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Abstract This survey aims at giving a comprehensive overview of the solution
theory of linear differential-algebraic equations (DAEs). For classical solutions a
complete solution characterization is presented including explicit solution formulas
similar to the ones known for linear ordinary differential equations (ODEs). The
problem of inconsistent initial values is treated and different approaches are dis-
cussed. In particular, the common Laplace-transform approach is discussed in the
light of more recent distributional solution frameworks.
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1 Introduction

Modeling physical phenomena relates physical variables via differential equations
as well as algebraic equations leading in general to a system description of the form

F(t, ẋ, x) = 0,

a differential-algebraic equation (DAE). However, this survey will not treat this
most general system description but it will consider its linear counterpart

Eẋ = Ax + f, (1.1)

where E,A ∈ R
m×n, m,n ∈ N, are constant matrices and f : R → R

m is some
inhomogeneity. If the matrix E is square and invertible, the DAE is equivalent to an
ordinary differential equation (ODE) of the form

ẋ = Ax + f. (1.2)
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For this ODE the solution theory is well understood and there have been no disputes
or different viewpoints on it in the last five or more decades. In fact, the solution
formula can concisely be expressed with the matrix exponential:

x(t) = eAtx0 +
∫ t

0
eA(t−τ)f (τ )dτ, x0 ∈ R

n; (1.3)

although the Jordan canonical form of A is essential to grasp the whole of the pos-
sibilities of solution behaviors. Some features of the solutions of an ODE are high-
lighted:

Existence. For every initial condition x(0) = x0, x0 ∈ R
n, and each (locally inte-

grable) inhomogeneity f there exists a solution.
Uniqueness. For any fixed inhomogeneity f the initial value x(0) uniquely deter-

mines the whole solution; in fact each single value x(t), t ∈ R, determines the
solution on the whole time axis.

Inhomogeneity. The solution is always one degree “smoother” then the inhomo-
geneity, i.e. if f is differentiable then x is at least twice differentiable, in particular,
non-smoothness of f does not prevent the ODE of having a solution (at least in
the sense of Carathéodory).

In Sects. 2.4 and 2.5 solution formulas similar to (1.3) will be presented for regu-
lar DAEs; however, for general DAEs none of these three properties have to hold
anymore as the following example shows.

Example 1.1 Consider the DAE
⎡
⎣0 1 0

0 0 0
0 0 0

⎤
⎦ ẋ =

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦x + f

which implies x2 = −f2, x1 = ẋ2 − f1 = −ḟ2 − f1 and f3 = 0. In particular, not
for all initial values or all inhomogeneities there exists a solution. Furthermore, x3 is
not restricted at all, hence uniqueness of solutions is not present. Finally, x1 contains
the derivative of the inhomogeneity so that the solution is “less smooth” than the in-
homogeneity which could lead to non-existence of solutions if the inhomogeneities
is not sufficiently smooth.

The aim of this survey is twofold: (1) to present a fairly complete classical solu-
tion theory for the DAE (1.1) also for the singular case; (2) to discuss the approaches
to treat inconsistent initial values and the corresponding distributional solution con-
cepts. In particular, a rigorous discussion of the so-called Laplace-transform ap-
proach to treat inconsistent initial values and its connection to distributional solu-
tion concepts is carried out. This is a major difference with the already available
survey by Lewis [32], which is not so much concerned with distributional solutions.
The focus of Lewis’ survey is more on system theoretic topics like controllability,
observability, stability and feedback, which are not treated here.
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This survey is structured as follows. In Sect. 2 classical (i.e. differentiable) so-
lutions of (1.1) are studied. It is shown how the Weierstraß and Kronecker canoni-
cal form of the matrix pencil sE − A ∈ R

m×n[s] can be used to fully characterize
the solutions. Solution formulas which do not need the complete knowledge of the
canonical forms will be presented, too. A short overview over the situation for time-
varying DAEs is given as well. Inconsistent initial values are the most discussed
topics concerning DAEs and different arguments how to treat them have been pro-
posed. One common approach to treat inconsistent values is the application of the
Laplace transform to (1.1); the details are explained in Sect. 4. However, the lat-
ter approach led to much confusion and therefore a time-domain approach based
on distributional solutions was developed and studied by a number of authors, see
Sect. 5.

2 Classical Solutions

In this section classical solutions of the DAE (1.1) are considered:

Definition 2.1 (Classical solution) A classical solution of the DAE (1.1) is any
differential function x ∈ C 1(R →R

n) such that Eẋ(t) = Ax(t)+f (t) holds for all
t ∈R.

It will turn out that existence of a classical solution in general also depends on the
smoothness properties of the inhomogeneity; if not mentioned otherwise it will be
assumed therefore in the following that the inhomogeneity f is sufficiently smooth,
e.g. by assuming that f is in fact smooth (i.e. arbitrarily often differentiable).

2.1 The Kronecker and Weierstraß Canonical Forms

The first appearance of DAEs (1.1) with a complete solution discussion seems to be
the one by Gantmacher [21] (Russian original 1953), where he considered classical
solutions. His analysis is based on the following notion of equivalence of matrix
pairs (called strict equivalence by him):

(E1,A1) ∼= (E2,A2)

:⇔ ∃S ∈R
m×m,T ∈ R

n×n both invertible: (E1,A1) = (SE2T ,SA2T ).

It is clear that for equivalent matrix pairs (E1,A1) and (E2,A2) (via the transfor-
mation matrices S and T ) the following equivalence holds:

x solves E1ẋ = A1x + f ⇔ z = T −1x solves E2ż = Az + S−1f.
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Gantmacher’s focus is actually on matrix pencils sE −A ∈ R
m×n[s] and the deriva-

tion of a canonical form corresponding to the above equivalence—the Kronecker
canonical form (KCF). The solution theory of the DAE (1.1) is a mere application
of the KCF. In particular, he does not consider inconsistent initial values or non-
smooth inhomogeneities. The existence and representation of the KCF is formulated
with the following result.

Theorem 2.1 (Kronecker canonical form [21, 28]) For every matrix pencil sE −
A ∈ R

m×n[s] there exist invertible matrices S ∈ C
m×m and T ∈ C

n×n such that, for
a, b, c, d ∈N and ε1, . . . , εa , ρ1, . . . , ρb , σ1, . . . , σc, η1, . . . , ηd ∈ N,

S(sE − A)T = diag
(
Pε1(s), . . . ,Pεa (s),Jρ1(s), . . . ,Jρb

(s),

Nσ1(s), . . . ,Nσc (s),Qη1(s), . . . ,Qηd
(s)
)
, (2.1)

where

Pε(s) = s

⎡
⎢⎣

0 1
. . .

. . .

0 1

⎤
⎥⎦−

⎡
⎢⎣

1 0
. . .

. . .

1 0

⎤
⎥⎦ ∈ R

ε×(ε+1)[s], ε ∈ N,

Jρ(s) = sI −

⎡
⎢⎢⎢⎢⎣

λ 1
. . .

. . .

. . . 1
λ

⎤
⎥⎥⎥⎥⎦ ∈C

ρ×ρ[s], ρ ∈ N, λ ∈ C,

Nσ (s) = s

⎡
⎢⎢⎢⎢⎣

0

1
. . .

. . .
. . .

1 0

⎤
⎥⎥⎥⎥⎦− I ∈R

σ×σ [s], σ ∈ N,

Qη(s) = s

⎡
⎢⎢⎢⎢⎣

0

1
. . .

. . . 0
1

⎤
⎥⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎣

1

0
. . .

. . . 1
0

⎤
⎥⎥⎥⎥⎦ ∈ R

(η+1)×η[s], η ∈ N.

The block-diagonal form (2.1) is unique up to reordering of the blocks and is called
Kronecker canonical form (KCF) of the matrix pencil (sE − A).

Note that in the KCF Pε(s)-blocks with ε = 0 and Qη(s)-blocks with η = 0 are
possible, which results in zero columns (for ε = 0) and/or zero rows (for η = 0) in
the KCF, see the following example.
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Example 2.1 (KCF of Example 1.1) By a simple interchanging of rows and columns
the KCF is obtained from Example 1.1 and has the following form

i.e. the KCF consists of one P0(s)-block, one N2(s)-block and one Q0(s)-block.

In the canonical coordinates the solution analysis is now rather straightforward
because each block on the diagonal and the associated variables can be considered
separately. The four different block types lead to the following solution characteri-
zations:

Pε(s)-block If ε = 0 then this simply means that the corresponding variable does
not appear in the equations and is therefore free and can be chosen arbitrarily. For
ε > 0 consider the differential equation Pε(

d
dt

)(x) = f which equivalently can be
written as the ODE

⎛
⎜⎜⎜⎝

ẋ2
ẋ3
...

ẋε+1

⎞
⎟⎟⎟⎠=

⎡
⎢⎢⎢⎢⎣

0

1
. . .

. . .
. . .

1 0

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

x2
x3
...

xε+1

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎝

f1
f2
. . .

fε

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

1
0
. . .

0

⎞
⎟⎟⎠x1.

Hence for any x1 and any inhomogeneity f there exist solutions for x2, x3, . . . , xε+1
uniquely determined by the initial values x2(0), . . . , x3(0). In particular, for all
initial values and all inhomogeneities there exist solutions which are not unique
because x1 can freely be chosen.

Jρ(s)-block The differential equation Jρ( d
dt

)(x) = f is a standard linear ODE,
i.e. it holds that for all initial values and all inhomogeneities a unique solution.

Nρ(s)-block Write Nρ(s) = sN − I , then it is easily seen that the differential op-
erator Nρ( d

dt
) : C ∞ → C ∞ is invertible with inverse

(
N

d

dt
− I

)−1

= −
ρ−1∑
i=0

Ni d

dt

i

. (2.2)

In particular for any smooth inhomogeneity the solution of the differential equation
N ( d

dt
)(x) = f is uniquely given by

x = −
ρ−1∑
i=0

Nif (i) =

⎛
⎜⎜⎜⎝

−f1

−f2 − ḟ1
...

−fρ − ḟρ−1 − · · · − f
(ρ−1)
1

⎞
⎟⎟⎟⎠ . (2.3)

In particular it is not possible to specify the initial values arbitrarily—they are
completely determined by the inhomogeneity.
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Qη(s)-block If η = 0 then no variable is present and the equation reads 0 = f ,
hence not for all inhomogeneities the overall DAE is solvable. If η > 0 then the so-
lution of the differential equation Qη(

d
dt

)(x) = f is given by (2.3) with ρ replaced
by η but only if the inhomogeneity fulfills

fη+1 = ẋη = −ḟη − f̈η − · · · − f
(η)

1 .

In particular not for all inhomogeneities and not for all initial values solutions exist.
However, when solutions exist they are uniquely given by (2.3).

A consequence of the above blockwise analysis is the following result.

