 48z6 + 152z5 + 240z4 + 625z2 + 2398z
+ 3125).

(2)

5.1 Optimal Ate Pairing

We first note that the optimal pairing on a parameterized complete family of
pairing-friendly curves defined in [14] could be constructed by using the linear
algebra method, which is much easier than the general lattice-based method
proposed by Vercauteren [32].

Lemma 1. Let t(z), r(z), p(z) parameterize a complete family of pairing-friendly
curves with embedding degree k > 1. Then, there exist m(z) ∈ Q[z] and ci(z) ∈
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Z[z] for 0 ≤ i < ϕ(k) so that m(z)r(z) =
∑ϕ(k)−1

i=0 ci(z)p(z)
i, where deg c0(z) = 1

and deg ci(z) = 0 for 0 < i < ϕ(k).

Proof. Note that deg r(z) = ϕ(k), and let N denote the number of all nonzero

coefficients of {ci(z)}0≤i<ϕ(k), then from
∑ϕ(k)−1

i=0 ci(z)p(z)
i ≡ 0 (mod r(z)), we

can derive a homogeneous system of ϕ(k) linear equations of N variables as
the coefficients of {ci(z)}0≤i<ϕ(k), which has nonzero solutions in QN when N is
greater than ϕ(k). Thus we can take a single c0(z) of degree one and others of de-
gree zero so that the homogeneous system has a solution in Zϕ(k)+1, and the lead-

ing coefficient of c0(z) must be nonzero. Otherwise, one has
∑ϕ(k)−1

i=0 cip(z)
i ≡

0 (mod r(z)) with ci ∈ Z, which contradicts the lower bound of the shortest
vector in the corresponding lattice in [32] (Theorem 7) when z is sufficiently
large. Thus the coefficient matrix of this system is full row rank, and this system
has a unique nonzero solution in Zϕ(k)+1 up to a unit in Q. ��

From Lemma 1, the polynomials ci(z) for 0 ≤ i < ϕ(k) can be solved easily for
any complete family of pairing-friendly curves, and therefore lead to nondegen-
erate optimal pairing on this family. Concretely, we solve an optimal polynomial

h(χ) =
∑ϕ(k)−1

i=0 ci(z)χ
i = z + χ − 2χ5 ∈ Z[χ] for KSS16 curves. According to

[32], the optimal ate pairing ah : G2 ×G1 → GT is given as

ah(Q,P ) =
(
fz,Q(P ) · fp5

−2,Q(P ) · l[z]Q,[p]Q(P )
)(p16−1)/r

=
(
fz,Q(P ) · l−p5

Q,Q(P ) · l[z]Q,[p]Q(P )
)(p16−1)/r

.

Since p8 + 1 ≡ 0 (mod r), then aopt(Q,P ) = ah(Q,P )p
3

also defines a nonde-
generate pairing as

aopt(Q,P ) =
((
fz,Q(P ) · l[z]Q,[p]Q(P )

)p3

· lQ,Q(P )
)(p16−1)/r

. (3)

5.2 Computation in the Miller Loop

Here we choose the parameter z as 249+226+215−27−1 so that r(z) has a prime
factor of 377 bits and p(z) is a prime of 481 bits, and the corresponding curve
equation is y2 = x3 − 3x which fits for fast scalar multiplication. From the law
of Quadratic Reciprocity (Theorem 1, §5.2 of [20]), 3 is a quadratic non-residue
modulo p if p ≡ 5, 7 (mod 12). Since p(z) ≡ 5 (mod 12), we can construct Fp16

as Fp[z]/(z
16− 3) according to [6]. Furthermore, we can choose the quartic twist

y2 = x3 − 3δx with δ = 31/4 ∈ Fp4 .
The Miller loop consists of computing fz,Q(P ), l[z]Q,[p]Q(P ), lQ,Q(P ), two

sparse multiplications in Fp16 , and one p3-Frobenius map in Fp16 . First we can
compute fz,Q(P ) costing 49 doubling steps, 4 mixed addition steps, 48 squarings
in Fp16 , and 52 sparse multiplications in Fp16 . Then, we obtain [z]Q and only
need extra 2 p-Frobenius maps in Fp16 for computing [p]Q = ψ(Q) by using the
skew-Frobenius map. Thus we require 8 multiplications in Fp, 4 multiplications
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in Fp4 , and 2 p-Frobenius maps in Fp16 to compute l[z]Q,[p]Q(P ). And we also
require 8 multiplications in Fp, 1 multiplication in Fp4 , and 1 squaring in Fp4 to
compute lQ,Q(P ).

Unlike the case of the 256-bit security level, Aranha et al. [1] recommended
projective formulas for computing pairing at the 192-bit security level. So we
follow their strategies. The total costs for the Miller loop are 49 doubling steps
(projective formulas), 4 mixed addition steps (projective formulas), 48 squarings
in Fp16 , 54 sparse multiplications in Fp16 , 16 multiplications in Fp, 5 multiplica-
tions and 1 squaring in Fp4 , 2 p-Frobenius and 1 p3-Frobenius maps in Fp16 .

5.3 Final Exponentiation

In the case of KSS16 curves, the final exponentiation of the optimal ate pairing
can be divisible into (p16 − 1)/r = (p8 − 1) · (p8 + 1)/r = (p8 − 1) · d. For
simplicity, we consider a multiple of the hard part d as 857500 · d and expand it
as 857500 · d =

∑7
i=0 cip

i, where taking A = z3 ·B + 56 and B = (z + 1)2 + 4,

c0 = −11z9 − 22z8 − 55z7 − 278z5 − 1172z4 − 1390z3 + 1372,

= −11(z4 · A+ 27z3 · B + 28) + 19A,

c1 = 15z8 + 30z7 + 75z6 + 220z4 + 1280z3 + 1100z2,

= 5(3z3 ·A+ 44z2 ·B) = 5c′1,
c2 = 25z7 + 50z6 + 125z5 + 950z3 + 3300z2 + 4750z,

= 25(z2 ·A+ 38z ·B) = 25c′2,
c3 = −125z6 − 250z5 − 625z4 − 3000z2 − 1300z − 15000,

= −125(z ·A+ 24B) = −125c′3,
c4 = −2z9 − 4z8 − 10z7 + 29z5 − 54z4 + 145z3 + 4704,

= −(2z4 ·A+ 55z3 ·B) + 84A,

c5 = −20z8 − 40z7 − 100z6 − 585z4 − 2290z3 − 2925z2,

= −5(4z3 · A+ 117z2 ·B) = −5c′5,
c6 = 50z7 + 100z6 + 250z5 + 1025z3 + 4850z2 + 5125z,

= 25(2z2 · A+ 41z · B) = 25c′6,
c7 = 875z2 + 1750z + 4375 = 125 · 7B = 125c′7.

For the output of the Miller loop f ∈ Fpk , we compute M = f (p8−1) as an

element in the cyclotomic subgroup GΦ2(p8) [15]. To compute M c0 , M c′1 , M c′2 ,

M c′3 , M c4 , M c′5 , M c′6, M c′7 , we note that c′2 = z(c′3 + 2c′7), c′6 = z(2c′3 − c′7),
c′5 = z2(4c′3 + 3c′7), and c

′
1 = z2(3c′3 − 4c′7). Thus they can be computed roughly

in the following diagram, and their concrete formulas are given in Appendix A.

M c′3 M c′2 M c′1 M c0

↗ ↘ ↗ ↗ ↗
M −→MB −→ MA Mzc′3 −→Mz2c′3 −→Mz3c′3

↘ ↘ ↘ ↘
M c′7 M c′6 M c′5 M c4
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As we show in Appendix A, the computation of the final exponentiation requires
1 inversion in Fp16 , 7 exponentiations by z, 2 exponentiations by z + 1, 16 cy-
clotomic squarings in GΦ2(p8), 34 multiplications in Fp16 , 2 cyclotomic cubings
in Fp16 , and p, p2, p3, p4, p5, p6, p7, p8-Frobenius maps.

5.4 Cost Estimation

We estimate the extension field multiplication using the Karatsuba method, and
list the costs for computing the optimal ate pairing on the KSS16 curve in Table
4.4 We denote m481 multiplication, s481 squaring, i481 inversion in Fp with p a
481 bits prime; and M multiplication, S squaring, and I inversion in Fp16 ; m̃
multiplication and s̃ squaring in Fp4 .

Table 4. Operation costs for computing the optimal ate pairing on the KSS16 curve

Operation Costs (Karatsuba)

m̃ Multi. in Fp4 9m481

s̃ Squaring in Fp4 6m481

Ms Sparse Multi. in Fp16 7m̃
Sc Squaring in GΦ2(p8) [15] 4m̃

Cc Cubing in GΦ2(p8) 8m̃
p8-Frobenius / Ic Inversion in GΦ2(p8) Conjugation

I Inversion in Fp16 [24] 1i481 + 132m481 + 2s481
Formulas for DBL [10] 8m481 + 2m̃+ 8s̃

Formulas for mADD [10] 8m481 + 9m̃+ 5s̃
Exponentiation by z (or z + 1) 49Sc + 4M (or 49Sc + 3M)

p/p3/p5/p7-Frobenius 15m481

p2/p6-Frobenius 12m481

p4-Frobenius 8m481

In the Miller loop for computing the function (3), the cost requires 49(8m481+
2m̃ + 8s̃) + 4(8m481 + 9m̃ + 5s̃) + 48(9s̃) + 54(7m̃) + 16m481 + 5m̃ + s̃ +
45m481 = 10208m481. Assume m481 = s481, the final exponentiation cost is
1i481 +134m481 +7(49(4m̃+4(9m̃))+ 2(49(4m̃+3(9m̃)) + 16(4m̃)+ 34(9m̃)+
2(8m̃) + 92m481 = 22330m481 + 1i481. Hence, the total cost for the optimal ate
pairing on the KSS16 curve is 32538m481 + 1i481.

6 Comparison

As noticed by Scott [30], many protocols involve the computation of products or
quotients of pairings, such as Boneh-Boyen IBE [8] needs to compute a quotient

4 Since p(z) ≡ 1 (mod 4) and −1 is a 8-th residue modulo p(z), then the costs for
p/p3/p5/p7, and p2/p6, and p4 Frobenius maps in Fp16 are 15m481, 12m481, 8m481.
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of two pairings, and ABE scheme due to Waters [33] and the non-interactive
proof systems proposed by Groth and Sahai [17] need to check pairing product
equations. Fast computation of products of pairings has already been investi-
gated by Scott [29] and Granger and Smart [16]. In this section, we give the
estimated comparisons of computing products and quotients of pairings at the
192 and 256-bit security levels, by using the strategies of combining full field
squarings in the Miller loop and the final exponentiation [16].

6.1 192-Bit Security Level

When the embedding degree is even, since the pairing-friendly field Fpk can be
constructed as the quadratic extension of Fpk/2 , then dividing by a pairing equals
multiplying the conjugate of it under the action of the final exponentiation.5 So
we can regard quotients of pairings as products of pairings for KSS16, KSS18,
BLS12, and BN curves that we considered here. Therefore, we only compare the
cost estimations for computing the products of n optimal ate pairings on these
curves using the pairing product techniques in Table 5.

Table 5. Costs comparison of products of n pairings at the 192-bit security level

Costs n KSS16 BLS12 [1] BN [1] KSS18 [1]

Full Squarings 1 2592m481 ≈ 5892m512 ≈ 8837m512 4158m512

for DBL
Others in 1 7616m481 ≈ 10883m512 ≈ 16720m512 9544m512

Miller loop
Final 1 22330m481 ≈ 13068m512 ≈ 11145m512 23821m512

exponentiation +1i481 +9i512 +6i512 +8i512

Total costs 1 32538m481 30023m512 36702m512 37523m512

+1i481 +9i512 +6i512 +8i512
2 40154m481 40726m512 53422m512 47067m512

+1i481 +9i512 +6i512 +8i512
7 78234m481 95141m512 137022m512 94787m512

+1i481 +9i512 +6i512 +8i512
20 177242m481 236620m512 354382m512 218859m512

+1i481 +9i512 +6i512 +8i512

From Table 5 we conclude that the pairing having fewer costs in Miller loop
may be more suitable for implementing pairing products. Our comparison shows
that the KSS16 curve can derive the fastest product or quotient of n pairings
when n ≥ 2, and moreover a product or quotient of n pairings derived from the
KSS18 curve is even faster than the BLS12 curve when n ≥ 7.

5 In the Miller algorithm of dividing by a pairing, we need to replace the element in
Fpk by its conjugate over Fpk/2 .
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6.2 256-Bit Security Level

We take the first comparison of the pairing computations at the 256-bit security
level, by using the affine formulas in [24] for the BLS24 curve and our new ones
in this paper for the BLS27 curve to estimate their costs for computing the ate
pairings.

For computing the ate pairing on BLS24 curves, we choose the parameter z =
−264−260−221−212 so that r(z) has a prime factor of 513 bits and q(z) is a prime of
640 bits. As with the estimation in [1], we reestimate the cost for implementing the
ate pairing on the BLS24 curve over a 640-bit field. The cost for the Miller loop is
64(3(9m640)+2(6m640)+4m640+(14m640+i640))+3(3(9m640)+6m640+4m640+
(14m640+i640))+63(108m640)+66(162m640) = 21297m640+67i640; and the cost
for thefinal exponentiation (using cyclotomic squaring) is 83(3m640)+11(2m640)+
(4m640 + i640) + 9(64(36m640) + 3(162m640)+ 89(3m640) + 2(2m640)+ 4m640 +
i640)+14(162m640)+2(54m640)+360m640 = 30596m640+10i640.Asnoticed in [1],
in software implementations in 64-bit platforms, a Fp field element is represented
with l = 1 + log2(p) binary coefficients packed in n64 = ' l

64( 64-bit processor
words, and a Fp fieldmultiplication can be implemented with complexityO(2n2

64+
n64). So we can estimate thatm640 ≈ 1.228m576, and list the cost comparison for
computing pairing products on the BLS24 and BLS27 curves in Table 6.

Table 6. Costs comparison of the product of n pairings at the 256-bit security level

Costs n BLS24 BLS27

Full Squarings 1 6804m640 5832s573
for DBL ≈ 8355m576

Others in 1 14493m640 + 67i640 12627m573 + 2838s573
Miller loop ≈ 17797m576 + 82i576 +33i573

Final 1 30596m640 + 10i640 24627m573 + 114998s573
exponentiation ≈ 37572m576 + 12i576 +1i573

Total costs 1 63724m576 + 94i576 136188m573 + 34i573
(s576 ≈ 0.8m576) 25 490852m576 + 2062i576 493716m573 + 826i573

26 508649m576 + 2144i576 508613m573 + 859i573
30 579837m576 + 2472i576 568201m573 + 991i573

Note that for a single pairing or quotients of pairings implementation the BLS24
curves have significantly faster pairings comparedwith the BLS27 curve. However,
when implementing a product of no less than 25 pairings, the pairing on the BLS27
curve might be a better choice than the pairing on the BLS24 curve.

Remark 1. Compared with our estimated result at the 192-bit security level,
the estimated superiority for computing the pairing products on the BLS27
curve is tiny, since the lack of the compressed squaring method [15] makes the
final exponentiation for the BLS27 curve much more costly. So how to apply a
compressed squaring method for curves with cubic twist and embedding degree
divisible by 3 would be a interesting open question.
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Remark 2. Scott [30] also mentioned that at the 256-bit level of security the KSS
k = 32 curve [21] might turn out to be a better choice than the BLS24 curve
if the fixed argument optimization applies. According to Lemma 1 we solve an
optimal polynomial h(χ) = z − 3χ + 2χ9 ∈ Z[χ] for KSS32 curves, which can
derive an optimal ate pairing. However, since the parameters (p(z), r(z), t(z))
of KSS32 curves are relatively complicated, we find that the bit size of prime
p is no less than 600 bits when assuming r has a prime factor of no less than
500 bits. So when targeting implementation of pairings on KSS32 curves for the
256-bit security, the base field is at least of 600 bits and the field multiplication
is estimated as m640 for a 64-bit processer. Unluckily, the best z we can find
is z = 235 + 233 − 222 + 219 + 210 − 27 + 1 ensuring p a prime of 615 bits
and r having a prime factor of 519 bits, and then the cost for its Miller loop
(19889m640 + 41i640) is larger than the cost for the BLS24 curve. Besides, the
complicated final exponentiation for the KSS32 curve is still much more costly
than the case of the BLS24 curve. This is the reason why we didn’t add the
optimal ate pairing on KSS32 curves in our comparison.

7 Conclusion

This paper has studied the optimum computations of products and quotients of
pairings widely used in protocols at the 192 and 256-bit security levels. We have
provided a detailed analysis of computing the optimal ate pairings on the BLS27
and KSS16 curves, and estimated their computing costs at the 256 and 192-bit
security levels, respectively. From our comparisons of computing pairings derived
from KSS16, BLS12, BN, KSS18 curves for the 192-bit security, and BLS24 and
BLS27 curves for the 256-bit security, we show that for computing products or
quotients of pairings at the 192-bit security level, the optimal ate pairing on the
KSS16 curve could be the best choice; and at the 256-bit security level, the ate
pairing on the BLS27 curve might be better when computing products of no less
than 25 pairings, otherwise the ate pairing on the BLS24 curve is much better.
In addition, we have presented new faster affine and projective formulas for the
ate-like pairing on pairing-friendly curves with embedding degree divisible by 3
and cubic twist.

Being limited to the general estimated results, the thresholds where our pro-
posed curves become faster than the ones previously suggested might vary a
little when different target platforms are used. In future, we’d like to develop
further improvements and give comparative timings for implementing products
of pairings for concrete protocols.
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A Computing Final Exponentiation for KSS16 Curve

Here we give the concrete formulas for the final exponentiation of the optimal
ate pairing on the KSS16 curve. Luckily we can use an idea of choosing ”better”
parameter z, which could reduce the cost 39Sc to 16Sc by increasing a few
storages, and all the cost savings occur in the formulas marked with star (∗).
Our idea of choosing parameter is to search for such z = ±2n1 ± 2n2 ± · · · ± 2ns

satisfying n1 − n2 > 6, and therefore the calculations marked with star could
be included in the next calculations of the exponentiations by z (or z + 1).
Thus one can compute the final exponentiation costing 1 inversion in Fp16 , 7
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exponentiations by z, 2 exponentiations by z + 1, 16 cyclotomic squarings in
GΦ2(p8), 34 multiplications in Fp16 , 2 cyclotomic cubings in Fp16 , and p, p2, p3,
p4, p5, p6, p7, p8-Frobenius maps.

Easy part (Input f ∈ Fp16) Cost Value

E1 = fp8 , E2 = E1 · f−1 1I E2 = fp8−1 = M

Hard part Cost Value

T1 = E24, T2 = T18, T3 = T22 ∗ (6Sc)

F1 = T2 · T1−1, F2 = F12 1Sc + 1M

F3 = E2z+1, F4 = F3z+1 2 Exp. by z + 1

F5 = F4 · T1 1M

T4 = F58 ∗ (3Sc)

F6 = F5z 1 Exp. by z

F7 = F5 · T6, F8 = T43 1M+ 1Cc F7 = Mc′7

T5 = F68 ∗ (3Sc)

F9 = F6z 1 Exp. by z

F10 = T5 · F6, F11 = F102 1Sc + 1M

T6 = F98 ∗ (3Sc)

F12 = F9z 1 Exp. by z

F13 = T6 · F9, F14 = F133, F15 = F12 · F2 2M+ 1Cc

T7 = F152, T8 = T74, T9 = T84 ∗ (5Sc)

F16 = F15z 1 Exp. by z

F17 = T9 · T7, F18 = F17 · F15, F19 = F182 1Sc + 2M

F20 = F192, F21 = F20 · T8, F22 = F16 · F8 1Sc + 2M F22 = Mc′3

F23 = F22z 1 Exp. by z

F24 = F23 · F11 1M F24 = Mc′2

T10 = F232 ∗ (1Sc)

F25 = F23z 1 Exp. by z

F26 = T10 · F10 1M F26 = Mc′6

T11 = F254 ∗ (2Sc)

F27 = F25z 1 Exp. by z

F28 = T11 · F25, F29 = T11 · F25 2M F29 = Mc′5

F30 = F13 · F14, F31 = F28 · F30, F32 = F122 1Sc + 2M F31 = Mc′1

F33 = F32 · F12, F34 = F27 · F33, F35 = F342 1Sc + 2M

F36 = F35 · F12, F37 = F36 · F21, F38 = F34 · F1 3M F37 = Mc4

F39 = F382, F40 = F392, F41 = F402 3Sc

F42 = F39 · F38, F43 = F41 · F42, F44 = F43 · F18 3M F44 = Mc0

H1 = F7p
7

, H2 = F22p
3

, H3 = F24p
2

, H4 = F26p
6

H5 = F29p
5

, H6 = F31p, H7 = F37p
4

H8 = H1 ·H2, H9 = H82, H10 = H92 2Sc + 1M

H11 = H10 ·H8, H12 = H11 ·H3, H13 = H12 ·H4 3M

H14 = H132, H15 = H142, H16 = H15 ·H13 2Sc + 1M

H17 = H16 ·H6, H18 = H17 ·H5, H19 = H182 1Sc + 2M

H20 = H192, H21 = H20 ·H18, H22 = H21 ·H7 1Sc + 2M

H23 = H22 · F44 (Final output) 1M



Constructing Pairing-Friendly Genus 2 Curves

with Split Jacobian

Robert Dry�lo

Institute of Mathematics, Polish Academy of Sciences,
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Abstract. Using genus 2 curves with simple but not absolutely simple
Jacobians one can obtain pairing-based cryptosystems more efficient than
for a generic genus 2 curve. We describe a new framework to construct
pairing-friendly abelian surfaces, which are simple but not absolutely
simple. The main contribution is the generalization of the notion of com-
plete, complete with variable discriminant, and sparse families of elliptic
curves introduced by Freeman, Scott and Teske [13]. We give algorithms
to construct families of abelian surfaces of each type, which generalize the
Brezing-Weng method. To realize these abelian surfaces as Jacobians we
use curves of the form y2 = x5+ax3+bx or y2 = x6+ax3+b, and apply
the method of Freeman and Satoh [12]. As applications we give variable-
discriminant families with best ρ-values. We also give some families with
record ρ-value.

Keywords: Pairing-friendly hyperelliptic curves, abelian varieties, Weil
numbers, CM method.

1 Introduction

Since pairings have been introduced to design cryptographic protocols (see, e.g.,
[2,3,22,37]), one of the main problems is to construct abelian varieties suitable
for these applications. Let A/Fq be an abelian variety containing an Fq-rational
subgroup of prime order r with the embedding degree k = min{l : r | (ql−1)}. To
implement pairing-based cryptosystems k should be suitably small so that pair-
ings of r-torsion points with values in the field Fqk could be efficiently computed,
but the discrete logarithm problem in Fqk remains intractable. Furthermore, in
order to reduce the key length for a given security level, we would like the bit
size of r to be close to the size of #A(Fq). Since log(#A(Fq)) ≈ dimA log(q),
we would like the parameter ρ = dimA log q/ log r to be close to one. We can
achieve ρ ≈ 1 using supersingular abelian varieties, which in each dimension
have bounded embedding degrees (e.g., k ≤ 6 or 12 for supersingular elliptic
curves or abelian surfaces (see [16,31,33])). For higher security levels we use or-
dinary varieties, which are unlikely to be found by a random choice and require

S. Galbraith and M. Nandi (Eds.): INDOCRYPT 2012, LNCS 7668, pp. 431–453, 2012.
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specific constructions. In practice, we mainly use elliptic curves or Jacobians of
hyperelliptic curves of low genus.

Pairing-friendly elliptic curves. In general, to construct an ordinary elliptic curve
E with an embedding degree k we first find parameters (r, t, q) of E, where t
is the trace of E, q is the size of the field of definition, and r is the order of a
subgroup with the embedding degree k. Then we use the Complex Multiplication
(CM) method to find the equation of E, which requires that the CM discriminant
d of E is sufficiently small, where d is the square-free part of the non-negative
integer 4q−t2. Parameters (r, t, q) of pairing-friendly elliptic curves are generated
either directly, like in the Cocks-Pinch method (see [13, Theorem 4.1]), or are
obtained as values of suitable polynomials (r(x), t(x), q(x)) called parametric
families. The former method is very flexible and allows one to obtain subgroup
orders r and discriminants d of almost arbitrary size, however with ρ-value only
around 2. Using parametric families we can considerably improve ρ-values for
more restricted subgroup orders and discriminants.

Miyaji, Nakabayashi and Takano [27] were the first researchers to use para-
metric families to characterize elliptic curves of prime orders with embedding
degrees k = 3, 4, 6. Scott and Barreto [34], and Galbraith et al. [17] generalized
their idea to describe elliptic curves with prescribed cofactors for k = 3, 4, 6.
Currently constructions of families with ρ = 1 are also known for k = 10 and 12,
and were discovered by Freeman [9] and Barreto-Naehrig [1], respectively. Most
families used in practice are so-called complete families, which are constructed
by the Brezing-Weng method [4]. We now recall the general definition and the
classification of families introduced by Freeman, Scott and Teske [13].

Definition 1. ([13, Definition 2.7]) Let k and d be positive integers such that
d is square-free. We say that a triple of polynomials (r(x), t(x), q(x)) in Q[x]
parametrizes a family of elliptic curves with embedding degree k and discriminant
d if the following conditions are satisfied:

1. q(x) = p(x)s for some s ≥ 1 and p(x) that represents primes.
2. r(x) is irreducible, non-constant, integer valued, and has positive leading

coefficient.
3. r(x) divides q(x) + 1− t(x).
4. r(x) divides Φk(t(x) − 1), where Φk(x) is the kth cyclotomic polynomial.
5. The CM equation 4q(x) − t(x)2 = dy2 has infinitely many integer solutions

(x, y).

Properties of the CM equation lead us to the classification of families. It is clear
that we can write 4q(x)−t(x)2 = f(x)g(x)2, where f(x) ∈ Z[x] is square-free and
g(x) ∈ Q[x]. Then condition (5) implies by Siegel’s theorem that deg f(x) ≤ 2
(see [9, Proposition 2.10] or Lemma 16). We say that a family is complete if f is
constant, so f = d; then the CM equation is satisfied for any x ∈ Z. We say that
a family is complete with variable discriminant if deg f = 1; then substituting
x← (dx2−b)/a, where f(x) = ax+b, yields a complete family with discriminant
d if conditions (1) and (2) of Definition 1 are satisfied. A family is called sparse
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if deg f = 2; then the CM equation can be transformed to the generalized Pell
equation, whose solutions grow exponentially. Let us note that the Brezing-Weng
method can be generalized to construct families of the latter two types (see [8]).
These families can be used to generate elliptic curves with larger discriminant,
which may be desired for larger variety of cryptosystems.

Pairing-friendly genus 2 curves. Freeman, Stevenhagen and Streng [14] (see also
Freeman [10]) gave a general method to generate pairs (r, π) such that π is a
Weil q-number corresponding by the Honda-Tate theory to a simple ordinary
abelian variety with embedding degree k with respect to a prime r. In order to
use the CM method to realize these varieties as Jacobians, π have to generate a
suitable CM field K, where Weil numbers in question are characterized by the
condition

NK/Q(π − 1) ≡ Φk(ππ̄) ≡ 0 (mod r).

If [K : Q] = 2g, then the corresponding varieties are of dimension g with ρ-
value around 2g2. Freeman [11] generalized this method to construct parametric
families of abelian varieties. In order to obtain pairing-friendly ordinary abelian
surfaces, which generically have ρ-value around 4, or less than 4 for parametric
families, we use genus 2 curves, whose Jacobian is simple but not absolutely
simple. Kawazoe and Takahashi [25] use curves of the form y2 = x5 + ax and a
closed formula for their order [15] (see also Kachisa [23]). Freeman and Satoh [12]
give a general method to construct an elliptic curve, whose Weil restriction over
some extension contains an abelian surface with a given embedding degree. To
realize that surface as a Jacobian, they use curves of the form y2 = x5+ax3+bx
or y2 = x6+ax3+b. Recently Guillevic and Vergnaud [19] extended their method
using closed formulas for the order of these curves.

Contribution. In this paper we describe a framework to determine Weil numbers
of simple but not absolutely simple pairing-friendly abelian varieties, which is
based on the following idea (see also [7]). Let K be a CM field of degree 2g,
and suppose that we have a polynomial π(x, y) ∈ K[x, y] such that q(x, y) =
π(x, y)π̄(x, y) ∈ Q[x, y] and the image π(Z2) contains “sufficiently many” Weil
numbers inK. Then we can use π(x, y) to generate pairing-friendlyWeil numbers
analogously to the Cocks-Pinch method. If r is a prime such that the system

NK(x,y)/Q(x,y)(π(x, y) − 1) = Φk(q(x, y)) = 0 (1)

has solutions over Fr, then we check whether π(x, y) is a Weil number for lifts
x, y ∈ Z of these solutions. Under the heuristic assumption that generically so-
lutions over Fr are of the similar size as r, the resulting varieties have ρ-value
ρ = g log q(x, y)/ log r ≈ 2g deg π(x, y). Thus to obtain ρ-value around 2g, we
need suitable polynomials π(x, y) of degree one. If K contains an imaginary
quadratic subfield K0 = Q(

√
−d), then for any u ∈ K such that c = uū ∈ Q,

the polynomial π(x, y) = u(x + y
√
−d) satisfies q(x, y) = π(x, y)π̄(x, y) =

c(x2 + dy2) ∈ Q[x, y], however, if c �= 1, then the image π(Z2) does not con-
tain sufficiently many primes. Therefore we will use π(x, y) = ζs(x + y

√
−d) to
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generate Weil numbers in the CM field K = Q(ζs,
√
−d), where ζs is an sth

primitive root of unity and d > 0 is a square-free integer. We note that Weil
q-numbers of the form π = ζsπ0 with π0 ∈ Q(

√
−d) correspond to simple abelian

varieties which are isogenous over Fqs to a power of an elliptic curve E/Fq with
the Weil q-number π0 (Corollary 4).

To generalize the Cocks-Pinch and the Brezing-Weng methods we describe in
Section 3 prime finite fields and number fields, where system (1) has solutions for
π(x, y) = ζs(x + y

√
−d), and we give explicit formulas for solutions. In Section

4 we focus on constructing genus 2 curves, whose Jacobian corresponds to Weil
numbers π = ζsπ0 in a quartic CM field K = Q(ζs,

√
−d). We give an algorithm

to construct curves of the form y2 = x6 + ax3 + b and y2 = x5 + ax3 + bx, which
is based on the method of Freeman and Satoh (see [12, Algorithm 5.11]). In
Section 5 we generalize Definition 1 and the classification of families of elliptic
curves to abelian varieties. In Sections 6, 7, 8 we generalize the Brezing-Weng
method to construct families of each type.

As applications we give complete families with variable discriminant of abelian
surfaces (r(x), π(x)) with best ρ-values such that deg r(x) < 25. Some complete
families with variable discriminant are given in [12, Section 7], where they are
obtained from complete families satisfying certain conditions, however no general
method to construct such families is given. We also find some families with record
ρ-value ρ = 2 for k = 3, 4, 6, 12, or ρ ≈ 2.1 for k = 27, 54 (see Examples 19, 24,
27).

2 Background on Abelian Varieties

In this section we gather basic facts on abelian varieties, which will be needed
in the sequel (for details see [28,39,40,41,42]).

Let A/Fq be a g-dimensional abelian variety with qth Frobenius endomor-
phism πA, and its characteristic polynomial fA. Then we have fA(πA) = 0, and
#A(Fq) = fA(1). Furthermore, all roots of fA are Weil q-numbers. Recall that an
algebraic integer π is called a Weil q-number if |α(π)| = √q for every embedding
α : Q(π)→ C.

We say that A is simple if it is not isogenous over Fq to a product of two pos-
itive dimensional abelian varieties. By the Honda-Tate theorem the map which
associates the Frobenius endomorphism πA to a simple abelian variety A/Fq

induces a one-to-one correspondence between isogeny classes of simple abelian
varieties over Fq and conjugacy classes of Weil q-numbers. Recall also that A is
called ordinary if it has the maximum number pg of all p-torsion points over Fq,
where p = charFq. We have the following.

Theorem 2. ([42]) Let A/Fq be a simple abelian variety of dimension g with
the endomorphism algebra K = EndFq

(A) ⊗ Q. Then A is ordinary if and only
if K is a CM field of degree 2g, K = Q(πA), and πA, πA are relatively prime in
OK . Furthermore, if A is ordinary, then fA is the minimal polynomial of πA,
and

#A(Fq) = fA(1) = NK/Q(πA − 1). (2)
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Recall that a number field K is called a CM field if it is an imaginary quadratic
extension of a totally real field. Then K has an automorphism, denoted by a bar,
which commutes with every embedding K → C and the complex conjugation in
C. Note that two integers in OK are said relatively prime if they generate the
unit ideal.

In this paper we are interested in simple abelian varieties, which are not
absolutely simple (i.e., they split over some extension of the base field).

Proposition 3. A simple ordinary abelian variety A/Fq with a Weil q-number
π splits over Fqs if and only if Q(πs) � Q(π). Then A is isogenous to Bn over
Fqs , where B/Fqs is a simple abelian variety with the Weil qs-number πs.

Proof. For the sake of completeness we give a proof (see also [20, Lemma 4]).

Recall that if fA,q(x) =
∏2g

i=1(x − πi), then fA,qs(x) =
∏2g

i=1(x − πs
i ). Since A

is simple and ordinary, fA,q(x) is irreducible, and hence all πi are conjugated. If
Q(πs) � Q(π), then fA,qs is not the minimal polynomial of πs, so A splits over
Fqs . Conversely, if A ∼ B1× · · · ×Bm for simple abelian varieties Bi/Fqs , then
fA,qs = fB1 · · · fBm

. Since each Bi is ordinary, fBi
is irreducible. Furthermore,

since all πs
1, . . . , π

s
2g are conjugated, it follows that they are exactly roots of each

fBi
. Hence all fBi

are equal, and from Tate’s theorem [40] it follows that all Bi

are isogenous over Fqs , so A ∼ Bn
1 .

Corollary 4. Let A/Fq be an ordinary simple abelian variety with a Weil q-
number π, and E/Fq be an ordinary elliptic curve with a Weil q-number π0.

(i) Then A is isogenous to Eg over Fqn if and only if π = ζsπ0, where ζs is an
sth primitive root of unity and s | n.

(ii) If s is even and π = ζsπ0, then A is isogenous to E′g over Fqs/2 , where E
′

is the quadratic twist of E.
(iii) If π = ζsπ0, then Q(π) = Q(ζs,

√
−d), where π0 ∈ Q(

√
−d) and d is a

positive square-free integer.

Proof. (i) By Proposition 3 we have A ∼ Eg over Fqn if and only if πn = πn
0 .

So, if s is the minimal integer such that πs = πs
0, then π = ζsπ0, and obviously

s | n.
(ii) Since −π0 is the Weil q-number of the quadratic twists E′ of E, and

π = ζs/2(−π0), it follows from (i) that A ∼ E′g over Fqs/2 .
(iii) Since E is ordinary, πs

0 and π̄s
0 are relatively prime, so πs

0 �∈ Z. Hence
πs = πs

0 generates Q(
√
−d), which implies that ζs,

√
−d ∈ Q(π), so Q(π) =

Q(ζs,
√
−d).

2.1 Weil Numbers of Pairing-Friendly Varieties

Recall that the embedding degree of an abelian variety A/Fq with respect to a
prime r | #A(Fq), r �= charFq, is the minimal integer k such that r | (qk− 1). In
other words, q (mod r) is a kth primitive root of unity, or equivalently, if r � k,
it is a root of the kth cyclotomic polynomial Φk(x). By Theorem 2 we have the
following.
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Lemma 5. ([14, Proposition 2.1]) Let K = Q(π) be a CM field of degree 2g,
where π is a Weil q-number corresponding to an ordinary abelian variety A.
Let k be a positive integer and r be a prime such that r � kq. Then A has the
embedding degree k with respect to r if and only if

(1) r | Φk(q),
(2) r | NK/Q(π − 1).

3 The Generalized Cocks-Pinch Method

LetK = Q(ζs,
√
−d) be a CM field of degree 2g, where ζs is an sth primitive root

of unity and d > 0 is a square-free integer. To generate as in the Cooks-Pinch
method pairing-friendly Weil numbers of the form π = ζsπ0 with π0 ∈ Q(

√
−d),

we need to find a prime finite field Fr where the system

NK(x,y)/Q(x,y)

(
ζs(x+ y

√
−d)− 1

)
= Φk

(
x2 + dy2

)
= 0, (3)

has solutions, and check whether π(x, y) = ζs(x + y
√
−d) is a Weil number for

lifts x, y ∈ Z of these solutions. We describe below such prime fields Fr, and give
explicit formulas on solutions. We also give an analogous result for number fields
in order to further generalize the Brezing-Weng.

Lemma 6. Let R = Z or Q[x], and r ∈ R be a prime such that the residue field
R/(r) contains primitive roots of unity ζk, ζs and

√
−d (if R = Z, we assume

that r � 2dks). If
√
−d �∈ Q(ζs), then solutions in R/(r) of system (3) are of the

form

x =
ζ−1
s + ζkζs

2
, y = ±ζ

−1
s − ζkζs

2
√
−d

. (4)

If
√
−d ∈ Q(ζs), then one of these pairs is a solution of (3).

Proof. We have

NK(x,y)/Q(x,y)

(
ζs(x+ y

√
−d)− 1

)
=

∏
σ∈Aut(K)

(
σ(ζs)

(
x+ yσ(

√
−d)
)
− 1
)
,

and
x2 + dy2 = σ(ζs)

(
x+ yσ(

√
−d)
)
σ(ζ−1

s )
(
x− yσ(

√
−d)
)
.

Thus (3) has the same solutions over Q(ζk, ζs,
√
−d) as systems

σ(ζs)
(
x+ yσ(

√
−d)
)
= 1,

σ(ζ−1
s )
(
x− yσ(

√
−d)
)
= ζk,

for each ζk and σ ∈ Aut(K). Hence

x =
σ(ζ−1

s ) + ζkσ(ζs)

2
, y =

σ(ζ−1
s )− ζk σ(ζs)

2σ(
√
−d)

. (5)
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If
√
−d �∈ Q(ζs), then the above solutions are of the form (4), since each au-

tomorphism of Q(ζs) has two extensions on K. If
√
−d ∈ Q(ζs), then one of

the pairs (4) is equal to such a solution. Now let P be a prime ideal over r in
S = R[ζs, ζk,

√
−d], and SP be the localization of S at P . It follows from the

assumption that R/(r) = S/P = SP /PSP . Reducing solutions (5) mod PSP

we get solutions in R/(r) of the desired form, sine reduction mod P induces an
isomorphism between sth and kth roots of unity in S and R/(r) by the following
fact.

