
Querying Possibilistic Databases: Three Interpretations

Patrick Bosc and Olivier Pivert

IRISA–ENSSAT, Lannion, France
{bosc,pivert}@enssat.fr

1 Introduction

Many authors have made proposals to model and handle databases involving uncertain
data. In particular, the last two decades have witnessed a blossoming of researches on
this topic (cf. e.g., [3,4,19] for some recent ones). Even though most of the literature
about uncertain databases uses probability theory as the underlying uncertainty model,
some approaches rather rest on possibility theory [26]. The initial idea consisting in
applying possibility theory to this issue goes back to the early 80’s [24]. More recent
advances on this topic can be found in [10]. In contrast with probability theory, one
expects the following advantages when using possibility theory:

• the qualitative nature of the model makes easier the elicitation of the degrees at-
tached to candidate values;

• in probability theory, the fact that the sum of the degrees from a distribution must
equal 1 makes it difficult to deal with incompletely known distributions.

Our aim is not to claim (nor to demonstrate) that the possibility-theory-based frame-
work is “better” than the probabilistic one at modeling uncertain databases, but that
it constitutes an interesting alternative inasmuch as it captures a different kind of un-
certainty (of a qualitative nature). An example is that of a person who witnesses a car
accident and is not sure about the model of the car involved. In such a case, it seems
reasonable to model the uncertain value by means of a possibility distribution, e.g.,
{1/Mazda, 1/Toyota, 0.7/Honda} — where 0.7 is a numerical encoding in a usually
finite possibility scale — rather than with a probability distribution which would be
artificially normalized.

The rest of the paper is organized as follows. Section 2 is devoted to a reminder about
basic notions concerning the interpretation of an uncertain database in terms of a set of
possible worlds. In Section 3, two models of uncertain databases founded on possibility
theory are presented. Then, in Section 4, three fairly different families of queries are
proposed, that have quite different meanings. Section 5 concludes the paper and opens
some lines for future works.

2 Basic Notions

2.1 The Possible Worlds Semantics

The possible worlds model is founded on the fact that uncertainty in data makes it
impossible to define what precisely the real world is. One can only describe the set of
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possible worlds which are consistent with the available information. As far as a table
T conveys some imprecision/uncertainty, several interpretations (I) can be drawn from
T and the set of all the interpretations of T is denoted by rep(T ). The notation rep(D)
extends naturally to an uncertain database D involving several tables. A regular database
is nothing but a special case of an uncertain one which has only one interpretation. From
a semantic point of view, such an uncertain database D can be interpreted in terms of
a set of usual databases, also called worlds W1, ..., Wp, and rep(D) = {W1, ..., Wp}. In
the following, we consider the case where rep(D) is finite. Any world Wi is obtained by
choosing a candidate value in each set appearing in a relation Tj pertaining to D. One of
these (regular) databases, let us say Wk, is supposed to correspond to the actual state of
the universe modeled. The assumption of independence between the sets of candidates
is usually made and then any world Wi corresponds to a conjunction of independent
choices (thus the degree associated to a world is based on a conjunction operator, e.g.,
“min” or “product”).

Example 1. Let us consider the uncertain database D involving a single relation im
whose schema is IM(#i, airc, date, place). Relation im is assumed to describe satellite
images of aircrafts. Each image, numbered (#i), was taken on a certain location (place)
a given day (date) and it is supposed that it includes a single aircraft (airc). With the
extension of im depicted in Table 1 six worlds can be drawn, W1, W2, W3, W4, W5 and
W6 since there are three candidates for date in the first tuple and two candidates for
airc in the second one. Two of the worlds associated with the uncertain relation im are
represented in Table 1. �

Table 1. An extension of im (top) and two worlds associated with it (bottom)

#i airc date place
i1 a1 {d1,d3,d7} c1
i3 {a3, a4} d1 c2

#i airc date place
i1 a1 d1 c1
i3 a3 d1 c2

#i airc date place
i1 a1 d7 c1
i3 a4 d1 c2

2.2 Strong Representation Systems and Compact Calculus

When dealing with an uncertain database D, a very important issue is that of the effi-
ciency of the querying process. A naive way of doing would be to make explicit all the
interpretations of D (at least when they are finite) in order to query each of them. Such
an approach is intractable in practice and it is of prime importance to find a more real-
istic alternative. To this end, the notion of a representation system has been introduced
— initially by Imielinski and Lipski [22] — and discussed in [1]. The basic idea is to
look for a way for representing both initial tables and those resulting from queries so
that the representation of the result of a query q against any database D (made of tables
T1, ..., Tp) denoted by q(D), is equivalent (in terms of interpretations, or worlds) to the
set of results obtained by applying q to every interpretation of D, i.e.:
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rep(q(D)) = q(rep(D)) (P1)