Corollary 2.2 (Existence and uniqueness of solutions) The DAE (1.1) has a smooth
solution x for all smooth inhomogeneities f if, and only if, in the KCF the Qη(s)-
blocks are not present. Any solution x of (1.1) with fixed inhomogeneity f is
uniquely determined by the initial value x(0) if, and only if, in the KCF the Pε(s)-
blocks are not present.

The KCF without the Pε(s) and Qη(s) blocks is also called the Weierstraß
canonical form (WCF) and can be characterized directly in terms of the original
matrices. For this the notion of regularity is needed.

Definition 2.2 (Regularity) The matrix pencil sE − A ∈ R
m×n[s] is called regular

if, and only if, n = m and det(sE − A) is not the zero polynomial. The matrix
pair (E,A) and the corresponding DAE (1.1) is called regular whenever sE − A is
regular.

Theorem 2.3 (Weierstraß canonical form [49]) The matrix pencil sE − A ∈
R

n×n[s] is regular if, and only if, there exist invertible matrices S,T ∈ C
n×n such

that sE − A is transformed into the Weierstraß canonical form (WCF)

S(sE − A)T = s

[
I 0
0 N

]
−
[
J 0
0 I

]
,

where J ∈ C
n1×n1 , N ∈C

n2×n2 , n1 +n2 = n, are matrices in Jordan canonical form
and N is nilpotent.

In conclusion, if one aims at similar solution properties as for classical linear
ODEs the class of regular DAEs is exactly the one to consider, see also Sects. 2.4
and 2.5. In the classical solution framework there is still a gap between ODEs and
regular DAEs because (1.1) does not have solutions for all initial values and not for
insufficiently smooth inhomogeneities. However, in a distributional solution frame-
work these two missing properties can also be recaptured, see Sect. 5.
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2.2 Solution Formulas Based on the Wong Sequences: General
Case

For practical problems the above solution characterization is not so useful as the
determination of the KCF is numerically ill posed. Therefore, solution formulas
which do not need the complete KCF are of interest. One of the first work in this
direction is the one by Wilkonson [50], who presents an iterative algorithm to obtain
the solutions. More geometrical approaches can be traced back to Dieudonné [15]
and Wong [51]; the latter introduced the two important subspace sequences for a
matrix pair (E,A) ∈ (Rm×n)2:

V0 = R
n, Vi+1 = A−1(EVi ), i = 0,1,2, . . . ,

W0 = {0}, Wj+1 = E−1(AWj ), j = 0,1,2, . . . ,
(2.4)

which therefore will be called Wong sequences in the following. It is easily seen that
the Wong sequences are nested and terminate after finitely many steps, i.e.

∃i∗ ∈ {0,1, . . . , n} : V ∗ :=
⋂
i∈N

Vi = Vi∗ ,

∃j∗ ∈ {0,1, . . . , n} : W ∗ :=
⋃
j∈N

Wj = Wj∗ .

Bernhard [6] used the first Wong sequence in his geometrical analysis of (1.1) where
the inhomogeneity has the special form f = Bu for some suitable matrix B . Uti-
lizing both Wong sequences Armentano [2] was able to obtain a Kronecker like
form. However, his arguments are purely geometrical and it is not apparent how
to characterize the solutions of (1.1) because the necessary transformation matrices
are not given explicitly. This problem was resolved recently in [4], where the fol-
lowing connection between the Wong sequences and a quasi-Kronecker form was
established.

Theorem 2.4 (Quasi Kronecker form (QKF) [4]) Consider the DAE (1.1) and the
corresponding limits V ∗ and W ∗ of the Wong sequences (2.4). Choose any invert-
ible matrices [P1,R1,Q1] ∈ R

n×n and [P2,R2,Q2] ∈R
m×m such that

imP1 = V ∗ ∩ W ∗, im[P1,R1] = V ∗ + W ∗,
imP2 = EV ∗ ∩ AW ∗, im[P2,R2] = EV ∗ + AW ∗,

then T = [P1,R1,Q1], S = [P2,R2,Q2]−1 put the matrix pencil sE−A into quasi-
Kronecker triangular form (QKTF):

S(sE − A)T =
⎡
⎣ sEP − AP sEPR − APR sEPQ − APQ

0 sER − AR sERQ − ARQ

0 0 sEQ − AQ

⎤
⎦ , (2.5)
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where λEP − AP has full row rank for all λ ∈ C ∪ {∞}, sER − AR is regular, and
λEQ − AQ has full column rank for all λ ∈ C ∪ {∞}. Furthermore, the following
generalized Sylvester equations are solvable:

0 = ERQ + ERF1 + F2EQ, 0 = ARQ + ARF1 + F2AQ,

0 = EPR + EP G1 + G2ER, 0 = APR + AP G1 + G2AR,

0 = (EPQ + EPRF1) + EP H1 + H2EQ,

0 = (APQ + APRF1) + AP H1 + H2AQ,

and any solutions F1,F2,G1,G2,H1,H2 yield a quasi-Kronecker form (QKF) via

⎡
⎣I −G2 −H2

0 I −F2
0 0 I

⎤
⎦

−1

S(sE − A)T

⎡
⎣I G1 H1

0 I F1
0 0 I

⎤
⎦

=
⎡
⎣ sEP − AP 0 0

0 sER − AR 0
0 0 sEQ − AQ

⎤
⎦ , (2.6)

where the diagonal block entries are the same as in (2.5).

The solution analysis can now be carried out via analyzing the blocks in the QKF
(2.6) individually:

• sEP − AP : Due to the full rank assumption there exists a unimodular1 matrix
[MP (s),KP (s)] such that

(sEP − AP )
[
MP (s),KP (s)

]= [I,0], (2.7)

see e.g. [4, Lem. 3.1]. The solutions xP of the DAE EP ẋP = AP xP + fP are
given by

xP = MP

(
d

dt

)
(fP ) + KP

(
d

dt

)
(u)

where u : R → R
nP −mP is an arbitrary (sufficiently smooth) function and where

mP × nP with mP < nP is the size of the matrix pencil sEP −AP . Furthermore,
each initial condition xP (0) = x0

P can be achieved by an appropriate choice of u.
• sER −AR : The solution behavior for a regular DAE was already discussed at the

end of Sect. 2.1, a further discussion is carried out in Sects. 2.4 and 2.5.

1A polynomial matrix is called unimodular if it is invertible and its inverse is again a polynomial
matrix.
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• sEQ − AQ: Analogous to the sEP − AP block there exists a unimodular matrix[MQ(s)

KQ(s)

]
such that

[
MQ(s)

KQ(s)

]
(sEQ − AQ) =

[
I

0

]
. (2.8)

Then EQẋQ = AQxQ + fQ is solvable if, and only if,

KQ

(
d

dt

)
(fQ) = 0

and the solution is uniquely determined by

xQ = MQ

(
d

dt

)
(fQ).

In particular, the initial values cannot be specified as they are already fixed by
xQ(0) = MQ( d

dt
)(fQ)(0).

In summary, the QKF decouples the corresponding DAE into the underdeter-
mined part (existence but non-uniqueness of solutions), the regular part (existence
and uniqueness of solutions) and the overdetermined part (uniqueness of solu-
tion but possible non-existence). Furthermore, the above solution characterization
can also be carried out directly with the QKTF (2.5), where the analysis for the
sEQ − AQ block remains unchanged, for the regular block the inhomogeneity fR

is replaced by fR + (ERQ
d
dt

−ARQ)(xQ) and for the sEP −AP block the inhomo-
geneity fP is replaced by fP + (EPR

d
dt

− APR)(xR) + (EPQ
d
dt

− APQ)(xQ).

Remark 2.1 (Refinement of QKF [3]) If R1 and R2 in Theorem 2.4 are chosen in
the special way R1 = [RJ

1 ,RN
1 ] and R2 = [RJ

2 ,RN
2 ] where

im
[
P1,R

J
1

]= V ∗, im
[
P2,R

J
2

]= EV ∗,

then a decoupling of the regular part in (2.5) corresponding the WCF is obtained as
well. In particular, applying the Wong sequences again to the regular part (see next
section) is not necessary for a further analysis.

2.3 Existence and Uniqueness of Solutions with Respect to In-
and Outputs

In practical application the inhomogeneity f in the DAE (1.1) is often generated by
a lower dimensional input u, i.e. f = Bu for some suitable matrix B; furthermore,
an output y = Cx + Du is introduced to represent the signals of the systems which
are available for measurement and/or are of interest. The resulting DAE is then
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often called descriptor system [52] (other common names are singular systems [8]
or generalized state-space system [48])

Eẋ = Ax + Bu,

y = Cx + Du.
(2.9)

Clearly, a solution theory for general DAEs (1.1) is also applicable to descriptor
systems (2.9). In particular, regularity of the matrix pair (E,A) guarantees existence
and uniqueness of solutions for any sufficiently smooth input. However, existence
and uniqueness of solutions with respect to the input and output might hold for
descriptor systems even when the matrix pair (E,A) is not regular as the following
example shows.

Example 2.2 Consider the following descriptor system:

[
0 0
0 0

]
ẋ =

[
1 0
0 0

]
x +

[
1
0

]
u,

y = [
1 0

]
x + [

0
]
u,

which has for any input u the unique output y = −u. However, the corresponding
matrix pair (E,A) = ([ 0 0

0 0

]
,
[ 1 0

0 0

])
is not regular.

It is therefore useful to define the notion of external regularity.

Definition 2.3 (External regularity) The descriptor system (2.9) and the corre-
sponding matrix tuple (E,A,B,C,D) are called externally regular if, only if, for
all sufficiently smooth inputs u there exist (classical) solutions x of (2.9) and the
output y is uniquely determined by u and x(0).

With the help of the quasi-Kronecker form it is now possible to prove the follow-
ing characterization of external regularity.

Theorem 2.5 (Characterization of external regularity) The descriptor system (2.9)
is externally regular if, and only if,

rk[sE − A,B] = rk[sE − A] = rk

[
sE − A

C

]
(2.10)

for infinitely many s ∈C.

Proof The rank of a matrix does not change when multiplied with invertible ma-
trices (from the left and the right), hence it can be assumed that the matrix pair
(E,A) is already in QKF (2.6) with corresponding transformation matrices S

and T . According to the block size in (2.6) let SB = [B�
P ,B�

R ,B�
Q]� and CT =
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[CP ,CR,CQ]. Then (2.10) is equivalent to

rk[sEQ − AQ,BQ] = rk[sEQ − AQ] and rk

[
sEP − AP

CP

]
= rk[sEP − AP ]

for infinitely many s ∈ C. The rank is also invariant under multiplication with uni-
modular polynomial matrices, hence (2.10) is also equivalent to, invoking (2.8) and
(2.7),

rk

[
I MQ(s)BQ

0 KQ(s)BQ

]
= rk

[
I

0

]
and rk

[
I 0

CP MP (s) CP KP (s)

]
= rk

[
I 0

]
.

