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Abstract Different concepts related to controllability of differential-algebraic
equations are described. The class of systems considered consists of linear
differential-algebraic equations with constant coefficients. Regularity, which is,
loosely speaking, a concept related to existence and uniqueness of solutions for any
inhomogeneity, is not required in this article. The concepts of impulse controlla-
bility, controllability at infinity, behavioral controllability, and strong and complete
controllability are described and defined in the time domain. Equivalent criteria that
generalize the Hautus test are presented and proved.

Special emphasis is placed on normal forms under state space transformation
and, further, under state space, input and feedback transformations. Special forms
generalizing the Kalman decomposition and Brunovský form are presented. Con-
sequences for state feedback design and geometric interpretation of the space of
reachable states in terms of invariant subspaces are proved.
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1 Introduction

Controllability is, roughly speaking, the property of a system that any two trajec-
tories can be concatenated by another admissible trajectory. The precise concept,
however, depends on the specific framework, as quite a number of different con-
cepts of controllability are present today.

Since the famous work by Kalman [81–83], who introduced the notion of con-
trollability about 50 years ago, the field of mathematical control theory has been
revived and rapidly growing ever since, emerging into an important area in applied
mathematics, mainly due to its contributions to fields such as mechanical, electrical
and chemical engineering (see e.g. [2, 47, 148]). For a good overview of standard
mathematical control theory, i.e., involving ordinary differential equations (ODEs),
and its history see e.g. [70, 76, 77, 80, 138, 142].

Just before mathematical control theory began to grow, Gantmacher published
his famous book [60] and therewith laid the foundations for the rediscovery of
differential-algebraic equations (DAEs), the first main theories of which have been
developed by Weierstraß [158] and Kronecker [93] in terms of matrix pencils. DAEs
have then been discovered to be appropriate for modeling a vast variety of problems
in economics [111], demography [37], mechanical systems [7, 31, 59, 67, 127, 149],
multibody dynamics [55, 67, 139, 141], electrical networks [7, 36, 54, 106, 117,
134, 135], fluid mechanics [7, 65, 106] and chemical engineering [48, 50–52, 126],
which often cannot be modeled by standard ODE systems. Especially the tremen-
dous effort in numerical analysis of DAEs [10, 96, 98] is responsible for DAEs
being nowadays a powerful tool for modeling and simulation of the aforementioned
dynamical processes.

In general, DAEs are implicit differential equations, and in the simplest case just
a combination of differential equations along with algebraic constraints (from which
the name DAE comes from). These algebraic constraints, however, may cause the
solutions of initial value problems no longer to be unique, or solutions not to exist
at all. Furthermore, when considering inhomogeneous problems, the inhomogene-
ity has to be “consistent” with the DAE in order for solutions to exist. Dealing with
these problems a huge solution theory for DAEs has been developed, the most im-
portant contribution of which is the one by Wilkinson [159]. Nowadays, there are a
lot of monographs [31, 37, 38, 49, 66, 98] and one textbook [96], where the whole
theory can be looked up. A comprehensive representation of the solution theory
of general linear time-invariant DAEs, along with possible distributional solutions
based on the theory developed in [143, 144], is given in [22]. A good overview of
DAE theory and a historical background can also be found in [99].

DAEs found its way into control theory ever since the famous book by Rosen-
brock [136], in which he developed his ideas of the description of linear systems
by polynomial system matrices. Then a rapid development followed with impor-
tant contributions of Rosenbrock himself [137] and Luenberger [107–110], not
to forget the work by Pugh et al. [131], Verghese et al. [151, 153–155], Pan-
dolfi [124, 125], Cobb [42, 43, 45, 46], Yip et al. [169] and Bernard [27]. The most
important of these contributions for the development of concepts of controllabil-
ity are certainly [46, 155, 169]. Further developments were made by Lewis and
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Özçaldiran [101, 102] and by Bender and Laub [19, 20]. The first monograph which
summarizes the development of control theory for DAEs so far was the one by
Dai [49]. All these contributions deal with regular systems, i.e., systems of the form

Eẋ(t) = Ax(t) + f (t), x(0) = x0,

where for any inhomogeneity f there exist initial values x0 for which the corre-
sponding initial value problem has a solution and this solution is unique. This has
been proved to be equivalent to the condition that E, A are square matrices and
det(sE − A) ∈R[s] \ {0}.

The aim of the present paper is to state the different concepts of controllabil-
ity for differential-algebraic systems which are not necessarily regular, i.e., E and
A may be non-square. Applications with the need for non-regular DAEs appear in
the modeling of electrical circuits [54] for instance. Furthermore, a drawback in
the consideration of regular systems arises when it comes to feedback: the class of
regular DAE systems is not closed under the action of a feedback group [12]. This
also rises the need for a complete and thorough investigation of non-regular DAE
systems. We also like to stress that general, possibly non -regular, DAE systems are
a subclass of the class of so-called differential behaviors, introduced by Polderman
and Willems [128], see also [161]. In the present article we will pay a special atten-
tion to the behavioral setting, formulating most of the results and the concepts by
using the underlying set of trajectories (behavior) of the system.

In this paper we do not treat controllability of time-varying DAEs, but refer
to [40, 72–74, 156, 157]. We also do not treat controllability of discrete time DAEs,
but refer to [13, 27, 99, 100, 168].

The paper is organized as follows.

2 Controllability Concepts, p. 5 The concepts of impulse controllability, control-
lability at infinity, R-controllability, controllability in the behavioral sense, strong
and complete controllability, as well as strong and complete reachability and sta-
bilizability in the behavioral sense, strong and complete stabilizability will be de-
scribed and defined in the time domain in Sect. 2. In the more present DAE literature
these notions are not consistently treated. We try to clarify this here. A comprehen-
sive discussion of the introduced concepts as well as some first relations between
them are also included in Sect. 2.

3 Solutions, Relations and Normal Forms, p. 15 In Sect. 3 we briefly revisit the
solution theory of DAEs and then concentrate on normal forms under state space
transformation and, further, under state space, input and feedback transformations.
We introduce the concepts of system and feedback equivalence and state normal
forms under these equivalences, which for instance generalize the Brunovský form.
It is also discussed when these forms are canonical and what properties (regarding
controllability and stabilizability) the appearing subsystems have.
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4 Algebraic Criteria, p. 30 The generalized Brunovský form enables us to give
short proofs of equivalent criteria, in particular generalizations of the Hautus test,
for the controllability concepts in Sect. 4, the most of which are of course well-
known—we discuss the relevant literature.

5 Feedback, Stability and Autonomous System p. 36 In Sect. 5 we revisit the
concept of feedback for DAE systems and proof new results concerning the equiv-
alence of stabilizability of DAE control systems and the existence of a feedback
which stabilizes the closed-loop system.

6 Invariant Subspaces, p. 46 In Sect. 6 we give a brief summary of some se-
lected results of the geometric theory using invariant subspaces which lead to a
representation of the reachability space and criteria for controllability at infinity,
impulse controllability, controllability in the behavioral sense, complete and strong
controllability.

7 Kalman Decomposition, p. 50 Finally, in Sect. 7 the results regarding the
Kalman decomposition for DAE systems are stated and it is shown how the control-
lability concepts can be related to certain properties of the Kalman decomposition.

We close the introduction with the nomenclature used in this paper:

N, N0, Z set of natural numbers, N0 = N∪{0}, set of all integers, resp.
�(α), |α| length and absolute value of a multi-index α =

(α1, . . . , αl) ∈N
n

R≥0 (R>0, R≤0, R<0) = [0,∞) ((0,∞), (−∞,0], (−∞,0)), resp.
C+, C− (C+, C−) the open (closed) set of complex numbers with positive, neg-

ative real part, resp.
Gln(R) the set of invertible real n × n matrices
R[s] the ring of polynomials with coefficients in R

R(s) the quotient field of R[s]
Rn,m the set of n × m matrices with entries in a ring R

σ(A) spectrum of the matrix A ∈R
n,n

f |I restriction of the function f : T →R
n to I ⊆ T ,

L 1
loc(T ;Rn) locally Lebesgue integrable functions f : T → R

n, see [1,
Chap. 1]

ḟ (f (i)) (ith) distributional derivative of f ∈ L 1
loc(T ;Rn), i ∈ N0

W k,1
loc (T ;Rn) := { x ∈ L 1

loc(T ;Rn)|x(i) ∈ L 1
loc(T ;Rn) for i = 0, . . . , k},

k ∈N0

στ the τ -shift operator, i.e., for f : T → R
n, T ⊆ R, στf :

T − τ → R
n, t 	→ f (t + τ)

ρ the reflection operator, i.e., for f : T → R
n, T ⊆ R, ρf :

−T → R
n, t 	→ f (−t)
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2 Controllability Concepts

We consider linear differential-algebraic control systems of the form

Eẋ(t) = Ax(t) + Bu(t), (2.1)

with E,A ∈ R
k,n, B ∈ R

k,m; the set of these systems is denoted by Σk,n,m, and we
write [E,A,B] ∈ Σk,n,m.

We do not assume that the pencil sE − A ∈ R[s]k,n is regular, that is,
rkR(s) (sE − A) = k = n.

The function u : R → R
m is called input; x : R → R

n is called (generalized)
state. Note that, strictly speaking, x(t) is in general not a state in the sense that
the free system (i.e., u ≡ 0) satisfies a semigroup property [89, Sect. 2.2]. We will,
however, speak of the state x(t) for sake of brevity, especially since x(t) contains
the full information about the system at time t . Furthermore, one might argue that
(especially in the behavioral setting) it is not correct to call u “input”, because due
to the implicit nature of (2.1) it may be that actually some components of u are
uniquely determined and some components of x are free, and only the free vari-
ables should be called inputs in the behavioral setting. However, the controllability
concepts given in Definition 2.1 explicitly distinguish between x and u and not be-
tween free and determined variables. We feel that, in some cases, it might still be the
choice of the designer to assign the input variables, that is, u, and if some of these
are determined, then the input space has to be restricted in an appropriate way.

A trajectory (x,u) :R → R
n ×R

m is said to be a solution of (2.1) if, and only if,
it belongs to the behavior of (2.1):

B[E,A,B] :=
{
(x,u) ∈ W 1,1

loc

(
R;Rn
)×L 1

loc

(
R;Rm
) ∣∣∣ (x,u) satisfies (2.1)

for almost all t ∈R

}
. (2.2)

Note that any function x ∈ W 1,1
loc (R;Rn) is continuous. Moreover, by linearity of

(2.1), B[E,A,B] is a vector space. Further, since the matrices in (2.1) do not depend
on t , the behavior is shift-invariant, that is, (στ x, στu) ∈ B[E,A,B] for all τ ∈R and
(x,u) ∈ B[E,A,B].

The following spaces play a fundamental role in this article:

(a) The space of consistent initial states

V[E,A,B] = {x0 ∈R
n
∣∣ ∃(x,u) ∈ B[E,A,B] : x(0) = x0}.

(b) The space of consistent initial differential variables

V diff[E,A,B] = {x0 ∈R
n
∣∣ ∃(x,u) ∈B[E,A,B] : Ex(0) = Ex0}.

(c) The reachability space at time t ≥ 0

Rt[E,A,B] = {x0 ∈ R
n
∣∣ ∃(x,u) ∈ B[E,A,B] : x(0) = 0 ∧ x(t) = x0}
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and the reachability space

R[E,A,B] =
⋃
t≥0

Rt
[E,A,B].

(d) The controllability space at time t ≥ 0

C t
[E,A,B] = {x0 ∈ R

n
∣∣ ∃(x,u) ∈ B[E,A,B] : x(0) = x0 ∧ x(t) = 0

}

and the controllability space

C[E,A,B] =
⋃
t≥0

C t
[E,A,B].

Note that, by linearity of the system, V[E,A,B], V diff[E,A,B], Rt
[E,A,B] and C t

[E,A,B]
are linear subspaces of Rn. We will show that Rt1[E,A,B] = Rt2[E,A,B] = C t1[E,A,B] =
C t2[E,A,B] for all t1, t2 ∈ R>0, see Lemma 2.3. This implies R[E,A,B] = Rt

[E,A,B] =
C t

[E,A,B] = C[E,A,B] for all t ∈ R>0. Note further that, by shift-invariance, we have
for all t ∈R

V[E,A,B] = {x0 ∈R
n
∣∣ ∃(x,u) ∈B[E,A,B] : x(t) = x0}, (2.3)

V diff[E,A,B] = {x0 ∈R
n
∣∣ ∃(x,u) ∈B[E,A,B] : Ex(t) = Ex0}. (2.4)

In the following three lemmas we clarify some of the connections of the above
defined spaces, before we state the controllability concepts.

Lemma 2.1 (Inclusions for reachability spaces) For [E,A,B] ∈ Σk,n,m and t1, t2 ∈
R>0 with t1 < t2, the following hold true:

(a) Rt1[E,A,B] ⊆ Rt2[E,A,B].
(b) If Rt1[E,A,B] = Rt2[E,A,B], then Rt1[E,A,B] = Rt

[E,A,B] for all t ∈R with t > t1.

Proof (a) Let x̄ ∈ Rt1[E,A,B]. By definition, there exists some (x,u) ∈B[E,A,B] with
x(0) = 0 and x(t1) = x̄. Consider now (x1, u1) :R → R

n ×R
m with

(
x1(t), u1(t)

)=
{

(x(t − t2 + t1), u(t − t2 + t1)), if t > t2 − t1,

(0,0), if t ≤ t2 − t1.

Then x(0) = 0 implies that x1 is continuous at t2 − t1. Since, furthermore,

x1|(−∞,t2−t1] ∈ W 1,1
loc

(
(−∞, t2 − t1];Rn

)
and

x1|[t2−t1,∞) ∈ W 1,1
loc

([t2 − t1,∞);Rn
)
,

we have (x1, u1) ∈ W 1,1
loc (R;Rn) × L 1

loc(R;Rm). By shift-invariance, Eẋ1(t) =
Ax1(t) + Bu1(t) holds true for almost all t ∈ R, i.e., (x1, u1) ∈ B[E,A,B]. Then,
due to x1(0) = 0 and x̄ = x(t1) = x1(t2), we obtain x̄ ∈ Rt2[E,A,B].
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(b) Step 1: We show that Rt1[E,A,B] = Rt2[E,A,B] implies Rt1[E,A,B] = Rt1+2(t2−t1)[E,A,B] :

By (a), it suffices to show the inclusion “⊇”. Assume that x̄ ∈ Rt1+2(t2−t1)[E,A,B] , i.e., there
exists some (x1, u1) ∈ B[E,A,B] with x1(0) = 0 and x1(t1 + 2(t2 − t1)) = x̄. Since
x1(t2) ∈ Rt2[E,A,B] = Rt1[E,A,B], there exists some (x2, u2) ∈ B[E,A,B] with x2(0) = 0
and x2(t1) = x1(t2). Now consider the trajectory

(
x(t), u(t)

)=
{

(x2(t), u2(t)), if t < t1,

(x1(t + (t2 − t1)), u1(t + (t2 − t1))), if t ≥ t1.

Since x is continuous at t1, we can apply the same argumentation as in the proof
of (a) to infer that (x,u) ∈ B[E,A,B]. The result to be shown in this step is now
a consequence of x(0) = x2(0) = 0 and

x̄ = x1
(
t1 + 2(t2 − t1)

)= x(t2) ∈ Rt2[E,A,B] = Rt1[E,A,B].

Step 2: We show (b): From the result shown in the first step, we may inductively
conclude that Rt1[E,A,B] = Rt2[E,A,B] implies Rt1[E,A,B] = Rt1+l(t2−t1)[E,A,B] for all l ∈ N.
Let t ∈ R with t > t1. Then there exists some l ∈ N with t ≤ t1 + l(t2 − t1). Then
statement (a) implies

Rt1[E,A,B] ⊆ Rt
[E,A,B] ⊆ Rt1+l(t2−t1)[E,A,B] ,

and, by Rt1[E,A,B] = Rt1+l(t2−t1)[E,A,B] , we obtain the desired result. �

Now we present some relations between controllability and reachability spaces of
[E,A,B] ∈ Σk,n,m and its backward system [−E,A,B] ∈ Σk,n,m. It can be easily
verified that

B[−E,A,B] = {(ρx,ρu)
∣∣ (x,u) ∈B[E,A,B]

}
. (2.5)

Lemma 2.2 (Reachability and controllability spaces of the backward system) For
[E,A,B] ∈ Σk,n,m and t ∈ R>0, we have

Rt
[E,A,B] = C t

[−E,A,B], and C t
[E,A,B] = Rt

[−E,A,B].

