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Abstract. This report presents new approaches to managing information 
resources to address the problems that result from rapid information growth. It 
provides a current-state analysis and shows how nanoelectronics can enable the 
use of physical resources, such as high-capacity storage elements, new sensors, 
high-speed computing, and data transmission networks. 

The report investigates new computing platforms, emerging information 
models and architectures, and their potential impact on information manage-
ment. Furthermore, it shows that unlike the traditional number-based form of 
computing, computing based on perceptions may open up new horizons in the 
field of information management by making a shift from quantitative to 
qualitative information measurement in real-world situations. It suggests that 
the quantum features of nanoelements can enable the implementation of the 
necessary operations in this shift from quantitative to qualitative information 
processing.  

Finally, it describes the substitution of Boolean Algebra by Lotfi Zadeh’s 
fuzzy sets and fuzzy logic, which makes it possible to investigate new 
approaches to the management of information resources.  

1 Introduction 

Today, the never-ending expansion of information has become a global concern, and 
the term “information overload” is listed as a problem and challenge for the 21st 
century. Although this phrase was first used in 1970 by Alvin Toffler, an 
overwhelming growth of information resources due to unprecedented development of 
the Internet in recent years has transformed information overload into a pressing 
global problem [1, 2]. 

Figures and estimations vary widely. Even a very rough estimation of the overall 
volume of information is much too complicated and any attempt at precise solutions 
seems to be unreasonable due to the huge speed of escalation.   

For instance, data regarding a simple occurrence in nature may be of immense 
volume depending on the information unit and the physical features of the objects in 
it. Nevertheless, not to be distracted by this issue, we will merely focus on digital 
information. 

The current upsurge of digital information seriously surpasses the technical capacity 
needed for its collection, storage, and processing [3]. Even if in the near future the 
Internet and other specific networks suffer only traffic jams and information and 
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knowledge loss, it is possible to expect information wars and severe global economic 
crises, as well as anthropogenic disasters in the long run; therefore, discovery of new 
approaches to information management is a pressing issue. Moreover, if we consider 
that in the current world information serves as a primary source of acquiring 
knowledge and an important aid in making decisions, then information management 
becomes a global issue in the 21st century.  

Information management can be analyzed in four stages, namely, information 
collection, storage, processing, and transmission. Current research shows that 
nanoelectronics can provide opportunities for creating high-capacity storage elements, 
new sensors, high-speed computing, and data transmission networks, and so on. 
Emerging computing platforms, information models, and architecture can provide 
new tools for information management. However, it should be mentioned that the 
development of these new computing technologies faces certain constraints. An 
additional concern is that algebraic computation, in spite of its use in promoting the 
development of electronics, has not been replaced with anything else since the first 
computer was introduced 60 years ago. This is because numeric, quantity-based. 
Measurement of information has always been the focus in computing models. 
Therefore, perhaps it is time to apply qualitative models to computing platforms and 
physical elements, given the fact that quantum features of the nanoelements are able 
to aid in the necessary manipulations. This goal constitutes the major objective of this 
presentation. 

2 Modern Problems of Information Overload 

Information is of immense importance in the current world. However, an overload of 
information causes serious problems in the collection, storage, processing, and 
transmission stages of information management.  

There is a considerable increase in the speed of gathering of electronic information 
(both analogue and digital); it is caused by a rapid growth of the Internet, social and 
sensor networks as well as the wider use of digital cameras, TVs, observation systems, 
mobile phones, medical scanners, and so on. The Internet is primarily responsible for 
this increase; for example, in the year 2010 alone, 107 trillion e-mails were sent, that 
is, 294 billion e-mails per day, and the number of Web pages exceeded 280 million. 
There are more than 2 billion photos uploaded every month on Facebook [4].   

All the above serves as a basic sample of the rapid growth of the digital world. 
Moreover, analyses have revealed that the digital world is growing even faster than it 
was first envisioned. The annual increase in speed of the digital world is estimated as 
60 to 70%. In 2009, this increase was estimated at 0.8 zettabyte (ZB), whereas in 
2010 it surged to 1.2 ZB [5]; it is expected to reach 35 ZB in 2020.  

Another source of concern regards the storage of information. Because storage of 
unstructured data greatly exceeds that of structured data in the world, it becomes 
particularly important to back the data up properly and make it available for use. If we 
look at the Large Hadron Collider, we would see that every second it generates 40 
terabytes of information in CERN. Today, even a cow generates 200 megabytes of 
information every year.  
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Transmission of information is another challenge in a rapidly growing information 
period. The Internet traffic volume rapidly increases; its annual growth is about 34%.  
Of major impact are the files with video content as they cover 30% of the current 
Internet traffic. It is expected that the Internet video demand, as well as IP-TV, will 
grow to 90% in the near future. Today, demand for information transmission severely 
exceeds the capabilities of the transmission channels. As a result, information gathers 
in one part of the world without being able to be transmitted to other parts.  In the 
end, it causes a digital gap between the regions and leads to serious problems. Given 
the fact that products and services are shifting from tangible into intangible, this 
would mean that on one side of the world there is going to be vast storage of 
information, as well as services and digital products, whereas on the other side of the 
world, an increased demand for them. In its turn, this misbalance between supply of 
services/products and demand for them might cause severe economic crises in the 
coming 20 to 25 years. Moreover, taking into account that those who are “in need” are 
80% of the population, it is more likely to predict the enormity of the economic crisis.   

Another problem is the processing of information. Currently, computing 
technologies are facing challenges that cannot be overcome by traditional computers. 
The problems include information search, cryptography, nuclear studies, and 
electronic translations. Even though different computing systems and supercomputers 
like “Tianjin,” which has 2.5 petaflops power, have been developed and parallel/ 
flow/conveyer models are in place, thousands of such supercomputers are unable to 
manipulate the required volume of operations. However, new computing technologies 
like Cloud, Grid, and others are emerging and they are increasing the efficiency of 
computing technology several folds, thus helping to overcome the current problems. 
Nevertheless, computing technology has not been revolutionized and there is a lot to 
be done to ensure smooth information management.  

In sum, we observe that the problem of information overload exists at all levels of 
information management and traditional means are outdated. Therefore, it is vital to 
focus on new approaches and analyze them accordingly.  

3 Expectations and Proposals 

Today, we are witnessing a revolutionary shift from semiconductors to nano-
technologies. There are already nanostructures that receive and store information; 
scientific theory regarding their manipulation on the level of molecules, atom, and 
photons has become a reality. The ability of atoms to speed up and slow down in the 
stable situation opens up new perspectives in the area of information management, as 
in the measurement conducted with  Qbits   [7,8].  As an example, if we create a 
scheme of 300 atoms, then we can get 2300 bits or approximately 1080 digits, which 
exceed the number of elementary particles in the universe. Moreover, if we add the 
quantum features of the atoms to this, then we may observe a revolution in this sphere 
in the near future. Consequently, although theoretically, a scheme of 2300 bit capacity 
may simultaneously calculate 1080. In its turn, this would lead to the advancement in 
information processing as well as to the development of quantum computers. As a 
result, these suggested changes might speed up the shift from traditional computing 
platforms to the more progressive ones. It should also be noted that, in case this 
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scheme is created, it would become possible to apply Zadeh’s fuzzy logic and algebra 
to it. If this happens, then computing might be done by perceptions rather than by 
numbers.  

In this case, the quantum uncertainty Qbits can be represented as a classical fuzzy 
variable, the value of which lies within the interval [0, 1]. Developing the analogy of 
quantum effects with the properties of fuzzy variables, we can pass onto the higher 
level of abstraction - the linguistic variables. [9, 10] 

Theoretically, by using nanoelectronics the computational algorithms of fuzzy 
logic can be carried out at the level of physical elements, which we cannot imagine.  

Some studies have already been done in this regard and a number of achievements, 
for example, the application of algorithms in quantum computers with the purpose of 
manipulating complex operations, are to be considered as successes [11, 12, 13, 14].    

In [11],  D’hooghe, Pykacz, and Zapatrin study the possibility of performing fuzzy 
set operations on a quantum computer. It is shown that due to the famous quantum 
parallelism, quantum computers can operate “globally” on whole membership 
functions of fuzzy numbers, instead of calculating them “point by point” as classic 
computers do, which leads to a considerable decrease in the number of operations 
involved in storing and calculating fuzzy numbers.  

In general, the transition from crisp to fuzzy logic and use of quantum calculations 
for this is certainly a big step toward creation of artificial intelligence. 

The ever-expanding information scope can also play a positive role in creating 
artificial intelligence. As we have not as yet achieved considerable advances in the 
study of the human mind, statistical approaches can be of help in understanding the 
core processes taking place in the depths of the human mind. We can precisely model 
the processes of the human brain, such as incoming information to the brain 
(incoming information, for instance in the form of speech – words) and generation of 
adequate actions by the human brain (outgoing information, for instance, reciprocal 
speech – also words), such as the process of transforming information from incoming 
to outgoing in the case of translation in the human brain. In this case, mapping words 
to a set of words happens as because of computations over incoming words, which 
results in a few or a completely different set of words - the answer. 

Accordingly, by having an almost unlimited amount of textual information, we can 
probably determine the nature and patterns of computing with words as proposed by 
Zadeh. All of these will allow us to better understand the structure of human brain and 
decrease the time to creating artificial intelligence, which is one of the ultimate goals 
of world science.  

Rocha and Massad [14] have begun work in this new direction. This work reflects an 
original and astounding new understanding of the brain based on novel achievements in 
fuzziness and quantum information theory. By blending neuroscience, soft computing, 
quantum theory, and recent developments in mathematics, the actual knowledge about 
the brain function is formalized into a coherent theoretical framework. This monograph 
demonstrates how the physiology of the neuron can be understood based on the 
fundamentals of fuzzy formal language and introduces the basics of quantum 
computation and quantum information to the brain.  

Theoretically we argue that computing based on fuzzy logic, with the help of 
nanotechnologies, is possible. However, information storage and smooth transmission 
is not enough for the overall success of information management; there are numerous 
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challenges, namely, the analyses of information, language translation, and perception 
of propositions, as well as matters concerning artificial intellect, that require new 
approaches to information technology. Still, it is vital to reduce the impact of 
information quantity through different nonstatistical measures to information, such as 
its validity, usefulness, and value [15]. 

Not all information on the Web is authentic. Some of this information is "trash 
information.” Other data are ably disguised misinformation, which is not only 
invaluable in terms of knowledge, but which also decreases the probability of correct 
problem solving of important managerial problems and as a result hinders individuals 
from making adequate decisions. This situation pushes us toward creation of more 
powerful techniques to manage the ever-emerging information boom; all these 
techniques could be elaborated based upon fuzzy logic. . To separate useful (for a 
specific demand) information from the general flow of information, it is essential to 
develop intelligent tools of "filtering" using various criteria of fuzzy character. 

Owing to fuzzy logic it has become possible to define new opportunities for 
efficiency.  

In its turn, this requires a new approach toward information volume. The unit used 
for measurement of the information may vary depending on the nature and purpose of 
the application. In other words, “bits” are used to measure the electric condition of the 
electronic elements. However, the previously discussed “information load” is 
primarily about the texts, photos, speeches, and information with video content, and it 
covers different fields of human activities.  

In this regard, computing with words (CW) may play an important role, and if it 
becomes possible to express information in natural languages by propositions, then it 
seems better to use “word” instead of “bit” as an information measurement unit. 
Accordingly, the quantity of words in any given language could be equal to logical 
algebra, and the grammar of a language, including syntactic as well as morphological 
rules, could be considered as tools for calculating, i.e., computing with words. As 
Zadeh stated, this could be “approaching the words with computation” [10, 16-20]. 
Computing with words is inspired by the remarkable human capability of performing 
a wide variety of mental tasks without quantitative measurements and provides a basis 
for an important generalization of probability theory, namely, perception-based 
probability theory, which is creating the new methods of design and analysis to deal 
with real-world problems [16]. 

There are two major imperatives for CW. CW is a necessity when the available 
information is too imprecise to justify the use of numbers, as well as when there is a 
tolerance for imprecision that can be exploited to achieve tractability, robustness, low-
solution cost, and better rapport with reality. Exploitation of the tolerance for 
imprecision is an issue of central importance in CW. In CW, a word is viewed as a 
label of a granule, that is, a fuzzy set of points drawn together by similarity, with the 
fuzzy set playing the role of a fuzzy constraint on a variable. In coming years, CW is 
likely to evolve into a basic methodology in its own right with wide-ranging 
ramifications on both basic and applied levels [17]. 

Traditional approaches to natural language understanding are based on classic, 
Aristotelian, bivalent logic. So far, the use of traditional approaches has been met 
with limited success. The principal problem is that, basically, natural languages are 
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systems for describing perceptions, and as such, are intrinsically imprecise in ways 
that place them beyond the reach of bivalent logic and probability theory [18]. 

Unlike traditional numbers, CW can be expressed both in abstract and various 
algebras. CW can be based both on crypt and fuzzy sets.  The undisputed pioneer in 
this sphere is Professor Lotfi Zadeh. The development of a computing platform based 
on linguistic variables, with the help of fuzzy logic, has been spearheaded by him and 
his academic team. CW also covers “if-then,” crypt and fuzzy rules, linguistic 
phrases, and other similar models. In other words, to implement linguistic research 
tasks (e.g., information search, automatic translation, speech recognition), a syntactic 
and semantic computing of the words in natural language must be done. Here the 
most challenging issue is the creation of a linguistic algebra (translation, 
understanding of the text, question-answering system, synthesis of speech, 
compressed data) because it requires creation of relevant CW models for every 
operation. Recently, we have started to apply the CW model in the automatic 
translation of the Azerbaijani language and Azerbaijani speech recognition [21]. It 
should also be stressed that CW has a disadvantage due to its strict dependence on 
languages.    

For example, a model of calculus of linguistically quantified propositions is used 
for the automatic text document categorization problem. CW using an ontological 
model of natural language is used as well [23]. In general, there are dozens of 
academic research and papers dedicated to CW, although we are still far from having 
a single, perfect and completed theory. Zadeh’s generalized theory of uncertainty-
GTU must be considered a landmark in this field.  

It should be pointed out that it is possible to use traditional computing algebra 
(Boolean algebra) to actualize the logic based on linguistic algebra. However, it is 
possible to create multilevel logical elements based on quantum specification of the 
nanoelements and here we can benefit from Zadeh’s fuzzy logic. In this case, there is 
a question: If we are talking about the traditional equivocation and statist condition of 
information, then the measurement unit of uncertainty is entropy. But if we use words 
as an information unit, then what will be the measurement of equivocation in this 
case? Presumably, this is also going to be an indefinite measurement as was done with 
entropy.    

The value of information may play an important role in this process, as we are 
discussing the linguistic model. Moreover, if we develop from the equivocation of 
information and accept the value of information, it would make it easier to understand 
the process. On the other hand, the dictionary of frequently used words in natural 
languages could help us. Recently, we prepared a list of frequently used words in the 
Azerbaijani language and we are using it in automatic translation and understanding 
of the language [21]. These dictionaries vary depending on the field of study and the 
time. However, during a certain period of development in a particular field of study, 
distribution of collocations remain asymmetric and about 20% of words hold 80% of 
frequency. In other words, if we shift to the linguistic network model, then we would 
get a scale-free network. There are methods of defining “value” junctions in the scale-
free network [26,27]. 

Another specific characteristic of the fuzzy or linguistic model is that it can be used 
in information transmission. Today, the speed of transmission is confined to 
Shannon’s information theory, Kotelnikov’s discretization model, Boolean algebra, 
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and short frequency length of light spectrum in optical lifts. If we apply the linguistic 
model to information and use quantum electronic techniques as a physical element, 
we are likely to achieve crucial changes in information transmission. There have been 
successful studies done in the sphere of transmission of elementary particles and 
photon’s transmission in quantum conditions in optical lifts and in the establishment 
of quantum networks [3, 5, 27]. Use of quantum channels in transmission may 
unprecedentedly increase information flow speed.  

4 Introduction to Computing with Words 

Zadeh [28, 29, 30] with the introduction of fuzzy subsets and the related 
developments of computing with words [19, 20, 31, 32, 33, 34, 35] has provided a 
tool to enable the automated manipulation of human knowledge. The starting point for 
Zadeh's paradigm of computing with words (CW) is a collection of propositions 
expressed in a natural language.  The fundamental position taken by Zadeh is that the 
knowledge contained in a natural language proposition can be viewed as a constraint 
on one or more of the implicit variables.  The first step in the CW methodology 
consists of a translation (or explication) of these propositions into a formal computer 
manipulatable language which he calls Generalized Constraint Language (GCL).  The 
second step in the process is a goal directed manipulation of these propositions.  This 
step, which Zadeh calls granular computing, can be seen as a kind of inference 
process.  This inference process is based on a constraint propagation mechanism.  The 
result of this second step is a proposition in GCL providing a constraint on a variable 
of interest.  The final step is a process of retranslation, here we convert a statement in 
GCL into an appropriate statement in natural language. Figure #1 provides a 
schematic view of the process of CW. 

Translation RetranslationInference/
Granular Computing Natural 

Language
StatementProposition 

in GCL
Proposition 

in GCL

Natural
Language

Proposition

 

Fig. 1. Computing with Words Paradigm 

Each of these three steps presents us with considerable opportunities for research 
and development.  In step one we need to provide ways for expressing many types of 
natural language statements within the general constraint language.  The manipulation 
of the propositions in the inference step is very important and clearly needs work.  
One promising direction in this inference process is what Zadeh calls protoform based 
reasoning [35]. Step three, retranslation, involves the process of converting a 
statement in GCL into a proposition in natural language 

As indicated an important part of the paradigm of computing with words is 
translation step, as we indicated this involves translating human knowledge into a 
formal computer manipulatable language.  Much of human knowledge involves a 
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combination of possibilistic and probabilistic information.  In order to represent this 
type of information Zadeh [36] has recently introduced the idea of a Z-number 
associated with an uncertain variable V.  Yager [37] has studied these in considerable 
detail.  A Z-number is an ordered pair of fuzzy numbers, (A, B).  Here A is a fuzzy 
subset of the domain X of the variable V and B is generally a fuzzy subset of the unit 
interval.  A Z-number is used to represent a datum of about the uncertain variable of 
the type where A represents a value of the variable and B represents an idea of 
certainty or other closely related concept such as sureness, confidence, reliability, 
strength of truth or probability.  A Z-number is closely related to the idea of linguistic 
summary [38, 39[.  Zadeh [361] refers to the ordered triple, (V, A, B) as a Z-valuation 
and indicates this is equal to the assignment statement V is (A, B).  Here the Z-
number is providing information about the value of the variable V.  Generally this Z-
valuation is indicating the V takes the value A with certainty equal B.  Some 
examples of these Z-valuations are 

(Age Mary, Young, likely) 
(Income John, bout 100k, very likely) 
(Income Bill, about 200K, not likely) 
(Enemy number of soldiers, about 300, pretty sure) 
(Weight Bill heavy, confident) 

Thus Z-valuations are providing some information about the value of the associated 
variable. A number of questions arise regarding these objects such as the 
representation of the information contained in a Z-valuation, the manner in which we 
can manipulate this information and our ability to combine or fuse multiple pieces of 
information of this type.  Many of the answers are dependent upon the nature of the 
underling uncertainty associated with the variable. 

In [1] Zadeh focused on the situation in which it is assumed that the undying 
uncertainty associated with V is probabilistic, in this case V is a random variable.  We 
see that these z-numbers can provide a very powerful tool for representing and 
manipulating many different types of human knowledge,  These Z-numbers will play 
a very important role in the representation of the types of information that is currently 
being mined  on the internet. 

5 Fuzzy Modeling of Social Networks 

Social relational networks, such as Facebook and LinkedIn, are rapidly becoming a 
powerful source of human interaction and communication.  They are breaking down 
borders and connecting people from one end of the world to another. They played a 
central role in the so–called "Arab Spring."  They contain a great body of valuable 
information and clearly are useful to both governments and business for discovering 
new developing trends.  Recently Yager [40, 41] has begun using fuzzy logic and 
related technologies to extend our capabilities to analyze and model social relational 
networks.  His objective is to provide tools that can enable analyst to interact with 
formal models of social networks using human concepts and ideas.  Just as we are 
able to query a database about its contents, he wants to be able to query a formal 
model of a social network for information about its contents.  Since human beings 
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predominantly use linguistic terms in which to communicate, reason and understand 
Yager noted we are faced with the task of trying to build bridges between human 
conceptualization and the formal mathematical representation of the social network.  
Consider for example a concept such as "leader".  An analyst may be able to express, 
in linguistic terms, using a network relevant vocabulary, properties of a leader.  Our 
task then becomes translating this linguistic description into a mathematical 
formalism that allows us to determine how true it is that a particular node is a leader. 

In his work he began looking at the possibility of using fuzzy set methodologies 
and more generally granular computing to provide the necessary bridge between the 
human analyst and the formal model of the social network. 

The interest in focusing on fuzzy  technology is based on the confluence of two 
important factors. One of these is that fuzzy set theory and particularly Zadeh's 
paradigm of computer with words was especially developed for the task of 
representing human linguistic concepts in terms of a mathematical object, a fuzzy 
subset. Fuzzy logic has a large repertoire of operations that allows for the 
combination of these sets in ways that mimic the logic of human reasoning and 
deduction. The second important factor is the nature of the formal mathematical 
model of social networks.  The standard formal model used to represent a social 
network is a mathematical structure called a relationship. Using this structure the 
members of the network constitute a set of elements, the connections in a network are 
represented as pairs of elements and the network is viewed as the set of all these pairs. 
The key observation here is that the standard form of network representatives is  
in terms of set theory.  The fact that the underlying representation of the social 
network is in set theoretic terms makes it to well suited to a marriage with the fuzzy 
set approach. In figure 2 we show Yager's Paradigm for Intelligent Social Network 
Analysis.  

Social
Network

Set
Relational

Representation
Linguistic
Concepts

Fuzzy
Set

Representation
Bridge

 
Fig. 2. Paradigm for Intelligent Social Network Analysis (PISNA) 

6 Conclusion 

Today, one of the global problems is the ever-increasing availability of information, 
the so-called phenomenon of “information overload.” “Information overload” can be 
viewed as a kind of natural disaster of the 21st century; it presents problems, threats, 
and demands that must be faced by our modern information society. After analyzing 
the current status of the world information environment as well as looking at methods 
and hardware/software tools, we can conclude that the use of quantum effects for the 
creation of new calculating systems and algorithms developed on entirely different 
principles of data processing will offer new choices in the management of information 
resources that were not possible before.  
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The development of nanotechnology and nanoelectronics enables previously 
impossible alternatives such as the practical implementation of no quantitative 
algebraic operations directly on the physical elements using the quantum properties of 
elementary particles. This makes it possible to qualitatively improve the management 
of information resources in large ways at all levels of its implementation. 
Additionally, fuzzy algebra with elements of words and linguistic operations based on 
them, the so-called computing with words paradigm, may fundamentally change the 
direction of computing and information sciences. 

Thus, we may be on the threshold of the birth of a new paradigm, Zadeh science, in 
contrast to the hard numeric science.  

As governments, business and individuals become more and more dependent on 
the internet with its vast amounts of data available they will find fuzzy set related 
technologies an invaluable tool for converting this data into the kinds useful 
knowledge needed to make intelligent decisions for a better future. 
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Abstract. In this paper we examine issues involving measures of creativity for 
data generalization using hierarchies. In particular we consider consensus and 
specificity measures for the partitions that result using crisp concept hierarchies.  
We note that fuzzy hierarchies do not produce partitions of data in general so 
some approaches to considering “partitionness’ is described. 

Keywords: creativity, concept hierarchies, congurence, specificity, partitions. 

1 Introduction 

Often it is said that the essential aspect of human intelligence is creativity. It is very 
difficult to interpret what is meant by creativity as the term is used in domains ranging 
from the arts to the sciences.  However since the area of artificial intelligence would 
strive ultimately to approach human intelligence it becomes essential to try to 
introduce some qualitative / quantitative measures of creativity [1]. We have 
previously considered a framework utilizing a knowledge base with the components: 
of multiple concept hierarchies, inference rules and scenarios [2].  This was intended to 
assist in the reformulation of data to aid analysts in intelligence assessments.  Multiple 
hierarchies were used to generalize input data and develop common concepts that may 
be found in the data. Underlying hierarchies are similarity relations that provide 
contexts for semantic interpretations.  With these multiple hierarchies the system can 
emulate the creative process of viewing information from various perspectives.  

In this paper we wish to examine some aspects of creativity as related to data 
generalization.  Specifically we consider the technique of attribute-oriented induction 
of data which we have studied in previous work [3]. Data generalization provides more 
granular categories that enhance creative discovery. We examine and assess some 
measures of the creative, especially, novel aspects of information that is generated by 
the generalization process G and assess the value of different hierarchies.  
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2 Background 

2.1 Creativity 

Generalization construed broadly is a central facet of intelligent behavior, an inductive 
process going from the specific to the general.  Here we focus on a data generalization 
process G as found in the data mining area.  Relevant concept hierarchies are used to 
reduce the specific data in a database into small set of general concepts by an induction 
process. 

There have been a number of approaches to evaluating machine creativity and we 
discuss here some aspects relevant to data generalization [4].  Usually it is desired to 
use domain independent criteria to be as broadly applicable as possible. A creative act 
can be thought of in two stages – generation and evaluation. The basis for the 
evaluation of creativity can be viewed as an assessment of the output of a generation 
process after factoring out the input to the process.   

The input to the process can be considered as the implicit and explicit knowledge 
termed the inspiring set I by Ritchie [5]  If we denote by R the results of the 
generation, then the items to be considered as creative must lie in R/I, i.e. R-I.  For the 
data generalization process G we are considering that   I = D ∪  Hi, where D is the data 
in the database and Hi ∈ {H1, H2, …Hn}  is one hierarchy  of the set of hierarchies that 
may be used for generalization. Ri = G ( I ) therefore is the result of the generalization 
process on D using Hi. We will consider results in which the data and hierarchies may 
be either crisp or fuzzy.  

Often it may become difficult to exactly specify the input I so strong and weak 
versions of I have been introduced [4].  IS contains those values specifically known to 
the generalization process G, so a creative item must be completely new.  Often the 
influence of other information on the process is difficult to quantify so IW is 
introduced, containing items that are known to have influenced the generalization.  
Since this information may be difficult to identify exactly, it may be desirable to 
consider IW  as a fuzzy set.  In this paper we consider the input to G, I = D ∪  Hi, as a 
strong IS. What we will investigate in this paper are approaches to the assessment of 
creativity by measuring the novelty of some given results in R. 

2.2 Generalization 

Generalization is a broad concept that has been used in several contexts. One is the 
idea of data summarization, a process of grouping of data, enabling transformation of 
similar item sets, stored originally in a database at the low (primitive) level, into more 
abstract conceptual representations.  Summarization of data is typically performed with 
utilization of concept hierarchies [6,7], which in ordinary databases are considered to 
be a part of background knowledge In fuzzy set theory an important consideration is 
the treatment of data from a linguistic viewpoint.  From this an approach has been 
developed that uses linguistically quantified propositions to summarize the content of a 
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database, by providing a general characterization of the analyzed data [8-11]. There 
have also been several approaches to the use of fuzzy hierarchies for data 
generalization [12-14]. Fuzzy gradual rules for data summarization have also been 
considered [15].   

In a previous research effort [3] we developed an approach to data summarization 
that involves aspects of generalization and compression. The use of concept 
hierarchies, ontologies, to provide categories to be utilized in this process has been 
well established [16]. At a meta-level this summarization task can be seen as being 
driven by the following imperative:  

Using a given concept hierarchy, provide a valid, succinct description of the 
contents of the database which accounts for most of the data in a manner that is useful 
to the user.  

Now consider an example of data generalization letting D= {Oakland, San Jose, …., 
Sacramento} be a set of cities. However for a particular application, this data may be at 
too low a level, i.e. too specific.  

 
Fig. 1. Example Concept Hierarchy for Cities in California 

Figure 1 illustrates part of a concept hierarchy H1 for an attribute Location, 
describing US cities based on the geographical location. This concept hierarchy 
represents some of the domain background knowledge we have a priori.  

By ascending the hierarchy, for the attribute Location in the set D, the values San_ 
Francisco, Santa_Cruz, Oakland, and San_Jose are generalized to the higher level 
category Bay_Area, while the value Sacramento is generalized to Sacramento_ 
Metropolitan_Area. Thus R1 = G (D, H1) = {Bay_Area, Sacramento_ Metropolitan_ 
Area. }.   

As we have discussed depending on a semantic context there may be other hierarchy 
for the data being generalized.  These may represent another application for the data or 
another context that is desired to be related to the original one.  For the domain of cities 
we have discussed, another context might be the classification of the city based on 
population compared to the geographical context of Figure 1.  This is illustrated by H2 

below in Figure 2. 
 

California 

Oakland San Jose Sacramento Santa Cruz 

Bay Area Sacramento Metropolitan Area 

San Francisco 
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Fig. 2. Concept Hierarchy Based on Population Size 

2.3 Hierarchies and Data Partitions 

We discuss concept hierarchies associated with a specific attribute. Let A be an 
attribute and let D (A) be the domain of possible data values of A. A concept hierarchy 
consists of a number of levels each of which is a partitioning of the space D (A). 
Furthermore this partitioning becomes coarser and coarser as we go up the hierarchy.  
The lowest possible level of a hierarchy consists of a partitioning by the individual 
elements of D (A) and the highest level possible is the whole domain D (A).   

Formally each level of a crisp concept hierarchy H is an equivalence relationship.  
Thus at level k of the concept hierarchy we have a relationship,  Lk: D(A) ×D(A) → 

{0, 1}, with properties: 

1. Reflexive: Lk(x, x) = 1,  2. Symmetric: Lk(x, y) = Lk(y, x) and 3. Transitive: If 

Lk(x, y) = Lk(y, z)  = 1 then Lk(x, z) = 1  for  x,y,z ∈D(A).  

The semantics of this relationship is that Lk(x, y) = 1 indicates these two elements, x 

and y, are essentially the same. 
As is well known such an equivalence relationship partitions the space D(A) into nk 

disjoint subsets of D(A).  These subsets we denote by Ek|i
, the ith  equivalence class 

for the partition of level k. So for x, y ∈ Ek|i  
we have Lk(x, y) = 1. 

The increased coarseness of partitioning as we ascend the concept hierarchy is 
reflected in the requirement that if k > j then for all pairs x and y we have Lk(x, y) ≥ 

Lj(x, y). Essentially this requires that if x and y are in the same class for level j of the 

hierarchy, they are in the same class in any higher-level k.  This implies that if k > j 
then for any equivalence class Ej|h at level j there exists an equivalence class Ek| i 

 at 

level k such that Ej|h  ⊆ Ek|i
 . 

So at each level k, the concept hierarchy is a partition of the set of possible data 
values D(A) into nk  categories (equivalence classes) : 

Population 

Oakland San Jose Santa Cruz Sacrament

Large City Small City 

San Francisco 
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   Ek|1
,  Ek|2

,  …. ,Ek|nk
 

If we have m levels then the concept hierarchy is a collection of m partitions of the 
space D(A).  In particular the concept hierarchy consists of  

Partition 1:.  E1|i
  for  i = 1 to n1 

Partition 2:.  E2|i  
for   i = 1 to n2 

Partition m:.  Em|i  
for   i = 1 to nm 

We should note that while formally each category Ek|i
 corresponds to a subset of the 

data space D(A), typically the category has an associated name C k|i
 which essentially 

describes the elements in Ek|i
. In general we make no distinction between these two 

uses of Ek|i
, as a subset of D(A) and as a denotation of the subset.  However when 

actually generalizing data for a given attribute in a tuple, we use the representative 
name, C k|i

,  in the generalized tuple. 