Because a polynomial matrix is zero if and only if it is zero at infinitely values it
follows that (2.10) is equivalent to the condition KQ(s)BQ ≡ 0 and CP Kp(s) ≡ 0.
Taking into account the solution characterization given in conclusion to Theorem 2.4
the characterization of external regularity is shown. �

Note that condition (2.10) already appears in the survey paper by Lewis [32]
based on arguments in the frequency domain.

2.4 Solution Formulas Based on the Wong Sequences: Regular
Case

If the Wong sequences (2.4) are applied to a regular matrix pencil sE−A ∈R
n×n[s]

then the limits V ∗ and W ∗ fulfill (see [2, 5, 51])

V ∗ ∩ W ∗ = {0}, V ∗ + W ∗ = R
n,

EV ∗ ∩ AW ∗ = {0}, EV ∗ + AW ∗ = R
n.

In particular [V,W ] and [EV,AW ] are invertible matrices for all basis matrices V

and W of V ∗ and W ∗. In fact, any of these invertible matrices yield a transformation
which put the matrix pencil sE − A into a quasi-Weierstraß form (QWF):

Theorem 2.6 (Quasi Weierstraß form (QWF) [2, 5]) Consider a regular matrix
pencil sE − A ∈ R

n×n[s] and the corresponding Wong sequences with limits V ∗
and W ∗. For any full rank matrices V,W with imV = V ∗ and imW = W ∗ let
T = [V,W ] and S = [EV,AW ]−1. Then

S(sE − A)T = s

[
I 0
0 N

]
−
[
J 0
0 I

]
, (2.11)

where J ∈ R
n1×n1 , n1 ∈ N, is some matrix and N ∈ R

n2×n2 , n2 = n − n1, is nilpo-
tent. In particular, V ∗ is exactly the space of consistent initial values, i.e. for all
x0 ∈ V ∗ there exists a unique (classical) solution x of Eẋ = Ax with x(0) = x0.
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The difference to the WCF from Theorem 2.3 is that J and N are not assumed to
be in Jordan canonical form. Furthermore, the transformation matrices for the QWF
can be chosen easily; it is only necessary to calculate the Wong sequences.

The knowledge of the two limiting spaces V ∗ and W ∗ is enough to obtain an
explicit solution formula similar to the solution formula (1.3) for ODEs as the next
result shows. To formulate the explicit solution formula it is necessary to define
certain projectors as follows.

Definition 2.4 (Consistency, differential and impulse projector[43]) Consider a reg-
ular matrix pair (E,A) and use the same notation as in Theorem 2.6. The consis-
tency projector is given by

Π(E,A) := T

[
I 0
0 0

]
T −1,

the differential projector is given by

Πdiff
(E,A) := T

[
I 0
0 0

]
S,

and the impulse projector is given by

Π
imp
(E,A) := T

[
0 0
0 I

]
S,

where the block structure is as in the QWF (2.11). Furthermore, let

Adiff := Πdiff
(E,A)A and Eimp = Π

imp
(E,A)E.

Note that the above defined matrices do not depend on the specific choice of the
matrices V and W , because when choosing different basis matrices Ṽ and W̃ it must
hold that V = Ṽ Q and W = W̃P for some invertible P and Q. Hence

T̃ = [Ṽ , W̃ ] = T

[
P 0
0 Q

]
and S̃ = [EṼ ,AW̃ ]−1 =

[
P −1 0

0 Q−1

]
S

and the invariance of the above definitions with respect to the choice of V and W is
obvious. Furthermore, the differential and impulse projectors are not projectors in
the usual sense because they are in general not idempotent.

Theorem 2.7 (Explicit solution formula based on Wong sequences [47]) Let
(E,A) be a regular matrix pair and use the notation from Definition 2.4. Then all
solutions of (1.1) are given by, for c ∈ R

n,

x(t) = eAdifftΠ(E,A)c +
∫ t

0
eAdiff(t−τ)Πdiff

(E,A)f (τ )dτ −
n−1∑
i=0

(
Eimp)iΠ imp

(E,A)f
(i)(t).

(2.12)
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In particular,

x(0) = Π(E,A)c −
n−1∑
i=0

(
Eimp)iΠ imp

(E,A)f
(i)(0)

i.e. c ∈ R
n implicitly specifies the initial value (but in general x(0) = c even when

c ∈ V ∗).

In the homogeneous case the following equivalence holds [43]:

Eẋ = Ax ⇔ ẋ = Adiffx ∧ x(0) ∈ V ∗,

which motivates the name differential projector. There is also a motivation for the
name of the impulse projector, see the end of Sect. 4 as well as Sect. 5.

The Wong sequences appeared sporadically in the DAE literature: For example,
Yip and Sincovec [52] used them to characterize regularity of the matrix pencil,
Owens and Debeljkovic [36] characterized the space of consistent initial values via
the Wong sequences; they are also included in the text books [1, 29] but not in the
text books [7–9, 14, 30]. In general it seems that the connection between the Wong
sequences and the (quasi-)Weierstraß/Kronecker form and their role in the solution
characterization is not well known or appreciated in the DAE community (especially
in the case of singular matrix pencils).

2.5 The Drazin Inverse Solution Formula

Another explicit solution formula was proposed by Campbell et al. [11] already in
1976 and is based on the Drazin inverse.

Definition 2.5 (Drazin inverse [17]) For M ∈ R
n×n a matrix D ∈ R

n×n is called
Drazin inverse if, and only if,

1. DM = MD,
2. D = DMD,
3. ∃ν ∈ N : Mν = Mν+1D.

In [17] it is shown that the Drazin inverse is unique and it is easy to see that the
Drazin inverse of M is given by

MD = T

[
J−1 0

0 0

]
T −1,

where the invertible matrix T is such that

M = T

[
J 0
0 N

]
T −1,
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J is invertible and N is nilpotent. In particular, for invertible M the Drazin inverse
is just the classical inverse, i.e. M−1 = MD .

The following solution formula for the DAE (1.1) based on the Drazin inverse
needs commutativity of the matrices E and A, however, as also regularity is assumed
the following result shows that this is not a restriction of generality.

Lemma 2.8 (Commutativation of (E,A) [11]) Assume (E,A) is regular and chose
λ ∈R such that λE − A is invertible. Then

(λE − A)−1E and (λE − A)−1A

commute, i.e. the whole equation (1.1) can simply be multiplied from the left with
(λE − A)−1 which will not change the solution properties but will guarantee com-
mutativity of the coefficient matrices.

Theorem 2.9 (Explicit solution formula based on the Drazin inverse [11]) Consider
the regular DAE (1.1) with EA = AE. Then all solutions x are given by

x(t) = eEDAtEDEc +
∫ t

0
eEDA(t−τ)EDf (τ)dτ

− (
I − EDE

) n−1∑
i=0

(
EAD

)i
ADf (i)(t). (2.13)

A direct comparison of the solution formula (2.12) based on the Wong sequences
and (2.13) indicates that EDA plays the role of Adiff, EDE plays the role of the
consistency projector and ED plays the role of the differential projector. However,
the connection between the impulse projector and Eimp to the expressions involving
the Drazin inverse of A is not immediately clear. The following result justifies the
previous observations.

Lemma 2.10 (Wong sequences and Drazin inverse [5]) Consider the regular matrix
pair (E,A) with EA = AE and use the notation from Theorem 2.6. Then

ED = T

[
I 0
0 0

]
S and AD = T

[
JD 0
0 I

]
S.

In particular, also taking into account E = S−1
[

I 0
0 N

]
T −1 and A = S−1

[
J 0
0 I

]
T −1,

ED = Πdiff
(E,A),

EDA = Πdiff
(E,A)A = Adiff,

EDE = T

[
I 0
0 0

]
SS−1

[
I 0
0 N

]
T −1 = Π(E,A),

(
EAD

)i =
(

S−1
[
I 0
0 N

]
T −1T

[
JD 0
0 I

]
S

)i

= S−1
[
(JD)i 0

0 Ni

]
S, i ∈ N,
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and with some more effort, using EV ∗ = V ∗ and AW ∗ = W ∗ in the commuting
case (see [5]), it follows that

(
I − EDE

)(
EAD

)i
AD = T

[
0 0
0 Ni

]
S = (

Eimp)iΠ imp
(E,A).

This shows that indeed the two solution formulas (2.12) and (2.13) are identical in
the commuting case. Note that in the solution formula (2.13) the Drazin inverse AD

appears and one might therefore think that the occurrence of zero eigenvalues in A

plays some special role for the solution. However, this is just an artifact and it turns
out that in the expression

AD = T

[
JD 0
0 I

]
S

the matrix JD can be replaced by an arbitrary matrix without changing the result
of the solution formula (2.13). One canonical choice is to replace JD by the zero
matrix which yields the impulse projector and which makes the “correction term”
(I − EDE) superfluous.

2.6 Time-Varying DAEs

In this section the time-varying version of (1.1), i.e.

E(t)ẋ(t) = A(t)x(t) + f (t),

is briefly discussed.
Campbell and Petzold [10] proved that if E(·) and A(·) have real analytical en-

tries then a solution characterization similar to Corollary 2.2 holds. In particular,
they showed that unique solvability is equivalent to finding time-varying (analyti-
cal) transformation matrices S(·), T (·), such that

(
S(t)E(t)T (t), S(t)A(t)T (t) − S(t)E(t)T ′(t)

)=
([

I 0
0 N(t)

]
,

[
J (t) 0

0 I

])
,

where N(t) is a strictly lower triangular (and hence nilpotent) matrix. In particular,
as in the time-invariant case, the DAE decouples into an ODE part and a pure DAE
part. It is easily seen that for a strictly lower triangular matrix N(t) also the differ-
ential operator N(·) d

dt
is nilpotent, hence the inverse operator of (N(·) d

dt
− I ) can

be calculated nearly identically as in (2.2):

(
N(·) d

dt
− I

)−1

= −
ν−1∑
i=0

(
N(·) d

dt

)i

,

where ν ∈N is the nilpotency index of the operator N(·) d
dt

.
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If the coefficient matrices are not analytical the situation is not so clear anymore
and different approaches have been proposed. Most methods have their motivation
in numerical simulations and a detailed description and discussion is outside the
scope of this survey. The interested reader is referred to the nice survey by Rabier
and Rheinboldt [38], and to the text book by Kunkel and Mehrmann [30] as well as
the recent monograph by Lamour, März and Tischendorf [31]. However, all these
approaches do not allow for discontinuous coefficient matrices. These are studied in
[46] and because of the connection to inconsistent initial value problems the prob-
lem of discontinuous coefficient matrices is further discussed in Sect. 5.