Proof Both assertions follow immediately from the fact that (x,u) ∈ B[E,A,B], if,
and only if, (σt (ρx), σt (ρu)) ∈ B[−E,A,B]. �

The previous lemma enables us to show that the controllability and reachability
spaces of [E,A,B] ∈ Σk,n,m are even equal. We further prove that both spaces do
not depend on time t ∈ R>0.

Lemma 2.3 (Impulsive initial conditions and controllability spaces) For [E,A,B] ∈
Σk,n,m, the following hold true:

(a) Rt1[E,A,B] = Rt2[E,A,B] for all t1, t2 ∈ R>0.
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(b) Rt
[E,A,B] = C t

[E,A,B] for all t ∈R>0.

(c) V diff
[E,A,B] = V[E,A,B] + kerR E.

Proof (a) By Lemma 2.1(a), we have

R
t1

n+1
[E,A,B] ⊆ R

2t1
n+1
[E,A,B] ⊆ · · · ⊆ R

nt1
n+1
[E,A,B] ⊆ Rt1[E,A,B] ⊆ R

n,

and thus

0 ≤ dimR
t1

n+1
[E,A,B] ≤ dimR

2t1
n+1
[E,A,B] ≤ · · · ≤ dimR

nt1
n+1
[E,A,B] ≤ dimRt1[E,A,B] ≤ n.

As a consequence, there has to exist some j ∈ {1, . . . , n + 1} with

dimR
j t1
n+1
[E,A,B] = dimR

(j+1)t1
n+1

[E,A,B].

Together with the subset inclusion, this yields

R
j t1
n+1
[E,A,B] = R

(j+1)t1
n+1

[E,A,B].

Lemma 2.1(b) then implies the desired statement.
(b) Let x̄ ∈ Rt

[E,A,B]. Then there exists some (x1, u1) ∈ B[E,A,B] with x1(0) = 0
and x1(t) = x̄. Since, by (a), we have x1(2t) ∈ Rt

[E,A,B], there also exists some
(x2, u2) ∈ B[E,A,B] with x2(0) = 0 and x2(t) = x1(2t). By linearity and shift-
invariance, we have

(x,u) := (σtx1 − x2, σtu1 − u2) ∈B[E,A,B].

The inclusion Rt
[E,A,B] ⊆ C t

[E,A,B] then follows by

x(0) = x1(t) − x2(0) = x̄, x(t) = x1(2t) − x2(t) = 0.

To prove the opposite inclusion, we make use of the previously shown subset rela-
tion and Lemma 2.2 to infer that

C t
[E,A,B] = Rt

[−E,A,B] ⊆ C t
[−E,A,B] = Rt

[E,A,B].

(c) We first show that V diff[E,A,B] ⊆ V[E,A,B] + kerR E: Assume that x0 ∈ V diff[E,A,B],
i.e., Ex0 = Ex(0) for some (x,u) ∈ B[E,A,B]. By x(0) ∈ V[E,A,B], x(0) − x0 ∈
kerR E, we obtain

x0 = x(0) + (x0 − x(0)
) ∈ V[E,A,B] + kerR E.

To prove V[E,A,B]+kerR E ⊆ V diff[E,A,B], assume that x0 = x(0)+ x̄ for some (x,u) ∈
B[E,A,B] and x̄ ∈ kerR E. Then x0 ∈ V diff

[E,A,B] is a consequence of Ex0 = E(x(0)+
x̄) = Ex(0). �
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By Lemma 2.3 it is sufficient to only consider the spaces V[E,A,B] and R[E,A,B]
in the following.

We are now in the position to define the central notions of controllability, reach-
ability and stabilizability considered in this article.

Definition 2.1 The system [E,A,B] ∈ Σk,n,m is called

(a) controllable at infinity

:⇔ ∀x0 ∈R
n∃(x,u) ∈ B[E,A,B] : x(0) = x0 ⇔ V[E,A,B] = R

n.

(b) impulse controllable

:⇔ ∀x0 ∈R
n∃(x,u) ∈ B[E,A,B] : Ex0 = Ex(0) ⇔ V diff

[E,A,B] = R
n.

(c) controllable within the set of reachable states (R-controllable)

:⇔ ∀x0, xf ∈ V[E,A,B]∃t > 0∃(x,u) ∈ B[E,A,B] : x(0) = x0 ∧ x(t) = xf .

(d) controllable in the behavioral sense

:⇔ ∀(x1, u1), (x2, u2) ∈ B[E,A,B]

∃T > 0∃(x,u) ∈ B[E,A,B] : (x(t), u(t)) =
{

(x1(t), u1(t)), if t < 0,

(x2(t), u2(t)), if t > T .

(e) stabilizable in the behavioral sense

:⇔ ∀(x,u) ∈ B[E,A,B]∃(x0, u0) ∈ B[E,A,B] ∩ (W 1,1
loc

(
T ;Rn
)× W 1,1

loc

(
T ;Rn
)) :

(∀t < 0 : (x(t), u(t)
)= (x0(t), u0(t)

))∧ limt→∞
(
x0(t), u0(t)

)= 0.

(f) completely reachable

:⇔ ∃t ∈ R>0∀xf ∈ R
n∃(x,u) ∈ B[E,A,B] : x(0) = 0 ∧ x(t) = xf

⇔ ∃t ∈ R>0 : Rt
[E,A,B] = R

n.

(g) completely controllable

:⇔ ∃t ∈ R>0∀x0, xf ∈R
n∃(x,u) ∈ B[E,A,B] : x(0) = x0 ∧ x(t) = xf .

(h) completely stabilizable

:⇔ ∀x0 ∈R
n∃(x,u) ∈ B[E,A,B] : x(0) = x0 ∧ lim

t→∞x(t) = 0.

(i) strongly reachable

:⇔ ∃t ∈ R>0∀xf ∈R
n∃(x,u) ∈ B[E,A,B] : Ex(0) = 0 ∧ Ex(t) = Exf .
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(j) strongly controllable

:⇔ ∃t ∈R>0∀x0, xf ∈ R
n∃(x,u) ∈ B[E,A,B] : Ex(0) = Ex0 ∧ Ex(t) = Exf .

(k) strongly stabilizable (or merely stabilizable)

:⇔ ∀x0 ∈R
n∃(x,u) ∈ B[E,A,B] : Ex(0) = Ex0 ∧ lim

t→∞Ex(t) = 0.

Some remarks on the definitions are warrant.

Remark 2.1

(i) The controllability concepts are not consistently treated in the literature. For
instance, one has to pay attention if it is (tacitly) claimed that [E,B] ∈R

k,n+m

or [E,A,B] ∈R
k,2n+m have full rank.

For regular systems we have the following:

concept coincides with notion in called [. . . ] in
controllability at infinity see item (2.1) reachability at ∞ in [99]

impulse controllability [46] and [73, Rem. 2] controllability at ∞
in [99]; controllability at
infinity in [5, 6, 155]

R-controllability [41, 49, 169] and [73,
Rem. 2]

–

complete controllability [41, 49, 169] controllability in [46]

strong controllability [155] and [73, Rem. 2] impulse controllability
in [63]

Some of these aforementioned articles introduce the controllability by means
of certain rank criteria for the matrix triple [E,A,B]. The connection of the
concepts introduced in Definition 2.1 to linear algebraic properties of E, A

and B will be highlighted in Sect. 4.
For general DAE systems we have

concept coincides with notion in called [. . . ] in
controllability at infinity – –

impulse controllability [61, 71, 75] –

R-controllability – –

complete controllability [120] controllability in [58]

strong controllability – controllability in [120]

Our behavioral controllability coincides with the framework which is intro-
duced in [128, Definition 5.2.2] for so-called differential behaviors, which
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are general (possibly higher order) DAE systems with constant coefficients.
Note that the concept of behavioral controllability does not require a distinc-
tion between input and state. The concepts of reachability and controllability
in [11–14] coincide with our behavioral and complete controllability, resp.
(see Sect. 4). Full controllability of [171] is our complete controllability to-
gether with the additional assumption that solutions have to be unique.

(ii) Stabilizability in the behavioral sense is introduced in [128, Definition 5.2.2].
For regular systems, stabilizability is usually defined either via linear alge-
braic properties of E, A and B , or by the existence of a stabilizing state
feedback, see [33, 34, 57] and [49, Definition 3-1.2]. Our concepts of behav-
ioral stabilizability and stabilizability coincide with the notions of internal
stability and complete stabilizability, resp., defined in [114] for the system
E ż(t) = A z(t) with E = [E,0], A = [A,B], z(t) = [x�(t), u�(t)]�.

(iii) Other concepts, not related to the ones considered in this article, are e.g. the
instantaneous controllability (reachability) of order k in [120] or the impul-
sive mode controllability in [71]. Furthermore, the concept of strong control-
lability introduced in [147, Exercise 8.5] for ODE systems differs from the
concepts considered in this article.

(iv) The notion of consistent initial conditions is the most important one for DAE
systems and therefore the consideration of the space V[E,A,B] (for B = 0 when
no control systems were considered) is as old as the theory of DAEs itself, see
e.g. [60]. V[E,A,B] is sometimes called viability kernel [30], see also [8, 9].
The reachability and controllability space are some of the most important
notions for (DAE) control systems and have been considered in [99] for regu-
lar systems. They are the fundamental subspaces considered in the geometric
theory, see Sect. 6. Further usage of these concepts can be found in the follow-
ing: in [122] generalized reachability and controllability subspaces of regular
systems are considered; Eliopoulou and Karcanias [56] consider reachability
and almost reachability subspaces of general DAE systems; Frankowska [58]
considers the reachability subspace in terms of differential inclusions.

A nice formula for the reachability space of a regular system has been
derived by Yip et al. [169] (and later been adopted by Cobb [46], however,
called controllable subspace): Consider a regular system [E,A,B] ∈ Σn,n,m

in Weierstraß form [60], that is,

E =
[
In1 0
0 N

]
, A =

[
J 0
0 In2

]
, B =

[
B1
B2

]
,

where N is nilpotent. Then [169, Thm. 2]

R[E,A,B] = 〈J |B1〉 × 〈N |B2〉,
where 〈K|L〉 := imR[L,KL, . . . ,Kn−1L] for some matrices K ∈ R

n×n,
L ∈R

n×m. Furthermore, we have [169, Thm. 3]

V[E,A,B] = R
n1 × 〈N |B2〉.
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This result has been improved later in [41] so that the Weierstraß form is
no longer needed. Denoting by ED the Drazin inverse of a given matrix
E ∈R

n×n (see [39]), it is shown [41, Thm. 3.1] that, for A = I ,

R[E,A,B] = ED
〈
ED|B〉⊕ (I − EED

)〈E|B〉,
where the consideration of A = I is justified by a certain (time-varying) trans-
formation of the system [124]. We further have [41, Thm. 3.2]

V[E,A,B] = imR ED ⊕ (I − EED
)〈E|B〉.

Yet another approach was followed by Cobb [42] who obtains that

R[E,A,B] = 〈(αE − A)−1E|(αE − A)−1B
〉

for some α ∈ R with det(αE − A) �= 0. A simple proof of this result can also
be found in [170].

(v) The notion V diff
[E,A,B] comes from the possible impulsive behavior of solutions

of (2.1), i.e., x may have jumps, when distributional solutions are permitted,
see e.g. [46] as a very early contribution in this regard. Since these jumps have
no effect on the solutions if they occur at the initial time and within the kernel
of E this leads to the definition of V diff

[E,A,B]. See also the definition of impulse
controllability.

(vi) Impulse controllability and controllability at infinity are usually defined by
considering distributional solutions of (2.1), see e.g. [46, 61, 75], sometimes
called impulsive modes, see e.g. [21, 71, 155]. For regular systems, impulse
controllability has been introduced by Verghese et al. [155] (called controlla-
bility at infinity in this work) as controllability of the impulsive modes of the
system, and later made more precise by Cobb [46], see also Armentano [5, 6]
(who also calls it controllability at infinity) for a more geometric point of
view. In [155] the authors do also develop the notion of strong controllabil-
ity as impulse controllability with, additionally, controllability in the regular
sense. Cobb [43] showed that under the condition of impulse controllability,
the infinite eigenvalues of regular sE −A can be assigned via a state feedback
u = Fx to arbitrary finite positions. Armentano [5] later showed how to cal-
culate F . This topic has been further pursued in [94] in the form of invariant
polynomial assignment.
The name “controllability at infinity” comes from the claim that the system
has no infinite uncontrollable modes: Speaking in terms of rank criteria (see
also Sect. 4) the system [E,A,B] ∈ Σk,n,m is said to have an uncontrollable
mode at α

β
if, and only if, rk[αE + βA,B] < rk[E,A,B] for some α,β ∈ C.

If β = 0, then the uncontrollable mode is infinite. Controllability at infin-
ity has been introduced by Rosenbrock [137]—although he does not use this
phrase—as controllability of the infinite frequency zeros. Later Cobb [46]
compared the concepts of impulse controllability and controllability at infin-
ity, see [46, Thm. 5]; the notions we use in the present article go back to the
distinction in this work.
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The concepts have later been generalized by Geerts [61] (see [61, Thm. 4.5 &
Rem. 4.9], however, he does not use the name “controllability at infinity”).
Controllability at infinity of (2.1) is equivalent to the strictness of the cor-
responding differential inclusion [58, Prop. 2.6]. The concept of impulsive
mode controllability in [71] is even weaker than impulse controllability.

(vii) Controllability concepts with a distributional solution setup have been consid-
ered in [61, 120, 130] for instance, see also [46]. A typical argumentation in
these works is that inconsistent initial values cause distributional solutions in
a way that the state trajectory is composed of a continuous function and a lin-
ear combination of Dirac’s delta impulse and some of its derivatives. How-
ever, some frequency domain considerations in [116] refute this approach
(see [145] for an overview on inconsistent initialization). This justifies that
we do only consider weakly differentiable solutions as defined in the behav-
ior B[E,A,B].
Distributional solutions for time-invariant DAEs have already been consid-
ered by Cobb [44] and Geerts [61, 62] and for time-varying DAEs by Rabier
and Rheinboldt [132]. For a mathematically rigorous approach to distribu-
tional solution theory of linear DAEs we refer to [143, 144] by Trenn. The
latter works introduce the notions of impulse controllability and jump con-
trollability which coincide with our impulse controllability and behavioral
controllability, resp.

(vii) R-controllability has been first defined in [169] for regular DAEs. Roughly
speaking, R-controllability is the property that any consistent initial state x0

can be steered to any reachable state xf , where here xf is reachable if, and
only if, there exist t > 0 and (x,u) ∈ B[E,A,B] such that x(t) = xf ; by (2.3)
the latter is equivalent to xf ∈ V[E,A,B], as stated in Definition 2.1.

(viii) The concept of behavioral controllability has been introduced by Willems
[160], see also [128]. This concept is very suitable for generalizations in var-
ious directions, see e.g. [35, 40, 72, 97, 133, 163, 167]. Having found the
behavior of the considered control system one can take over the definition of
behavioral controllability without the need for any further changes. From this
point of view this appears to be the most natural of the controllability con-
cepts. However, this concept also seems to be the least regarded in the DAE
literature.

(ix) The controllability theory of DAE systems can also be treated with the theory
of differential inclusions [8, 9] as showed by Frankowska [58].

(x) Karcanias and Hayton [85] pursued a special ansatz to simplify the sys-
tem (2.1): provided that B has full column rank, we take a left annihilator N

and a pseudoinverse B† of B (i.e., NB = 0 and B†B = I ) such that W = [ N

B†

]
is invertible and then pre-multiply (2.1) by W , thus obtaining the equivalent
system

NEẋ = NAx,

u = B†(Eẋ − Ax).
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The reachability (controllability) properties of (2.1) may now be studied in
terms of the pencil sNE − NA, which is called the restriction pencil [78],
first introduced as zero pencil for the investigation of system zeros of ODEs
in [91, 92], see also [88]. For a comprehensive study of the properties of the
pencil sNE − NA see e.g. [84–87].

(xi) Banaszuk and Przyłuski [11] have considered perturbations of DAE control
systems and obtained conditions under which the sets of all completely con-
trollable systems (systems controllable in the behavioral sense) within the set
of all systems Σk,n,m contain an open and dense subset, or its complement
contains an open and dense subset.

