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Abstract. Classification is an important task widely researched by the
machine learning and fuzzy communities. In this paper, we present and
compare methods from both communities, in order to support the selec-
tion of a suitable method, according to two conflicting objectives: accu-
racy × interpretability. Two groups of rule-based methods are analysed:
decision tree-based and genetic-based approaches. For the tree-based ap-
proaches, C4.5, PART and FuzzyDT, a fuzzy version of the C4.5 algo-
rithm, are used. For the genetic-based approaches, MPLCS, a method
from the machine learning community to generate rule-based models,
SLAVE and FCA-Based, both fuzzy-based, are analysed. Since accu-
racy and interpretability are usually conflicting objectives, in this paper,
we briefly present these methods and then discuss the models generated
by them. Comparisons take into account the error rates and syntactic
complexity of the produced models. Ten benchmark datasets are used
in the experiments with a 10 fold cross-validation strategy. Results show
that FCA-Based and MPLCS are able to obtain good accuracy and
interpretability.
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1 Introduction

Classification is an important task widely researched by the machine learning
and fuzzy communities. Classic and fuzzy algorithms for supervised machine
learning are concerned with the development of methods that extract patterns
from data in order to make intelligent decisions based on these patterns. The
interpretability is an important issue when classification methods are proposed.
Interpretability of classification models, in spite of its subjectivity, can be defined
as the quality of how easily the model, as a whole, can be understood and
abstracted by its users. Thus, an approach that induces interpretable models
must be concerned with the total number of rules and the amount of conditions
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of these rules, i.e., the syntactic complexity of the model. In general, highly
accurate models tend to have high syntactic complexity, whereas, models with
low syntactic complexity tend to be less accurate.

In this sense, decision trees (DT) [1] are powerful as they produce models
with low syntactic complexity which are quite intuitive and whose structures
can be interpreted as rules. The induction process of DTs is usually fast and
the induced models are competitive, accuracy wise, with the ones generated by
other interpretable machine learning methods. Another desirable quality of DTs
is their embedded feature selection process that allows it to use only the most
relevant features in the model, which are selected according to certain measures,
improving the generated model interpretability.

Some of the most well-known and relevant DT based algorithms are ID3,
CART, and C4.5 [1, 2]. These algorithms generate a tree structure through
recursively dividing the feature space until this decision space is completely
partitioned into a set of non-overlapping subspaces. Specifically, C4.5 uses the
information gain and entropy measures when deciding on the importance of the
features [2]. In order to optimize their estimated error rates, DTs usually use a
pruning process. Pruning also simplifies the whole models, which consequently
become more interpretable. PART [3] is an example of a DT-based approach for
rule generation. This method repeatedly generates various DTs extracting the
best rule of each DT at a time to construct the rule set of a classifier.

Fuzzy rule based classification systems are based on the fuzzy set and fuzzy
logic theories proposed by Loft A. Zadeh. Two advantageous characteristics of
fuzzy systems regarding interpretability are: i) the system uses semantically
meaningful fuzzy sets to define attributes; ii) fuzzy rules are built by linguis-
tic variables and linguistic terms, such as “temperature is high” or “speed is
low”, adding interpretability to the induced model.

The knowledge base and inference mechanism are the two basic components of
a fuzzy classification system. The knowledge base is formed by the Fuzzy Data
Base (FDB) and the Fuzzy Rule Base (FRB). The fuzzy data base contains
the definitions of the features (also named attributes or variables) in terms of
fuzzy sets, while the fuzzy rule base contains a set of rules defining the given
problem. The inference mechanism derives the conclusions (or outputs) of the
system based on the knowledge base and on the inputs to the system.

In the literature, it is possible to find several fuzzy approaches for the in-
duction of fuzzy classifiers, amongst them, fuzzy rule-based systems [4, 5], ge-
netic fuzzy rule-based systems [6–8], fuzzy DTs [9, 10], and evolutionary (other
than genetic) fuzzy rule-based systems [11–13]. Regarding the genetic rule-based
fuzzy systems, their advantages include: i) Genetic Algorithms (GAs) perform a
global search and do not get stuck in local maxima; ii) it is possible to address
the interpretability × accuracy problem during the search process by means
of multi-objective fitness functions; iii) it is possible to adjust rules and fuzzy
sets during the genetic process in order to improve the model performance and
interpretability [14, 15].
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Although the genetic generation of fuzzy systems might be one of the most
researched topic in the fuzzy community, GAs usually have a high computational
cost due to their global search and, for some approaches, also, due to the process
required to form the genetic search space. A well-known genetic fuzzy approach
is SLAVE – Structural Learning Algorithm on Vague Environment [16]. SLAVE
uses the iterative approach to learn fuzzy rules, performing an embedded feature
selection process as well as a rule selection post process.