3 Inconsistent Initial Values and Distributional Solutions

After having presented a rather extensive discussion of classical solutions, this sec-
tion presents an introductory discussion of the problem of inconsistent initial values.
From the above derived solution formulas for (1.1) it becomes apparent that x(0)

cannot be chosen arbitrarily, certain parts of x(0) are already fixed by the DAE and
the inhomogeneity, cf. Theorem 2.7. In the extreme case that the QWF of (E,A)

only consists of the nilpotent part, the initial value x(0) is completely determined
by the inhomogeneity and no freedom to choose the initial value is left. However,
there are situations where one wants to study the response of a system described by
a DAE when an inconsistent initial value is given. Examples are electrical circuits
which are switched on at a certain time [48]. There have been different approaches
to deal with inconsistent initial values, e.g. [12, 18, 35, 37, 39, 42], some of them
will be presented in detail in the later sections. All have in common that jumps
as well as Dirac impulses may occur in the solutions. The Dirac impulse is a dis-
tribution (a generalized function), hence one must enlarge the considered solution
space to also include distributions. In fact, also the presence of non-smooth inho-
mogeneities (or inputs) can lead to distributional solutions. However, the latter do
not produce conceptional difficulties as the solution characterization of the previous
section basically remains unchanged.

In order to be able to make mathematical precise statements the classical distri-
bution theory [41] is revised first. The space of test functions is given by

C ∞
0 := {

ϕ :R → R | ϕ ∈ C ∞ has compact support
}
,

which is equipped with a certain topology.2 The space of distributions, denoted by
D, is then the dual of the space of test functions, i.e.

D := {
D : C ∞

0 → R | D is linear and continuous
}
.

2The topology is such that a sequence (ϕk)k∈N of test functions converges to zero if, and only if,
(1) the supports of all ϕk are contained within one common compact set K ⊆ R and (2) for all
i ∈ N, ϕ

(i)
k converges uniformly to zero as k → ∞.
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A large class of ordinary functions, namely locally integrable functions, can be em-
bedded into D via the following injective3 homomorphism:

f �→ fD, with fD(ϕ) :=
∫
R

f ϕ.

The main feature of distributions is the ability to take derivatives for any distribution
D ∈D via

D′(ϕ) := −D
(
ϕ′).

Simple calculations show that this is consistent with the classical derivative, i.e. if
f is differentiable, then

(fD)′ = (
f ′)

D
.

In particular, the Heaviside unit step 1[0,∞) has a distributional derivative which can
easily be calculated to be

(1[0,∞)D)′(ϕ) = ϕ(0) =: δ(ϕ),

hence it results in the well known Dirac impulse δ (at t = 0). In general, the Dirac
impulse δt at time t ∈ R is given by δt (ϕ) := ϕ(t). Furthermore, if g is a piecewise
differentiable function with one jump at t = tj , i.e. g is given as

g(t) =
{

g1(t), t < tj ,

g2(t), t ≥ tj ,

where g1 and g2 are differentiable functions and

g1(t) :=
{

g′
1(t), t < tj ,

g′
2(t), t ≥ tj ,

then

(gD)′ = (
g1)

D
+ (

g(tJ +) − g(tJ −)
)
δtj . (3.1)

In other words, taking derivatives of a general jump results in a Dirac impulse at the
jump position whose amplitude is the height of the jump.

Finally, distributions can be multiplied with smooth functions α:

(αD)(ϕ) = D(αϕ)

and it is easily seen that this multiplication is consistent with the pointwise multi-
plication of functions and that the Leibniz product rule holds:

(αD)′ = α′D + αD′.

3Two locally integrable functions which only differ on a set of measure zero are identified with
each other.
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Now it is no problem to consider the DAE (1.1) in a distributional solution space,
instead of x and f being vectors of functions they are now vectors of distributions,
i.e. x ∈ D

n and f ∈ D
m where m × n is the size of the matrices E and A. The

definition of the matrix vector product remains unchanged4 so that (1.1) reads as m

equations in D.
Considering distributional solutions, however, does not help to treat inconsistent

initial value; au contraire, distributions cannot be evaluated at a certain time because
they are not functions of time, so writing x(0) = x0 makes no sense. Even when as-
suming that a pointwise evaluation is well defined for certain distributions, the DAE
(1.1) will still not exhibit (distributional) solution with arbitrary initial values. This
is easily seen when considering the DAE Nẋ = x + f with nilpotent N . Then also
in the distributional solution framework the operator N d

dt
− I : D → D is invertible

with inverse as in (2.2) and there exists a unique (distributional) solution given by

x = −
n−1∑
i=0

Nif (i),

hence the initial value of x cannot be assigned arbitrarily (i.e. independently of the
inhomogeneity).

So what does it then mean to speak of a solution of (1.1) with inconsistent initial
value? The motivation for inconsistent initial values is the situation that the system
descriptions gets active at the initial time t = 0 and before that the system was
governed by different (maybe unknown) rules. This viewpoint was also expressed
by Doetsch [16, p. 108] in the context of distributional solutions for ODEs:

The concept of “initial value” in the physical science can be understood only when the past,
that is, the interval t < 0, has been included in our considerations. This occurs naturally for
distributions which, without exception, are defined on the entire t -axis.

So mathematically, there is some given past trajectory x0 for x up to the initial time
and the DAE (1.1) only holds on the interval [0,∞). This means that a solution of
the following initial trajectory problem (ITP) is sought:

x(−∞,0) = x0
(−∞,0),

(Eẋ)[0,∞) = (Ax + f )[0,∞),
(3.2)

where x0 ∈ D
n is an arbitrary past trajectory and DI for some interval I ⊆ R and

D ∈ D denotes a distributional restriction generalizing the restrictions of functions
given by

fI (t) =
{

f (t), t ∈ I,

0, t /∈ I.

4Some authors [30, 38] use a different definition for the matrix vector product which is due to the
different viewpoint of a distributional vector x as a map from (C ∞

0 )n to R instead of a map from
C ∞

0 to R
n. The latter seems the more natural approach in view of applying it to (1.1), but it seems

that both approaches are equivalent at least with respect to the solution theory of DAEs.
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A fundamental problem is the fact (see Lemma 5.1) that such a distributional re-
striction does not exist!

This problem was resolved especially in older publication [8, 9, 48] by ignoring
it and/or by arguing with the Laplace transform (see the next section). Cobb [13]
seems to be the first to be aware of this problem and he resolved it by introduc-
ing the space of piecewise-continuous distributions; Geerts [22, 23] was the first to
use the space of impulsive-smooth distributions (introduced in [27]) as a solution
space for DAEs. Seemingly unaware of these two approaches, Tolsa and Salichs
[44] developed a distributional solution framework which can be seen as a mix-
ture between the approaches of Cobb and Geerts. The more comprehensive space of
piecewise-smooth distributions was later introduced [45] to combine the advantages
of the piecewise-continuous and impulsive-smooth distributional solution spaces.
The details are discussed in Sect. 5.

Cobb [12] also presented another approach by justifying the impulsive response
due to inconsistent initial values via his notion of limiting solutions. The idea is to
replace the singular matrix E in (1.1) by a “disturbed” version Eε which is invertible
for all ε > 0 and Eε → E as ε → 0. If the solutions of the corresponding initial
value ODE problem ẋ = E−1

ε Ax, x(0) = x0 converges to a distribution, then Cobb
calls this the limiting solution. He is then able to show that the limiting solution is
unique and equal to the one obtained via the Laplace-transform approach. Campbell
[9] extends this result also to the inhomogeneous case.

4 Laplace Transform Approaches

Especially in the signal theory community it is common to study systems like (1.1)
or (2.9) in the so called frequency domain (in contrast to the time domain). In partic-
ular, when the input-output mapping is of interest the frequency domain approach
significantly simplifies the analysis. The transformation between time and frequency
domain is given by the Laplace transform defined via the Laplace integral:

ĝ(s) :=
∫ ∞

0
e−st g(t)dt (4.1)

for some function g and s ∈ C. Note that in general the Laplace integral is not well
defined for all s ∈ C and a suitable domain for ĝ must be chosen [16]. If a suitable
domain exists, then ĝ = L {g} is called the Laplace transform of g and, in general,
L {·} denotes the Laplace transform operator. Again note that it is not specified
at this point which class of functions have a Laplace transform and which class
of functions are obtained as the image of L {·}. The main feature of the Laplace
transform is the following property, where g is a differentiable function for which g

and g′ have Laplace transforms:

L
{
g′}(s) = sL {g}(s) − g(0), (4.2)
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which is a direct consequence of the definition of the Laplace integral invoking
partial differentiation. If g is not continuous at t = 0 but g(0+) exists and g′ denotes
the derivative of g on R \ {0}, then (4.2) still holds in a slightly altered form:

L
{
g′}(s) = sL {g}(s) − g(0+). (4.3)

In particular, the Laplace transform does not take into account at all how g behaved
for t < 0 which is a trivial consequence of the definition of the Laplace integral. This
observation will play an important role when studying inconsistent initial values.

Taking into account the linearity of the Laplace transform the descriptor system
(2.9) is transformed into

sEx̂(s) = Ax̂(s) + Bû(s) + Ex(0+),

ŷ(s) = Cx̂(s) + Dû(s).
(4.4)

If the matrix pair (E,A) is regular and x(0+) = 0, the latter can be solved easily
algebraically:

ŷ(s) = (
C(sE − A)−1B + D

)
û(s) =: G(s)û(s), (4.5)

where G(s) is a matrix over the field of rational functions and is usually called
transfer function. As there are tables of functions and its Laplace transforms it is
often possible to find the solutions of descriptor system with given input simply by
plugging the Laplace transform of the input in the above formula and lookup the
resulting output ŷ(s) to obtain the solution y(t) in the time domain. Furthermore,
many important system properties can be deduced from properties (like the zeros
and poles) of the transfer function directly.

A first systematic treatment of descriptor systems in the frequency domain was
carried out by Rosenbrock [40]. He, however, only considered zero initial values and
the input-output behavior. In particular, he was not concerned with a solution theory
for general DAEs (1.1) with possible inconsistent values. Furthermore, he restricted
attention to inputs which are exponentially bounded (guaranteeing existence of the
Laplace transform), hence formally his framework could not deal with arbitrary
(sufficiently smooth) inputs.

The definition of the Laplace transform can be extended to be well defined for
certain distributions as well [16], therefore consider the following class of distribu-
tions:

D≥0,k := {
D = (gD)(k)

∣∣where g :R → R is continuous and g(t) = 0 on (−∞,0)
}
.

For D ∈D≥0,k with D = (gD)(k) the (distributional) Laplace transform is now given
by

LD{D}(s) := skL {g}(s)
on a suitable domain in C. Note that δ ∈ D≥0,2 and it is easily seen that

LD{δ} = 1. (4.6)
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Furthermore, for every locally integrable function g for which L {g} is defined on a
suitable domain it holds that

LD{gD} = sL

{∫
0
g

}
[16]= s

1

s
L {g} = L {g}, (4.7)

i.e. the distributional Laplace transform coincides with the classical Laplace trans-
form defined by (4.1).