3 Creativity Evaluation Approaches 

In discussion of assessment of the creativity of data generalization based on the input I 
we want to consider all possible results R1, R2, …over the set of hierarchies {H1, H2, 
…Hn}  There may be a number of motivations to consider the generalization results 
based on the semantic context of various hierarchies. However one major motivation 
that might be considered is novelty of the results from various hierarchies.  As 
previously discussed we know that one viewpoint of the generalization results Ri are 
the partitions of the input data D induced by the hierarchies.  It is a comparison and 
characterization of these partitions we consider next. 

3.1 Consensus of Partitions 

One aspect of the novelty of a given data generalization can be based on the how 
different the original data generalized from different hierarchies appears to be.  We 
consider the idea of a consensus of generalized data that has been introduced by Yager 
[18] in terms of the concept of congruence. 

One approach is to introduce a measure of similarity, congruence, between two 
partitions using the underlying equivalence relations.  Here we now consider 
formulating a congruence measure from the perspective of the partitions themselves. 

Assume we have two partitions of the set D,  

   P1 = A1, ..., Aq 

   P2 = B1, ..., Bp 
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where D = Aj∪
j = 1

q
 and Ai ∩ Aj = ∅ for i ≠ j and D = Bj∪

j = 1

p
 and Bi ∩ Bj = ∅ for 

 i ≠ j. 
Without loss of generality we shall assume q = p.  If q > p we can augment the 

partition P2 by adding q - p subsets, BP+1 = BP+2 = ...= Bq = ∅.  Thus in the 

following we assume the two partitions have the same number of classes, q. 
We now introduce an operation called a pairing of P1 and P2, denoted g(P1, P2), 

which associates with each subset Ai of P1 a unique partner Bj from P2.  Formally if Q 

= {1, 2, ..., q} then a pairing is a mapping g: Q → Q that is bijective, one to one and 
onto.  Essentially g is a permutation of Q.  We then have that a pairing g(P1, P2) is a 

collection of q pairs, (Aj, Bg(j)).   

We shall now associate with each pairing a score, Score(g(P1, P2)), defined as 

follows.  Denoting Cg.j = Aj ∩ Bg(j)  for j= 1 to q we obtain    

Score(g(P1, P
2
)) =  (

=

q

j 1

Card (Cg.j ) )/ Card (D) 

Example: Now we consider the partitions induced by the hierarchies in Figures 1 and 
2 for which D = [San Francisco, Santa Cruz, Oakland, San Jose, Sacramento}. For the 
first hierarchy H1  we have P1 consisting of: A1 = [San Francisco, Santa Cruz, 

Oakland, San Jose}, A2 = {Sacramento}. Then for the second hierarchy H2 the 

partition P2 is B1 = [San Francisco, Sacramento, Oakland, San Jose}, and B2 = {Santa 

Cruz}. In this case there are two pairings.  
One pairing is g(j) = j in which case we get the pairs (A1, B1), (A2, B2).  From this 

Cg.1 = A1 ∩ B1 = { San Francisco, Oakland, San Jose } 

Cg.2  = A2 ∩ B2 = ∅ 

In this case Score(g(P1, P2)) = 3/5. 

The other pairing is g(1) = 2, g(2) = 1 and here our pairs are 

(A1, B2), (A2, B1). 

In this case 

Cg.1 = A1 ∩ B2 = {Santa Cruz}  

Cg.2 = A2 ∩ B1 = {Sacramento} 

In this case Score(g(P1, P2)) = 2/5 

We now shall use this to obtain a measure of congruence, Cong2(P1, P2).  Let G be 

the set of all pairings, g ∈ G.  We define  

Cong2(P1, P2) = Max
Gg∈

  Score(g(P1, P
2
)) 
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Thus this measure of congruence is the score of the largest pairing. 

We see  for any pairing g, 0 ≤ 
=

q

j 1

Card (Cg.j ) ≤ Card(D).  From this it follows that 

0 ≤ Cong2(P1, P2) ≤ 1. 

More precisely since for any two partitions we can always find a pairing g in which 


=

q

j 1

Card (Cg.j ) ≥ 1 we see that  

Card(D)

1
 ≤  Cong2(P1, P2) ≤ 1 

So this measure allows us to compare partitions produced by generalization using 
different hierarchies. Thus we can say the generalization result R based on one 
hierarchy versus another is more or less novel. This approach can be used for a simple 
form of a fuzzy database using a membership for each tuple in the relation.  When this 
data is generalized the fuzzy membership affects only the count in the generalized data 
[17]. The actual partitions in this case still remain crisp set and so these approaches 
apply. 

3.2 Specificity of Partitions 

The concepts of specificity and its complement non-specificity have been investigated 
in considerable detail particularly by Yager [19] and Klir [20].  It is closely related to 

the idea of generality.  

Let A ⊆ D and D = n.  Based on Yager's [21,22] work on specificity we can use  
the following definition for non–specificity 

     NS(A) = |A| - 1
n - 1

 

This measure takes values in the unit interval.  It attains its maximal value of one for 
the case when A = D and its minimum value of zero for the case when A is a singleton. 

So this measure of non-specificity can be used to provide a measure of generality.  
The larger the set A (the more non-specific),  the more general the concept the set is 
representing. 

Next consider the extension of the concept of non-specificity from sets to partitions.  
We are interested in quantifying how general the classes comprising a partitioning are. 
Assume P: <A1, ..., Aq> is a partition of D arising from a generalization using some 

hierarchy Hi.  The calculation of the non-specificity of P, NS(P), will use the measure 
of non-specificity of the individual classes in P: 

NS(P) = 
=

q

1i

(Ai / n ) NS(Ai) 
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This is a weighted average of the non-specificities of the component classes in P.  The 
weights are determined by the number of elements in the class. 

This definition is independent of the indexing of the classes, each class is treated in 
the same manner.  We also note that it is idempotent, if for all i, NS(Ai) = a then NS(P) 

= a.  Thus if all the classes have the same degree of non-specificity then this is the non-
specificity of the partition as a whole.  We also note that since each of NS(Ai) ∈ [0, 1] 

then NS(P) ∈ [0, 1]. Let us look at some notable special cases. Consider the case where 

P = P*, that is q = 1 and A1 = D.  We see that NS(A1) = 1 and |A1| = n and therefore 

NS(P*) = 1.  Thus the non–specificity of a partition consisting of just the whole space 
is one. At the opposite extreme is the case when the classes are just singletons P

*
, here 

we have n classes with Ai = {di}.  In the case NS(Ai) = 0 and hence from the 

idempotency we get NS(P) = 0. 
The measure of specificity provides another way to compare and evaluate 

generalization by multiple hierarchies.  So the non-specificity measure provides a way 
of expressing the novelty of the possible generalization results. Consider the partitions 
P1 and P2 used in the example of congruence. Their sets have the same cardinality and 

we have A1 = 4, A2 = 1. So   

NS(P1) = NS(P2) =[ (4/4) * (3/4)  + (1/4) * 0 ] = 3/4. 

Now if we have another hierarchy H3 categorizing the cities based on some new criteria 
e.g. nearness to ocean, that leads to a new partition P3 = {San Francisco, Santa Cruz}; 
{San Jose, Oakland, Sacramento}.  For this partition A1 = 2, A2 = 3. So  

NS(P3) =[ (2/4) * (1/4)  + (3/4) * (2/4)  ] = 1/2. 

Thus we can say that this partition is more general and represents a more novel 
generalization of the data. 

4 Generalization in Fuzzy Hierarchies 

Fuzzy hierarchies enable the expression of partial ISA relationships with membership 
values as fraction numbers between two incident concept nodes [23]. For fuzzy 
hierarchies, a concept is regarded as a partial specification of its upper concept with the 
corresponding membership degree μ in the [0, 1] interval. If μ = 1, there is a complete 
specification as in crisp concept hierarchies 

Now we address how generalization proceeds in a fuzzy hierarchy. Figure 3 is a 
fuzzy hierarchy FH1 corresponding to Figure 1 which we used before in the 
generalization example. So Santa Cruz may be considered as being in the Bay Area 
only to some degree as it is over a coastal range on the coast from cities that are more 
“certainly” in the Bay Area.  The other point to note is that a concept may be related to 
more than one higher level concept to some degree as illustrated by Sacramento. 

To reflect the different membership values when terms are generalized we require 
the result to be a fuzzy set.  A straight forward approach is to formulate the 
memberships of the higher level concepts in the tree for the result as the average of the 
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memberships of the lower level concepts being generalized. For example let D= {San 
Francisco, San Jose, Sacramento}.  The generalization of this data is then R = {((1.0 + 
0.9 + 0.3)/3) / Bay Area, ((1.0/1.0))/ Sacramento } =  { 0.73 /  Bay Area ,  1.0  / 
Sacramento}. Note that this is consistent with the crisp hierarchy where the 
memberships are implicitly one. 

 

Fig. 3. Fuzzy Concept Hierarchy 

Next we need to describe a fuzzy hierarchy as was done for a crisp concept 
hierarchy in terms of partitions. For a fuzzy hierarchy at each level k we have a 
defining fuzzy relationship  

Zk: X ×X → [0, 1] 

Such a fuzzy relationship naturally leads to fuzzy equivalence classes [13] of concepts 
at each level k of the corresponding hierarchy.  However the sets of these fuzzy 
equivalence classes are fuzzy sets and as a consequence do not form a formal set 
partitioning of a domain as for crisp equivalence classes. So rather than a partitioning 
of the domain X, we have a set decomposition. At each level this is Fk|1

,  Fk|2
,  .. 

where in general 

Fk|i
 ∩ Fk|j

  ≠ ∅ 

This implies that there may not be a unique concept at level k to which a value at level 
k-1 generalizes.  Graphically we can illustrate this in Figure 4 

 

 
 
 
 

 

 
 
 
 

Fig. 4. Fuzzy Hierarchy Notation Example 
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So Fk|i
 corresponding to C k|i

 is the set { …p,q,r,…} and  Fk|j
  representing Ck|j

 is 

{ …r,s,t…}. An overlapping value such as r has a degree of membership μk|i
(r) in Fk|i

 

and μ k|j
 (r) in Fk|j

 as determined by Zk. 

Clearly our previous approach to assessing the result of the generalization cannot 
apply directly here as we do not have partitions. Wee have been considering some 
general measures of categorization [24] that could be applied. Consider a collection F 
of fuzzy sets, F = {A1, A2, … AN} over a domain D.  We are now interested in how 
closely the set of fuzzy subsets in F resembles a partition of D. Two issues are the 
coverage of the domain X and the degree of overlapping of the subsets.  It is this latter 
case of the set overlapping we want to represent. One approach we have utilized is to 
consider for each d ∈D how much d is “spread out” over the sets of F.  So let  

Δ dd =  [ Max
...N 1, i=

μ (d)iA
j

 - Largest 2nd
ij ...N; 1, j ≠=
μ (d)jA

j

] 

Clearly if for some k, d  ∈ Ak only, Δd  =1 since d being just one fuzzy subset is least 
“spread out.” Δd    < 1 implies that d is spread over multiple Ai ‘s.  There are other more 
involved measures that we are considering but for this paper the above is illustrative of 
the approach. Measures such as these could combine with the previous measures for 
partitions to be applied to the results of generalizations from fuzzy hierarchies. 

5 Conclusion 

We have discussed creativity measures that can be used for the results of data 
generalization. The data partitions that result from the generalization using different 
hierarchies are compared to assess their novelty using the congruence and specificity 
measures. 
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The Essence of Fuzzy Set Qualitative Comparative 
Analysis (fsQCA) 
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University of Southern California, Los Angeles, CA 90089-2564 

Abstract. Fuzzy Set Qualitative Comparative Analysis (fsQCA) is a methodol-
ogy for obtaining linguistic summarizations from data that are associated with 
cases. It was developed by the eminent social scientist Prof. Charles C. Ragin, 
but has, as of this date, not been applied by engineers or computer scientists. 
Unlike more quantitative methods that are based on correlation, fsQCA seeks to 
establish logical connections between combinations of causal conditions and an 
outcome, the result being rules that summarize (describe) the sufficiency be-
tween subsets of all of the possible combinations of the causal conditions (or 
their complements) and the outcome. The rules are connected by the word OR 
to the output. Each rule is a possible path from the causal conditions to the out-
come. This chapter provides a high-level introduction to fsQCA. 

1 Introduction 

Fuzzy Set Qualitative Comparative Analysis (fsQCA)1 is a methodology for obtaining 
linguistic summarizations from data that are associated with cases. It was developed 
by the eminent social scientist Prof. Charles C. Ragin, but has, as of this date, not 
been applied by engineers or computer scientists. Unlike more quantitative methods 
that are based on correlation, fsQCA seeks to establish logical connections between 
combinations of causal conditions and an outcome, the result being rules that sum-
marize (describe) the sufficiency between subsets of all of the possible combinations 
of the causal conditions (or their complements) and the outcome. The rules are  
connected by the word OR to the output. Each rule is a possible path from the  
causal conditions to the outcome, i.e. different causal combinations leading to the 
same outcome. 

According to Ragin [20, p. 183)]: “The goal of Qualitative Comparative Analysis 
(QCA) is to derive a logically simplified statement describing the different combina-
tions of conditions linked to an outcome.” Each combination of conditions and same 
outcome is sometimes referred to as a type or a typological configuration [1] Accord-
ing to Rihoux and Ragin [23, p. 33 and p. 66]:  

Crisp set Qualitative Comparative Analysis (csQCA) was the first QCA technique, 
developed in the late 1980s, by Professor Charles Ragin2

 and programmer Kriss 

                                                           
1 This chapter is based on [11]. 
2 He is now a professor of sociology and political science at the University of Arizona. In the 

1980’s he was a professor of sociology and political science at Northwestern University. 
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Drass. Ragin’s research in the field of historical sociology led him to search for tools 
for the treatment of complex sets of binary data that did not exist in the mainstream 
statistics literature. He adapted for his own research, with the help of Drass, Boolean 
algorithms that had been developed in the 1950s by electrical engineers to simplify 
switching circuits, most notably Quine3 [17] and McCluskey [9]. In these so-called 
minimization algorithms, he had found an instrument for identifying patterns of mul-
tiple-conjunctural causation and a tool to “simplify complex data structures in a logi-
cal and holistic manner [18, p. viii]. … csQCA is based on Boolean algebra, which 
uses only binary data (0 or 1), and is based on a few simple logical operations4

 [union, 
intersection and complement]. … [In csQCA,] it is important to follow a sequence of 
steps, from the construction of a binary data table to the final ‘minimal formulas.’ … 
Two key challenges in this sequence, before running the minimization procedure, are: 
(1) implementing a useful and meaningful dichotomization of each variable, and (2) 
obtaining a ‘truth table’ (table of configuration) that is free of ‘contradictory configu-
rations.’ … The key csQCA procedure is ‘Boolean minimization.’  

csQCA was extended by Ragin to fuzzy sets, because he realized that categorizing 
social science causes and effects as black or white was not realistic. Fuzzy sets let him 
get around this. According to [23, p. 120]:  

fsQCA retains key aspects of the general QCA approach, while allowing the analy-
sis of phenomena that vary by level or degree. … The fsQCA procedure … provides a 
bridge between fuzzy sets and conventional truth table analysis by constructing a 
Boolean truth table summarizing the results of multiple fuzzy-set analyses. … Fuzzy 
membership scores (i.e., the varying degree to which cases belong to sets) combine 
qualitative and quantitative assessments. … The key set theoretic relation in the study 
of causal complexity is the subset relation; cases can be precisely assessed in terms of 
their degree of consistency [subsethood] with the subset relation, usually with the goal 
of establishing that a combination of conditions is sufficient for a given outcome. 

Both csQCA and fsQCA are set-theoretic methods. They differ from conventional 
quantitative variable-based methods (e.g., correlation and regression) in that they [1] 
“… do not disaggregate cases into independent, analytically separate aspects but in-
stead treat configurations as different types of cases.” Additionally, [1] “The basic  
intuition underlying QCA5 is that cases are best understood as configurations of  
attributes resembling overall types and that a comparison across cases can allow the 
researcher to strip away attributes that are unrelated to the outcome in question.” 

This chapter provides a high-level introduction to fsQCA. For more quantitative 
descriptions of fsQCA see [13], [14]. 

2 The Basic Principles of fsQCA 

The basic principles of fsQCA are: conjunctural causation, equifinal causation, li-
mited diversity, causal asymmetry, the sufficiency of a causal combination is not 
                                                           
3 Actually, Quine is a famous logician and is not an electrical engineer. 
4 Bracketed phrases, inserted by the present author, are meant to clarify quoted materials. 
5 It is quite common to refer to both csQCA and fsQCA as “QCA” letting the context determine 

which QCA it is. More recently, the phrase Configurational Comparative Methods is used to 
cover all QCA methods, e.g., [23]. 
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black and white, and the same set of cases do not have to be used for different out-
comes or for different objectives for the same outcome. In this section we elaborate 
on these basic principles. 

1. Conjunctural Causation: It is usually not just one postulated causal condition 
that by itself causes a desired outcome. Instead, it is a combination of causal 
conditions that causes a desired outcome. fsQCA can determine such a combi-
nation of causal conditions. Not all of the postulated causal conditions may be in 
a causal combination that produces a desired outcome. fsQCA can strip away 
the unneeded causal conditions in each causal combination. 

2. Equifinal Causation: There can be different combinations of causal conditions 
that produce a desired outcome. fsQCA can establish which causal combina-
tions do this. 

3. Limited Diversity: Usually there are not enough cases available to provide in-
stances for each of the possible causal combinations. Substantive knowledge 
provided by expert(s) during thought experiments— counterfactual analysis—
supplements case-data. 

4. Causal asymmetry: Generally there is causal asymmetry between fsQCA for a 
desired outcome and fsQCA for the complement of that outcome. Generally it is 
not the complements of the causal combinations associated with the desired out-
come that are associated with the complement of the desired outcome. 

5. The Sufficiency of a Causal Combination is Not Black and White: Each winning 
causal combination is not 100% sufficient to be a cause of the desired outcome. 
fsQCA  computes a fuzzy measure of sufficiency. 

6. The Same Set of Cases do not Have to be Used for Different Outcomes or for 
Different Objectives for the Same Outcome: Identify the best possible instances 
of the phenomenon to be explained and then study those instances (cases) in 
great depth. Casing is outcome driven, i.e. you can have different choices of 
cases for different kinds of studies: (a) Study for which there is only one case; 
(b) Study when there are a set of cases for the same outcome; (c) Study for 
which there are both6 negative and positive cases for the same outcome; (d) 
Study that uses the entire population (such a study seeks generalizations about 
the population). According to Ragin [21]: “It is wrong to label a study flawed 
simply because it omits negative cases, for there are many good reasons to study 
positive cases in isolation from negative cases.” Choosing appropriate cases 
should be done first, and this choice does not have to be done once and for all, 
i.e. it can be modified during the entire fsQCA procedure. 

3 fsQCA Overview 

fsQCA begins7 (Fig. 1) with your substantive knowledge (❀) about a problem. You 
specify a desired outcome (❁) (a separate fsQCA is run for each such outcome) and 

                                                           
6 A positive case is one for which the desired outcome is strongly present and a negative case is one 

for which the desired outcome may not be present at all or is weakly present. 
7 This section is taken from [13] and [14].  
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then choose the cases (❂) from which you hope to extract new knowledge about the 
potential causes for that outcome. Next you postulate a set of k potential causes (❃) 
that you believe could have, either individually or in various combinations, led to the 
desired outcome. You might be wrong about postulating a cause and so you protect 
yourself against this by simultaneously considering each cause and its complement.  

fsQCA connects the 2k  possible (candidate) causal combinations to the desired 
outcome as a simple if-then rule, namely “if this causal combination, then the desired 
outcome.” Each causal combination contains exactly k terms (the causal condition or 

its complement) connected to each other by AND, to the desired outcome. All 2k  
candidate rules are for the same desired outcome and are therefore connected by the 
word OR (❄).  

fsQCA now uses the case-based data to reduce the number of rules from 2k  can-
didate rules to a much small number of rules, and it simplifies the rules so that they 
usually contain causal combinations with fewer than k terms (❅). The latter happens 
because all of the rules are for the same desired outcome; hence, they can be logically 
combined using set theory reduction techniques, and by doing this it frequently hap-
pens that some or many causal conditions are absorbed (so they disappear from the 
final causal combination).  

There may not be enough cases (Ragin calls this “limited diversity”) to provide 

evidence (or enough evidence) about all 2k  candidate causal combinations, so more 
substantive knowledge is obtained from domain experts (❆). This additional substan-
tive knowledge is incorporated into the fsQCA computations (❇).  

At the end of fsQCA one has a small collection of simplified if-then rules (❈) that 
provide at least one simplified causal combination for a desired outcome (unless no 
such rule can be found). It is then possible to connect cases to each rule that are its 
best instances (❉), and to compute the coverage ((11)) of the cases by each rule.  

 

 

Fig. 1. fsQCA summarized 
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Fuzzy sets are used in some of the fsQCA steps because things are not always 
black and white; instead, they are a matter of degree.  

The reader needs to be aware that Ragin presented his first ideas about crisp QCA 
in his 1987 book [18], but after he realized that things are not black and white in so-
cial science applications he extended (abandoned) crisp QCA to fsQCA. This was 
done in two versions. The first version is in his 2000 book [19] and the second version 
is in his 2008 book [20]. The major difference between the two versions is in the way 
he computes consistency. In his 2008 book [20, p. 48] he refers to the 2000 approach 
as “simplistic.” It does not use the subsethood formula, but instead uses a crisp count-
ing technique. I mention all of this because if a reader only reads [19] he/she will be 
implementing an out-of-date version of fsQCA. 

4 The Steps of fsQCA  

fsQCA seeks to establish logical connections between combinations of causal con-
ditions and a desired outcome, the result being rules (typological configurations) that 
summarize8 (describe) the sufficiency between subsets of all of the possible combina-
tions of the causal conditions (or their complements) and the outcome. It is not a me-
thodology that is derived through mathematics, e.g. as the solution to an optimization 
problem, although it uses mathematics. Our mathematical description of fsQCA does 
not appear in the existing literatures about fsQCA. It is needed, though, if engineers 
and computer scientists are to use fsQCA. 

It has taken us close to two years to explain fsQCA as a collection of 13 steps9 that 
provide one or more subsets of sufficient conditions between a collection of post-
ulated causal conditions and a desired outcome. Why so long? Because Ragin does 
not explain all of the steps of fsQCA, nor does he quantify the steps in a way that 
engineers and computer scientists require so that they can implement fsQCA. Instead 
he provides software that is available on-line that guides a user through fsQCA with-
out the user having to understand the mathematical underpinnings of fsQCA, at: 

[http://www.u.arizona.edu/~cragin/fsQCA/software.shtml]. 

Beginning in October 2009, I was and continue to be in very close e-mail contact 
with Prof. Ragin about a multitude of fsQCA issues. Understanding all aspects  
of fsQCA turned out to be akin to peeling an onion. As I went from one step of 
fsQCA to the next, a new “ring” was uncovered that needed further explaining. Prof. 
Ragin was extremely patient and generous with his time and always responded to my 

                                                           
8 Ragin does not think of fsQCA as linguistic summarization; he thinks of it as describing 

what’s going on between a collection of causal conditions and an outcome. It is only in [23, 
page 15, Box 1.4] that “summarizing data” is acknowledged as one of the five types of uses 
of QCA techniques. Consequently, it now seems legitimate to use fsQCA for linguistic sum-
marization. The other four uses for QCA are: check coherence of data, check hypotheses of 
existing theories, quickly test conjectures, and develop new theoretical arguments. 

9 To the best of our knowledge, prior to [13] and [14] fsQCA has never before been enumerated 
as a collection of 13 steps. In fact, some of the steps have never before been explained in the 
fsQCA literature. 
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enquiries quickly and in great detail. [10] reprints our e-mail dialogs, organizing them 
by category and sub-category, so that others may benefit from Prof. Ragin’s insights 
and wisdom about fsQCA. 

As mentioned above, we now describe fsQCA as a collection of 13 steps. The first 
five steps are preparatory to the next six computational steps, after which there are 
two summary steps. Because of space limitations, we only provide very high-level 
statements of the 13 steps. 

4.1 Preparatory Steps 

(1) Choose a desired outcome from the space of all desired outcomes for the appli-
cation,  SO , and its appropriate cases10, SCases , [e.g., Low MPG for a subset of auto-

mobiles (each auto is a case) that are in the UCI Repository]. 

(2) Choose k causal conditions, SC , and, if a condition is described by more than 

one term, treat each term as an independent causal condition (e.g., low acceleration, 
high acceleration, light weight, heavy weight, etc.).  

(3) Treat the desired outcome and causal conditions as fuzzy sets, and determine 
membership functions (MFs) for all of them (many methods exist for doing this, none 
of whose details are needed for the rest of this article).  

(4) Evaluate these MFs for all available cases, the results being derived MFs. 

(5) Create 2k  candidate causal combinations (rules), SF , and view each as a poss-

ible corner in a 2k -dimensional vector space.  

4.2 Computational Steps 

Steps 6-11 are computational steps and are summarized in Fig. 2, which we have 
found to be a relatively simple mnemonic way to remember these steps. 

 

 

Fig. 2. Mnemonic summary of Steps 6-11 of fsQCA 

Steps 6 and 7 use fuzzy sets to allow for uncertainties about the natures of the 
causal conditions and desired outcome: 
                                                           
10 Cases have no natural ordering, but instead each case is identified by an integer, so that by 

knowing the integer one also knows the case. The integers x = 1, 2, …, N are used to 
represent the N cases, and in this way the cases are ordered. For a person to repeat someone 
else’s fsQCAs, and compare their intricate details with someone else’s intricate details, they 
need to know the ordering of the N; hence, it is assumed that this information is provided to 
them. 

 

{SF (2k ),

  SCases (N )}

0.5 / f 0.8
QM

QM

CA QM 0.8

fuzzy crisp fuzzy 

S
F S (R

S
)

   
S

F A (R
A
)

S
F PI (R

C
)

S
F MPI (R

P
)

S
F I (R

I
) S

F SI (R
SI

)
   
S

F BSI (R
BSI

)



 The Essence of Fuzzy Set Qualitative Comparative Analysis (fsQCA) 31 

(6) Compute the MF of each of the 2k  candidate causal combinations in all of the 
available cases, and keep only the ones—the RS  surviving causal combinations (fir-

ing-level surviving rules), S
FS , —whose MF values are > 0.5, i.e., keep the causal 

combinations that are closer to corners and not the ones that are farther away from 
corners.  

(7) Compute the consistencies (subsethoods11) of these RS  surviving causal com-

binations, and keep only those RA  causal combinations, S
FA , —the actual causal 

conditions (actual rules)—whose consistencies are > 0.80. 
Steps 8-10 use crisp sets, because the RA  causal combinations are now treated as 

actual corners, since it has just been established these causal combinations do indeed 
exist, i.e. existence is treated as crisp. It is quite possible, however, that there are still 
too many rules, but now for a totally different reason than before. When the RA  ac-

tual rules are combined using the logical OR (disjunction) operation, then, because all 
of these rules share the same consequent there can be a lot of redundancies. Set theory 
reduction techniques can be used to obtain two kinds of minimal solutions; however, 
it is usually very difficult to perform these reductions by hand, and so they are auto-
mated by using the Quine-McCluskey (QM) Algorithm [17], [9], [16]. 

(8) Use the QM algorithm to obtain RC  prime implicants12 (the complex solutions, 

S
FPI ) and RP  minimal prime implicants13 (the parsimonious solutions, S

F MPI ).  

(9) Use substantive knowledge from an expert to perform Counterfactual Analy-
sis14 (CA) on the complex solutions, constrained by the parsimonious solutions, to 
obtain the RI  intermediate solutions, S

FI . The complexity of an intermediate solu-

tion is supposed to be between complexities of the complex and parsimonious solu-
tions, and, according to Ragin, the intermediate solutions are the most useful ones. 
Rules for CA are given in [13] and [14]. 

(10) Perform QM on the RI  intermediate solutions (they are also connected by 

OR) to obtain the RSI  simplified intermediate solutions, S
FSI .   

                                                           
11 If a causal combination is sufficient for the desired outcome, then the rule actually exists; 

however, if it is not then the rule does not exist. So, this calculation of fsQCA establishes 
whether or not a rule exists. This calculation is a quantification of the fact that a causal com-
bination is sufficient for an outcome if the outcome always occurs when the causal combina-
tion is present (however, the outcome may also occur when a different causal combination is 
present), i.e. the causal combination (the antecedents) is a subset of the outcome. 

12 A prime implicant is a combination of primitive Boolean expressions that differ on only one 
cause and have the same output. 

13 Minimal prime implicants (also called essential prime implicants by Ragin [18]) cover as 
many of the primitive Boolean expressions as possible with a logically minimal number of 
prime implicants. For an example of how minimal prime implicants are determined from 
prime implicants, see [18, pp. 95-98]. Other examples can be found in [16]. 

14 CA [1], [22] offers a way to overcome the limitations of a lack of empirical instances, i.e. the 
problem of limited diversity [19, pp. 81 ff.], and involves thought experiments in which the 
substantive knowledge of a domain expert is used. 
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Step 11-13 uses fuzzy sets because the influence of a causal combination on a de-
sired output is not 100%, i.e. it is fuzzy:  

(11) Retain only those simplified intermediate solutions whose consistencies  
are approximately greater than 0.80, the RBSI  believable simplified intermediate  

solutions, S
FBSI .  

4.3 Summarization Steps 

(12) Connect the RBSI  believable simplified intermediate solutions (this can also be 

done for the complex and parsimonious solutions) with its best instances,  SBeIn (s) , 

s = 1,..., RBSI . This is a very important step because it reconnects the fsQCA results 

back to cases. 
(13) Compute the coverage of each solution. Coverage provides a measure of ge-

nerality of a summary because it shows how many cases support the summary. It is an 
assessment of the degree to which a solution is supported by cases. In other words, 
coverage determines what percentage of cases covers a solution. Ragin [20, Ch. 3] 
mentions three kinds of coverage and Rihoux and Ragin [23, p. 64] define them as: 
(1) solution coverage, Cs, which is the proportion of cases that are covered by all of 
the terms; (2) raw coverage, Cr, which is the proportion of cases that are simulta-
neously covered by each term one at a time; and, (3) unique coverage, Cu, which is 
the proportion of cases that are uniquely covered by a specific term (no other terms 
cover those cases). Each measure of coverage provides a different insight into the 
believable simplified intermediate solutions. We usually only focus on raw coverage 
and solution coverage. Formulas for all three kinds of coverage are in [14]. 

The results of fsQCA for each desired outcome O are given by 

Fs
BSI ,SBeIn(s),Coverage(s),Subsethood(s){ }

s=1

RBSI
 

Subsethood(s) is a number that is between 0.80 and 1 (usually, Subsethood(s) ≠ 1). 
Some may say that it provides a measure of causality between a causal combination 
and the desired outcome. 

