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Preface

We are pleased to present the first of three volumes of survey articles in various
fields of differential-algebraic equations (DAEs). In the last two decades, there has
been a substantial research activity in the theory, applications, and computations of
DAEs; our aim is to give an almost complete picture of these latest developments.

What are DAEs? They certainly belong to differential equations, but the termi-
nology is not clear. In their most general form, DAEs are implicit differential equa-
tions. However, this is still too wide and in view of linearizations and the fact that
most research is on linear DAEs, one uses the more narrow notion of differential-
algebraic systems. This fact is reflected in the Mathematics Subject Classification
(MSC 2010), which is a taxonomy on a first, second, and third level (2-, 3-, and
5-digit class, respectively). DAEs are mentioned twice on level three: 34 Ordinary
differential equations, 34A General theory, 34A09 Implicit equations, differential-
algebraic equations, and 65 Numerical analysis, 65L Ordinary differential equa-
tions, 65L80 Methods for differential-algebraic equations.

What is the history of DAEs? Although DAEs can be traced back earlier, it was
not until the 1960s that mathematicians and engineers started to thoroughly study
computational issues, mathematical theory, and applications of DAEs. There are
many relationships with mathematical disciplines such as differential geometry, al-
gebra, functional analysis, numerical analysis, stochastics, and control theory, to
mention but a few; and there are extensive applications in electric circuit theory,
chemical processes, constrained mechanics, as well as in economics. In addition
to the intrinsic mathematical interest, there are two fundamental reasons for these
advances: first, automatic modeling, which results in large dimensional DAEs, and
second the advancement of computers and hence the feasibility of solving problems
numerically. In quantitative terms, this development has lead to more than 1500
journal and conference papers on DAEs each year.

Is a level two rank, instead of the current level three, for DAEs appropriate? The
MSC tries to rank the different levels hierarchically. However, terminological uni-
ties for different fields, so that they can be accurately separated from each other, do
not necessarily exist. Moreover, fields and their importance vary in time: new fields
arise, others become less important. One could imagine that DAEs are equally im-

v



vi Preface

portant as, for example, 34B Boundary value problems, 34G Differential equations
in abstract spaces, 34K Functional-differential and differential-difference equa-
tions, 34L Ordinary differential operators, to name but a few within the 34 ODEs
class.

The immense number of papers on DAEs is certainly not a sufficient reason for
any taxonomy, and the underlying methods in DAEs are very distinct: differential
geometry, distributions, and linear algebra. But today’s changing importance and
relevance of DAEs have been shown by about ten research monographs in fields
of DAEs in the last decade and, most importantly, recently the first textbooks on
the mathematical theory of DAEs have been written. This may indicate a turning
point: DAEs are becoming a field in their own right, beside other fields in ordinary
differential equations.

The collection of survey articles in DAEs presented in the upcoming three vol-
umes will include the topics

– Linear systems
– Nonlinear systems
– Solution theory
– Stability theory
– Control theory
– Model reduction
– Analytical methods
– Differential geometric methods
– Algebraic methods
– Numerical methods
– Coupled problems with partial differential equations
– Stochastic DAEs
– Chemical engineering
– Circuit modelling
– Mechanical engineering

This may show the depth and width of the recent progress in differential-
algebraic equations and will possibly underpin the fact that differential-algebraic
equations are in a state where they are no longer only a collection of results on the
same topic, but a field within the class of ordinary differential equations.

Achim Ilchmann
Timo Reis

Ilmenau, Germany
Hamburg, Germany
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Controllability of Linear Differential-Algebraic
Systems—A Survey
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Abstract Different concepts related to controllability of differential-algebraic
equations are described. The class of systems considered consists of linear
differential-algebraic equations with constant coefficients. Regularity, which is,
loosely speaking, a concept related to existence and uniqueness of solutions for any
inhomogeneity, is not required in this article. The concepts of impulse controlla-
bility, controllability at infinity, behavioral controllability, and strong and complete
controllability are described and defined in the time domain. Equivalent criteria that
generalize the Hautus test are presented and proved.

Special emphasis is placed on normal forms under state space transformation
and, further, under state space, input and feedback transformations. Special forms
generalizing the Kalman decomposition and Brunovský form are presented. Con-
sequences for state feedback design and geometric interpretation of the space of
reachable states in terms of invariant subspaces are proved.
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1 Introduction

Controllability is, roughly speaking, the property of a system that any two trajec-
tories can be concatenated by another admissible trajectory. The precise concept,
however, depends on the specific framework, as quite a number of different con-
cepts of controllability are present today.

Since the famous work by Kalman [81–83], who introduced the notion of con-
trollability about 50 years ago, the field of mathematical control theory has been
revived and rapidly growing ever since, emerging into an important area in applied
mathematics, mainly due to its contributions to fields such as mechanical, electrical
and chemical engineering (see e.g. [2, 47, 148]). For a good overview of standard
mathematical control theory, i.e., involving ordinary differential equations (ODEs),
and its history see e.g. [70, 76, 77, 80, 138, 142].

Just before mathematical control theory began to grow, Gantmacher published
his famous book [60] and therewith laid the foundations for the rediscovery of
differential-algebraic equations (DAEs), the first main theories of which have been
developed by Weierstraß [158] and Kronecker [93] in terms of matrix pencils. DAEs
have then been discovered to be appropriate for modeling a vast variety of problems
in economics [111], demography [37], mechanical systems [7, 31, 59, 67, 127, 149],
multibody dynamics [55, 67, 139, 141], electrical networks [7, 36, 54, 106, 117,
134, 135], fluid mechanics [7, 65, 106] and chemical engineering [48, 50–52, 126],
which often cannot be modeled by standard ODE systems. Especially the tremen-
dous effort in numerical analysis of DAEs [10, 96, 98] is responsible for DAEs
being nowadays a powerful tool for modeling and simulation of the aforementioned
dynamical processes.

In general, DAEs are implicit differential equations, and in the simplest case just
a combination of differential equations along with algebraic constraints (from which
the name DAE comes from). These algebraic constraints, however, may cause the
solutions of initial value problems no longer to be unique, or solutions not to exist
at all. Furthermore, when considering inhomogeneous problems, the inhomogene-
ity has to be “consistent” with the DAE in order for solutions to exist. Dealing with
these problems a huge solution theory for DAEs has been developed, the most im-
portant contribution of which is the one by Wilkinson [159]. Nowadays, there are a
lot of monographs [31, 37, 38, 49, 66, 98] and one textbook [96], where the whole
theory can be looked up. A comprehensive representation of the solution theory
of general linear time-invariant DAEs, along with possible distributional solutions
based on the theory developed in [143, 144], is given in [22]. A good overview of
DAE theory and a historical background can also be found in [99].

DAEs found its way into control theory ever since the famous book by Rosen-
brock [136], in which he developed his ideas of the description of linear systems
by polynomial system matrices. Then a rapid development followed with impor-
tant contributions of Rosenbrock himself [137] and Luenberger [107–110], not
to forget the work by Pugh et al. [131], Verghese et al. [151, 153–155], Pan-
dolfi [124, 125], Cobb [42, 43, 45, 46], Yip et al. [169] and Bernard [27]. The most
important of these contributions for the development of concepts of controllabil-
ity are certainly [46, 155, 169]. Further developments were made by Lewis and
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Özçaldiran [101, 102] and by Bender and Laub [19, 20]. The first monograph which
summarizes the development of control theory for DAEs so far was the one by
Dai [49]. All these contributions deal with regular systems, i.e., systems of the form

Eẋ(t)=Ax(t)+ f (t), x(0)= x0,

where for any inhomogeneity f there exist initial values x0 for which the corre-
sponding initial value problem has a solution and this solution is unique. This has
been proved to be equivalent to the condition that E, A are square matrices and
det(sE −A) ∈R[s] \ {0}.

The aim of the present paper is to state the different concepts of controllabil-
ity for differential-algebraic systems which are not necessarily regular, i.e., E and
A may be non-square. Applications with the need for non-regular DAEs appear in
the modeling of electrical circuits [54] for instance. Furthermore, a drawback in
the consideration of regular systems arises when it comes to feedback: the class of
regular DAE systems is not closed under the action of a feedback group [12]. This
also rises the need for a complete and thorough investigation of non-regular DAE
systems. We also like to stress that general, possibly non -regular, DAE systems are
a subclass of the class of so-called differential behaviors, introduced by Polderman
and Willems [128], see also [161]. In the present article we will pay a special atten-
tion to the behavioral setting, formulating most of the results and the concepts by
using the underlying set of trajectories (behavior) of the system.

In this paper we do not treat controllability of time-varying DAEs, but refer
to [40, 72–74, 156, 157]. We also do not treat controllability of discrete time DAEs,
but refer to [13, 27, 99, 100, 168].

The paper is organized as follows.

2 Controllability Concepts, p. 5 The concepts of impulse controllability, control-
lability at infinity, R-controllability, controllability in the behavioral sense, strong
and complete controllability, as well as strong and complete reachability and sta-
bilizability in the behavioral sense, strong and complete stabilizability will be de-
scribed and defined in the time domain in Sect. 2. In the more present DAE literature
these notions are not consistently treated. We try to clarify this here. A comprehen-
sive discussion of the introduced concepts as well as some first relations between
them are also included in Sect. 2.

3 Solutions, Relations and Normal Forms, p. 15 In Sect. 3 we briefly revisit the
solution theory of DAEs and then concentrate on normal forms under state space
transformation and, further, under state space, input and feedback transformations.
We introduce the concepts of system and feedback equivalence and state normal
forms under these equivalences, which for instance generalize the Brunovský form.
It is also discussed when these forms are canonical and what properties (regarding
controllability and stabilizability) the appearing subsystems have.
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4 Algebraic Criteria, p. 30 The generalized Brunovský form enables us to give
short proofs of equivalent criteria, in particular generalizations of the Hautus test,
for the controllability concepts in Sect. 4, the most of which are of course well-
known—we discuss the relevant literature.

5 Feedback, Stability and Autonomous System p. 36 In Sect. 5 we revisit the
concept of feedback for DAE systems and proof new results concerning the equiv-
alence of stabilizability of DAE control systems and the existence of a feedback
which stabilizes the closed-loop system.

6 Invariant Subspaces, p. 46 In Sect. 6 we give a brief summary of some se-
lected results of the geometric theory using invariant subspaces which lead to a
representation of the reachability space and criteria for controllability at infinity,
impulse controllability, controllability in the behavioral sense, complete and strong
controllability.

7 Kalman Decomposition, p. 50 Finally, in Sect. 7 the results regarding the
Kalman decomposition for DAE systems are stated and it is shown how the control-
lability concepts can be related to certain properties of the Kalman decomposition.

We close the introduction with the nomenclature used in this paper:

N, N0, Z set of natural numbers, N0 =N∪{0}, set of all integers, resp.
�(α), |α| length and absolute value of a multi-index α =

(α1, . . . , αl) ∈Nn

R≥0 (R>0, R≤0, R<0) = [0,∞) ((0,∞), (−∞,0], (−∞,0)), resp.
C+, C− (C+, C−) the open (closed) set of complex numbers with positive, neg-

ative real part, resp.
Gln(R) the set of invertible real n× n matrices
R[s] the ring of polynomials with coefficients in R

R(s) the quotient field of R[s]
Rn,m the set of n×m matrices with entries in a ring R

σ(A) spectrum of the matrix A ∈Rn,n

f |I restriction of the function f :T →R
n to I ⊆T ,

L 1
loc(T ;Rn) locally Lebesgue integrable functions f : T → R

n, see [1,
Chap. 1]

ḟ (f (i)) (ith) distributional derivative of f ∈L 1
loc(T ;Rn), i ∈N0

W k,1
loc (T ;Rn) := { x ∈L 1

loc(T ;Rn)|x(i) ∈L 1
loc(T ;Rn) for i = 0, . . . , k},

k ∈N0

στ the τ -shift operator, i.e., for f : T → R
n, T ⊆ R, στf :

T − τ→R
n, t 	→ f (t + τ)

ρ the reflection operator, i.e., for f : T → R
n, T ⊆ R, ρf :

−T →R
n, t 	→ f (−t)
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2 Controllability Concepts

We consider linear differential-algebraic control systems of the form

Eẋ(t)=Ax(t)+Bu(t), (2.1)

with E,A ∈ Rk,n, B ∈Rk,m; the set of these systems is denoted by Σk,n,m, and we
write [E,A,B] ∈Σk,n,m.

We do not assume that the pencil sE − A ∈ R[s]k,n is regular, that is,
rkR(s) (sE −A)= k = n.

The function u : R→ R
m is called input; x : R→ R

n is called (generalized)
state. Note that, strictly speaking, x(t) is in general not a state in the sense that
the free system (i.e., u≡ 0) satisfies a semigroup property [89, Sect. 2.2]. We will,
however, speak of the state x(t) for sake of brevity, especially since x(t) contains
the full information about the system at time t . Furthermore, one might argue that
(especially in the behavioral setting) it is not correct to call u “input”, because due
to the implicit nature of (2.1) it may be that actually some components of u are
uniquely determined and some components of x are free, and only the free vari-
ables should be called inputs in the behavioral setting. However, the controllability
concepts given in Definition 2.1 explicitly distinguish between x and u and not be-
tween free and determined variables. We feel that, in some cases, it might still be the
choice of the designer to assign the input variables, that is, u, and if some of these
are determined, then the input space has to be restricted in an appropriate way.

A trajectory (x,u) :R→R
n×R

m is said to be a solution of (2.1) if, and only if,
it belongs to the behavior of (2.1):

B[E,A,B] :=
{
(x,u) ∈W 1,1

loc

(
R;Rn
)×L 1

loc

(
R;Rm
) ∣∣∣ (x,u) satisfies (2.1)

for almost all t ∈R
}
. (2.2)

Note that any function x ∈ W 1,1
loc (R;Rn) is continuous. Moreover, by linearity of

(2.1), B[E,A,B] is a vector space. Further, since the matrices in (2.1) do not depend
on t , the behavior is shift-invariant, that is, (στ x, στu) ∈B[E,A,B] for all τ ∈R and
(x,u) ∈B[E,A,B].

The following spaces play a fundamental role in this article:

(a) The space of consistent initial states

V[E,A,B] =
{
x0 ∈Rn

∣∣ ∃(x,u) ∈B[E,A,B] : x(0)= x0}.

(b) The space of consistent initial differential variables

V diff[E,A,B] =
{
x0 ∈Rn

∣∣ ∃(x,u) ∈B[E,A,B] :Ex(0)=Ex0}.

(c) The reachability space at time t ≥ 0

Rt[E,A,B] =
{
x0 ∈Rn

∣∣ ∃(x,u) ∈B[E,A,B] : x(0)= 0∧ x(t)= x0}
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and the reachability space

R[E,A,B] =
⋃
t≥0

Rt
[E,A,B].

(d) The controllability space at time t ≥ 0

C t
[E,A,B] =

{
x0 ∈Rn

∣∣ ∃(x,u) ∈B[E,A,B] : x(0)= x0 ∧ x(t)= 0
}

and the controllability space

C[E,A,B] =
⋃
t≥0

C t
[E,A,B].

Note that, by linearity of the system, V[E,A,B], V diff[E,A,B], Rt
[E,A,B] and C t

[E,A,B]
are linear subspaces of Rn. We will show that Rt1[E,A,B] =Rt2[E,A,B] = C t1[E,A,B] =
C t2[E,A,B] for all t1, t2 ∈ R>0, see Lemma 2.3. This implies R[E,A,B] =Rt

[E,A,B] =
C t
[E,A,B] = C[E,A,B] for all t ∈R>0. Note further that, by shift-invariance, we have

for all t ∈R
V[E,A,B] =

{
x0 ∈Rn

∣∣ ∃(x,u) ∈B[E,A,B] : x(t)= x0}, (2.3)

V diff[E,A,B] =
{
x0 ∈Rn

∣∣ ∃(x,u) ∈B[E,A,B] :Ex(t)=Ex0}. (2.4)

In the following three lemmas we clarify some of the connections of the above
defined spaces, before we state the controllability concepts.

Lemma 2.1 (Inclusions for reachability spaces) For [E,A,B] ∈Σk,n,m and t1, t2 ∈
R>0 with t1 < t2, the following hold true:

(a) Rt1[E,A,B] ⊆Rt2[E,A,B].
(b) If Rt1[E,A,B] =Rt2[E,A,B], then Rt1[E,A,B] =Rt

[E,A,B] for all t ∈R with t > t1.

Proof (a) Let x̄ ∈Rt1[E,A,B]. By definition, there exists some (x,u) ∈B[E,A,B] with
x(0)= 0 and x(t1)= x̄. Consider now (x1, u1) :R→R

n ×R
m with

(
x1(t), u1(t)

)=
{

(x(t − t2 + t1), u(t − t2 + t1)), if t > t2 − t1,

(0,0), if t ≤ t2 − t1.

Then x(0)= 0 implies that x1 is continuous at t2 − t1. Since, furthermore,

x1|(−∞,t2−t1] ∈W 1,1
loc

(
(−∞, t2 − t1];Rn

)
and

x1|[t2−t1,∞) ∈W 1,1
loc

([t2 − t1,∞);Rn
)
,

we have (x1, u1) ∈ W 1,1
loc (R;Rn) × L 1

loc(R;Rm). By shift-invariance, Eẋ1(t) =
Ax1(t) + Bu1(t) holds true for almost all t ∈ R, i.e., (x1, u1) ∈B[E,A,B]. Then,
due to x1(0)= 0 and x̄ = x(t1)= x1(t2), we obtain x̄ ∈Rt2[E,A,B].
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(b) Step 1: We show that Rt1[E,A,B] =Rt2[E,A,B] implies Rt1[E,A,B] =Rt1+2(t2−t1)[E,A,B] :

By (a), it suffices to show the inclusion “⊇”. Assume that x̄ ∈Rt1+2(t2−t1)[E,A,B] , i.e., there
exists some (x1, u1) ∈B[E,A,B] with x1(0) = 0 and x1(t1 + 2(t2 − t1)) = x̄. Since
x1(t2) ∈Rt2[E,A,B] =Rt1[E,A,B], there exists some (x2, u2) ∈B[E,A,B] with x2(0)= 0
and x2(t1)= x1(t2). Now consider the trajectory

(
x(t), u(t)

)=
{

(x2(t), u2(t)), if t < t1,

(x1(t + (t2 − t1)), u1(t + (t2 − t1))), if t ≥ t1.

Since x is continuous at t1, we can apply the same argumentation as in the proof
of (a) to infer that (x,u) ∈B[E,A,B]. The result to be shown in this step is now
a consequence of x(0)= x2(0)= 0 and

x̄ = x1
(
t1 + 2(t2 − t1)

)= x(t2) ∈Rt2[E,A,B] =Rt1[E,A,B].

Step 2: We show (b): From the result shown in the first step, we may inductively
conclude that Rt1[E,A,B] = Rt2[E,A,B] implies Rt1[E,A,B] = Rt1+l(t2−t1)[E,A,B] for all l ∈ N.
Let t ∈ R with t > t1. Then there exists some l ∈ N with t ≤ t1 + l(t2 − t1). Then
statement (a) implies

Rt1[E,A,B] ⊆Rt
[E,A,B] ⊆Rt1+l(t2−t1)[E,A,B] ,

and, by Rt1[E,A,B] =Rt1+l(t2−t1)[E,A,B] , we obtain the desired result. �

Now we present some relations between controllability and reachability spaces of
[E,A,B] ∈Σk,n,m and its backward system [−E,A,B] ∈Σk,n,m. It can be easily
verified that

B[−E,A,B] =
{
(ρx,ρu)

∣∣ (x,u) ∈B[E,A,B]
}
. (2.5)

Lemma 2.2 (Reachability and controllability spaces of the backward system) For
[E,A,B] ∈Σk,n,m and t ∈R>0, we have

Rt
[E,A,B] = C t

[−E,A,B], and C t
[E,A,B] =Rt

[−E,A,B].

Proof Both assertions follow immediately from the fact that (x,u) ∈B[E,A,B], if,
and only if, (σt (ρx), σt (ρu)) ∈B[−E,A,B]. �

The previous lemma enables us to show that the controllability and reachability
spaces of [E,A,B] ∈Σk,n,m are even equal. We further prove that both spaces do
not depend on time t ∈R>0.

Lemma 2.3 (Impulsive initial conditions and controllability spaces) For [E,A,B] ∈
Σk,n,m, the following hold true:

(a) Rt1[E,A,B] =Rt2[E,A,B] for all t1, t2 ∈R>0.



8 T. Berger and T. Reis

(b) Rt
[E,A,B] = C t

[E,A,B] for all t ∈R>0.

(c) V diff
[E,A,B] = V[E,A,B] + kerR E.

Proof (a) By Lemma 2.1(a), we have

R
t1

n+1
[E,A,B] ⊆R

2t1
n+1
[E,A,B] ⊆ · · · ⊆R

nt1
n+1
[E,A,B] ⊆Rt1[E,A,B] ⊆R

n,

and thus

0≤ dimR
t1

n+1
[E,A,B] ≤ dimR

2t1
n+1
[E,A,B] ≤ · · · ≤ dimR

nt1
n+1
[E,A,B] ≤ dimRt1[E,A,B] ≤ n.

As a consequence, there has to exist some j ∈ {1, . . . , n+ 1} with

dimR
j t1
n+1
[E,A,B] = dimR

(j+1)t1
n+1
[E,A,B].

Together with the subset inclusion, this yields

R
j t1
n+1
[E,A,B] =R

(j+1)t1
n+1
[E,A,B].

Lemma 2.1(b) then implies the desired statement.
(b) Let x̄ ∈Rt

[E,A,B]. Then there exists some (x1, u1) ∈B[E,A,B] with x1(0)= 0
and x1(t) = x̄. Since, by (a), we have x1(2t) ∈ Rt

[E,A,B], there also exists some
(x2, u2) ∈ B[E,A,B] with x2(0) = 0 and x2(t) = x1(2t). By linearity and shift-
invariance, we have

(x,u) := (σtx1 − x2, σtu1 − u2) ∈B[E,A,B].

The inclusion Rt
[E,A,B] ⊆ C t

[E,A,B] then follows by

x(0)= x1(t)− x2(0)= x̄, x(t)= x1(2t)− x2(t)= 0.

To prove the opposite inclusion, we make use of the previously shown subset rela-
tion and Lemma 2.2 to infer that

C t
[E,A,B] =Rt

[−E,A,B] ⊆ C t
[−E,A,B] =Rt

[E,A,B].

(c) We first show that V diff[E,A,B] ⊆ V[E,A,B] + kerR E: Assume that x0 ∈ V diff[E,A,B],
i.e., Ex0 = Ex(0) for some (x,u) ∈ B[E,A,B]. By x(0) ∈ V[E,A,B], x(0) − x0 ∈
kerR E, we obtain

x0 = x(0)+ (x0 − x(0)
) ∈ V[E,A,B] + kerR E.

To prove V[E,A,B]+kerR E ⊆ V diff[E,A,B], assume that x0 = x(0)+ x̄ for some (x,u) ∈
B[E,A,B] and x̄ ∈ kerR E. Then x0 ∈ V diff

[E,A,B] is a consequence of Ex0 =E(x(0)+
x̄)=Ex(0). �
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By Lemma 2.3 it is sufficient to only consider the spaces V[E,A,B] and R[E,A,B]
in the following.

We are now in the position to define the central notions of controllability, reach-
ability and stabilizability considered in this article.

Definition 2.1 The system [E,A,B] ∈Σk,n,m is called

(a) controllable at infinity

:⇔ ∀x0 ∈Rn∃(x,u) ∈B[E,A,B] : x(0)= x0⇔ V[E,A,B] =R
n.

(b) impulse controllable

:⇔ ∀x0 ∈Rn∃(x,u) ∈B[E,A,B] :Ex0 =Ex(0)⇔ V diff
[E,A,B] =R

n.

(c) controllable within the set of reachable states (R-controllable)

:⇔ ∀x0, xf ∈ V[E,A,B]∃t > 0∃(x,u) ∈B[E,A,B] : x(0)= x0 ∧ x(t)= xf .

(d) controllable in the behavioral sense

:⇔ ∀(x1, u1), (x2, u2) ∈B[E,A,B]

∃T > 0∃(x,u) ∈B[E,A,B] : (x(t), u(t))=
{

(x1(t), u1(t)), if t < 0,

(x2(t), u2(t)), if t > T .

(e) stabilizable in the behavioral sense

:⇔ ∀(x,u) ∈B[E,A,B]∃(x0, u0) ∈B[E,A,B] ∩
(
W 1,1

loc

(
T ;Rn
)×W 1,1

loc

(
T ;Rn
)) :

(∀t < 0 : (x(t), u(t)
)= (x0(t), u0(t)

))∧ limt→∞
(
x0(t), u0(t)

)= 0.

(f) completely reachable

:⇔ ∃t ∈R>0∀xf ∈Rn∃(x,u) ∈B[E,A,B] : x(0)= 0∧ x(t)= xf

⇔ ∃t ∈R>0 :Rt
[E,A,B] =R

n.

(g) completely controllable

:⇔ ∃t ∈R>0∀x0, xf ∈Rn∃(x,u) ∈B[E,A,B] : x(0)= x0 ∧ x(t)= xf .

(h) completely stabilizable

:⇔ ∀x0 ∈Rn∃(x,u) ∈B[E,A,B] : x(0)= x0 ∧ lim
t→∞x(t)= 0.

(i) strongly reachable

:⇔ ∃t ∈R>0∀xf ∈Rn∃(x,u) ∈B[E,A,B] :Ex(0)= 0∧Ex(t)=Exf .
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(j) strongly controllable

:⇔ ∃t ∈R>0∀x0, xf ∈Rn∃(x,u) ∈B[E,A,B] :Ex(0)=Ex0 ∧Ex(t)=Exf .

(k) strongly stabilizable (or merely stabilizable)

:⇔ ∀x0 ∈Rn∃(x,u) ∈B[E,A,B] :Ex(0)=Ex0 ∧ lim
t→∞Ex(t)= 0.

Some remarks on the definitions are warrant.

Remark 2.1

(i) The controllability concepts are not consistently treated in the literature. For
instance, one has to pay attention if it is (tacitly) claimed that [E,B] ∈Rk,n+m

or [E,A,B] ∈Rk,2n+m have full rank.
For regular systems we have the following:

concept coincides with notion in called [. . . ] in
controllability at infinity see item (2.1) reachability at∞ in [99]

impulse controllability [46] and [73, Rem. 2] controllability at∞
in [99]; controllability at
infinity in [5, 6, 155]

R-controllability [41, 49, 169] and [73,
Rem. 2]

–

complete controllability [41, 49, 169] controllability in [46]

strong controllability [155] and [73, Rem. 2] impulse controllability
in [63]

Some of these aforementioned articles introduce the controllability by means
of certain rank criteria for the matrix triple [E,A,B]. The connection of the
concepts introduced in Definition 2.1 to linear algebraic properties of E, A

and B will be highlighted in Sect. 4.
For general DAE systems we have

concept coincides with notion in called [. . . ] in
controllability at infinity – –

impulse controllability [61, 71, 75] –

R-controllability – –

complete controllability [120] controllability in [58]

strong controllability – controllability in [120]

Our behavioral controllability coincides with the framework which is intro-
duced in [128, Definition 5.2.2] for so-called differential behaviors, which



Controllability of Linear Differential-Algebraic Systems—A Survey 11

are general (possibly higher order) DAE systems with constant coefficients.
Note that the concept of behavioral controllability does not require a distinc-
tion between input and state. The concepts of reachability and controllability
in [11–14] coincide with our behavioral and complete controllability, resp.
(see Sect. 4). Full controllability of [171] is our complete controllability to-
gether with the additional assumption that solutions have to be unique.

(ii) Stabilizability in the behavioral sense is introduced in [128, Definition 5.2.2].
For regular systems, stabilizability is usually defined either via linear alge-
braic properties of E, A and B , or by the existence of a stabilizing state
feedback, see [33, 34, 57] and [49, Definition 3-1.2]. Our concepts of behav-
ioral stabilizability and stabilizability coincide with the notions of internal
stability and complete stabilizability, resp., defined in [114] for the system
E ż(t)=A z(t) with E = [E,0], A = [A,B], z(t)= [x�(t), u�(t)]�.

(iii) Other concepts, not related to the ones considered in this article, are e.g. the
instantaneous controllability (reachability) of order k in [120] or the impul-
sive mode controllability in [71]. Furthermore, the concept of strong control-
lability introduced in [147, Exercise 8.5] for ODE systems differs from the
concepts considered in this article.

(iv) The notion of consistent initial conditions is the most important one for DAE
systems and therefore the consideration of the space V[E,A,B] (for B = 0 when
no control systems were considered) is as old as the theory of DAEs itself, see
e.g. [60]. V[E,A,B] is sometimes called viability kernel [30], see also [8, 9].
The reachability and controllability space are some of the most important
notions for (DAE) control systems and have been considered in [99] for regu-
lar systems. They are the fundamental subspaces considered in the geometric
theory, see Sect. 6. Further usage of these concepts can be found in the follow-
ing: in [122] generalized reachability and controllability subspaces of regular
systems are considered; Eliopoulou and Karcanias [56] consider reachability
and almost reachability subspaces of general DAE systems; Frankowska [58]
considers the reachability subspace in terms of differential inclusions.

A nice formula for the reachability space of a regular system has been
derived by Yip et al. [169] (and later been adopted by Cobb [46], however,
called controllable subspace): Consider a regular system [E,A,B] ∈Σn,n,m

in Weierstraß form [60], that is,

E =
[
In1 0
0 N

]
, A=

[
J 0
0 In2

]
, B =

[
B1
B2

]
,

where N is nilpotent. Then [169, Thm. 2]

R[E,A,B] = 〈J |B1〉 × 〈N |B2〉,
where 〈K|L〉 := imR[L,KL, . . . ,Kn−1L] for some matrices K ∈ R

n×n,
L ∈Rn×m. Furthermore, we have [169, Thm. 3]

V[E,A,B] =R
n1 × 〈N |B2〉.
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This result has been improved later in [41] so that the Weierstraß form is
no longer needed. Denoting by ED the Drazin inverse of a given matrix
E ∈Rn×n (see [39]), it is shown [41, Thm. 3.1] that, for A= I ,

R[E,A,B] =ED
〈
ED|B〉⊕ (I −EED

)〈E|B〉,
where the consideration of A= I is justified by a certain (time-varying) trans-
formation of the system [124]. We further have [41, Thm. 3.2]

V[E,A,B] = imR ED ⊕ (I −EED
)〈E|B〉.

Yet another approach was followed by Cobb [42] who obtains that

R[E,A,B] =
〈
(αE −A)−1E|(αE −A)−1B

〉

for some α ∈R with det(αE −A) �= 0. A simple proof of this result can also
be found in [170].

(v) The notion V diff
[E,A,B] comes from the possible impulsive behavior of solutions

of (2.1), i.e., x may have jumps, when distributional solutions are permitted,
see e.g. [46] as a very early contribution in this regard. Since these jumps have
no effect on the solutions if they occur at the initial time and within the kernel
of E this leads to the definition of V diff

[E,A,B]. See also the definition of impulse
controllability.

(vi) Impulse controllability and controllability at infinity are usually defined by
considering distributional solutions of (2.1), see e.g. [46, 61, 75], sometimes
called impulsive modes, see e.g. [21, 71, 155]. For regular systems, impulse
controllability has been introduced by Verghese et al. [155] (called controlla-
bility at infinity in this work) as controllability of the impulsive modes of the
system, and later made more precise by Cobb [46], see also Armentano [5, 6]
(who also calls it controllability at infinity) for a more geometric point of
view. In [155] the authors do also develop the notion of strong controllabil-
ity as impulse controllability with, additionally, controllability in the regular
sense. Cobb [43] showed that under the condition of impulse controllability,
the infinite eigenvalues of regular sE−A can be assigned via a state feedback
u= Fx to arbitrary finite positions. Armentano [5] later showed how to cal-
culate F . This topic has been further pursued in [94] in the form of invariant
polynomial assignment.
The name “controllability at infinity” comes from the claim that the system
has no infinite uncontrollable modes: Speaking in terms of rank criteria (see
also Sect. 4) the system [E,A,B] ∈Σk,n,m is said to have an uncontrollable
mode at α

β
if, and only if, rk[αE + βA,B]< rk[E,A,B] for some α,β ∈C.

If β = 0, then the uncontrollable mode is infinite. Controllability at infin-
ity has been introduced by Rosenbrock [137]—although he does not use this
phrase—as controllability of the infinite frequency zeros. Later Cobb [46]
compared the concepts of impulse controllability and controllability at infin-
ity, see [46, Thm. 5]; the notions we use in the present article go back to the
distinction in this work.
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The concepts have later been generalized by Geerts [61] (see [61, Thm. 4.5 &
Rem. 4.9], however, he does not use the name “controllability at infinity”).
Controllability at infinity of (2.1) is equivalent to the strictness of the cor-
responding differential inclusion [58, Prop. 2.6]. The concept of impulsive
mode controllability in [71] is even weaker than impulse controllability.

(vii) Controllability concepts with a distributional solution setup have been consid-
ered in [61, 120, 130] for instance, see also [46]. A typical argumentation in
these works is that inconsistent initial values cause distributional solutions in
a way that the state trajectory is composed of a continuous function and a lin-
ear combination of Dirac’s delta impulse and some of its derivatives. How-
ever, some frequency domain considerations in [116] refute this approach
(see [145] for an overview on inconsistent initialization). This justifies that
we do only consider weakly differentiable solutions as defined in the behav-
ior B[E,A,B].
Distributional solutions for time-invariant DAEs have already been consid-
ered by Cobb [44] and Geerts [61, 62] and for time-varying DAEs by Rabier
and Rheinboldt [132]. For a mathematically rigorous approach to distribu-
tional solution theory of linear DAEs we refer to [143, 144] by Trenn. The
latter works introduce the notions of impulse controllability and jump con-
trollability which coincide with our impulse controllability and behavioral
controllability, resp.

(vii) R-controllability has been first defined in [169] for regular DAEs. Roughly
speaking, R-controllability is the property that any consistent initial state x0

can be steered to any reachable state xf , where here xf is reachable if, and
only if, there exist t > 0 and (x,u) ∈B[E,A,B] such that x(t)= xf ; by (2.3)
the latter is equivalent to xf ∈ V[E,A,B], as stated in Definition 2.1.

(viii) The concept of behavioral controllability has been introduced by Willems
[160], see also [128]. This concept is very suitable for generalizations in var-
ious directions, see e.g. [35, 40, 72, 97, 133, 163, 167]. Having found the
behavior of the considered control system one can take over the definition of
behavioral controllability without the need for any further changes. From this
point of view this appears to be the most natural of the controllability con-
cepts. However, this concept also seems to be the least regarded in the DAE
literature.

(ix) The controllability theory of DAE systems can also be treated with the theory
of differential inclusions [8, 9] as showed by Frankowska [58].

(x) Karcanias and Hayton [85] pursued a special ansatz to simplify the sys-
tem (2.1): provided that B has full column rank, we take a left annihilator N

and a pseudoinverse B† of B (i.e., NB = 0 and B†B = I ) such that W = [ N

B†

]
is invertible and then pre-multiply (2.1) by W , thus obtaining the equivalent
system

NEẋ = NAx,

u = B†(Eẋ −Ax).
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The reachability (controllability) properties of (2.1) may now be studied in
terms of the pencil sNE − NA, which is called the restriction pencil [78],
first introduced as zero pencil for the investigation of system zeros of ODEs
in [91, 92], see also [88]. For a comprehensive study of the properties of the
pencil sNE −NA see e.g. [84–87].

(xi) Banaszuk and Przyłuski [11] have considered perturbations of DAE control
systems and obtained conditions under which the sets of all completely con-
trollable systems (systems controllable in the behavioral sense) within the set
of all systems Σk,n,m contain an open and dense subset, or its complement
contains an open and dense subset.

The following dependencies hold true between the concepts from Definition 2.1.
Some further relations will be derived in Sect. 4.

Proposition 2.4 For any [E,A,B] ∈Σk,n,m the following implications hold true:
If “⇒” holds, then “⇐” does, in general, not hold.

Proof Since it is easy to construct counterexamples for any direction where in the
diagram only “⇒” holds, we skip their presentation. The following implications are
immediate consequences of Definition 2.1:

completely controllable⇒ controllable at infinity⇒ impulse controllable,
completely controllable⇒ strongly controllable⇒ impulse controllable,
completely controllable⇒ completely reachable⇒ strongly reachable,
strongly controllable⇒ strongly reachable,
completely stabilizable⇒ controllable at infinity,
strongly stabilizable⇒ impulse controllable,
completely stabilizable⇒ strongly stabilizable.

It remains to prove the following assertions:



Controllability of Linear Differential-Algebraic Systems—A Survey 15

(a) completely reachable⇒ completely controllable,
(b) strongly reachable⇒ strongly controllable,
(c) completely reachable⇒ completely stabilizable,
(d) strongly reachable⇒ strongly stabilizable.

(a) Let x0, xf ∈ R
n. Then, by complete reachability of [E,A,B], there exist

t > 0 and some (x1, u1) ∈B[E,A,B] with x1(0) = 0 and x1(t) = x0. Further, there
exists (x2, u2) ∈B[E,A,B] with x2(0)= 0 and x2(t)= xf − x1(2t). By linearity and
shift-invariance, we have

(x,u) := (σtx1 + x2, σtu1 + u2) ∈B[E,A,B].

On the other hand, this trajectory fulfills x(0) = x1(t) + x2(0) = x0 and x(t) =
x1(2t)+ x2(t)= xf .

(b) The proof of this statement is analogous to (a).
(c) By (a) it follows that the system is completely controllable. Complete con-

trollability implies that there exists some t > 0, such that for all x0 ∈Rn there exists
(x1, u1) ∈B[E,A,B] with x1(0)= x0 and x1(t)= 0. Then, since (x,u) with

(
x(τ), u(τ )

)=
{

(x1(τ ), u1(τ )), if τ ≤ t,

(0,0), if τ ≥ t

satisfies (x,u) ∈B[E,A,B] (cf. the proof of Lemma 2.1(a)), the system [E,A,B] is
completely stabilizable.

(d) The proof of this statement is analogous to (c). �

3 Solutions, Relations and Normal Forms

In this section we give the definitions for system and feedback equivalence of DAE
control systems (see [63, 137, 155]), revisit the solution theory of DAEs (see [96,
159] and also [22]), and state a normal form under system and feedback equivalence
(see [105]). For the definition of a canonical and a normal form see Remark 3.2.

3.1 System and Feedback Equivalence

We define the essential concepts of system and feedback equivalence. System equiv-
alence was first studied by Rosenbrock [137] (called restricted system equivalence
in his work, see also [155]) and later became a crucial concept in the control theory
of DAEs [24, 25, 63, 64, 69]. Feedback equivalence for DAEs seems to have been
first considered in [63] to derive a feedback canonical form for regular systems, little
later also in [105] (for general DAEs) where additionally also derivative feedback
was investigated and respective canonical forms derived, see also Sect. 3.3.
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Definition 3.1 (System and feedback equivalence) Two systems [Ei,Ai,Bi] ∈
Σk,n,m, i = 1,2, are called

• system equivalent if, and only if,

∃W ∈Glk(R), T ∈Gln(R) : [ sE1 −A1 B1
]=W
[
sE2 −A2 B2

][T 0
0 Im

]
;

we write

[E1,A1,B1] W,T∼se [E2,A2,B2];
• feedback equivalent if, and only if,

∃W ∈Glk(R), T ∈Gln(R),V ∈Glm(R),F ∈Rm,n :
[
sE1 −A1 B1

]=W
[
sE2 −A2 B2

][ T 0
−F V

]
;

(3.1)

we write

[E1,A1,B1] W,T ,V,F∼f e [E2,A2,B2].
It is easy to observe that both system and feedback equivalence are equivalence

relations on Σk,n,m. To see the latter, note that if [E1,A1,B1] W,T ,V,F∼f e [E2,A2,B2],
then

[E2,A2,B2] W
−1,T −1,V−1,−V−1FT −1∼f e [E1,A1,B1].

The behaviors of system and feedback equivalent systems are connected via

If [E1,A1,B1] W,T∼se [E2,A2,B2], then

(x,u) ∈B[E1,A1,B1] ⇔ (T x,u) ∈B[E2,A2,B2]

If [E1,A1,B1] W,T ,V,F∼f e [E2,A2,B2], then

(x,u) ∈B[E1,A1,B1] ⇔ (T x,Fx + V u) ∈B[E2,A2,B2].

(3.2)

In particular, if [E1,A1,B1] W,T∼se [E2,A2,B2], then

V[E1,A1,B1] = T −1 · V[E2,A2,B2], Rt
[E1,A1,B1] = T −1 ·Rt

[E2,A2,B2].

Further, if [E1,A1,B1] W,T ,V,F∼f e [E2,A2,B2], then

V[E1,A1,B1] = T −1 · V[E2,A2,B2], Rt
[E1,A1,B1] = T −1 ·Rt

[E2,A2,B2],

and properties of controllability at infinity, impulse controllability, R-controllability,
behavioral controllability, behavioral stabilizability, complete controllability, com-
plete stabilizability, strong controllability and strong stabilizability are invariant un-
der system and feedback equivalence.



Controllability of Linear Differential-Algebraic Systems—A Survey 17

Remark 3.1 (Equivalence and minimality in the behavioral sense)

(i) Another equivalence concept has been introduced by Willems in [161] (see
also [128, Def. 2.5.2]): Two systems [Ei,Ai,Bi] ∈Σki,n,m, i = 1,2, are called
equivalent in the behavioral sense, if their behaviors coincide, i.e.,

B[E1,A1,B1] =B[E2,A2,B2].

Note that, in particular, two systems being equivalent in the behavioral sense do
not necessarily have the same number of equations. For instance, the following
two systems are equivalent in the behavioral sense:

[[0], [1], [0]],
[[

0
1

]
,

[
1
0

]
,

[
0
0

]]
.

(ii) It is shown in [128, Thm. 2.5.4] that for a unimodular matrix U(s) ∈ R[s]k,k

(that is, U(s) has a polynomial inverse), and [E,A,B] ∈ Σk,n,m, it holds
(x,u) ∈B[E,A,B] if, and only if,

U

(
d

dt

)
Eẋ(t)=U

(
d

dt

)
Ax(t)+U

(
d

dt

)
Bu(t),

where the differential operator U( d
dt

) has to be understood in the distributional
sense. The unimodular matrix U(s) can particularly been chosen in a way that

U(s) · [ sE −A, −B
]=
[
Rx(s) Ru(s)

0 0

]
,

where [Rx(s) Ru(s)] ∈ R[s]l,n+m has full row rank as a matrix in the field
R(s) [128, Thm. 3.6.2]. It is shown that Rx(

d
dt

)x +Ru(
d
dt

)u= 0 is minimal in
the behavioral sense, i.e., it describes the behavior by a minimal number of l

differential equations among all behavioral descriptions of B[E,A,B]. By using
a special normal form, we will later remark that for any [E,A,B] ∈ Σk,n,m,
there exists a unimodular transformation from the left such that the resulting
differential-algebraic system is minimal in the behavioral sense.

(iii) Conversely, if two systems [Ei,Ai,Bi] ∈Σki,n,m, i = 1,2 are equivalent in the
behavioral sense, and, moreover, k1 = k2, then there exists some unimodular
U(s) ∈R[s]k1,k1 , such that

U(s) · [ sE1 −A1, −B1
]= [ sE2 −A2, −B2

]
.

If [Ei,Ai,Bi] i = 1,2, contain different numbers of equations (such as, e.g.,
k1 > k2), then one can first add k1− k2 equations of type “0= 0” to the second
system and, thereafter, perform a unimodular transformation leading from one
system to another.
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(iv) Provided that a unimodular transformation of Eẋ(t) = Ax(t) + Bu(t) again
leads to a differential-algebraic system (that is, neither a derivative of the in-
put nor a higher derivative of the state occurs), the properties of controllability
at infinity, R-controllability, behavioral controllability, behavioral stabilizabil-
ity, complete controllability, complete stabilizability are invariant under this
transformation. However, since the differential variables may be changed under
a transformation of this kind, the properties of impulse controllability, strong
controllability and strong stabilizability are not invariant. We will see in Re-
mark 3.11 that any [E,A,B] ∈ Σk,n,m is, in the behavioral sense, equivalent
to a system that is controllable at infinity.

In order to study normal forms under system and feedback equivalence we in-
troduce the following notation: For k ∈ N we introduce the matrices Nk ∈ R

k,k ,
Kk,Lk ∈Rk−1,k with

Nk =

⎡
⎢⎢⎢⎢⎣

0

1
. . .

. . .
. . .

1 0

⎤
⎥⎥⎥⎥⎦

, Kk =
⎡
⎢⎣

1 0
. . .

. . .

1 0

⎤
⎥⎦ , Lk =

⎡
⎢⎣

0 1
. . .

. . .

0 1

⎤
⎥⎦ .

Further, let e
[k]
i ∈ R

k be the ith canonical unit vector, and, for some multi-index
α = (α1, . . . , αl) ∈Nl , we define

Nα = diag(Nα1, . . . ,Nαl
) ∈R|α|,|α|,

Kα = diag(Kα1 , . . . ,Kαl
) ∈R|α|−l,|α|,

Lα = diag(Lα1, . . . ,Lαl
) ∈R|α|−l,|α|,

Eα = diag
(
e[α1]
α1

, . . . , e[αl ]
αl

) ∈R|α|,l .
Kronecker proved [93] that any matrix pencil sE −A ∈ R[s]k,n can be put into

a certain canonical form, called Kronecker canonical form nowadays, of which a
more comprehensive proof has been provided by Gantmacher [60]. In the follow-
ing we may use the quasi-Kronecker form derived in [22, 23], since in general the
Kronecker canonical form is complex-valued even though the given pencil sE −A

is real-valued, what we need to avoid. The obtained form then is not canonical any-
more, but it is a normal form (see Remark 3.2).

Proposition 3.1 (Quasi-Kronecker form [22, 23, 60]) For any matrix pencil
sE −A ∈R[s]k,n, there exist W ∈Glk(R), T ∈Gln(R) such that

W(sE −A)T =

⎡
⎢⎢⎣

sIns −As 0 0 0
0 sNα − I|α| 0 0
0 0 sKβ −Lβ 0
0 0 0 sK�γ −L�γ

⎤
⎥⎥⎦ (3.3)
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for some As ∈ R
ns,ns and multi-indices α ∈ N

nα , β ∈ N
nγ , γ ∈ N

nγ . The multi-
indices α,β, γ are uniquely determined by sE−A. Further, the matrix As is unique
up to similarity.

The (components of the) multi-indices α,β, γ are often called minimal indices
and elementary divisors and play an important role in the analysis of matrix pen-
cils, see e.g. [60, 104, 105, 113], where the components of α are the orders of the
infinite elementary divisors, the components of β are the column minimal indices
and the components of γ are the row minimal indices. In fact, the number of column
(row) minimal indices equal to one corresponds to the dimension of kerR E∩kerR A

(kerR E�∩kerR A�), or, equivalently, the number of zero columns (rows) in a quasi-
Kronecker form of sE−A. Further, note that sIns −As may be further transformed
into Jordan canonical form to obtain the finite elementary divisors.

Since the multi-indices α ∈ N
nα , β ∈ N

nγ , γ ∈ N
nγ are well-defined by means

of the pencil sE−A and, furthermore, the matrix As is unique up to similarity, this
justifies the introduction of the following quantities.

Definition 3.2 (Index of sE −A) Let the matrix pencil sE −A ∈R[s]k,n be given
with quasi-Kronecker form (3.3). Then the index ν ∈N0 of sE −A is defined as

ν =max{α1, . . . , α�(α), γ1, . . . , γ�(γ )}.

The index is larger or equal to the index of nilpotency ζ of Nα , i.e., ζ ≤ ν, Nζ
α = 0

and N
ζ−1
α �= 0. By means of the quasi-Kronecker form (3.3) it can be seen that the

index of sE −A does not exceed one if, and only if,

imR A⊆ imR E +A · kerR E. (3.4)

This is moreover equivalent to the fact that for some (and hence any) real matrix Z

with imR Z = kerR E, we have

imR[E,AZ] = imR[E,A]. (3.5)

Since each block in sKβ−Lβ (sK�γ −L�γ ) causes a single drop of the column (row)
rank of sE −A, we have

�(β)= n− rkR(s)(sE −A), �(γ )= k − rkR(s)(sE −A). (3.6)

Further, λ ∈C is a generalized eigenvalue of sE −A if, and only if,

rkC(λE −A) < rkR(s)(sE −A).

3.2 A Normal Form Under System Equivalence

Using Proposition 3.1 it is easy to determine a normal form under system equiv-
alence. For regular systems this normal form was first discovered by Rosen-
brock [137].
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Corollary 3.2 (Decoupled DAE) Let [E,A,B] ∈ Σk,n,m. Then there exist W ∈
Glk(R), T ∈Gln(R) such that

[E,A,B] W,T∼se

⎡
⎢⎢⎣

⎡
⎢⎢⎣

Ins 0 0 0
0 Nα 0 0
0 0 Kβ 0
0 0 0 K�γ

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

As 0 0 0
0 I|α| 0 0
0 0 Lβ 0
0 0 0 L�γ

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

Bs

Bf

Bu

Bo

⎤
⎥⎥⎦

⎤
⎥⎥⎦ ,

(3.7)
for some Bs ∈ R

ns,m, Bf ∈ R
|α|,m, Bo ∈ R

|β|−�(β),m, Bu ∈ R
|γ |,m, As ∈ R

ns ,ns

and multi-indices α ∈ N
nα , β ∈ N

nβ , γ ∈ N
nγ . This is interpreted, in terms of the

DAE (2.1), as follows: (x,u) ∈B[E,A,B] if, and only if,

(
xs(·)�, xf (·)�, xu(·)�, xo(·)�

)� := T x(·)
with

xf (·)=
⎛
⎜⎝

xf [1](·)
...

xf [�(α)](·)

⎞
⎟⎠ , xu(·)=

⎛
⎜⎝

xu[1](·)
...

xu[�(β)](·)

⎞
⎟⎠ , xo(·)=

⎛
⎜⎝

xo[1](·)
...

xo[�(γ )](·)

⎞
⎟⎠

solves the decoupled DAEs

ẋs(t)=Asxs(t)+Bsu(t), (3.8a)

Nαi
ẋf [i](t)= xf [i](t)+Bf [i]u(t) for i = 1, . . . , �(α), (3.8b)

Kβi
ẋu[i](t)= Lβi

xu[i](t)+Bu[i]u(t) for i = 1, . . . , �(β), (3.8c)

K�γi
ẋo[i](t)= L�γi

xo[i](t)+Bo[i]u(t) for i = 1, . . . , �(γ ) (3.8d)

with suitably labeled partitions of Bf , Bu and Bo.

Remark 3.2 (Canonical and normal form) Recall the definition of a canonical form:
given a group G, a set S , and a group action α : G × S → S which defines

an equivalence relation s
α∼ s′ if, and only if, ∃U ∈ G : α(U, s) = s′. Then a map

γ :S →S is called a canonical form for α [28] if, and only if,

∀s, s′ ∈S : γ (s)
α∼ s ∧ [s α∼ s′ ⇔ γ (s)= γ

(
s′
)]

.

Therefore, the set S is divided into disjoint orbits (i.e., equivalence classes) and
the mapping γ picks a unique representative in each equivalence class. In the setup
of system equivalence, the group is G = Gln(R) × Gln(R), the considered set is
S =Σk,n,m and the group action α((W,T ), [E,A,B])= [WET,WAT,WB] cor-

responds to
W−1,T −1∼ . However, Corollary 3.2 does not provide a mapping γ . That

means that the form (3.7) is not a unique representative within the equivalence class
and hence it is not a canonical form. Nevertheless, we may call it a normal form,
since every entry is (at least) unique up to similarity.
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Remark 3.3 (Canonical forms for regular systems) For regular systems which are
completely controllable two actual canonical forms of [E,A,B] ∈ Σn,n,m under
system equivalence have been obtained: the Jordan control canonical form in [64]
and, later, the more simple canonical form in [69] based on the Hermite canonical
form for controllable ODEs [I,A,B].

Remark 3.4 (DAEs corresponding to the blocks in the quasi-Kronecker form)
Corollary 3.2 leads to the separate consideration of the differential-algebraic equa-
tions (3.8a)–(3.8c):

(i) (3.8a) is an ordinary differential equation whose solution satisfies

xs(t)= eAst xs(0)+
∫ t

0
eAs(t−τ)Bsu(τ)dτ, t ∈R.

In particular, solvability is guaranteed by u ∈L 1
loc(R;Rm). The initial value

xs(0) ∈ Rn can be chosen arbitrarily; the prescription of u ∈L 1
loc(R;Rm) and

xs(0) ∈Rn guarantees uniqueness of the solution.
(ii) The solutions of (3.8b) can be calculated by successive differentiation and pre-

multiplication with Nαi
, hence we have

0 = Nαi
αi

x
(αi )
f [i](t)

(3.8b)= Nαi−1
αi

xf [i](t)(αi−1) +Nαi−1
αi

Bf [i]u(αi−1)(t)

= · · · = xf [i](t)+
αi−1∑
j=0

Nj
αi

Bf [i]u(j)(t),

where u(j) denotes the j th distributional derivative of u. As a consequence, the
solution requires a certain smoothness of the input, expressed by

αi−1∑
j=0

Nj
αi

Bf [i]u(j) ∈W 1,1
loc

(
R;Rαi
)
.

In particular, condition u ∈ W αi ,1
loc (R;Rαi ) guarantees solvability of the

DAE (3.8b). Note that the initial value xf [i](0) cannot be chosen at all: It
is fixed by u via the relation

xf [i](0)=−
(

αi−1∑
j=0

Nj
αi

Bf [i]u(j)

)
(0).

On the other hand, for any (sufficiently smooth) input there exists a unique
solution for appropriately chosen initial value.
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(iii) Writing

xu[i]− =
⎡
⎢⎣

xu[i],1
...

xu[i],βi−1

⎤
⎥⎦ ,

(3.8c) is equivalent to

ẋu[i]− =N�βi−1xu[i]− + e
[βi−1]
βi−1 xu[i],βi

+Bu[i]u(t).

Hence, a solution exists for all inputs u ∈ L 1
loc(R;Rm) and all xu[i],βi

∈
W 1,1

loc (R;R) as well as xu[i],1(0), . . . , xu[i],βi−1(0). This system is therefore un-
derdetermined in the sense that one component as well as all initial values can
be freely chosen. Hence any existing solution for fixed input u and fixed initial
value xu[i](0) is far from being unique.

(iv) Denoting

xo[i]+ =
[

01,1
xo[i]

]
,

(3.8d) can be rewritten as

N�γi
ẋo[i]+ = xo[i]+ +Bo[i]u(t).

Hence we obtain xo[i]+(t)=−∑γi−1
j=0 (N�γi

)jBo[i]u(j)(t), which gives

xo[i](t)=−[0(γi−1),1, Iγi−1]
γi−1∑
j=0

(
N�γi

)j
Bo[i]u(j)(t)

together with the consistency condition on the input:

(
e
[γi ]
1

)� γi−1∑
j=0

(
N�γi

)j
Bo[i]u(j)(t)= 0. (3.9)

The smoothness condition

γi−1∑
j=0

(
N�γi

)j
Bo[i]u(j) ∈W 1,1

loc

(
R;Rγi
)

is therefore not enough to guarantee existence of a solution; the additional con-
straint formed by (3.9) has to be satisfied, too. Furthermore, as in (ii), the initial
value xo[i](0) is fixed by the input u. Hence, a solution does only exist if the
consistency conditions on the input and initial value are satisfied, but then the
solution is unique.



Controllability of Linear Differential-Algebraic Systems—A Survey 23

Remark 3.5 (Solutions on (finite) time intervals) The solution of a DAE [E,A,B] ∈
Σk,n,m on some time interval I � R can be defined in a straightforward manner
(compare (2.2)). By the considerations in Remark 3.4, we can infer that any solution
(x,u) on some finite time interval I �R can be extended to a solution on the whole
real axis. Consequently, all concepts which have been defined in Sect. 2 could be
also made based on solutions on intervals I including zero.

3.3 A Normal Form under Feedback Equivalence

A normal form under feedback transformation (3.1) was first studied for sys-
tems governed by ordinary differential equations by Brunovský [32]. In this sec-
tion we present a generalization of the Brunovský form for general DAE sys-
tems [E,A,B] ∈ Σk,n,m from [105]. For more details of the feedback form and a
more geometric point of view on feedback invariants and feedback canonical forms
see [87, 105].

Remark 3.6 (Feedback for regular systems) It is known [12, 63] that the class of
regular DAE systems is not closed under the action of state feedback. Therefore,
in [140] the class of regular systems is divided into the families

Σθ :=
{
(E,A,B) ∈Σn,n,m | det(cos θE − sin θA) �= 0

}
, θ ∈ [0,π),

and it is shown that any of these families is dense in the set of regular systems and
the union of these families is exactly the set of regular systems. The authors of [140]
then introduce the “constant-ratio proportional and derivative” feedback on Σθ , i.e.

u= F(cos θx − sin θẋ)+ v.

This feedback leads to a group action and enables them to obtain a generalization of
Brunovský’s theorem [32] on each of the subsets of completely controllable systems
in Σθ , see [140, Thm. 6].

Glüsing-Lüerßen [63] derived a canonical form under the unchanged feedback
equivalence (3.1) on the set of strongly controllable (called impulse controllability
in [63]) regular systems, see [63, Thm. 4.7]. In particular it was shown that this set
is closed under the action of a feedback group.