A direct consequence of the definition of LD is the following derivative rule for
all D ∈⋃k D≥0,k :

LD

{
D′}(s) = sLD{D} (4.8)

which seems to be in contrast to the derivative rule (4.3), because no initial value
occurs. The latter can actually not be expected because general distributions do not
have a well defined function evaluation at a certain time t . However, the deriva-
tive rule (4.8) is consistent with (4.3); to see this let g be a function being zero on
(−∞,0), differentiable on (0,∞) with well defined value g(0+). Denote with g′
the (classical) derivative of g on R \ {0}, then (invoking linearity of LD)

LD

{
(gD)′

}
(s)

(3.1)= LD

{(
g′)

D
+ g(0+)δ

}
(s)

= LD

{(
g′)

D

}
(s) + g(0+)LD{δ}(s) (4.6),(4.7)= L

{
g′}+ g(0+),

which shows equivalence of (4.8) and (4.3). The key observation is that the distribu-
tional derivative takes into account the jump at t = 0 whereas the classical derivative
ignores it, i.e. in the above context

(gD)′ = (
g′)

D
.

As it is common to identify g with gD (even in [16]), the above distinction is difficult
to grasp, in particular for inexperienced readers. As this problem plays an important
role when dealing with inconsistent initial values, it is not surprising that researchers
from the DAE community who are simply using the Laplace transform as a tool,
struggle with the treatment of inconsistent initial values, cf. [34].

Revisiting the treatment of the descriptor system (2.9) in the frequency domain
one has now to decide whether to use the usual Laplace transform resulting in (4.4)
or the distributional Laplace transform resulting in

sEx̂(s) = Ax̂(s) + Bû(s),

ŷ(s) = Cx̂(s) + Dû(s),
(4.9)

where the initial value x(0+) does not occur anymore. In particular, if the matrix
pair (E,A) is regular, the only solution of (4.9) is given by (4.5) independently
of x(0+). In particular, if u = 0 the only solution of (4.9) is x̂(s) = 0 and ŷ(s) =
0. Assuming a well defined inverse Laplace transform this implies that the only
solution of (2.9) with u = 0 is the trivial solution, which is of course not true in
general. Altogether the following dilemma occurs.
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Dilemma (Discrepancy between time domain and frequency domain) Consider the
regular DAE (1.1) or more specifically (2.9) with zero inhomogeneity (input) but
non-zero initial value.

• An ad hoc analysis calls for distributional solutions in response to inconsistent
initial values. For consistent initial value there exist classical (non-zero) solutions.

• Using the distributional Laplace transform to analyze the (distributional) solu-
tions of (1.1) or (2.9) reveals that the only solution is the trivial one. In particular,
no initial values (neither inconsistent nor consistent ones) are taken into account
at all.

This problem was already observed in [16, p. 108] and is based on the definition
of the distributional Laplace transform which is only defined for distributions van-
ishing on (−∞,0). The following “solution” to this dilemma was suggested [16,
p. 129]: Define for D ∈⋃k D≥0,k the “past-aware” derivative operator d−

dt
:

d−
dt

D := D′ − d−
0 δ, (4.10)

where d−
0 ∈ R is interpreted as a “virtual” initial value for D(0−). Note, however,

that, by definition, D(0−) = 0 for every D ∈⋃k D≥0,k ; hence at this stage it is not
clear why this definition makes sense. This problem was also pointed out by Cobb
[12]. Nevertheless, a motivation for this choice will be given in Sect. 5.

Using now the past-aware derivative in the distributional formulation of (1.1) one
obtains

Ex′ = Ax + Bu + Ex−
0 δ,

y = Cx + Du,
(4.11)

where x−
0 ∈R

n is the virtual (possible inconsistent) initial value for x(0−) and solu-
tions are sought in the space (

⋃
k D≥0,k)

n, i.e. x is assumed to be zero on (−∞,0).
Applying the distributional Laplace transform to (4.11) yields

sEx̂(s) = Ax̂(s) + Bû(s) + Ex−
0 ,

ŷ(s) = Cx̂(s) + Dû(s).
(4.12)

In contrast to (4.4), x−
0 is not the initial value for x(0+) but is the virtual initial

value for x(0−). If the matrix pair (E,A) is regular, the solution of (4.12) can now
be obtained via

x̂(s) = (sE − A)−1(Bû(s) + Ex−
0

)
and using the inverse Laplace transform. Because E is not invertible in general, the
rational matrix (sE −A)−1 may contain polynomial entries resulting in polynomial
parts in x̂ corresponding to Dirac impulses in the time domain, for details see the
end of this section.
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The solution formula for x̂(s) is possible to calculate analytically when the ma-
trices E, A, and B are known and for suitable inputs u the inverse Laplace transform
of x̂(s) can also be obtained analytically. This is the main advantage of the Laplace
transform approach. There are, however, the following major drawbacks:

1. Within the frequency domain it is not possible to motivate the incorporation of
the (inconsistent) initial values as in (4.11); in fact, Doetsch [16] who seems to
have introduced this notion, needs to argue with the help of the distributional
derivative and (4.10) within the time domain!

2. The Laplace transform ignores everything that was in the past, i.e. on the interval
(−∞,0); this is true for the classical Laplace transform (by definition of the
Laplace integral) as well as for the distributional Laplace transform (by only
considering distributions which vanish for t < 0). Hence the natural viewpoint
of an initial trajectory problem (3.2) as also informally advocated by Doetsch
cannot possibly be treated with the Laplace transform approach.

3. A frequency domain analysis gets useless when the original system is time-
varying or nonlinear, whereas (linear) time-domain methods may in principle
be extended to also treat time-variance and certain non-linearities. In fact, the
piecewise-smoothly distributional solution framework as presented in Sect. 5
can be used without modification for linear time-varying DAEs [46] and also
for certain non-linear DAEs [33].

4. Making statements about existence and uniqueness of solution with the help of
the frequency domain heavily depends on an isomorphism between the time-
domain and the frequency domain; there are, however, only a few special iso-
morphisms between certain special subspaces of the frequency and time domain,
no general isomorphism is available, see also the discussion concerning (4.9).

This section on the Laplace domain concludes with the calculation of the re-
initialization of the inconsistent initial value as well as the resulting Dirac impulses
occurring in the solution. Therefore, consider the “distributional version” (following
Doetsch) of (1.1):

Eẋ = Ax + fD + Ex−
0 δ, (4.13)

where x−
0 ∈ R

n, and its corresponding Laplace transformed version in frequency
domain

sEx̂(s) = Ax̂(s) + f̂ (s) + Ex−
0 . (4.14)

The unique solution of (4.14) in frequency domain is given by

x̂(s) = (sE − A)−1(f̂ (s) + Ex−
0

)
,

which needs regularity of the matrix pair (E,A) to be well defined, which will there-
fore be assumed in the following. Applying a coordinate transformation x = T

( v
w

)
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according to the QWF (2.11), the solution in the new coordinates is given by

(
v̂(s)

ŵ(s)

)
= T −1(sE − A)−1

(
f̂ (s) + ET

(
v−

0
w−

0

))

= (sSET − SAT )−1
(

Sf̂ (s) + SET

(
v−

0
w−

0

))
,

where x−
0 =: T ( v−

0

w−
0

)
. Hence, invoking the QWF (2.11), the solution formula decou-

ples into

v̂(s) = (sI − J )−1(f̂1(s) + v−
0

)
,

ŵ(s) = (sN − I )−1(f̂2(s) + Nw−
0

)= −
ν−1∑
i=0

Nisi
(
f̂2(s) + Nw−

0

)
,

where Sf =: ( f1
f2

)
and ν ∈ N is the nilpotency index of N . Since (sI − J )−1 is a

strictly proper rational matrix, the solution for v (resulting from taking the inverse
Laplace transform) is the corresponding standard ODE solution (1.3). In particular,
v(0+) = v−

0 and no Dirac impulses occur in v. Applying the inverse Laplace trans-
formation on the solution formula for ŵ(s), one obtains the solution w = wf + wi ,
where wf is the response with respect to the inhomogeneity given by

wf := −
ν−1∑
i=0

Ni(f2D)(i)

and wi consists of Dirac impulses at t = 0 produced by the inconsistent initial value:

wi := −
ν−1∑
i=0

Ni+1w−
0 δ(i).

Note that in order to obtain wf by using the correspondence (4.8), the distributional
derivatives of f2 have to be considered. As the (distributional) Laplace transform
can only be applied to distributions vanishing on (−∞,0), the inhomogeneity f2

will in general have a jump at t = 0, hence wf will also contain Dirac impulses

depending on f
(i)
2 (0+), i = 0,1, . . . , ν − 1. In summary:

Theorem 4.1 (Solution formula obtained via the Laplace transform approach) Con-
sider the regular DAE (1.1) with its “distributional version” (4.13). Let ν ∈ N be
the nilpotency index of N in the QWF (2.11) of the matrix pair (E,A). Assume
f : R → R

n is zero on (−∞,0) and ν − 1 times differentiable on (0,∞) with well
defined values f (i)(0+), i = 0,1, . . . , ν − 1. Use the notation from Definition 2.4.
Then x ∈ (

⋃
k D≥0,k)

n given by (2.12) on (0,∞) with c = x−
0 and by the impulsive
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part at t = 0, denoted by x[0],

x[0] = −
ν−2∑
i=0

(
Eimp)i+1

i∑
j=0

Π
imp
(E,A)f

(i−j)(0+)δ(j)

−
ν−2∑
i=0

(
Eimp)i+1

(I − Π(E,A))x
−
0 δ(i) (4.15)

is the unique solution of (4.13) obtained via solving (4.14). In particular,

x(0+) = Π(E,A)x
−
0 +

n−1∑
i=0

(
Eimp)iΠ imp

(E,A)f
(i)(0+), (4.16)

hence if f ≡ 0 then the consistent reinitialization is given by the consistency projec-
tor Π(E,A) via

x(0+) = Π(E,A)x
−
0 .

Proof Invoking (3.1), one obtains

(f2D)(i)[0] =
i−1∑
j=0

f
(i−1−j)

2 (0+)δ(j),

hence

wf [0] = −
ν−2∑
i=0

Ni+1
i∑

j=0

f
(i−j)

2 (0+)δ(j).

