

R.R. Yager et al. (Eds.): Soft Computing: State of the Art Theory, STUDFUZZ 291, pp. 241–254.
DOI: 10.1007/978-3-642-34922-5_17 © Springer-Verlag Berlin Heidelberg 2013

Bio-inspired Optimization of Interval Type-2 Fuzzy
Controllers

Oscar Castillo and Patricia Melin

Tijuana Institute of Technology, Division of Graduate Studies,
Calzada Tecnologico s/n, 22379, Tijuana, Mexico
{ocastillo,pmelin}@tectijuana.mx

Abstract. A review of the optimization methods used in the design of type-2
fuzzy systems, which are relatively novel models of imprecision, has been con-
sidered in this paper. The fundamental focus of the work has been based on the
basic reasons of the need for optimizing type-2 fuzzy systems for different areas
of application. Recently, bio-inspired methods have emerged as powerful opti-
mization algorithms for solving complex problems. In the case of designing
type-2 fuzzy systems for particular applications, the use of bio-inspired optimi-
zation methods have helped in the complex task of finding the appropriate pa-
rameter values and structure of the fuzzy systems. In this paper, we consider the
application of genetic algorithms, particle swarm optimization and ant colony
optimization as three different paradigms that help in the design of optimal
type-2 fuzzy systems. We also provide a comparison of the different optimiza-
tion methods for the case of designing type-2 fuzzy systems.

Keywords: Intelligent Control, Type-2 Fuzzy Logic, Interval Fuzzy Logic.

1 Introduction

Uncertainty affects decision-making and appears in a number of different forms. The
concept of information is fully connected with the concept of uncertainty [17]. The
most fundamental aspect of this connection is that the uncertainty involved in any
problem-solving situation is a result of some information deficiency, which may be
incomplete, imprecise, fragmentary, not fully reliable, vague, contradictory, or defi-
cient in some other way. Uncertainty is an attribute of information [24]. The general
framework of fuzzy reasoning allows handling much of this uncertainty and fuzzy
systems that employ type-1 fuzzy sets represent uncertainty by numbers in the range
[0, 1]. When something is uncertain, like a measurement, it is difficult to determine
its exact value, and of course type-1 fuzzy sets make more sense than using crisp sets
[14]. However, it is not reasonable to use an accurate membership function for some-
thing uncertain, so in this case what we need is higher order fuzzy sets, those which
are able to handle these uncertainties, like the so called type-2 fuzzy sets [14]. So, the
amount of uncertainty can be managed by using type-2 fuzzy logic because it offers

242 O. Castillo and P. Melin

better capabilities to handle linguistic uncertainties by modeling vagueness and unre-
liability of information [5] [23].

Recently, we have seen the use of type-2 fuzzy sets in Fuzzy Logic Systems (FLS)
in different areas of application [1] [2] [6] [10] [12]. In this paper we deal with the
application of interval type-2 fuzzy control to non-linear dynamic systems [3] [4] [5]
[15] [19]. It is a well known fact, that in the control of real systems, the instrumenta-
tion elements (instrumentation amplifier, sensors, digital to analog, analog to digital
converters, etc.) introduce some sort of unpredictable values in the information that
has been collected [20]. So, the controllers designed under idealized conditions tend
to behave in an inappropriate manner [11].

2 Fuzzy Logic Systems

In this section, a brief overview of type-1 and type-2 fuzzy systems is presented. This
overview is considered to be necessary to understand the basic concepts needed to
develop the methods and algorithms presented later in the paper.

2.1 Type-1 Fuzzy Logic Systems

Soft computing techniques have become an important research topic, which can be
applied in the design of intelligent controllers, which utilize the human experience in
a more natural form than the conventional mathematical approach [16, 18]. A FLS,
described completely in terms of type-1 fuzzy sets is called a type-1 fuzzy logic sys-
tem (type-1 FLS). In this paper, the fuzzy controller has two input variables, which
are the error e(t) and the error variation Δe(t),

)()()(tytrte −=
(1)

)1()()(−−=Δ tetete
(2)

so the control system can be represented as in Figure 1.