An alternative to the high cost of GAs is the DT-based approach. For this
purpose, we have recently proposed a fuzzy version of the classic C4.5 DT in
[17]. Our approach is quite similar to the classic one and its more relevant char-
acteristics are described in Section 2.

The aim of this paper is to experimentally compare different proposals based
on DTs and GAs, from both, the machine learning and fuzzy communities. Since
there is a large number of genetic fuzzy approaches proposed, we selected two
of them, the well known approach named SLAVE, and another one proposed
by us, FCA-Based. On the other hand, due to the special characteristics of
low computational cost, competitive and highly interpretable induced models,
we also include two classic DT-based approaches and a fuzzy DT in our ex-
periments. Comparisons were performed taking into account the accuracy and
syntactic complexity of the generated models. The goal of this research is to pro-
vide substantial information on these approaches, indicating their most relevant
qualities and drawbacks.

The remainder of this paper is organized as follows. Section 2 describes the
FCA-Based, SLAVE and MPLCS methods, which use the genetic paradigm.
Section 3 describes and compares the classic and the fuzzy C4.5 DT approaches,
as well as PART. Section 4 presents the experiments and results, followed by the
conclusions and future work in Section 5.

2 Classification Methods Based on the Genetic Paradigm

GAs [18] are a part of the evolutionary algorithms, which are techniques in-
spired on the biological evolution. GAs have been applied in several areas. They
usually require a randomly generated initial population of hypotheses. For rule-
based classification, the initial population is usually formed by rules or rule sets.
The hypothesis of GAs is that the fittest members of a population have better
chances of producing offspring. This way, by generating several populations, it is
possible to evolve solutions and reach satisfactory results. This population, whose
members are called chromosomes or individuals, encodes candidate solutions to
a given problem. The first population gives rise to the following population by
means of genetic operators, such as selection, mutation, crossover, and elitism,
among others. At each generation, the hypotheses in the current population are
evaluated relative to a given fitness measure, with the fittest hypotheses selected
probabilistically as seeds to produce the next generation, and so on. Usually,
GAs stop by reaching a maximum number of generations or when a satisfactory
fitness level is reached.
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Chromosomes are usually represented by an array of elements. These arrays
can contain indexes to a preselected list of solutions (called search space). By
representing hypotheses using arrays of elements with fixed length, the crossover
operator is simple to apply due to the alignment of the chromosomes forming
the population. Variable length representations are also used, but they require
higher computational effort for the use of genetic operators. The fitness function
evaluates the quality of the represented solution and it is always directly con-
nected to the type of problem to be tackled. For classification problems using
rule bases, the usual fitness measures adopted are related to the accuracy and
interpretability of the generated models.

Next, we present the SLAVE, FCA-Based, and MPLCS fuzzy classification
systems, which are the GA-based learning methods to generate classification
rules used in this work.

2.1 Fuzzy Classification Systems

The classification task can be roughly described as: given a set of objects E =
{e1, e2, ..., en}, also named examples, cases, or instances, which are described by
m features, assign a class ci from a set of classes C = {c1, c2, ..., cj} to an object
ep, described by its feature values ep = (ap1 , ap2 , ..., apm).

Fuzzy classification systems are rule based fuzzy systems that granulate the
domains of their features by means of fuzzy sets and partitions. The linguistic
variables in the antecedent part of the rules represent features, and the con-
sequent part represents a class. A typical fuzzy classification rule can be ex-
pressed by

Rk : IF X1 is A1l1 AND X2 is A2l2 AND ... AND Xm is Amlm

THEN Class = ci

where Rk is the rule identifier, X1, ..., Xm are the features of the set of examples
considered in the problem (represented by linguistic variables), A1l1 , ..., Amlm

are the linguistic values used to represent the feature values, and ci ∈ C is the
class. Notice that not all identifiers participate in a general classification rule.
The inference mechanism compares the input example to each rule in the fuzzy
rule base aiming at determining the class it belongs to.

The classic and general fuzzy reasoning methods are widely used. Given a set
of fuzzy rules, i.e., a FRB, and an input instance, the classic fuzzy reasoning
method classifies this input instance using the class of the rule with maximum
compatibility to the input instance, while the general fuzzy reasoning method
calculates the sum of compatibility degrees for each class and uses the class with
highest sum to classify the input instance.