The following dependencies hold true between the concepts from Definition 2.1.
Some further relations will be derived in Sect. 4.

Proposition 2.4 For any [E,A,B] ∈ Σk,n,m the following implications hold true:
If “⇒” holds, then “⇐” does, in general, not hold.

Proof Since it is easy to construct counterexamples for any direction where in the
diagram only “⇒” holds, we skip their presentation. The following implications are
immediate consequences of Definition 2.1:

completely controllable ⇒ controllable at infinity ⇒ impulse controllable,
completely controllable ⇒ strongly controllable ⇒ impulse controllable,
completely controllable ⇒ completely reachable ⇒ strongly reachable,
strongly controllable ⇒ strongly reachable,
completely stabilizable ⇒ controllable at infinity,
strongly stabilizable ⇒ impulse controllable,
completely stabilizable ⇒ strongly stabilizable.

It remains to prove the following assertions:
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(a) completely reachable ⇒ completely controllable,
(b) strongly reachable ⇒ strongly controllable,
(c) completely reachable ⇒ completely stabilizable,
(d) strongly reachable ⇒ strongly stabilizable.

(a) Let x0, xf ∈ R
n. Then, by complete reachability of [E,A,B], there exist

t > 0 and some (x1, u1) ∈ B[E,A,B] with x1(0) = 0 and x1(t) = x0. Further, there
exists (x2, u2) ∈ B[E,A,B] with x2(0) = 0 and x2(t) = xf − x1(2t). By linearity and
shift-invariance, we have

(x,u) := (σtx1 + x2, σtu1 + u2) ∈ B[E,A,B].

On the other hand, this trajectory fulfills x(0) = x1(t) + x2(0) = x0 and x(t) =
x1(2t) + x2(t) = xf .

(b) The proof of this statement is analogous to (a).
(c) By (a) it follows that the system is completely controllable. Complete con-

trollability implies that there exists some t > 0, such that for all x0 ∈ R
n there exists

(x1, u1) ∈ B[E,A,B] with x1(0) = x0 and x1(t) = 0. Then, since (x,u) with

(
x(τ), u(τ )

)=
{

(x1(τ ), u1(τ )), if τ ≤ t,

(0,0), if τ ≥ t

satisfies (x,u) ∈ B[E,A,B] (cf. the proof of Lemma 2.1(a)), the system [E,A,B] is
completely stabilizable.

(d) The proof of this statement is analogous to (c). �

3 Solutions, Relations and Normal Forms

In this section we give the definitions for system and feedback equivalence of DAE
control systems (see [63, 137, 155]), revisit the solution theory of DAEs (see [96,
159] and also [22]), and state a normal form under system and feedback equivalence
(see [105]). For the definition of a canonical and a normal form see Remark 3.2.

3.1 System and Feedback Equivalence

We define the essential concepts of system and feedback equivalence. System equiv-
alence was first studied by Rosenbrock [137] (called restricted system equivalence
in his work, see also [155]) and later became a crucial concept in the control theory
of DAEs [24, 25, 63, 64, 69]. Feedback equivalence for DAEs seems to have been
first considered in [63] to derive a feedback canonical form for regular systems, little
later also in [105] (for general DAEs) where additionally also derivative feedback
was investigated and respective canonical forms derived, see also Sect. 3.3.
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Definition 3.1 (System and feedback equivalence) Two systems [Ei,Ai,Bi] ∈
Σk,n,m, i = 1,2, are called

• system equivalent if, and only if,

∃W ∈ Glk(R), T ∈ Gln(R) : [ sE1 − A1 B1
]= W
[
sE2 − A2 B2

][T 0
0 Im

]
;

we write

[E1,A1,B1] W,T∼se [E2,A2,B2];
• feedback equivalent if, and only if,

∃W ∈ Glk(R), T ∈ Gln(R),V ∈ Glm(R),F ∈R
m,n :

[
sE1 − A1 B1

]= W
[
sE2 − A2 B2

][ T 0
−F V

]
;

(3.1)

we write

[E1,A1,B1] W,T ,V,F∼f e [E2,A2,B2].
It is easy to observe that both system and feedback equivalence are equivalence

relations on Σk,n,m. To see the latter, note that if [E1,A1,B1] W,T ,V,F∼f e [E2,A2,B2],
then

[E2,A2,B2] W−1,T −1,V −1,−V −1FT −1∼f e [E1,A1,B1].
The behaviors of system and feedback equivalent systems are connected via

If [E1,A1,B1] W,T∼se [E2,A2,B2], then

(x,u) ∈B[E1,A1,B1] ⇔ (T x,u) ∈B[E2,A2,B2]

If [E1,A1,B1] W,T ,V,F∼f e [E2,A2,B2], then

(x,u) ∈B[E1,A1,B1] ⇔ (T x,Fx + V u) ∈B[E2,A2,B2].

(3.2)

In particular, if [E1,A1,B1] W,T∼se [E2,A2,B2], then

V[E1,A1,B1] = T −1 · V[E2,A2,B2], Rt
[E1,A1,B1] = T −1 · Rt

[E2,A2,B2].

Further, if [E1,A1,B1] W,T ,V,F∼f e [E2,A2,B2], then

V[E1,A1,B1] = T −1 · V[E2,A2,B2], Rt
[E1,A1,B1] = T −1 · Rt

[E2,A2,B2],

and properties of controllability at infinity, impulse controllability, R-controllability,
behavioral controllability, behavioral stabilizability, complete controllability, com-
plete stabilizability, strong controllability and strong stabilizability are invariant un-
der system and feedback equivalence.
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Remark 3.1 (Equivalence and minimality in the behavioral sense)

(i) Another equivalence concept has been introduced by Willems in [161] (see
also [128, Def. 2.5.2]): Two systems [Ei,Ai,Bi] ∈ Σki,n,m, i = 1,2, are called
equivalent in the behavioral sense, if their behaviors coincide, i.e.,

B[E1,A1,B1] = B[E2,A2,B2].

Note that, in particular, two systems being equivalent in the behavioral sense do
not necessarily have the same number of equations. For instance, the following
two systems are equivalent in the behavioral sense:

[[0], [1], [0]],
[[

0
1

]
,

[
1
0

]
,

[
0
0

]]
.

(ii) It is shown in [128, Thm. 2.5.4] that for a unimodular matrix U(s) ∈ R[s]k,k

(that is, U(s) has a polynomial inverse), and [E,A,B] ∈ Σk,n,m, it holds
(x,u) ∈B[E,A,B] if, and only if,

U

(
d

dt

)
Eẋ(t) = U

(
d

dt

)
Ax(t) + U

(
d

dt

)
Bu(t),

where the differential operator U( d
dt

) has to be understood in the distributional
sense. The unimodular matrix U(s) can particularly been chosen in a way that

U(s) · [ sE − A, −B
]=
[
Rx(s) Ru(s)

0 0

]
,

where [Rx(s) Ru(s)] ∈ R[s]l,n+m has full row rank as a matrix in the field
R(s) [128, Thm. 3.6.2]. It is shown that Rx(

d
dt

)x + Ru(
d
dt

)u = 0 is minimal in
the behavioral sense, i.e., it describes the behavior by a minimal number of l

differential equations among all behavioral descriptions of B[E,A,B]. By using
a special normal form, we will later remark that for any [E,A,B] ∈ Σk,n,m,
there exists a unimodular transformation from the left such that the resulting
differential-algebraic system is minimal in the behavioral sense.

(iii) Conversely, if two systems [Ei,Ai,Bi] ∈ Σki,n,m, i = 1,2 are equivalent in the
behavioral sense, and, moreover, k1 = k2, then there exists some unimodular
U(s) ∈ R[s]k1,k1 , such that

U(s) · [ sE1 − A1, −B1
]= [ sE2 − A2, −B2

]
.

If [Ei,Ai,Bi] i = 1,2, contain different numbers of equations (such as, e.g.,
k1 > k2), then one can first add k1 − k2 equations of type “0 = 0” to the second
system and, thereafter, perform a unimodular transformation leading from one
system to another.
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(iv) Provided that a unimodular transformation of Eẋ(t) = Ax(t) + Bu(t) again
leads to a differential-algebraic system (that is, neither a derivative of the in-
put nor a higher derivative of the state occurs), the properties of controllability
at infinity, R-controllability, behavioral controllability, behavioral stabilizabil-
ity, complete controllability, complete stabilizability are invariant under this
transformation. However, since the differential variables may be changed under
a transformation of this kind, the properties of impulse controllability, strong
controllability and strong stabilizability are not invariant. We will see in Re-
mark 3.11 that any [E,A,B] ∈ Σk,n,m is, in the behavioral sense, equivalent
to a system that is controllable at infinity.

In order to study normal forms under system and feedback equivalence we in-
troduce the following notation: For k ∈ N we introduce the matrices Nk ∈ R

k,k ,
Kk,Lk ∈R

k−1,k with

Nk =

⎡
⎢⎢⎢⎢⎣

0

1
. . .

. . .
. . .

1 0

⎤
⎥⎥⎥⎥⎦

, Kk =
⎡
⎢⎣

1 0
. . .

. . .

1 0

⎤
⎥⎦ , Lk =

⎡
⎢⎣

0 1
. . .

. . .

0 1

⎤
⎥⎦ .

Further, let e
[k]
i ∈ R

k be the ith canonical unit vector, and, for some multi-index
α = (α1, . . . , αl) ∈N

l , we define

Nα = diag(Nα1, . . . ,Nαl
) ∈ R

|α|,|α|,

Kα = diag(Kα1 , . . . ,Kαl
) ∈ R

|α|−l,|α|,

Lα = diag(Lα1, . . . ,Lαl
) ∈R

|α|−l,|α|,

Eα = diag
(
e[α1]
α1

, . . . , e[αl ]
αl

) ∈ R
|α|,l .

Kronecker proved [93] that any matrix pencil sE − A ∈ R[s]k,n can be put into
a certain canonical form, called Kronecker canonical form nowadays, of which a
more comprehensive proof has been provided by Gantmacher [60]. In the follow-
ing we may use the quasi-Kronecker form derived in [22, 23], since in general the
Kronecker canonical form is complex-valued even though the given pencil sE − A

is real-valued, what we need to avoid. The obtained form then is not canonical any-
more, but it is a normal form (see Remark 3.2).

Proposition 3.1 (Quasi-Kronecker form [22, 23, 60]) For any matrix pencil
sE − A ∈R[s]k,n, there exist W ∈ Glk(R), T ∈ Gln(R) such that

W(sE − A)T =

⎡
⎢⎢⎣

sIns − As 0 0 0
0 sNα − I|α| 0 0
0 0 sKβ − Lβ 0
0 0 0 sK�

γ − L�
γ

⎤
⎥⎥⎦ (3.3)
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for some As ∈ R
ns,ns and multi-indices α ∈ N

nα , β ∈ N
nγ , γ ∈ N

nγ . The multi-
indices α,β, γ are uniquely determined by sE −A. Further, the matrix As is unique
up to similarity.

The (components of the) multi-indices α,β, γ are often called minimal indices
and elementary divisors and play an important role in the analysis of matrix pen-
cils, see e.g. [60, 104, 105, 113], where the components of α are the orders of the
infinite elementary divisors, the components of β are the column minimal indices
and the components of γ are the row minimal indices. In fact, the number of column
(row) minimal indices equal to one corresponds to the dimension of kerR E ∩kerR A

(kerR E�∩kerR A�), or, equivalently, the number of zero columns (rows) in a quasi-
Kronecker form of sE −A. Further, note that sIns −As may be further transformed
into Jordan canonical form to obtain the finite elementary divisors.

Since the multi-indices α ∈ N
nα , β ∈ N

nγ , γ ∈ N
nγ are well-defined by means

of the pencil sE − A and, furthermore, the matrix As is unique up to similarity, this
justifies the introduction of the following quantities.

Definition 3.2 (Index of sE − A) Let the matrix pencil sE − A ∈ R[s]k,n be given
with quasi-Kronecker form (3.3). Then the index ν ∈N0 of sE − A is defined as

ν = max{α1, . . . , α�(α), γ1, . . . , γ�(γ )}.

The index is larger or equal to the index of nilpotency ζ of Nα , i.e., ζ ≤ ν, Nζ
α = 0

and N
ζ−1
α �= 0. By means of the quasi-Kronecker form (3.3) it can be seen that the

index of sE − A does not exceed one if, and only if,

imR A ⊆ imR E + A · kerR E. (3.4)

This is moreover equivalent to the fact that for some (and hence any) real matrix Z

with imR Z = kerR E, we have

imR[E,AZ] = imR[E,A]. (3.5)

Since each block in sKβ −Lβ (sK�
γ −L�

γ ) causes a single drop of the column (row)
rank of sE − A, we have

�(β) = n − rkR(s)(sE − A), �(γ ) = k − rkR(s)(sE − A). (3.6)

Further, λ ∈ C is a generalized eigenvalue of sE − A if, and only if,

rkC(λE − A) < rkR(s)(sE − A).

3.2 A Normal Form Under System Equivalence

Using Proposition 3.1 it is easy to determine a normal form under system equiv-
alence. For regular systems this normal form was first discovered by Rosen-
brock [137].



20 T. Berger and T. Reis

Corollary 3.2 (Decoupled DAE) Let [E,A,B] ∈ Σk,n,m. Then there exist W ∈
Glk(R), T ∈ Gln(R) such that

[E,A,B] W,T∼se

⎡
⎢⎢⎣

⎡
⎢⎢⎣

Ins 0 0 0
0 Nα 0 0
0 0 Kβ 0
0 0 0 K�

γ

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

As 0 0 0
0 I|α| 0 0
0 0 Lβ 0
0 0 0 L�

γ

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

Bs

Bf

Bu

Bo

⎤
⎥⎥⎦

⎤
⎥⎥⎦ ,

(3.7)
for some Bs ∈ R

ns,m, Bf ∈ R
|α|,m, Bo ∈ R

|β|−�(β),m, Bu ∈ R
|γ |,m, As ∈ R

ns ,ns

and multi-indices α ∈ N
nα , β ∈ N

nβ , γ ∈ N
nγ . This is interpreted, in terms of the

DAE (2.1), as follows: (x,u) ∈B[E,A,B] if, and only if,

(
xs(·)�, xf (·)�, xu(·)�, xo(·)�

)� := T x(·)
with

xf (·) =
⎛
⎜⎝

xf [1](·)
...

xf [�(α)](·)

⎞
⎟⎠ , xu(·) =

⎛
⎜⎝

xu[1](·)
...

xu[�(β)](·)

⎞
⎟⎠ , xo(·) =

⎛
⎜⎝

xo[1](·)
...

xo[�(γ )](·)

⎞
⎟⎠

solves the decoupled DAEs

ẋs(t) = Asxs(t) + Bsu(t), (3.8a)

Nαi
ẋf [i](t) = xf [i](t) + Bf [i]u(t) for i = 1, . . . , �(α), (3.8b)

Kβi
ẋu[i](t) = Lβi

xu[i](t) + Bu[i]u(t) for i = 1, . . . , �(β), (3.8c)

K�
γi

ẋo[i](t) = L�
γi

xo[i](t) + Bo[i]u(t) for i = 1, . . . , �(γ ) (3.8d)

with suitably labeled partitions of Bf , Bu and Bo.

Remark 3.2 (Canonical and normal form) Recall the definition of a canonical form:
given a group G, a set S , and a group action α : G × S → S which defines

an equivalence relation s
α∼ s′ if, and only if, ∃U ∈ G : α(U, s) = s′. Then a map

γ : S → S is called a canonical form for α [28] if, and only if,

∀s, s′ ∈ S : γ (s)
α∼ s ∧ [s α∼ s′ ⇔ γ (s) = γ

(
s′)].

Therefore, the set S is divided into disjoint orbits (i.e., equivalence classes) and
the mapping γ picks a unique representative in each equivalence class. In the setup
of system equivalence, the group is G = Gln(R) × Gln(R), the considered set is
S = Σk,n,m and the group action α((W,T ), [E,A,B]) = [WET,WAT,WB] cor-

responds to
W−1,T −1∼ . However, Corollary 3.2 does not provide a mapping γ . That

means that the form (3.7) is not a unique representative within the equivalence class
and hence it is not a canonical form. Nevertheless, we may call it a normal form,
since every entry is (at least) unique up to similarity.
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Remark 3.3 (Canonical forms for regular systems) For regular systems which are
completely controllable two actual canonical forms of [E,A,B] ∈ Σn,n,m under
system equivalence have been obtained: the Jordan control canonical form in [64]
and, later, the more simple canonical form in [69] based on the Hermite canonical
form for controllable ODEs [I,A,B].