Fig. 1. System used for obtaining the experimental results

 Bio-inspired Optimization of Interval Type-2 Fuzzy Controllers 243

2.2 Type-2 Fuzzy Logic Systems

If for a type-1 membership function, as in Figure 2, we blur it to the left and to the
right, as illustrated in Figure 3, then a type-2 membership function is obtained. In this
case, for a specific value 'x , the membership function ('u), takes on different values,
which are not all weighted the same, so we can assign an amplitude distribution to all
of those points.

Fig. 2. Type-1 membership function

Fig. 3. Blurred type-1 membership function

A type-2 fuzzy set A~ , is characterized by the membership function [14, 17]:

(){ }]1,0[,|),(),,(~
~ ⊆∈∀∈∀= xA JuXxuxuxA μ (3)

in which 1),(0 ~ ≤≤ uxAμ . Another expression for A~ is,

),/(),(
~

~ uxuxA
Xx Ju A

x
 ∈ ∈

= μ]1,0[⊆xJ (4)

Where denotes the union over all admissible input variables x and u. For dis-

crete universes of discourse is replaced by . In fact]1,0[⊆xJ represents

244 O. Castillo and P. Melin

the primary membership of x, and),(~ uxAμ is a type-1 fuzzy set known as the sec-

ondary set. Hence, a type-2 membership grade can be any subset in [0,1], the primary
membership, and corresponding to each primary membership, there is a secondary
membership (which can also be in [0,1]) that defines the possibilities for the primary
membership. Uncertainty is represented by a region, which is called the footprint of

uncertainty (FOU). When]1,0[,1),(~ ⊆∈∀= xA Juuxμ we have an interval

type-2 membership function, as shown in Figure 4. The uniform shading for the FOU
represents the entire interval type-2 fuzzy set and it can be described in terms of an

upper membership function)(~ xAμ and a lower membership function)(~ xAμ .

A FLS described using at least one type-2 fuzzy set is called a type-2 FLS. Type-1
FLSs are unable to directly handle rule uncertainties, because they use type-1 fuzzy
sets that are certain [14]. On the other hand, type-2 FLSs, are very useful in circum-
stances where it is difficult to determine an exact membership function, and there are
measurement uncertainties [7, 8, 15].

Fig. 4. Interval type-2 membership function

A type-2 FLS is again characterized by IF-THEN rules, but its antecedent or con-
sequent sets are now of type-2. Similar to a type-1 FLS, a type-2 FLS includes a
fuzzifier, a rule base, fuzzy inference engine, and an output processor, as we can see
in Figure 5. The output processor includes type-reducer and defuzzifier; it generates a
type-1 fuzzy set output (type-reducer) or a crisp number (defuzzifier).

Fig. 5. Type-2 Fuzzy Logic System

 Bio-inspired Optimization of Interval Type-2 Fuzzy Controllers 245

2.2.1 Fuzzifier
The fuzzifier maps a crisp point x=(x1,…,xp)

T ∈X1xX2x…xXp ≡ X into a type-2 fuzzy

set xA
~

in X [17], interval type-2 fuzzy sets in this case. We will use type-2 singleton

fuzzifier, in a singleton fuzzification, the input fuzzy set has only a single point on

nonzero membership [14]. xA
~

is a type-2 fuzzy singleton if 1/1)x(
xA

~ =μ for x=x'

and 0/1)x(
xA

~ =μ for all other x≠x'[17].

2.2.2 Rules
The structure of rules in a type-1 FLS and a type-2 FLS is the same, but in the latter
the antecedents and the consequents will be represented by type-2 fuzzy sets. So for a
type-2 FLS with p inputs x1∈X1,…,xp ∈Xp and one output y∈Y, Multiple Input Sin-
gle Output (MISO), if we assume there are M rules, the lth rule in the type-2 FLS can
be written as follows [14]:

Rl: IF x1 is lF1
~ and ···and xp is l

pF~ , THEN y is lG~ l=1,…,M (5)

2.2.3 Inference
In the type-2 FLS, the inference engine combines rules and gives a mapping from
input type-2 fuzzy sets to output type-2 fuzzy sets. It is necessary to compute the join

⊔, (unions) and the meet Π (intersections), as well as extended sup-star compositions

(sup star compositions) of type-2 relations [14]. If l
p

ll AFF ~~~
1 =××L , equation (5)

can be re-written as
lll

p
lll GAGFFR ~~~~~: 1 →=→××L l=1,…,M (6)