2.2 SLAVE

SLAVE [16] is a genetic learning algorithm that uses the iterative approach
to generate a FRB. In the iterative approach, chromosomes usually represent
individual rules, and a single rule is selected at each iteration of the GA. The set
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of selected rules form the rule base of the model. SLAVE includes an embedded
feature selection process. The preselection of attributes minimizes the problems
caused by large search spaces, such as excessive execution time, while improving
the interpretability of the generated models.

The main idea of SLAVE is to reduce the original problem of obtaining a
complete set of rules to a simpler problem which consists in obtaining only one
rule at a time. In this approach, each chromosome of the population represents
a single rule, but only the best individual in each iteration is considered, the
remaining chromosomes being discarded. In fact, in the iterative model, one
execution of the GA provides a partial solution (a rule) to the learning problem.

Regarding the feature selection process adopted by SLAVE, it dynamically
explores the set of possible variables in order to find the most useful rule and
the most relevant variables for this rule. Thus, this feature selection process
is implemented for each single rule, not for the whole set of rules. The basic
schema of this process consists of modifying the rule representation in the search
mechanism of SLAVE in order to allow the learning algorithm to search not
only for the best rule, but also the best set of variables for each rule. SLAVE
produces rules with different weights, which are used by the inference mechanism
to improve the classification performance. SLAVE usually produces reasonably
small rule sets.

2.3 FCA-Based

The FCA-Based method [8] forms the GA search space by using the theory
of Formal Concept Analysis (FCA) [19]. FCA is a mathematical technique for
extracting concepts and structures from data. It was introduced in the 1980s and
is becoming increasingly popular due to its nice visual representation of data and
relations found in data. The basic data structure in FCA is the formal context,
which is a representation of the relations between objects and attributes. A
formal context is usually represented in a table form where the columns represent
the attributes and the rows represent the objects (objects are usually called
instances or examples in classification). The most important difference between
an attribute × value table and a formal context is that FCA only works with
binary attributes. In order to handle continuous and multi-valued attributes,
they must be transformed into binary attributes using a scaling process. The
table representing the formal context contains 1 (true) in cell (i, j) if object i has
attribute j, and 0 (false) otherwise. By extracting classification rules from data
using the FCA theory to form the GA search space, the FCA-Based method
is able to avoid the creation of a large number of useless rules, a task that has
a high computational cost. After the rule extraction process, the FCA-Based
method uses a GA to generate the fuzzy rule base.

The FCA-Based method uses an integer chromosome codification. The size of
the chromosome is equal to the maximum number of rules considered acceptable
for the final FRBs and it is initialized with the number of rules found in the
rule base produced by the Wang & Mendel method [20] using the same FDB.
This heuristic allows the definition of chromosomes with a reasonable number of
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rules.This approach requires a considerable extra computational cost compared
to our approach. The integer codification uses the index of a rule in the search
space generated by FCA in each of its genes. To allow the generation of rule
bases with less rules than the maximum size of the chromosome, a -1 value is
used to indicate that a gene represents an inactive rule.

For the fitness calculation, and aiming at reducing the number of rules in the
final FRB, the FCA-Based method uses the Correct Classification Rate (CCR)
and the number of rules (NR) in the rule base represented by each chromosome
during the search process. This evaluation process uses a self-adaptive algorithm
that keeps and updates referential values of the ideal CCR and NR. After each
generation, an update occurs if a better CCR is obtained with a number of rules
equal or smaller than the best current NR. In the sequence, the NR is used in a
penalization mechanism that decreases the fitness value of a chromosome when
its NR is larger than the current reference NR.

In order to improve the interpretability of the final rule bases generated by
the GA, FCA-Based has a simple post selection process that checks the ability
of each individual rule to improve the classification power of the rule set. This
process aims at removing as many rules as possible while keeping (or improving)
the accuracy of the whole FRB.

2.4 MPLCS

MPLCS [21] stands for Memetic1 Pittsburgh Learning Classifier System
(MPLCS). The MPLCS method has many variants according to the adopted
local search mechanism.

The version used in our experiments uses the local search, based on the rule
set-wise operator. This local search has three main stages: i) an evaluation of the
candidate rules; ii) the selection of the rules that will form the offspring rule set;
iii) the generation of the final individual. In the first stage, all rules are evaluated
with all the examples of the training set, producing a map of correct and incorrect
classifications for each rule. The next stage uses this map to evaluate how much
each candidate rule can contribute to improve the accuracy of the offspring rule
set without re-evaluating the rule set.