where q(rep(D)) = {q(W) |W ∈ rep(D)}. If property P1 holds for a representation
system ρ and a subset σ of the relational algebra, ρ is called a strong representation
system for σ . From a querying point of view, P1 enables a direct (or compact) calculus
of a query q, which then applies to D itself without making the worlds explicit (see
Figure 1). So doing, provided that relational operations are defined over tables of the
system considered, reasonable performances can be expected.

Fig. 1. Compact query evaluation

3 Two Uncertain Database Models Based on Possibility Theory

3.1 Full Possibilistic Model

In the “full possibilistic model” [10], any attribute value can be a possibility distribution
which acts as a restriction over the values that are more or less preferred for a consid-
ered attribute (a precise value is an extreme case where only one candidate is possible).
Besides, there is a need for expressing that some tuples may not be represented in some
worlds. Indeed, a selection may lead to discard candidate values from a distribution, but
one must be able to compute the degree of any world of the answer, including those in
which some tuples are not represented. A simple solution is to introduce a new attribute,
denoted by N, which states whether or not it is legal to build worlds where the corre-
sponding tuple has no representative, and, if so, the influence of this choice in terms of
possibility degree. N expresses the certainty of the presence of a representative of the
tuple in any world. By doing so, it is possible to generate the worlds in which a tuple is
not represented, by taking into account the degree of possibility of its absence, which,
according to possibility theory, is given by (1−N). A tuple is denoted as a pair N/t
where N equals 1 for tuples of initial possibilistic relations as well as when no alter-
native has been discarded. A second aspect is related to the fact that it is sometimes
necessary to express dependencies between candidate values of different attributes of
a same tuple. For instance, let A and B be two attributes whose respective candidates
in a given tuple t are {a1, a2} and {b1, b2, b3}. If, according to a given selection crite-
rion, the only legal associations are (a1, b1) and (a2, b3), one cannot call on a Cartesian
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product of subsets of t.A and t.B. In other words, A and B values cannot be kept sepa-
rate (which would mean that they are independent) and the correct associations can be
explicitly represented if the model incorporates attribute values defined as possibility
distributions over several domains. In this context, candidates can be (weighted) tuples
in a model based on the concept of nested relations. Besides, let us emphasize two par-
ticular aspects, both connected with the fact that nested relations are used to support
possibility distributions: i) tuples of nested relations are weighted since any element
of a possibility dis-tribution is assigned a level of preference and ii) the extension of
a nested relation has a disjunctive meaning according to the semantics of a possibility
distribution. The notation

R(A1, . . . , Am, X1(Ap, . . . , Aq), . . . ,Xn(Ak, . . . , Ar))

stands for a schema in which A1 to Am are elementary attributes (also called level-one
attributes) whose values are either precise or possibility distributions and Xi(Ah, . . . ,A j)
represents a “structured” attribute Xi whose values are possibility distributions made of
tuples built over attributes Ah to A j which are called “nested” attributes. Obviously,
such relations have an interpretation in terms of worlds as it is the case for ordinary
possibilistic relations. When one moves to a given world, a structured candidate value
is split into atomic values and the schema becomes unnested. The idea is to use the
extended model to represent the result of intermediate operations in a correct fashion.

Table 2. An extension of relation r

X
A B C D E π N
a1 {π1/b1, π2/b4} c2 d1 e3 π3 1
a2 b3 c1 d1 e2 π4 0.4

c3 d2 e3 π5
c2 d4 e2 π6
c2 d1 e3 π7

Example 2. Let us consider the intermediate relation of schema R(A, B, X(C, D, E)) rep-
resented by Table 2 where the πi’s denote possibility degrees. Five possibilities exist as
to the second tuple since it may be absent (N < 1). Consequently, ten worlds can be de-
rived from this imprecise relation. The world containing only the tuple 〈a1, b4, c2, d1, e3〉,
in which the second tuple is not represented, is associated with the degree:

min(min(1, π2, π3), 1−0.4).