5 Example 

In order to illustrate fsQCA, we present a very simple example that is taken from 
some of Ragin’s books [20, Ch. 7] and [23, Ch. 5]. The example is about the break-
down of democracy of European countries between World Wars 1 and 2, for which 
the desired outcome is O = Breakdown of Democracy and the three causal conditions 
are A = developed (country), B = urban (country) and C = literate (country). This 
example is a simplification of a more complete example in which there are two more 
causal conditions D = industrial (country) and E = stable (country) that appears in 
[13].  
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Table 1. Data- and fuzzy-membership-matrix (showing original variables and their fuzzy-set 
membership function scores)a 

Case Outcome Condition and MF scores
o MF(O) A MF(A) B MF(B) C MF(C)

1 -9 0.95 720 0.81 33.4 0.12 98 0.99
2 10 0.05 1098 0.99 60.5 0.89 94.4 0.98
3 7 0.11 586 0.58 69 0.98 95.9 0.98
4 -6 0.88 468 0.16 28.5 0.07 95 0.98
5 4 0.23 590 0.58 22 0.03 99.1 0.99
6 10 0.05 983 0.98 21.2 0.03 96.2 0.99
7 -9 0.95 795 0.89 56.5 0.79 98 0.99
8 -8 0.94 390 0.04 31.1 0.09 59.2 0.13
9 -1 0.58 424 0.07 36.3 0.16 85 0.88

10 8 0.08 662 0.72 25 0.05 95 0.98
11 -9 0.95 517 0.34 31.4 0.10 72.1 0.41
12 10 0.05 1008 0.98 78.8 1 99.9 0.99
13 -6 0.88 350 0.02 37 0.17 76.9 0.59
14 -9 0.95 320 0.01 15.3 0.02 38 0.01
15 -4 0.79 331 0.01 21.9 0.03 61.8 0.17
16 -8 0.94 367 0.03 43 0.30 55.6 0.09
17 10 0.05 897 0.95 34 0.13 99.9 0.99 
18 10 0.05 1038 0.98 74 0.99 99.9 0.99 

a This table is modeled after Table 5.2 in [23], and the numbers in it are the same as the ones in that 
table. 

Table 2. Fuzzy set membership of cases in causal combinationsa 

Case 

Membership in corners of vector space formed by causal conditions:  
Firing Levels

F1 
abc 

F2 
abC 

F3 
aBc

F4 
aBC

F5 
Abc

F6 
AbC

F7 
ABc

F8 
ABC 

1 0.01 0.19 0.01 0.12 0.12 0.81 0.01 0.12 
2 0.01 0.01 0.01 0.01 0.01 0.11 0.02 0.89 
3 0.02 0.02 0.02 0.42 0.02 0.02 0.02 0.58 
4 0.02 0.84 0.02 0.07 0.07 0.16 0.02 0.07 
5 0.01 0.42 0.01 0.03 0.03 0.58 0.01 0.03 
6 0.01 0.02 0.01 0.02 0.02 0.97 0.01 0.03 
7 0.01 0.11 0.01 0.11 0.11 0.21 0.01 0.79 
8 0.87 0.13 0.09 0.09 0.09 0.04 0.04 0.04 
9 0.12 0.84 0.12 0.16 0.16 0.07 0.07 0.07 

10 0.02 0.28 0.02 0.05 0.05 0.72 0.02 0.05 
11 0.59 0.41 0.10 0.10 0.10 0.34 0.10 0.10 
12 0 0 0.01 0.02 0 0 0.01 0.98 
13 0.41 0.59 0.17 0.17 0.17 0.02 0.02 0.02 
14 0.98 0.01 0.02 0.01 0.02 0.01 0.01 0.01 
15 0.83 0.17 0.03 0.03 0.03 0.01 0.01 0.01 
16 0.70 0.09 0.30 0.09 0.30 0.03 0.03 0.03 
17 0.01 0.05 0.01 0.05 0.05 0.87 0.01 0.13 
18 0.01 0.01 0.01 0.02 0.01 0.01 0.01 0.98 

> 0.5 5 3 0 0 0 5 0 5 
a This table is modeled after Table 5.6 in [23], and the numbers in it are the same as the ones in that table. 

 
Using knowledge and techniques from social science, numerical values  

were obtained for A, B and C for 18 European countries that in Table 1 are called 
“Cases 1–18.” Numerical values were initially obtained by Ragin for o = Survival of 
Democracy, which was assumed to be the complement of Breakdown of Democracy; 
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hence, was computed from  as . S-shaped MFs were used 
for Survival of Democracy, developed (country), urban (country), and literate (coun-
try) using a method that is described in [20, Ch. 5]. Using these MFs, Ragin obtained 
the MF scores that are also given in Table 1. These MFs implement Step 4.  

From this point on, A, B and C are viewed as generic causal conditions for a gener-
ic outcome O, because there are more actual causal conditions that are associated with 
Breakdown of Democracy than are shown in Table 1, and because tables for three 
causal conditions are easy to display.  

For three causal conditions there are eight causal combinations, all of which are 
given in Table 2, along with their memberships. These memberships are the firing 
levels in Step 6, and are computed by using the minimum for conjunction, i.e.,  

μF1
(x) = min μa (x),μb (x),μc (x){ } = min 1− μA(x),1− μB (x),1− μC (x){ } . 

The bold-faced numbers in Table 2 indicate memberships that are greater than 0.5. 
The numbers of such memberships are listed in the last row of the table for each of 
the eight causal combinations. Using a frequency threshold of three only four of the 
eight causal combinations survive, i. e. RS = 4 . Those firing-level surviving rules are 
summarized in Table 3.  

Table 3. Distribution of cases across causal conditions and set-theoretic consistency of causal 
combinationsa, 

Best Instances 
Causal Conditions Corresponding 

Vector Space 
Corner

Number of cases 
with > 0.5  

membership 

Set-
theoretic 

Consistency A B C 

8, 11, 14, 15, 16 0 0 0 abc 5 0.98 
4, 9, 13 0 0 1 abC 3 0.84 

1, 5, 6, 10, 17 1 0 1 AbC 5 0.44 
2, 3, 7, 12, 18 1 1 1 ABC 5 0.34 

a This table is modeled after a combination of Tables 5.7 and 5.8 in [23], and the numbers in it are the same as the 
ones in Table 5.7. 

 
The first column of Table 3 is called “Best Instances.” It lists the cases that are as-

sociated with each surviving causal combination. This is a very important column  
because it directly connects the fsQCA back to the original cases. The next three col-
umns of this table are for the three causal conditions, and their entries are listed as 0 
or 1, where a 0 occurs if the complement of the causal condition appears in the causal 
combination, and a 1 appears if the causal condition appears in the causal combina-
tion [e.g., abC → (0, 0,1)]. The next column in this table states the causal combina-
tion (the corresponding vector space corner) using set notation (e.g., abC ). The last 
column in this table gives the count (from Table 2) of the number of MF entries that 
are > 0.5. 

Next, the consistencies are computed using Kosko’s [8] subsethood formula (Step 
7). Note that these calculations use the derived MFs for all 18 cases. Results are 
summarized in the last column of Table 3.  

Using a consistency threshold of 0.80 only two of the four rules become actual 
rules, i.e. RA = 2 . These are the first two rules in Table 3, abc and abC. Observe that 

MF(O) MF(o) 1 − MF(o)



 The Essence of Fuzzy Set Qualitative Comparative Analysis (fsQCA) 35 

abC, which has fewer cases with > 0.5 membership than do AbC or ABC, survives, 
whereas AbC and ABC do not. 

The prime implicant (Step 8) for abc + abC  is easy to obtain, because 
abc + abC = ab(c + C) = ab . The minimal prime implicant (Step 8), found from the 
QM algorithm, is a. These solutions can be expressed linguistically, as: 

Complex solution IF C1 = a and C2 = b, THEN O
Parsimonious solution IF C1 = a, THEN O{  

In words, these solutions are: 

Complex solution

Not  developed and not  urban
(rural) is a sufficient causal 
combination for Breakdown  of  
Democracy

Parsimonious solution
Not  developed  is a sufficient 
causal condition for Breakdown 
of  Democracy














 

To complete fsQCA, CA has to be performed (Step 9). Substantive knowledge (made 
up by the author, but reasonable) is: The desired outcome could have occurred if a 
(not developed), b (not urban (rural)) or c (not literate) occurred. 

CA is trivial for this example because: (1) the parsimonious solution is contained 
in the complex solution, and (2) the substantive knowledge is contained in the com-
plex solution. Additionally, since the complexity of an intermediate solution is sup-
posed to be between complexities of the complex and parsimonious solutions, and the 
former is described by two causal conditions, whereas the latter is described by one 
causal condition, the intermediate solution must either be the same as the complex or 
parsimonious solutions. In this case because substantive knowledge indicates the de-
sired outcome could have been caused by the presence of a or b, the complex solution 
becomes the intermediate solution, namely ab, or, in words: 

Not developed and not urban (rural) is a sufficient causal combination for Break-
down of Democracy. 

Generally CA is not so trivial; more examples of how to perform CA, as well as rules 
for CA are in [13] and [14]. 

Consistency (Step 10): The set theoretic consistency of ab was computed to be 
0.837, which is greater than 0.80, so this solution is retained. 

Because of page limitations, discussions about how to compute the Best Instances 
and Coverage are deferred to [13] and [14]. Those discussions show that Cases 4, 8, 
11, 13, 14, and 16 are best instances for ab, and that the coverage of ab is 0.736. 

6 Conclusions 

It is quite common these days for people who work in the general field of computa-
tional intelligence (CI), which includes fuzzy sets as one of its major pillars (the oth-
ers being neural networks and evolutionary computing), to inquire how a CI technique 



36 J.M. Mendel 

can be used to solve problems in interdisciplinary or non-traditional (i.e., non-
engineering or non-computer-science) fields. The expectations are there will be a flow 
from CI into these fields. Rarely, does the flow occur in the other direction. Charles 
Ragin’s fsQCA is one of those remarkable exceptions and represents a flow from 
social science and political science into CI.  

Because of space limitations many aspects of fsQCA that are crucial to its actual 
use have not been discussed, including: new theoretical results for fsQCA [15], results 
that could only have been obtained after a formal quantification of fsQCA had oc-
curred, including a totally different way to perform the early steps of fsQCA, one that 
saves orders of magnitude of computation time; a new method for determining the 
MFs for causal conditions and outcome from data [7]; the detailed steps of Counter-
factual Analysis [13] and [14]; comparisons of fsQCA as a linguistic summarizer [13] 
with the pioneering works on linguistic summarization by Yager [25]-[28], Kacprzyk 
and Yager [2], Kacprzyk and Zadrożny, e.g., [3]-[5], and Kacprzyk, Yager and 
Zadrożny [6], as well as the more recent work by Wu and Mendel [24]. The applica-
tions of fsQCA to some engineering and computer science problems will appear in 
other publications. 

Additional works on extending fsQCA from type-1 fuzzy sets to interval type-2 
fuzzy sets is underway, because we view fsQCA as a new Computing With Words 
Engine that can be incorporated in a Perceptual Computer [12], to aid people in mak-
ing subjective judgments.  

It is also very important to study the robustness of fsQCA to both the frequency cu-
toff and consistency threshold numbers. Perhaps it is possible to fuzzify both of these 
numbers and propagate their fuzziness through the fsQCA calculations.  
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Abstract. This paper is a continuation and extension of our previous works on
correlation coefficients between Atanassov’s intuitionistic fuzzy sets (A-IFSs, for
short), notably on the Pearson coefficient r and the Spearman correlation coef-
ficient to measure the degree of association between A-IFSs. Here, we develop,
and illustrate on examples, the concept of the Kendall rank correlation for A-IFSs
which is another important measure of correlation.

1 Introduction

While building models of processes and systems, one of the most interesting and rel-
evant aspect is to determine relationships between variables, notably between relevant
ones, and then to measure their intensity. These issues have been for a long time a sub-
ject of interest and a huge interest effort in many research and scholarly communities,
and a wide array of various coefficients have been developed over the years.

A notable example in this line of research is the Pearson correlation coefficient r,
i.e., a measure of a linear relationship between the variables, which is one of the most
frequently used tools in statistics (cf. Rodgers and Nicewander [18]). This correlation
coefficient indicates how well the values of two variables move together in a linear
way (Rodgers and Nicewander [18], Aczel [2]). The assumption that is necessary is
that the distributions of the variables are normal. When this assumption is not valid or
the data are in the form of ranks, we can use some other measures of the degree of
association between two variables, notably the Spearman rank correlation coefficient rs

(e.g., Aczel [2]) or the Kendall τ correlation coefficient (Kendall [14]).
Although the Spearman rank correlation coefficient is said to be used more often

(cf. Griffiths [9]), the Kendall τ correlation coefficient has an intuitively simple inter-
pretation, and its algebraic structure is simpler than that of the Spearman coefficient
(cf. Noether [17]). This has clearly implied that the Kendall τ correlation coefficient is
a common tool that is employed in contemporary research as exemplified by Bracke et
al. [7], Benson et al. [6], Barret et al. [5], Kurvers et al. [8], Moller et al. [15], etc.

As Zadeh has observed [43], [44], most of information relevant to probabilistic ana-
lyzes is imprecise, and there is imprecision and fuzziness not only in probabilities, but
also in events, relations and properties. In this context, the probabilistic concepts should
also be extended to fuzzy models and their generalizations.

R.R. Yager et al. (Eds.): Soft Computing: State of the Art Theory, STUDFUZZ 291, pp. 39–54.
DOI: 10.1007/978-3-642-34922-5 4 c© Springer-Verlag Berlin Heidelberg 2013
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One of the most relevant and widely used extension of the basic concept of Zadeh’s
fuzzy sets is the concept of Atanassov’s intuitionistic fuzzy set (A-IFS) in which, roughly
speaking the degree of membership alone, as in Zadeh’s fuzzy set, is replaced by a de-
gree of membership, degree of non-membership and hesitation margin, with all sum-
ming up to 1. Therefore, a challenge and necessity is to extend properties and relations
defined for information represented by means of fuzzy sets to those for information
defined by means of the A-IFSs. The analysis of relationships between the A-IFSs is
therefore a very important challenge and research task.

In our quest for doing the above, we have already discussed in detail the Pearson
correlation coefficient r (Szmidt and Kacprzyk [37], and the Spearman rank correlation
coefficient rs in (Szmidt and Kacprzyk [38]). This paper is a continuation of our work
[39] on the Kendall τ correlation coefficient.

We have proposed the concept of the Kendall correlation coefficient for the A-IFSs
which is a generalization of the Kendall correlation coefficient for crisp sets as it fulfills
the same properties. Moreover, it takes into account all three terms describing the A-
IFS, i.e., the membership values, non-membership values, and hesitation margins. We
show that each term plays an important role in data analysis and decision making. In
this paper we further elaborate upon that proposal.

An important part of this paper is the presentation of a well known benchmark com-
monly used in the broadly perceived analysis of data, i.e. the Iris data set from the
University of California, Irvine repository [46].

2 A Brief Introduction to Intuitionistic Fuzzy Sets

One of the possible generalizations of a fuzzy set in X (Zadeh [42]), given by

A
′
= {< x,μA′ (x)> |x ∈ X} (1)

where μA′ (x) ∈ [0,1] is the membership function of the fuzzy set A
′
, is Atanassov’s

intuitionistic fuzzy set A (Atanassov [3], [4]), namely:

A = {< x,μA(x),νA(x)> |x ∈ X} (2)

where: μA : X → [0,1] and νA : X → [0,1] such that 0<μA(x)+ νA(x)<1, and μA(x),
νA(x) ∈ [0,1] denote the degree of membership and a degree of non-membership of
x ∈ A, respectively, and the hesitation margin of x ∈ A is:

πA(x) = 1− μA(x)−νA(x) (3)

The πA(x) expresses a lack of knowledge of whether x belongs to A or not (Atanas-
sov [4]); obviously, 0<πA(x)<1, for each x ∈ X ;

The hesitation margin turns out to be important while considering the distances
(Szmidt and Kacprzyk [21], [23], [30], entropy (Szmidt and Kacprzyk [25], [32]), simi-
larity (Szmidt and Kacprzyk [33]) for the A-IFSs, etc. i.e., the measures that play a cru-
cial role in virtually all information processing tasks. The hesitation margin is shown
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Fig. 1. Geometrical representation

to be indispensable also in the ranking of intuitionistic fuzzy alternatives as it indi-
cates how reliable (sure) information represented by an alternative is (cf. Szmidt and
Kacprzyk [34], [35]).

The use of A-IFSs instead of fuzzy sets implies the introduction of additional de-
grees of freedom (non-memberships and hesitation margins) into the set description.
Such a generalization of fuzzy sets gives us an additional possibility to represent imper-
fect knowledge which may lead to describing many real problems in a more adequate
way. This is confirmed by successful applications of A-IFSs to group decision making,
negotiations, voting and other situations are presented in Szmidt and Kacprzyk [20],
[22], [24], [26], [27], [28], [29], [31], [36], Szmidt and Kukier [40], [41].

2.1 A Geometrical Representation

One of possible geometrical representations of an intuitionistic fuzzy set is given in
Fig. 1 (cf. Atanassov [4]). It is worth noticing that although we use a two-dimensional
figure (which is more convenient to draw in our further considerations), we still adopt
our approach (e.g., Szmidt and Kacprzyk [23], [30], [25], [32]), [33]) taking into ac-
count all three terms (membership, non-membership and hesitation margin values) de-
scribing an intuitionistic fuzzy set. Any element belonging to an intuitionistic fuzzy set
may be represented inside an MNO triangle. In other words, the MNO triangle repre-
sents the surface where the coordinates of any element belonging to an A-IFS can be
represented. Each point belonging to the MNO triangle is described by the three coordi-
nates: (μ ,ν,π). Points M and N represent the crisp elements. Point M(1,0,0) represents
elements fully belonging to an A-IFS as μ = 1, and may be seen as the representation
of the ideal positive element. Point N(0,1,0) represents elements fully not belonging
to an A-IFS as ν = 1, i.e. can be viewed as the ideal negative element. Point O(0,0,1)
represents elements about which we are not able to say if they belong or not belong
to an A-IFS (the intuitionistic fuzzy index π = 1). Such an interpretation is intuitively



42 E. Szmidt, J. Kacprzyk, and P. Bujnowski

appealing and provides means for the representation of many aspects of imperfect infor-
mation. Segment MN (where π = 0) represents elements belonging to the classic fuzzy
sets (μ + ν = 1). For example, point x1(0.2,0.8,0) (Figure 1), like any element from
segment MN represents an element of a fuzzy set. A line parallel to MN describes the
elements with the same values of the hesitation margin. In Figure 1 we can see point
x3(0.5,0.1,0.4) representing an element with the hesitation margin equal 0.4, and point
x2(0.2,0,0.8) representing an element with the hesitation margin equal 0.8. The closer
a line that is parallel to MN is to O, the higher the hesitation margin.

3 Correlation and the Kendall Coefficient between Crisp Sets

The correlation coefficient (Pearson’s r) between two variables is a measure of the linear
relationship between them.

The correlation coefficient is equal 1 in the case of a positive (increasing) linear
relationship, -1 in the case of a negative (decreasing) linear relationship, and some value
between -1 and 1 in all other cases. The closer the coefficient is to either -1 or 1, the
stronger the correlation between the variables.

Let (X1,Y1), (X2,Y2), . . . , (Xn,Yn) be a random sample of size n from a joint proba-
bility density function fX ,Y (x,y), let X and Y be the sample means of variables X and
Y , respectively, then the sample correlation coefficient r(X ,Y ) is given as (e.g., [18]):

r(A,B) =

n
∑

i=1
(xi −X)(yi −Y )

(
n
∑

i=1
(xi −X)2

n
∑

i=1
(yi −Y )2)0.5

(4)

where: X = 1
n

n
∑

i=1
xi, Y = 1

n

n
∑

i=1
yi.

When the assumption that the data distributions are normal is not valid or when data
are in the form of ranks we may use the Spearman rank correlation coefficient or the
Kendall rank correlation coefficient. In this paper we discuss the Kendall rank corre-
lation coefficient which, due to – for instance – Noether [17] has an intuitively simple
interpretation, and its algebraic structure is much simpler than that of the Spearman
coefficient.

Definition 1. (cf. e.g., Nelsen [1]) Let (x1,y1), (x2,y2), . . . , (xn,yn) be a set of joint
observations from two random variables X and Y , respectively, such that all the values
of (xi) and (yi) are unique. Any pair of observations (xi,yi) and (x j,y j) are said to be
concordant if the ranks for both elements agree: that is, if both xi > x j and yi > y j or
if both xi < x j and yi < y j. They are said to be discordant, if xi > x j and yi < y j or if
xi < x j and yi > y j. If xi = x j or yi = y j, the pair is neither concordant, nor discordant;
i, j ∈ {1, . . . ,n}.

For n observations, (i.e., (i, j) ∈ {1, . . . ,n}2) the number of concordant C, discordant
D, tied pars T in X , and tied pairs U in Y (if xi = x j, or yi = y j, i, j ∈ {1, . . . ,n}, the pair
is said to be tied), is denoted:
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C = |{(i, j)|xi < x j and yi < y j}| (5)

D = |{(i, j)|xi < x j and yi > y j}| (6)

T = |{(i, j)|xi = x j}| (7)

U = |{(i, j)|yi = y j}| (8)

The Kendall τ coefficient is defined as [14]:

τ =
C−D

1
2 n(n− 1)

(9)

where: C - number of concordant pairs; D - number of discordant pairs, and

|τ| ≤ 1

For the perfect agreement between the two rankings (i.e., all pairs are concordant), the
coefficient has value 1. For the perfect disagreement between the two rankings (i.e., all
pairs are discordant), the coefficient has value -1. All other arrangements yield the value
of τ between -1 and 1 (increasing values imply an increasing agreement between the
rankings). For completely independent rankings, the coefficient has value 0.

If two values of X or two values of Y with the same rank (i.e. ties) occur, the follow-
ing formula is used [14]:

τb =
C−D√

1
2 (n(n− 1)−T

√
1
2)n(n− 1)−U

(10)

where: T - the number of ties in X (the number of pairs for which xi = x j; U - the
number of ties in Y (the number of pairs for which yi = y j.

4 Correlation, and the Kendall Coefficient between A-IFSs

In Szmidt and Kacprzyk [37] we proposed a correlation coefficient for two A-IFSs,
A and B, so that we could express not only a relative strength but also a positive or
negative relationship between A and B. We took into account all three terms describing
an A-IFSs (the membership values, non-membership values and the hesitation margins)
because each of them influences the results (cf. [37]).

Suppose that we have a random sample x1,x2, . . . ,xn ∈ X with a sequence of data
pairs [(μA(x1),νA(x1),πA(x1)),(μB(x1),νB(x1),πB(x1))], [(μA(x2), νA(x2), πA(x2)),
(μB(x2), νB(x2), πB(x2))], . . ., [(μA(xn), νA(xn), πA(xn)), (μB(xn), νB(xn), πB(xn))]
which correspond to the membership values, non-memberships values and hesitation
margins of the A-IFSs A and B defined on X , then the correlation coefficient rA−IFS(A,B)
is given by Definition 2.

Definition 2. The correlation coefficient rA−IFS(A,B) between two A-IFSs, A and B in
X , is (Szmidt and Kacprzyk [37]):

rA−IFS(A,B) =
1
3
(r1(A,B)+ r2(A,B)+ r3(A,B)) (11)
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where

r1(A,B) =

n
∑

i=1
(μA(xi)− μA)(μB(xi)− μB)

(
n
∑

i=1
(μA(xi)− μA)2)0.5(

n
∑

i=1
(μB(xi)− μB)2)0.5

(12)

r2(A,B) =

n
∑

i=1
(νA(xi)−νA)(νB(xi)−νB)

(
n
∑

i=1
(νA(xi)−νA)2)0.5(

n
∑

i=1
(νB(xi)−νB)2)0.5

(13)

r3(A,B) =

n
∑

i=1
(πA(xi)−πA)(πB(xi)−πB)

(
n
∑

i=1
(πA(xi)−πA)2)0.5(

n
∑

i=1
(πB(xi)−πB)2)0.5

(14)

where: μA = 1
n

n
∑

i=1
μA(xi), μB = 1

n

n
∑

i=1
μB(xi), νA = 1

n

n
∑

i=1
νA(xi), νB = 1

n

n
∑

i=1
νB(xi),

πA = 1
n

n
∑

i=1
πA(xi), πB = 1

n

n
∑

i=1
πB(xi),

The proposed correlation coefficient (11) depends on two factors: the amount of infor-
mation expressed by the membership and non-membership degrees (12)–(13), and the
reliability of information expressed by the hesitation margins (14).

Remark: Analogously as for the crisp and fuzzy data, rA−IFS(A,B) makes sense for
the A-IFS type variables whose values vary. If, for instance, the temperature is con-
stant and the amount of ice cream sold is the same, then it is impossible to conclude
about their relationship (as, from the mathematical point of view, we avoid zero in the
denominator).

The correlation coefficient rA−IFS(A,B) (11) fulfills the following properties:

1. rA−IFS(A,B) = rA−IFS(B,A),
2. If A = B then rA−IFS(A,B) = 1,
3. |rA−IFS(A,B)| ≤ 1.

The above properties are not only fulfilled by the correlation coefficient rA−IFS(A,B)
(11) but also by all of its three components (12)–(14).

Remark: It is should be emphasized that rA−IFS(A,B) = 1 occurs not only for A = B
but also in the cases of a perfect linear correlation of the data (the same concerns each
component (12)–(14)).

However, Definition 2 can not be used to measure the degree of association between
A-IFSs when the assumption that the data distributions are normal is not valid or when
data are in the form of ranks. In such a case we can use the Spearman rank correlation
coefficient (cf. Szmidt and Kacprzyk [38]) or the Kendall rank correlation coefficient to
be defined here for A-IFSs.

Definition 3. The Kendall rank correlation coefficient τA−IFS between two A-IFSs, A
and B in X is defined as:

τA−IFS =
1
3
(τ1 + τ2 + τ3) (15)
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where: τi, i = 1, . . . ,3 are the Kendall rank correlation coefficients between A and B
with respect to their membership values, non-membership values, and hesitation margin
values, given as:

τ1 =
Cμ −Dμ
1
2 n(n− 1)

(16)

where: Cμ – the number of concordant pairs with respect to the membership values; Dμ
– the number of discordant pairs with respect to the membership values, i.e.:

Cμ = |{(i, j)|μA(xi)< μA(x j) and μB(xi)< μB(x j)}| (17)

Dμ = |{(i, j)|μA(xi)< μA(x j) and μB(xi)> μB(x j)}| (18)

τ2 =
Cν −Dν
1
2 n(n− 1)

(19)

where: Cν – the number of concordant pairs with respect to the non-membership values;
Dν – the number of discordant pairs with respect to the non-membership values, i.e.:

Cν = |{(i, j)|νA(xi)< νA(x j) and νB(xi)< νB(x j)}| (20)

Dν = |{(i, j)|νA(xi)< νA(x j) and νB(xi)> νB(x j)}| (21)

and

τ3 =
Cπ −Dπ
1
2 n(n− 1)

(22)

where: Cπ – the number of concordant pairs with respect to the hesitation margins; Dπ
– the number of discordant pairs with respect to the hesitation margins, i.e.:

Cπ = |{(i, j)|πA(xi)< πA(x j) and πB(xi)< πB(x j)}| (23)

Dπ = |{(i, j)|πA(xi)< πA(x j) and πB(xi)> πB(x j)}| (24)

For the Kendall rank correlation coefficient τ (15) between the A-IFSs the same prop-
erties as for its crisp set counterpart are valid, i..e.:

1. |τA−IFS| ≤ 1

2. τA−IFS(A,B) = τA−IFS(B,A)

The interpretation of the obtained values is the same as in a case of the crisp sets. The
perfect agreement of the rankings (i.e., the two rankings are the same) produces the
value of the coefficient τA−IFS equal to 1. The perfect disagreement of the rankings
(i.e., one ranking is the reverse of the other) produces the value of the coefficient τA−IFS

equal to -1. All other arrangements produce the value of the coefficient τA−IFS which
lies between -1 and 1, and increasing values imply increasing agreement between the
rankings. For the completely independent rankings, the coefficient τA−IFS is equal to 0.

Each of the three components of the Kendall rank correlation coefficient (15) i.e.,
(16), (19), and (22) fulfill the above properties, too.

Remark: Definition 3 was introduced for the cases without ties. If ties occur, the coun-
terparts of (10) replace the formulas (16), (19), and (22).

We will show now some small but illustrative examples.
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Table 1. Example 1 - calculations of (16), (19), (22)

Calculation of the Kendall component:
(16) (19) (22)

pair score pair score pair score
(0.5, 0.55) +1 (0, 0.1) +1 (0.05, 0.12) +1
(0.5, 0.57) +1 (0, 0.2) +1 (0.05, 0.23) +1
(0.5, 0.38) -1 (0, 0.5) +1 (0.05, 0.35) +1
(0.5, 0.35) -1 (0, 0.6) +1 (0.05, 0.95) +1
(0.55, 0.57) +1 (0.1, 0.2) +1 (0.12, 0.23) +1
(0.55, 0.38) -1 (0.1, 0.5) +1 (0.12, 0.35) +1
(0.55, 0.35) -1 (0.1, 0.6) +1 (0.12, 0.95) +1
(0.57, 0.38) -1 (0.2, 0.5) +1 (0.23, 0.35) +1
(0.57, 0.35) -1 (0.2, 0.6) +1 (0.23, 0.95) +1
(0.38, 0.35) -1 (0.5, 0.6) +1 (0.35, 0.95) +1

Example 1. An expert clinician, while administering any medication, should make a
decision based on the context of the individual patient and his/her own past experience
of the expected effect (e.g. Helgason and Jobe [10], [11]). The effects may be positive
(expressed by a membership value), negative (expressed by a non-membership value),
and difficult to foresee (expressed by a hesitation margin), for a specific patient. Sup-
pose that two new medicines A and B are tested, and their effects on 5 patients are the
following (Figure 2):

A ={(x1,0.05,0.2,0.75),(x2,0.15,0.35,0.5),(x3,0.25,0.38,0.37),

(x4,0.4,0.4,0.2),(x5,0.5,0.45,0.05)} (25)

B ={(x1,0.5,0,0.95),(x2,0.55,0.1,0.35),(x3,0.57,0.2,0.23),

(x4,0.38,0.5,0.12),(x5,0.35,0.6,0.05)} (26)

where, for example, the positive effects of medicine A on the first patient (x1) are ex-
pressed by the membership value equal to 0.05, the negative effects are expressed by
the non-membership value equal to 0.2, and effects difficult to predict are expressed by
the hesitation margin equal to 0.75; etc.

To calculate τA−IFS, we go through three steps using the three terms describing an
A-IFS (membership values, non-membership values, and the hesitation margins) which
are responsible for the three components (τ1, τ2, τ3) of τA−IFS (15).

1. The membership values of the elements in A are: 0.05,0.15,0.25,0.4,0.5 which
means that they are already ordered, and the corresponding membership values
of the elements in B are: 0.5,0.55,0.57,0.38,0.35 (they first increase, and then
decrease). Details of the calculations of τ1 due to (17)–(18) are given in Table 1.
It is worth mentioning that we calculate τ1 using actual observations without first
converting them to the ranks: we consider all possible pairs of the membership
values of the elements in B – for each element we consider only the pairs build
from elements occurring after the element considered, eg., for 0.57 we consider
two pairs: (0.57, 0.38) and (0.57, 0.35), whereas for 0.38 we consider only one
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Fig. 2. Data from Example 1

pair: (0.38, 0.35). If the second element in a pair is bigger than the first element, the
score is equal 1, if the second element is smaller than the first element, the score
is equal to -1 (see (Table 1)) As we have C2

5 = 10 pairs, and the obtained score
(Table 1, second column) is equal 3− 7 =−4, in result τ1 (16) is equal to −0.4.