2.5 Comparing the Models Generated by the SLAVE, FCA-Based,
and MPLCS

One issue with the models generated by SLAVE is that they contain rules with
sets of fuzzy label disjunctions in their antecedents. For example, one of the
models generated for the Iris dataset, with three rules, is presented next.

1. If X2 is {L0}, class is Iris-setosa (W 0.977)

1 Memetics is a theory of mental content based on an analogy with the Darwinian
evolution. Memes are similar to genes in GA, but represent ideas, believes, patterns
of behaviour, which can reproduce.
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2. If X0 is {L0 L1} and X2 is {L0 L1} and X3 is {L0 L1}, class is Iris-versicolor
(W 0.402)

3. If X0 is {L1 L2} and X2 is {L1 L2} and X3 is {L0 L2}, class is Iris-virginica
(W 0.719)

Although the model has only 3 rules, with a total of 7 conditions, 6 of these
conditions contain disjunctions of fuzzy labels, impacting on the model inter-
pretability. It is also possible to find the association of linguistic values that are
not defined by neighbouring fuzzy sets, which makes each rule quite difficult do
understand.

The models generated by MPLCS, similarly to SLAVE, contain conjunctions
of disjunctions, and, for continuous attributes, the splitting points can be quite
unnatural and difficult to be interpreted. As an example, the rule set for the Iris
dataset, with 4 rules, is shown next.

1. If sepalLength is > 6.243 and petalLength is > 5.085, class is Iris-virginica

2. If sepalLength is < 6.340 and > 7.020 and petalWidth is > 1.627, class is
Iris-virginica

3. If petalLength is < 1.983, class is Iris-setosa

4. Default rule: class is Iris-versicolor

The cutting points defined by the algorithm can be quite similar and close to
each other. For instance, the splitting points for sepalLength in rules 1 and 2
discard values from a very close interval from 6.243 to 6.340, which makes the
understanding of the whole model difficult.

The FCA-Based models present only conjunctions of conditions in the an-
tecedent of their rules, and, due to the fact that it is based on the fuzzy logic, the
discretization of continuous attributes is done using highly interpretable linguist
valued fuzzy sets. The rule set for the iris dataset is presented next.

1. If sepalLenght is medium, and petalLenght is medium and petalWidth is
medium, class is Iris-virginica

2. If petalLenght is large and petalWidth is medium, class is Iris-versicolor

3. if petalLength is small, and petalWidht is medium, and sepalWidth is
small, class is Iris-setosa

4. if petalLength is medium, and petalWidht is small, and sepalWidth is
large, class is Iris-virginica

For experts and persons who are familiar with the domain, the fuzzy linguistic
values small, medium and large are directly interpreted. Nevertheless, for
those who are unfamiliar with the domain, it is necessary to check the FDB
for the information regarding the number, type and distribution of the fuzzy
sets defining each attribute, in order to interpret the rules and rule set. This
process, although quite straightforward, requires extra effort. To reduce the time
to understand the FDB, the information can be presented in graphs.

Next, we discuss DT based classification methods.
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3 Classification Methods Based on Decision Trees

DTs are widely used in machine learning due to its simplicity of generation and
powerful representation of knowledge. Fuzzy DTs have also been proposed in
the literature. The classic C4.5 DT algorithm, PART (a DT-based approach for
rule generation), and FuzzyDT, our fuzzy version of the C4.5 algorithm, are
presented next, as well as a comparison of their generated models.

3.1 C4.5

DT algorithms generate a tree structure through recursively partitioning the
feature space until the whole decision space is completely divided into a set of
non-overlapping class subspaces (leaf nodes). They also perform an embedded
selection of features during its partitioning process, so only relevant features are
used in the tree, improving the time used to classify new examples as well as the
interpretability of the model. C4.5 is one of the most well-know DT algorithms
[2]. C4.5 uses the information gain and entropy measures when deciding on the
importance of the features.

In order to avoid overfitting, a stopping criterion can be used to prevent some
subsets of training examples from being subdivided. The pruning of a part of the
DT structure helps preventing overfitting. Regarding the pruning process, C4.5
employs post-pruning, i.e., the pruning takes place after the tree is completely
induced assessing the error rates of the tree and its components directly on the
set of training examples [1]. This assessment is related to the confidence level
that the error obtained with the pruned tree, in relation to the error for the
original tree, will represent the real error.