The world with the two tuples 〈a1, b1, c2, d1, e3〉 and 〈a2, b3, c3, d2, e3〉 can also be
drawn and its degree is:

min(min(1, π1, π3), min(1, 1, π5)).�
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3.2 Certainty-Based Model

3.2.1 Main Features of the Model
In the certainty-based model [13,15], a possibility distribution is “synthetized” by keep-
ing only its most plausible elements. So, to each uncertain value a of an attribute A is
attached a certainty degree α . The underlying possibility distribution associated with an
uncertain attribute value (a, α) is {1/a, (1−α)/ω} where ω denotes domain(A)\{a}
(due to the duality necessity/possibility: N(a) ≥ α ⇔ Π(ω) ≤ 1 −α [21]). For in-
stance, let us assume that the domain of attribute City is {Newton, Quincy, Boston}.
The uncertain attribute value (Newton, α) is assumed to correspond to the possibility
distribution {1/Newton, (1−α)/Quincy, (1−α)/Boston}. More generally, the model
can deal with disjunctive values, and the underlying possibility distributions are of the
form {max(μS(x1), 1−α)/x1, . . . , max(μS(xp), 1−α)/xp} where S is an α-certain
subset of the attribute domain and μS(xi) equals 1 if xi ∈ S, 0 otherwise [20]. Let us
notice that, in general, there is not a strict equivalence between an initial possibil-
ity distribution (e.g., {1/Newton, 1/Malden, 0.6/Quincy, 0.2/Boston} and the distribu-
tion ({1/Newton, 1/Malden, 0.6/Quincy, 0.6/Boston}) derived from its synthetized form
(Newton ∨ Malden, 0.4).

Moreover, since some operations may create “maybe tuples” (e.g., the selection as
in the full possibilistic model), each tuple t from an imprecise relation r has to be asso-
ciated with a degree N expressing the certainty that t exists in r. It will be denoted by
N/t.

Example 3. Let us consider the relation r of schema (#id, Name, City) containing tuple
t1 = 〈1, John, (Boston, 0.8)〉, and the query “find the persons who live in Boston”. Let
the domain of attribute City be {Newton, Quincy, Boston}. The answer contains 0.8/t1
since it is 0.8 certain that t1 satisfies the requirement, while the result of the query “find
the persons who live in Boston, Newton or Quincy” contains 1/t1 since it is totally
certain that t1 satisfies the condition.�
To sum up, a tuple α/〈37, John, (Boston, β )〉 from relation r means that it is α certain
that person 37 exists in the relation, that it is totally sure that the name of that person is
John, and that it is β certain that 37 lives in Boston (independently from the fact that it
is or not in relation r).

Given a query, only answers that are somewhat certain are considered of interest (in
contrast with those that are just possible), which makes the approach much simpler.
Consider the relations r and s from Table 3 and a query asking for the persons who
live in a city with a flea market. John will be retrieved with a certainty level equal to
min(α, β ) (in agreement with the calculus of necessity measures [20]). Although it is
not impossible that Mary lives in a city with a flea market, she does not belong to the
answer because this is just possible.

As mentioned above, it is also possible to handle cases of disjunctive information in
this setting. For instance, 〈3, Peter, (Gardner ∨ Fitchburg, 0.8)〉 represents the fact that
it is 0.8-certain that the person number 3 named Peter lives in Gardner or in Fitchburg.
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Table 3. Relations r (left) and s (right)

#id Name City N
1 John (Newton, α) 1
2 Mary (Norwood, δ ) 1

City Flea Market N
Newton (yes, β ) 1

Norwood (no, γ) 1

3.2.2 Strong Representation System
Let us now examine what becomes of property P1 in such a context. Let us denote by D
an imprecise database involving certainty levels, poss(D) the corresponding imprecise
database involving the simplified possibility distributions of Subsection 3.2.1 (i.e., those
associated with values that are somewhat certain), q an algebraic query, and qc the
compact version of q. The counterpart of property P1 is:

qc(D) = ψ(q(rep(poss(D)))) (P2)

where ψ(r′) denotes the certainty-based relation which gathers the tuples somewhat
certainly in the intersection of all the (more or less) possible worlds from the set r′
(each world from r′ represents a possible result of q applied to D).