Remark 3.4 (DAEs corresponding to the blocks in the quasi-Kronecker form)
Corollary 3.2 leads to the separate consideration of the differential-algebraic equa-
tions (3.8a)–(3.8c):

(i) (3.8a) is an ordinary differential equation whose solution satisfies

xs(t) = eAst xs(0) +
∫ t

0
eAs(t−τ)Bsu(τ)dτ, t ∈R.

In particular, solvability is guaranteed by u ∈ L 1
loc(R;Rm). The initial value

xs(0) ∈ R
n can be chosen arbitrarily; the prescription of u ∈ L 1

loc(R;Rm) and
xs(0) ∈R

n guarantees uniqueness of the solution.
(ii) The solutions of (3.8b) can be calculated by successive differentiation and pre-

multiplication with Nαi
, hence we have

0 = Nαi
αi

x
(αi )
f [i](t)

(3.8b)= Nαi−1
αi

xf [i](t)(αi−1) + Nαi−1
αi

Bf [i]u(αi−1)(t)

= · · · = xf [i](t) +
αi−1∑
j=0

Nj
αi

Bf [i]u(j)(t),

where u(j) denotes the j th distributional derivative of u. As a consequence, the
solution requires a certain smoothness of the input, expressed by

αi−1∑
j=0

Nj
αi

Bf [i]u(j) ∈ W 1,1
loc

(
R;Rαi
)
.

In particular, condition u ∈ W αi ,1
loc (R;Rαi ) guarantees solvability of the

DAE (3.8b). Note that the initial value xf [i](0) cannot be chosen at all: It
is fixed by u via the relation

xf [i](0) = −
(

αi−1∑
j=0

Nj
αi

Bf [i]u(j)

)
(0).

On the other hand, for any (sufficiently smooth) input there exists a unique
solution for appropriately chosen initial value.
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(iii) Writing

xu[i]− =
⎡
⎢⎣

xu[i],1
...

xu[i],βi−1

⎤
⎥⎦ ,

(3.8c) is equivalent to

ẋu[i]− = N�
βi−1xu[i]− + e

[βi−1]
βi−1 xu[i],βi

+ Bu[i]u(t).

Hence, a solution exists for all inputs u ∈ L 1
loc(R;Rm) and all xu[i],βi

∈
W 1,1

loc (R;R) as well as xu[i],1(0), . . . , xu[i],βi−1(0). This system is therefore un-
derdetermined in the sense that one component as well as all initial values can
be freely chosen. Hence any existing solution for fixed input u and fixed initial
value xu[i](0) is far from being unique.

(iv) Denoting

xo[i]+ =
[

01,1
xo[i]

]
,

(3.8d) can be rewritten as

N�
γi

ẋo[i]+ = xo[i]+ + Bo[i]u(t).

Hence we obtain xo[i]+(t) = −∑γi−1
j=0 (N�

γi
)jBo[i]u(j)(t), which gives

xo[i](t) = −[0(γi−1),1, Iγi−1]
γi−1∑
j=0

(
N�

γi

)j
Bo[i]u(j)(t)

together with the consistency condition on the input:

(
e
[γi ]
1

)� γi−1∑
j=0

(
N�

γi

)j
Bo[i]u(j)(t) = 0. (3.9)

The smoothness condition

γi−1∑
j=0

(
N�

γi

)j
Bo[i]u(j) ∈ W 1,1

loc

(
R;Rγi
)

is therefore not enough to guarantee existence of a solution; the additional con-
straint formed by (3.9) has to be satisfied, too. Furthermore, as in (ii), the initial
value xo[i](0) is fixed by the input u. Hence, a solution does only exist if the
consistency conditions on the input and initial value are satisfied, but then the
solution is unique.
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Remark 3.5 (Solutions on (finite) time intervals) The solution of a DAE [E,A,B] ∈
Σk,n,m on some time interval I � R can be defined in a straightforward manner
(compare (2.2)). By the considerations in Remark 3.4, we can infer that any solution
(x,u) on some finite time interval I �R can be extended to a solution on the whole
real axis. Consequently, all concepts which have been defined in Sect. 2 could be
also made based on solutions on intervals I including zero.

3.3 A Normal Form under Feedback Equivalence

A normal form under feedback transformation (3.1) was first studied for sys-
tems governed by ordinary differential equations by Brunovský [32]. In this sec-
tion we present a generalization of the Brunovský form for general DAE sys-
tems [E,A,B] ∈ Σk,n,m from [105]. For more details of the feedback form and a
more geometric point of view on feedback invariants and feedback canonical forms
see [87, 105].

Remark 3.6 (Feedback for regular systems) It is known [12, 63] that the class of
regular DAE systems is not closed under the action of state feedback. Therefore,
in [140] the class of regular systems is divided into the families

Σθ := {(E,A,B) ∈ Σn,n,m | det(cos θE − sin θA) �= 0
}
, θ ∈ [0,π),

and it is shown that any of these families is dense in the set of regular systems and
the union of these families is exactly the set of regular systems. The authors of [140]
then introduce the “constant-ratio proportional and derivative” feedback on Σθ , i.e.

u = F(cos θx − sin θẋ) + v.

This feedback leads to a group action and enables them to obtain a generalization of
Brunovský’s theorem [32] on each of the subsets of completely controllable systems
in Σθ , see [140, Thm. 6].

Glüsing-Lüerßen [63] derived a canonical form under the unchanged feedback
equivalence (3.1) on the set of strongly controllable (called impulse controllability
in [63]) regular systems, see [63, Thm. 4.7]. In particular it was shown that this set
is closed under the action of a feedback group.

Theorem 3.3 (Normal form under feedback equivalence [105]) Let [E,A,B] ∈
Σk,n,m. Then there exist W ∈ Glk(R), T ∈ Gln(R),V ∈ Glm(R),F ∈ R

m,n such
that
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[E,A,B]

W,T ,V,F∼f e

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

I|α| 0 0 0 0 0
0 Kβ 0 0 0 0
0 0 L�

γ 0 0 0
0 0 0 K�

δ 0 0
0 0 0 0 Nκ 0
0 0 0 0 0 Inc

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

N�
α 0 0 0 0 0

0 Lβ 0 0 0 0
0 0 K�

γ 0 0 0
0 0 0 L�

δ 0 0
0 0 0 0 I|κ| 0
0 0 0 0 0 Ac

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

Eα 0 0
0 0 0
0 Eγ 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3.10)

for some multi-indices α,β, γ, δ, κ and a matrix Ac ∈ R
nc,nc . This is interpreted, in

terms of the DAE (2.1), as follows: (x,u) ∈B[E,A,B] if, and only if,

(
xc(·)�, xu(·)�, xob(·)�, xo(·)�, xf (·)�, xc(·)�

)� := T x(·),
(
uc(·)�, uob(·)�, us(·)�

)� := V
(
u(·) − Fx(·)),

with

xc(·) =
⎛
⎜⎝

xc[1](·)
...

xc[�(α)](·)

⎞
⎟⎠ , uc(·) =

⎛
⎜⎝

uc[1](·)
...

xc[�(α)](·)

⎞
⎟⎠ , xu(·) =

⎛
⎜⎝

xu[1](·)
...

xu[�(β)](·)

⎞
⎟⎠ ,

xob(·) =
⎛
⎜⎝

xob[1](·)
...

xob[�(γ )](·)

⎞
⎟⎠ , uob(·) =

⎛
⎜⎝

uob[1](·)
...

uob[�(γ )](·)

⎞
⎟⎠ , xo(·) =

⎛
⎜⎝

xo[1](·)
...

xo[�(δ)](·)

⎞
⎟⎠ ,

xf (·) =
⎛
⎜⎝

xf [1](·)
...

xf [�(κ)](·)

⎞
⎟⎠

solves the decoupled DAEs

ẋc[i](t) = N�
αi

xc(t) + e[αi ]
αi

uc[i](t) for i = 1, . . . , �(α), (3.11a)

Kβi
ẋu[i](t) = Lβi

xu[i](t) for i = 1, . . . , �(β), (3.11b)

L�
γi

ẋob[i](t) = K�
γi

xob[i](t) + e[γi ]
γi

uob[i] for i = 1, . . . , �(γ ), (3.11c)

K�
δi

ẋo[i](t) = L�
δi
xo[i](t) for i = 1, . . . , �(δ), (3.11d)
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Nκi
ẋf [i](t) = xc(t) for i = 1, . . . , �(κ), (3.11e)

ẋc(t) = Acxc(t). (3.11f)

Note that by Remark 3.2 the form (3.10) is a normal form. However, if we apply
an additional state space transformation to the block [Inc

,Ac,0] which puts Ac into
Jordan canonical form, and then prescribe the order of the blocks of each type, e.g.
from largest dimension to lowest (what would mean α1 ≥ α2 ≥ · · · ≥ α�(α) for α for
instance), then (3.10) becomes a canonical form.

Remark 3.7 (DAEs corresponding to the blocks in the feedback form) The form in
Theorem 3.3 again leads to the separate consideration of the differential-algebraic
equations (3.11a)–(3.11f):

(i) (3.11a) is given by [Iαi
,N�

αi
, e

[αi ]
αi

], and is completely controllable by the clas-
sical results for ODE systems (see e.g. [147, Sect. 3.2]). This system has fur-
thermore the properties of being R-controllable, and both controllable and sta-
bilizable in the behavioral sense.

(ii) (3.11b) corresponds to an underdetermined system with zero dimensional
input space. Since xu[i] satisfies (3.11b) if, and only if, there exists some
vi ∈ L 1

loc(R;R) with

ẋu[i](t) = N�
βi

xu[i](t) + e
[βi ]
βi

vi(t),

this system has the same properties as (3.11a).
(iii) Denoting

zob[i] =
[

xob[i]
uob[i]

]
,

then (3.11c) can be rewritten as

Nγi
żob[i](t) = zob[i](t),

which has, by (ii) in Remark 3.4, the unique solution zob[i] = 0. Hence,

B[L�
γi

,K�
γi

,e
[γi ]
γi

] = {0}.

The system [L�
γi

,K�
γi

, e
[γi ]
γi

] is therefore completely controllable if, and only
if, γi = 1. In the case where γi > 1, this system is not even impulse control-
lable. However, independent of γi , [L�

γi
,K�

γi
, e

[γi ]
γi

] is R-controllable, and both
controllable and stabilizable in the behavioral sense.

(iv) Again, we have

B[K�
δi

,L�
δi

,0δi ,0] = {0},
whence, in dependence on δi , we can infer the same properties as in (iii).
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(v) Due to

B[Nκi
,Iκi

,0κi ,0] = {0},
the system [Nκi

, Iκi
,0κi ,0] is never controllable at infinity, but always R-

controllable and both controllable and stabilizable in the behavioral sense.
[Nκi

, Iκi
,0κi ,0] is strongly controllable if, and only if, κi = 1.

(vi) The system [Inc
,Ac,0c,0] satisfies

B[Inc
,Ac,0nc,0] = {eAc·x0

∣∣ x0 ∈R
nc
}
,

whence it is controllable at infinity, but neither strongly controllable nor con-
trollable in the behavioral sense nor R-controllable. The properties of being
complete and strong stabilizability and stabilizability in the behavioral sense
are attained if, and only if, σ(Ac) ⊆ C−.

By using the implications shown in Proposition 2.4, we can deduce the following
for the systems arising in the feedback form:

[Iαi
,N�

αi
, e

[αi ]
αi

] [Kβi
,Lβi

,0βi−1,0] [L�
γi

,K�
γi

, e
[γi ]
γi

] [K�
δi

,L�
δi

,0δi ,0
] [Nκi

, Iκi ,0κi ,0
] [Inc

,Ac,0c,0]
controllable
at infinity

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ✕ ✓

impulse
controllable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ⇔ κi = 1 ✓

completely
controllable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ✕ ✕

completely
reachable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ✕ ✕

strongly
controllable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ⇔ κi = 1 ✕

strongly
reachable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ⇔ κi = 1 ✕

completely
stabilizable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ✕
⇔ σ(Ac)

⊆ C−
strongly
stabilizable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ⇔ κi = 1
⇔ σ(Ac)

⊆ C−
R-control-
lable

✓ ✓ ✓ ✓ ✓ ✕

controllable
in the be-
havioral
sense

✓ ✓ ✓ ✓ ✓ ✕

stabilizable
in the be-
havioral
sense

✓ ✓ ✓ ✓ ✓
⇔ σ(Ac)

⊆ C−

Corollary 3.4 A system [E,A,B] ∈ Σk,n,m with feedback form (3.10) is

(a) controllable at infinity if, and only if, γ = (1, . . . ,1), δ = (1, . . . ,1) and
�(κ) = 0;

(b) impulse controllable if, and only if, γ = (1, . . . ,1), δ = (1, . . . ,1) and κ =
(1, . . . ,1);

(c) strongly controllable (and thus also strongly reachable) if, and only if, γ =
(1, . . . ,1), δ = (1, . . . ,1), κ = (1, . . . ,1) and nc = 0;
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(d) completely controllable (and thus also completely reachable) if, and only if,
γ = (1, . . . ,1), δ = (1, . . . ,1) and �(κ) = nc = 0;

(e) R-controllable if, and only if, nc = 0;
(f) controllable in the behavioral sense if, and only if, nc = 0;
(g) strongly stabilizable if, and only if, γ = (1, . . . ,1), δ = (1, . . . ,1), �(κ) = 0,

and σ(Ac) ⊆ C−;
(h) completely stabilizable if and only if, γ = (1, . . . ,1), δ = (1, . . . ,1), κ =

(1, . . . ,1), and σ(Ac) ⊆ C−;
(i) stabilizable in the behavioral sense if, and only if, σ(Ac) ⊆ C−.

Remark 3.8 (Parametrization of the behavior of systems in feedback form) With the
findings in Remark 3.7, we may explicitly characterize the behavior of systems in
feedback form. Define

Vk(s) = [1, s, . . . , sk
]� ∈R[s]k,1

and, for some multi-index μ = (μ1, . . . ,μl) ∈ N
l ,

Vμ(s) = diag
(
Vμ1(s), . . . , Vμl

(s)
) ∈R[s]|μ|,�(μ),

Wμ(s) = diag
(
sμ1, . . . , sμl

) ∈ R[s]�(μ),�(μ).

Further let μ + k := (μ1 + k, . . . ,μl + k) for k ∈ Z, and

W μ,1
loc (R;R) := W μ1,1

loc (R;R) × · · · × W
μ�(μ),1

loc (R;R).

Then the behavior of a system in feedback form can, formally, be written as

B[E,A,B] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vα−1(
d
dt

) 0 0 0
0 Vβ−1(

d
dt

) 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 eAc· 0

Wα( d
dt

) 0 0 0
0 0 0 0
0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣

W α,1
loc (R;R)

W
β,1

loc (R;R)

R
nc

L 1
loc(R;Rm−�(α)−�(γ ))

⎤
⎥⎥⎥⎥⎦

,

where the sizes of the blocks are according to the block structure in the feedback
form (3.10) and the horizontal line is the dividing line between x- and u-variables.
If the system [E,A,B] ∈ Σk,n,m is not in feedback form, then a parametrization
of the behavior can be found by using the above representation and relation (3.2)
expressing the connection between behaviors of feedback equivalent systems.

For general differential behaviors, a parametrization of the above kind is called
image representation [128, Sect. 6.6].
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Remark 3.9 (Derivative feedback) A canonical form under proportional and deriva-
tive feedback (PD feedback) was derived in [105] as well (note that PD feedback
defines an equivalence relation on Σk,n,m). The main tool for doing this is the re-
striction pencil (see Remark 2.1(xi)): Clearly, the system

NEẋ = NAx,

u = B†(Eẋ − Ax)

is equivalent, via PD feedback, to the system

NEẋ = NAx,

u = 0.

Then putting sNE −NA into Kronecker canonical form yields a PD canonical form
for the DAE system with a 5 × 4-block structure.

We may, however, directly derive this PD canonical form from the normal
form (3.10). To this end we may observe that the system [Iαi

,N�
αi

, e
[αi ]
αi

] can be
written as

Kαi
ẋc[i](t) = Lαi

xc[i](t), ẋc[i],αi
(t) = uc[i](t),

and hence is, via PD feedback, equivalent to the system
[[

Kαi

0

]
,

[
Lαi

0

]
,

[
0
1

]]
.