The default confidence level used by C4.5 is 25%. It is important to notice
that the smaller the confidence limits, the higher the chances of pruning, while
the higher the confidence limits, the smaller the chances of pruning. Thus, if
we set the confidence limit to 100%, what we are saying is that we believe that
the predicted error, obtained with the examples at hand, is equal to the real
error and no pruning will be performed. This idea conflicts with the natural
intution one might have that a 25% confidence limit will produce less pruning
than an 80% confidence limit. This way, one should not associate the default
25% confidence limits of C4.5 with a 25% pruning of the tree.

3.2 PART

PART, as its name indicates, is an algorithm based on partial DTs [3]. A partial
DT is an ordinary DT that contains branches to undefined subtrees. PART is
a rule-induction procedure that adopts the separate-and-conquer strategy. In
essence, it builds a rule, removes the instances it covers, and continues creating
rules recursively for the remaining instances until none is left. In order to generate
this rule, PART generates a DT and prunes all but one leaf (specifically the leaf
with the largest coverage) and makes the branch of this leaf into a rule, discarding
the rest of the tree. Its authors explain that using a pruned tree to obtain a rule,
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instead of building it incrementally by adding conjunctions of conditions one at
a time, avoids the over-pruning problem of the basic separate-and-conquer rule
learner.

In fact, using the separate-and-conquer methodology in conjunction with DTs
adds flexibility and speed to the process. Since it is wasteful to build a full DT
just to obtain a single rule, PART significantly accelerates the process described
without sacrificing the above advantages by building a “partial” DT instead of
a fully explored one. An integration of the construction and pruning operations
is used in order to find a “stable” subtree that can be simplified no further. This
way, once this subtree has been found, the tree induction ceases and a single rule
is selected.

3.3 FuzzyDT

FuzzyDT [17] is a fuzzy implementation of the classic C4.5 algorithm. It uses
the same measures of C4.5 (entropy and information gain) to decide on the
importance of the features. The main difference between the classic and the
fuzzy C4.5 is the fact that the fuzzy version discretizes continuous attributes
using fuzzy sets before the induction of the tree.This way, the process can be
seen as inducing a tree using only discrete features, since the continuous features
are defined in terms of fuzzy sets and the training set is fuzzified before the DT
induction.

3.4 Comparing the Models Generated by the C4.5, PART, and
FuzzyDT

The model produced by C4.5, as by most of the DT algorithms, form a set
of disjunct rules in which only one rule is fired to classify a new example. For
FuzzyDT, on the other hand, the tree can be seen as a set of rules that are fired
simultaneously. Since they are fuzzy rules, the degree of compatibility of each
rule with a new example is calculated and used by the inference mechanism to
classify this new example. This way, the inference of fuzzy DTs requires higher
computational effort than the classic DTs. In spite of this additional cost, the
compatibility information of the rule with the example guides the inference,
which considers all attributes of a rule (branch), while classic DTs simply tests
one attribute at a time, even if the input values are close to the test values.

PART generates a set of ordered rules. The inference process is quite straight-
forward: the first rule is checked, if it does not cover the example, the next rule
is checked, until the example is classified or the last rule is reached.

Next we compare some important features and definitions of FuzzyDT, C4.5
and PART.

Evaluation of features – For the partitioning process, the three methods
use the same measures, i.e., entropy and information gain, to select the features
to be used in the test nodes of their branches or rules;

Induction process – FuzzyDT and C4.5 repeatedly subdivide the feature
space using the most informative features until a leaf node is reached or no
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features or examples remain. PART uses a similar approach to generate partial
trees, but for each generated tree, only the branch of the tree that correctly
classifies the largest number of examples is used. This process is repeated as
many times as necessary.

Handling continuous features – PART and C4.5 split the domain accord-
ing to the examples at hand by minimizing entropy and maximizing information
gain. The drawback of this process is the discretization of continuous attributes,
which might create unnatural divisions that reflect on a lower interpretability of
the rules and rule set. Another issue with PART and C4.5 is that the number
of divisions used to split continuous attributes, even if known a priori, cannot
be informed to the algorithm. In fact, the splitting of continuous attributes is
done dynamically by the algorithms, and might be distant from the patterns
of the application domain or even from the representation used by an expert.
FuzzyDT, on the other hand, can use the partitions (and thus, number of fuzzy
sets) defined by an expert. Furthermore, even if this information is not avail-
able, fuzzy partitions can be automatically defined and are easily interpretable.
The equalized universe method [22], which evenly splits the domain into a de-
fined number of fuzzy sets, is a simple approach that prevents the creation of
unnatural splitting points.