2. The non-membership values of the elements in A: 0.2,0.35,0.38,0.4,0.45 are also
ordered (increasing), and the non-membership values of the elements in B are:
0,0.1,0.2,0.5,0.6 (also increasing). In result, performing the same calculations as
previously (details in Table 1, third and fourth columns), we obtain τ2 (19) equal
to 1.

3. The hesitation margins of the elements in A, i.e.: 0.75,0.5,0.37,0.2,0.05 decrease,
and the hesitation margins of the elements in B i.e.: 0.95, 0.35, 0.23, 0.12, 0.05,
decrease, too. First we arrange the hesitation margins of the elements of A in an in-
creasing order, and obtain: 0.05,0.2,0.37,0.5,0.75, with the respective order of the
elements of B: 0.05,0.12,0.23,0.35,0.95. Further calculations are like previously
– details are in Table 1 (fifth and sixth columns). In effect τ3 (22) is equal to 1.

Therefore, finally, from (15) we obtain τA−IFS(A,B) =
1
3 (−0.4+ 1+ 1)= 0.53.

If we exclude from considerations the hesitation margins, and take into account two
components (16) and (19) only, as is done in some works, we obtain τA−IFS(A,B) =
1
2 (−0.4+ 1) = 0.3. But from the point of view of an expert clinician all three compo-
nents may seem interesting. Let us notice that in this example the data are such that
τ3 = 1 influences substantially the final result. If we consider a relationship between A
and B in the categories of the positive effects and negative effects only, we obtain an
average relationship equal to 0.3 which suggests that the relationship between A and
B is not strong. On the other hand, τ3 (22) equal to 1 suggests that both medicines are
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strongly associated as far as unpredictable effects are concerned. It may be an important
information from a medical point of view.

It is worth emphasizing that for practical purposes (e.g., in decision making) it seems
rather useful to know the component τ3 (22) responsible for the association of A and B
in respect to lack of knowledge represented by the variables considered. If, for example,
the data represent reactions of patients to a new medicine, it seems unavoidable to
carefully examine just the part (22) of the Kendall coefficient (15) as it may happen
that a new treatment/medicine increases unpredictable reactions. In such situations it
may be important not only to assess all components separately but even to give them
different weights in (15).

Certainly, we can find cases for which τ3 (22) does not influence the Kendall coefficient
τA−IFS (15) in a sense of the final result (an obtained number). But such situations are
exceptional, not a rule.

Example 2. Consider data in Figure 3:

Fig. 3. Data from Example 2

A ={(x1,0.05,0.2,0.75),(x2,0.15,0.35,0.5),(x3,0.25,0.38,0.37),

(x4,0.4,0.4,0.2),(x5,0.5,0.45,0.05)} (27)

B ={(x1,0.18,0.1,0.72),(x2,0.25,0.2,0.55),(x3,0.3,0.3,0.4),

(x4,0.32,0.45,0.23),(x5,0.34,0.6,0.06)} (28)

It is easy to verify that for the above data we obtain τ1 = 1, τ2 = 1, and τ3 = 1 (respec-
tively from (16), (19), (22)). In other words, in spite of taking into account τ3 (22) or
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Table 2. The values of the first Kendall correlation component (16) between each pair of the
attributes for the Iris Setosa data

Attribute sepal length sepal width petal length petal width
sepal length 1 0, 23 0,71 0,72
sepal width - 1 0,4 0,37
petal length - - 1 0.84
petal width - - - 1

Table 3. The values of the second Kendall correlation component (19) between each pair of the
attributes for the Iris Setosa data

Attribute sepal length sepal width petal length petal width
sepal length 1 NA 0,59 0,63
sepal width - 1 0,27 0,24
petal length - - 1 0.84
petal width - - - 1

Table 4. The values of the Kendall correlation (15) (total, i.e. including the first and second
component) in between each pair of the attributes for the Iris Setosa data

Attribute sepal length sepal width petal length petal width
sepal length 1 -0,03 0,65 0,67
sepal width - 1 0,34 0,31
petal length - - 1 0.84
petal width - - - 1

not, we obtain the same result for τA−IFS (15), as in this case τA−IFS(A,B) =
1
2 (1+1) =

1
3 (1+1+1) = 1. But, as it was shown earlier, such a situation may rather be considered
as a coincidence not a rule.

We have also examined the Kendall correlation coefficient using the Iris data [46] ex-
pressed in terms of the A-IFSs. Iris data consists of 3 classes with 50 instances each.
Each class refers to a type of the iris plant (Iris Setosa, Iris Versicolor, Iris Virginica).
There are 4 attributes: sepal length, sepal width, petal length, petal width.

We have used the algorithm based on the mass assignment theory proposed by
Szmidt and Baldwin [19] to describe the data in terms of the A-IFSs, i.e., to assign
the parameters of an A-IFS model which describes each attribute in terms of member-
ship values, non-membership values, and hesitation margin values. Having description
of the attributes in terms of A-IFSs, we have calculated the three components of (15)
for each pair of the attributes. The results are in (Tables 2–13).

The results concerning the Iris Setosa data are shown in Tables 2 – 4. We can observe
substantial correlation of petal length and petal width in respect with the components
(16) – Table 2 and (19) – Table 3. The values of the Kendall correlation component (22)
between each pair (except of sepal length and sepal width) of the attributes for the Iris
Setosa data are not statistically significant (at the 0.01 level) so they are not presented.
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Table 5. The values of the first Kendall correlation component (16) between each pair of the
attributes for the Iris Versicolor data

Attribute sepal length sepal width petal length petal width
sepal length 1 NA -0,12 NA
sepal width - 1 0,33 0,36
petal length - - 1 0.62
petal width - - - 1

Table 6. The values of the second Kendall correlation component (19) between each pair of the
attributes for the Iris Versicolor data

Attribute sepal length sepal width petal length petal width
sepal length 1 0,17 0,42 0,35
sepal width - 1 0,41 0,41
petal length - - 1 0.7
petal width - - - 1

Table 7. The values of the third Kendall correlation component (22) between each pair of the
attributes for the Iris Versicolor data

Attribute sepal length sepal width petal length petal width
sepal length 1 -0,17 0,15 0,18
sepal width - 1 0,28 0,23
petal length - - 1 0.61
petal width - - - 1

Table 8. The values of the total Kendall correlation (15) between each pair of the attributes for
the Iris Versicolor data

Attribute sepal length sepal width petal length petal width
sepal length 1 0,004 0,15 0,27
sepal width - 1 0,34 0,33
petal length - - 1 0.64
petal width - - - 1

Table 9. The values of the first Kendall correlation component (16) between each pair of the
attributes for the Iris Virginica data

Attribute sepal length sepal width petal length petal width
sepal length 1 -0,21 0,72 0,64
sepal width - 1 -0,14 -0,16
petal length - - 1 0.86
petal width - - - 1
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Table 10. The values of the second Kendall correlation component (19) between each pair of the
attributes for the Iris Virginica data

Attribute sepal length sepal width petal length petal width
sepal length 1 0,28 0,36 0,32
sepal width - 1 0,49 0,52
petal length - - 1 0.89
petal width - - - 1

Table 11. The values of the third Kendall correlation component (22) between each pair of the
attributes for the Iris Virginica data

Attribute sepal length sepal width petal length petal width
sepal length 1 NA 0,47 0,41
sepal width - 1 0,23 0,2
petal length - - 1 0.61
petal width - - - 1

Table 12. The values of the total Kendall correlation (15) between each pair of the attributes for
the Iris Virginica data

Attribute sepal length sepal width petal length petal width
sepal length 1 -0,04 0,61 0,55
sepal width - 1 0,13 0,10
petal length - - 1 0.78
petal width - - - 1

Table 13. The values of the total Kendall correlation (15) between each pair of the attributes for
all Iris data

Attribute sepal length sepal width petal length petal width
sepal length 1 -0,03 0,47 0,5
sepal width - 1 0,27 0,25
petal length - - 1 0.76
petal width - - - 1

The Kendall correlation coefficient (15) – Table 4 is the biggest between petal length
and petal width, and does not count only between sepal length and sepal width.

The results concerning the Iris Versicolor data are in Tables 5 – 8. The values of the
Kendall correlation components (16), (19), and (22) are in Tables 5 – 7. Again, petal
length and petal width are highly correlated (all three components (16), (19), and (22)
are substantial and statistically significant). This trend is also reflected by (15) for Iris
Versicolor – Table 8.

The Kendall correlation coefficient components (16), (19), and (22) between the Iris
Virginica attributes are in Tables 9 – 12. Again, Kendall correlation between petal width
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and petal length is the highest in respect with all three components (16), (19), (22)), and
“confirmed” in a case of (15), too. Sepal width is rather weakly correlated with all other
attributes in respect with (16) – Table 9. On the other hand, sepal width is correlated to
a stronger extent with other attributes with respect to the component (19) – Table10 but
it does not have such a strong influence (because of the other two components) on (15)
– Table 12.

Finally, in Table 13 there are shown the values of the (total) Kendall correlation (15)
between each pair of the attributes for all the Iris data. We may observe that some results
are still the same as for the separate components of the data, e.g., a strong correlation
between petal length and petal width. On the other hand, e.g., sepal width is moderately
correlated with other attributes (petal length and petal width) whereas for some situa-
tions previously analyzed, it was small. In other words, it seems important to consider
a detailed structure of the data examined. Next, all three components of the Kendall
correlation coefficient (15) are important and worth considering separately in the sense
of providing much richer insight.

5 Conclusions

A new concept of the Kendall correlation coefficient for the A-IFSs was proposed.
The coefficient is a generalization of the Kendall correlation coefficient as defined for
the crisp sets, i.e., it fulfills the same properties, and reduces to its well known form
for the crisp sets. It is worth emphasizing that all three terms describing the A-IFS
were taken into account (the membership values, non-membership values and hesitation
margins). Each term plays an important role in data analysis and decision making, by
providing a deeper insight, so that each of them should be reflected while assessing the
relationship between the A-IFSs.
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L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 314–323. Springer,
Heidelberg (2006)

32. Szmidt, E., Kacprzyk, J.: Some Problems with Entropy Measures for the Atanassov Intu-
itionistic Fuzzy Sets. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI),
vol. 4578, pp. 291–297. Springer, Heidelberg (2007)

33. Szmidt, E., Kacprzyk, J.: A New Similarity Measure for Intuitionistic Fuzzy Sets: Straight-
forward Approaches not work. In: 2007 IEEE Conf. on Fuzzy Systems, pp. 481–486 (2007a)

34. Szmidt, E., Kacprzyk, J.: A new approach to ranking alternatives expressed via intuitionistic
fuzzy sets. In: Ruan, D., et al. (eds.) Computational Intelligence in Decision and Control, pp.
265–270. World Scientific (2008)

35. Szmidt, E., Kacprzyk, J.: Amount of Information and Its Reliability in the Ranking of
Atanassov’s Intuitionistic Fuzzy Alternatives. In: Rakus-Andersson, E., Yager, R.R., Ichalka-
ranje, N., Jain, L.C. (eds.) Recent Advances in Decision Making. SCI, vol. 222, pp. 7–19.
Springer, Heidelberg (2009)

36. Szmidt, E., Kacprzyk, J.: Ranking of Intuitionistic Fuzzy Alternatives in a Multi-criteria
Decision Making Problem. In: Proceedings of the Conference: NAFIPS 2009, Cincinnati,
USA, June 14-17, pp. 978–971. IEEE (2009) ISBN: 978-1-4244-4577-6

37. Szmidt, E., Kacprzyk, J.: Correlation of Intuitionistic Fuzzy Sets. In: Hüllermeier, E., Kruse,
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Abstract. The aim of this contribution is to elaborate generalized no-
tions of determinant and rank (of a matrix) and to show that the theory
of fuzzy relation equations can be investigated with the help of them.
We recall the notion of bideterminant of a matrix and investigate its
properties in a semilinear space. We introduce three different notions of
a rank of a matrix and compare them. Finally, we investigate solvability
of a system of fuzzy relation equations in terms of discriminant ranks of
its matrices (generalized Kronecker-Capelli theorem).

Keywords: semiring, semilinear space, residuated lattice, bidetermi-
nant, rank.

1 Introduction

Linear spaces are widely used in mathematics due to their clear and relatively
simple structure. Many sophisticated problems can be solved after the so called
linearization (projection on a certain linear space) is applied to an original for-
mulation. The main tool in the theory of linear spaces is the theory of solvability
of systems of linear equations. Besides its theoretical meaning, it is successfully
used in many applications that are processed using special numerical methods.

In [4], a linear-like behavior of fuzzy systems has been described. It has been
shown that the well known Compositional Rule of Inference (CRI) is modeled
by a homomorphism between semilinear spaces of fuzzy sets. Therefore, many
problems that involve the CRI in its formulation can be formulated in the lan-
guage of semilinear spaces. Very often they lead to solvability of related systems
of fuzzy relation equations which are analogues of systems of linear equations.

The aim of this contribution is to elaborate generalized notions of determinant
and rank (of a matrix) and to show that, analogously to the classical case, the
theory of fuzzy relation equations can be studied with the help of them. The
notion of bideterminant was originally introduced by Kuntzman in [10]. Some
combinatorial properties of bideterminants were investigated by M. Minoux, see
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[11] and few subsequent papers. In our contribution, we list the most important
properties of bideterminants that are similar to the classical ones.

Three generalized notions of a matrix rank will be introduced. All of them
are equivalent if the underlying space is linear. However, in a semilinear space
they are different. We analyze relationships among these notions in a vectorial
semilinear space (Section 5). In this respect, we continue research initiated in [1],
where the notion of a factor rank (one of those mentioned above) was introduced.

In the classical case, a solvability criterion (compatibility criterion) for a sys-
tem of linear equations is given by the Kronecker-Capelli theorem. It compares
ranks of two matrices: the matrix of coefficients and its extension by the right-
hand side vector. If ranks are equal, then the system is solvable and vice-versa.
In this contribution, we analyze the applicability of the Kronecker-Capelli theo-
rem to systems of equations in a semilinear space. For two matrix ranks, namely,
for discriminant and factor ranks, we will prove the first part (necessary con-
dition) of the Kronecker-Capelli theorem (Section 6). Then we will show that
the sufficient condition of the Kronecker-Capelli theorem is not valid for any
type of ranks mentioned above. Last but not least, we will analyze the problem
of solvability of systems of fuzzy relation equations in dual semilinear spaces
(Section 7).

2 Basic Algebraic Constructions

In this section, we introduce semi-structures which naturally arise when we ana-
lyze solvability of systems of fuzzy relation equations. They are: a commutative
semiring and a semimodule over a commutative semiring (also called a semilin-
ear space) [4,6,13]. The latter can be considered as a weak variant of a vector
(linear) space. Below, we recall necessary definitions.

Definition 1. A semiring R = (R,+, ·, 0, 1) is an algebra where

1. (R,+, 0) is a commutative monoid,
2. (R, ·, 1) is a monoid,
3. for all α, β, γ ∈ R, α · (β + γ) = α · β + α · γ, (β + γ) · α = β · α+ γ · α,
4. for all α ∈ R, 0 · α = α · 0 = 0.

A semiring is commutative if (R, ·, 1) is a commutative monoid. A semiring is
idempotent if + is an idempotent operation.

Example 1. (i) The set of non-negative integer numbers (Z+,+, ·, 0, 1) with
operations of addition and multiplication is the background example of a
commutative semiring.

(ii) A reduct [0, 1]�L = ([0, 1],∨,⊗, 0, 1) of �Lukasiewicz algebra with operations

x ∨ y = max{x, y}, x⊗ y = max{0, x+ y − 1}

is a commutative semiring.
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(iii) The min-plus algebra (R+,∧,+,+∞, 0) over the set R+ of non-negative
real numbers extended by +∞, where x ∧ y = min(x, y), is a commutative
semiring.

(iv) Let L = (L,∨,∧, ∗,→, 0, 1) be an integral, residuated, commutative l-
monoid (a residuated lattice shortly), and L∨ = (L,∨, ∗, 0, 1) be its reduct.
Then L∨ is a commutative ∨-semiring.

Definition 2. Let R = (R,+, ·, 0, 1) be a commutative semiring and V =(V,+, 0̄)
a commutative monoid. We say that V is a (left) semilinear space over R if an
external (left) multiplication λ : x̄ �→ λx̄ where λ ∈ R and x̄ ∈ V is defined.
Moreover, the following properties are fulfilled for all x̄, ȳ ∈ V and λ, μ ∈ R:

1. λ(x̄ + ȳ) = λx̄ + λȳ,
2. (λ+ μ)x̄ = λx̄+ μx̄,
3. (λ · μ)x̄ = λ(μx̄),
4. 1x̄ = x̄,
5. λ0̄ = 0̄.

Example 2. Let R = (R,+, ·, 0, 1) be a generic commutative semiring.

(i) Denote Rn (n ≥ 1) the set of n-dimensional vectors over R, i.e.

Rn = {x̄ = (x1, . . . , xn)
T | x1 ∈ R, . . . , xn ∈ R},

where (x1, . . . , xn)
T denotes the transpose of (x1, . . . , xn). Let 0̄ = (0, . . . , 0)T

and

x̄+ ȳ = (x1, . . . , xn)
T + (y1, . . . , yn)

T = (x1 + y1, . . . , xn + yn)
T .

For any λ ∈ R, let us define the external multiplication λx̄ by

λx̄ = λ(x1, . . . , xn)
T = (λ · x1, . . . , λ · xn)

T .

Then Rn = (Rn,+, 0̄) is a semilinear space over R (it is sometimes called a
vectorial semilinear space over R).

(ii) Denote Rn×m, n,m ≥ 1, a set of n × m matrices over R. Similarly to the
case (i) above, define the operation + and the external multiplication by an
element from R. Let O be the zero matrix. Then Rn×m = (Rn×m,+, O) is a
semilinear space over R. The space Rn×n of all square n× n matrices over
R will be denoted by Mn(R).

Let us define the operation of multiplication of two matrices A ∈ Rn×m and B ∈
Rm×k, n,m, k ≥ 1. The resulting (product) matrix C = AB where C ∈ Rn×k

will be defined by the same rule as in the classical linear algebra:

C =

⎛
⎜⎝
∑m

j=1 a1j · bj1 · · · ∑m
j=1 a1j · bjk

...
. . .

...∑m
j=1 anj · bj1 · · · ∑m

j=1 anj · bjk

⎞
⎟⎠ .

If in the definition of multiplication we let k= 1, so that B∈Rm×1 is a (column-)
vector, then the product C = AB of matrix A ∈ Rn×m and vector B is a vector
from Rn×1.
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3 Linear Dependence

In this section, we will recall the notion of bideterminant which has been origi-
nally introduced by Kuntzman in [10]. Some combinatorial properties of bideter-
minants were investigated by M. Minoux, see [11] and some subsequent papers.

Definition 3. Assume that R = (R,+, ·, 0, 1) is a commutative semiring and
Rn is a vectorial semilinear space over R.

• Vector
ȳ = α1x̄1 + · · ·+ αkx̄k

is called a linear combination of vectors x̄1, . . . , x̄k ∈ Rn (k ≥ 1) with coef-
ficients α1, . . . , αk ∈ R.

• Vectors x̄1, . . . , x̄k ∈ Rn (k ≥ 1) are linearly dependent if at least one vector
among x̄1, . . . , x̄k can be represented as a linear combination of others.

• Vectors x̄1, . . . , x̄k ∈ Rn (k ≥ 1) are linearly independent if they are not
linearly dependent.

Example 3. Let [0, 1]�L = ([0, 1],∨,⊗, 0, 1) be a semiring from Example 1, case
(ii), and [0, 1]3�L = ([0, 1]3,∨, 0̄) be a vectorial semilinear space over L. Consider

vectors x̄1, x̄2, x̄3, x̄4 ∈ [0, 1]3

x̄1 =

⎛
⎝0.9

0.6
0.6

⎞
⎠ , x̄2 =

⎛
⎝0.8

1
0.8

⎞
⎠ , x̄3 =

⎛
⎝0.6

1
0.8

⎞
⎠ , x̄4 =

⎛
⎝0.4

0.5
0.3

⎞
⎠ .

Then x̄4 is a linear combination of x̄1, x̄2 and x̄3 - namely,

x̄4 = 0.5x̄1 ∨ 0.5x̄2 ∨ 0.3x̄3.

Let us remark that there are other notions of a linear dependence in the litera-
ture, see, e.g., [2], [7].

4 Bideterminant

In this section, we will recall the notion of bideterminant which has been origi-
nally introduced by Kuntzman in [10]. Some combinatorial properties of bideter-
minants were investigated by M. Minoux, see [11] and some subsequent papers.
We assume that throughout this section, R = (R,+, ·, 0, 1) is a commutative
semiring.

Definition 4. Let A be a n × n matrix from Mn(R). Denote P (respectively,
Q) the set of even (respectively, odd) permutations of the set {1, 2, . . . , n}. A
bideterminant det(A) of A is an ordered pair

det(A) = (det1(A), det2(A)),
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such that det1(A), det2(A) ∈ R, and

det1(A) =
∑
σ∈P

a1,σ(1) · a2,σ(2) · . . . · an,σ(n) (1)

and

det2(A) =
∑
σ∈Q

a1,σ(1) · a2,σ(2) · . . . · an,σ(n) (2)

Obviously, det(A) is an element of R2 and moreover, it is an element of the semi-
linear space R2. We say that det(A) is zero (notation det(A) ≡ 0) if det1(A) =
det2(A). Otherwise det(A) is nonzero (det(A) �≡ 0).

Example 4. Let [0, 1]�L = ([0, 1],∨,⊗, 0, 1) be the semiring from Example 1, case
(ii). Consider the following matrices A,B ∈ [0, 1]3×3:

A =

⎛
⎝0.9 0.8 0.6

0.6 1 1
0.6 0.8 0.8

⎞
⎠ and B =

⎛
⎝0.9 0.4 0.6

0.6 0.6 1
0.6 0.3 0.8

⎞
⎠

Then (apply the rule of Sarrus and compute separately positive and negative
products) det(A) and det(B) are as follows:

det(A) = (.9 ⊗ 1⊗ .8 ∨ .8⊗ 1⊗ .6 ∨ .6⊗ .6⊗ .8,

.6⊗ 1⊗ .6 ∨ .8⊗ .6⊗ .8 ∨ .9⊗ 1⊗ .8) = (0.7, 0.7),

det(B) = (.9 ⊗ .6⊗ .8 ∨ .4⊗ 1⊗ .6 ∨ .6 ⊗ .6⊗ .3

.6⊗ .6⊗ .6 ∨ .4⊗ .6⊗ .8 ∨ .9⊗ 1⊗ .3) = (0.3, 0.2).

By the agreement, det(A) ≡ 0 while det(B) �≡ 0.

Definition 5. Let A be a m× n matrix over R, B a square s× s submatrix of
A where 1 ≤ s ≤ min(m,n). Bideterminant det(B) is called a (s-order) minor
of A.

It is not difficult to show that many properties of a classical determinant are
valid for a bideterminant too. Below, we will list some of them in (P1) - (P8).

(P1) If E ∈ Mn(R) is the unit matrix, i.e. ai,j = 1 if i = j, and ai,j = 0
otherwise, then det(E) = (1, 0).

(P2) Let A ∈ Mn(R) be a matrix such that for some k ∈ {1, 2, . . . , n} and
every j = 1, 2, . . . , n,

ak,j = bk,j + ck,j . (3)
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Then

det(A) = det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 . . . a1,n
...

. . .
...

ak−1,1 . . . ak−1,n

bk,1 . . . bk,n
ak+1,1 . . . ak+1,n

...
. . .

...
an,1 . . . an,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 . . . a1,n
...

. . .
...

ak−1,1 . . . ak−1,n

ck,1 . . . ck,n
ak+1,1 . . . ak+1,n

...
. . .

...
an,1 . . . an,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the operation “+” is considered over elements from R2.

(P3) Let λ ∈ R, and A ∈ Mn(R) where for some k ∈ {1, 2, . . . , n} and every
j = 1, 2, . . . , n, we have ak,j = λ · bk,j . Then

det(A) = λdet

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1 . . . a1,n
...

. . .
...

ak−1,1 . . . ak−1,n

bk,1 . . . bk,n
ak+1,1 . . . ak+1,n

...
. . .

...
an,1 . . . an,n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where λdet(·) denotes the external multiplication over the element from R2.

(P4) Let A ∈ Mn(R) be a matrix where for some k and for some l such that
k �= l, ak,j = al,j, j = 1, . . . , n. Then det(A) ≡ 0.

(P5) If AT denotes the transpose of A then det(A) = det(AT ).

(P6) Let A, Ã ∈ Mn(R) and Ã is obtained from A by a transposition of
two rows. If det(A) = (det1(A), det2(A)), then det(Ã) = (det2(A), det1(A)). In
particular, if det(A) ≡ 0 then det(Ã) ≡ 0.

(P7) Let A ∈ Mn(R) where for at least one k ∈ {1, 2, . . . , n} and every
j = 1, 2, . . . , n, ak,j = 0. Then det(A) = (0, 0).

(P8) Let A ∈ Mn(R). By A′
i,j we denote the matrix which is obtained from

A by removing the i-th row and the j-th column. The following analog of the
known row expansion is valid (see also [6]). Below, it is given for the i-th row,
i = 1, 2, . . . , n:

det(A) =
∑

{j≤n | i+j is even}
ai,j(det1(A

′
i,j), det2(A

′
i,j))+

∑
{j≤n | i+j is odd}

ai,j(det2(A
′
i,j), det1(A

′
i,j)),

where ai,j(det(·), det(·)) and “+” denote respective operations over elements of
the semilinear space R2.
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Remark 1. The above listed properties (P1) - (P8) are formulated for rows of
matrix. It is easy to see (and it follows from the property (P5)) that similar
properties are valid for columns of matrix as well.

5 Ranks of a Matrix

In this section, three generalized notions of a rank of matrix will be introduced.
All of them are equivalent if the underlying space is linear. However, in a semi-
linear space they are different. Below, we will analyze a relationship between
various ranks in a vectorial semilinear space over R = (R,+, ·, 0, 1).

Let A be an n×m matrix over R. We will associate two vectorial semilinear
spaces Rn and Rm with A. Rm is a space which contains rows of A, and Rn is a
space which contains columns of A. Rows of A will be denoted by ā1, ā2, . . . , ān,
while columns of A will be denoted by ā1, ā2, . . . , ām. Moreover, we will write
A(ā1, ā2, . . . , ān) if A is a matrix with the respective rows and similarly, we will
write A(ā1, ā2, . . . , ām) if A is a matrix with the respective columns.

Definition 6. Let A be an n×m matrix over R, i.e. A ∈ Rn×m.

• A rank r(A) of A (we will call it a discriminant rank to distinguish from other
ones), is a maximal number k of rows āi1 , . . . , āik (columns āj1 , . . . , ājk) such
that there exists a nonzero k-order minor of the k×m matrix A(āi1 , . . . , āik)
(n× k matrix A(āj1 , . . . , ājk)). It is obvious that r(A) ≤ min(n,m).

• A column rank rc(A) of A is the least number of linearly independent column
vectors of A that are generators 1 of the set {ā1, ā2, . . . , ām}.

• A factor rank (see also [1] for a similar definition) rf (A) is the least positive
integer k, k ≤ min(m,n), such that there exist matrices B ∈ Rn×k, C ∈
Rk×m, that satisfy A = BC.

Example 5. Let [0, 1]�L = ([0, 1],∨,⊗, 0, 1) be the semiring from Example 1, case

(ii), and matrices A,B ∈ [0, 1]3×3

�L be from Example 4 where we have shown that

det(A) ≡ 0 and det(B) �≡ 0. Therefore, their discriminant ranks are estimated
as r(B) = 3 and r(A) < 3. It can be easily verified that r(A) = 2, because the
the following 2× 2 submatrix of A

A′ =
(
0.9 0.8
0.6 1

)
has the nonzero bideterminant det(A′) = (0.9, 0.4).

Example 6. Let (R+,∧,+,+∞, 0) be the semiring from Example 1, case (iii).
Then the bideterminant of the matrix

A =

(
5 3
10 6

)
is nonzero (namely, det(A) = (11, 13)). Therefore, the discriminant rank r(A)
= 2.
1 Linearly independent vectors are generators of a set of vectors if any element of this
set can be represented as a linear combination of generators.
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5.1 Column and Factor Ranks

In this section, we analyze a relationship between column and factor ranks. We
will prove that the latter is smaller than the former (cf. [1]).

Proposition 1. Let R be a commutative semiring and A ∈ Rn×m. Then rf (A)
≤ rc(A).

Proof. Let A be an n × m matrix over R and rc(A) = k. If k = m then
the conclusion follows immediately from the obvious representation A = AE
where E is the m × m unit matrix over R. Assume that k < m and that the
first k columns of A are linearly independent and generate the whole set of
columns {ā1, ā2, . . . , ām}. This means that, for every l = k + 1, . . . ,m, there
exist coefficients βl1, . . . , βlk ∈ R such that āl = βl1ā

1 + · · ·βlkā
k. Denote

β̄l = (βl1, . . . , βlk)
T and let ēi ∈ Rk be the i-th unit column vector. Then it

is a technical exercise to verify that A = BC where Bn×k = B(ā1, ā2, . . . , āk)
and Ck×m = C(ē1, . . . , ēk, β̄k+1, . . . , β̄m). The latter representation proves that
rf (A) ≤ k.

Let us remark that the above given proof is simpler than the proof of a similar
assertion in [1]. The following corollary (cf. [22]) easily follows from Proposition 1.

Corollary 1. Let A ∈ Rn×m and rf (A) = m. Then column vectors of A are
linearly independent.

Proof. Assume that rf (A) = m, but the column vectors ā1, ā2, . . . , ām of A are
linearly dependent. Then at least one vector, say ām, can be represented as a
linear combination of others:

ām = β1ā
1 + · · ·βm−1ā

m−1.

Therefore, A = BC where Bn×(m−1) = B(ā1, ā2, . . . , ām−1) and C(m−1)×m =
C(ē1, . . . , ēm−1, β̄) where ēi ∈ Rm−1 is the i-th unit column vector, i = 1, . . . ,m−
1, and β̄ = (β1, . . . , βm−1)

T . It follows that rf (A) ≤ m − 1, which contradicts
the assumption.

Remark 2. There are matrices A for which rf (A) < rc(A) (see [1]).

5.2 Column and Discriminant Ranks

Below, a relationship between column and discriminant ranks is analysed. We
will see that the column rank is greater than or equal to the discriminant rank.

The following statement is a direct consequence of the notion of linear depen-
dence (see Section 3) and basic properties of bideterminant.

Proposition 2. If row-vectors ā1, . . . , ān ∈ Rn (column-vectors ā1, . . . , ām ∈
Rn) of a square matrix A ∈ Rn×n are linearly dependent then

det(A(ā1, . . . , ān)) ≡ 0 (det(A(ā1, . . . , ān)) ≡ 0).
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Proof. The proof easily follows from the properties (P2) and (P3) of a bideter-
minant.

It is worth to remark that the reverse implication is not true. The counterexample
can be found in [6].

Corollary 2. If row-vectors ā1, . . . , āk ∈ Rm, k ≤ min(n,m), (column-vectors
ā1, . . . , āk ∈ Rn) of A ∈ Rn×m are linearly dependent then

r(A(ā1, . . . , āk)) < k (r(A(ā1, . . . , āk)) < k).