On the other hand, the system [L�
γi

,K�
γi

, e
[γi ]
γi

] can be written as

Nγi−1ẋob[i](t) = xob[i](t), ẋob[i],γi−1(t) = uob[i](t),

and hence is, via PD feedback, equivalent to the system
[[

Nγi−1
0

]
,

[
Iγi−1

0

]
,

[
0
1

]]
.

A canonical form for [E,A,B] ∈ Σk,n,m under PD feedback is therefore given by

[E,A,B] ∼PD

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

Kβ 0 0 0
0 K�

δ 0 0
0 0 Nκ 0
0 0 0 Inc

0 0 0 0

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

Lβ 0 0 0
0 L�

δ 0 0
0 0 I|κ| 0
0 0 0 Ac

0 0 0 0

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
Iζ 0

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦

,

where Ac is in Jordan canonical form, and the blocks of each type are ordered from
largest dimension to lowest.

Note that the properties of complete controllability, controllability at infinity and
controllability in the behavioral sense are invariant under PD feedback. However,
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since derivative feedback changes the set of differential variables, the properties of
strong controllability as well as impulse controllability may be lost/gained after PD
feedback.

Remark 3.10 (Connection to Kronecker form) We may observe from (3.1) that
feedback transformation may be alternatively considered as a transformation of the
extended pencil

sE − A = [ sE − A, −B
]
, (3.12)

that is based on a multiplication from the left by W = W ∈ Glk(R), and from the
right by

T =
[

T 0
F V

]
∈ Gln+m(R).

This equivalence is therefore a subclass of the class which is induced by the pre-
and post-multiplication of sE − A by arbitrary invertible matrices. Loosely speak-
ing, one can hence expect a normal form under feedback equivalence which spe-
cializes the quasi-Kronecker form of sE − A . Indeed, the latter form may be
obtained from the feedback form of [E,A,B] by several simple row transforma-
tions sE − A which are not interpretable as feedback group actions anymore.
More precisely, simple permutations of columns lead to the separate considera-
tion of the extended pencils corresponding to the systems (3.11a)–(3.11f): The ex-
tended pencils corresponding to [Iαi

,N�
αi

, e
[αi ]
αi

] and [Kβi
,Lβi

,0αi ,0] are sKαi
−Lαi

and sKβi
− Lβi

, resp. The extended matrix pencil corresponding to the system

[L�
γi

,K�
γi

, e
[γi ]
γi

] is given by sNγi
− Iγi

. The extended matrix pencils correspond-

ing to the systems [K�
δi

,L�
δi
,0δi ,0], [Nκi

, Iκi
,0κi ,0] and [Inc

,Ac,0c,0] are obviously

given by sK�
δi

− L�
δi

, sNκi
− Iκi

and sInc
− Ac, respectively. In particular, λ ∈ C is

a generalized eigenvalue of sE − A , if, and only if, λ ∈ σ(Ac).

Remark 3.11 (Minimality in the behavioral sense)

(i) According to Remark 3.1, a differential-algebraic system [E,A,B] ∈ Σk,n,m

is minimal in the behavioral sense, if, and only if, the extended pencil sE − A
as in (3.12) has full row rank as a matrix with entries in the field R(s). On the
other hand, a system [E,A,B] ∈ Σk,n,m with feedback form (3.10) satisfies

rkR(s)(sE − A ) = k − �(δ).

Using that rkR(s)(sE − A ) is invariant under feedback transformation (3.1),
we can conclude that minimality of [E,A,B] ∈ Σk,n,m in the behavioral sense
corresponds to the absence of blocks of type (3.11d) in its feedback form.
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(ii) The findings in Remark 3.4 imply that a system in feedback form is, in the
behavioral sense, equivalent to
⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

I|α| 0 0 0 0 0
0 Kβ 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 Inc

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

N�
α 0 0 0 0 0

0 Lβ 0 0 0 0
0 0 K�

γ 0 0 0
0 0 0 I|δ|−�(δ) 0 0
0 0 0 0 I|κ| 0
0 0 0 0 0 Ac

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

Eα 0 0
0 0 0
0 Eγ 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This system can alternatively be achieved by multiplying the extended pen-
cil (3.12) in feedback form (3.10) from the left with the polynomial matrix

Z(s) = diag

(
I|α|, I|β|−�(β),−

νγ −1∑
k=0

skNk
γ ,Pδ(s),−

νκ−1∑
k=0

skNk
κ , Inc

)
,

where νγ = max{γ1, . . . , γ�(γ )}, νκ = max{κ1, . . . , κ�(κ)}, and

Pδ(s) = diag

([
0δi−1,1, −

δi−2∑
k=0

sk(N�
δi−1)

k

])

j=1,...,�(δ)

.

(iii) Let a differential-algebraic system [E,A,B] ∈ Σk,n,m be given. Using the no-
tation from (3.10) and the previous item, a behaviorally equivalent and minimal
system [EM,AM,BM ] ∈ Σk−�(δ),n,m can be constructed by

[
sEM − AM, −BM

]= Z(s)W
[
sE − A, −B

]
.

It can be seen that this representation is furthermore controllable at infinity.
As well, it minimizes, among all differential-algebraic equations representing
the same behavior, the index and the rank of the matrix in front of the state
derivative (that is, loosely speaking, the number of differential variables). This
procedure is very closely related to index reduction [96, Sect. 6.1].

4 Criteria of Hautus Type

In this section we derive equivalent criteria on the matrices E,A ∈ R
k,n, B ∈ R

k,m

for the controllability and stabilizability concepts of Definition 2.1. The criteria are
generalizations of the Hautus test (also called Popov–Belevitch–Hautus test, since
independently developed by Popov [129], Belevitch [17] and Hautus [68]) in terms
of rank criteria on the involved matrices. Note that these conditions are not new—
we refer to the relevant literature. However, we provide new proofs using only the
feedback normal form (3.10).

First we show that certain rank criteria on the matrices involved in control sys-
tems are invariant under feedback equivalence. After that, we relate these rank cri-
teria to the feedback form (3.10).
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Lemma 4.1 Let [E1,A1,B1], [E2,A2,B2] ∈ Σk,n,m be given such that for W ∈
Glk(R), T ∈ Gln(R), V ∈ Glm(R) and F ∈ R

m,n, we have

[E1,A1,B1] W,T ,V,F∼f e [E2,A2,B2].

Then

imR E1 + imR A1 + imR B1 =W · (imR E2 + imR A2 + imR B2),

imR E1 + A1 · kerR E1 + imR B1 =W · (imR E2 + A2 · kerR E2 + imR B2),

imR E1 + imR B1 =W · (imR E2 + imR B2),

imC(λE1 − A1) + imC B1 =W · (imC(λE2 − A2) + imC B2
)

for all λ ∈ C,

imR(s)(sE1 − A1) + imR(s) B1 =W · (imR(s)(sE2 − A2) + imR(s) B2
)
.

Proof Immediate from (3.1). �

Lemma 4.2 (Algebraic criteria via feedback form) For a system [E,A,B] ∈ Σk,n,m

with feedback form (3.10) the following statements hold true:

(a)

imR E + imR A + imR B = imR E + imR B

⇐⇒ γ = (1, . . . ,1), δ = (1, . . . ,1), �(κ) = 0.

(b)

imR E + imR A + imR B = imR E + A · kerR E + imR B

⇐⇒ γ = (1, . . . ,1), δ = (1, . . . ,1), κ = (1, . . . ,1).

(c)

imC E + imC A + imR B = imC(λE − A) + imC B

⇐⇒ δ = (1, . . . ,1), λ /∈ σ(Ac).

(d) For λ ∈C we have

dim
(
imR(s)(sE − A) + imR(s) B

)= dim
(
imC(λE − A) + imC B

)

⇐⇒ λ /∈ σ(Ac).

Proof It is, by Lemma 4.1, no loss of generality to assume that [E,A,B] is already
in feedback normal form. The results then follow by a simple verification of the
above statements by means of the feedback form. �
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Combining Lemmas 4.1 and 4.2 with Corollary 3.4, we may deduce the follow-

ing criteria for the controllability and stabilizability concepts introduced in Defini-

tion 2.1.

Corollary 4.3 (Algebraic criteria for controllability/stabilizability) Let a system

[E,A,B] ∈ Σk,n,m be given. Then the following holds:

[E,A,B] is if, and only if,

controllable at
infinity

imR E + imR A + imR B = imR E + imR B.

impulse control-
lable

imR E + imR A + imR B = imR E + A · kerR E + imR B.

completely con-
trollable

imR E + imR A + imR B = imR E + imR B

∧ imC E + imC A + imC B = imC(λE − A) + imC B ∀λ ∈ C.

strongly control-
lable

imR E + imR A + imR B = A · kerR E + imR B

∧ imC E + imC A + imC B = imC(λE − A) + imC B ∀λ ∈ C.

completely stabi-
lizable

imR E + imR A + imR B = imR E + imR B

∧ imC E + imC A + imC B = imC(λE − A) + imC B ∀λ ∈ C+.

strongly stabiliz-
able

imR E + imR A + imR B = imR E + A · kerR E + imR B

∧ imC E + imC A + imC B = imC(λE − A) + imC B ∀λ ∈ C+.

controllable in
the behavioral
sense

rkR(s)[sE − A,B] = rkC[λE − A,B] ∀λ ∈C.

stabilizable in
the behavioral
sense

rkR(s)[sE − A,B] = rkC[λE − A,B] ∀λ ∈C+.

The above result leads to the following extension of the diagram in Proposi-

tion 2.4. Note that the equivalence of R-controllability and controllability in the

behavioral sense was already shown in Corollary 3.4.
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In the following we will consider further criteria for the concepts introduced in
Definition 2.1.

Remark 4.1 (Controllability at infinity) Corollary 4.3 immediately implies that con-
trollability at infinity is equivalent to

imR A ⊆ imR E + imR B.

In terms of a rank criterion, this is the same as

rkR[E,A,B] = rkR[E,B]. (4.1)

Criterion (4.1) has first been derived by Geerts [61, Thm. 4.5] for the case
rk[E,A,B] = k, although he does not use the name “controllability at infinity”.

In the case of regular sE − A ∈ R[s]n,n, condition (4.1) reduces to

rkR[E,B] = n.

Remark 4.2 (Impulse controllability) By Corollary 4.3, impulse controllability of
[E,A,B] ∈ Σk,n,m is equivalent to

imR A ⊆ imR E + A · kerR E + imR B.

Another equivalent characterization is that, for one (and hence any) matrix Z with
imR(Z) = kerR(E), we have

rkR[E,A,B] = rkR[E,AZ,B]. (4.2)
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This has first been derived by Geerts [61, Rem. 4.9], again for the case rk[E,A,B] =
k. In [75, Thm. 3] and [71] the result has been obtained that impulse controllability
is equivalent to

rkR

[
E 0 0
A E B

]
= rkR[E,A,B] + rkR E,

which is in fact equivalent to (4.2). It has also been shown in [75, p. 1] that impulse
controllability is equivalent to

rkR(s)(sE − A ) = rkR[E,A,B].
This criterion can be alternatively shown by using the feedback form (3.10). Using
condition (3.5) we may also infer that this is equivalent to the index of the extended
pencil sE − A ∈R[s]k,n+m being at most one.

If the pencil sE − A is regular, then condition (4.2) reduces to

rkR[E,AZ,B] = n.

This condition can be also inferred from [49, Th. 2-2.3].

Remark 4.3 (Controllability in the behavioral sense and R-controllability) The con-
cepts of controllability in the behavioral sense and R-controllability are equivalent
by Corollary 3.4. The algebraic criterion for behavioral controllability in Corol-
lary 4.3 is equivalent to the extended matrix pencil sE − A ∈ R[s]k,n+m having
no generalized eigenvalues, or, equivalently, in the feedback form (3.10) it holds
nc = 0.

The criterion for controllability in the behavioral sense is shown in [128,
Thm. 5.2.10] for the larger class of linear differential behaviors. R-controllability
for systems with regular sE − A was considered in [49, Thm. 2-2.2], where the
condition

rkC[λE − A,B] = n ∀λ ∈C

was derived. This is, for regular sE − A, in fact equivalent to the criterion for be-
havioral stabilizability in Corollary 4.3.

Remark 4.4 (Complete controllability and strong controllability) By Corollary 4.3,
complete controllability of [E,A,B] ∈ Σk,n,m is equivalent to [E,A,B] be-
ing R-controllable and controllable at infinity, whereas strong controllability of
[E,A,B] ∈ Σk,n,m is equivalent to [E,A,B] being R-controllable and impulse con-
trollable.

Banaszuk et al. [12] already obtained the condition in Corollary 4.3 for complete
controllability considering discrete systems. Complete controllability is called H -
controllability in [12]. Recently, Zubova [171] considered full controllability, which
is just complete controllability with the additional assumption that solutions have to
be unique, and obtained three equivalent criteria [171, Sect. 7], where the first one
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characterizes the uniqueness and the other two are equivalent to the condition for
complete controllability in Corollary 4.3.

For regular systems, the conditions in Corollary 4.3 for complete and strong con-
trollability are also derived in [49, Thm. 2-2.1 & Thm. 2-2.3].

Remark 4.5 (Stabilizability) By Corollary 4.3, complete stabilizability of [E,A,B]
∈ Σk,n,m is equivalent to [E,A,B] being stabilizable in the behavioral sense and
controllable at infinity, whereas strong stabilizability of [E,A,B] ∈ Σk,n,m is equiv-
alent to [E,A,B] being stabilizable in the behavioral sense and impulse control-
lable.

The criterion for stabilizability in the behavioral sense is shown in [128,
Thm. 5.2.30] for the class of linear differential behaviors.

Remark 4.6 (Kalman criterion for regular systems) For regular systems [E,A,B] ∈
Σn,n,m with det(sE − A) ∈ R[s] \ {0} the usual Hautus and Kalman criteria can be
found in a summarized form e.g. in [49]. Other approaches to derive controllability
criteria rely on the expansion of (sE − A)−1 as a power series in s, which is only
feasible in the regular case. For instance, in [115] the numerator matrices of this
expansion, i.e., the coefficients of the polynomial adj(sE − A), are used to derive a
rank criterion for complete controllability. Then again, in [90] Kalman rank criteria
for complete controllability, R-controllability and controllability at infinity are de-
rived in terms of the coefficients of the power series expansion of (sE − A)−1. The
advantage of these criteria, especially the last one, is that no transformation of the
system needs to be performed as it is usually necessary in order to derive Kalman
rank criteria for DAEs, see e.g. [49].

However, simple criteria can be obtained using only a left transformation of little
impact: if α ∈ R is chosen such that det(αE − A) �= 0 then the system is complete
controllable if, and only if, [170, Cor. 1]

rkR
[
(αE − A)−1B,

(
(αE − A)−1E

)
(αE − A)−1B, . . .

. . . ,
(
(αE − A)−1E

)n−1
(αE − A)−1B

]= n,

and it is impulse controllable if, and only if, [170, Thm. 2]

imR(αE − A)−1E + ker(αE − A)−1E + imR(αE − A)−1B = R
n.

The result concerning complete controllability has also been obtained in [41,
Thm. 4.1] for the case A = I and α = 0.

Yet another approach was followed by Kučera and Zagalak [94] who introduced
controllability indices and characterized strong controllability in terms of an equa-
tion for these indices.
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5 Feedback, Stability and Autonomous Systems

State feedback is, roughly speaking, the special choice of the input being a function
of the state. Due to the mutual dependence of state and input in a feedback system,
this is often referred to as closed-loop control. In the linear case, feedback is the
imposition of the additional relation u(t) = Fx(t) for some F ∈ R

m,n. This results
in the system

Eẋ(t) = (A + BF)x(t).

Feedback for linear ODE systems was studied by Wonham [165], where it is shown
that controllability of [I,A,B] ∈ Σn,n,m is equivalent to any set Λ ⊆ C which has
at most n elements and is symmetric with respect to the imaginary axis (that is,
λ ∈ Λ ⇔ λ ∈ Λ) being achievable by a suitable feedback, i.e., there exists some
F ∈ R

m,n with the property that σ(A + BF) = �. In particular, the input may be
chosen in a way that the closed-loop system is stable, i.e., any state trajectory tends
to zero. Using the Kalman decomposition [82] (see also Sect. 7), it can be shown for
ODE systems that stabilizability is equivalent to the existence of a feedback such
that the resulting system is stable.