Now using the identities, cf. [47],

Adiff = T

[
J 0
0 0

]
T −1, Eimp = T

[
0 0
0 N

]
T −1,

T

(
f1
0

)
= Πdiff

(E,A)f, T

(
0
f2

)
= Π

imp
(E,A)f, T

(
v−

0
0

)
= Π(E,A)x

−
0 ,

T

(
0

w−
0

)
= (I − Π(E,A))x

−
0

yields the claimed solution formula. �

5 Distributional Solutions

The previous section introduced distributional solutions in order to treat inconsistent
initial values with the help of the Laplace transform. This leads to the consideration
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of the distributional space
⋃

k D≥0,k which contains all distributions which can be
written as a (distributional) kth derivative, k ∈ N, of a continuous function being
zero on (−∞,0) and of which a Laplace transform exists. This choice is motivated
by the applicability of the Laplace transform and is actually not motivated by dealing
with inconsistent initial values. In fact, as was pointed out in the previous section, the
Laplace transform ignores by definition/design all what has happened before t < 0
and is therefore in principle not suitable to treat inconsistent initial values coming
from the past. Most researchers in the field agree with the notion that an inconsistent
initial is due to a past which was not governed by the system description (1.1). One
way of formalizing this viewpoint is the ITP (3.2). In general, having a past which
obeys different rules then the present means that the overall system description is
time-variant which gives another reason why the Laplace-transform approach runs
into difficulties.

5.1 The Problem of Distributional Restrictions

Treating the ITP (3.2) in a distributional solution framework is, however, also not
straightforward, because (as already mentioned above) the distributional restriction
used in (3.2) is not well defined.

Lemma 5.1 (Bad distribution [45]) Let D be the (distributional, i.e. weak∗) limit of
the distributions:

Dk :=
k∑

i=0

diδdi
, where di := (−1)i

i + 1
, i, k ∈N.

Then the restriction (in the sense of [45]) of D to the interval [0,∞) is not a well-
defined distribution.

Proof Clearly,

D[0,∞) =
∞∑

j=0

d2j δd2j
,

however, applying D[0,∞) to a test function ϕ which is identically one on [0,1]
yields

D[0,∞)(ϕ) =
∞∑

j=0

d2j δd2j
(ϕ) =

∞∑
j=0

1

2j
= ∞,

which shows that D[0,∞) is not a well defined distribution. �

Remark 5.1 (Restriction to open intervals) The above results remain true when
considering restriction to open intervals. However, it should be mentioned here that
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nevertheless the equation FI = GI makes sense for arbitrary distributions F,G ∈D

and any open interval I ⊆ R by defining:

FI = GI :⇔ ∀ϕ ∈ C ∞
0 with suppϕ ⊆ I : F(ϕ) = G(ϕ).

In fact, this definition is consistent with the restriction-definition to be established
in the following for a special class of distributions [45, Prop. 2.2.10]. Nevertheless,
restricting the second equation in the ITP (3.2) to the closed interval [0,∞) is es-
sential. Taking an open restriction in both equations of (3.2) would imply that the
past and the present are decoupled so that the initial trajectory would not influence
the future trajectory. To be more precise: Any (distributional) solution x of (3.2)
will exhibit a jump at t = 0 in response to an inconsistent value x0(0−), but the
derivative of this jump appears as a Dirac impulse in the expression Eẋ. While the
restriction to the open interval (0,∞) would neglect this Dirac impulse, the restric-
tion to the closed interval [0,∞) keeps the Dirac impulse in the second equation of
the ITP (3.2) and hence the past can influence the present.

5.2 Cobb’s Space of Piecewise-Continuous Distributions

The need to define a restriction for distributions was already advocated by Cobb
[13]; although his motivation was not the ITP (3.2) but a rigorous definition of the
impulsive term D[t] of a distribution D at time t ∈ R which can be viewed as a
restriction to the interval [t, t]. To this end, Cobb first defined the space of piecewise-
continuous distributions given by

DpwC 0 :=

⎧⎪⎪⎨
⎪⎪⎩

D ∈D

∣∣∣∣∣∣∣∣

∃T = {ti ∈R|i ∈ Z} ordered and locally finite

∃g ∈ C 0
pw∀i ∈ Z : D(ti ,ti+1) = (gD)(ti ,ti+1)

in the sense of Remark 5.1

⎫⎪⎪⎬
⎪⎪⎭

,

where C 0
pw denotes the space of piecewise-continuous functions, in particular, for

any g ∈ C 0
pw the values g(t+) and g(t−) are well defined for all t ∈ R.

Definition 5.1 (Cobb’s distributional restriction [13]) Let D ∈DpwC 0 with g ∈ C 0
pw

and T = {ti ∈ R|i ∈ Z} such that D coincides with gD on each interval (ti , ti+1),
i ∈ Z. For any τ ∈ R choose ε > 0 such that (τ − ε, τ ) ⊆ (ti , ti+1) for some i ∈ Z.
Then the restriction of D to the interval [τ,∞) is defined via

D[τ,∞)(ϕ) =

⎧⎪⎨
⎪⎩

0, if suppϕ ⊆ (−∞, τ ],
D(ϕ) − ∫ τ

τ−ε
g(t)ϕ(t)dt, if suppϕ ⊆ [τ − ε,∞),

D[τ,∞)(ϕ
ε), otherwise,

where ϕε ∈ C ∞
0 is such that ϕ = ϕτ + ϕε with suppϕτ ⊆ (−∞, τ ] and suppϕε ⊆

[τ − ε,∞).
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It is easily seen that this definition does not depend on the specific choice of
ϕε , hence D[τ,∞) is a well defined (continuous) operator on C ∞

0 and therefore a
distribution. In fact, D[τ,∞) ∈ DpwC 0 with g[τ,∞) as the corresponding piecewise-
continuous function. The restriction to the closed interval (−∞, τ ] is defined
analogously, and the restriction to arbitrary intervals can be defined as follows,
s, t ∈ R∪ {∞}:

D(s,t) = D − D[t,∞) − D(−∞,s],

D[s,t] = D[s,∞) − D(t,∞),

D[s,t) = D[s,∞) − D[t,∞),

D(s,t] = D(s,∞) − D(t,∞).

It is worth noting that it is not difficult to show that

DpwC 0 =

⎧⎪⎪⎨
⎪⎪⎩

D = gD +
∑
t∈T

Dt

∣∣∣∣∣∣∣∣

g ∈ C 0
pw, T ⊆ R is locally finite, ∀t ∈ T

∃nt ∈ N, αt
1, . . . , α

t
nt

∈ R : Dt =
nt∑

k=0

αt
kδ

(k)
t

⎫⎪⎪⎬
⎪⎪⎭

and the restriction of D ∈DpwC 0 with the above representation D = gD +∑
t∈T Dt

to an interval I ∈R is given by

DI = gID +
∑

t∈T ∩I

Dt .

The space of piecewise-continuous distributions also allows a pointwise evalu-
ation in the following three senses, for t ∈ R and D ∈ DpwC 0 with corresponding

g ∈ C 0
pw:

• the right sided evaluation: D(t+) := g(t+),
• the left sided evaluation: D(t−) = g(t−),
• the impulsive part: D[t] := D[t,t].

The following relates the restriction with the derivative.

Lemma 5.2 (Derivative of a restriction [13, Prop. 1]) Let D ∈ DpwC 0 and assume
D′ ∈ DpwC 0 as well. Then, for any τ ∈R,

(D[τ,∞))
′ = (

D′)
[τ,∞)

+ D(τ−)δτ .

Note that Cobb did not include the assumption D′ ∈DpwC 0 in his result; however,
without this assumption the restriction of D′ to some interval is not defined, because
in general D′ is not a piecewise-continuous distributions anymore (actually Cobb
claims that the result is “obvious”; this is quite often a hint that there might be
something wrong).
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Remark 5.2 (A distributional motivation of Doetsch’s past-aware derivative)
Lemma 5.2 now gives a justification of the past-aware derivative (4.10) as prop-
agated by Doetsch, because D[0,∞) as well as (D′)[0,∞) are elements of the space⋃

k D≥0,k , however, D can still be non-zero on (−∞,0) and D(0−) = 0 in general.

A connection between (consistent) distributional solution of (1.1) and the so-
lutions of “distributional” DAEs (4.13) was established in [13, Prop. 2], a clearer
connection, also allowing for inconsistent initial values, will be formulated in the
context of piecewise-smooth distributions (see Sect. 5.4).

5.3 Impulsive-Smooth Distributions as Solution Space

The space of impulsive-smooth distributions was introduced by Hautus [26] (with-
out denoting them as such) and was first used by this name in the context of optimal
control problems [27]. Geerts [22–24] was then the first to use them as a solution
space for DAEs. The space of impulsive-smooth distributions Cimp is defined in this
earlier work as follows:

Cimp

:=
{

D = g[0,∞)D + Dimp

∣∣∣∣ g ∈ C ∞,Dimp =
k∑

i=0

αiδ
(i), k ∈ N, α0, . . . , αk ∈ R

}
.

Similar as in the Laplace transform approach, Geerts considers the distributional
version (4.13) instead of (2.9) and he rewrites the (distributional) derivative as the
convolution with δ′:

δ′ ∗ Ex = Ax + f + Ex0δ. (5.1)

By viewing Cimp as a commutative algebra with convolution as multiplication, the
distributional DAE can now be written as

pEx = Ax + f + Ex0,

where p = δ′ and δ is the unit with respect to convolution and hence denoted by one.
The (time-domain) equation is now algebraically identically to the one obtained by
the Laplace transformation approach without the need to think about problems like
the existence of the Laplace transform and domain of convergence. In particular, ex-
istence and uniqueness results directly apply because no isomorphism between dif-
ferent solution spaces is needed. Nevertheless, the definition of Cimp still assumes
that all involved variables are identically zero on (−∞,0), hence speaking of in-
consistent initial values is conceptionally as difficult as for the Laplace transform
approach. In summary, viewing x0 in (5.1) as the initial value for x(0−) cannot be
motivated within the impulsive-smooth distributional framework, because, by defi-
nition, x(0−) = 0.
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In fact, there is no reason to consider variables which have to vanish on (−∞,0):
Rabier and Rheinboldt [37] were the first to use the space of impulsive-smooth
distributions which can also be non-zero in the past. The formal definition is

Cimp
(
R

∗)

:=

⎧⎪⎪⎨
⎪⎪⎩

D = f −
(−∞,0)D

+ Dimp + f +
(0,∞)D

∣∣∣∣∣∣∣∣
f −, f + ∈ C ∞,Dimp =

k∑
i=0

αiδ
(i),

k ∈ N, α0, . . . , αk ∈R

⎫⎪⎪⎬
⎪⎪⎭

.

Clearly,

Cimp ⊂ Cimp
(
R

∗)⊂ DpwC 0 ⊂ D,

in particular, the three types of evaluation defined for piecewise-continuous distri-
butions are also well defined for impulsive-smooth distribution as well as the dis-
tributional restriction. The main difference to the space of piecewise-continuous
distribution is the fact that the space of impulsive-smooth distribution is closed un-
der differentiation. In particular, impulsive-smooth distributions are arbitrarily often
differentiable within the space of impulsive-smooth distributions.