Table 4. Extension of im for Example 4

#i airc date place
7 {1/MiG31, 0.8/MiG29} 96/03/02 {1/v1, 0.2/v2}
9 {1/Su27, 0.3/Su30, 0.5/MiG31} 92/12/01 v1
17 MiG31 96/09/27 {1/v2, 0.4/v1}
5 {1/MiG29, 1/Su7} 95/06/09 v2
34 MiG31 95/10/01 v1

Table 5. Result of the query of Example 4

#i airc date place Π N
7 {1/MiG31, 0.8/MiG29} 96/03/02 {1/v1, 0.2/v2} 1 0.2
9 {1/Su27, 0.3/Su30, 0.5/MiG31} 92/12/01 v1 0.5 0
17 MiG31 96/09/27 {1/v2, 0.4/v1} 0.4 0
34 MiG31 95/10/01 v1 1 1

4 Three Families of Query Semantics

Though it would make sense to envisage fuzzy queries (i.e., involving preferences ex-
pressed through fuzzy predicates), for space reasons, we only focus on Boolean queries.

4.1 Event-Oriented Querying

The corresponding model and query language were first introduced in [24] where it
was possible to issue fuzzy queries against a possibilistic database. First, it is important
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to notice that this approach is not related to the possible worlds semantics. The idea
is rather to see a query as a way to build facts (or events) as tuples using algebraic
operations. Each tuple is assigned a pair of grades Π ,N expressing the possibility and
necessity of the corresponding event. The central operator is the selection for which
ouput tuples are input tuples (kept unchanged) accompanied by the two grades Π and
N mentioned before. In the presence of a Boolean selection condition φ applying to
attribute A, the value of Π for tuple t (inside which A is represented as the possibility
distribution πt.A) is defind as:

supd∈domainA min(πt.A(d),φ(d)).

It equals 1 if there is (at least) one value in the core of πt.A that satisfies φ and 0 if no
value of the support of πt.A matches φ . Of course, other values of the unit interval can
be taken (see Example 4). Similarly, the necessity degree is given by:

1− supd∈domain(A) min(πt.A(d),¬φ(d)) = in fd ∈domain(A) max(1−πt.A(d),φ(d)).

It equals 1 if any somewhat possible value of πt.A satisfies φ and 0 if a completely
possible value of πt.A does not comply with φ . Of course, one has the property: Π <
1 ⇒ N = 0, as illustrated in the next example.

Example 4. Let us consider the relation im whose schema is given in Example 1 with
the extension of Table 4. The query looking for images of “MiG31” taken in city v1

returns the relation of Table 5.�
It is worth noticing that, in such an approach, the composition of operations is problem-
atic since input tuples are not “updated”. For instance, the query looking for persons
whose age is between 28 and 32 would reject 〈John,{1/25,1/35}〉 whereas this tuple
is selected if two successive selections are used.

4.2 Possible Worlds

4.2.1 Queries in the Full Possibilistic Model
Let us first point out some difficulties raised by the presence of disjunctive values. Let
us consider the following relations r(A, B) and s(B, C):

r = {〈{α/a1, β/a2, γ/a3}, b〉}; s = {〈b, c1〉, 〈b, c2〉}
where incompleteness is only due to the fact that the actual value of A in the tuple of
r is either a1, or a2, or a3. The natural join of r and s leads to a relation t(A, B, C)
involving two tuples, but it is mandatory to guarantee that only three possible worlds
can be drawn from t (and not 32), since attribute A should take the same value in each
of the two tuples, for property P1 to hold. Now, let us perform the natural join of the
following relations:

r = {〈a, {α/b1, β/b2, γ/b3}〉} and s = {〈b1, c1〉, 〈b3, {η/c2, δ/c3}〉}.

Here, the resulting relation is either empty, or made of a single tuple among three possi-
ble: 〈a, b1, c1〉, 〈a, b3, c2〉 and 〈a, b3, c3〉. It is then necessary to express that these four
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situations are exclusive. This implies using a sophisticated data model such as c-tables
introduced by Imielinski and Lipski [22], which in turn raises important complexity
issues.

Binary relational operations may be categorized the following way. Type 1 (resp.
type 2) operations are such that any tuple from an operand relation can take part in the
generation of at most one (resp. several) tuple(s) in the resulting relation. An example
of a type 1 operation is the union. Type 2 operations include the intersection, the differ-
ence, the Cartesian product and the join (in their most general forms). However, in some
particular cases linked to the presence of keys, an operation that is in general of type 2
can behave as a type 1 one (for instance the join operation when the join attributes are
precise and constitute the keys of the operand relations or the foreign-key join detailed
later). To summarize, let us say that in a strict relational framework, it is not possible
to define a strong representation system allowing to deal with an operation of type 2 in
the presence of imprecise values [9].