These results have been generalized to regular DAE systems by Cobb [43], see
also [49, 57, 102, 103, 121, 123]. Note that, for DAE systems, not only the problem
of assignment of eigenvalues occurs, but also the index may be changed by imposing
feedback.

The crucial ingredient for the treatment of DAE systems with non-regular pencil
sE − A will be the feedback form by Loiseau et al. [105] (see Thm. 3.3).

5.1 Stabilizability, Autonomy and Stability

The feedback law u(t) = Fx(t) applied to (2.1) results in a DAE in which the input
is completely eliminated. We now focus on DAEs without input, and we introduce
several properties and concepts. For matrices E,A ∈R

k,n, consider a DAE

Eẋ(t) = Ax(t). (5.1)

Its behavior is given by

B[E,A] := {x ∈ W 1,1
loc

(
R;Rn
) ∣∣ x satisfies (5.1) for almost all t ∈R

}
.

Definition 5.1 (Stability/Stabilizability concepts for DAEs, autonomous DAEs)
A linear time-invariant DAE [E,A] ∈ Σk,n is called

(a) completely stabilizable

:⇔ ∀x0 ∈ R
n∃x ∈B[E,A] : x(0) = x0 ∧ lim

t→∞x(t) = 0;
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(b) strongly stabilizable

:⇔ ∀x0 ∈R
n∃x ∈B[E,A] : Ex(0) = Ex0 ∧ lim

t→∞x(t) = 0;

(c) stabilizable in the behavioral sense

:⇔ ∀x ∈ B[E,A]∃x0 ∈ B[E,A] : (∀t < 0 : x(t) = x0(t)
)∧ lim

t→∞x0(t) = 0;

(d) autonomous

:⇔ ∀x1, x2 ∈B[E,A] : (∀t < 0 : x1(t) = x2(t)
)⇒ (∀t ∈R : x1(t) = x2(t)

);

(e) completely stable

:⇔ {x(0)
∣∣ x ∈ B[E,A]

}= R
n ∧ ∀x ∈B[E,A] : lim

t→∞x(t) = 0;

(d) strongly stable

:⇔ {Ex(0)
∣∣ x ∈ B[E,A]

}= imR E ∧ ∀x ∈ B[E,A] : lim
t→∞x(t) = 0;

(g) stable in the behavioral sense

:⇔ ∀x ∈ B[E,A] : lim
t→∞x(t) = 0.

Remark 5.1 (Stabilizable and autonomous DAEs are stable) The notion of auton-
omy is introduced by Polderman and Willems in [128, Sect. 3.2] for general behav-
iors. For DAE systems Eẋ(t) = Ax(t) we can further conclude that autonomy is
equivalent to any x ∈ B[E,A] being uniquely determined by x(0). This gives also
rise to the fact that autonomy is equivalent to dimRB[E,A] ≤ n which is, on the
other hand, equivalent to dimRB[E,A] < ∞. Autonomy indeed means that the DAE
is not underdetermined.

Moreover, due to possible underdetermined blocks of type [Kβ,Lβ,0|β|−�(β),0],
in general there are solutions x ∈ B[E,A] which grow unboundedly. As a conse-
quence, for a quasi-Kronecker form of any completely stable, strongly stable or be-
havioral stable DAE, �(β) = 0 holds. Hence, systems of this type are autonomous.
In fact, complete, strong and behavioral stability are equivalent to the respective
stabilizability notion together with autonomy, cf. also Corollary 5.1.

In regard of Remark 3.4 we can infer the following:

Corollary 5.1 (Stability/Stabilizability criteria and quasi-Kronecker form) Let
[E,A] ∈ Σk,n and assume that the quasi-Kronecker form of sE − A is given by
(3.3). Then the following holds true:
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[E,A] is if, and only if,

completely stabilizable �(α) = 0, γ = (1, . . . ,1) and σ(As) ⊆ C−.

strongly stabilizable α = (1, . . . ,1), γ = (1, . . . ,1) and σ(As) ⊆ C−.

stabilizable in the
behavioral sense

σ(As) ⊆ C−.

autonomous �(β) = 0.

completely stable �(α) = 0, �(β) = 0, γ = (1, . . . ,1) and σ(As) ⊆ C−.

strongly stable α = (1, . . . ,1), �(β) = 0, γ = (1, . . . ,1) and σ(As) ⊆ C−.

stable in the
behavioral sense

�(β) = 0, σ(As) ⊆ C−.

The subsequent algebraic criteria for the previously defined notions of stabiliz-
ability and autonomy can be inferred from Corollary 5.1 by using further arguments
similar to the ones of Sect. 4.

Corollary 5.2 (Algebraic criteria for stabilizability) Let [E,A] ∈ Σk,n. Then the
following holds true:

[E,A] is if, and only if,

completely stabilizable
imR A ⊆ imR E and rkR(s)(sE − A) = rkC(λE − A)

for all λ ∈C+.

strongly stabilizable
imR A ⊆ imR E + A · kerR E and rkR(s)(sE − A) =
rkC(λE − A) for all λ ∈ C+.

stabilizable in the
behavioral sense

rkR(s)(sE − A) = rkC(λE − A) for all λ ∈C+.

autonomous kerR(s)(sE − A) = {0}.

Corollary 5.2 leads to the following implications:
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Remark 5.2

(i) Strong stabilizability implies that the index of sE − A is at most one. In the
case where the matrix [E,A] ∈ R

k,2n has full row rank, complete stabilizability
is sufficient for the index of sE − A being zero.
On the other hand, behavioral stabilizability of [E,A] together with the index
of sE − A being not greater than one implies strong stabilizability of [E,A].
Furthermore, for systems [E,A] ∈ Σk,n with rkR[E,A] = k, complete stabi-
lizability is equivalent to behavioral stabilizability together with the property
that the index of sE − A is zero.
For ODEs the notions of complete stabilizability, strong stabilizability, stabiliz-
ability in the behavioral sense, complete stability, strong stability and stability
in the behavioral sense are equivalent.

(ii) The behavior of an autonomous system [E,A] satisfies dimRB[E,A] = ns ,
where ns denotes the number of rows of the matrix As in the quasi-Kronecker
form (3.3) of sE −A. Note that regularity of sE −A is sufficient for autonomy
of [E,A].

(iii) Autonomy has been algebraically characterized for linear differential behav-
iors in [128, Sect. 3.2]. The characterization of autonomy in Corollary 5.2 can
indeed be generalized to a larger class of linear differential equations.

5.2 Stabilization by Feedback

A system [E,A,B] ∈ Σk,n,m can, via state feedback with some F ∈ R
m,n, be

turned into a DAE [E,A + BF ] ∈ Σk,n. We now present some properties of
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[E,A + BF ] ∈ Σk,n that can be achieved by a suitable feedback matrix F ∈ R
m,n.

Recall that the stabilizability concepts for a system [E,A,B] ∈ Σk,n,m have been
defined in Definition 2.1.

Theorem 5.3 (Stabilizing feedback) For a system [E,A,B] ∈ Σk,n,m the following
holds true:

(a) [E,A,B] is impulse controllable if, and only if, there exists F ∈R
m,n such that

the index of sE − (A + BF) is at most one.
(b) [E,A,B] is completely stabilizable if, and only if, there exists F ∈ R

m,n such
that [E,A + BF ] is completely stabilizable.

(c) [E,A,B] is strongly stabilizable if, and only if, there exists F ∈R
m,n such that

[E,A + BF ] is strongly stabilizable.

Proof (a) Let [E,A,B] be impulse controllable. Then [E,A,B] can be put into
feedback form (3.10), i.e., there exist W ∈ Glk(R), T ∈ Gln(R) and F̃ ∈ R

m,n such
that

W
(
sE − (A + BF̃T −1))T

=

⎡
⎢⎢⎢⎢⎢⎢⎣

sI|α| − N�
α 0 0 0 0 0

0 sKβ − Lβ 0 0 0 0
0 0 sL�

γ − K�
γ 0 0 0

0 0 0 sK�
δ − L�

δ 0 0
0 0 0 0 sNκ − I|κ| 0
0 0 0 0 0 sInc

− Ac

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.2)

By Corollary 3.4(b) the impulse controllability of [E,A,B] implies that γ =
(1, . . . ,1), δ = (1, . . . ,1) and κ = (1, . . . ,1). Therefore, we see that, with F =
F̃ T −1, the pencil sE − (A + BF) has index at most one as the index is preserved
under system equivalence.

Conversely, assume that [E,A,B] is not impulse controllable. We show that for
all F ∈ R

m,n the index of sE − (A + BF) is greater than one. To this end, let F ∈
R

m,n and choose W ∈ Glk(R), T ∈ Gln(R) and F̃ ∈ R
m,n such that (3.10) holds.

Then, partitioning V −1FT = [Fij ]i=1,...,3,j=1,...,6 accordingly, we obtain

sẼ − Ã := W
(
sE − (A + BF + BF̃T −1))T

=W
(
sE − (A + BF̃T −1))T − WBV V −1FT

=

⎡
⎢⎢⎢⎢⎢⎣

sI|α| − (N�
α + EαF11) −EαF12 −EαF13 −EαF14 −EαF15 −EαF16
0 sKβ − Lβ 0 0 0 0

−Eγ F21 −Eγ F22 sL�
γ − (K�

γ + Eγ F23) −Eγ F24 −Eγ F25 −Eγ F26

0 0 0 sK�
δ − L�

δ 0 0
0 0 0 0 sNκ − I|κ| 0
0 0 0 0 0 sInc

− Ac

⎤
⎥⎥⎥⎥⎥⎦

.

(5.3)

Now the assumption that [E,A,B] is not impulse controllable leads to γ �=
(1, . . . ,1), δ �= (1, . . . ,1) or κ �= (1, . . . ,1). We will now show that the index of
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sE − (A + BF + BF̃T −1) is greater than one by showing this for the equiva-
lent pencil in (5.3) via applying the condition in (3.5): Let Z be a real matrix with
imR Z = kerR Ẽ. Then

Z =
[

0 Z�
1 0 0 0 0

0 0 0 0 Z�
2 0

]�
,

where imZ1 = kerKβ = imEβ and imZ2 = kerNκ = imEκ . Taking into account
that imR Eγ ⊆ imR L�

γ , we obtain

imR

[
0|α|−�(α)+|β|−�(β),k I|γ |+|δ|+|κ| 0k,nc

] [
Ẽ ÃZ

]

= imR

⎡
⎣

L�
γ 0 0 Eγ F25Z2

0 K�
δ 0 0

0 0 Nκ Z2

⎤
⎦ .

On the other hand, we have

imR

[
0|α|−�(α)+|β|−�(β),k I|γ |+|δ|+|κ| 0k,nc

] [
Ẽ Ã
]

= imR

⎡
⎣

L�
γ 0 0 K�

γ + Eγ F23 Eγ F24 Eγ F25

0 K�
δ 0 0 L�

δ 0
0 0 Nκ 0 0 I|κ|

⎤
⎦ .

Since the assumption that at least one of the multi-indices satisfies γ �= (1, . . . ,1),
δ �= (1, . . . ,1), or κ �= (1, . . . ,1) and the fact that imZ2 = imEκ lead to

imR

⎡
⎣

L�
γ 0 0 Eγ F25Z2

0 K�
δ 0 0

0 0 Nκ Z2

⎤
⎦

� imR

⎡
⎣

L�
γ 0 0 K�

γ + Eγ F23 Eγ F24 Eγ F25

0 K�
δ 0 0 L�

δ 0
0 0 Nκ 0 0 I|κ|

⎤
⎦ ,

and thus

imR

[
Ẽ ÃZ

]
� imR

[
Ẽ Ã
]
,

we find that, by condition (3.5), the index of sE − (A + BF + BF̃T −1) has to be
greater than one. Since F was chosen arbitrarily we may conclude that sE − (A +
BF) has index greater than one for all F ∈ R

m,n, which completes the proof of (a).
(b) If [E,A,B] is completely stabilizable, then we may transform the system

into feedback form (5.2). Corollary 3.4(h) implies γ = (1, . . . ,1), δ = (1, . . . ,1),
�(κ) = 0, and σ(Ac) ⊆ C−. Further, by [147, Thm. 4.20], there exists some F11 ∈
R

|α|,�(α) such that σ(Nα + EαF11) ⊆ C−. Setting F̂ := [Fij ]i=1,...,3,j=1,...,6 with
Fij = 0 for i �= 1 or j �= 1, we find that with F = F̃ T −1 + V F̂T −1 the system
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[E,A + BF ] is completely stabilizable by Corollary 5.1 as complete stabilizability
is preserved under system equivalence.

On the other hand, assume that [E,A,B] is not completely stabilizable. We show
that for all F ∈ R

m,n the system [E,A+BF ] is not completely stabilizable. To this
end, let F ∈R

m,n and observe that we may do a transformation as in (5.3). Then the
assumption that [E,A,B] is not completely stabilizable yields γ �= (1, . . . ,1), δ �=
(1, . . . ,1), �(κ) > 0, or σ(Ac) �C−. If γ �= (1, . . . ,1), δ �= (1, . . . ,1) or �(κ) > 0,
then imR Ã � imR Ẽ, and by Corollary 5.2 the system [Ẽ, Ã] is not completely
stabilizable. On the other hand, if γ = (1, . . . ,1), δ = (1, . . . ,1), �(κ) = 0, and
λ ∈ σ(Ac) ∩C+, we find imC(λẼ − Ã) � imC Ẽ, which implies

rkC(λẼ − Ã) < rkC Ẽ = n − �(β) − �(κ) = n − �(β)
(3.6)= rkR(s)(sẼ − Ã).

Hence, applying Corollary 5.2 again, the system [Ẽ, Ã] is not completely stabiliz-
able. As complete stabilizability is invariant under system equivalence it follows
that [E,A + BF + BF̃T −1] is not completely stabilizable. Since F was chosen
arbitrarily we may conclude that [E,A + BF ] is not completely stabilizable for all
F ∈ R

m,n, which completes the proof of (b).
(c) The proof is analogous to (b). �

Remark 5.3 (State feedback)

(i) If the pencil sE − A is regular and [E,A,B] is impulse controllable, then
a feedback F ∈R

m,n can be constructed such that the pencil sE − (A+ BF) is
regular and its index does not exceed one: First we choose W,T , F̃ such that we
can put the system into the form (5.2). Now, impulse controllability implies that
γ = (1, . . . ,1), δ = (1, . . . ,1) and κ = (1, . . . ,1). Assuming �(δ) > 0 implies
that any quasi-Kronecker form of the pencil sE − (A + BF̃T −1 + BF̂ ) fulfills
�(γ ) > 0 (in the form (3.3)), a feedback F̂ ∈ R

m,n as the feedback cannot act
on this block, which contradicts regularity of sE − A. Hence it holds �(δ) = 0
and from k = n we further obtain �(γ ) = �(β). Now applying another feedback
as in (5.3), where we choose F22 = E�

β ∈ R
�(β),|β| and Fij = 0 otherwise, we

obtain, taking into account that Eγ = Iell(γ ) and that the pencil
[ sKβ−Lβ

−E�
β

]
is

regular, the result that sE − (A+BF) is indeed regular with index at most one.
(ii) The matrix F11 in the proof of Theorem 5.3(b) can be constructed as follows:

For j = 1, . . . , �(α), consider vectors

aj = −[ajαj −1, . . . , aj0] ∈R
1,αj .

Then, for

F11 = diag(a1, . . . , a�(α)) ∈ R
�(α),|α|

the matrix Nα + EαF11 is diagonally composed of companion matrices,
whence, for

pj (s) = sαj + ajαj −1s
αj −1 + · · · + aj0 ∈ R[s]
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the characteristic polynomial of Nα + EαF11 is given by

det
(
sI|α| − (Nα + EαF11)

)=
�(α)∏
j=1

pj (s).

Hence, choosing the coefficients aji , j = 1, . . . , �(α), i = 0, . . . , αj such that
the polynomials p1(s), . . . , p�(α)(s) ∈ R[s] are all Hurwitz, i.e., all roots of
p1(s), . . . , p�(α)(s) are in C−, we obtain stability.