Corollary 3. Let A ∈ Rn×m, then

r(A) ≤ rc(A).

Proof. If rc(A) = m, then the conclusion follows from the trivial restriction
r(A) ≤ min(n,m). Assume that rc(A) = k and k < m. Then any s-order minor
of A, where s ≥ k+ 1, is equal to zero. Therefore, by Definition 6, r(A) < k + 1
and r(A) ≤ rc(A).

6 Kronecker-Capelli Theorem in a Semilinear Space

Let R = (R,+, ·, 0, 1) be a commutative semiring, m,n ≥ 1, and Rm, Rn vec-
torial semilinear spaces over R. Let moreover, A = [aij ] be a n×m matrix and
b̄ = (b1, . . . , bn)

T vector over R. The following system of equations

a11 · x1 + · · ·+ a1m · xm = b1,

. . . . . . . . . . . . . . . . . . . . . . . . . (4)

an1 · x1 + · · ·+ anm · xm = bn,

is considered with respect to the unknown vector x̄ = (x1 . . . , xm)T ∈ Rm. The
short denotation of (4) is as follows:

Ax̄ = b̄,

where Ax̄ is the product of matrix A and vector x̄. The matrix A and vector b̄
will be referred to as the matrix of coefficients and the right-hand side vector
of (4).

The following proposition easily follows from definitions above.

Proposition 3. The system Ax̄ = b̄ is solvable if and only if the vector b̄ can be
represented as a linear combination of vector-columns ā1, . . . , ām of the matrix
of coefficients A.

Thus, solvability of (4) depends on the relationship between A and b̄. In the
foregoing text, we have generalized notions of determinant and rank of matrix.
In the text below, we are going to prove that solvability of (4) implies coincidence
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between the rank of A and the rank of its extension by b̄. In linear algebra, this
result is known as the Kronecker-Capelli theorem.

Thus, the Kronecker-Capelli theorem gives the criterion of solvability of a
system of linear equations. More precisely, it compares ranks of two matrices:
the matrix of coefficients and its extension by the right-hand side vector. If they
are equal then the system is solvable and vice versa.

In this section, we will see that in a semilinear space, the Kronecker-Capelli
theorem is valid only in its first part, i.e. only the necessary condition of solv-
ability is true. Moreover, we will see that this necessary condition is true only
for two matrix ranks, namely, for discriminant and factor ranks. The sufficient
condition of solvability in the statement of the Kronecker-Capelli theorem is not
true for all three introduced above ranks.

The statement below will be used in the proof of the Kronecker-Capelli the-
orem in a semilinear space.

Proposition 4. Let A be an n × m matrix with columns ā1, . . . , ām ∈ Rn.
Let a column-vector ām+1 ∈ Rn be a linear combination of ā1, . . . , ām. Then
discriminant ranks of matrices A = A(ā1, . . . , ām) and A′ = A(ā1, . . . , ām, ām+1)
coincide.

6.1 Necessary Condition of the Kronecker-Capelli Theorem

Under the assumption that the system (4) is solvable we will examine the rela-
tionship between ranks of A and Ab̄ for three introduced above ranks.

Theorem 1. If the system (4) is solvable then discriminant ranks of A and Ab̄
are equal, i.e. r(A) = r(Ab̄).

Proof. Assume that the system (4) is solvable. Then vector b̄ is a linear com-
bination of the column vectors of A. Therefore, the conclusion of the theorem
follows from Proposition 4.

Below, we will show that the claim of Theorem 1 is not valid for the column
rank. The following example gives the justification.

Example 7. Let B = (B4,∨,∧,′ , 0, 1) be a boolean algebra on the partially or-
dered set B4 = {0, a, b, 1}, see Fig. 1. The reduct Bs = (B4,∨,∧, 0, 1) is a
commutative semiring.

Let us consider the following system of equations over Bs:

(a ∧ x1) ∨ (b ∧ x2) = 1,

1 ∧ x3 = 0,

where the matrix of coefficients and the right-hand side vector are as follows:

A =

(
a b 0
0 0 1

)
, b̄ =

(
1
0

)
.

The system is solvable, and x1 = 1, x2 = 1, x3 = 0 is its solution. However,
rc(A) �= rc(Ab̄) because rc(A) = 3, while rc(Ab̄) = 2.
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Finally, let us remark that the claim of Theorem 1 is valid for the factor rank.
This fact has been shown in [22], and we will not repeat the arguments.

6.2 Sufficient Condition of the Kronecker-Capelli Theorem

Let us study the converse statement to that in Theorem 1: under the assumption
that ranks of A and Ab̄ are equal deduce that the system (4) is solvable. In the
below given examples, we will show that for three introduced above ranks this
converse statement is not true.

In the Example 8, the discriminant rank is used.

Example 8. Let R be a semiring from Example 1, case (iii), i.e. R = (R+,∧,+,
+∞, 0). Then the following system of equations is an instance of (4):

(5 + x1) ∧ (3 + x2) = 7, (5)

(10 + x1) ∧ (6 + x2) = 20, (6)

where the matrix of coefficients and the right-hand side vector are as follows:

A =

(
5 3
10 6

)
, b̄ =

(
7
20

)
.

Then det(A) = (11, 13) �≡ 0, see Example 6. It follows that r(A) = 2 and r(Ab̄) =
2 as well. Thus, r(A) = r(Ab̄). However, the system of equations (5)-(6) is not
solvable. In order to prove this, let us assume the opposite. Then by (5), either
x1 = 2, x2 ≥ 4, and (6) is transformed to

12 ∧ (6 + x2) = 20,

or x1 ≥ 2, x2 = 4, and (6) is transformed to

(10 + x1) ∧ 10 = 20.

None of the latter equations is solvable.

In the Example 9, the column rank is used.

1

0

ba

Fig. 1. Partially ordered set B4 = {0, a, b, 1}
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Example 9. Let [0, 1]�L = ([0, 1],∨,⊗, 0, 1) be a semiring from Example 1, case
(ii), and Ax̄ = b̄ a system of equations over [0, 1]�L where

A =

(
1
2

1
2

1
2

1
4

)
, b̄ =

(
1
1

)
.

Because for any x1, x2 ∈ L,

1

2
⊗ x1 ∨ 1

2
⊗ x2 ≤ 1

2
,

1

2
⊗ x1 ∨ 1

4
⊗ x2 ≤ 1

2
,

the system is not solvable. It can be easily checked that ā1, ā2 are linearly inde-
pendent, and thus, rc(A) = 2. Analogously, b̄, ā2 are linearly independent too.
However, due to ā1 = 1/2b̄, we have that rc(Ab̄) = 2.

In the Example 10, the factor rank is used.

Example 10. Let [0, 1]�L = ([0, 1],∨,⊗, 0, 1) be a semiring from Example 1, case
(ii), and Ax̄ = b̄ a system of equations over [0, 1]�L where

A =

(
1
2

1
4

1
2

1
4

)
, b̄ =

(
3
4
3
4

)
.

By the similar argumentation as in the Example 9, the above given system is
not solvable (indeed, for any x1, x2 ∈ L, 1

2 ⊗x1∨ 1
4 ⊗x2 ≤ 1

2 , and thus, it cannot
be equal to 3

4 ). On the other side, A (respectively, Ab̄) can be expressed as a
product of

B =

(
3
4
3
4

)
and C =

(
3
4

1
2

) (
respectively, C =

(
3
4

1
2 1

))
,

Because B is a 2× 1 matrix, then rf (A) = rf (Ab̄) = 1.

Thus, the converse statement to that in Theorem 1 is not true for all three above
considered ranks.

7 Solvability of Systems of Fuzzy Relation Equations

Two below given systems (8) and (9) of fuzzy relation equations (FRE) are im-
portant instances of the generic system of equations (4). Both systems were ex-
tensively investigated in the literature, see e.g., [5,3,8,9,12,17,14,16,18,19,20,21]
for various results about their solvability. In this section, we will show how the
generalized Kronecker-Capelli theorem can be used in the analysis of solvability
of (8) and (9).

Let throughout this section, L = (L,∨,∧, ∗,→, 0, 1) be a residuated lattice
extended by the operation of negation:

¬a = a → 0. (7)

Let L∨ = (L,∨, ∗, 0, 1) be a commutative ∨-semiring from Example 1, case (iv),
and Ln

∨ = (Ln,∨, 0̄) be a corresponding vectorial semilinear space over L∨ (see
Example 2), case (i). Below, we introduce another vectorial semilinear space over
L∨ which can be considered as a dual with respect to the former.
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Example 11. Let the semiring L∨ = (L,∨, ∗, 0, 1) be as above. Define Ln
∧ =

(Ln,∧, 1̄), n ≥ 1, as a dual vectorial semilinear space over L∨, where Ln is a set
of n-dimensional vectors with components from L, and 1̄ = (1, . . . , 1)T ∈ Ln.
Operations (addition and external multiplication) are as follows:

(x1, . . . , xn)
T ∧ (y1, . . . , yn)

T = (x1 ∧ y1, . . . , xn ∧ yn)
T ,

and for any λ ∈ L,

λ�(x1, . . . , xn)
T = (λ → x1, . . . , λ → xn)

T .

Then it can be shown that Ln∧ is a ∧-semilinear space over L∨.

Let m,n ≥ 1, and n × m matrix A = [aij ] and vector b̄ = (b1, . . . , bn)
T have

components in L. The first system of FRE

a11 ∗ x1 ∨ · · · ∨ a1m ∗ xm = b1,

. . . . . . . . . . . . . . . . . . . . . . . . . (8)

an1 ∗ x1 ∨ · · · ∨ anm ∗ xm = bn,

is written in the language of the vectorial semilinear space Ln∨ = (Ln,∨, 0̄) over
L∨. It is known as a system of FRE with the sup-∗ composition.

The second system of FRE

(a11 → x1) ∧ · · · ∧ (a1m → xm) = ¬b1,
. . . . . . . . . . . . . . . . . . . . . . . . . (9)

(an1 → x1) ∧ · · · ∧ (anm → xm) = ¬bn,

is written in the language of the dual vectorial semilinear space Ln
∧ = (Ln,∧, 1̄)

over L∨. It is known as a system of FRE with the inf-→ composition.

7.1 Verification of Solvability

In this section, we will see how the generalized Kronecker-Capelli theorem can be
used in proving that the system (8) is not solvable. For this purpose, we will use
a contrapositive formulation of Theorem 1 with the discriminant rank of both
matrices. This is because a computation of this type of rank can be performed
algorithmically. The contrapositive assertion claims that if the rank of a matrix
of coefficients A is not equal to the rank of its extension Ab̄, then the system (8)
is not solvable.

At first, let us discuss a relationship between systems (8) and (9). We claim
that they are not equivalent, but can be transformed into two systems that are
equivalent. The latter means that every solution of one system is a solution of
the other one and vice versa. The details are given below and are proven in [15].
Corollary 4 characterizes relationship between (8) and (9) in more details.
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We will first transform (8) by applying ¬ to both sides of every equation:

¬(a11 ∗ x1 ∨ · · · ∨ a1m ∗ xm) = ¬b1,
. . . . . . . . . . . . . . . . . . . . . . . . . (10)

¬(an1 ∗ x1 ∨ · · · ∨ anm ∗ xm) = ¬bn.
Because in general, ¬ is not involutive, systems (8) and (10) are not equivalent.
However, all solutions of (8) are solutions of (10). Moreover, if the latter has no
solutions, so does the former.

At second, we will transform (9) by substituting negation ¬x̄ for x̄ where
¬x̄ = (¬x1, . . . ,¬xn)

T :

(a11 → ¬x1) ∧ · · · ∧ (a1m → ¬xm) = ¬b1,
. . . . . . . . . . . . . . . . . . . . . . . . . (11)

(an1 → ¬x1) ∧ · · · ∧ (anm → ¬xm) = ¬bn.
Proposition 5 ([15]). Systems (10) and (11) are equivalent.

Corollary 4. If x̄0 = (x0
1 . . . , x

0
m) ∈ Lm is a solution of (8) then ¬x̄0 =

(¬x0
1, . . . ,¬x0

m) is a solution of (9).

Remark 3. Without going into specific details, let us remark that if an under-
lying residuated lattice L is an MV-algebra (L is divisible and keeps the law
of double negation) then systems (8) and (9) are equivalent. In other words,
vector x̄0 = (x0

1 . . . , x
0
m) ∈ Lm is a solution of (8) if and only if vector ¬x̄0 =

(¬x0
1 . . . ,¬x0

m) is a solution of (9).

In the rest of this section, we will demonstrate, how the generalized Kronecker-
Capelli theorem can be used in proving that both systems (8) and (9) are not
solvable. We will choose the semiring L = ([0, 1],∨,⊗, 0, 1) as in Example 1, case
(ii). Let us remark that this semiring is a reduct of �Lukasiewicz algebra, which
is an example of an MV-algebra. In accordance with Remark 3, both systems
(8) and (9) are equivalent, so that it is sufficient to analyze the solvability of (8).

Let the system (8) be determined by the matrix of coefficients A and the
right-hand side vector b̄ where

A =

⎛
⎝0.9 0.8 0.6

0.6 1 1
0.6 0.8 0.8

⎞
⎠ , b̄ =

⎛
⎝0.4

0.6
0.3

⎞
⎠ .

It has been shown in Example 4 that det(A) = (0.7, 0.7) and det(B) = (0.3, 0.2)
where B is obtained from A after we replace the second column of A by b̄,
i.e. B = B(ā1, b̄, ā3). Moreover, in Example 5, we showed that discriminant
ranks of A and B are equal to r(A) = 2 and r(B) = 3. It is easy to see that
r(B) = r(Ab̄) = 3. Therefore, r(A) �= r(Ab̄), and by Theorem 1, system (8)
determined by the matrix of coefficients A and the right-hand side vector b̄, is
not solvable. Because in the considered case, systems (8) and (9) are equivalent,
then the system (9) is not solvable as well.
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8 Conclusion

In this contribution, we recalled the notion of a semilinear (vector) space as a
commutative semimodule over a commutative semiring. The main studied prob-
lem was solvability of a system of linear-like equations in a semilinear space.
We investigated applicability of classical tools which use the notions of determi-
nant and rank of a matrix of coefficients. With this purpose we investigated a
bideterminant and a rank of a matrix in a semilinear space. We proved the nec-
essary condition of the generalized Kronecker-Capelli theorem and showed that
the converse statement does not hold in semilinear spaces. Finally, we demon-
strated how the generalized Kronecker-Capelli theorem is used in verification
that system of linear-like equations has no solution.

Acknowledgment. This work was supported by the European Regional De-
velopment Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/
1.1.00/02.0070).
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Abstract. The Z-number, proposed by Zadeh in the year 2011, is a new fuzzy-
theoretic approach to the Computing With Words (CWW) paradigm. It aspires 
to capture the uncertainty of information conveyed by a sentence, and serve as a 
model for the precisiation and linguistic summarization of a natural language 
statement. The Z-number thereby, lends a new dimension to CWW – uniting 
CWW with Natural Language Processing (NLP). This article is an illumination 
upon our exploration of the Z-number approach to CWW. Here, we enlist the 
probable contributions of the Z-number to CWW, present our algorithm for 
CWW using the Z-number, and describe a simulation of the technique with 
respect to a real-life example of CWW. In the course of the simulation, we 
extend the interpretation of the set-theoretic intersection operator to evaluate the 
intersection of perceptions and discover some of the challenges underlying the 
implementation of the Z-number in the area of CWW. 

Keywords: Computing With Words (CWW), cognition, fuzzy sets, linguistics, 
machine learning, text summarization, natural language processing, perceptions, 
soft computing, natural computing. 

1 Introduction 

Words encode perceptions and are inherently imprecise; not all events are expressible 
through precise numbers and symbols. Cognitive text or speech comprehension 
begins with the identification of the meaning of the constituent words, as per their 
usage, to arrive at the meaning of sentences; and a union of these sentence-
perceptions leads to the comprehension of the complete text or speech sample. 

The Computing With Words (CWW) paradigm, coined by Zadeh in 1996, draws 
inspiration from the remarkable perception-based decision-making ability of the 
human brain; the perceptions being encoded in the words and phrases used to describe 
events. The Intelligent Systems Revolution symbolizes the generation of machines 
that possess high levels of Machine IQ [1], [2], and undeniably, an implementation of 
the CWW paradigm would be a step in that direction.  

Realization of the paradigm requires the machine to comprehend word-perceptions 
as well as a human being. Consequently, not only does the machine need to learn 
words – both existing and new, it also needs to apply them to form semantically, and 
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ideally syntactically, correct natural language statements. Meanings of words, thus, 
need to be translated into some symbolic form. CWW is deeply engrained in the 
concepts of fuzzy logic [3], fuzzy linguistics [4], test score semantics [5] and PNL [6], 
and is the precursor to “Computing With Perceptions (CTP) [7]”.  

The Z-number [8], proposed by Zadeh, is a very new approach to the CWW 
paradigm. Besides unifying the concepts of fuzzy logic, fuzzy linguistics, test score 
semantics and PNL, the Z-number incorporates a measure of the reliability of the 
information in the sentence. Consequently, the Z-number could be sought as a 
medium of extension of the basic element of computation of CWW from word-
perceptions to sentence-perceptions. We envision that this would lead to the 
development of a model of the natural process of comprehension in human beings.  

In this article, we present a comprehensive study of the Z-number approach to 
CWW from an NLP perspective [9]. We begin with a recapitulation on sentences and 
its types (Section 2), followed by an overview of the basics of the Z-number (Section 
3.1), and then move on to predict some of the contributions of the Z-number 
methodology to CWW (Section 3.2) and formulate a basic algorithm for the Z-
number based CWW (Section 3.3).  

The article, thereafter, focuses on our experiment where the Z-number approach is 
applied to a real-life example of CWW (an attempt at the simulation of the natural 
CWW in a machine). The experiment begins with an algorithm underlying the 
intuitive process of book selection in human beings (Section 4.1), which is then 
extended to include the Z-number components to simulate the book selection process 
in a machine (Section 4.2.B). The experiment calls for the extension of the basic 
intersection operator to allow the intersection of perceptions (Section 4.2.A) and leads 
to the discernment of some of the inherent challenges underlying the Z-numbers in 
CWW (Section 4.2.C). 

2 A Recapitulation on Sentences [10] 

A system that is to compute with words, essentially deals with computing with the 
words in sentences. In acknowledgement to the diversity of human speech and  
the different ways the same event can be described, this section prepares the base for 
the different kinds of sentences that such a system needs to anticipate and 
comprehend. Each type of sentence has its own unique set of rules and the component 
words and phrases need to be processed accordingly. 

In the article, we use the words ‘statement’ and ‘sentence’ to mean the same – 
“Sentences are collections of words that make complete sense. The sense is not 
complete, unless something is being said about something”.  

Sentences are classified into a number of categories: 

i. Based on the number of independent clauses – 
a. Simple sentences: Sentences with a single independent clause.  

E.g.: I love to read. 

b. Compound sentences: Sentences with two or more independent clauses.  
E.g.: He came back tired for he had been working all day. 
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c. Complex sentences: Sentences with a single independent clause and 
more than one dependent clause.    

E.g.: They went for a movie after they had completed their homework. 

ii. Based on the nature of the sentences –  
a. Declarative sentences: Sentences that are used to make a simple 

statement. A declarative sentence ends with a 
full stop.  

E.g.: I love to read. 

b. Interrogative sentences: Sentence that are used to make queries. An 
interrogative sentence ends with a question 
mark.  

E.g.: Do you love to read? 

c. Exclamatory sentences: Sentences that are used to emphasize a fact or 
convey an emotion. An exclamatory sentence 
ends with an exclamation mark.  

E.g.: What a wonderful read! 

d. Imperative sentences: Sentences that are used to command or request, 
with the pronoun ‘you’ implied.  

E.g.: Please get me something to read. 

e. Conditional sentences: Sentences that indicate dependencies between 
conditions, a “cause and effect” relationship.  

E.g.: If I had a billion dollars, I would buy a castle of books. 
 

Though not in common use, types of sentences also include –  
i. Rhetorical Question: A question that is posed for persuasive effect without 

the expectation of an answer.  
E.g.: When will people learn the consequences of turning 

every bit of open space into cement monstrosities? 

ii. Paradox: A paradox is a logical statement or group of statements that lead to 
a contradiction or a situation which (if true) defies logic or 
reason.  

E.g. : One thing that I know is that I know nothing (Socrates’ Paradox). 

3 The Z-Number [8] 

Actions rely on decisions which again depend on the information provided. Thus, 
greater the reliability of the information better is the decision made. The Z-number 
approach to CWW includes a measure of the reliability of the information in a 
statement, along with other parameters that result in the linguistic summarization of 
the sentence. The Z-number could thus form the basis of CWW-based discourse-
oriented systems. 
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3.1 An Overview of the Z-Number  

Given a natural language statement, Y, the Z-number of Y is defined as a 2-tuple Z = 
<A, B>, where A, a linguistic value, implies the restriction (constraint) on the values 
of X, a real valued linguistic variable – interpreted as the subject of Y, and B is a 
measure of the reliability (certainty) of A. Typically, A and B are expressed as words 
or clauses, and are both fuzzy numbers.  

 
Examples :  

i. Y1 = Dinner’s usually served at 9:00 pm. 
Therefore, X = time of dinner service, and Z = <by 9:00pm, usually> 

ii. Y2 = This book has been a wonderful read. 
Therefore, X = quality of book, and Z = <wonderful, certainly> 

Understandably, A is context-dependent and explicitly mentioned while B is based on 
the perception of certainty presented by the statement. The value of B could be 
explicitly quoted in the statement (as in example i) or it could be implicit (as in 
example ii). 

The ordered 3-tuple <X, A, B> is referred to as a Z-valuation. A Z-valuation is 
equivalent to an assignment statement X is <A, B>. As for example,  

i. The Z-valuation of Y1: <time of dinner service , by 9:00 pm, usually>  
Implication: [time of dinner service] is (by 9:00 pm, usually) 

ii. The Z-valuation of Y2: <quality of book, wonderful, certainly> 
Implication: [quality of book] is (wonderful, certainly). 

A collection of Z-valuations is referred to as Z-information. The Z-information 
provides the impetus to a decision-making process. 

Preliminary rules of computation using the Z-numbers: 

i. For the purpose of computation, the values of A and B need to be precisiated 
through association with membership functions, μA, μB respectively.  

ii. X and A together define a random event in R, and the probability of this 
event, p, may be expressed as: 

( ) ( )A X
R

p u p u du= μ  (1)

 where, u is a real valued generic value of X and pX is the underlying (hidden) 
probability density of X.  

iii. The Z-valuation <X, A, B>  is viewed as a generalized constraint on X, and 
is defined by:  

Probability (X is A) is B,  

or, ( ) ( )A X
R

p u p u du= μ is B (2)

iv. Equation 2 is mathematically equivalent to the expression:  

( ( ) ( ) )B A X
R

u p u duμ μ  (3)
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 Subject to, 

( ) 1X
R

p u du =  (4)

v. Computation using the Z-numbers is based on the Principle of Extension. As 
for example, considering a problem statement of the form:  

 “It is likely that the desert is good. What is the probability that it is not?”  

 Let, X = desert, A = good, B = likely, C = not good, D = degree of certainty;  
 μA, μB, μC, μD are the membership functions associated with A, B, C and 

D respectively; 
 pX is the underlying (hidden) probability density of X;  
 u is a real valued generic value of X. 

Therefore, we have, (X is A) is B, and 
We need to evaluate: (X is C) is ?D.  
Thus, using the Principle of Extension and Equations 2, 3 and 4:  

( ( ) ( ) ), ,

, ,? ( ( ) ( ) ) ?

B A X
R

C X
R

u p u duX A B

X C D u p u du is D





μ μ< > =
< > μ

 

or,  ( ) sup ( ( ) ( ) )
XD p B A X

R
w u p u duμ = μ μ  (5) 

Subject to,   

( ( ) ( ) )C X
R

w u p u du= μ  and 

( ) 1X
R

p u du =  
(6) 

3.2 Probable Contributions of the Z-Number to CWW 

The definition of the Z-number subtly identifies the following as the contributions of 
the concept to the arena of CWW: 

i. The Z-number serves as a model for the precisiation of natural language 
statements – unifying CWW and NLP.  

ii. The Z-number summarizes the perception of a single simple sentence. If 
complex or compound sentences be deconstructed to their simple sentence 
components, the Z-number of each of the individual sentences can be 
evaluated to receive the Z-information for the entire sentence. 

iii. The Z-information summarizes the perception of a group of statements. 
iv. The parameters of Z-numbers help in the identification of the context of 

discourse of the sentence under observation – thus allowing sentences to be 
grouped into context-sensitive granules. 

v. By virtue of points i though iv, the Z-number is visibly in agreement with the 
intuitive process of comprehension and reasoning in human beings. 

vi. The Z-number could be used to extract ‘knowledge’ from a sentence. 
vii. The parameters of the Z-numbers are context-independent. 

viii. Translation from the Z-numbers to simple sentences is straightforward. 
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3.3 Algorithm for CWW Following the Z-Number Technique 

Drawing inspiration from the possible areas of contribution of the Z-number to 
CWW, we aspire to design CWW-based systems that utilize the Z-number technique. 
It is thus that we have developed the following algorithm (Algorithm 1) for CWW 
based on the Z-number methodology. The algorithm takes natural language sentences 
as input and results in the natural language response to them as well.  

 
Algorithm 1. 

Input: Natural language sentence (I) 
Output:  Natural language response (O) to I 

Assumptions:  
i. The system is capable of distinguishing between relevant and irrelevant 

sentences  
ii. The system comprehends the total perception of a complex or a compound 

sentence (Y) by –  
a. Extraction of the simple sentence components of Y 
b. Comprehension of the meaning of each of these simple sentence 

components 
c. Combining these component perceptions with respect to the connectives 

in Y 
[Assumption ii. follows the natural process of cognition in human beings] 

Steps: 

1. If I is irrelevant  
Then 

Goto step 10 
Else 

Goto step 2 
2. If I is a simple sentence 

Then 
 Goto step 3 
Else 

i. Extract the simple sentence component set (I') of I 
ii. Repeat steps 3 through 4 for each sentence in I' 

iii. Goto step 5. 
3. Extract the values  of X, A and B in the sentence to evaluate the Z-valuation 

(ZI) 
4. Convert ZI into equivalent logical expression (ZE) 
5. Combine all ZE to the logical expression (E) guided by the connectives in I 
6. Convert E to the equivalent mathematical expression (M) 
7. Evaluate M to receive a set of Z-valuations (ZO) in response 
8. Translate ZO into simple sentences (S) 
9. If step 8 results in more than one simple sentence 

Then 
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If some or all the sentences in S can be compiled into a single sentence 
Then 

a. Assimilate all compatible simple sentences into a 
single complex or a compound sentence (S’) 

b. If S’ does not include all the sentences in S  
Then 

b.1. S’’ = S – S’ 
b.2. O = S’  S’’ 

Else 
 O = S’ 

c. Goto step 10 
Else 

a. O = S 
b. Goto step 10 

Else 
i. O = S 

ii. Goto step 10 
10. Stop 

4 Experiment 

In this section, we describe an experiment where we strive to simulate the natural 
CWW by human beings. The machine tries to model the intuitive process of 
reasoning involved in the selection of a book at a bookstore.  

Assuming that a human reader has a genre and content preference, the process of 
book selection intuitively follows the algorithm (Algorithm 2) outlined in Section 4.1.  

Algorithm 2 is then extended to include elements of Z-number based CWW, as is 
described in Algorithm 1, so as to simulate the book selection process in a machine. 

4.1 The Intuitive Algorithm Underlying the Process of ‘Selection of a Book’ 

Algorithm 2. 

Input:  
i. The summary set (S) of a set of n (n ≥ 1) books (B), where S = {S1, S2, … , 

Sn}, B = {B1, B2, … , Bn} and Si is the summary of Bi – extracted from the 
book jacket 

ii. Event set (E) of the reader’s expectation of the literary contents of the book 
to be chosen 

iii. Lower threshold (T) indicating the minimum number of events, out of E, that 
need to exist in the Si of the selected Bi  

iv. Additional selection criteria (C) with respect to the external characteristics of 
the book required. 

Output: Book selected 
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Steps: 
1. For every Bi ∈  B 

Repeat steps 2 though 4 
2. Read Si 
3. Extract event set ES in Si 

4. If | |SE E T∩ ≥   

Then 
 Assign Bi a membership of selection (> 0) 
Else 
 Membership of selection of Bi = 0 

5. Sort Bi in the descending order of memberships of selection 
6. If every book is assigned a unique membership of selection 

Then 
  Select Bi with the highest membership as the book to be purchased 
 Else 

i. Select all Bi with the highest membership 
ii. Identify the Bi that satisfies most of C 

iii. This Bi is selected as the book to be purchased 
7. Stop 

 
Note: 
i. Each event in the event set (E) is implied by ‘keywords’ – the basis for the 

natural CWW by the reader.  
ii. Besides the summary of the book, the following are natural contributing factors 

to the selection process and are elements of C : 
a. The book being read or present in the possession of the reader 
b. Cost of the book 
c. Condition of the book – brittleness, ink marks, crumpled pages, pages 

missing 
d. Presence and quality of pictures 
e. Font type and font size 
f. Rarity of the book 

iii. In this experiment, the selection process is entirely platonic – devoid of any 
emotions occurring in real-life situations that lead to contemplation of an 
increase in budget or to the selection of a book quite different from that 
planned. 

4.2 Simulation of the Process of ‘Selection of a Book’ Using the Z-Number 
Technique 

Intersection of Perceptions Conveyed by the Event-set (E) of the Reader’s 
Expectations and the Event-set (Es) Expressed in the Summary of the Book under 
Observation. 
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An intersection of the perceptions conveyed by E and Es should practically imply 
the extraction of the common meaning conveyed by these perceptions. It is thus that 

we define the perception-intersection operator ( )p∩  as follows: 

Let, 

E and Es consist of Z-valuations of the sentences expressing the reader’s 
expectations and the summary of the book, respectively; and  

E' = <X1, A1, B1> and ES' = <X2, A2, B2> where E'∈E and ES'∈  ES 

Then,  

1 1 2( ) , ,p SE E X A B′′ ∩ =  if 1 2( )A A∩ ≠ ∅  (7) 

X1 and A1 respectively represent a requirement and the corresponding expected value, 
while B2 reflects the level of certainty with which the requirement is satisfied by the 
book under consideration.  

The perception-intersection operator defined above could come of use in scenarios 
where it is imperative to verify the certainty with which a current situation satisfies a 
given requirement. 

The Algorithm for the Process of ‘Selection of a Book’ Using the Z-number 
Technique 

Combining elements of Algorithms 1 and 2, the algorithm for the book selection 
process using the Z-number Technique is outlined as follows: 

 
Algorithm 3. 
 Input:  
i. The summary set (S) of a set of n (n ≥ 1) books (B), where S = {S1, S2, … , 

Sn}, B = {B1, B2, … , Bn} and Si is the summary of Bi – extracted from the 
book jacket 

ii. Event set (E) – as Z-valuations – of the reader’s expectation of the literary 
contents of the book to be chosen 

iii. Lower threshold (T) indicating the minimum number of events, out of E, that 
need to exist in the Si of the selected Bi  

iv. Additional selection criteria (C) with respect to the external characteristics of 
the book required. 