We now give an overview of four operators which define a language for which the
full possibilistic model is an SRS. The reader will find more details and examples in [9]
and [10]. In the following, because of space limits, we consider the case where input
relations only include level-one attributes.

Selection

The usual selection keeps the tuples of a relation which satisfy a given predicate. Here,
the idea is to retain only candidate values complying with the selection criterion. We re-
view the various cases of selection conditions and examine their impact on the structure
of the result.

When the condition is of the form “att θ constant” (θ ∈ {=, �=,>, <, ≥, ≤}),
the structure of the result is the same as that of the input relation. If the schema
of the input relation r is R(A, B), the condition concerns attribute A and scv(t.A) de-
notes the non-weighted set of candidate values appearing in t.A, the selection is defined
as:

select(r, θ (A, v)) = {N′/〈restrict(t.A, θ (A,v)), t.B〉 |N/t ∈ r∧
N′ = min(N, 1− supx∈scv(t.A) | ¬θ(x,v)πt.A(x))}

with

restrict(t.A, θ (A,v)) = {. . .+ π/a + . . .} s.t. a ∈ scv(t.A) ∧θ (a,v) ∧π = πt.A(a).

This formula says that, in any tuple t, only the elements of the distribution t.A which
satisfy the condition are retained in the resulting tuple. Moreover, the degree of certainty
associated with this tuple (t.N) is updated according to the highest possible value which
is discarded. It is proven in [9] that property P1 holds with this definition.

Let us now consider with selection conditions of the form “A1θA2” or “cond1(A1)
or cond2(A2)”. In both cases, if A1 and A2 are imprecise attributes, it is necessary to
gather their candidate values in a nested relation so that only the correct pairs of values
are kept in the result. The corresponding definition is given in [9]. The way the operator
works is illustrated in the following example by a condition involving a disjunction.
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Example 5. Let us consider the schema (#c, name, city, mileage) of an intermediate
relation ac describing cars with their number, name, city of last owner and mileage.
The condition (brand = “C*” or city = “Paris”) applied to:

{0.7/〈1, {1/Camry, 0.4/Taurus},{1/Madrid, 0.7/Paris}, 75000〉}
leads to the result:

{0.6/〈1, {1/{Camry, Madrid},
0.7/{Camry, Paris},
0.4/{Taurus, Paris}}, 75000〉}.

The necessity degree 0.6 attached to the tuple corresponds to min(0.7, 1− ρ) where
ρ = 0.4 is the possibility degree of the most possible pair of candidates that does not
satisfy the selection criterion, i.e., 〈Taurus, Madrid〉 here. This way of doing guarantees
the validity of property P1. �

Other Operators

As stated before, the classical join cannot apply in general for possibilistic relations due
to the disjunctive nature of possibility distributions. However, we point out a specific
type of join, called fk-join [9], where this problem does not appear since the tuples
resulting from the join are independent in terms of their interpretation.

The operation f k- join(r, s, (U, V )) composes a possibilistic relation r whose schema
is R(U, Y ) with a regular relation s (whose schema is S(V, Z) where V is compatible
with U) describing the graph of the functional dependencyV → Z. The fk-join computes
the image of any imprecise U-value present in r by means of the function. In order to
keep the elementary associations between antecedents and images of the FD V → Z, it
is mandatory to place U and Z candidate values inside a same nested relation. Let us
consider the case where the schema of r is R(A, B, G) with U = {A, B} and the schema
of s is S(C, D, E) with V = {C, D}. The schema of the result is Res(X(A, B, E), G).

Contrary to the usual case, the projection of a possibilistic relation does not entail
any duplicate removal. One proceeds so that it is impossible to get a world after projec-
tion which would be more possible than the corresponding one before projection. This
means that, for a given tuple, the possibility of the most possible candidate of the at-
tributes which are removed becomes the upper bound of any interpretation of the tuple
issued from the projection [7].

It is also possible to show that this model constitutes a strong representation system
for the union operator provided that input relations are independent. Under this assump-
tion, the union gathers the tuples of the two input relations and produces a result where
the tuples are independent.