5.3 Control in the Behavioral Sense

The hitherto presented feedback concept consists of the additional application of the
relation u(t) = Fx(t) to the system Eẋ(t) = Ax(t) + Bu(t). Feedback can there-
fore be seen as an additional algebraic constraint that can be resolved for the input.
Control in the behavioral sense, or, also called, control via interconnection [163]
generalizes this approach by also allowing further algebraic relations in which the
state not necessarily uniquely determines the input. That is, for given (or to be de-
termined) K = [Kx,Ku] with Kx ∈R

l,n, Ku ∈R
l,m, we consider

B
K[E,A,B] :={(x,u) ∈B[E,A,B]

∣∣ ∀t ∈R : (x(t)�, u(t)�
)� ∈ kerR(K)

}

=B[E,A,B] ∩B[0l,n,Kx,Ku].

We can alternatively write

B
K[E,A,B] = B[EK,AK ],

where
[
EK,AK

]=
[[

E 0
0 0

]
,

[
A B

Kx Ku

]]
.

The concept of control in the behavioral sense has its origin in the works by Willems,
Polderman and Trentelman [18, 128, 146, 162, 163], where differential behaviors
and their stabilization via control by interconnection is considered. The latter means
a systematic addition of some further (differential) equations in a way that a desired
behavior is achieved. In contrast to these works we only add equations which are
purely algebraic. This justifies to speak of control by interconnection using static
control laws. We will give equivalent conditions for this type of generalized feed-
back stabilizing the system. Note that, in principle, one could make the extreme
choice K = In+m to end up with a behavior BK[E,A,B] = {0} which is obviously au-
tonomous and stable. This, however, is not suitable from a practical point of view,
since in this interconnection, the space of consistent initial differential variables is
a proper subset of the initial differential variables which are consistent with the orig-
inal system [E,A,B]. Consequently, the interconnected system does not have the
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causality property—that is, the implementation of the controller at a certain time
t ∈ R is not possible, since this causes jumps in the differential variables. To avoid
this, we introduce the concept of compatibility.

Definition 5.2 (Compatible and stabilizing control) The static control K =
[Kx,Ku], defined by Kx ∈ R

l,n, Ku ∈R
l,m, is called

(a) compatible, if for any x0 ∈ V diff[E,A,B], there exists some (x,u) ∈ BK[E,A,B] with

Ex(0) = Ex0.
(b) stabilizing, if [EK,AK ] ∈ Σk+l,n is stabilizable in the behavioral sense.

Remark 5.4 (Compatible control) Our definition of compatible control is a slight
modification of the concept introduced by Julius and van der Schaft in [79] where
an interconnection is called compatible, if any trajectory of the system without con-
trol law can be concatenated with a trajectory of the interconnected system. This
certainly implies that the space of initial differential variables of the interconnected
system cannot be smaller than the corresponding set for the nominal system.

Theorem 5.4 (Stabilizing control in the behavioral sense) Let [E,A,B] ∈ Σk,n,m

be given. Then there exists a compatible and stabilizing control K = [Kx,Ku] with
Kx ∈ R

l,n, Ku ∈ R
l,m, if, and only if, [E,A,B] is stabilizable in the behavioral

sense. In case of [E,A,B] being stabilizable in the behavioral sense, the com-
patible and stabilizing control K can moreover be chosen such that [EK,AK ] is
autonomous, i.e., the interconnected system [EK,AK ] is stable in the behavioral
sense.

Proof Since, by definition, [E,A,B] ∈ Σk,n,m is stabilizable in the behavioral sense
if, and only if, for sE − A = [sE − A,−B], the DAE [E ,A ] ∈ Σk,n+m is stabiliz-
able in the behavioral sense, necessity follows from setting l = 0.

In order to show sufficiency, let K = [Kx,Ku] with Kx ∈ R
l,n, Ku ∈ R

l,m, be
a compatible and stabilizing control for [E,A,B]. Now the system can be put into
feedback form, i.e., there exist W ∈ Glk(R), T ∈ Gln(R), V ∈ Glm(R) and F ∈
R

m,n such that
[
sẼ − Ã B̃

−K̃x K̃u

]
=
[
W 0
0 I

][
sE − A B

−Kx Ku

][
T 0

−F V

]
,

where [Ẽ, Ã, B̃] is in the form (3.10). Now the behavioral stabilizability of

[EK,AK ] implies that the system [ẼK, ÃK ] := [[ Ẽ 0
0 0

]
,
[

Ã B̃

K̃x K̃u

]]
is stabiliz-

able in the behavioral sense as well. Assume that [E,A,B] is not stabilizable
in the behavioral sense, that is, by Corollary 3.4(i), there exists λ ∈ σ(Ac) ∩
C+. Hence we find x0

6 ∈ R
nc \ {0} such that Acx

0
6 = λx0

6 . Then, with x(·) :=
(0, . . . ,0, (eλ·x0

6)�)�, we have (x,0) ∈ B[Ẽ,Ã,B̃]. As x(0) ∈ V diff
[Ẽ,Ã,B̃] = T −1 ·

V diff[E,A,B], the compatibility of the control K implies that there exists
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(x̃, ũ) ∈ BK[E,A,B] with Ex̃(0) = ET x(0). This gives (WET )T −1x̃(0) = WET x(0)

and writing T −1x̃(t) = (x̃1(t)
�, . . . , x̃6(t)

�)� with vectors of appropriate size, we
obtain x̃6(0) = x0

6 . Since the solution of the initial value problem ẏ = Acy, y(0) =
x0

6 , is unique, we find x̃6(t) = eλtx0
6 for all t ∈ R. Now (T −1x̃,−V −1FT −1x̃ +

V −1ũ) ∈ B[ẼK ,ÃK ] and as for all (x̂, û) ∈ B[ẼK ,ÃK ] with (x̂(t), û(t)) = (T −1x̃(t),

−V −1FT −1x̃ + V −1ũ(t)) for all t < 0 we have x̂6(t) = x̃6(t) for all t ∈ R, and
x̃6(t) �t→∞ 0 since λ ∈ C+, this contradicts that [ẼK, ÃK ] is stabilizable in the
behavioral sense.

It remains to show the second assertion, that is, for a system [E,A,B] ∈
Σk,n,m that is stabilizable in the behavioral sense, there exists some compat-
ible and stabilizing control K such that [EK,AK ] is autonomous: Since, for
[E1,A1,B1], [E2,A2,B2] ∈ Σk,n,m with

[E1,A1,B1] W,T ,V,F∼f e [E2,A2,B2], K2 ∈ R
l,n+m and K1 = K2

[
T 0
F V

]
,

the behaviors of the interconnected systems are related by
[

T 0
F V

]
B

K1[E1,A1,B1] = B
K2[E2,A2,B2],

it is no loss of generality to assume that [E,A,B] is in feedback form (3.10), i.e.,

sE − A

=

⎡
⎢⎢⎢⎢⎢⎢⎣

sI|α| − Nα 0 0 0 0 0
0 sKβ − Lβ 0 0 0 0
0 0 sK�

γ − L�
γ 0 0 0

0 0 0 sK�
δ − L�

δ 0 0
0 0 0 0 sNκ − I|κ| 0
0 0 0 0 0 sInc

− Ac

⎤
⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

Eα 0 0
0 0 0
0 Eγ 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Let F11 ∈R
�(α),|α| such that det(sI|α| − (Nα + EαF11)) is Hurwitz. Then the DAE

[
I|α| 0
0 0

]
ż(t) =
[

Nα Eα

F11 −I�(α)

]
z(t)

is stable in the behavioral sense. Furthermore, by reasoning as in Remark 5.3(ii), for

aj = [ajβj −2, . . . , aj0,1] ∈ R
1,βj
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with the property that the polynomials

pj (s) = sβj + ajβj −1s
βj −1 + · · · + aj0 ∈R[s]

are Hurwitz for j = 1, . . . , �(α), the choice

Kx = diag(a1, . . . , a�(β)) ∈R
�(β),|β|

leads to an autonomous system
[
Kβ

0

]
ż(t) =
[

Lβ

Kx

]
z(t),

which is also stable in the behavioral sense. Since, moreover, by Corollary 3.4(i),
we have σ(Ac) ⊆ C−, the choice

K =
[
F11 0 0 0 0 0 −I�(α) 0 0
0 Kx 0 0 0 0 0 0 0

]

leads to a behavioral stable (in particular autonomous) system. Since the differential
variables can be arbitrarily initialized in any of the previously discussed subsystems,
the constructed control is also compatible. �

6 Invariant Subspaces

This section is dedicated to some selected results of the geometric theory of
differential-algebraic control systems. Geometric theory plays a fundamental role
in standard ODE system theory and has been introduced independently by Wonham
and Morse and Basile and Marro, see the famous books [16, 166] and also [147],
which are the three standard textbooks on geometric control theory. In [100] Lewis
gave an up-to-date overview of the geometric theory of DAEs. As we will do here
he put special emphasis on the two fundamental sequences of subspaces Vi and Wi

defined as follows:

V0 := R
n, Vi+1 := A−1(EVi + imR B) ⊆ R

n, V ∗ :=
⋂
i∈N0

Vi ,

W0 := {0}, Wi+1 := E−1(AWi + imR B) ⊆ R
n, W ∗ :=

⋃
i∈N0

Wi .

The sequences (Vi )i∈N and (Wi )i∈N are called augmented Wong sequences.
In [22, 23, 26] the Wong sequences for matrix pencils (i.e., B = 0) are investi-
gated, the name chosen this way since Wong [164] was the first one who used both
sequences for the analysis of matrix pencils. The sequences (Vi )i∈N and (Wi )i∈N
are no Wong sequences corresponding to any matrix pencils, which is why we call
them augmented Wong sequences with respect to control systems (2.1). In fact, the
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Wong sequences (with B = 0) can be traced back to Dieudonné [53], who focused
on the first of the two Wong sequences. Bernhard [27] and Armentano [6] used the
Wong sequences to carry out a geometric analysis of matrix pencils. They appear
also in [3, 4, 95, 150].

In control theory, that is, when B �= 0, the augmented Wong sequences have
been extensively studied by several authors, see e.g. [99, 112, 113, 118, 119, 121,
122, 152] for regular systems and [3, 13–15, 29, 30, 56, 100, 105, 120, 130] for
general DAE systems. Frankowska [58] did a nice investigation of systems (2.1)
in terms of differential inclusions [8, 9], however, requiring controllability at in-
finity (see [58, Prop. 2.6]). Nevertheless, she is the first to derive a formula for the
reachability space [58, Thm. 3.1], which was later generalized by Przyłuski and Sos-
nowski [130, Sect. 4] (in fact, the same generalization has been announced in [105,
p. 296], [100, Sect. 5] and [15, p. 1510], however, without proof); it also occurred
in [56, Thm. 2.5].

Proposition 6.1 (Reachability space [130, Sect. 4]) For [E,A,B] ∈ Σk,n,m and
limits V ∗ and W ∗ of the augmented Wong sequences we have

R[E,A,B] = V ∗ ∩ W ∗.

It has been shown in [13] (for discrete systems), see also [14, 15, 30, 120], that
the limit V ∗ of the first augmented Wong sequence is the space of consistent initial
states. For regular systems this was proved in [99].

Proposition 6.2 (Consistent initial states [13]) For [E,A,B] ∈ Σk,n,m and limit
V ∗ of the first augmented Wong sequence we have

V[E,A,B] = V ∗.

Various other properties of V ∗ and W ∗ have been derived in [13] in the context
of discrete systems.

A characterization of the spaces V ∗ and W ∗ in terms of distributions is also
given in [130]: V ∗ +kerR E is the set of all initial values such that the distributional
initial value problem [130, (3)] has a smooth solution (x,u); W ∗ is the set of all
initial values such that [130, (3)] has an impulsive solution (x,u); V ∗ + W ∗ is the
set of all initial values such that [130, (3)] has an impulsive-smooth solution (x,u).

For regular systems Özçaldiran [119] showed that V ∗ is the supremal (A,E;
imR B)-invariant subspace of Rn and W ∗ is the infimal restricted (E,A; imR B)-
invariant subspace of Rn. These concepts, which have also been used in [3, 13, 99,
113] are defined as follows.

Definition 6.1 ((A,E; imR B)- and (E,A; imR B)-invariance [119]) Let [E,A,B]
∈ Σk,n,m. A subspace V ⊆ R

n is called (A,E; imR B)-invariant if, and only if,

AV ⊆ EV + imR B.
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A subspace W ⊆ R
n is called restricted (E,A; imR B)-invariant if, and only if,

W = E−1(AW + imR B).

It is easy to verify that the proofs given in [119, Lems. 2.1 & 2.2] remain the
same for general E,A ∈ R

k,n and B ∈ R
n,m—this was shown in [13] as well. For

V ∗ this can be found in [3], see also [113]. So we have the following proposition.

Proposition 6.3 (Augmented Wong sequences as invariant subspaces) Consider
[E,A,B] ∈ Σk,n,m and the limits V ∗ and W ∗ of the augmented Wong sequences.
Then the following statements hold true.

(a) V ∗ is (A,E; imR B)-invariant and for any V ⊆ R
n which is (A,E; imR B)-

invariant it holds V ⊆ V ∗;
(b) W ∗ is restricted (E,A; imR B)-invariant and for any W ⊆ R

n which is re-
stricted (E,A; imR B)-invariant it holds W ∗ ⊆ W .

It is now clear how the controllability concepts can be characterized in terms of
the invariant subspaces V ∗ and W ∗. However, the statement about R-controllability
(behavioral controllability) seems to be new. The only other appearance of a sub-
space inclusion as a characterization of R-controllability that the authors are aware
of occurs in [41] for regular systems: if A = I , then the system is R-controllable
if, and only if, imR ED ⊆ 〈ED|B〉, where ED is the Drazin inverse of E, see Re-
mark 2.1(iv).

Theorem 6.4 (Geometric criteria for controllability) Consider [E,A,B] ∈ Σk,n,m

and the limits V ∗ and W ∗ of the augmented Wong sequences. Then [E,A,B] is

(a) controllable at infinity if, and only if, V ∗ = R
n;

(b) impulse controllable if, and only if, V ∗ + kerR E = R
n or, equivalently, EV ∗ =

imR E;
(c) controllable in the behavioral sense if, and only if, V ∗ ⊆ W ∗;
(d) completely controllable if, and only if, V ∗ ∩ W ∗ = R

n;
(e) strongly controllable if, and only if, (V ∗ ∩W ∗)+ kerR E = R

n or, equivalently,
E(V ∗ ∩ W ∗) = imR E.

Proof By Propositions 6.1 and 6.2 it is clear that it only remains to prove (c). We
proceed in several steps.

Step 1: Let [E1,A1,B1], [E2,A2,B2] ∈ Σk,n,m such that for some W ∈ Glk(R),
T ∈ Gln(R), V ∈ Glm(R) and F ∈R

m,n it holds

[E1,A1,B1] W,T ,V,F∼f e [E2,A2,B2].
We show that the augmented Wong sequences V 1

i , W 1
i of [E1,A1,B1] and the

augmented Wong sequences V 2
i , W 2

i of [E2,A2,B2] are related by

∀i ∈ N0 : V 1
i = T −1V 2

i ∧ W 1
i = T −1W 2

i .
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We proof the statement by induction. It is clear that V 1
0 = T −1V 2

0 . Assuming that
V 1

i = T −1V 2
i for some i ≥ 0 we find that, by (3.1),

V 1
i+1 = A−1

1

(
E1V

1
i + imR B1

)

= {x ∈ R
n
∣∣ ∃y ∈ V 1

i ∃u ∈R
m : W(A2T + B2T )x = WE2Ty + WB2V u

}

= {x ∈ R
n
∣∣ ∃z ∈ V 2

i ∃v ∈ R
m : A2T x = E2z + B2v

}

= T −1(A−1
2

(
E2V

1
i + imR B2

))= T −1V 2
i+1.

The statement about W 1
i and W 2

i can be proved analogous.
Step 2: By Step 1 we may without loss of generality assume that [E,A,B] is

given in feedback form (3.10). We make the convention that if α ∈N
l is some multi-

index, then α − 1 := (α1 − 1, . . . , αl − 1). It not follows that

∀i ∈N0 : Vi = R
|α| ×R

|β| × imR Ni
γ−1 × imR

(
N�

δ−1

)i × imR Ni
κ ×R

nc , (6.1)

which is immediate from observing that K�
γ x = L�

γ y + Eγ u for some x, y,u of

appropriate dimension yields x = Nγ−1y and L�
δ x = K�

δ y for some x, y yields
x = N�

δ−1y. Note that in the case γi = 1 or δi = 1, i.e., we have a 1 × 0 block, we
find that Nγi−1 and Nδi−1 are absent, so these relations are consistent.