Lemma 7. Let R = Z or Q[x], and r ∈ R be a prime such that the residue field
R/(r) contains sth primitive roots of unity (if R = Z, we assume that r � s). If
P is a prime ideal in R[ζs] over r, then R/(r) = R[ζs]/P and reduction mod P
induces an isomorphism between sth roots of unity in R[ζs] and R/(r).

Proof. We note that S = R[ζs] is the integral closure of R in the field of fractions
of S. This is well-known for R = Z. If R = Q[x], it follows from the fact that
F [x] is integrally closed in F (x) for any field F ; in particular for F = Q(ζs).
We also note that the sth cyclotomic polynomial Φs(x) is irreducible over Q(x),
because it is irreducible over Q and coefficients of monic factors of polynomials
in Q[x] are algebraic over Q. Since R ⊂ S is an integral extension of Dedekind
domains, we have rS =

∏n
i=1 P

e
i , where Pi are prime ideals in S. Let ri mod r

for ri ∈ R be different sth primitive roots of unity in R/(r) for i = 1, . . . , ϕ(s).
Since ri mod r are roots of Φs(x), after rearranging we have Pi = (r, ζs− ri) (see
[26, Proposition I.8.25]). Thus ζjs ≡ rji mod Pi yields an isomorphism between
sth roots of unity.

From Lemma 6 we obtain the following generalization of the Cocks-Pinch algo-
rithm.

Algorithm 8. Input: A CM field K = Q(ζs,
√
−d) of degree 2g, and an integer

k > 0.
Output: ∅, or a pair (r, π) such that r is a prime and π = ζsπ0 with π0 ∈ Q(

√
−d)

is a Weil q-number corresponding to a g-dimensional ordinary abelian variety
A/Fq with the embedding degree k with respect to r.

1. Choose a prime r such that lcm(s, k)|(r − 1) and
√
−d ∈ Fr.

2. Let x =
ζ−1
s +ζkζs

2 and y =
ζ−1
s −ζk ζs
2
√−d

for all primitive roots of unity ζs, ζk ∈
Fr.

3. If
√
−d ∈ Q(ζs) and x, y in the previous step do not satisfy system (3), put

y := −y.
4. Let x1, y1 ∈ [0, r) be lifts of x, y.
5. Let π = ζs

(
x1 + ir + (y1 + jr)

√
−d
)
for i, j ∈ [−m,m], where m is a small

integer.
6. Return (r, π) if q = ππ̄ is prime and x1 + ir �= 0.
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Since usually solutions x or y in step 2 are of the similar size as r, we obtain
ρ-value

ρ =
g log((x1 + ir)2 + d(y1 + jr)2)

log r
≈ 2g.

Remark. If d ≡ 3 mod 4, we obtain Weil numbers π = ζsπ0 such that π0 is
in the proper suborder Z[

√
−d]. If we want to generate Weil numbers without

this restriction, we can modify the above method using π(x, y) = ζs(x + y(1 +√
−d)/2).

4 Freeman-Satoh Curves

In this section we focus on constructing genus 2 curves, whose Jacobian corre-
sponds to a given Weil number π = ζsπ0 in a quartic CM field K = Q(ζs,

√
−d),

where π0 ∈ Q(
√
−d). Since ϕ(s) = 2 or 4, we have s = 3, 4, 6, 8, 12 (the quartic

CM field Q(ζ5) contains no imaginary quadratic subfield). Note that a simple
abelian surface which is not absolutely simple, may be not isogenous to the
Jacobian of any curve (see [30]). Since abelian surfaces corresponding to Weil
numbers in question have automorphisms of order s, so of order 3 or 4, first it
is natural to consider genus 2 curves which have automorphisms of order 3 or 4.
We will use the following families of curves

y2 = x6 + ax3 + b, (6)

y2 = x5 + ax3 + bx, (7)

which have automorphisms of order 3 and 4 given by (x, y) �→ (ζ3x, y) and
(−x, iy), respectively (for more details on genus 2 curves with additional auto-
morphisms see [6,18,21,35]). We will need the following result due to Freeman
and Satoh [12].

Lemma 9. ([12, Propositions 4.1 and 4.2]) A curve C given by (6) or (7) is
isomorphic to the curve y2 = x6 + cx3 + 1 or y2 = x5 + cx3 + x, respectively,
where c = a/

√
b. Furthermore, Jac(C) is isogenous over some extension to E2,

where E is an elliptic curve with the j-invariant

j(E) = 2833
(2c− 5)3

(c− 2)(c+ 2)3
, (8)

j(E) = 26
(3c− 10)3

(c− 2)(c+ 2)2
, (9)

respectively.

We now describe a method based on [12, Algorithm 5.11]. Suppose that an
abelian surface A/Fq corresponding to a Weil q-number π = ζsπ0 is isogenous to
the Jacobian of a genus 2 curve C given by (6) or (7). Then A is isogenous over
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some extension to E2, where E is an elliptic curve with the j-invariant given by
(8) or (9), respectively. By Corollary 4, A is also isogenous to E2

0 over Fqs , where
E0 is an elliptic curve with the Weil q-number π0. Hence E and E0 are isogenous,
and so End(E) is an order in K0 = Q(

√
−d). In particular, if End(E) = OK0 is

the maximal order, then j(E) is a root of the Hilbert class polynomial HK0(x).
Conversely, if j ∈ Fq is a root of HK0(x), and there exists c ∈ Fq satisfying
equations (8) or (9) with j(E) = j, then we determine isomorphism classes over
Fq of curves y2 = x6 + ax3 + b or y2 = x5 + ax3 + bx with a, b ∈ Fq satisfying

c = a/
√
b, and verify if their Jacobians correspond to π. Recall that to check

with high probability if the Jacobian of a curve C corresponds to a Weil number
π we pick a random point P ∈ Jac(C) and check if nP = 0, where n = N(π− 1).
The above procedure we give below as an algorithm. The only improvement is
that we admit all twists of the above curves. The following examples show that
this improvement is essential.

Example 10. Let π = ζ3(3+2
√
−5) be a Weil q-number with q = ππ̄ = 29 and

n = NK/Q(1− π) = 1029. Using Algorithm 11 below we find that π corresponds
to the Jacobian of the curve

y2 = 4x6 + 26x5 + 7x4 + 11x3 + 24x2 + 27x+ 4,

which is a twist of the curve y2 = x6+5x3+1. However, checking all a, b, c ∈ F29,
we find that there are no curves y2 = ax6+ bx3+ c, whose Jacobian corresponds
to π.

Algorithm 11. Input: A square-free positive integer d, s = 3, 4, and a Weil
q-number π = ζsπ0 with π0 in K0 = Q(

√
−d).

Output: A genus 2 curve over Fq, whose Jacobian corresponds to π, or ∅.

1. Compute the Hilbert class polynomial HK0(x).
2. For each root j ∈ Fq of HK0(x) let S1 and S2 be the sets of solutions c ∈ Fq

of equations (8) and (9), respectively.
3. For i = 1, 2 and for c ∈ Si if i = 1 let Ci : y2 = x6 + cx3 + 1; else let

Ci : y
2 = x5 + cx3 + x. Put C := Ci. Remove C if it is not hyperelliptic.

4. If c �∈ Fq and all absolute invariants of C lie in Fq, determine a model C0/Fq

of C and put C := C0.
5. Determine all twists of C over Fq.
6. For each twist C′ choose a random point P ∈ Jac(C′)(Fq) and compute nP ,

where n = NK/Q(π − 1).
7. Return C′ if nP = 0.

In this algorithm we need to compute the Hilbert class polynomial HK0(x),
which requires that the discriminant d is sufficiently small (see [38]). Note that
if a genus 2 curve C/Fq has a model over Fq, then all its absolute invariants
lie in Fq. The converse property is not always true, but it does hold if C has
automorphisms other than the identity and the hyperelliptic involution. Then
a model of C over Fq can be computed using the generalization of the Mestre
algorithm [32] due to Cardona and Quer [5].
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Remark 12. (i) In the above algorithm it usually suffices to use curves (6)
or (7) if s = 3 or 4, respectively. However, it may happen for the CM field
K = Q(ζ12) that we need to use curves (6) to realize Weil numbers of the form
iπ0 with π0 ∈ Q(

√
−3) (see Example 19).

(ii) For Weil numbers in the CM field Q(ζ8) we can usually use curves y2 =
x5+ax, which have automorphisms of order 8, (x, y) �→ (ζ28x, ζ8y). The first con-
struction of pairing-friendly curves of this form due to Kawazoe and Takahashi
[25] was based on the closed formula on the order of their Jacobian (see [15]).

Example 13. Let K = Q(ζ3,
√
−5) and k = 16. Using Algorithms 8 and 11,

we find the following parameters of an abelian surface with ρ = 4.011, and the
corresponding genus 2 curve:

r = 48(1053 + 2085) + 1 (181-bits prime),

π = ζ3(4305259600539301889028270527319533759867814882609214984 + 571508067895938550354155472517

641790952378241018152093
√

−5),

q = 20168367586386572810015424271002249732267166683454467732594522539415397151727 6154391831469

84296058295131523501,

y2 = x6 + x3 + 981532917271730474264668250744383765757406174971515824402826019633848306457589362

3291386054363203804560511872.

Example 14. For K = Q(i,
√
−7) the following abelian surface has embedding

degree k = 31 and ρ = 4.016:

r = 124(1075 + 3) + 1 (256-bits prime),

π = i(96180181687130548086884708381078859138617038963689573425053970665226825986272 + 91558027

992357779050997348893456461758173362493150155534511656004178345272853
√

−7),

q = 679307347783150369289751666286449471305173871694322420556070302855831823354494207394621275

41092926455433020262880660629280273105153102439936019342663775247,

y2 = 3x6 + a4x4 + a3x3 + a2x2 + a1x + a0,

a4 = 3359883426491903239260687351205333584274415282669584200961705255663807150184061798836909409

29053258439399481704008550987597610050426614764135822532343 4953,

a3 = 5356837517604474470626757071748343842912451475975733986406790006 16119345968513301650887830

8706136631727773724287077349886552467882134987790 1446296718597438,

a2 = 2088382403406845688058036260961195872529316410730848 273633224420465043726698496169163564571

711766354451251470165246763280927392352645917145654085006717818,

a1 = 57720778065183501500394160125969638193912223362157928071963646675538960777428029050063274589

922893324564241505062288 56624240879836588623929749981630415507,

a0 = 40608745286371422614086942885541479059151002533283910337262145107513480124319683073247403806

513031794751009070833255847028807427645244130283094362282003998.
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5 Parametric Families

Here we generalize Definition 1 and the classification of families of elliptic curves
introduced by Freeman, Scott, and Teske [13] to simple abelian varieties over Fq,
which are isogenous over some extension to a power of an elliptic curve defined
over Fq. Recall that by Corollary 4 Weil q-numbers of such abelian varieties are
of the form π = ζsπ0, where π0 is a Weil q-number of an elliptic curve.

Definition 15. Let K = Q(ζs,
√
−d) be a CM field of degree 2g, where ζs is an

sth primitive root of unity and d > 0 is a square-free integer. Let r(x) ∈ Q[x] and
π(x) = ζs(f1(x) + f2(x)

√
−f(x)), where f1(x), f2(x), f(x) ∈ Q[x]. We say that

the pair (r(x), π(x)) parametrizes a family of g-dimensional ordinary abelian
varieties with embedding degree k and discriminant d if the following conditions
are satisfied:

1. q(x) = f2
1 (x) + f2

2 (x)f(x) is a power of a polynomial in Q[x] that represents
primes, and gcd(f1(x), q(x)) = 1.

2. r(x) is irreducible, non-constant, integer valued, and has positive leading
coefficient.

3. r(x) divides NK1/Q(x)(π(x) − 1), where K1 = Q(x, ζs,
√
−f).

4. r(x) divides Φk(q(x)).
5. The CM equation f(x) = dy2 has infinitely many integer solutions (x, y).

We note that the ρ-values g log q(x)/ log r(x) of parametrized abelian varieties
tend to the ρ-value of the family

ρ =
g deg q(x)

deg r(x)
.

The assumption gcd(f1(x), q(x)) = 1 is necessary to obtain ordinary varieties.
It follows from the fact that an abelian variety with a Weil q-number π = ζsπ0
is ordinary if and only if so is the corresponding elliptic curve with the Weil
q-number π0, which means that its trace π0 + π̄0 is relatively prime to q. In
the examples below q(x) will always represent primes, then we can assume that
f1 �= 0. As for elliptic curves to obtain parameters of an abelian variety with the
endomorphism algebra K = Q(ζs,

√
−d) we find integer solutions (x0, y0) to the

CM equation f(x) = dy2, and check whether π(x0) is a Weil number, and r(x0)
is prime, or almost prime. If this is the case, then NK1/Q(x)(π(x)− 1)(x0) is the
order of an abelian variety corresponding to π(x0), and it is divisible by large
prime factors of r(x0). To generalize the classification of families we will need
the following fact (see also [9, Proposition 2.10]).

Lemma 16. In Definition 15 we can assume that f ∈ Z[x] is square-free,
deg f ≤ 2, and the leading coefficient of f is positive.
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Proof. Obviously, condition (5) in Definition 15 implies that the leading coef-
ficient of f is positive. We can write f = g1g

2
2 , where g1 ∈ Z[x] is square-

free and g2 ∈ Q[x]. By Siegel’s theorem (see [36, Theorem IX.4.3]) the curve
dy2 = f(x) contains finitely many integer points if f ∈ Q[x] is square-free of
degree deg f ≥ 3. Thus replacing f by g1 and f2 by f2g2 we have deg f ≤ 2.

Definition 17. Let (r(x), π(x)) be a family satisfying Definition 15 with f(x)
as in Lemma 16. We say that the family is

1. complete with discriminant d if f = d,
2. complete with variable discriminant if deg f = 1,
3. sparse if deg f = 2.

The above conditions have the same interpretation as for elliptic curves, and are
useful to obtain algorithms to generate families of each type, which generalize
the Brezing-Weng method [4].

6 Complete Families

First we generalize the Brezing-Weng method [4] to construct complete families
of abelian varieties. LetK = Q(ζs,

√
−d) be a CM field of degree 2g. To construct

a complete family (r(x), π(x)) with π(x) = ζs(f1(x) + f2(x)
√
−d), we need to

find a number field L = Q[x]/(r(x)) where the system

NK(x,y)/Q(x,y)

(
ζs(x+ y

√
−d)− 1

)
= Φk

(
x2 + dy2

)
= 0 (10)

has solutions, and take f1, f2 ∈ Q[x] to be lifts of these solutions. Such number
fields and formulas on solutions have been described in Lemma 6. Hence we have
the following algorithm.

Algorithm 18. Input: A CM field K = Q(ζs,
√
−d) of degree 2g, a positive

integer k, and a number field L containing ζs, ζk,
√
−d.

Output: A complete family (r(x), π(x)) of g-dimensional ordinary abelian vari-
eties with embedding degree k, or ∅.

1. Find a polynomial r(x) ∈ Q[x] such that L = Q[x]/(r(x)).

2. Let x1 =
ζ−1
s +ζkζs

2 and y1 =
ζ−1
s −ζk ζs
2
√−d

for all primitive roots of unity ζs, ζk ∈
L.

3. If
√
−d ∈ Q(ζs) and x1, y1 do not satisfy system (10), put y1 = −y1.

4. Let f1, f2 ∈ Q[x] be lifts of x1, y1 with deg fi < deg r, i = 1, 2.
5. Let π(x) = ζs(f1(x) + f2(x)

√
−d).

6. Return (r(x), π(x)) if f1 �= 0, 2f1(x) ∈ Z for some x ∈ Z, and q(x) =
f1(x)

2 + df2
2 (x) represents primes.
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We note that resulting families have ρ-value

ρ =
2gmax{deg f1, deg f2}

deg r
≤ 2g(deg r − 1)

deg r
< 2g.

In the above algorithm we can take as L the cyclotomic field L = Q(ζs, ζm, ζk) =
Q(ζl),wherem is the smallest integer such that

√
−d ∈ Q(ζm) and l = lcm(s,m, k).

We note that suchm exists, because

√
(−1) p−1

2 p ∈ Q(ζp) for each prime p > 2 and√
−2 ∈ Q(ζ8) (see [29, Lemma 2.2]). Now we give a few examples; more complete

families with variable discriminant we give in Section 8.

Example 19. Let s = 4, d = 3, and K = Q(ζ12) = Q(i,
√
−3). Let k = 12 and

L = K = Q[x]/(r0(x)), where r0(x) = x4 + 2x3 + 6x2 − 4x + 4 is the minimal
polynomial of ζ12− ζ212 + ζ312. Using π(x, y) = i(x+ y

√
−3) we find the following

family of simple ordinary abelian surfaces with embedding degree k = 12 and
ρ = 2:

r(x) = 1
36 (x

4 + 2x3 + 6x2 − 4x+ 4),
π(x) = i

12

(
x2(−

√
−3 + 1)− 2x(

√
−3 + 1)− 6

√
−3− 2

)
.

We note that this construction is analogous to the Barreto-Naehrig family of
elliptic curves with k = 12 and ρ = 1 (see [1]). For example, we generate the
following parameters of abelian surfaces and the corresponding genus 2 curves
using Algorithm 11.

x = 87960930234340,

r = 1662864086068056644824292237437174114512687909008301229 (180-bits prime),

π = i
2
(1289520874615042134242461153 − 1289520874615100774862617381

√
−3),

q = 1662864086068056644824292238726694989127818004180996723,

y2 = 3x6 + 399087380656333594757830137294406797390676321003439214x3

+840318388709976017122087137087102952585808061504841608

x = 46116860184274347310,

r = 125642457939801322085590357749816450418837410380874526029083415447117270861649 (256-bits prime),

π = i
2
(354460798875984764473015759359659256913 − 354460798875984764503760332815842155121

√
−3),

q = 125642457939801322085590357749816450419191871179750510793602548066661204465873,

y2 = 10x6 + 100513966351841057668472286199853160335353496943800408634882038453328963572700x3

+ 72932933984895871444243490866613453139332497382421576505470407101735495968350
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Example 20. Let s = 8, d = 2, and K = Q(ζ8); we have
√
−2 = ζ38 + ζ8. Using

π(x, y) = ζ8(x + y
√
−2) we obtain Kawazoe-Takahashi families [25]. We have

the following family with k = 32 and ρ = 3.25:

r(x) = Φ32(x),

π(x) = ζ8
4

(
− 2x13 + 2x12 −

√
−2(x9 + x8 + x+ 1)

)
.

For example, we generate the following pairing-friendly curve:

x = 1011203,

r = r(x)/2 = 597562856403016399371646603488740248049870057817560869833969493678845631715

310283215375141190561

(318-bits prime),

π = −276366617178430969012422455584931203167109241914675362 ζ28

−5779205224565086112079790018495549298014230975

89947855348929618296359476697841 ζ8 +276366617178430969012422455584931203167109241914675362,

q = 333992130276403873982020662734905232543292354958269471165651966320949507419

0747019555462414145087707242326 37828784532408999026408517139467788305673313723369,

y2 = x5 + 21x.

Example 21. We can also give some families of 3-dimensional varieties with
ρ < 6. We leave as an open problem constructing the corresponding genus 3
curves. The only sextic CM fields of the formK = Q(ζs,

√
−d) are the cyclotomic

fields Q(ζ7) and Q(ζ9), which contain
√
−7 and

√
−3, respectively.

(i) Let K = Q(ζ7) and α =
√
−7 = 2 ζ47 +2 ζ27 +2 ζ7 +1.

k = 7, ρ = 4,

r(x) = Φ7(x),

π(x) = ζ7
14 (−2αx4 + (α+7)x3 + 2αx2 + (α+7)x− 2α),

k = 21, ρ = 4,

r(x) = Φ21(x),

π(x) = ζ21
14 ((−α−7)x8+(α−7)x7−2αx6 + 2αx4 − 2αx2 + (α−7)x− α−7).

(ii) Let K = Q(ζ9) and α =
√
−3 = 2 ζ39 +1.

k = 9, ρ = 4,

r(x) = Φ9(x),

π(x) = ζ9
6 ((−α−3)x4 + (α+3)x3 + (α−3)x+ 2α).
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7 Sparse Families

In this section we generalize Algorithm 18 to construct sparse families in an
analogous way as the Brezing-Weng method was generalized in [8] to construct
such families of elliptic curves. If (r(x), π(x)) is a family of abelian varieties with
π(x) = ζs(f1(x)+ f2(x)

√
f(x)), then (f1(x), f2(x)) mod r(x) is a solution of the

system
NK1/Q(x)(ζs(X + Y

√
−f)− 1) = Φk(X

2 + fY 2) = 0, (11)

where K1 = Q(x, ζs,
√
−f). Hence to construct sparse families we should find

polynomials r(x) ∈ Q[x] and f(x) ∈ Z[x], where r(x) is irreducible and f(x)
satisfies Lemma 16, such that system (11) has solutions in the number field
L = Q[x]/(r(x)), and take f1, f2 to be lifts of these solutions. Such number
fields are described in the following lemma, which generalizes Lemma 3.

Lemma 22. Let f ∈ Z[x] satisfy Lemma 16 and deg f = 1, 2. Let r(x) ∈ Q[x]

be irreducible such that ζs, ζk,
√
−f ∈ L = Q[x]/(r(x)), where a bar denotes

reduction mod r(x). Then system (11) has solutions in L of the form

X =
ζ−1
s + ζkζs

2
, Y = ±ζ

−1
s − ζkζs

2
√
−f

. (12)

Proof. As in the proof of Lemma 6 we first show that solutions in the field of
fractions of S = Q[x, ζs, ζk,

√
−f ] are of the above form. Then for a prime ideal

P in S over r, the reduction SP mod PSP yields the desired result by Lemma 7.

Hence we have the following algorithm; in the next section we give a simplified
version to construct complete families with variable discriminant.

Algorithm 23. Input: A number field L containing primitive roots of unity
ζs, ζk.
Output: A sparse family (r(x), π(x)) of ϕ(s)-dimensional ordinary abelian vari-
eties with embedding degree k, or ∅.

1. Find r(x) ∈ Q[x] such that L = Q[x]/(r(x)).

2. Let f1 ∈ Q[x] be the lift of X =
ζ−1
s +ζsζk

2 with deg f1 < deg r for all primitive
roots of unity ζk, ζs ∈ L.

3. If f1 �= 0 and 2f1(x) ∈ Z for some x ∈ Z, let f(x) = a2x
2 + a1x + a0 for

integers a0, a1, a2 ∈ [−m,m], where a2 > 0 and m ∈ Z.

4. If f is square-free and
√
−f ∈ L, let f2 ∈ Q[x] be the lift of Y =

ζ−1
s −ζsζk

2
√

−f

with deg f2 < deg r.
5. Let π(x) = ζs

(
f1(x) + f2(x)

√
−f(x)

)
.

6. Return (r(x), π(x)) if q(x) = f2
1 (x) + f2

2 (x)f(x) represents primes.
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Note that the resulting families have ρ-value

ρ =
2gmax{deg f1, deg f2 + 1}

deg r
≤ 2g.

We now show how to construct sparse families of ordinary abelian surfaces with
k = 3, 4, 6 and ρ = 2. These families are analogous to constructions for elliptic
curves with k = 3, 4, 6 and ρ = 1 due to Miyaji et al. [27], Scott and Barreto
[34], and Galbraith et al. [17].

Example 24. Let s = 3, 4, and K = Q(ζs). Let k = 3, 4, 6, and ζk ∈ L =
K = Q[x]/(r(x)) for r(x) ∈ Q[x]. In order to construct a family (r(x), π(x))
with π(x) = ζs(f1(x) + f2(x)

√
−f(x)) and ρ = 2, we have to find a polynomial

f(x) ∈ Z[x] as in step 4 of Algorithm 23 such that f2 is constant. Since f2 is the

lift of Y = (ζ−1
s − ζsζk)/2

√
−f , we have Y ∈ Q. We can assume Y = 1, since

c2f and Y/c yield the same family for each c ∈ Q×. Then for fixed ζs, ζk ∈ L,
f is uniquely determined by f = −(ζ−1

s − ζsζk)
2/4 = ax̄ + b for some a, b ∈ Q.

So we can take f = ax + b + cr(x) for c ∈ Q, c > 0. As f1 we take the lift of
X = (ζ−1

s − ζsζk)/2. If f1 �= 0, 2f1(x) ∈ Z for some x ∈ Z, and q(x) represents
primes, we obtain the desired family. For example, we have the following families
with ρ = 2:

k = 3,

r(x) = 4x2 + 2x+ 1,

π(x) = ζ3
6

(
6x+ 3 +

√
−(12x2 + 60x+ 3))

)
,

k = 4,

r(x) = 4x2 + 1,

π(x) = i
2

(
− 2x− 1 +

√
−(12x2 + 4x+ 3)

)
,

k = 6,

r(x) = 4x2 − 2x+ 1,

π(x) = ζ3
2

(
− 2x− 1 +

√
−(12x2 − 4x+ 3)

)
.

Example 25. Let k = 8, s = 4, and L = Q(ζ8). For f(x) = 7x2 − 10x + 7 we
have f(x) mod Φ8(x) = −(−2ζ38 +2ζ28 − ζ8− 1)2. We obtain the following family
with ρ = 3:

r(x) = Φ8(x),

π(x) = i
2

(
− x2 + x+ (2x2 + 3x+ 2)

√
−(7x2 − 10x+ 7)

)
.
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8 Complete Families with Variable Discriminant

In this section we modify Algorithm 23 to construct complete families with
variable discriminant (r(x), π(x)), where π(x) = ζs(f1(x) + f2(x)

√
−f(x)) and

f(x) = ax+ b. Substituting x← (x− b)/a, we can assume that f = x. Then by
Lemma 22, L = Q[x]/(r(x)) is a number field containing ζs, ζk, and

√
−x̄. Let

us note that a polynomial r(x) ∈ Q[x] such that L = Q[x]/(r(x)) and
√
−x̄ ∈ L

can be obtained as the minimal polynomial of a primitive element z ∈ L such
that

√
−z ∈ L. Hence we have the following variant of Algorithm 23.

Algorithm 26. Input: A number field L such that ζs, ζk ∈ L.
Output: A complete family with variable discriminant (r(x), π(x)) of
ϕ(s)-dimensional ordinary abelian varieties with embedding degree k, or ∅.

1. Find a primitive element z ∈ L such that
√
−z ∈ L.

2. Let r(x) be the minimal polynomial of z and L = Q[x]/(r(x)).

3. Let X =
ζ−1
s +ζsζk

2 and Y =
ζ−1
s −ζsζk
2
√−x̄

for all primitive roots of unity ζs, ζk ∈
L.

4. Let f1(x), f2(x) ∈ Q[x] be lifts of X,Y with deg fi < deg r, i = 1, 2.
5. Let π(x) = ζs(f1(x) + f2(x)

√
−x).

6. Return (r(x), π(x)) if f1 �= 0, 2f1(x) ∈ Z for some x ∈ Z, and q(x) =
f2
1 (x) + xf2

2 (x) represents primes.

The resulting families have ρ-value

ρ =
gmax{2 deg f1, 1 + 2 deg f2}

deg r
≤ g(2 deg r − 1)

deg r
< 2g.

In the examples below we take as L the cyclotomic field L = Q(ζs, ζk) = Q(ζl),
where l = lcm(s, k). A crucial step in the above algorithm is to find a primitive
element z ∈ L such that

√
−z ∈ L, which can be chosen in the following ways.

• If l is odd, then
√
ζl = ±ζ(l+1)/2

l , so we can take z = ζ2l = −ζl and r(x) =
Φ2l(x). Similarly, if l/2 is odd, we can take r(x) = Φl(x).

• If 4|l, then
√
±ζl �∈ Q(ζl), but there may exist a ∈ Z such that

√
−ζl/a ∈

Q(ζl). Then we can take z = ζl/a and r(x) = Φl(ax).
• As in the method of Kachisa, Schaefer, Scott [24] we can vary elements

z0 = a0 + a1ζl + · · ·+ aϕ(l)−1ζ
ϕ(l)−1
l , which have small integer coefficients ai

in the cyclotomic basis, and check if we get a suitable family for z = −z20 .

In the examples below we will also give necessary conditions on discriminant d
so that q(dx2) could represent primes.
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Example 27. (i) Let k = 27, s = 3, and L = Q(ζ27). We obtain a complete
family with variable discriminant d ≡ 3 (mod 8) and ρ = 2.11

r(x) = Φ54(x),

π(x) = ζ3
2

(
x9 − x5 − 1− (x9 − x4 − 1)

√
−x
)
.

For example, we can generate the following parameters:

d = 987

x = 1

r = 790148551064734600930099312825768542489884551187609503 (179-bits prime)

π =
ζ3
2

(888903004305345672187555919 − 888903004306281391354749065
√

−987)

q = 195166692112988613822582015870901680456901569249646823659

y2 = x6 + x3 + 151105907749622646118621216513432167109227634777454854520

ρ = 2.078

d = 2091

x = 3

r = 87647142292548622866816999275560889615442894153311051288206627370105425215 463 (255-bits prime)

π =
ζ3
2

(296052600550220841104719607209577744879 − 888157801650662530394935347022383083571
√

−2091)

q = 412379804486441270587675183690854571980192627889184083816045552664656156778750593

y2 = x6 + x3 + 56578159329796760688848304124543683168097550241972892000909998577765239565174952

ρ = 2.094

(ii) Similarly, for k = 54, s = 3, and L = Q(ζ54), we obtain a complete family
with variable discriminant d ≡ 3 (mod 8) and ρ = 2.11

r(x) = Φ54(x),

π(x) = ζ3
2

(
x9 + x5 − 1 + (x9 + x4 − 1)

√
−x
)
.

Example 28. (i) Let s = 3, k = 12, and L = Q(ζ12); then
√
−ζ12/2 ∈ L. We

have the following family with discriminant d ≡ 3 (mod 8) and ρ = 3.5:

r(x) = Φ12(2x),

π(x) = ζ3
2

(
− 8x3 + 4x2 − 1 + (8x3 − 4x− 1)

√
−x
)

Example 29. Let k = 8, s = 4, and L = Q(ζ8). Let r(x) be the minimal
polynomial of z = −(ζ8 − 1)2. We have the following family with discriminant
d = 1, 7 (mod 8) and ρ = 3.5:

r(x) = x4 + 4x3 + 8x2 − 8x+ 4,

π(x) = i
24

(
− 3x3 − 15x2 − 36x+ 6 + (x3 + 5x2 + 16x+ 2)

√
−x
)
.
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Table 1. Best ρ-values of complete families with variable discriminant ((r(x), π(x))
given below such that deg r(x) < 25

k ρ d deg r(x)

2 3.00 3 mod 8 2
3 3.00 1, 3, 7, 9 mod 10 2
4 3.00 3 mod 4 2
5 3.00 1 mod 4 8
6 3.00 any 2
7 2.50 3 mod 8 12
8 3.50 1, 7 mod 8 4
9 2.33 3 mod 8 6
10 3.50 any 8
11 2.40 1 mod 4 20
12 3.50 3 mod 8 4
13 2.25 3 mod 8 24
14 2.50 3 mod 8 12
15 2.75 3 mod 8 8
16 3.75 some 8
18 2.33 3 mod 8 6
20 3.75 3 mod 8 8
21 2.66 1 mod 4 12

k ρ d deg r(x)

22 2.70 3 mod 8 10
24 3.75 2, 10, 11, 19 mod 24 8
26 2.25 3 mod 8 24
27 2.11 3 mod 8 18
28 3.08 3 mod 8 24
30 2.75 3 mod 8 8
33 2.30 3 mod 8 20
36 3.50 3 mod 8 12
39 2.33 1 mod 4 24
42 2.83 3 mod 8 12
45 2.58 3 mod 8 24
54 2.11 3 mod 8 18
60 3.75 3 mod 8 14
66 2.30 3 mod 8 20
78 2.42 3 mod 4 24
84 3.75 3 mod 8 24
90 2.58 3 mod 8 24

k = 2, ρ = 3, r(x) = Φ6(x), π(x) =
ζ3
2

(
2x− 1 + x

√
−x
)

k = 3, ρ = 3, r(x) = x2 + 11x+ 49, π(x) = ζ3
70

(
7x+ 56 + (x − 17)

√
−x
)

k = 4, ρ = 3, r(x) = x2 − 6x+ 25, π(x) = i
40

(
5x+ 5 + (x + 9)

√
−x
)

k = 5, ρ = 3, r(x) = Φ30(x), π(x) =
ζ3
2

(
− x6 + x5 + x− 1− (x3 + x2)

√
−x
)

k = 6, ρ = 3, r(x) = Φ6(x), π(x) =
ζ3
2

(
x− 2 + (x − 1)

√
−x
)

k = 7, ρ = 2.5, r(x) = Φ42(x), π(x) =
ζ3
2

(
x7 + x4 − 1 + (x7 + x3 − 1)

√
−x
)

k = 8, ρ = 3.5, r(x) = x4 + 4x3 + 8x2 − 8x+ 4, π(x) = i
24

(
− 3x3 − 15x2 − 36x+

6 + (x3 + 5x2 + 16x+ 2)
√
−x
)

k = 9, ρ = 2.33, r(x) = Φ18(x), π(x) =
ζ3
2

(
x6 − x3 + 1 + (x3 + x2 − 1)

√
−x
)

k = 10, ρ = 3.5, r(x) = Φ30(5x), π(x) = ζ3
2

(
− 78125x7 − 15625x6 + 3125x5 +

625x4 + 125x3 + 25x2− 2 + (15625x6− 6250x5− 1250x4− 250x3 + 25x2)
√
−x
)

k = 11, ρ = 2.4, r(x) = Φ66(x), π(x) =
ζ3
2

(
− x12 + x11 + x− 1 + (x6 + x5)

√
−x
)

k = 12, ρ = 3.5, r(x) = Φ12(2x), π(x) =
ζ3
2

(
−8x3+4x2−1+(8x3−4x−1)

√
−x
)

k = 13, ρ = 2.25, r(x) = Φ78(x), π(x) =
ζ3
2

(
x13 − x7 − 1 + (x13 − x6 − 1)

√
−x
)

k = 14, ρ = 2.5, r(x) = Φ42(x), π(x) =
ζ3
2

(
x7 − x4 − 1 + (−x7 + x3 + 1)

√
−x
)
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k = 15, ρ = 2.75, r(x) = Φ30(x), π(x) =
ζ3
2

(
x5 − x3 − 1 + (x5 − x2 − 1)

√
−x
)

k = 16, ρ = 3.75, r(x) = x8 + 76x6 + 678x4 + 332x2 + 1, π(x) = i
30464

(
29x7 −

29x6+2173x5−2173x4+17175x3−17175x2−21009x+5777+(5777x7−229x6+
439081x5 − 17389x4 + 3918979x3 − 154335x2 + 1935139x− 71215)

√
−x
)

k = 18, ρ = 2.33, r(x) = Φ18(x), π(x) =
ζ3
2

(
x3 − x2 − 1 + (−x3 + x+ 1)

√
−x
)

k = 20, ρ = 3.75, r(x) = Φ20(2x), π(x) =
i
2

(
− 64x6 + 32x5 + 16x4 − 4x2 + 1 +

(128x7 − 32x5 − 4x2 − 1)
√
−x
)

k = 21, ρ = 2.66, r(x) = Φ42(x), π(x) =
ζ3
2

(
− x8 + x7 + x− 1 + (x4 + x3)

√
−x
)

k = 22, ρ = 2.7, r(x) = Φ22(x), π(x) =
ζ3
2

(
x11− x8 − 1+ (−x13 + x5 + x2)

√
−x
)

k = 24, ρ = 3.75, r(x) = x8+80x6+456x4+320x2+16, π(x) = ζ3
10752

(
−176x7+

28x6−14040x5+2240x4−77088x3+12656x2−40480x+1792+(177x7+34x6+
14150x5 + 2704x4 + 79892x3 + 14248x2 + 50552x+ 9024)

√
−x
)

k = 26, ρ = 2.25, r(x) = Φ78(x), π(x) =
ζ3
2

(
x13 + x7 − 1− (x13 + x6 − 1)

√
−x
)

k = 27, ρ = 2.11, r(x) = Φ54(x), π(x) =
ζ3
2

(
x9 − x5 − 1 + (−x9 + x4 + 1)

√
−x
)

k = 28, ρ = 3.08, r(x) = Φ84(2x), π(x) =
ζ3
2

(
16384x14− 32x5− 1+ (262144x18−

131072x17 + 65536x16 + 32768x15 − 4096x12 − 1024x10 + 64x6 − 4x2 − 1)
√
−x
)

k = 30, ρ = 2.75, r(x) = Φ30(x), π(x) =
ζ3
2

(
x5 + x3 − 1 + (−x5 − x2 + 1)

√
−x
)

k = 33, ρ = 2.3, r(x) = Φ33(−x), π(x) = ζ3
2

(
x11 + x6 − 1 + (x11 + x5 − 1)

√
−x
)

k = 36, ρ = 3.5, r(x) = Φ36(2x), π(x) =
ζ3
2

(
64x6−32x5−1+(1024x10+512x9−

128x7 − 16x4 − 1)
√
−x
)

k = 39, ρ = 2.33, r(x) = Φ78(x), π(x) =
ζ3
2

(
− x14 + x13 + x− 1− (x7 + x6)

√
−x
)

k = 42, ρ = 2.83, r(x) = Φ42(x), π(x) =
ζ3
2

(
x7 + x5 − 1x+ (x8 + x3 − x)

√
−x
)

k = 45, ρ = 2.58, r(x) = Φ90(x), π(x) =
ζ3
2

(
x15 + x8 − 1(x15 + x7 − 1)

√
−x
)

k = 54, ρ = 2.11, r(x) = Φ54(x), π(x) =
ζ3
2

(
x9 + x5 − 1 + (x9 + x4 − 1)

√
−x
)

k = 60, ρ = 3.75, r(x) = Φ60(2x), π(x) = ζ3
2

(
32768x15 + 16384x14 + 4096x12 −

256x8 − 64x6 − 16x4 + 1 + (4096x12 + 1024x10 − 128x7 + 32x5 − 4x2 − 1)
√
−x
)

k = 66, ρ = 2.3, r(x) = Φ66(x), π(x) =
ζ3
2

(
x11 − x6 − 1 + (−x11 + x5 + 1)

√
−x
)

k = 78, ρ = 2.42, r(x) = Φ78(x), π(x) =
ζ3
2

(
x13 − x8 − 1 + (x14 − x6 − x)

√
−x
)

k = 84, ρ = 3.75, r(x) = Φ84(2x), π(x) =
ζ3
2 (16384x

14+2x− 1+(−4194304x22−
131072x17 + 65536x16 − 4096x12 − 2048x11 − 1024x10 + 256x8 + 64x6 + 16x4 −
4x2 − 1)

√
−x
)

k = 90, ρ = 2.58, r(x) = Φ90(x), π(x) =
ζ3
2

(
x15 − x8 − 1 + (−x15 + x7 + 1)

√
−x
)
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Abstract. Batch signature verification detects whether a batch of sig-
natures contains any forgeries. Batch forgery identification pinpoints the
location of each forgery. Existing forgery-identification schemes vary in
their strategies for selecting subbatches to verify (individual checks, bi-
nary search, combinatorial designs, etc.) and in their strategies for veri-
fying subbatches. This paper exploits synergies between these two levels
of strategies, reducing the cost of batch forgery identification for elliptic-
curve signatures.