Reuse of features – for PART and C4.5, the same continuous feature can
be used more than once in one single rule (for example, if the feature is tem-
perature, a rule might present tests such as “temperature ≤ 95”, ”temperature
≤ 74”, “temperature ≤ 10”, and so on). This repetition of the same feature
and subdivision of the domain degrades the interpretation of the rule. On the
other hand, asFuzzyDT fuzzyfies (“discretizes”) the attributes using fuzzy sets,
a feature can be used only once in one rule, favoring the interpretability of the
generated rules.

Inference – The C4.5 algorithm checks the root test and then the following
triggered branch of the tree, to classify a new example. The process is intuitive
and clear. Similarly, PART checks the ordered rule set in sequence. However, for
continuous features, whenever the input values are located in the decision fron-
tiers, misclassifications might occur due to the fact that the whole inference is
done based on a single attribute at a time. For FuzzyDT, as stated before, the
membership degree of the input example is calculated for each fuzzy set defining
each attribute. These membership degrees are then used to calculate the confi-
dence degree for each rule. Since all branches might be fired simultaneously, this
confidence degree is used by the classification process, taking into consideration
all the attributes included in each rule, instead of the approach used by the clas-
sic DTs of checking a single attribute at a time. This way, FuzzyDT gives more
credibility to the final classification. Nevertheless, although many branches of
the tree might not be fired by an example, if the DT is large, the FuzzyDT in-
ference process will require a considerable computational effort when compared
to PART and C4.5. The calculation can be reduced by defining a minimum
threshold of membership degree to continue testing rules or not.

Next, we present the experiments and results.
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4 Experiments

Our experiments were carried out using 10 datasets from the UCI Machine Learn-
ing Repository [23] and 10-fold cross-validation strategy. The KEEL framework
[24] was used for the SLAVE, C4.5, PART, and MPLCS algorithms, all exe-
cuted with default parameters, except for the number of fuzzy sets for SLAVE,
which was set to 3. For FCA-Based and FuzzyDT, we used our own imple-
mentations.

As previously stated, the motivation to compare such different approaches
for the automatic generation of classifiers is to provide information and insight
when selecting a classification method for a particular problem. For this pur-
pose, we considered the performance of the models, in terms of error rates, and
their interpretability, in terms of their syntactic complexity, which takes into
consideration the average number of rules generated and the average number of
conditions of these rules.

Table 1 summarizes the dataset characteristics giving the total number of
examples (Examples); number of features (Features), including the number of
continuous and discrete features in brackets; number of classes (Classes), and
the majority error (ME), which is the error of the most naive algorithm, which
always predicts the majority class of the dataset.

Table 1. General characteristics of the datasets

Dataset Examples Features Classes ME

Credit 653 15(6,9) 2 45.33
Cylinder 277 32(19,13) 2 35.74
Diabetes 769 8(8,0) 2 34.90

Glass 220 9(9,0) 7 65.46
Heart 270 13(13,0) 2 44.44

Ionosphere 351 34(34,0) 2 35.90
Iris 150 4(4, 0) 3 66.67

Segment 210 19(19,0) 7 85.72
Vehicle 846 18(18,0) 4 74.23
Wine 178 13(13,0) 3 59.74

Notice that all fuzzy methods used the same (FCA-Based and FuzzyDT)
or similar (SLAVE) fuzzy partitions, i.e., the same number of fuzzy sets and
their distribution, as well as the type of membership function.

Table 2 presents the mean error rates and standard deviation for the tested
methods. The majority error (ME) is presented in the second column. The lasts
lines present the average rank and the final rank for each approach. For the
average rank and the final rank for each method, when computing the error
rank for each dataset, if two or more error measures are equal, the fractional
strategy for assigning rankings was used, i.e., they receive the same ranking
numbers, which is the mean of what they would have under ordinary rankings.
The results for the DT-based approaches are presented in the first columns, and
thus, the results for the GA-based approaches in the last columns. The smallest
error rates are dark-gray shaded.
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Table 2. Error rates and standard deviation for decision tree based approaches

Approaches DT-based approaches GA-based approaches
FuzzyDT C4.5 PART SLAVE FCA-Based MPLCS