Within the impulsive-smooth distributional framework the ITP (3.2)

x(−∞,0) = x0
(−∞,0),

(Eẋ)[0,∞) = (Ax + f )[0,∞)

is well defined for all initial trajectories x0 ∈ Cimp(R
∗)n, all inhomogeneities f ∈

Cimp(R
∗)m and solutions x are sought in Cimp(R

∗)n. In fact, the following result
holds, which finally gives a satisfying and rigorous motivation for the incorporation
of the (inconsistent) initial value as in (4.13).

Theorem 5.3 (Equivalent description of the ITP (3.2)) Consider the ITP (3.2)
within the impulsive-smooth distributional solution framework with fixed initial tra-
jectory x0 ∈ Cimp(R

∗)n and inhomogeneity f ∈ Cimp(R
∗)m. Then x ∈ Cimp(R

∗)n
solves the ITP (3.2) if, and only if, z := x − x0

(−∞,0) = x[0,∞) solves

z(−∞,0) = 0,

(Eż)[0,∞) = (Az + f )[0,∞) + Ex0(0−)δ.
(5.2)

Proof Let x be a solution of the ITP (3.2) and let z = x[0,∞). Then, clearly,
z(−∞,0) = 0. Furthermore,

(Eż)[0,∞) = (Eẋ)[0,∞) − (
E
(
x0
(−∞,0)

)′)
[0,∞)

= (Ax + f )[0,∞) + Ex0(0−)δ

= (Az + f )[0,∞) + Ex0(0−)δ,
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which shows that z = x[0,∞) is indeed a solution of (5.2). On the other hand, let z be
a solution of (5.2) and define x := z + x0

(−∞,0)
. Then, clearly, x(−∞,0) = x0

(−∞,0)
.

Furthermore,

(Eẋ)[0,∞) = (Eż)[0,∞) + (
E
(
x0
(−∞,0)

)′)
[0,∞)

= (Az + f )[0,∞) + Ex0(0−)δ − Ex0(0−)δ

= (Ax + f )[0,∞). �

Remark 5.3

1. If (5.2) is considered within the one-sided impulsive-smooth distributional
framework, i.e. f ∈ (Cimp)

m and z ∈ (Cimp)
n then (5.2) simplifies to

Eż = Az + f + Ex0(0−)δ. (5.3)

2. Comparing the result of Theorem 5.3 with the result of Cobb [13, Prop. 2] reveals
three main differences: (1) Cobb only states one direction and not the equiva-
lence, (2) instead of the ITP (3.2) Cobb just considers the original DAE (1.1),
hence his result concerns only consistent solutions, (3) Cobb assumes that (5.3)
has a unique solution.

3. Regularity of the matrix pair (E,A) is not assumed; in particular, neither is it
assumed that for all inhomogeneities f there exist solutions to (3.2) and (5.2), nor
is it assumed that solutions of (3.2) and (5.2) are uniquely given for fixed initial
trajectory and fixed inhomogeneity. However, due to the established equivalence
all existence and uniqueness results obtained for (5.3) carry over to the ITP (3.2).

Although Rabier and Rheinboldt [37] introduced the space of impulsive-smooth
distribution which allow a clean treatment of the ITP (3.2), they did not follow
this approach. Instead, they redefine the inhomogeneity to make inconsistent initial
values consistent. To this end, let x0 ∈ Cimp(R

∗)n be a given initial trajectory and
f ∈ Cimp(R

∗)m a given inhomogeneity and consider the ITP-DAE

x(−∞,0) = x0
(−∞,0),

Eẋ = Ax + fITP,
(5.4)

where

fITP := Eẋ0
(−∞,0) − Ax0

(−∞,0) + f[0,∞).

Note that x(−∞,0) = x0
(−∞,0) already implies, due to the special choice of fITP, that

(Eẋ)(−∞,0) = (Ax + fITP)(−∞,0),

which shows that (5.4) is in fact equivalent to the ITP (3.2). However, the form of
(5.4) has certain disadvantages compared to the ITP formulation (3.2):
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1. The second equation of (5.4) suggest that the DAE (1.1) is valid globally (just
with a different inhomogeneity), which conflicts with the intuition that an incon-
sistent initial value is due to the fact that the system description (1.1) is only valid
on [0,∞) and not in the past.

2. In (5.4) the past trajectory of x is formally determined by two equations which
could in general be conflicting (depending on the choice of fITP).

3. When studying an autonomous system (i.e. without the presence of an inhomo-
geneity), the formulation (5.4) formally leaves the class of autonomous systems.

On the other hand, an interesting advantage of the formulation (5.4) is that, due to
Remark 5.1, (5.4) makes sense even when x is an arbitrary distribution and f as
well as x0 are such that fITP is well defined. In fact, Rabier and Rheinboldt [37,
Thm. 4.1] do consider arbitrary distributions x ∈ D

n and show that under certain
regularity assumptions the solutions are in fact impulsive-smooth.

5.4 Piecewise-Smooth Distributions as Solution Space

Comparing Cobb’s piecewise-continuous distributional solution framework with the
impulsive-smooth distributional solution framework the following differences are
apparent:

1. DpwC 0 is not closed under differentiation.
2. Cimp(R

∗) does not allow non-smooth inhomogeneities away from t = 0.

Rabier and Rheinboldt [37] seem to be aware of the latter problem as they introduce
the space Cimp(R \ S ), where S = {ti ∈ R|i ∈ Z} is a strictly ordered set with
ti → ±∞ as i → ±∞ and D ∈ Cimp(R \S ) is such that D(ti ,ti+1) is induced by the
corresponding restriction of a smooth function. A similar idea is proposed in [25],
however, in both cases the resulting distributional space is not studied in detail.
A more detailed treatment can be found in [45, 46] where, in the spirit of Cobb’s
definition, the space of piecewise-smooth distributions is defined as follows:

DpwC ∞ :=
{

D = fD +
∑
t∈T

Dt

∣∣∣∣∣
f ∈ C ∞

pw, T ⊆ R

locally finite ∀t ∈ T : Dt ∈ span
{
δt , δ

′
t , δ

′′
t , . . .

}
}

,

where f ∈ C ∞
pw is a piecewise-smooth function if, and only if, there exists a

strictly ordered locally finite set {si ∈ R|i ∈ Z} and fi ∈ C ∞, i ∈ Z, such that
f =∑

i∈Z fi [si ,si+1)
. Clearly,

Cimp
(
R

∗)⊂ DpwC ∞ ⊂ DpwC 0,

and the space of piecewise-smooth distributions resolves each of the above men-
tioned drawbacks of the piecewise-continuous and impulsive-smooth distributions.
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However, the major advantage of considering the space of piecewise-smooth dis-
tributions becomes apparent when considering time-varying DAEs:

E(t)ẋ(t) = A(t)x(t) + f (t). (5.5)

If the coefficient matrices E(·) and A(·) are smooth it is no problem to use any of
the above distributional solution concepts because the product of a smooth func-
tion with any distribution is well defined so that (5.5) makes sense as an equation
of distributions. In the discussion of the drawbacks of the Laplace transform ap-
proach it was already mentioned that an inconsistent initial value could be seen as
the results from the presence of a time-varying system. In fact, the ITP (3.2) can be
reformulated as the following time-varying DAE [45, Thm. 3.1.7]:

EITP(t)ẋ(t) = AITP(t)x(t) + fITP(t),

where

EITP(t) =
{

0, t < 0,

E, t ≥ 0,
AITP(t) =

{
I, t < 0,

A, t ≥ 0,

fITP(t) =
{

−x0(t), t < 0,

f (t), t ≥ 0.

The problem is now that the time-varying coefficient matrices are not smooth any-
more so that the multiplication with a distribution is not well defined. Rabier and
Rheinboldt [37] treated already time-varying DAEs (5.5); however, the interpreta-
tion of inconsistent initial values as a time-variant DAE with non-smooth coeffi-
cients did not occur to them, maybe because they considered (5.4) where formally
the original DAE (with a special choice of the inhomogeneity) with smooth coeffi-
cient is considered globally (i.e. in the whole of R and not only on [0,∞)). Another
important motivation for studying time-varying DAEs with non-smooth coefficient
matrices is switched DAEs [47]:

Eσ ẋ = Aσ x + f,

where σ : R → {1,2, . . . ,P }, P ∈ N, and (E1,A1), . . . , (EP ,AP ) are constant ma-
trices.

It turns out that for the space of piecewise-smooth distributions a (non-commuta-
tive) multiplication can be defined, named Fuchssteiner multiplication after [19,
20], which in particular defines the multiplication of a piecewise-smooth function
with a piecewise-smooth distribution. Hence (5.5) makes sense even for coefficient
matrices which are only piecewise-smooth.

Remark 5.4 (The square of the Dirac impulse) The multiplication of distributions
occurs several times in the context of DAEs. The different approaches can be best
illustrated by the different treatments of the square of the Dirac impulse:
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1. In the context of impulsive-smooth distributions [22, 23, 27] convolution is
viewed as a multiplication and the Dirac impulse is the unit element for that
multiplication. Hence δ2 = δ in this framework.

2. The Fuchssteiner multiplication for piecewise-smooth distributions yields

δ2 = 0.

3. It is well known that a commutative and associative multiplication which gener-
alizes the multiplication of functions to distributions is not possible in general,
but when enlarging the space of distributions the square of the Dirac impulse is
well defined (but not a classical distribution). In the context of DAEs this ap-
proach was considered in [44], where the square of the Dirac impulse occurs in
the analysis of the connection energy (the product of the voltage and current).

Within the framework of piecewise-smooth distributions it is now possible to
show [45] that the ITP (3.2) is uniquely solvable for all initial trajectories and all in-
homogeneities if, and only if, the matrix pair (E,A) is regular. In particular, the im-
pulses and jumps derived in this framework [47, Thm. 6.5.1] are identical to (4.15)
and (4.16) obtained via the Laplace transform approach.

6 Conclusion

The role of the Wong sequences of the matrix pair (E,A) for characterizing the
(classical) solutions was highlighted. In particular, explicit solution formulas where
given which are similar to the ones obtained for linear ODEs. The quasi-Kronecker
form (QKF) and quasi-Weierstraß form (QWF) play a prominent role. For time-
varying DAEs with analytical coefficients a time-varying QWF is available, how-
ever, time-varying Wong sequences and their connection to a time-varying QWF
(or even QKF) have not been studied yet. The problem of inconsistent initial values
was discussed and it was shown how the Laplace transform was used to treat this
problem. However, it is argued that the Laplace transform approach cannot justify
the notion of an inconsistent initial value. With the help of certain distributional so-
lution spaces the notion of inconsistent initial values can be treated in a satisfying
way and it also justifies the Laplace transform approach.