Keywords: Signatures, batch verification, elliptic curves, scalar
multiplication.

1 Introduction

Our goal in this paper is to minimize the cost of elliptic-curve signature verifica-
tion. As an illustration of our results, one of our algorithms verifies a sequence
of 64 elliptic-curve signatures (from 64 different signers) at a 2128 security level
using

– a total of 0.9 · 64 · 128 additions if all signatures turn out to be valid,
– a total of 1.3 · 64 · 128 additions if 2 signatures turn out to be invalid,
– a total of 2.3 · 64 · 128 additions if 10 signatures turn out to be invalid, and
– a total of 3.6 · 64 · 128 additions if all 64 signatures turn out to be invalid.
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For comparison, we use a total of 2.8 · 64 · 128 additions to separately verify the
same 64 signatures.

We emphasize that our algorithms pinpoint the forgeries. These algorithms
are not merely “batch signature verification” algorithms, saying yes if and only if
all of the signatures are valid; these algorithms are “batch forgery identification”
algorithms, telling the user separately for each signature whether that signature
is valid. The main challenge we address is to locate each forgery as efficiently as
possible.

Cost Metric. We systematically report the costs of our algorithms in group
operations: the total number of elliptic-curve doublings, additions, and subtrac-
tions. For conciseness we write “additions” rather than “group operations”, but
readers evaluating costs in more detail should be aware that doublings are less ex-
pensive than additions in typical elliptic-curve coordinate systems, that “mixed
additions” save time, etc.

We also caution the reader that elliptic-curve computations often involve sig-
nificant overhead beyond group operations. For example, the CHES 2011 elliptic-
curve-signatures paper [4] by Bernstein, Duif, Lange, Schwabe, and Yang reports
quite noticeable time, even after various speedups, for decompressing points and
for manipulating a priority queue of scalars. We would expect our algorithms
to use the same amount of time for decompression and less time for manipulat-
ing scalars, but properly verifying these predictions would require an optimized
assembly-language implementation at the level of [4].

Our verification algorithms are randomized. Performance depends somewhat
on these random choices, but our experiments indicate that the variance in
performance (for any particular number of forgeries) is quite small.

The total cost of separately verifying n signatures at a 2b security level scales
linearly in n and almost linearly in b: it has the form αnb where α is indepen-
dent of n and nearly independent of b. This paper’s batch-forgery-identification
algorithms use αnb additions where α is a more complicated function of n, b, the
number of forgeries, and various algorithm parameters. We systematically report
the number of additions in the form αnb, as illustrated by the 0.9nb example
above with n = 64 and b = 128.

Choice of Signature System. We focus on the EdDSA signature system pro-
posed in [4]. This system is a tweaked version of the classic Schnorr signature
system [35]; one of the tweaks allows much faster batch verification.

In EdDSA, verifying a signature (R,S) on a message M under a public key
A means verifying an equation of the form SB = R+ hA. Here B is a standard
elliptic-curve point, R and A are elliptic-curve points, S is a scalar, and the
scalar h is a hash of R, A, and M .

For comparison, in Schnorr’s system, the signature is (h, S) rather than (R,S).
The verifier recomputes R = SB−hA and then checks that the hash matches h.
This is not compatible with our verification algorithms: our algorithms require
R as input.

An analogous tweak for DSA (and the general idea of sending R instead of
h) was introduced much earlier by Naccache, M’Räıhi, Vaudenay, and Raphaeli
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in [23]. We prefer Schnorr to ECDSA (and prefer EdDSA to tweaked ECDSA)
for several reasons: Schnorr eliminates inversions, for example, and is resilient
to hash-function collisions.

For elliptic-curve signatures at a 2b security level it is standard practice to use
about 2b bits for hashes, scalars, and field elements, and to compress points to
single coordinates. EdDSA and Schnorr’s system then have the same signature
size, about 4b bits. Additions require uncompressed points, so the standard way
to verify a signature in Schnorr’s system is to decompress the public key A,
compute SB − hA, compress the result to obtain R, compute the hash, and
check for a match with h. We emphasize that the same operations, in a different
order, verify a signature in EdDSA: compute the hash h, decompress the public
key A, compute SB − hA, compress the result, and check for a match with
R. The advantage of EdDSA is that it allows further choices for the verifier:
fast batch verification, as discussed in [4], and fast batch forgery identification,
as discussed in this paper. These algorithms require decompression of both A
and R for each signature, but amply compensate for the extra decompression (an
extra square-root computation) by eliminating a large fraction of the subsequent
elliptic-curve operations.

One can merge EdDSA with Schnorr’s system, simultaneously allowing sig-
natures of the form (h, S) and signatures of the form (R,S). The first step in
verifying an EdDSA signature computes, as a side effect, a Schnorr signature
for the same message; similarly, one of the (later) steps in verifying a Schnorr
signature computes, as a side effect, an EdDSA signature. It is not commonly
appreciated that Schnorr’s system actually allows hashes as short as b bits (as
pointed out by Schnorr), reducing a signature to about 3b bits; users then have
the flexibility to convert signatures from EdDSA format to Schnorr format to
save space, and to convert signatures from Schnorr format to EdDSA format for
fast batch forgery identification. One can of course also save decompression time
by transmitting uncompressed signatures and uncompressed public keys.

Pairing-based signatures allow shorter signatures, about 2b bits, but pairing-
based verification is an order of magnitude slower than elliptic-curve verification.
Consider, for example, [21, Figures 1(a), 2(a), 3(a), 4(a)]: batch verification of
pairing-based signatures with b = 80 costs about 214 field multiplications per
signature, i.e., about 200nb field multiplications. This is the cost in the best
case, when there are no forgeries; the cost increases rapidly with the number of
forgeries. For comparison, Hisil et al. showed in [12] how to reduce the cost of
an elliptic-curve addition to at most 8 field multiplications; we never use more
than 4nb additions, i.e., 32nb field multiplications.

Previous Work on Elliptic-Curve Signature Verification. There is an
extensive literature analyzing and optimizing various techniques to verify one
elliptic-curve signature. The main bottleneck here is double-scalar multiplication,
computing an expression of the form �P +mQ where � and m are scalars (typi-
cally 256 bits) and P and Q are elliptic-curve points. Typical speedups include
signed digits, windows, sliding windows, fractional windows, and merged dou-
blings; combining these speedups typically reduces the number of additions by a
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factor between 2 and 3 compared to the simplest binary methods of computing
�P +mQ. There are also many lower-level speedups inside elliptic-curve addi-
tions, field arithmetic, etc., but these speedups have no effect on the number-of-
additions metric used for the rest of this paper.

There are, as mentioned above, some papers proposing batch verification of
elliptic-curve signatures. The central idea is to check that several quantities
V1 = R1 + h1A1 − S1B, V2 = R2 + h2A2 − S2B, etc. are all 0 by checking
whether a random linear combination

V = z1R1 + z2R2 + · · ·+ (z1h1)A1 + (z2h2)A2 + · · · − (z1S1 + z2S2 + · · · )B

is 0. If the verifier chooses the “randomizers” z1, z2, . . . as independent uniform
random 128-bit integers then this test cannot be fooled with probability above
2−128. We emphasize the importance of including these randomizers; in Section 2
we explain how to break the non-randomized batch-verification system from a
very recent paper.

This linear-combination idea was proposed in [23] for (tweaked) DSA, in the
simpler (and faster but obviously less useful) case of verifying multiple signatures
of the same user, i.e. A1 = A2 = · · · . The speedup in [23] was only a small
constant for high security levels, because [23] computed V using only very simple
techniques for multi-scalar multiplication, but [4] showed that the Bos–Coster
multi-scalar multiplication method produced a much larger speedup. It is easy to
see that the speedup here is asymptotically Θ(lg n) for a batch of n signatures.
The first paper to point out a non-constant speedup was [2] by Bellare, Garay,
and Rabin, using a different technique that does not appear to be competitive
with advanced multi-scalar multiplication methods.

What is missing from all of these papers is an efficient way to handle forgeries.
Consider, for example, the following quote from [4]:

If verification fails then there must be at least one invalid signature. We
then fall back to verifying each signature separately. There are several
techniques to identify a small number of invalid signatures in a batch,
but all known techniques become slower than separate verification as the
number of invalid signatures increases; separate verification provides the
best defense against denial-of-service attacks.

This strategy means that an attacker sending a low volume of forgeries, enough
to have one forgery in each batch, causes a severe slowdown in the software from
[4]: each signature ends up being verified separately. It is of course desirable
to reduce this damage, if that can be done without compromising performance
under heavier denial-of-service floods; what is most desirable is to simultaneously
reduce the cost of handling a few forgeries, the cost of handling many forgeries,
and every case in between.

Previous Work on Forgery Identification. Pastuszak, Michalek, Pieprzyk,
and Seberry in [25] proposed a binary-splitting method of identifying forgeries: if
a batch is bad (i.e., fails verification), split it into two halves and apply the same
algorithm to each half separately. It is easy to see that this algorithm rapidly
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becomes slower than separate verification as the number of forgeries increases;
however, this algorithm is the foundation for several improved algorithms dis-
cussed below.

If one measures algorithm speed by simply counting the number of batch
verifications then the binary-splitting method seems quite fast, identifying each
forgery in lg n batch verifications where n is the batch size; this is optimal for a
single forgery, and diverges only slowly from optimality as the number of forgeries
grows. However, the number of batch verifications is not a good measure for
the actual amount of time needed to identify the forgeries. Not all verifications
require the same amount of time: a larger batch takes longer. Counting additions
is a much more realistic cost measure and shows that the binary-splitting method
of [25] is actually quite slow.

Pastuszak, Pieprzyk, and Seberry in [26] considered the possibility of non-
adaptively choosing subbatches to verify. All available evidence suggests that this
non-adaptivity restriction compromises performance even when the number of
forgeries is somehow known in advance, and it certainly does not improve perfor-
mance. Furthermore, non-adaptivity is clearly a disaster when the approximate
number of forgeries is not known in advance. We therefore focus on the more
flexible adaptive case.

Zaverucha and Stinson in [39] pointed out that there was already a long lit-
erature on the number of tests required by adaptive and non-adaptive “group
testing” algorithms. Aside from terminology, a “group testing” algorithm is pre-
cisely a forgery-identification algorithm built on top of batch verification; in
particular, both [25] and [26] fit into this framework. However, the following
papers (some of which predate [39]) do not fit into this framework.

Law and Matt in [18] were the first to point out, in the context of pairing-based
signatures, that batch verification is providing more information than a simple
“yes” or “no”. The most important idea, transported to the elliptic-curve case
discussed in this paper, is that one can reuse the randomizers z1, . . . , zn from V =
z1V1 + · · ·+ znVn. If V �= 0 then the binary-splitting method begins with a half-
size multi-scalar multiplication to compute a left-half sum z1V1+ · · ·+ zn/2Vn/2;
and then the right-half sum zn/2+1Vn/2+1+ · · ·+znVn is trivially computed with
a single subtraction, rather than another half-size multi-scalar multiplication.

Law and Matt also suggested computing V ′ = z1V1 + 2z2V2 + · · ·+ nznVn. If
there is just one invalid signature, say Vi �= 0, then V ′ = iV , and one can compute
i in O(

√
n) additions by the baby-step-giant-step method. Further development

of this approach appears in [18], [20], and [21].
We start from the same ideas, move from pairing-based signatures to elliptic-

curve signatures for extra speed, and then point out additional speedups. For
example, we introduce two ways to drastically reduce the cost of computing the
left-half sum described above, without penalizing other parts of the algorithm.
To simplify verifiability and reuse of our results we have posted public-domain
implementations of our main algorithms at http://cr.yp.to/badbatch.html.
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2 On the Importance of Being Random

The paper [16] by Karati, Das, Roychowdhury, Bellur, Bhattacharya, and Iyer,
appearing at Africacrypt 2012 earlier this year, proposed a scheme for batch
verification of ECDSA signatures. This section shows that the scheme is insecure.
The main problem is that the scheme does not randomize the linear combination
being verified.

ECDSA. The basic ECDSA signature scheme works as follows. The system
parameters are a prime �, a generator B of an order-� group 〈B〉, and a cryp-
tographic hash function H. The secret key of a user is a random integer a in
[1, �]; the user’s public key is A = aB. The group is a subgroup of the set of Fp-
rational points on an elliptic curve given in Weierstrass form y2 = x3 + c4x+ c6
for c4, c6 ∈ Fp. An affine point is a tuple P = (x(P ), y(P )) satisfying the curve
equation; the negative of this point is −P = (x(P ),−y(P )). The curve consists
of the affine points and the point at infinity P∞, which is the neutral element of
the group of points.

A signature on message M under public key A is a tuple (r, s) such that the
x-coordinate of (H(M)/s)B+ (r/s)A is congruent to r modulo �. The standard
approach to verification is to compute R = (H(M)/s)B + (r/s)A and to check
that x(R) is congruent to r modulo �.

The Scheme from [16] for Batch ECDSA Verification. The batch verifi-
cation scheme described in [16] verifies signatures (ri, si) on messages Mi and
public keys Ai for 1 ≤ i ≤ n by reconstructing Ri from ri and checking whether∑n

i=1Ri equals (
∑n

i=1H(Mi)/si)B +
∑n

i=1(ri/si)Ai.
The obvious approach to reconstructing Ri from ri is to first compute x(Ri)

from x(Ri) mod � = ri and then compute y(Ri) from the curve equation. The
first step is straightforward in the common case that � ≈ p: there is almost
always a unique integer x(Ri) ∈ {0, 1, . . . , p− 1} satisfying x(Ri) mod � = ri.
The second step is more difficult: it seems to require a square-root computation,
and furthermore can at best determine ±y(Ri); in a batch of n signatures one
needs to guess as many as 2n combinations of signs. This implies that the batches
need to be chosen small; in [16] the maximum batch size considered is 8. The
paper puts the main effort into developing new techniques for computing

∑
Ri

from the x-coordinates in a more efficient manner and reports a good speed-up
factor compared to individual verification.

First Attack. A batch signature system is broken if invalid signatures pass as
valid. The easiest way to break the above scheme is to submit (r, s) as a signature
on a target messageM under a target public key A and also (r,−s) as a signature
on the same message under the same public key, where r is any x-coordinate of
a curve point. The verification algorithm reconstructs two points R,−R having
x-coordinate r, and then the contributions of these signatures cancel out in both
sums:

R+ (−R) = P∞ = (H(M)/s)B + (r/s)A+ (H(M)/(−s))B + (r/(−s))A.
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This attack relies on the fact that r does not pinpoint a unique R: it can be
expanded to R and to −R.

These forgeries are easy to detect once the system is altered to check for them.
Excluding a sum of P∞ is not adequate if the batch includes other signatures
along with these two forgeries, but checking for repeated r values is adequate.
However, as we will see in a moment, there are other attacks on the scheme that
are much more difficult to detect.

Second Attack. Assume that the attacker knows the secret key a2 for a public
key A2. The following attack convinces the verifier to accept a signature on any
target message M1 under any target public key A1, along with a signature on
M2 under A2.

The attacker picks a random k1, and computes R1 = k1B and r1 = x(R1)
as in proper signature generation. He then picks a random s1 and computes
R2 = (r1/s1)A1, r2 = x(R2), and s2 = (H(M2) + r2a2)/(k1 − H(M1)/s1);
the denominators are nonzero with overwhelming probability. The attacker then
submits (r1, s1) as signature on M1 from A1 and (r2, s2) as signature on M2

from A2 to the batch system.
The verifier now reconstructs the same R1 and R2, and computes R1 + R2

and (H(M1)/s1 + H(M2)/s2)B + (r1/s1)A1 + (r2/s2)A2, both of which equal
k1B + (r1/s1)A1. These forgeries thus pass verification, even though neither of
them is valid individually and the attacker does not know the secret key for A1.
The forgeries also work if they are batched together with other signatures in the
same verification.

As far as we can tell, the most efficient way to distinguish (r1, s1) and (r2, s2)
from properly formed signatures is to verify them separately. This trivial batch-
verification scheme is obviously secure but also sacrifices all of the speedup re-
ported in [16].

Consequences. These attacks show that the scheme considered in [16] is inse-
cure. The second attack would work even if the ECDSA signature system were
replaced by a signature system such as EdDSA that transmits R instead of r,
removing the ±R ambiguity. The second attack shows that it is important to use
randomness in the tests: to introduce n sufficiently random integers zi to scale
the equations and verify

∑n
i=1 ziRi = (

∑n
i=1 ziH(Mi)/si)B +

∑n
i=1(ziri/si)Ai

instead.
Randomizers were used in the original batch signature scheme introduced

by Naccache, M’Räıhi, Vaudenay, and Raphaeli in [23]. There is no discussion
of randomizers in [16], and in particular no explanation of why the randomiz-
ers were omitted in [16], but it is clear that computing

∑n
i=1 ziRi would take

much longer than computing
∑n

i=1Ri, and it is even harder to compute its x-
coordinate from the ri without square-root computations to recover each point
Ri first.
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3 High Level: Binary Search

This section presents a family of algorithms for verifying a batch of n EdDSA
signatures. We begin with a simple binary-search algorithm and then discuss
several variants of the algorithm.

These algorithms rely on multi-scalar multiplication as a lower-level subrou-
tine. Section 4 presents several multi-scalar multiplication algorithms usable in
this context, pointing out new synergies between these two levels of algorithms.
Section 5 analyzes the overall algorithm cost and reports the results of computer
experiments with particular algorithm parameters.

For simplicity we assume that the batch size n is a power of 2. Other batch
sizes can be split into power-of-2 batch sizes, or handled directly by straightfor-
ward generalizations of the algorithms here.

We also assume for simplicity that B has prime order �, and that all input
points Ri, Ai are known in advance to be in the group generated by B. For
elliptic-curve groups with small cofactors the usual way to ensure this is to
multiply all input points by the cofactor, such as the cofactor 8 in [3] and [4]. A
closer look shows that this multiplication can safely be suppressed in the context
of signature verification, but since the multiplication has very low cost we skip
further discussion.

Randomizers. All of our algorithms use the randomizers zi discussed in Sec-
tions 1 and 2. As precomputation we choose z1, z2, . . . , zn independently and
uniformly at random from the set

{
1, 2, 3, . . . , 2b

}
, where b is the security level.

There are several reasonable ways to do this: for example, generate a uniform
random b-bit integer and add 1, or generate a uniform random b-bit integer and
replace 0 with 2b.

Of course, it is also safe to simply generate zi as a uniform random b-bit
integer, disregarding the negligible chance that zi = 0; but this requires minor
technical modifications to the security guarantees stated below, so we prefer
to require zi �= 0. It is also safe to simulate random numbers as outputs of a
strong stream cipher using a long-term random secret key; this is helpful on
platforms where generating randomness is expensive. Rather than maintaining
stream-cipher state (e.g., the counter in the AES-CTR stream cipher) one can
safely encrypt a collision-resistant hash of the input batch.

We also precompute integers h1, h2, . . . , hn as the standard (system-specified)
hashes of (R1, A1,M1), (R2, A2,M2), . . . , (Rn, An,Mn) respectively. By defini-
tion the ith signature is valid if SiB = Ri+hiAi, and a forgery if SiB �= Ri+hiAi.

Leaf Randomizers. In this section we define Vi = zi(Ri + hiAi − SiB). Note
the inclusion of zi here, deviating from Section 1. This is not merely a change of
notation: to verify a single signature (when this is required), our algorithm com-
putes this Vi, whereas the standard verification approach from [4] is to compute
SiB − hiAi. Note that signature i is valid if and only if Vi = 0.

The standard approach would seem at first glance to be more efficient: com-
puting SiB − hiAi involves two full-size (2b-bit) scalars Si, hi, while computing
Vi as ziRi + zihiAi − ziSiB involves two full-size scalars zihi mod �, ziSi mod �
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Fig. 3.1. Tree of sums of randomized leaves V1, V2, . . . , Vn for n = 16

and a half-size scalar zi, for a total of 25% more scalar bits. However, the cost
of multi-scalar multiplication (see Section 4) is affected much more by the max-
imum number of scalar bits than by the total number of scalar bits; the cost of
computing Vi turns out to be only slightly higher than the cost of computing
SiB − hiAi. This slight extra expense pays off in subsequent steps of the batch
algorithm, as discussed below.

Shared Randomizers. Starting from these randomized quantities V1, . . . , Vn
we draw a binary tree as illustrated in Figure 3.1, with V1,2 = V1 + V2 and
V3,4 = V3 + V4 and so on at the second level, V1,4 = V1,2 + V3,4 and so on at the
third level, etc. In general we write Vj,k for the sum

∑
j≤i≤k Vi of leaf nodes. If

all of the signatures at positions j, j + 1, . . . , k are valid then Vj,k = 0, while if
any of the signatures are invalid then with overwhelming probability Vj,k �= 0.
The root node V1,n at the top represents the randomized signature verification
of the entire batch; we denote this sum by V as a shorthand.

The set of tree nodes actually computed by the algorithm is determined adap-
tively; see below.

We emphasize that one sequence of randomizers is shared across all levels of
the tree, including the leaf nodes. This reuse does not compromise the security
of the algorithm: if signature i is invalid then with overwhelming probability all
of the ancestor tree nodes Vj,k with j ≤ i ≤ k are nonzero. More precisely, fix a
batch of signatures, and define a randomizer sequence (z1, . . . , zn) as “bad” if it
produces any zeros among ancestor tree nodes of any invalid signature; then the
probability of a randomizer sequence being bad is at most (n−1)/2b. The point is
that if signature i is invalid (i.e., Ri+hiAi−SiB �= 0), then any equation Vj,k = 0
for j ≤ i ≤ k is equivalent to a linear equation · · ·+zi(Ri+hiAi−SiB)+ · · · = 0.
For each choice of z1, . . . , zi−1, zi+1, . . . , zn this equation is satisfied by exactly
one integer zi modulo �, and therefore at most one out of the 2b permitted choices
of zi. A randomizer sequence is therefore “(j, k)-bad” with probability at most
1/2b for j < k (i.e., non-leaf nodes), and with probability 0 for j = k (i.e., leaf
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nodes). There are n − 1 non-leaf nodes, so a randomizer sequence is bad with
probability at most (n− 1)/2b.

The Basic Batch-Forgery-Identification Algorithm. The following algo-
rithm takes as input public keysA1, A2, . . . , An, signatures (R1, S1), . . . , (Rn, Sn),
precomputed hashes h1, h2, . . . , hn, and precomputed randomizers z1, z2, . . . , zn.
The algorithm also takes an optional input V ; this is used when the algorithm
calls itself recursively in Step 5.

The algorithm provides two outputs: first, V , whether or not V was provided
as input; second, an n-bit string (b1, b2, . . . , bn). With overwhelming probability
bi = 1 if and only if signature i is valid.

The algorithm has six steps:

1. Batch verification: Compute V =
∑

i zi(Ri + hiAi − SiB), if V was not
provided as input. Output V . If V = 0, output n bits (1, 1, . . . , 1) and stop.

2. Forgery rejection: If n = 1, output (0) and stop. (At this point V �= 0, so
the signature is invalid.)

3. Left subtree: Apply the same algorithm recursively to A1, A2, . . . , An/2;
(R1, S1), . . . , (Rn/2, Sn/2); h1, . . . , hn/2; and z1, . . . , zn/2; obtaining outputs
V1,n/2 and (b1, . . . , bn/2).

4. Right root: If V1,n/2 = 0, set Vn/2+1,n = V . If V1,n/2 = V , set Vn/2+1,n = 0.
Otherwise compute Vn/2+1,n = V − V1,n/2.

5. Right subtree: Apply the same algorithm recursively to An/2+1, . . . , An;
(Rn/2+1, Sn/2+1), . . . , (Rn, Sn); hn/2+1, . . . , hn; zn/2+1, . . . , zn; and Vn/2+1,n;
obtaining outputs Vn/2+1,n and (bn/2+1, . . . , bn).

6. Final output: Output (b1, . . . , bn).

This algorithm is optimistic, hoping that there are no forgeries: Step 1 finishes
the algorithm as quickly as possible in this case. See Section 4 for details of the
computation in this step. The overall binary-splitting structure of this algorithm
is taken from [25]. The fast computation of Vn/2+1,n in Step 4, using at most
one subtraction, is taken from [18]; this is also the reason for treating V as
an output and an optional input. This fast computation means that at most n
nodes require a multi-scalar multiplication in Step 1; Figure 3.2 illustrates the
worst case.

Another way to organize essentially the same computation is to record a
partial tree of known Vj,k values, and to very quickly update the tree whenever
a forgery is discovered, in effect retroactively removing the forgery from the
batch. Start the computation at the root; after computing a zero node, deduce
without further computation that all descendants of the node are also zero; after
computing a nonzero leaf node Vi �= 0, replace all ancestors Vj,k by Vj,k − Vi,
skipping the subtraction in the common case that Vj,k = Vi; after computing a
nonzero non-leaf node, compute the left child node (and all of its descendants
in order), and then simply copy this (possibly updated) node to the right child
node.

Leaf Randomizers, Continued. In the case n = 1 this algorithm computes
V1 = z1(R1 + h1A1 − S1B). As discussed above, this is only slightly more
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Fig. 3.2. Tests in worst case are depicted in order

expensive than computing S1B − h1A1. We now explain the compensating ad-
vantage of computing V1.

Consider a batch of two signatures that fails batch verification. i.e., V1,2 �= 0.
This algorithm computes V1 (showing whether the first signature is valid), and
then deduces V2 (showing whether the second signature is valid) with at most
one subtraction. For comparison, one could instead compare S1B−h1A1 to R1 to
see whether the first signature is valid, but one then still needs to check whether
the second signature is valid. One could check the second signature separately,
or multiply R1+h1A1−S1B by z1 to obtain V1 and thus V2, but simply starting
with V1 is less expensive.

Early Abort. This algorithm is faster than separate verification when there are
not many forgeries, but as discussed in subsequent sections it becomes noticeably
slower than separate verification when there are many forgeries. The gap is not
very large, but we would still like to minimize it.

We thus propose (1) using the fraction of invalid signatures found so far as
an estimate for the expected fraction of invalid signatures in the rest of the tree,
and (2) deciding on this basis whether it is best to abort the tree structure and
check individual signatures.

An attacker might try to spoil the estimate by, e.g., placing several invalid
signatures at the beginning of a large batch. After those signatures the algorithm
will confidently, but incorrectly, estimate that the entire batch is invalid. To
prevent such attacks one can simply apply a random permutation to the sequence
of signatures before applying the algorithm. (One can also imagine tracking
forgery percentages long term from one batch to another, but for simplicity we
handle each batch separately.)

There is, furthermore, no need for aborts to be permanent: one can return to
binary search for the next part of the tree if the fraction of invalid signatures
has become small enough again. We actually propose making a new decision
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Fig. 3.3. Tests performed for n = 16 when all signatures are invalid, using the early
abort. Arrows denote the test replacements and savings.

whenever a node is about to be computed. In the notation of the basic algorithm
above, we dynamically choose between

– optimism: computing V , and then, if V �= 0, computing V1,n/2 and deducing
Vn/2+1,n = V − V1,n/2; or

– pessimism: computing V1,n/2 and Vn/2+1,n, and then deducing V = V1,n/2 +
Vn/2+1,n.

If V is provided as input then optimism is better. If V is not provided as input
then we use (1 − p)n as an estimate of the chance that V = 0, where p is
the fraction of invalid signatures found so far (or 0 at the beginning of the
algorithm), and then compare the expected costs of optimism and pessimism,
using straightforward models of the costs of computing V, V1,n/2, Vn/2+1,n.

When there are few forgeries, this approach performs the same computations
as the basic algorithm. When there are many forgeries, this approach rapidly con-
verges on checking each signature separately, as shown in Figure 3.3. Compared
to the previous worst case, where we computed the top node of each vertical
branch, we now only need to compute the top nodes of the main left diagonal
branch. In all other vertical branches, the leaf node is computed directly. (One
can do marginally better in this extreme case by immediately updating p after
discovering V1,16 �= 0: there must be a forgery somewhere, even though it has
not been located yet.)

When there is a medium fraction of forgeries, this approach skips roots of large
subtrees (since those roots are likely to fail verification and require computations
of descendant nodes), but computes roots of small subtrees. For example, assume
that we identified exactly 2 forgeries out of the first 16 signatures. We expect the
same fraction of 1/8 invalid signatures in the next group of 16, so we estimate
that V17,32 = 0 with probability only 11%, that V17,24 = 0 with probability 34%,
and that V17,20 = 0 with probability 59%. The next step depends on scalar-
multiplication costs; we might decide to skip V17,32 and V17,24, and proceed
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directly to V17,20. If the fraction of invalid signatures remains stable then we will
check these 16 signatures as 4 batches of 4 signatures each. We then decide anew
how to check the next 32 signatures.

Smaller Randomizers. Large randomizers zi are critical for detecting multi-
forgeries, as discussed in Section 2, but this does not mean that large randomizers
are required at each step of the tree. An alternative approach is to use one
sequence of large randomizers at the root, and to use a second sequence of much
smaller randomizers, say 20 bits each, for the subsequent levels of the tree.

This approach slightly speeds up multi-scalar multiplication at non-root nodes.
However, this approach also has several costs. First, the right child of the root
node is no longer obtained for free. Second, the sharing described in Section 4
begins only at the children of the root node, not at the root node itself. Third,
an attacker can fool the smaller randomizers with noticeable probability, on the
scale of 2−20, so after identifying forgeries using the smaller randomizers one
must recompute the corresponding portion of the root node. If this root-node
update shows that any forgeries remain then one must choose a new sequence of
smaller randomizers and try the computation again on the remaining signatures.

4 Low Level: Trees of Optional Multi-scalar
Multiplications

This section looks more closely at the first step of the algorithm of Section 3:
namely, batch verification, i.e., computing a linear combination

V = z1R1 + · · ·+ znRn + (z1h1)A1 + · · ·+ (znhn)An − (z1S1 + · · ·+ znSn)B

of known elliptic-curve points R1, . . . , Rn, A1, . . . , An, B. If V �= 0 then the al-
gorithm calls itself recursively and computes a smaller linear combination

V1,m = z1R1+ · · ·+zmRm+(z1h1)A1+ · · ·+(zmhm)Am− (z1S1+ · · ·+zmSm)B

with m = n/2.
The computation of V by itself is a standard (2n + 1)-scalar-multiplication

problem. The only mildly uncommon feature of this problem is that the scalars
have variable size, typically n 128-bit scalars (the zi’s) and n+1 256-bit scalars;
but typical scalar-multiplication algorithms can trivially take advantage of the
shorter scalars. Similarly, the computation of V1,m by itself is a standard (2m+1)-
scalar-multiplication problem.

Quite nonstandard, however, is the multi-scalar-multiplication problem that
we actually face: computing V and then perhaps computing V1,m. If we knew
that we wanted to compute both V and V1,m then the obvious approach would be
two separate half-size computations, one for V1,m and one for Vm+1,n = V −V1,m;
but we do not know this in advance. If V turns out to be 0 then we will not need
V1,m and Vm+1,n, and a single full-size computation of V will be more efficient
than two separate half-size computations.

The point of this section is that some—although certainly not all— state-of-
the-art algorithms to compute V can be modified at negligible cost to remember
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many intermediate results useful for computing V1,m. The same idea can easily
be pushed to further levels: for example, computing V , then optionally V1,m,
then optionally V1,�m/2� and optionally Vm+1,m+1+�(n−m)/2�.

Overlap in the Bos–Coster Approach. As an illustration of what does not
seem to work very well in this context, consider the Bos–Coster algorithm re-
ported in [8, Section 4]. This algorithm computes a1P1 + a2P2 + a3P3 + · · · ,
where a1 ≥ a2 ≥ a3 ≥ · · · , by recursively computing (a1−a2)P1+a2(P1+P2)+
a3P3 + · · · . This algorithm was used in [4] to compute V .

The first few additions performed in the Bos–Coster algorithm depend only
on the largest scalars. If we permute signatures so that z1h1 ≥ z2h2 ≥ · · · , and
handle z1S1+· · ·+znSn separately, then the first ≈ m additions in the algorithm
will involve only A1, . . . , Am, and will thus be the same as the first additions
involved in computing V1,m. However, this is only a slight speedup.

Overlap in the Straus Approach. As a better example, consider the Straus
algorithm [37], often miscredited to Shamir. This algorithm computes a1P1 +
a2P2 + · · · + anPn by recursively computing 
a1/2c�P1 + 
a2/2c�P2 + · · · +

an/2c�Pn, doubling c times, and then adding the precomputed quantity (a1 mod
2c)P1 + (a2 mod 2c)P2 + · · · + (an mod 2c)Pn. Here 2c is a radix chosen by the
algorithm; for example, it is reasonable to take c = 5 for 256-bit scalars. We skip
discussion of standard speedups such as signed digits.

This algorithm scales poorly to large values of n (because it involves too
much precomputation, even for c = 1), but a standard variant scales well to
large values of n: at the last step one instead adds the separate precomputed
quantities (a1 mod 2c)P1, (a2 mod 2c)P2, etc.

Evidently one can reuse these precomputed quantities for a subsequent multi-
scalar multiplication involving P1, . . . , Pm with the same choice of c. Further-
more, if the precomputed quantities are added from left to right in each step, then
one of the intermediate results is exactly (a1 mod 2c)P1 + · · ·+(am mod 2c)Pm.
This drastically reduces the cost of computing a1P1 + · · · + amPm when m is
large: each step of the recursion drops from cost c + m (c doublings and m
additions) down to just c+ 1.

The same overlap applies immediately to a1P1 + · · · + a�m/2�P�m/2�. Even
better, if we change the order to add precomputed quantities, recursively adding
the P1, . . . , Pm part and the Pm+1, . . . , Pn part, then the same overlap applies
not just to left descendants but to arbitrary descendants.

Overlap in the Pippenger Approach. As a more advanced example, consider
Pippenger’s multi-scalar-multiplication method. This method was published in
[28] almost forty years ago; various special cases of the method were subsequently
reinvented and published in the papers [6] and [19] and continue to be frequently
miscredited to those papers. We comment that the patent accompanying [6]
(U.S. patent 5299262) expired this year.

Pippenger’s method is not as simple as the Bos–Coster method or the Straus
method, but it is considerably faster when there are many large scalars. It is
almost twice as fast in some cases, and it is within 1 + o(1) of optimal for
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essentially all sequences of scalars; see generally [30]. Of course, this does not
imply that Pippenger’s method is optimal for the problem of computing V and
then perhaps V1,m, but inspecting the details shows that Pippenger’s approach
does allow considerable savings in computing V1,m.

The following special case of Pippenger’s algorithm has similar performance
to the Bos–Coster method and is adequate to illustrate the idea. Choose a radix
2c as above, and proceed as in Straus’s algorithm, but replace the last step
with the following computation. Sort the points P1, P2, . . . , Pn into 2c buckets
according to the values a1 mod 2c, a2 mod 2c, . . . , an mod 2c. Discard bucket 0
and add the points in the remaining buckets, obtaining sums S1, . . . , S2c−1. Now
compute

(a1 mod 2c)P1 + · · ·+ (an mod 2c)Pn = S1 + 2S2 + · · ·+ (2c − 1)S2c−1

as the sum of the intermediate quantities S2c−1, S2c−1 + S2c−2, . . ., S2c−1 +
S2c−2 + · · ·+ S1.

Observe that computing a1P1 + · · ·+ amPm in the same way, using the same
value of c, puts P1, P2, . . . , Pm into exactly the same buckets. If for the a1P1 +
· · · + anPn computation we are careful to add points in each bucket from left
to right then the intermediate result after P1, P2, . . . , Pm will be exactly the
sum relevant to a1P1 + · · · + amPm. For typical parameters there are several
points in each bucket, so this approach is several times faster than a standard
computation of a1P1 + · · · + amPm. As before, it is even better to change the
order to add points in each bucket, recursively adding the points that come from
P1, P2, . . . , Pm and the points that come from Pm+1, . . . , Pn.

Handling the Base Point. These modified versions of the Straus and Pip-
penger methods apply directly to

z1R1 + (z1h1)A1 + · · ·+ znRn + (znhn)An

but do not apply directly to (z1S1 + · · ·+ znSn)B, the last component of V .
The simplest way to handle these multiples of B is to compute them sepa-

rately. Because B is a fixed base point, one can afford a precomputed table of,
e.g., B, 2B, 3B, . . . , (2c − 1)B and 2cB, 2 · 2cB, 3 · 2cB, . . . , (2c − 1) · 2cB and so
on. Computing any desired multiple of B then takes fewer than 1/c additions
for each bit of the scalar, a very small cost compared to the other computations
discussed here.

5 Analysis

This section analyzes the cost of identifying all of the forgeries among n elliptic-
curve signatures at a 2b security level. Full-size scalars such as hi, Si, zihi mod
�, ziSi mod � then have 2b bits as discussed in Section 1, while the randomizers
zi have b bits.

Our web page http://cr.yp.to/badbatch.html includes all of the software
mentioned in this section.
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Separate Signature Verification. Solinas’ widely used Joint Sparse Form [36]
handles a double-scalar multiplication hiAi − SiB using 2b doublings and on
average b additions, for a total cost of 3nb to handle n signatures.

Straus’s method is asymptotically more efficient, handling n signatures at
cost (2 + o(1))nb as b → ∞. Straus’s method involves approximately 2b dou-
blings; every c doublings are followed by 2 additions, and on average a fraction
1/2c of the additions are skippable additions of 0. The additions rely on an initial
computation of 2A1, 3A1, . . . , (2

c−1)A1, which costs 2c−2, and a free precompu-
tation of 2B, 3B, . . . , (2c− 1)B. The total cost for n signatures is approximately
(2b+ (1− 1/2c)(2/c)2b+ 2c − 2)n. One can balance the terms (1− 1/2c)(4/c)b
and 2c − 2 by taking c close to 2 + lg b − lg lg b; the total cost is then roughly
(2 + 8/ lg b)nb.