Datasets ME Error SD Error SD Error SD Error SD Error SD Error SD

Credit 45.33 15.78 6.68 12.09 4.39 37.35 13.54 37.38 3.86 9.82 3.90 11.02 4.89
Cylinder 35.74 34.20 0.09 27.69 10.95 31.32 10.68 35.74 0.96 25.77 5.15 25.95 10.85
Diabetes 34.90 26.10 0.05 22.89 8.07 31.47 10.49 25.66 4.26 23.09 2.30 23.67 8.41

Glass 65.46 48.26 8.12 27.03 11.29 48.98 17.50 38.25 10.19 39.56 5.21 29.39 12.17
Heart 44.44 21.85 5.60 20.37 8.32 38.15 13.86 20.74 10.10 19.72 7.44 17.41 8.61
Iono 35.90 13.53 9.95 11.11 4.51 20.52 13.02 12.27 4.81 11.76 4.97 9.98 4.66
Iris 66.67 8.00 2.67 4.00 5.33 60.00 20.00 4.67 4.27 4.68 6.33 2.67 5.33

Segment 85.71 20.48 5.65 0.48 0.45 10.70 4.88 13.43 0.43 24.75 7.39 0.69 0.55
Vehicle 74.23 35.85 4.05 24.33 9.09 58.36 19.96 39.59 4.82 44.15 4.73 27.04 10.64

Wine 59.74 12.86 11.43 6.67 6.94 36.31 14.51 9.54 7.05 4.27 4.99 5.00 3.89

Final Rank 4.9 2.3 5.6 3.3 3.0 1.9
Avg. Rank 5 2 6 4 3 1

Considering only the DT-based approaches, C4.5 obtained the smallest error
rates for all datasets. FuzzyDT presented smaller error rates than PART for 8
datasets. It should be observed that in most cases learning was very poor for
PART, as well as for FuzzyDT using Cylinder, i.e., the error rate for these
models is similar to the most naive learning algorithm that always predicts the
most frequent class in the dataset.

Considering only the GA-based approaches, MPLCS had the smallest error
rates for 6 datasets while FCA-Based for 4 datasets. Moreover, the error rate
of the model generated by SLAVE for Cylinder is the ME, thus, there was no
learning.

Comparing all methods, i.e., DT-based and GA-based, C4.5 obtained the
smallest error rates for 4 datasets, while FCA-Based and MPLCS for three
datasets each.

To test whether there was a statistically significant difference among the six
algorithms we used the Friedman test [25] with the null-hypothesis that the per-
formance of all algorithms, assessed in terms of the error rates, was comparable.
The Friedman test found there is no statistically significant difference among the
tested algorithms with a 95% confidence level.

As discussed previously, some methods tend to present good error rates, but
low interpretability, or vice-versa. This way, to analyse the interpretability of
the generated models, Table 3 presents the average number of rules and the
Syntactic Complexity (SC) of the models generated by the six analysed algo-
rithms, as well as the average rank and final rank of their SC. In this work, the
SC is defined as the total number of conditions in each rule set. The dark-gray
shaded cells highlight the smallest syntactic complexity values obtained in both
approaches. Notice that although the rules produced by SLAVE and MPLCS
present conjunctions of disjunctions, Table 3 does not consider the number of
disjunctions in the rules of these models.

As one can observe, PART produced the models with the smallest syntactic
complexity for 9 of the datasets and SLAVE for the remaining one. Observe that
dataset Cylinder is the remaining one, which had the ME as error rate (Table 3).
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Table 3. Average number of rules and syntactic complexity values

Approaches DT-based approaches GA-based approaches
FuzzyDT C4.5 PART SLAVE FCA-Based MPLCS

Datasets Rules SC Rules SC Rules SC Rules SC Rules SC Rules SC
Credit 21.0 64.5 19.6 95.4 3.0 12.4 5.1 18.6 10.5 32.8 6.9 33.9

Cylinder 31.8 83.7 42.8 248.5 3.6 17.6 1.0 1.0 15.8 70.1 11.8 118.4
Diabetes 12.6 34.4 23.6 150.2 1.3 3.7 4.2 19.6 9.1 33.1 8.3 33.6

Glass 26.6 95.0 24.1 137.8 2.5 10.1 11.9 51.1 6.8 39.4 7.6 21.9
Heart 17.4 49.0 18.5 86.1 1.4 4.0 8.3 43.9 14.1 58.5 7.0 30.7
Iono 20.2 54.4 13.9 72.4 2.4 9.8 15.1 73.0 19.9 77.5 4.6 19.5
Iris 8.2 13.4 4.6 12.1 1.0 2.0 3.2 10.4 4.5 12.8 4.0 7.6