Rl is described by the membership function),,...,(),(1 yxxy pRR ll μμ =x , where

),(),(~~ yy lll GAR
xx →= μμ (7)

can be written as [14]:

)(),(),(1~~~
1

xyy llll FGAR
μμμ == → xx Π···Π)(~ pF

xl
p

μ Π)(~ ylG
μ

 = [Π p
i 1=)(~ iF

x
i

lμ]Π)(~ ylG
μ (8)

In general, the p-dimensional input to Rl is given by the type-2 fuzzy set xA~ whose

membership function is

)()(1~~
1

xxAx
μμ =x Π···Π)(~ ppx xμ =Π p

i 1=)(~ iix xμ (9)

where),...,1(~ piX i = are the labels of the fuzzy sets describing the inputs. Each rule

Rl determines a type-2 fuzzy set l
x

l RAB o~~ = such that [14]:

== l
x

l RAB
y

o~~)(μμ ⊔ [)(~ xX xAx μ∈ Π]),(ylR
xμ y∈Y l=1,…,M (10)

246 O. Castillo and P. Melin

This equation is the input/output relation in Figure 5 between the type-2 fuzzy set that
activates one rule in the inference engine and the type-2 fuzzy set at the output of that
engine [14]. In the FLS we used interval type-2 fuzzy sets and meet under product t-
norm, so the result of the input and antecedent operations, which are contained in the

firing set Π)'(('
~1 xl

iF
p
i Fx

ii
≡= μ , is an interval type-1 set [14],

≡

=

−

−

−

−

l
l

l
ll ffffF ,)'(),'()'(xxx (11)

where

)(**)()'('

~

'
1

~
1

p
FF

l xxf
l

p
l −−−

= μμ Lx (12)

)(**)()'('
~

'
1~

1 pFF

l

xxf l
p

l

−−−
= μμ Lx (13)

where * is the product operation.

2.2.4 Type Reducer

The type-reducer generates a type-1 fuzzy set output, which is then converted in a
crisp output through the defuzzifier. This type-1 fuzzy set is also an interval set, for
the case of our FLS we used center of sets (cos) type reduction, Ycos which is ex-
pressed as [14]:

=

=

∈∈
∈∈ −

−

−

−

==
M

i

i

M

i

ii

ffffff
yyyyyyrl

f

yf
yyY M

MM
M

r
M

l
M

rl

1

1

],[],[
],[],[cos /1],[)(1

11
111 LLx

(14)

this interval set is determined by its two end points, yl and yr, which corresponds to

the centroid of the type-2 interval consequent set iG
~

[14],

],[/1

1

1
~

11

i
r

i
lN

i i

N

i ii

JJG
yy

y
C

yNNy
i ==

=

=
∈∈

θ

θ
θθ L (15)

before the computation of Ycos (x), we must evaluate equation (15), and its two end
points, yl and yr. If the values of fi and yi that are associated with yl are denoted fl

i and
yl

i, respectively, and the values of fi and yi that are associated with yr are denoted fr
i

and yr
i, respectively, from (14), we have [14]

=

==
M

i

i
l

M

i

i
l

i
l

l
f

yf
y

1

1 (16)

=

==
M

i

i
r

M

i

i
r

i
r

r
f

yf
y

1

1 (17)

 Bio-inspired Optimization of Interval Type-2 Fuzzy Controllers 247

2.2.5 Defuzzifier

From the type-reducer we obtain an interval set Ycos, to defuzzify it we use the average
of yl and yr, so the defuzzified output of an interval singleton type-2 FLS is [14]

2
)(rl yy

y
+

=x (18)

3 Bio-inspired Optimization Methods

In this section a brief overview of the basic concepts from bio-inspired optimization
methods needed for this work is presented.

3.1 Particle Swarm Optimization

Particle swarm optimization is a population based stochastic optimization technique
developed by Eberhart and Kennedy in 1995, inspired by social behavior of bird
flocking or fish schooling [1]. PSO shares many similarities with evolutionary com-
putation techniques such as the GA [9].