Theorem 3.3 (Normal form under feedback equivalence [105]) Let [E,A,B] ∈
Σk,n,m. Then there exist W ∈ Glk(R), T ∈ Gln(R),V ∈ Glm(R),F ∈ R

m,n such
that



24 T. Berger and T. Reis

[E,A,B]

W,T ,V,F∼f e

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

I|α| 0 0 0 0 0
0 Kβ 0 0 0 0
0 0 L�γ 0 0 0
0 0 0 K�δ 0 0
0 0 0 0 Nκ 0
0 0 0 0 0 Inc

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

N�α 0 0 0 0 0
0 Lβ 0 0 0 0
0 0 K�γ 0 0 0
0 0 0 L�δ 0 0
0 0 0 0 I|κ| 0
0 0 0 0 0 Ac

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

Eα 0 0
0 0 0
0 Eγ 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3.10)

for some multi-indices α,β, γ, δ, κ and a matrix Ac ∈Rnc,nc . This is interpreted, in
terms of the DAE (2.1), as follows: (x,u) ∈B[E,A,B] if, and only if,

(
xc(·)�, xu(·)�, xob(·)�, xo(·)�, xf (·)�, xc(·)�

)� := T x(·),
(
uc(·)�, uob(·)�, us(·)�

)� := V
(
u(·)− Fx(·)),

with

xc(·) =
⎛
⎜⎝

xc[1](·)
...

xc[�(α)](·)

⎞
⎟⎠ , uc(·)=

⎛
⎜⎝

uc[1](·)
...

xc[�(α)](·)

⎞
⎟⎠ , xu(·)=

⎛
⎜⎝

xu[1](·)
...

xu[�(β)](·)

⎞
⎟⎠ ,

xob(·) =
⎛
⎜⎝

xob[1](·)
...

xob[�(γ )](·)

⎞
⎟⎠ , uob(·)=

⎛
⎜⎝

uob[1](·)
...

uob[�(γ )](·)

⎞
⎟⎠ , xo(·)=

⎛
⎜⎝

xo[1](·)
...

xo[�(δ)](·)

⎞
⎟⎠ ,

xf (·) =
⎛
⎜⎝

xf [1](·)
...

xf [�(κ)](·)

⎞
⎟⎠

solves the decoupled DAEs

ẋc[i](t)=N�αi
xc(t)+ e[αi ]

αi
uc[i](t) for i = 1, . . . , �(α), (3.11a)

Kβi
ẋu[i](t)= Lβi

xu[i](t) for i = 1, . . . , �(β), (3.11b)

L�γi
ẋob[i](t)=K�γi

xob[i](t)+ e[γi ]
γi

uob[i] for i = 1, . . . , �(γ ), (3.11c)

K�δi
ẋo[i](t)= L�δi

xo[i](t) for i = 1, . . . , �(δ), (3.11d)
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Nκi
ẋf [i](t)= xc(t) for i = 1, . . . , �(κ), (3.11e)

ẋc(t)=Acxc(t). (3.11f)

Note that by Remark 3.2 the form (3.10) is a normal form. However, if we apply
an additional state space transformation to the block [Inc

,Ac,0] which puts Ac into
Jordan canonical form, and then prescribe the order of the blocks of each type, e.g.
from largest dimension to lowest (what would mean α1 ≥ α2 ≥ · · · ≥ α�(α) for α for
instance), then (3.10) becomes a canonical form.

Remark 3.7 (DAEs corresponding to the blocks in the feedback form) The form in
Theorem 3.3 again leads to the separate consideration of the differential-algebraic
equations (3.11a)–(3.11f):

(i) (3.11a) is given by [Iαi
,N�αi

, e
[αi ]
αi
], and is completely controllable by the clas-

sical results for ODE systems (see e.g. [147, Sect. 3.2]). This system has fur-
thermore the properties of being R-controllable, and both controllable and sta-
bilizable in the behavioral sense.

(ii) (3.11b) corresponds to an underdetermined system with zero dimensional
input space. Since xu[i] satisfies (3.11b) if, and only if, there exists some
vi ∈L 1

loc(R;R) with

ẋu[i](t)=N�βi
xu[i](t)+ e

[βi ]
βi

vi(t),

this system has the same properties as (3.11a).
(iii) Denoting

zob[i] =
[

xob[i]
uob[i]

]
,

then (3.11c) can be rewritten as

Nγi
żob[i](t)= zob[i](t),

which has, by (ii) in Remark 3.4, the unique solution zob[i] = 0. Hence,

B[L�γi
,K�γi

,e
[γi ]
γi
] = {0}.

The system [L�γi
,K�γi

, e
[γi ]
γi
] is therefore completely controllable if, and only

if, γi = 1. In the case where γi > 1, this system is not even impulse control-
lable. However, independent of γi , [L�γi

,K�γi
, e
[γi ]
γi
] is R-controllable, and both

controllable and stabilizable in the behavioral sense.
(iv) Again, we have

B[K�δi ,L
�
δi

,0δi ,0] = {0},
whence, in dependence on δi , we can infer the same properties as in (iii).
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(v) Due to

B[Nκi
,Iκi

,0κi ,0] = {0},
the system [Nκi

, Iκi
,0κi ,0] is never controllable at infinity, but always R-

controllable and both controllable and stabilizable in the behavioral sense.
[Nκi

, Iκi
,0κi ,0] is strongly controllable if, and only if, κi = 1.

(vi) The system [Inc
,Ac,0c,0] satisfies

B[Inc
,Ac,0nc,0] =

{
eAc·x0
∣∣ x0 ∈Rnc

}
,

whence it is controllable at infinity, but neither strongly controllable nor con-
trollable in the behavioral sense nor R-controllable. The properties of being
complete and strong stabilizability and stabilizability in the behavioral sense
are attained if, and only if, σ(Ac)⊆C−.

By using the implications shown in Proposition 2.4, we can deduce the following
for the systems arising in the feedback form:

[Iαi
,N�αi

, e
[αi ]
αi
] [Kβi

,Lβi
,0βi−1,0] [L�γi

,K�γi
, e
[γi ]
γi
] [K�

δi
,L�

δi
,0δi ,0

] [Nκi
, Iκi ,0κi ,0

] [Inc
,Ac,0c,0]

controllable
at infinity

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ✕ ✓

impulse
controllable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ⇔ κi = 1 ✓

completely
controllable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ✕ ✕

completely
reachable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ✕ ✕

strongly
controllable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ⇔ κi = 1 ✕

strongly
reachable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ⇔ κi = 1 ✕

completely
stabilizable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ✕
⇔ σ(Ac)

⊆C−
strongly
stabilizable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ⇔ κi = 1
⇔ σ(Ac)

⊆C−
R-control-
lable

✓ ✓ ✓ ✓ ✓ ✕

controllable
in the be-
havioral
sense

✓ ✓ ✓ ✓ ✓ ✕

stabilizable
in the be-
havioral
sense

✓ ✓ ✓ ✓ ✓
⇔ σ(Ac)

⊆C−

Corollary 3.4 A system [E,A,B] ∈Σk,n,m with feedback form (3.10) is

(a) controllable at infinity if, and only if, γ = (1, . . . ,1), δ = (1, . . . ,1) and
�(κ)= 0;

(b) impulse controllable if, and only if, γ = (1, . . . ,1), δ = (1, . . . ,1) and κ =
(1, . . . ,1);

(c) strongly controllable (and thus also strongly reachable) if, and only if, γ =
(1, . . . ,1), δ = (1, . . . ,1), κ = (1, . . . ,1) and nc = 0;
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(d) completely controllable (and thus also completely reachable) if, and only if,
γ = (1, . . . ,1), δ = (1, . . . ,1) and �(κ)= nc = 0;

(e) R-controllable if, and only if, nc = 0;
(f) controllable in the behavioral sense if, and only if, nc = 0;
(g) strongly stabilizable if, and only if, γ = (1, . . . ,1), δ = (1, . . . ,1), �(κ) = 0,

and σ(Ac)⊆C−;
(h) completely stabilizable if and only if, γ = (1, . . . ,1), δ = (1, . . . ,1), κ =

(1, . . . ,1), and σ(Ac)⊆C−;
(i) stabilizable in the behavioral sense if, and only if, σ(Ac)⊆C−.

Remark 3.8 (Parametrization of the behavior of systems in feedback form) With the
findings in Remark 3.7, we may explicitly characterize the behavior of systems in
feedback form. Define

Vk(s)=
[
1, s, . . . , sk

]� ∈R[s]k,1

and, for some multi-index μ= (μ1, . . . ,μl) ∈Nl ,

Vμ(s)= diag
(
Vμ1(s), . . . , Vμl

(s)
) ∈R[s]|μ|,�(μ),

Wμ(s)= diag
(
sμ1, . . . , sμl

) ∈R[s]�(μ),�(μ).

Further let μ+ k := (μ1 + k, . . . ,μl + k) for k ∈ Z, and

W μ,1
loc (R;R) :=W μ1,1

loc (R;R)× · · · ×W
μ�(μ),1

loc (R;R).

Then the behavior of a system in feedback form can, formally, be written as

B[E,A,B] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Vα−1(
d
dt

) 0 0 0
0 Vβ−1(

d
dt

) 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 eAc· 0

Wα( d
dt

) 0 0 0
0 0 0 0
0 0 0 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣

W α,1
loc (R;R)

W
β,1

loc (R;R)

R
nc

L 1
loc(R;Rm−�(α)−�(γ ))

⎤
⎥⎥⎥⎥⎦

,

where the sizes of the blocks are according to the block structure in the feedback
form (3.10) and the horizontal line is the dividing line between x- and u-variables.
If the system [E,A,B] ∈ Σk,n,m is not in feedback form, then a parametrization
of the behavior can be found by using the above representation and relation (3.2)
expressing the connection between behaviors of feedback equivalent systems.

For general differential behaviors, a parametrization of the above kind is called
image representation [128, Sect. 6.6].
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Remark 3.9 (Derivative feedback) A canonical form under proportional and deriva-
tive feedback (PD feedback) was derived in [105] as well (note that PD feedback
defines an equivalence relation on Σk,n,m). The main tool for doing this is the re-
striction pencil (see Remark 2.1(xi)): Clearly, the system

NEẋ = NAx,

u = B†(Eẋ −Ax)

is equivalent, via PD feedback, to the system

NEẋ = NAx,

u = 0.

Then putting sNE−NA into Kronecker canonical form yields a PD canonical form
for the DAE system with a 5× 4-block structure.

We may, however, directly derive this PD canonical form from the normal
form (3.10). To this end we may observe that the system [Iαi

,N�αi
, e
[αi ]
αi
] can be

written as

Kαi
ẋc[i](t)= Lαi

xc[i](t), ẋc[i],αi
(t)= uc[i](t),

and hence is, via PD feedback, equivalent to the system
[[

Kαi

0

]
,

[
Lαi

0

]
,

[
0
1

]]
.

On the other hand, the system [L�γi
,K�γi

, e
[γi ]
γi
] can be written as

Nγi−1ẋob[i](t)= xob[i](t), ẋob[i],γi−1(t)= uob[i](t),

and hence is, via PD feedback, equivalent to the system
[[

Nγi−1
0

]
,

[
Iγi−1

0

]
,

[
0
1

]]
.

A canonical form for [E,A,B] ∈Σk,n,m under PD feedback is therefore given by

[E,A,B] ∼PD

⎡
⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎣

Kβ 0 0 0
0 K�δ 0 0
0 0 Nκ 0
0 0 0 Inc

0 0 0 0

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

Lβ 0 0 0
0 L�δ 0 0
0 0 I|κ| 0
0 0 0 Ac

0 0 0 0

⎤
⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
Iζ 0

⎤
⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎦

,

where Ac is in Jordan canonical form, and the blocks of each type are ordered from
largest dimension to lowest.

Note that the properties of complete controllability, controllability at infinity and
controllability in the behavioral sense are invariant under PD feedback. However,
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since derivative feedback changes the set of differential variables, the properties of
strong controllability as well as impulse controllability may be lost/gained after PD
feedback.

Remark 3.10 (Connection to Kronecker form) We may observe from (3.1) that
feedback transformation may be alternatively considered as a transformation of the
extended pencil

sE −A = [ sE −A, −B
]
, (3.12)

that is based on a multiplication from the left by W =W ∈ Glk(R), and from the
right by

T =
[

T 0
F V

]
∈Gln+m(R).

This equivalence is therefore a subclass of the class which is induced by the pre-
and post-multiplication of sE −A by arbitrary invertible matrices. Loosely speak-
ing, one can hence expect a normal form under feedback equivalence which spe-
cializes the quasi-Kronecker form of sE − A . Indeed, the latter form may be
obtained from the feedback form of [E,A,B] by several simple row transforma-
tions sE − A which are not interpretable as feedback group actions anymore.
More precisely, simple permutations of columns lead to the separate considera-
tion of the extended pencils corresponding to the systems (3.11a)–(3.11f): The ex-
tended pencils corresponding to [Iαi

,N�αi
, e
[αi ]
αi
] and [Kβi

,Lβi
,0αi ,0] are sKαi

−Lαi

and sKβi
− Lβi

, resp. The extended matrix pencil corresponding to the system

[L�γi
,K�γi

, e
[γi ]
γi
] is given by sNγi

− Iγi
. The extended matrix pencils correspond-

ing to the systems [K�δi
,L�δi

,0δi ,0], [Nκi
, Iκi

,0κi ,0] and [Inc
,Ac,0c,0] are obviously

given by sK�δi
−L�δi

, sNκi
− Iκi

and sInc
−Ac, respectively. In particular, λ ∈C is

a generalized eigenvalue of sE −A , if, and only if, λ ∈ σ(Ac).

Remark 3.11 (Minimality in the behavioral sense)

(i) According to Remark 3.1, a differential-algebraic system [E,A,B] ∈ Σk,n,m

is minimal in the behavioral sense, if, and only if, the extended pencil sE −A
as in (3.12) has full row rank as a matrix with entries in the field R(s). On the
other hand, a system [E,A,B] ∈Σk,n,m with feedback form (3.10) satisfies

rkR(s)(sE −A )= k − �(δ).

Using that rkR(s)(sE − A ) is invariant under feedback transformation (3.1),
we can conclude that minimality of [E,A,B] ∈Σk,n,m in the behavioral sense
corresponds to the absence of blocks of type (3.11d) in its feedback form.
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(ii) The findings in Remark 3.4 imply that a system in feedback form is, in the
behavioral sense, equivalent to
⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

I|α| 0 0 0 0 0
0 Kβ 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 Inc

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

N�α 0 0 0 0 0
0 Lβ 0 0 0 0
0 0 K�γ 0 0 0
0 0 0 I|δ|−�(δ) 0 0
0 0 0 0 I|κ| 0
0 0 0 0 0 Ac

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

Eα 0 0
0 0 0
0 Eγ 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This system can alternatively be achieved by multiplying the extended pen-
cil (3.12) in feedback form (3.10) from the left with the polynomial matrix

Z(s)= diag

(
I|α|, I|β|−�(β),−

νγ−1∑
k=0

skNk
γ ,Pδ(s),−

νκ−1∑
k=0

skNk
κ , Inc

)
,

where νγ =max{γ1, . . . , γ�(γ )}, νκ =max{κ1, . . . , κ�(κ)}, and

Pδ(s)= diag

([
0δi−1,1, −

δi−2∑
k=0

sk(N�δi−1)
k

])

j=1,...,�(δ)

.

(iii) Let a differential-algebraic system [E,A,B] ∈Σk,n,m be given. Using the no-
tation from (3.10) and the previous item, a behaviorally equivalent and minimal
system [EM,AM,BM ] ∈Σk−�(δ),n,m can be constructed by

[
sEM −AM, −BM

]= Z(s)W
[
sE −A, −B

]
.

It can be seen that this representation is furthermore controllable at infinity.
As well, it minimizes, among all differential-algebraic equations representing
the same behavior, the index and the rank of the matrix in front of the state
derivative (that is, loosely speaking, the number of differential variables). This
procedure is very closely related to index reduction [96, Sect. 6.1].

4 Criteria of Hautus Type

In this section we derive equivalent criteria on the matrices E,A ∈ Rk,n, B ∈ Rk,m

for the controllability and stabilizability concepts of Definition 2.1. The criteria are
generalizations of the Hautus test (also called Popov–Belevitch–Hautus test, since
independently developed by Popov [129], Belevitch [17] and Hautus [68]) in terms
of rank criteria on the involved matrices. Note that these conditions are not new—
we refer to the relevant literature. However, we provide new proofs using only the
feedback normal form (3.10).

First we show that certain rank criteria on the matrices involved in control sys-
tems are invariant under feedback equivalence. After that, we relate these rank cri-
teria to the feedback form (3.10).
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Lemma 4.1 Let [E1,A1,B1], [E2,A2,B2] ∈ Σk,n,m be given such that for W ∈
Glk(R), T ∈Gln(R), V ∈Glm(R) and F ∈Rm,n, we have

[E1,A1,B1] W,T ,V,F∼f e [E2,A2,B2].

Then

imR E1 + imR A1 + imR B1 =W · (imR E2 + imR A2 + imR B2),

imR E1 +A1 · kerR E1 + imR B1 =W · (imR E2 +A2 · kerR E2 + imR B2),

imR E1 + imR B1 =W · (imR E2 + imR B2),

imC(λE1 −A1)+ imC B1 =W · (imC(λE2 −A2)+ imC B2
)

for all λ ∈C,

imR(s)(sE1 −A1)+ imR(s) B1 =W · (imR(s)(sE2 −A2)+ imR(s) B2
)
.

Proof Immediate from (3.1). �

Lemma 4.2 (Algebraic criteria via feedback form) For a system [E,A,B] ∈Σk,n,m

with feedback form (3.10) the following statements hold true:

(a)

imR E + imR A+ imR B = imR E + imR B

⇐⇒ γ = (1, . . . ,1), δ = (1, . . . ,1), �(κ)= 0.

(b)

imR E + imR A+ imR B = imR E +A · kerR E + imR B

⇐⇒ γ = (1, . . . ,1), δ = (1, . . . ,1), κ = (1, . . . ,1).

(c)

imC E + imC A+ imR B = imC(λE −A)+ imC B

⇐⇒ δ = (1, . . . ,1), λ /∈ σ(Ac).

(d) For λ ∈C we have

dim
(
imR(s)(sE −A)+ imR(s) B

)= dim
(
imC(λE −A)+ imC B

)

⇐⇒ λ /∈ σ(Ac).

Proof It is, by Lemma 4.1, no loss of generality to assume that [E,A,B] is already
in feedback normal form. The results then follow by a simple verification of the
above statements by means of the feedback form. �
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Combining Lemmas 4.1 and 4.2 with Corollary 3.4, we may deduce the follow-

ing criteria for the controllability and stabilizability concepts introduced in Defini-

tion 2.1.

Corollary 4.3 (Algebraic criteria for controllability/stabilizability) Let a system

[E,A,B] ∈Σk,n,m be given. Then the following holds:

[E,A,B] is if, and only if,

controllable at
infinity

imR E + imR A+ imR B = imR E + imR B.

impulse control-
lable

imR E + imR A+ imR B = imR E +A · kerR E + imR B.

completely con-
trollable

imR E + imR A+ imR B = imR E + imR B

∧ imC E + imC A+ imC B = imC(λE −A)+ imC B ∀λ ∈C.

strongly control-
lable

imR E + imR A+ imR B =A · kerR E + imR B

∧ imC E + imC A+ imC B = imC(λE −A)+ imC B ∀λ ∈C.

completely stabi-
lizable

imR E + imR A+ imR B = imR E + imR B

∧ imC E + imC A+ imC B = imC(λE −A)+ imC B ∀λ ∈C+.

strongly stabiliz-
able

imR E + imR A+ imR B = imR E +A · kerR E + imR B

∧ imC E + imC A+ imC B = imC(λE −A)+ imC B ∀λ ∈C+.

controllable in
the behavioral
sense

rkR(s)[sE −A,B] = rkC[λE −A,B] ∀λ ∈C.

stabilizable in
the behavioral
sense

rkR(s)[sE −A,B] = rkC[λE −A,B] ∀λ ∈C+.

The above result leads to the following extension of the diagram in Proposi-

tion 2.4. Note that the equivalence of R-controllability and controllability in the

behavioral sense was already shown in Corollary 3.4.
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In the following we will consider further criteria for the concepts introduced in
Definition 2.1.

Remark 4.1 (Controllability at infinity) Corollary 4.3 immediately implies that con-
trollability at infinity is equivalent to

imR A⊆ imR E + imR B.

In terms of a rank criterion, this is the same as

rkR[E,A,B] = rkR[E,B]. (4.1)

Criterion (4.1) has first been derived by Geerts [61, Thm. 4.5] for the case
rk[E,A,B] = k, although he does not use the name “controllability at infinity”.

In the case of regular sE −A ∈R[s]n,n, condition (4.1) reduces to

rkR[E,B] = n.

Remark 4.2 (Impulse controllability) By Corollary 4.3, impulse controllability of
[E,A,B] ∈Σk,n,m is equivalent to

imR A⊆ imR E +A · kerR E + imR B.

Another equivalent characterization is that, for one (and hence any) matrix Z with
imR(Z)= kerR(E), we have

rkR[E,A,B] = rkR[E,AZ,B]. (4.2)
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This has first been derived by Geerts [61, Rem. 4.9], again for the case rk[E,A,B] =
k. In [75, Thm. 3] and [71] the result has been obtained that impulse controllability
is equivalent to

rkR

[
E 0 0
A E B

]
= rkR[E,A,B] + rkR E,

which is in fact equivalent to (4.2). It has also been shown in [75, p. 1] that impulse
controllability is equivalent to

rkR(s)(sE −A )= rkR[E,A,B].
This criterion can be alternatively shown by using the feedback form (3.10). Using
condition (3.5) we may also infer that this is equivalent to the index of the extended
pencil sE −A ∈R[s]k,n+m being at most one.

If the pencil sE −A is regular, then condition (4.2) reduces to

rkR[E,AZ,B] = n.

This condition can be also inferred from [49, Th. 2-2.3].

Remark 4.3 (Controllability in the behavioral sense and R-controllability) The con-
cepts of controllability in the behavioral sense and R-controllability are equivalent
by Corollary 3.4. The algebraic criterion for behavioral controllability in Corol-
lary 4.3 is equivalent to the extended matrix pencil sE − A ∈ R[s]k,n+m having
no generalized eigenvalues, or, equivalently, in the feedback form (3.10) it holds
nc = 0.

The criterion for controllability in the behavioral sense is shown in [128,
Thm. 5.2.10] for the larger class of linear differential behaviors. R-controllability
for systems with regular sE − A was considered in [49, Thm. 2-2.2], where the
condition

rkC[λE −A,B] = n ∀λ ∈C
was derived. This is, for regular sE − A, in fact equivalent to the criterion for be-
havioral stabilizability in Corollary 4.3.

Remark 4.4 (Complete controllability and strong controllability) By Corollary 4.3,
complete controllability of [E,A,B] ∈ Σk,n,m is equivalent to [E,A,B] be-
ing R-controllable and controllable at infinity, whereas strong controllability of
[E,A,B] ∈Σk,n,m is equivalent to [E,A,B] being R-controllable and impulse con-
trollable.

Banaszuk et al. [12] already obtained the condition in Corollary 4.3 for complete
controllability considering discrete systems. Complete controllability is called H -
controllability in [12]. Recently, Zubova [171] considered full controllability, which
is just complete controllability with the additional assumption that solutions have to
be unique, and obtained three equivalent criteria [171, Sect. 7], where the first one
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characterizes the uniqueness and the other two are equivalent to the condition for
complete controllability in Corollary 4.3.

For regular systems, the conditions in Corollary 4.3 for complete and strong con-
trollability are also derived in [49, Thm. 2-2.1 & Thm. 2-2.3].

Remark 4.5 (Stabilizability) By Corollary 4.3, complete stabilizability of [E,A,B]
∈ Σk,n,m is equivalent to [E,A,B] being stabilizable in the behavioral sense and
controllable at infinity, whereas strong stabilizability of [E,A,B] ∈Σk,n,m is equiv-
alent to [E,A,B] being stabilizable in the behavioral sense and impulse control-
lable.

The criterion for stabilizability in the behavioral sense is shown in [128,
Thm. 5.2.30] for the class of linear differential behaviors.

Remark 4.6 (Kalman criterion for regular systems) For regular systems [E,A,B] ∈
Σn,n,m with det(sE −A) ∈R[s] \ {0} the usual Hautus and Kalman criteria can be
found in a summarized form e.g. in [49]. Other approaches to derive controllability
criteria rely on the expansion of (sE − A)−1 as a power series in s, which is only
feasible in the regular case. For instance, in [115] the numerator matrices of this
expansion, i.e., the coefficients of the polynomial adj(sE −A), are used to derive a
rank criterion for complete controllability. Then again, in [90] Kalman rank criteria
for complete controllability, R-controllability and controllability at infinity are de-
rived in terms of the coefficients of the power series expansion of (sE −A)−1. The
advantage of these criteria, especially the last one, is that no transformation of the
system needs to be performed as it is usually necessary in order to derive Kalman
rank criteria for DAEs, see e.g. [49].

However, simple criteria can be obtained using only a left transformation of little
impact: if α ∈ R is chosen such that det(αE −A) �= 0 then the system is complete
controllable if, and only if, [170, Cor. 1]

rkR
[
(αE −A)−1B,

(
(αE −A)−1E

)
(αE −A)−1B, . . .

. . . ,
(
(αE −A)−1E

)n−1
(αE −A)−1B

]= n,

and it is impulse controllable if, and only if, [170, Thm. 2]

imR(αE −A)−1E + ker(αE −A)−1E + imR(αE −A)−1B =R
n.

The result concerning complete controllability has also been obtained in [41,
Thm. 4.1] for the case A= I and α = 0.

Yet another approach was followed by Kučera and Zagalak [94] who introduced
controllability indices and characterized strong controllability in terms of an equa-
tion for these indices.
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5 Feedback, Stability and Autonomous Systems

State feedback is, roughly speaking, the special choice of the input being a function
of the state. Due to the mutual dependence of state and input in a feedback system,
this is often referred to as closed-loop control. In the linear case, feedback is the
imposition of the additional relation u(t)= Fx(t) for some F ∈ Rm,n. This results
in the system

Eẋ(t)= (A+BF)x(t).

Feedback for linear ODE systems was studied by Wonham [165], where it is shown
that controllability of [I,A,B] ∈Σn,n,m is equivalent to any set Λ⊆ C which has
at most n elements and is symmetric with respect to the imaginary axis (that is,
λ ∈ Λ⇔ λ ∈ Λ) being achievable by a suitable feedback, i.e., there exists some
F ∈ R

m,n with the property that σ(A+ BF) = �. In particular, the input may be
chosen in a way that the closed-loop system is stable, i.e., any state trajectory tends
to zero. Using the Kalman decomposition [82] (see also Sect. 7), it can be shown for
ODE systems that stabilizability is equivalent to the existence of a feedback such
that the resulting system is stable.

These results have been generalized to regular DAE systems by Cobb [43], see
also [49, 57, 102, 103, 121, 123]. Note that, for DAE systems, not only the problem
of assignment of eigenvalues occurs, but also the index may be changed by imposing
feedback.

The crucial ingredient for the treatment of DAE systems with non-regular pencil
sE −A will be the feedback form by Loiseau et al. [105] (see Thm. 3.3).

5.1 Stabilizability, Autonomy and Stability

The feedback law u(t)= Fx(t) applied to (2.1) results in a DAE in which the input
is completely eliminated. We now focus on DAEs without input, and we introduce
several properties and concepts. For matrices E,A ∈Rk,n, consider a DAE

Eẋ(t)=Ax(t). (5.1)

Its behavior is given by

B[E,A] :=
{
x ∈W 1,1

loc

(
R;Rn
) ∣∣ x satisfies (5.1) for almost all t ∈R}.

Definition 5.1 (Stability/Stabilizability concepts for DAEs, autonomous DAEs)
A linear time-invariant DAE [E,A] ∈Σk,n is called

(a) completely stabilizable

:⇔ ∀x0 ∈Rn∃x ∈B[E,A] : x(0)= x0 ∧ lim
t→∞x(t)= 0;
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(b) strongly stabilizable

:⇔ ∀x0 ∈Rn∃x ∈B[E,A] :Ex(0)=Ex0 ∧ lim
t→∞x(t)= 0;

(c) stabilizable in the behavioral sense

:⇔ ∀x ∈B[E,A]∃x0 ∈B[E,A] :
(∀t < 0 : x(t)= x0(t)

)∧ lim
t→∞x0(t)= 0;

(d) autonomous

:⇔ ∀x1, x2 ∈B[E,A] :
(∀t < 0 : x1(t)= x2(t)

)⇒ (∀t ∈R : x1(t)= x2(t)
);

(e) completely stable

:⇔ {x(0)
∣∣ x ∈B[E,A]

}=R
n ∧ ∀x ∈B[E,A] : lim

t→∞x(t)= 0;

(d) strongly stable

:⇔ {Ex(0)
∣∣ x ∈B[E,A]

}= imR E ∧ ∀x ∈B[E,A] : lim
t→∞x(t)= 0;

(g) stable in the behavioral sense

:⇔ ∀x ∈B[E,A] : lim
t→∞x(t)= 0.

Remark 5.1 (Stabilizable and autonomous DAEs are stable) The notion of auton-
omy is introduced by Polderman and Willems in [128, Sect. 3.2] for general behav-
iors. For DAE systems Eẋ(t) = Ax(t) we can further conclude that autonomy is
equivalent to any x ∈B[E,A] being uniquely determined by x(0). This gives also
rise to the fact that autonomy is equivalent to dimRB[E,A] ≤ n which is, on the
other hand, equivalent to dimRB[E,A] <∞. Autonomy indeed means that the DAE
is not underdetermined.

Moreover, due to possible underdetermined blocks of type [Kβ,Lβ,0|β|−�(β),0],
in general there are solutions x ∈ B[E,A] which grow unboundedly. As a conse-
quence, for a quasi-Kronecker form of any completely stable, strongly stable or be-
havioral stable DAE, �(β)= 0 holds. Hence, systems of this type are autonomous.
In fact, complete, strong and behavioral stability are equivalent to the respective
stabilizability notion together with autonomy, cf. also Corollary 5.1.

In regard of Remark 3.4 we can infer the following:

Corollary 5.1 (Stability/Stabilizability criteria and quasi-Kronecker form) Let
[E,A] ∈ Σk,n and assume that the quasi-Kronecker form of sE − A is given by
(3.3). Then the following holds true:
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[E,A] is if, and only if,

completely stabilizable �(α)= 0, γ = (1, . . . ,1) and σ(As)⊆C−.

strongly stabilizable α = (1, . . . ,1), γ = (1, . . . ,1) and σ(As)⊆C−.

stabilizable in the
behavioral sense

σ(As)⊆C−.

autonomous �(β)= 0.

completely stable �(α)= 0, �(β)= 0, γ = (1, . . . ,1) and σ(As)⊆C−.

strongly stable α = (1, . . . ,1), �(β)= 0, γ = (1, . . . ,1) and σ(As)⊆C−.

stable in the
behavioral sense

�(β)= 0, σ(As)⊆C−.

The subsequent algebraic criteria for the previously defined notions of stabiliz-
ability and autonomy can be inferred from Corollary 5.1 by using further arguments
similar to the ones of Sect. 4.

Corollary 5.2 (Algebraic criteria for stabilizability) Let [E,A] ∈ Σk,n. Then the
following holds true:

[E,A] is if, and only if,

completely stabilizable
imR A⊆ imR E and rkR(s)(sE −A)= rkC(λE −A)

for all λ ∈C+.

strongly stabilizable
imR A⊆ imR E +A · kerR E and rkR(s)(sE −A)=
rkC(λE −A) for all λ ∈C+.

stabilizable in the
behavioral sense

rkR(s)(sE −A)= rkC(λE −A) for all λ ∈C+.

autonomous kerR(s)(sE −A)= {0}.

Corollary 5.2 leads to the following implications:
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Remark 5.2

(i) Strong stabilizability implies that the index of sE − A is at most one. In the
case where the matrix [E,A] ∈Rk,2n has full row rank, complete stabilizability
is sufficient for the index of sE −A being zero.
On the other hand, behavioral stabilizability of [E,A] together with the index
of sE −A being not greater than one implies strong stabilizability of [E,A].
Furthermore, for systems [E,A] ∈ Σk,n with rkR[E,A] = k, complete stabi-
lizability is equivalent to behavioral stabilizability together with the property
that the index of sE −A is zero.
For ODEs the notions of complete stabilizability, strong stabilizability, stabiliz-
ability in the behavioral sense, complete stability, strong stability and stability
in the behavioral sense are equivalent.

(ii) The behavior of an autonomous system [E,A] satisfies dimRB[E,A] = ns ,
where ns denotes the number of rows of the matrix As in the quasi-Kronecker
form (3.3) of sE−A. Note that regularity of sE−A is sufficient for autonomy
of [E,A].

(iii) Autonomy has been algebraically characterized for linear differential behav-
iors in [128, Sect. 3.2]. The characterization of autonomy in Corollary 5.2 can
indeed be generalized to a larger class of linear differential equations.

5.2 Stabilization by Feedback

A system [E,A,B] ∈ Σk,n,m can, via state feedback with some F ∈ R
m,n, be

turned into a DAE [E,A + BF ] ∈ Σk,n. We now present some properties of
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[E,A+ BF ] ∈Σk,n that can be achieved by a suitable feedback matrix F ∈ Rm,n.
Recall that the stabilizability concepts for a system [E,A,B] ∈ Σk,n,m have been
defined in Definition 2.1.

Theorem 5.3 (Stabilizing feedback) For a system [E,A,B] ∈Σk,n,m the following
holds true:

(a) [E,A,B] is impulse controllable if, and only if, there exists F ∈Rm,n such that
the index of sE − (A+BF) is at most one.

(b) [E,A,B] is completely stabilizable if, and only if, there exists F ∈ Rm,n such
that [E,A+BF ] is completely stabilizable.

(c) [E,A,B] is strongly stabilizable if, and only if, there exists F ∈Rm,n such that
[E,A+BF ] is strongly stabilizable.

Proof (a) Let [E,A,B] be impulse controllable. Then [E,A,B] can be put into
feedback form (3.10), i.e., there exist W ∈Glk(R), T ∈Gln(R) and F̃ ∈Rm,n such
that

W
(
sE − (A+BF̃T −1))T

=

⎡
⎢⎢⎢⎢⎢⎢⎣

sI|α| −N�α 0 0 0 0 0
0 sKβ −Lβ 0 0 0 0
0 0 sL�γ −K�γ 0 0 0
0 0 0 sK�δ −L�δ 0 0
0 0 0 0 sNκ − I|κ| 0
0 0 0 0 0 sInc

−Ac

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.2)

By Corollary 3.4(b) the impulse controllability of [E,A,B] implies that γ =
(1, . . . ,1), δ = (1, . . . ,1) and κ = (1, . . . ,1). Therefore, we see that, with F =
F̃ T −1, the pencil sE − (A+ BF) has index at most one as the index is preserved
under system equivalence.

Conversely, assume that [E,A,B] is not impulse controllable. We show that for
all F ∈ Rm,n the index of sE − (A+ BF) is greater than one. To this end, let F ∈
R

m,n and choose W ∈ Glk(R), T ∈ Gln(R) and F̃ ∈ R
m,n such that (3.10) holds.

Then, partitioning V −1FT = [Fij ]i=1,...,3,j=1,...,6 accordingly, we obtain

sẼ − Ã :=W
(
sE − (A+BF +BF̃T −1))T

=W
(
sE − (A+BF̃T −1))T −WBV V −1FT

=

⎡
⎢⎢⎢⎢⎢⎣

sI|α| − (N�α +EαF11) −EαF12 −EαF13 −EαF14 −EαF15 −EαF16
0 sKβ −Lβ 0 0 0 0

−Eγ F21 −Eγ F22 sL�γ − (K�γ +Eγ F23) −Eγ F24 −Eγ F25 −Eγ F26

0 0 0 sK�δ −L�δ 0 0
0 0 0 0 sNκ − I|κ| 0
0 0 0 0 0 sInc

−Ac

⎤
⎥⎥⎥⎥⎥⎦

.

(5.3)

Now the assumption that [E,A,B] is not impulse controllable leads to γ �=
(1, . . . ,1), δ �= (1, . . . ,1) or κ �= (1, . . . ,1). We will now show that the index of
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sE − (A + BF + BF̃T −1) is greater than one by showing this for the equiva-
lent pencil in (5.3) via applying the condition in (3.5): Let Z be a real matrix with
imR Z = kerR Ẽ. Then

Z =
[

0 Z�1 0 0 0 0
0 0 0 0 Z�2 0

]�
,

where imZ1 = kerKβ = imEβ and imZ2 = kerNκ = imEκ . Taking into account
that imR Eγ ⊆ imR L�γ , we obtain

imR

[
0|α|−�(α)+|β|−�(β),k I|γ |+|δ|+|κ| 0k,nc

] [
Ẽ ÃZ

]

= imR

⎡
⎣

L�γ 0 0 Eγ F25Z2

0 K�δ 0 0
0 0 Nκ Z2

⎤
⎦ .

On the other hand, we have

imR

[
0|α|−�(α)+|β|−�(β),k I|γ |+|δ|+|κ| 0k,nc

] [
Ẽ Ã
]

= imR

⎡
⎣

L�γ 0 0 K�γ +Eγ F23 Eγ F24 Eγ F25

0 K�δ 0 0 L�δ 0
0 0 Nκ 0 0 I|κ|

⎤
⎦ .

Since the assumption that at least one of the multi-indices satisfies γ �= (1, . . . ,1),
δ �= (1, . . . ,1), or κ �= (1, . . . ,1) and the fact that imZ2 = imEκ lead to

imR

⎡
⎣

L�γ 0 0 Eγ F25Z2

0 K�δ 0 0
0 0 Nκ Z2

⎤
⎦

� imR

⎡
⎣

L�γ 0 0 K�γ +Eγ F23 Eγ F24 Eγ F25

0 K�δ 0 0 L�δ 0
0 0 Nκ 0 0 I|κ|

⎤
⎦ ,

and thus

imR

[
Ẽ ÃZ

]
� imR

[
Ẽ Ã
]
,

we find that, by condition (3.5), the index of sE − (A+ BF + BF̃T −1) has to be
greater than one. Since F was chosen arbitrarily we may conclude that sE − (A+
BF) has index greater than one for all F ∈Rm,n, which completes the proof of (a).

(b) If [E,A,B] is completely stabilizable, then we may transform the system
into feedback form (5.2). Corollary 3.4(h) implies γ = (1, . . . ,1), δ = (1, . . . ,1),
�(κ)= 0, and σ(Ac) ⊆ C−. Further, by [147, Thm. 4.20], there exists some F11 ∈
R
|α|,�(α) such that σ(Nα + EαF11) ⊆ C−. Setting F̂ := [Fij ]i=1,...,3,j=1,...,6 with

Fij = 0 for i �= 1 or j �= 1, we find that with F = F̃ T −1 + V F̂T −1 the system
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[E,A+BF ] is completely stabilizable by Corollary 5.1 as complete stabilizability
is preserved under system equivalence.

On the other hand, assume that [E,A,B] is not completely stabilizable. We show
that for all F ∈Rm,n the system [E,A+BF ] is not completely stabilizable. To this
end, let F ∈Rm,n and observe that we may do a transformation as in (5.3). Then the
assumption that [E,A,B] is not completely stabilizable yields γ �= (1, . . . ,1), δ �=
(1, . . . ,1), �(κ) > 0, or σ(Ac) �C−. If γ �= (1, . . . ,1), δ �= (1, . . . ,1) or �(κ) > 0,
then imR Ã � imR Ẽ, and by Corollary 5.2 the system [Ẽ, Ã] is not completely
stabilizable. On the other hand, if γ = (1, . . . ,1), δ = (1, . . . ,1), �(κ) = 0, and
λ ∈ σ(Ac)∩C+, we find imC(λẼ − Ã) � imC Ẽ, which implies

rkC(λẼ − Ã) < rkC Ẽ = n− �(β)− �(κ)= n− �(β)
(3.6)= rkR(s)(sẼ − Ã).

Hence, applying Corollary 5.2 again, the system [Ẽ, Ã] is not completely stabiliz-
able. As complete stabilizability is invariant under system equivalence it follows
that [E,A + BF + BF̃T −1] is not completely stabilizable. Since F was chosen
arbitrarily we may conclude that [E,A+BF ] is not completely stabilizable for all
F ∈Rm,n, which completes the proof of (b).

(c) The proof is analogous to (b). �

Remark 5.3 (State feedback)

(i) If the pencil sE − A is regular and [E,A,B] is impulse controllable, then
a feedback F ∈Rm,n can be constructed such that the pencil sE− (A+BF) is
regular and its index does not exceed one: First we choose W,T , F̃ such that we
can put the system into the form (5.2). Now, impulse controllability implies that
γ = (1, . . . ,1), δ = (1, . . . ,1) and κ = (1, . . . ,1). Assuming �(δ) > 0 implies
that any quasi-Kronecker form of the pencil sE − (A+BF̃T −1 +BF̂ ) fulfills
�(γ ) > 0 (in the form (3.3)), a feedback F̂ ∈ Rm,n as the feedback cannot act
on this block, which contradicts regularity of sE −A. Hence it holds �(δ)= 0
and from k = n we further obtain �(γ )= �(β). Now applying another feedback
as in (5.3), where we choose F22 = E�β ∈ R�(β),|β| and Fij = 0 otherwise, we

obtain, taking into account that Eγ = Iell(γ ) and that the pencil
[ sKβ−Lβ

−E�β

]
is

regular, the result that sE− (A+BF) is indeed regular with index at most one.
(ii) The matrix F11 in the proof of Theorem 5.3(b) can be constructed as follows:

For j = 1, . . . , �(α), consider vectors

aj =−[ajαj−1, . . . , aj0] ∈R1,αj .

Then, for

F11 = diag(a1, . . . , a�(α)) ∈R�(α),|α|

the matrix Nα + EαF11 is diagonally composed of companion matrices,
whence, for

pj (s)= sαj + ajαj−1s
αj−1 + · · · + aj0 ∈R[s]
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the characteristic polynomial of Nα +EαF11 is given by

det
(
sI|α| − (Nα +EαF11)

)=
�(α)∏
j=1

pj (s).

Hence, choosing the coefficients aji , j = 1, . . . , �(α), i = 0, . . . , αj such that
the polynomials p1(s), . . . , p�(α)(s) ∈ R[s] are all Hurwitz, i.e., all roots of
p1(s), . . . , p�(α)(s) are in C−, we obtain stability.

5.3 Control in the Behavioral Sense

The hitherto presented feedback concept consists of the additional application of the
relation u(t) = Fx(t) to the system Eẋ(t) = Ax(t)+ Bu(t). Feedback can there-
fore be seen as an additional algebraic constraint that can be resolved for the input.
Control in the behavioral sense, or, also called, control via interconnection [163]
generalizes this approach by also allowing further algebraic relations in which the
state not necessarily uniquely determines the input. That is, for given (or to be de-
termined) K = [Kx,Ku] with Kx ∈Rl,n, Ku ∈Rl,m, we consider

B
K[E,A,B] :=

{
(x,u) ∈B[E,A,B]

∣∣ ∀t ∈R : (x(t)�, u(t)�
)� ∈ kerR(K)

}

=B[E,A,B] ∩B[0l,n,Kx,Ku].

We can alternatively write

B
K[E,A,B] =B[EK,AK ],

where
[
EK,AK

]=
[[

E 0
0 0

]
,

[
A B

Kx Ku

]]
.

The concept of control in the behavioral sense has its origin in the works by Willems,
Polderman and Trentelman [18, 128, 146, 162, 163], where differential behaviors
and their stabilization via control by interconnection is considered. The latter means
a systematic addition of some further (differential) equations in a way that a desired
behavior is achieved. In contrast to these works we only add equations which are
purely algebraic. This justifies to speak of control by interconnection using static
control laws. We will give equivalent conditions for this type of generalized feed-
back stabilizing the system. Note that, in principle, one could make the extreme
choice K = In+m to end up with a behavior BK[E,A,B] = {0} which is obviously au-
tonomous and stable. This, however, is not suitable from a practical point of view,
since in this interconnection, the space of consistent initial differential variables is
a proper subset of the initial differential variables which are consistent with the orig-
inal system [E,A,B]. Consequently, the interconnected system does not have the
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causality property—that is, the implementation of the controller at a certain time
t ∈ R is not possible, since this causes jumps in the differential variables. To avoid
this, we introduce the concept of compatibility.

Definition 5.2 (Compatible and stabilizing control) The static control K =
[Kx,Ku], defined by Kx ∈Rl,n, Ku ∈Rl,m, is called

(a) compatible, if for any x0 ∈ V diff[E,A,B], there exists some (x,u) ∈BK[E,A,B] with

Ex(0)=Ex0.
(b) stabilizing, if [EK,AK ] ∈Σk+l,n is stabilizable in the behavioral sense.

Remark 5.4 (Compatible control) Our definition of compatible control is a slight
modification of the concept introduced by Julius and van der Schaft in [79] where
an interconnection is called compatible, if any trajectory of the system without con-
trol law can be concatenated with a trajectory of the interconnected system. This
certainly implies that the space of initial differential variables of the interconnected
system cannot be smaller than the corresponding set for the nominal system.

Theorem 5.4 (Stabilizing control in the behavioral sense) Let [E,A,B] ∈Σk,n,m

be given. Then there exists a compatible and stabilizing control K = [Kx,Ku] with
Kx ∈ R

l,n, Ku ∈ R
l,m, if, and only if, [E,A,B] is stabilizable in the behavioral

sense. In case of [E,A,B] being stabilizable in the behavioral sense, the com-
patible and stabilizing control K can moreover be chosen such that [EK,AK ] is
autonomous, i.e., the interconnected system [EK,AK ] is stable in the behavioral
sense.

Proof Since, by definition, [E,A,B] ∈Σk,n,m is stabilizable in the behavioral sense
if, and only if, for sE −A = [sE−A,−B], the DAE [E ,A ] ∈Σk,n+m is stabiliz-
able in the behavioral sense, necessity follows from setting l = 0.

In order to show sufficiency, let K = [Kx,Ku] with Kx ∈ R
l,n, Ku ∈ R

l,m, be
a compatible and stabilizing control for [E,A,B]. Now the system can be put into
feedback form, i.e., there exist W ∈ Glk(R), T ∈ Gln(R), V ∈ Glm(R) and F ∈
R

m,n such that
[
sẼ − Ã B̃

−K̃x K̃u

]
=
[
W 0
0 I

][
sE −A B

−Kx Ku

][
T 0
−F V

]
,

where [Ẽ, Ã, B̃] is in the form (3.10). Now the behavioral stabilizability of

[EK,AK ] implies that the system [ẼK, ÃK ] := [[ Ẽ 0
0 0

]
,
[

Ã B̃

K̃x K̃u

]]
is stabiliz-

able in the behavioral sense as well. Assume that [E,A,B] is not stabilizable
in the behavioral sense, that is, by Corollary 3.4(i), there exists λ ∈ σ(Ac) ∩
C+. Hence we find x0

6 ∈ R
nc \ {0} such that Acx

0
6 = λx0

6 . Then, with x(·) :=
(0, . . . ,0, (eλ·x0

6)�)�, we have (x,0) ∈ B[Ẽ,Ã,B̃]. As x(0) ∈ V diff
[Ẽ,Ã,B̃] = T −1 ·

V diff[E,A,B], the compatibility of the control K implies that there exists
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(x̃, ũ) ∈BK[E,A,B] with Ex̃(0)=ET x(0). This gives (WET )T −1x̃(0)=WET x(0)

and writing T −1x̃(t)= (x̃1(t)
�, . . . , x̃6(t)

�)� with vectors of appropriate size, we
obtain x̃6(0)= x0

6 . Since the solution of the initial value problem ẏ = Acy, y(0)=
x0

6 , is unique, we find x̃6(t) = eλtx0
6 for all t ∈ R. Now (T −1x̃,−V −1FT −1x̃ +

V −1ũ) ∈B[ẼK ,ÃK ] and as for all (x̂, û) ∈B[ẼK ,ÃK ] with (x̂(t), û(t))= (T −1x̃(t),

−V −1FT −1x̃ + V −1ũ(t)) for all t < 0 we have x̂6(t) = x̃6(t) for all t ∈ R, and
x̃6(t) �t→∞ 0 since λ ∈ C+, this contradicts that [ẼK, ÃK ] is stabilizable in the
behavioral sense.

It remains to show the second assertion, that is, for a system [E,A,B] ∈
Σk,n,m that is stabilizable in the behavioral sense, there exists some compat-
ible and stabilizing control K such that [EK,AK ] is autonomous: Since, for
[E1,A1,B1], [E2,A2,B2] ∈Σk,n,m with

[E1,A1,B1] W,T ,V,F∼f e [E2,A2,B2], K2 ∈Rl,n+m and K1 =K2

[
T 0
F V

]
,

the behaviors of the interconnected systems are related by
[

T 0
F V

]
B

K1[E1,A1,B1] =B
K2[E2,A2,B2],

it is no loss of generality to assume that [E,A,B] is in feedback form (3.10), i.e.,

sE −A

=

⎡
⎢⎢⎢⎢⎢⎢⎣

sI|α| −Nα 0 0 0 0 0
0 sKβ −Lβ 0 0 0 0
0 0 sK�γ −L�γ 0 0 0
0 0 0 sK�δ −L�δ 0 0
0 0 0 0 sNκ − I|κ| 0
0 0 0 0 0 sInc

−Ac

⎤
⎥⎥⎥⎥⎥⎥⎦

,

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

Eα 0 0
0 0 0
0 Eγ 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Let F11 ∈R�(α),|α| such that det(sI|α| − (Nα +EαF11)) is Hurwitz. Then the DAE
[
I|α| 0
0 0

]
ż(t)=
[

Nα Eα

F11 −I�(α)

]
z(t)

is stable in the behavioral sense. Furthermore, by reasoning as in Remark 5.3(ii), for

aj = [ajβj−2, . . . , aj0,1] ∈R1,βj
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with the property that the polynomials

pj (s)= sβj + ajβj−1s
βj−1 + · · · + aj0 ∈R[s]

are Hurwitz for j = 1, . . . , �(α), the choice

Kx = diag(a1, . . . , a�(β)) ∈R�(β),|β|

leads to an autonomous system
[
Kβ

0

]
ż(t)=
[

Lβ

Kx

]
z(t),

which is also stable in the behavioral sense. Since, moreover, by Corollary 3.4(i),
we have σ(Ac)⊆C−, the choice

K =
[
F11 0 0 0 0 0 −I�(α) 0 0
0 Kx 0 0 0 0 0 0 0

]

leads to a behavioral stable (in particular autonomous) system. Since the differential
variables can be arbitrarily initialized in any of the previously discussed subsystems,
the constructed control is also compatible. �

6 Invariant Subspaces

This section is dedicated to some selected results of the geometric theory of
differential-algebraic control systems. Geometric theory plays a fundamental role
in standard ODE system theory and has been introduced independently by Wonham
and Morse and Basile and Marro, see the famous books [16, 166] and also [147],
which are the three standard textbooks on geometric control theory. In [100] Lewis
gave an up-to-date overview of the geometric theory of DAEs. As we will do here
he put special emphasis on the two fundamental sequences of subspaces Vi and Wi

defined as follows:

V0 :=R
n, Vi+1 :=A−1(EVi + imR B)⊆R

n, V ∗ :=
⋂
i∈N0

Vi ,

W0 := {0}, Wi+1 :=E−1(AWi + imR B)⊆R
n, W ∗ :=

⋃
i∈N0

Wi .

The sequences (Vi )i∈N and (Wi )i∈N are called augmented Wong sequences.
In [22, 23, 26] the Wong sequences for matrix pencils (i.e., B = 0) are investi-
gated, the name chosen this way since Wong [164] was the first one who used both
sequences for the analysis of matrix pencils. The sequences (Vi )i∈N and (Wi )i∈N
are no Wong sequences corresponding to any matrix pencils, which is why we call
them augmented Wong sequences with respect to control systems (2.1). In fact, the
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Wong sequences (with B = 0) can be traced back to Dieudonné [53], who focused
on the first of the two Wong sequences. Bernhard [27] and Armentano [6] used the
Wong sequences to carry out a geometric analysis of matrix pencils. They appear
also in [3, 4, 95, 150].

In control theory, that is, when B �= 0, the augmented Wong sequences have
been extensively studied by several authors, see e.g. [99, 112, 113, 118, 119, 121,
122, 152] for regular systems and [3, 13–15, 29, 30, 56, 100, 105, 120, 130] for
general DAE systems. Frankowska [58] did a nice investigation of systems (2.1)
in terms of differential inclusions [8, 9], however, requiring controllability at in-
finity (see [58, Prop. 2.6]). Nevertheless, she is the first to derive a formula for the
reachability space [58, Thm. 3.1], which was later generalized by Przyłuski and Sos-
nowski [130, Sect. 4] (in fact, the same generalization has been announced in [105,
p. 296], [100, Sect. 5] and [15, p. 1510], however, without proof); it also occurred
in [56, Thm. 2.5].

Proposition 6.1 (Reachability space [130, Sect. 4]) For [E,A,B] ∈ Σk,n,m and
limits V ∗ and W ∗ of the augmented Wong sequences we have

R[E,A,B] = V ∗ ∩W ∗.

It has been shown in [13] (for discrete systems), see also [14, 15, 30, 120], that
the limit V ∗ of the first augmented Wong sequence is the space of consistent initial
states. For regular systems this was proved in [99].

Proposition 6.2 (Consistent initial states [13]) For [E,A,B] ∈ Σk,n,m and limit
V ∗ of the first augmented Wong sequence we have

V[E,A,B] = V ∗.

Various other properties of V ∗ and W ∗ have been derived in [13] in the context
of discrete systems.

A characterization of the spaces V ∗ and W ∗ in terms of distributions is also
given in [130]: V ∗ +kerR E is the set of all initial values such that the distributional
initial value problem [130, (3)] has a smooth solution (x,u); W ∗ is the set of all
initial values such that [130, (3)] has an impulsive solution (x,u); V ∗ +W ∗ is the
set of all initial values such that [130, (3)] has an impulsive-smooth solution (x,u).

For regular systems Özçaldiran [119] showed that V ∗ is the supremal (A,E;
imR B)-invariant subspace of Rn and W ∗ is the infimal restricted (E,A; imR B)-
invariant subspace of Rn. These concepts, which have also been used in [3, 13, 99,
113] are defined as follows.

Definition 6.1 ((A,E; imR B)- and (E,A; imR B)-invariance [119]) Let [E,A,B]
∈Σk,n,m. A subspace V ⊆R

n is called (A,E; imR B)-invariant if, and only if,

AV ⊆EV + imR B.
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A subspace W ⊆R
n is called restricted (E,A; imR B)-invariant if, and only if,

W =E−1(AW + imR B).

It is easy to verify that the proofs given in [119, Lems. 2.1 & 2.2] remain the
same for general E,A ∈ Rk,n and B ∈ Rn,m—this was shown in [13] as well. For
V ∗ this can be found in [3], see also [113]. So we have the following proposition.

Proposition 6.3 (Augmented Wong sequences as invariant subspaces) Consider
[E,A,B] ∈Σk,n,m and the limits V ∗ and W ∗ of the augmented Wong sequences.
Then the following statements hold true.

(a) V ∗ is (A,E; imR B)-invariant and for any V ⊆ R
n which is (A,E; imR B)-

invariant it holds V ⊆ V ∗;
(b) W ∗ is restricted (E,A; imR B)-invariant and for any W ⊆ R

n which is re-
stricted (E,A; imR B)-invariant it holds W ∗ ⊆W .

It is now clear how the controllability concepts can be characterized in terms of
the invariant subspaces V ∗ and W ∗. However, the statement about R-controllability
(behavioral controllability) seems to be new. The only other appearance of a sub-
space inclusion as a characterization of R-controllability that the authors are aware
of occurs in [41] for regular systems: if A = I , then the system is R-controllable
if, and only if, imR ED ⊆ 〈ED|B〉, where ED is the Drazin inverse of E, see Re-
mark 2.1(iv).

Theorem 6.4 (Geometric criteria for controllability) Consider [E,A,B] ∈Σk,n,m

and the limits V ∗ and W ∗ of the augmented Wong sequences. Then [E,A,B] is

(a) controllable at infinity if, and only if, V ∗ =R
n;

(b) impulse controllable if, and only if, V ∗ + kerR E =R
n or, equivalently, EV ∗ =

imR E;
(c) controllable in the behavioral sense if, and only if, V ∗ ⊆W ∗;
(d) completely controllable if, and only if, V ∗ ∩W ∗ =R

n;
(e) strongly controllable if, and only if, (V ∗ ∩W ∗)+ kerR E =R

n or, equivalently,
E(V ∗ ∩W ∗)= imR E.

Proof By Propositions 6.1 and 6.2 it is clear that it only remains to prove (c). We
proceed in several steps.

Step 1: Let [E1,A1,B1], [E2,A2,B2] ∈Σk,n,m such that for some W ∈Glk(R),
T ∈Gln(R), V ∈Glm(R) and F ∈Rm,n it holds

[E1,A1,B1] W,T ,V,F∼f e [E2,A2,B2].
We show that the augmented Wong sequences V 1

i , W 1
i of [E1,A1,B1] and the

augmented Wong sequences V 2
i , W 2

i of [E2,A2,B2] are related by

∀i ∈N0 : V 1
i = T −1V 2

i ∧W 1
i = T −1W 2

i .
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We proof the statement by induction. It is clear that V 1
0 = T −1V 2

0 . Assuming that
V 1

i = T −1V 2
i for some i ≥ 0 we find that, by (3.1),

V 1
i+1 = A−1

1

(
E1V

1
i + imR B1

)

= {x ∈Rn
∣∣ ∃y ∈ V 1

i ∃u ∈Rm :W(A2T +B2T )x =WE2Ty +WB2V u
}

= {x ∈Rn
∣∣ ∃z ∈ V 2

i ∃v ∈Rm :A2T x =E2z+B2v
}

= T −1(A−1
2

(
E2V

1
i + imR B2

))= T −1V 2
i+1.