Our separate3.py software uses Straus’s method with c = 4 and with two
standard speedups, namely signed digits and sliding windows. This software uses,
on average, fewer than 2.8nb additions for b = 128. There is a small variance:
2.75nb and 2.82nb are not unusual. We would expect more detailed optimization
here, in particular using more precomputed multiples of B, to beat 2.7nb.

Batch Verification. All of our batch-forgery-identification algorithms start with
batch verification, computing V . If there are no forgeries—no attackers attempt-
ing to fool the receiver or deny service— then this is the end of the computation.

Straus’s algorithm computes V with 2b doublings as above, approximately
n(b/c) additions for parts of ziRi, approximately n(2b/c) additions for parts of
(zihi)Ai, and negligible cost for B. The additions rely on initial computations
costing 2n(2c − 2). The total cost is approximately (2/n+ 3/c+ 2(2c − 2)/b)nb.
If c is chosen close to lg(1.5b)− lg lg b then this cost is roughly (2/n+6/ lg b)nb.

Our straus6.py software, with b = 128 and c = 5, uses 1.15nb additions for
n = 8; 0.98nb additions for n = 16; 0.90nb additions for n = 32; and 0.86nb
additions for n = 64.

We also experimented with the Bos–Coster algorithm (boscoster2.py) and
did some preliminary analysis of Pippenger’s algorithm. Compared to Straus’s
algorithm, we obtained better batch-verification speeds with the Bos–Coster al-
gorithm (e.g., cost 0.55nb for n = 64 and b = 128) and we expect to obtain better
batch-verification speeds with Pippenger’s algorithm. Asymptotically the Bos–
Coster algorithm costs O(nb/ lg n) and Pippenger’s algorithm costs O(nb/ lg nb).
However, we decided to focus on Straus’s algorithm for our experiments because
Straus’s algorithm allows much better reuse of intermediate results inside batch
forgery identification.

Batch Forgery Identification. For concreteness we focus on the overlap inside
Straus’s algorithm inside binary search using shared randomizers (including leaf
randomizers), without early aborts. After the root node (i.e., the batch verifi-
cation discussed above), reuse of intermediate results reduces each subsequent
multi-scalar multiplication to approximately 2b doublings and 4b/c additions.

We emphasize that, no matter how many forgeries there are, this strategy is
within 1+o(1) of separate signature verification as b→∞. At most n tree nodes
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Fig. 5.1. Observed cost αnb of identifying forgeries among n = 8 signatures for b = 128.
Horizontal axis is number of forgeries. Vertical axis is α. Each circle indicates average
cost over 101 experiments; error bars indicate quartiles.

require multi-scalar multiplication, and each multi-scalar multiplication costs
(2+o(1))b after O(nb/ lg b) for the root, so the total cost is at most (2+o(1))nb,
just like separate signature verification. If a positive constant fraction of the
signatures are valid then the number of nodes required is a constant factor below
n and this strategy is a constant factor faster than separate signature verification;
if the number of forgeries drops then this strategy becomes a logarithmic factor
faster than separate signature verification.

For constant b, such as b = 128, the picture is more complicated. Each com-
puted non-root node has similar cost to a separate signature verification (in fact
slightly lower cost), but the root node adds a significant extra cost, so this al-
gorithm becomes noticeably slower than separate signature verification as the
number of forgeries increases. Our straus6.py computer experiments indicate
that the cutoff is around n/3 forgeries for b = 128. See Figures 5.1, 5.2, and 5.3.
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Abstract. CFS is the first practical code-based signature scheme. In the
present paper, we present the initial scheme and its evolutions, the attacks
it had to face and the countermeasures applied. We compare the different
algorithmic choices involved during the implementation of the scheme and
aim to provide guidelines to this task. We will show that all things con-
sidered the system remains practical. Finally, we present a state-of-the-
art software implementation of the signing primitive to prove our claim.
For eighty bits of security our implementation produces a signature in 1.3
seconds on a single core of Intel Xeon W3670 at 3.20 GHz. Moreover the
computation is easy to distribute and we can take full profit of multi-core
processors reducing the signature time to a fraction of second in software.

Keywords: CFS, digital signature scheme, software implementation.

1 Introduction

CFS [1] is a digital signature scheme based on the Niederreiter cryptosystem [2].
It was published in 2001 and relies on the hardness of the syndrome decoding
problem and on the undistinguishability of binary Goppa code.

There are relatively few instances of public-key digital signatures available
and most of them are based on number theory. Even though, implementation
issues related to CFS have received little attention. This can be explained by an
(apparent) lack of practicality and also by some cryptanalytic results that have
slightly weakened the scheme.

First, the practicality of the scheme is questionable because of a large public
key and a long signing time. The large key size might be a problem for some
applications, but a storage requirement of a few megabytes on the verifier’s side
is not always an issue. The second drawback is the long signing time. In fact each
signature requires a large number (several hundred of thousands) of algebraic
decoding attempts. The first reported signing time in software [1] was about one
minute but was only meant as a proof of concept. An FPGA implementation
was reported in [3] with a signing time under one second.

Second, the system has been weakened in several ways. It was recently proven
in [4] that the public key of CFS could be distinguished in polynomial time from a
random binary matrix. This property certainly needs to be investigated further,
but at this time does not seem to lead to an effective attack. More threatening
is the Bleichenbacher’s attack (unpublished) which essentially reduces the cost
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of the best decoding attack from 2r/2 to 2r/3 (r = 144 in [1]) and necessitates
an increase of parameters leading to a rather cumbersome scheme (gigabytes
of key and minutes of signing time). Fortunately an efficient countermeasure,
Parallel-CFS, was proposed in [5].

The purpose of this work is to (try to) clarify the situation, to show that the
system is practical and secure when parameters are properly chosen.

Our Contribution: We propose here a study of the implementation of the CFS
(and the parallel-CFS) schemes. Since it is the bottleneck of the implementa-
tion we will concentrate on the signing algorithm and thus on the decoding of
Goppa codes. Other features of the system such as verification, signature size,
hash function choice... are certainly significant but are not in the scope of this
work. There exist alternatives for implementing finite field arithmetic (we need
here extensions of the binary field of degree 16 to 24, which are not common)
and for decoding (we will see that the usual choice, Patterson’s algorithm, is not
necessarily the best in this context). We explore these alternatives and extract
guidelines for efficient implementation. To illustrate this study, we have designed
a basic state-of-the-art software implementation of parallel-CFS (our target plat-
form is a standard PC). In addition to timings, we have performed a precise field
operation count which suggests that a faster field arithmetic may have a spec-
tacular effect on the signing time. We also mean our algorithmic study to be the
theoretical basis for dedicated coprocessors for signing with CFS.

We will first review the CFS scheme, its attacks and the Parallel-CFS vari-
ant. This will allow us to propose some sets of secure parameters. Next we will
describe the software implementation. More specifically, we will explain the var-
ious algorithmic options for decoding binary Goppa and compare them. We will
conclude with some timings and detailed measurements of our implementation.

2 Background

In this paper we will consider only binary linear codes. Most of the statements
are easily generalized to a larger alphabet, but no practical CFS-like signature
scheme has ever been proposed so far with non binary codes.

2.1 Syndrome Decoding

We consider the following problem:

Computational Syndrome Decoding Problem: Given a matrix H ∈ {0, 1}r×n, a
word s ∈ {0, 1}r, and an integer w > 0, find e ∈ {0, 1}n of Hamming weight ≤ w
such that HeT = s.

We denote CSD(H, s, w) this problem as well as the set of its solutions for a
given instance. This problem is NP-hard [6]. For suitable parameters n, r and w
it is conjectured difficult on average which is the basis for the security of many
code-based cryptosystems.
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2.2 Binary Goppa Codes

Let F2m denote a finite field with 2m elements. Let n ≤ 2m, let the support
L = (α0, . . . , αn−1) be an ordered sequence of distinct elements of F2m , and let
the generator g(z) ∈ F2m be a monic irreducible polynomial of degree t. The
binary Goppa code of support L and generator g is defined as

Γ (L, g) = {(a0, . . . , an−1) ∈ {0, 1}n |
n−1∑
j=0

aj
z − αj

mod g(z) = 0}.

This code has length n ≤ 2m dimension ≥ n−mt and has an algebraic t-error
correcting procedure. For the signature we will always take n = 2m, a smaller
value would increase the signing cost. For parameters of interest the dimension
will always be exactly k = n−mt, we will denote r = mt the codimension.

In a code-based cryptosystem using Goppa codes the system parameters are
(m, t) and are known to everyone, the secret key is the pair (L, g) and the public
key is a parity check matrix H ∈ {0, 1}r×n.

Density of Decodable Syndromes for a Goppa Code: A syndrome s ∈ {0, 1}r is
decodable (relatively to H) with the algebraic decoder if and only if it is of the
form s = eHT with e of Hamming weight t or less. There are

∑t
i=0

(
n
i

)
≈
(
n
t

)
such syndromes. The total number of syndrome is 2r and thus the proportion of
syndrome decodable with the binary Goppa code algebraic decoder is close to(

n
t

)
2r

=

(
2m

t

)
2mt

=
2m(2m − 1) · · · (2m − t+ 1)

t!2mt
≈ 1

t!
. (1)

2.3 Complete Decoding

A complete decoder for a binary linear code defined by some parity check matrix
H ∈ {0, 1}r×n is a procedure that will return for any syndrome s ∈ {0, 1}r an
error pattern e of minimal weight such that eHT = s. The expected weight w
of e will be the integer just above the Gilbert-Varshamov radius τgv, which we
define as the real number1 such that

(
n
τgv

)
= 2r. The threshold effect can be

observed on two examples in Table 1.
In practice we will relax things a little bit and when we mention a complete

decoder we mean a w-bounded decoder (with w ≥ τgv), that is a procedure
ψ : {0, 1}r → {0, 1}n returning an error pattern matching with the input of
weight ≤ w every time there exists one. A w-bounded decoder may return an
error pattern of weight < w. Also, a w-bounded decoder may fail even if w ≥ τgv
(see Table 1 for (m, t) = (20, 8) and w = 9 > τgv = 8.91), in that case we may
either choose a decoding bound larger than τgv + 1 (loosing some security) or
handle somehow the decoding failure (see §5.4). In the sequel, whenever we refer
to complete decoding we implicitly define a decoding bound, an integer larger
than τgv, denoted w.

1 The mapping x �→
(
n
x

)
is easily extended continuously for the positive real numbers

making the definition of τgv sound.
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Table 1. Failure probability of a w-bounded decoder for a code of length n = 2m and
codimension r = mt

(m, t) τgv w = 8 w = 9 w = 10 w = 11

(20,8) 8.91 1− 2−15 0.055 2−131583 2−1010

(18,9) 10.26 1− 2−33 1− 2−18 0.93 2−2484

2.4 Original CFS

A CFS instance is defined by a binary Goppa code Γ of length n correcting up
to t errors; of parity check matrix H ; over the finite field F2. We will denote
the decoding function of Γ by decode. This function takes a binary syndrome as
input and returns a tuple of t error positions matching with the input syndrome
or fails if no such error pattern exists. The matrix H is public and the procedure
decode is secret. Signing a document is done like this :

1. Hash the document.
2. Suppose the hash value is a syndrome and try to decode it using Γ .
3. Use the resulting error pattern as a signature.

Since the hash value of the document is very unlikely to be a decodable syndrome
(i.e. syndrome of a word at Hamming distance t or less from a codeword), step
2 is a little more complicated. CFS comes with two workarounds for this step :

– Complete decoding [Algorithm 1] adds a certain amount of columns of H to
the syndrome until it becomes decodable (i.e. guess a few errors).

– Counter-appending alters the message with a counter and rehashes it until
it becomes decodable.

The two methods require t! decoding in average (a consequence of (1), see [1]),
but the counter-appending method includes the hash function inside the decod-
ing thus forcing to implement it on the target architecture, which might be
an inconvenience on a dedicated coprocessor. Moreover, with this method the
size of the signature is variable because the counter has a high standard vari-
ation. Finally, the Parallel-CFS countermeasure (see §2.6) does not work with
the counter-appending method.

2.5 Attacks

There exists key-distinguishing attacks on CFS [4]: it is possible to efficiently
distinguish a CFS public key (a binary Goppa parity check matrix) from a
random matrix of same size. However this does not lead, for the moment, to
any efficient key recovery attack. In practice, the best known techniques for
forging a signature are based on generic decoding of linear codes, that is solving
the computational syndrome decoding problem (CSD).

The two main techniques for solving CSD are Information Set Decoding (ISD)
and the Generalized Birthday Algorithm (GBA). ISD was introduced by Prange
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Algorithm 1. Signing with complete decoding

function sign(M,w, h) � input: message M ; integer w > t; hash function h
s ←− h(M)
loop

(it+1, . . . , iw)
R←− {0, . . . , n− 1}w−t

(i1, . . . , it) ←− decode(s+Hit+1 + . . .+Hiw , t)
if (i1, . . . , it) �= fail then return (i1, . . . , iw)
end if

end loop
end function

in 1962 [7]. All practical variant derive from Stern’s algorithm [8], the most
recent improvements are [9,10]. GBA was introduced by Wagner in 2002 [11],
but an order-2 variant was already proposed in [12]. Its first use for decoding
came later [13].

Decoding One Out of Many (DOOM): In the signature forgery domain,
an attacker can create any number of messages suiting him and be satisfied with
one on them being signed. The benefits of having access to several syndromes
has been mentioned by Bleichenbacher for GBA2. For ISD a proposal was made
in [15] and was later generalized and analyzed in [16]. It shows that if N target
syndromes are given and if decoding anyone of them is enough, the time com-
plexity is reduced by a factor almost

√
N compared to the situation where a

single specific syndrome has to be decoded. There is a upper limit for N after
which there is no gain, it depends on the type of algorithm (ISD or GBA) and
on the code parameters. In practice this would mean, for 80 bits of security,
multiplying the key size by 400 with a similar signing time, or multiplying the
key size by 100 and the signing time by 10.

2.6 Parallel-CFS: A Countermeasure to DOOM

Parallel CFS is a countermeasure proposed by M. Finiasz in 2010 [5], aiming at
cancelling the benefits an attacker could have with multiple target syndromes.
The idea is to produce λ different hash values from the document to be signed
(typically two to four) and to sign (that is decode) each of them separately.
The final signature will be the collection of the signatures of all those hash
values, see Algorithm 2 for the description using complete decoding. This way,
if the attacker forges a signature for the first hash value of one of his multiple
messages, he also has to forge a signature for the remaining hash values of this
specific message, thus he is back to the initial single target decoding problem.
As mentioned in [5], signing with the counter-appending method is impossible in
this countermeasure since it is necessary to decode several hashes of the exact
same message and the counter alters the message. This countermeasure increases
by a factor λ the signature time, signature size and verification time.

2 This attack was presented in 2004 but was never published, it is described in [14].
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Algorithm 2. Parallel-signing with complete decoding

function sign mult(M,w, λ,H) � input: message M ; integers w > t, λ > 0,
for 1 ≤ i ≤ λ do � set of hash functions H

si ←− sign(M,w,Hi)
end for
return (si)1≤i≤λ

end function

In [5], Bleichenbacher’s attack is generalized for attacking several hash values.
The analysis shows that for most parameters, three hash values, sometimes only
two, will cancel the benefits of the attack. For ISD, it is shown in [16] that the
benefit of DOOM is not as high as for GBA. There was no generalization as in
[5] for several hash values, but it is not likely to change the situation and if the
number of hash values is large enough to cancel DOOM-GBA it will probably
also cancel DOOM-ISD.

2.7 Previous Implementations

We are not aware of any publicly available software implementation of CFS.
There is one FPGA implementation, described in [3], for the original parameters
n = 216, t = 9, and w = 11. It reports an average signing time of 0.86 seconds
and implements the Berlekamp-Massey decoding algorithm.

3 Parameter Selection

For single instances ISD is more efficient than GBA, and for multiple instances
GBA-DOOM (i.e. generalized Bleichenbacher’s attack) is more efficient than
ISD-DOOM. To select secure parameters will look for parameters such that we
are above the security requirements for the cost of the following attacks:

– ISD-MMT [10], the best known variant of ISD, for solving λ distinct single
instances. In [10], only the asymptotic decoding exponent is given. We pro-
vide in appendix §A a non asymptotic analysis which we used for Table 2.
We also mention the cost of a previous variant ISD-Dum [17] which is more
flexible and may have an advantage in some cases (not here though). The
numbers for ISD-Dum are derived from [18].

– GBA-DOOM [5], that is the generalized Bleichenbacher’s attack, for Parallel-
CFS of multiplicity λ.

The Table 2 gives the main features (including security) for some sets of pa-
rameters. The original parameters are given for reference but they are a bit
undersized. We propose two main families of Goppa codes: 9-error correcting of
length 218 and 8-error correcting of length 220. The latter is faster but also has
a larger public key size. All proposed parameter sets achieve 80 bits of security,
our main targets are those where the hash multiplicity is λ = 3. We also give
some sets of parameters with higher security which were not implemented.
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Table 2. Some parameter sets for Parallel-CFS using full length binary Goppa codes

failure public security bits (log2 of binary ops.)
m t τgv w λ prob. key size ISD-MMT ISD-Dum GBA-DOOM

16 9 10.46 11 3 ∼ 0 1MB 77.4 78.7 74.9

18 9 10.26 11 3 ∼ 0 5MB 87.1 87.1 83.4
18 9 10.26 11 4 ∼ 0 5MB 87.5 87.5 87.0

20 8 8.91 10 3 ∼ 0 20MB 82.6 85.7 82.5
20 8 8.91 9 5 5.5% 20MB 87.9 91.0 87.3

24 10 11.05 12 3 ∼ 0 500MB 126.4 126.9 120.4

26 9 9.82 10 4 10−8 2GB 125.4 127.5 122.0

To be thorough, there is a very recent improvement of ISD [19]. From what
we understand of this variant of ISD-MMT it is not likely to provide a significant
non-asymptotic improvement when the target weight is small compared with the
length as it is the case for CFS signatures.

4 Algebraic Decoding of Goppa Codes

The secret is a binary Goppa code Γ (L, g) of length n = 2m of dimension r of
generator polynomial g(z) ∈ F2m [z], monic irreducible of degree t, and support
L = (α0, . . . , αn−1), consisting of (all) distinct elements of F2m in a specific order.
The public key H is a systematic parity check matrix of Γ (L, g). We denote
LS = (β0, . . . , βr−1) the support elements corresponding to the identity part of
H (for instance the first or last r coordinates of L). An algebraic decoder for
Goppa codes takes as input a binary syndrome s = (s0, . . . , sr−1) ∈ {0, 1}r and
returns, if it exists, an error pattern e ∈ {0, 1}n of weight t such that eHT = s.
There are several algorithms (described later in this section) which all have the
same three steps:

1. Compute from s a new polynomial syndrome with coefficients in F2m .
2. Solve a key equation relating this syndrome to the error locator polynomial.
3. Extract the roots of the locator polynomial to recover the error positions.

4.1 Goppa Key Equation

The algebraic syndromeR(z) =
∑

0≤j<r sjfβj
(z) corresponding to s is computed

as a sum of elementary syndromes fβ(z) defined for any β ∈ F2m as

fβ(z) =
1

z − β
mod g(z) =

1

g(β)

g(z)− g(β)

z − β
. (2)

Note that the only elementary syndromes needed are the r elements of LS. The
corresponding key equation is

σ(z)R(z) =
d

dz
σ(z) mod g(z), deg σ ≤ t (3)
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which has a unique solution σ(z) ∈ F2m [z] up to a scalar multiplicative constant.
If there exists an error pattern e ∈ {0, 1}n of weight ≤ t such that eHT = s,
then any solution to (3) is a scalar multiple of σ(z) =

∏
β∈supp(e)(z − β) the

locator polynomial of e (supp(e) is the subset of L corresponding to the non-
zero coordinates of e). Equation (3) is solved with the Patterson algorithm [20].

4.2 Alternant Key Equation

A binary Goppa Γ (L, g) can also be viewed as an alternant code. We use
the fact that Γ (L, g) = Γ (L, g2) when g is square-free. We still have R(z) =∑

0≤j<r sjfβj
(z) but the elementary syndrome fβ(z) has degree 2t − 1 instead

of t− 1 and is now defined for any β ∈ F2m as

fβ(z) =
1

g(β)2
1

1− βz
mod z2t =

2t−1∑
i=0

βizi

g(β)2
. (4)

The corresponding key equation is

σinv(z)R(z) = ω(z) mod z2t, degω < t, deg σinv ≤ t, (5)

which has a unique solution (σinv(z), ω(z)) ∈ F2m [z]2 up to a scalar multi-
plicative constant. If there exists an error pattern e ∈ {0, 1}n of weight ex-
actly t such that eHT = s and if (σinv(z), ω(z)) is a solution to (5) then
σ(z) = ztσinv(z

−1) =
∏

β∈supp(e)(z − β) up to a scalar multiple. To remain

consistent with the Goppa key equation we will speak of σ(z) = ztσinv(z
−1) as

the solution of the equation. The resolution of (5) is achieved either with the
Berlekamp-Massey algorithm [21] or with the extended Euclidean algorithm.

4.3 Root Finding

The state-of-the-art for root finding is the Berlekamp trace algorithm [22]. Its
complexity is O((m+ t)t2) and is advantageous compared with exhaustive tech-
niques like Chien search or Horner’s polynomial evaluation whose complexity is
linear in the length n and thus exponential in m.

5 Implementation

5.1 Finite Field Arithmetic

We need to implement extensions of the binary field F2 of degree m = 18 and
m = 20. For fields of small size, the best approach is to tabulate the logarithm
and the exponentiation in base α, a primitive element of F2m . This is efficient as
long as the table fits into the processor cache. This is not the case here and we
chose to implement those fields as an extension of degree 2 of F2m/2 . We used

F220 = F210 [x]/(x
2 + x+ α),F210 = F2[x]/(x

10 + x9 + x7 + x6 + 1)
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with α a primitive element of F210 such that α10 + α9 + α7 + α6 + 1 = 0, and

F218 = F29 [x]/(x
2 + x+ 1),F29 = F2[x]/(x

9 + x5 + 1).

The field F29 and F210 are small enough to be tabulated (with no cache miss
on our target platform) and with Karatsuba’s speedup a multiplication in the
extension field requires three multiplications in the base field. For constrained
architecture higher extension towers might be more effective. Also, bit slicing
might offer an interesting alternative which, furthermore, is available also for
prime extension degrees like m = 19 which have no subfield except F2.

5.2 Decoding

When signing a message M , we compute a hash value s = h(M) considered
as a syndrome according to the public key H . The word e of minimal weight
such that s = eHT has weight w > t and thus s cannot be decoded with the
algebraic decoder which is limited to t errors. If, as described in Algorithm 1,
we correctly guess δ = w− t error positions we will be able to successfully apply
the algebraic decoder on a modified syndrome. It was proven in [1] that this
succeeds on average after t! guesses. We describe in Algorithm 3 a variant where
the syndrome is modified in polynomial form. Also, the complete root finding
procedure is applied once only.

Algorithm 3. Signing with binary Goppa codes

function sign(M,h) � input: message M ; hash function h
s ←− h(M)
R0(z) ←−

∑
0≤j<r sjfβj

(z) � once only, either (2) or (4)
for all B ⊂ L of cardinality δ = w − t do

R(z) ←− R0(z) +
∑

β∈B fβ(z) � syndrome adjustment, either (2) or (4)
σ(z) ←− solve key eq(R(z)) � key equation solving, either (3) or (5)
if z2

m

= z mod σ(z) then � split checking
A ←− roots of(σ(z)) � once only
return indices of the elements of A ∪B in L

end if
end for
return fail

end function

Computing the Polynomial Syndrome: The first polynomial syndrome
R0(z) is computed once only from s. Then, as many times as necessary, R0(z) is
adjusted by computing and adding δ = w− t elementary syndromes fβ(z). This
adjustment has a cost proportional to δt field operations which is negligible in
practice.
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Solving the Key Equation: As mentioned above, there are various syndromes
and key equations and sometimes several ways to solve them. In all cases this
resolution has to be done completely and produces the same locator polynomial
σ(z). The cost is proportional to t2 field operations.

Root Finding: The key equation always has a solution σ(z) regardless of the
existence of a suitable error pattern of weight t. The error has weight t or less
if and only if the polynomial σ(z) has all its roots in the field F2m that is if
σ(z) | z2m − z. In practice we check whether z2

m

= z mod σ(z) and we only
compute the roots once. This requires m polynomial squaring modulo σ(z) for
a cost proportional to mt2 field operations. This will be the dominant cost for
the signature.

5.3 Discarding Degenerate Instances of Decoding

Several syndromes and key equations may be used for implementing the algebraic
decoding of Goppa codes. In all cases, there is some amount of control required;
at some point a coefficient is checked (leading coefficient in the extended Eu-
clidean algorithm, or the discrepancy in Berlekamp-Massey Algorithm) and if
it is zero the sequencing of operations is affected. Ignoring completely this test
(i.e. assuming the coefficient is non zero) will provide a significant speedup in
software (loops are easier to unroll) and a welcome simplicity in constrained de-
vices. The counterpart is that a (small) proportion of decoding attempts produce
inconsistent results and will fail. This is not a big deal in the signature context
where almost all decoding attempts fail anyway. This was already remarked in
[3] to simplify the control in an FPGA implementation.

5.4 How to Handle Decoding Failure

For (m, t) = (20, 8) and w = 9 there is a probability of failure of ν = 5.5%. This
means that some messages cannot be signed. When we use Parallel-CFS with
multiplicity λ = 5, this percentage is equal to μ = 1 − (1 − ν)λ that is almost
25%, which is hardly acceptable. The workaround is to add a counter:

Define a family F = {fi, 0 ≤ i < 2b} of 2b one-to-one transformations
on the syndromes (for instance adding distinct predefined random con-
stant vectors). Let s1, . . . , sλ denote the hash values of Parallel-CFS of
multiplicity λ. We try to decode the tuple f(s1), . . . , f(sλ) for all f ∈ F .
The verifier will also try all f ∈ F , in the same order as the signer.
Optionally, the b bits index i of the transformation can be added to the
signature to speed-up the verification.

The decoding fails for all f ∈ F with probability μ2b . For instance with b = 5 in
our example the probability of failure drops from 0.249 to 2−64 and each time we
increment b this probability is squared. The security is unchanged because we
applied the same transformation on all hash values. Note that, had we allowed
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different transformations for the λ hash values, the attacker would have been
able to apply a 2b-instances ISD-DOOM for on each hash value, gaining a factor√
2b to the attack.

5.5 Signature Size, Verification and Key Generation

Various interesting tradeoffs are possible between signature size and verification
time. They are described already in [1] and we propose no novelty here. For
(m, t, w, λ) = (20, 8, 10, 3) the signature size ranges from 292 to 535 bits and for
(m, t, w, λ) = (18, 9, 11, 3) it ranges from 286 to 519 bits. This part of the scheme
(as well as the key generation procedure) is out of the scope of this work and is
not detailed further.

6 Timings

6.1 Computation Time

We measured with two decoders and the various sets of parameters the average
number of algebraic decoding and the running time for producing one signature
running on our target platform (a single core of an Intel Xeon W3670 at 3.20
GHz, about 400 000 signatures per parameter set were computed). The finite

Table 3. Average number of algebraic decoding and running time per signature

(m, t, w, λ)
(18,9,11,3) (18,9,11,4) (20,8,10,3) (20,8,9,5)

number of decodings 1 117 008 1 489 344 121 262 360 216

running time (BM) 14.70 s 19.61 s 1.32 s 3.75 s

running time (Pat.) 15.26 s 20.34 s 1.55 s 4.26 s

field arithmetic primitives use 75% of the total amount of CPU time, most of
that (66%) for the sole multiplication. We observe in Table 3 that the number of

0 100000 200000 300000 400000

Fig. 1. Distribution of the number of decodings per signature (m, t, w, λ) = (20, 8, 10, 3)
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decodings is very close (but slightly above) the expected value of λt!. The only
exception is for (m, t, w, λ) = (20, 8, 9, 5). In that case each complete decoding
has a probability of 5.5% of failure, but when it fails, the number of decoding
attempts is equal to the maximum allowed. Experimentally the best tradeoff
when λ = 5 is to allow only 200 000 decoding per binary syndrome (instead of
220), this raises the probability of failure to 8.4% and with a counter of 6 bits
(see §5.4) we fail to sign with probability 2−95. In practice we observe that the
signing cost almost doubles.

6.2 Comparing Decoders

We provide here the number of elementary field operations needed for one alge-
braic decoding attempt. Those numbers were obtained by running the software.
Statistics are summarized in Table 4. The “critical” steps are those called inside
the loop of Algorithm 3. The “non critical” ones are outside the loop and thus
are called only once per complete decoding, that is λ = 3 times per signature. A
field operation is a multiplication, a squaring, a division, an inversion, or a square
root. We do not count additions which are implemented with a XOR. In practice,
this gives an accurate measure of the complexity and allows and easy comparison
of the decoders and an indication about the relative costs of the various steps. All
numbers are constant for all steps except the root finding algorithm (Berlekamp
trace algorithm). If we consider the non critical parts, it appears that the syn-

Table 4. Number of field operations (excluding additions) per decoding

critical non critical

(m, t) type (1) (2) (3) (1)+(2)+(3) (4) (5)

(18,9) BM 58 180 840 1078 2184 3079.1
(18,9) Pat. 38 329 840 1207 1482 3079.1

(20,8) BM 52 144 747 943 1950 3024.6
(20,8) Pat. 34 258 747 1039 1326 3024.6

(1) syndrome adjustment (4) initial syndrome
(2) key equation solving (5) root finding
(3) split checking

drome computation and the root finding algorithms are the dominant cost and
thus the Patterson algorithm is more efficient than the Berlekamp-Massey algo-
rithm which requires a double sized syndrome. The situation is reversed when
we consider only the critical parts because the Berlekamp-Massey key equation
solving is more efficient.

7 Conclusion

For a proper choice of parameters we have shown that CFS, in fact Parallel-CFS,
is practical, though cumbersome to achieve a reasonable security. The fastest of
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our instances needs a bit more than one second of CPU time to produce a
signature, which is slow but acceptable. The corresponding public key has a size
of 20 megabytes, which may disqualify the scheme for some applications. Note
that the public key is not needed for signing but only the secret key which consists
of a pair (L, g). The generator g has a size of mt bits (160 or 162 bits here) and
the support is a permutation of 2m elements which can be generated on the fly
from a seed. The implementation of the signing primitive we describe requires
only a relatively small amount of storage3 and memory, making it suitable for
massively parallel architecture (like GPUs) or “hardware-oriented” devices (like
FPGAs or even smart cards).
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A A Non Asymptotic Analysis of ISD-MMT

We refer to the algorithm described in [10] to solve CSD(H, s, w) with H ∈
{0, 1}r×n and s ∈ {0, 1}r (we denote k = n − r the dimension), it uses as
parameters three integers p, �2, and �. First, a Gaussian elimination on H is
performed and then three levels of lists are built and successively merged. With
a certain probability P(p, �, �2) a solution to CSD(H, s, w) lies in the last of those
lists. The whole process has to be repeated 1/P(p, �, �2) times on average to find
a solution.

– There are 4 lists at the first level, each of size L0 =
((k+
)/2

p/4

)
.

– There are 2 lists at the second level, obtained by merging the first level lists
pairwise, both have size L1 = L2

02
−
2 on average.

– The final list at third level is obtained by merging the two second level lists
and has size L2 = L2

12
−
+
2 = L4

02
−
−
2 on average.

To give an expression of the success probability, we cannot use [10] which assumes
a unique solution while for signature parameters we may have several4. Instead

4 If the weight w is not above the Gilbert-Varshamov radius by more than a constant,
the expected number of solutions is polynomial and do not affect the asymptotic
analysis, for a non-asymptotic analysis the difference is significant.

http://eprint.iacr.org/
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we claim (following the analysis of [18,16]) that any particular element of the
final list will provide a solution with probability ≈ 2
ε(p, �) where

ε(p, �) =

(
r−

w−p

)
min
(
2r,
(
n
w

)) .
The min in the above expression takes into account the possibility of several
solutions. In practice for the signature 2r will be smaller than

(
n
w

)
. We claim

that, for practical code parameters and when p and � are near their optimal
values

1. if �2 is not too small the proportion of duplicates in the final list is negligible,
2. if �2 is not too large the costs for building the first level lists and for the

Gaussian eliminations are negligible.

Assuming the first claim is true, the probability of success is

P(p, �, �2) = 1−
(
1− 2
ε(p, �)

)L2 ≈ L22

ε(p, �) = L4

02
−
2ε(p, �).

Assuming the second claim is true, the cost for building the final list and checking
whether it contains a solution is (crudely) lower bounded by 2L1+2L2 elementary
operations5. The factor 2 in front of L1 is because there are two lists at the
second level and the factor 2 in front of L2 is because each element of the final
list has to be constructed (an addition at least) then checked (a Hamming weight
computation). Finally assuming each elementary operation costs at least � binary
operations the cost of ISD-MMT is lower bounded by

WFMMT = min
p,


2�

ε(p, �)

(
1

2

+

1

L2
0

)
. (6)

Note that, interestingly, �2 does not appear in the above expression. It means
that, as long as it is neither too small or too large, the choice of �2 has no
impact on the complexity of ISD-MMT. In practice the proper ranges is (roughly)
p/2 ≤ �2 ≤ log2 L0. It is best to avoid the extreme values in that range and large
values are better because they reduce memory requirements. Finally note that
in [10] it is suggested that �2 ≤ p − 2. This is marginally inside the acceptable
range but this has no consequence on the asymptotic exponent analysis.

5 Here an elementary operation is an operation on a column of H , either addition or
Hamming weight, possibly with a memory store or read.



SipHash: A Fast Short-Input PRF

Jean-Philippe Aumasson1 and Daniel J. Bernstein2

1 NAGRA
Switzerland

jeanphilippe.aumasson@gmail.com
2 Department of Computer Science

University of Illinois at Chicago, Chicago, IL 60607–7045, USA
djb@cr.yp.to

Abstract. SipHash is a family of pseudorandom functions optimized for
short inputs. Target applications include network traffic authentication
and hash-table lookups protected against hash-flooding denial-of-service
attacks. SipHash is simpler than MACs based on universal hashing, and
faster on short inputs. Compared to dedicated designs for hash-table
lookup, SipHash has well-defined security goals and competitive perfor-
mance. For example, SipHash processes a 16-byte input with a fresh key
in 140 cycles on an AMD FX-8150 processor, which is much faster than
state-of-the-art MACs. We propose that hash tables switch to SipHash
as a hash function.

1 Introduction

A message-authentication code (MAC) produces a tag t from a message m and
a secret key k. The security goal for a MAC is for an attacker, even after seeing
tags for many messages (perhaps selected by the attacker), to be unable to guess
tags for any other messages.

Internet traffic is split into short packets that require authentication. A 2000
note by Black, Halevi, Krawczyk, Krovetz, and Rogaway [11] reports that “a
fair rule-of-thumb for the distribution on message-sizes on an Internet backbone
is that roughly one-third of messages are 43 bytes (TCP ACKs), one-third are
about 256 bytes (common PPP dialup MTU), and one-third are 1500 bytes
(common Ethernet MTU).”

However, essentially all standardized MACs and state-of-the-art MACs are
optimized for long messages, not for short messages. Measuring long-message
performance hides the overheads caused by large MAC keys, MAC initialization,
large MAC block sizes, and MAC finalization. These overheads are usually quite
severe, as illustrated by the examples in the following paragraphs. Applications
can compensate for these overheads by authenticating a concatenation of several
packets instead of authenticating each packet separately, but then a single forged
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packet forces several packets to be retransmitted, increasing the damage caused
by denial-of-service attacks.

Our first example is HMAC-SHA-1, where overhead effectively adds between
73 and 136 bytes to the length of a message: for example, HMAC-SHA-1 requires
two 64-byte compression-function computations to authenticate a short message.
Even for long messages, HMAC-SHA-1 is not particularly fast: for example,
the OpenSSL implementation takes 7.8 cycles per byte on Sandy Bridge, and
11.2 cycles per byte on Bulldozer. In general, building a MAC from a general-
purpose cryptographic hash function appears to be a highly suboptimal ap-
proach: general-purpose cryptographic hash functions perform many extra com-
putations for the goal of collision resistance on public inputs, while MACs have
secret keys and do not need collision resistance.

Much more efficient MACs combine a large-input universal hash function
with a short-input encryption function. A universal hash function h maps a long
message m to a short hash h(k1,m) under a key k1. “Universal” means that
any two different messages almost never produce the same output when k1 is
chosen randomly; a typical universal hash function exploits fast 64-bit multipliers
to evaluate a polynomial over a prime field. This short hash is then strongly
encrypted under a second key k2 to produce the authentication tag t. The original
Wegman–Carter MACs [34] used a one-time pad for encryption, but of course
this requires a very long key. Modern proposals such as UMAC version 2 [11],
Poly1305-AES [5], and VMAC(AES) [25] [14] replace the one-time pad with
outputs of AES-128: i.e., t = h(k1,m)⊕AES(k2, n) where n is a nonce. UMAC
version 1 argued that “using universal hashing to reduce a very long message to
a fixed-length one can be complex, require long keys, or reduce the quantitative
security” [10, Section 1.2] and instead defined t = HMAC-SHA-1(h(k,m), n)
where h(k,m) is somewhat shorter than m.

All of these MACs are optimized for long-message performance, and suffer
severe overheads for short messages. For example, the short-message performance
of UMAC version 1 is obviously even worse than the short-message performance
of HMAC-SHA-1. All versions of UMAC and VMAC expand k1 into a very
long key (for example, 4160 bytes in one proposal), and are timed under the
questionable assumptions that the very long key has been precomputed and
preloaded into L1 cache. Poly1305-AES does not expand its key but still requires
padding and finalization in h, plus the overhead of an AES call.

(We comment that, even for applications that emphasize long-message perfor-
mance, the structure of these MACs often significantly complicates deployment.
Typical universal MACs have lengthy specifications, are not easy to implement
efficiently, and are not self-contained: they rely on extra primitives such as AES.
Short nonces typically consume 8 bytes of data with each tag, and force applica-
tions to be stateful to ensure uniqueness; longer nonces consume even more space
and require either state or random-number generation. There have been propos-
als of nonceless universal MACs, but those proposals are significantly slower than
other universal MACs at the same security level; see, e.g., [4, Theorem 9.2].)
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The short-input performance problems of high-security MACs are even more
clear in another context. As motivation we point to the recent rediscovery of
“hash flooding” denial-of-service attacks on Internet servers that store data in
hash tables. These servers normally use public non-cryptographic hash functions,
and these attacks exploit multicollisions in the hash functions to enforce worst-
case lookup time. See Section 7 of this paper for further discussion.