The system is initialized with a population of random solutions and searches for
optima by updating generations. However, unlike the GA, the PSO has no evolution
operators such as crossover and mutation. In the PSO, the potential solutions, called
particles, fly through the problem space by following the current optimum particles
[16]. Each particle keeps track of its coordinates in the problem space, which are as-
sociated with the best solution (fitness) it has achieved so far (The fitness value is also
stored). This value is called pbest. Another "best" value that is tracked by the particle
swarm optimizer is the best value, obtained so far by any particle in the neighbors of
the particle. This location is called lbest. When a particle takes all the population as its
topological neighbors, the best value is a global best and is called gbest [19].

The particle swarm optimization concept consists of, at each time step, changing
the velocity of (accelerating) each particle toward its pbest and lbest locations (local
version of PSO). Acceleration is weighted by a random term, with separate random
numbers being generated for acceleration toward pbest and lbest locations [1]. In the
past several years, PSO has been successfully applied in many research and applica-
tion areas. It is demonstrated that PSO gets better results in a faster, cheaper way
when compared with other methods [19]. Another reason that PSO is attractive is that
there are few parameters to adjust. One version, with slight variations, works well in a
wide variety of applications. Particle swarm optimization has been considered for
approaches that can be used across a wide range of applications, as well as for specif-
ic applications focused on a specific requirement.

The basic algorithm of PSO has the following nomenclature:

x
i

z
 -Particle position

v
i

z
 -Particle velocity

248 O. Castillo and P. Melin

wij
-Inertia weight

p
i

z
 -Best “remembered” individual particle position

p
g

z

 -Best “remembered” swarm position

cc 21
, -Cognitive and Social parameters

rr 21
, -Random numbers between 0 and 1

The equation to calculate the velocity is:

 −+

 −+=

+ xprcxprcvwv
i

z

g

z

i

z

i

z

i

zij

i

z 22111
 (19)

and the position of the individual particles is updated as follows:

vxx
i

z

i

z

i

z 11 ++
+= (20)

The basic PSO algorithm is defined as follows:

1) Initialize

a) Set constants ccz 21max
,,

b) Randomly initialize particle position Dxi ∈0 in Rn for pi ,...,1=

c) Randomly initialize particle velocities vvi max
000 ≤≤ for pi ,...,1=

d) Set Z = 1

2) Optimize

a) Evaluate function value f
i

k
using design space coordinates x

i

k

b) If ff
i

best

i

z
≤ then xpff i

z

i

z

i

z

i

best
== , .

c) If ff
g

best

i

z
≤ then xpff i

z

g

z

i

z

g

best
== , .

d) If stopping condition is satisfied then go to 3.

e) Update all particle velocities v
i

z
 for pi ,...,1=

f) Update al particle positions x
i

z
 for pi ,...,1=

g) Increment z.
h) Goto 2(a).

3) Terminate

 Bio-inspired Optimization of Interval Type-2 Fuzzy Controllers 249

3.2 Genetic Algorithms

Genetic Algorithms (GAs) are adaptive heuristic search algorithms based on the evo-
lutionary ideas of natural selection and genetic processes [8]. The basic principles of
GAs were first proposed by John Holland in 1975, inspired by the mechanism of natu-
ral selection, where stronger individuals are likely the winners in a competing envi-
ronment [9]. GA assumes that the potential solution of any problem is an individual
and can be represented by a set of parameters. These parameters are regarded as the
genes of a chromosome and can be structured by a string of values in binary form. A
positive value, generally known as a fitness value, is used to reflect the degree of
"goodness" of the chromosome for the problem, which would be highly related with
its objective value. The pseudocode of a GA is as follows:

1. Start with a randomly generated population of n chromosomes (candidate
solutions to a problem).

2. Calculate the fitness of each chromosome in the population.
3. Repeat the following steps until n offspring have been created:

a. Select a pair of parent chromosomes from the current population,
the probability of selection being an increasing function of fitness.
Selection is done with replacement, meaning that the same chromo-
some can be selected more than once to become a parent.

b. With probability (crossover rate), perform crossover to the pair at a
randomly chosen point to a form two offspring.

c. Mutate the two offspring at each locus with probability (mutation
rate), and place the resulting chromosomes in the new population.

4. Replace the current population with the new population.
5. Go to step 2.

The simple procedure just described above is the basis for most applications of GAs
found in the literature [21] [22].

3.3 Ant Colony Optimization

Ant Colony Optimization (ACO) is a probabilistic technique that can be used for solv-
ing problems that can be reduced to finding good paths along graphs. This method is
inspired on the behavior presented by ants in finding paths from the nest or colony to
the food source.