The statement about W 1
i and W 2

i can be proved analogous.
Step 2: By Step 1 we may without loss of generality assume that [E,A,B] is

given in feedback form (3.10). We make the convention that if α ∈Nl is some multi-
index, then α − 1 := (α1 − 1, . . . , αl − 1). It not follows that

∀i ∈N0 : Vi =R
|α| ×R

|β| × imR Ni
γ−1 × imR

(
N�δ−1

)i × imR Ni
κ ×R

nc , (6.1)

which is immediate from observing that K�γ x = L�γ y + Eγ u for some x, y,u of

appropriate dimension yields x = Nγ−1y and L�δ x = K�δ y for some x, y yields
x = N�δ−1y. Note that in the case γi = 1 or δi = 1, i.e., we have a 1× 0 block, we
find that Nγi−1 and Nδi−1 are absent, so these relations are consistent.

On the other hand we find that

∀i ∈N0 :Wi = kerR Ni
α × kerR Ni

β × kerR Ni
γ−1 × {0}|δ|−�(δ) × kerR Ni

κ × {0}nc ,

(6.2)
which indeed needs some more rigorous proof. First observe that imR Eα =
kerR Nα , kerR Kβ = kerR Nβ and (L�γ )−1(imR Eγ ) = imR Eγ−1 = kerR Nγ−1.
Therefore we have

W1 = E−1(imR B)

= kerR Nα × kerR Nβ × kerR Nγ−1 × {0}|δ|−�(δ) × kerR Nκ × {0}nc .

Further observe that Ni
αN�α =NαN�α Ni−1

α for all i ∈ N and, hence, if x =N�α y +
Eαu for some x,u and y ∈ kerR Ni−1

α it follows x ∈ kerR Ni
α . Likewise, if L�γ x =

K�γ y + Eγ u for some x,u and y ∈ kerR Ni−1
γ−1 we find x = N�γ−1y + E�γ−1u and

hence x ∈ kerR Ni
γ−1. Finally, if Kβx = Lβy for some x and some y ∈ kerR Ni−1

β

it follows that by adding some zero rows we obtain Nβx = NβN�β y and hence, as

above, x ∈ kerR Ni
β . This proves (6.2).

Step 3: From (6.1) and (6.2) it follows that

V ∗ = R
|α| ×R

|β| × imR{0}|γ |−�(γ ) × {0}|δ|−�(δ) × {0}|κ| ×R
nc ,

W ∗ = R
|α| ×R

|β| × imRR
|γ |−�(γ ) × {0}|δ|−�(δ) ×R

|κ| × {0}nc .
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As by Corollary 3.4(f) the system [E,A,B] is controllable in the behavioral sense
if, and only if, nc = 0 we may immediately deduce that this is the case if, and only
if, V ∗ ⊆W ∗. This proves the theorem. �

Remark 6.1 (Representation of the reachability space) From Proposition 6.1 and
the proof of Theorem 6.4 we may immediately observe that, using the notation from
Theorem 3.3, we have

R[E,A,B] = T −1(
R
|α| ×R

|β| × imR{0}|γ |−�(γ ) × {0}|δ|−�(δ) × {0}|κ| × {0}nc
)
.

7 Kalman Decomposition

Nearly 50 years ago Kalman [82] derived his famous decomposition of linear ODE
control systems. This decomposition has later been generalized to regular DAEs by
Verghese et al. [155], see also [49]. A Kalman decomposition of general discrete-
time DAE systems has been provided by Banaszuk et al. [14] (later generalized to
systems with output equation in [15]) in a very nice way using the augmented Wong
sequences (cf. Sect. 6). They derive a system

[[
E11 E12

0 E22

]
,

[
A11 A12

0 A22

]
,

[
B1
0

]]
, (7.1)

which is system equivalent to given [E,A,B] ∈Σk,n,m with the properties that the
system [E11,A11,B1] is completely controllable and the matrix [E11,A11,B1] has
full row rank (strongly H -controllable in the notation of [14]) and, furthermore,
R[E22,A22,0] = {0}.

This last condition is very reasonable, as one should wonder what properties
a Kalman decomposition of a DAE system should have. In the case of ODEs the
decomposition simply is

[[
A11 A12

0 A22

]
,

[
B1
0

]]
, where [A11,B1] is controllable.

Therefore, an ODE system is decomposed into a controllable and an uncontrollable
part, since clearly [A22,0] is not controllable at all. For DAEs however, the situa-
tion is more subtle, since in a decomposition (7.1) with [E11,A11,B1] completely
controllable (and [E11,A11,B1] full row rank) the conjectural “uncontrollable” part
[E22,A22,0] may still have a controllable subsystem, since systems of the type
[Kβ,Lβ,0] are always controllable. To exclude this and ensure that all control-
lable parts are included in [E11,A11,B1] we may state the additional condition (as
in [14]) that

R[E22,A22,0] = {0}.
This then also guarantees certain uniqueness properties of the Kalman decomposi-
tion. Hence, any system (7.1) with the above properties which is system equivalent
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to [E,A,B] we may call a Kalman decomposition of [E,A,B]. We cite the re-
sult of [14], but also give some remarks on how the decomposition may be easily
derived.

Theorem 7.1 (Kalman decomposition [14]) For [E,A,B] ∈ Σk,n,m, there exist
W ∈Glk(R), T ∈Gln(R) such that

[E,A,B] W,T∼se

[[
E11 E12

0 E22

]
,

[
A11 A12

0 A22

]
,

[
B1
0

]]
, (7.2)

with E11,A11 ∈ Rk1,n1 , E12,A12 ∈ Rk1,n2 , E22,A22 ∈ Rk2,n2 and B1 ∈ Rk1,m, such
that [E11,A11,B1] ∈ Σk1,n1,m is completely controllable, rkR[E11,A11,B1] = k1
and R[E22,A22,0k2,m] = {0}.
Remark 7.1 (Derivation of the Kalman decomposition) Let [E,A,B] ∈Σk,n,m be
given. The Kalman decomposition (7.2) can be derived using the limits V ∗ and W ∗
of the augmented Wong sequences presented in Sect. 6. It is clear that these spaces
satisfy the following subspace relations:

E
(
V ∗ ∩W ∗) ⊆ (EV ∗ + imR B

)∩ (AW ∗ + imR B
)
,

A
(
V ∗ ∩W ∗) ⊆ (EV ∗ + imR B

)∩ (AW ∗ + imR B
)
.

Therefore, if we choose any full rank matrices R1 ∈ R
n,n1 ,P1 ∈ R

n,n2 ,R2 ∈
R

k,k1,P2 ∈Rk,k2 such that

imR R1 = V ∗ ∩W ∗, imR R2 =
(
EV ∗ + imR B

)∩ (AW ∗ + imR B
)
,

imR R1 ⊕ imR P1 =R
n, imR R2 ⊕ imR P2 =R

k,

then [R1,P1] ∈ Gln(R) and [R2,P2] ∈ Glk(R), and, furthermore, there exists ma-
trices E11,A11 ∈Rk1,n1 , E12,A12 ∈Rk1,n2 , E22,A22 ∈Rk2,n2 such that

ER1 = R2E11, AR1 = R2A11,

EP1 = R2E12 + P2E22, AP1 = R2A12 + P2A22.

Since imR B ⊆ (EV ∗ + imR B) ∩ (AW ∗ + imR B) = imR R2, there exists B1 ∈
R

k1,m such that B = R2B1. All these relations together yield the decomposi-
tion (7.2) with W = [R2,P2] and T = [R1,P1]−1. The properties of the subsystems
essentially rely on the observation that by Proposition 6.1

R[E,A,B] = V ∗ ∩W ∗ = imR R1 = T −1(
R

n1 × {0}n2
)
.

Remark 7.2 (Kalman decomposition) It is important to note that a trivial reacha-
bility space does not necessarily imply that B = 0. An intriguing example which
illustrates this is the system

[E,A,B] =
[[

1
0

]
,

[
0
1

]
,

[
1
0

]]
. (7.3)
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Another important fact we like to stress by means of this example is that
B �= 0 does no necessarily imply n1 �= 0 in the Kalman decomposition (7.2).
In fact, the above system [E,A,B] is already in Kalman decomposition with
k1 = k2 = 1, n1 = 0, n2 = 1,m = 1 and E12 = 1, A12 = 0, B1 = 1 as well as
E22 = 0, A22 = 1. Then all the required properties are obtained, in particular
rkR[E11,A11,B1] = rkR[1] = 1 and the system [E11,A11,B1] is completely con-
trollable as it is in feedback form (3.10) with γ = 1; complete controllability then
follows from Corollary 3.4. However, [E11,A11,B1] is hard to view as a control
system as no equation can be written down. Nevertheless, the space R[E11,A11,B1]
has dimension zero and obviously every state can be steered to every other state.

We now analyze how two forms of type (7.2) of one system [E,A,B] ∈Σk,n,m

differ.

Proposition 7.2 (Uniqueness of the Kalman decomposition) Let [E,A,B] ∈
Σk,n,m be given and assume that, for all i ∈ {1,2}, the systems [Ei,Ai,Bi] Wi,Ti∼se

[E,A,B] with

sEi −Ai =
[
sE11,i −A11,i sE12,i −A12,i

0 sE22,i −A22,i

]
, Bi =

[
B1,i

0

]

where E11,i ,A11,i ∈ R
k1,i ,n1,i , E12,i ,A12,i ∈ R

k1,i ,n2,i , E22,i ,A22,i ∈ R
k2,i ,n2,i ,

B1,i ∈Rk1,i ,m satisfy

rkR
[
E11,i A11,i B1,i

]= k1,i

and, in addition, [E11,i ,A11,i ,Bc,i] ∈ Σk1,i ,n1,i ,m is completely controllable and
R[E22,i ,A22,i ,0k2,i ,m

] = {0}.
Then k1,1 = k1,2, k2,1 = k2,2, n1,1 = n1,2, n2,1 = n2,2. Moreover, for some W11 ∈

Glk1,1(R), W12 ∈Rk1,1,k2,1 , W22 ∈Glk2,1(R), T11 ∈Gln1,1(R), T12 ∈Rn1,1,n2,1 , T22 ∈
Gln2,1(R), we have

W2W
−1
1 =
[
W11 W12

0 W22

]
, T −1

1 T2 =
[

T11 T12
0 T22

]
.

In particular, the systems [E11,1,A11,1,B1,1], [E11,2,A11,2,B1,2] and, respectively,
[E22,1,A22,1,0], [E22,2,A22,2,0] are system equivalent.

Proof It is no loss of generality to assume that W1 = Ik , T1 = In. Then we obtain

R
n1,1 × {0} =R[E1,A1,B1] = T2R[E2,A2,B2] = T2

(
R

n1,2 × {0}).
This implies n1,1 = n1,2 and

T2 =
[
T11 T12
0 T22

]
for some T11 ∈Gln1,1 , T12 ∈Rn1,1,n2,1 , T22 ∈Gln2,1 .
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Now partitioning

W2 =
[
W11 W12
W21 W22

]
,

W11 ∈Rk1,1,k1,2 ,W12 ∈Rk1,1,k2,2,W21 ∈Rk2,1,kc,2,W22 ∈Rk2,1,k2,2,

the block (2,1) of the equations W1E1T1 =E2, W1A1T1 =A2 and W1B1 = B2 give
rise to

0=W21
[
E11,2 A11,2 B1,2

]
.

Since the latter matrix is supposed to have full row rank, we obtain W21 = 0. The
assumption of W2 being invertible then leads to k1,1 ≤ k1,2. Reversing the roles of
[E1,A1,B1] and [E2,A2,B2], we further obtain k1,2 ≤ k1,1, whence k1,2 = k1,1.
Using again the invertibility of W , we see that both W11 and W22 are invertible. �

It is immediate from the form (7.2) that [E,A,B] is completely controllable if,
and only if, n1 = n. The following result characterizes the further controllability and
stabilizability notions in terms of properties of the submatrices in (7.2).

Corollary 7.3 (Properties induced from the Kalman decomposition) Consider
[E,A,B] ∈Σk,n,m with

[E,A,B] W,T∼se

[[
E11 E12

0 E22

]
,

[
A11 A12

0 A22

]
,

[
B1
0

]]

such that [E11,A11,B1] ∈Σk1,n1,m is completely controllable, rkR[E11,A11,B1] =
k1 and R[E22,A22,0k2,m] = {0}. Then the following statements hold true:

(a) rkR(s)(sE22 −A22)= n2.
(b) If sE−A is regular, then both pencils sE11−A11 and sE22−A22 are regular.

In particular, it holds k1 = n1 and k2 = n2.
(c) If [E,A,B] is impulse controllable, then the index of the pencil sE22 −A22 is

at most one.
(d) [E,A,B] is controllable at infinity if, and only if, imR A22 ⊆ imR E22.
(e) [E,A,B] is controllable in the behavioral sense if, and only if, rkR(s)(sE22 −

A22)= rkC(λE22 −A22) for all λ ∈C.
(f) [E,A,B] is stabilizable in the behavioral sense if, and only if, rkR(s)(sE22 −

A22)= rkC(λE22 −A22) for all λ ∈C+.

Proof (a) Assuming that rkR(s)(sE22−A22) < n2, then, in a quasi-Kronecker (3.3)
form of sE22 −A22, it holds �(β) > 0 by (3.6). By the findings of Remark 3.7(ii),
we can conclude R[E22,A22,0k2,m] �= {0}, a contradiction.

(b) We can infer from (a) that n2 ≤ k2. We can further infer from the regularity
of sE −A that n2 ≥ k2. The regularity of sE11 −A11 and sE22 −A22 then follows
immediately from det(sE −A)= det(W · T ) · det(sE11 −A11) · det(sE22 −A22).
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(c) Assume that [E,A,B] is impulse controllable. By Corollary 4.3 and the in-
variance of impulse controllability under system equivalence this implies that

imR

[
A11 A12

0 A22

]
⊆ imR

[
E11 E12 B1 A11Z1 +A12Z2

0 E22 0 A22Z2

]
,

where Z = [Z�1 ,Z�2 ]� is a real matrix such that imR Z = kerR[E11 E12
0 E22

]. The last
condition in particular implies that imR Z2 ⊆ kerR E22 and therefore we obtain

imR A22 ⊆ imR E22 +A22 · kerR E22,

which is, by (3.4), equivalent to the index of sE22 −A22 being at most one.
(d) Since rkR[E11,A11,B1] = k1 and the system [E11,A11,B1] is controllable

at infinity, Corollary 4.3 leads to rkR[E11,B1] = k1. Therefore, we have

imR

[
E11 E12 B1

0 E22 0

]
=R

k1 × imR E22.

Analogously, we obtain

imR

[
E11 E12 A11 A12 B1

0 E22 0 A22 0

]
=R

k1 × (imR E22 + imR A22).

Again using Corollary 4.3 and the invariance of controllability at infinity under sys-
tem equivalence, we see that [E,A,B] is controllable at infinity if, and only if,

R
k1 × (imR E22 + imR A22)=R

k1 × imR E22,

which is equivalent to imR A22 ⊆ imR E22.
(e) Since rkR[E11,A11,B1] = k1 and [E11,A11,B1] ∈ Σk1,n1,m is completely

controllable it holds

rkC[λE11 −A11,B1] = k1 for all λ ∈C.

Therefore, we have

rkC[λE−A,B] = rkC

[
λE11 −A11 λE12 −A12 B1

0 λE22 −A22 0

]
= k1+rkC(λE22−A22),

and, analogously, rkR(s)[sE − A,B] = k1 + rkR(s)(sE22 − A22). Now applying
Corollary 4.3 we find that [E,A,B] is controllable in the behavioral sense if, and
only if, rkR(s)(sE22 −A22)= rkC(λE22 −A22) for all λ ∈C.

(f) The proof of this statement is analogous to (e). �

Remark 7.3 (Kalman decomposition and controllability) Note that the condition
of the index of sE22 − A22 being at most one in Corollary 7.3(c) is equivalent to
the system [E22,A22,0k2,m] being impulse controllable. Likewise, the condition
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imR A22 ⊆ imR E22 in (d) is equivalent to [E22,A22,0k2,m] being controllable at
infinity. Obviously, the conditions in (e) and (f) are equivalent to behavioral control-
lability and stabilizability of [E22,A22,0k2,m], resp.

Furthermore, the converse implication in (b) does not hold true. That is, the index
of sE22 − A22 being at most one is in general not sufficient for [E,A,B] being
impulse controllable. For instance, reconsider system (7.3) which is not impulse
controllable, but sE22 −A22 =−1 is of index one. Even in the case where sE −A

is regular, the property of the index of sE22 −A22 being zero or one is not enough
to infer impulse controllability of sE −A. As a counterexample, consider

[E,A,B] =
[[

0 1
0 0

]
,

[
1 0
0 1

]
,

[
1
0

]]
.

Acknowledgements We are indebted to Harry L. Trentelman (University of Groningen) for pro-
viding helpful comments on the behavioral approach.
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Robust Stability of Differential-Algebraic
Equations
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Abstract This paper presents a survey of recent results on the robust stability
analysis and the distance to instability for linear time-invariant and time-varying
differential-algebraic equations (DAEs). Different stability concepts such as expo-
nential and asymptotic stability are studied and their robustness is analyzed under
general as well as restricted sets of real or complex perturbations. Formulas for the
distances are presented whenever these are available and the continuity of the dis-
tances in terms of the data is discussed. Some open problems and challenges are
indicated.
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1 Introduction

In many areas of science and engineering one uses mathematical models to simulate,
control or optimize a system or process. These mathematical models, however, are
typically inexact or contain uncertainties and thus, the following question is of major
importance.

How robust is a specific property of a given system described by differential
or difference equations under perturbations to the data?
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Here, we say that a certain property of a system is robust if it is preserved when
an arbitrary (but sufficiently small) perturbation affects the system. An important
quantity in this respect is then the distance (measured by an appropriate metric)
between the nominal system and the closest perturbed system that does not possess
the mentioned property, this is typically called the radius of the system property.

In this paper, we deal with robustness and distance problems for differential-
algebraic equations (DAEs), with a focus on robust stability and stability radii. Sys-
tems of DAEs, which are also called descriptor systems in the control literature, are
a very convenient modeling concept in various real-life applications such as me-
chanical multibody systems, electrical circuit simulation, chemical reactions, semi-
discretized partial differential equations, and in general for automatically generated
coupled systems, see [12, 39, 47, 63, 68, 84, 85] and the references therein.

DAEs are generalizations of ordinary differential equations (ODEs) in that cer-
tain algebraic equations constrain the dynamical behavior. Since the dynamics of
DAEs is constrained to a set which often is only given implicitly, many theoreti-
cal and numerical difficulties arise, which may lead to a sensitive behavior of the
solution of DAEs to perturbation in the data. The difficulties are characterized by
fundamental notions for DAEs such as regularity, index, solution subspace, or hid-
den constraints, which do not arise for ODEs. These properties may be easily lost
when the data are subject to arbitrarily small perturbations. As a consequence, usu-
ally restrictions to the allowed perturbations have to be made, leading to robustness
questions for DAEs that are very different from those for ODEs.

This paper surveys robustness results for linear DAEs with time-invariant or
time-varying coefficients of the form

E(t)ẋ(t)=A(t)x(t)+ f (t), (1.1)

on the half-line I= [0,∞), together with an initial condition

x(t0)= x0, t0 ∈ I. (1.2)

Here we assume that E,A ∈ C(I,Kn×n), and f ∈ C(I,Kn) are sufficiently smooth.
We use the notation C(I,Kn×n) to denote the space of continuous functions from I

to K
n×n, where K=R or K=C.

Linear systems of the form (1.1) arise directly in many applications and via lin-
earization around solution trajectories [22]. They describe the local behavior in the
neighborhood of a solution for a general implicit nonlinear system of DAEs

F
(
t, x(t), ẋ(t)

)= 0, (1.3)

the constant coefficient case arising in the case of linearization around stationary
solutions.

Definition 1.1 A function x : I→ R
n is called a solution of (1.1) if x ∈ C1(I,Rn)

and x satisfies (1.1) pointwise. It is called a solution of the initial value problem
(1.1)–(1.2) if x is a solution of (1.1) and satisfies (1.2). An initial condition (1.2) is
called consistent if the corresponding initial value problem has at least one solution.
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We note that, by the tractability index approach [43, 68], the condition on the
smoothness of solutions may be relaxed, namely, only a part of x is required to be
continuously differentiable.

Recall the following classical stability concepts for ordinary differential equa-
tions:

ẋ(t)= f
(
t, x(t)
)
, t ∈ I, (1.4)

with initial condition (1.2), see e.g. [55].

Definition 1.2 A solution x : t 	→ x(t; t0, x0) of (1.4) with initial condition (1.2) is
called

1. stable if for every ε > 0 there exists δ > 0 such that
(a) the initial value problem (1.4) with initial condition x(t0) = x̂0 is solvable

on I for all x̂0 ∈Kn with ‖x̂0 − x0‖< δ;
(b) the solution x(t; t0, x̂0) satisfies ‖x(t; t0, x̂0)− x(t; t0, x0)‖< ε on I.

2. asymptotically stable if it is stable and there exists ρ > 0 such that
(a) the initial value problem (1.4) with initial condition x(t0) = x̂0 is solvable

on I for all x̂0 ∈Kn with ‖x̂0 − x0‖< ρ;
(b) the solution x(t; t0, x̂0) satisfies limt→∞‖x(t; t0, x̂0)− x(t; t0, x0)‖ = 0.

3. exponentially stable if it is stable and exponentially attractive, i.e., if there exist
δ > 0, L > 0, and γ > 0 such that
(a) the initial value problem (1.4) with initial condition x(t0) = x̂0 is solvable

on I for all x̂0 ∈Kn with ‖x̂0 − x0‖< δ;
(b) the solution satisfies the estimate ‖x(t; t0, x̂0) − x(t; t0, x0)‖ < Le−γ (t−t0)

on I.

If δ does not depend on t0, then we say the solution is uniformly (exponentially)
stable.

Note that one can transform the ODE (1.4) in such a way that a given solution
x(t; t0, x0) is mapped to the trivial solution by simply shifting the arguments. When
studying the stability of a selected solution, one may therefore assume without loss
of generality that the selected solution is the trivial solution, and also that t0 = 0.

In this paper, we restrict the discussion to regular DAEs, i.e., we require that
(1.1) (or (1.3) locally) have a unique solution for sufficiently smooth E,A,f (F )
and appropriately chosen (consistent) initial conditions. One can immediately ex-
tend Definition 1.2 verbatim to regular DAEs. However, one has to be careful with
the initial conditions and the inhomogeneities, since they are restricted due to the
algebraic constraints in the system. This is, in particular, true if one considers the
robustness of the stability concepts under perturbations to the system.

The following examples give an illustration for the possible difficulties in the
robustness of the stability concepts for DAEs under small perturbations.
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Example 1.1 Consider the homogeneous linear time-invariant DAE
[

1 0
0 0

][
ẋ1
ẋ2

]
=
[

0 1
1 0

][
x1
x2

]
, (1.5)

which can be written as ẋ1 = x2,0= x1 and has only the trivial solution x1 = x2 = 0.
If we perturb (1.5) by a small ε as

[
1 0
0 0

][
ẋ1
ẋ2

]
=
[

0 1
1 ε

][
x1
x2

]
, (1.6)

then solving the second equation of (1.6) for x2 and substituting into the first equa-
tion, we obtain

ẋ1 =−(1/ε)x1. (1.7)

Clearly, if ε < 0, then the perturbed DAE (1.6) is unstable. If ε > 0, then the system
is asymptotically stable, but it qualitatively differs from the solution of the orig-
inal system (1.5). For an arbitrarily prescribed initial value x1(0) �= 0, the initial
value problem for (1.7) has a unique solution. Furthermore, the value of x2(0) is not
required and is uniquely determined by x1(0). In fact, this small perturbation has
changed the index of the DAE (1.5), see Definition 2.2 below.

If we add an inhomogeneity to these DAEs, then more essential differences ap-
pear.

In Example 1.1 the perturbation is affecting only the coefficient A. The situation
is even more complicated if we allow perturbations in the coefficient of ẋ.

Example 1.2 Consider the well-known singularly perturbed system
[
In1 0
0 εIn2

][
ẋ1
ẋ2

]
=
[
A11 A12
A21 A22

][
x1
x2

]
, (1.8)

where Aij , i, j ∈ {1,2}, are constant matrices of appropriate sizes, and ε > 0 is a
small parameter. Let us assume that A22 is invertible. If ε is set to 0, then the leading
matrix becomes singular, i.e., we have a DAE, and we can solve the second equation
for x2, and obtain the so-called underlying ODE

ẋ1 =
(
A11 −A12A

−1
22 A21
)
x1.

It is well known that for sufficiently small ε, the (asymptotic) stability of (1.8) de-
pends not only on the stability of the so-called slow subsystem associated with the
underlying ODE, but also on that of the so called fast subsystem ẋ2 = A22x2, see
[32, 34, 61], associated with the algebraic equation.

In this example, the rank of the leading matrix is changed, when ε moves from
zero to a nonzero value. In the case ε = 0, the initial condition must be consistent
to ensure the existence of a solution, but obviously this is not required in the case
of a nonzero ε. The difficulties increase if A22 is singular and/or the leading matrix
involves a singular perturbation of a more general structure.
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The presented examples already indicate some of the possible difficulties which
will be discussed in this paper. We present the analysis of robust exponential and
asymptotic stability for linear DAEs with time-invariant or time-varying coeffi-
cients. This is a relatively young topic, starting with the work in [20, 82], which
generalized results on the distance to instability and the concept of stability radius
for ODEs in [50] and [92].

The outline of the paper is as follows. In Sect. 2 we summarize recent results
on the robust stability and stability radii for linear time-invariant DAEs. In Sect. 3
we study the robust stability of linear time-varying DAEs. Stability radii, their de-
pendence on the data, and the robustness of stability spectra are analyzed. Some
discussions and topics for future research close the paper.

2 Robust Stability of Linear Time-Invariant DAEs

In this section we study homogeneous linear time-invariant DAEs of the form

Eẋ(t)=Ax(t), t ∈ I, (2.1)

where E and A are given constant matrices in K
n×n,K=C or R.

Definition 2.1 A matrix pair (E,A), E,A ∈Kn×n is called regular if there exists
λ ∈C such that the determinant of (λE −A), denoted by det(λE −A), is different
from zero. Otherwise, if det(λE −A)= 0 for all λ ∈ C, then we say that (E,A) is
singular.

If (E,A) is regular, then a complex number λ is called a (generalized finite)
eigenvalue of (E,A) if det(λE−A)= 0. The set of all (finite) eigenvalues of (E,A)

is called the (finite) spectrum of the pencil (E,A) and denoted by σ(E,A). If E is
singular and the pair is regular, then we say that (E,A) has the eigenvalue∞.

In the following we only consider regular pairs (E,A). Such pairs can be trans-
formed to Weierstraß–Kronecker canonical form, see [12, 41, 43], i.e., there exist
nonsingular matrices W,T ∈Cn×n such that

E =W

[
Ir 0
0 N

]
T −1, A=W

[
J 0
0 In−r

]
T −1, (2.2)

where Ir , In−r are identity matrices of indicated size, J ∈ C
r×r , and N ∈

C
(n−r)×(n−r) are matrices in Jordan canonical form and N is nilpotent. If E is

invertible, then r = n, i.e., the second diagonal block does not occur.

Definition 2.2 Consider a regular pair (E,A) with E, A ∈ K
n×n in Weierstraß–

Kronecker form (2.2). If r < n and N has nilpotency index ν ∈ {1,2, . . .}, i.e.,
Nν = 0,Ni �= 0 for i = 1,2, . . . , ν − 1, then ν is called the index of the pair (E,A)
and the associated DAE (2.1) and we write ind(E,A) = ν. If r = n then the DAE
has index ν = 0.
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The finite spectrum σ(E,A) is given by the spectrum of σ(J ) in the Weierstraß–
Kronecker form (2.2) and it is easy to verify that for the degree of the characteristic
polynomial deg det(λE −A)= rankE = r holds if and only if ind(E,A)≤ 1.

For the regular DAE (2.1) with initial condition (1.2), there always exists a pro-
jection matrix P ∈ K

n×r so that the projected initial condition P(x(t0) − x0) = 0
is consistent, i.e., the DAE (2.1) with this initial condition has a unique solution,
see [12, 43]. Shifting again the solution to the trivial solution x = 0, for a DAE
of the form (2.1) with regular pair (E,A), E, A ∈ K

n×n we say that this solution
is exponentially stable if there exist L > 0, and γ > 0 such that the initial value
problem

Eẋ =Ax, P
(
x(t0)− x̂0

)= 0,

is solvable on I for all x̂0 ∈Kn, and the solution satisfies the estimate ‖x(t; t0, x̂0)‖<

Le−γ (t−t0)‖P x̂0‖ for all t ≥ t0. If the trivial solution is exponentially stable, then
we say that (2.1) is exponentially stable.

We remark that the property of exponential stability is independent of the choice
of projection P . Furthermore, for linear time-invariant systems, the concept of ex-
ponential stability is equivalent to that of asymptotic stability and hence we do not
have to distinguish these concepts, and discuss only asymptotic stability as is usually
done in the literature.

Using the canonical form (2.2), one can easily verify the following statement, see
e.g., [20].

Proposition 2.1 Consider a DAE of the form (2.1) with regular pair (E,A), E,
A ∈ K

n×n. System (2.1) is asymptotically stable if and only if the pair (E,A) is
asymptotically stable, i.e., the finite spectrum satisfies σ(E,A) ⊂ C

−, where C
−

denotes the open left-half complex plane.

After introducing the basic notation, in the next subsection we discuss the stabil-
ity radius of a DAE.

2.1 Stability Radii for Linear Time-Invariant DAEs

In this section we study the behavior of the finite spectrum of a regular pair (E,A)

under structured perturbations in the matrices E, A. Suppose that the system (2.1)
is asymptotically stable and consider a perturbed system

(E +B1Δ1C1)ẋ = (A+B2Δ2C2)x, (2.3)

where Δi ∈ K
mi×qi (i = 1,2) are perturbations and Bi ∈ K

n×mi ,Ci ∈ K
qi×n are

given matrix pairs that restrict the structure of the perturbations. The matrix pair
(B1Δ1C1,B2Δ2C2) is called a structured perturbation. For simplicity and for the
sake of appropriate perturbation structures, let us consider the case that the restrict-
ing matrices satisfy C1 = C2 = C. Alternatively, the other simplifying case B1 = B2



Robust Stability of Differential-Algebraic Equations 69

can be treated as well, see [38]. However, the simplification does not fit to the frame-
work of so-called admissible perturbations characterized by Proposition 2.6 given
below. Set

Δ=
[
Δ1
Δ2

]
, B = [B1 B2

]
,

and introduce m=m1 +m2 and q = q1 = q2. Then we consider the set of destabi-
lizing perturbations

VK(E,A;B,C)= {Δ ∈Km×q, (2.3) is singular or not asymptotically stable
}

and have the following definition.

Definition 2.3 The structured stability radius of pair (E,A) subject to structured
perturbations as in (2.3) is defined by

r
sp
K

(E,A;B,C)= inf
{‖Δ‖,Δ ∈ VK(E,A;B,C)

}
,

where ‖ · ‖ is a matrix norm induced by a vector norm. Depending on K=C or K=
R, we talk about the complex or the real structured stability radius, respectively.

Note that other properties of pair (E,A) such as the index may still change under
a perturbation which is not in VK(E,A;B,C). Obviously, we have the estimate

r
sp
C

(E,A;B,C)≤ r
sp
R

(E,A;B,C).

To obtain a computable formula for the complex stability radius, let us introduce the
matrix functions

G1(s)=−sC(sE−A)−1B1, G2(s)= C(sE−A)−1B2, G (s)= [G1(s) G2(s)
]
,

for s ∈ C,Re s ≥ 0. Denoting by iR the imaginary axis of the complex plane, the
following result is analogous to that for linear time-invariant ODEs of [51].

Theorem 2.2 Suppose that the matrix pencil (E,A) is regular and asymptotically
stable. Then with respect to any matrix norm induced by a vector norm, the complex
stability radius of pair (E,A) has the representation

r
sp
C

(E,A;B,C)=
{

sup
s∈iR

∥∥G (s)
∥∥}−1

. (2.4)

Proof The proof can be obtained by using the same techniques as in [33, 37, 38]. �

Note that in [33, 37] the complex structured stability radius is considered with
respect to perturbations either in E or in A, i.e., either B1 = 0 or B2 = 0. In [38],
formula (2.4) has been proven for perturbations in both E, A. Note further that these



70 N.H. Du et al.

papers discuss both the continuous-time and the discrete-time case. Furthermore, it
has been shown in [38] that it is always possible to construct a rank 1 destabilizing
perturbation Δ, with a norm that approximates the value of r

sp
C

within an arbitrarily
prescribed accuracy.

Remark 2.1 The concept of stability radius can be extended to more general sets.
Suppose that all the eigenvalues of the unperturbed matrix pencil lie in a prescribed
open subset Cg of the complex plane. Then we want to determine the largest per-
turbations that the system can tolerate so that its spectrum remains in Cg . In the
asymptotic stability analysis of differential equations, the open subset Cg is chosen
to be C

−. As in the other cases, it is trivial to obtain a formula of a Cg-stability
radius analogously to (2.4). In fact, we simply replace iR by the boundary set of
Cb =C\Cg . As a consequence of the definition, the strict positivity of a Cg-stability
radius with a relevant subset Cg implies the continuity of the spectrum with respect
to the data.

Unlike for the complex stability radius, a general formula for the real stability ra-
dius measured by an arbitrary matrix norm is not available. However, if we consider
as vector norm the Euclidean norm, then a computable formula has been obtained in
[83]. This formula is based on the notion of real/complex structured singular values,
which, for a given M ∈Kp×m, are defined by

μK(M)= [inf
{
σ1(Δ),Δ ∈Km×p, and det(I −ΔM)= 0

}]−1
,

respectively, depending on K=C or K=R. Here σ1(Δ) denotes the largest singu-
lar value, see [42], of the matrix Δ.

Clearly, if M is real, then the complex and the real structured singular values
coincide. While for the complex structured singular values, the formula μC(M) =
σ1(M) follows trivially, for the real case the formula is more sophisticated.

Proposition 2.3 ([83]) The real structured singular value of M ∈Kp×m is given by

μR(M)= inf
γ∈(0,1]σ2

[
ReM −γ ImM

1
γ

ImM ReM

]
,

where σ2(A) denotes the second largest singular value of A.

With respect to the Euclidean norm and using a similar argument as in [83], we
thus have

r
sp
K

(E,A;B,C) = inf
{
σ1(Δ),Δ ∈ VK(E,A;B,C)

}

= inf
Re s≥0

inf
{
σ1(Δ),Δ ∈Km×q and

det
(
s(E +B1Δ1C)− (A+B2Δ2C)

)= 0
}
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= inf
Re s≥0

inf
{
σ1(Δ),Δ ∈Km×q and

det
(
I + (sE −A)−1(sB1Δ1C −B2Δ2C)

)= 0
}

= inf
Re s≥0

inf
{
σ1(Δ),Δ ∈Km×q and det

(
I −ΔG (s)

)= 0
}

=
{

sup
Re s≥0

μK

(
G (s)
)}−1

,

and hence we obtain the following theorem.

Theorem 2.4 Suppose that the matrix pair (E,A) is regular and asymptotically
stable. Then the structured stability radii of pair (E,A), measured in Euclidean
norm, are given by

r
sp
C

(E,A;B,C)=
{

sup
Re s≥0

σ1
(
G (s)
)}−1

(2.5)

and

r
sp
R

(E,A;B,C)=
{

sup
Re s≥0

inf
γ∈(0,1]σ2

[
ReG (s) −γ ImG (s)

1
γ

ImG (s) ReG (s)

]}−1

, (2.6)

respectively.

For the case K= C, due to the maximum principle, it suffices to take the supre-
mum over the imaginary axis instead of the right-half complex plane. The same
does not hold for the case K= R, see Example 2.1 below. Further, unlike the case
of ODEs, here one cannot replace sup by max since the supremum may be attained
only at infinity. It is important to note that the presented results on the structured
stability radii do not reflect the fact that an eigenvalue at ∞ may become finite or
conversely a finite eigenvalue may move to∞, i.e., it may happen that the index or
the number of finite eigenvalues of the pair (E,A) changes or that the pair becomes
singular.

In the case of inhomogeneous systems, particularly an increase of the index may
lead to a loss of solvability of the equation due to inconsistent initial values or a lack
of smoothness for the inhomogeneity. As we have demonstrated in Examples 1.1
and 1.2, this can even happen with infinitesimally small perturbations. Furthermore,
while the stability radii of an ODE are always strictly positive, those of a DAE may
be zero. To see this, considering a pair in canonical form (2.2), we have

(sE −A)−1 = T

[
(sIr − J )−1 0

0 −∑k−1
i=0 (sN)i

]
W−1.

Obviously, if N �= 0, then ‖G1(s)‖ and ‖G2(s)‖ may tend to∞ as |s| →∞, which
implies that r

sp
C
= 0. Hence, the perturbations in (2.3) must be further restricted so

that the stability radii are strictly positive.
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Partitioning the restriction matrices C,B (after transformation to Weierstraß–
Kronecker form) as

CT = [C1 C2], W−1B1 =
[
B11
B12

]
, W−1B2 =

[
B21
B22

]
, (2.7)

according to the structure of (2.2), it is easy to see that if ind(E,A)= 1 then

sup
s∈iR

∥∥G1(s)
∥∥<∞ if and only if C2B12 = 0

and if ind(E,A) > 1 then

sup
s∈iR

∥∥G2(s)
∥∥<∞ if and only if C2N

iB12 = 0 for i = 0,1, . . . , k − 1, and

C2N
iB22 = 0 for i = 1,2, . . . , k− 1.

These observations are summarized in the following result.

Proposition 2.5 Consider a regular pair (E,A) and the associated DAE of the
form (2.1). If ind(E,A) = 1, then the structured stability radii of (2.1) are strictly
positive if and only if C2B12 = 0. If ind(E,A) > 1, then the structured stability radii
of (2.1) are strictly positive if and only if C2N

iB12 = 0 for i = 0,1, . . . , k − 1, and
C2N

iB22 = 0 for i = 1,2, . . . , k − 1, where the transformed structure matrices are
defined by (2.7).

Moreover, if C2 is of full rank, then r
sp
K

(E,A,B,C) > 0 if and only if B12 = 0
for the case ind(E,A)= 1 and B12 = 0,NB22 = 0 for the case ind(E,A) > 1.

According to the characterizations given in Proposition 2.5 and for the sake of
simplicity, now the perturbations are further restricted by choosing

B1 =W

[
B11
0

]
, (2.8)

if ind(E,A)= 1 and

B1 =W

[
B11
0

]
, B2 =W

[
B21
0

]
(2.9)

if ind(E,A) > 1.

Definition 2.4 ([20]) A structured perturbation as in (2.3) is called admissible if it
does not alter the nilpotency structure of the Weierstraß–Kronecker form (2.2) of
(E,A), i.e., the nilpotent matrix N and the corresponding left invariant subspace
associated with the eigenvalue∞ are preserved.

In the case that ind(E,A)= 1, one has the following characterization of admis-
sible perturbations, which is in agreement with (2.8).
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Proposition 2.6 ([20]) Consider the regular DAE (2.1) with ind(E,A)= 1, subject
to a general unstructured perturbation,

(E + F)ẋ = (A+H)x.

Then there exist an orthogonal matrix P and a permutation matrix Q such that

PEQ=
[
E11 E12

0 0

]
, PAQ=

[
A11 A12
A21 A22

]
,

where E11 ∈ K
r×r ,E12 ∈ K

r×(n−r), Aij (i, j = 1,2) are of corresponding sizes,
rank [E11,E12] = rankE = r , and rankA22 = n− r . Furthermore, if (F,H) is an
admissible perturbation, then

PFQ=
[
F11 F12
0 0

]
, PHQ=

[
H11 H12
H21 H22

]
.

Note that in Proposition 2.6, the transformation by the matrices P,Q does not
change the structure, the stability, and consequently, the stability radii of (2.1). Note
further that Proposition 2.5 can also be used to characterize admissible perturbations
for the case ind(E,A) > 1.

After these observations we can introduce the distance to the nearest pair with a
different nilpotency structure:

dK(E,A;B,C)

= inf
{‖Δ‖,Δ ∈Km×q and (2.3) does not preserve the nilpotency structure

}
,

and obtain the following result, see [11].

Theorem 2.7 Consider a regular DAE with Weierstraß–Kronecker form (2.2), sub-
ject to transformed perturbations satisfying (2.8) for ind(E,A) = 1 and (2.9) for
ind(E,A) > 1, respectively. Then the distance to the nearest system with a different
nilpotency structure is given by

dK(E,A;B,C)= {μK

[
C1B11 C2B22

]}−1

if ind(E,A)= 1 and

dK(E,A;B,C)= {μK(C1B11)
}−1

,

if ind(E,A) > 1. Moreover, if the data set is real, then dC(E,A;B,C) =
dR(E,A;B,C).

Proof The proof is similar to that for the stability radii, see Remark 2.1. The nilpo-
tency structure of the perturbed system (2.3) is preserved if and only if the perturbed
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matrix [
I +B11Δ1C1 B11Δ1C2

B22Δ2C1 I +B22Δ2C2

]

is nonsingular in the case ind(E,A)= 1 and if I + B11Δ1C1 is nonsingular in the
case ind(E,A) > 1. Thus, in both cases we have a problem of characterizing the
distance of a matrix to singularity, which we obtain by taking Cg = C\{0}. For the
equality of the complex and the real stability radii, we note that if the data are real,
then the smallest perturbation that makes a matrix singular can always be chosen to
be real [42]. �

Now we are in position to define the structured stability radii for the DAE (2.1)
and state their formulas.

Definition 2.5 Consider a regular and asymptotically stable DAE (2.1). Then, the
structured stability radii of system (2.1) with respect to structured perturbation (2.3)
is defined by

rK(E,A;B,C)

= inf
{‖Δ‖,Δ ∈ V (E,A;B,C) or (2.3) has different nilpotency structure

}
.

It is obvious that rK(E,A;B,C) = min{rsp
K

(E,A;B,C), dK(E,A;B,C)},
which follows directly from the definition of the stability radii.

Theorem 2.8 Consider a regular and asymptotically stable DAE (2.1) with
Weierstraß–Kronecker form (2.2). Let the perturbation structure satisfy (2.8) for
index ind(E,A) = 1 and (2.9) for ind(E,A) > 1, respectively. Then, the complex
structured stability radius of system (2.1) and that of pair (E,A) coincide, i.e.,
rC(E,A;B,C)= r

sp
C

(E,A;B,C). Furthermore, if the data set is real, then the real
structured stability radius of system (2.1) and that of pair (E,A) are the same, too,
that is, rR(E,A;B,C)= r

sp
R

(E,A;B,C).

Proof Taking into consideration (2.8) for index ind(E,A) = 1 and (2.9) for
ind(E,A) > 1, respectively, it is easy to check that

lim
s→∞G1(s)=−C1B11, and lim

s→∞G2(s)=−C2B22.

Since sups∈iR ‖G (s)‖ ≥ ‖G (∞)‖ (due to the continuity of the norm), the statement
for the case K=C is obtained from Theorems 2.2 and 2.7.

If the data set is real then G (s) is real along the non-negative real semi-axis,
and then due to the continuity of μR(G (s)) on R

+, we have supRe s≥0 μR(G (s))≥
sups∈R+ μR(G (s)) ≥ μR(G (∞)). Invoking again Theorems 2.2 and 2.7, the state-
ment for the real stability radii immediately follows. �

Theorem 2.8 shows that if ‖Δ‖< r
sp
K

(E,A;B,C) then the perturbed DAE (2.3)
preserves not only the stability, but also the nilpotency structure. Thus, the complex
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structured stability radius of system (2.1) are given by (2.4) or (2.5), while if the
data set is real, then the real structured stability radius can be computed by (2.6).
For ODEs, the perturbed system becomes unstable if and only if at least one of its
eigenvalues touches the imaginary axis, while it may happen with DAEs that under
the effect of larger and larger perturbations, a finite eigenvalue moves to∞ (which
alters the nilpotency structure) and then appears again as a finite eigenvalue on the
right-half complex plane (not necessarily on the imaginary axis).

Example 2.1 Consider the linear constant coefficient DAE with structured pertur-
bation to only the right-hand side Eẋ = (A+BΔC)x, where

E =
[

1 0
0 0

]
, A=

[−2 0
0 −1

]
, B =

[
1
1

]
, C = [1 1

]
.

This system is of index 1 and has only one finite eigenvalue λ=−2. Then, a simple
calculation yields G (s) = 1 − 1/(2 + s). Thus, ‖G (s)‖ = √1− 3/(4+ |s|2) for
s ∈ iR, which implies sups∈iR ‖G (s)‖ = 1 and rC(E,A,B,C)= 1. We also have

μR

(
G (s)
)=
{

1− 1
2+s

, s ∈R, s ≥ 0,

0, otherwise,

from which supRe s≥0 μR(G (s)) = 1 and rR(E,A,B,C) = 1 follow. However, we
remark that supRe s≥0 μR(G (s)) is attainable only at +∞, but not on the imaginary
axis as in the case K=C. This is also reflected by the quite different effects of com-
plex and real perturbations as the following simple calculations show. The perturbed
DAE (2.3) reads

[
1 0
0 0

][
ẋ1
ẋ2

]
=
[−2−Δ Δ

−Δ −1+Δ

][
x1
x2

]
. (2.10)

For Δ = 1, the system (2.10) is of index 2 and the associated finite spectrum is
empty (the only finite eigenvalue moves to infinity), i.e., the pair (E,A+BΔC) is
stable, but the index is changed. With the perturbation Δ= 1+ 1/(1+ s),Re s ≥ 0,
the pair (E,A+BΔC) is again of index 1 and the only eigenvalue is s. This means
that choosing s ∈ iR, |s|  1, the norm of the complex perturbation approximates
the value of rC(E,A,B,C) within arbitrary accuracy and the only finite eigenvalue
appears on the imaginary axis. If we consider only real perturbations, which happens
if and only if s is real, then by taking s  1, the norm of the real perturbation
approximates the value of rR(E,A,B,C) within arbitrary accuracy and the finite
eigenvalue is located on the positive real semi-axis.

Remark 2.2 The first results for stability radii for linear time-invariant DAEs of
index 1 were given in [82] and [20]. In [82] only unstructured perturbations in A

were considered and the formula for the unstructured complex stability radius mea-
sured in Euclidean norm is exactly a special case of (2.5) with restriction matrices
B1 = 0 and B2 = C = I . A more general result was obtained in [20], where the
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authors considered admissible perturbations as in Proposition 2.6 and formulated
the complex stability radius using the Frobenius norm which is not a matrix norm
induced by a vector norm. However, using the fact that the Frobenius norm gives
an upper bound for the Euclidean norm, the stability radii in Frobenius norm are
upper bounds for those in Euclidean norm. On the other hand, in the proof of Theo-
rem 2.2, a rank one destabilizing perturbation can be constructed whose (Euclidean)
norm approximates the true value of the stability radius with an arbitrarily small ac-
curacy. Since the Euclidean and the Frobenius norm of a rank one matrix are equal,
the formula of the complex stability radius given in [20] and (2.5) yield the same
value, i.e., the Frobenius norm case can be considered as a special case of (2.4)
and (2.5).

Remark 2.3 A somewhat more general and extensive analysis of stability radii for
DAEs is given in [11], where the robustness of the structure and the spectrum are
treated separately. The quantities r

sp
K

(E,A;B,C) and dK(E,A;B,C) are called
the spectral and the structure-preserving stability radii, respectively. This approach
makes the characterization of stability radii for higher index DAEs possible as well
as that for the special uncertainty structure of affine perturbations. The latter one also
extends the result in [69] to the case when both coefficient matrices are perturbed
with a one-parameter family. In addition, the work in [11] is partially devoted to
robust stability of second order DAEs with applications in electrical networks.

Remark 2.4 Since in general the real stability radius is more complicated than the
complex one, the question when they are equal is of great practical interest. It has
been shown in [87] that for the class of positive systems the complex and the real
stability radii coincide and they are easily computable. Attempts to extend this result
to DAEs and to other implicit dynamic equations are presented in [33] and [38],
respectively.

Remark 2.5 In many applications, one does not only have static perturbations as in
(2.3), but also linear time-varying, nonlinear or even nonlinear dynamic perturba-
tions. In the context of regular DAEs (2.1) of index at most one, if perturbations are
admitted in A only, then it is possible to extend the concept of structured stability
radii with respect to linear time-varying, nonlinear, or nonlinear dynamic perturba-
tions. It can be shown that all the complex structured stability radii with respect to
different classes of perturbations are equal, as is well known in the ODE case [53],
see also Corollary 3.4 below.

Remark 2.6 Numerical algorithms for computing the stability radii for ODEs are
proposed in a number of works, e.g., see [10, 13, 18, 40, 44–46, 48, 57, 79–81, 89].
Some extensions to DAEs are discussed in [2–4, 11]. Since the robust stability of a
linear time-invariant system is closely related to the sensitivity of the spectrum, the
characterization and the computation of stability radii is also very closely related to
the topics of spectral value sets [49, 54] and pseudospectra [17, 91].
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Remark 2.7 Robustness questions can also be discussed for other fundamental con-
cepts of control theory such as controllability, observability, stabilizability, or de-
tectability. These concepts have been extended to DAEs in many different publica-
tions, see e.g., [14–16, 23, 27, 76, 78] and a recent survey [8]. It is natural to analyze
the robustness of these properties when the control systems are subject to uncertain
perturbations, which leads to similar distance problems as for robust stability. For
ODEs, such distance problems are extensively investigated in a number of works,
e. g., see [58, 79] and the references therein. Results on the controllability radius for
linear time-invariant descriptor systems are given in [19, 66, 67, 88].

It is well known that solutions of DAEs are more sensitive to data than those
of ODEs. This topic has been discussed in [75] for a perturbed index two DAE in
semi-explicit form and in [30, 90] for general singularly perturbation problems of
DAEs. But a general perturbation theory for linear time-invariant DAEs is still open.
This is partly due to the fact that no complete characterization of the distance to the
nearest singular pencil is available [21].

2.2 Dependence of Stability Radii on the Data

In view of the numerical computation of the stability radii, a natural question is
whether the structured stability radii rK(E,A;B,C) depend continuously on the
data E,A,B,C. In the ODE case, i.e., E = I and if only A is perturbed, it was
shown in [52, 83] that the complex structured stability radius depends continuously
on data, but the real one does not. This is due to the continuity (discontinuity) of the
complex (real) structured singular value, see [83]. Extending these results to DAEs,
it follows that the complex structured stability radius rC(E,A;B,C) depends con-
tinuously on the data, provided that the nilpotency structure is preserved, i.e., we are
restricted to the set of DAEs (2.1) that have the same nilpotency structure and to the
set of admissible perturbations. In [34, 35] the robust stability of the parameterized
DAE system

(E + εF )ẋ =Ax, (2.11)

is considered, where ε > 0 is a small parameter and the unperturbed DAE (ε = 0) is
assumed to be regular, of index at most one and asymptotically stable. The classical
singularly perturbed system (1.8) is a special case of this more general system. If
εF belongs to the class of admissible perturbations characterized by Proposition 2.6,
then it is easily shown that the complex structured stability radius depends contin-
uously on the parameter ε. This, however, is not the case when the appearance of
εF changes the index and/or the number of finite eigenvalues, i.e., the nilpotency
structure of (E,A).

Sufficient conditions can be given to ensure that (2.11) is asymptotically stable
for all sufficiently small and positive ε. Namely, if the unperturbed DAE (ε = 0)
and the fast subsystem (which is associated with the algebraic part of the DAE)
are simultaneously asymptotically stable, then for all sufficiently small ε, so is the
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parameterized system (2.11). Furthermore, the complex structured stability radius
of (2.11) converges to the minimum of the stability radius of the reduced system
and that of the fast subsystem. This implies that the stability radius of (2.11) may
be discontinuous at ε = 0, when the nilpotency structure is no longer invariant. As
a special case, the result for the robust stability of (1.8), investigated in [31] by a
different approach, then follows immediately. The asymptotic behavior of the real
structured stability radius for (2.11) is of interest as well, but it is still an open
problem.

Remark 2.8 In [69], the robust stability of a DAE subject to perturbations of the
form Eẋ = (A+ εH)x is considered, where E,A are given as in (2.1), H is a given
matrix, and ε is an uncertain parameter. Assuming that the unperturbed system is
regular, of index at most one and asymptotically stable, a computable formula for
the maximal stability interval (ε1, ε2) is derived, i.e., the perturbed system retains
the index and is asymptotically stable for all ε ∈ (ε1, ε2).

In [37], complex structured stability radii for the discrete-time analog of DAEs,
i.e., singular difference equations are analyzed. In particular, again due to the con-
tinuity, the complex structured stability radius of the discretized system (using the
implicit Euler method) of (2.1) is shown to converge to the corresponding one of
the continuous-time system as the stepsize tends to zero. The analogous question
concerning the real structured stability radii is still open.

3 Robust Stability of Linear Time-Varying DAEs

In this section, we investigate the exponential and asymptotic stability and its ro-
bustness for linear time-varying DAEs of the form

E(t)ẋ(t)=A(t)x(t), t ∈ I, (3.1)

with matrix functions E,A ∈ C(I,Kn×n), K ∈ {C,R}.
Analyzing the different stability concepts for (3.1) is, however, much more com-

plicated than for linear time-invariant systems. Even if for all t ∈ I, the finite eigen-
values of (E(t),A(t)) have negative real part, system (3.1) may be unstable, as
many well-known examples demonstrate for the ODE case, see e.g., [55].

Example 3.1 For all t ∈R

A(t)=
[

cos2(3t)− 5 sin2(3t) −6 cos(3t) sin(3t)+ 3
−6 cos(3t) sin(3t)+ 3 sin2(3t)− 5 cos2(3t)

]

has a double eigenvalue at −2 but the solution of ẋ =Ax, with x(0)= [ c1
0

]
is given

by x(t)= [ c1e
t cos(3t)

−c1e
t sin(3t)

]
, which is obviously unstable.
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We use the following standard notation as in [36, 60]. Let X,Y be finite di-
mensional vector spaces. For every p,1 ≤ p <∞ and s, t, t0 ≤ s < t <∞, we
denote by Lp(s, t;X) the space of measurable functions f with values in X and
norm ‖f ‖p := (

∫ t
s
‖f (ρ)‖p dρ)1/p <∞ and by L∞(s, t;X) the space of measur-

able and essentially bounded functions f with ‖f ‖∞ := ess supρ∈[s,t] ‖f (ρ)‖. We
also consider the spaces Lloc

p (t0,∞;X) and Lloc∞ (t0,∞;X), which contain all func-
tions f ∈ Lp(s, t;X) and f ∈ L∞(s, t;X) for some s, t, t0 ≤ s < t <∞, respec-
tively. We, furthermore, use the notation L (Lp(t0,∞;X),Lp(t0,∞;Y)) to denote
the Banach space of linear bounded operators P from Lp(t0,∞;X) to Lp(t0,∞;Y)

supplied with the norm

‖P‖ := sup
x∈Lp(t0,∞;X),‖x‖=1

‖Px‖Lp(t0,∞;Y).

In the following we assume that (3.1) is of index 1, in the sense of the tractability
index [43] or that it is strangeness-free in the sense of the strangeness-index [63]. Let
us briefly introduce these index concepts. First, to introduce the tractability index
and the projector chain approach, see e.g., [43, 68], we assume that E(t) is singular
for all t and S := kerE is absolutely continuous. Then, there exists an absolutely
continuous projector Q onto S, i.e., Q ∈ C(0,∞;Kn×n), Q is differentiable almost
everywhere, Q2 = Q, and ImQ = S for all t ∈ I. If we assume in addition that
Q̇ ∈ Lloc∞ (0,∞;Kn×n), then P = I −Q is a projector along S and system (3.1) can
be rewritten in the form

E
d

dt
(Px)= Âx, (3.2)

where Â :=A+EṖ ∈ Lloc∞ (0,∞;Kn×n). Setting

G :=E − ÂQ. (3.3)

Definition 3.1 The linear DAE (3.1) is said to be tractable of index 1, if G(t) de-
fined by (3.3) is invertible for almost every t ∈ [0,∞) and G−1 ∈ Lloc∞ (0,∞;Kn×n).

Multiplying both sides of (3.2) by PG−1,QG−1, and taking into account the
identities G−1E = P,G−1Â=−Q+G−1ÂP , we obtain

d

dt
(Px) =

(
d

dt
P + PG−1Â

)
Px,

Qx =QG−1ÂPx,

which decomposes the DAE into a differential part and an algebraic part. With z=
Px, the dynamics of the system is given by the inherent ODE

ż= (Ṗ + PG−1Â
)
z (3.4)
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of (3.1). Let Φ0(t, s) denote the fundamental solution matrix associated with the
inherent ODE (3.4), i.e., the matrix function satisfying

d

dt
Φ0(t, s)=

(
Ṗ + PG−1Â

)
Φ0(t, s), Φ0(s, s)= I,

for t > s ≥ 0, then the fundamental solution operator generated by (3.1) is defined
by

E
d

dt
Φ(t, s)=AΦ(t, s), P (s)

(
Φ(s, s)− I

)= 0

and Φ can be expressed as Φ(t, s)= (I+QG−1Â(t))Φ0(t, s)P (s). It can be shown
by direct calculations that, despite its construction, the fundamental solution opera-
tor is in fact independent of the choice of projector Q.

The concept of the strangeness index uses the DAE and its derivatives to con-
struct a so-called strangeness-free DAE with the same solution [63]. In the homo-
geneous case this strangeness-free system has the form (3.1), where

E =
[
E1
0

]
, A=

[
A1
A2

]
, (3.5)

with E1 ∈ C(I,Kd×n) and A2 ∈ C(I,K(n−d)×n) such that the matrix Ê(t) :=[E1(t)

A2(t)

]
is invertible for all t ∈ I.

By using a global kinematic equivalence transformation, see [70, Remark 13],
(3.1) can be transformed to the special form,

[
Ẽ11 Ẽ12

0 0

]
˙̃x =
[
Ã11 Ã12

0 Ã22

]
x̃, (3.6)

so that the essential underlying ODE is readily given by Ẽ11ẋ1 = Ã11x1 with non-
singular Ẽ11.