Replacing the public non-cryptographic hash functions with strong small-
output secret-key MACs would solve this problem. However, to compete with
existing non-cryptographic hash functions, the MACs must be extremely fast for
very short inputs, even shorter than the shortest common Internet packets. For
example, Ruby on Rails applications are reported to hash strings shorter than 10
bytes on average. Recent hash-table proposals such as Google’s CityHash [18]
and Jenkins’ SpookyHash [21] provide very fast hashing of short strings, but
these functions were designed to have a close-to-uniform distribution, not to
meet any particular cryptographic goals. For example, collisions were found in
an initial version of CityHash128 [22], and the current version is vulnerable to
a practical key-recovery attack when 64-bit keys are used.

This paper introduces the SipHash family of hash functions to address the
needs for high-security short-input MACs. SipHash features include:

• High security. Our concrete proposal SipHash-2-4 was designed and eval-
uated to be a cryptographically strong PRF (pseudorandom function), i.e.,
indistinguishable from a uniform random function. This implies its strength
as a MAC.
• High speed. SipHash-2-4 is much faster for short inputs than previous
strong MACs (and PRFs), and is competitive in speed with popular non-
cryptographic hash functions.
• Key agility. SipHash uses a 128-bit key. There is no key expansion in setting
up a new key or hashing a message, and there is no hidden cost of loading
precomputed expanded keys from DRAM into L1 cache.
• Simplicity. SipHash iterates a simple round function consisting of four ad-
ditions, four xors, and six rotations, interleaved with xors of message blocks.
• Autonomy. No external primitive is required.
• Small state. The SipHash state consists of four 64-bit variables. This small
state size allows SipHash to perform well on a wide range of CPUs and to
fit into small hardware.
• No state between messages. Hashing is deterministic and doesn’t use
nonces.
• No software side channels. Many cryptographic functions, notably AES,
encourage implementors to use secret load/store addresses or secret branch
conditions, often allowing timing attacks. SipHash avoids this problem.
• Minimal overhead. Authenticated messages are just 8 bytes longer than
original messages.

§2 presents a complete definition of SipHash; §3 makes security claims; §4 ex-
plains some design choices; §5 reports on our preliminary security analysis; §6
evaluates the efficiency of SipHash in software and hardware; §7 discusses the
benefits of switching to SipHash for hash-table lookups.
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2 Specification of SipHash

SipHash is a family of PRFs SipHash-c-d where the integer parameters c and d
are the number of compression rounds and the number of finalization rounds. A
compression round is identical to a finalization round and this round function is
called SipRound. Given a 128-bit key k and a (possibly empty) byte string m,
SipHash-c-d returns a 64-bit value SipHash-c-d(k,m) computed as follows:

1. Initialization: Four 64-bit words of internal state v0, v1, v2, v3 are initialized
as

v0 = k0 ⊕ 736f6d6570736575

v1 = k1 ⊕ 646f72616e646f6d

v2 = k0 ⊕ 6c7967656e657261

v3 = k1 ⊕ 7465646279746573

where k0 and k1 are the little-endian 64-bit words encoding the key k.
2. Compression: SipHash-c-d processes the b-byte string m by parsing it as
w = �(b + 1)/8� > 0 64-bit little-endian words m0, . . . ,mw−1 where mw−1

includes the last 0 through 7 bytes of m followed by null bytes and ending
with a byte encoding the positive integer b mod 256. For example, the one-
byte input string m = ab is parsed as m0 = 01000000000000ab. The mi’s are
iteratively processed by doing

v3 ⊕ = mi

and then c iterations of SipRound, followed by

v0 ⊕ = mi

3. Finalization: After all the message words have been processed, SipHash-c-d
xors the constant ff to the state:

v2 ⊕ = ff

then does d iterations of SipRound, and returns the 64-bit value

v0 ⊕ v1 ⊕ v2 ⊕ v3 .
Fig. 2.1 shows SipHash-2-4 hashing a 15-byte m.

The function SipRound transforms the internal state as follows (see also Fig.2.2):

v0 + = v1 v2 + = v3
v1 ≪= 13 v3 ≪= 16
v1⊕ = v0 v3⊕ = v2
v0 ≪= 32
v2 + = v1 v0 + = v3
v1 ≪= 17 v3 ≪= 21
v1⊕ = v2 v3⊕ = v0
v2 ≪= 32
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Fig. 2.1. SipHash-2-4 processing a 15-byte message. SipHash-2-4(k,m) is the output
from the final ⊕ on the right.
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Fig. 2.2. The ARX network of SipRound

3 Expected Strength

SipHash-c-d with c ≥ 2 and d ≥ 4 is expected to provide the maximum PRF
security possible (and therefore also the maximum MAC security possible) for
any function with the same key size and output size. Our fast proposal is thus
SipHash-2-4. We define SipHash-c-d for larger c and d to provide a higher security
margin: our conservative proposal is SipHash-4-8, which is about half the speed
of SipHash-2-4. We define SipHash-c-d for smaller c and d to provide targets for
cryptanalysis. Cryptanalysts are thus invited to break

• SipHash-1-0, SipHash-2-0, SipHash-3-0, SipHash-4-0, etc.;
• SipHash-1-1, SipHash-2-1, SipHash-3-1, SipHash-4-1, etc.;
• SipHash-1-2, SipHash-2-2, SipHash-3-2, SipHash-4-2, etc.;

and so on.
Note that the standard PRF and MAC security goals allow the attacker ac-

cess to the output of SipHash on messages chosen adaptively by the attacker.
However, they do not allow access to any “leaked” information such as bits of
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the key or the internal state. They also do not allow “related keys”, “known
keys”, “chosen keys”, etc.

Of course, security is limited by the key size (128 bits). In particular, attackers
searching 2s keys have chance 2s−128 of finding the SipHash key. This search is
accelerated in standard ways by speedups in evaluation and partial evaluation of
SipHash, for one key or for a batch of keys; by attacks against multiple targets;
and by quantum computers.

Security is also limited by the output size (64 bits). In particular, when
SipHash is used as a MAC, an attacker who blindly tries 2s tags will succeed
with probability 2s−64.

We comment that SipHash is not meant to be, and (obviously) is not, collision-
resistant.

4 Rationale

SipHash is an ARX algorithm, like the SHA-3 finalists BLAKE [3] and Skein
[16]. SipHash follows BLAKE’s minimalism (small code, small state) but borrows
the two-input MIX from Skein, with two extra rotations to improve diffusion.
SipHash’s input injection is inspired by another SHA-3 finalist, JH [36].

Choice of Constants. The initial state constant corresponds to the ASCII
string “somepseudorandomlygeneratedbytes”, big-endian encoded. There is noth-
ing special about this value; the only requirement was some asymmetry so that
the initial v0 and v1 differ from v2 and v3. This constant may be set to a “per-
sonalization string” but we have not evaluated whether it can safely be chosen as
a “tweak”. Note that two nonzero words of initialization constants would have
been as safe as four.

The other constant in SipHash is ff, as xored to v2 in finalization. We could
have chosen any other non-zero value. Without this constant, one can reach the
internal state after finalization by just absorbing null words. We found no way
to exploit this property, but we felt it prudent to avoid it given the low cost of
the defense.

Choice of Rotation Counts. Finding really bad rotation counts for ARX
algorithms turns out to be difficult. For example, randomly setting all rotations
in BLAKE-512 or Skein to a value in {8, 16, 24, . . . , 56} may allow known attacks
to reach slightly more rounds, but no dramatic improvement is expected.

The advantage of choosing such “aligned” rotation counts is that aligned rota-
tion counts are much faster than unaligned rotation counts on many non-64-bit
architectures. Many 8-bit microcontrollers have only 1-bit shifts of bytes, so
rotation by (e.g.) 3 bits is particularly expensive; implementing a rotation by
a mere permutation of bytes greatly speeds up ARX algorithms. Even 64-bit
systems can benefit from alignment, when a sequence of shift-shift-xor can be
replaced by SSSE3’s pshufb byte-shuffling instruction. For comparison, imple-
menting BLAKE-256’s 16- and 8-bit rotations with pshufb led to a 20% speedup
on Intel’s Nehalem microarchitecture.
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For SipHash, the rotation distances were chosen as a tradeoff between secu-
rity and performance, with emphasis on the latter. We ran an automated search
that picks random rotation counts, estimates the number of significant statistical
biases on three SipRounds with respect to a specific significance threshold, and
finally sorts the sets of rotation counts according to that metric. We then manu-
ally shortlisted a few sets, by choosing the ones with rotation counts the closest
to multiples of eight. We changed some of those values to the closest multiple of
eight and benchmarked them against our original security metric, and repeated
this process several times until finding a satisfying set of rotation counts.

We chose counts 13, 16, 17, and 21 for the rotations in the two MIX layers:
13 and 21 are three bits away from a multiple of 8, whereas 17 is just one bit
away, and 16 can be realized by byte permutation only. We aggressively set the
two “asymmetric” rotation counts to 32 to minimize the performance penalty—
it is just a swap of words on 32-bit systems. The 32-bit rotations significantly
improve diffusion, and their position on the ARX network allows for an efficient
scheduling of instructions.

Choice of Injection Structure. Like JH, SipHash injects input before and
after each block, with the difference that SipHash leaves less freedom to attackers:
whereas JH xors the message block to the two halves of the state before and after
the permutation, SipHash xors a block to two quarters of the state. Any attack
on the SipHash injection structure can be applied to the JH injection structure,
so security proofs for the JH injection structure [30] also apply to the SipHash
injection structure.

A basic advantage of the JH/SipHash injection structure compared to the
sponge/Keccak [7] injection structure is that message blocks of arbitrary length
(up to half the state) can be absorbed without reducing preimage security. A
disadvantage is that each message block must be retained while the state is being
processed, but for SipHash this extra storage is only a quarter of the state.

Choice of Padding Rule. SipHash’s padding appends a byte encoding the
message length modulo 256. We could have chosen a slightly simpler padding
rule, such as appending a 80 byte followed by zeroes. However, our choice forces
messages of different lengths modulo 256 to have different last blocks, which may
complicate attacks on SipHash; the extra cost is negligible.

5 Preliminary Cryptanalysis

We first consider attacks that are independent of the SipRound algorithm, and
thus that are independent of the c and d parameters. We then consider attacks
on SipRound iterations, with a focus on our proposal SipHash-2-4.

Key-Recovery. Brute force will recover a key after on average 2127 evaluations
of SipHash, given two input/output pairs (one being insufficient to uniquely
identify the key). The optimal strategy is to work with 1-word padded messages,
so that evaluating SipHash-c-d takes c+ d SipRounds.
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State-Recovery. A simple strategy to attack SipHash is to choose three input
strings identical except for their last word, query for their respective SipHash
outputs, and then “guess” the state that produced the output v0⊕v1⊕v2⊕v3 for
one of the two strings. The attacker checks the 192-bit guessed value against the
two other strings, and eventually recovers the key. On average d2191 evaluations
of SipRound are computed.

Internal Collisions. As for any MAC with 256-bit internal state, internal col-
lisions can be exploited to forge valid tags with complexity of the order of 2128

queries to SipHash. The padding of the message length forces attackers to search
for collisions at the same position modulo 256 bytes.

Truncated Differentials. To assess the strength of SipRound, we applied the
same techniques that were used [2] to attack Salsa20, namely a search for sta-
tistical biases in one or more bits of output given one or more differences in the
input. We considered input differences in v3 and sought biases in v0⊕v1⊕v2⊕v3
after iterating SipRound.

The best results were obtained by setting a 1-bit difference in the most sig-
nificant bit of v3. After three iterations of SipRound many biases are found. But
after four or more iterations we did not detect any bias after experimenting with
sets of 230 samples.

To attempt to distinguish our fast proposal SipHash-2-4 by exploiting such
statistical biases, one needs to find a bias on six rounds such that no input
difference lies in the most significant byte of the last word (as this encodes the
message length).

XOR-Linearized Characteristics. We considered an attacker who injects a
difference in the first message word processed by SipHash-2-4, and then that
guesses the difference in v3 every two SipRounds in order to cancel it with the
new message word processed. This ensures that at least a quarter of the internal
state is free of difference when entering a new absorption phase. Note that such
an omniscient attacker would require the leakage of v3 every two SipRounds,
and thus is not covered by our security claims in §3.

We used Leurent’s ARX toolkit [27] to verify that our characteristics contain
no obvious contradiction, and to obtain refined probability estimates. Table 5.1
shows the best characteristic we found: after two rounds there are 20 bit dif-
ferences in the internal state, with differences in all four words. The message
injection reduces this to 15 bit differences (with no difference in v3), and after
two more rounds there are 96 bit differences. The probability to follow this dif-
ferential characteristic is estimated to be 2−134. For comparison, Table 5.2 shows
the characteristic obtained with the same input difference, but for an attacker
who does not guess the difference in v3: the probability to follow four rounds of
the characteristic is estimated to be 2−159.

Better characteristics may exist. However we expect that finding (collections
of) characteristics that both have a high probability and are useful to attack
SipHash is extremely difficult. SipRound has as many additions as xors, so
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Table 5.1. For each SipRound, differences in v0, v1, v2, v3 before each half-round in the
xor-linear model. Every two rounds a message word is injected that cancels the differ-
ence in v3; the difference used is then xored to v0 after the two subsequent rounds. The
probability estimate is given for each round, with the cumulative value in parentheses.

Round Differences Prob.

1
���������������� ���������������� ���������������� ����������������

1 (1)
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linearization with respect to integer addition seems unlikely to give much better
characteristics than xor-linearization.

Vanishing Characteristics. A particularly useful class of differential charac-
teristics is that of vanishing characteristics: those start from a non-zero difference
and yield an internal state with no difference, that is, an internal collision. Van-
ishing characteristics obviously do not exist for any iteration of SipRound; one
has to consider characteristics for the function consisting of SipRound iterations
followed by v0⊕ = Δ, with an input difference Δ in v3.

No vanishing characteristic exists for one SipRound, as a non-zero difference
always propagates to v2. We ensured that no vanishing xor-linear characteristic
exists for iterations of two, three, or four SipRounds, by attempting to solve the
corresponding linear system. For sequences of two words, we ensured that no
sparse vanishing characteristic exists.

Other Attacks. We briefly examine the applicability of other attacks to attack
SipHash:

• Rotational attacks are differential attacks with respect to the rotation oper-
ator; see, e.g., [6, Section 4] and [23]. Due to the asymmetry in the initial
state—at most half of the initial state can be rotation-invariant—rotational
attacks are ineffective against SipHash.
• Cube attacks [26] exploit a low algebraic degree in the primitive attacked.
Due to the rapid growth of the degree in SipHash, as in other ARX primitives,
cube attacks are unlikely to succeed.
• Rebound attacks [28] are not known to be relevant for keyed primitives.
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Table 5.2. For each SipRound, differences in v0, v1, v2, v3 before each half-round in
the xor-linear model. Every two rounds a message with no difference is injected. The
probability estimate is given for each half-round, with the cumulative value in paren-
theses.

Round Differences Prob.
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Fixed Point. Any iteration of SipRound admits a trivial distinguisher: the
zero-to-zero fixed-point. This may make theoretical arguments based on the
“ideal permutation” assumption irrelevant. But exploiting this property to at-
tack SipHash seems very hard, for

1. Hitting the all-zero state, although easy to verify, is expected to be as hard
as hitting any other predefined state;

2. The ability to hit a predefined state implies the ability to recover the key,
that is, to completely break SipHash.

That is, the zero-to-zero fixed point cannot be a significant problem for SipHash,
for if it were, SipHash would have much bigger problems.

6 Performance

Lower Bounds for a 64-Bit Implementation. SipRound involves 14 64-bit
operations, so SipHash-2-4 involves 30 64-bit operations for each 8 bytes of input,
i.e., 3.75 operations per byte. A CPU core with 2 64-bit arithmetic units needs
at least 1.875 cycles per byte for SipHash-2-4, and a CPU core with 3 64-bit
arithmetic units needs at least 1.25 cycles per byte for SipHash-2-4. A CPU core
with 4 64-bit arithmetic units needs at least 1 cycle per byte, since SipRound
does not always have 4 operations to perform in parallel.

The cost of finalization cannot be ignored for short messages. For example, for
an input of length between 16 and 23 bytes, a CPU core with 3 64-bit arithmetic
units needs at least 49 cycles for SipHash-2-4.
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Table 6.1. Speed measurements of SipHash-2-4 for short messages

Data byte length 8 16 24 32 40 48 56 64

“bulldozer”
Cycles 124 141 156 171 188 203 218 234

Cycles per byte 15.50 8.81 6.50 5.34 4.70 4.23 3.89 3.66

“ishmael”
Cycles 123 134 145 158 170 182 192 204

Cycles per byte 15.38 8.38 6.00 4.94 4.25 3.79 3.43 3.19

“latour”
Cycles 135 144 162 171 189 207 216 225

Cycles per byte 16.88 10.29 6.75 5.34 4.50 4.31 3.86 3.52

Lower Bounds for a 32-Bit Implementation. 32-bit architectures are com-
mon in embedded systems, with for example processors of the ARM11 fam-
ily implementing the ARMv6 architecture. To estimate SipHash’s efficiency on
ARM11, we can directly adapt the analysis of Skein’s performance by Schwabe,
Yang, and Yang [31, §7], which observes that six 32-bit instructions are sufficient
to perform a MIX transform. Since SipRound consists of four MIX transforms—
the 32-bit rotate is transparent—we obtain 24 instructions per SipRound, that
is, a lower bound of 3c cycles per byte for SipHash on long messages. This is
6 cycles per byte for SipHash-2-4. An input of length between 16 and 23 bytes
needs at least 240 cycles.

Implementation Results. We wrote a portable C implementation of SipHash,
and ran preliminary benchmarks on three machines:

• “bulldozer”, a Linux desktop equipped with a processor from AMD’s last
generation (FX-8150, 4× 3600MHz, “Zambezi” core), using gcc 4.5.2;
• “ishmael”, a Linux laptop equipped with a processor from AMD’s previ-
ous generation (Athlon II Neo Mobile, 1700MHz, “Geneva” core), using gcc

4.6.3.
• “latour”, a Linux desktop equipped with an older Intel processor (Core 2
Quad Q6600, 2394MHz, “Kentsfield” core), using gcc 4.4.3.

We used compiler options -O3 -fomit-frame-pointer -funroll-loops.
On “bulldozer”, our C implementation of SipHash-2-4 processes long mes-

sages at a speed of 1.96 cycles per byte. On “ishmael”, SipHash-2-4 reaches 1.44
cycles per byte; this is due to the Athlon II’s K10 microarchitecture having three
ALUs, against only two for the more recent Bulldozer. Similar comments apply
to “latour”. These speeds are close to the lower bounds reported in §6, with
respective gaps of approximately 0.10 and 0.20 cycles per byte.

Table 6.1 reports speeds on short messages. For comparison, the fastest SHA-3
finalist on “bulldozer” (BLAKE-512) takes approximately 1072 cycles to process
8 bytes, and 1280 cycles to process 64 bytes.

Figure 6.1 compares our implementation of SipHash on “bulldozer” with the
optimized C++ and C implementations of CityHash (version CityHash64) and
SpookyHash (version ShortHash) on short messages, as well as with OpenSSL’s
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MD5 implementation. Similar relative performance is observed on the other ma-
chines considered.

One can see from these tables that SipHash-2-4 is extremely fast, and com-
petitive with non-cryptographic hashes. For example, hashing 16 bytes takes 141
Bulldozer cycles with SipHash-2-4, against 82 and 126 for CityHash and Spooky-
Hash, and 600 for MD5. Our conservative proposal SipHash-4-8 is still twice as
fast as MD5.

Fig. 6.1. Performance of SipHash-2-4 compared to non-cryptographic hash functions
CityHash and SpookyHash and to MD5 on “bulldozer” (AMD FX-8150), for messages
of 1, 2, . . . , 128 bytes. Curves on the right, from top to bottom, are MD5, SipHash,
SpookyHash, and CityHash.

Automated Benchmarks. After the initial publication of SipHash, third-party
applications were written in various programming languages, including C, C#,
Javascript, Ruby, etc. In particular, Samuel Neves wrote optimized C implemen-
tations of SipHash compliant with the crypto auth interface of the SUPERCOP
benchmarking software. These implementations (little, mmx, sse2-1, sse41)
as well as our reference implementation (ref le) were added to SUPERCOP
and benchmarked on various machines. A subset of the results are reported in
Table 6.2.

Hardware Efficiency. ASICs can integrate SipHash with various degrees of
area/throughput tradeoffs, with the following as extreme choices:

• Compact architecture with a circuit for a half-SipRound only, that is,
two 64-bit full adders, 128 xors, and two rotation selectors. For SipHash-
c-d this corresponds a latency of c/4 cycles per byte plus 2d cycles for the
finalization.
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Table 6.2. Performance of SipHash-2-4 on processors based on the amd64 64-bit ar-
chitecture, in cycles per byte

Processor Microarchitecture (core) Long 64 8

AMD FX-8120 Bulldozer (Zambezi) 1.95 3.75 16.25
AMD E-450 Bobcat (Ontario) 2.03 4.88 22.88
AMD A8-3850 K10 (Llano) 1.44 3.61 26.50
AMD Athlon 64 X2 K8 (Windsor) 1.50 2.91 11.12
Intel Core i3-2310M Sandy Bridge (206a7) 2.98 6.12 20.50
Intel Atom N435 Bonnell (Pineview) 2.19 4.50 20.00
Intel Xeon E5620 Nehalem (Westmere-EP) 1.63 2.81 11.50
Intel Core 2 Duo E8400 Core (Wolfdale) 1.69 3.38 13.50
VIA Nano U3500 Isaiah 2.38 4.53 17.50

• High-speed architecture with a circuit for e = max(c, d) rounds, that is,
4e 64-bit full adders and 256e xors. For SipHash-c-d this corresponds to a
latency of 1/8 cycle per byte plus one cycle for finalization.

Both architectures require 256 D-flip-flops to store the internal state, plus 64 for
the message blocks. For a technology with 8 gate-equivalents (GE) per full adder,
3 per xor, and 7 per D-flip-flop, this is a total of approximately 3700GE for the
compact architecture of SipHash-2-4, and 13500GE for the high-speed architec-
ture. With the compact architecture a 20-byte message is hashed by SipHash-2-4
in 20 cycles, against 4 cycles with the high-speed architecture. An architecture
implementing c = 2 rounds of SipHash-2-4 would take approximately 7900GE
to achieve a latency of 1/8 cycles per byte plus two cycles for finalization, thus
5 cycles to process 20 bytes.

7 Application: Defense against Hash Flooding

We propose that hash tables switch to SipHash as a hash function. On startup a
program reads a secret SipHash key from the operating system’s cryptographic
random-number generator; the program then uses SipHash for all of its hash
tables. This section explains the security benefits of SipHash in this context.

The small state of SipHash also allows each hash table to have its own key
with negligible space overhead, if that is more convenient. Any attacks must
then be carried out separately for each hash table.

Review of Hash Tables. Storing n strings in a linked list usually takes a
total of Θ(n2) operations, and retrieving one of the n strings usually takes Θ(n)
operations. This can be a crippling performance problem when n is large.

Hash tables are advertised as providing much better performance. The sim-
plest type of hash table contains � separate linked lists L[0], L[1], . . . , L[� − 1]
and stores each string m inside the linked list L[H(m) mod �], where H is a hash
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function and � is a power of 2. Each linked list then has, on average, only n/�
strings. Normally this improves performance by a factor close to n if � is chosen
to be on the same scale as n: storing n strings usually takes only Θ(n) operations
and retrieving a string usually takes Θ(1) operations.

There are other data structures that guarantee, e.g., O(n lg n) operations to
store n strings and O(lg n) operations to retrieve one string. These data struc-
tures avoid all of the security problems discussed below. However, hash tables
are perceived as being simpler and faster, and as a result are used pervasively
throughout current programming languages, libraries, and applications.

Review of Hash Flooding. Hash flooding is a denial-of-service attack against
hash tables. The attacker provides n strings m that have the same hash value
H(m), or at least the same H(m) mod �. The hash-table performance then de-
teriorates to the performance of one linked list.

The name “hash flooding” for this attack appeared in 1999, in the source
code for the first release of the dnscache software from the second author of this
paper:

if (++loop > 100) return 0; /* to protect against hash flooding */

This line of code protects dnscache against the attack by limiting each linked
list to 100 entries. However, this is obviously not a general-purpose solution to
hash flooding. Caches can afford to throw away unusual types of data, but most
applications need to store all incoming data.

Crosby and Wallach reintroduced the same attack in 2003 under the name
“algorithmic complexity attack” [13] and explored its applicability to the Squid
web cache, the Perl programming language, etc. Hash flooding made headlines
again in December 2011, when Klink and Wälde [24] demonstrated its continued
applicability to several commonly used web applications. For example, Klink and
Wälde reported 500KB of carefully chosen POST data occupying a PHP5 server
for a full minute of CPU time.

Advanced Hash Flooding. Crosby and Wallach recommended replacing pub-
lic functionsH with secret functions, specifically universal hash functions, specif-
ically the hash function H(m0,m1, . . .) = m0 · k0 +m1 · k1 + · · · using a secret
key (k0, k1, . . .). The idea is that an attacker has no way to guess which strings
will collide.

We question the security of this approach. Consider, for example, a hash
table containing one string m, where m is known to the attacker. Looking up
another string m′ will, with standard implementations, take longer if H(m′) ≡
H(m) (mod �) than if H(m′) �≡ H(m) (mod �). This timing information will
often be visible to an attacker, and can be amplified beyond any level of noise
if the application allows the attacker to repeatedly query m′. By guessing �
choices of strings m′ �= m the attacker finds one with H(m′) ≡ H(m) (mod �).
The linearity of the Crosby–Wallach choice of H then implies that adding any
multiple of m′ − m to m will produce another colliding string. With twice as
many guesses the attacker finds an independent string m′′ with H(m′′) ≡ H(m)
(mod �); then adding any combination of multiples of m′ − m and m′′ − m
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to m will produce even more collisions. With a moderate number of guesses
the attacker finds enough information to solve for (k0 mod �, k1 mod �, . . .) by
Gaussian elimination, and easily computes any number of strings with the same
hash value.

One can blame the hash-table implementation for leaking information through
timing; but it is not easy to build an efficient constant-time hash table. Even
worse, typical languages and libraries allow applications to see all hash-table
entries in order of hash value, and applications often expose this information to
attackers. One could imagine changing languages and libraries to sort hash-table
entries before enumerating them, but this would draw objections from applica-
tions that need the beginning of the enumeration to start quickly. One could also
imagine changing applications to sort hash-table entries before exposing them
to attackers, but ensuring this would require reviewing code in a huge number
of applications.

We comment that many of the hash-flooding defenses proposed since De-
cember 2011 are vulnerable to the same attack. The most common public hash
functions are of the form m0 · k0 + m1 · k1 + · · · where k0, k1, . . . are public,
and many of the proposed defenses simply add some entropy to k0, k1, . . .; but
the attack works no matter how k0, k1, . . . are chosen. Many more of the pro-
posed defenses are minor variations of this linear pattern and are broken by easy
variants of the same attack.

We do not claim novelty for observing how much damage a single equation
H(m′) ≡ H(m) (mod �) does to the unpredictability of this type of hash func-
tion; see, e.g., the attacks in [9] and [19] against related MACs. However, the
fact that hash tables leak such equations through side channels does not seem
to be widely appreciated.

Stopping Advanced Hash Flooding. The worst possible exposure of hash-
table indices would simply show the attacker H(m) mod � for any attacker-
selected string m. We advocate protecting against this maximum possible expo-
sure, so that applications do not have to worry about how much exposure they
actually provide. The attacker’s goal, given this exposure, is to find many strings
m having a single value H(m) mod �.

We propose choosing H to be a cryptographically strong PRF. If H is a strong
PRF then the truncation H mod � is also a strong PRF (recall that � is a power
of 2), and therefore a strong MAC: even after seeing H(m) mod � for selected
strings m, the attacker cannot predict H(m) mod � for any other string m. The
strength of H as a PRF implies the same unpredictability even if the attacker
is given hash values H(m), rather than just hash-table indices H(m) mod �.
Achieving this level of unpredictability does not appear to be significantly easier
than achieving the full strong-PRF property.

Typical hash-table applications hash a large number of short strings, so the
performance of H on short inputs is critical. We therefore propose choosing
SipHash as H: we believe that SipHash is a strong PRF, and it provides excellent
performance on short inputs. There are previous hash functions with competitive
performance, and there are previous functions that have been proposed and



504 J.-P. Aumasson and D.J. Bernstein

evaluated for the same security standards, but as far as we know SipHash is the
first function to have both of these features.

Of course, the attacker’s inability to predict new hash values does not stop
the attacker from exploiting old hash values. No matter how strong H is, the
attacker will find two colliding strings after (on average) about

√
� guesses, and

then further strings with the same hash value for (on average) � guesses per
collision. However, finding n colliding strings in this way requires the attacker
to communicate about n� ≈ n2 strings, so n—the CPU amplification factor
of the denial-of-service attack—is limited to the square root of the volume of
attacker communication. For comparison, weak secret hash functions and (weak
or strong) public hash functions allow n to grow linearly with the volume of
attacker communication. A strong secret hash function thus greatly reduces the
damage caused by the attack.

The Python Hash Function. Versions 2.7.3 and 3.2.3 of the Python program-
ming language (released in April 2012) introduced an option -R with the goal of
protecting against hash flooding. According to the Python manual, this option
“[turns] on ‘hash randomization’, so that the hash() values of str, bytes and date-
time objects are ‘salted’ with an unpredictable pseudo-random value. . . . This
is intended to provide protection against a denial of service caused by carefully-
chosen inputs . . . ”. It is therefore expected that outputs of this hash function are
unpredictable to parties who were not given the secret key (the salt); obviously,
if this key is known, outputs are no longer unpredictable.

We point out that the keyed hashing introduced in Python 2.7.3 and 3.2.3
does not behave as an unpredictable function: the 128-bit key can be recovered
efficiently given only two outputs of the keyed hash. The internal state contains
only 64 bits, so multicollisions can be found efficiently with a meet-in-the-middle
strategy once the key is known.

A proof-of-concept Python script is given in Appendix B. We verified our
attack on Python 2.7.3 and 3.2.3, in each case successfully recovering the per-
process key.
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A Test Values

This appendix shows intermediate values of SipHash-2-4 hashing the 15-byte
string 000102· · · 0c0d0e with the 16-byte key 000102· · · 0d0e0f.

Initialization little-endian reads the key as

k0 = 0706050403020100

k1 = 0f0e0d0c0b0a0908

The key is then xored to the four constants to produces the following initial state
(v0 to v3, left to right):

7469686173716475 6b617f6d656e6665 6b7f62616d677361 7b6b696e727e6c7b

The first message block 0706050403020100 is xored to v3 to give

7469686173716475 6b617f6d656e6665 6b7f62616d677361 7c6d6c6a717c6d7b

and after two SipRounds the internal state is:

4d07749cdd0858e0 0d52f6f62a4f59a4 634cb3577b01fd3d a5224d6f55c7d9c8

Xoring the first message block to v0 concludes the compression phase:

4a017198de0a59e0 0d52f6f62a4f59a4 634cb3577b01fd3d a5224d6f55c7d9c8

The second and last block is the last seven message bytes followed by the
message’s length, that is, 0f0e0d0c0b0a0908. After xoring this block to v3, doing
two SipRounds, xoring it to v0 and xoring 00000000000000ff to v2, the internal
state is

3c85b3ab6f55be51 414fc3fb98efe374 ccf13ea527b9f442 5293f5da84008f82

After the four iterations of SipRound, the internal state is

f6bcd53893fecff1 54b9964c7ea0d937 1b38329c099bb55a 1814bb89ad7be679

and the four words are xored together to return a129ca6149be45e5.

B Computing the Key of the Python Hash Function

The Python script below can be used to compute the key used in the function
hash() of a Python process. An example of usage is

$ python3 .2 -R poc.py

128 candidate solutions

verified solution: 58 df0aca50e7f48b 141 f57f820cbfefe

verified solution: d8df0aca50e7f48b 941 f57f820cbfefe
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Note the equivalent keys, and the -R option.

solutions = []

mask = 0xffffffffffffffff

def bytes_hash( p, prefix , suffix ):

if len(p) == 0: return 0

x = prefix ^ (ord( p[0] )<<7)

for i in range( len(p) ):

x = ( ( x * 1000003 ) ^ ord(p[i]) ) & mask

x ^= len(p) ^ suffix

if x == -1: x = -2

return x

def solvebit( h1 , h2 , prefix , bits ):

f1 = 1000003

f2 = f1*f1

target = h1^h2^3

if bits == 64:

if ((f1*prefix )^(f2*prefix )^ target) & mask: return

suffix = h1^1^(f1*prefix)

suffix &= mask

solutions.append( (prefix ,suffix) )

else:

if ((f1*prefix )^(f2*prefix )^ target) & ((1<<bits )-1):

return

solvebit(h1,h2,prefix ,bits + 1)

solvebit(h1,h2,prefix + (1 << bits),bits + 1)

pass

h1 = hash("\0") & mask

h2 = hash("\0\0") & mask

h3 = hash("python") & mask

solvebit( h1, h2, 0, 0 )

print("%d�candidate�solutions" % (len(solutions )))

for s in solutions:

if bytes_hash("python",s[0],s[1]) == hash("python") & mask:

ok=1

for i in range (10)[1:]:

if bytes_hash("\2"*i,s[0],s[1]) != hash("\2"*i) & mask:

ok=0

if ok: print("solution:�%016x�%016x" % (s[0],s[1]))
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Abstract. The contribution of the paper is two-fold. First, we design
a novel permutation-based hash mode of operation FP, and analyze its
security. We show that any n-bit hash function that uses the FP mode
is indifferentiable from a random oracle up to 2n/2 queries (up to a
constant factor), if the underlying 2n-bit permutation is free from any
structural weaknesses. Based on our further analysis and experiments, we
conjecture that the FP mode is resistant to all non-trivial generic attacks
with work less than the brute force, mainly due to its large internal state.
We compare the FP mode with other permutation-based hash modes.

To put this into perspective, we propose a concrete hash function
SAMOSA using the new mode and the P -permutations of the SHA-3
finalist Grøstl. Based on our analysis we claim that the SAMOSA family
cannot be attacked with work significantly less than the brute force. We
also provide hardware implementation (FPGA) results for SAMOSA to
compare it with the SHA-3 finalists. In our implementations, SAMOSA
family consistently beats Grøstl, Blake and Skein in the throughput to
area ratio. With more efficient underlying permutation, it seems possible
to design a hash function based on the FP mode that can achieve even
higher performances.

1 Introduction

Hash mode of operation. Iterative hash functions are generally built from
two components: (1) a basic primitive C with finite domain and range, and (2)
an iterative mode of operation H to extend the domain of the hash function;
the symbol HC denotes the hash function based on the mode H which invokes
C iteratively to compute the hash digest. Therefore, to design an efficient hash
function one has to be innovative with both the mode H and the basic primitive
C. Merkle-Damg̊ard mode used with a secure block cipher was the most attrac-
tive choice to build a practical hash function; some examples are SHA-family [22],
and MD5 [26]. The security of a hash function based on the Merkle-Damg̊ard
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mode crucially relies on the fact that C is collision and pre-image resistant. The
compression function C achieves these properties when it is constructed using
a secure block cipher [8]. However, several security issues changed this popular
design paradigm in the last decade. The first concern is that the security of
Merkle-Damg̊ard mode of operation – irrespective of the strength of the primi-
tive C – came under a host of generic attacks; the length-extension attack [10],
expandable message attack [18], multi-collision attacks [15] and herding attack
[9,17] are some of them. Several strategies were discovered to thwart the above
attacks. Lucks came up with the proposal of making the output of the primitive
C at least twice as large as the hash output; this proposal is outstanding since,
apart from rescuing the security of the Merkle-Damg̊ard mode, it is also simple
and easy to implement. Another interesting proposal was HAIFA that includes
a counter injected into the compression function C to rule out many of the
aforementioned attacks. Using the results of [8], it is easy to see that the Wide
pipe and the HAIFA constructions are secure when the underlying primitive is
a secure block cipher.

Despite the aforementioned foolproof design strategies, it turns out that us-
ing a block cipher as the basic primitive of a hash function may not be the best
alternative, for several reasons. (1) A hash function does not need both the en-
cryption and the decryption function of a block cipher; one of them could be
avoided. (2) The key schedule of a block cipher often turns out to be weak [3]. (3)
Furthermore, the key schedule weaknesses of a block cipher render invalid the
very common ideal cipher assumption under which the security of block-cipher-
based hash functions is usually based; note that an ideal cipher assumption is
stronger than an ideal permutation assumption since, in the former case, an
extra assumption is that a huge number of ideal permutations need to be in-
dependent too. (3) The amount of memory needed to implement a wide block
cipher is larger due to the ‘extra’ key schedule than needed for an equally sized
permutation.

Permutation-based hash functions. The popularity of permutation-based
hash functions has been on the rise since the discovery of weaknesses on the
Merkle-Damg̊ard mode. Sponge [4], Grøstl [14], JH [28], Luffa [11] and the Para-
zoa family [1] are some of them. We note that 9 out of 14 semi-finalist algorithms
(3 out of 5 finalist algorithms) of the NIST SHA-3 hash function competition
are based on permutations. Other notable example is MD6 [27]. In Table 1, we
compare generic security and performance (measured in terms of rate) of various
well known permutation-based hash modes.

Our contribution
FP mode. Our first contribution is to give a proposal for a new hash mode of
operation FP based on a single wide pipe permutation (see Fig. 1). The FP mode
is derived from the FWP (or Fast-wide pipe) mode designed by Nandi and Paul
at Indocrypt 2010 [23]. The difference between the FWP and the FP mode is
simple: the FP mode is obtained when the underlying hard-to-invert function
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Table 1. Indifferentiability bounds of permutation-based hash modes, where the hash
size is n-bit in each case. FPExt1 is a natural variant of FP with parameters shown in
the row. The ε is a small fraction due to the preimage attack on JH presented in [7].