References

1. Aplevich, J.D.: Implicit Linear Systems. Lecture Notes in Control and Information Sciences,
vol. 152. Springer, Berlin (1991)

2. Armentano, V.A.: The pencil (sE −A) and controllability-observability for generalized linear
systems: a geometric approach. SIAM J. Control Optim. 24, 616–638 (1986)

3. Berger, T., Trenn, S.: Addition to: “The quasi-Kronecker form for matrix pencils”. SIAM. J.
Matrix Anal. Appl. 34(1), 94–101 (2013)



Solution Concepts for Linear DAEs: A Survey 171

4. Berger, T., Trenn, S.: The quasi-Kronecker form for matrix pencils. SIAM J. Matrix Anal.
Appl. 33(2), 336–368 (2012)

5. Berger, T., Ilchmann, A., Trenn, S.: The quasi-Weierstraß form for regular matrix pencils.
Linear Algebra Appl. 436(10), 4052–4069 (2012). doi:10.1016/j.laa.2009.12.036

6. Bernhard, P.: On singular implicit linear dynamical systems. SIAM J. Control Optim. 20(5),
612–633 (1982)

7. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations. North-Holland, Amsterdam (1989)

8. Campbell, S.L.: Singular Systems of Differential Equations I. Pitman, New York (1980)
9. Campbell, S.L.: Singular Systems of Differential Equations II. Pitman, New York (1982)

10. Campbell, S.L., Petzold, L.R.: Canonical forms and solvable singular systems of differential
equations. SIAM J. Algebr. Discrete Methods 4, 517–521 (1983)

11. Campbell, S.L., Meyer, C.D. Jr., Rose, N.J.: Applications of the Drazin inverse to linear sys-
tems of differential equations with singular constant coefficients. SIAM J. Appl. Math. 31(3),
411–425 (1976). http://link.aip.org/link/?SMM/31/411/1. doi:10.1137/0131035

12. Cobb, J.D.: On the solution of linear differential equations with singular coefficients. J. Differ.
Equ. 46, 310–323 (1982)

13. Cobb, J.D.: Controllability, observability and duality in singular systems. IEEE Trans. Autom.
Control AC-29, 1076–1082 (1984)

14. Dai, L.: Singular Control Systems. Lecture Notes in Control and Information Sciences,
vol. 118. Springer, Berlin (1989)

15. Dieudonné, J.: Sur la réduction canonique des couples des matrices. Bull. Soc. Math. Fr. 74,
130–146 (1946)

16. Doetsch, G.: Introduction to the Theory and Application of the Laplace Transformation.
Springer, Berlin (1974)

17. Drazin, M.P.: Pseudo-inverses in associative rings and semigroups. Am. Math. Mon. 65(7),
506–514 (1958)

18. Frasca, R., Çamlıbel, M.K., Goknar, I.C., Iannelli, L., Vasca, F.: Linear passive networks with
ideal switches: consistent initial conditions and state discontinuities. IEEE Trans. Circuits
Syst. I, Fundam. Theory Appl. 57(12), 3138–3151 (2010)

19. Fuchssteiner, B.: Eine assoziative Algebra über einen Unterraum der Distributionen. Math.
Ann. 178, 302–314 (1968)

20. Fuchssteiner, B.: Algebraic foundation of some distribution algebras. Stud. Math. 76, 439–453
(1984)

21. Gantmacher, F.R.: The Theory of Matrices, vols. I & II. Chelsea, New York (1959)
22. Geerts, A.H.W.T.: Invariant subspaces and invertibility properties for singular systems: the

general case. Linear Algebra Appl. 183, 61–88 (1993). doi:10.1016/0024-3795(93)90424-M
23. Geerts, A.H.W.T.: Solvability conditions, consistency and weak consistency for linear

differential-algebraic equations and time-invariant linear systems: the general case. Linear
Algebra Appl. 181, 111–130 (1993)

24. Geerts, A.H.W.T.: Regularity and singularity in linear-quadratic control subject to implicit
continuous-time systems. IEEE Proc. Circuits Syst. Signal Process. 13, 19–30 (1994)

25. Geerts, A.H.W.T., Schumacher, J.M.H.: Impulsive-smooth behavior in multimode systems.
Part I: state-space and polynomial representations. Automatica 32(5), 747–758 (1996)

26. Hautus, M.L.J.: The formal Laplace transform for smooth linear systems. In: Marchesini, G.,
Mitter, S.K. (eds.) Mathematical Systems Theory. Lecture Notes in Economics and Mathe-
matical Systems, vol. 131, pp. 29–47. Springer, New York (1976)

27. Hautus, M.L.J., Silverman, L.M.: System structure and singular control. Linear Algebra Appl.
50, 369–402 (1983)

28. Kronecker, L.: Algebraische Reduction der Schaaren bilinearer Formen. Sitzungsberichte der
Königlich Preußischen Akademie der Wissenschaften zu Berlin, pp. 1225–1237 (1890)

29. Kuijper, M.: First-Order Representations of Linear Systems. Birkhäuser, Boston (1994)
30. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations. Analysis and Numerical Solu-

tion. EMS Publishing House, Zürich (2006)

http://dx.doi.org/10.1016/j.laa.2009.12.036
http://link.aip.org/link/?SMM/31/411/1
http://dx.doi.org/10.1137/0131035
http://dx.doi.org/10.1016/0024-3795(93)90424-M


172 S. Trenn

31. Lamour, R., März, R., Tischendorf, C.: Differential Algebraic Equations: A Projector Based
Analysis. Differential-Algebraic Equations Forum, vol. 1. Springer, Heidelberg (2013)

32. Lewis, F.L.: A survey of linear singular systems. IEEE Proc. Circuits Syst. Signal Process.
5(1), 3–36 (1986)

33. Liberzon, D., Trenn, S.: Switched nonlinear differential algebraic equations: solution the-
ory, Lyapunov functions, and stability. Automatica 48(5), 954–963 (2012). doi:10.1016/
j.automatica.2012.02.041

34. Lundberg, K.H., Miller, H.R., Trumper, D.L.: Initial conditions, generalized functions,
and the Laplace transform. IEEE Control Syst. Mag. 27(1), 22–35 (2007). doi:10.1109/
MCS.2007.284506

35. Opal, A., Vlach, J.: Consistent initial conditions of linear switched networks. IEEE Trans.
Circuits Syst. 37(3), 364–372 (1990)

36. Owens, D.H., Debeljkovic, D.L.: Consistency and Liapunov stability of linear descriptor sys-
tems: a geometric analysis. IMA J. Math. Control Inf. 2, 139–151 (1985)

37. Rabier, P.J., Rheinboldt, W.C.: Time-dependent linear DAEs with discontinuous inputs. Linear
Algebra Appl. 247, 1–29 (1996)

38. Rabier, P.J., Rheinboldt, W.C.: Theoretical and numerical analysis of differential-algebraic
equations. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VIII,
pp. 183–537. Elsevier, Amsterdam (2002)

39. Reißig, G., Boche, H., Barton, P.I.: On inconsistent initial conditions for linear time-invariant
differential-algebraic equations. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49(11),
1646–1648 (2002)

40. Rosenbrock, H.H.: State Space and Multivariable Theory. Wiley, New York (1970)
41. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1957, 1959)
42. Sincovec, R.F., Erisman, A.M., Yip, E.L., Epton, M.A.: Analysis of descriptor systems using

numerical algorithms. IEEE Trans. Autom. Control AC-26, 139–147 (1981)
43. Tanwani, A., Trenn, S.: On observability of switched differential-algebraic equations. In: Proc.

49th IEEE Conf. Decis. Control, Atlanta, USA, pp. 5656–5661 (2010)
44. Tolsa, J., Salichs, M.: Analysis of linear networks with inconsistent initial conditions. IEEE

Trans. Circuits Syst. 40(12), 885–894 (1993). doi:10.1109/81.269029
45. Trenn, S.: Distributional differential algebraic equations. Ph.D. thesis, Institut für Math-

ematik, Technische Universität Ilmenau, Universitätsverlag Ilmenau, Ilmenau, Germany
(2009). http://www.db-thueringen.de/servlets/DocumentServlet?id=13581

46. Trenn, S.: A normal form for pure differential algebraic systems. Linear Algebra Appl. 430(4),
1070–1084 (2009). doi:10.1016/j.laa.2008.10.004

47. Trenn, S.: Switched differential algebraic equations. In: Vasca, F., Iannelli, L. (eds.) Dynamics
and Control of Switched Electronic Systems—Advanced Perspectives for Modeling, Simula-
tion and Control of Power Converters, pp. 189–216. Springer, London (2012). Chap. 6

48. Verghese, G.C., Levy, B.C., Kailath, T.: A generalized state-space for singular systems. IEEE
Trans. Autom. Control AC-26(4), 811–831 (1981)

49. Weierstraß, K.: Zur Theorie der bilinearen und quadratischen Formen. Berl. Monatsb.,
pp. 310–338 (1868)

50. Wilkinson, J.H.: Linear differential equations and Kronecker’s canonical form. In: de Boor, C.,
Golub, G.H. (eds.) Recent Advances in Numerical Analysis, pp. 231–265. Academic Press,
New York (1978)

51. Wong, K.T.: The eigenvalue problem λT x + Sx. J. Differ. Equ. 16, 270–280 (1974)
52. Yip, E.L., Sincovec, R.F.: Solvability, controllability and observability of continuous descrip-

tor systems. IEEE Trans. Autom. Control AC-26, 702–707 (1981)

http://dx.doi.org/10.1016/j.automatica.2012.02.041
http://dx.doi.org/10.1016/j.automatica.2012.02.041
http://dx.doi.org/10.1109/MCS.2007.284506
http://dx.doi.org/10.1109/MCS.2007.284506
http://dx.doi.org/10.1109/81.269029
http://www.db-thueringen.de/servlets/DocumentServlet?id=13581
http://dx.doi.org/10.1016/j.laa.2008.10.004

	Solution Concepts for Linear DAEs: A Survey
	1 Introduction
	2 Classical Solutions
	2.1 The Kronecker and Weierstraß Canonical Forms
	2.2 Solution Formulas Based on the Wong Sequences: General Case
	2.3 Existence and Uniqueness of Solutions with Respect to In- and Outputs
	2.4 Solution Formulas Based on the Wong Sequences: Regular Case
	2.5 The Drazin Inverse Solution Formula
	2.6 Time-Varying DAEs

	3 Inconsistent Initial Values and Distributional Solutions
	4 Laplace Transform Approaches
	5 Distributional Solutions
	5.1 The Problem of Distributional Restrictions
	5.2 Cobb's Space of Piecewise-Continuous Distributions
	5.3 Impulsive-Smooth Distributions as Solution Space
	5.4 Piecewise-Smooth Distributions as Solution Space

	6 Conclusion
	References