A matrix function Φ ∈ C1(I,Rn×d) is called minimal fundamental solution ma-
trix of the strangeness-free DAE (3.1) if each of its columns is a solution to (3.1)
and rankΦ(t)= d for all t ∈ I.

In the following we assume that the DAE is of index at most one or alternatively
strangeness-free. These conditions are equivalent if the coefficients are sufficiently
smooth [77].

The characterization of the different stability concepts for linear variable coef-
ficient ODEs is well established via the concepts of Bohl and Lyapunov exponents
[1, 9, 28] and Sacker–Sell spectra [29, 86]. These concepts were extended from
ODEs to DAEs in [24, 70, 71].

To analyze exponential stability, we introduce first the Bohl exponent.

Definition 3.2 The Bohl exponent for an index 1 system of the form (3.1) with
fundamental solution Φ is given by
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kB(E,A) = inf
{−α ∈R; there exists Lα > 0

such that for all t ≥ t0 ≥ 0 : ∥∥Φ(t, t0)
∥∥≤ Lαe−α(t−t0)

}
.

It follows that (3.1) is exponentially stable if and only if its Bohl exponent is
negative (including the case kB(E,A)=−∞).

Analogous to the ODE case (see [28]), using the fundamental solution operator
Φ , it follows that the Bohl exponent of (3.1) is bounded from above, i.e., kB(E,A) <

∞ if and only if sup0≤|t−s|≤1 ‖Φ(t, s)‖ <∞. Furthermore, the Bohl exponent of
(3.1) can be determined by

kB(E,A)= lim sup
s,t−s→∞

ln‖Φ(t, s)‖
t − s

.

In [24], various properties of the Bohl exponent, as well as the connection between
the exponential stability of (3.1) and the boundedness of solutions to nonhomoge-
neous DAE with bounded inhomogeneity are investigated.

Remark 3.1 In the ODE case, the boundedness of the coefficient function A ensures
the finiteness of Bohl exponent. This is not true for DAEs (3.1) even with both
bounded coefficient functions E and A, where the Bohl exponent may be +∞ or
−∞. We note also that, by assuming that (3.1) is of index 1, we exclude degenerate
cases such as non-uniqueness or finite escape time of solutions, which may happen
with nonregular DAEs and are discussed in [6, 7].

For ODEs, the asymptotic stability of solutions can be characterized by the Lya-
punov exponents, see [74]. The extension of the theory of Lyapunov exponents
to linear time-varying DAEs has been given in [25, 26, 70–72], using either the
projector-based tractability index or the derivative array-based strangeness index
approach.

Definition 3.3 For a given minimal fundamental solution matrix Φ of a strangeness-
free DAE system of the form (3.1), and for 1≤ i ≤ d , we introduce

λu
i = lim sup

t→∞
1

t
ln
∥∥Φ(t)ei

∥∥ and λ�
i = lim inf

t→∞
1

t
ln
∥∥Φ(t)ei

∥∥,

where ei denotes the ith unit vector and ‖ · ‖ denotes the Euclidean norm. Let all the
Lyapunov exponents be finite, then the columns of a minimal fundamental solution
matrix form a normal basis if

∑d
i=1 λu

i is minimal. The λu
i , i = 1,2, . . . , d belonging

to a normal basis are called (upper) Lyapunov exponents and the intervals [λ�
i , λ

u
i ],

i = 1,2, . . . , d , are called Lyapunov spectral intervals.

The strangeness-free DAE system (3.1) then is asymptotically stable if and
only if the largest upper Lyapunov exponent is negative. Note that for linear time-
invariant DAEs (2.1), the Lyapunov exponents are exactly the real parts of the finite
eigenvalues of pencil (E,A).
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This brings us to another major difference between linear time-invariant and
linear time-varying DAEs. The following example shows that an infinitesimally
small time-varying perturbation applied to both coefficient matrices may change
the asymptotic stability, even if the perturbation does not change the index.

Example 3.2 ([71]) Consider the system ẋ1 = −x1, 0 = x2, which is strangeness-
free and asymptotically stable. For the perturbed DAE

(
1+ ε2 sin (2nt)

)
ẋ1 − ε cos (nt)ẋ2 =−x1, 0=−2ε sin (nt)x1 + x2, (3.7)

where ε is a small parameter and n is a given number, from the second equa-
tion of (3.7), we obtain x2 = 2ε sinntx1. Differentiating this expression for x2

and inserting the result into the first equation, after some elementary calcula-
tions, we obtain ẋ1 = (−1 + nε2 + nε2 cos (2nt))x1. Explicit integration yields
x1(t) = e(−1+nε2)t+ε2 sin (2nt)/2x1(0). Clearly, even if ε is arbitrarily small (hence
the perturbation in the coefficient matrices is arbitrarily small in the sup-norm),
(3.7) may become unstable if n is sufficiently large.

3.1 Stability Radii for Linear Time-Varying DAEs

In this section we discuss the stability radii for linear DAEs with variable coef-
ficients. Formulas for the stability radii of exponential stability were derived in
[24, 36] extending the results for ODEs in [56, 60].

We assume that the DAE is of index at most one and discuss perturbed systems

E(t)ẋ(t)= (A(t)+H(t)
)
x(t), t ∈ I, (3.8)

with a perturbation function H ∈ L∞(0,∞;Kn×n) as well as structured perturba-
tions of the form

E(t)ẋ(t)=A(t)x(t)+B(t)Δ
(
C(·)x(·))(t), t ∈ I, (3.9)

where B ∈ L∞(0,∞;Kn×m) and C ∈ L∞(0,∞;Kq×n) are given matrix functions,
restricting the structure of the perturbation and Δ : Lp(0,∞;Kq)→ Lp(0,∞;Km)

is an unknown perturbation operator.
To obtain formulas for the exponential stability radius, we assume that (3.1) is ex-

ponentially stable, i.e., there exist constants L > 0, γ > 0 such that ‖Φ0(t, s)P (s)‖ ≤
Le−γ (t−s), for t ≥ s ≥ 0, and that it is robustly index 1 in the following sense.

Definition 3.4 Consider the DAE (3.1) in the form (3.2) and let G be as in (3.3).
Then the DAE is said to be robustly index 1 if, supplied with a bounded projection
Q, the matrix functions G−1 and Qs := −QG−1Â are essentially bounded on I.
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To extend the tractability index concept to the perturbed system (3.9), we
assume that the perturbation operator Δ ∈ L (Lp(0,∞;Kq),Lp(0,∞;Km)) is
causal which is defined as follows. For T ∈ I, the truncation operator πT at T

on Lp(0,∞;X) is defined via

πT u(t) :=
{

u(t), t ∈ [0, T ],
0, t > T .

An operator P ∈ L (Lp(0,∞;X),Lp(0,∞;Y)) then is said to be causal, if
πT PπT = πT P for every T ∈ I. Let the linear operator G̃ ∈ L (Lloc

p (0,∞;Kn),

Lloc
p (0,∞;Kn)) be defined via

(G̃z)= (E − ÂQ)z−BΔ(CQz).

If for every T > 0, the operator G̃ restricted to Lp(0, T ;Kn) is invertible and the
inverse operator G̃−1 is bounded, then we say the perturbed DAE (3.9) is of index 1
(in a generalized sense). The structured perturbation in (3.9) is called dynamic per-
turbation, which is different from static perturbations considered in Sect. 2. Then
we can employ the concept of mild solution.

Definition 3.5 We say that the initial value problem for the perturbed system (3.9)
with initial condition

P(t0)
(
x(t0)− x0

)= 0, (3.10)

admits a mild solution if there exists x ∈ Lloc
p (t0,∞;Kn) satisfying

x(t) = Φ(t, t0)P (t0)x0

+
∫ t

t0

Φ(t, ρ)PG−1BΔ
([

Cx(·)]
t0

)
(ρ) dρ +QG−1BΔ

([
Cx(·)]

t0

)
(t)

for t ≥ t0, where

[
Cx(·)]

t0
=
{

0, t ∈ [0, t0),

C(t)x(t), t ∈ [t0,∞).

The mild solution plays an important role in the characterization of robust stabil-
ity, since solutions of the perturbed DAE (3.9) in the classical sense do not exist, in
general. The existence and uniqueness of mild solutions is given by the following
result.

Theorem 3.1 ([36]) Consider the initial value problem (3.9)–(3.10). If (3.9) is of
index at most one, then it admits a unique mild solution x ∈ Lloc

p (t0,∞;Kn) with
absolutely continuous z= Px for all t0 ∈ I, x0 ∈Kn. Furthermore, for an arbitrary
T > 0, there exists a constant L1 such that pointwise

∥∥P(t)x(t)
∥∥≤ L1
∥∥P(t0)x0

∥∥ for all t ∈ [t0, T ].
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With (3.9), we associate the perturbation operator (in [35, 60] it is called the
input–output operator)

Lt0z= C

∫ t

t0

Φ(t, ρ)PG−1B(ρ)z(ρ)dρ +CQG−1Bz, (3.11)

which is defined for all t ≥ t0 ≥ 0, z ∈ Lp(0,∞;Km). It is important to note that,
by direct algebraic verifications, the mild solution as well as the perturbation op-
erator are independent of the choice of projector Q. It is shown that, analogously
to the ODE case [56, 60], there exists a close relationship between the perturbation
operator associated with (3.9) and the robust stability of (3.1) with respect to struc-
tured and dynamic perturbations given by (3.9). For exponentially stable robustly
index 1 systems this operator is linear, bounded, and monotonically non-increasing
with respect to t , i.e.,

‖Lt0‖ ≥ ‖Lt1‖ for all t1 ≥ t0 ≥ 0,

and for all t ∈ I the bound

‖Lt‖ ≤ L

γ

∥∥PG−1
∥∥∞‖B‖∞‖C‖∞ +

∥∥CQG−1B
∥∥∞

holds.

Definition 3.6 ([36]) Consider a DAE of the form (3.9) of index 1 and denote by
x(t; t0, x0) the solution satisfying initial condition (3.10). The trivial solution of
(3.9) is said to be globally Lp-stable, if there exist positive constant L2 and L3 such
that ∥∥P(t)x(t; t0, x0)

∥∥
Kn ≤ L2

∥∥P(t0)x0
∥∥
Kn ,∥∥x(·; t0, x0)

∥∥
Lp(t0,∞;Kn)

≤ L3
∥∥P(t0)x0

∥∥
Kn ,

(3.12)

for all t ≥ t0, x0 ∈Kn.

Note that this kind of stability notion is equivalent to the concept of output sta-
bility, see [59] for various stability concepts in the ODE case.

We then have the following definition of stability radii for time-varying DAEs.

Definition 3.7 If system (3.1) is exponentially stable and robustly index 1, then
the complex/real structured stability radii of (3.1) subject to dynamic structured
perturbation as in (3.9), are defined by

rK(E,A;B,C)

= inf

{‖Δ‖, the trivial solution of (3.9) is not globally Lp-stable
or (3.9) is not of index 1

}
,

where K=C or K=R, respectively.
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In [36] the following formulas for the stability radii were derived.

Theorem 3.2 ([36]) If system (3.1) is exponentially stable and robustly index 1,
then

rK(E,A;B,C)=min
{

lim
t0→∞

‖Lt0‖−1,
(

ess sup
t∈I

∥∥CQG−1B(t)
∥∥)−1}

.

This implies the following corollary.

Corollary 3.3 ([36]) If system (3.1) is exponentially stable and robustly index 1 and
the data (E,A;B,C) are real, then

rC(E,A;B,C)= rR(E,A;B,C).

As special case we obtain the formula (2.4) for the complex stability radius of
time-invariant systems (with respect to dynamic perturbations).

Corollary 3.4 ([36]) Let E,A,B,C be time-invariant, let the system (3.1) be in-
dex 1 and exponentially stable. If p = 2, i.e., for the space L2 of square integrable
functions, then

rC(E,A;B,C)= ‖L0‖−1 =
(

sup
ω∈iR

∥∥C(ωE −A)−1B
∥∥)−1

.

Comparing with a special case of Theorem 2.2 when only A is subject to per-
turbations, Corollary 3.4 states that the complex stability radius with respect to dy-
namic perturbations and that to static perturbations are equal. This statement in fact
generalizes a previous result for the ODE case in [53].

Example 3.3 ([36, Sect. 5.1]) Consider a DAE in semi-explicit form

E =
[
Ir 0
0 0

]
, A=

[
A11 A12
A21 A22

]
(3.13)

with appropriate partitioning. The index 1 assumption means that A22(t) is invert-
ible almost everywhere in I. One gets Q= diag(0, In−r ),

G=
[
Ir −A12
0 −A22

]
, Φ(t, s)=

[
Φ̂(t, s)

−A−1
22 A21Φ̂(t, s)

]
,

where Φ̂(t, s) is the fundamental solution operator of the underlying ordinary differ-
ential equation ẏ = (A11−A12A

−1
22 A21)y, which is assumed to be exponentially sta-

ble. The assumption that the system is robustly index 1 means the essential bound-
edness of A−1

22 ,A−1
22 A21, and A12A

−1
22 . Partitioning the restriction matrices B,C as
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B = [BT
1 BT

2 ]T ,C = [C1 C2], analogously, we obtain

(Lt0u)(t) = (C1 −C2A
−1
22 A21
)∫ t

t0

Φ̂(t, ρ)
(
B1(ρ)−A12A

−1
22 B2(ρ)

)
u(ρ)dρ

−C2A
−1
22 B2u(t),

and by Theorem 3.2 we have

rK(E,A;B,C)=min
{

lim
t0→∞

‖Lt0‖−1,
(

ess sup
t∈I

∥∥C2A
−1
22 B2(t)

∥∥)−1}
.

In summary, we have seen in this section that in the index 1 case the exponential
stability radii in the linear time-varying case are similar to the ones in the linear
time-invariant case.

A similar analysis can be performed in principle for the asymptotic stability, by
studying the Lyapunov exponents under perturbations, see the next section. Un-
fortunately, however, in contrast to the Bohl exponents, the Lyapunov exponents
themselves may be very sensitive to small changes in the data.

3.2 Dependence of Stability Radii on the Data

The robustness analysis of the Bohl exponent was extended from ODEs in [56]
to DAEs in [24]. In the context of deriving numerical methods for the numeri-
cal computation of Bohl and Lyapunov exponents for linear time-varying DAEs,
see [70, 71, 73] the robustness of these exponents under perturbations was studied
and the concept of admissible perturbations was extended to the variable coefficient
case. In this section we summarize these results and study how the stability radii
depend on the data.

To see that the Bohl exponent is robust under sufficiently small index-1-
preserving perturbations, we consider the perturbed equation

E
d

dt
(Px)= (Â+H)x, (3.14)

where Â is the same as in (3.2). Here H is assumed to be piecewise continuous (just
for sake of simplicity) and to satisfy

sup
t∈I

∥∥H(t)
∥∥<
(

sup
t∈I

∥∥QG−1(t)
∥∥)−1

. (3.15)

Note that this condition implies the inequality supt∈I ‖QG−1H(t)‖ < 1, which is
essential in the analysis.



Robust Stability of Differential-Algebraic Equations 87

Theorem 3.5 ([24]) Suppose that system (3.1) is robustly index 1, the perturbation
H satisfies (3.15), and suppose further that for any ε > 0 there exists δ = δ(ε) > 0
such that for all H satisfying

lim sup
s,t−s→∞

1

t − s

∫ t

s

∥∥PG−1H(τ)
∥∥dτ < δ,

then

kB(E,A+H) < kB(E,A)+ ε.

As a consequence of Theorem 3.5, the exponential stability is preserved under
all sufficiently small perturbations H .

Remark 3.2 The robustness analysis of the Bohl exponent is extendable to the case
of general perturbations arising in both coefficients of (3.1). It is clear that additional
assumptions on the perturbation structure and/or the smoothness of the admissi-
ble perturbations are necessary in this case. The same can be said for the analysis
of Bohl exponents for general higher-index DAEs and for nonlinear perturbations,
see [6].

We now discuss how the structured stability radius of (3.8) with respect to the
same structured perturbation as in (3.9) depends on the perturbation H and the re-
striction matrices B,C. To this end, we first establish the asymptotic behavior of the
norm of the input-output operator defined in (3.11).

Theorem 3.6 [24] Suppose that system (3.1) is exponentially stable, robustly in-
dex 1 and satisfies (3.15) and suppose, in addition, that the perturbation function H

satisfies

lim
t→∞
∥∥H(t)
∥∥= 0.

Then the operator Lt defined in (3.11) and the corresponding operator associated
with (3.14), denoted by L̃t , satisfy

lim
t→∞‖Lt‖ = lim

t→∞‖L̃t‖.

By invoking Theorem 3.2, we obtain sufficient conditions for a sequence of per-
turbations Hk under which the structured stability radius of the perturbed systems
converges to that of the unperturbed system.

Theorem 3.7 ([24]) Suppose that system (3.1) is exponentially stable, robustly in-
dex 1 and satisfies (3.15). Let {Hk(·)}∞k=1 be a sequence of measurable matrix func-
tions and suppose that supt∈I ‖Hk(t)‖< (supt∈I ‖QG−1(t)‖)−1 for all k = 1,2, . . .

and limk→∞ supt∈I ‖Hk(t)‖ = 0. Then

lim
k→∞ rC(E,A+Hk;B,C)= rC(E,A;B,C).
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Theorem 3.7 implies that the stability radius for the system (3.1) depends contin-
uously on the coefficient matrix function A. As a consequence of Theorem 3.7 and
Corollary 3.4, we get the following result.

Corollary 3.8 Let E,A,B,C be constant matrices, let system (3.1) be of index 1
and exponentially stable. Furthermore, assume that the sequence of time-varying
perturbation {Hk}∞k=1 fulfills the conditions of Theorem 3.7. Then, for the Euclidean
norm, one has

lim
k→∞ rC(E,A+Hk;B,C)=

(
sup
w∈iR

∥∥C(wE −A)−1B
∥∥)−1

.

For illustration, the following numerical example shows that the complex stabil-
ity radius of a linear time-invariant system under time-varying perturbations can be
well approximated by that of the corresponding time-invariant DAE.

Example 3.4 ([24, Example 5.13]) Consider the simple example of a linear constant
coefficient DAE with data

E =
[

2 1
0 0

]
, A=

[−2 −1
2 2

]
, B = I, C =

[
2 1
1 1

]
. (3.16)

Let a sequence of time-varying perturbations be defined by

Fk(t)=
[− 1

3+t2
1

4
√

1+t
e−2t

k+1 − e−t

2k

]
, k = 1,2, . . . . (3.17)

Here, we choose

Q=
[−1 −1

2 2

]
, G=E −AQ=

[
2 1
−2 −2

]
.

Then it is easy to check that limt→∞‖Fk(t)‖ = 0 and

sup
t≥0

∥∥Fk(t)
∥∥<
∥∥∥∥
[

1/3 1/4
1/2 1/2

]∥∥∥∥≈ 0.8192 <
∥∥QG−1

∥∥−1 ≈ 0.8945.

Furthermore, we have

QG−1Fk(t)=
[

e−2t

2(k+1)
− e−t

4k

− e−2t

k+1
e−t

2k

]
,

thus limk→∞ supt≥0 ‖QG−1Fk(t)‖ = 0. On the other hand, by elementary calcula-
tions, we obtain

(
sup
w∈iR

∥∥C(wE −A)−1B
∥∥)−1 = 1.
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Invoking Corollary 3.8, we have

lim
k→∞ rC(E,A+ Fk;B,C)= 1.

Finally, one also obtains that the complex structured stability radius of (3.1) de-
pends continuously on the restriction matrices B and C as in the time-invariant case.

Theorem 3.9 ([24]) Suppose that system (3.1) is exponentially stable, robustly in-
dex 1 and satisfies (3.15). Let Bk and Ck be two sequences of measurable and es-
sentially bounded matrix functions satisfying

lim
k→∞ ess sup

t∈I

∥∥Bk(t)−B(t)
∥∥= 0, lim

k→∞ ess sup
t∈I

∥∥Ck(t)−C(t)
∥∥= 0

then,

lim
k→∞ rC(E,A;Bk,Ck)= rC(E,A;B,C).

We stress once more that, since the dynamics of DAEs is constrained and the
index-1 property should be preserved, only weaker results hold for the continuity of
the stability radius and more restrictive assumptions are required than in the ODE
case. Furthermore, for time-varying DAEs, we have to restrict the analysis to per-
turbations in A only, see (3.8) and (3.9), simply because the study of perturbations
associated with the leading term E is a long-standing open problem. Just very re-
cently, in [5], a result on robust stability with respect to perturbations associated with
the leading term E has been derived within the framework of DAEs of tractability-
index 1.

In order to study the robustness of Lyapunov exponents, we consider the specially
perturbed system for (3.1) given in the form (3.5)

[E + F ]ẋ = [A+H ]x, t ∈ I, (3.18)

where F = [ F1
0

]
and H = [H1

H2

]
, and where F1 and H1,H2 are assumed to have

the same order of smoothness as E1 and A1,A2, respectively. Perturbations of this
structure are called admissible, generalizing the concept for the constant coefficient
DAEs studied in [20].

The DAE (3.1) is said to be robustly strangeness-free if it stays strangeness-free
under all sufficiently small admissible perturbations and it is easy to see that this
property holds if and only if the matrix function Ê is boundedly invertible.

If we assume that (3.1) is already given in the form (3.6), then the perturbed DAE
has the form

(E11 + F11)
d

dt
x̃1 + (E12 + F12)

d

dt
x̃2 = (A11 +H11)x̃1 + (A12 +H12)x̃2,

0 = H21x̃1 + (A22 +H22)x̃2.

In the following we restrict ourselves to robustly strangeness-free DAE systems
under admissible perturbations.
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Definition 3.8 The upper Lyapunov exponents λu
1 ≥ · · · ≥ λu

d of (3.1) are said to
be stable if for any ε > 0, there exists δ > 0 such that the conditions supt ‖F(t)‖<

δ, supt ‖H(t)‖ < δ, and supt ‖Ḣ2(t)‖ < δ on the perturbations imply that the per-
turbed DAE system (3.18) is strangeness-free and

∣∣λu
i − γ u

i

∣∣< ε, for all i = 1,2, . . . , d,

where the γ u
i are the ordered upper Lyapunov exponents of (3.18).

The boundedness condition on Ḣ2, which is obviously satisfied in the time-
invariant setting [20], is an extra condition and it seems to be somehow unusual.
However, the DAE (3.7) shows the necessity.

As in the ODE case, see [1, 29], to have stability of the Lyapunov spectrum,
one needs the property of integral separation, i.e., for the columns of the minimal
fundamental solution matrix Φ of (3.1) there exist constants c1 > 0 and c2 > 0 such
that

‖X(t)ei‖
‖X(s)ei‖ ·

‖X(s)ei+1‖
‖X(t)ei+1‖ ≥ c2e

c1(t−s),

for all t, s with t ≥ s ≥ 0 and i = 1, . . . , d−1. Then we have the following sufficient
conditions for the stability of the upper Lyapunov exponents of (3.1).

Theorem 3.10 ([70]) Consider the DAE (3.1) in the form (3.6). Suppose that the
matrix Ê is boundedly invertible and that E−1

11 A11, A12A
−1
22 and the derivative of

A22 are bounded on I. Then, the upper Lyapunov exponents of (3.1) are distinct and
stable if and only if the system has the integral separation property.

This shows that if perturbations are performed in E as well, then the perturbation
analysis of time-varying DAEs requires more restrictive conditions than in the time-
invariant case. However, for some classes of structured problems and/or structured
perturbation, parts of these conditions can be relaxed.

If the perturbation block H21 disappears, i.e., if H and A have the same block
triangular structure, then for example the restrictive conditions on the derivatives in
Definition 3.8 and Theorem 3.10 can be omitted. Similar situations happen in the
case that E12 = F12 = 0 as discussed in [70, Sect. 3.2] and the case of perturbations
in A only as in (3.8).

In [70] another stability concept, the Sacker–Sell spectrum has been extended to
linear DAEs with variable coefficients. It is also shown that unlike the Lyapunov
spectrum, the Sacker–Sell spectrum is robust in the sense that it is stable without
requiring integral separation.

This means that for general strangeness-free time-varying systems, the exponen-
tial stability is robust, but the asymptotic stability is not. Note that this remark does
not apply to time-invariant systems, for which the two stability notions are equiva-
lent.
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Remark 3.3 In [56], the robust stability of time-varying ODEs with respect to time-
varying perturbations was characterized in terms of differential Riccati equations.
In particular, the relation between the perturbation operator and the existence of so-
lutions to the Riccati equations was pointed out. A similar analysis for time-varying
DAEs would be of interest as well. However, this gives rise to differential-algebraic
Riccati equations, which may have a very complicated solution structure, see e.g.
[62, 65].

Remark 3.4 The robustness analysis for linear DAEs of index higher than one and
under general perturbations is essentially an open problem. The same is true for
the distances to the other important control properties such as controllability and
observability. The robustness of these concepts for linear DAEs with variable coef-
ficients presents a major challenge.

4 Discussion

In this paper we have surveyed recent results on the robustness of asymptotic and
exponential stability for linear time-invariant and time-varying DAEs. We have an-
alyzed robust stability and its distance measures, the real or complex structured
stability radius and presented formulas and various properties of the stability radii.
We have seen that the robustness analysis for DAEs is much more complicated than
that for ODEs. In general, results already known for ODEs now hold for DAEs
only under extra assumptions, mainly restricting the set of admissible perturbations.
DAE aspects also give rise to new robustness and distance problems. While for time-
invariant DAEs, most of the robustness and distance problems are well understood,
many problems for time-varying DAEs are still open. These and robustness analysis
for general nonlinear and/or high-index DAEs and time-delay DAEs are interesting
and challenging topics for future work.
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DAEs in Circuit Modelling: A Survey

Ricardo Riaza

Abstract This paper surveys different analytical aspects of differential-algebraic
models of electrical and electronic circuits. The use of DAEs in circuit modelling
has increased in the last two decades, and differential-algebraic (or semistate) mod-
els play nowadays a key role in circuit simulation programs and also in the analysis
of several aspects of nonlinear circuit dynamics. We discuss not only nodal systems,
including MNA, but also branch-oriented and hybrid ones, as well as the models
arising in other approaches to circuit analysis. Different results characterizing the
index of DAE models, for both passive and active circuits, are reviewed in detail.
We also present a detailed discussion of memristive devices (memristors, memca-
pacitors and meminductors), displaying a great potential impact in electronics in the
near future, and address how to accommodate them in differential-algebraic mod-
els. Some dynamical aspects and other topics in circuit theory in which DAEs play
a role, regarding e.g. model reduction, coupled problems or fault diagnosis, are dis-
cussed in less detail.
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1 Introduction

Circuit modelling, analysis and simulation in the nonlinear setting have greatly ben-
efited from the use of the DAE formalism in the last three decades. The ubiqui-
tous presence of nonlinear devices in modern electronic circuits naturally leads to
time-domain models; the differential-algebraic form of circuit equations emanates
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from the combination of differential equations coming from reactive elements with
algebraic (non-differential) relations modelling Kirchhoff laws and device charac-
teristics. In the opposite direction, a considerable amount of research on analytical
and numerical aspects of differential-algebraic equations has been motivated by ap-
plications in circuit theory.

The term ‘algebraic-differential system’ was already used in the circuit context
by Brown in 1963 [25]. Actually, the work of Bashkow, Brown, Bryant and oth-
ers in the late 1950s and in the 1960s [10, 15, 29, 30, 48, 49, 105, 128, 181] on
the formulation of state space models defines an important precedent of the use of
DAEs in circuit modelling. A nice compilation of the state-of-the-art of state space
modelling of nonlinear circuits up to 1980 can be found in Chua’s paper [35]. The
state space approach to circuit modelling displays, however, some important limi-
tations. For several circuit configurations an explicit state space equation may not
exist, not even locally. Additionally, when state space descriptions do exist, their
formulation may be hardly automatable. The latter is extremely important from the
computational point of view, specially in very large scale integration systems.

These limitations led, in the 1970s and 1980s, to the systematic formulation of
semistate models, which use larger sets of network variables allowing some re-
dundancy between them. Semistate models are currently framed in the differential-
algebraic context. A milestone is the 1971 paper of Gear [71], addressing numerical
aspects and which many consider the first paper on DAEs. Less known but also rel-
evant from an analytical perspective is the paper of Takens [191]. The term “semis-
tate”, which was proposed by Dziurla (see p. 31 in [94]), appeared for the first time
in the joint work of Dziurla and Newcomb [53]; an important reference in this re-
gard is Newcomb’s paper [126]. Other early contributions in this direction can be
found in [31, 32, 172]. Later in the 1980s are worth recalling the 1986 and 1989
special issues of Circuits, Systems, and Signal Processing [108, 109], the book [92]
and the papers [36, 37, 42, 43, 86–88, 127].

Since the 1990s, DAEs have been pervasive in nonlinear circuit analysis and de-
sign, specially because of their appearance in nodal analysis methods (cf. [57, 61,
79–83, 116, 117, 143, 156, 169, 193, 194]) used to set up automatically network
equations in circuit simulation. As detailed later, this is the case of Modified Nodal
Analysis (MNA), whose origin can be traced back to [93] and which is used in dif-
ferent circuit simulation programs, notably in SPICE and its commercial variants.
Other techniques, not based on the use of node potentials, have also been the object
of attention in the DAE context [69, 101, 149, 156, 190]. Different analytical and nu-
merical aspects have been examined in the last decade within the context of properly
stated DAE models: see [115, 117, 194] and the forthcoming title [107]. Section 2
will present a detailed discussion of different families of differential-algebraic cir-
cuit models.

In the numerical simulation of circuit dynamics, a key aspect is the computa-
tion and monitorization of the index of the differential-algebraic models, a problem
which has attracted much attention; find in [61, 80, 81, 100, 101, 149, 156, 190, 193,
194] several results concerning the index of different circuit models under passivity
assumptions; extensions to the non-passive context are discussed in [55, 69]. The
main results in this direction will be compiled in Sect. 3.
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A large amount of recent research has been motivated by the introduction in
nonlinear circuit theory of so-called mem-devices. The memory-resistor or mem-
ristor is an electronic device defined by a nonlinear relation between the charge
and the flux, and its existence was predicted by Leon Chua in 1971 for symmetry
reasons [34]. The memristor would be the fourth basic circuit element, in addition
to resistors, capacitors and inductors, whose characteristics relate voltage and cur-
rent, voltage and charge, and flux and current, respectively. The report in 2008 of a
nanoscale device with a memristive characteristic [184] had a great impact in elec-
trical and electronic engineering, making the memristor a topic of active research
(cf. [11, 45, 70, 97–99, 103, 121–124, 131–133, 157, 159–161, 167, 203] and ref-
erences therein), which has been further motivated by the announcement of HP that
commercial memory chips based on the memristor will be released in 2013 [1]. In
2009 the idea of a device with memory was extended to reactive elements by Di
Ventra, Pershin and Chua [51]. In Sect. 4 we will discuss some features of DAE
models of circuits with mem-devices. In this context, circuits without mem-devices
are often referred to as “classical circuits”.

The analysis of different theoretical aspects of circuit dynamics benefits from the
use of differential-algebraic models. These include the state formulation problem or
the study of different qualitative issues of nonlinear circuits, including circuits with
memristors. The DAE formalism is mandatory in the analysis of impasse behaviour
and phenomena related to singularities, which cannot be displayed in the setting
of explicit ODEs. These aspects are addressed in Sect. 5; cf. [36, 37, 46, 63, 92,
148, 151, 153–156, 165, 166, 168]. Other aspects of DAE-based circuit modelling,
related to model reduction, coupled problems or fault diagnosis, will be discussed
more briefly in Sect. 6.

This survey will be focussed on analytical aspects of DAEs in circuit modelling.
For different aspects of numerics in circuit simulation, the reader is referred to the
references compiled on this topic in Sect. 6. For the sake of brevity no proofs are
included, but the papers where these proofs can be found are cited after each result.
Also for the sake of simplicity, controlled sources are not included in the models,
although in most cases the results apply also to circuits with controlled sources un-
der certain topological restrictions (cf. [61, 101, 156]). Other surveys published on
this topic or on closely related ones in the last 15 years are [59, 62, 80, 81, 84, 169];
related aspects are also addressed in the papers on PDAEs and port-Hamiltonian
systems within the present volume.

2 Model Families for Classical Circuits

The semistate or differential-algebraic framework provides a valuable tool for cir-
cuit modelling since it makes it possible to accommodate, in a comprehensive man-
ner, different families of circuit models. A difference between model families is
made by the set of semistate variables that they use. In particular, nodal methods
are characterized by the use (in addition to some branch variables) of node poten-
tials e as the fundamental model variables, by expressing Kirchhoff’s voltage law
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as v =AT e. This approach comprises Modified Nodal Analysis (MNA) techniques,
but also other methods such as Node Tableau Analysis (NTA) [41, 44, 80, 81, 85]
or Augmented Nodal Analysis (ANA) [55, 110, 169]. After providing some pre-
liminary material on graphs and elementary aspects of circuit theory in Sects. 2.1
and 2.2, nodal analysis models are discussed in Sect. 2.3.

Branch-oriented models (also known as “standard”, “mixed” or “hybrid” models;
note that the latter is used below with a different meaning) are characterized by the
statement of Kirchhoff laws in the form Ai = 0 (or Qi = 0) and Bv = 0. Here A, B

and Q are incidence, loop and cutset matrices (cf. Sects. 2.1 and 2.2). This will make
it possible to formulate the circuit equations just in terms of the branch currents i

and voltages v, which explains the ‘branch-oriented’ label for these methods. See
[92, 149, 156]. So-called hybrid models (cf. [4, 20, 21, 33, 91, 104, 171]) can be
obtained as a reduction of branch-oriented equations and have received very recent
attention because their index does not exceed one, either in a passive or a non-
passive context [69, 101, 190]. Branch-oriented, tree-based and hybrid models are
presented in Sect. 2.4. We will also briefly consider other DAE models in Sects. 2.5
and 2.6.

2.1 Graph-Theoretic Results

The formulation of nodal models for electrical circuits will based on the description
of the underlying digraph in terms of the so-called reduced incidence matrix A =
(aij ) ∈R(n−1)×b , where

aij =

⎧⎪⎨
⎪⎩

1 if branch j leaves node i,

−1 if branch j enters node i,

0 if branch j is not incident with node i.

We are assuming the digraph to be connected and to have n nodes and b branches.
Note that the reference node does not have an associated row in A.

An alternative description of the circuit’s underlying digraph can be given in
terms of the so-called reduced loop and cutset matrices. This description will be
used in the formulation of branch-oriented and related models. We will use both the
term loop and cycle to mean the branches in a closed path without self-intersections.
A reduced loop matrix is defined, for a connected digraph with n nodes, b branches
and after having chosen b − n+ 1 independent loops, as B = (bij ) ∈ R(b−n+1)×b ,
with

bij =

⎧⎪⎨
⎪⎩

1 if branch j is in loop i with the same orientation,

−1 if branch j is in loop i with the opposite orientation,

0 if branch j is not in loop i.
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Similarly, the entries of a reduced cutset matrix Q= (qij ) ∈R(n−1)×b are given by

qij =

⎧⎪⎨
⎪⎩

1 if branch j is in cutset i with the same orientation,

−1 if branch j is in cutset i with the opposite orientation,

0 if branch j is not in cutset i.

Recall that a subset S of the set of branches of a connected digraph is a cutset if
the removal of S results in a disconnected graph, and it is minimal with respect to
this property, that is, the removal of any proper subset of S does not disconnect
the graph; a cutset may be oriented just by directing it from one of the connected
components resulting from the cutset deletion towards the other.

The rows of any reduced loop matrix span the so-called cycle space imBT . Those
of either a reduced incidence matrix or a reduced cutset matrix span the cut space
imQT . Details can be found in [19]. Both spaces are orthogonal to each other, so
that imBT = kerQ and imQT = kerB .

Let K be a set of branches of a given digraph G. The presence or absence of loops
and cutsets within K can be described in terms of the aforementioned matrices as
indicated in Lemmas 2.1 and 2.2 below. Find details in [5, 6, 64, 156]. By AK (resp.
AG−K ) we mean the submatrix of A defined by the columns which correspond to
branches in (resp. not in) K . The same applies to B and Q.

Lemma 2.1 A subset K of the set of branches of a connected digraph G does not
contain loops if and only if AK has full column rank. In particular, if K has n− 1
branches, AK is nonsingular if and only if K defines a spanning tree; in this case,
detAK =±1.

Lemma 2.2 Consider a connected digraph G. The following statements are equiv-
alent:

1. K does not contain cutsets;
2. AG−K has full row rank;
3. QG−K has full row rank;
4. BK has full column rank.

The absence of loops can be also characterized in terms of the loop and cutset
matrices by requiring BG−K to have full row rank and QK to have full column rank,
respectively.

In a connected digraph, the choice of a spanning tree (that is, a connected sub-
graph including all nodes and having no loops) yields two sets of so-called fun-
damental cutsets and fundamental loops; fundamental cutsets are defined by a tree
branch (or twig) together with some cotree branches (or links) and, analogously,
fundamental loops are defined by a link together with some twigs. Choosing the
orientation of the cutsets and loops coherently with that of the corresponding twigs
or links, and using the orthogonality property QBT = 0, the corresponding reduced
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cutset and loop matrices have the form

Q = (I −KT
)
, (2.1a)

B = (K I), (2.1b)

for a certain matrix K . The first columns of both matrices correspond to twigs,
whereas the last ones are associated with the links. These matrices will be used in
the formulation of tree-based models. The reader can find at the end of Sect. 2.2 an
example illustrating all the notions introduced above.

2.2 Some Preliminaries from Circuit Theory

Kirchhoff Laws Possibly the most fundamental properties of electrical circuits
are expressed by Kirchhoff laws. Kirchhoff’s current law (KCL) states that the sum
of the currents leaving any circuit node is zero. This must be understood as follows:
if the current in branch k is denoted by ik and this branch is directed away from
(resp. towards) a given node, then the current leaving this node is ik (resp. −ik). In
terms of the reduced incidence and cutset matrices A, Q, this law can be expressed
as Ai = 0 or Qi = 0, respectively.

In turn, Kirchhoff’s voltage law (KVL) states that the sum of the voltage drops
along the branches of any loop is zero. In this statement, provided that an orientation
is defined in every loop and denoting by vk the voltage in branch k, the correspond-
ing voltage drop must be understood as vk if branch k has the same orientation as
the loop, and −vk otherwise. In terms of the loop matrix, KVL can be expressed as
Bv = 0. It is also possible to express Kirchhoff’s voltage law in terms of the node
potentials e as v =AT e; this will be one of the key features of nodal models.

Component Relations The basic components of electrical circuits are resis-
tors, capacitors, inductors, and voltage and current sources (find in Sect. 4 the re-
cently introduced memristor and other mem-devices). In a nonlinear setting, re-
sistors can be either current-controlled, being governed by a relation of the form
vr = γr(ir ), or voltage-controlled, this relation having the form ir = γg(vr). For
the sake of simplicity, capacitors and inductors will be supposed to be voltage-
controlled and current-controlled (respectively) by relations of the form qc = γc(vc)

and ϕl = γl(il); here q and ϕ are the charge and the magnetic flux. Note that in some
cases, these descriptions may exist only locally: this is the case, for instance, in the
Josephson junction [44], a device composed of two superconductors separated by
an oxide barrier and which is governed by a current-flux characteristic of the form
il = I0 sin(kϕl) for certain physical constants I0, k. Points where cos(kϕl) = 0 do
not admit any current-controlled description and, away from them, such a current-
controlled description is only locally defined.

Also for simplicity, voltage and current sources will be assumed to be indepen-
dent, their voltage and current being, respectively, defined by explicit functions of
time, to be denoted by vs(t) and is(t).
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When the characteristics defined above are differentiable, the incremental capac-
itance matrix of the set of capacitors is defined as C(vc)= γ ′c(vc), whereas the incre-
mental inductance matrix of inductors is L(il)= γ ′l (il). Analogously, the incremen-
tal conductance matrix for voltage-controlled resistors is defined as G(vr)= γ ′g(vr ).
In a current-controlled setting, the incremental resistance matrix is R(ir )= γ ′r (ir ).
All these matrices will be diagonal in the absence of coupling effects. When they are
positive definite (resp. semidefinite) in a given region, the corresponding devices are
said to be strictly locally passive (resp. locally passive) in that region [35, 44]; recall
that an m×m matrix M is positive definite (resp. semidefinite) if uT Mu > 0 (resp.
≥ 0) for any u ∈ Rm − {0}; we do not require M to be symmetric. In the absence
of coupling effects, these passivity (resp. strict passivity) conditions amount to re-
quiring that the individual capacitances, inductances, conductances or resistances
are non-negative (resp. positive).

Topologically Degenerate Configurations An important role in the index anal-
ysis will be played by so-called topologically degenerate configurations, namely,
VC-loops (loops defined by capacitors and/or voltage sources), and IL-cutsets (cut-
sets composed of inductors and/or current sources). The former restrict the set of
admissible values for the branch voltages of the capacitors within the loop, whereas
the latter restrict the values for the currents of the inductors belonging to the cut-
set. In most models these configurations lead to a higher index DAE, as detailed in
Sect. 3.

Note that, using Lemmas 2.1 and 2.2, the presence of such configurations can
be characterized in terms of the incidence, loop and cutset matrices. For instance,
the existence of a VC-loop makes the columns of the submatrix (Ac Au) (defined
by the columns of the reduced incidence matrix which correspond to capacitors
and voltage sources) linearly dependent; analogously, the presence of an IL-cutset
makes the rows of (Ar Ac Au) linearly dependent. Equations (3.2a)–(3.2c), (3.3)
and (3.4) in Sect. 3.2.1 illustrate how to use this type of results.

Example We will use the circuit depicted in Fig. 1 as a running example for
the non-expert reader, aimed to illustrate different concepts and results introduced
throughout the document. It includes a voltage and a current source (labelled as
Vs and Is , respectively), two linear inductors with inductances L1 and L2, a linear
capacitor with capacitance C, and a diode (labelled as D). The latter is an example of
a voltage-controlled nonlinear resistor. We are not concerned with the specific form
of its characteristic; it is enough to write it as id = γg(vd) for a certain function γg .
We will denote its incremental conductance γ ′g(vd) as G(vd) (or simply as G). At
certain points in the index analysis we will consider cases in which G may vanish
or even become negative for certain values of vd ; in practice, this may happen for
instance if the diode exhibits a tunnelling effect which makes it locally active at a
certain operating region [44, 187].

We may already use this example to show the form that the reduced incidence,
loop and cutset matrices take. Let us begin with the reduced incidence matrix A,
using the ground terminal as reference node. We will order the branches as Vs , C,
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Fig. 1 Example

D, L1, Is , L2. The nodes on top of the voltage source, the capacitor and the diode
will have numbers 1, 2 and 3, respectively. With these conventions and the branch
directions defined by the arrows in Fig. 1, the reduced incidence matrix reads

A=
⎛
⎝
−1 0 0 1 0 0
0 1 0 −1 1 0
0 0 1 0 −1 1

⎞
⎠ .

For instance, the branch accommodating the voltage source leaves the reference
node and enters node 1, hence the entries −1, 0, 0 in the first column of A. Analo-
gously, the capacitor and the diode leave nodes 2 and 3, respectively, both entering
the reference node. The L1-inductor (cf. the fourth column of A) leaves node 1
and enters node 2, etc.

A reduced loop matrix B is easily constructed by considering the meshes defined
by Vs , L1 and C; by C, Is and D; and by D and L2. The corresponding loops are
assumed to be oriented clockwise. This yields

B =
⎛
⎝

1 1 0 1 0 0
0 −1 1 0 1 0
0 0 −1 0 0 1

⎞
⎠ . (2.2)

Here, the first row reflects that the branches accommodating Vs , L1 and C are ori-
ented as the loop itself; in the second one, the −1 in the second entry is due to the
fact that the C-branch has the opposite direction to the loop, contrary to Is and D.
In the last row, the L2-branch has the same direction as the loop but the D-branch
has not.

A reduced cutset matrix Q can be built analogously. Let us consider the cutsets
defined by Vs and L1; by L1, C and Is ; and by Is , D and L2. Note that the removal
of each one of these sets of branches leaves nodes 1, 2 and 3 (respectively) isolated.
By orientating these cutsets coherently with Vs , C and D, respectively, we get

Q=
⎛
⎝

1 0 0 −1 0 0
0 1 0 −1 1 0
0 0 1 0 −1 1

⎞
⎠ . (2.3)

Indeed, the first row corresponds to the cutset defined by Vs and L1; note that the
removal of these two branches leaves node 1 isolated. Since the orientation of the
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Fig. 2 Spanning tree

cutset is defined by that of the Vs -branch (which enters node 1), there is a +1 in the
first entry; now, the fact that the L1-branch leaves node 1 yields a −1 in the fourth
column. The second and third rows are constructed analogously.

It is worth mentioning that B and Q in (2.2) and (2.3) are actually the fundamen-
tal matrices defined by the spanning tree depicted in Fig. 2.

Indeed, the fundamental cutsets are defined by the twigs Vs , C and D, whereas
the fundamental loops correspond to the links L1, Is and L2. Note in particular that
the matrix K arising in (2.1a), (2.1b) reads

K =
⎛
⎝

1 1 0
0 −1 1
0 0 −1

⎞
⎠ .

Mind the identity blocks in B and Q and also the appearance of −KT within the
last three columns of Q in (2.3).

2.3 Nodal Analysis. MNA

By using the subscripts r , c, l, u and j to denote resistors, capacitors, inductors,
voltage sources and current sources, respectively, we may express the Node Tableau
Analysis (NTA) equations [85] as

(
γc(vc)
)′ = ic, (2.4a)

(
γl(il)
)′ = vl, (2.4b)

0 = ir − γg(vr), (2.4c)

0 = Arir +Alil +Acic +Auiu +Aj is(t), (2.4d)

0 = vr −AT
r e, (2.4e)

0 = vl −AT
l e, (2.4f)

0 = vc −AT
c e, (2.4g)

0 = vs(t)−AT
u e, (2.4h)

0 = vj −AT
j e, (2.4i)
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where γc, γl , γg describe the characteristics of capacitors, inductors and resistors,
as introduced above; note that resistors are assumed here to be voltage-controlled.
For the sake of brevity we will not address cases in which capacitors are charge-
controlled or inductors are flux-controlled, which lead to so-called charge-oriented
nodal models (see e.g. [61, 169, 193]). Note that Kirchhoff laws are expressed as
Ai = 0 in (2.4d) and v = AT e in (2.4e)–(2.4i). We are splitting the reduced inci-
dence matrix A as (Ar Al Ac Au Aj ); the subscript s (from “source”) is used in
vs and is to indicate that in voltage and current sources the voltage and the current
(respectively) are explicitly given functions of time.

Provided that γc and γl are differentiable and as far as one is not concerned
with optimal smoothness descriptions of the solutions, the differential relations for
reactive elements (2.4a)–(2.4b) can be recast in terms of the incremental capacitance
and inductance matrices C(vc)= γ ′c(vc), L(il)= γ ′l (il) as

C(vc)v
′
c = ic, (2.5a)

L(il)i
′
l = vl. (2.5b)

We will use this form in later models, but the reader should keep in mind that the
proper formulation (2.4a)–(2.4b) (cf. [107, 115, 194]) may be used in all of them.

Augmented Nodal Analysis (ANA) models [110, 169] arise as a reduction of the
NTA model, retaining its semiexplicit form and (as detailed in Sect. 3) its index.
ANA models are defined by a system of the form

C(vc)v
′
c = ic, (2.6a)

L(il)i
′
l = AT

l e, (2.6b)

0 = Arγg

(
AT

r e
)+Alil +Acic +Auiu +Aj is(t), (2.6c)

0 = vc −AT
c e, (2.6d)

0 = vs(t)−AT
u e. (2.6e)

The insertion of (2.6d) into (2.6a) and this in turn into (2.6c) yields the Modified
Nodal Analysis (MNA) model

AcC
(
AT

c e
)
AT

c e′ = −Arγg

(
AT

r e
)−Alil −Auiu −Aj is(t), (2.7a)

L(il)i
′
l = AT

l e, (2.7b)

0 = vs(t)−AT
u e. (2.7c)

Among all nodal techniques, MNA models are by far the most widely used, mainly
because of its compact form; indeed, reducing the number of variables while at
the same time being easy to set up in an automatic way makes them well-suited
for computational purposes [61, 80, 81, 193, 194]. On the other hand it loses the
semiexplicit form of NTA and ANA and this makes the index analysis a bit more
intricate; note, however, that the index of MNA models never exceeds that of NTA
or ANA, being strictly lower in some cases (cf. Sect. 3).
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2.4 Branch-Oriented Models, Tree-Based Formulations
and Hybrid Analysis

Branch-oriented models avoid the use of node potentials and express the circuit
equations in terms of branch currents and voltages in the form

C(vc)v
′
c = ic, (2.8a)

L(il)i
′
l = vl, (2.8b)

0 = Arir +Alil +Acic +Auiu +Aj is(t), (2.8c)

0 = Brvr +Blvl +Bcvc +Buvs(t)+Bjvj , (2.8d)

0 = gr(vr , ir ). (2.8e)

Because of the symmetric nature of the model, we do not make any assumptions on
the controlling variables for resistors in (2.8e). Kirchhoff’s current and voltage laws
are expressed in (2.8c) and (2.8d) as Ai = 0, Bv = 0. A similar formulation results
from recasting the former in terms of a reduced cutset matrix as Qi = 0.

Tree-Based Models The use of fundamental matrices makes it possible to rewrite
Kirchhoff laws Qi = 0 and Bv = 0 as

itr = KT ico , (2.9a)

vco = −Kvtr . (2.9b)

Throughout the document the subscripts tr and co refer to tree and cotree ele-
ments, respectively, that is, twigs and links. For instance, the vector of tree volt-
ages vtr can be split in terms of twig capacitors, inductors, resistors and voltage
sources as vtr = (vctr

, vltr
, vrtr

, vu); analogously, the vector of cotree voltages vco

can be written in terms of link capacitors, inductors, resistors and current sources
as vco = (vcco

, vlco
, vrco

, vj ). Note that we assume that all voltage (resp. current)
sources are located in the tree (resp. in the cotree); this is possible because all
circuits are assumed to be well-posed, namely, that they display neither loops of
voltage sources nor cutsets of current sources. An analogous splitting holds for the
tree and cotree current vectors itr and ico . The relations depicted in (2.9a), (2.9b)
for Kirchhoff laws express the widely used fact that tree currents can be written in
terms of cotree currents, whereas cotree voltages can be expressed in terms of tree
voltages, a result which can be traced back at least to [186].

Once a tree has been chosen, the model (2.8a)–(2.8e) can be rewritten in the form

C(vc)v
′
c = ic, (2.10a)

L(il)i
′
l = vl, (2.10b)

0 = itr −KT ico , (2.10c)
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0 = Kvtr + vco, (2.10d)

0 = gr(vr , ir ). (2.10e)

Hybrid Analysis Recent research [100, 101, 190] has framed the hybrid analysis
of Kron [104] (cf. also [4, 20, 21, 33, 91, 171]) in a differential-algebraic context.
Among other advantages, hybrid models display an index which never exceeds that
of MNA (cf. Sect. 3).

These hybrid models can be understood as a reduction of the tree-based model
(2.10a)–(2.10e), when the latter is based on a normal reference tree, that is, a span-
ning tree with all voltage sources and no current source, as many twig capacitors as
possible, among those satisfying the previous requirements one with as many twig
voltage-controlled resistors as possible, and then one with as many twig current-
controlled resistors as possible. As a byproduct, a normal reference tree has as few
twig inductors as possible. This is an extension of Bryant’s original notion of a
normal tree, arising in connection with the state formulation problem [29, 30] (see
also [25, 105]); this concept has been revisited since then in connection to different
aspects of circuit analysis [101, 150, 164, 190].

For the sake of notational simplicity, hybrid models will be presented below
for connected circuits including only capacitors, voltage- and current-controlled re-
sistors (their branch variables being labelled with the subscripts g and r , respec-
tively) and inductors. Independent sources offer no difficulties and are only omit-
ted to simplify the discussion. In this context, a normal reference tree is a span-
ning tree which verifies the following requirements: it includes as many capaci-
tors as possible; among the ones satisfying the previous condition, it includes as
many voltage-controlled resistors as possible and, among these, it includes as many
current-controlled resistors as possible. This yields for the matrix K in (2.1a), (2.1b)
the structure ⎛

⎜⎜⎝
K11 0 0 0
K21 K22 0 0
K31 K32 K33 0
K41 K42 K43 K44

⎞
⎟⎟⎠

and Kirchhoff laws read
⎛
⎜⎜⎝

vcco

vgco

vrco

vlco

⎞
⎟⎟⎠=−

⎛
⎜⎜⎝

K11 0 0 0
K21 K22 0 0
K31 K32 K33 0
K41 K42 K43 K44

⎞
⎟⎟⎠

⎛
⎜⎜⎝

vctr

vgtr

vrtr

vltr

⎞
⎟⎟⎠

and

⎛
⎜⎜⎝

ictr

igtr

irtr

iltr

⎞
⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

K
T
11 K

T
21 K

T
31 K

T
41

0 K
T
22 K

T
32 K

T
42

0 0 K
T
33 K

T
43

0 0 0 K
T
44

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

icco

igco

irco

ilco

⎞
⎟⎟⎠ ,
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respectively; as above, the subscripts tr and co specify tree and cotree elements. By
splitting all circuit variables and characteristic maps into tree and cotree ones, hybrid
models are expressed in terms of the variables vctr

, vgtr
, irco

and ilco
, as follows:

(
Ctr(vctr

)+K
T
11Cco(−K11vctr

)K11
)
v′ctr

=K
T
21γgco

(−K21vctr
−K22vgtr

)+K
T
31irco

+K
T
41ilco

, (2.11a)

(
Lco(ilco

)+K44Ltr

(
K

T
44ilco

)
K

T
44
)
i′lco

=−K41vctr
−K42vgtr

−K43γr tr

(
K

T
33irco

+K
T
43ilco

)
, (2.11b)

γg tr
(vgtr

)=K
T
22γgco

(−K21vctr
−K22vgtr

)+K
T
32irco

+K
T
42ilco

, (2.11c)

γr co
(irco

)=−K31vctr
−K32vgtr

−K33γr tr

(
K

T
33irco

+K
T
43ilco

)
. (2.11d)

Detailed derivations of this model can be found in [69, 101, 190].

2.5 Multiport Model and Hessenberg Form

As a starting point in the analysis of dynamic circuits (cf. for instance [10, 35,
154, 172, 179]) it is often assumed that resistive variables as well as iu, vj can
be eliminated from (2.8a)–(2.8e). This leads to a model of the form

C(vc)v
′
c = ic, (2.12a)

L(il)i
′
l = vl, (2.12b)

0 = Ψ (vc, ic, vl, il, t) (2.12c)

for a certain map Ψ . System (2.12a)–(2.12c) is called a multiport model. Indeed,
letting m stand for the number of reactive elements (capacitors and inductors), the
map Ψ within (2.12c) can be understood to define m abstract relations involving the
currents and voltages of certain m ports of a (possibly nonlinear) subnetwork which
includes all resistors and sources, with a time dependence coming from the sources.
The connection of reactances at those ports leads to the dynamical system modelled
by the DAE (2.12a)–(2.12c). The map Ψ comprises implicitly the topology of the
network. A detailed discussion of conditions which allow for such a reduction can
be found in [156]. Additionally, as detailed there, in problems with loops defined
by capacitors and/or voltage sources, or with cutsets composed of inductors and/or
current sources, the choice of a normal tree (where “normal” is used in the sense
specified in Sect. 3.2.2) allows one to eliminate twig capacitor currents and link
inductor voltages, making it possible to express the circuit equations in Hessenberg
form (cf. Sect. 2.7 below).
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2.6 Loop Analysis

Another classical technique for setting up the circuit equation is the so-called loop
analysis [33, 44], which in a nonlinear context leads to a differential-algebraic model
(cf. for instance [162]), as detailed in the sequel.

Assume that the circuit is connected. Recalling that b and n stand for the num-
ber of branches and nodes, respectively, fix b − n+ 1 linearly independent loops,
and let B stand for the associated reduced loop matrix. Assign a loop current jk ,
k = 1, . . . , b − n+ 1, to each one of these loops. When the circuit is planar, these
loop currents can be taken as the ones defined by the meshes, that is, the loops en-
circling the different faces in a planar description of the circuit; note, however, that
the circuit needs not be planar for the loop analysis to be feasible. We will denote
by j the vector of loop currents.

The branch currents i can be computed from j simply as i = BT j. The loop anal-
ysis begins with the description of Kirchhoff’s voltage law in the form Bv = 0,
and then proceeds by replacing as far as possible the branch voltages of current-
controlled devices in terms of branch currents and, eventually, of loop currents.
Voltage-controlled devices, such as capacitors or current sources, will introduce ad-
ditional equations in the circuit model.

Assuming (for simplicity) the resistors to be current-controlled by a C1 map of
the form vr = γr(ir ), and splitting the cycle matrix B as (Br Bl Bc Bu Bj ), as we
did in the formulation of the branch-oriented model (2.8a)–(2.8e), the loop analysis
equations then read

C(vc)v
′
c = BT

c j, (2.13a)

L(il)i
′
l = vl, (2.13b)

0 = Brγr

(
BT

r j
)+Blvl +Bcvc +Buvs(t)+Bjvj , (2.13c)

0 = il −BT
l j, (2.13d)

0 = is(t)−BT
j j. (2.13e)

Note that this is the dual model of (2.6a)–(2.6e).