Mode of Mesg-blk Size of π Rate Indiff. bound # of independent
operation (�) (a) (�/a) lower upper permutations

Hamsi [16] n/8 2n 0.07 n/2 n 1

Luffa [6] n/3 n 0.33 n/4 n 3

Sponge [5] n 3n 0.33 n n 1

Sponge [5] n 2n 0.5 n/2 n/2 1

JH [21] n 2n 0.5 n/2 n(1− ε) 1

Grøstl [14] n 2n 0.5 n/2 n 2

FP n 2n 0.5 n/2 n 1

MD6 [12] 6n 8n 0.75 n n 1

FPExt1 6n 7n 0.85 n/2 n 1

mk

π π π π

...m1 m2

IV ′

IV

hash

Fig. 1. Diagram of the FP mode. The π is a permutation; all wires are n bits. See
Fig. 3(a) for the description.

f : {0, 1}m+n → {0, 1}2n of the FWP mode is replaced by an easy-to-invert
permutation π : {0, 1}2n → {0, 1}2n.1 There are a number of practical reasons for
switching from FWP to FP: (1) Easy-to-invert permutations are usually efficient,
and such permutations with strong cryptographic properties are abundant in
the literature (e.g. JH, Grøstl and Keccak permutations); (2) hard-to-invert
functions either turn out to be weak [19], or they are inefficient.

On the other hand, easy-to-invert permutations – even though they are faster
– have some drawbacks; the most crucial of them is that they allow the attacker
to use reverse queries in addition to forward queries, and, as a result, make the
adversary inherently more powerful. Therefore, a good deal of caution is required
to design a hash mode of operation that uses permutations. We show that the FP
mode based on an ideal permutation is indifferentiable from a random oracle up
to approximately 2n/2 queries (forward and reverse together); this means that
the FP mode is secure against all generic attacks – including (multi) collision,
2nd preimage, herding attacks – up to approximately 2n/2 queries, under the
assumption that the underlying permutation π is structurally strong. Moving
further, a large number of experiments show that the indifferentiability security

1 FP is the shorthand for ‘FWP with a permutation’.
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of the FPmode could be improved optimally to n bits. Another important feature
of our work is that the security guarantee is based on only one assumption – like
the Sponge and JH – that the underlying permutation should not display any
structural weaknesses; note that the security of many permutation-based hash
functions (e.g. Grøstl and Luffa) requires additional assumptions such as inde-
pendence of several ideal permutations. In Fig. 1, we compare the FP mode and
a natural extension of it FPExt1 with other permutation-based hash functions. It
is noteworthy that the FP mode exhibits the best Rate-Security trade-off when
the internal permutation size is fixed.

Design and hardware implementation of the hash function SAMOSA. Our sec-
ond contribution is establishing the practical usefulness of the FP mode. As an
example, we design a concrete hash function family SAMOSA based on the FP
mode, where the internal primitives are the P -permutations of the Grøstl hash
function.2 We provide security analysis of SAMOSA, demonstrating its resistance
against any known practical attacks.

As demonstrated by the AES and the SHA-3 competitions, the security of a
cryptographic algorithm alone is not sufficient to make it stand out from among
multiple candidates competing to become a new American or international stan-
dard. Excellent performance in software and hardware is necessary to make a
cryptographic protocol usable across platforms and commercial products. Assur-
ing good performance in hardware is typically more challenging, since hardware
design requires involved and specialized training, and, as it turns out, that the
majority of designer groups lack experience and expertise in that area.

In case of SAMOSA, the algorithm design and hardware evaluation have been
performed side by side, leading to full understanding of all design decisions and
their influence on hardware efficiency. In this paper, we present efficient high-
speed architecture of SAMOSA, and show that this architecture outperforms the
best known architecture of Grøstl in terms of the throughput to area ratio by
a factor ranging between 24 and 51%. These results have been demonstrated
using two representative FPGA families from two major vendors, Xilinx and
Altera. As shown in [13], these results are also very likely to carry to any fu-
ture implementations based on ASICs (Application Specific Integrated Circuits).
Additionally, we demonstrate that SAMOSA consistently ranks above BLAKE,
Skein and Grøstl in our FPGA implementations. Although it still loses to Kec-
cak and JH, nevertheless, a relative distance to these algorithms substantially
decreases compared to Grøstl, despite using the same underlying operations.
This performance gain is accomplished without any known degradation of the
security strength.

Additionally, SAMOSA’s dependence on many AES operations makes it suit-
able for software implementations that use general-purpose processors with AES
instruction sets, such asAES-NI. Finally, in both software and hardware,SAMOSA
seems to be an attractive choice for applications where both confidentiality and
authentication are required to share AES components. One such example is IPSec,

2 SAMOSA is the name of an Indian food.
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protocol used for establishing Virtual Private Networks, which is one of the fun-
damental building blocks of secure electronic transactions over the Internet.

Although SAMOSA comes too late for the current SHA-3 competition, it still
has a chance to contribute to better understanding of the security and perfor-
mance bottlenecks of modern hash functions, and to find niche platforms and
applications in which it may outperform the existing and upcoming standards.

Notation and Convention. This part has been moved to the full version of
the paper [25].

Organization. The remainder of the paper is organized as follows. In Sect. 2 we
define the new hash mode FP. In Sect. 4 we present our main indifferentiability
theorem for the FP mode, and give a sketch for the proof. The proof is then
elaborated in Sects. 5, 6 and 7. In Sect. 8, we propose a new concrete hash
function named SAMOSA, and provide its security analysis. Finally, in Sect. 9,
we give hardware implementation results for SAMOSA.

2 Definition of the FP Mode

Suppose n ≥ 1. Let π : {0, 1}2n → {0, 1}2n be the 2n-bit permutation used by
the FP mode. The hash function FPπ is a mapping from {0, 1}∗ to {0, 1}n. The
diagram and description of the FP transform are given in Figs. 1 and 3(a), where
π is modeled as an ideal permutation. Below we define the padding function
padn(·).
Padding function padn(·). It is an injective mapping from {0, 1}∗ to ∪i≥1{0, 1}ni,
where the messageM ∈ {0, 1}∗ is mapped into a string padn(M) = m1 · · · mk−1

mk, such that |mi| = n for 1 ≤ i ≤ k. The function padn(M) =M ||1||0t satisfies
the above properties (t is the least non-negative integer such that |M |+ 1+ t =

0 mod n). Note that k =
⌈
|M|+1

n

⌉
.

In addition to the injectivity of padn(·), we will also require that there exists a
function dePadn(·) that can efficiently computeM , given padn(M). Formally, the
function dePadn : ∪i≥1 {0, 1}in → {⊥} ∪ {0, 1}∗ computes dePadn(padn(M)) =
M , for all M ∈ {0, 1}∗, and otherwise dePadn(·) returns ⊥. The padding rule
described above satisfies this property also.

3 Preliminaries: Introduction to the Indifferentiability
Framework

Definition 1 (Indifferentiability framework). [20,10] An interactive Tur-
ing machine (ITM) T with oracle access to an ideal primitive F is said to be
(tA, tS , σ, ε)-indifferentiable from an ideal primitive G if there exists a simulator
S such that, for any distinguisher A, the following equation is satisfied:

AdvT,F
G,S (A)

def
=

∣∣∣Pr[AT,F ⇒ 1]− Pr[AG,S ⇒ 1]
∣∣∣ ≤ ε.
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T SF

A

G
System 1 System 2

(a)

S/S−1

π/π−1

FP1 RO

G0 G1 G2

FP

A A A
≡ �≡

S1/S1−1π/π−1

(b)

Fig. 2. (a) Indifferentiability framework defined in Def. 1; (b) Schematic diagram for
the security games used in the indifferentiability framework for FP (see Sect. 5). The
arrows show the directions in which the queries are submitted. System 1 = (T,F) =
G0 = (FP, π, π−1), and System 2 = (G,S) = G2 = (RO,S,S−1).

The simulator S is an ITM which has oracle access to G and runs in time at
most tS . The distinguisher A runs in time at most tA. The number of queries
used by A is at most σ. Here ε is a negligible function in the security parameter
of T . See Fig. 2(a) for a pictorial representation.

Due to page limitation, discussion on the indifferentiability framework has been
moved to the full version of the paper [25].

4 Main Theorem: n/2-bit Indifferentiability Security
of the FP Mode

Let RO : {0, 1}∗ → {0, 1}n and π : {0, 1}2n → {0, 1}2n are a random oracle and
an ideal permutation. Our indifferentiability framework uses three systems G0
= (FP, π, π−1), G1 = (FP1, S1, S1−1), and G2 = (RO, S, S−1) (see Fig. 2(b)).
The correspondence between the entities of Figs. 2(a) and 2(b) are as follows:
G = RO, T = FP and F = (π, π−1). The description of FP1, S, S−1, S1, and
S1−1 will be provided in Sect. 5. Now we state our main theorem using Def. 1.

Theorem 1 (Main Theorem). The hash function FPπ (or FPπ,π−1

) is (tA, tS ,
σ, ε)-indifferentiable from RO, where tA = ∞, tS = O

(
σ5
)
, and σ ≤ K2n/2,

where K is a fixed constant derived from ε.

In the next few sections, we will prove Theorem 1 by breaking it into several
components. First, we briefly describe what the theorem means: it says that no
adversary with unbounded running time can mount a nontrivial generic attack
on the hash function FPπ using at most K2n/2 queries. The parameter K is an
increasing function in ε, and is constant for all n > 0. To reduce the notation
complexity, we shall derive the indifferentiability bound assuming ε = 0.5 for
which, we shall derive, K = 1/

√
56.

Outline of the Proof. Proof of Theorem 1 consists of the following two com-
ponents (see Def. 1): (1) Construction of a simulator S = (S, S−1) with the
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worst-case running time tS = O
(
σ5
)
. This is done in Sect. 5. (2) Showing that,

for any adversary A with unbounded running time,∣∣∣Pr[AG0 ⇒ 1
]
− Pr

[
AG2 ⇒ 1

]∣∣∣ ≤ 28σ2

2n
, (1)

where the systems G0 = (FP, π, π−1) and G2 = (RO, S, S−1).3 Proof of (1) is,
again, composed of proofs of the following three (in)equations:

– In Sect. 5, we will concretely define the simulator pair (S, S−1) and a new
system G1. Using them we will show

Pr
[
AG0 ⇒ 1

]
= Pr

[
AG1 ⇒ 1

]
. (2)

– In Sect. 6, we will appropriately define a set of events BADi and GOODi in
the system G1, and will establish that∣∣∣Pr[AG1 ⇒ 1

]
− Pr

[
AG2 ⇒ 1

]∣∣∣ ≤ σ∑
i=1

Pr
[
BADi | GOODi−1

]
. (3)

– In Sect. 7, we complete proof of (1) by establishing that

σ∑
i=1

Pr
[
BADi | GOODi−1

]
≤ 28σ2

2n
(4)

where
σ∑

i=1

Pr
[
BADi | GOODi−1

]
≤ ε = 0.5.

The next three sections are devoted to proving (2), (3), and (4).

5 Proof of (2)

This section has two parts.

– In the first part – Sects. 5.1, 5.2, and 5.3 – we define the simulator pair
(S, S−1) of the indifferentiability framework for FP. This completes the de-
scription of systems G0 and G2 that are partially specified in Sect. 4. Then
we describe a new system G1.

– In the second part – Proposition 1 – using the definitions of G0 and G1, we
prove (2).

In addition, using the definitions of G1 and G2, in Sect. 6, we will prove (3).
The pseudocode for all the systems is given in Figs. 3 and 5. In the remainder

of the section we explain the systems G0, G1, and G2 in detail with special
emphasis on their usefulness in proving our main theorem.

3 Setting 28σ2

2n
≤ ε = 1/2, we get σ ≤ 1√

56
2n/2.
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5.1 Data Structures

G0, G1, and G2 use several data structures. Due to limited space the definitions
of oracle, query, round, global (and local) variable, reconstruction graphs Tπ
and Ts (built by G1 and G2 resp.), reconstructible message, and view have been
moved to the full version of the paper [25].

5.2 Description of the Main Systems G0 and G2

We recall from Sect. 4 that our main task, informally, is to estimate how difficult
it is for an arbitrary adversary A to distinguish between the systems G0 and
G2. Essentially, we need to design a simulator pair (S, S−1) for G2, such that it
is ‘hard’ to tell the systems apart. Although, G0 and G2 are partially defined
in Sect. 4, we give the complete description here. The pseudocode is given in
Fig. 3.

Description of G0. Following the definition provided in Sect. 2, the system
G0 implements the FP hash function using the ideal permutations π and π−1.

Description of G2. The random oracle RO defined in Sect. 4 is implemented
through lazy sampling. The only remaining part is to construct the simulator
pair (S, S−1). Our design strategy for (S, S−1) is fairly straightforward and sim-
ple. Before going into the details, we first provide a high level intuition.

Intuition behind the design of simulator pair (S, S−1). The purpose of the sim-
ulator pair (S, S−1) is two-fold: (1) to output values that are indistinguishable
from the output from the ideal permutation (π, π−1), and (2) to respond in such
a way that FPπ(M) and RO(M) are identically distributed. It will easily follow
that as long as the simulator pair (S, S−1) is able to output values satisfying the
above conditions, no adversary can distinguish between G0 and G2.

In order to serve the above purposes, the primary requirement is that the
simulator S, for a distinct input x, be assigned a ‘random’ value such that the
distributions of S(x) and π(x) are close. Similarly, the simulator S−1 for a dis-
tinct input r should ensure that the random variables S−1(r) and π−1(r) follow
statistically close distributions.

Secondly, the simulator S maintains a reconstruction graph Ts for Ds; this
helps the simulator keep track of all ‘FP-mode-compatible’ messages (more for-
mally reconstructible messages for Ds) that can be formed using the s-queries
and responses. This is done by a special subroutine FullGraph. Informally, a re-
construction graph helps the simulator assess the power of the adversary, since
any adversary can construct the graph too. Intuitively, at the time of forma-
tion of a reconstructible message, the simulator needs to do some adjustment
in its database, so that the outputs from G0 and G2 ‘look’ the same to the ad-
versary, no matter what query she submits. The pictorial representation of the
reconstruction graph Ts is given in Fig. 4.

Given the current s-query x, the subroutine MessageRecon determines all the
new reconstructible messages M by searching through all the branches between
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FP(M)

01. If M ∈ Dom(Dl) then
return Dl[M ];

02. m1m2 . . .mk := padn(M);
03. y0 := IV , y′

0 := IV ′;
04. for (i := 1, 2, . . . k)

yiy
′
i := π(yi−1||mi)⊕(y′

i−1||0);
05. r := π(yk||y′

k);
06. Dl[M ] := r[n, 2n− 1];
07. return Dl[M ];

π(x)

11. If x /∈ Dom(Dπ)

then Dπ[x]
$← {0, 1}2n \Rng(Dπ);

12. return Dπ[x];

π−1(r)

21. If r /∈ Rng(Dπ)

then D−1
π [r]

$← {0, 1}2n \Dom(Dπ);
22. return D−1

π [r];

(a) System G0 = (FP, π, π−1). For all i, |mi| = |yi| = |y′
i| = |r/2| = n.

RO(M)

001. If M ∈ Dom(Dl) then
return Dl[M ];

002. Dl[M ]
$← {0, 1}n;

003. return Dl[M ];

S−1(r)

300. If ∃x1, x2 ∈ Dom(Ds)
if Ds[x1] = Ds[x2] = r

then return ⊥;
301. if r ∈ Rng(Ds) then return D−1

s [r];

302. if r /∈ Rng(Ds) then x
$← {0, 1}2n;

303. if x /∈ Dom(Ds) then Ds[x] := r;
304. return x;

S(x)

101. r
$← {0, 1}2n;

102. M := MessageRecon(x);
103. if |M| = 1 then

r[n, 2n− 1] := RO(M);
104. Ds[x] := r;
105. FullGraph;
106. return r;

MessageRecon(x)

201. M′ := FindBranch(x);
202. M := {dePad(X) | X ∈ M′};
203. return M;

(b) System G2 = (RO, S, S−1).

Fig. 3. The main systems G0 and G2

m2

y0y
′
0 = IV IV ′

ma

yay
′
a

y2y
′
2

m3

y3y
′
3

m1

y1y
′
1

Fig. 4.The reconstruction graph Ts (or Tπ) updated by FullGraph of G2 (or PartialGraph
of G1)
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the nodes IV IV ′ and x in the graph Ts. Then the simulator makes this crucial
adjustment: it assigns FPS(M) := RO(M). It is fairly intuitive that, if S and
π produce outputs according to statistically close distributions, then the distri-
butions of FPS(M) and FPπ(M) are also close. Since FPS(M) = RO(M), the
distributions of RO(M) and FPπ(M) are also close.

Detailed description of the simulator pair (S, S−1). This part has been moved to
the full version [25].

5.3 Description of the Intermediate System G1

The pseudocode is provided in Fig. 5. Detailed description will appear in the full
version [25].

Now we are well equipped to prove (2).

Proposition 1. For any distinguishing adversary A,

Pr
[
AG0 ⇒ 1

]
= Pr

[
AG1 ⇒ 1

]
.

Proof. From the description of S1 and S1−1, we observe that, for all x ∈ {0, 1}2n,
S1(x) = π(x) and S1−1(x) = π−1(x). Likewise, from the descriptions of FP1 and
FP, for all M ∈ {0, 1}∗, FP1(M) = FP(M).

6 Proof of (3)

This section is broadly divided into three parts. In the first two parts we con-
cretely define the Type0, Type1, Type2, Type3 and Type4 events of the system
G1 (see Fig. 5), based on whether the current π/π−1 is a fresh or an old query.
In the last part we prove (3), using the Type0-4 events.

6.1 Events Type0 and Type1: Current π/π−1-Query Is Fresh

Event Type0: Distance of Random Permutation from the Uniform.
Consider three different scenarios: when a fresh π-query is an s-query; when
a fresh π-query is the final π-query of a long query; when an s−1-query is a
fresh π−1-query. Type0 event occurs when, in each of the above scenarios, the
output of a fresh π/π−1-query is distinguishable from the uniform distribution
U [0, 22n − 1].

Event Type1: Collision on Tπ. Due to limited space in this version we only
provide the diagram for these events (Fig. 6). A discussion will be given in the
full version [25].
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FP1(M)

001. m1m2 · · ·mk−1mk := padn(M);
002. y0 := IV , y′

0 := IV ′;
003. for (i := 1, · · · , k) {
004. r := π(yi−1mi);
005. yiy

′
i := r ⊕ (y′

i−1||0);
006. if yi−1mi is fresh then

PartialGraph(yi−1mi, r);}
007. if Type3 then BAD := True ;
008. r := π(yky

′
k);

009. if Type0-b then BAD := True ;
010. if yky

′
k is fresh then
PartialGraph(yky

′
k, r);

011. Dl[M ] := r[n, 2n− 1];
012. return Dl[M ];

MessageRecon(x, Ts)

201. M′ := FindBranch(x);
202. M := {dePad(X) | X ∈ M′};
203. return M;

π(x)

301. if x /∈ Dom(Dπ) then

Dπ[x]
$← {0, 1}2n \ Rng(Dπ);

302. return Dπ [x];

π−1(r)

501. If r /∈ Rng(Dπ) then

D−1
π [r]

$← {0, 1}2n \Dom(Dπ);
502. return D−1

π [r];

S1(x)

100. If Type2 then BAD := True ;
101. r := π(x);

102. if Type0-a then BAD := True ;
103. M:=MessageRecon(x, Ts);
104. if |M| = 1 ∧M /∈ Dom(Dl) then

Dl[M ] := r[n, 2n− 1];
105. Ds[x] := r;
106. if x is fresh then PartialGraph(x, r);
107. return r;

S1−1(r)

601. if Type4 then BAD := True ;

602. x := π−1(r);

603. if Type0-c then BAD := True ;

604. if Type1-c then BAD := True ;
605. Ds[x] := r;
606. return x;

PartialGraph(x, r)

401. x
parse→ ycm; r

parse→ y∗y′;
402. C := CreateCoset(yc);
403. E := {(ycy′

c,m, yy′)|y := y∗ ⊕ y′
c, ycy

′
c ∈ C};

404. for ∀e ∈ E {
AddEdge(e);

if Type1-a∨Type1-b then BAD := True ;}

Fig. 5. System G1. |mi| = |m| = |yi| = |y′
i| = |yc| = |y′

c| = |y| = |y′| = |y∗| = |r/2| =
n, for all i.

6.2 Events Type2, 3 and 4: Current π/π−1-Query Is Old

Classification of Old Queries and the Branches of Tπ. Before we define
the Type2, 3 and 4 events, we first classify all the old query-response pairs for
the oracles π/π−1 stored in Dπ, according to its known and unknown parts. The
known part of a query-response pair is the part that is present in the view of the
system G1, or it can be derived from the view with probability 1; the unknown
part is not present in the view, and it cannot be derived from the view with
probability 1. We observe that there are six types of such a pair, and we denote
them by Q0, Q1, Q2, Q3, Q4 and Q5 in Fig. 7(a); the head and tail nodes in each
type denote the input and output, each 2n bits. Two-sided arrowhead indicates
that the corresponding input-output pair is generated from either a π-query or
a π−1-query. The red and green circles denote the unknown and known parts, n
bits each.
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Fresh Old Fresh

Old

==
Fresh

=

m

y′cyc

Node collision (n bits) Forward query collision (n bits)

y

y′ y′

yc y′c

y

(Type1-a) (Type1-b)

Reverse query collision (n bits)
(Type1-c)

Old

Fig. 6. Type1 events of G1. All arrows are n bits each. Red arrow denotes fresh n bits
of output from the ideal permutation π/π−1. The symbol “=” denotes n-bit equality.

In a similar way, the branches of Tπ can be classified into four types, as shown
in Fig 7(b).

Event Type2: Current s-query is π-query of a Previous Long Query.
Discussion on this event has been moved to the full version [25].

Event Type3: Current π-query of a red Branch is the Final Query for
the Current Long Query. Several types of red branch – (I), (II), and (III) –
are shown in Fig. 7(b)(I) to (III).

There are three types of Type3 event: (Type3-a) if the current long query M
with m1m2 · · ·mk = padn(M) forms a red branch of type (I).4 (Type3-b) if M
is a red branch of type (II), and if the most significant n bits of output can be
distinguished from the uniform distribution U [0, 2n− 1]. (Type3-c) if M is a red
branch of type (III).

Event Type4: Current s−1-query Input Matches Output of a π-query
of a Previous Long Query. The Type4 event occurs, if the current s−1-query
is equal to an old query of type Q1, Q2, Q3, Q4 or Q5.

6.3 Proof of (3)

With the help of the Type0 to 4 events described before, we are equipped to
prove (3). First, we fix a few definitions in order for (3) to make sense.

4 Observe that this case implies a node collision in Tπ, since the yky
′
k is the final π-

query for two distinct long queries, the current M and also an old one. Therefore,
if Type1 event did not occur in the previous rounds, this event is impossible in the
current round.
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Q0 Q1 Q2 Q3 Q4 Q5
(a) Q0, Q1, Q2, Q3, Q4, and Q5 denote six types of π/π−1-query and
response.

IV IV ′

Q1 Q2 Q3 Q4 Q5

Q0

Q0

Q0

IV IV ′

Q0

Q0

IV IV ′

Q3/Q4
Q0

Q0

Q0

Q0

IV IV ′

Q1/Q2/Q5

(I)
(II) (III) (IV)

y1y
′
1

yky
′
k yky

′
k

y1y
′
1

yky
′
k yky

′
k

y1y
′
1

(b) Several types of branch in Tπ. (I), (II) and (II) are called red branches.

Fig. 7. Several types of old π/π−1-queries and branches in Tπ

Events GOODi and BADi. BADi denotes the event when the variable BAD is
set during round i of G1, that is, when Type0, Type1, Type2, Type3 or Type4
event occurs. Let the symbol GOODi denote the event ¬

∨i
j=1 BADi. The symbol

GOOD0 denotes the event when no queries are submitted. From a high level, the
intuition behind the construction of the BADi event is straightforward: we will
show that if BADi does not occur, and if GOODi−1 did occur, then the views of
G1 and G2 (after i rounds) are identically distributed for any attacker A.

We move the entire proof, which is based on induction on the number of
rounds, to the full version [25].
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7 Proof of (4)

To prove (4), we need to compute the probability of occurrence of Type0, Type1,
Type2, Type3 and Type4 events described in the previous sections. Since we
assume

∑σ
i=1 Pr

[
BADi | GOODi−1

]
≤ ε = 1/2, GOODi ≥ 1/2 for all 0 ≤ i ≤ σ.

The Type1 events guarantee that GOODi−1 implies Tπ has i nodes after i− 1
rounds. We assume i ≤ 2n/2; this implies (2n − i) ≥ 1

22
n. Now from Fig. 6 we

obtain,

Pr
[
Type0i | GOODi−1

]
≤ 3/(22n − i) ≤ 1

2n
,

Pr
[
Type1i | GOODi−1

]
≤ 3i/(2n − i) ≤ 6i

2n
.

Using the definition of Type2, Type3, and Type4 events, it is straightforward to
deduce:

Pr
[
Type2i | GOODi−1

]
≤

Pr
[
Type2i

]
Pr
[
GOODi−1

] ≤ 2 · 5i

2n − i
≤ 20i

2n
,

Pr
[
Type3i | GOODi−1

]
≤

Pr
[
Type3i

]
Pr
[
GOODi−1

] ≤ 2 · 2

2n − i
≤ 8

2n
,

Pr
[
Type4i | GOODi−1

]
≤

Pr
[
Type4i

]
Pr
[
GOODi−1

] ≤ 2 · 5i

2n − i
≤ 20i

2n
.

We conclude by combining the above bounds into the following inequality which
holds for 1 ≤ i ≤ σ:

σ∑
i=1

Pr
[
BADi | GOODi−1

]
≤

σ∑
i=1

55i

2n
≤ 28σ2

2n
.

8 A New Hash Function Family SAMOSA

Now we design a concrete hash function family SAMOSA based on the FP mode
defined in Sect. 2. In the subsequent sections, we also provide security analysis
and hardware implementation results of SAMOSA.

8.1 Description of SAMOSA

SAMOSA hash family is based on the FP mode and P-permutation of the Grøstl
hash function family. Letting n denote the length of hash in bits (n = 256 and
512 bits), the complete description of the hash function SAMOSA-n is provided
in Fig. 8. SAMOSA is composed of three components: (1) The FP mode and the
padding rule padn(·) (see Section 2), (2) IV IV ′ = 〈0〉n||〈n〉n, and (3) the Grøstl
permutation P2n (see [14]). The pseudocode for P512 and P1024 is given in the
full version [25].

Security Analysis of the SAMOSA Family. Discussion on this section will
appear in the full version of the paper [25].
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SAMOSA-256(M)
01. m1m2 . . .mk−1mk := pad256(M);
02. y0||y′

0 := 〈0〉256||〈256〉256;
03. for(i := 1, 2, . . . k)

yi||y′
i := P512(yi−1||mi)⊕(y′

i−1||〈0〉256);
04. r := P512(yk||y′

k);
05. return r[256, 511];

SAMOSA-512(M)
11. m1m2 . . .mk−1mk := pad512(M);
12. y0||y′

0 := 〈0〉512||〈512〉512;
13. for(i := 1, 2, . . . k)

yi||y′
i := P1024(yi−1||mi)⊕ (y′

i−1||〈0〉512);
14. r := P1024(yk||y′

k);
15. return r[512, 1023];

Fig. 8. SAMOSA-256 and SAMOSA-512

9 FPGA Implementations of SAMOSA-256 and
SAMOSA-512

9.1 Motivation and Previous Work

In case the security of two competing cryptographic algorithms is the same or
comparable, their performance in software and hardware decides which one of
them get selected for use by standardization organizations and industry.

In this section, we will analyze how SAMOSA compares to Grøstl, one of the
five final SHA-3 candidates, from the point of view of performance in hardware.
This comparison makes sense, because both algorithms share a very significant
part, permutation P, but differ in terms of the mode of operation. The FP mode
requires only a single permutation, so using permutation P is sufficient. The
Grøstl mode relies on the use of two related permutations, P and Q, which can
be executed in parallel. Our goal is to determine how much savings in terms of
hardware area are introduced by replacing the Grøstl construction for hash func-
tion with the FP mode. We also would like to know whether these savings come
at the expense of any significant throughput drop. Finally, we would like to ana-
lyze how significant is the improvement in terms of the throughput to area ratio,
a primary metric used to evaluate the efficiency of hardware implementations in
terms of a trade-off between speed and cost of the implementation.

Among many implementations of Grøstl, the one by Latif et al. [24] is currently
the most efficient on Virtex 5, this implementation relies on the use of low-level
Xilinx FPGA primitives, and as a result is not portable to FPGAs of other
vendors, such as Altera. Since our implementation of SAMOSA presented in this
paper is fully portable, and does not use any low-level primitives, we compare
it with the second best design of Grøstl reported earlier in the literature [13],
which has the same features. This design is based on the quasi-pipelined basic
iterative architecture denoted as x1 (P/Q). This way, we will be also able to
provide comparison for an alternative FPGA family, Stratix III from Altera.

9.2 High-Speed Architectures of SAMOSA and Grøstl

Due to the space constraint we move this useful section entirely to the full version
of the paper [25].
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9.3 Comparison of SAMOSA and Grøstl in Terms of the Hardware
Performance

Below, we compare SAMOSA and Grøstl in terms of three major hardware per-
formance metrics: Area, Throughput, and Throughput to Area Ratio. The exact
results of the comparison generated using Xilinx ISE v13.1 are shown in Table 2.
In the full version of the paper [25], we also provide results generated using Al-
tera Quartus II v11.1. Automated Tool for Hardware EvaluatioN (ATHENa)
[2] was used to automate the optimization and result extraction process. No
low-level primitives and no embedded resources (such as Block Memories or
DSP units) were used in our implementations, which makes them fully portable
among multiple FPGA families from various vendors. Each design has been im-
plemented in two different versions: with and without padding unit. The designs
with padding unit are more complete, while the designs without padding units
are more suitable for comparison with hardware implementations presented in
earlier academic papers on Grøstl and other SHA-3 candidates (as these imple-
mentations typically did not contain padding units).

Comparison in Terms of Area. As shown in Table 2, for comparable hard-
ware architectures, SAMOSA has significantly lower area requirements than
Grøstl. For Xilinx FPGAs, the area reduction is between 27 and 35%; for Al-
tera FPGAs, it is between 31 and 34%. This reduction is explained below. First,
P round is simpler than P/Q round, as the relevant logic does not need to be
switched from implementing P permutation to implementing Q permutation of
Grøstl. Although both permutations are quite similar, they still differ in two out
of four major operations: AddRoundConstant and ShiftBytes. Additional area
requirements may result from inserting a pipeline register between two stages of
the P/Q round. The total width of the multiplexers, outside of the P round in
SAMOSA is 4h. The width of similar multiplexers outside of the P/Q round in
Grøstl is 5b = 10h. Finally, the number of the 2-input XOR gates in SAMOSA is
h, while in Grøstl it is 3b = 6h. Additionally, in the designs with padding unit,
SAMOSA benefits from eliminating Block Counter from the padding logic. All
these differences amount to a significant advantage of SAMOSA over Grøstl in
terms of the circuit area. This advantage is particularly important considering
one of the major weakness of Grøstl is its inherently large area in any high-speed
hardware implementations.

Comparison in Terms of Throughput. We move this material to the full
version of the paper [25].

9.4 Comparison of SAMOSA with the SHA-3 Finalists

Table 3 presents the comparison between SAMOSA and the SHA-3 finalists using
the best single-message architecture, i.e., architecture capable of processing only
one message at a time (more results are available in the full version of the paper).
All algorithms have been implemented without padding units, in two variants,
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Table 2. Implementation results of Grøstl and SAMOSA for Xilinx Virtex 5. CLB
stands for Configurable Logic Block.

Grøstl Samosa Percentage Grøstl Samosa Percentage
Difference [%] Difference [%]

Without Padding Unit With Padding Unit

256-bit

Frequency (MHz) 250.9 215.5 -14.1 269.5 217.0 -19.5

Throughput (Mbit/s) 6117 5516 -9.8 6572 5556 -15.5

Area (CLB slices) 1795 1305 -27.3 2020 1318 -34.8

Throughput/Area 3.41 4.23 24.0 3.25 4.22 29.6
((Mbit/s)/CLB slices)

512-bit

Frequency (MHz) 217.7 195.0 -10.4 211.3 199.0 -5.9

Throughput (Mbit/s) 7686 7133 -7.2 7462 7276 -2.5

Area (CLB slices) 3853 2559 -33.6 3895 2732 -29.9

Throughput/Area 1.99 2.79 39.7 1.92 2.66 39.0
((Mbit/s)/CLB slices)

Table 3. SAMOSA and the best single message architectures of the SHA-3 finalists for
the 256-bit variants of hash functions

Xilinx Virtex 5 Altera Stratix III

Ranking Architecture Throughput Area TP/Area Ranking Architecture Throughput Area TP/Area
(Mbits/s) (CLB slices) (Mbits/s) (ALUTs)

Keccak x1 13337 1369 9.74 Keccak x1 15493 3531 4.39

JH x1 4955 982 5.05 JH x1 5276 3221 1.64

SAMOSA x1 5516 1305 4.23 SAMOSA x1 5969 4851 1.23

Grøstl x1 (P/Q) 6117 1795 3.41 Grøstl /2(v) (P/Q) 3818 3914 0.98

Skein x4 3023 1218 2.48 Skein x4 2475 3943 0.63

BLAKE /4(v)/4(h) 389 231 1.68 BLAKE /2(h) 2158 3553 0.61

with 256-bit and 512-bit output, in Xilinx Virtex 5 and Altera Stratix III FPGAs.
The primary metric used for comparison is throughput to area ratio.

10 Conclusion and Open Problems

This paper gives proposal for a novel permutation based hash mode of operation
named FP. Our indifferentiability security analysis establishes that the new mode
is secure against all generic attacks up to approximately 2n/2 queries; more
interestingly, our experimental results suggest that the security bound can be
improved to nearly 2n queries (n is the hash size in bits). We leave the proof of
this improved result as an open problem.

We also design a concrete hash function family SAMOSA based on the FP
mode and the P permutations of the SHA-3 finalist Grøstl; we claim it is hard
to attack SAMOSA with complexities significantly less than the brute force. Our
FPGA hardware implementations of SAMOSA show remarkable improvement in
the throughput to area ratio compared to the SHA-3 finalists Grøstl, BLAKE
and Skein. It is still not known how efficient SAMOSA is in software. We leave
the software implementations of SAMOSA as future work.
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Abstract. Decorrelation Theory deals with general adversaries who are
mounting iterated attacks, i.e., attacks in which an adversary is allowed
to make d queries in each iteration with the aim of distinguishing a
random cipher C from the ideal random cipher C∗. A bound for a
non-adaptive iterated distinguisher of order d, who is making plaintext
(resp. ciphertext) queries, against a 2d-decorrelated cipher has already
been derived by Vaudenay at EUROCRYPT ’99. He showed that a 2d-
decorrelated cipher resists against iterated non-adaptive distinguishers of
order d when iterations have almost no common queries. More recently,
Bay et al. settled two open problems arising from Vaudenay’s work at
CRYPTO ’12, yet they only consider non-adaptive iterated attacks.

Hence, a bound for an adaptive iterated adversary of order d, who can
make both plaintext and ciphertext queries, against a 2d-decorrelated
cipher has not been studied yet. In this work, we study the resistance
against this distinguisher and we prove the bound for an adversary who
is making adaptive plaintext and ciphertext queries depending on the
previous queries to an oracle.

1 Introduction

Attempting to provide provable security to block cipher cryptanalysis, Nyberg
[Nyb91] pioneered a new direction where the notion of strength against dif-
ferential cryptanalysis is formally examined. Similarly, Chabaud and Vaudenay
[CV94] examined the notion of strength against linear cryptanalysis. Luby and
Rackoff [LR85, LR86] have also considered a Feistel scheme with a random round
function and defined the notion of k-wise independent hash function families.
The caveat with their approach is that very long secret keys are required. Carter
and Wegman [CW79, CW81], however, require smaller key when measuring the
effects of pseudorandomness against the adversaries.
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Inspired by the notion of k-wise independence of Luby and Rackoff and the
derandomization techniques of Carter and Wegman in sampling pairwise in-
dependent numbers, Vaudenay defined and formalized Decorrelation Theory
[Vau99c, Vau03] to provide provable security for block ciphers against a wide
range of statistical attacks. Indeed perfect decorrelation of order d is equivalent
to the d-wise independence of Luby and Rackoff while appropriate norms and
measures are defined for imperfect decorrelation in [Vau98a, Vau99a]. Moreover,
Decorrelation Theory covers a variety of statistical attacks such as Differential
and Linear Attacks, Boomerang Attacks, Truncated Differential Attacks, and
Impossible Differential Attacks. However, the attacks covered in Decorrelation
Theory are generic attacks complying a certain broad criteria in the Luby and
Rackoff model.

Decorrelation Theory considers computationally unbounded attackers who
can make d queries in each iteration. When these d queries are random and
independent from one another, the attacker is a d-limited non-adaptive adver-
sary. In contrast, one can consider adaptive adversaries who choose their queries
depending on the previous ones. Then, a distinguisher of order d is trying to
distinguish between a random cipher C and the ideal random cipher C∗ using
the aforementioned adversary.

Non-adaptive iterated distinguishers, making plaintext (resp. ciphertext)
queries, have been studied in [Vau98b, Vau99b, Vau99c, Vau98a, BV05] exten-
sively, and the security of many block ciphers has been proven by decorrelation
techniques, see for example [PV98, Vau03, BF06a, BF06b]. In particular, Vaude-
nay [Vau99c, Vau03] finds an upper bound for the advantage of a non-adaptive it-
erated distinguisher of order d, who is making plaintext (resp. ciphertext) queries
against a 2d-decorrelated cipher. He shows that a 2d-decorrelated cipher resists
against iterated non-adaptive attacks of order d when iterations have almost
no common queries. His work has been followed by Bay et al. [BMV12] who ad-
dress two open problems arising from Vaudenay [Vau99c, Vau03] on non-adaptive
iterated attacks. When considering resistance against non-adaptive iterated ad-
versaries of order d who are making only plaintext (resp. ciphertext) queries,
Bay et al. showed that not only it is sufficient for a cipher to have decorrelation
of order 2d, but this decorrelation order is also necessary. Moreover, they proved
that repeating a plaintext query in different iterations may provide a significant
advantage to a non-adaptive adversary.

However, a bound for the advantage of an adaptive iterated distinguisher of
order d, who can make both plaintext and ciphertext queries has not been com-
puted yet. The significance of studying general distinguishers who can make
adaptive queries is not hidden to anyone. Hence, it is important to study adap-
tive distinguishers. Allowing the adversary to make both plaintext and ciphertext
queries strengthens the security results and has already appeared in the liter-
ature. Indeed, the Boomerang attack [Wag99] is an example of such an adver-
sary. Studying these general distinguishers making adaptive plaintext-ciphertext
queries allows us to, for example, interpret Wagner’s Boomerang attack [Wag99]
on COCONUT98 [Vau98b, Vau03], a perfect 2-decorrelated block cipher and
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provably secure against differential and linear cryptanalyses and iterated attacks
of order 1. Indeed, it could have resisted to Wagner’s attack with a decorrelation
of order 8.