The S-ACO is an algorithmic implementation that adapts the behavior of real ants
to solutions of minimum cost path problems on graphs [12]. A number of artificial
ants build solutions for a certain optimization problem and exchange information
about the quality of these solutions making allusion to the communication system of
real ants [13].

Let us define the graph G = (V, E), where V is the set of nodes and E is the matrix

of the links between nodes. G has VnG = nodes. Let us define KL as the number of

hops in the path built by the ant k from the origin node to the destiny node. Therefore,
it is necessary to find:

250 O. Castillo and P. Melin

Q = { Cqqq fa ∈1,..., } (21)

where Q is the set of nodes representing a continuous path with no obsta-

cles; , ...,a fq q are former nodes of the path and C is the set of possible configurations

of the free space. If xk(t) denotes a Q solution in time t, f(xk(t)) expresses the quality of
the solution. The S-ACO algorithm is based on Equations (22), (23) and (24):

() ()

 0

k
ij

k k
ij i

ijk j N
ij

k
i

if j N
t

p t

if j N

α

τ
τ

∈

 ∈

=

 ∉

(22)

τij(t) ←(1-ρ)τij(t)

(23)

=

+=+
kn

k
ijijij ttt

1

)()()1(τττ (24)

Equation (22) represents the probability for an ant k located on a node i selects the

next node denoted by j, where, k
iN is the set of feasible nodes (in a neighborhood)

connected to node i with respect to ant k, ijτ is the total pheromone concentration of

link ij, and α is a positive constant used as a gain for the pheromone influence.
Equation (23) represents the evaporation pheromone update, where]1,0[∈ρ is

the evaporation rate value of the pheromone trail. The evaporation is added to the
algorithm in order to force the exploration of the ants, and avoid premature conver-
gence to sub-optimal solutions. For 1=ρ the search becomes completely random.

Equation (24), represents the concentration pheromone update, where k
ijτΔ is the

amount of pheromone that an ant k deposits in a link ij in a time t.
The general steps of S-ACO are the following:

1. Set a pheromone concentration τij to each link (i,j).
2. Place a number k=1, 2,…, nk in the nest.
3. Iteratively build a path to the food source (destiny node), using Equation (22) for

every ant.

• Remove cycles and compute each route weight ()()kf x t . A cycle could be gen-

erated when there are no feasible candidates nodes, that is, for any i and any k,
k
iN = ∅ ; then the predecessor of that node is included as a former node of the

path.
4. Apply evaporation using Equation (23).
5. Update of the pheromone concentration using Equation (24)

 Bio-inspired Optimization of Interval Type-2 Fuzzy Controllers 251

6. Finally, finish the algorithm in any of the three different ways:

− When a maximum number of epochs has been reached.
− When it has found an acceptable solution, with f(xk (t)) < ε.
− When all ants follow the same path.

3.4 General Remarks about Optimization of Type-2 Fuzzy Systems

The problem of designing type-2 fuzzy systems can be solved with any of the above
mentioned optimization methods. The main issue in any of these methods is deciding
on the representation of the type-2 fuzzy system in the corresponding optimization
paradigm. For example, in the case of GAs, the type-2 fuzzy systems must be repre-
sented in the chromosomes. On the other hand, in PSO the fuzzy system is represent-
ed as a particle in the optimization process. In the ACO method, the fuzzy system can
be represented as one of the paths that the ants can follow in a graph. Also, the eval-
uation of the fuzzy system must be represented as an objective function in any of the
methods.

4 General Overview of the Area and Future Trend

In this section a general overview of the area of type-2 fuzzy system optimization is
presented. Also, possible future trends that we can envision based on the review of
this area are presented. It has been well-known for a long time that designing fuzzy
systems is a difficult task, and this is especially true in the case of type-2 fuzzy sys-
tems [5]. The use of GAs, ACO and PSO in designing type-1 fuzzy systems has be-
come a standard practice for automatically designing this sort of systems [1] [2] [13]
[21]. This trend has also continued to the type-2 fuzzy systems area, which has been
accounted for with the review of papers presented in the previous sections. In the case
of designing type-2 fuzzy systems the problem is more complicated due to the higher
number of parameters to consider, making it of upmost importance the use of bio-
inspired optimization techniques for achieving the optimal designs of this sort of sys-
tems. In this section a summary of the total number of papers published in the area of
type-2 fuzzy system optimization is presented, so that the increasing trend occurring
in this area can be better appreciated. Also, the distribution of papers according to the
used optimization technique is presented, so that a general idea of how these different
techniques are contributing to the automatic design of optimal type-2 fuzzy systems is
obtained.