2.7 DAE Form of the Models

All the models discussed above have the form of a quasilinear DAE, that is,

A(u)u′ = F(u, t) (2.14)

where A and F are matrix-valued and vector-valued maps. More precisely
(cf. (2.6a)–(2.6e), (2.7a)–(2.7c), (2.8a)–(2.8e), (2.10a)–(2.10e), (2.11a)–(2.11d),
(2.12a)–(2.12c), (2.13a)–(2.13e)) these models take the form of a semiimplicit
DAE
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M(x)x′ = f (x, y, t), (2.15a)

0 = g(x, y, t), (2.15b)

for different sets of vectors x, y, matrices M(x) and maps f , g. For instance, in the
hybrid model (2.11a)–(2.11d) we have x = (vctr

, ilco
), y = (vgtr

, irco
),

M =
(

Ctr(vctr
)+K

T
11Cco(−K11vctr

)K11 0

0 Lco(ilco
)+K44Ltr(K

T
44ilco

)K
T
44

)
,

(2.16)
and f , g capture the right-hand side of (2.11a)–(2.11d).

For all but the MNA and hybrid models (2.7a)–(2.7c), (2.11a)–(2.11d), the matrix
M(x) is nonsingular if and only if the inductance and capacitance matrices L(il)

and C(vc) are nonsingular, and under this assumption the corresponding DAE can
be obviously rewritten in a semiexplicit form

x′ = h(x, y, t), (2.17a)

0 = g(x, y, t). (2.17b)

Generally speaking, such semiexplicit reduction is not feasible for the MNA and hy-
brid models (2.7a)–(2.7c), (2.11a)–(2.11d); this is due to the fact that more vari-
ables are eliminated in these models, which offers a computational advantage, but
as a drawback the index analysis (cf. Sect. 3) is a bit more cumbersome for MNA
and hybrid systems.

It is worth mentioning that in some cases, notably after a reduction to the mul-
tiport form (2.12a)–(2.12c), in the presence of VC-loops (loops defined by capaci-
tors and (maybe) voltage sources), and/or IL-cutsets (cutsets composed of inductors
and (maybe) current sources), the semiexplicit system (2.17a) can be recast in Hes-
senberg form, namely

x′ = h(x, y, t), (2.18a)

0 = g(x, t). (2.18b)

Specifically, when coming from a tree-based multiport model of the form (2.12a)–
(2.12c), x in (2.18a), (2.18b) stands for capacitor voltages and inductor currents,
whereas y comprises link capacitor currents and twig inductor voltages. The ab-
sence of y in (2.18b) confers (2.18a), (2.18b) a Hessenberg structure, which displays
several advantages and can be understood to define a standard form for higher index
DAEs. Find details in [156].

3 The Index of DAE Circuit Models

The characterization of the index of the above-introduced models is a central prob-
lem in circuit simulation [61, 80, 81, 117, 156, 193]. Not only the index of nodal
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models but also that of branch-oriented and hybrid ones has been carefully exam-
ined [55, 61, 69, 100, 101, 156, 190, 193]. This interest stems from the fact that
the index has a major impact in the numerical techniques to be used in the simula-
tion of circuit dynamics. The index is also relevant with regard to other analytical
properties of nonlinear circuits, related e.g. to the state formulation problem or to
different qualitative issues [36, 37, 63, 92, 179, 180, 198]. The reader is referred to
[24, 75, 89, 90, 106, 107, 140, 156] for detailed introductions to the different index
notions in DAE theory.

As indicated above, a great deal of research in this direction has been focussed on
the characterization of the index of nodal models. This has been mainly motivated
by the use of nodal techniques such as Modified Nodal Analysis (MNA) in circuit
simulators, notably in SPICE and its commercial variants [80, 81, 143]. Under pas-
sivity assumptions, the index of nodal models is known to be not greater than two,
according to the results in [61, 193]. A key feature of this approach is its topolog-
ical emphasis, aiming at the characterization of different properties in terms of the
underlying digraph and the electric nature of every branch, disregarding the specific
characteristic equations of each device. Some recent results extend the analysis to
low index configurations in non-passive nodal models [55].

On the other hand, recent research has been focussed on the hybrid models pre-
sented in Sect. 2.4 above. The recent use of a DAE formalism to accommodate
hybrid models has made it possible to show that their index does not exceed one
in passive contexts [101, 190], in contrast to MNA and other nodal techniques, for
which certain configurations yield index two systems. This result is of great interest
from the computational point of view, since index two DAEs are known to be more
involved and to pose more difficulties than lower index problems, specially when
they do not admit a Hessenberg form. This characterization is extended to branch-
oriented and hybrid models of non-passive circuits in [68, 69]. The present section
summarizes these results.

3.1 On the Index Notion

The Tractability Index Most papers on index analysis for DAE circuit models
are based on the tractability index notion (cf. [75, 107, 112, 114, 156, 194]). The
characterization of the tractability index of a given DAE model paves the way for an
appropriate numerical treatment in simulation and, from an analytical standpoint,
reduces the description of the dynamical behaviour to that of an inherent explicit
ODE; this is performed by means of a decoupling of the different solution compo-
nents [114, 156, 194]. We present below a brief introduction to this index concept.
The discussion will be restricted to cases with index not greater than two; this way
we avoid certain technical difficulties arising in problems with arbitrary index. Note
that the index of DAEs modelling a very large class of electrical and electronic cir-
cuits does not exceed two [61, 149, 156, 193].
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Consider the quasilinear DAE (2.14), and assume that the kernel of A(u) is con-
stant. This holds in particular for (2.15a), (2.15b) if M(x) is nonsingular (a condi-
tion whose characterization is itself of interest for models such as (2.7a)–(2.7c) or
(2.11a)–(2.11d); note that for other models this requirement just relies on the non-
singularity of the capacitance and inductance matrices C(vc), L(il)). Assume, as
happens in all the circuit models above, that the right-hand side F(u, t) of (2.14)
can be written as F1(u)+F2(t). Let B(u) stand for the matrix of partial derivatives
−Fu(u, t); note that B does not depend on t because of the splitting of F . Denoting
by Q a constant projector onto kerA(u) (so that Q2 =Q with imQ = kerA(u)),
the DAE (2.14) has tractability index one if the matrix A1(u) = A(u)+ B(u)Q is
nonsingular.

For the DAE (2.15a), (2.15b), provided that M(x) is nonsingular, this index
one notion can be checked to amount to the nonsingularity of the matrix of par-
tial derivatives gy (this index one notion being the same in other index concepts, cf.
[24, 89, 90, 106, 140]). In this situation, a straightforward application of the implicit
function theorem makes it possible it describe the local system dynamics in the form
M(x)x′ = f (x,ϕ(x, t), t), where y = ϕ(x, t) comes from (2.15b).

The notion of an index two DAE is more cumbersome and the different index
notions make a difference in this regard (cf. [24, 75, 89, 90, 106, 107, 140, 156]).
In the tractability index framework, consider a setting in which A1(u) is rank-
deficient everywhere, in such a way that there exists a continuous projector Q1(u)

onto kerA1(u) (forcing A1(u) to have constant rank). Let B1(u) stand for the
product B(u)(I − Q). Basing on the special form of the circuit equations (cf.
[194, Remark A.18]), the DAE (2.14) will be said to have tractability index two
if A2(u)=A1(u)+B1(u)Q1(u) is nonsingular. This definition of the index is sim-
pler than the one for general nonlinear DAEs [114, 194].

These notions are a bit simpler for linear time-invariant DAEs, a context in which
the analysis can be performed in terms of the associated matrix pencil; cf. [67].
For time-varying and/or linearly implicit problems the relation with matrix pen-
cil theory is more involved [24, 140, 156]. In particular, the relation between the
tractability index of (2.14) and the Weierstraß–Kronecker index of the matrix pencil
{A(u∗), B(u∗)} arising from the linearized problem were thoroughly examined in
[75, 76, 111] (recent related results can be found in [113, 114]). In particular, a ma-
trix pencil {A, B} with singular A is regular with Weierstraß–Kronecker index one
if and only if the matrix A1 = A+ BQ is nonsingular, Q being any projector onto
kerA. Additionally, if A1 is singular, the pencil can be shown to be regular with
Weierstraß–Kronecker index two if and only if A2 = A1 + B1Q1 is nonsingular,
where Q1 is any projector onto kerA1 and B1 = B(I −Q).

Other Index Notions Other index concepts, including the differentiation index
and the geometric index, have also been used in the analysis of DAE circuit models
(cf. [61, 156]). Broadly speaking, the idea supporting the differentiation index is
to compute the number of differentiations needed to recast a DAE as an explicit
ODE; more precisely, the constraints are differentiated in order to realize an explicit
underlying ODE for which the solution set of the DAE is an invariant manifold.
Find a detailed discussion in the book [24].



114 R. Riaza

In contrast, the geometric index notion and the reduction methods supported on
it describe the behaviour of a given DAE in terms of a vector field defined on the so-
called solution manifold. Using local parametrizations, this vector field locally leads
to a reduced ODE on an open subset of Rr . In the original problem coordinates, the
reduction process can be roughly described as the elimination of certain variables by
solving the constraints. The solution manifold and the reduced ODE are computed
in an iterative manner, and the number of iteration steps needed for the algorithm to
stabilize defines the index. A detailed introduction to the geometric index framework
can be found in [136, 137, 140–142]. See also [152].

When applied in particular to a linear time-invariant DAE with a regular matrix
pencil, all these notions amount to the Weierstraß–Kronecker index of the pencil
[67].

Solvability Solvability is an important concept in DAE theory (see e.g. [24, 107]).
Broadly speaking, when an index is well-defined (at least in a local sense), then a
(local) flow is defined on a lower-dimensional solution set which accommodates the
solutions of the DAE. This is sometimes known as the set of consistent initial val-
ues, for which a unique solution is well-defined. Find details in the above-mentioned
references and in [89, 106, 140, 156]. Things in this regard are different (and more
complicated) in so-called singular DAEs, since solutions may bifurcate or even col-
lapse in finite time at singular points; cf. Sect. 5.2 below and [36, 37, 135, 138–
140, 148, 151, 153, 155, 156, 170].

In the circuit context, any index characterization guarantees the solvability of the
circuit equations; that is, provided that an index is well-defined and that an initial
point satisfying the constraints (including the possibly hidden ones) is given, then a
unique solution emanates from that point. From this point of view, the index results
reported in the remainder of this section can be understood to comprise implic-
itly the solvability of the circuit equations. Notably, this requires a well-posedness
assumption on the circuit; this means that neither loops of voltage sources nor cut-
sets of current sources are present. This is a standard working hypothesis, which is
sometimes assumed in circuit analysis without explicit mention.

3.2 Nodal Models

3.2.1 Passive Problems

We present in Theorem 3.1 below a slightly modified form of the topological char-
acterizations of index one and index two configurations in MNA discussed in [193],
accommodating also the index zero analysis of [194]. With respect to [193, 194], the
statement below relaxes some passivity requirements, since the original statements
in the aforementioned references assume the positive definiteness of the incremental
conductance, capacitance and inductance matrices.
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Theorem 3.1 Consider a well-posed, connected circuit with nonsingular induc-
tance matrix L and positive definite capacitance matrix C.

(1) The MNA system (2.7a)–(2.7c) is index zero if and only if
(a) there are no voltage sources; and
(b) there exists a capacitive tree.
Assume in the sequel that at least one of the conditions (a) or (b) fails.

(2) Suppose additionally that the conductance matrix G is positive definite. Then
the MNA model (2.7a)–(2.7c) has tractability index one if and only if the network
contains neither VC-loops (except for C-loops) nor IL-cutsets.

(3) Let also L be positive definite. If the network contains VC-loops (with at least
one voltage source) and/or IL-cutsets, then (2.7a)–(2.7c) has tractability index
two.

In order to avoid cumbersome computations, the reader is referred to [193, 194]
for detailed proofs of these claims; the proofs there apply identically in this slightly
broader setting. However, the reader can have a glimpse of some of the main ideas
involved in these index analyses by considering the (simpler) index one case for the
ANA model (2.6a)–(2.6e). Indeed, provided that C and L are nonsingular, the index
one condition for (2.6a)–(2.6e) relies on the nonsingularity of

J =
⎛
⎝

ArGAT
r Ac Au

AT
c 0 0

AT
u 0 0

⎞
⎠ . (3.1)

If the conductance matrix G= γ ′g is positive definite, and the circuit displays neither
VC-loops nor IL-cutsets, then J is actually nonsingular (and therefore the model
(2.6a)–(2.6e) is index one). Note that J in (3.1) is nonsingular if and only if the
unique solution to

ArGAT
r x +Acy +Auz = 0, (3.2a)

AT
c x = 0, (3.2b)

AT
u x = 0 (3.2c)

is the trivial one. We show below that a non-trivial solution to (3.2a)–(3.2c) is in
contradiction with the absence of VC-loops and IL-cutsets. Premultiplying (3.2a)
by xT , and using (3.2b) and (3.2c) to derive xTArGAT

r x = 0, one gets

AT
r x = 0, (3.3)

because of the positive definiteness assumption on G. The non-vanishing of x would
indicate the presence of an IL-cutset, in the light of (3.2b), (3.2c), (3.3) and accord-
ing to Lemma 2.2. In the absence of these configurations, the vanishing of x reduces
(3.2a) to

Acy +Auz = 0, (3.4)
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but from Lemma 2.1, the non-vanishing of (y, z) necessarily describes the existence
of a VC-loop.

The index two case, for both ANA and MNA, is more complicated, and as men-
tioned above details can be found in [156, 193, 194]. It is also worth indicating that
these results can be extended to include a broad family of controlled sources; cf.
[61, 156] in this regard. Finally, as detailed in [156], a similar characterization also
holds for NTA models.

3.2.2 Low Index Configurations in the Non-passive Context

Many devices in electrical and electronic circuit theory do not meet the passivity
requirements arising in Theorem 3.1. Examples range from the locally active resis-
tors in Van der Pol or Chua circuits to tunnel diodes or Josephson junctions (see
e.g. [44, 187]). For this reason it is of interest to extend the index characterization
of DAE models to the non-passive context, a task which can be accomplished by
means of tree-based methods. In this direction, the results compiled below can be
found in [55]; the techniques used in the proof of these properties are based on the
use of determinantal expansions and the Cauchy–Binet formula [95], extending the
analysis of nodal admittance matrices originally performed by Maxwell. A proper
tree is a spanning tree which includes all voltage sources and capacitors, and nei-
ther current sources nor inductors; in this context a normal tree is a spanning tree
which contains all voltage sources, no current sources, as many capacitors as pos-
sible and as few inductors as possible [25, 29, 30, 105]. Note that the notion of a
normal reference tree used in Sect. 2.4, which makes a difference between voltage-
and current-controlled resistors, is an extension of this one.

Theorem 3.2 Consider a well-posed, connected circuit with nonsingular induc-
tance matrix L and no coupling among capacitors.

(1) The MNA system (2.7a)–(2.7c) is index zero if and only if
(a) there are no voltage sources;
(b) there exists at least one capacitive spanning tree; and
(c) the sum of products

∑
T ∈Tc

∏
Ci∈T Ci , extended over the set Tc of capacitive

spanning trees in the circuit, does not vanish.
Assume below that at least one of the conditions (a) or (b) fails.

(2) Suppose that the sum in item (c) above does not vanish, and that there is no
coupling among resistors. Then the MNA model (2.7a)–(2.7c) has tractability
index one if and only if either there exists a proper V-tree or
(d) there are neither VC-loops (except for C-loops) nor IL-cutsets; and
(e) the sum of conductance products

∑
T ∈Tn

∏
Gi∈T Gi , extended over the set

Tn of normal trees, does not vanish.

A similar characterization of index one configurations is also discussed for the
ANA model (2.6a)–(2.6e) in [55]. As in the passive context, the simpler structure of
Augmented Nodal Analysis models makes it easier to give some hints on the proof
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of this result (note additionally that ANA models are never index zero). Indeed, the
nonsingularity of the matrix J in (3.1), without a positive definite assumption on G,
can be addressed via the factorization

J =
(

Ar Acu 0
0 0 I

)⎛
⎝

G 0 0
0 0 I

0 I 0

⎞
⎠
⎛
⎝

AT
r 0

AT
cu 0
0 I

⎞
⎠ , (3.5)

where Acu joins together the columns of Ac and Au. The Cauchy–Binet formula
[95] allows one to express the determinant of J as the sum of determinantal products
of maximal, nonsingular square submatrices. These necessarily correspond to span-
ning trees including all voltage sources and capacitors and neither current sources
nor inductors; the determinants of the submatrices coming from the second factor of
(3.5) then yield the conductance products referred to above. Find details in [55]. In
contrast, the description of index two nodal models in non-passive settings remains
open.

3.3 Branch-Oriented and Hybrid Models

3.3.1 Branch-Oriented Models

The index of branch-oriented circuit models in a passive context parallelizes the
MNA case, except for the fact that C-loops lead to index two DAEs, as happens for
ANA models. Find in [149] an analysis of the tractability index of these models,
and in [156] a characterization of the geometric index (cf. Sect. 3.1). Non-passive
circuits are addressed in [68], where both index one and index two configurations
are fully characterized for circuits including both voltage-controlled and current-
controlled resistors. Details on the index analysis of branch-oriented models can be
found in the above-mentioned references; the remainder of this section is focussed
on the hybrid model (2.11a)–(2.11d).

3.3.2 Hybrid Models of Passive Circuits

As detailed in [69, 100, 101, 190], a key advantage of hybrid circuit models is the
fact that their index is not greater than one under very mild assumptions. Broadly
speaking, this is a consequence of the elimination of, say, higher index variables in
the formulation of the model.

The analysis carried out in [100, 101, 190] shows that under the assumption
that the circuit is strictly locally passive, the hybrid model (2.11a)–(2.11d) is either
index zero or one. For it to be index zero, an obvious requirement is the absence of
the algebraic restrictions (2.11c)–(2.11d). This will happen if all voltage-controlled
resistors are located in the cotree and every current-controlled one is in the tree.
Recall that the construction of the hybrid model is based on choosing a tree with as



118 R. Riaza

many twig capacitors and (subsequently) as many twig voltage-controlled resistors
as possible, and as many link inductors and (subsequently) as many link current-
controlled resistors as possible. This means that the algebraic restrictions are absent
if and only if there is no chance to have voltage-controlled resistors in the tree or
current-controlled ones in the cotree. This is equivalent to requiring the so-called
resistor-acyclic condition, according to which (in a circuit without sources) every
voltage-controlled resistor defines a loop together with some capacitors, and every
current-controlled resistor defines a cutset together with some inductors. When the
resistor-acyclic condition is not met, the hybrid model (2.11a)–(2.11d) of a strictly
locally passive circuit is index one; find details in the references [100, 101, 190]
mentioned above.

3.3.3 Hybrid Models of Non-passive Circuits

The index characterization of hybrid models of non-passive, uncoupled circuits is
addressed in [69]. As in the nodal case, such a characterization is obtained in terms
of certain trees. We compile below the main results in this regard, which make use
of certain circuit minors; allowing for the presence of sources, the minor G1 is the
one obtained after short-circuiting voltage sources and open-circuiting all other de-
vices (except for capacitors); G23 is the minor which results from short-circuiting
voltage sources and capacitors, and open-circuiting current sources and inductors.
Finally, the minor G4 is obtained after short-circuiting all elements except for in-
ductors and current sources, and open-circuiting current sources. In the statement
of Theorems 3.3 and 3.4 below, note that a forest is implicitly understood to be a
spanning forest.

Theorem 3.3 Assume that a given circuit does not display capacitive or inductive
coupling. Then the hybrid model (2.11a)–(2.11d) is index zero if and only if the
resistor-acyclic condition is met, and neither the sum of capacitance products in the
forests of G1 nor the sum of inductance products in the coforests of G4 do vanish.

The idea supporting the result above is to factorize the blocks Ctr(vctr
) +

K
T
11Cco(−K11vctr

)K11 and Lco(ilco
)+K44Ltr(K

T
44ilco

)K
T
44 within the matrix M de-

picted in (2.16) as
(
I −K

T
11

)(
Ctr 0
0 Cco

)(
I

−K11

)

and
(
I −K44

)(Lco 0
0 Ltr

)(
I

−KT
44

)
,

respectively, in order to perform a Cauchy–Binet expansion. Find details in [69].
Under very broad assumptions, the failing of the resistor-acyclic condition leads

to an index one model, as stated below.
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Theorem 3.4 Assume that a given uncoupled circuit does not meet the resistor-
acyclic condition, and that the sums of capacitance and inductance products arising
in Theorem 3.3 do not vanish.

Then the hybrid model (2.11a)–(2.11d) is index one if and only if the sum of
products of the conductances of voltage-controlled twig resistors and the resistances
of current-controlled link resistors, extended over the forests of G23, does not vanish.

Again, this is a consequence of the Cauchy–Binet formula, but in this setting the
analysis is more involved. The reader is referred to [69] for a detailed proof of this
result.

3.4 Example

Let us go back to the circuit depicted in Fig. 1. We will use this example to show
the form that the main models discussed in Sect. 2 (namely, MNA and hybrid ones)
take, and also to illustrate the index results reported above.

MNA Denoting by e1, e2 and e3 the potentials at the nodes on top of the voltage
source, the capacitor and the diode, respectively, the MNA model (2.7a)–(2.7c) for
the circuit in Fig. 1 can be checked to read

Ce′2 = il1 − is(t), (3.6a)

L1i
′
l1
= e1 − e2, (3.6b)

L2i
′
l2
= e3, (3.6c)

0 = iu − il1 , (3.6d)

0 = −γg(e3)− il2 + is(t), (3.6e)

0 = vs(t)− e1. (3.6f)

Provided that neither the capacitance nor the inductances vanish, this model is easily
checked to be index one if and only if the incremental conductance at the diode,
that is, G(e3)= γ ′g(e3), is not zero. In particular, this is (obviously) the case if the
diode is strictly locally passive, that is, if G is positive. This index one configuration
reflects the fact that the circuit has neither VC-loops nor IL-cutsets; cf. Theorem 3.1.
The condition G �= 0 can be understood to express the fact that open-circuiting the
diode would result in an IL-cutset.

This simple example also offers a glance at the index analysis in the non-passive
context reported in Sect. 3.2.2. Note that G being positive is not a mandatory re-
quirement for (3.6a)–(3.6f) to be index one. The accurate requirement is that G

does not vanish, and this follows from the fact that the unique normal tree is the
one depicted in Fig. 2. The sum of conductance products arising in Theorem 3.2
amounts in this case to the single conductance G, and therefore the condition G �= 0
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Fig. 3 Short-circuiting L1

fully characterizes index one configurations in this model. Other examples in this
direction can be found in [55, 157].

Let us analyze what happens if L1 vanishes, that is, if we short-circuit the first
inductor; cf. Fig. 3. Now a VC-loop shows up and in light of Theorem 3.1 this
should make the MNA model index two. Both e1 and il1 disappear from the model,
which in this setting takes the form

Ce′2 = iu − is(t), (3.7a)

L2i
′
l2
= e3, (3.7b)

0 = −γg(e3)− il2 + is(t), (3.7c)

0 = vs(t)− e2. (3.7d)

Omitting technical details, it can be checked that the VC-loop indeed makes this
model index two. This follows from the fact that the algebraic variable iu does not
enter equations (3.7c)–(3.7d), in contrast to its appearance in (3.6d).

Hybrid Analysis Using the tree depicted in Fig. 2, hybrid equations for the circuit
in Fig. 1 read

Cv′c = il1 − is(t), (3.8a)

L1i
′
l1
= vs(t)− vc, (3.8b)

L2i
′
l2
= vd, (3.8c)

0 = −γg(vd)− il2 + is(t). (3.8d)

Note that this system is formulated in terms of tree capacitor voltages (which amount
in this case to vc), link inductor currents (il1 , il2 ) and the voltages of tree voltage-
controlled resistors (that is, vd ). The diode prevents the resistor-acyclic condition
from being satisfied and, as in MNA, the index is one provided that the incremental
conductance G(vd)= γ ′g(vd) does not vanish.

A difference with nodal analysis is made in the case L1 = 0 which, as indicated
above, leads to an index two system in MNA. Within the hybrid approach, in this
situation the capacitor must be driven to the cotree (since it is now in parallel with
the voltage source; cf. Fig. 3) and therefore both (3.8a) and (3.8b) disappear from the
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model, so that the resulting equations are still index one. A more detailed discussion
of the computational advantages which result from the low index configurations
arising in hybrid analysis can be found in [100, 101, 190].

4 Memristors and Mem-Devices

The report in 2008 of a nanometre-scale device displaying a memristive character-
istic [184] has had a great impact in the electrical and electronic engineering com-
munities; cf. [11, 17, 45, 51, 70, 97–99, 102, 103, 121–124, 131–133, 157, 159–
161, 163, 167, 203] and references therein. The existence of the memory-resistor or
memristor was already postulated by Leon Chua in 1971 [34], and the actual appear-
ance of memristors in nanoscale electronics has raised a renewed interest in these
devices. The memristor, which is defined by a nonlinear charge-flux characteristic,
is considered as the fourth basic circuit element, besides the resistor, the inductor
and the capacitor which relate the voltage–current, current-flux and voltage–charge
pairs, respectively. This device is likely to play a relevant role in electronics in the
near future, especially at the nanometre scale. Many applications are already re-
ported, e.g. in pattern recognition, design of associative memories, signal process-
ing, adaptive systems, etc. (see [11, 45, 51, 97–99, 123, 132, 133]). HP has an-
nounced the release by 2013 of commercial memory chips based on the memristor
[1]. The notion of a device with memory was extended to the reactive setting by Di
Ventra, Pershin and Chua [51] to define memcapacitors and meminductors.

4.1 Memristors

The characteristic of a memristor may have either a charge-controlled or a flux-
controlled form. In a charge-controlled setting, the characteristic reads

ϕ = φ(q), (4.1)

for some C1 map φ. The incremental memristance is

M(q)= φ′(q).

Using the relations ϕ′ = v, q ′ = i we get the voltage–current characteristic

v =M(q)i. (4.2)

This relation shows that the device behaves as a resistor in which the resistance
depends on q(t) = ∫ t−∞ i(τ ) dτ , hence the memory-resistor name. This is the key
feature of the device. In greater generality, one may consider (4.2) as a particular
case of a fully nonlinear characteristic of the form

v = η(q, i),
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as proposed in [160]. We refer the reader to [40] for a discussion of the more general
family of memristive systems.

In turn, a flux-controlled memristor has a characteristic of the form

q = ξ(ϕ), (4.3)

and the incremental memductance is

W(ϕ)= ξ ′(ϕ).

The voltage-current relation has in this case the form

i =W(ϕ)v (4.4)

or, in a fully nonlinear context,

i = ζ(ϕ, v).

A memristor governed by (4.2) or (4.4) is said to be strictly locally passive if
M(q) > 0 or W(ϕ) > 0 for all q or ϕ, respectively. In the presence of coupling
effects (if eventually displayed), this requirement must be restated by asking the
memristance or memductance matrices to be positive definite.

4.2 Memcapacitors, Meminductors and Higher Order Devices

Di Ventra, Pershin and Chua extended in [51] the idea of a device with memory to
reactive elements. A (voltage-controlled) memcapacitor has a characteristic of the
form

q = Cm(ϕ)v. (4.5)

Here Cm is the memcapacitance. The distinct feature of this device is that the mem-
capacitance depends on the state variable ϕ(t) = ∫ t−∞ v(τ) dτ , so that the relation

q(t) = Cm(
∫ t
−∞ v(τ) dτ)v(t) reflects the device history. Analogously, a (current-

controlled) meminductor is governed by

ϕ = Lm(q)i, (4.6)

and Lm(q) is the meminductance, which reflects the device history via the vari-
able q .

Note that both (4.5) and (4.6) come from differentiating a two-variable relation,
namely σ = α(ϕ) for voltage-controlled memcapacitors and ρ = β(q) for current-
controlled meminductors; here σ and ρ arise as the time-integrals of q and ϕ, re-
spectively. By using the differentiated relations (4.5) and (4.6) we get rid of these
second order variables. This is not the case for so-called second-order devices, for
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which either σ or ρ appear explicitly in the memcapacitance or the meminductance.
Specifically, a charge-controlled memcapacitor is a device defined by the relations

σ ′ = q, (4.7a)

q ′ = i, (4.7b)

v = C−1(σ )q, (4.7c)

whereas a flux-controlled meminductor is characterized by

ρ′ = ϕ, (4.8a)

ϕ′ = v, (4.8b)

i = L−1(ρ)ϕ. (4.8c)

We refer the reader to [17, 51] for an introduction to these and other related devices.

4.3 DAE Models of Circuits with Mem-Devices

The nodal, branch-oriented and hybrid models discussed in Sect. 2 can be easily
extended to accommodate memristors. In particular, the ANA model of a circuit
including charge-controlled memristors can be written as (cf. [167])

C(vc)v
′
c = ic, (4.9a)

L(il)i
′
l = AT

l e, (4.9b)

q ′m = im, (4.9c)

0 = Arγg

(
AT

r e
)+Alil +Acic +Amim +Auiu +Aj is(t), (4.9d)

0 = vc −AT
c e, (4.9e)

0 = vs(t)−AT
u e, (4.9f)

0 =M(qm)im −AT
me (4.9g)

or, under a flux-control assumption on memristors, as

C(vc)v
′
c = ic, (4.10a)

L(il)i
′
l = AT

l e, (4.10b)

ϕ′m = AT
me, (4.10c)

0 = Arγg

(
AT

r e
)+Alil +Acic +Amim +Auiu +Aj is(t), (4.10d)

0 = vc −AT
c e, (4.10e)
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0 = vs(t)−AT
u e, (4.10f)

0 = im −W(ϕm)AT
me. (4.10g)

Branch-oriented models of circuits with charge-controlled memristors and current-
controlled resistors are discussed in [70]. These models can be written in the form

C(vc)v
′
c = ic, (4.11a)

L(il)i
′
l = vl, (4.11b)

q ′m = im, (4.11c)

0 = vm −M(qm)im, (4.11d)

0 = vr − γr(ir ), (4.11e)

0 = Acic +Alil +Amim +Arir +Auiu +Aj is(t), (4.11f)

0 = Bcvc +Blvl +Bmvm +Brvr +Buvs(t)+Bjvj . (4.11g)

Kirchhoff’s current law (4.11f) can be written, alternatively, in terms of a reduced
cutset matrix Q. Flux-controlled memristors and voltage-controlled resistors can be
easily accommodated in this framework.

Hybrid models can be also extended to accommodate both charge-controlled
and flux-controlled memristors; find details in [69], where a full index character-
ization is carried out without passivity assumptions. Previous index results directed
to the above-mentioned nodal and branch-oriented models in a strictly locally pas-
sive setting can be found in [70, 167]. In contrast, a general characterization of the
index of circuits with other mem-devices remains open.

5 Dynamical Aspects

5.1 The State Formulation Problem

The differential-algebraic formalism makes it possible to revisit the problem of for-
mulating a state space model a given nonlinear circuit. The problem is how to obtain
an explicit ODE modelling the dynamics, either in a local or a global sense. Note
that this is a theoretical problem which is important in the study of different ana-
lytical features of nonlinear circuits (concerning e.g. stability aspects, oscillations,
bifurcations or chaotic phenomena), although from the computational point of view
it is often preferred to simulate the circuit behaviour using directly a differential-
algebraic model and appropriate numerical tools. In the state formulation problem
the goal is often to formulate state space models not for individual problems but
for general circuit families, in terms of their topology. In our framework, the state
formulation problem can be naturally addressed as a reduction of a semistate model.
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This reduction can be discussed in terms of different DAE models, although
the best-suited ones in this regard are the branch-oriented and hybrid models of
Sect. 2.4. Note e.g. that the problem can be stated as the elimination of resistive
variables and iu, vj , ic , vl in the branch-oriented model (2.8a)–(2.8e), or just ic ,
vl in the multiport model (2.12a)–(2.12c); it is worth noticing that this model can
be seen as an intermediate step between the branch-oriented one and a state space
model formulated in terms of vc, il . In index two settings, cotree capacitor voltages
and tree inductor currents must also be removed; this can be alternatively performed
by eliminating vgtr

and irco
in the hybrid model (2.11a)–(2.11d).

The state formulation problem as a reduction of semistate models is discussed in
detail in [156] and, for memristive circuits, in [159]. For the sake of completeness,
it is important to mention that the state space formulation problem has been also
tackled without using a differential-algebraic formalism, stemming from the original
work of Bashkow and Bryant [15, 29, 30]: some recent results in this direction can
be found in [110, 125, 150, 177–180].

5.2 Singularities and Impasse Phenomena

Some readers might conjecture at this point that, since DAEs may be eventually
reduced to an explicit ODE on a manifold, no new local dynamic phenomena should
be expected in the differential-algebraic setting. This should apply in particular to
the local dynamics of nonlinear circuits. This point of view, which essentially looks
at DAEs just as a modelling tool, is incomplete. Besides the fact that in practice this
reduction may not be feasible, even from a theoretical point of view such a reduction
to an explicit ODE is possible only when the index is well-defined, but this is not
the case in the presence of so-called singularities.

It is interesting to note that research on singular DAEs was motivated to a large
extent by certain phenomena observed in circuit theory, namely, the so-called jump
phenomenon (cf. [172] and references therein). This was formalized as impasse phe-
nomena roughly at the same time by Chua and Deng [36, 37] and Rabier [135]. An
impasse point is defined as a point where a pair of trajectories collapse in (either
backward or forward) finite time with infinite speed; more precisely, denoting by Ω

the semistate space of the DAE, x∗ is a forward impasse point if there exists a δ > 0
and two distinct solutions in C1((−δ,0),Ω) ∩ C0((−δ,0],Ω) with x(0) = x∗,
whose derivatives blow up at t = 0. A backward impasse point is defined analo-
gously, just requiring the solutions to be defined in C1((0, δ),Ω)∩C0([0, δ),Ω).

Noteworthy, Chua and Deng addressed the problem in the setting of semiexplicit
DAEs, whereas Rabier tackled it for quasilinear ODEs amounting to an explicit
equation except on a hypersurface of singular points. Only later the connection be-
tween both settings would be made, once it was realized that quasilinear ODEs with
a singular hypersurface provide the natural reduction of DAEs with arbitrary in-
dex near singular points (cf. [138–140, 156]), much as explicit ODEs arise as the
reduction of DAEs near points with a well-defined index. Singular DAEs in the
circuit context have been specifically discussed in [148, 155, 158]. Normal forms
and closely related topics are addressed in [151, 191].
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5.3 Qualitative Properties in the Semistate Context

Qualitative aspects play a key role in dynamical systems theory, and in particular
in nonlinear circuit theory. The local or global behaviour of a system may often
be characterized in terms of some of its invariants (equilibria, periodic solutions,
chaotic attractors); their stability and their dependence on certain parameters are
often the key ingredients to understand the system behaviour.

In the nonlinear circuit context, qualitative properties are often addressed via
state space models; see e.g. [35, 38, 39, 63, 72–74, 92, 118, 120, 188, 189] and ref-
erences therein. However, performing a state space reduction may be unnecessary
from the qualitative point of view; the DAE formalism provides different tools
which make it possible to analyze stability features and bifurcations in the semistate
context. This is specially relevant in large scale integration circuits. In contrast to
low scale circuits (even if they have rich dynamics) such as Van der Pol’s or Chua’s
circuits, where modelling is not an issue, in large scale circuits it is often difficult to
perform a state reduction, which is not actually necessary for a qualitative analysis.

Indeed, the linearization about equilibria can be characterized in the DAE context
using matrix pencils; in this direction, find a characterization of different stability
properties of equilibria of nonlinear circuits in the paper [165]. In particular, the role
of so-called non-hyperbolic configurations (yielding purely imaginary eigenvalues
and oscillations) were further studied in [166, 168]. In these papers, the role of cer-
tain configurations such as VCL-loops and ICL-cutsets were carefully examined,
extending several properties involving VL-loops and IC-cutsets which were already
known to yield null eigenvalues [59, 86, 118]. Beyond the linear time-invariant con-
text, oscillations were analyzed using a DAE formulation in [46]. Different aspects
concerning DC operating points are addressed in [72–74]. Several qualitative results
based on Lyapunov function methods can be found in [38, 63, 92, 189], although
most of these references do not make specific use of a DAE formalism. It is also
worth mentioning that qualitative properties of nonlinear circuits can be studied via
the geometric approach stemming from the work of Brayton and Moser [22, 23];
later results in this direction can be found in [50, 86, 87, 176, 200, 201].

Qualitative properties of circuits with memristors have been studied in recent
years [97, 121–124, 160]. Peculiar dynamics arise from the presence of non-isolated
equilibria, which had been observed in particular instances of memristive circuits
e.g. in [121]. This issue has been recently addressed in broader generality [161],
where graph-theoretic conditions guaranteeing the normal hyperbolicity of such
manifolds of equilibria are provided. The failing of certain passivity assumptions
along the manifold of equilibria motivates the analysis of certain bifurcations with-
out parameters in memristive circuits; find details in [161]. Chaotic phenomena in
memristive circuits have been studied by several authors; see e.g. [11, 122–124].
The differential-algebraic formalism seems to be promising regarding further qual-
itative analyses of circuits with mem-devices.
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6 Other Topics in DAE-Based Circuit Modelling

More briefly, we compile in this section some references addressing other aspects
of circuit theory in which DAE models play a role.

Model Reduction Model order reduction techniques aim at a substantial reduc-
tion of the number of variables involved in the description of a given dynamical
system, while at the same time retaining the essential features of the original sys-
tem. In circuit analysis, this is especially relevant when using distributed models; the
space discretization of these yields an ordinary differential equation or a DAE with
a very large number of state variables. Model reduction approaches in this context
are discussed in [65, 66, 144–146, 185, 195, 199].

Coupled Problems Recent research has also been directed to coupled problems,
in which electrical circuits interact with other systems of different nature. Electri-
cal circuits with semiconductor devices are often modelled combining DAEs for
the lumped elements and PDEs for the distributed semiconductor devices, leading
to a PDAE formalism: see [2, 3, 14, 18, 77, 78, 119, 147, 175, 194] and refer-
ences therein, as well as the survey on PDAEs within this volume. Semiconduc-
tors and electrical circuits including thermal effects are considered in [26]. In [28],
a model accommodating electrical circuits, semiconductors and thermal networks
modelling heat evolution in lumped elements is analyzed and simulated. A discus-
sion of the coupling of electrical circuits with optoelectronic devices (semiconduc-
tor lasers) can be found in [27]. For field/circuit coupling the reader is referred to
[13, 14, 174] and references therein.

Numerics in Circuit Simulation via DAE Models This survey is focussed on
analytical aspects of DAE-based circuit modelling. Certainly, numerical simulation
is of major importance in nonlinear circuit theory and we compile here some ref-
erences in this direction, without any attempt at being exhaustive. With regard to
the problem of consistent initialization in circuit simulation, cf. [16, 56–58, 60]
and references therein. Numerical aspects of properly stated DAEs modelling non-
linear circuits are addressed in [107, 115, 194]. Multirate methods are discussed
in [12, 174, 183, 192, 197]. For the use of dynamic iteration methods the reader
is referred to [7, 14, 54] and the references compiled therein. Numerical aspects
involving stochastic DAEs in circuit simulation are discussed in [130, 173, 202].
Other numerical aspects in circuit simulation can be found in [47, 80, 81, 116, 129].

Other Topics DAEs have been also used in connection to circuit synthesis of pas-
sive semistate systems [143]. Fault diagnosis problems are discussed using a DAE
formalism in [52, 59, 182] and via a sensitivity analysis in [96]. Index reduction
methods are addressed in [8, 9]. For a discussion of port-Hamiltonian formulations
the reader is referred to [102, 134, 196] and to the corresponding survey in this
volume.
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7 Concluding Remarks

Differential-algebraic equations play nowadays a key role in nonlinear circuit mod-
elling, specially because of the chance to set up automatically the circuit equations
in semistate (differential-algebraic) form. In this survey we have presented a detailed
introduction to the main families of DAE circuit models, emanating from different
methods of circuit analysis; these include nodal analysis, as well as branch-oriented
and hybrid modelling. We include a detailed compilation of index characterizations
for different models, applying also in non-passive settings. Some results in this di-
rection remain open; for instance, a full index-two characterization of nodal models
is not yet known in a non-passive context. The models and the index analysis can
be extended in a natural manner to circuits including memristors; in this regard,
the index of circuits with reactive and higher-order mem-devices has not been ad-
dressed in the literature. We have discussed more briefly other analytical issues,
regarding the dynamics of nonlinear circuits as well as other aspects related e.g. to
model reduction, coupled problems or numerics. Finally, the reader can find several
related results in the papers on PDAEs and on port-Hamiltonian systems within this
volume.
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Solution Concepts for Linear DAEs: A Survey

Stephan Trenn

Abstract This survey aims at giving a comprehensive overview of the solution
theory of linear differential-algebraic equations (DAEs). For classical solutions a
complete solution characterization is presented including explicit solution formulas
similar to the ones known for linear ordinary differential equations (ODEs). The
problem of inconsistent initial values is treated and different approaches are dis-
cussed. In particular, the common Laplace-transform approach is discussed in the
light of more recent distributional solution frameworks.

Keywords Differential algebraic equations · Descriptor systems · Distributional
solution theory · Laplace transform
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1 Introduction

Modeling physical phenomena relates physical variables via differential equations
as well as algebraic equations leading in general to a system description of the form

F(t, ẋ, x)= 0,

a differential-algebraic equation (DAE). However, this survey will not treat this
most general system description but it will consider its linear counterpart

Eẋ =Ax + f, (1.1)

where E,A ∈ R
m×n, m,n ∈ N, are constant matrices and f : R→ R

m is some
inhomogeneity. If the matrix E is square and invertible, the DAE is equivalent to an
ordinary differential equation (ODE) of the form

ẋ =Ax + f. (1.2)
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For this ODE the solution theory is well understood and there have been no disputes
or different viewpoints on it in the last five or more decades. In fact, the solution
formula can concisely be expressed with the matrix exponential:

x(t)= eAtx0 +
∫ t

0
eA(t−τ)f (τ )dτ, x0 ∈Rn; (1.3)

although the Jordan canonical form of A is essential to grasp the whole of the pos-
sibilities of solution behaviors. Some features of the solutions of an ODE are high-
lighted:

Existence. For every initial condition x(0) = x0, x0 ∈ R
n, and each (locally inte-

grable) inhomogeneity f there exists a solution.
Uniqueness. For any fixed inhomogeneity f the initial value x(0) uniquely deter-

mines the whole solution; in fact each single value x(t), t ∈ R, determines the
solution on the whole time axis.

Inhomogeneity. The solution is always one degree “smoother” then the inhomo-
geneity, i.e. if f is differentiable then x is at least twice differentiable, in particular,
non-smoothness of f does not prevent the ODE of having a solution (at least in
the sense of Carathéodory).

In Sects. 2.4 and 2.5 solution formulas similar to (1.3) will be presented for regu-
lar DAEs; however, for general DAEs none of these three properties have to hold
anymore as the following example shows.

Example 1.1 Consider the DAE
⎡
⎣

0 1 0
0 0 0
0 0 0

⎤
⎦ ẋ =
⎡
⎣

1 0 0
0 1 0
0 0 0

⎤
⎦x + f

which implies x2 = −f2, x1 = ẋ2 − f1 = −ḟ2 − f1 and f3 = 0. In particular, not
for all initial values or all inhomogeneities there exists a solution. Furthermore, x3 is
not restricted at all, hence uniqueness of solutions is not present. Finally, x1 contains
the derivative of the inhomogeneity so that the solution is “less smooth” than the in-
homogeneity which could lead to non-existence of solutions if the inhomogeneities
is not sufficiently smooth.

The aim of this survey is twofold: (1) to present a fairly complete classical solu-
tion theory for the DAE (1.1) also for the singular case; (2) to discuss the approaches
to treat inconsistent initial values and the corresponding distributional solution con-
cepts. In particular, a rigorous discussion of the so-called Laplace-transform ap-
proach to treat inconsistent initial values and its connection to distributional solu-
tion concepts is carried out. This is a major difference with the already available
survey by Lewis [32], which is not so much concerned with distributional solutions.
The focus of Lewis’ survey is more on system theoretic topics like controllability,
observability, stability and feedback, which are not treated here.
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This survey is structured as follows. In Sect. 2 classical (i.e. differentiable) so-
lutions of (1.1) are studied. It is shown how the Weierstraß and Kronecker canoni-
cal form of the matrix pencil sE − A ∈ Rm×n[s] can be used to fully characterize
the solutions. Solution formulas which do not need the complete knowledge of the
canonical forms will be presented, too. A short overview over the situation for time-
varying DAEs is given as well. Inconsistent initial values are the most discussed
topics concerning DAEs and different arguments how to treat them have been pro-
posed. One common approach to treat inconsistent values is the application of the
Laplace transform to (1.1); the details are explained in Sect. 4. However, the lat-
ter approach led to much confusion and therefore a time-domain approach based
on distributional solutions was developed and studied by a number of authors, see
Sect. 5.

2 Classical Solutions

In this section classical solutions of the DAE (1.1) are considered:

Definition 2.1 (Classical solution) A classical solution of the DAE (1.1) is any
differential function x ∈ C 1(R→R

n) such that Eẋ(t)=Ax(t)+f (t) holds for all
t ∈R.

It will turn out that existence of a classical solution in general also depends on the
smoothness properties of the inhomogeneity; if not mentioned otherwise it will be
assumed therefore in the following that the inhomogeneity f is sufficiently smooth,
e.g. by assuming that f is in fact smooth (i.e. arbitrarily often differentiable).

2.1 The Kronecker and Weierstraß Canonical Forms

The first appearance of DAEs (1.1) with a complete solution discussion seems to be
the one by Gantmacher [21] (Russian original 1953), where he considered classical
solutions. His analysis is based on the following notion of equivalence of matrix
pairs (called strict equivalence by him):

(E1,A1)∼= (E2,A2)

:⇔ ∃S ∈Rm×m,T ∈Rn×n both invertible: (E1,A1)= (SE2T ,SA2T ).

It is clear that for equivalent matrix pairs (E1,A1) and (E2,A2) (via the transfor-
mation matrices S and T ) the following equivalence holds:

x solves E1ẋ =A1x + f ⇔ z= T −1x solves E2ż=Az+ S−1f.
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Gantmacher’s focus is actually on matrix pencils sE−A ∈Rm×n[s] and the deriva-
tion of a canonical form corresponding to the above equivalence—the Kronecker
canonical form (KCF). The solution theory of the DAE (1.1) is a mere application
of the KCF. In particular, he does not consider inconsistent initial values or non-
smooth inhomogeneities. The existence and representation of the KCF is formulated
with the following result.

Theorem 2.1 (Kronecker canonical form [21, 28]) For every matrix pencil sE −
A ∈Rm×n[s] there exist invertible matrices S ∈Cm×m and T ∈Cn×n such that, for
a, b, c, d ∈N and ε1, . . . , εa , ρ1, . . . , ρb , σ1, . . . , σc, η1, . . . , ηd ∈N,

S(sE −A)T = diag
(
Pε1(s), . . . ,Pεa (s),Jρ1(s), . . . ,Jρb

(s),

Nσ1(s), . . . ,Nσc (s),Qη1(s), . . . ,Qηd
(s)
)
, (2.1)

where

Pε(s)= s

⎡
⎢⎣

0 1
. . .

. . .

0 1

⎤
⎥⎦−
⎡
⎢⎣

1 0
. . .

. . .

1 0

⎤
⎥⎦ ∈Rε×(ε+1)[s], ε ∈N,

Jρ(s)= sI −

⎡
⎢⎢⎢⎢⎣

λ 1
. . .

. . .

. . . 1
λ

⎤
⎥⎥⎥⎥⎦
∈Cρ×ρ[s], ρ ∈N, λ ∈C,

Nσ (s)= s

⎡
⎢⎢⎢⎢⎣

0

1
. . .

. . .
. . .

1 0

⎤
⎥⎥⎥⎥⎦
− I ∈Rσ×σ [s], σ ∈N,

Qη(s)= s

⎡
⎢⎢⎢⎢⎣

0

1
. . .

. . . 0
1

⎤
⎥⎥⎥⎥⎦
−

⎡
⎢⎢⎢⎢⎣

1

0
. . .

. . . 1
0

⎤
⎥⎥⎥⎥⎦
∈R(η+1)×η[s], η ∈N.

The block-diagonal form (2.1) is unique up to reordering of the blocks and is called
Kronecker canonical form (KCF) of the matrix pencil (sE −A).

Note that in the KCF Pε(s)-blocks with ε = 0 and Qη(s)-blocks with η= 0 are
possible, which results in zero columns (for ε = 0) and/or zero rows (for η = 0) in
the KCF, see the following example.
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Example 2.1 (KCF of Example 1.1) By a simple interchanging of rows and columns
the KCF is obtained from Example 1.1 and has the following form

i.e. the KCF consists of one P0(s)-block, one N2(s)-block and one Q0(s)-block.

In the canonical coordinates the solution analysis is now rather straightforward
because each block on the diagonal and the associated variables can be considered
separately. The four different block types lead to the following solution characteri-
zations:

Pε(s)-block If ε = 0 then this simply means that the corresponding variable does
not appear in the equations and is therefore free and can be chosen arbitrarily. For
ε > 0 consider the differential equation Pε(

d
dt

)(x)= f which equivalently can be
written as the ODE

⎛
⎜⎜⎜⎝

ẋ2
ẋ3
...

ẋε+1

⎞
⎟⎟⎟⎠=

⎡
⎢⎢⎢⎢⎣

0

1
. . .

. . .
. . .

1 0

⎤
⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎝

x2
x3
...

xε+1

⎞
⎟⎟⎟⎠+

⎛
⎜⎜⎝

f1
f2
. . .

fε

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

1
0
. . .

0

⎞
⎟⎟⎠x1.

Hence for any x1 and any inhomogeneity f there exist solutions for x2, x3, . . . , xε+1
uniquely determined by the initial values x2(0), . . . , x3(0). In particular, for all
initial values and all inhomogeneities there exist solutions which are not unique
because x1 can freely be chosen.

Jρ(s)-block The differential equation Jρ( d
dt

)(x) = f is a standard linear ODE,
i.e. it holds that for all initial values and all inhomogeneities a unique solution.

Nρ(s)-block Write Nρ(s)= sN − I , then it is easily seen that the differential op-
erator Nρ( d

dt
) : C∞→ C∞ is invertible with inverse

(
N

d

dt
− I

)−1

=−
ρ−1∑
i=0

Ni d

dt

i

. (2.2)

In particular for any smooth inhomogeneity the solution of the differential equation
N ( d

dt
)(x)= f is uniquely given by

x =−
ρ−1∑
i=0

Nif (i) =

⎛
⎜⎜⎜⎝

−f1

−f2 − ḟ1
...

−fρ − ḟρ−1 − · · · − f
(ρ−1)
1

⎞
⎟⎟⎟⎠ . (2.3)

In particular it is not possible to specify the initial values arbitrarily—they are
completely determined by the inhomogeneity.
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Qη(s)-block If η = 0 then no variable is present and the equation reads 0 = f ,
hence not for all inhomogeneities the overall DAE is solvable. If η > 0 then the so-
lution of the differential equation Qη(

d
dt

)(x)= f is given by (2.3) with ρ replaced
by η but only if the inhomogeneity fulfills

fη+1 = ẋη =−ḟη − f̈η − · · · − f
(η)

1 .

In particular not for all inhomogeneities and not for all initial values solutions exist.
However, when solutions exist they are uniquely given by (2.3).

A consequence of the above blockwise analysis is the following result.

Corollary 2.2 (Existence and uniqueness of solutions) The DAE (1.1) has a smooth
solution x for all smooth inhomogeneities f if, and only if, in the KCF the Qη(s)-
blocks are not present. Any solution x of (1.1) with fixed inhomogeneity f is
uniquely determined by the initial value x(0) if, and only if, in the KCF the Pε(s)-
blocks are not present.

The KCF without the Pε(s) and Qη(s) blocks is also called the Weierstraß
canonical form (WCF) and can be characterized directly in terms of the original
matrices. For this the notion of regularity is needed.

Definition 2.2 (Regularity) The matrix pencil sE −A ∈ Rm×n[s] is called regular
if, and only if, n = m and det(sE − A) is not the zero polynomial. The matrix
pair (E,A) and the corresponding DAE (1.1) is called regular whenever sE −A is
regular.

Theorem 2.3 (Weierstraß canonical form [49]) The matrix pencil sE − A ∈
R

n×n[s] is regular if, and only if, there exist invertible matrices S,T ∈ Cn×n such
that sE −A is transformed into the Weierstraß canonical form (WCF)

S(sE −A)T = s

[
I 0
0 N

]
−
[
J 0
0 I

]
,

where J ∈Cn1×n1 , N ∈Cn2×n2 , n1+n2 = n, are matrices in Jordan canonical form
and N is nilpotent.

In conclusion, if one aims at similar solution properties as for classical linear
ODEs the class of regular DAEs is exactly the one to consider, see also Sects. 2.4
and 2.5. In the classical solution framework there is still a gap between ODEs and
regular DAEs because (1.1) does not have solutions for all initial values and not for
insufficiently smooth inhomogeneities. However, in a distributional solution frame-
work these two missing properties can also be recaptured, see Sect. 5.
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2.2 Solution Formulas Based on the Wong Sequences: General
Case

For practical problems the above solution characterization is not so useful as the
determination of the KCF is numerically ill posed. Therefore, solution formulas
which do not need the complete KCF are of interest. One of the first work in this
direction is the one by Wilkonson [50], who presents an iterative algorithm to obtain
the solutions. More geometrical approaches can be traced back to Dieudonné [15]
and Wong [51]; the latter introduced the two important subspace sequences for a
matrix pair (E,A) ∈ (Rm×n)2:

V0 =R
n, Vi+1 =A−1(EVi ), i = 0,1,2, . . . ,

W0 = {0}, Wj+1 =E−1(AWj ), j = 0,1,2, . . . ,
(2.4)

which therefore will be called Wong sequences in the following. It is easily seen that
the Wong sequences are nested and terminate after finitely many steps, i.e.

∃i∗ ∈ {0,1, . . . , n} : V ∗ :=
⋂
i∈N

Vi = Vi∗ ,

∃j∗ ∈ {0,1, . . . , n} : W ∗ :=
⋃
j∈N

Wj =Wj∗ .

Bernhard [6] used the first Wong sequence in his geometrical analysis of (1.1) where
the inhomogeneity has the special form f = Bu for some suitable matrix B . Uti-
lizing both Wong sequences Armentano [2] was able to obtain a Kronecker like
form. However, his arguments are purely geometrical and it is not apparent how
to characterize the solutions of (1.1) because the necessary transformation matrices
are not given explicitly. This problem was resolved recently in [4], where the fol-
lowing connection between the Wong sequences and a quasi-Kronecker form was
established.

Theorem 2.4 (Quasi Kronecker form (QKF) [4]) Consider the DAE (1.1) and the
corresponding limits V ∗ and W ∗ of the Wong sequences (2.4). Choose any invert-
ible matrices [P1,R1,Q1] ∈Rn×n and [P2,R2,Q2] ∈Rm×m such that

imP1 = V ∗ ∩W ∗, im[P1,R1] = V ∗ +W ∗,
imP2 = EV ∗ ∩AW ∗, im[P2,R2] =EV ∗ +AW ∗,

then T = [P1,R1,Q1], S = [P2,R2,Q2]−1 put the matrix pencil sE−A into quasi-
Kronecker triangular form (QKTF):

S(sE −A)T =
⎡
⎣

sEP −AP sEPR −APR sEPQ −APQ

0 sER −AR sERQ −ARQ

0 0 sEQ −AQ

⎤
⎦ , (2.5)
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where λEP −AP has full row rank for all λ ∈C ∪ {∞}, sER −AR is regular, and
λEQ − AQ has full column rank for all λ ∈ C ∪ {∞}. Furthermore, the following
generalized Sylvester equations are solvable:

0=ERQ +ERF1 + F2EQ, 0=ARQ +ARF1 + F2AQ,

0=EPR +EP G1 +G2ER, 0=APR +AP G1 +G2AR,

0= (EPQ +EPRF1)+EP H1 +H2EQ,

0= (APQ +APRF1)+AP H1 +H2AQ,

and any solutions F1,F2,G1,G2,H1,H2 yield a quasi-Kronecker form (QKF) via

⎡
⎣

I −G2 −H2
0 I −F2
0 0 I

⎤
⎦
−1

S(sE −A)T

⎡
⎣

I G1 H1
0 I F1
0 0 I

⎤
⎦

=
⎡
⎣

sEP −AP 0 0
0 sER −AR 0
0 0 sEQ −AQ

⎤
⎦ , (2.6)

where the diagonal block entries are the same as in (2.5).

The solution analysis can now be carried out via analyzing the blocks in the QKF
(2.6) individually:

• sEP − AP : Due to the full rank assumption there exists a unimodular1 matrix
[MP (s),KP (s)] such that

(sEP −AP )
[
MP (s),KP (s)

]= [I,0], (2.7)

see e.g. [4, Lem. 3.1]. The solutions xP of the DAE EP ẋP = AP xP + fP are
given by

xP =MP

(
d

dt

)
(fP )+KP

(
d

dt

)
(u)

where u : R→ R
nP−mP is an arbitrary (sufficiently smooth) function and where

mP × nP with mP < nP is the size of the matrix pencil sEP −AP . Furthermore,
each initial condition xP (0)= x0

P can be achieved by an appropriate choice of u.
• sER −AR : The solution behavior for a regular DAE was already discussed at the

end of Sect. 2.1, a further discussion is carried out in Sects. 2.4 and 2.5.

1A polynomial matrix is called unimodular if it is invertible and its inverse is again a polynomial
matrix.
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• sEQ −AQ: Analogous to the sEP −AP block there exists a unimodular matrix[MQ(s)

KQ(s)

]
such that

[
MQ(s)

KQ(s)

]
(sEQ −AQ)=

[
I

0

]
. (2.8)

Then EQẋQ =AQxQ + fQ is solvable if, and only if,

KQ

(
d

dt

)
(fQ)= 0

and the solution is uniquely determined by

xQ =MQ

(
d

dt

)
(fQ).

In particular, the initial values cannot be specified as they are already fixed by
xQ(0)=MQ( d

dt
)(fQ)(0).