Output: Book selected 

Assumptions: 
i. A sentence is considered relevant if it contains at least one keyword from E 

ii. Any word (W) in the summary that is a synonym of a keyword (W’) in E, is 
treated as W’ 

iii. The system comprehends the total perception of a complex or a compound 
sentence (Y) by –  
a. Extraction of the simple sentence components of Y 
b. Comprehension of the meaning of each of these simple sentence 

components 
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c. Combining these component perceptions with respect to the connectives 
in Y 

iv. The memberships of selection are assigned on the basis of the principle of 
extension, explained in Section 3.1 

v. The reader does not read the summary of a book he/she has read or 
possesses. 

Steps: 
1. For every Bi in B 

Repeat steps 2 though 10 

2. Initialize SE = ∅  [ SE = Event set for the current Bi] 

3. For every sentence (I) in Si 
Repeat steps 4 through 7 

4. If I is irrelevant  
          Then 

i. Discard I 
ii. Goto next I 

          Else 
Goto step 5 

5. If I is a simple sentence 
Then 
 Goto step 6 
Else 

i. Extract the simple sentence component set (I') of I 
ii. Repeat steps 6 through 7 for each sentence in I' 

iii. Goto step 8. 
6. Extract the values of X, A and B in the sentence to evaluate the Z-valuation 

(ZI) 
7. Combine all ZI to the logical expression (E’) guided by the connectives in I 

8. S SE E E′= ∪   

9. If | |p SE E T∩ ≥   

Then 

i. Convert ( p SE E∩ ) to the logical expression ( E )  

ii. Convert E and E  to the mathematical expressions M and M  
respectively. 

iii. Evaluate the membership of selection of Bi by applying the 

principle of extension on M and M  
Else 
 Membership of selection of Bi = 0 

10. Sort Bi in the descending order of memberships of selection 
11. If every book is assigned a unique membership of selection 

Then 
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  Select Bi with the highest membership as the book to be purchased 
 Else 

i. Select all Bi with the highest membership 
ii. Identify the Bi that satisfies most of C 

iii. This Bi is selected as the book to be purchased 
12. Stop 

 
Simulation of Algorithm 3 

Assumptions: 

i. The machine (Mc) is capable of annotating the words in a given text sample 
into the correct parts of speech and is capable of identifying the type of the 
sentence under consideration. 

ii. Mc has read thirty works of fiction in the ‘Mystery’ genre. 

iii. Mc’s vocabulary consists of one hundred and sixty five keywords (X). Each of 
these words is assigned a probability of occurrence (px), based on the number 
of books the words are found in. 

The words in Mc’s vocabulary are: abduct, accomplice, advocate, agent, 
alibi, allegation, ammunition, anonymous, arms, assistant, awkward, baffle, 
blood, blunder, bury, case, catch, chief, chilling consequence, clue, cold-
blooded, conspiracy, constable, convict, corpse, crime, criminologist, crooked, 
curious, danger, death, deceive, deduce, desperate, detective, discover, doctor, 
drug, duplicate, eavesdrop, enemy, evidence, evil, exhume, fake, fatal, fear, 
figure-out, find-out, fingerprint, follow, forbidden, forget, foul play, gang, 
gore, graveyard, gray cells, guilty, headquarters, hidden, hoax, homicide, how, 
illegal, illegitimate, illicit, impersonate, ingenuity, innocence, inquest, 
inspector, instinct, intrigue, investigate, jewels, judge, juvenile, kidnap, kill, 
lawyer, letters, locate, loot, macabre, Marple, mask, missing, mistake, motive, 
murder, mystery, nab, notorious, overhear, peculiar, plan, plot, plunder, Poirot, 
poison, police, post mortem, practical joke, prison, problem, proof, 
prosecution, psychology, puzzle, quarrel, question, racket, ransack, ransom, 
realize, red-handed, remember, remorse, remorseless, replicate, revenge, 
robber, sabotage, scandal, scheme, Scotland Yard, secret, sentence, shocking, 
shoot, sinister, soldier, solve, spy, stab, stolen, strange, suicide, superintendent, 
surprise, suspect, suspicious, symbols, terror, thief, tragic, trap, trial, trouble, 
underground, unknown, vengeance, verdict, victim, vile, violence, warning, 
weapons, what, when, where, who, whom, why, witness. 

Mc is aware of synonyms like: (kill, murder), (problem, puzzle), (deduce, 
find-out, figure-out), (anonymous, unknown), (suspicious, curious), (verdict, 
sentence), (plot, scheme) etc. 

Mc is aware of the polysemous/homonymous nature and different forms of 
certain words like: (puzzle (noun, verb), puzzled, puzzling), (judge (noun, 
verb)), (mystery, mysterious), (murder (noun, verb), murderer) etc. 
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iv. The words in X are subdivided into categories like: mystery_category, 
detective_name, events, verdicts, and so on where each such generic value is 
mapped to a real number – following the definition of the Z-number. 

v. The words are further clustered into semantic nets or groups of words that 
occur together or are semantically linked e.g. Murder_net <murder, motive, 
quarrel, post mortem, police, exhume, fatal, clue, revenge> etc.  

Inputs: 

i. Mc wants to buy a new book with the requirements as follows: 

Table 1. Requirement Set of M 

Requirements – Event Set (E) 

Natural Language Statements Z-valuations 

The book needs to be a Mystery story 
Z1 = <Book Genre, mystery, certainly> 
A = mystery, u1 = book genre 

Preferably a murder mystery solved by 
Miss Marple 

Z21 = <Mystery category, murder, ideally> 
A = murder, u2 = mystery category 

Z22 = <Detective, <Marple, ideally> 
A = Marple, u3 = detective 

A mystery involving a grand robbery and 
solved by Marple or Poirot would be 
okay 

Z31 = <Mystery category, robbery, possibly> 
A = robbery, u2 = mystery category 

Z32 = <Detective, Marple, probably> 
A = Marple, u3 = detective 

Z33 = <Detective, Poirot, probably> 
A = Poirot, u3 = detective 

Requirements – Others (C) 

Price  ≤ Rs. 300/- 
New – no crumpled pages or ink marks 
M should not have already read the book 

 
Note: 

a. Parameters A and B are quintessentially maintained and processed as 
fuzzy set types specific to the system.  

b. [11] professes the Interval-Type2 Fuzzy Set being the most 
appropriate model of word perceptions. 

 
Thus, E can be summarized by the logical expression: 

1 21 22 31 32 33[ (( ) ( ( )))]Z Z Z Z Z Z∧ ∧ ∨ ∧ ∨  (8) 
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And following Equations 2, 3 and 4, as discussed in Section 3.1, Equation 8 
may be rewritten as: 

1 1 1 2 2 2

3 3 3 2 2 2

3 3 3 3

( ( ) ( ) ) [{ ( ( ) ( ) )

( ( ) ( ) )} [ ( ( ) ( ) )

{ ( ( ) ( ) ) ( ( )

certainly mystery X ideally murder X
R R

ideally Marple X possibly robbery X
R R

probably Marple X probably Poirot
R

M
u p u du u p u du

u p u du u p u du

u p u du u p

 

 



=
μ μ ∧ μ μ ∧
μ μ ∨ μ μ ∧
μ μ ∨ μ μ 3 3( ) )}]]X

R
u du

 
(9)

where,  

1 1 2 2 3 3( ) 1, ( ) 1, ( ) 1X X X
R R R

p u du p u du p u du  = = =   

ii. T = 2 

iii. The summaries of some new books in the store are as follows: 

a. Summary: Lymstock is a town with more than its share of secrets – a 
town where even a sudden outbreak of anonymous hate-mail causes 
only a minor stir. But all that changes when one of its recipients, Mrs. 
Symmington, commits suicide. Her final note said, “I can’t go on.” Only 
Miss Marple questions the coroner’s verdict of suicide. Was this work of 
a poison-pen? Or of a poisoner? – The Moving Finger (Agatha Christie) 

Other Properties: Price = Rs. 150/-; New book; Not read 

b. Summary: “The curious case of the Maiden Eggesford Horror”. When 
the doctor advises Bertie to live the quiet life, he and Jeeves head for the 
pure air and peace of Maiden Eggesford.  However, they hadn’t 
reckoned on Bertie’s irrepressible but decidedly scheming Aunt Dahlia, 
around whom an imbroglio of impressive proportions develops 
involving The Cat Which Kept Popping Up When Least Expected. As 
Berties observes, whatever aunts are, they are not gentlemen. – Aunts 
Aren’t Gentlemen (P. G. Wodehouse) 

Other Properties: Price = Rs. 250/-; New book; Not read 

c. Summary: Gerry Wade had proved himself to be a champion sleeper; 
so the other house guests decided to play a practical joke on him. Eight 
alarm clocks were set to go off, starting at 6:30 a.m. But when morning 
arrived, one clock was missing and the prank had backfired with tragic 
consequences. Gerry never woke up. Was he murdered? – The Seven 
Dials Mystery (Agatha Christie) 

Other Properties: Price = Rs. 150/-; New book; Not read 

 
 
 
 



84 R. Banerjee and S.K. Pal 

Execution: 

Table 2. Summarization of Book 1 

Relevant sentences in the 
summary Simple sentence components Z-valuations of the simple 

sentence components 

Lymstock is a town with more 

than its share of secrets – a 

town where even a sudden 

outbreak of anonymous hate-

mail causes only a minor stir. 

1. Lymstock is a town with secrets. 

2. There is a sudden outbreak of 

anonymous hate-mail. 

Z11 = <Location, Lymstock, 

supposedly> 

Z12 = <Location property, has 

secrets, supposedly> 

Z13 = <Event, anonymous letters, 

probably> [hate-mail = letters] 

But all that changes when one 

of its recipients, Mrs. 

Symmington, commits suicide. 

1. Recipient Mrs. Symmington 

commits suicide. 

Z2 = <Letter event, recipient 

commits suicide, probably> 

Only Miss Marple questions 

the coroner’s verdict of suicide. 

1. Coroner’s verdict is suicide. 

2. Miss Marple questions verdict. 

Z31 = <Coroner verdict, suicide, 

probably> 

Z32 = <Verdict event. Marple 

questions, probably> 

Was this work of a poison-pen? - Is a simple sentence - 
Z4 = <Suspect, poison-pen, 

expectedly> 

Or of a poisoner? - Is a simple sentence - 
Z5 = <Suspect, murderer, 

expectedly> [poisoner = murderer] 

 
Therefore, 
 1 11 12 13 2 31 32 4 5( ) ( ) ( )SE Z Z Z Z Z Z Z Z= ∧ ∧ ∧ ∧ ∧ ∧ ∨ ; 

1| | 3p SE E T∩ = >  [By virtue of Z31 and Z5 in the summary of book1; and the 

fact that quite a large number of words in the summary of book1 fall under 
the vocabulary of Mc, the book certainly pertains to the genre ‘Mystery’]; 

1( )p SE E∩  = [<Book genre, mystery, certainly>  <Detective, Marple, 

probably>  <Mystery category, murder, expectedly>] (Using Equation 7) 
and the corresponding mathematical expression (using parameters of 
Equation 9) is: 

1 1 1

3 3 3 exp 2 2 2

( ( ) ( ) )

( ( ( ) ( ) ) ( ( ) ( ) ))
certainly mystery X

R

probably Marple X ectedly murder X
R R

M u p u du

u p u du u p u du


 

= μ μ ∧
μ μ ∧ μ μ


 (10)

The membership of selection for book1 is evaluated on the basis of the application of 
the principle of extension to Equations 9 and 10; and considering the degree of 
overlap, the membership of selection should ideally approximate 1. 
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Table 3. Summarization of Book 2 

Relevant sentences in the summary Simple sentence components Z-valuations of the simple 
sentence components 

The curious case of the Maiden 

Eggesford Horror. 
- Is a simple sentence - 

Z1 = <Case, Maiden Eggesford 

Horror, supposedly> 

However, they hadn’t reckoned on 

Bertie’s irrepressible but decidedly 

scheming Aunt Dahlia, around whom 

an imbroglio of impressive 

proportions develops involving The 

Cat Which Kept Popping Up When 

Least Expected. 

1. Aunt Dahlia is decidedly 

scheming 

Z21 = <Character, Aunt Dahlia, 

certainly> 

Z22 = <Character nature, scheming, 

decisively> 

As Bertie observes, whatever aunts 

are, they are not gentlemen. 

1. Bertie observes that aunts 

aren’t gentlemen. 

Z31 = <Character, Bertie, certainly> 

Z32 = <Character action, 

observation, decisively> 

 
Therefore, 

2 1 21 22 31 32( )SE Z Z Z Z Z= ∧ ∧ ∧ ∧  ; 

2| | 1p SE E T∩ = < [By virtue of the fact that some words in the summary of 

book2 fall under the vocabulary of Mc, the book ‘probably’ pertains to the genre 
‘Mystery’]. 

Thus, book2 is assigned a membership of selection = 0. 

Table 4. Summarization of Book 3 

Relevant sentences in the 
summary 

Simple sentence components Z-valuation of the simple sentence 
components 

Gerry wade had proved 

himself to be a champion 

sleeper; so the other house 

guests decided to play a 

practical joke on him. 

1. The house guests played a 

practical joke on Gerry. 
Z1 = <Event, practical joke, supposedly> 

But when morning arrived, 

one clock was missing and 

the prank had backfired with 

tragic consequences 

1. One clock was missing. 

2. Prank had backfired. 

3. Consequences were tragic. 

Z21 = <Event, clock missing, supposedly> 

Z22 = <Event, practical joke, 

supposedly>[prank = practical joke] 

Z23 = <Practical joke event, backfire, 

supposedly>  

Z24 = <Practical joke event, tragic 

consequence, supposedly> 

Was he murdered? - Is a simple sentence - Z3 = <Event, murder, expectedly> 
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Therefore, 

3 1 21 22 23 24 3( )SE Z Z Z Z Z Z= ∧ ∧ ∧ ∧ ∧ ; 

3| | 2p SE E T∩ = =  [By virtue of Z3 in the summary of book3; and the fact 

that quite a large number of words in the summary of book1 fall under the 
vocabulary of Mc, the book certainly pertains to the genre ‘Mystery’]; 

3( )p SE E∩  = [<Book genre, mystery, certainly>  <Mystery category, 

murder, expectedly>] (Using Equation 7), and the corresponding 
mathematical expression (using parameters of Equation 9) is: 

1 1 1 exp 2 2 2( ( ) ( ) ) ( ( ) ( ) ))certainly mystery X ectedly murder X
R R

M u p u du u p u du = μ μ ∧ μ μ  (11)

The membership of selection for book3 is evaluated on the basis of the application of 
the principle of extension to Equations 9 and 11, and considering the degree of 
overlap, the membership of selection should lie in the range (0, 1) and should be less 
than that of Book1. 

Thus, on the basis of the interpretations of Equations 10 and 11, Mc evidently 
selects book1 – “The Moving Finger” by Agatha Christie. This decision by Mc 
coincides with the judgment a human being would make, given the scenario.  

D. Observations 
The experiment leads to the following illuminating observations: 

i. The Z-number methodology blends in seamlessly with the intuitive algorithm 
followed for the example studied. 

ii. CWW based on the Z-number calls for: 
a. A powerful Part-Of-Speech (POS) tagger – to identify the parts of speech 

of the words in the sentences – an insight into the probable values of X, A 
and B indicate noun phrases, adjectives and adverbs respectively. 

b. Resolution of the dependencies between the nouns and the corresponding 
pronouns used – such that the sentences on a common topic might be 
identified and processed accordingly.  

c. Methods to reduce complex or compound sentences to their simple 
sentence counterparts and vive versa. 

d. A robust model for the representation of the perceptions of the values of A 
and B. 

e. Compilation of a comprehensive context-sensitive text corpus – such that 
the probable generic values for the parameter X can be listed and mapped 
to real numbers, and the probable values of the parameter A be identified 
and assigned membership values and probability distributions as required. 

f. An algorithm to identify keywords and relevant sentences. 
g. An algorithm to extract implicitly specified values of the parameter B.  

A possible solution could be the use of default values with respect to 
the type of the sentence, as is shown in Table 5. (All examples in this 
article use this technique.) 
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Table 5. Suggested default values for B, with respect to the type of sentence 

Sentence Type Remarks Default Value for B 

Declarative  Probably or Supposedly 

Exclamatory Conveys explicit emotion Certainly 

Imperative 
Expect a definite course 
of action 

Definitely or Decisively 

Interrogative Expects an answer Expectedly 
 

Note: In a natural conversation scenario – the behavioural parameters (general attitude) of 
the participants in a discourse influence the value of B. 

h. An algorithm to identify and process polysemous and homonymous words, 
capitonyms and synonyms. 

i. Methods to identify new words, map the meanings of these words to 
synonyms existing in the system vocabulary and to learn to use them as 
well.  

j. Schemes to identify and process new sub-contexts under the context of 
discourse. 

k. Schemes to translate Z-valuations to logical expressions, mathematical 
expressions and natural language statements. 

l. Well defined operators and rules of computation – as is guided by the 
context and the word-perception models assumed. 

Each of these aforementioned points (from ii.a though ii.l) represent the basic 
challenges underlying the implementation of the Z-numbers for CWW. 

iii. The system should respond within the average human response time (150 – 300 
ms). 

5 Conclusion 

This article is an elucidation on our study of the Z-number approach to CWW. The  
Z-number not only aspires to provide a framework for the precisiation of the meaning 
of a natural language statement, but includes parameters that permit extraction of the 
information and the uncertainty of the information conveyed by the sentence. The  
Z-numbers predictably have a radical role to play in the realm of CWW and NLP.  
The probable contributions of the Z-number to CWW have been clearly outlined in 
the article. 

Besides the strengths, we present here algorithms that illustrate the seamless merge 
of intuition with Z-number elements to simulate a real-life CWW scenario. These 
algorithms illuminate the need for intensive research on a fair number of issues that 
need to be resolved prior to the actual implementation of the Z-numbers. Some of the 
prime areas that need delving into are models of word perceptions, algorithms for the 
extraction of the Z-number parameters from natural language statements, well-defined 
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rules of computation, and algorithjms to convert Z-numbers to logical/mathematical 
expressions and natural language statements. The article also defines an operator for 
the intersection of perceptions. 

The Z-number is indeed an intriguing field of study in the arena of CWW and we 
are in the process of excavating the answers to the challenges highlighted in this 
article. 
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Abstract. Classification is an important task widely researched by the
machine learning and fuzzy communities. In this paper, we present and
compare methods from both communities, in order to support the selec-
tion of a suitable method, according to two conflicting objectives: accu-
racy × interpretability. Two groups of rule-based methods are analysed:
decision tree-based and genetic-based approaches. For the tree-based ap-
proaches, C4.5, PART and FuzzyDT, a fuzzy version of the C4.5 algo-
rithm, are used. For the genetic-based approaches, MPLCS, a method
from the machine learning community to generate rule-based models,
SLAVE and FCA-Based, both fuzzy-based, are analysed. Since accu-
racy and interpretability are usually conflicting objectives, in this paper,
we briefly present these methods and then discuss the models generated
by them. Comparisons take into account the error rates and syntactic
complexity of the produced models. Ten benchmark datasets are used
in the experiments with a 10 fold cross-validation strategy. Results show
that FCA-Based and MPLCS are able to obtain good accuracy and
interpretability.

Keywords: Fuzzy Systems, Decision Trees, Genetic Algorithms.

1 Introduction

Classification is an important task widely researched by the machine learning
and fuzzy communities. Classic and fuzzy algorithms for supervised machine
learning are concerned with the development of methods that extract patterns
from data in order to make intelligent decisions based on these patterns. The
interpretability is an important issue when classification methods are proposed.
Interpretability of classification models, in spite of its subjectivity, can be defined
as the quality of how easily the model, as a whole, can be understood and
abstracted by its users. Thus, an approach that induces interpretable models
must be concerned with the total number of rules and the amount of conditions
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of these rules, i.e., the syntactic complexity of the model. In general, highly
accurate models tend to have high syntactic complexity, whereas, models with
low syntactic complexity tend to be less accurate.

In this sense, decision trees (DT) [1] are powerful as they produce models
with low syntactic complexity which are quite intuitive and whose structures
can be interpreted as rules. The induction process of DTs is usually fast and
the induced models are competitive, accuracy wise, with the ones generated by
other interpretable machine learning methods. Another desirable quality of DTs
is their embedded feature selection process that allows it to use only the most
relevant features in the model, which are selected according to certain measures,
improving the generated model interpretability.

Some of the most well-known and relevant DT based algorithms are ID3,
CART, and C4.5 [1, 2]. These algorithms generate a tree structure through
recursively dividing the feature space until this decision space is completely
partitioned into a set of non-overlapping subspaces. Specifically, C4.5 uses the
information gain and entropy measures when deciding on the importance of the
features [2]. In order to optimize their estimated error rates, DTs usually use a
pruning process. Pruning also simplifies the whole models, which consequently
become more interpretable. PART [3] is an example of a DT-based approach for
rule generation. This method repeatedly generates various DTs extracting the
best rule of each DT at a time to construct the rule set of a classifier.

Fuzzy rule based classification systems are based on the fuzzy set and fuzzy
logic theories proposed by Loft A. Zadeh. Two advantageous characteristics of
fuzzy systems regarding interpretability are: i) the system uses semantically
meaningful fuzzy sets to define attributes; ii) fuzzy rules are built by linguis-
tic variables and linguistic terms, such as “temperature is high” or “speed is
low”, adding interpretability to the induced model.

The knowledge base and inference mechanism are the two basic components of
a fuzzy classification system. The knowledge base is formed by the Fuzzy Data
Base (FDB) and the Fuzzy Rule Base (FRB). The fuzzy data base contains
the definitions of the features (also named attributes or variables) in terms of
fuzzy sets, while the fuzzy rule base contains a set of rules defining the given
problem. The inference mechanism derives the conclusions (or outputs) of the
system based on the knowledge base and on the inputs to the system.

In the literature, it is possible to find several fuzzy approaches for the in-
duction of fuzzy classifiers, amongst them, fuzzy rule-based systems [4, 5], ge-
netic fuzzy rule-based systems [6–8], fuzzy DTs [9, 10], and evolutionary (other
than genetic) fuzzy rule-based systems [11–13]. Regarding the genetic rule-based
fuzzy systems, their advantages include: i) Genetic Algorithms (GAs) perform a
global search and do not get stuck in local maxima; ii) it is possible to address
the interpretability × accuracy problem during the search process by means
of multi-objective fitness functions; iii) it is possible to adjust rules and fuzzy
sets during the genetic process in order to improve the model performance and
interpretability [14, 15].
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Although the genetic generation of fuzzy systems might be one of the most
researched topic in the fuzzy community, GAs usually have a high computational
cost due to their global search and, for some approaches, also, due to the process
required to form the genetic search space. A well-known genetic fuzzy approach
is SLAVE – Structural Learning Algorithm on Vague Environment [16]. SLAVE
uses the iterative approach to learn fuzzy rules, performing an embedded feature
selection process as well as a rule selection post process.

An alternative to the high cost of GAs is the DT-based approach. For this
purpose, we have recently proposed a fuzzy version of the classic C4.5 DT in
[17]. Our approach is quite similar to the classic one and its more relevant char-
acteristics are described in Section 2.

The aim of this paper is to experimentally compare different proposals based
on DTs and GAs, from both, the machine learning and fuzzy communities. Since
there is a large number of genetic fuzzy approaches proposed, we selected two
of them, the well known approach named SLAVE, and another one proposed
by us, FCA-Based. On the other hand, due to the special characteristics of
low computational cost, competitive and highly interpretable induced models,
we also include two classic DT-based approaches and a fuzzy DT in our ex-
periments. Comparisons were performed taking into account the accuracy and
syntactic complexity of the generated models. The goal of this research is to pro-
vide substantial information on these approaches, indicating their most relevant
qualities and drawbacks.

The remainder of this paper is organized as follows. Section 2 describes the
FCA-Based, SLAVE and MPLCS methods, which use the genetic paradigm.
Section 3 describes and compares the classic and the fuzzy C4.5 DT approaches,
as well as PART. Section 4 presents the experiments and results, followed by the
conclusions and future work in Section 5.

2 Classification Methods Based on the Genetic Paradigm

GAs [18] are a part of the evolutionary algorithms, which are techniques in-
spired on the biological evolution. GAs have been applied in several areas. They
usually require a randomly generated initial population of hypotheses. For rule-
based classification, the initial population is usually formed by rules or rule sets.
The hypothesis of GAs is that the fittest members of a population have better
chances of producing offspring. This way, by generating several populations, it is
possible to evolve solutions and reach satisfactory results. This population, whose
members are called chromosomes or individuals, encodes candidate solutions to
a given problem. The first population gives rise to the following population by
means of genetic operators, such as selection, mutation, crossover, and elitism,
among others. At each generation, the hypotheses in the current population are
evaluated relative to a given fitness measure, with the fittest hypotheses selected
probabilistically as seeds to produce the next generation, and so on. Usually,
GAs stop by reaching a maximum number of generations or when a satisfactory
fitness level is reached.
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Chromosomes are usually represented by an array of elements. These arrays
can contain indexes to a preselected list of solutions (called search space). By
representing hypotheses using arrays of elements with fixed length, the crossover
operator is simple to apply due to the alignment of the chromosomes forming
the population. Variable length representations are also used, but they require
higher computational effort for the use of genetic operators. The fitness function
evaluates the quality of the represented solution and it is always directly con-
nected to the type of problem to be tackled. For classification problems using
rule bases, the usual fitness measures adopted are related to the accuracy and
interpretability of the generated models.

Next, we present the SLAVE, FCA-Based, and MPLCS fuzzy classification
systems, which are the GA-based learning methods to generate classification
rules used in this work.

2.1 Fuzzy Classification Systems

The classification task can be roughly described as: given a set of objects E =
{e1, e2, ..., en}, also named examples, cases, or instances, which are described by
m features, assign a class ci from a set of classes C = {c1, c2, ..., cj} to an object
ep, described by its feature values ep = (ap1 , ap2 , ..., apm).

Fuzzy classification systems are rule based fuzzy systems that granulate the
domains of their features by means of fuzzy sets and partitions. The linguistic
variables in the antecedent part of the rules represent features, and the con-
sequent part represents a class. A typical fuzzy classification rule can be ex-
pressed by

Rk : IF X1 is A1l1 AND X2 is A2l2 AND ... AND Xm is Amlm

THEN Class = ci

where Rk is the rule identifier, X1, ..., Xm are the features of the set of examples
considered in the problem (represented by linguistic variables), A1l1 , ..., Amlm

are the linguistic values used to represent the feature values, and ci ∈ C is the
class. Notice that not all identifiers participate in a general classification rule.
The inference mechanism compares the input example to each rule in the fuzzy
rule base aiming at determining the class it belongs to.

The classic and general fuzzy reasoning methods are widely used. Given a set
of fuzzy rules, i.e., a FRB, and an input instance, the classic fuzzy reasoning
method classifies this input instance using the class of the rule with maximum
compatibility to the input instance, while the general fuzzy reasoning method
calculates the sum of compatibility degrees for each class and uses the class with
highest sum to classify the input instance.

2.2 SLAVE

SLAVE [16] is a genetic learning algorithm that uses the iterative approach
to generate a FRB. In the iterative approach, chromosomes usually represent
individual rules, and a single rule is selected at each iteration of the GA. The set
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of selected rules form the rule base of the model. SLAVE includes an embedded
feature selection process. The preselection of attributes minimizes the problems
caused by large search spaces, such as excessive execution time, while improving
the interpretability of the generated models.

The main idea of SLAVE is to reduce the original problem of obtaining a
complete set of rules to a simpler problem which consists in obtaining only one
rule at a time. In this approach, each chromosome of the population represents
a single rule, but only the best individual in each iteration is considered, the
remaining chromosomes being discarded. In fact, in the iterative model, one
execution of the GA provides a partial solution (a rule) to the learning problem.

Regarding the feature selection process adopted by SLAVE, it dynamically
explores the set of possible variables in order to find the most useful rule and
the most relevant variables for this rule. Thus, this feature selection process
is implemented for each single rule, not for the whole set of rules. The basic
schema of this process consists of modifying the rule representation in the search
mechanism of SLAVE in order to allow the learning algorithm to search not
only for the best rule, but also the best set of variables for each rule. SLAVE
produces rules with different weights, which are used by the inference mechanism
to improve the classification performance. SLAVE usually produces reasonably
small rule sets.

2.3 FCA-Based

The FCA-Based method [8] forms the GA search space by using the theory
of Formal Concept Analysis (FCA) [19]. FCA is a mathematical technique for
extracting concepts and structures from data. It was introduced in the 1980s and
is becoming increasingly popular due to its nice visual representation of data and
relations found in data. The basic data structure in FCA is the formal context,
which is a representation of the relations between objects and attributes. A
formal context is usually represented in a table form where the columns represent
the attributes and the rows represent the objects (objects are usually called
instances or examples in classification). The most important difference between
an attribute × value table and a formal context is that FCA only works with
binary attributes. In order to handle continuous and multi-valued attributes,
they must be transformed into binary attributes using a scaling process. The
table representing the formal context contains 1 (true) in cell (i, j) if object i has
attribute j, and 0 (false) otherwise. By extracting classification rules from data
using the FCA theory to form the GA search space, the FCA-Based method
is able to avoid the creation of a large number of useless rules, a task that has
a high computational cost. After the rule extraction process, the FCA-Based
method uses a GA to generate the fuzzy rule base.

The FCA-Based method uses an integer chromosome codification. The size of
the chromosome is equal to the maximum number of rules considered acceptable
for the final FRBs and it is initialized with the number of rules found in the
rule base produced by the Wang & Mendel method [20] using the same FDB.
This heuristic allows the definition of chromosomes with a reasonable number of
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rules.This approach requires a considerable extra computational cost compared
to our approach. The integer codification uses the index of a rule in the search
space generated by FCA in each of its genes. To allow the generation of rule
bases with less rules than the maximum size of the chromosome, a -1 value is
used to indicate that a gene represents an inactive rule.

For the fitness calculation, and aiming at reducing the number of rules in the
final FRB, the FCA-Based method uses the Correct Classification Rate (CCR)
and the number of rules (NR) in the rule base represented by each chromosome
during the search process. This evaluation process uses a self-adaptive algorithm
that keeps and updates referential values of the ideal CCR and NR. After each
generation, an update occurs if a better CCR is obtained with a number of rules
equal or smaller than the best current NR. In the sequence, the NR is used in a
penalization mechanism that decreases the fitness value of a chromosome when
its NR is larger than the current reference NR.

In order to improve the interpretability of the final rule bases generated by
the GA, FCA-Based has a simple post selection process that checks the ability
of each individual rule to improve the classification power of the rule set. This
process aims at removing as many rules as possible while keeping (or improving)
the accuracy of the whole FRB.

2.4 MPLCS

MPLCS [21] stands for Memetic1 Pittsburgh Learning Classifier System
(MPLCS). The MPLCS method has many variants according to the adopted
local search mechanism.

The version used in our experiments uses the local search, based on the rule
set-wise operator. This local search has three main stages: i) an evaluation of the
candidate rules; ii) the selection of the rules that will form the offspring rule set;
iii) the generation of the final individual. In the first stage, all rules are evaluated
with all the examples of the training set, producing a map of correct and incorrect
classifications for each rule. The next stage uses this map to evaluate how much
each candidate rule can contribute to improve the accuracy of the offspring rule
set without re-evaluating the rule set.

2.5 Comparing the Models Generated by the SLAVE, FCA-Based,
and MPLCS

One issue with the models generated by SLAVE is that they contain rules with
sets of fuzzy label disjunctions in their antecedents. For example, one of the
models generated for the Iris dataset, with three rules, is presented next.