In this paper, we are going to focus on adaptive iterated distinguishers who
can make plaintext and ciphertext queries. We first define a generic adaptive
plaintext-ciphertext d-limited distinguisher with an adversary who is making
adaptive plaintext queries and ciphertext queries to the oracle depending on the
previous queries. We, then, extend this definition to a generic adaptive plaintext-
ciphertext iterated distinguisher of order d. We prove the bound for the advan-
tage of adaptive iterated distinguisher of order d against a 2d-decorrelated cipher.
The appropriate metric for computing the advantage of this kind of adversary
was defined by Vaudenay in [Vau99a]. It comes with no surprise that using this
metric, we get a looser, i.e., higher, upper bound for adaptive distinguishers than
that for non-adaptive distinguishers.

The rest of this paper is organized as follows. Some background results, no-
tations, and definitions are summarized in Section 2. Section 3 defines generic
adaptive plaintext-ciphertext iterated distinguishers of order d and Section 4
computes the bound for such adversaries, encapsulating the main contribution
of the paper. Appendix A and Appendix B give the details the proof of Theorem
7. Appendix C reminds linear and differential distinguishers.

2 Preliminaries

Vaudenay defines Decorrelation Theory based on the Luby-Rackoff Model [LR85]
in which the adversary is unbounded in terms of computational power, but
bounded in the number of d plaintext-ciphertext queries that he can make. In
this model, there is an oracle Ω implementing either an instance of a random
function (resp. permutation) drawn from all considered functions (resp. permuta-
tions) or an instance of a random function (resp. permutation) drawn uniformly
at random from all random functions (resp. permutations). The aim of the ad-
versary A is to guess which of two distributions the oracle Ω selects. There are
two main types of adversaries: when the adversary makes his d queries at the
same time and this is called a d-limited non-adaptive distinguisher; when the
adversary makes queries depending on answers to previous queries and this is
called a d-limited adaptive distinguisher.

Throughout the paper, F denotes a random function (or equivalently a func-
tion set up with a random key) from a set M1 to a set M2 while F ∗ denotes
an ideal random function fromM1 to M2 drawn uniformly at random from all
|M2||M1| random functions. In addition, C denotes a random cipher (or equiv-
alently the encryption function set up with a random key) over a message space
M and C∗ denotes an ideal random cipher overM drawn uniformly at random
from all |M|! permutations of M. Note that F ∗ and C∗ are also denoted as a
perfect function and a perfect cipher, respectively. In Table 1, we provide some
notations to be used throughout the paper.
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Table 1. Notations

|S|: number of elements in S

Md: set of all sequences of d tuples over the set M
[F ]d: d-wise distribution matrix of a random function F
AdvANA(d)

: advantage of the d-limited non-adaptive distinguisher ANA(d)

AdvAA(d)
: advantage of the d-limited adaptive distinguisher AA(d)

AdvANAI(d)
: advantage of the non-adaptive iterated distinguisher ANAI(d) of order d

AdvAAI(d)
: advantage of the adaptive iterated distinguisher AAI(d) of order d

E(X): expected value of a random variable X
V (X): variance of a random variable X
⊕: addition modulo 2

Decorrelation Theory has a link with Linear and Differential Cryptanalyses
(see Appendix C) which are the essential cryptanalysis methods of both block
ciphers and pseudorandom functions. Both methods have iterative analysis of
an instance of a block cipher and refer to the set of attacks called iterated
attacks. More explicitly, iterated attacks are defined as iterations of d-limited
distinguishers. When d-limited non-adaptive distinguishers are iterated, we ob-
tain non-adaptive iterated distinguishers of order d. When d-limited adaptive
distinguishers are iterated, we get adaptive iterated distinguishers of order d. A
generic non-adaptive iterated distinguisher of order d is illustrated in Figure 1.
Briefly, a test T generates the binary output Ti of each iteration i, and then the
acceptance set Acc produces the decision of the distinguisher based on the tuple
(T1, . . . , Tn).

Input: an integer n, a set X, a distribution X on X, a test T , a set Acc
Oracle: the oracle Ω implementing a permutation c

for i = 1 to n do
pick x = (x1, . . . , xd) at random from X
get y = (Ω(x1), . . . , Ω(xd))
set Ti = 0 or 1 such that Ti = T (x, y)

end for
if (T1, . . . , Tn) ∈ Acc then

output 1
else

output 0
end if

Fig. 1. A generic non-adaptive iterated distinguisher of order d

The success of an adversary is often estimated by a measure called advantage
defined as follows.

Definition 1. Let F0 and F1 be two random functions. The advantage of an
adversary A distinguishing F0 from F1 is defined by

AdvA(F0, F1) =
∣∣Pr[A(F0) = 1]− Pr[A(F1) = 1]

∣∣.
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When we consider all adversaries distinguishing between F0 and F1 and take the
maximum of the advantage over all these adversaries in a class ζ, we get the best
advantage of the distinguisher which is formulated as follows.

BestAdvζ(F0, F1) = max
A∈ζ

AdvA.

For example, ζ can consist of all non-adaptive adversaries or adaptive adver-
saries. Note that in the rest of the paper, when we mention the advantage of an
adversary, we mean his best advantage. We now recall Decorrelation Theory by
first giving the definition of the d-wise distribution matrix.

Definition 2. [Vau03] Let F be a random function from M1 to M2. The d-
wise distribution matrix [F ]d of F is a |M1|d × |M2|d-matrix which is de-
fined by [F ]d(x1,...,xd),(y1,...,yd)

= PrF [F (x1) = y1, . . . , F (xd) = yd], where x =

(x1, . . . , xd) ∈Md
1 and y = (y1, . . . , yd) ∈ Md

2.

There are two main notions of matrix-norms used in this theory and recalled in
the following definition.

Definition 3. [Vau03] Let M ∈ R|M1|d×|M2|d be a matrix. Then, two matrix-
norms are defined by

‖M‖∞ = max
x1,...,xd

∑
y1,...,yd

|M(x1,...,xd),(y1,...,yd)|,

‖M‖A = max
x1

∑
y1

· · ·max
xd

∑
yd

|M(x1,...,xd),(y1,...,yd)|.

Vaudenay [Vau03] defines the decorrelation of order d for a random function F
as the distance between its d-wise distribution matrix and the d-wise distribu-
tion matrix of the ideal random function F ∗, namely D([F ]d, [F ∗]d), where D
denotes one of the measures of distance given above. Deciding which matrix-
norm to use depends on the type of distinguisher envisaged. While ‖ · ‖∞ is used
for non-adaptive distinguishers, ‖ · ‖A is used for adaptive distinguishers. When
D([F ]d, [F ∗]d) = 0, F is called a perfect d-decorrelated function. Now, the follow-
ing lemma relates the best advantage of a distinguisher with the decorrelation
distance.

Theorem 4 (Theorems 10 and 11 in [Vau03]). Let F and F ∗ be a random
function and the ideal random function, respectively. The respective advantages
of the best d-limited non-adaptive and adaptive distinguishers, ANA(d) and AA(d),
are

AdvANA(d)
(F, F ∗) =

1

2
‖[F ]d − [F ∗]d‖∞

and,

AdvAA(d)
(F, F ∗) =

1

2
‖[F ]d − [F ∗]d‖A.



Resistance against Adaptive Plaintext-Ciphertext Iterated Distinguishers 533

We recall one of the main theorems of this theory proving that if a cipher has
decorrelation of order 2d, then it is secure against a non-adaptive iterated attack
of order d.

Theorem 5 (Theorem 18 in [Vau03]). Let C be a random cipher on a mes-
sage space M of size M such that ‖[C]2d − [C∗]2d‖∞ ≤ ε, for some given
d ≤ M/2, where C∗ is the ideal random cipher. Let us consider a non-adaptive
iterated distinguisher of order d between C and C∗ with n iterations. We assume
that the distinguisher generates sets of d plaintexts of independent and identically
distributed in all iterations. Then, we can bound the advantage of the adversary
as

AdvANAI(d)
≤ 5

3

√(
2δ +

5d2

2M
+

3ε

2

)
n2 + nε,

where δ is the probability that any two different iterations send at least one query
in common.

Lastly, we will remind the notion of indicator function.

Definition 6. Let S be the sample space and E ⊆ S be an event. The indicator
function of the event E, denoted by 1E, is a random variable defined as

1E(s) =

{
1, if s ∈ E,
0, if s /∈ E.

The indicator function can shortly be denoted as 1E instead of 1E(s). In the se-
quel, we define more general distinguishers, namely adaptive plaintext-ciphertext
iterated distinguishers of order d.

3 Adaptive Plaintext-Ciphertext Iterated Distinguishers
of Order d

In this section, we recall two generic distinguishers, namely an adaptive plaintext-
ciphertext d-limited distinguisher (see Figure 2) and an adaptive plaintext-
ciphertext iterated distinguisher of order d (see Figure 3). Both distinguishers
are adaptive in a way that the adversary adaptively asks for both encryption
and decryption of the queries. Herein we formalize these distinguishers.

We first define a compact function G to be distinguished. The goal of defining
this function is to specify the input to the oracle to be either encrypted or
decrypted (as the adversary makes either the plaintext queries or the ciphertext
queries in a specific order depending on his type of attack).

Let G be the set of functions G such that G : M× {0, 1} → M satisfying
G(G(x, 0), 1) = x and G(G(x, 1), 0) = x, for all x. We denote G0(x) = G(x, 0)
and G1(x) = G(x, 1) and point out G−1

1 = G0 and G−1
0 = G1. In what follows,

G denotes a random element of G and G∗ is a uniformly distributed element
of G.
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Input: a function F , a test T , a distribution R on {0, 1}∗
Oracle: the oracle Ω implementing either an instance of G or an instance of G∗

Pick r ∈ {0, 1}∗ at random from R
Set u1 = (a1, b1) ← F(·; r)
Set v1 = Ω(u1)
Set u2 = (a2, b2) ← F(v1; r)
Set v2 = Ω(u2)
. . .
Set ud = (ad, bd) ← F(v1, . . . , vd−1; r)
Set vd = Ω(ud)

Output T (v1, . . . , vd; r)

Fig. 2. A generic adaptive plaintext-ciphertext d-limited distinguisher

An adaptive d-limited distinguisher. The adversaryAA(d) detailed in Figure 2 has
access to an oracle Ω which implements either an instance of G or an instance
of G∗, such that G0 and G1 perform encryption and decryption, respectively.
He picks a random coin r from {0, 1}∗ according to a given distribution R and
queries a function F which is fed with r and the output of the previous queries
(v1, v2, . . . , vi−1), where vk = Ω(uk) for all k ∈ {1, 2, . . . , i− 1}, and 1 ≤ i ≤ d.
He then receives a new query ui. He sends this input ui to the oracle to receive
the output vi, where –as explained– vi = Ω(ui). Finally, using a test T , he
outputs a decision bit “1” if he guesses that Ω implements an instance of the
random function G or “0” if he guesses that Ω implements an instance of the
ideal random function G∗.

Input: an integer n, a function F , a test T , a set Acc, a distribution R on {0, 1}∗
Oracle: the oracle Ω implementing a function G or G∗

for k = 1 to n

Set Tk (with independent coins) ← output of Distinguisher in Figure 2

end for
Output 1Acc(T1, . . . , Tn)

Fig. 3. A generic adaptive plaintext-ciphertext iterated distinguisher of order d

An adaptive iterated distinguisher of order d. The iterated distinguisher given
in Figure 3 is simply the iteration of the d-limited distinguisher (see Figure 2)
in a way that the adversary AAI(d) repeats the distinguisher n times, then he
checks whether the output of n iterations are accepted or not with respect to a
set Acc. This gives his final decision.

The Boomerang Attack [Wag99] defined in Figure 4 is an example for an
adaptive plaintext-ciphertext iterated distinguisher of order d (see Figure 3) for
the case d = 4. The adversary queries two (chosen) plaintexts and receives their
corresponding ciphertexts, he then constructs two ciphertexts depending on the
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Input: an integer n, a set X, differences Δ and ∇
Oracle: the oracle Ω implementing a permutation c

for k = 1 to n
Pick x1 uniformly at random from the set X
Set x2 = x1 ⊕Δ
Set y1 = c(x1), y2 = c(x2)
Set y3 = y1 ⊕∇, y4 = y2 ⊕∇
Set x3 = c−1(y3), x4 = c−1(y4)
Set Tk = 1x3⊕x4=Δ

end for
if T1 + · · ·+ Tn �= 0 then
Output 1

else
Output 0

Fig. 4. Boomerang Distinguisher

previous ciphertexts and asks for their decryption. The adaptively chosen queries
to the oracle in each iteration of the Boomerang Attack [Wag99] can be written
as (u1, u2, u3, u4) = ((x1, 0), (x1⊕Δ, 0), (c(x1)⊕∇, 1), (c(x1⊕Δ)⊕∇, 1)), where
x1 is selected uniformly at random over the set X , and Δ and ∇ denote non-zero
differences.

4 Advantage of Adaptive Plaintext-Ciphertext Iterated
Distinguishers of Order d

Vaudenay [Vau03] found a bound for the advantage of non-adaptive iterated
distinguishers of order d, which is not apposite for the adaptive adversaries. We
extend his result and provide a bound for the advantage of adaptive plaintext-
ciphertext iterated distinguishers of order d. Strictly speaking, we compute the
maximum success of the adversary who is making d adaptive queries to the oracle
in each iteration to distinguish a random cipher 2d-decorrelated upon using the
‖ · ‖A norm.

Theorem 7. Let G ∈ G be a random function from M×{0, 1} to M such that
||[G]2d − [G∗]2d||A ≤ ε, for some given d ≤ M/2, where G∗ is the ideal random
cipher and |M| =M . Let us consider an adaptive iterated distinguisher of order
d AAI(d) who is trying to distinguish G from G∗ by performing n iterations (see
Figure 3). Then, the advantage AdvAAI(d)

of AAI(d) is bounded as

AdvAAI(d)
≤ 5

3

√(
2θ + e8d2/M +

2d2

M
+

3ε

2
− 1
)
n2 + nε,

where θ is the expected value of the probability that any two different iterations
send at least one query in common for a given G.
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Proof. Let one iteration consist of the input queries u = (u1, u2, . . . , ud) and
the output queries v = (v1, v2, . . . , vd), where ui = (ai, bi) and vi = Ω(ui), for
1 ≤ i ≤ d.

We first make two observations about the adaptive adversary.

Observation 1: Inner-collisions in input queries, i.e., ui �= uj, are not allowed,
since calling the same query twice in the same iteration will not give any
advantage to the adversary.

Observation 2: Let (ui = (ai, bi), vi) and (uj = (aj , bj), vj) be two queries in
the same iteration. Cross inner-collisions are not allowed, that is, we never
have ai = vj and bi �= bj . Getting the same information will not give any
advantage to the adversary.

Notice that these aforementioned observations do not hold between different
iterations.

We begin similarly to the proof of Theorem 5 provided in [Vau03]. We first
define T (g) to be the probability that the test function T outputs 1 when G = g
(resp. G∗ = g), i.e.,

T (g) = Er[T (v1, . . . , vd; r)|G = g].

We let p (resp. p∗) be the probability of the distinguisher outputting 1, let Acc
be the acceptance set, and Tk(G) (resp. Tk(G

∗)) be the output of iteration k.
Then we have

p = PrG[(T1(G), . . . , Tn(G)) ∈ Acc].
Notice that all Tk(G)’s are pairwise independent except that all are only depen-
dent on G, and Tk(G) = T (G). Hence, we obtain

p = EG

[ ∑
(t1,...,tn)∈Acc

T (G)t1+···+tn(1 − T (G))n−(t1+···+tn)

]
.

Then, p can be rewritten as

p =

n∑
k=0

akEG[T (G)k(1− T (G))n−k],

for some integers ak such that 0 ≤ ak ≤
(
n
k

)
. Similarly, we have the same

argument for p∗, i.e., p∗ =
∑n

k=0 akEG∗ [T (G∗)k(1− T (G∗))n−k].
The advantage of the distinguisher, |p−p∗|, is maximal when all ak’s are either

0 or
(
n
k

)
depending on the distributions T (G) and T (G∗). Hence, we assume that

Acc of the best distinguisher is of the form

Acc =
{
(t1, . . . , tn)

∣∣∣ n∑
k=1

tk ∈ B
}
,

for some set B ⊆ {0, . . . , n}. Thus, we rewrite p = EG[s(T (G))], where s(x) =∑
k∈B
(
n
k

)
xk(1− x)n−k.
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Now, consider the derivative of s which can be written as

s′(x) =
∑
k∈B

(
n

k

)
k − nx

x(1 − x)
xk(1− x)n−k.

Notice that since the sum over all k, such that 0 ≤ k ≤ n, is the derivative of
(x+ (1− x))n, then the total sum is zero. Hence, we obtain

|s′(x)| ≤
∑

nx≤k≤n

(
n

k

)
k − nx

x(1 − x)
xk(1− x)n−k ≤ n

x

∑
nx≤k≤n

(
n

k

)
xk(1− x)n−k,

since nx ≤ k ≤ n. We note that when x ≥ 1/2, we have |s′(x)| ≤ 2n. Similarly,
when x < 1/2, we have |s′(x)| ≤ 2n. Hence, we get |s′(x)| ≤ 2n, for every x. So,
according to the Mean Value Theorem, we have

|s(T (G))− s(T (G∗))| ≤ 2n|T (G)− T (G∗)|.

Furthermore, Theorem 4 gives the exact advantage for the best adaptive d-
limited distinguisher. Hence, |EG[T (G)] − EG∗ [T (G∗)]| ≤ ε/2 is obtained. We
here notice that in Vaudenay’s proof for Theorem 5, the non-adaptive case was
considered which leads the same result.

We now define a new random variable T 2(G) which is the output of another
test with 2d entries, that is,

T (v1, . . . , vd; r)× T (v′1, . . . , v′d; r′).

Thanks to Theorem 4, we have |EG[T
2(G)]−EG∗ [T 2(G∗)]| ≤ ε/2. Hence, we get

|V (T (G))−V (T (G∗))| ≤ 3ε/2 (obtained by combining |EG[T (G)]−EG∗ [T (G∗)]| ≤
ε/2 and |EG[T

2(G)] − EG∗ [T 2(G∗)]| ≤ ε/2). More precisely, we have

|V (T (G))− V (T (G∗))|
= |EG[T

2(G)]− E2
G[T (G)]− EG∗ [T 2(G∗)] + E2

G∗ [T (G∗)]|
≤ |EG[T

2(G)]− EG∗ [T 2(G∗)]|+ |E2
G[T (G)]− E2

G∗ [T (G∗)]|

≤ 3ε

2
. (1)

In 1, we use |EG[T (G)] + EG∗ [T (G∗)]| ≤ 2, since 0 ≤ T (G), T (G∗) ≤ 1.
Afterwards, the advantage of the distinguisher is

|p− p∗| = |EG[s(T (G))]− EG∗ [s(T (G∗))]| ≤ EG,G∗ [|s(T (G))− s(T (G∗))|].

By using Tchebichev’s inequality, i.e., Pr[|T (G)−EG[T (G)]| > λ] ≤ V (T (G))/λ2

and Pr[|T (G∗)− EG∗ [T (G∗)]| > λ] ≤ V (T (G∗))/λ2 for any λ > 0, we have

|p− p∗| ≤ 5
3

√(
2V (T (G∗)) +

3ε

2

)
n2 + nε, (2)

when λ = 3
√
(2V (T (G∗)) + (3ε/2))/n.
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So far, everything works similarly to [Vau03]. However, the rest is different
since the function implemented in the oracle has new properties. For further
details of the proof up to now, refer to [Vau03]. Now, it is left to bound V (T (G∗)).

Bounding V (T (G∗)). We now bound V (T (G∗)) by expanding it as

V (T (G∗)) =∑
S

Pr
R
[r] Pr

R
[r′]
(
Pr
G∗

[
(u, u′) G∗

−−→ (v, v′)
]
− Pr

G∗
[u

G∗
−−→ v] Pr

G∗
[u′ G∗
−−→ v′]

)
, (3)

where S = {(v, r), (v′, r′) ∈ T } and u (resp. u′) is defined by both r and v (resp.
r′ and v′). For the sake of simplicity, we denote the expression

PrR[r] PrR[r
′]
(
PrG∗

[
(u, u′) G∗

−−→ (v, v′)
]
− PrG∗ [u

G∗
−−→ v] PrG∗ [u′ G∗

−−→ v′]
)
as P .

In order to find an upper bound for V (T (G∗)), we first divide Expres-
sion (3) into two disjoint sums depending on whether or not u and u′ are
colliding, i.e., if there exist i and j such that ui = u′j. In detail, we have

S = S1 ∪ S2 such that S1 =
{
(v, r), (v′, r′) ∈ T | ∃i, j s.t. ui = u′j

}
and S2 ={

(v, r), (v′, r′) ∈ T | ∀i, j s.t. ui �= u′j
}
. Thus, we write

∑
S

P =
∑
S1

P +
∑
S2

P.

We now bound each sum separately.
The sum over S1,

∑
S1
P , is bounded as∑

S1

P ≤
∑
v,v′

∑
r,r′

Pr
R
[r] Pr

R
[r′] Pr

G∗

[
(u, u′) G∗

−−→ (v, v′)
]
1S1

=
∑
g

Pr[G∗ = g]
∑
v,v′

∑
r,r′

Pr
R
[r] Pr

R
[r′] 1

(u,u′)
g−→(v,v′)

1S1

= EG∗ [Pr
r,r′

[∃i, j s.t. ui = u′j| G]]

def
= θ,

where we denote EG∗ [Prr,r′ [∃i, j s.t. ui = u′j| G]] by θ. This can be interpreted
as the expected value of the probability that any two iterations have at least one
query in common for given G.

Now, we provide a bound for the sum over S2,
∑

S2
P , which is for non-

colliding inputs u and u′. We first note that since both G∗
0 and G∗

1 are fromM to
M, and, hence, bijective, they are indeed the ideal cipher C∗, i.e.,G∗

0 = G∗
1 = C∗.

Therefore, their distribution matrices will be the same as the distribution matrix
of the ideal cipher C∗. We define x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) as

xi =

{
ai, if bi = 0,

vi, if bi = 1,
and yi =

{
vi, if bi = 0,

ai, if bi = 1,
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where u = ((a1, b1), (a2, b2), . . . , (ad, bd)), with bi ∈ {0, 1}, is the input tuple and
v = (v1, v2, . . . , vd) is its corresponding output tuple. This is basically collecting
the plaintexts and ciphertexts into two separate tuples. Now, the sum over S2

can be rewritten into three disjoint sums as

∑
S2

A =
∑
S3

A+
∑
S4

A+
∑
S5

A.

Here, S3, S4 and S5 are the three partitions of S2, i.e., S2 = S3 ∪ S4 ∪ S5,

S3 =
{
(v, r), (v′, r′) ∈ T | ∀i, j, k,m, e, f ui �= u′j , xk �= x′m, ye �= y′f

}
,

S4 =
{
(v, r), (v′, r′) ∈ T | (∀i, j, k,m ui �= u′j, xk �= x′m) ∧ (∃e, f ye = y′f )

}
, S5 ={

(v, r), (v′, r′) ∈ T |(∀i, j ui �= u′j) ∧ (∃k,m xk = x′m)
}
, and A is

PrR[r] PrR[r
′]
(
PrG∗

0

[
(x, x′)

G∗
0−−→ (y, y′)

]
− PrG∗

0
[x

G∗
0−−→ y] PrG∗

0
[x′

G∗
0−−→ y′]

)
. We

now deal with these three sums.
The sum over S3 (all non-colliding u’s and u′’s, all non-colliding x’s and x′’s,

and all non-colliding y’s and y′’s),
∑

S3
A, can be rewritten as

∑
S3

A ≤ 1

2

∑
v,v′

∑
r,r′

A× 1S3 =

1

2

∣∣∣Pr
G∗

0

[
(x, x′)

G∗
0−−→ (y, y′)

]
− Pr

G∗
0

[x
G∗

0−−→ y] Pr
G∗

0

[x′
G∗

0−−→ y′]
∣∣∣∑
v,v′

∑
r,r′

Pr
R
[r] Pr

R
[r′] 1S3 .

(4)

Here, since
∣∣∣PrG∗

0

[
(x, x′)

G∗
0−−→ (y, y′)

]
− PrG∗

0
[x

G∗
0−−→ y] PrG∗

0
[x′

G∗
0−−→ y′]

∣∣∣ is con-

stant when there is no collision between x and x′ and between y and y′, in Equal-
ity (4), we take it out from the sum. Afterwards, since we never have ai = vj
and bi �= bj according to Observation 2, there will not be any inner-collisions in
x.

Now, we bound Equality (4) as

1

2

∣∣∣Pr
G∗

0

[
(x, x′)

G∗
0−−→ (y, y′)

]
− Pr

G∗
0

[x
G∗

0−−→ y] Pr
G∗

0

[x′
G∗

0−−→ y′]
∣∣∣∑
v,v′

∑
r,r′

Pr
R
[r] Pr

R
[r′] 1S3

≤ 1

2

(
1

M(M − 1) · · · (M − 2d+ 1)
− 1

M2(M − 1)2 · · · (M − d+ 1)2

)
M2d (5)

≤ e8d
2/M

2
− d(d− 1)

2M
− 1

2
. (6)

Note that Inequality (5) is due to fact that the sum in (4) is bounded by the total
number of v and v′ which is M2d and P1 ≥ P 2

2 . The way to obtain Inequality
(6) is shown in Appendix A.
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On the other hand, the sum over S4,
∑

S4
A, will be the sum over all colliding

y’s and y′’s, all non-colliding x’s and x′’s, and all non-colliding u’s and u′’s.
When x and x′ are non-colliding, it is not possible to have colliding y and y′.

Hence, we have PrG∗
0

[
(x, x′)

G∗
0−−→ (y, y′)

]
= 0. Therefore, the sum over S4 will

be negative, i.e.,
∑

S4
A ≤ 0.

Finally, we provide a bound for the sum S5,
∑

S5
A, as∑

S5

A ≤
∑
v,v′

∑
r,r′

Pr
R
[r] Pr

R
[r′] Pr

G∗

[
(u, u′) G∗

−−→ (v, v′)
]
1S5

=
∑
g

Pr[G∗ = g]
∑
r,r′

Pr
R
[r] Pr

R
[r′] 1S5 (7)

= EG∗ [Pr
r,r′

[∃i, j s.t. xi = x′j | ∀k,m s.t. uk �= u′m and G]]

def
= γ

≤ d2

M
.

Here, we define γ = EG∗ [Prr,r′ [∃i, j s.t. xi = x′j | ∀k,m s.t. uk �= u′m and G]]
as the expected value of the probability that x and x′ collide when G is given
and there is no collision between u and u′. We get γ ≤ d2/M which is proved in
Appendix B. Notice that Equality (7) gives the probability γ explicitly.

Now, if we sum up all the results, then we have

V (T (G∗)) ≤ θ +
e8d

2/M

2
+
d2

M
− 1

2

by setting d/2M ≤ d2/2M .
When we substitute V (T (G∗)) in (2), then we have

|p− p∗| ≤ 5
3

√(
2θ + e8d2/M +

2d2

M
+

3ε

2
− 1
)
n2 + nε. ��

Allowing θ ≈ δ to compare Theorem 5 with Theorem 7, we observe that the
bound for adaptive attacks is higher than the bound for non-adaptive attacks.
This fact comes with no surprise. Adaptive adversaries are stronger than non-
adaptive adversaries, in general, and adaptive queries can provide the adversary
with some advantage.

5 Conclusion and Final Remarks

In this work, we study the resistance against adaptive plaintext-ciphertext iter-
ated distinguishers of order d which has not been explored before. We prove the
bound for this distinguisher in which the adversary is making adaptive plain-
text and ciphertext queries to the oracle depending on the previous queries.
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This work contributes to proving the security of previous and future designs
based on Decorrelation Theory since previously there was no clue with adaptive
iterated adversaries in this context.

It is worth mentioning that Theorem 7, provided in this paper, poses two ques-
tions. The theorem proves that decorrelation of order 2d is sufficient for a cipher
to resist an iterated attack of order d. The first question asks whether or not
this condition is necessary. The second question is as follows: can the probability
θ of having the same query in different iterations increase the advantage of our
adaptive adversary? Not surprisingly, similar questions were posed by Theorem
5. Bay et al. [BMV12] have recently answered these questions by providing two
counterexamples that are not intuitive. Namely, Bay et al. proceeded as follows
for the questions in Theorem 5.

– The first question is answered by showing that the decorrelation of order
2d is necessary. They provide a 3-round Feistel construction decorrelated to
the order 2d − 1, that is ‖[C]2d−1 − [C∗]2d−1‖A ≤ 2(2d− 1)2/q, where q
is the cardinality of the finite field GF(q). They then perform a successful
non-adaptive iterated distinguisher of order d against this cipher.

– The second one is answered by providing again a 3-round Feistel construction
decorrelated to the order 2d such that ‖[C]2d − [C∗]2d‖A ≤ 8d2/2k, where
2k is the number of elements in GF(2k). They construct even an iterated
distinguisher of order 1 on this cipher, when δ is high.

These counter-intuitive examples can also be applied to our case since the Feistel
ciphers used in the solution to both questions are decorrelated by the adaptive
norm, and non-adaptive attacks are a subset of adaptive attacks. To conclude,
thanks to [BMV12], our two questions for Theorem 7 are immediately answered.
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A Some Details of Bounding Expression 6

Hence, we will give the detailed upper bounding of the following expression

1

2

(
1

M

1

M − 1
· · · 1

M − 2d+ 1
− 1

M2

1

(M − 1)2
· · · 1

(M − d+ 1)2

)
M2d,

or equivalently,

1

2

(
1

1− 1
M

1

1− 2
M

· · · 1

1− 2d−1
M

)
− 1

2

(
1

(1− 1
M )2

1

(1− 2
M )2

· · · 1

(1− d−1
M )2

)
.

In order to find an upper bound for Expression 6, we need to maximize
(1− 1/M)−1(1− 2/M)−1 · · · (1− (2d− 1/M))−1. Hence, we use two inequali-
ties such that (1− 1/x)−1 ≤ 1+ 2/x when |x| ≥ 2, which holds for x =M since

M ≥ 2 according to Theorem 7 and
(
1 + r/k

)k ≤ er, when 1 + r/k ≥ 0, then,
the upper bound is

1

1− 1
M

1

1− 2
M

· · · 1

1− 2d−1
M

≤ e8d
2/M .

In addition,we get

1

(1− 1
M )2

1

(1− 2
M )2

· · · 1

(1− d−1
M )2

≥ 1 +
d(d− 1)

M
.

by using geometric series formula, i.e., (1− x)−1 =
∑∞

n=0 x
n for |x| < 1, which

implies that (1 − 1/x)−1 ≥ 1 + 1/x for |x| > 1. Hence, we get the desired upper
bound for Expression (6).

B Bounding the Probability γ

We find an upper bound for γ which is the expected value of the probability
that x and x′ collide when G is given and there is no collision between u and u′.
There is only one way for x and x′ to collide when there is no collision between
u and u′. This happens when one common query is from u (respectively u′) and
the other is from v′ (respectively v). In detail, let ui = (ai, bi) and u

′
j = (a′j , b

′
j)

be two respective entries from u and u′, and vi and v′j be their corresponding
output. When bi = 0, b′j = 1 and ai = v′j , then there is a collision in x and x′

such that xi = x′j . Since u and v′ are independent, the probability that u and

v′ collide is less than d2/2M. Similarly, we have the same result for u′ and v.
Thus, we bound γ as

γ ≤ d2

2M
+

d2

2M
=
d2

M
.
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C Linear and Differential Distinguishers

Input: an integer n, a set X, a distribution X on X, a set I , masks a and b
Oracle: an oracle Ω implementing a permutation c

for i = 1 to n
Pick x1 at random from X
Set y1 = c(x1)
Set Ti = a · x1 ⊕ b · y1

end for

if T1 + · · ·+ Tn ∈ I then
Output 1

else
Output 0

Fig. 5. Linear Distinguisher

Input: an integer n, a set X, a distribution X on X, differences α and β
Oracle: an oracle Ω implementing a permutation c

for i = 1 to n
Pick x1 at random from X
Set x2 = x1 ⊕ α
Set y1 = c(x1), y2 = c(x2)
Set Ti = 1y1⊕y2=β

end for

if T1 + · · ·+ Tn �= 0 then
Output 1

else
Output 0

Fig. 6. Differential Distinguisher
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Abstract. The sponge construction, designed by Bertoni, Daemen,
Peeters, and Van Assche, is the hash domain extension, which allows any
hash-output size, and it was also adopted as the hash mode for several
concrete hash algorithms. For its security reason, they showed that its
padding scheme is required to be injective, reversible, and the last block
of a padded message is non-zero. However, firstly we will show that if the
output size is less than or equal to the one-block size, then any injective
and reversible padding scheme is sufficient. In particular, only for any
message whose size is a multiple of block-length, we can take the identity
function (which is also injective and reversible) as its padding scheme.
Next, we take a look at the padding scheme of SpongeWrap which is
a sponge-based authenticated encryption scheme and designed by the
same authors. Since the padding scheme of SpongeWrap is inspired
by that of the sponge construction, it requires that the padding scheme
of SpongeWrap calls its underlying padding scheme for every message
block, where the underlying padding scheme is also required to be injec-
tive, reversible, and the last block of a padded message is non-zero. In
addition, the padding scheme of SpongeWrap includes additional frame
bits for the privacy and authenticity of SpongeWrap. So, the padding
scheme of SpongeWrap consists of its underlying padding scheme and
frame bits. However, secondly, we will show that the non-zero condition
on the underlying padding scheme is redundant, in other words, any
injective and reversible padding scheme is sufficient for the underlying
padding scheme.

Keywords: Sponge Construction, Indifferentiability, Authenticated-
Encryption.

1 Introduction

The sponge construction [3], designed by Bertoni, Daemen, Peeters, and Van
Assche, is the hash domain extension and it was also adopted as the hash mode
for several concrete hash algorithms such as Keccak [6], PHOTON [12], Quark [2]
and spongent [8]. In the same paper, they showed that the sponge construction
is indifferentiable from a random oracle, which means that the construction
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behaves as a random oracle. For the security of the sponge construction, it is
required that it padding scheme is injective and reversible as well as the last block
of a padded message is non-zero. For example, the 10∗ padding scheme satisfies
such requirement. Very recently, Andreeva, Mennink, and Preneel [1] proposed
the Parazoa family which generalizes the sponge construction and they proved
its indifferentiable security. The Parazoa family also allows any hash-output size
and includes more complex ones than the sponge construction so the padding
scheme for the Parazoa family requires a complex and stronger condition than
the sponge construction.

A keyed sponge construction [4] was also proposed by Bertoni, Daemen,
Peeters, and Van Assche and it was proved in the ideal permutation model.
Since the proof was done in the ideal permutation model, not the standard
model, later, Chang, Dworkin, Hong, Kelsey, and Nandi [10] proposed a new
and efficient keyed sponge construction, called the E-M keyed sponge construc-
tion (EMKSC), and they gave a proof of its pseudorandomness in the standard
model.

Bertoni, Daemen, Peeters, and Van Assche [5] proposed an authenticated-
encryption (AE) scheme, called SpongeWrap, which is related to the sponge
construction. SpongeWrap is based on a function, the duplex construction,
and it calls the duplex construction for every padded message block. So, the
efficiency of SpongeWrap is determined by that of the duplex construction.
Due to its security reason, the duplex construction needs frame bits as well as a
padding scheme, which is the injective and reversible underlying padding scheme
of SpongeWrap and the last block of its padded message should be non-zero
like the condition of the sponge construction.

Our Contribution. Our contribution has two folds as follows.

1. Padding scheme of the sponge construction

When the size of a block is big enough, we may need only the one-block hash-
output or its truncation even if the sponge construction is designed to allow
any hash-output size. In such case, it is interesting to know if we still need
a condition that the last block of the padded message is non-zero. In this
paper, we will show that if the size of the output of the sponge construction
is less than or equal to the size of one-block, then injective and reversible
padding scheme is sufficient. In particular, if a message of a multiple-block
is only allowed as input, then we can use the identity function as its padding
scheme. In other words, no padding scheme is required for that.

2. Padding scheme of SpongeWrap

Basically, the padding scheme of SpongeWrap was inspired by that of the
sponge construction so SpongeWrap needs to repeatedly call a padding
scheme such as the 10∗ padding scheme for every block, not one time for an
entire message, to ensure that every padded block is non-zero. In addition,
unlike the sponge construction, SpongeWrap requires frame bits to ensure
that the padding scheme is injective and reversible, and it supports a domain
separation to independently generate a ciphertext and a tag. In this paper,
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we will show that it is not necessary to make every padded block non-zero for
the security of SpongeWrap and it is sufficient that the padding scheme of
SpongeWrap is injective, reversible, and prefix-free. For this purpose, we
propose a new AE scheme, called Sponge-AE, with an injective, reversible,
and prefix-free padding scheme. And we propose a concrete padding scheme
for SpongeWrap which is simpler and slightly efficient than the original
padding scheme of SpongeWrap.

2 Definition and Security Notions

In this section, we explain definitions and security notions we use in this paper.

Authenticated-Encryption with Associate Data in the Ideal Model.
We follow the AE security notion used in [14] but in the ideal model. Our ap-
proach is similar to the definition of a pseudo-random function or permutation
in the ideal model, which was already used in [4,9]. An authenticated-encryption
(AE) scheme with associate data consists of three efficient algorithms with ac-
cess to an ideal primitive f such as a random oracle, an ideal function, an ideal
permutation, etc.: Πf = (K, Ef ,Df ). In case that f is an ideal permutation, its
inverse oracle f−1 is also given to an adversary. The key-generation algorithm
K(1k) randomly generates a key K from {0, 1}k. The deterministic encryption
algorithm Ef has four inputs, a secret key K, a nonce N , associate data A, and a
messageM , and returns the ciphertext and the tag (C, T ) = EfK(N,A,M), where
the size of C is determined by the size of M as |C| = g(|M |) for a function g and
|T | = t. The deterministic decryption algorithm Df has five inputs, a secret key
K, a nonce N , associate data A, a ciphertext C and a tag T , and return M if
there exists M such that (C, T ) = EfK(N,A,M), otherwise return Invalid. Let
$(·, ·, ·) be an oracle that, on inputs N , A, and M , returns a random string of
length g(|M |) + t for a function g. An adversary is nonce-respecting if it never
repeats the first component, N , to its oracle, regardless of oracle responses for
encryption queries not decryption queries.