About Generalized Yes-No Queries

Queries addressed to an imprecise database may raise the problem of the interpretability
of their results by an end-user. Indeed, even when “simple” models based on relations
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without any conditions are used — such as that presented above —, it appears difficult
for an end-user to grasp the content of a relation that may include nested subrelations,
distributions of possible values and necessity degrees. This is why several authors have
considered a class of queries which are more specialized (or targeted) to fit user needs.
This is the case, for instance, of S. Abiteboul who studied such queries in the context
of Codd-tables and tables with conditions [2]. In the context of possibilistic databases,
the queries considered in [11,12] are basically yes-no questions about some properties
possessed (or not) by some of the worlds of an imprecise database. Their general query
format is: “to what extent is it possible {and/or} certain that the answer to q fulfills
condition C?” where q is a (constrained) relational algebraic query which may include
only the operators for which the model is an SRS, i.e. projection, selection, fk-join and
union (cf. above). More precisely, the following types of queries are considered:

• vacuity-based yes-no queries: to what extent is it possible and certain that the an-
swer to q is non-empty?

• tuple-membership-based yes-no queries: to what extent is it possible and certain
that tuple t belongs to the answer to q?

• cardinality-based yes-no queries: to what extent is it possible and certain that the
answer to q contains at least (resp. at most, exactly) k items?

• inclusion-based yes-no queries: to what extent is it possible and certain that the
answer to q contains the set of tuples {t1, ..., tk}?

For each of these queries, the authors show that the processing obeys the following three
step scheme:

1. pre-processing in order to eliminate the unnecessary attributes (and, for tuple-
membership-based queries, to remove from the relations the tuples that cannot gen-
erate the target tuple);

2. evaluation of q, which yields a resulting possibilistic relation res;
3. post-processing aimed at computing the final possibility and certainty degrees Π

and N.

The four previous types of queries can be clustered into two categories: those which
require only a sequential scan of the result of q (vacuity and tuple-membership-based
queries) and those for which it is necessary to use a “trial and error” type of algorithm
(cardinality and inclusion-based queries).

4.2.2 Queries in the Certainty-Based Model
We now outline the compact version of the relational algebraic operators in the certainty-
based database model [13,15]. The only limitation with respect to the usual algebraic
framework consists in the fact that the operands of union, Cartesian product and join
must be independent relations. Indeed, the presence of non-independent relations (for
instance stemming from two selections on the same relation or a self join) might induce
dependencies between uncertain values in a same tuple of the result, which cannot be
handled in the model.
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Selection

Let us consider a relation r of schema (A, X) where A is an attribute and X is a set of
attributes, and a selection condition φ on A. Let us denote by scv(t.A) the disjunctive
set of values — which may be a singleton — somewhat certain for attribute A in tuple
μ/t, and by cl(t.A) the associated certainty level. Let us first deal with the case where
φ writes A θ v where θ denotes a comparator and v a constant.

select(r, A θ v) = {μ ′/t | ∃μ/t ∈ r s.t. ∀ai ∈ scv(t.A), ai θ q∧
μ ′ = min(μ , 1) = μ if ∀ai ∈ domain(A), ai θ v;

μ ′ = min(μ , cl(t.A)) otherwise}.
The proof that this definition of the selection satisfies property P2 can be found in [13].
The case of a condition φ of the form A1 θ A2 where A1 and A2 denote two attributes is
dealt with in [13] but is omitted here for space reasons.

Example 6. Let us consider the database D made of the sole relation emp of schema
(#id, name, city, job). Let us suppose that emp only contains tuple t = 0.9/〈17, John,
(Boston, 0.8), (Engineer, 0.7)〉 and let us consider the query:

q = select(emp, city = ’Paris’ and job = ’Engineer’).

Its compact result is 0.7/〈17, John, (Boston, 0.8), (Engineer, 0.7)〉. Let us show that
property P2 is satisfied. Identifier 17 is present in every completely possible world
of the result. The most possible world of emp where 17 is not present in the result
of the selection is made of the tuple 〈17, John, Boston, ε)〉 (where ε ∈ ω
= domain( job)\{Engineer}) and has the possibility degree min(1, 1 − 0.7) = 0.3.
Hence, the certainty degree attached to 17 in the result is 1 – 0.3 = 0.7. The most
possible world where 17 has a city value different from Boston in the result has the
possibility degree 1− 0.8 = 0.2. Hence, the certainty degree attached to the city value
Boston in the tuple identified by 17 in the result is 1− 0.2 = 0.8. The most possible
world where 17 has a job value different from Engineer in the result has the possibility
degree 1−0.7 = 0.3. Hence the certainty degree attached to the job value Engineer in
the tuple identified by 17 in the result is 1− 0.3 = 0.7. The compact calculus is thus
correct. �

Join

The compact definition of the join is:

join(r1, r2, A = B) = {min(α, β , χ , δ )/t1 ⊕ t2 | ∃α/t1 ∈ r1, ∃β/t2 ∈ r2 s.t.

card(scv(t1.A)) = 1∧ card(scv(t2.B)) = 1∧
scv(t1.A) = scv(t2.A)∧ cl(t1.A) = χ ∧ cl(t2.B) = δ}

where ⊕ denotes the concatenation and card returns the cardinality of a set. Notice that
only the tuples whose value for the join attribute is non-disjunctive (i.e., is a singleton)
can participate in the result: for the other ones, one cannot be certain at all that they
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match a tuple from the other relation. Indeed, for a tuple t1 of r whose join attribute value
t1.A is disjunctive, it is always possible to find a completely possible interpretation such
that the (equi-)join condition is false, whatever the tuple t2 from s. Note that property
P2 would not hold in the case of a θ -join where θ is not equality. In [13], it is shown
that the usual equivalence between a semi-join and a join followed by a projection:
r1 � r2 ≡ (r1 �� r2)[X ] where X denotes the attributes of r1, is not valid anymore in the
context of the certainty-based model. However, the semi-join can be defined in a sound
way in this framework, see [13]. The key to the fact that join (and semi-join) can be
easily handled in this model lies in the property that a tuple involving disjunctive values
can produce at most one tuple in the result (due to the semantics of certainty).

Projection

Let r be a relation of schema (X ,Y ). The projection operation is straightforwardly de-
fined as follows:

pro ject(r, X) = {α/t.X |α/t ∈ r∧ � ∃α ′/t ′ s.t. posbs(α ′/t ′.X , α/t.X)}.
The only difference with respect to the definition of the projection in a classical database
context concerns duplicate elimination, which is here based on the concept of “possi-
bilistic subsumption” (using predicate posbs). Intuitively, an X-value of a tuple t is kept
in the result if there is no other tuple t ′ with the same candidate values and a higher
certainty level. More formally, letting X = {A1, . . . , An}, predicate posbs is defined as
follows:

posbs(α ′/t ′.X , α/t.X) ≡∀i ∈ 1..n, scv(t.Ai) = scv(t ′.Ai)∧ cl(t.Ai) ≤ cl(t ′.Ai)∧
α ≤ α ′ ∧ ((∃i ∈ 1..n, cl(t.Ai) < cl(t ′.Ai)) ∨ α < α ′).

The validity of the result before duplicate removal is guaranteed by the satisfaction of
P2. As to the duplicate removal step, its soundness relies on the axioms of possibility
theory. The definitions of the other relational algebraic operators in the certainty-based
model can be found in [15].

4.3 Representation-Based Querying

The main motivation underlying the representation-based querying approach is to be
able to exploit at a query level all the information available concerning the qualification
of imperfectness in the data. In other words, one wants to be able to express condi-
tions on the descriptions of ill-known data. Hereafter, we present a framework that was
introduced in [5]. Representation-based queries can notably be used to:

• express conditions on specified sets of candidates (the specified set being a subset
of a distribution representing an ill-known attribute value). The generic query is:
“find the tuples such that all the elements of a specified subset of the candidate
values (for a given attribute) satisfy a given condition”,

• compute aggregates on the weighted sets corresponding to the representations of
ill-known data (e.g., the cardinality of a specified subset of candidate values for a
given attribute) and to use these aggregates inside conditions,
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• compare a piece of data with a given vague pattern. In the representation-based
querying framework, the comparison is based on the notion of synonymy of rep-
resentations, contrary to the “value-based” framework where the comparison is
founded on the notion of possibility/necessity of matching.

It is important to notice that representation-based queries are not just value-based queries
expressed another way, but that they are queries of a different nature. A value-based
criterion applying to an ill-known value has to be evaluated on each possible world as-
sociated with the attribute value (even though the explicit computation of those worlds
is not always necessary, cf. Section 4.2.1), while a representation-based condition does
not at all refer to worlds.