1. If X2 is {L0}, class is Iris-setosa (W 0.977)

1 Memetics is a theory of mental content based on an analogy with the Darwinian
evolution. Memes are similar to genes in GA, but represent ideas, believes, patterns
of behaviour, which can reproduce.
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2. If X0 is {L0 L1} and X2 is {L0 L1} and X3 is {L0 L1}, class is Iris-versicolor
(W 0.402)

3. If X0 is {L1 L2} and X2 is {L1 L2} and X3 is {L0 L2}, class is Iris-virginica
(W 0.719)

Although the model has only 3 rules, with a total of 7 conditions, 6 of these
conditions contain disjunctions of fuzzy labels, impacting on the model inter-
pretability. It is also possible to find the association of linguistic values that are
not defined by neighbouring fuzzy sets, which makes each rule quite difficult do
understand.

The models generated by MPLCS, similarly to SLAVE, contain conjunctions
of disjunctions, and, for continuous attributes, the splitting points can be quite
unnatural and difficult to be interpreted. As an example, the rule set for the Iris
dataset, with 4 rules, is shown next.

1. If sepalLength is > 6.243 and petalLength is > 5.085, class is Iris-virginica

2. If sepalLength is < 6.340 and > 7.020 and petalWidth is > 1.627, class is
Iris-virginica

3. If petalLength is < 1.983, class is Iris-setosa

4. Default rule: class is Iris-versicolor

The cutting points defined by the algorithm can be quite similar and close to
each other. For instance, the splitting points for sepalLength in rules 1 and 2
discard values from a very close interval from 6.243 to 6.340, which makes the
understanding of the whole model difficult.

The FCA-Based models present only conjunctions of conditions in the an-
tecedent of their rules, and, due to the fact that it is based on the fuzzy logic, the
discretization of continuous attributes is done using highly interpretable linguist
valued fuzzy sets. The rule set for the iris dataset is presented next.

1. If sepalLenght is medium, and petalLenght is medium and petalWidth is
medium, class is Iris-virginica

2. If petalLenght is large and petalWidth is medium, class is Iris-versicolor

3. if petalLength is small, and petalWidht is medium, and sepalWidth is
small, class is Iris-setosa

4. if petalLength is medium, and petalWidht is small, and sepalWidth is
large, class is Iris-virginica

For experts and persons who are familiar with the domain, the fuzzy linguistic
values small, medium and large are directly interpreted. Nevertheless, for
those who are unfamiliar with the domain, it is necessary to check the FDB
for the information regarding the number, type and distribution of the fuzzy
sets defining each attribute, in order to interpret the rules and rule set. This
process, although quite straightforward, requires extra effort. To reduce the time
to understand the FDB, the information can be presented in graphs.

Next, we discuss DT based classification methods.
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3 Classification Methods Based on Decision Trees

DTs are widely used in machine learning due to its simplicity of generation and
powerful representation of knowledge. Fuzzy DTs have also been proposed in
the literature. The classic C4.5 DT algorithm, PART (a DT-based approach for
rule generation), and FuzzyDT, our fuzzy version of the C4.5 algorithm, are
presented next, as well as a comparison of their generated models.

3.1 C4.5

DT algorithms generate a tree structure through recursively partitioning the
feature space until the whole decision space is completely divided into a set of
non-overlapping class subspaces (leaf nodes). They also perform an embedded
selection of features during its partitioning process, so only relevant features are
used in the tree, improving the time used to classify new examples as well as the
interpretability of the model. C4.5 is one of the most well-know DT algorithms
[2]. C4.5 uses the information gain and entropy measures when deciding on the
importance of the features.

In order to avoid overfitting, a stopping criterion can be used to prevent some
subsets of training examples from being subdivided. The pruning of a part of the
DT structure helps preventing overfitting. Regarding the pruning process, C4.5
employs post-pruning, i.e., the pruning takes place after the tree is completely
induced assessing the error rates of the tree and its components directly on the
set of training examples [1]. This assessment is related to the confidence level
that the error obtained with the pruned tree, in relation to the error for the
original tree, will represent the real error.

The default confidence level used by C4.5 is 25%. It is important to notice
that the smaller the confidence limits, the higher the chances of pruning, while
the higher the confidence limits, the smaller the chances of pruning. Thus, if
we set the confidence limit to 100%, what we are saying is that we believe that
the predicted error, obtained with the examples at hand, is equal to the real
error and no pruning will be performed. This idea conflicts with the natural
intution one might have that a 25% confidence limit will produce less pruning
than an 80% confidence limit. This way, one should not associate the default
25% confidence limits of C4.5 with a 25% pruning of the tree.

3.2 PART

PART, as its name indicates, is an algorithm based on partial DTs [3]. A partial
DT is an ordinary DT that contains branches to undefined subtrees. PART is
a rule-induction procedure that adopts the separate-and-conquer strategy. In
essence, it builds a rule, removes the instances it covers, and continues creating
rules recursively for the remaining instances until none is left. In order to generate
this rule, PART generates a DT and prunes all but one leaf (specifically the leaf
with the largest coverage) and makes the branch of this leaf into a rule, discarding
the rest of the tree. Its authors explain that using a pruned tree to obtain a rule,
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instead of building it incrementally by adding conjunctions of conditions one at
a time, avoids the over-pruning problem of the basic separate-and-conquer rule
learner.

In fact, using the separate-and-conquer methodology in conjunction with DTs
adds flexibility and speed to the process. Since it is wasteful to build a full DT
just to obtain a single rule, PART significantly accelerates the process described
without sacrificing the above advantages by building a “partial” DT instead of
a fully explored one. An integration of the construction and pruning operations
is used in order to find a “stable” subtree that can be simplified no further. This
way, once this subtree has been found, the tree induction ceases and a single rule
is selected.

3.3 FuzzyDT

FuzzyDT [17] is a fuzzy implementation of the classic C4.5 algorithm. It uses
the same measures of C4.5 (entropy and information gain) to decide on the
importance of the features. The main difference between the classic and the
fuzzy C4.5 is the fact that the fuzzy version discretizes continuous attributes
using fuzzy sets before the induction of the tree.This way, the process can be
seen as inducing a tree using only discrete features, since the continuous features
are defined in terms of fuzzy sets and the training set is fuzzified before the DT
induction.

3.4 Comparing the Models Generated by the C4.5, PART, and
FuzzyDT

The model produced by C4.5, as by most of the DT algorithms, form a set
of disjunct rules in which only one rule is fired to classify a new example. For
FuzzyDT, on the other hand, the tree can be seen as a set of rules that are fired
simultaneously. Since they are fuzzy rules, the degree of compatibility of each
rule with a new example is calculated and used by the inference mechanism to
classify this new example. This way, the inference of fuzzy DTs requires higher
computational effort than the classic DTs. In spite of this additional cost, the
compatibility information of the rule with the example guides the inference,
which considers all attributes of a rule (branch), while classic DTs simply tests
one attribute at a time, even if the input values are close to the test values.

PART generates a set of ordered rules. The inference process is quite straight-
forward: the first rule is checked, if it does not cover the example, the next rule
is checked, until the example is classified or the last rule is reached.

Next we compare some important features and definitions of FuzzyDT, C4.5
and PART.

Evaluation of features – For the partitioning process, the three methods
use the same measures, i.e., entropy and information gain, to select the features
to be used in the test nodes of their branches or rules;

Induction process – FuzzyDT and C4.5 repeatedly subdivide the feature
space using the most informative features until a leaf node is reached or no
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features or examples remain. PART uses a similar approach to generate partial
trees, but for each generated tree, only the branch of the tree that correctly
classifies the largest number of examples is used. This process is repeated as
many times as necessary.

Handling continuous features – PART and C4.5 split the domain accord-
ing to the examples at hand by minimizing entropy and maximizing information
gain. The drawback of this process is the discretization of continuous attributes,
which might create unnatural divisions that reflect on a lower interpretability of
the rules and rule set. Another issue with PART and C4.5 is that the number
of divisions used to split continuous attributes, even if known a priori, cannot
be informed to the algorithm. In fact, the splitting of continuous attributes is
done dynamically by the algorithms, and might be distant from the patterns
of the application domain or even from the representation used by an expert.
FuzzyDT, on the other hand, can use the partitions (and thus, number of fuzzy
sets) defined by an expert. Furthermore, even if this information is not avail-
able, fuzzy partitions can be automatically defined and are easily interpretable.
The equalized universe method [22], which evenly splits the domain into a de-
fined number of fuzzy sets, is a simple approach that prevents the creation of
unnatural splitting points.

Reuse of features – for PART and C4.5, the same continuous feature can
be used more than once in one single rule (for example, if the feature is tem-
perature, a rule might present tests such as “temperature ≤ 95”, ”temperature
≤ 74”, “temperature ≤ 10”, and so on). This repetition of the same feature
and subdivision of the domain degrades the interpretation of the rule. On the
other hand, asFuzzyDT fuzzyfies (“discretizes”) the attributes using fuzzy sets,
a feature can be used only once in one rule, favoring the interpretability of the
generated rules.

Inference – The C4.5 algorithm checks the root test and then the following
triggered branch of the tree, to classify a new example. The process is intuitive
and clear. Similarly, PART checks the ordered rule set in sequence. However, for
continuous features, whenever the input values are located in the decision fron-
tiers, misclassifications might occur due to the fact that the whole inference is
done based on a single attribute at a time. For FuzzyDT, as stated before, the
membership degree of the input example is calculated for each fuzzy set defining
each attribute. These membership degrees are then used to calculate the confi-
dence degree for each rule. Since all branches might be fired simultaneously, this
confidence degree is used by the classification process, taking into consideration
all the attributes included in each rule, instead of the approach used by the clas-
sic DTs of checking a single attribute at a time. This way, FuzzyDT gives more
credibility to the final classification. Nevertheless, although many branches of
the tree might not be fired by an example, if the DT is large, the FuzzyDT in-
ference process will require a considerable computational effort when compared
to PART and C4.5. The calculation can be reduced by defining a minimum
threshold of membership degree to continue testing rules or not.

Next, we present the experiments and results.
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4 Experiments

Our experiments were carried out using 10 datasets from the UCI Machine Learn-
ing Repository [23] and 10-fold cross-validation strategy. The KEEL framework
[24] was used for the SLAVE, C4.5, PART, and MPLCS algorithms, all exe-
cuted with default parameters, except for the number of fuzzy sets for SLAVE,
which was set to 3. For FCA-Based and FuzzyDT, we used our own imple-
mentations.

As previously stated, the motivation to compare such different approaches
for the automatic generation of classifiers is to provide information and insight
when selecting a classification method for a particular problem. For this pur-
pose, we considered the performance of the models, in terms of error rates, and
their interpretability, in terms of their syntactic complexity, which takes into
consideration the average number of rules generated and the average number of
conditions of these rules.

Table 1 summarizes the dataset characteristics giving the total number of
examples (Examples); number of features (Features), including the number of
continuous and discrete features in brackets; number of classes (Classes), and
the majority error (ME), which is the error of the most naive algorithm, which
always predicts the majority class of the dataset.

Table 1. General characteristics of the datasets

Dataset Examples Features Classes ME

Credit 653 15(6,9) 2 45.33
Cylinder 277 32(19,13) 2 35.74
Diabetes 769 8(8,0) 2 34.90

Glass 220 9(9,0) 7 65.46
Heart 270 13(13,0) 2 44.44

Ionosphere 351 34(34,0) 2 35.90
Iris 150 4(4, 0) 3 66.67

Segment 210 19(19,0) 7 85.72
Vehicle 846 18(18,0) 4 74.23
Wine 178 13(13,0) 3 59.74

Notice that all fuzzy methods used the same (FCA-Based and FuzzyDT)
or similar (SLAVE) fuzzy partitions, i.e., the same number of fuzzy sets and
their distribution, as well as the type of membership function.

Table 2 presents the mean error rates and standard deviation for the tested
methods. The majority error (ME) is presented in the second column. The lasts
lines present the average rank and the final rank for each approach. For the
average rank and the final rank for each method, when computing the error
rank for each dataset, if two or more error measures are equal, the fractional
strategy for assigning rankings was used, i.e., they receive the same ranking
numbers, which is the mean of what they would have under ordinary rankings.
The results for the DT-based approaches are presented in the first columns, and
thus, the results for the GA-based approaches in the last columns. The smallest
error rates are dark-gray shaded.
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Table 2. Error rates and standard deviation for decision tree based approaches

Approaches DT-based approaches GA-based approaches
FuzzyDT C4.5 PART SLAVE FCA-Based MPLCS

Datasets ME Error SD Error SD Error SD Error SD Error SD Error SD

Credit 45.33 15.78 6.68 12.09 4.39 37.35 13.54 37.38 3.86 9.82 3.90 11.02 4.89
Cylinder 35.74 34.20 0.09 27.69 10.95 31.32 10.68 35.74 0.96 25.77 5.15 25.95 10.85
Diabetes 34.90 26.10 0.05 22.89 8.07 31.47 10.49 25.66 4.26 23.09 2.30 23.67 8.41

Glass 65.46 48.26 8.12 27.03 11.29 48.98 17.50 38.25 10.19 39.56 5.21 29.39 12.17
Heart 44.44 21.85 5.60 20.37 8.32 38.15 13.86 20.74 10.10 19.72 7.44 17.41 8.61
Iono 35.90 13.53 9.95 11.11 4.51 20.52 13.02 12.27 4.81 11.76 4.97 9.98 4.66
Iris 66.67 8.00 2.67 4.00 5.33 60.00 20.00 4.67 4.27 4.68 6.33 2.67 5.33

Segment 85.71 20.48 5.65 0.48 0.45 10.70 4.88 13.43 0.43 24.75 7.39 0.69 0.55
Vehicle 74.23 35.85 4.05 24.33 9.09 58.36 19.96 39.59 4.82 44.15 4.73 27.04 10.64

Wine 59.74 12.86 11.43 6.67 6.94 36.31 14.51 9.54 7.05 4.27 4.99 5.00 3.89

Final Rank 4.9 2.3 5.6 3.3 3.0 1.9
Avg. Rank 5 2 6 4 3 1

Considering only the DT-based approaches, C4.5 obtained the smallest error
rates for all datasets. FuzzyDT presented smaller error rates than PART for 8
datasets. It should be observed that in most cases learning was very poor for
PART, as well as for FuzzyDT using Cylinder, i.e., the error rate for these
models is similar to the most naive learning algorithm that always predicts the
most frequent class in the dataset.

Considering only the GA-based approaches, MPLCS had the smallest error
rates for 6 datasets while FCA-Based for 4 datasets. Moreover, the error rate
of the model generated by SLAVE for Cylinder is the ME, thus, there was no
learning.

Comparing all methods, i.e., DT-based and GA-based, C4.5 obtained the
smallest error rates for 4 datasets, while FCA-Based and MPLCS for three
datasets each.

To test whether there was a statistically significant difference among the six
algorithms we used the Friedman test [25] with the null-hypothesis that the per-
formance of all algorithms, assessed in terms of the error rates, was comparable.
The Friedman test found there is no statistically significant difference among the
tested algorithms with a 95% confidence level.

As discussed previously, some methods tend to present good error rates, but
low interpretability, or vice-versa. This way, to analyse the interpretability of
the generated models, Table 3 presents the average number of rules and the
Syntactic Complexity (SC) of the models generated by the six analysed algo-
rithms, as well as the average rank and final rank of their SC. In this work, the
SC is defined as the total number of conditions in each rule set. The dark-gray
shaded cells highlight the smallest syntactic complexity values obtained in both
approaches. Notice that although the rules produced by SLAVE and MPLCS
present conjunctions of disjunctions, Table 3 does not consider the number of
disjunctions in the rules of these models.

As one can observe, PART produced the models with the smallest syntactic
complexity for 9 of the datasets and SLAVE for the remaining one. Observe that
dataset Cylinder is the remaining one, which had the ME as error rate (Table 3).
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Table 3. Average number of rules and syntactic complexity values

Approaches DT-based approaches GA-based approaches
FuzzyDT C4.5 PART SLAVE FCA-Based MPLCS

Datasets Rules SC Rules SC Rules SC Rules SC Rules SC Rules SC
Credit 21.0 64.5 19.6 95.4 3.0 12.4 5.1 18.6 10.5 32.8 6.9 33.9

Cylinder 31.8 83.7 42.8 248.5 3.6 17.6 1.0 1.0 15.8 70.1 11.8 118.4
Diabetes 12.6 34.4 23.6 150.2 1.3 3.7 4.2 19.6 9.1 33.1 8.3 33.6

Glass 26.6 95.0 24.1 137.8 2.5 10.1 11.9 51.1 6.8 39.4 7.6 21.9
Heart 17.4 49.0 18.5 86.1 1.4 4.0 8.3 43.9 14.1 58.5 7.0 30.7
Iono 20.2 54.4 13.9 72.4 2.4 9.8 15.1 73.0 19.9 77.5 4.6 19.5
Iris 8.2 13.4 4.6 12.1 1.0 2.0 3.2 10.4 4.5 12.8 4.0 7.6

Segment 22.6 72.2 10.0 38.0 1.3 3.2 3.5 15.9 11.5 49.2 4.2 9.3
Vehicle 65.6 296.9 66.3 503.0 2.7 12.0 21.7 151.9 30.2 172.9 19.2 72.9

Wine 13.8 35.0 5.1 12.5 1.9 5.7 4.5 30.2 4.9 15.3 4.2 6.6

Final Rank 4.9 5.1 1.1 3.1 4.1 2.7
Avg. Rank 5 6 1 3 4 2

(a) Credit (error[9.8, 37.3], SC[11.2, 95.4]) (b) Cylinder (error[25.8, 34.2], SC[1.0, 248.5])

(c) Diabetes (error[22.9, 31.5], SC[3.7, 150.2]) (d) Glass (error[27.0, 49.0], SC[10.1, 137.8])

Fig. 1. Error × SC for Credit, Cylinder, Diabetes, and Glass
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Thus, the model generated is simply one rule assigning the majority class to any
new instance. However, PART was ranked last in accuracy (Table 2). On the
other hand, although C4.5 is ranked last regarding the SC, it is ranked second
for accuracy. Furthermore, MPLCS is ranked second regarding the SC, and it
is ranked first for accuracy.

In order to consider the performance of the methods both in terms of error
rates and syntactic complexity, we used the normalized values of the error rate
and SC to produce some graphs and visually analyse the results. To illustrate,
Figure 4 presents the results for Credit, Cylinder, Diabetes, and glass, the first
four datasets. Because the values are normalized, notice that the origins of the
graphs do not represent null error and null syntactic complexity. Instead, the
origins are defined by the smallest error rate and SC of the results of the tested
methods for each dataset. Similarly, point (1,1) represents the maximum er-
ror and syntactic complexity obtained on the dataset. By using the normalized
values, instead of the real ones, it is easier to choose the most appropriate al-
gorithms for a specific dataset by focusing on the ones that are plotted closest
to the origin of the graphs. The idea is to discard the methods whose values
are plotted farthest from the origin and just compare and analyse those closest
to the origin in order to obtain the best compromise between error rate and
syntactic complexity.

For datasets Credit and Diabetes, the FCA-Based algorithm presents the
smallest error rate and low SC. The second best would be MPLCS. However,
it is important to notice that the rules produced by MPLCS contain the dis-
advantage of being formed by conjunctions of disjunctions, while FCA-Based
produce quite clear and interpretable rules. For the Cylinder dataset, FCA-
Based should be chosen, and MPLCS for the Glass dataset. C4.5, although
having low error rates, had the worst SC for these datasets. PART and SLAVE
had both good SC, but poor error rates.

Next, we present the final conclusions.

5 Conclusions

Classification is an important task in the machine learning and fuzzy communi-
ties. Many classification approaches have been proposed by both communities,
some of them sharing similar cores. For instance, both communities have decision
tree-based methods, genetic-based methods, methods based on artificial neural
networks, among others. Aiming at comparing similar methods from both com-
munities that produce interpretable models, two groups of rule-based methods
are analysed in this work: decision tree-based and genetic-based approaches.

The decision tree-based group include C4.5, PART and FuzzyDT. The
genetic-based group includes MPLCS, a method from the machine learning
community to generate rule-based models, as well as SLAVE and FuzzyDT,
both fuzzy-based. These methods were analysed according to their accuracy and
syntactic complexity on ten benchmark datasets using a ten fold cross-validation
strategy.
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Results show that FCA-Based and MPLCS were able to obtain good ac-
curacy and interpretability, while the other methods had good accuracy and
poor syntactic complexity, or poor accuracy and good syntactic complexity.
One important issue when comparing the models produced by FCA-Based
and MPLCS is the fact that MPLCS, as well as SLAVE, produce rules with
conjunctions of conditions which might contain sets of disjunctions. This char-
acteristic makes MPLCS and SLAVE much less complex with respect to the
SC than the ones produced by C4.5, PART, and FCA-Based, although the
disjunctions impact on the readability of the rules, instead of improving it.

As future work, we intend to include other methods from both communities
in the experiments and consider other important issues in our comparisons, such
as the time taken to generate the models, and their ability to classify examples
from datasets whose classes have different cost for misclassification, such as in
medical domains. We also intend to use a larger set of datasets.
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Methods. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. CCIS,
vol. 80, pp. 318–327. Springer, Heidelberg (2010)

18. Mitchell, T.M.: Machine Learning. McGraw-Hill (1997)
19. Wille, R.: Restructuring lattice theory: An approach based on hierarchies of con-

cepts. In: Rivals, I. (ed.) Ordered Sets, vol. 23, pp. 445–470 (1982)
20. Wang, X.Z., Wang, Y.D., Xu, X.F., Ling, W.D., Yeung, D.S.: A new approach to

fuzzy rule generation: fuzzy extension matrix. Fuzzy Sets and Systems 123, 291–306
(2001)

21. Bacardit, J., Krasnogor, N.: Performance and efficiency of memetic pittsburgh
learning classifier systems. Evolutionary Computation 17(3), 307–342 (2009)

22. Chen, M.S., Wang, S.W.: Fuzzy clustering analysis for optimizing membership
functions. Fuzzy Sets and Systems 103, 239–254 (1999)

23. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
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Abstract. We present an approach to learn fuzzy binary decision rules from or-
dinal temporal data where the task is to classify every instance at each point in
time. We assume that one class is preferred to the other, e.g. the undesirable class
must not be misclassified. Hence it is appealing to use the Variable Consistency
Dominance-based Rough Set Approach (VC-DRSA) to exploit preference infor-
mation about the problem. In this framework, the VC-DomLEM algorithm has
been used to generate the minimal set of consistent rules. Every attribute is then
fuzzified by first applying a crisp clustering to the rules’ antecedent thresholds
and second using the cluster centroids as indicator for the overlap of neighboring
trapezoidal normal membership functions. The widths of the neighboring fuzzy
sets are finally tuned by an evolutionary algorithm trying to minimize the speci-
ficity of the current fuzzy rule base.

1 Introduction

In many real-world problems, complex systems need to be described in a highly com-
prehensible way. The explaining descriptions are usually based on observations of sev-
eral variables describing the state of the system. For many systems, it is quite common
that the number of variables is large, say around 50. Thus, it can be quite difficult for
human experts to build a model that describes the system in an adequate way. Usually,
a trade-off has to be found to balance both the correctness and the complexity of the
model.

Complex models are naturally regarded skeptically since a proof of correctness is
hard to obtain. In our highly technologized information society, rapidly increasing quan-
tities of data coming from complicated systems are stored without any possibility of be-
ing analyzed manually. Therefore, it is extremely desirable to have machines that learn
from empirical data and guarantee both interpretable and correct models.

Here, we will restrict ourselves to machines that solve supervised classification prob-
lems based on numerical data. A Fuzzy Rule-based Classifier (FRBC) is such kind
of machine. Nowadays, an FRBC is the state of the art in many real-world applica-
tions, e.g. automobile controllers (Schröder et al, 1997). It has nice properties that are
demanded and appreciated by safety experts. That is, an FRBC is linguistically inter-
pretable and its behavior is easy to approve by these experts. An open research problem
is the question how such an FRBC can be found and tuned automatically. We want to

R.R. Yager et al. (Eds.): Soft Computing: State of the Art Theory, STUDFUZZ 291, pp. 105–112.
DOI: 10.1007/978-3-642-34922-5_8 c© Springer-Verlag Berlin Heidelberg 2013
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develop machine learning tools that come up with interpretable fuzzy rule bases for
such systems.

The online discrimination of vehicle crashes to deploy certain stages of a restraint
system is such complex problem (Moewes, 2007; Moewes et al, 2008, 2010). Fuzzy
binary decision rules shall be obtained from ordinal temporal data. Every instance is
classified at each point in time. The so-called fire class is preferred to the no-fire class,
e.g. we must not deploy in a no-fire case. To the best of our knowledge, no suitable
(fuzzy) rule learner exists for this safety-related problem. An exhaustive discussion and
recent recent approaches to tackle safety-related problems can be found in (Nusser,
2009).

In this paper, we show that the crash discrimination problem corresponds to or-
dinal binary classification with monotonicity constraints. Hence, the idea is to use a
rule-based ordinal classifier that exploits monotonicity. This important property is im-
plicitly handled by the Variable Consistency Dominance-based Rough Set Approach
(VC-DRSA) (Greco et al, 2001). In this framework, the minimal set of consistent rules
has been generated by the VC-DomLEM algorithm (Błaszczyński et al, 2011).

Another novelty in this paper is a proposal to fuzzify the crisp classifier to an FRBC.
Every attribute is fuzzy partitioned in three steps. First, a crisp clustering is applied
to the rules’ antecedent thresholds. Second, the cluster centroids are used as indicator
for the overlap of neighboring trapezoidal normal membership functions. Finally, the
widths of the neighboring fuzzy sets are tuned by an evolutionary algorithm that min-
imizes the specificity of the current fuzzy rule base. The fuzzification step is basically
performed to compress the original rule base for interpretation issues.

2 Fundamentals

2.1 Ordinal Binary Classification

Given an object x which can be described by attribute values x = (x1, . . . ,xn), the aim
in ordinal classification is to predict an unknown class label ω from an ordered set
Ω = {0, . . . ,k−1}. A meaningful order between classes is assumed which corresponds
to a natural order between the labels ω ∈ Ω . When dealing with |Ω |> 2, ordinal clas-
sification problems are found in many real-world applications, e.g. recommender sys-
tems. There, users can rate items on a finite scale, e.g. a school grade from 1 to 5. The
ultimate goal is to predict the rates of a new user given the known rates. For |Ω | = 2,
we say that the ordinal classification problem is binary.

2.2 Rough Set Approach

The rough set approach is performed in two steps to extract knowledge from
observations (Błaszczyński et al, 2011). First, all inconsistencies in the data are found
by computation of lower and upper approximations of all observations. In the
indiscernibility-based rough set approach (IRSA) (Pawlak, 1991), these sets correspond
to decision classes. Data points do not obey any order and can be therefore compared
by the indiscernibility relation.
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The dominance-based rough set approach (DRSA) (Greco et al, 2001) assumes that
the decision classes are ordered. Furthermore DRSA monotonically relates observa-
tions’ attributes and their decision classes based on some dominance principle, e.g. “the
higher the attribute value, the more possible the instance is positive”. Naturally, DRSA
is therefore suitable to handle ordinal classification problems with monotonicity con-
straints. So, certain decision rules based on indiscernibility might be inconsistent w.r.t.
the dominance principle. In IRSA and DRSA, approximations are based on granules
of knowledge and the lower approximation of a set is defined by including granules of
knowledge in the approximated set.

To relax the definition of the lower approximation to allow somewhat adequately
consistent rules, different probabilistic generalizations of rough sets have been sug-
gested. The variable consistency dominance-based rough set approach (Greco et al,
2001) is one of them. It permits an extension of the lower approximation of a set by
observations with might belong to the set up to a sufficient degree.

The second step of RSA extracts decision rules from the observations approxima-
tions given in the approximations. Certain (or consistent) rules are received from the
lower approximations. Possible rules are obtained by the upper approximations. Ap-
proximate rules are found in the boundary, i.e. the difference of lower and upper ap-
proximation. The set of minimal decision rules can be found by sequential covering, as
it is performed by the algorithm VC-DomLEM (Błaszczyński et al, 2011). This algo-
rithm tries to maximize the accuracy on the training set by a minimal number of rules
covering all consistent training observations.

3 Generation of Fuzzy Rules

We chose the VC-DomLEM algorithm (Błaszczyński et al, 2011) to obtain a minimal
set of crisp rules of the form

Ri : if x1 ≥ θi,1 and . . . and xp ≥ θi,p then class =+1.

We considered only certain rules for the positive class. That is, we want to prevent false
positive under all circumstances. Hence the obtained rule base only covers positive
observations. The negative class is predicted when no positive rule fires. This reasoning
will be elucidated more detailed based on a real-world application in Section 4.

In order to discretize the real value sets of the given attributes, we fuzzy partitioned
the value sets based on the rule thresholds θi, j. The fuzzification shall serve as a com-
pression of rules. Furthermore it shall enable the user to obtain a more comprise lin-
guistic description of the obtained decision rules.

The partitioning of every attribute x j with 1 ≤ j ≤ p is performed by several heuris-
tic steps. First, the clause thresholds θi j of all rules Ri with 1 ≤ i ≤ r are collected.
Second, an arbitrary number of splits k j is determined, e.g. by the user. Note that x j is
partitioned into k j + 1 fuzzy sets. Then, we group all elements of {θi j | 1 ≤ i ≤ r}, e.g.
using k-means clustering (MacQueen, 1967). Finally, the cluster centroids c1, j, . . . ,ck, j

represent the intersecting points of neighboring trapezoidal fuzzy sets μi, j,μi+1, j such
that

μi, j(ci, j) = μi+1, j(ci, j) = 0.5.
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Crisp rule thresholds θi, j, here for j = 1:

θ1 θ2 θ3 θ4

θ5

θ6 θ7 θ8

θ9

θ10

θ11

θ12 θ13 θ14

θ15 θ16

θ17

θ18

Centroids ci, j after k-means clustering with k = 6:

c1,1 c2,1 c3,1 c4,1 c5,1 c6,1

Fuzzification using trapezoids and arbitrary widths wi, j:

w1,1 w2,1 w3,1 w4,1 w5,1 w6,1

Fig. 1. Fuzzy partitioning of attributes: First, the crisp rule thresholds θi, j are clustered with k-
means and k = 6. Then, the cluster centroids are used as intersecting points of neighboring fuzzy
sets. The arbitrary widths wi, j of the overlapping fuzzy sets are found by an EA.

Algorithm 1. Evolutionary Algorithm
Input: training data, crisp rule base, centroids, k
1: t ← 0
2: top-k ← some integer
3: pop(t)← create population of size μ
4: pop(t)← repair pop(t)
5: while t < tmax {
6: for each individuals A ∈ pop(t) {
7: create fuzzy rules with crisp rules and fuzzy partition
8: fitness A.F ← compute specitivity
9: }

10: rank all individuals according to their fitness values
11: pop1 ← select top-k individuals
12: fill up pop1 by shuffle-crossover of best individuals
13: apply Gaussian mutation to all but the best A ∈ pop1
14: t ← t +1, top-k ← top-k−1
15: pop(t)← repair pop1
16: }
17: return best individual from pop(t)

The complete process of fuzzification is shown exemplarily for x1 in Fig. 1.
The only parameters left for tuning are the intersecting widths wi, j of the overlapping

trapezoidal fuzzy sets. We simply suggest to apply a steady-state evolutionary algorithm
(EA) to find good assignments of every width. The whole algorithm is shown in Alg. 1.
Each candidate solution is represented by a vector of reals, i.e. all wi, j’s. The widths
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are initialized by wi, j ∈ (0, range
k ]. The following procedure is called for evaluating the

fitness of a candidate solution: First, we partition the attributes according to the fixed
centroids and the variable widths. Second, we fuzzify every rule’s clause using the fuzzy
partition. Finally, the fitness is given by the specificity

specificity =
TN

TN+FP

of the fuzzy rule-based classifier. That is, the ratio of true negatives divided by the
sum of true and false negatives. The four possible outcomes of binary classification are
shown in Tbl. 1.