Figure 6 shows the distribution of the published papers in optimizing type-2 fuzzy
systems according to the different bio-inspired optimization techniques previously
mentioned. From Figure 6 it can be noted that the use of GAs have been decreasing
recently, on the other hand the use of PSO, ACO and other methods have been in-
creasing. The reason for the increase in use of PSO and ACO may be due to recent
works in which either PSO or ACO have been able to outperform GAs for different
applications. Regarding the question of which method would be the most appropriate
for optimizing type-2 fuzzy systems, there is no easy answer. At the moment, what we

252 O. Castillo and P. Melin

can be sure of is that the techniques mentioned in this paper and probably newer ones
that may appear in the future, would certainly be tested in the optimization of type-2
fuzzy systems because the problem of designing automatically these types of systems
is complex enough to require their use.

Fig. 6. Distribution of publications per area and year

There are other bio-inspired or nature-inspired techniques that at the moment have
not been applied to the optimization of type-2 fuzzy systems that may be worth men-
tioning. For example, membrane computing, harmony computing, electromagnetism
based computing, and other similar approaches have not been applied (to the moment)
in the optimization of type-2 fuzzy systems. It is expected that these approaches and
similar ones could be applied in the near future in the area of type-2 fuzzy system
optimization. Of course, as new bio-inspired and nature-inspired optimization meth-
ods are being proposed at any time in this fruitful area of research, it is expected that
newer optimization techniques would also be tried in the near future in the automatic
design of optimal type-2 fuzzy systems.

5 Conclusions

In the previous sections we have presented a representative account of the different
optimization methods that have been applied in the optimal design of type-2 fuzzy
systems. To the moment, genetic algorithms have been used more frequently to opti-
mize type-2 fuzzy systems. However, more recently PSO and ACO have attracted
more attention and have also been applied with some degree of success to the problem
of optimal design of type-2 fuzzy systems. There have been also other optimization
methods applied to the optimization of type-2 fuzzy systems, like artificial immune
systems and the chemical optimization paradigm. At this time, it would be very diffi-
cult to declare one of these optimization techniques as the best for optimizing type-2

 Bio-inspired Optimization of Interval Type-2 Fuzzy Controllers 253

fuzzy systems, as different techniques have had success for different applications of
type-2 fuzzy logic. In any case, the need for bio-inspired optimization methods is
justified due to the complexity of designing type-2 fuzzy systems.

References

[1] Bingül, Z., Karahan, O.: A Fuzzy Logic Controller tuned with PSO for 2 DOF robot tra-
jectory control. Expert Systems with Applications 38(1), 1017–1031 (2011)

[2] Cao, J., Li, P., Liu, H., Brown, D.: Adaptive fuzzy controller for vehicle active suspen-
sions with particle swarm optimization. In: Proceedings of SPIE-The International Soci-
ety of Optical Engineering, vol. 7129 (2008)

[3] Castillo, O., Huesca, G., Valdez, F.: Evolutionary Computing for Topology Optimiza-
tion of Type-2 Fuzzy Controllers. In: Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W.
(eds.) Hybrid Intelligent Systems. STUD FUZZ, vol. 208, pp. 163–178. Springer, Hei-
delberg (2008)

[4] Castillo, O., Aguilar, L.T., Cazarez-Castro, N.R., Cardenas, S.: Systematic design of a
stable type-2 fuzzy logic controller. Applied Soft Computing Journal 8, 1274–1279
(2008)

[5] Castillo, O., Melin, P., Alanis, A., Montiel, O., Sepulveda, R.: Optimization of interval
type-2 fuzzy logic controllers using evolutionary algorithms. Journal of Soft Compu-
ting 15(6), 1145–1160 (2011)

[6] Castro, J.R., Castillo, O., Melin, P.: An Interval Type-2 Fuzzy Logic Toolbox for Con-
trol Applications. In: Proceedings of FUZZ-IEEE 2007, London, pp. 1–6 (2007)