Privacy. We say that Πf is indistinguishable from random bits under a chosen-
plaintext attack, if for any PPT nonce-respecting adversaryA there exists a PPT
simulator S with no access to $ such that the advantage below is negligible. Note
that, in [4,9], the underlying ideal primitive f is used for the last oracle for both
worlds, instead of using a simulator. However, our new definition is same with
them because here we only consider a simulator with no access to $, which should
perfectly simulate f without access to $.

AdvprivΠ (A) = |Pr[K $← {0, 1}k : AEK(·,·,·),f(·) = 1]− Pr[A$(·,·,·),S(·) = 1]| = negl.

Authencity. Given an (authenticated) encryption scheme Πf = (K, Ef ,Df ),
there are two oracles which can be accessed by an adversary, one is encryp-
tion oracle EK(·, ·, ·) and the other is decryption oracle Df

K(·, ·, ·, ·), where K
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is a randomly chosen secret key. We say that an adversary A forges if A out-
puts (N,A,C, T ), where Df

K(N,A,C, T ) is not Invalid, and A made no earlier
query (N,A,M) which resulted in a response (C, T ). Note that any forgery ad-
versary does not need to be nonce-respecting for the decryption queries. Nonce-
respecting condition is applied only to the encryption queries. More precisely,
for an forgery adversary A, the experiment is defined as follows.

Experiment Expauth
Πf (A)

K
$← K

Run AEK(·,·,·),DK(·,·,·,·),f(·)

If A made a decryption query (N,A,C, T ) such that the following are true
- The decryption oracle’s output is not Invalid
- A did not, prior to making no earlier query (N,A,M) which resulted
in a response (C, T )

Then return 1 else 0

We say that Πf is unforgeable, if for any PPT nonce-respecting adversary A the
advantage below is negligible.

AdvauthΠf (A) = Pr[Expauth
Πf (A) = 1] = negl

Indifferentiability(Concrete Version). The security notion of indifferentia-
bility was introduced by Maurer et al. in TCC 2004 [13]. In Crypto 2005, Coron
et al. were the first to adopt it as a security notion for hash functions [11].
Here, we only consider the security notion i F be a hash function based on an
ideal primitive f and R be a VIL random oracle, and S be a simulator with
access to R and the upperbound of its query, memory, time complexity, and the
maximum length of query and the total block length of all the queries is de-
fined by (qS ,mS , tS , lS , σS). Let D be an adversary with access to either (R,S)
or (F f , f). Then, we say that F f is (qS ,mS , tS , lS , σS , q, l, σ, ε)-indifferentiable
from R if for any adversary D whose the upperbound of the query complexity is
q, the maximum length of query is l, and the total block length of all the queries
is at most σ, there exists a simulator S such that:

AdvindiffF f ,SR(D) = |Pr[DF,f = 1]− Pr[DR,S = 1]| ≤ ε.

We say F f is indifferentiable from R when ε is negligible and the simulator S is
efficient.

3 Constructions

In this section, we describe all the constructions related to the works of this
paper.

TheSpongeConstruction [3].The sponge construction, denotedSpongef,pad,

here, is a domain-codomain extension for a hash function that is based on a permu-
tation or function f , with a fixed input and output length, r+c. The construction
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has two other parameters that we omit from our notation: a positive integer r,
called the bitrate, and an injective and reversible padding scheme, denoted pad.
For any input stringM , called the message, the length of pad(M) is a multiple of
r. The quantity c is called the capacity. � is the size of output. When the last block
of a padded message is non-zero by the padding scheme pad, it was proven in [3]
that Spongef,pad,
 is indifferentiable from a random oracle. Such non-zero condi-
tion on the padding scheme was required for its security when any hash-output
size is allowed. This is because, for example, when � > r and �′ > � − r, the last
(�− r)-bit of the �-bit hash output for a padded message x is always same as the
first (�− r)-bit of the �′-bit hash output for a padded message x||0r.

The Sponge Construction : Spongef,pad,�(M)

Let pad(M) = (M0||....||Mt), for some positive t where each |Mi| = r.
100 sa = 0r and sb = 0c

200 for i = 0 to t,
201 (sa||sb) = f((sa ⊕Mi)||sb).
300 for i = 0 to � �

r
�,

301 zi = sa.
302 c = f(sa||sb).
400 return the first � bits of z.

Fig. 1. The Sponge Construction

0r
0c

f⊕

M0

f⊕ f⊕ f⊕

Mt
Z0M1 M2

f

Z1

f

Z2

Fig. 2. The Sponge Construction: Spongef,pad,�(M) = first�(Z0||Z1||Z2...), where
pad(M) = M0||...||Mt

The Duplex Construction [5]. In [5], the duplex construction was introduced
in order to define an AE scheme, called SpongeWrap. The duplex construc-
tion is defined as shown in Fig. 3. The construction consists of three components,
(1) an underlying permutation f over b bits, (2) a padding scheme pad, where
for any input message, pad returns its padded message of a multiple-block and
the last block of the padded message should be non-zero, and (3) r is the bit-
size of a block. In Fig. 3, ρmax(pad, r) = max{x : x + |pad[r](x)| ≤ r}, where
pad[r](x) is the (r − |x|)-bit padded string to x. For example, if the padding
scheme is 10∗, which is the simplest one, then ρmax(pad, r) = r − 1 and for
|x| = r − 1, |pad[r](x)=1. The function D.duplexing has two inputs, σ and �,

where σ ∈
⋃ρmax(pad,r)

n=0 Zn
2 and � ≤ r. For example, in case of the 10∗ padding

scheme, 0 ≤ |σ| ≤ r − 1.



550 D. Chang

Algorithm. The duplex construction duplex[f, pad, r]

Require: r < b
Require: ρmax(pad, r) > 0

Interface: D.initialize()

s = 0b

Interface: Z = D.duplexing(σ, �) with � ≤ r, σ ∈
⋃ρmax(pad,r)

n=0 Z
n
2 , and Z ∈ Z

�
2

P = σ||pad[r](|σ|)
s = s⊕ (P ||0b−r)
s = f(s)
return �s��

Fig. 3. The duplex construction duplex[f,pad, r] [5]: ρmax(pad, r) = max{x : x +
|pad[r](x)| ≤ r}, where pad[r](x) is the (r − |x|)-bit padded string to x

SpongeWrap [5]. The authenticated-encryption scheme SpongeWrap, as
shown in Fig. 4, is based on the duplex construction in Fig. 3. More precisely,
SpongeWrap is defined in Fig. 7. As we can see, its underlying padding scheme
pad is applied every block, because the duplex construction has to call the
padding scheme for every block. Note that each block also has one frame-bit 0 or
1 to separate a key, associate data, and a message and the last frame-bit should
be different from the second-last frame-bit to separately compute a ciphertext
and a tag. Therefore, the padding scheme of SpongeWrap is constructed by
the padding scheme of the duplex construction and frame-bits. More in detail, we
describe the padding scheme of SpongeWrap in Fig. 5. The padding scheme of
SpongeWrap (here, we call this PAD) has three inputs, K,N,M and returns

an output K̃||Ñ ||M̃ which is a multiple of r, where r is a block length.

Sponge-AE.We propose a new authenticated-encryption scheme, called Sponge-
AE, defined in Fig. 8. Sponge-AE is based on the sponge construction with any
injective, reversible, and prefix-free four-input padding scheme pad. We say that

f⊕

K0||1

0r
0c

f⊕

Ku-1||1

f⊕

Ku||0

f⊕

N0||0

f⊕

Nv-1||0

f⊕

Nv||1

⊕

M0||1C0

f

pad pad pad pad pad pad pad
⊕

f f f f⊕

Mw-1||1Cw-1

pad
⊕

⊕

Mw||0Cw

pad
⊕

⊕

0T0

pad
⊕

⊕

0Tt-1

pad
⊕

⊕

0Tt

pad
⊕

Fig. 4. SpongeWrap[f,pad, r, ρ] [5], where Ki, Ni,Mi ≤ ρ



Sufficient Conditions on Padding Schemes of Sponge Construction 551

The Padding Scheme of SpongeWrap[f, pad, r, ρ]: PAD(K,N,M) = K̃||Ñ ||M̃
Input : K, N , M

Output: K̃||Ñ ||M̃ .
Requirement : pad is the 10∗ padding.
Requirement : ρ = r − 2.

Let K=K0||K1||...||Ku with |Ki|=ρ for i < u, |Ku| ≤ ρ and |Ku| > 0 if u > 0
Let N=N0||N1||...||Nv with |Ni|=ρ for i < v, |Nv | ≤ ρ and |Nv | > 0 if v > 0
Let M=M0||M1||...||Mw with |Mi|=ρ for i < w, |Mw | ≤ ρ and |Mw| > 0 if w > 0

Let K̃=K0||1||pad[r](K0||1)||...||Ku−1 ||1||pad[r](Ku−1||1)||Ku||0||pad[r](Ku||0)
Let Ñ=N0||0||pad[r](N0||0)||...||Nv−1 ||0||pad[r](Nv−1||0)||Nv ||1||pad[r](Nv ||1)
Let M̃=M0||1||pad[r](M0||1)||...||Nw−1 ||1||pad[r](Mw−1||1)||Mw ||0||pad[r](Mw ||0)

Fig. 5. The Padding Scheme of SpongeWrap[f,pad, r, ρ] [5]: pad[r](x) is the (r−|x|)-
bit padded string to x

A Concrete Padding Scheme mPAD(K,N,M) = K̃||Ñ ||M̃
Input : K, N , M

Output: K̃||Ñ ||M̃ .
Requirement : pad is the 10∗ padding such that the padded message is a multiple of

r − 1.
Requirement : ρ = r − 1.

Let K′=pad(K)=K0||K1||...||Ku with |Ki|=r − 1 for each i
Let N ′=pad(N)=N0||N1||...||Nv with |Ni|=r − 1 for each i
Let M ′=pad(M)=M0||M1||...||Mw with |Mi|=r − 1 for each i

Let K̃=K0||1||...||Ku−1 ||1||Ku||0
Let Ñ=N0||0||...||Nv−1 ||0||Nv ||1
Let M̃=M0||1||...||Mw−1 ||1||Mw ||0

Fig. 6. A Concrete Padding Scheme mPAD(K,N,M) for Sponge-AE

a padding scheme pad is prefix-free if for any pair of M = (x, y, z, w) and
M ′ = (x′, y′, z′, w′) (M �= M ′) pad(M) is not a prefix of pad(M ′). Note that
Sponge-AE allows any tag-size. For example, we can define a concrete padding
scheme mPAD in Fig. 6, which is easily shown to be injective, reversible, and
prefix-free. Later, we will show that in the ideal permutation model, Sponge-AE
is secure as long as its padding scheme is injective, reversible, and prefix-free.

Comparison between Proposed Padding Schemes by SpongeWrap and
Sponge-AE.Compared to SpongeWrap, the proposed padding scheme of Sponge-
AE has at least one-bit gain for every block, because it doesn’t need to call the
10∗ padding scheme for every block unlike SpongeWrap. Also, SpongeWrap
They both use a frame bit for each block in order to make sure that the padding
schemes PAD (defined in Fig. 5) and mPAD (defined in Fig. 6) of SpongeWrap
and Sponge-AE, respectively, are injective, reversible, and prefix-free.
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Algorithm. SpongeWrap[f, pad, r, ρ]
Require: ρ ≤ ρmax(pad, r) - 1
Require: D = duplex[f, pad, r]

Interface: W.initialize(K) with K ∈ Z∗
2

Let K=K0||K1||...||Ku with |Ki|=ρ for i < u, |Ku| ≤ ρ and |Ku| > 0 if u > 0
D.initialize()
for i = 0 to u − 1 do

D.duplexing(Ki||1, 0)
end for
D.duplexing(Ku||0, 0)

Interface: (C, T ) = W .wrap(N,M, 
) with N,M ∈ Z∗
2 , 
 ≥ 0, C ∈ Z

|B|
2 ,

and T ∈ Z�
2

Let N=N0||N1||...||Nv with |Ni|=ρ for i < v, |Nv| ≤ ρ and |Nv| > 0 if v > 0
Let M=M0||M1||...||Mw with |Mi|=ρ for i < w, |Mw| ≤ ρ and |Mw| > 0 if w > 0
for i = 0 to v − 1 do

D.duplexing(Ni||0, 0)
end for
Z = D.duplexing(Nv||1, |M0|)
C = M0 ⊕ Z
for i = 0 to w − 1 do

Z = D.duplexing(Mi||1, |Mi+1|)
C = C||(Mi+1 ⊕ Z)

end for
Z = D.duplexing(Mw||0, ρ)
while |Z| < 
 do

Z = Z||D.duplexing(0, ρ)
end while
T = �Z��
return (C, T )

Interface: M = W .unwrap(N,C, T ) with N,C, T ∈ Z∗
2 , M ∈ Z

|C|
2 ∪ {error}

Let N=N0||N1||...||Nv with |Ni|=ρ for i < v, |Nv| ≤ ρ and |Nv| > 0 if v > 0
Let C=C0||C1||...||Cw with |Ci|=ρ for i < w, |Cw| ≤ ρ and |Cw| > 0 if w > 0
Let T=T0||T1||...||Tx with |Ti|=ρ for i < x, |Tx| ≤ ρ and |Tx| > 0 if x > 0
for i = 0 to v − 1 do

D.duplexing(Ni||0, 0)
end for
Z = D.duplexing(Nv||1, |C0|)
M0 = C0 ⊕ Z
for i = 0 to w − 1 do

Z = D.duplexing(Mi||1, |Ci+1|)
Mi+1 = Ci+1 ⊕ Z

end for
Z = D.duplexing(Mw||0, ρ)
while |Z| < 
 do

Z = Z||D.duplexing(0, ρ)
end while
if T = �Z�� then

return M0||M1||...||Mw

else
return Error

end if

Fig. 7. SpongeWrap[f, pad, r, ρ] [5]
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Algorithm. Sponge-AE[f,pad, r, k, n, �]

Requirement: pad(·, ·, ·, ·) = (pad1(·, ·, ·)||pad2(·)) is an injective, reversible, and
prefix-free four-input padding scheme.

Key Generation Algorithm: SAE.KeyGenerate(1k)
100 K ←r {0, 1}k

Encryption Algorithm: C = SAE.encrypt(K,N,A,M) with N ∈ Z
n
2 , A,M ∈ Z

∗
2

200 Let pad1(K,N,A) = (P0||....||Pv), for some positive v where each |Pi| = r.
210 Let pad2(M) = (M0||....||Mw), where |Mi| = r for 0 ≤ i ≤ w.
220 sa = 0r and sb = 0c

230 for i = 0 to v,
231 (sa||sb) = f((sa ⊕ Pi)||sb).
240 for i = 0 to w,
241 Ci = sa ⊕Mi

242 sa = Ci

243 (sa||sb) = f(sa||sb).
250 for i = 0 to � �

r
�,

251 zi = sa.
252 (sa||sb) = f(sa||sb).
260 Let T be the first � bits of z.
270 return (C(= C0||...||Cw), T )

Decryption Algorithm: M = SAE.decrypt(K,N,A,C, T ) with N ∈ Z
n
2 , A,C ∈ Z

∗
2,

T ∈ Z
�
2 and M ∈ Z

∗
2 ∪ {error}

300 Let pad1(K,N,A) = (P0||....||Pv), for some positive v where each |Pi| = r.
310 Let C = (C0||....||Cw), where |Ci| = r for 0 ≤ i ≤ w.
320 sa = 0r and sb = 0c

330 for i = 0 to v,
331 (sa||sb) = f((sa ⊕ Pi)||sb).
340 for i = 0 to w,
341 Mi = sa ⊕ Ci

342 sa = Ci

343 (sa||sb) = f(sa||sb).
350 for i = 0 to � �

r
�,

351 zi = sa.
352 (sa||sb) = f(sa||sb).
360 if T = T ′ return M(= pad2−1(M0||...||Mw)) otherwise return error

Fig. 8. Sponge-AE[f, pad, r, k, n, �]

4 Indifferentiable Security Proof of the Sponge
Construction with a Short Output-Size

In [3], it was proved that the sponge construction with any output-size � is
indifferentiable from a random oracle with any output size [3] under a condition
that the last block of any padded message is non-zero. What if the output-
size � is equal to or less than the block size r? In this section, we provide the
indifferentiable security of the sponge construction with � ≤ r as follows.
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Theorem 1. Let Spongef,pad,
 be the sponge construction with � ≤ r and any
injective and reversible padding scheme pad and an (r+ c)-bit ideal permutation

f . Then, Spongef,pad,
 is (O(q), O(q), O(lq), l, O(lq), q, l, σ, O( (2σ+1)2

2c+1 ))-
indifferentiable from a VIL random oracle R with �-bit output, where the simu-
lator S is defined in Fig. 10.

Proof. In Fig. 9 and Fig. 10, we exactly describe what (Spongef,pad,
, f, f
−1)

and (R,S, S−1) are. Now, we want to prove how closely they are to each other
by using indifferentiable security notion. In this paper, we follow the code-based
game-playing Proof technique [7]. In Fig. 9 and Fig. 10, we exactly describe what
(Spongef,pad,
, f, f

−1) and (R,S, S−1) are. Now, we want to prove how closely
they are to each other by using indifferentiable security notion. In this paper,
we follow the code-based game-playing Proof technique [7].

From the following differences between Games G0 to G5, we can know that for
any adversary D with at most q queries such that the maximum-bit length of a
query is at most l and the bit-length of total queries is at most σ, the following
inequality holds:

AdvindiffSpongef,pad,�,S
(D) =

|Pr[DSpongef,pad,�,f,f
−1

= 1]− Pr[DR,S,S−1

= 1]| ≤ σ2

2n+1 + (2σ+1)2

2c+1 .

Complexity of the Simulator S. Now we want to show that the complexity
of S is defined by (O(q), O(q), O(lq), l, O(lq)) for for any adversary D with at
most q queries such that the maximum-bit length of a query is at most l and the
bit-length of total queries is at most σ. As shown in Fig. 10, the simulator makes
a query to the VIL random oracle R only when the S-query is requested. So, the
maximum number of queries of any adversary A is q, so that of the simulator
is also O(q). In case of memory size, the simulator S should keep the graph
which has the maximum number of edges O(q). In case of time complexity of
the simulator S, S need to backwardly track all the way to the initial value 0r+c

in worse case. Since the maximum length of queries is l, so the time complexity
is bounded by O(lq). The remaining values l and O(lq) for the maximum length
of each query and the total length of queries made by S are clear.

G0 perfectly simulates (Spongef,pad,
, f, f
−1). This part is clear so we omit

the proof.

G0 and G1 are identical. In case of Game G0, for O2 and O3 queries, G0
chooses its response randomly from the outside of previous responses in order to
keep the property of a permutation. In case of Game G1, for O2 and O3 queries,
G0 firstly chooses its response randomly without considering the previous re-
sponses and then if there is a collision among the response, G0 again chooses its
response randomly from the outside of previous responses in order to keep the
property of a permutation. Therefore, two games G0 and G1 are identical.
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G1 and G2 are identical-until-bad. This is clear because all the codes imple-
mented by Games G1 and G2 are same unless bad events occur. Since all the

bad events are collision events, it is clear that Pr[bad] ≤ σ2

2n+1 , where σ is the
total block length of queries made by any indifferentiable adversary.

G2 and G3 are identical. This is clear because two games behave identically.

G3 and G4 are identical-until-bad. This is clear because all the codes im-
plemented by Games G3 and G4 are same unless bad events occur. Since all
the bad events are input and output collision events on the last c-bit, it is clear

that Pr[bad] ≤ (2σ+1)2

2c+1 , where σ is the total block length of queries made by any
indifferentiable adversary.

G4 and G5 are identical as long as the number of O2- or O3-queries is
less than 2c−1. This is the most important part of the proof. In case of Game
G4, the oracle O1 internally depends on O2 in line 1310. In case of Game G5,
the oracle O1 no longer depends on O2 in line 1110 but compute the response by
itself using a random oracle R. Because of this big change, the attacker will try
to find any inconsistency between the oracles O1 and O2 and O3. However, the
responses of O2 and O3 queries are determined in a way that there is no input
and output collision on the last c-bit as shown in lines 2220 and 3300 in Fig. 13
and lines 2211, 2220, and 3200 in Fig. 14, and all the distribution of each re-
sponse is random. And M1||...||Mi in line 2200 in Fig. 14 is uniquely determined
if it exists, because of there is no input and output collision on the last c-bit.
Therefore, as long as the number of O2 and O3 queries is less than 2c−1 so that
O2 and O3 can generate a response for any query, there is no way to find any
difference between G4 and G5.

G5 perfectly simulates (R,S, S−1). This part is clear so we omit the proof.

In case that the sponge construction uses the identity function (which is injective
and reversible) as the padding scheme and it accepts only a message of a multiple
block-length, the following corollary comes out from Theorem .

Corollary 1. Let Spongef,
 be the sponge construction with � ≤ r and an (r+c)-
bit ideal permutation f without any padding scheme and it accepts only a message
of multiple block-length. Then, Spongef,
 is (O(q), O(q), O(lq), l, O(lq), q, l, σ,

O( (2σ+1)2

2c+1 ))-indifferentiable from a VIL random oracle R, which accepts only a
message of multiple block-length, with �-bit output, where the simulator S without
a padding scheme is similarly defined in Fig. 10.

5 The Privacy and Authencity of Sponge-AE

The condition of the padding scheme of Sponge-AE is that the padding scheme is
injective, reversible, and prefix-free. Now, in this section, we provide the security
of privacy and authencity of Sponge-AE.
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(Spongef,pad,�, f, f
−1)

100 On Spongef,pad,�-query M ,
110 pad(M) = M1||....||Mt where |Mi| = r .
110 sa = 0r and sb = 0c

120 for i=1 to t
121 (sa||sb) = f((sa ⊕Mi)||sb)
121 Z = sa
130 return the first � bits of Z.
200 On f -query m,
210 v = f(m).
220 return v.
300 On f−1-query v,
310 m = f−1(v).
320 return m.

Fig. 9. (Spongef,pad,�, f, f
−1)

(R,S, S−1)

Initialize : X = ∅ nd Y = {0c}. R is everywhere undefined. the directed graph G is
initialized as {0r+c →ε 0r+c}, where 0r+c is the initial value of the sponge construction
and ε is the empty string.
1000 On R-query M ,
1100 if z = R(M), then return z.

1110 z
$← {0, 1}� and define R(M) := z.

1200 return z.
2000 On S-query m = (sa||sb), // where sa ∈ {0, 1}r and sb ∈ {0, 1}c
2100 if (m,v) ∈ X, then return v.
2200 if ∃ M1||...||Mi such that 0r+c →M1||...||Mi−1

((sa ⊕Mi)||sb) in G,

2210 then if ∃ M s.t. pad(M) = M1||...||Mi , then z = R(M) else z
$← {0, 1}�.

2211 w
$← {0, 1}r−�, v2

$← {0, 1}c\Y ∪{sb}, and add ((sa⊕Mi)||sb) →Mi

(z||w||v2) to G.

2220 else v1
$← {0, 1}r and v2

$← {0, 1}c \ Y ∪ {sb}.
2300 X = X ∪ {(m, v1||v2)}, Y = Y ∪ {sb, v2} and return v = v1||v2.
3000 On S−1-query v = (v1||v2), // where v1 ∈ {0, 1}r and v2 ∈ {0, 1}c
3100 if (m,v) ∈ X, then return m.

3200 sa
$← {0, 1}r and sb

$← {0, 1}c \ Y ∪ {v2}.
3300 X = X ∪ {(sa||sb, v)}, Y = Y ∪ {sb, v2} and return m = sa||sb.

Fig. 10. (R,S, S−1): G is the directed graph maintained by the simulator S

Theorem 2. (Privacy) Let Πf be Sponge-AE[f, pad, r, k, n, �] defined in Fig. 8.
Let a four-input padding scheme pad be injective, reversible, and prefix-free. Let
f be an ideal permutation over {0, 1}r+c. Then, for any PPT nonce-respecting
adversary A the following inequality holds.
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Game G0

Initialize : X = ∅.
1000 On O1-query M ,
1100 pad(M) = M1||....||Mt where |Mi| = r .
1200 sa = 0r and sb = 0c

1300 for i=1 to t
1310 (sa||sb) = O2((sa ⊕Mi)||sb)
1400 Z = sa
1500 return the first � bits of Z.
2000 On O2-query m, // This oracle implements the ideal permutation query f .
2100 if (m,v) ∈ X, then return v. // (m, v) ∈ X means m is a repeated query.

2200 v
$← {0, 1}r+c.

2300 if ∃ v′ s.t. (m, v′) ∈ X, then v
$← {0, 1}r+c \ {v′ : (m,v′) ∈ X}.

2400 X = X ∪ {(m, v)} and return v.
3000 On O3-query v, // this oracle implements the ideal permutation inverse

query f−1.
3100 if (m,v) ∈ X, then return m. // (m, v) ∈ X means v is a repeated query.

3200 m
$← {0, 1}r+c.

3300 if ∃ m′ s.t. (m′, v) ∈ X, then m
$← {0, 1}r+c \ {m′ : (m′, v) ∈ X}.

3400 X = X ∪ {(m, v)}, and return m.

Fig. 11. G0 perfectly simulates (Spongef,pad,�, f, f
−1)

AdvprivΠ (A) = |Pr[K $← {0, 1}k : AEK(·,·,·),f(·),f−1(·) = 1]

− Pr[A$(·,·,·),S(·),S−1(·) = 1]| ≤ (2σ+1)2

2c+1 + q
2k ,

where q is the number of queries made by A, and σ is the total block
length of all the padded messages queried by an adversary A. Let EK(·, ·, ·) be
SAE.encrypt(K, ·, ·, ·) which is the encryption algorithm of Sponge-AE. Spongef,r
is the sponge construction accepting only a message of a multiple of the block-size
r and returning a hash output of the size r. The simulator S is defined in the
same way with the simulator (with no padding scheme) defined in Fig. 10 and S
simulates the random oracle R by itself instead of having access to the random
oracle R, where R is the random oracle whose input size is a multiple of the
block-size r and output size is also the block-size r.

Proof. Firstly, we define pfR(pad(K, ·, ·, ·)), where pad(·, ·, ·, ·) =
(pad1(·, ·, ·)||pad2(·)) is same as the padding function of Sponge-AE, and
R is the random oracle whose input size is a multiple of the block-size r and
output size is also the block-size r.

Function pfR(pad(K, ·, ·, ·))
Input: a nonce N , an associate data A, and a message M .
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Game G1 and G2

Initialize : X = ∅.
1000 On O1-query M ,
1100 pad(M) = M1||....||Mt where |Mi| = r .
1200 sa = 0r and sb = 0c

1300 for i=1 to t
1310 (sa||sb) = O2((sa ⊕Mi)||sb)
1400 z = sa
1500 return the first � bits of Z.
2000 On O2-query m,
2100 if (m,v) ∈ X, then return v.

2200 v
$← {0, 1}r+c.

2220 if ∃ v′ s.t. (m, v′) ∈ X, then bad ← true,

and v
$← {0, 1}r+c \ {v′ : (m, v′) ∈ X} .

2230 X = X ∪ {(m, v)} and return v.
3000 On O3-query v,
3100 if (m,v) ∈ X, then return m.

3200 m
$← {0, 1}r+c.

3300 if ∃ m′ s.t. (m′, v) ∈ X, then bad ← true,

and m
$← {0, 1}r+c \ {m′ : (m′, v) ∈ X} .

3400 X = X ∪ {(m, v)}, and return m.

Fig. 12. G1 executes with boxed statements whereas G2 executes without these. G1
and G2 are identical-until-bad. G1 perfectly simulates G0.

Output: a ciphertext C and a tag T .
100 Let pad1(K,N,A) = (P0||....||Pv), for some positive v where each |Pi| = r.
110 Let pad2(M) = (M0||....||Mw), where |Mi| = r for 0 ≤ i ≤ w.
120 for i = 0 to w,
121 Ci = R(P0||....||Pv||M0||...||Mi−1)⊕Mi, where R is the random oracle.
130 Let z be the empty string.
140 for i = 0 to ' 
r (,
141 z = z||R(P0||....||Pv ||M0||...||Mw||0(i+1)r)
150 Let T be the first � bits of z.
160 return (C(= C0||...||Cw), T )

Then, the following inequalities prove the Theorem. Let SR be a simulator which
is same as the simulator R except that SR has access to the random oracle R
instead of simulating R.

AdvprivΠ (A)
= |Pr[K $← {0, 1}k : AEK(·,·,·),f,f−1

= 1]− Pr[A$(·,·,·),S,S−1

= 1]|
≤ |Pr[K $← {0, 1}k : B

Spongef,r(·),EK(·,·,·),f,f−1

A = 1]− Pr[B
R,$(·,·,·),SR,S−1R

A = 1]|
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Game G3 and G4

Initialize : X = ∅ nd Y = {0c}.
1000 On O1-query M ,
1100 pad(M) = M1||....||Mt where |Mi| = r .
1200 sa = 0r and sb = 0c

1300 for i=1 to t
1310 (sa||sb) = O2((sa ⊕Mi)||sb)
1400 z = sa
1500 return the first � bits of z.
2000 On O2-query m = (sa||sb), // where sa ∈ {0, 1}r and sb ∈ {0, 1}c
2100 if (m,v) ∈ X, then return v.

2200 v1||v2 $← {0, 1}r+c, where v1 ∈ {0, 1}r and v2 ∈ {0, 1}c.

2220 if v2 ∈ Y ∪ {sb}, then bad ← true, and v2
$← {0, 1}c \ Y ∪ {sb} .

2230 X = X ∪ {(m, v1||v2)}, Y = Y ∪ {sb, v2} and return v = v1||v2.
3000 On O3-query v = (v1||v2), // where v1 ∈ {0, 1}r and v2 ∈ {0, 1}c
3100 if (m,v) ∈ X, then return m.

3200 sa||sb $← {0, 1}r+c, where sa ∈ {0, 1}r and sb ∈ {0, 1}c.

3300 if sb ∈ Y ∪ {v2}, then bad ← true, and sb
$← {0, 1}c \ Y ∪ {v2} .

3400 X = X ∪ {(sa||sb, v)}, Y = Y ∪ {sb, v2} and return m = sa||sb.

Fig. 13. G4 executes with boxed statements whereas G3 executes without these. G3
and G4 are identical-until-bad. G3 perfectly simulates G2.

· · · · · · by Claim 1

≤ |Pr[K $← {0, 1}k : B
Spongef,r(·),EK(·,·,·),f,f−1

A = 1]

−Pr[K $← {0, 1}k : B
R,pfR(pad(K,·,·,·)),SR,S−1R

A = 1]|
+|Pr[K $← {0, 1}k : B

R,pfR(pad(K,·,·,·)),S,S−1

A = 1]− Pr[B
R,$(·,·,·),SR,S−1R

A = 1]|
= AdvindiffSpongef,r ,S

(CBA) · · · · · · by Claim 2

+|Pr[K $← {0, 1}k : B
R,pfR(pad(K,·,·,·)),S,S−1

A = 1]− Pr[B
R,$(·,·,·),SR,S−1R

A = 1]|
≤ AdvindiffSpongef,r ,SR(CBA ) +

q
2k
≤ (2σ+1)2

2c+1 + q
2k
· · · by Claim 3 & Corollary 1

Claim 1. |Pr[K $← {0, 1}k : AEK(·,·,·),f(·),f−1(·) = 1]− Pr[A$(·,·,·),S(·),S−1(·) = 1]|
≤ |Pr[K $← {0, 1}k : B

Spongef,r(·),EK(·,·,·),f,f−1

A = 1]− Pr[B
R,$(·,·,·),SR,S−1R

A = 1]|.

Proof. The only difference between S and SR (or, S−1 and S−1R) is that S
simulates the random oracle R but SR has access to R. Since $ has no inter-
action with R, S and SR have no difference from the adversarial point of view.
Moreover, we can easily construct an adversary BA to perfectly simulate the
three oracles of A because the last three oracles of BA identically works with
the three oracles of A. Therefore, Claim 1 holds. �
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Game G5

Initialize : X = ∅ nd Y = {0c}. R : {0, 1}∗ → {0, 1}� be a random oracle. the directed
graph G is initialized as {0r+c →ε 0r+c}, where 0r+c is the initial value of the sponge
construction and ε is the empty string.
1000 On O1-query M ,
1100 z = R(M).
1200 return z.
2000 On O2-query m = (sa||sb), // where sa ∈ {0, 1}r and sb ∈ {0, 1}c
2100 if (m,v) ∈ X, then return v.
2200 if ∃ M1||...||Mi such that 0r+c →M1||...||Mi−1

((sa ⊕Mi)||sb) in G,

2210 then if ∃ M s.t. pad(M) = M1||...||Mi , then z = R(M) else z
$← {0, 1}�.

2211 w
$← {0, 1}r−�, v2

$← {0, 1}c\Y ∪{sb}, and add ((sa⊕Mi)||sb) →Mi

(z||w||v2) to G.

2220 else v1
$← {0, 1}r and v2

$← {0, 1}c \ Y ∪ {sb}.
2300 X = X ∪ {(m, v1||v2)}, Y = Y ∪ {sb, v2} and return v = v1||v2.
3000 On O3-query v = (v1||v2), // where v1 ∈ {0, 1}r and v2 ∈ {0, 1}c
3100 if (m,v) ∈ X, then return m.

3200 sa
$← {0, 1}r and sb

$← {0, 1}c \ Y ∪ {v2}.
3300 X = X ∪ {(sa||sb, v)}, Y = Y ∪ {sb, v2} and return m = sa||sb.

Fig. 14. G5 perfectly simulates (R,S, S−1). And G5 perfectly simulates G4 as long as
the number of O2- or O3-queries is less than 2c−1.

Claim 2. |Pr[K $← {0, 1}k : ASpongef,r(·),EK(·,·,·),f,f−1

= 1] − Pr[K
$← {0, 1}k :

AR,pfR(pad(K,·,·,·)),SR,S−1R

= 1]| = AdvindiffSpongef,r ,SR(BA).
Proof.LetBA beanadversarywhichdistinguishes (Spongef,r(·), EK(·, ·, ·), f, f−1)

and (R, pfR(pad(K, ·, ·, ·)), SR, S−1R). Now,wewant to construct an indifferentia-
bility adversary CBA for Spongef,r which simulate BA’s oracles, where CBA has

oracle-access to (Spongef,r(·), f, f−1) or (R,SR, S−1R). Let (O1
1 , O

1
2 , O

1
3 , O

1
4) be

the oracles given to BA and let (O2
1 , O

2
2, O

2
3) given to BA. Since (O1

1 , O
1
3 , O

1
4) =

(O2
1 , O

2
2 , O

2
3), we only need to show how CBA simulates the oracleO1

2 .

Adversary C
O2

1 ,O
2
2 ,O

2
3

BA

Initialization: K
$← {0, 1}k.

On O1
1-query M by BA, return O2

1(M).
On O1

3-query m by BA, return O2
2(m).

On O1
4-query v by BA, return O2

3(v).
On O1

2-query (N,A,M) by BA, do the following procedure.
Let pad1(K,N,A) = (P0||....||Pv), for some positive v where each |Pi| = r.
Let pad2(M) = (M0||....||Mw), where |Mi| = r for 0 ≤ i ≤ w.
for i = 0 to w,
Ci = O2

1(P0||....||Pv||M0||...||Mi−1)⊕Mi, where R is the random oracle.
Let z be the empty string.
for i = 0 to ' 
r (,
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z = z||O2
1(P0||....||Pv||M0||...||Mw||0(i+1)r)

Let T be the first � bits of z.
return (C(= C0||...||Cw), T ).

return the final output of BA.

Now, it is trivial that CBA perfectly simulates the oracle O1
2 with using the oracle

O2
1 . In case that O2

1 = Spongef,r, CBA exactly simulates EK(·, ·, ·) by the defini-
tion of EK . In case that O2

1 = R, CBA also exactly simulates pfR(pad(K, ·, ·, ·))
by its definition. Therefore, Claim 2 holds. �

Claim 3. |Pr[K $← {0, 1}k : AR,pfR(pad(K,·,·,·)),SR,S−1R

= 1] −
Pr[AR,$(·,·,·),SR,S−1R

= 1]| ≤ q
2k
.

Proof. By the definition of pfR(pad(K, ·, ·, ·)), it always returns a random string
as long as the nonce is not repeated, because all the blocks of ciphertexts and
tags are randomly generated by the random oracle R on different inputs. And,
as long as the adversary does not make the first oracle-query whose first block
is the secret K, there is no way to find any inconsistency between the oracles.
Therefore, the above difference is bounded by the probability of guessing the key
K correctly, which is q

2k , where the key size is k and the maximum number of
queries is q.

Theorem 3. (Authencity) Let Πf be Sponge-AE[f, pad, r, k, n, �] defined in
Fig. 8. Let a four-input padding scheme pad be injective, reversible, and prefix-
free. Let f be an ideal permutation over {0, 1}r+c. Then, for any PPT nonce-
respecting adversary A the following inequality holds.

AdvauthΠf (A) = Pr[Expauth
Πf (A) = 1] ≤ (2σ + 1)2

2c+1
+

q

2k
+

q

2

,

where q is the number of queries made by A, and σ is the total block length of
all the padded messages queried by an adversary A.

Sketch of Proof. In order to forge, any adversary A should make a decryption
query (N ′, A′, C′, T ′) such that the decryption oracle’s output is not Invalid
and A did not, prior to making no earlier query (N ′, A′,M ′) which resulted in
a response C. Unlike the privacy security, the adversary A can use a nonce N ′

used previously. Note that pad is prefix-free. Also, as we proved in Theorem 2,
no adversary can distinguish between the encryption algorithm of Sponge-AE

and $ with probability more than (2σ+1)2

2c+1 + q
2k . Also, in case of $, the proba-

blity that a decryption query (N ′, A′, C′, T ′) is valid is at most q
2�
, where q is

the maximum number of queries and � is the tag-size. Therefore, the theorem
holds.
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6 Conclusion

In this paper, we studied a sufficient condition for the sponge construction and
the sponge-based AE scheme. In case of the AE scheme, we showed that any
injective, reversible, and prefix-free padding scheme is sufficient for its AE se-
curity. As one application, we proposed a concrete padding scheme for the AE
scheme which is slightly improved than the padding scheme of SpongeWrap
by applying the 10∗ padding scheme in few places unlike the padding scheme of
SpongeWrap.

Acknowledgements. We would like to appreciate all the reviewers of Indocrypt
2012 for their valuable comments to improve our paper a lot.
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Güneysu, Tim 339

Hofinger, Markus 358
Homsirikamol, Ekawat 509
Hong, Jin 303

Jean, Jérémy 225
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