In summary, the QKF decouples the corresponding DAE into the underdeter-
mined part (existence but non-uniqueness of solutions), the regular part (existence
and uniqueness of solutions) and the overdetermined part (uniqueness of solu-
tion but possible non-existence). Furthermore, the above solution characterization
can also be carried out directly with the QKTF (2.5), where the analysis for the
sEQ − AQ block remains unchanged, for the regular block the inhomogeneity fR

is replaced by fR + (ERQ
d
dt
−ARQ)(xQ) and for the sEP −AP block the inhomo-

geneity fP is replaced by fP + (EPR
d
dt
−APR)(xR)+ (EPQ

d
dt
−APQ)(xQ).

Remark 2.1 (Refinement of QKF [3]) If R1 and R2 in Theorem 2.4 are chosen in
the special way R1 = [RJ

1 ,RN
1 ] and R2 = [RJ

2 ,RN
2 ] where

im
[
P1,R

J
1

]= V ∗, im
[
P2,R

J
2

]=EV ∗,

then a decoupling of the regular part in (2.5) corresponding the WCF is obtained as
well. In particular, applying the Wong sequences again to the regular part (see next
section) is not necessary for a further analysis.

2.3 Existence and Uniqueness of Solutions with Respect to In-
and Outputs

In practical application the inhomogeneity f in the DAE (1.1) is often generated by
a lower dimensional input u, i.e. f = Bu for some suitable matrix B; furthermore,
an output y = Cx +Du is introduced to represent the signals of the systems which
are available for measurement and/or are of interest. The resulting DAE is then
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often called descriptor system [52] (other common names are singular systems [8]
or generalized state-space system [48])

Eẋ =Ax +Bu,

y = Cx +Du.
(2.9)

Clearly, a solution theory for general DAEs (1.1) is also applicable to descriptor
systems (2.9). In particular, regularity of the matrix pair (E,A) guarantees existence
and uniqueness of solutions for any sufficiently smooth input. However, existence
and uniqueness of solutions with respect to the input and output might hold for
descriptor systems even when the matrix pair (E,A) is not regular as the following
example shows.

Example 2.2 Consider the following descriptor system:

[
0 0
0 0

]
ẋ =
[

1 0
0 0

]
x +
[

1
0

]
u,

y = [1 0
]
x + [0 ]u,

which has for any input u the unique output y = −u. However, the corresponding
matrix pair (E,A)= ([ 0 0

0 0

]
,
[ 1 0

0 0

])
is not regular.

It is therefore useful to define the notion of external regularity.

Definition 2.3 (External regularity) The descriptor system (2.9) and the corre-
sponding matrix tuple (E,A,B,C,D) are called externally regular if, only if, for
all sufficiently smooth inputs u there exist (classical) solutions x of (2.9) and the
output y is uniquely determined by u and x(0).

With the help of the quasi-Kronecker form it is now possible to prove the follow-
ing characterization of external regularity.

Theorem 2.5 (Characterization of external regularity) The descriptor system (2.9)
is externally regular if, and only if,

rk[sE −A,B] = rk[sE −A] = rk

[
sE −A

C

]
(2.10)

for infinitely many s ∈C.

Proof The rank of a matrix does not change when multiplied with invertible ma-
trices (from the left and the right), hence it can be assumed that the matrix pair
(E,A) is already in QKF (2.6) with corresponding transformation matrices S

and T . According to the block size in (2.6) let SB = [B�P ,B�R ,B�Q]� and CT =
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[CP ,CR,CQ]. Then (2.10) is equivalent to

rk[sEQ −AQ,BQ] = rk[sEQ −AQ] and rk

[
sEP −AP

CP

]
= rk[sEP −AP ]

for infinitely many s ∈ C. The rank is also invariant under multiplication with uni-
modular polynomial matrices, hence (2.10) is also equivalent to, invoking (2.8) and
(2.7),

rk

[
I MQ(s)BQ

0 KQ(s)BQ

]
= rk

[
I

0

]
and rk

[
I 0

CP MP (s) CP KP (s)

]
= rk
[
I 0
]
.

Because a polynomial matrix is zero if and only if it is zero at infinitely values it
follows that (2.10) is equivalent to the condition KQ(s)BQ ≡ 0 and CP Kp(s)≡ 0.
Taking into account the solution characterization given in conclusion to Theorem 2.4
the characterization of external regularity is shown. �

Note that condition (2.10) already appears in the survey paper by Lewis [32]
based on arguments in the frequency domain.

2.4 Solution Formulas Based on the Wong Sequences: Regular
Case

If the Wong sequences (2.4) are applied to a regular matrix pencil sE−A ∈Rn×n[s]
then the limits V ∗ and W ∗ fulfill (see [2, 5, 51])

V ∗ ∩W ∗ = {0}, V ∗ +W ∗ =R
n,

EV ∗ ∩AW ∗ = {0}, EV ∗ +AW ∗ =R
n.

In particular [V,W ] and [EV,AW ] are invertible matrices for all basis matrices V

and W of V ∗ and W ∗. In fact, any of these invertible matrices yield a transformation
which put the matrix pencil sE −A into a quasi-Weierstraß form (QWF):

Theorem 2.6 (Quasi Weierstraß form (QWF) [2, 5]) Consider a regular matrix
pencil sE − A ∈ R

n×n[s] and the corresponding Wong sequences with limits V ∗
and W ∗. For any full rank matrices V,W with imV = V ∗ and imW = W ∗ let
T = [V,W ] and S = [EV,AW ]−1. Then

S(sE −A)T = s

[
I 0
0 N

]
−
[
J 0
0 I

]
, (2.11)

where J ∈ Rn1×n1 , n1 ∈ N, is some matrix and N ∈ Rn2×n2 , n2 = n− n1, is nilpo-
tent. In particular, V ∗ is exactly the space of consistent initial values, i.e. for all
x0 ∈ V ∗ there exists a unique (classical) solution x of Eẋ =Ax with x(0)= x0.
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The difference to the WCF from Theorem 2.3 is that J and N are not assumed to
be in Jordan canonical form. Furthermore, the transformation matrices for the QWF
can be chosen easily; it is only necessary to calculate the Wong sequences.

The knowledge of the two limiting spaces V ∗ and W ∗ is enough to obtain an
explicit solution formula similar to the solution formula (1.3) for ODEs as the next
result shows. To formulate the explicit solution formula it is necessary to define
certain projectors as follows.

Definition 2.4 (Consistency, differential and impulse projector[43]) Consider a reg-
ular matrix pair (E,A) and use the same notation as in Theorem 2.6. The consis-
tency projector is given by

Π(E,A) := T

[
I 0
0 0

]
T −1,

the differential projector is given by

Πdiff
(E,A) := T

[
I 0
0 0

]
S,

and the impulse projector is given by

Π
imp
(E,A) := T

[
0 0
0 I

]
S,

where the block structure is as in the QWF (2.11). Furthermore, let

Adiff :=Πdiff
(E,A)A and Eimp =Π

imp
(E,A)E.

Note that the above defined matrices do not depend on the specific choice of the
matrices V and W , because when choosing different basis matrices Ṽ and W̃ it must
hold that V = Ṽ Q and W = W̃P for some invertible P and Q. Hence

T̃ = [Ṽ , W̃ ] = T

[
P 0
0 Q

]
and S̃ = [EṼ ,AW̃ ]−1 =

[
P−1 0

0 Q−1

]
S

and the invariance of the above definitions with respect to the choice of V and W is
obvious. Furthermore, the differential and impulse projectors are not projectors in
the usual sense because they are in general not idempotent.

Theorem 2.7 (Explicit solution formula based on Wong sequences [47]) Let
(E,A) be a regular matrix pair and use the notation from Definition 2.4. Then all
solutions of (1.1) are given by, for c ∈Rn,

x(t)= eAdifftΠ(E,A)c+
∫ t

0
eAdiff(t−τ)Πdiff

(E,A)f (τ )dτ −
n−1∑
i=0

(
Eimp)iΠ imp

(E,A)f
(i)(t).

(2.12)
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In particular,

x(0)=Π(E,A)c−
n−1∑
i=0

(
Eimp)iΠ imp

(E,A)f
(i)(0)

i.e. c ∈ Rn implicitly specifies the initial value (but in general x(0) �= c even when
c ∈ V ∗).

In the homogeneous case the following equivalence holds [43]:

Eẋ =Ax ⇔ ẋ =Adiffx ∧ x(0) ∈ V ∗,

which motivates the name differential projector. There is also a motivation for the
name of the impulse projector, see the end of Sect. 4 as well as Sect. 5.

The Wong sequences appeared sporadically in the DAE literature: For example,
Yip and Sincovec [52] used them to characterize regularity of the matrix pencil,
Owens and Debeljkovic [36] characterized the space of consistent initial values via
the Wong sequences; they are also included in the text books [1, 29] but not in the
text books [7–9, 14, 30]. In general it seems that the connection between the Wong
sequences and the (quasi-)Weierstraß/Kronecker form and their role in the solution
characterization is not well known or appreciated in the DAE community (especially
in the case of singular matrix pencils).

2.5 The Drazin Inverse Solution Formula

Another explicit solution formula was proposed by Campbell et al. [11] already in
1976 and is based on the Drazin inverse.

Definition 2.5 (Drazin inverse [17]) For M ∈ R
n×n a matrix D ∈ R

n×n is called
Drazin inverse if, and only if,

1. DM =MD,
2. D =DMD,
3. ∃ν ∈N : Mν =Mν+1D.

In [17] it is shown that the Drazin inverse is unique and it is easy to see that the
Drazin inverse of M is given by

MD = T

[
J−1 0

0 0

]
T −1,

where the invertible matrix T is such that

M = T

[
J 0
0 N

]
T −1,
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J is invertible and N is nilpotent. In particular, for invertible M the Drazin inverse
is just the classical inverse, i.e. M−1 =MD .

The following solution formula for the DAE (1.1) based on the Drazin inverse
needs commutativity of the matrices E and A, however, as also regularity is assumed
the following result shows that this is not a restriction of generality.

Lemma 2.8 (Commutativation of (E,A) [11]) Assume (E,A) is regular and chose
λ ∈R such that λE −A is invertible. Then

(λE −A)−1E and (λE −A)−1A

commute, i.e. the whole equation (1.1) can simply be multiplied from the left with
(λE −A)−1 which will not change the solution properties but will guarantee com-
mutativity of the coefficient matrices.

Theorem 2.9 (Explicit solution formula based on the Drazin inverse [11]) Consider
the regular DAE (1.1) with EA=AE. Then all solutions x are given by

x(t) = eEDAtEDEc+
∫ t

0
eEDA(t−τ)EDf (τ)dτ

− (I −EDE
) n−1∑

i=0

(
EAD
)i

ADf (i)(t). (2.13)

A direct comparison of the solution formula (2.12) based on the Wong sequences
and (2.13) indicates that EDA plays the role of Adiff, EDE plays the role of the
consistency projector and ED plays the role of the differential projector. However,
the connection between the impulse projector and Eimp to the expressions involving
the Drazin inverse of A is not immediately clear. The following result justifies the
previous observations.

Lemma 2.10 (Wong sequences and Drazin inverse [5]) Consider the regular matrix
pair (E,A) with EA=AE and use the notation from Theorem 2.6. Then

ED = T

[
I 0
0 0

]
S and AD = T

[
JD 0
0 I

]
S.

In particular, also taking into account E = S−1
[

I 0
0 N

]
T −1 and A= S−1

[
J 0
0 I

]
T −1,

ED =Πdiff
(E,A),

EDA=Πdiff
(E,A)A=Adiff,

EDE = T

[
I 0
0 0

]
SS−1
[
I 0
0 N

]
T −1 =Π(E,A),

(
EAD
)i =
(

S−1
[
I 0
0 N

]
T −1T

[
JD 0
0 I

]
S

)i

= S−1
[
(JD)i 0

0 Ni

]
S, i ∈N,
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and with some more effort, using EV ∗ = V ∗ and AW ∗ = W ∗ in the commuting
case (see [5]), it follows that

(
I −EDE

)(
EAD
)i

AD = T

[
0 0
0 Ni

]
S = (Eimp)iΠ imp

(E,A).

This shows that indeed the two solution formulas (2.12) and (2.13) are identical in
the commuting case. Note that in the solution formula (2.13) the Drazin inverse AD

appears and one might therefore think that the occurrence of zero eigenvalues in A

plays some special role for the solution. However, this is just an artifact and it turns
out that in the expression

AD = T

[
JD 0
0 I

]
S

the matrix JD can be replaced by an arbitrary matrix without changing the result
of the solution formula (2.13). One canonical choice is to replace JD by the zero
matrix which yields the impulse projector and which makes the “correction term”
(I −EDE) superfluous.

2.6 Time-Varying DAEs

In this section the time-varying version of (1.1), i.e.

E(t)ẋ(t)=A(t)x(t)+ f (t),

is briefly discussed.
Campbell and Petzold [10] proved that if E(·) and A(·) have real analytical en-

tries then a solution characterization similar to Corollary 2.2 holds. In particular,
they showed that unique solvability is equivalent to finding time-varying (analyti-
cal) transformation matrices S(·), T (·), such that

(
S(t)E(t)T (t), S(t)A(t)T (t)− S(t)E(t)T ′(t)

)=
([

I 0
0 N(t)

]
,

[
J (t) 0

0 I

])
,

where N(t) is a strictly lower triangular (and hence nilpotent) matrix. In particular,
as in the time-invariant case, the DAE decouples into an ODE part and a pure DAE
part. It is easily seen that for a strictly lower triangular matrix N(t) also the differ-
ential operator N(·) d

dt
is nilpotent, hence the inverse operator of (N(·) d

dt
− I ) can

be calculated nearly identically as in (2.2):

(
N(·) d

dt
− I

)−1

=−
ν−1∑
i=0

(
N(·) d

dt

)i

,

where ν ∈N is the nilpotency index of the operator N(·) d
dt

.
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If the coefficient matrices are not analytical the situation is not so clear anymore
and different approaches have been proposed. Most methods have their motivation
in numerical simulations and a detailed description and discussion is outside the
scope of this survey. The interested reader is referred to the nice survey by Rabier
and Rheinboldt [38], and to the text book by Kunkel and Mehrmann [30] as well as
the recent monograph by Lamour, März and Tischendorf [31]. However, all these
approaches do not allow for discontinuous coefficient matrices. These are studied in
[46] and because of the connection to inconsistent initial value problems the prob-
lem of discontinuous coefficient matrices is further discussed in Sect. 5.

3 Inconsistent Initial Values and Distributional Solutions

After having presented a rather extensive discussion of classical solutions, this sec-
tion presents an introductory discussion of the problem of inconsistent initial values.
From the above derived solution formulas for (1.1) it becomes apparent that x(0)

cannot be chosen arbitrarily, certain parts of x(0) are already fixed by the DAE and
the inhomogeneity, cf. Theorem 2.7. In the extreme case that the QWF of (E,A)

only consists of the nilpotent part, the initial value x(0) is completely determined
by the inhomogeneity and no freedom to choose the initial value is left. However,
there are situations where one wants to study the response of a system described by
a DAE when an inconsistent initial value is given. Examples are electrical circuits
which are switched on at a certain time [48]. There have been different approaches
to deal with inconsistent initial values, e.g. [12, 18, 35, 37, 39, 42], some of them
will be presented in detail in the later sections. All have in common that jumps
as well as Dirac impulses may occur in the solutions. The Dirac impulse is a dis-
tribution (a generalized function), hence one must enlarge the considered solution
space to also include distributions. In fact, also the presence of non-smooth inho-
mogeneities (or inputs) can lead to distributional solutions. However, the latter do
not produce conceptional difficulties as the solution characterization of the previous
section basically remains unchanged.

In order to be able to make mathematical precise statements the classical distri-
bution theory [41] is revised first. The space of test functions is given by

C∞0 :=
{
ϕ :R→R | ϕ ∈ C∞ has compact support

}
,

which is equipped with a certain topology.2 The space of distributions, denoted by
D, is then the dual of the space of test functions, i.e.

D := {D : C∞0 →R |D is linear and continuous
}
.

2The topology is such that a sequence (ϕk)k∈N of test functions converges to zero if, and only if,
(1) the supports of all ϕk are contained within one common compact set K ⊆ R and (2) for all
i ∈N, ϕ

(i)
k converges uniformly to zero as k→∞.
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A large class of ordinary functions, namely locally integrable functions, can be em-
bedded into D via the following injective3 homomorphism:

f 	→ fD, with fD(ϕ) :=
∫

R

f ϕ.

The main feature of distributions is the ability to take derivatives for any distribution
D ∈D via

D′(ϕ) := −D
(
ϕ′
)
.

Simple calculations show that this is consistent with the classical derivative, i.e. if
f is differentiable, then

(fD)′ = (f ′)
D
.

In particular, the Heaviside unit step 1[0,∞) has a distributional derivative which can
easily be calculated to be

(1[0,∞)D)′(ϕ)= ϕ(0)=: δ(ϕ),

hence it results in the well known Dirac impulse δ (at t = 0). In general, the Dirac
impulse δt at time t ∈ R is given by δt (ϕ) := ϕ(t). Furthermore, if g is a piecewise
differentiable function with one jump at t = tj , i.e. g is given as

g(t)=
{

g1(t), t < tj ,

g2(t), t ≥ tj ,

where g1 and g2 are differentiable functions and

g1(t) :=
{

g′1(t), t < tj ,

g′2(t), t ≥ tj ,

then

(gD)′ = (g1)
D
+ (g(tJ+)− g(tJ−)

)
δtj . (3.1)

In other words, taking derivatives of a general jump results in a Dirac impulse at the
jump position whose amplitude is the height of the jump.

Finally, distributions can be multiplied with smooth functions α:

(αD)(ϕ)=D(αϕ)

and it is easily seen that this multiplication is consistent with the pointwise multi-
plication of functions and that the Leibniz product rule holds:

(αD)′ = α′D+ αD′.

3Two locally integrable functions which only differ on a set of measure zero are identified with
each other.
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Now it is no problem to consider the DAE (1.1) in a distributional solution space,
instead of x and f being vectors of functions they are now vectors of distributions,
i.e. x ∈ D

n and f ∈ D
m where m × n is the size of the matrices E and A. The

definition of the matrix vector product remains unchanged4 so that (1.1) reads as m

equations in D.
Considering distributional solutions, however, does not help to treat inconsistent

initial value; au contraire, distributions cannot be evaluated at a certain time because
they are not functions of time, so writing x(0)= x0 makes no sense. Even when as-
suming that a pointwise evaluation is well defined for certain distributions, the DAE
(1.1) will still not exhibit (distributional) solution with arbitrary initial values. This
is easily seen when considering the DAE Nẋ = x + f with nilpotent N . Then also
in the distributional solution framework the operator N d

dt
− I :D→D is invertible

with inverse as in (2.2) and there exists a unique (distributional) solution given by

x =−
n−1∑
i=0

Nif (i),

hence the initial value of x cannot be assigned arbitrarily (i.e. independently of the
inhomogeneity).

So what does it then mean to speak of a solution of (1.1) with inconsistent initial
value? The motivation for inconsistent initial values is the situation that the system
descriptions gets active at the initial time t = 0 and before that the system was
governed by different (maybe unknown) rules. This viewpoint was also expressed
by Doetsch [16, p. 108] in the context of distributional solutions for ODEs:

The concept of “initial value” in the physical science can be understood only when the past,
that is, the interval t < 0, has been included in our considerations. This occurs naturally for
distributions which, without exception, are defined on the entire t -axis.

So mathematically, there is some given past trajectory x0 for x up to the initial time
and the DAE (1.1) only holds on the interval [0,∞). This means that a solution of
the following initial trajectory problem (ITP) is sought:

x(−∞,0) = x0
(−∞,0),

(Eẋ)[0,∞) = (Ax + f )[0,∞),
(3.2)

where x0 ∈ Dn is an arbitrary past trajectory and DI for some interval I ⊆ R and
D ∈ D denotes a distributional restriction generalizing the restrictions of functions
given by

fI (t)=
{

f (t), t ∈ I,

0, t /∈ I.

4Some authors [30, 38] use a different definition for the matrix vector product which is due to the
different viewpoint of a distributional vector x as a map from (C∞0 )n to R instead of a map from
C∞0 to R

n. The latter seems the more natural approach in view of applying it to (1.1), but it seems
that both approaches are equivalent at least with respect to the solution theory of DAEs.
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A fundamental problem is the fact (see Lemma 5.1) that such a distributional re-
striction does not exist!

This problem was resolved especially in older publication [8, 9, 48] by ignoring
it and/or by arguing with the Laplace transform (see the next section). Cobb [13]
seems to be the first to be aware of this problem and he resolved it by introduc-
ing the space of piecewise-continuous distributions; Geerts [22, 23] was the first to
use the space of impulsive-smooth distributions (introduced in [27]) as a solution
space for DAEs. Seemingly unaware of these two approaches, Tolsa and Salichs
[44] developed a distributional solution framework which can be seen as a mix-
ture between the approaches of Cobb and Geerts. The more comprehensive space of
piecewise-smooth distributions was later introduced [45] to combine the advantages
of the piecewise-continuous and impulsive-smooth distributional solution spaces.
The details are discussed in Sect. 5.

Cobb [12] also presented another approach by justifying the impulsive response
due to inconsistent initial values via his notion of limiting solutions. The idea is to
replace the singular matrix E in (1.1) by a “disturbed” version Eε which is invertible
for all ε > 0 and Eε → E as ε→ 0. If the solutions of the corresponding initial
value ODE problem ẋ = E−1

ε Ax, x(0)= x0 converges to a distribution, then Cobb
calls this the limiting solution. He is then able to show that the limiting solution is
unique and equal to the one obtained via the Laplace-transform approach. Campbell
[9] extends this result also to the inhomogeneous case.

4 Laplace Transform Approaches

Especially in the signal theory community it is common to study systems like (1.1)
or (2.9) in the so called frequency domain (in contrast to the time domain). In partic-
ular, when the input-output mapping is of interest the frequency domain approach
significantly simplifies the analysis. The transformation between time and frequency
domain is given by the Laplace transform defined via the Laplace integral:

ĝ(s) :=
∫ ∞

0
e−st g(t)dt (4.1)

for some function g and s ∈C. Note that in general the Laplace integral is not well
defined for all s ∈ C and a suitable domain for ĝ must be chosen [16]. If a suitable
domain exists, then ĝ =L {g} is called the Laplace transform of g and, in general,
L {·} denotes the Laplace transform operator. Again note that it is not specified
at this point which class of functions have a Laplace transform and which class
of functions are obtained as the image of L {·}. The main feature of the Laplace
transform is the following property, where g is a differentiable function for which g

and g′ have Laplace transforms:

L
{
g′
}
(s)= sL {g}(s)− g(0), (4.2)
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which is a direct consequence of the definition of the Laplace integral invoking
partial differentiation. If g is not continuous at t = 0 but g(0+) exists and g′ denotes
the derivative of g on R \ {0}, then (4.2) still holds in a slightly altered form:

L
{
g′
}
(s)= sL {g}(s)− g(0+). (4.3)

In particular, the Laplace transform does not take into account at all how g behaved
for t < 0 which is a trivial consequence of the definition of the Laplace integral. This
observation will play an important role when studying inconsistent initial values.

Taking into account the linearity of the Laplace transform the descriptor system
(2.9) is transformed into

sEx̂(s)=Ax̂(s)+Bû(s)+Ex(0+),

ŷ(s)= Cx̂(s)+Dû(s).
(4.4)

If the matrix pair (E,A) is regular and x(0+) = 0, the latter can be solved easily
algebraically:

ŷ(s)= (C(sE −A)−1B +D
)
û(s)=:G(s)û(s), (4.5)

where G(s) is a matrix over the field of rational functions and is usually called
transfer function. As there are tables of functions and its Laplace transforms it is
often possible to find the solutions of descriptor system with given input simply by
plugging the Laplace transform of the input in the above formula and lookup the
resulting output ŷ(s) to obtain the solution y(t) in the time domain. Furthermore,
many important system properties can be deduced from properties (like the zeros
and poles) of the transfer function directly.

A first systematic treatment of descriptor systems in the frequency domain was
carried out by Rosenbrock [40]. He, however, only considered zero initial values and
the input-output behavior. In particular, he was not concerned with a solution theory
for general DAEs (1.1) with possible inconsistent values. Furthermore, he restricted
attention to inputs which are exponentially bounded (guaranteeing existence of the
Laplace transform), hence formally his framework could not deal with arbitrary
(sufficiently smooth) inputs.

The definition of the Laplace transform can be extended to be well defined for
certain distributions as well [16], therefore consider the following class of distribu-
tions:

D≥0,k :=
{
D = (gD)(k)

∣∣where g :R→R is continuous and g(t)= 0 on (−∞,0)
}
.

For D ∈D≥0,k with D = (gD)(k) the (distributional) Laplace transform is now given
by

LD{D}(s) := skL {g}(s)
on a suitable domain in C. Note that δ ∈D≥0,2 and it is easily seen that

LD{δ} = 1. (4.6)



Solution Concepts for Linear DAEs: A Survey 157

Furthermore, for every locally integrable function g for which L {g} is defined on a
suitable domain it holds that

LD{gD} = sL

{∫

0
g

}
[16]= s

1

s
L {g} =L {g}, (4.7)

i.e. the distributional Laplace transform coincides with the classical Laplace trans-
form defined by (4.1).

A direct consequence of the definition of LD is the following derivative rule for
all D ∈⋃k D≥0,k :

LD

{
D′
}
(s)= sLD{D} (4.8)

which seems to be in contrast to the derivative rule (4.3), because no initial value
occurs. The latter can actually not be expected because general distributions do not
have a well defined function evaluation at a certain time t . However, the deriva-
tive rule (4.8) is consistent with (4.3); to see this let g be a function being zero on
(−∞,0), differentiable on (0,∞) with well defined value g(0+). Denote with g′
the (classical) derivative of g on R \ {0}, then (invoking linearity of LD)

LD

{
(gD)′
}
(s)

(3.1)= LD

{(
g′
)
D
+ g(0+)δ

}
(s)

= LD

{(
g′
)
D

}
(s)+ g(0+)LD{δ}(s) (4.6),(4.7)= L

{
g′
}+ g(0+),

which shows equivalence of (4.8) and (4.3). The key observation is that the distribu-
tional derivative takes into account the jump at t = 0 whereas the classical derivative
ignores it, i.e. in the above context

(gD)′ �= (g′)
D
.

As it is common to identify g with gD (even in [16]), the above distinction is difficult
to grasp, in particular for inexperienced readers. As this problem plays an important
role when dealing with inconsistent initial values, it is not surprising that researchers
from the DAE community who are simply using the Laplace transform as a tool,
struggle with the treatment of inconsistent initial values, cf. [34].

Revisiting the treatment of the descriptor system (2.9) in the frequency domain
one has now to decide whether to use the usual Laplace transform resulting in (4.4)
or the distributional Laplace transform resulting in

sEx̂(s)=Ax̂(s)+Bû(s),

ŷ(s)= Cx̂(s)+Dû(s),
(4.9)

where the initial value x(0+) does not occur anymore. In particular, if the matrix
pair (E,A) is regular, the only solution of (4.9) is given by (4.5) independently
of x(0+). In particular, if u = 0 the only solution of (4.9) is x̂(s) = 0 and ŷ(s) =
0. Assuming a well defined inverse Laplace transform this implies that the only
solution of (2.9) with u = 0 is the trivial solution, which is of course not true in
general. Altogether the following dilemma occurs.
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Dilemma (Discrepancy between time domain and frequency domain) Consider the
regular DAE (1.1) or more specifically (2.9) with zero inhomogeneity (input) but
non-zero initial value.

• An ad hoc analysis calls for distributional solutions in response to inconsistent
initial values. For consistent initial value there exist classical (non-zero) solutions.

• Using the distributional Laplace transform to analyze the (distributional) solu-
tions of (1.1) or (2.9) reveals that the only solution is the trivial one. In particular,
no initial values (neither inconsistent nor consistent ones) are taken into account
at all.

This problem was already observed in [16, p. 108] and is based on the definition
of the distributional Laplace transform which is only defined for distributions van-
ishing on (−∞,0). The following “solution” to this dilemma was suggested [16,
p. 129]: Define for D ∈⋃k D≥0,k the “past-aware” derivative operator d−

dt
:

d−
dt

D :=D′ − d−0 δ, (4.10)

where d−0 ∈ R is interpreted as a “virtual” initial value for D(0−). Note, however,
that, by definition, D(0−)= 0 for every D ∈⋃k D≥0,k ; hence at this stage it is not
clear why this definition makes sense. This problem was also pointed out by Cobb
[12]. Nevertheless, a motivation for this choice will be given in Sect. 5.

Using now the past-aware derivative in the distributional formulation of (1.1) one
obtains

Ex′ =Ax +Bu+Ex−0 δ,

y = Cx +Du,
(4.11)

where x−0 ∈Rn is the virtual (possible inconsistent) initial value for x(0−) and solu-
tions are sought in the space (

⋃
k D≥0,k)

n, i.e. x is assumed to be zero on (−∞,0).
Applying the distributional Laplace transform to (4.11) yields

sEx̂(s)=Ax̂(s)+Bû(s)+Ex−0 ,

ŷ(s)= Cx̂(s)+Dû(s).
(4.12)

In contrast to (4.4), x−0 is not the initial value for x(0+) but is the virtual initial
value for x(0−). If the matrix pair (E,A) is regular, the solution of (4.12) can now
be obtained via

x̂(s)= (sE −A)−1(Bû(s)+Ex−0
)

and using the inverse Laplace transform. Because E is not invertible in general, the
rational matrix (sE−A)−1 may contain polynomial entries resulting in polynomial
parts in x̂ corresponding to Dirac impulses in the time domain, for details see the
end of this section.
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The solution formula for x̂(s) is possible to calculate analytically when the ma-
trices E, A, and B are known and for suitable inputs u the inverse Laplace transform
of x̂(s) can also be obtained analytically. This is the main advantage of the Laplace
transform approach. There are, however, the following major drawbacks:

1. Within the frequency domain it is not possible to motivate the incorporation of
the (inconsistent) initial values as in (4.11); in fact, Doetsch [16] who seems to
have introduced this notion, needs to argue with the help of the distributional
derivative and (4.10) within the time domain!

2. The Laplace transform ignores everything that was in the past, i.e. on the interval
(−∞,0); this is true for the classical Laplace transform (by definition of the
Laplace integral) as well as for the distributional Laplace transform (by only
considering distributions which vanish for t < 0). Hence the natural viewpoint
of an initial trajectory problem (3.2) as also informally advocated by Doetsch
cannot possibly be treated with the Laplace transform approach.

3. A frequency domain analysis gets useless when the original system is time-
varying or nonlinear, whereas (linear) time-domain methods may in principle
be extended to also treat time-variance and certain non-linearities. In fact, the
piecewise-smoothly distributional solution framework as presented in Sect. 5
can be used without modification for linear time-varying DAEs [46] and also
for certain non-linear DAEs [33].

4. Making statements about existence and uniqueness of solution with the help of
the frequency domain heavily depends on an isomorphism between the time-
domain and the frequency domain; there are, however, only a few special iso-
morphisms between certain special subspaces of the frequency and time domain,
no general isomorphism is available, see also the discussion concerning (4.9).

This section on the Laplace domain concludes with the calculation of the re-
initialization of the inconsistent initial value as well as the resulting Dirac impulses
occurring in the solution. Therefore, consider the “distributional version” (following
Doetsch) of (1.1):

Eẋ =Ax + fD +Ex−0 δ, (4.13)

where x−0 ∈ R
n, and its corresponding Laplace transformed version in frequency

domain

sEx̂(s)=Ax̂(s)+ f̂ (s)+Ex−0 . (4.14)

The unique solution of (4.14) in frequency domain is given by

x̂(s)= (sE −A)−1(f̂ (s)+Ex−0
)
,

which needs regularity of the matrix pair (E,A) to be well defined, which will there-
fore be assumed in the following. Applying a coordinate transformation x = T

( v
w

)
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according to the QWF (2.11), the solution in the new coordinates is given by

(
v̂(s)

ŵ(s)

)
= T −1(sE −A)−1

(
f̂ (s)+ET

(
v−0
w−0

))

= (sSET − SAT )−1
(

Sf̂ (s)+ SET

(
v−0
w−0

))
,

where x−0 =: T
( v−0

w−0

)
. Hence, invoking the QWF (2.11), the solution formula decou-

ples into

v̂(s)= (sI − J )−1(f̂1(s)+ v−0
)
,

ŵ(s)= (sN − I )−1(f̂2(s)+Nw−0
)=−

ν−1∑
i=0

Nisi
(
f̂2(s)+Nw−0

)
,

where Sf =: ( f1
f2

)
and ν ∈ N is the nilpotency index of N . Since (sI − J )−1 is a

strictly proper rational matrix, the solution for v (resulting from taking the inverse
Laplace transform) is the corresponding standard ODE solution (1.3). In particular,
v(0+)= v−0 and no Dirac impulses occur in v. Applying the inverse Laplace trans-
formation on the solution formula for ŵ(s), one obtains the solution w =wf +wi ,
where wf is the response with respect to the inhomogeneity given by

wf := −
ν−1∑
i=0

Ni(f2D)(i)

and wi consists of Dirac impulses at t = 0 produced by the inconsistent initial value:

wi := −
ν−1∑
i=0

Ni+1w−0 δ(i).

Note that in order to obtain wf by using the correspondence (4.8), the distributional
derivatives of f2 have to be considered. As the (distributional) Laplace transform
can only be applied to distributions vanishing on (−∞,0), the inhomogeneity f2

will in general have a jump at t = 0, hence wf will also contain Dirac impulses

depending on f
(i)
2 (0+), i = 0,1, . . . , ν − 1. In summary:

Theorem 4.1 (Solution formula obtained via the Laplace transform approach) Con-
sider the regular DAE (1.1) with its “distributional version” (4.13). Let ν ∈ N be
the nilpotency index of N in the QWF (2.11) of the matrix pair (E,A). Assume
f : R→ R

n is zero on (−∞,0) and ν − 1 times differentiable on (0,∞) with well
defined values f (i)(0+), i = 0,1, . . . , ν − 1. Use the notation from Definition 2.4.
Then x ∈ (

⋃
k D≥0,k)

n given by (2.12) on (0,∞) with c = x−0 and by the impulsive
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part at t = 0, denoted by x[0],

x[0] = −
ν−2∑
i=0

(
Eimp)i+1

i∑
j=0

Π
imp
(E,A)f

(i−j)(0+)δ(j)

−
ν−2∑
i=0

(
Eimp)i+1

(I −Π(E,A))x
−
0 δ(i) (4.15)

is the unique solution of (4.13) obtained via solving (4.14). In particular,

x(0+)=Π(E,A)x
−
0 +

n−1∑
i=0

(
Eimp)iΠ imp

(E,A)f
(i)(0+), (4.16)

hence if f ≡ 0 then the consistent reinitialization is given by the consistency projec-
tor Π(E,A) via

x(0+)=Π(E,A)x
−
0 .

Proof Invoking (3.1), one obtains

(f2D)(i)[0] =
i−1∑
j=0

f
(i−1−j)

2 (0+)δ(j),

hence

wf [0] = −
ν−2∑
i=0

Ni+1
i∑

j=0

f
(i−j)

2 (0+)δ(j).

Now using the identities, cf. [47],

Adiff = T

[
J 0
0 0

]
T −1, Eimp = T

[
0 0
0 N

]
T −1,

T

(
f1
0

)
=Πdiff

(E,A)f, T

(
0
f2

)
=Π

imp
(E,A)f, T

(
v−0
0

)
=Π(E,A)x

−
0 ,

T

(
0

w−0

)
= (I −Π(E,A))x

−
0

yields the claimed solution formula. �

5 Distributional Solutions

The previous section introduced distributional solutions in order to treat inconsistent
initial values with the help of the Laplace transform. This leads to the consideration
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of the distributional space
⋃

k D≥0,k which contains all distributions which can be
written as a (distributional) kth derivative, k ∈ N, of a continuous function being
zero on (−∞,0) and of which a Laplace transform exists. This choice is motivated
by the applicability of the Laplace transform and is actually not motivated by dealing
with inconsistent initial values. In fact, as was pointed out in the previous section, the
Laplace transform ignores by definition/design all what has happened before t < 0
and is therefore in principle not suitable to treat inconsistent initial values coming
from the past. Most researchers in the field agree with the notion that an inconsistent
initial is due to a past which was not governed by the system description (1.1). One
way of formalizing this viewpoint is the ITP (3.2). In general, having a past which
obeys different rules then the present means that the overall system description is
time-variant which gives another reason why the Laplace-transform approach runs
into difficulties.

5.1 The Problem of Distributional Restrictions

Treating the ITP (3.2) in a distributional solution framework is, however, also not
straightforward, because (as already mentioned above) the distributional restriction
used in (3.2) is not well defined.

Lemma 5.1 (Bad distribution [45]) Let D be the (distributional, i.e. weak∗) limit of
the distributions:

Dk :=
k∑

i=0

diδdi
, where di := (−1)i

i + 1
, i, k ∈N.

Then the restriction (in the sense of [45]) of D to the interval [0,∞) is not a well-
defined distribution.

Proof Clearly,

D[0,∞) =
∞∑

j=0

d2j δd2j
,

however, applying D[0,∞) to a test function ϕ which is identically one on [0,1]
yields

D[0,∞)(ϕ)=
∞∑

j=0

d2j δd2j
(ϕ)=

∞∑
j=0

1

2j
=∞,

which shows that D[0,∞) is not a well defined distribution. �

Remark 5.1 (Restriction to open intervals) The above results remain true when
considering restriction to open intervals. However, it should be mentioned here that
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nevertheless the equation FI =GI makes sense for arbitrary distributions F,G ∈D
and any open interval I ⊆R by defining:

FI =GI :⇔ ∀ϕ ∈ C∞0 with suppϕ ⊆ I : F(ϕ)=G(ϕ).

In fact, this definition is consistent with the restriction-definition to be established
in the following for a special class of distributions [45, Prop. 2.2.10]. Nevertheless,
restricting the second equation in the ITP (3.2) to the closed interval [0,∞) is es-
sential. Taking an open restriction in both equations of (3.2) would imply that the
past and the present are decoupled so that the initial trajectory would not influence
the future trajectory. To be more precise: Any (distributional) solution x of (3.2)
will exhibit a jump at t = 0 in response to an inconsistent value x0(0−), but the
derivative of this jump appears as a Dirac impulse in the expression Eẋ. While the
restriction to the open interval (0,∞) would neglect this Dirac impulse, the restric-
tion to the closed interval [0,∞) keeps the Dirac impulse in the second equation of
the ITP (3.2) and hence the past can influence the present.

5.2 Cobb’s Space of Piecewise-Continuous Distributions

The need to define a restriction for distributions was already advocated by Cobb
[13]; although his motivation was not the ITP (3.2) but a rigorous definition of the
impulsive term D[t] of a distribution D at time t ∈ R which can be viewed as a
restriction to the interval [t, t]. To this end, Cobb first defined the space of piecewise-
continuous distributions given by

DpwC 0 :=

⎧
⎪⎪⎨
⎪⎪⎩

D ∈D

∣∣∣∣∣∣∣∣

∃T = {ti ∈R|i ∈ Z} ordered and locally finite

∃g ∈ C 0
pw∀i ∈ Z : D(ti ,ti+1) = (gD)(ti ,ti+1)

in the sense of Remark 5.1

⎫
⎪⎪⎬
⎪⎪⎭

,

where C 0
pw denotes the space of piecewise-continuous functions, in particular, for

any g ∈ C 0
pw the values g(t+) and g(t−) are well defined for all t ∈R.

Definition 5.1 (Cobb’s distributional restriction [13]) Let D ∈DpwC 0 with g ∈ C 0
pw

and T = {ti ∈ R|i ∈ Z} such that D coincides with gD on each interval (ti , ti+1),
i ∈ Z. For any τ ∈ R choose ε > 0 such that (τ − ε, τ )⊆ (ti , ti+1) for some i ∈ Z.
Then the restriction of D to the interval [τ,∞) is defined via

D[τ,∞)(ϕ)=

⎧⎪⎨
⎪⎩

0, if suppϕ ⊆ (−∞, τ ],
D(ϕ)− ∫ τ

τ−ε
g(t)ϕ(t)dt, if suppϕ ⊆ [τ − ε,∞),

D[τ,∞)(ϕ
ε), otherwise,

where ϕε ∈ C∞0 is such that ϕ = ϕτ + ϕε with suppϕτ ⊆ (−∞, τ ] and suppϕε ⊆
[τ − ε,∞).
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It is easily seen that this definition does not depend on the specific choice of
ϕε , hence D[τ,∞) is a well defined (continuous) operator on C∞0 and therefore a
distribution. In fact, D[τ,∞) ∈ DpwC 0 with g[τ,∞) as the corresponding piecewise-
continuous function. The restriction to the closed interval (−∞, τ ] is defined
analogously, and the restriction to arbitrary intervals can be defined as follows,
s, t ∈R∪ {∞}:

D(s,t) =D −D[t,∞) −D(−∞,s],

D[s,t] =D[s,∞) −D(t,∞),

D[s,t) =D[s,∞) −D[t,∞),

D(s,t] =D(s,∞) −D(t,∞).

It is worth noting that it is not difficult to show that

DpwC 0 =

⎧⎪⎪⎨
⎪⎪⎩

D = gD +
∑
t∈T

Dt

∣∣∣∣∣∣∣∣

g ∈ C 0
pw, T ⊆R is locally finite, ∀t ∈ T

∃nt ∈N, αt
1, . . . , α

t
nt
∈R :Dt =

nt∑
k=0

αt
kδ

(k)
t

⎫⎪⎪⎬
⎪⎪⎭

and the restriction of D ∈DpwC 0 with the above representation D = gD+∑t∈T Dt

to an interval I ∈R is given by

DI = gID +
∑

t∈T∩I

Dt .

The space of piecewise-continuous distributions also allows a pointwise evalu-
ation in the following three senses, for t ∈ R and D ∈ DpwC 0 with corresponding

g ∈ C 0
pw:

• the right sided evaluation: D(t+) := g(t+),
• the left sided evaluation: D(t−)= g(t−),
• the impulsive part: D[t] :=D[t,t].

The following relates the restriction with the derivative.

Lemma 5.2 (Derivative of a restriction [13, Prop. 1]) Let D ∈ DpwC 0 and assume
D′ ∈DpwC 0 as well. Then, for any τ ∈R,

(D[τ,∞))
′ = (D′)[τ,∞)

+D(τ−)δτ .

Note that Cobb did not include the assumption D′ ∈DpwC 0 in his result; however,
without this assumption the restriction of D′ to some interval is not defined, because
in general D′ is not a piecewise-continuous distributions anymore (actually Cobb
claims that the result is “obvious”; this is quite often a hint that there might be
something wrong).
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Remark 5.2 (A distributional motivation of Doetsch’s past-aware derivative)
Lemma 5.2 now gives a justification of the past-aware derivative (4.10) as prop-
agated by Doetsch, because D[0,∞) as well as (D′)[0,∞) are elements of the space⋃

k D≥0,k , however, D can still be non-zero on (−∞,0) and D(0−) �= 0 in general.

A connection between (consistent) distributional solution of (1.1) and the so-
lutions of “distributional” DAEs (4.13) was established in [13, Prop. 2], a clearer
connection, also allowing for inconsistent initial values, will be formulated in the
context of piecewise-smooth distributions (see Sect. 5.4).

5.3 Impulsive-Smooth Distributions as Solution Space

The space of impulsive-smooth distributions was introduced by Hautus [26] (with-
out denoting them as such) and was first used by this name in the context of optimal
control problems [27]. Geerts [22–24] was then the first to use them as a solution
space for DAEs. The space of impulsive-smooth distributions Cimp is defined in this
earlier work as follows:

Cimp

:=
{

D = g[0,∞)D +Dimp

∣∣∣∣ g ∈ C∞,Dimp =
k∑

i=0

αiδ
(i), k ∈N, α0, . . . , αk ∈R

}
.

Similar as in the Laplace transform approach, Geerts considers the distributional
version (4.13) instead of (2.9) and he rewrites the (distributional) derivative as the
convolution with δ′:

δ′ ∗Ex =Ax + f +Ex0δ. (5.1)

By viewing Cimp as a commutative algebra with convolution as multiplication, the
distributional DAE can now be written as

pEx =Ax + f +Ex0,

where p = δ′ and δ is the unit with respect to convolution and hence denoted by one.
The (time-domain) equation is now algebraically identically to the one obtained by
the Laplace transformation approach without the need to think about problems like
the existence of the Laplace transform and domain of convergence. In particular, ex-
istence and uniqueness results directly apply because no isomorphism between dif-
ferent solution spaces is needed. Nevertheless, the definition of Cimp still assumes
that all involved variables are identically zero on (−∞,0), hence speaking of in-
consistent initial values is conceptionally as difficult as for the Laplace transform
approach. In summary, viewing x0 in (5.1) as the initial value for x(0−) cannot be
motivated within the impulsive-smooth distributional framework, because, by defi-
nition, x(0−)= 0.
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In fact, there is no reason to consider variables which have to vanish on (−∞,0):
Rabier and Rheinboldt [37] were the first to use the space of impulsive-smooth
distributions which can also be non-zero in the past. The formal definition is

Cimp
(
R
∗)

:=

⎧⎪⎪⎨
⎪⎪⎩

D = f−(−∞,0)D
+Dimp + f+(0,∞)D

∣∣∣∣∣∣∣∣

f−, f+ ∈ C∞,Dimp =
k∑

i=0

αiδ
(i),

k ∈N, α0, . . . , αk ∈R

⎫⎪⎪⎬
⎪⎪⎭

.

Clearly,

Cimp ⊂ Cimp
(
R
∗)⊂DpwC 0 ⊂D,

in particular, the three types of evaluation defined for piecewise-continuous distri-
butions are also well defined for impulsive-smooth distribution as well as the dis-
tributional restriction. The main difference to the space of piecewise-continuous
distribution is the fact that the space of impulsive-smooth distribution is closed un-
der differentiation. In particular, impulsive-smooth distributions are arbitrarily often
differentiable within the space of impulsive-smooth distributions.

Within the impulsive-smooth distributional framework the ITP (3.2)

x(−∞,0) = x0
(−∞,0),

(Eẋ)[0,∞) = (Ax + f )[0,∞)

is well defined for all initial trajectories x0 ∈ Cimp(R
∗)n, all inhomogeneities f ∈

Cimp(R
∗)m and solutions x are sought in Cimp(R

∗)n. In fact, the following result
holds, which finally gives a satisfying and rigorous motivation for the incorporation
of the (inconsistent) initial value as in (4.13).

Theorem 5.3 (Equivalent description of the ITP (3.2)) Consider the ITP (3.2)
within the impulsive-smooth distributional solution framework with fixed initial tra-
jectory x0 ∈ Cimp(R

∗)n and inhomogeneity f ∈ Cimp(R
∗)m. Then x ∈ Cimp(R

∗)n
solves the ITP (3.2) if, and only if, z := x − x0

(−∞,0) = x[0,∞) solves

z(−∞,0) = 0,

(Eż)[0,∞) = (Az+ f )[0,∞) +Ex0(0−)δ.
(5.2)

Proof Let x be a solution of the ITP (3.2) and let z = x[0,∞). Then, clearly,
z(−∞,0) = 0. Furthermore,

(Eż)[0,∞) = (Eẋ)[0,∞) −
(
E
(
x0
(−∞,0)

)′)
[0,∞)

= (Ax + f )[0,∞) +Ex0(0−)δ

= (Az+ f )[0,∞) +Ex0(0−)δ,
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which shows that z= x[0,∞) is indeed a solution of (5.2). On the other hand, let z be
a solution of (5.2) and define x := z + x0

(−∞,0)
. Then, clearly, x(−∞,0) = x0

(−∞,0)
.

Furthermore,

(Eẋ)[0,∞) = (Eż)[0,∞) +
(
E
(
x0
(−∞,0)

)′)
[0,∞)

= (Az+ f )[0,∞) +Ex0(0−)δ −Ex0(0−)δ

= (Ax + f )[0,∞). �

Remark 5.3

1. If (5.2) is considered within the one-sided impulsive-smooth distributional
framework, i.e. f ∈ (Cimp)

m and z ∈ (Cimp)
n then (5.2) simplifies to

Eż=Az+ f +Ex0(0−)δ. (5.3)

2. Comparing the result of Theorem 5.3 with the result of Cobb [13, Prop. 2] reveals
three main differences: (1) Cobb only states one direction and not the equiva-
lence, (2) instead of the ITP (3.2) Cobb just considers the original DAE (1.1),
hence his result concerns only consistent solutions, (3) Cobb assumes that (5.3)
has a unique solution.

3. Regularity of the matrix pair (E,A) is not assumed; in particular, neither is it
assumed that for all inhomogeneities f there exist solutions to (3.2) and (5.2), nor
is it assumed that solutions of (3.2) and (5.2) are uniquely given for fixed initial
trajectory and fixed inhomogeneity. However, due to the established equivalence
all existence and uniqueness results obtained for (5.3) carry over to the ITP (3.2).

Although Rabier and Rheinboldt [37] introduced the space of impulsive-smooth
distribution which allow a clean treatment of the ITP (3.2), they did not follow
this approach. Instead, they redefine the inhomogeneity to make inconsistent initial
values consistent. To this end, let x0 ∈ Cimp(R

∗)n be a given initial trajectory and
f ∈ Cimp(R

∗)m a given inhomogeneity and consider the ITP-DAE

x(−∞,0) = x0
(−∞,0),

Eẋ =Ax + fITP,
(5.4)

where

fITP :=Eẋ0
(−∞,0) −Ax0

(−∞,0) + f[0,∞).

Note that x(−∞,0) = x0
(−∞,0) already implies, due to the special choice of fITP, that

(Eẋ)(−∞,0) = (Ax + fITP)(−∞,0),

which shows that (5.4) is in fact equivalent to the ITP (3.2). However, the form of
(5.4) has certain disadvantages compared to the ITP formulation (3.2):
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1. The second equation of (5.4) suggest that the DAE (1.1) is valid globally (just
with a different inhomogeneity), which conflicts with the intuition that an incon-
sistent initial value is due to the fact that the system description (1.1) is only valid
on [0,∞) and not in the past.

2. In (5.4) the past trajectory of x is formally determined by two equations which
could in general be conflicting (depending on the choice of fITP).

3. When studying an autonomous system (i.e. without the presence of an inhomo-
geneity), the formulation (5.4) formally leaves the class of autonomous systems.

On the other hand, an interesting advantage of the formulation (5.4) is that, due to
Remark 5.1, (5.4) makes sense even when x is an arbitrary distribution and f as
well as x0 are such that fITP is well defined. In fact, Rabier and Rheinboldt [37,
Thm. 4.1] do consider arbitrary distributions x ∈ D

n and show that under certain
regularity assumptions the solutions are in fact impulsive-smooth.

5.4 Piecewise-Smooth Distributions as Solution Space

Comparing Cobb’s piecewise-continuous distributional solution framework with the
impulsive-smooth distributional solution framework the following differences are
apparent:

1. DpwC 0 is not closed under differentiation.
2. Cimp(R

∗) does not allow non-smooth inhomogeneities away from t = 0.

Rabier and Rheinboldt [37] seem to be aware of the latter problem as they introduce
the space Cimp(R \ S ), where S = {ti ∈ R|i ∈ Z} is a strictly ordered set with
ti→±∞ as i→±∞ and D ∈ Cimp(R \S ) is such that D(ti ,ti+1) is induced by the
corresponding restriction of a smooth function. A similar idea is proposed in [25],
however, in both cases the resulting distributional space is not studied in detail.
A more detailed treatment can be found in [45, 46] where, in the spirit of Cobb’s
definition, the space of piecewise-smooth distributions is defined as follows:

DpwC∞ :=
{

D = fD +
∑
t∈T

Dt

∣∣∣∣∣
f ∈ C∞pw, T ⊆R

locally finite ∀t ∈ T :Dt ∈ span
{
δt , δ

′
t , δ
′′
t , . . .
}
}

,

where f ∈ C∞pw is a piecewise-smooth function if, and only if, there exists a
strictly ordered locally finite set {si ∈ R|i ∈ Z} and fi ∈ C∞, i ∈ Z, such that
f =∑i∈Z fi [si ,si+1)

. Clearly,

Cimp
(
R
∗)⊂DpwC∞ ⊂DpwC 0,

and the space of piecewise-smooth distributions resolves each of the above men-
tioned drawbacks of the piecewise-continuous and impulsive-smooth distributions.
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However, the major advantage of considering the space of piecewise-smooth dis-
tributions becomes apparent when considering time-varying DAEs:

E(t)ẋ(t)=A(t)x(t)+ f (t). (5.5)

If the coefficient matrices E(·) and A(·) are smooth it is no problem to use any of
the above distributional solution concepts because the product of a smooth func-
tion with any distribution is well defined so that (5.5) makes sense as an equation
of distributions. In the discussion of the drawbacks of the Laplace transform ap-
proach it was already mentioned that an inconsistent initial value could be seen as
the results from the presence of a time-varying system. In fact, the ITP (3.2) can be
reformulated as the following time-varying DAE [45, Thm. 3.1.7]:

EITP(t)ẋ(t)=AITP(t)x(t)+ fITP(t),

where

EITP(t) =
{

0, t < 0,

E, t ≥ 0,
AITP(t)=

{
I, t < 0,

A, t ≥ 0,

fITP(t) =
{
−x0(t), t < 0,

f (t), t ≥ 0.

The problem is now that the time-varying coefficient matrices are not smooth any-
more so that the multiplication with a distribution is not well defined. Rabier and
Rheinboldt [37] treated already time-varying DAEs (5.5); however, the interpreta-
tion of inconsistent initial values as a time-variant DAE with non-smooth coeffi-
cients did not occur to them, maybe because they considered (5.4) where formally
the original DAE (with a special choice of the inhomogeneity) with smooth coeffi-
cient is considered globally (i.e. in the whole of R and not only on [0,∞)). Another
important motivation for studying time-varying DAEs with non-smooth coefficient
matrices is switched DAEs [47]:

Eσ ẋ =Aσ x + f,

where σ :R→{1,2, . . . ,P }, P ∈N, and (E1,A1), . . . , (EP ,AP ) are constant ma-
trices.

It turns out that for the space of piecewise-smooth distributions a (non-commuta-
tive) multiplication can be defined, named Fuchssteiner multiplication after [19,
20], which in particular defines the multiplication of a piecewise-smooth function
with a piecewise-smooth distribution. Hence (5.5) makes sense even for coefficient
matrices which are only piecewise-smooth.

Remark 5.4 (The square of the Dirac impulse) The multiplication of distributions
occurs several times in the context of DAEs. The different approaches can be best
illustrated by the different treatments of the square of the Dirac impulse:
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1. In the context of impulsive-smooth distributions [22, 23, 27] convolution is
viewed as a multiplication and the Dirac impulse is the unit element for that
multiplication. Hence δ2 = δ in this framework.

2. The Fuchssteiner multiplication for piecewise-smooth distributions yields

δ2 = 0.

3. It is well known that a commutative and associative multiplication which gener-
alizes the multiplication of functions to distributions is not possible in general,
but when enlarging the space of distributions the square of the Dirac impulse is
well defined (but not a classical distribution). In the context of DAEs this ap-
proach was considered in [44], where the square of the Dirac impulse occurs in
the analysis of the connection energy (the product of the voltage and current).

Within the framework of piecewise-smooth distributions it is now possible to
show [45] that the ITP (3.2) is uniquely solvable for all initial trajectories and all in-
homogeneities if, and only if, the matrix pair (E,A) is regular. In particular, the im-
pulses and jumps derived in this framework [47, Thm. 6.5.1] are identical to (4.15)
and (4.16) obtained via the Laplace transform approach.

6 Conclusion

The role of the Wong sequences of the matrix pair (E,A) for characterizing the
(classical) solutions was highlighted. In particular, explicit solution formulas where
given which are similar to the ones obtained for linear ODEs. The quasi-Kronecker
form (QKF) and quasi-Weierstraß form (QWF) play a prominent role. For time-
varying DAEs with analytical coefficients a time-varying QWF is available, how-
ever, time-varying Wong sequences and their connection to a time-varying QWF
(or even QKF) have not been studied yet. The problem of inconsistent initial values
was discussed and it was shown how the Laplace transform was used to treat this
problem. However, it is argued that the Laplace transform approach cannot justify
the notion of an inconsistent initial value. With the help of certain distributional so-
lution spaces the notion of inconsistent initial values can be treated in a satisfying
way and it also justifies the Laplace transform approach.
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Abstract The basic starting point of port-Hamiltonian systems theory is network
modeling; considering the overall physical system as the interconnection of simple
subsystems, mutually influencing each other via energy flow. As a result of the inter-
connections algebraic constraints between the state variables commonly arise. This
leads to the description of the system by differential-algebraic equations (DAEs),
i.e., a combination of ordinary differential equations with algebraic constraints. The
basic point of view put forward in this survey paper is that the differential-algebraic
equations that arise are not just arbitrary, but are endowed with a special mathemat-
ical structure; in particular with an underlying geometric structure known as a Dirac
structure. It will be discussed how this knowledge can be exploited for analysis and
control.
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The basic starting point of port-Hamiltonian systems theory is (power-based)
network modeling; considering the overall system as the interconnection of sim-
ple subsystems, mutually influencing each other via energy flow [27]. As a re-
sult of the interconnections algebraic constraints between the state variables com-
monly arise. This leads to the description of the system by differential-algebraic
equations (DAEs), i.e., a combination of ordinary differential equations with al-
gebraic constraints. However, the basic point of view put forward in this paper is
that the differential-algebraic equations that arise are not just arbitrary differential-
algebraic equations, but are endowed with a special mathematical structure, which
may be fruitfully used for analysis, simulation and control.

As a motivating and guiding example for the theory surveyed in this paper we
will start with the following example.