[7] Castro, J.R., Castillo, O., Martinez, L.G.: Interval type-2 fuzzy logic toolbox. Engineer-
ing Letters 15(1), 14 (2007)

[8] Cordon, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten years of genetic
fuzzy systems: current framework and new trends. Fuzzy Sets and Systems 141, 5–31
(2004)

[9] Cordon, O., Herrera, F., Villar, P.: Analysis and guidelines to obtain a good uniform
fuzzy partition granularity for fuzzy rule-based systems using simulated annealing. In-
ternational Journal of Approximate Reasoning 25, 187–215 (2000)

[10] Dereli, T., Baykasoglu, A., Altun, K., Durmusoglu, A., Turksen, I.B.: Industrial applica-
tions of type-2 fuzzy sets and systems: A concise review. Computers in Industry 62,
125–137 (2011)

[11] Hagras, H.: Hierarchical type-2 fuzzy logic control architecture for autonomous mobile
robots. IEEE Transactions on Fuzzy Systems 12, 524–539 (2004)

[12] Juang, C.-F., Hsu, C.-H.: Reinforcement ant optimized fuzzy controller for mobile-robot
wall-following control. IEEE Transactions on Industrial Electronics 56(10), 3931–3940
(2009)

[13] Juang, C.-F., Hsu, C.-H.: Reinforcement interval type-2 fuzzy controller design by
online rule generation and Q-value-aided ant colony optimization. IEEE Transactions
on Systems, Man, and Cybernetics, Part B Cybernetics 39(6), 1528–1542 (2009)

[14] Karnik, N.N., Mendel, J.M.: An Introduction to Type-2 Fuzzy Logic Systems, Tech-
nical Report, University of Southern California (1998)

[15] Martinez, R., Castillo, O., Aguilar, L.T.: Optimization of interval type-2 fuzzy logic
controllers for a perturbed autonomous wheeled mobile robot using genetic algorithms.
Information Sciences 179(13), 2158–2174 (2009)

254 O. Castillo and P. Melin

[16] Martinez, R., Rodriguez, A., Castillo, O., Aguilar, L.T.: Type-2 fuzzy logic controllers
optimization using genetic algorithms and particle swarm optimization. In: Proceedings
of the IEEE International Conference on Granular Computing, GrC 2010, pp. 724–727
(2010)

[17] Mendel, J.M.: Uncertainty, fuzzy logic, and signal processing. Signal Processing Jour-
nal 80, 913–933 (2000)

[18] Mohammadi, S.M.A., Gharaveisi, A.A., Mashinchi, M.: An evolutionary tuning tech-
nique for type-2 fuzzy logic controller in a non-linear system under uncertainty. In: Pro-
ceedings of the 18th Iranian Conference on Electrical Engineering, ICEE 2010, pp.
610–616 (2010)

[19] Oh, S.-K., Jang, H.-J., Pedrycz, W.: A comparative experimental study of type-1/type-2
fuzzy cascade controller based on genetic algorithms and particle swarm optimization.
Expert Systems with Applications (2011) (article in press)

[20] Sepulveda, R., Castillo, O., Melin, P., Rodriguez-Diaz, A., Montiel, O.: Experimental
study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic.
Information Sciences 177(10), 2023–2048 (2007)

[21] Wagner, C., Hagras, H.: A genetic algorithm based architecture for evolving type-2
fuzzy logic controllers for real world autonomous mobile robots. In: Proceedings of the
IEEE Conference on Fuzzy Systems, London (2007)

[22] Wu, D., Tan, W.-W.: Genetic learning and performance evaluation of interval type-2
fuzzy logic controllers. Engineering Applications of Artificial Intelligence 19(8), 829–
841 (2006)

[23] Yager, R.R.: Fuzzy subsets of type II in decisions. J. Cybernetics 10, 137–159 (1980)
[24] Zadeh, L.A.: The concept of a linguistic variable and its application to approximate rea-

soning. Information Sciences 8, 43–80 (1975)

	Bio-inspired Optimization of Interval Type-2 Fuzzy Controllers
	Introduction
	Fuzzy Logic Systems
	Bio-inspired Optimization Methods
	General Overview of the Area and Future Trend
	Conclusions
	References