Segment 22.6 72.2 10.0 38.0 1.3 3.2 3.5 15.9 11.5 49.2 4.2 9.3
Vehicle 65.6 296.9 66.3 503.0 2.7 12.0 21.7 151.9 30.2 172.9 19.2 72.9

Wine 13.8 35.0 5.1 12.5 1.9 5.7 4.5 30.2 4.9 15.3 4.2 6.6

Final Rank 4.9 5.1 1.1 3.1 4.1 2.7
Avg. Rank 5 6 1 3 4 2

(a) Credit (error[9.8, 37.3], SC[11.2, 95.4]) (b) Cylinder (error[25.8, 34.2], SC[1.0, 248.5])

(c) Diabetes (error[22.9, 31.5], SC[3.7, 150.2]) (d) Glass (error[27.0, 49.0], SC[10.1, 137.8])

Fig. 1. Error × SC for Credit, Cylinder, Diabetes, and Glass
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Thus, the model generated is simply one rule assigning the majority class to any
new instance. However, PART was ranked last in accuracy (Table 2). On the
other hand, although C4.5 is ranked last regarding the SC, it is ranked second
for accuracy. Furthermore, MPLCS is ranked second regarding the SC, and it
is ranked first for accuracy.

In order to consider the performance of the methods both in terms of error
rates and syntactic complexity, we used the normalized values of the error rate
and SC to produce some graphs and visually analyse the results. To illustrate,
Figure 4 presents the results for Credit, Cylinder, Diabetes, and glass, the first
four datasets. Because the values are normalized, notice that the origins of the
graphs do not represent null error and null syntactic complexity. Instead, the
origins are defined by the smallest error rate and SC of the results of the tested
methods for each dataset. Similarly, point (1,1) represents the maximum er-
ror and syntactic complexity obtained on the dataset. By using the normalized
values, instead of the real ones, it is easier to choose the most appropriate al-
gorithms for a specific dataset by focusing on the ones that are plotted closest
to the origin of the graphs. The idea is to discard the methods whose values
are plotted farthest from the origin and just compare and analyse those closest
to the origin in order to obtain the best compromise between error rate and
syntactic complexity.

For datasets Credit and Diabetes, the FCA-Based algorithm presents the
smallest error rate and low SC. The second best would be MPLCS. However,
it is important to notice that the rules produced by MPLCS contain the dis-
advantage of being formed by conjunctions of disjunctions, while FCA-Based
produce quite clear and interpretable rules. For the Cylinder dataset, FCA-
Based should be chosen, and MPLCS for the Glass dataset. C4.5, although
having low error rates, had the worst SC for these datasets. PART and SLAVE
had both good SC, but poor error rates.

Next, we present the final conclusions.

5 Conclusions

Classification is an important task in the machine learning and fuzzy communi-
ties. Many classification approaches have been proposed by both communities,
some of them sharing similar cores. For instance, both communities have decision
tree-based methods, genetic-based methods, methods based on artificial neural
networks, among others. Aiming at comparing similar methods from both com-
munities that produce interpretable models, two groups of rule-based methods
are analysed in this work: decision tree-based and genetic-based approaches.

The decision tree-based group include C4.5, PART and FuzzyDT. The
genetic-based group includes MPLCS, a method from the machine learning
community to generate rule-based models, as well as SLAVE and FuzzyDT,
both fuzzy-based. These methods were analysed according to their accuracy and
syntactic complexity on ten benchmark datasets using a ten fold cross-validation
strategy.
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Results show that FCA-Based and MPLCS were able to obtain good ac-
curacy and interpretability, while the other methods had good accuracy and
poor syntactic complexity, or poor accuracy and good syntactic complexity.
One important issue when comparing the models produced by FCA-Based
and MPLCS is the fact that MPLCS, as well as SLAVE, produce rules with
conjunctions of conditions which might contain sets of disjunctions. This char-
acteristic makes MPLCS and SLAVE much less complex with respect to the
SC than the ones produced by C4.5, PART, and FCA-Based, although the
disjunctions impact on the readability of the rules, instead of improving it.

As future work, we intend to include other methods from both communities
in the experiments and consider other important issues in our comparisons, such
as the time taken to generate the models, and their ability to classify examples
from datasets whose classes have different cost for misclassification, such as in
medical domains. We also intend to use a larger set of datasets.
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