1.1 A Motivating Example

Consider an LC-circuit consisting of two capacitors and one inductor, all in parallel.
Naturally this system can be seen as the interconnection of three subsystems, the two
capacitors and the inductor, interconnected by Kirchhoff’s current and voltage laws.
The capacitors (first assumed to be linear) are described by the following dynamical
equations:

Q̇i = Ii,

Vi = Qi

Ci

,
i = 1,2. (1.1)

Here Ii and Vi are the currents through, respectively the voltages across, the two
capacitors, and Ci are their capacitances. Furthermore, Qi are the charges stored at
the capacitors; regarded as basic state variables.1

Similarly, the linear inductor is described by the dynamical equations

ϕ̇ = VL,

IL = ϕ

L
,

(1.2)

where IL is the current through the inductor, and VL is the voltage across the induc-
tor. Here the (magnetic) flux ϕ is taken as the state variable of the inductor, and L

denotes its inductance.
Parallel interconnection of these three subsystems by Kirchhoff’s laws amounts

to the interconnection equations

V1 = V2 = VL, I1 + I2 + IL = 0, (1.3)

1In the port-Hamiltonian formulation there is a clear preference for taking the charges to be the
state variables instead of the voltages Vi . Although this comes at the expense of the introduction
of extra variables, it will turn out to be very advantageous from a geometric point of view.



Port-Hamiltonian Differential-Algebraic Systems 175

where the equation V1 = V2 gives rise to the algebraic constraint

Q1

C1
= Q2

C2
(1.4)

relating the two state variables Q1,Q2.
There are multiple ways to describe the total system. One is to regard either I1

or I2 as a Lagrange multiplier for the constraint Q1
C1
− Q2

C2
= 0. Indeed, by defining

λ= I1 one may write the total system as

⎡
⎣

Q̇1

Q̇2
ϕ̇

⎤
⎦ =
⎡
⎣

0 0 0
0 0 −1
0 1 0

⎤
⎦
⎡
⎢⎣

Q1
C1
Q2
C2
ϕ
L

⎤
⎥⎦+
⎡
⎣

1
−1
0

⎤
⎦λ,

0 = [1 −1 0
]
⎡
⎢⎣

Q1
C1
Q2
C2
ϕ
L

⎤
⎥⎦ ,

(1.5)

where the algebraic constraint Q1
C1
− Q2

C2
= 0 represented in the last equation of (1.5)

can be seen to give rise to a constraint current [1 −1 0]T λ, which is added to the
first three ordinary differential equations in (1.5).

Next one may eliminate the Lagrange multiplier λ by pre-multiplying the differ-
ential equations by the matrix

[
1 1 0
0 0 1

]
.

Together with the algebraic constraint this yields the differential-algebraic system

⎡
⎣

1 1 0
0 0 1
0 0 0

⎤
⎦
⎡
⎣

Q̇1

Q̇2
ϕ̇

⎤
⎦=
⎡
⎣

0 0 −1
0 1 0
1 −1 0

⎤
⎦
⎡
⎢⎣

Q1
C1
Q2
C2
ϕ
L

⎤
⎥⎦ . (1.6)

Equations (1.5) and (1.6) are different representations of the same port-Hamiltonian
system defined by the LC-circuit, which is geometrically (i.e., coordinate-free) de-
scribed by a Dirac structure and constitutive relations corresponding to energy-
storage. In this example the Dirac structure is given by the linear space

D :=
⎧⎨
⎩(f, e) ∈R3 ×R

3 | f =
⎡
⎣

f1
f2
f3

⎤
⎦ , e=

⎡
⎣

e1
e2
e3

⎤
⎦ ,

⎡
⎣

1 1 0
0 0 1
0 0 0

⎤
⎦
⎡
⎣

f1
f2
f3

⎤
⎦+
⎡
⎣

0 0 −1
0 1 0
1 −1 0

⎤
⎦
⎡
⎣

e1
e2
e3

⎤
⎦= 0

⎫⎬
⎭ (1.7)
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having the characteristic property that eT f = 0 for all (f, e) ∈ D (total power is
zero), and moreover having maximal dimension with regard to this property (in this
case dimD = 3). The two representations (1.5) and (1.6) correspond to two different
representations of this same Dirac structure.

Furthermore, the constitutive relations of energy-storage are given by f =
[f1 f2 f3]T = −[Q̇1 Q̇2 ϕ̇], and e = [e1 e2 e3]T = [Q1

C1

Q2
C2

ϕ
L
]T , where the last

vector is the gradient vector of the total stored energy, or Hamiltonian

H(Q1,Q2, ϕ) := Q2
1

2C1
+ Q2

2

2C2
+ ϕ2

2L
. (1.8)

We may easily replace the linear constitutive relations of the capacitors and the
inductor by more general nonlinear ones, corresponding to a general non-quadratic
Hamiltonian

H(Q1,Q2, ϕ)=H1(Q1)+H2(Q2)+H3(ϕ) (1.9)

with Hi(Qi), i = 1,2, denoting the electric energies of the two capacitors, and
H3(ϕ) the magnetic energy of the inductor. Then the resulting dynamics are given
by the nonlinear differential-algebraic equations

⎡
⎣

1 1 0
0 0 1
0 0 0

⎤
⎦
⎡
⎣

Q̇1

Q̇2
ϕ̇

⎤
⎦=
⎡
⎣

0 0 −1
0 1 0
1 −1 0

⎤
⎦

⎡
⎢⎢⎣

dH1
dQ1

(Q1)

dH2
dQ2

(Q2)

dH3
dϕ

(ϕ)

⎤
⎥⎥⎦ . (1.10)

In the port-Hamiltonian description there is thus a clear separation2 between the
constitutive relations of the elementary subsystems (captured by the Hamiltonian
H ), and the interconnection structure (formalized by the Dirac structure D). This
has several advantages in terms of flexibility and standardization (e.g., one may re-
place linear subsystems by nonlinear ones, without changing the interconnection
structure), and will give rise to a completely compositional theory of network mod-
els of physical systems: the interconnection of port-Hamiltonian systems defines
another port-Hamiltonian system, where the Hamiltonians are simply added and
the new Dirac structure results from the composition of the Dirac structures of the
interconnected individual physical systems.

From a DAE perspective it may be noted that the algebraic constraint Q1
C1
= Q2

C2
is of index one. In fact, under reasonable assumptions on the Hamiltonian this will
turn out to be a general property of port-Hamiltonian differential-algebraic systems.

2Note that this separation is already present in the geometric description of Hamiltonian dynamics
in classical mechanics; see e.g. [1]. There the dynamics is defined with the use of the Hamiltonian
and the symplectic structure on the phase space of the system. Dirac structures form a generaliza-
tion of symplectic structures, and allow the inclusion of algebraic constraints. Note furthermore
that the symplectic structure in classical mechanics is commonly determined by the geometry of the
configuration space, while the Dirac structure of a port-Hamiltonian system captures its network
topology.
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In the above example, the subsystems are all energy-storing elements (capaci-
tors, inductors), and thus the total energy (Hamiltonian) is preserved along solu-
tions of the differential-algebraic equations. The framework, however, extends to
energy-dissipating elements (such as resistors), in which case the Hamiltonian will
decrease along solutions. Furthermore, in the above example there are no external
inputs to the system (such as voltage or current sources). In the port-Hamiltonian
framework these are, however, immediately incorporated, and are in fact essential
to describe the interconnection of port-Hamiltonian systems. By including external
ports in the system description it will follow that along system trajectories of the
port-Hamiltonian differential-algebraic system dH

dt
is always less than or equal than

the power supplied to the system through these external ports, i.e., passivity.
Finally, the port-Hamiltonian formalism emphasizes the analogy between phys-

ical system models. The same system of equations as in (1.5) or (1.6) also results
from the modeling of a system of two rigidly coupled masses connected to a single
spring. In this case, the rigid coupling between the two masses with kinetic energies

Hi(pi)= p2
i

2mi

, i = 1,2

(where p1,p2 denote the momenta of the masses m1,m2) is given by the (index
one) algebraic constraint

p1

m1
= v1 = v2 = p2

m2
(1.11)

with v1, v2 denoting the velocities of the masses. Note that this is different from
formulating the rigid coupling between two masses by the (index two) algebraic
constraint

q1 = q2 (1.12)

in terms of the positions qi, i = 1,2, of the two masses. In fact, the constraint (1.11)
results from differentiation of (1.12). Indeed, in the port-Hamiltonian approach there
is a preference for modeling constraints in mechanical systems as kinematic con-
straints (which can be holonomic, as in this simple example, or nonholonomic).
This will be discussed in more detail later in this paper.

The contents of Sects. 2, 3, 5, 6, 7 of the present paper are a thoroughly reworked
version of material that appeared before in [34], emphasizing and expanding the
differential-algebraic nature of port-Hamiltonian systems.

2 Definition of Port-Hamiltonian Systems

In this section we will provide the general geometric (coordinate-free) definition of
a finite-dimensional port-Hamiltonian system, and discuss different examples and
subclasses.

A port-Hamiltonian system can be represented as in Fig. 1. Central in the defi-
nition of a port-Hamiltonian system is the notion of a Dirac structure, denoted in
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Fig. 1 Port-Hamiltonian
system

Fig. 1 by D. Basic property of a Dirac structure is power-preservation: the Dirac
structure links the port variables in such a way that the total power associated with
all the port-variables is zero.

The port variables entering the Dirac structure have been split in Fig. 1 in dif-
ferent parts. First, there are two internal ports. One, denoted by S , corresponds to
energy-storage and the other one, denoted by R, corresponds to internal energy-
dissipation (resistive elements). Second, two external ports are distinguished. The
external port denoted by C is the port that is accessible for controller action. Also the
presence of sources may be included in this port. Finally, the external port denoted
by I is the interaction port, defining the interaction of the system with (the rest of)
its environment.

2.1 Dirac Structures

We start with a finite-dimensional linear space of flows F . The elements of F will
be denoted by f ∈ F , and are called flow vectors. The space of efforts is given by
the dual linear space E :=F∗, and its elements are denoted by e ∈ E . In the case of
F =R

k the space of efforts is E = (Rk)∗, and as the elements f ∈Rk are commonly
written as column vectors the elements e ∈ (Rk)∗ are appropriately represented as
row vectors. Then the total space of flow and effort variables is F × F∗, and will
be called the space of port variables. On the total space of port variables, the power
is defined by

P = 〈e | f 〉, (f, e) ∈F ×F∗, (2.1)

where 〈e | f 〉 denotes the duality product, that is, the linear functional e ∈F∗ acting
on f ∈ F . Often we will write the flow f and effort e both as column vectors, in
which case 〈e | f 〉 = eT f .

Definition 2.1 A Dirac structure on F ×F∗ is a subspace D ⊂F ×F∗ such that

(i) 〈e | f 〉 = 0, for all (f, e) ∈D,
(ii) dimD = dimF .
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Property (i) corresponds to power-preservation, and expresses the fact that the
total power entering (or leaving) a Dirac structure is zero. It can be shown that the
maximal dimension of any subspace D ⊂ F × F∗ satisfying property (i) is equal
to dimF . Instead of proving this directly, we will give an equivalent definition
of a Dirac structure from which this claim immediately follows. Furthermore, this
equivalent definition of a Dirac structure has the advantage that it generalizes to
the case of an infinite-dimensional linear space F , leading to the definition of an
infinite-dimensional Dirac structure. This will be instrumental in the definition of
distributed-parameter port-Hamiltonian systems [39].

In order to give this equivalent characterization of a Dirac structure, let us look
more closely at the geometric structure of the total space of flow and effort variables
F×F∗. Closely related to the definition of power, there exists a canonically defined
bilinear form 〈〈 , 〉〉 on the space F ×F∗, defined as

〈〈(
f a, ea
)
,
(
f b, eb
)〉〉 := 〈ea | f b

〉+ 〈eb | f a
〉

(2.2)

with (f a, ea), (f b, eb) ∈ F ×F∗. Note that this bilinear form is indefinite, that is,
〈〈(f, e), (f, e)〉〉 may be positive or negative. However, it is non-degenerate, that is,
〈〈(f a, ea), (f b, eb)〉〉 = 0 for all (f b, eb) implies that (f a, ea)= 0.

Proposition 2.1 ([8, 12]) A (constant) Dirac structure on F × F∗ is a subspace
D ⊂F ×F∗ such that

D =D⊥⊥, (2.3)

where⊥⊥ denotes the orthogonal complement with respect to the bilinear form 〈〈 , 〉〉.

Proof Let D satisfy (2.3). Then for every (f, e) ∈D
0= 〈〈(f, e), (f, e)

〉〉= 〈e | f 〉 + 〈e | f 〉 = 2〈e | f 〉.
By non-degeneracy of 〈〈 , 〉〉

dimD⊥⊥ = dim
(
F ×F∗

)− dimD = 2 dimF − dimD

and hence property (2.3) implies dimD = dimF . Conversely, let D be a Dirac struc-
ture and thus satisfying properties (i) and (ii) of Definition 2.1. Let (f a, ea), (f b, eb)

be any vectors contained in D. Then by linearity also (f a+f b, ea+eb) ∈D. Hence
by property (i)

0 = 〈ea + eb | f a + f b
〉

= 〈ea | f b
〉+ 〈eb | f a

〉+ 〈ea | f a
〉+ 〈eb | f b

〉

= 〈ea | f b
〉+ 〈eb | f a

〉= 〈〈(f a, ea
)
,
(
f b, eb
)〉〉

(2.4)

since by another application of property (i), 〈ea | f a〉 = 〈eb | f b〉 = 0. This implies
that D ⊂ D⊥⊥. Furthermore, by property (ii) and dimD⊥⊥ = 2 dimF − dimD it
follows that dimD = dimD⊥⊥, thus yielding D =D⊥⊥. �
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Remark 2.1 Note that we have actually shown that property (i) implies D ⊂ D⊥⊥.
Together with the fact that dimD⊥⊥ = 2 dimF − dimD this implies that any sub-
space D satisfying property (i) has the property that dimD ≤ dimF . Thus, as
claimed before, a Dirac structure is a linear subspace of maximal dimension sat-
isfying property (i).

Remark 2.2 The property D = D⊥⊥ can be regarded as a generalization of Telle-
gen’s theorem in circuit theory, since it describes a constraint between two different
realizations of the port variables, in contrast to property (i).

From a mathematical point of view, there are a number of direct examples of
Dirac structures D ⊂F ×F∗. We leave the proofs as an exercise to the reader.

(i) Let J :F∗ →F be a skew-symmetric linear mapping, that is, J =−J ∗, where
J ∗ :F∗ → (F)∗∗ =F is the adjoint mapping. Then

graphJ := {(f, e) ∈F ×F∗ | f = Je
}

is a Dirac structure.
(ii) Let ω :F→F∗ be a skew-symmetric linear mapping, then

graphω := {(f, e) ∈F ×F∗ | e= ωf
}

is a Dirac structure.
(iii) Let G ⊂F be any subspace. Define

G⊥ = {e ∈F∗ | 〈e | f 〉 = 0 for all f ∈ G}.

Then G × G⊥ ⊂ F × F∗ is a Dirac structure. Special cases of such a Dirac
structure are ideal constraints. Indeed, the ideal effort constraint

D := {(f, e) ∈F ×F∗ | e= 0
}

is defining a Dirac structure, and the same holds for the ideal flow constraint

D := {(f, e) ∈F ×F∗ | f = 0
}
.

2.2 Energy Storage

The port variables associated with the internal storage port will be denoted by
(fS, eS). They are interconnected to the energy storage of the system, which is de-
fined by a finite-dimensional state space manifold X with coordinates x, together
with a Hamiltonian function H :X →R denoting the energy. The flow variables of
the energy storage are given by the rate ẋ of the energy variables x. Furthermore, the
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effort variables of the energy storage are given by the co-energy variables ∂H
∂x

(x),
resulting in the energy balance3

d

dt
H =
〈
∂H

∂x
(x) | ẋ
〉
= ∂T H

∂x
(x)ẋ. (2.5)

The interconnection of the energy storing elements to the storage port of the
Dirac structure is accomplished by setting

fS =−ẋ and eS = ∂H

∂x
(x). (2.6)

Hence the energy balance (2.5) can be also written as

d

dt
H = ∂T H

∂x
(x)ẋ =−eT

S fS. (2.7)

2.3 Energy Dissipation

The second internal port corresponds to internal energy dissipation (due to friction,
resistance, etc.), and its port variables are denoted by (fR, eR). These port variables
are terminated on a static resistive relation R. In general, a static resistive relation
will be of the form

R(fR, eR)= 0 (2.8)

with the property that for all (fR, eR) satisfying (2.8)

〈eR | fR〉 ≤ 0. (2.9)

A typical example of such a nonlinear resistive relation will be given in Example 4.4.
In many cases we may restrict ourselves to linear resistive relations in which case
(fR, eR) satisfy relations of the form

Rf fR +ReeR = 0. (2.10)

The inequality (2.9) then corresponds to the square matrices Rf and Re satisfying
the properties

Rf RT
e =ReR

T
f ≥ 0, (2.11)

together with the dimensionality condition

rank [Rf |Re] = dimfR. (2.12)

3Throughout we adopt the convention that ∂H
∂x

(x) denotes the column vector of partial derivatives
of H .
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Indeed, by the dimensionality condition (2.12) and the symmetry (2.11) we can
equivalently rewrite the kernel representation (2.10) of R into an image representa-
tion

fR =RT
e λ and eR =−RT

f λ. (2.13)

That is, any pair (fR, eR) satisfying (2.10) can be written into the form (2.13) for
a certain λ, and conversely any (fR, eR) for which there exists λ such that (2.13)
holds is satisfying (2.10). Hence by (2.11) all fR, eR satisfying the resistive relation
are such that

eT
RfR =−

(
RT

f λ
)T

RT
e λ=−λT Rf RT

e λ≤ 0. (2.14)

Without the presence of additional external ports, the Dirac structure of the port-
Hamiltonian system satisfies the power balance

eT
S fS + eT

RfR = 0 (2.15)

which leads by substitution of equations (2.7) and (2.14) to

d

dt
H =−eT

S fS = eT
RfR ≤ 0. (2.16)

An important special case of resistive relations between fR ∈ R
mr and eR ∈ R

mr

occurs when the resistive relations can be expressed as an input–output mapping

fR =−F(eR), (2.17)

where the resistive characteristic4 F :Rmr →R
mr satisfies

eT
RF (eR)≥ 0, eR ∈Rmr . (2.18)

For linear resistive elements, (2.17) specializes to

fR =−R̃eR (2.19)

for some positive semi-definite symmetric matrix R̃ = R̃T ≥ 0.

2.4 External Ports

Now, let us consider in more detail the external ports to the system. We shall dis-
tinguish between two types of external port. One is the control port C, with port
variables (fC, eC), which are the port variables which are accessible for controller

4In many cases, F will be derivable from a so-called Rayleigh dissipation function R :Rmr →R,

in the sense that F(eR)= ∂R
∂eR

(eR).
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action. The other type of external port is the interaction port I , which denotes the
interaction of the port-Hamiltonian system with its environment. The port variables
corresponding to the interaction port are denoted by (fI , eI ). Taking both the exter-
nal ports into account the power-balance (2.15) extends to

eT
S fS + eT

RfR + eT
CfC + eT

I fI = 0 (2.20)

whereby (2.16) extends to

d

dt
H = eT

RfR + eT
CfC + eT

I fI . (2.21)

2.5 Resulting Port-Hamiltonian Dynamics

The port-Hamiltonian system with state space X , Hamiltonian H corresponding
to the energy storage port S , resistive port R with relations (2.8), control port C,
interconnection port I , and total Dirac structure D will be succinctly denoted by
Σ = (X ,H,R,C,I,D). The dynamics of the port-Hamiltonian system is specified
by considering the constraints on the various port variables imposed by the Dirac
structure, that is,

(fS, eS, fR, eR,fC, eC,fI , eI ) ∈D
and to substitute in these relations the equalities fS = −ẋ and eS = ∂H

∂x
(x). This

leads to the implicitly defined dynamics
(
−ẋ(t),

∂H

∂x

(
x(t)
)
, fR(t), eR(t), fC(t), eC(t), fI (t), eI (t)

)
∈D (2.22)

with fR(t), eR(t) satisfying for all t the resistive relation

R
(
fR(t), eR(t)

)= 0. (2.23)

In many cases of interest, Eqs. (2.22) will constrain the state x. Thus in a coordinate
representation (as will be treated in detail in the next section), port-Hamiltonian
systems generally will consist of a mixed set of differential and algebraic equations
(DAEs).

Example 2.1 (General RLC-circuits) We start by showing how Kirchhoff’s laws
define a Dirac structure on the space of currents and voltages of any electrical circuit.
Consider a circuit-graph with m edges and n vertices, where the current through the
ith edge is denoted by Ii and the voltage across the ith edge is Vi . Collect the
currents in a single column vector I (of dimension m) and the voltages in an m-
dimensional column vector V . Then Kirchhoff’s current laws can be written as

BI = 0, (2.24)
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where B is the n × m incidence matrix of the graph. Dually, Kirchhoff’s voltage
laws can be written as follows: all allowed vectors of voltages V in the circuit are
given as

V = BT λ, λ ∈Rn. (2.25)

It is immediately seen that the total space of currents and voltages allowed by Kirch-
hoff’s current and voltage laws

D = {(I,V ) | BI = 0,∃λ s.t. V = BT λ
}

(2.26)

defines a Dirac structure. In particular (V a)T I b + (V b)T I a = 0 for all pairs
(I a,V a), (I b,V b) ∈ D. By taking V a, I b equal to zero, we obtain (V b)T I a = 0
for all I a satisfying (2.24) and all V b satisfying (2.25), which amounts to Tellegen’s
theorem. Hence for an arbitrary RLC-circuit Kirchhoff’s current and voltage laws
take the form [35]

BLIL +BCIC +BRIR = 0,

VL = BT
L λ,

VC = BT
C λ,

VP = BT
P λ

(2.27)

with [BL BC BR] denoting the incidence matrix of the circuit graph, where the
edges have been ordered according to being associated to the inductors, capacitors,
and resistors. Furthermore, IL, IC and IR denote the currents through, respectively,
the inductors, capacitors and resistors. Likewise, VL, VC and VR denote the voltages
across the inductors, capacitors and terminals. Kirchhoff’s current and voltage laws
define a Dirac structure D between the flows and efforts

fS = (IC,VL, IR)= (−Q̇,−φ̇, IR),

eS = (VC, IL,VR)=
(

∂H

∂Q
,
∂H

∂φ
,VR

)

with Hamiltonian H(Q,φ) equal to the total energy. This leads to the port-
Hamiltonian differential-algebraic system

−φ̇ = BT
L λ,

∂H

∂Q
= BT

C λ,

VR = BT
Rλ,

0 = BL

∂H

∂φ
−BCQ̇+BRIR,

VR = −RIR
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Fig. 2 Magnetically levitated
ball

with state vector x = (Q,φ), where R is a positive diagonal matrix (Ohm’s law de-
scribing the linear resistors). The equations can be easily extended to cover voltage
or current sources, external ports or terminals [40].

Example 2.2 (Electro-mechanical system) Consider the dynamics of an iron ball in
the magnetic field of a controlled inductor, as shown in Fig. 2. The port-Hamiltonian
description of this system (with q the height of the ball, p the vertical momentum,
and ϕ the magnetic flux of the inductor) is given as

⎡
⎣

q̇

ṗ

ϕ̇

⎤
⎦ =
⎡
⎣

0 1 0
−1 0 0
0 0 −R

⎤
⎦

⎡
⎢⎢⎣

∂H
∂q

∂H
∂p

∂H
∂ϕ

⎤
⎥⎥⎦+
⎡
⎣

0
0
1

⎤
⎦V,

I = ∂H

∂ϕ
.

(2.28)

This is an example of a system where the coupling between two different physical
domains (mechanical and magnetic) takes place via the Hamiltonian; in this case

H(q,p,ϕ)=mgq + p2

2m
+ ϕ2

2k1(1− q
k2

)
,

where the last term depends both on the magnetic variable ϕ and the mechanical
variable q .

2.6 Port-Hamiltonian Systems and Passivity

By the power-preserving property of the Dirac structure

eT
S fS + eT

RfR + eT
CfC + eT

I fI = 0.
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Hence the port-Hamiltonian dynamics defined in (2.22) satisfies

dH

dt
= ∂T H

∂x
(x)ẋ =−eT

S fS

= eT
RfR + eT

CfC + eT
I fI ≤ eT

CfC + eT
I fI , (2.29)

where the last inequality follows from the energy-dissipating property (2.9) of the
resistive relation between fR and eR . Thus, whenever H is bounded from below
(and thus can be changed into a non-negative function by adding a constant), the
port-Hamiltonian system is passive. Furthermore, notice that in fact we may relax
the requirement of H being bounded from below on the whole state space X by
requiring that H is bounded from below on the part of X satisfying the algebraic
constraints present in the system.

2.7 Modulated Dirac Structures and Port-Hamiltonian Systems on
Manifolds

For many systems, especially those with 3-D mechanical components, the Dirac
structure is actually modulated by the state variables. Furthermore, the state space
X is a manifold and the flow vector fS =−ẋ corresponding to energy-storage are
in the tangent space TxX at the state x ∈ X , while the effort vector eS is in the
co-tangent space T ∗x X . The modulation of the Dirac structure is often intimately
related to the underlying geometry of the system.

Example 2.3 (Spinning rigid body) Consider a rigid body spinning around its center
of mass in the absence of gravity. The energy variables are the three components of
the body angular momentum p along the three principal axes: p = (px,py,pz), and
the energy is the kinetic energy

H(p)= 1

2

(
p2

x

Ix

+ p2
y

Iy

+ p2
z

Iz

)
,

where Ix, Iy, Iz are the principal moments of inertia. Euler’s equations describing
the dynamics are

⎡
⎣

ṗx

ṗy

ṗz

⎤
⎦=
⎡
⎣

0 −pz py

pz 0 −px

−py px 0

⎤
⎦

︸ ︷︷ ︸
J (p)

⎡
⎢⎢⎣

∂H
∂px

∂H
∂py

∂H
∂pz

⎤
⎥⎥⎦ . (2.30)

The Dirac structure is given as the graph of the skew-symmetric matrix J (p), and
thus defines a subspace which is modulated by the state variables p.
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This motivates to extend the definition of a constant Dirac structure D ⊂F ×F∗
(with F a linear space) as given before in Proposition 2.1 to Dirac structures on
manifolds. Simply put, a Dirac structure on a manifold X is pointwise (that is, for
every x ∈X ) a constant Dirac structure D(x)⊂ TxX × T ∗x X .

Definition 2.2 Let X be a manifold. A Dirac structure D on X is a vector sub-
bundle of the Whitney sum5 TX ⊕ T ∗X such that

D(x)⊂ TxX × T ∗x X

is for every x ∈X a constant Dirac structure as before.

If, next to the energy storage port, there are additional ports (such as resistive,
control or interaction ports) with port variables f ∈F and e ∈F∗, then a modulated
Dirac structure is pointwise specified by a constant Dirac structure

D(x)⊂ TxX × T ∗x X ×F ×F∗. (2.31)

2.7.1 Kinematic Constraints in Mechanics

Modulated Dirac structures often arise as a result of ideal constraints imposed on
the generalized velocities of the mechanical system by its environment, called kine-
matic constraints. In many cases, these constraints will be configuration dependent,
leading to a Dirac structure modulated by the configuration variables.

Consider a mechanical system with n degrees of freedom, locally described
by n configuration variables q = (q1, . . . , qn). Expressing the kinetic energy as
1
2 q̇T M(q)q̇ , with M(q) > 0 being the generalized mass matrix, we define in the
usual way the Lagrangian function L(q, q̇) as the difference of kinetic energy and
potential energy P(q), i.e.,

L(q, q̇)= 1

2
q̇T M(q)q̇ − P(q). (2.32)

Suppose now that there are constraints on the generalized velocities q̇ , described as

AT (q)q̇ = 0 (2.33)

with A(q) an n× k matrix of rank k everywhere (that is, there are k independent
kinematic constraints). Classically, the constraints (2.33) are called holonomic if
it is possible to find new configuration coordinates q = (q1, . . . , qn) such that the
constraints are equivalently expressed as

q̇n−k+1 = q̇n−k+2 = · · · = q̇n = 0 (2.34)

5The Whitney sum of two vector bundles with the same base space is defined as the vector bundle
whose fiber above each element of this common base space is the product of the fibers of each
individual vector bundle.
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in which case one may eliminate the configuration variables qn−k+1, . . . , qn, since
the kinematic constraints (2.34) are equivalent to the geometric constraints

qn−k+1 = cn−k+1, . . . , qn = cn (2.35)

for certain constants cn−k+1, . . . , cn determined by the initial conditions. Then the
system reduces to an unconstrained system in the (n− k) remaining configuration
coordinates (q1, . . . , qn−k). If it is not possible to find coordinates q such that (2.34)
holds (that is, if we are not able to integrate the kinematic constraints as above), then
the constraints are called nonholonomic.

The equations of motion for a mechanical system with Lagrangian L(q, q̇) and
constraints (2.33) are given by the constrained Euler–Lagrange equations (derived
from d’Alembert’s principle) [22]

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= A(q)λ+B(q)u, λ ∈Rk, u ∈Rm,

AT (q)q̇ = 0,

(2.36)

where B(q)u are the external forces (controls) applied to the system, for some
n × m matrix B(q), while A(q)λ are the constraint forces. The Lagrange multi-
pliers λ(t) at any time t are uniquely determined by the requirement that the con-
straints AT (q(t))q̇(t) = 0 have to be satisfied for all t . Note that (2.36) defines a
set of second-order differential-algebraic equations in the configuration variables q .
Defining the generalized momenta

p = ∂L

∂q̇
=M(q)q̇ (2.37)

the constrained Euler–Lagrange equations (2.36) transform into the constrained
Hamiltonian equations

q̇ = ∂H

∂p
(q,p),

ṗ = −∂H

∂q
(q,p)+A(q)λ+B(q)u,

y = BT (q)
∂H

∂p
(q,p),

0 = AT (q)
∂H

∂p
(q,p)

(2.38)

with H(q,p) = 1
2pT M−1(q)p + P(q) the total energy. This defines a port-

Hamiltonian differential-algebraic system with respect to the modulated Dirac struc-
ture

D =
{
(fS, eS, fC, eC) | 0=AT (q)eS, eC = BT (q)eS,∃λ ∈Rk s.t.

− fS =
[

0 In

−In 0

]
eS +
[

0
A(q)

]
λ+
[

0
B(q)

]
fc,λ ∈Rk

}
. (2.39)
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Example 2.4 (Rolling euro) Let x, y be the Cartesian coordinates of the point of
contact of the coin with the plane. Furthermore, ϕ denotes the heading angle, and θ

the angle of Queen Beatrix’ head.6 With all constants set to unity, the constrained
Euler–Lagrangian equations of motion are

ẍ = λ1,

ÿ = λ2,

θ̈ =−λ1 cosϕ − λ2 sinϕ + u1,

ϕ̈ = u2

(2.40)

with u1 the control torque about the rolling axis, and u2 the control torque about
the vertical axis. The total energy is H = 1

2p2
x + 1

2p2
y + 1

2p2
θ + 1

2p2
ϕ . The rolling

constraints are the nonholonomic kinematic constraints ẋ = θ̇ cosϕ and ẏ = θ̇ sinϕ,
i.e., rolling without slipping, which can be written in the form (2.33) by defining

AT (x, y, θ,φ)=
[

1 0 − cosφ 0
0 1 − sinφ 0

]
.

2.8 Input–State–Output Port-Hamiltonian Systems

An important subclass of port-Hamiltonian systems is the class of input–state–
output port-Hamiltonian systems, where there are no algebraic constraints on the
state space variables, and the flow and effort variables of the resistive, control and
interaction port can be split into conjugated input–output pairs.

Input–state–output port-Hamiltonian systems are defined as dynamical systems
of the following form:

Σ :

ẋ = [J (x)−R(x)
]∂H

∂x
(x)+ g(x)u+ k(x)d,

y = gT (x)
∂H

∂x
(x),

z = kT (x)
∂H

∂x
(x),

x ∈X , (2.41)

where (u, y) are the input–output pairs corresponding to the control port C, while
(d, z) denote the input–output pairs of the interaction port I . Note that yT u and zT d

equal the power corresponding to the control, respectively, interaction port. Here
the matrix J (x) is skew-symmetric, that is, J (x) = −J T (x). The matrix R(x) =
RT (x) ≥ 0 specifies the resistive structure. From a resistive port point of view, it
is given as R(x)= gT

R(x)R̃(x)gR(x) for some linear resistive relation fR =−R̃eR

6On the Dutch version of the euro.
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Fig. 3 Controlled LC-circuit

with R̃(x)= R̃T (x)≥ 0 and gR representing the input matrix corresponding to the
resistive port.

The underlying Dirac structure of the system is then given by the graph of the
skew-symmetric linear map

⎡
⎢⎢⎣

−J (x) −gR(x) −g(x) −k(x)

gT
R(x) 0 0 0

gT (x) 0 0 0
kT (x) 0 0 0

⎤
⎥⎥⎦ . (2.42)

In general, the Dirac structure defined as the graph of the mapping (2.42) is a mod-
ulated Dirac structure since the matrices J , gR , g, and k may all depend on the
energy variables x.

Example 2.5 (LC-circuit with independent storage elements) Consider a controlled
LC-circuit (see Fig. 3) consisting of two inductors with magnetic energies H1(ϕ1)

and H2(ϕ2) (ϕ1 and ϕ2 being the magnetic flux linkages), and a capacitor with
electric energy H3(Q) (Q being the charge). If the elements are linear, then

H1(ϕ1)= 1

2L1
ϕ2

1 , H2(ϕ2)= 1

2L2
ϕ2

2, H3(Q)= 1

2C
Q2.

Furthermore, let V = u denote a voltage source. Using Kirchhoff’s laws, one imme-
diately arrives at the input–state–output port-Hamiltonian system

⎡
⎣

Q̇

ϕ̇1
ϕ̇2

⎤
⎦ =
⎡
⎣

0 1 −1
−1 0 0
1 0 0

⎤
⎦

︸ ︷︷ ︸
J

⎡
⎢⎢⎣

∂H
∂Q

∂H
∂ϕ1

∂H
∂ϕ2

⎤
⎥⎥⎦+
⎡
⎣

0
1
0

⎤
⎦u,

y = ∂H

∂ϕ1
(= current through first inductor)

with H(Q,ϕ1, ϕ2) :=H1(ϕ1)+H2(ϕ2)+H3(Q) the total energy. Clearly the ma-
trix J is skew-symmetric. In this way, cf. [20], every LC-circuit with independent
storage elements can be modeled as an input–state–output port-Hamiltonian system
(with respect to a constant Dirac structure).
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Input–state–output port-Hamiltonian systems with additional feed-through terms
are given as (for simplicity we do not take the interaction port into account) [13, 31]

ẋ = [J (x)−R(x)
]∂H

∂x
(x)+ [g(x)− P(x)

]
u,

y = [g(x)+ P(x)
]� ∂H

∂x
(x)+ [M(x)+ S(x)

]
u

(2.43)

with the matrices P , R, S satisfying

Z =
[

R(x) P (x)

P�(x) S(x)

]
≥ 0. (2.44)

The relation between u,y and the storage port variables fS, eS is in this case given
as [

fS

y

]
=
[−J (x) −g(x)

gT (x) M

][
eS

u

]
+
[

R(x) P (x)

P T (x) S(x)

][
eS

u

]
. (2.45)

It follows that

eT
S fS + uT y = [eT

S uT
][ R(x) P (x)

P T (x) S(x)

][
eS

u

]
≥ 0

and thereby

d

dt
H(x)=−eT

S fS = uT y − [eT
S uT

][ R(x) P (x)

P T (x) S(x)

][
eS

u

]
≤ uT y

thus recovering the basic energy balance for port-Hamiltonian systems. Port-
Hamiltonian input–state–output systems with feed-through terms readily show up
in the modeling of power converters [13], as well as in friction models (see e.g. [16]
for a port-Hamiltonian description of the dynamic LuGre friction model).

Although the class of input–state–output port-Hamiltonian systems is a very
important subclass, it is not closed under general power-preserving interconnec-
tions. Basically, only negative feedback interconnections of input–state–output port-
Hamiltonian systems will result in another input–state–output port-Hamiltonian sys-
tem, while otherwise algebraic constraints will arise, leading to port-Hamiltonian
differential-algebraic systems. On the other hand, input–state–output port-Hamil-
tonian systems may arise from solving the algebraic constraints in a port-
Hamiltonian differential-algebraic system. This will be discussed in Sect. 4.

3 Representations of Dirac Structures and Port-Hamiltonian
Systems

In the preceding section, we have provided the geometric definition of a port-
Hamiltonian system containing three main ingredients. First, the energy storage
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which is represented by a state space manifold X specifying the space of state
variables together with a Hamiltonian H : X → R defining the energy. Secondly,
there are the static resistive elements, and thirdly there is the Dirac structure link-
ing all the flows and efforts associated to the energy storage, resistive elements, and
the external ports (e.g. control and interaction ports) in a power-conserving man-
ner. This, together with the general formulation (2.2) of a Dirac structure, leads to
a completely coordinate-free definition of a port-Hamiltonian system, because of
three reasons: (a) we do not start with coordinates for the state space manifold X ,
(b) we define the Dirac structure as a subspace instead of a set of equations, (c) the
resistive relations are defined as a subspace constraining the port variables (fR, eR).

This geometric, coordinate-free, point of view has a number of advantages. It al-
lows one to reason about port-Hamiltonian systems without the need to choose spe-
cific representations. For example, in Sect. 4 we will see that a number of properties
of the port-Hamiltonian system, such as passivity, stability, existence of conserved
quantities and algebraic constraints, can be analyzed without the need for choosing
coordinates and equations. On the other hand, for many other purposes, including
simulation, the need for a representation in coordinates of the port-Hamiltonian sys-
tem is indispensable, in which case the emphasis shifts to finding the most conve-
nient coordinate representation for the purpose at hand. The examples of the previ-
ous section have already been presented in this way. In this section, we will briefly
discuss a number of possible representations of port-Hamiltonian systems. It will
turn out that the key issue is the representation of the Dirac structure.

3.1 Representations of Dirac Structures

Dirac structures admit different representations. Here we just list a number of them.
See e.g. [7–9, 15] for more information.

3.1.1 Kernel and Image Representation

Every Dirac structure D ⊂F ×F∗ can be represented in kernel representation as

D = {(f, e) ∈F ×F∗ | Ff +Ee= 0
}

(3.1)

for linear maps F :F→ V and E :F∗ → V satisfying

(i) EF ∗ + FE∗ = 0,

(ii) rank(F +E)= dimF ,
(3.2)

where V is a linear space with the same dimension as F , and where F ∗ : V∗ →F∗
and E∗ : V∗ →F∗∗ =F are the adjoint maps of F and E, respectively.
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It follows from (3.2) that D can be also written in image representation as

D = {(f, e) ∈F ×F∗ | f =E∗λ, e= F ∗λ,λ ∈ V∗}. (3.3)

Sometimes it will be useful to relax this choice of the linear mappings F and E by
allowing V to be a linear space of dimension greater than the dimension of F . In
this case we shall speak of relaxed kernel and image representations.

Matrix kernel and image representations are obtained by choosing linear coordi-
nates for F , F∗ and V . Indeed, take any basis f1, . . . , fn for F and the dual basis
e1 = f ∗1 , . . . , en = f ∗n for F∗, where dim F = n. Furthermore, take any set of linear
coordinates for V . Then the linear maps F and E are represented by n× n matrices
F and E satisfying

(i) EFT + FET = 0,

(ii) rank [F |E] = dimF .
(3.4)

In the case of a relaxed kernel and image representation F and E will be n′ × n

matrices with n′ > n.
A (constructive) proof for the existence of matrix kernel and image represen-

tations can be given as follows. Consider a Dirac structure D ⊂ F × F∗ where
we have chosen linear coordinates for F , F∗ and V . In particular, choose any ba-
sis f1, . . . , fn for F and the dual basis e1 = f ∗1 , . . . , en = f ∗n for F∗, where dim
F = n. Since D is a subspace of F × F∗ it follows that there exist square n × n

matrices F and E such that

D = im

[
ET

FT

]
,

where rank [F |E] = dimF . Thus any element (f, e) ∈D can be written as

f =ET λ, e= FT λ

for some λ ∈Rn. Since eT f = 0 for every (f, e) ∈D this implies that

λT FET λ= 0

for every λ, or equivalently, EFT + FET = 0. Conversely, any subspace D given
by (3.4) is a Dirac structure, since it satisfies eT f = 0 for every (f, e) ∈D and its
dimension is equal to n.

Remark 3.1 A special type of kernel representation occurs if not only EF ∗ +
FE∗ = 0 but even more FE∗ = 0. This implies that imE∗ ⊂ kerF . Since it follows
from the kernel/image representation of any Dirac structure that kerF ⊂ imE∗, we
thus obtain imE∗ = kerF . Hence the Dirac structure is the product of the subspace
kerF ⊂ F and the subspace kerF⊥ = kerE ⊂ F∗. We have already encountered
this special type of Dirac structure in the case of Kirchhoff’s current and voltage
laws.
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3.1.2 Constrained Input–Output Representation

Every Dirac structure D ⊂F ×F∗ can be represented as

D = {(f, e) ∈F ×F∗ | f = Je+Gλ,GT e= 0
}

(3.5)

for a skew-symmetric mapping J : F → F∗ and a linear mapping G such that
imG= {f | (f,0) ∈D}. Furthermore, kerJ = {e | (0, e) ∈D}.

The proof that (3.5) defines a Dirac structure is straightforward. Indeed, for any
(f, e) given as in (3.5) we have

eT f = eT (J e+Gλ)= eT J e+ eT Gλ= 0

by skew-symmetry of J and GT e = 0. Furthermore, let rank G = r ≤ n. If r = 0
(or equivalently G= 0) then the dimension of D is clearly n since in that case it is
the graph of the mapping J . For r �= 0 the freedom in e will be reduced by dimen-
sion r , while at the other hand the freedom in f will be increased by dimension r

(because of the term Gλ). For showing that every Dirac structure D ⊂F ×F∗ can
be represented in this way we refer to [8].

3.1.3 Hybrid Input–Output Representation

Let D be given in matrix kernel representation by square matrices E and F as in 1.
Suppose rank F = m(≤ n). Select m independent columns of F , and group them
into a matrix F1. Write (possibly after permutations) F = [F1 | F2] and correspond-
ingly E = [E1 |E2],

f =
[
f1
f2

]
and e=

[
e1
e2

]
.

Then it can be shown [4] that the matrix [F1 |E2] is invertible, and

D =
{([

f1
f2

]
,

[
e1
e2

]) ∣∣∣∣
[
f1
e2

]
= J

[
e1
f2

]}
(3.6)

with J := −[F1 |E2]−1[F2 |E1] skew-symmetric.
It follows that any Dirac structure can be written as the graph of a skew-

symmetric map. The vectors e1, f2 can be regarded as input vectors, while the com-
plementary vectors f1, e2 can be seen as output vectors.7

7This is very much like the multi-port description of a passive linear circuit, where it is known that
although it is not always possible to describe the port as an admittance or as an impedance, it is
possible to describe it as a hybrid admittance/impedance transfer matrix, for a suitable selection of
input voltages and currents and complementary output currents and voltages [3].
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3.1.4 Canonical Coordinate Representation

For any constant Dirac structure there exist a basis for F and dual basis for F∗, such
that the vector (f, e), when partitioned as (f, e)= (fq, fp,fr , fs, eq, ep, er , es), is
in D if and only if

fq =−ep,

fp = eq,

fr = 0,

es = 0.

(3.7)

For a proof we refer to [8]. For a modulated Dirac structure the existence of canon-
ical coordinates requires an additional integrability condition, for which we refer
to Sect. 7. The representation of a Dirac structure by canonical coordinates is very
close to the classical Hamiltonian equations of motion.

In [4, 9, 32] it is shown how one may convert any of the above representations
into any other. An easy transformation that will be used frequently in the sequel
is the transformation of the constrained input–output representation into the kernel
representation. Consider the Dirac structure D given in constrained input–output
representation by (3.5). Construct a linear mapping G⊥ of maximal rank satisfying
G⊥G= 0. Then, pre-multiplying the first equation of (3.5) by G⊥, one eliminates
the Lagrange multipliers λ and obtains

D = {(f, e) ∈F ×F∗ |G⊥f =G⊥Je,GT e= 0
}

(3.8)

which is easily seen to lead to a kernel representation. Indeed,

F =
[−G⊥

0

]
, E =

[
G⊥J

GT

]

defines a kernel representation.

3.2 Representations of Port-Hamiltonian Systems

Coordinate representations of the port-Hamiltonian system (2.22) are obtained by
choosing a specific coordinate representation of the Dirac structure D. For example,
if D is given in matrix kernel representation

D = {(fS, eS, f, e) ∈X ×X ∗ ×F ×F∗ | FSfS +ESeS + Ff +Ee= 0
}

(3.9)

with

(i) ESFT
S + FSET

S +EFT + FET = 0,

(ii) rank[FS |ES | F |E] = dim(X ×F)
(3.10)
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then the port-Hamiltonian system is given by the set of equations

FSẋ(t)=ES

∂H

∂x

(
x(t)
)+ Ff (t)+Ee(t). (3.11)

Note that, in general, (3.11) consists of differential equations and algebraic equa-
tions in the state variables x (DAEs), together with equations relating the state vari-
ables and their time-derivatives to the external port variables (f, e).

Example 3.1 (1-D mechanical systems) Consider a spring with elongation q and
energy function Hs(q), which for a linear spring is given as Hs(q) = 1

2kq2. Let
(vs,Fs) represent the external port through which energy can be exchanged with
the spring, where vs is equal to the rate of elongation (velocity) and Fs is equal to
the elastic force. This port-Hamiltonian system (without dissipation) can be written
in kernel representation as

[
1 1
0 0

][−q̇

vs

]
+
[

0 0
1 −1

][
kq

Fs

]
= 0. (3.12)

Similarly we can model a moving mass m with scalar momentum p and kinetic
energy Hm(p)= 1

2m
p2 as the port-Hamiltonian system

[
1 1
0 0

][−ṗ

Fm

]
+
[

0 0
1 −1

][ p
m

vm

]
= 0, (3.13)

where (Fm,vm) are, respectively, the external force exerted on the mass and the
velocity of the mass. The mass and the spring can be interconnected to each other
using the symplectic gyrator

[
vs

Fm

]
=
[

0 1
−1 0

][
Fs

vm

]
. (3.14)

Collecting all equations we have obtained a port-Hamiltonian system with energy
variables x = (q,p), total energy H(q,p) = Hs(q) + Hm(p) and with intercon-
nected port variables (vs,Fs,Fm, vm). After elimination of the interconnection vari-
ables (vs,Fs,Fm, vm) one obtains the port-Hamiltonian system

[
1 0
0 1

][−q̇

−ṗ

]
+
[

0 1
−1 0

][
kq
p
m

]
= 0 (3.15)

which is the ubiquitous mass–spring system. Note that the Dirac structure of this
mass–spring system is derived from the Dirac structures of the spring system and
the mass system together with their interconnection by means of the symplectic
gyrator (which itself defines a Dirac structure). The systematic derivation of the
resulting interconnected Dirac structure will be studied in Sect. 6.

In case of a Dirac structure modulated by the state variables x and the state space
X being a manifold, the flows fS = −ẋ are elements of the tangent space TxX
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at the state x ∈ X , and the efforts eS are elements of the co-tangent space T ∗x X .
Still, locally on X , we obtain the kernel representation (3.11) for the resulting port-
Hamiltonian system, but now the matrices FS , ES , F and E will depend on x.

The important special case of input–state–output port-Hamiltonian systems as
treated before

ẋ = J (x)
∂H

∂x
(x)+ g(x)u,

y = gT (x)
∂H

∂x
(x),

x ∈X ,

can be interpreted as arising from a hybrid input–output representation of the Dirac
structure (from eS,u to fS, y). If the matrices J,g depend on the energy variables
x, then this is again a modulated Dirac structure.

In general, by a combination of the hybrid representation and the constrained
input–output representation, it can be shown [9] that, locally, any port-Hamiltonian
system can be represented in the following way:

ẋ = J (x)
∂H

∂x
(x)+ g(x)u+ b(x)λ,

y = gT (x)
∂H

∂x
(x),

0 = bT (x)
∂H

∂x
(x),

x ∈X , (3.16)

where yT u denotes the power at the external port, and 0= bT (x) ∂H
∂x

(x) represents
the algebraic constraints.8 Note that the Hamiltonian formulation of mechanical sys-
tems with kinematic constraints, as discussed in Sect. 2.7.1, leads to this form; see
in particular the constrained Hamiltonian equations (2.38) and its Lagrangian coun-
terpart (2.36).

Example 3.2 (Coupled masses—Internal constraints) Consider two point masses
m1 and m2 that are rigidly linked to each other, moving in one dimension. When
decoupled, the masses are described by the input–state–output port-Hamiltonian
systems

ṗi = Fi,

vi = pi

mi

,
i = 1,2 (3.17)

with Fi denoting the force exerted on mass mi . Rigid coupling of the two masses is
achieved by setting

v1 = v2, F1 =−F2. (3.18)

8The equality 0 = bT (x) ∂H
∂x

(x) also has the interpretation (well-known in a mechanical system
context) that the constraint input b(x)λ is ‘workless’; i.e., the evolution of the value of the Hamil-
tonian H is not affected by this term.
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This leads to the port-Hamiltonian differential-algebraic system

[
ṗ1
ṗ2

]
=
[

1
−1

]
λ,

0= [1 −1
][ p1

m1
p2
m2

] (3.19)

where λ= F1 =−F2 now denotes the internal constraint force. The resulting inter-
connected system no longer has external ports. On the other hand, external ports for
the interconnected system can be included by either extending (3.17) to

ṗi = Fi + F ext
i ,

vi = pi

mi

,

vext
i =

pi

mi

,

i = 1,2 (3.20)

with F ext
i and vext

i denoting the external forces and velocities, or by modifying the
interconnection constraints (3.18) to e.g. F1 + F2 + F ext = 0 and v1 = v2 = vext,
with F ext and vext denoting the external force exerted on the coupled masses, re-
spectively the velocity of the coupled masses.

Remark 3.2 Note that in the above port-Hamiltonian description of the two cou-
pled masses the position variables qi, i = 1,2, of the two masses do not come
into play, while the interconnection is not described by the alternative formulation
q1 = q2,F1 = −F2, but instead by v1 = v2,F1 = −F2. The positions qi, i = 1,2,
can be included, albeit somewhat redundantly, by extending the port-Hamiltonian
descriptions ṗi = Fi, vi = pi

mi
of the two masses to the input–state–output port-

Hamiltonian systems

q̇i = pi

mi

,

ṗi = Fi,

vi = pi

mi

with Hamiltonians Hi(qi,pi) = 2mi

p2
i

(not depending on qi !). Imposing again the

‘port-Hamiltonian’ interconnection constraints v1 = v2,F1 = −F2 this leads to a
total system having as conserved quantity (Casimir) q1 − q2. Thus the fact that
v1 = v2 implies q1 = q2 only up to a constant (since this constant disappears in
differentiation) is reflected in the initial condition of the extended total system.

Note furthermore that specifying constraints as constraints on the velocities is
in line with the use of kinematic constraints in mechanical systems. In general,
such kinematic constraints can be integrated to geometric (position) constraints if
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integrability conditions are satisfied (such as in the simple case v1 = v2); otherwise
the kinematic constraints are called nonholonomic.

Since it is easy to eliminate the Lagrange multipliers in any constrained input–
output representation of the Dirac structure, cf. (3.8), it is also relatively easy to
eliminate the Lagrange multipliers in any port-Hamiltonian system. Indeed, con-
sider the port-Hamiltonian system (3.16). The Lagrange multipliers λ are eliminated
by constructing a matrix b⊥(x) of maximal rank such that

b⊥(x)b(x)= 0.

Then, by pre-multiplication with this matrix b⊥(x), one obtains the equations

b⊥(x)ẋ = b⊥(x)J (x)
∂H

∂x
(x)+ b⊥(x)g(x)u,

y = gT (x)
∂H

∂x
(x),

0 = bT (x)
∂H

∂x
(x),

x ∈X (3.21)

without Lagrange multipliers. This is readily seen to be a kernel representation of
the port-Hamiltonian differential-algebraic system.

Example 3.3 (Example 3.2, continued) Consider the system of two coupled masses
in Example 3.2. Pre-multiplication of the dynamic equations by the row vector [1 1]
yields the equations

ṗ1 + ṗ2 = 0,
p1

m1
− p2

m2
= 0 (3.22)

which constitutes a kernel representation of the port-Hamiltonian DAE system, with
matrices

F =
[

1 1
0 0

]
and E =

[
0 0
1 −1

]
. (3.23)

Remark 3.3 Consider the representation (3.16) without the external port corre-
sponding to the input and output variables u,y. Furthermore assume that b(x) is
given as

b(x)=−J (x)
∂ϕ

∂x
(x)

for a certain mapping ϕ = (ϕ1, . . . , ϕm)T , where m= dimλ, satisfying additionally

∂ϕi

∂x
(x)J (x)

∂ϕj

∂x
(x)= 0, i, j = 1, . . . ,m.
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Then the constraints bT (x) ∂H
∂x

(x)= 0 can be rewritten as

dϕ

dt
= 0.

Replacing the constraints dϕ
dt
= 0 by their time-integrated version ϕ(x) = 0, one

obtains the constrained system

ẋ = J (x)
∂H

∂x
(x)− J (x)

∂ϕ

∂x
(x)λ,

0 = ϕ(x).

(3.24)

If additionally J (x) is the standard symplectic form, then this is the starting point
for the classical Dirac theory of Hamiltonian systems with constraints, leading to
the concept of the Dirac brackets defined by J (x), the Hamiltonian H , together
with the constraint functions ϕi(x), i = 1, . . . ,m; see [11, 28].

4 Analysis of Port-Hamiltonian DAEs

In this section we will analyse a number of key aspects of port-Hamiltonian
differential-algebraic systems, and discuss how the specific structure yields advan-
tages as compared to general differential-algebraic (DAE) systems.

First of all, we will study the index of port-Hamiltonian differential-algebraic
systems, and the possibilities to solve the algebraic constraints. Then we will study
the algebraic constraints from a geometric point of view, directly based on the Dirac
structure of the system. This coordinate-free approach shows how different coordi-
nate representations can be chosen to express the algebraic constraints; each with
their own advantages and disadvantages. Next it will be shown how the geometric
theory of algebraic constraints can be dualized to the study of Casimir functions
(conserved quantities independent of the Hamiltonian). In the last section we will
show how the port-Hamiltonian structure naturally leads to stability analysis, us-
ing the Hamiltonian (or a combination of the Hamiltonian and a Casimir function)
as a Lyapunov function for the differential-algebraic system. Finally, we will pro-
vide some observations concerning the (lack of) well-posedness of port-Hamiltonian
differential-algebraic systems in case of nonlinear resistive characteristics.

4.1 Analysis and Elimination of Algebraic Constraints

An important problem concerns the possibility to solve for the algebraic constraints
of a port-Hamiltonian differential-algebraic system. In case of the representation
(3.21), the algebraic constraints are explicitly given by

0= bT (x)
∂H

∂x
(x). (4.1)
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In general, these equations will constrain the state variables x. However, the precise
way this takes place depends on the properties of the Hamiltonian H as well as of
the matrix b(x). For example, if the Hamiltonian H is such that its gradient ∂H

∂x
(x)

happens to be contained in the kernel of the matrix bT (x) for all x, then the algebraic
constraints (4.1) are automatically satisfied, and actually the state variables are not
constrained.

In general, under constant rank assumptions, the set

Xc :=
{
x ∈X | bT (x)

∂H

∂x
(x)= 0

}

will define a submanifold of the total state space X , called the constrained state
space. In order that this constrained state space qualifies as the state space for a port-
Hamiltonian system without further algebraic constraints, one needs to be able to
restrict the dynamics of the port-Hamiltonian system to the constrained state space.
This is always possible under the condition that the matrix

bT (x)
∂2H

∂x2
(x)b(x) (4.2)

has full rank. Indeed, under this condition, the differentiated constraint equation

0= d

dt

(
bT (x)

∂H

∂x
(x)

)
= ∗+ bT (x)

∂2H

∂x2
(x)b(x)λ (4.3)

(with ∗ denoting unspecified terms) can always be uniquely solved for λ, leading
to a uniquely defined dynamics on the constrained state space Xc. Hence the set
of consistent states for the port-Hamiltonian differential-algebraic system (the set
of initial conditions for which the system has a unique ordinary solution) is equal
to the constrained state space Xc . Using terminology from the theory of DAEs, the
condition that the matrix in (4.2) has full rank ensures that the index of the DAEs
specified by the port-Hamiltonian system is equal to one. This can be summarized
as

Proposition 4.1 Consider the port-Hamiltonian differential-algebraic system rep-
resented as in (3.21), with algebraic constraints bT (x) ∂H

∂x
(x)= 0. Suppose that the

matrix bT (x) ∂2H

∂x2 (x)b(x) has full rank for all x ∈ Xc. Then the system has index
one, and the set of consistent states is equal to Xc.

Hence under the condition that bT (x) ∂2H

∂x2 (x)b(x) has full rank, then the alge-

braic constraints bT (x) ∂H
∂x

(x) = 0 can be eliminated, leading to a set of ordinary
differential equations defined on the constrained state space Xc . Of course, in the
nonlinear case the explicit elimination of the algebraic constraints may be difficult,
or even impossible.

If the matrix in (4.2) does not have full rank, then the index of the port-
Hamiltonian differential-algebraic system will be larger than one, and it will be
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necessary to further constrain the space Xc by considering apart from the ‘primary’
algebraic constraints (4.1), also their (repeated) time-derivatives (sometimes called
secondary constraints). We refer to [23, 28] for a detailed treatment and conditions
for reducing the port-Hamiltonian DAE system to a system without algebraic con-
straints in case J (x) corresponds to a symplectic structure.

4.1.1 The Linear Index One Case

In the linear case the explicit elimination of the algebraic constraints under the
assumption that the matrix in (4.2) has full rank proceeds as follows.