On the other hand we find that

∀i ∈N0 : Wi = kerR Ni
α × kerR Ni

β × kerR Ni
γ−1 × {0}|δ|−�(δ) × kerR Ni

κ × {0}nc ,

(6.2)
which indeed needs some more rigorous proof. First observe that imR Eα =
kerR Nα , kerR Kβ = kerR Nβ and (L�

γ )−1(imR Eγ ) = imR Eγ−1 = kerR Nγ−1.
Therefore we have

W1 = E−1(imR B)

= kerR Nα × kerR Nβ × kerR Nγ−1 × {0}|δ|−�(δ) × kerR Nκ × {0}nc .

Further observe that Ni
αN�

α = NαN�
α Ni−1

α for all i ∈ N and, hence, if x = N�
α y +

Eαu for some x,u and y ∈ kerR Ni−1
α it follows x ∈ kerR Ni

α . Likewise, if L�
γ x =

K�
γ y + Eγ u for some x,u and y ∈ kerR Ni−1

γ−1 we find x = N�
γ−1y + E�

γ−1u and

hence x ∈ kerR Ni
γ−1. Finally, if Kβx = Lβy for some x and some y ∈ kerR Ni−1

β

it follows that by adding some zero rows we obtain Nβx = NβN�
β y and hence, as

above, x ∈ kerR Ni
β . This proves (6.2).

Step 3: From (6.1) and (6.2) it follows that

V ∗ = R
|α| ×R

|β| × imR{0}|γ |−�(γ ) × {0}|δ|−�(δ) × {0}|κ| ×R
nc ,

W ∗ = R
|α| ×R

|β| × imRR
|γ |−�(γ ) × {0}|δ|−�(δ) ×R

|κ| × {0}nc .
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As by Corollary 3.4(f) the system [E,A,B] is controllable in the behavioral sense
if, and only if, nc = 0 we may immediately deduce that this is the case if, and only
if, V ∗ ⊆ W ∗. This proves the theorem. �

Remark 6.1 (Representation of the reachability space) From Proposition 6.1 and
the proof of Theorem 6.4 we may immediately observe that, using the notation from
Theorem 3.3, we have

R[E,A,B] = T −1(
R

|α| ×R
|β| × imR{0}|γ |−�(γ ) × {0}|δ|−�(δ) × {0}|κ| × {0}nc

)
.

7 Kalman Decomposition

Nearly 50 years ago Kalman [82] derived his famous decomposition of linear ODE
control systems. This decomposition has later been generalized to regular DAEs by
Verghese et al. [155], see also [49]. A Kalman decomposition of general discrete-
time DAE systems has been provided by Banaszuk et al. [14] (later generalized to
systems with output equation in [15]) in a very nice way using the augmented Wong
sequences (cf. Sect. 6). They derive a system

[[
E11 E12

0 E22

]
,

[
A11 A12

0 A22

]
,

[
B1
0

]]
, (7.1)

which is system equivalent to given [E,A,B] ∈ Σk,n,m with the properties that the
system [E11,A11,B1] is completely controllable and the matrix [E11,A11,B1] has
full row rank (strongly H -controllable in the notation of [14]) and, furthermore,
R[E22,A22,0] = {0}.

This last condition is very reasonable, as one should wonder what properties
a Kalman decomposition of a DAE system should have. In the case of ODEs the
decomposition simply is

[[
A11 A12

0 A22

]
,

[
B1
0

]]
, where [A11,B1] is controllable.

Therefore, an ODE system is decomposed into a controllable and an uncontrollable
part, since clearly [A22,0] is not controllable at all. For DAEs however, the situa-
tion is more subtle, since in a decomposition (7.1) with [E11,A11,B1] completely
controllable (and [E11,A11,B1] full row rank) the conjectural “uncontrollable” part
[E22,A22,0] may still have a controllable subsystem, since systems of the type
[Kβ,Lβ,0] are always controllable. To exclude this and ensure that all control-
lable parts are included in [E11,A11,B1] we may state the additional condition (as
in [14]) that

R[E22,A22,0] = {0}.
This then also guarantees certain uniqueness properties of the Kalman decomposi-
tion. Hence, any system (7.1) with the above properties which is system equivalent
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to [E,A,B] we may call a Kalman decomposition of [E,A,B]. We cite the re-
sult of [14], but also give some remarks on how the decomposition may be easily
derived.

Theorem 7.1 (Kalman decomposition [14]) For [E,A,B] ∈ Σk,n,m, there exist
W ∈ Glk(R), T ∈ Gln(R) such that

[E,A,B] W,T∼se

[[
E11 E12

0 E22

]
,

[
A11 A12

0 A22

]
,

[
B1
0

]]
, (7.2)

with E11,A11 ∈ R
k1,n1 , E12,A12 ∈ R

k1,n2 , E22,A22 ∈ R
k2,n2 and B1 ∈ R

k1,m, such
that [E11,A11,B1] ∈ Σk1,n1,m is completely controllable, rkR[E11,A11,B1] = k1
and R[E22,A22,0k2,m] = {0}.
Remark 7.1 (Derivation of the Kalman decomposition) Let [E,A,B] ∈ Σk,n,m be
given. The Kalman decomposition (7.2) can be derived using the limits V ∗ and W ∗
of the augmented Wong sequences presented in Sect. 6. It is clear that these spaces
satisfy the following subspace relations:

E
(
V ∗ ∩ W ∗) ⊆ (EV ∗ + imR B

)∩ (AW ∗ + imR B
)
,

A
(
V ∗ ∩ W ∗) ⊆ (EV ∗ + imR B

)∩ (AW ∗ + imR B
)
.

Therefore, if we choose any full rank matrices R1 ∈ R
n,n1 ,P1 ∈ R

n,n2 ,R2 ∈
R

k,k1,P2 ∈R
k,k2 such that

imR R1 = V ∗ ∩ W ∗, imR R2 = (EV ∗ + imR B
)∩ (AW ∗ + imR B

)
,

imR R1 ⊕ imR P1 = R
n, imR R2 ⊕ imR P2 = R

k,

then [R1,P1] ∈ Gln(R) and [R2,P2] ∈ Glk(R), and, furthermore, there exists ma-
trices E11,A11 ∈ R

k1,n1 , E12,A12 ∈ R
k1,n2 , E22,A22 ∈R

k2,n2 such that

ER1 = R2E11, AR1 = R2A11,

EP1 = R2E12 + P2E22, AP1 = R2A12 + P2A22.

Since imR B ⊆ (EV ∗ + imR B) ∩ (AW ∗ + imR B) = imR R2, there exists B1 ∈
R

k1,m such that B = R2B1. All these relations together yield the decomposi-
tion (7.2) with W = [R2,P2] and T = [R1,P1]−1. The properties of the subsystems
essentially rely on the observation that by Proposition 6.1

R[E,A,B] = V ∗ ∩ W ∗ = imR R1 = T −1(
R

n1 × {0}n2
)
.

Remark 7.2 (Kalman decomposition) It is important to note that a trivial reacha-
bility space does not necessarily imply that B = 0. An intriguing example which
illustrates this is the system

[E,A,B] =
[[

1
0

]
,

[
0
1

]
,

[
1
0

]]
. (7.3)
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Another important fact we like to stress by means of this example is that
B �= 0 does no necessarily imply n1 �= 0 in the Kalman decomposition (7.2).
In fact, the above system [E,A,B] is already in Kalman decomposition with
k1 = k2 = 1, n1 = 0, n2 = 1,m = 1 and E12 = 1, A12 = 0, B1 = 1 as well as
E22 = 0, A22 = 1. Then all the required properties are obtained, in particular
rkR[E11,A11,B1] = rkR[1] = 1 and the system [E11,A11,B1] is completely con-
trollable as it is in feedback form (3.10) with γ = 1; complete controllability then
follows from Corollary 3.4. However, [E11,A11,B1] is hard to view as a control
system as no equation can be written down. Nevertheless, the space R[E11,A11,B1]
has dimension zero and obviously every state can be steered to every other state.

We now analyze how two forms of type (7.2) of one system [E,A,B] ∈ Σk,n,m

differ.

Proposition 7.2 (Uniqueness of the Kalman decomposition) Let [E,A,B] ∈
Σk,n,m be given and assume that, for all i ∈ {1,2}, the systems [Ei,Ai,Bi] Wi,Ti∼se

[E,A,B] with

sEi − Ai =
[
sE11,i − A11,i sE12,i − A12,i

0 sE22,i − A22,i

]
, Bi =

[
B1,i

0

]

where E11,i ,A11,i ∈ R
k1,i ,n1,i , E12,i ,A12,i ∈ R

k1,i ,n2,i , E22,i ,A22,i ∈ R
k2,i ,n2,i ,

B1,i ∈ R
k1,i ,m satisfy

rkR
[
E11,i A11,i B1,i

]= k1,i

and, in addition, [E11,i ,A11,i ,Bc,i] ∈ Σk1,i ,n1,i ,m is completely controllable and
R[E22,i ,A22,i ,0k2,i ,m

] = {0}.
Then k1,1 = k1,2, k2,1 = k2,2, n1,1 = n1,2, n2,1 = n2,2. Moreover, for some W11 ∈

Glk1,1(R), W12 ∈R
k1,1,k2,1 , W22 ∈ Glk2,1(R), T11 ∈ Gln1,1(R), T12 ∈ R

n1,1,n2,1 , T22 ∈
Gln2,1(R), we have

W2W
−1
1 =
[
W11 W12

0 W22

]
, T −1

1 T2 =
[

T11 T12
0 T22

]
.

In particular, the systems [E11,1,A11,1,B1,1], [E11,2,A11,2,B1,2] and, respectively,
[E22,1,A22,1,0], [E22,2,A22,2,0] are system equivalent.

Proof It is no loss of generality to assume that W1 = Ik , T1 = In. Then we obtain

R
n1,1 × {0} = R[E1,A1,B1] = T2R[E2,A2,B2] = T2

(
R

n1,2 × {0}).
This implies n1,1 = n1,2 and

T2 =
[
T11 T12
0 T22

]
for some T11 ∈ Gln1,1 , T12 ∈R

n1,1,n2,1 , T22 ∈ Gln2,1 .
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Now partitioning

W2 =
[
W11 W12
W21 W22

]
,

W11 ∈ R
k1,1,k1,2 ,W12 ∈ R

k1,1,k2,2,W21 ∈R
k2,1,kc,2,W22 ∈R

k2,1,k2,2,

the block (2,1) of the equations W1E1T1 = E2, W1A1T1 = A2 and W1B1 = B2 give
rise to

0 = W21
[
E11,2 A11,2 B1,2

]
.

Since the latter matrix is supposed to have full row rank, we obtain W21 = 0. The
assumption of W2 being invertible then leads to k1,1 ≤ k1,2. Reversing the roles of
[E1,A1,B1] and [E2,A2,B2], we further obtain k1,2 ≤ k1,1, whence k1,2 = k1,1.
Using again the invertibility of W , we see that both W11 and W22 are invertible. �

It is immediate from the form (7.2) that [E,A,B] is completely controllable if,
and only if, n1 = n. The following result characterizes the further controllability and
stabilizability notions in terms of properties of the submatrices in (7.2).

Corollary 7.3 (Properties induced from the Kalman decomposition) Consider
[E,A,B] ∈ Σk,n,m with

[E,A,B] W,T∼se

[[
E11 E12

0 E22

]
,

[
A11 A12

0 A22

]
,

[
B1
0

]]

such that [E11,A11,B1] ∈ Σk1,n1,m is completely controllable, rkR[E11,A11,B1] =
k1 and R[E22,A22,0k2,m] = {0}. Then the following statements hold true:

(a) rkR(s)(sE22 − A22) = n2.
(b) If sE − A is regular, then both pencils sE11 − A11 and sE22 − A22 are regular.

In particular, it holds k1 = n1 and k2 = n2.
(c) If [E,A,B] is impulse controllable, then the index of the pencil sE22 − A22 is

at most one.
(d) [E,A,B] is controllable at infinity if, and only if, imR A22 ⊆ imR E22.
(e) [E,A,B] is controllable in the behavioral sense if, and only if, rkR(s)(sE22 −

A22) = rkC(λE22 − A22) for all λ ∈C.
(f) [E,A,B] is stabilizable in the behavioral sense if, and only if, rkR(s)(sE22 −

A22) = rkC(λE22 − A22) for all λ ∈C+.

Proof (a) Assuming that rkR(s)(sE22 − A22) < n2, then, in a quasi-Kronecker (3.3)
form of sE22 − A22, it holds �(β) > 0 by (3.6). By the findings of Remark 3.7(ii),
we can conclude R[E22,A22,0k2,m] �= {0}, a contradiction.

(b) We can infer from (a) that n2 ≤ k2. We can further infer from the regularity
of sE − A that n2 ≥ k2. The regularity of sE11 − A11 and sE22 − A22 then follows
immediately from det(sE − A) = det(W · T ) · det(sE11 − A11) · det(sE22 − A22).
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(c) Assume that [E,A,B] is impulse controllable. By Corollary 4.3 and the in-
variance of impulse controllability under system equivalence this implies that

imR

[
A11 A12

0 A22

]
⊆ imR

[
E11 E12 B1 A11Z1 + A12Z2

0 E22 0 A22Z2

]
,

where Z = [Z�
1 ,Z�

2 ]� is a real matrix such that imR Z = kerR[ E11 E12
0 E22

]. The last
condition in particular implies that imR Z2 ⊆ kerR E22 and therefore we obtain

imR A22 ⊆ imR E22 + A22 · kerR E22,

which is, by (3.4), equivalent to the index of sE22 − A22 being at most one.
(d) Since rkR[E11,A11,B1] = k1 and the system [E11,A11,B1] is controllable

at infinity, Corollary 4.3 leads to rkR[E11,B1] = k1. Therefore, we have

imR

[
E11 E12 B1

0 E22 0

]
= R

k1 × imR E22.

Analogously, we obtain

imR

[
E11 E12 A11 A12 B1

0 E22 0 A22 0

]
= R

k1 × (imR E22 + imR A22).

Again using Corollary 4.3 and the invariance of controllability at infinity under sys-
tem equivalence, we see that [E,A,B] is controllable at infinity if, and only if,

R
k1 × (imR E22 + imR A22) = R

k1 × imR E22,

which is equivalent to imR A22 ⊆ imR E22.
(e) Since rkR[E11,A11,B1] = k1 and [E11,A11,B1] ∈ Σk1,n1,m is completely

controllable it holds

rkC[λE11 − A11,B1] = k1 for all λ ∈C.

Therefore, we have

rkC[λE−A,B] = rkC

[
λE11 − A11 λE12 − A12 B1

0 λE22 − A22 0

]
= k1 +rkC(λE22 −A22),

and, analogously, rkR(s)[sE − A,B] = k1 + rkR(s)(sE22 − A22). Now applying
Corollary 4.3 we find that [E,A,B] is controllable in the behavioral sense if, and
only if, rkR(s)(sE22 − A22) = rkC(λE22 − A22) for all λ ∈ C.

(f) The proof of this statement is analogous to (e). �

Remark 7.3 (Kalman decomposition and controllability) Note that the condition
of the index of sE22 − A22 being at most one in Corollary 7.3(c) is equivalent to
the system [E22,A22,0k2,m] being impulse controllable. Likewise, the condition
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imR A22 ⊆ imR E22 in (d) is equivalent to [E22,A22,0k2,m] being controllable at
infinity. Obviously, the conditions in (e) and (f) are equivalent to behavioral control-
lability and stabilizability of [E22,A22,0k2,m], resp.

Furthermore, the converse implication in (b) does not hold true. That is, the index
of sE22 − A22 being at most one is in general not sufficient for [E,A,B] being
impulse controllable. For instance, reconsider system (7.3) which is not impulse
controllable, but sE22 − A22 = −1 is of index one. Even in the case where sE − A

is regular, the property of the index of sE22 − A22 being zero or one is not enough
to infer impulse controllability of sE − A. As a counterexample, consider

[E,A,B] =
[[

0 1
0 0

]
,

[
1 0
0 1

]
,

[
1
0

]]
.

Acknowledgements We are indebted to Harry L. Trentelman (University of Groningen) for pro-
viding helpful comments on the behavioral approach.
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