Example 7. We consider again a database containing aerial images of aircrafts (each
image is supposed to represent a single aircraft), described by the set of attributes:
(#id, location, date, type). The attributes #id, location, and date are supposed to take
precise values whereas the attribute type describing the type of aircraft present in the
picture will generally take imperfect values due to ambiguities in image interpretations.
Examples of conditions involving one representation are:

• find the images which represent more likely a MiG29 than a MiG23,
• find the images such that all the candidates which are possible over 0.3 are of the

type MiG,
• find the images for which at most 2 types of airplane are considered possible over

0.3,
• find the images for which the only best candidate is ’MiG29’,
• find the images representing airplanes whose type is not precisely known (i.e., there

are more than one candidate).�
A language for representation-based conditions is described in [5]. In this framework,
conditions involving two representations deserve a particular attention. Several meth-
ods have been proposed to compare possibility distributions or fuzzy sets and one can
distinguish among two families of approaches. In the first family, a measure is used to
evaluate the possibility degree of (approximate) equality between two imprecise values
[17,18,24]. In the second family, what is measured is the extent to which two representa-
tions are globally close to each other [6,16,23,25]. In the representation-based querying
framework, it is quite clear that only the second family of approach makes sense. Let
us consider an attribute A and two items x and y whose A-values are ill-known. Let
us denote by πA(x) and πA(y) the possibility distributions to be compared. Let D be the
domain of attribute A. First, let us recall the expression of strict equality:

∀d ∈ D, πA(x)(d) = πA(y)(d).

Several authors have proposed to relax the preceding measure into a measure of approx-
imate equality. Raju and Majumdar [25] define the fuzzy equality measure, denoted EQ,
in the following way:

μEQ(πA(x),πA(y)) = minu∈D ψ(πA(x)(u), πA(y)(u))
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where ψ is a resemblance relation (i.e., reflexive and symmetric) over [0, 1]. An al-
ternative approach consists in defining the similarity of two fuzzy sets (two possibility
distributions in our case) A and B as a function of A∩B, B−A and A−B. This ap-
proach is studied in particular by Bouchon-Meunier et al. [16] where different kinds of
measures of comparison are considered.

Example 8. Let us consider the following description of an image I1:

I1 = 〈27, Krasnoyarsk, 1992-12-01,{1/Su27, 1/Su30, 0.7/Mig29, 0.2/Yak130}〉.

Let us consider the query: “find the pictures taken over Krasnoyarsk in 1992 repre-
senting an airplane similar to the one in image I1” and let us assume that the database
contains notably the following description:

I2 = 〈51,Krasnoyarsk, 1992-04-15,{1/Su30, 0.9/Mig29, 0.8/Su27, 0.4/Mig23}〉.

If strict equality were used, it is clear that image I2 would not belong to the result.
Using Raju-Majumdar’s measure of approximate equality with (a, b) = 1−|a−b|, the
matching degree between I1 and I2 is equal to:

EQ(I1.type, I2.type) = min(0.8 (Su27), 1 (Su30), 0.8 (Mig29),
0.8 (Yak130), 0.6 (Mig23)) = 0.6.�

On the other hand, these measures can be used to compare an ill-known attribute value
D with a linguistic label P. The basic idea is the same: one evaluates the extent to
which the value and the linguistic label represent the same concept. For example, let us
consider a possibility distribution D representing John’s age and a linguistic label P =
“middle-aged” (represented by a fuzzy set). While the value-based querying approach
aims at assessing the extent to which John is possibly (resp. necessary) middle-aged,
the representation-based approach can be used to measure the extent to which the de-
scription of John’s age and the linguistic label “middle-aged” are close to each other.
This approach is especially useful in the context of applications where user queries can
be conveniently expressed by means of linguistic terms defined on continuous domains.
Lastly, the concept of representation-based comparison can be used to define the notions
of representation-based intersection, union and difference in a straightforward manner.

5 Conclusion

In this paper, we have reviewed different types of queries that can be addressed to a
database containing imprecise values represented in the possibilistic framework. We
have distinguished three main lines: i) the initial approach proposed by Prade and
Testemale which is intended for building “events” and their associated possibility and
necessity degrees from data, ii) works based on the possible worlds semantics with two
data models: the full possibilistic model where queries are constrained and the certainty-
based model which offers the richness of the entire relational algebra, iii) queries where
the conditions bear on the representation of imprecise data. The focus has been put
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on the semantic aspects, not on implementation and performances due to space limits.
However, most of the operators proposed are very similar to those defined in regular
database systems and reasonable performances can be expected. Among others, future
works could concern queries involving preferences in the spirit of [8,14].
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