Consider a linear port-Hamiltonian system, without energy-dissipation and ex-
ternal ports, given in constrained input–output representation,

ẋ = JQx +Gλ, J =−J T , Q=QT ,

0 =GT Qx, H(x)= 1

2
xT Qx.

(4.4)

As before, the constraint forces Gλ are eliminated by pre-multiplying the first equa-
tion by the annihilating matrix G⊥, leading to the DAE system

[
G⊥
0

]
ẋ =
[
G⊥J

GT

]
Qx.

The corresponding matrix pencil

s

[
G⊥
0

]
−
[
G⊥JQ

GT Q

]
(4.5)

is non-singular if GT QG has full rank, and in fact, the system has index one if and
only if GT QG has full rank.

In this case the algebraic constraints GT Qx = 0 are eliminated as follows. As-
sume throughout (without loss of generality) that G has full rank. Then define the
linear coordinate transformation

z=
[
z1
z2

]
=
[
G⊥
GT

]
x =: V x (4.6)

leading to the transformed system

ż = (V JV T
)(

V −T QV −1
)
(V x)+ V Gλ= J̃ Q̃z+

[
0

GT G

]
λ,

0 =GT Qx = [0 GT G
]
Q̃z,

(4.7)

where J̃ = V JV T , Q̃= V −T QV −1. Since GT G is assumed to have full rank, this

means that the constraint GT Qx = 0 amounts to (Q̃z)2 = 0, where Q̃z = [ (Q̃z)1

(Q̃z)2

]
.
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Hence the system reduces to the port-Hamiltonian system without algebraic con-
straints

ż1 = J11
(
Q̃11 − Q̃12Q̃

−1
22 Q̃21
)
z1, (4.8)

where z1 = G⊥x are coordinates for the constrained state space Xc = {x ∈ X |
GT Qx = 0}.

4.1.2 Elimination of Kinematic Constraints

An important example of differential-algebraic port-Hamiltonian systems are me-
chanical systems subject to kinematic constraints, as discussed in Sect. 2.7. The
constrained Hamiltonian equations (2.38) define a port-Hamiltonian system with
respect to the Dirac structure D (in constrained input–output representation)

D =
{
(fS, eS, fC, eC) | 0= [0 AT (q)

]
eS, eC =

[
0 BT (q)

]
eS,

− fS =
[

0 In

−In 0

]
eS +
[

0
A(q)

]
λ+
[

0
B(q)

]
fc,λ ∈Rk

}
. (4.9)

The algebraic constraints on the state variables (q,p) are thus given as

0=AT (q)
∂H

∂p
(q,p). (4.10)

The constrained state space is therefore given as the following subset of the phase
space (q,p):

Xc =
{
(q,p) |AT (q)

∂H

∂p
(q,p)= 0

}
. (4.11)

We may solve for the algebraic constraints and eliminate the resulting constraint
forces A(q)λ in the following way [37]. Since rank A(q) = k, there exists locally
an n× (n− k) matrix S(q) of rank n− k such that

AT (q)S(q)= 0. (4.12)

Now define p̃ = (p̃1, p̃2)= (p̃1, . . . , p̃n−k, p̃n−k+1, . . . , p̃n) as

p̃1 := ST (q)p,

p̃2 := AT (q)p,
p̃1 ∈Rn−k, p̃2 ∈Rk. (4.13)

It is readily checked that (q,p) 	→ (q, p̃1, p̃2) is a coordinate transformation. In-
deed, by (4.12), the rows of ST (q) are orthogonal to the rows of AT (q). In the new
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coordinates, the constrained Hamiltonian system (2.38) takes the form (see [37] for
details), ∗ denoting unspecified elements,

⎡
⎣

q̇
˙̃p1

˙̃p2

⎤
⎦=
⎡
⎣

0n S(q) ∗
−ST (q) (−pT [Si, Sj ](q))i,j ∗
∗ ∗ ∗

⎤
⎦

⎡
⎢⎢⎢⎣

∂H̃
∂q

∂H̃

∂p̃1

∂H̃

∂p̃2

⎤
⎥⎥⎥⎦

+
⎡
⎣

0
0

AT (q)A(q)

⎤
⎦λ+
⎡
⎣

0
Bc(q)

B(q)

⎤
⎦u,

AT (q)
∂H

∂p
=AT (q)A(q)

∂H̃

∂p̃2
= 0

(4.14)

with H̃ (q, p̃) the Hamiltonian H expressed in the new coordinates q, p̃. Here, Si

denotes the ith column of S(q), i = 1, . . . , n− k, and [Si, Sj ] is the Lie bracket of
Si and Sj , in local coordinates q given as (see e.g. [1, 23])

[Si, Sj ](q) = ∂Sj

∂q
(q)Si(q)− ∂Si

∂q
Sj (q) (4.15)

with
∂Sj

∂q
and ∂Si

∂q
denoting the n × n Jacobian matrices. Since λ only influences

the p̃2-dynamics, and the constraints AT (q) ∂H
∂p

(q,p)= 0 are equivalently given by
∂H̃

∂p̃2 (q, p̃) = 0, the constrained dynamics is determined by the dynamics of q and

p̃1, which serve as coordinates for the constrained state space Xc:

[
q̇
˙̃p1

]
= Jc

(
q, p̃1)
[ ∂Hc

∂q
(q, p̃1)

∂Hc

∂p̃1 (q, p̃1)

]
+
[

0
Bc(q)

]
u, (4.16)

where Hc(q, p̃1) equals H̃ (q, p̃) with p̃2 satisfying ∂H̃

∂p̃2 = 0, and where the skew-

symmetric matrix Jc(q, p̃1) is given as the left-upper part of the structure matrix in
(4.14), that is,

Jc

(
q, p̃1)=

[
On S(q)

−ST (q) (−pT [Si, Sj ](q))i,j

]
, (4.17)

where p is expressed as function of q, p̃, with p̃2 eliminated from ∂H̃

∂p̃2 = 0. In fact,

for the Hamiltonian H̃ given as

H̃ (q, p̃)= 1

2
p̃T M̃−1(q)p̃+ P(q)
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with M̃(q) =: N−1(q) the transformed mass matrix for the pseudo-momenta, and
V (q) the potential energy, it follows that

H̃
(
q, p̃1)= 1

2
p̃1T
(
N11 −N12(q)N−1

22 (q)N21(q)
)
p̃1 + P(q).

Furthermore, in the coordinates q, p̃, the output map is given in the form

y =
[
BT

c (q) B
T
(q)

]
⎡
⎣

∂H̃

∂p̃1

∂H̃

∂p̃2

⎤
⎦ (4.18)

which reduces on the constrained state space Xc to

y = BT
c (q)

∂H̃

∂p̃1

(
q, p̃1). (4.19)

Summarizing, (4.16) and (4.19) define an input–state–output port-Hamiltonian sys-
tem on Xc, with Hamiltonian Hc given by the constrained total energy, and with
structure matrix Jc given by (4.17).

Example 4.1 (Example 2.4, continued) Define according to (4.13) new p-coordinates

p1 = pϕ,

p2 = pθ + px cosϕ + py sinϕ,

p3 = px − pθ cosϕ,

p4 = py − pθ sinϕ.

(4.20)

The constrained state space Xc is given by p3 = p4 = 0, and the dynamics on Xc is
computed as

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ

ẏ

θ̇

ϕ̇

ṗ1
ṗ2

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 cosϕ

0 sinϕ

O4 0 1
1 0

0 0 0 −1 0 0
− cosϕ − sinϕ −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Hc

∂x

∂Hc

∂y

∂Hc

∂θ

∂Hc

∂ϕ

∂Hc

∂p1
∂Hc

∂p2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 1
1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

[
u1
u2

]
,

[
y1
y2

]
=
[

1
2p2
p1

]
,

(4.21)
where Hc(x, y, θ,ϕ,p1,p2)= 1

2p2
1 + 1

4p2
2.
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4.2 The Geometric Description of Algebraic Constraints
of Port-Hamiltonian DAEs

We will start by considering port-Hamiltonian differential-algebraic systems with-
out external and resistive ports, described by a Dirac structure D and a Hamiltonian
H . Define for every x ∈X the subspace

PD(x) := {α ∈ T ∗x X | ∃X ∈ TxX such that (α,X) ∈D(x)
}
. (4.22)

This defines a co-distribution on the manifold X . Then it follows from the definition
of a port-Hamiltonian system that the algebraic constraints are given in coordinate-
free form as

∂H

∂x
(x) ∈ PD(x). (4.23)

Thus from a Dirac structure point of view algebraic constraints may only arise if the
Dirac structure D is such that its associated co-distribution PD is not equal to the
whole cotangent bundle T ∗X , that is, if PD(x) is a strict subspace of T ∗x X .

The particular equational representation of the algebraic constraints depends on
the chosen representation of the Dirac structure. For example, if the Dirac struc-
ture and the port-Hamiltonian system is given in constrained input–output repre-
sentation (3.21), then the algebraic constraints are, as discussed above, given by
bT (x) ∂H

∂x
(x)= 0. On the other hand, if the Dirac structure is given in image repre-

sentation as

D(x)= {(X,α) ∈ TxX × T ∗x X |X =ET (x)λ,α = FT (x)λ
}

(4.24)

then the algebraic constraints amount to the satisfaction of

∂H

∂x
(x) ∈ imFT (x). (4.25)

In the case of external ports, the algebraic constraints on the state variables x may
also depend on the external port variables. A special case arises for resistive ports.
Consider a Dirac structure

{
(X,α,fR, eR) ∈D(x)⊂ TxX × T ∗x X ×FR ×F∗R

}
(4.26)

with the resistive flow and effort variables satisfying a relation R(fR, eR)= 0. Then
the gradient of the Hamiltonian has to satisfy the condition

∂H

∂x
(x) ∈ {α ∈ T ∗x X |∃X,fR, eR ∈ TxX ×FR ×F∗R

such that (X,α,fR, eR) ∈D(x) and R(fR, eR)= 0
}
.

Depending on the resistive relation R(fR, eR)= 0 this may again induce algebraic
constraints on the state variables x.
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4.2.1 Algebraic Constraints in the Canonical Coordinate Representation

A particular elegant representation of algebraic constraints arises from the canoni-
cal coordinate representation. We will only consider the case of a system without
resistive and external ports. For a constant Dirac structure D, there always exist
(linear) canonical coordinates such that the Dirac structure is described by (3.7). If
on the other hand D is a modulated Dirac structure on a manifold X , then only if
the Dirac structure D satisfies an additional integrability condition,9 we can choose
local coordinates x = (q,p, r, s) for X (with dimq = dimp), such that, in the corre-
sponding bases for (fq, fp,fr , fs) for TxX and (eq, ep, er , es) for T ∗x X , the Dirac
structure on this coordinate neighborhood is still given by the relations (3.7).

Substituting in this case the flow and effort relations of the energy storage

fq =−q̇, eq = ∂H

∂q
,

fp =−ṗ, ep = ∂H

∂p
,

fr =−ṙ , er = ∂H

∂r
,

fs =−ṡ, es = ∂H

∂s

(4.27)

into the canonical coordinate representation (3.7) of the Dirac structure yields the
following dynamics:

q̇ = ∂H

∂p
(q,p, r, s),

ṗ =−∂H

∂q
(q,p, r, s),

ṙ = 0,

0= ∂H

∂s
(q,p, r, s).

(4.28)

The variables q,p are the canonical coordinates known from classical Hamilto-
nian dynamics, while the variables r have the interpretation of Casimirs (conserved
quantities independent of the Hamiltonian), see Sect. 4.3. The last equations ∂H

∂s
= 0

specify the algebraic constraints present in the system; in a form that is reminiscent
of the first-order condition for optimality in the Maximum principle in optimal con-
trol theory.

The condition that the matrix in (4.2) has full rank (implying that the system has
index one; cf. Proposition 4.1) is in the canonical coordinate representation equiv-

alent to the partial Hessian matrix ∂2H

∂s2 being invertible. Solving, by the Implicit

9For more details regarding the precise form of the integrability conditions see Sect. 7.
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Function theorem, the algebraic constraints ∂H
∂s
= 0 for s as a function s(q,p, r)

reduces the DAEs (4.28) to the ODEs

q̇ = ∂H̄

∂p
(q,p, r),

ṗ =−∂H̄

∂q
(q,p, r),

ṙ = 0,

(4.29)

where H̄ (q,p, r) :=H(q,p, r, s(q,p, r)).

4.3 Casimirs of Port-Hamiltonian DAEs

Consider a port-Hamiltonian differential-algebraic system without external and re-
sistive ports, with Dirac structure D involving fS, eS . Similarly to (4.22) we may
define the following, smaller, co-distribution:

P̄D(x) := {α ∈ T ∗x X | (α,0) ∈D(x)
}

(4.30)

This co-distribution will characterize the conserved quantities that are independent
of the Hamiltonian H . In fact, it can be seen that P̄D = G⊥D , where GD is the
distribution on X defined as

GD(x) := {X ∈ TxX | ∃α ∈ T ∗x X such that (α,X) ∈D(x)
}
. (4.31)

Now, let C :X →R be a function such that ∂T C
∂x

(x) ∈ P̄D(x). Then

d

dt
C
(
x(t)
)= ∂T C

∂x

(
x(t)
)
ẋ(t)= 0, (4.32)

for all possible vectors ẋ(t) occurring in the system equations; independently of the
Hamiltonian H . Such functions C : X → R are called the Casimirs of the system,
and are very important for the analysis of the system. Note that the existence of

finding functions C such that ∂T C
∂x

(x) ∈ P̄D(x), x ∈ X is related to the integrability
of the co-distribution P̄D , and thus to the integrability of the Dirac structure D, cf.
Sect. 7. Thus the Casimirs are completely characterized by the Dirac structure of
the port-Hamiltonian system.

Similarly, we define the Casimirs of a port-Hamiltonian differential-algebraic
system with a resistive relation to be all functions C : X → R satisfying (0, e =
∂T C
∂x

,0,0) ∈D. Indeed, this will imply that

d

dt
C = ∂T C

∂x

(
x(t)
)
ẋ(t)= 0 (4.33)
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for every possible derivative vector ẋ occurring in the system equations, indepen-
dently of the Hamiltonian and of the resistive relations.10

Example 4.2 In the case of a spinning rigid body (Example 2.3) the well-known
Casimir is the total angular momentum p2

x+p2
y+p2

z (whose vector of partial deriva-
tives is indeed in the kernel of the matrix J (p) in (2.30)).

Similarly, in the LC-circuit of Example 2.5 the total flux φ1+φ2 is a Casimir for
u= 0.

Example 4.3 Consider a mechanical system with kinematic constraints (2.38) and
u= 0. Then (0, e) ∈D if and only if

0=
[

0 I

−I 0

]
+
[

0
A(q)

]
λ,

[
0 AT (q)

]
e= 0.

Partioning e = [ eq

ep

]
this means that eq = A(q)λ, or equivalently, eq ∈ imA(q).

Since in general A(q) is depending on q , finding Casimirs involves an additional
integrability condition, see also Sect. 7. In fact, Casimirs correspond to vectors
eq ∈ imA(q) which additionally can be written as a vector of partial derivatives
∂C
∂q

(q) for some function C(q) (the Casimir). In the case of Example 4.1 it can be
verified that this additional integrability condition is not satisfied, corresponding to
the fact that the kinematic constraints in this example are completely nonholonomic.

In general it can be shown [37] that there exist as many independent Casimirs as
the rank of the matrix A(q) if and only if the kinematic constraints are holonomic,
in which case the Casimirs are equal to the integrated kinematic constraints.

4.4 Stability Analysis of Port-Hamiltonian DAEs

As we have seen before, any port-Hamiltonian differential-algebraic system, with-
out control and interaction ports, satisfies the energy balance (2.16), that is,

d

dt
H = eT

RfR ≤ 0. (4.34)

This immediately follows from the power-conserving property of Dirac structures.
As a consequence, the Hamiltonian H qualifies as a Lyapunov function if it is
bounded from below.

Recently, the notion of Lyapunov functions for general nonlinear DAE systems
was studied in depth in [18]; also providing a formal treatment of asymptotic sta-
bility. Let us show, again by exploiting the properties of Dirac structures, how the

10However it can be shown [26] that if (4.33) holds for some non-degenerate resistive relation then
it has to hold for all.
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Hamiltonian H of a port-Hamiltonian differential-algebraic system also defines a
Lyapunov function in this set-up.11 Consider a port-Hamiltonian system without
control and interaction ports, whose Dirac structure D is given in kernel represen-
tation as, see (3.9),

{
(fS, eS, fR, eR) | FS(x)fS +ES(x)eS + FR(x)fR +ER(x)eR = 0

}
(4.35)

with

FS(x)ET
S (x)+ES(x)FT

S (x)+ FR(x)ET
R(x)+ER(x)FT

R (x)= 0,

rank
[
FS(x) ES(x) FR(x) ER(x)

]= dimfS + dimfR.
(4.36)

It follows that D is equivalently given in image representation as

fS =ET
S (x)λ(x), eS = FT

S (x)λ(x),

fR =ET
R(x)λ(x), eR = FT

R (x)λ(x).
(4.37)

The resulting port-Hamiltonian system for a Hamiltonian H is thus given by the
equations

ẋ =−ET
S (x)λ(x),

∂H

∂x
(x)= FT

S (x)λ(x),

fR =ET
R(x)λ(x), eR = FT

R (x)λ(x)

(4.38)

(together with energy-dissipating constitutive relations). In particular

∂T H

∂x
(x)z= FT

S (x)λT (x)FS(x)z (4.39)

for all vectors z; in agreement with one of the requirements for H being a Lyapunov
function as stated in [18]. It also follows from here that (using the first line of (4.36))

Ḣ = −λT (x)FS(x)ẋ =−λT (x)FS(x)ET
S (x)λ(x)

= λT (x)FR(x)ET
R(x)λ(x)= eT

RfR ≤ 0 (4.40)

being another condition in the formulation of [18].
Finally, if H does not have a minimum at a desired equilibrium x∗, then a well-

known method in Hamiltonian dynamics, called the Energy-Casimir method, is to
use in the Lyapunov analysis, next to the Hamiltonian function, additional conserved
quantities of the system, in particular the Casimirs. Indeed, candidate Lyapunov
functions can be sought within the class of combinations of the Hamiltonian H and
the Casimirs. For more information we refer to e.g. [24, 25, 31]. Most of this litera-
ture is however on port-Hamiltonian systems without algebraic constraints, and the

11I thank Stephan Trenn for an enlightening discussion on this issue.
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presence of algebraic constraints poses new questions. For example, the necessary
conditions for a Lyapunov function only have to hold on the subset of the state space
where the algebraic constraints are satisfied.

4.5 Ill-posedness Due to Nonlinear Resistive Characteristics

In the above we have largely confined ourselves to differential-algebraic port-
Hamiltonian systems without resistive relations. The presence of such resistive re-
lations, especially in the nonlinear case, may pose additional difficulties. In partic-
ular, well-posedness problems may arise for port-Hamiltonian systems where the
flow variables of the resistive ports are input variables for the dynamics, while the
resistive relation is not effort-controlled. We will not elaborate on this (difficult)
topic, but confine ourselves to an example (taken from [10]) illustrating the prob-
lems which may arise.

Example 4.4 (Degenerate Van der Pol oscillator) Consider a degenerate form of the
Van der Pol oscillator consisting of a unit capacitor

Q̇= I, V =Q (4.41)

in parallel with a nonlinear resistor given by the characteristic
{
(fR, eR)= (I,V ) | V =−1

3
I 3 + I

}
. (4.42)

This resistive characteristic is not voltage-controlled, but instead is current-
controlled. As a consequence, Eqs. (4.41) and (4.42) define an implicitly defined
dynamics on the one-dimensional constraint submanifold R in (I,V ) space given
by

R =
{
(I,V ) | V + 1

3
I 3 − I = 0

}
.

Difficulties in the dynamical interpretation arise at the points (−1,− 2
3 ) and (1, 2

3 ).
At these points V̇ is negative, respectively positive (while the corresponding time-
derivative of I at these points tends to plus or minus infinity, depending on the
direction along which these points are approached). Hence, because of the form of
the constraint manifold R it is not possible to “integrate” the dynamics from these
points (sometimes called impasse points) in a continuous manner along R.

For a careful analysis of the dynamics of this system we refer to [10]. In particu-
lar, it has been suggested in [10] that a suitable interpretation of the dynamics from
the impasse points is given by the following jump rules:

(
−1,−2

3

)
→
(

2,−2

3

)
,

(
1,

2

3

)
→
(
−2,

2

3

)
. (4.43)
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The resultant trajectory (switching from the region I ≤ −1 to the region I ≥ 1) is
a ‘limit cycle’ that is known as a relaxation oscillation. For related examples in the
context of constrained mechanical systems we refer to [5].

Existence and uniqueness of solutions is guaranteed if the resistive relation is
well-behaved and the DAEs are of index one as discussed in the previous Sect. 4.1.
Indeed, consider again the case of a port-Hamiltonian system given in the con-
strained input–output representation

ẋ = [J (x)−R(x)
]∂H

∂x
(x)+ g(x)u+ b(x)λ,

y = gT (x)
∂H

∂x
(x),

0= bT (x)
∂H

∂x
(x),

x ∈X . (4.44)

Imposing the same condition as before in Sect. 4.1, Proposition 4.1, namely that the
matrix

bT (x)
∂2H

∂x2
(x)b(x) (4.45)

has full rank, it can be seen that there is a unique solution starting from every feasible
initial condition x0 ∈ Xc. Furthermore, this solution will remain in the constrained
state space Xc for all time.

Example 4.5 A simple, but illustrative, example of a case where multiple solutions
arise from feasible initial conditions can be deduced from the example of a linear
LC-circuit with standard Hamiltonian H(Q,φ)= 1

2C
Q2+ 1

2L
φ2, where the voltage

across the capacitor is constrained to be zero:

Q̇= 1

L
φ + λ,

φ̇ = 1

C
Q,

0= 1

C
Q.

(4.46)

Here λ denotes the current through the external port whose voltage is set equal

to zero. Since bT (x) ∂2H

∂x2 (x)b(x) in this case reduces to 1
C

it follows that there is a
unique solution starting from every feasible initial condition. Indeed, the constrained
state space Xc of the above port-Hamiltonian system is given by {(Q,φ) |Q= 0},
while the Lagrange multiplier λ for any feasible initial condition (0, φ0) is uniquely
determined as λ = − 1

L
φ. On the other hand, in the singular case where C = ∞

the Hamiltonian reduces to H(Q,φ) = 1
2L

φ2 and the constraint equation 0 = 1
C

Q

becomes vacuous, i.e., there are no constraints anymore. In this case the Lagrange
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Fig. 4 Boost circuit with
clamping diode

multiplier λ (the current through the external port) is not determined anymore, lead-
ing to multiple solutions (Q(t),φ(t)) where φ(t) is constant (equal to the initial
value φ0) while Q(t) is an arbitrary function of time.

5 Port-Hamiltonian Systems with Variable Topology

In many cases of interest it is useful to model fast transitions in physical sys-
tems as instantaneous switches. Examples include the description of elements like
diodes and thyristors in electrical circuits, and impacts in mechanical systems.
Within the port-Hamiltonian description, one obtains in all these cases an (ideal-
ized) model where the Dirac structure is not constant, but depends on the position
of the switches. On the other hand, the Hamiltonian H and the resistive relations are
usually independent of the position of the switches.

In both examples below, we thus obtain a switching port-Hamiltonian system,
specified by a Dirac structure Ds depending on the switch position s ∈ {0,1}n (here
n denotes the number of independent switches), a Hamiltonian H : X → R, and a
resistive structure R. Furthermore, every switching may be internally induced (like
in the case of a diode in an electrical circuit or an impact in a mechanical system)
or externally triggered (like an active switch in a circuit or mechanical system).

Example 5.1 (Boost converter) Consider the power converter in Fig. 4. The circuit
consists of an inductor L with magnetic flux linkage φL, a capacitor C with electric
charge qC and a resistance load R, together with a diode D and an ideal switch S,
with switch positions s = 1 (switch closed) and s = 0 (switch open). The diode is
modeled as an ideal diode with voltage-current characteristic vDiD = 0, with vD ≤ 0
and iD ≥ 0.

The state variables are the electric charge QC and the magnetic flux linkage ϕL,
and the stored energy (Hamiltonian) is the quadratic function 1

2C
Q2

C + 1
2L

ϕ2
L. Note

that there are four modes of operation of this system corresponding to the positions
of the active switch (open or closed) and the diode (voltage- or current blocking).
Two out of these four modes correspond to an algebraic constraint: namely QC = 0
if the switch is closed and the diode has vD = 0, and ϕL = 0 if the switch is open
and the diode has iD = 0. (These two exceptional modes are sometimes called the
discontinuous modes in the power converter literature.)
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Fig. 5 Model of a bouncing pogo-stick: definition of the variables (left), situation without ground
contact (middle), and situation with ground contact (right)

Example 5.2 (Bouncing pogo-stick) Consider the example of the vertically bounc-
ing pogo-stick in Fig. 5: it consists of a mass m and a massless foot, intercon-
nected by a linear spring (stiffness k and rest-length x0) and a linear damper d . The
mass can move vertically under the influence of gravity g until the foot touches the
ground. The states of the system are taken as x (length of the spring), y (height
of the bottom of the mass), and p (momentum of the mass, defined as p := mẏ).
Furthermore, the contact situation is described by a variable s with values s = 0 (no
contact) and s = 1 (contact). The total energy (Hamiltonian) of the system equals

H(x,y,p)= 1

2
k(x − x0)

2 +mg(y + y0)+ 1

2m
p2, (5.1)

where y0 is the distance from the bottom of the mass to its center of mass.
When the foot is not in contact with the ground (middle figure), the total force

on the foot is zero (since it is mass-less), which implies that the spring and damper
forces must be equal but opposite. When the foot is in contact with the ground
(right figure), the variables x and y remain equal, and hence also ẋ = ẏ. For s = 0
(no contact) the system can be described by the port-Hamiltonian system

d

dt

⎡
⎣

x

y

p

⎤
⎦=
⎡
⎣
− 1

d
0 0

0 0 1
0 −1 0

⎤
⎦
⎡
⎣

k(x − x0)

mg
p
m

⎤
⎦ (5.2)

i.e. two independent systems (spring plus damper, and mass plus gravity), while for
s = 1, the port-Hamiltonian description of the system is given as

d

dt

⎡
⎣

x

y

p

⎤
⎦=
⎡
⎣

0 0 1
0 0 1
−1 −1 −d

⎤
⎦
⎡
⎣

k(x − x0)

mg
p
m

⎤
⎦ . (5.3)
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In this last case the resistive force −dẋ is added to the spring force and the gravi-
tational force exerted on the mass, while for s = 0 the resistive force is equal to the
spring force.

The two situations can be taken together into one port-Hamiltonian system with
switching Dirac structure as follows

d

dt

⎡
⎣

x

y

p

⎤
⎦=
⎡
⎣

s−1
d

0 s

0 0 1
−s −1 −sd

⎤
⎦
⎡
⎣

k(x − x0)

mg
p
m

⎤
⎦ . (5.4)

In addition, the conditions for switching of the contact are functions of the states,
namely as follows: contact is switched from off to on when y−x crosses zero in the
negative direction, and contact is switched from on to off when the velocity ẏ − ẋ

of the foot is positive in the no-contact situation, i.e. when p
m
+ k

d
(x − x0) > 0.

In the present modeling of the system no algebraic constraints arise in any of
the two modes. It should be noted, however, that this is critically on the assumption
of a massless foot. Indeed, if the mass of the foot is taken into the account then
another state variable (namely the momentum of the foot) needs to be taken into
account, while the contact situation would correspond to this extra state variable
being constrained to zero.

We note that because the Hamiltonian function is common to all the modes of the
switching port-Hamiltonian system it still can be employed for the stability analysis,
see e.g. [6, 14]. Clearly this presents enormous advantages as compared to the sta-
bility analysis of general switched differential-algebraic systems [18]. The presence
of algebraic constraints in (some of) the modes poses another question: the specifi-
cation of the instantaneous reset of the state at the moment of switching in order to
satisfy the algebraic constraints of the mode which is active immediately after the
switching time. This involves the determination of consistent state reset rules. For
a rather complete analysis in the context of switching electrical circuits we refer to
the treatment in [6, 35]. The study of reset rules and mode selection is a classical
subject in mechanical systems; see [5] and the references therein. For the related
theory of complementarity hybrid systems we refer to [41, 42].

6 Interconnection of Port-Hamiltonian Systems
and Composition of Dirac Structures

Crucial feature of network modeling, analysis and control is ‘interconnectivity’ or
‘compositionality’, meaning that complex systems can be built from simpler parts,
and that the complex system can be studied in terms of its constituent parts and the
way they are interconnected. The class of port-Hamiltonian systems completely fits
within this paradigm, in the sense that the power-conserving interconnection of port-
Hamiltonian systems again defines a port-Hamiltonian system. Furthermore, it will
turn out that the Hamiltonian of the interconnected system is simply the sum of the
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Fig. 6 The composition of
DA and DB

Hamiltonians of its parts, while the Dirac structure D of the interconnected system
is solely determined by the Dirac structures of its components. This is clearly of
immediate relevance for port-Hamiltonian differential-algebraic systems, since, as
we have seen, the algebraic constraints are determined by the overall Dirac structure
D, in particular its co-distribution PD , and the overall Hamiltonian.

6.1 Composition of Dirac Structures

In this subsection, we investigate the composition or interconnection properties of
Dirac structures. Physically it is clear that the composition of a number of power-
conserving interconnections with partially shared variables should yield again a
power-conserving interconnection. We show how this can be formalized within the
framework of Dirac structures.

First, we consider the composition of two Dirac structures with partially shared
variables. Once we have shown that the composition of two Dirac structures is again
a Dirac structure, it is immediate that the power-conserving interconnection of any
number of Dirac structures is again a Dirac structure.12 Thus consider a Dirac struc-
ture DA on a product space F1 × F2 of two linear spaces F1 and F2, and another
Dirac structure DB on a product space F2 ×F3, with also F3 being a linear space.
The linear space F2 is the space of shared flow variables, and F∗2 the space of shared
effort variables; see 6.

In order to compose DA and DB , a problem arises of sign convention for the
power flow corresponding to the power variables (f2, e2) ∈ F2 × F∗2 . Indeed, if
〈e | f 〉 denotes incoming power (see the previous section), then for

(f1, e1, fA, eA) ∈DA ⊂F1 ×F∗1 ×F2 ×F∗2

the term 〈eA | fA〉 denotes the incoming power in DA due to the power variables
(fA, eA) ∈F2 ×F∗2 , while for

(fB, eB,f3, e3) ∈DB ⊂F2 ×F∗2 ×F3 ×F∗3

the term 〈eB | fB〉 denotes the incoming power in DB . Clearly, the incoming power
in DA due to the power variables in F2×F∗2 should equal the outgoing power from

12See [2] for a direct approach to the composition of multiple Dirac structures.
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DB . Thus we cannot simply equate the flows fA and fB and the efforts eA and eB ,
but instead we define the interconnection constraints as

fA =−fB ∈F2, eA = eB ∈F∗2 . (6.1)

Therefore, the composition of the Dirac structures DA and DB , denoted DA ‖DB ,
is defined as

DA ‖DB :=
{
(f1, e1, f3, e3) ∈F1 ×F∗1 ×F3 ×F∗3 | ∃(f2, e2) ∈F2 ×F∗2
s.t. (f1, e1, f2, e2) ∈DA and (−f2, e2, f3, e3) ∈DB

}
. (6.2)

The fact that the composition of two Dirac structures is again a Dirac structure has
been proved in [9, 30]. Here we follow the simpler alternative proof provided in
[7] (inspired by a result in [21]), which, among other things, allows one to obtain
explicit representations of the composed Dirac structure.

Theorem 6.1 Let DA and DB be Dirac structures (defined with respect to
F1 × F∗1 × F2 × F∗2 , respectively F2 × F∗2 × F3 × F∗3 , and their bilinear
forms). Then DA ‖ DB is a Dirac structure with respect to the bilinear form on
F1 ×F∗1 ×F3 ×F∗3 .

In the following theorem, an explicit expression is given for the composition of
two Dirac structures in terms of a matrix kernel/image representation.

Theorem 6.2 Let Fi , i = 1,2,3 be finite-dimensional linear spaces with
dimFi = ni . Consider Dirac structures DA ⊂F1×F∗1 ×F2×F∗2 , nA = dimF1×
F2 = n1 + n2, DB ⊂F2 ×F∗2 ×F3 ×F∗3 , nB = dimF2 ×F3 = n2 + n3, given by
relaxed matrix kernel/image representations (FA,EA) = ([F1 | F2A], [E1 | E2A]),
with FA and EA n′A × nA matrices, n′A ≥ nA, respectively (FB,EB) = ([F2B |
F3], [E2B | E3]), with FB and EB n′B × nB matrices, n′B ≥ nB . Define the
(n′A + n′B)× 2n2 matrix

M =
[

F2A E2A

−F2B E2B

]
(6.3)

and let LA and LB be m× n′A, respectively m× n′B , matrices (m := dim kerMT ),
with

L= [LA | LB ], kerL= imM. (6.4)

Then

F = [LAF1 | LBF3], E = [LAE1 | LBE3] (6.5)

is a relaxed matrix kernel/image representation of DA ‖DB .

Remark 6.1 The relaxed kernel/image representation (6.5) can be readily un-
derstood by pre-multiplying the equations characterizing the composition of DA
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with DB

[
F1 E1 F2A E2A 0 0
0 0 −F2B E2B F3 E3

]

⎡
⎢⎢⎢⎢⎢⎢⎣

f1
e1
f2
e2
f3
e3

⎤
⎥⎥⎥⎥⎥⎥⎦
= 0, (6.6)

by the matrix L := [LA|LB ]. Since LM = 0 this results in the relaxed kernel repre-
sentation

LAF1f1 +LAE1e1 +LBF3f3 +LBE3e3 = 0 (6.7)

corresponding to (6.5).

Instead of the canonical interconnection constraints fA = −fB , eA = eB (cf.
(6.1)), another standard power-conserving interconnection is the ‘gyrative’ inter-
connection

fA = eB, fB =−eA. (6.8)

Composition of two Dirac structures DA and DB by this gyrative interconnection
also results in a Dirac structure. In fact, the gyrative interconnection of DA and DB

equals the interconnection DA ‖ I ‖ DB , where I is the gyrative (or symplectic)
Dirac structure

fIA =−eIB, fIB = eIA (6.9)

interconnected to DA and DB via the canonical interconnections fIA =−fA, eIA =
eA and fIB =−fB, eIB = eB .

Example 6.1 (Feedback interconnection) The standard negative feedback intercon-
nection of two input–state–output systems can be regarded as an example of a gy-
rative interconnection as above. Indeed, let us consider two input–state–output sys-
tems as in (2.41), for simplicity without external inputs d and external outputs z,

Σi :

⎧⎪⎪⎨
⎪⎪⎩

ẋi = [Ji(xi)−Ri(xi)]∂Hi

∂xi

(xi)+ gi(xi)ui,

yi = gT
i (xi)

∂Hi

∂xi

(xi),

xi ∈Xi (6.10)

for i = 1,2. The standard feedback interconnection

u1 =−y2, u2 = y1 (6.11)
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is equal to the negative gyrative interconnection between the flows u1, u2 and the
efforts y1, y2. The closed-loop system is the port-Hamiltonian system

[
ẋ1
ẋ2

]
=
[

J1(x)−R1(x1) −g1(x1)g
T
2 (x2)

g2(x2)g
T
1 (x1) J2(x2)−R2(x2)

][ ∂H1
∂x1

(x1)

∂H2
∂x2

(x2)

]

with state space X1 × X2 and Hamiltonian H1(x1)+ H(x2). This once more em-
phasizes the close connections of port-Hamiltonian systems theory with passivity
theory.

6.2 Interconnection of Port-Hamiltonian Systems

The result derived in Sect. 6.1 concerning the compositionality of Dirac structures
immediately leads to the result that any power-conserving interconnection of port-
Hamiltonian systems again defines a port-Hamiltonian system. This can be regarded
as a fundamental building block in the theory of port-Hamiltonian systems. The
result not only means that the theory of port-Hamiltonian systems is a completely
modular theory for modeling, but it also serves as a starting point for design and
control.

Consider k port-Hamiltonian systems (Xi ,Fi ,Di ,Hi), i = 1, . . . , k, intercon-
nected by a Dirac structure DI on F1× · · ·×Fk ×F , with F a linear space of flow
port variables. This can be seen to define a port-Hamiltonian system (X ,F ,D,H),
where X := X1 × · · · ×Xk, H :=H1 + · · · +Hk , and where the Dirac structure D
on X × F is determined by D1, . . . ,Dk and DI . Indeed, consider the product of
the Dirac structures D1, . . . ,Dk on (X1 ×F1)× (X2 ×F2)× · · · × (Xk ×Fk), and
compose this with the Dirac structure DI on (F1 × · · · × Fk) × F . This yields a
total Dirac structure D modulated by x = (x1, . . . , xk) ∈ X = X1 × · · ·Xk which is
point-wise given as

D(x1, . . . , xk)⊂ Tx1X1 × T ∗x1
X1 × · · · × Txk

Xk × T ∗xk
Xk ×F ×F∗.

Finally we mention that the theory of composition of Dirac structures and the
interconnection of port-Hamiltonian systems can be also extended to infinite-
dimensional Dirac structures and port-Hamiltonian systems [17, 26].

7 Integrability of Modulated Dirac Structures

A key issue in the case of modulated Dirac structures is that of integrability. Loosely
speaking, a Dirac structure is integrable if it is possible to find local coordinates for
the state space manifold such that, in these coordinates, the Dirac structure becomes
a constant Dirac structure, that is, it is not modulated anymore by the state variables.
As we have seen before, in particular in the context of the canonical coordinate
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representation (Sect. 3.1.4), this plays an important role in the representation of
algebraic constraints (as well as in the existence of Casimirs).

First let us consider modulated Dirac structures which are given for every x ∈X
as the graph of a skew-symmetric mapping J (x) from the co-tangent space T ∗x X to
the tangent space TxX .

Integrability in this case means that the structure matrix J satisfies the conditions

n∑
l=1

[
Jlj (x)

∂Jik

∂xl

(x)+ Jli(x)
∂Jkj

∂xl

(x)+ Jlk(x)
∂Jji

∂xl

(x)

]
= 0, i, j, k = 1, . . . , n.

(7.1)
In this case we may find, by Darboux’s theorem (see e.g. [1]) around any point x0
where the rank of the matrix J (x) is constant, local coordinates x = (q,p, r) in
which the matrix J (x) becomes the constant skew-symmetric matrix

⎡
⎣

0 −Ik 0
Ik 0 0
0 0 0

⎤
⎦ . (7.2)

Such coordinates are called canonical. A skew-symmetric matrix J (x) satisfying
(7.1) defines a Poisson bracket on X , given for every F,G :X →R as

{F,G} = ∂T F

∂x
J (x)

∂G

∂x
. (7.3)

Indeed, by (7.1) the Poisson bracket satisfies the Jacobi-identity
{
F, {G,K}}+ {G, {K,F }}+ {K, {F,G}}= 0 (7.4)

for all functions F,G,K .
The choice of coordinates x = (q,p, r) for the state space manifold also induces

a basis for TxX and a dual basis for T ∗x X . Denoting the corresponding splitting
for the flows by f = (fq, fp,fr) and for the efforts by e = (eq, ep, er ), the Dirac
structure defined by J in canonical coordinates is seen to be given by

D = {(fq, fp,fr , eq, ep, er ) | fq =−ep, fp = eq, fr = 0
}
. (7.5)

A similar story can be told for the case of a Dirac structure given as the graph
of a skew-symmetric mapping ω(x) from the tangent space TxX to the co-tangent
space T ∗x X . In this case the integrability conditions take the (slightly simpler) form

∂ωij

∂xk

(x)+ ∂ωki

∂xj

(x)+ ∂ωjk

∂xi

(x)= 0, i, j, k = 1, . . . , n. (7.6)

The skew-symmetric matrix ω(x) can be regarded as the coordinate representation
of a differential two-form ω on the manifold X , that is, ω =∑n

i=1,j=1 dxi ∧ dxj ,
and the integrability condition (7.6) corresponds to the closedness of this two-form
(dω = 0). The differential two-form ω is called a pre-symplectic structure, and a
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symplectic structure if the rank of ω(x) is equal to the dimension of X . If (7.6)
holds, then again by a version of Darboux’s theorem we may find, around any point
x0 where the rank of the matrix ω(x) is constant, local coordinates x = (q,p, s) in
which the matrix ω(x) becomes the constant skew-symmetric matrix

⎡
⎣

0 Ik 0
−Ik 0 0

0 0 0

⎤
⎦ . (7.7)

Such coordinates are again called canonical. The choice of coordinates x = (q,p, s)

as before induces a basis for TxX and a dual basis for T ∗x X . Denoting the cor-
responding splitting for the flows by f = (fq, fp,fs) and for the efforts by e =
(eq, ep, es), the Dirac structure corresponding to ω in canonical coordinates is seen
to be given by

D = {(fq, fp,fs, eq, ep, es) | fq =−ep, fp = eq, es = 0
}
. (7.8)

In case of a symplectic structure the variables s are absent and the Dirac structure
reduces to

D = {(fq, fp, eq, ep) | fq =−ep, fp = eq

}
(7.9)

which is the standard symplectic gyrator.
For general Dirac structures, integrability is defined in the following way.

Definition 7.1 ([12]) A Dirac structure D on X is integrable if for arbitrary pairs
of smooth vector fields and differential one-forms (X1, α1), (X2, α2), (X3, α3) ∈D
we have

〈LX1α2 |X3〉 + 〈LX2α3 |X1〉 + 〈LX3α1 |X2〉 = 0 (7.10)

with LXi
denoting the Lie-derivative.

Remark 7.1 (Pseudo-Dirac structures) In the usual definition of Dirac structures
on manifolds (see [8, 12]), this integrability condition is included in the definition.
Dirac structures that do not satisfy this integrability condition are therefore some-
times called pseudo-Dirac structures.

The above integrability condition for Dirac structures generalizes properly the
closedness of symplectic forms and the Jacobi identity for Poisson brackets as dis-
cussed before. In particular, for Dirac structures given as the graph of a symplectic
or Poisson structure, the notion of integrability is equivalent to the Jacobi-identity
or closedness condition as discussed above (see e.g. [8, 9, 12] for details).

Note that a constant Dirac structure trivially satisfies the integrability condition.
Conversely, a Dirac structure satisfying the integrability condition together with an
additional constant rank condition can be represented locally as a constant Dirac
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structure. The precise form of the constant rank condition can be stated as follows.
Recall that for any Dirac structure D, we may define the distribution

GD(x)= {X ∈ TxX | ∃α ∈ T ∗x X s.t. (X,α) ∈D(x)
}

and the co-distribution

PD(x)= {α ∈ T ∗x X | ∃X ∈ TxX s.t. (X,α) ∈D(x)
}
.

We call x0 a regular point for the Dirac structure if both the distribution GD and the
co-distribution PD have constant dimension around x0.

If the Dirac structure is integrable and x0 is a regular point, then, again by a
version of Darboux’s theorem, we can choose local coordinates x = (q,p, r, s) for
X (with dimq = dimp), such that, in the resulting bases for (fq, fp,fr , fs) for TxX
and (eq, ep, er , es) for T ∗x X , the Dirac structure on this coordinate neighborhood is
given as (see (3.7))

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fq =−ep,

fp = eq,

fr = 0,

es = 0.

(7.11)

Coordinates x = (q,p, r, s) as above are again called canonical. Note that the
choice of canonical coordinates for a Dirac structure satisfying the integrability con-
dition encompasses the choice of canonical coordinates for a Poisson structure and
for a (pre-)symplectic structure as above.

Explicit conditions for integrability of a Dirac structure can be readily stated in
terms of a kernel/image representation. Indeed, let

D = {(f, e) | F(x)f +E(x)e= 0
}

= {(f, e) | f =ET (x)λ, e= FT (x)λ, λ ∈Rn
}
.

Denote the transpose of ith row of E(x) by Yi(x) and the transpose of the ith row of
F(x) by βi(x). The vectors Yi(x) are naturally seen as coordinate representations
of vector fields while the vectors βi(x) are coordinate representations of differential
forms. Then integrability of the Dirac structure is equivalent to the condition

〈LYi
βj | Yk〉 + 〈LYj

βk | Yi〉 + 〈LYk
βi | Yj 〉 = 0 (7.12)

for all indices i, j, k = 1, . . . , n.
Another form of the integrability conditions can be obtained as follows. In

[8, 9, 12] it has been shown that a Dirac structure on a manifold X is integrable
if and only if, for all pairs of smooth vector fields and differential one-forms
(X1, α1), (X2, α2) ∈D, we have

([X1,X2], iX1dα2 − iX2dα1 + d〈α2 |X1〉
) ∈D. (7.13)
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Using the definition of the vector fields Yi and differential forms βi , i = 1, . . . , n, as
above, it follows that the Dirac structure is integrable if and only if

([Yi, Yj ], iYi
dβj − iYj

dβi + d〈βj | Yi〉
) ∈D (7.14)

for all i, j = 1, . . . , n. This can be more explicitly stated by requiring that

F(x)[Yi, Yj ](x)+E(x)
(
iYi

dβj (x)− iYj
dβi(x)+ d〈βj | Yi〉(x)

)= 0 (7.15)

for all i, j = 1, . . . , n and for all x ∈X . See for more details [9].

Example 7.1 (Kinematic constraints) Recall from the discussion in Sect. 2.7.1 that
the modulated Dirac structure corresponding to an actuated mechanical system sub-
ject to kinematic constraints AT (q)q̇ = 0 is given by

D =
{
(fS, eS, fC, eC) | 0= [0 AT (q)

]
eS, eC =

[
0 BT (q)

]
eS,

− fS =
[

0 In

−In 0

]
eS +
[

0
A(q)

]
λ+
[

0
B(q)

]
fc, λ ∈Rk

}
.

Complete necessary and sufficient conditions for integrability of this Dirac structure
have been derived in [9]. Here we only state a slightly simplified version of this
result, also detailed in [9]. We assume that the actuation matrix B(q) has the special
form (often encountered in examples) where every j th column (j = 1, . . . ,m) is
given as

[
0

∂Cj

∂q
(q)

]

for some function Cj (q) only depending on the configuration variables q . In this
case, the Dirac structure D is integrable if and only if the kinematic constraints are
holonomic.

It has been shown in Sect. 2.7.1 that, after elimination of the Lagrange multipli-
ers and the algebraic constraints, the constrained mechanical system reduces to a
port-Hamiltonian system on the constrained submanifold defined with respect to a
Poisson structure matrix Jc. As has been shown in [37], Jc satisfies the integrability
condition (7.1) again if and only if the constraints (2.33) are holonomic. In fact, if
the constraints are holonomic, then the coordinates s as in (3.7), (4.28) can be taken
to be equal to the ‘integrated constraint functions’ qn−k+1, . . . , qn of (2.35).

It can be verified that the structure matrix Jc obtained in 2.4, see (4.21), does
not satisfy the integrability conditions, in accordance with the fact that the rolling
constraints in this example are nonholonomic.
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8 Conclusions

In this paper we have surveyed how the port-Hamiltonian formalism offers a sys-
tematic framework for modeling and control of large-scale multi-physics systems,
emphasizing at the same time the network structure of the system (captured by its
Dirac structure) and the energy-storage and energy-dissipation (formalized with the
help of Hamiltonian functions and resistive relations). In many cases of interest this
will lead to the description of the system dynamics by a mixed set of differential
and algebraic equations (DAEs); however, endowed with a (generalized) Hamilto-
nian structure. We have shown how the identification of the underlying Hamiltonian
structure offers additional insights and tools for analysis and control, as compared
to general differential-algebraic systems.

In this paper we have confined ourselves to lumped-parameter, i.e., finite-
dimensional, models. The port-Hamiltonian framework, however, has been suc-
cessfully extended to distributed-parameter models (see e.g. [39]), corresponding
to infinite-dimensional Dirac structures. Therefore an important venue for further
research concerns the analysis within the port-Hamiltonian framework of mixed
systems of differential, algebraic, as well as of partial differential equations.
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A
Algebraic constraint, 174, 177, 200, 206, 207
ANA, see “Augmented nodal analysis”
Augmented Nodal Analysis, 100, 106

B
Backward system, 7
Behavior, 5, 36

image representation, 27
shift invariant, 5

Bifurcation without parameters, 126
Branch-oriented model, 100, 107

C
Canonical coordinates, 195, 207
Canonical form, 20

Brunovský, 23
Hermite, 21
Jordan control, 21
Kronecker, 18, 29, 140
Weierstraß, 11, 142

Casimirs, 208
Causality, 83
Circuit

minor, 118
modelling, 97

Commutativity, 150
Composition of Dirac structures, 217
Conserved quantities, 208
Consistent state, 201
Constrained

Euler–Lagrange equations, 188
Hamiltonian equations, 188
input–output representation, 194

Constraint forces, 188
Control

by interconnection, 43

compatible, 44
in the behavioral sense, 43
stabilizing, 44

Controllability
radius, 77
space, 6

Controllable
at infinity, 9, 25, 27, 32, 48, 53
completely, 9, 25, 27, 32, 48
impulse, 9, 25, 27, 32, 40, 48, 53
in the behavioral sense, 9, 25, 27, 32, 48, 53
R-, 9, 27, 32, 48
strongly, 10, 25, 27, 32, 48
within the set of reachable states, 9

Coupled problems, 127
Current source, see “source, current”
Cut space, 101
Cutset, 101

fundamental, 101
IL-, 103, 115, 116
matrix, 101

Cycle space, 101

D
DAE, see “differential-algebraic equation”
Derivative feedback, 28
Descriptor system, 64, 146

distributional, 158
in frequency domain, 156

Differential-algebraic equation, 2, 64, 137, 174
autonomous, 37
completely stabilizable, 37
completely stable, 37
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Differential-algebraic equation (cont.)
linear time-varying, 64, 78
in frequency domain, 159
regular, 65
stabilizable in the behavioral sense, 37
stable in the behavioral sense, 37
strangeness-free, 79
strongly stabilizable, 37
strongly stable, 37
switched, 169
time-varying, 151
underdetermined, 37
with in- and outputs, 146

Dirac impulse, 153
Laplace transform of, 156

Dirac structure, 175, 177–179
Distributional restriction, 154, 162

for piecewise-continuous distributions, 163
Distributions, 152

impulsive-smooth, 155, 165
impulsive-smooth on R, 166
piecewise-continuous, 155, 163
piecewise-smooth, 155, 168
pointwise evaluation, 164

Drazin inverse, 149

E
Eigenvalue

finite, 67
infinite, 67

Electro-mechanical system, 185
Elimination

of algebraic constraints, 201, 202
of kinematic constraints, 203
of Lagrange multipliers, 199

Energy-Casimir method, 210
Equivalent

feedback, 15
in the behavioral sense, 17, 29
system, 15
strictly, 139

Euler’s equations, 186
Exponent, 80

Bohl, 80
Lyapunov, 81

External
port, 182
regularity, 146

F
Feedback, 23

derivative, 28
normal form, 23
PD, 28

stabilization by, 39
state, 39

Frequency domain, 155
Fuchssteiner multiplication, 169

G
Generalized eigenvalue

of matrix pencils, 19
Generalized state-space, 146

H
Hamiltonian, 176, 180
Hautus test, 30
Holonomic kinematic constraints, 187
Hybrid model, 100, 108

index, 118, 119

I
Impasse point, 125
Impulsive-smooth distributions, 155, 165

on R, 166
Inconsistent initial values, 152, 157
Impulsive response, 160
Index, 64, 201

DAE, 67
differentiation, 113
geometric, 114
nilpotency, 67
of matrix pencils, 19, 40
reduction, 30
strangeness, 79
tractability, 65, 79, 112
of DAE circuit models, 111, 115, 116

Inhomogeneity, 65, 71
Initial condition, 64, 65

consistent, 5, 64, 68, 149
inconsistent, 13, 71, 152, 157

Initial state, see “initial condition”
Initial trajectory problem, 154

as a distributional DAE, 166
as switched DAE, 169

Initial value problem, 64
Initial value, see “initial condition”
Initial trajectory problem, 154
Input, 5
Input–state–output port-Hamiltonian systems,

189
Input–output operator, 84, 87
Integrability conditions, 207
Integrability of Dirac structures, 219
Integral separation, 90
Interconnection, 219
Invariant subspace, 46
ITP, see “initial trajectory problem”
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J
Josephson junction, 102

K
Kalman

criterion, 35
decomposition, 50

KCF, see “canonical form, Kronecker”
Kernel representation, 193, 195
Kinematic constraints, 177, 187
Kirchhoff laws, 102, 183
Kronecker canonical form, 140

nilpotent blocks, 141
ODE blocks, 141
overdetermined blocks, 142
underdetermined blocks, 141

L
Laplace integral, 155
Laplace transform, 155

derivative rule, 155, 157
distributional, 156

Linearization, 64
Link, 101
Locally passive device, 103
Loop, 100

analysis, 110
fundamental, 101
matrix, 100
VC-, 103, 115, 116, 120

Lyapunov function, 209

M
Manifold of equilibria, 126
Matrix

capacitance, 103
conductance, 103
cutset, 101
fundamental solution, 80
incidence, 100
inductance, 103
nilpotent, 11
pencil, 5, 113, 202

regular, 5, 53, 67
singular, 67

resistance, 103
unimodular, 144

Mem-device, 99
Memcapacitor, 121

charge-controlled, 123
voltage-controlled, 122

Meminductor
current-controlled, 122
flux-controlled, 123

Memristor, 99, 121
charge-controlled, 121
flux-controlled, 122

Minimal
in the behavioral sense, 17, 29

MNA, see “modified nodal analysis”
Model reduction, 127
Modified nodal analysis, 100, 106
Modulated Dirac structure, 187
Multi-index, 18
Multiport model, 109

N
Network modeling, 174
Nilpotency, 72
Nilpotent

block in KCF, 141
differential operator, 151
part in WCF, 142

Node tableau analysis, 100, 105
Nonholonomic kinematic constraints, 188, 189
Nonlinear

capacitor, 102
inductor, 102
resistor, 102

Normal
basis, 81
form, 20

feedback, 23
hyperbolicity, 126
reference tree, 108
tree, 116

NTA, see “Node tableau analysis”

O
ODE, see “ordinary differential equation”
Ordinary differential equation, 2, 64, 137

essential underlying, 80
inherent, 79
solution formula, 138

Overdetermined part
of KCF, 142
of QKF, 145

P
Passive, 177, 186
Past-aware derivative operator, 158
Pencil, see “matrix, pencil”
Perturbation, 63

admissible, 69, 72, 89
destabilizing, 76
dynamic, 76, 85
operator, 82
static, 76, 85
structured, 68
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Piecewise-continuous distributions, 155, 163
Piecewise-smooth distributions, 155, 168
Port-Hamiltonian

differential-algebraic system, 183, 188
system, 174, 177

Positive system, 76
Power balance, 182, 186
Projector, 113

consistency, 148
differential, 148
impulse, 148

Q
QKF, see “quasi-Kronecker form”
QKTF, see “quasi-Kronecker triangular form”
QWF, see “quasi-Weierstraß form”
Quasi-Kronecker form, 18, 29, 37, 144

overdetermined block, 145
refinement of, 145
regular block, 144
underdetermined block, 144

Quasi-Kronecker triangular form, 143
Quasi-Weierstraß form, 147

R
Reachability space, 5, 47, 50
Reachable

completely, 9
strongly, 9

Regular part
of KCF, 141
of QKF, 144

Regularity, 64, 142
external, 146

Representation of Dirac structures, 192
Reset rules, 215
Resistor-acyclic condition, 118
Restricted invariance, 48
Restriction

distributional derivative of, 164
distributional, 154, 162
for piecewise-continuous distributions, 163
to open intervals, 162

Robust, 64
stability, 64

S
Semistate model, 98
Singular system, 146
Singular value, 70

structured, 70
Singularly perturbed system, 66, 77

Smooth
inhomogeneity, 139
solution, 142

Solution, 5, 64
characterization via KCF, 141
characterization via QKF, 144
classical, 139
distributional, 2, 12, 154
existence & uniqueness, 142

in- and output, 146
formula

via Drazin inverse, 150
via Laplace transform, 160
via Wong sequences, 148

initial values fixed by inhomogeneity, 141
limiting, 155
non-existence, 142
non-uniqueness, 141
on finite time intervals, 23
smooth, 142
stationary, 64

Solvability, 71
Source

current, 102
voltage, 102

Spectrum
finite, 67
Lyapunov, 90
Sacker–Sell, 90

Stability, 65
asymptotic, 65, 68
exponential, 65, 68
global Lp-, 84
output, 84
radius, 64, 84

complex, 69, 85
real, 69
spectral, 76
structure-preserving, 76
structured, 69

Stabilizable
completely, 9, 25, 27, 32, 40
in the behavioral sense, 9, 25, 27, 32, 53
strongly, 10, 25, 27, 32, 40

State, 5
feedback, 39

State space model, 98, 124
Strict equivalence, see “equivalent, strictly”
Strictly locally passive device, 103
Switched DAEs, 169
Switching Dirac structure, 215
Switching port-Hamiltonian system, 213



Index 231

T
Tellegen’s theorem, 180
Test functions, 152
Topologically degenerate configurations, 103
Transfer function, 156
Tree, 101

-based model, 107
spanning, 101
proper, 116

Twig, 101

U
Uncertainty, 63
Underdetermined part

of KCF, 141
of QKF, 144

V
Van der Pol oscillator, 211
Voltage source, see “source, voltage”

W
WCF, see “Weierstraß canonical form”
Weierstraß canonical form, 142
Weierstraß–Kronecker canonical form, 67
Well-posedness, 211
Wong sequences, 46, 143

augmented, 46, 51
explicit solution formula via, 148
for QKTF, 143
for QWF, 147
solution characterization with, 145
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