Table 1. FP = false positive/alarm, FN = false negative

given class
+1 -1

predicted +1 TP FP
outcome -1 FN TN

Note that since we already optimized the accuracy

accuracy =
TP+TN

TP+FP+TN+FN

using the VC-DRSA, we may optimize the measure of specificity instead. It is possible
to introduce different or more than this performance measure for evaluating a candidate
solution, e.g. the sensitivity

sensitivity =
TP

TP+FN
.

However, due to the preference structure of the problem discussed in Section 4, it is
sufficient to optimize the specificity in the second step.

4 Application

Nowadays Europeans travel three times as much as 20 years ago, mainly by car. Ev-
ery year, around 40,000 people loose their lives on European roads. Many automobile
manufacturers and suppliers therefore set themselves the objective of zero accidents.
Indeed, looking at the number of fatalities recorded by the German Federal Highway
Research Institute1, we observe a strong tendency towards this vision of zero accidents.
In 1970, there used to be 14 millions cars and more than 19,000 road fatalities in East
and West Germany. More than 30 year later in 2006, the number of road fatalities de-
creased to 5,000 whereas the number of vehicles on German roads increased more than
threefold to 46 millions. Until 1970 number of fatalities used to be directly proportional
to the number of vehicles on German roads.

1 Deutsche Bundesanstalt für Straßenwesen http://www.bast.de
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Milestones of the automobile technology have played an important part in contribut-
ing to this contrasting trend. In 1972, a general speed limit had been introduced on
(West) German roads. For years later, the requirement to wear a seat belt followed. Then
in 1981, a big step towards the above described vision had been taken by introducing
the airbag technology. Together with the seat-belt tensioner, it embodies the safest re-
straint system up to today. In the nineties, side airbags and nowadays knee airbags for
the driver and front-seat passenger have been added to this system.

The development of these technologies would not have been possible without the
design and implementation of standardized crash tests. Every millisecond today’s cars
must decide based on dozens of signals whether (and if so which) components of the
restraint systems shall be deployed or not. For instance, it could be fatal if the airbag
wrongly deployed during a first collision with a wild boar (a so-called no-fire crash)
followed by a frontal collision with a tree. The airbag, for example, shall only deploy
in severe crash situations, so-called fire crashes. Unfortunately in the first moments of
a crash, the signals during a no-fire crash are very similar to those obtained by a fire
crash.

Matters are complicated further by the crash test costs that usually come up to a car’s
price. Thus naturally, only few dozens of these prohibitive tests are possible during
the development of every automobile series. In addition, dissimilar vehicles behave
different in a standardized crash test. Neither all types of loads nor all possible technical
equipments can be tested.

The decision logic developed by automobile supplies must therefore be accurately
aligned to every car platform. Decision rules, e.g. based on fuzzy logic, are formulated
by domain experts doing tedious detail work to meet most requirements of a car man-
ufacturer and technical inspectors. The rule base to be generated must be both highly
interpretable and very accurate regarding crash discrimination. It can take up to one
month to cope with this task manually.

Although automobile suppliers started using technologies from the field of knowl-
edge discovery in databases, the described problem to learn such decision logic is still
open. Many attempts to induce fuzzy rules from observations (see e.g. (Nauck and Kruse,
1997; Ishibuchi et al, 2001; Wang and Lee, 2002)) fail since they generate either way
too many rules composed of many clauses or too simple rules leading to a high error-
proneness.

We try to find an algorithm which is capable to induce a decision logic that is accurate
and interpretable. The problem to maintain high accuracy has been already solved using
statistical learning methods, e.g. SVMs (Moewes, 2007; Moewes et al, 2008, 2010).
Ambitious ideas (Moewes and Kruse, 2008) to induce interpretable and accurate fuzzy
rules from SVMs failed (Moewes and Kruse, 2011).

Note that each algorithm must deal with the preference structure of this binary classi-
fication problem. That is, at each point in time which is labeled negatively (i.e. no-fire),
a correct prediction is demanded. Every false positive may lead to severe injuries. On
the contrary it is enough to classify one positive instance before a certain time has past.
Recognizing a fire crash after this point in time could be fatal. In total, both decision
classes (i.e. fire and no-fire) are preference-ordered: We prefer the fire class to the no-
fire one.
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Note that each signal can be seen as criterion, i.e. an attribute with preference-order
domain. Clearly, the higher one of the signals, the more likely it is to fire at that point in
time. This monotonicity relation facilitates a fire decision. We conclude that the task to
solve is an ordinal classification problem with monotonicity constraints. VC-DRSA en-
ables us to directly incorporate both the decision class preferences and the monotonicity
constraint.

We would finally obtain a minimal set of certain rules that will only need a fraction
of all possible attributes as fuzzy clauses. We expect the crisp VC-DomLEM classi-
fier to outperform the FRBC on both accuracy and specificity. The discretization of all
attributes, however, will increase the readability of the rules enormously.

5 Conclusions

We presented an approach to obtain fuzzy binary decision rules for ordinal binary clas-
sification problems with monotonicity constraints. It is based on VC-DRSA. A minimal
set of crisp rules have been obtained by the VC-DomLEM algorithm. The rules have
been fuzzified by a discretization procedure and an evolutionary algorithm. We expect
our framework to outperform existing fuzzy classifiers in specificity and interpretability
(i.e. number of rules, number of used clauses) on the crash discrimination problem. The
advantages of our approach are the implicit feature reduction by RSA and the automatic
generation of linguistically interpretable consistent rules.

We will investigate the generation of rules covering negative examples as well. Fur-
thermore we plan to control the number of rules, e.g. by (fuzzy) confirmation measures.
We expect temporal rules of a more general form to further exploit the problem de-
scription. The core idea will be to use DRSA for time preferences (so-called time dom-
inance) (Greco et al, 2010). The integration of time series data mining techniques, e.g.
motif discovery (Moewes and Kruse, 2009), might additionally boost the performance.
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Abstract. The popularity of modern online social networks has grown up so
quickly in the last few years that, nowadays, social network analysis has become
one of the hottest research lines in the world. It is important to highlight that
social network analysis is not limited to the analysis of networks connecting peo-
ple. Indeed, it is strongly connected with the classical methods widely recognized
in the context of graph theory. Thus, social network analysis is applied to many
different areas like for instance economics, bibliometrics, and so on. This contri-
bution shows how it can also be successfully applied in the context of designing
interpretable fuzzy systems. The key point consists of looking at the rule base
of a fuzzy system as a fuzzy inference-gram (fingram), i.e., as a social network
made of nodes representing fuzzy rules. In addition, nodes are connected through
edges that represent the interaction between rules, at inference level, in terms of
co-fired rules, i.e., rules fired at the same time by a given input vector. In short,
fingram analysis consists of studying the interaction among nodes in the network
for the purpose of understanding the structure and behavior of the fuzzy rule base
under consideration. It is based on the basic principles of social network analysis
which have been properly adapted to the design of fuzzy systems.

1 Introduction

Social networks [40] have existed since humans were aware of the great advantages de-
rived from the fact of collaborating and living together in structured groups. Of course,
this happened thousands of years ago. However, in the last few years the popularity
of modern social networks has grown up very quickly because of the huge boom of
new technologies for telecommunications. Nowadays, some websites like facebook1,
twitter2 or LinkedIn3 are widely known all around the world both for fun but also for
professional purposes, with millions of users registered. Moreover, users of such social
networks consider them as an essential part of their everyday life.

1 A social utility for connecting with friends online at http://www.facebook.com
2 A social utility for following people online at http://www.twitter.com
3 A professional social network online at http://www.linkedin.com
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In consequence, social networks are attracting more and more attention from both
industry and academia. Accordingly, lots of researchers have begun to work very ac-
tively on issues related to social networks [14] becoming a very flourishing field. There
are studies in the context of all kinds of social sciences [25] such as bibliometrics [42],
politics [11], medicine [13], economics [19], etc. There are also works dealing with
industrial applications, for example supply chain management [27].

This paper introduces a new methodology for visualizing and analyzing fuzzy rule-
based systems viewed as social networks. Hence, the main contribution consists in
defining the so-called fuzzy inference-grams (fingrams).

Since the proposal of Zadeh and Mamdani’s seminal ideas [28,43,44], interpretabil-
ity [1] is widely recognized as one of the strongest points of fuzzy system identification
methodologies. It represents the ability of fuzzy systems to model a real system in
a human-friendly understandable way. To do so, the knowledge embedded into fuzzy
systems is usually expressed in the form of linguistic variables and rules. Thus, the
rule base of a fuzzy system becomes the main communication interface to users [31].
Moreover, a fuzzy rule base can be seen as a population made up of a set of indi-
viduals (fuzzy rules) which compete and collaborate among them with the aim of
yielding both good generality-specificity and interpretability-accuracy trade-offs. In
consequence, users can understand the system behavior through checking graphically
existent relationships among rules. Fortunately, they can be easily analyzed by look-
ing at the rule base as a fingram, i.e., as a social network made of nodes (representing
fuzzy rules) and edges (representing the interaction among rules). Rule interaction is
measured at inference level in terms of co-fired rules, i.e., rules fired at the same time
by a given input vector.

The main goal of fingram analysis is the understanding of the structure and behavior
of a fuzzy rule base under consideration. It is mainly based on the adaptation of given
techniques for social network analysis to the design of fuzzy systems. As it will be
thoroughly explained along the paper, the analysis of fingrams offers many possibilities:
finding out the most significant rules, identifying potential inconsistencies among fuzzy
rules, assessing the interpretability of fuzzy systems, etc.

The rest of the contribution is organized as follows. Section 2 starts with a brief
overview on visual representation and analysis of fuzzy systems, then it presents some
techniques for social network visualization and analysis, and it ends with the introduc-
tion of basic aspects related to interpretability assessment. Section 3 goes in detail with
the generation and analysis of fingrams. It is important to notice that, as a first step,
the general approach is particularized for the analysis of fuzzy rule-based classifiers
(FRBCs), i.e., fuzzy rule-based systems for classification purposes. Section 4 summa-
rizes the experiments carried out along with the achieved results. Finally, some conclu-
sions and future work are sketched in Section 5.

2 Preliminaries

2.1 Visual Analysis of Fuzzy Rule-Based Systems

A complete analysis of visualization requirements for fuzzy systems is provided in
[35]. It gives an overview on existing methodologies to yield 2D and 3D graphical
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representations of fuzzy systems. It comprises visualization of fuzzy data, fuzzy parti-
tions, and fuzzy rules. Different alternatives are available depending on the requirements
of the end-user. Moreover, requirements may change according to the visualization tasks
to perform: interactive exploration; automatic computer-supported exploration; receiv-
ing feedback from users; and capturing users’ profiles and adaptation.

The most relevant works to obtain visual representations of multi-dimensional fuzzy
rules are those developed by Berthold et al. [6,15]. They make a mapping from a high-
dimensional feature space onto a two-dimensional space which maintains the pair-wise
distances between rules. The established mapping also displays an approximation of the
rule spread and overlapping. As a result, it is possible to visualize and explore multi-
dimensional fuzzy rule bases in a 2D graphical representation. Authors claim such rep-
resentation yields a user friendly and interpretable exploratory analysis. However, the
complexity of the analysis grows exponentially with the number of features and rules to
be displayed. In consequence, in complex problems with many rules the interpretation
of the resultant graph is not straightforward.

Unfortunately, there are not many papers tackling with visual analysis of the in-
ference process of fuzzy systems, and most of them are limited to visual descriptions.
Probably, this is due to the well-known linguistic expressivity of such systems that gives
prominence to linguistic representations. However, when dealing with complex prob-
lems, even when the design is made carefully to maximize interpretability, the number
of rules can become huge because of the curse of dimensionality characteristic of fuzzy
rule-based systems. In those cases, looking for a plausible linguistic explanation of the
inferred output, derived from the linguistic description of the fuzzy knowledge base, is
not straightforward. Explaining the inferred output as an aggregation of all the involved
rules is not easy when many rules are fired at the same time for a given input.

Some authors [22,23] have bet for searching visual explanations of the system output.
Ishibuchi et al. established a set of design constraints with the aim of producing groups
of rules with only two antecedent conditions that can be plotted in a two-dimensional
(2D) space. They look for a visual representation able to explain the output of fuzzy
rule-based classifiers to human users. Nevertheless, considering only two antecedents
per rule is a strong limitation that may penalize the accuracy of the system.

2.2 Visual Analysis of Social Networks

Although there are several approaches for visualizing different kind of social networks,
we will focus on co-citation social networks and the works published by Vargas-Quesada
and Moya-Anegón [32,42] which strongly inspired our proposal. Indeed, the term fin-
gram was coined by inspiration on the term scientogram firstly introduced by Vargas-
Quesada and Moya-Anegón [32] as a novel tool for visualizing the structure of
science [42].

Scientograms are visual science maps, i.e., visual representations of scientific do-
mains in the form of social networks. They illustrate interactions among authors and
papers through the basic notion of paper co-citation, representing the frequency with
which documents are jointly cited by pairs. It is possible to group them by author, jour-
nal, or categories. Obviously, depending on the kind of regrouping, the information that
can be extracted from the generated maps is different.
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The standardized co-citation measure, firstly introduced by Salton and Bergmark, is
computed by the next equation [38]:

MCN(i j) =
Cc(i j)√
c(i) · c( j)

(1)

where Cc means co-citation, c stands for citation, while i and j represent two different
entities (authors, documents, journals, categories, institutions, countries, etc.).

In addition, network scaling (NS) is aimed to obtain simplified structures revealing
the backbone, i.e., the underlying organization of the original network. NS is based on
estimating the proximity between pairs of nodes by means of computing distances, sim-
ilarities, correlations, and so on. Actually, NS is efficiently carried out by Pathfinder al-
gorithm [8,12] that is essential to make feasible a good visual interpretation. Pathfinder
is in charge of pruning the initial network while keeping only the most relevant links
into the final Pathfinder networks (PFNETs). It is worthy to remark that the combi-
nation of entity co-citation and NS yields high quality, schematic network visualiza-
tions in several fields such as psychology (for representing the cognitive structure of
a subject [39]), software development (for debugging of multi-agent systems [41]), or
scientometrics (for analyzing large scientific domains [9]).

The next step is about the automatic visualization of PFNETs. For this porpuse, the
spring embedder family of methods is the most widely used in the area of Information
Science. Spring embedders assign coordinates to the nodes with the aim of producing
aesthetical pleasant graphs. Vargas-Quesada and Moya-Anegón recommend the use of
Kamada-Kawai’s algorithm [26] which is one of the most extended methods to perform
this task. Starting from a circular position of the nodes, it generates networks following
aesthetic criteria: maximizing the use of available space, minimizing the number of
crossed links, forcing the separation of nodes, building balanced maps, etc. Notice that,
the combination of entities co-citation, PFNETs, and Kamada-Kawai makes the entities
that share most sources with the rest, tend to be located toward the center.

Lastly, concerning the analysis of scientograms, according to [42] there are three
main measures of centrality that yield useful information with the aim of identifying
the most significant nodes of a PFNET: Degree of Centrality (regarding the number
of direct links gathering in a node), Centrality of Closeness (measuring the distance
among nodes), and Centrality of Intermediation or Betweeness (looking at nodes that
act as link between other nodes contained in the shortest path).

2.3 Assessing Interpretability of Fuzzy Rule-Based Systems

Interpretability characterization and evaluation is a very subjective task which strongly
depends on the skills and background (experience, preferences, knowledge, etc.) of the
specific end-user who interprets the linguistic description of a fuzzy system with the
aim of conceiving the significance of the system behavior.

Thus, assessing interpretability remains a trending and hot topic. Gacto et al. [17]
have recently published a complete taxonomy about existent interpretability indexes.
They identify four groups of indexes coming up from the combination of two different
criteria, namely the nature of the index (complexity vs. semantic) and the considered
elements (partitions vs. rule base) in the fuzzy system under study:
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1. Complexity at partition level.
2. Complexity at rule base level.
3. Semantic-based interpretability at partition level.
4. Semantic-based interpretability at rule base level.

Most previous works [7,20] only deal with the readability of fuzzy systems. Therefore,
most indexes correspond to groups (1) and (2). They usually make only basic analysis
of complexity, i.e., they only count the number of elements (features, membership func-
tions, rules, premises, etc.) included in the fuzzy system at partition level (group 1) and
rule base level (group 2). Hence, they may be deemed as structural-based interpretabil-
ity indexes.

On the other hand, group (3) contains works regarding structural properties of fuzzy
partitions [34] such as distinguishability, coverage, and so on. They generally measure
the degree of fulfillment of semantic constraints that should be overimposed during
the design process. It is widely admitted that working with the so-called Strong Fuzzy
Partitions (SFPs) [37] satisfies all semantic constraints required to have interpretable
fuzzy partitions from the structural point of view.

Finally, only a few authors have begun recently to put emphasis on the importance of
defining indexes in group (4). They advocate for extending the analysis of readability
to evaluate the comprehensibility, i.e., the implicit and explicit semantics embedded in
fuzzy systems [16,31]. There are also some papers dealing with the consistency of fuzzy
rule bases and with the number of co-fired rules, i.e., rules simultaneously fired from a
given input [4,10,30].

3 Proposal

This section thoroughly explains how to visualize and analyze FRBCs by means of fin-
grams. They represent a novel tool that arises from adopting a social network based
approach inspired on the one proposed by Vargas-Quesada and Moya-Anegón for visu-
alizing and analyzing the structure of science [42].

Fingrams are graphs which represent fuzzy rule bases as social networks. They con-
tain nodes representing fuzzy rules and edges showing the interactions among them in
terms of co-fired rules.

3.1 Fingram Generation, Scaling and Drawing

Given a fuzzy system containing N rules and an experimental dataset covering most
possible situations, the N ×N weight matrix M describes the interactions among the N
rules in terms of frequency of co-firing.

M =

⎛
⎜⎜⎝

0 m12 . . . m1N

m21 0 . . . m2N

. . . . . . . . . . . .
mN1 mN2 . . . 0

⎞
⎟⎟⎠ (2)

The co-firing measure (mi j), inspired on the standardized co-citation measure (Eq. 1)
proposed by Salton and Bergmark [38], is defined by the next equation:
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mi j =

{ SFRi j√
FRi·FR j

, i �= j

0 , i = j
(3)

where SFRi j means the number of data samples for which rules Ri and R j are simul-
taneously fired, while FRi and FR j count respectively the total number of samples for
which the same rules Ri and R j are fired, without taking care if they are fired together
or not. Notice that mi j are normalized and M is symmetrical. Note also that the number
of times a rule is fired is computed in an inferential way for all available data samples.
Hence, it is extremely dependant on the goodness (quantity and quality) of the available
experimental data.

An undirected graph is straightforwardly generated from the weight matrix M. This
is made up by connecting N nodes using edges whose weights are directly taken from
M. Thus, mi j equals zero means that there is no link between nodes i and j.

Since the initial graph related to the matrix M is likely to be quite dense and difficult
to analyze, it is worthy to apply a pruning mechanism before printing and exploring
the generated fingram. To do so, a NS method like Pathfinder4 [8,12] able to discover
and keep only the most relevant links in M is very effective. It has already been suc-
cessfully applied in the context of social networks. As result of running Pathfinder the
initial graph representing M is translated into a pruned network called PFNET. This
only keeps those links which do not violate the triangle inequality stating that the direct
distance between two nodes must be lesser than or equal to the distance between them
passing through any group of intermediate and connected nodes. Notice that, thanks to
the properties of PFNETs, the pruned fingram preserves the underlying structure with
all relevant information at global level in comparison to the original one.

Even though there are many different methods for the automatic visualization of
social networks, the spring embedder family has become the most widely used in the
area of Information Science. Spring embedders assign coordinates to the nodes in such
a way that the final graph will be pleasing to the eye, and that the most important
elements are located in the center of the representation. Among them, probably the
most famous method is the one proposed by Kamada and Kawai [26]. Starting from
a circular position of the nodes, it generates networks with aesthetic criteria such as
the maximum use of available space, the minimum number of crossed links, the forced
separation of nodes, the generation of balanced maps, etc. Notice that, the combination
of rule co-firing, PFNETs, and Kamada-Kawai makes the most relevant rules, those
exhibiting the highest interaction with the rest, tend to be located toward the center of
the graphical representation.

The visual representation of the resultant graph is what we have called fingram. Fur-
thermore, it can be enhanced with additional relevant information related to the specific
problem under consideration. For instance, in the case of classification problems, the
nodes represent fuzzy rules of FRBCs. More specifically, each rule is represented by a
circular node whose size is proportional to the number of covered instances, and whose
color corresponds to the class pointed out by the rule. Each node is labeled with the rule

4 We have selected a recently published variant of Pathfinder algorithm (MST-PathFinder [36])
able to prune maps in cubic time.



Social Network Analysis of Co-fired Fuzzy Rules 119

identifier Ri but also with two very informative numbers, the percentage of instances
in the dataset that are covered by the rule and the percentage of them matching with
the rule output. Moreover, the number of border lines around a node indicates the num-
ber of linguistic propositions minus one in the rule description. In addition, each link
among two nodes is characterized by an attached label that yields the related co-firing
measure. The link thickness is proportional to its value. Furthermore, the link color is
informative too. It is green for those rules pointing out the same class, and red in the
case of rules pointing out different classes (potential inconsistencies).

Finally, it is important to highlight that our proposal is not affected by the well-
known curse of dimensionality problem of fuzzy systems that implies that the number
of fuzzy rules grows exponentially with the number of inputs. First, nodes represent
directly rules instead of premises. Second, Pathfinder has been successfully applied to
the analysis of large scientific domains representing thousands of co-cited entities [42].
In consequence, fingrams are able to display the interactions among thousands of rules
in the form of highly interpretable graphs. Hence, even when the number of rules is
huge the pruned fingram can be still comfortably viewed by any expert.

3.2 Fingram Exploratory Analysis and Interpretability Assessment

The expert analysis of fingrams can take profit of all tools already available for social
network analysis. As a first approach, we advocate for the use of the so-called Degree
of Centrality [42]. This means that we will point out the most significant rules, those
corresponding to the nodes that concentrate the larger number of links in a fingram.
Remind that thanks to the specific way scaling and drawing are done, the most salient
links and nodes are likely to be placed in the center, and those less relevant in the pe-
riphery. Thus, those rules that correspond to nodes located in the periphery of a fingram,
especially those connected with a low value (the weight of the associated link is small)
to the remaining graph, are good candidates to be deleted. This could have an interest-
ing collateral advantage since removing such rules is likely to increase interpretability
while keeping almost the same accuracy. A basic simplification procedure may consist
first on ranking rules according to their relevance and then finding out and removing
those non-relevant ones, normally located at the periphery of the fingram.

Furthermore, the analysis of fingrams can report very useful information about the
analysis and verification, at inference level, of the related fuzzy rule bases. For instance,
one can directly analyze its global structure through exploring the number and location
of apparent groups of rules, analyze the respective location of the rules coding for dif-
ferent classes, etc. As a result, it is easy to detect potential inconsistencies among fuzzy
rules. They turn up when the co-fired rules yield different output classes. In addition, the
higher the link weight (co-firing degree computed by Eq. 3) is, the larger the interaction
among rules is, and the larger the degree of inconsistency results.

Notice that, even when a rule base is fully consistent at linguistic level, there may
arise some possible inconsistencies at inference level because of the rule aggregation
procedure made as part of the inference process. Such potential conflicts are difficult
to detect mainly because they are partially hidden since they are typically produced
by new unknown data samples that were not taken into account during the learning
stage. For instance, it may happen that several rules are fired at the same time for a new
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given input vector and as result several outputs are activated with degrees higher than
zero. When two different classes are activated with very similar degrees the situation
can be labeled as an ambiguous case. Such situation is not desirable, no matter if the
system is (or not) able to yield the right output class, because a slight modification in
the input data may yield a wrong output. We can conclude that a FRBC producing many
ambiguous cases is a non-reliable system and should be corrected.

With respect to interpretability, we assume that fuzzy partitions are interpretable
and the matching among linguistic terms and fuzzy sets is supervised and approved
by an expert. Notice that interpretable fuzzy partitions must represent prototypes that
are meaningful for the end-user. Then, given a rule format along with an inference
mechanism, the system interpretability can be evaluated looking only at rule level. Our
assumption is the following: the larger the number of co-fired rules, the smaller the
comprehensibility of the FRBC.

Fingrams give us all required information. Eq. 4 formalizes a novel interpretability
index:

COFCI =

⎧⎪⎪⎨
⎪⎪⎩1−

√
N
∑

i=1

N
∑

j=1
[(Pi+Pj)·mi j]

MaxT hr , i f
N
∑

i=1

N
∑
j=1

[(Pi +Pj) ·mi j]≤ MaxT hr

0, otherwise

(4)

where COFCI stands for Co-firing Based Comprehensibility Index. N is the total num-
ber of rules. Pi and Pj count the number of premises (antecedent conditions) in rules i
and j, while mi j is the measure of co-firing for the same rules i and j; it is computed
by Eq. 3. In addition, MaxT hr is a threshold which represents a maximum value es-
tablished to get a normalized measure in the interval [0,1]. It should be fixed by the
designer of the FRBC, looking at the maximum number of rules that may be accept-
able (by an end-user) for each specific problem according to its inherent complexity
(number of inputs, output classes, available training data, etc.). According to our exper-
imentations, we suggest setting MaxT hr greater or equal than one thousand times the
multiplication of the number of classes (C) by the number of inputs (I) by the number
of training samples (T ):

MaxThr ≥ 103 ·C · I ·T (5)

4 Experimental Analysis

This experimental study deals with an example of medical application where inter-
pretability is of prime importance. Interpretability is a distinguishing capability of fuzzy
systems which is really appreciated in most applications. Moreover, it becomes an
essential requirement for those applications that involve an extensive interaction with
humans. For instance, decision support systems in medicine [33] must be easily under-
standable, for both physicians and patients, with the aim of being widely accepted and
successfully applicable.
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We have chosen the well-known Wisconsin Breast Cancer Database (WBCD) [29]
for illustrative porpuses. This dataset contains cases from a study that was conducted
at the University of Wisconsin Hospitals, Madison, about patients who had undergone
surgery for breast cancer. The task is to determine if the detected tumor is benign or
malignant. Thus, the dataset contains 683 samples (we have removed the missing val-
ues), nine features (Clump Thickness, Cell Size, Cell Shape, Marginal Adhesion, Ep-
ithelial Size, Bare Nuclei, Bland Chromatin, Normal Nucleoli, and Mitoses) and one
output class (Benign / Malignant). The whole dataset is freely available at the KEEL5

machine-learning repository.
For simplicity, this analysis focuses only on FRBCs that were generated follow-

ing the HILK (Highly Interpretable Linguistic Knowledge) fuzzy modeling methodol-
ogy [3,5]. We have chosen HILK because it is especially thought for making easier the
design process of interpretable FRBCs. To do so, it imposes several constraints (SFPs,
global semantics, Mamdani rules [28], etc.) during the design phase. The rule base is
made up of rules of form:

If Xa is Ai
a︸ ︷︷ ︸

Proposition Pa

AND . . . AND Xz is A j
z︸ ︷︷ ︸

Proposition Pz

Then Y is Cn

where Cn is the selected output class; Xa is the name of the input variable a; and Ai
a

represents the label i of such variable. Namely, Ai
a can be one of the elementary terms

in the SFP or a composite term defined as a convex hull of adjacent elementary terms
corresponding to OR and NOT combinations [21]. These kinds of rules are usually
known as DNF rules. Notice that, the absence of an input in a rule means that it is not
considered in the evaluation of such rule. This special kind of proposition is usually
referred as Don’t care [24] and it should be interpreted as ANY since it means that
it is true no matter the selected linguistic term. Because several output classes can be
activated since several fuzzy rules can be fired at the same time by the same input vector,
the winner rule fuzzy reasoning mechanism is considered. Furthermore, the well-known
minimum and maximum fuzzy operators are taken for conjunction and disjunction.

It is important to notice that HILK methodology is implemented as part of the free
software tool GUAJE6 [2]. Moreover, the new methodology for visualizing and explor-
ing fuzzy rule bases proposed in this paper is also implemented in that tool. The drawing
of the graphs themselves is done using another freeware tool named Graphviz7 [18].

The rest of this section is devoted to show the utility of the new methodology pro-
posed in this paper through some illustrative examples. As a starting point, the entire
dataset has been randomly split into two subsets. The 75% of samples are considered as
training set while the remaining 25% of samples compose the test set. Please notice that
we do not apply cross-validation because, for the sake of clarity, we do not care about
finding the best FRBC for the WBCD problem. We are aware that probably there are
better rule bases for WBCD in the fuzzy literature, but our goal is to explain the new

5 KEEL stands for Knowledge Extraction based on Evolutionary Learning. It is a free software
tool available online at http://sci2s.ugr.es/keel/

6 A free software tool for generating understandable and accurate fuzzy rule-based systems in a
Java environment http://www.softcomputing.es/guaje

7 A free software tool available online at http://www.graphviz.org/

http://sci2s.ugr.es/keel/
http://www.softcomputing.es/guaje
http://www.graphviz.org/
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methodology with a simple case instead of looking for the best solution for this specific
problem.

Thus, we use GUAJE with the aim of building FRBCs automatically extracted from
the available training data. Uniform SFPs with three triangular fuzzy sets are initially
defined for each input. We are going to consider rules generated with the well-known
Wang and Mendel (WM) and Fuzzy Decision Trees (FDT) algorithms both provided
by GUAJE8. Hence, we generate two first set of rules corresponding to FRBCWM and
FRBCFDT . Moreover, we have simplified them with the simplification algorithm, also
provided by GUAJE, in order to obtain two additional more compact FRBCs. Let’s
call them FRBCWM−SIMP and FRBCFDT−SIMP. Two further simplifications guided by
fingram analysis of FRBCFDT−SIMP have been carried out. They are named as
FRBCFDT−SIMP−F1 and FRBCFDT−SIMP−F2.

Table 1 summarizes the main quality indicators characterizing those FRBCs previ-
ously generated. On the one hand, each column corresponds to one of the FRBCs under
consideration. On the other hand, each row is related to one specific quality indicator.

Table 1. Quality evaluation of the generated FRBCs

FRBCWM FRBCWM−SIMP FRBCFDT FRBCFDT−SIMP FRBCFDT−SIMP−F1 FRBCFDT−SIMP−F2

ACCTR 0.998 0.998 0.975 0.975 0.943 0.939
ACCTS 0.83 0.918 0.947 0.953 0.93 0.918

NR 195 23 35 9 3 2
TRL 1755 155 165 27 6 4
ARL 9 6.739 4.714 3 2 2

AFRTR 6.043 2.977 2.625 1.488 1.133 1.093
AFRTS 6.299 3.047 2.965 1.614 1.155 1.113

AFDT R 0.555 0.797 0.766 0.865 0.859 0.878
AFDTS 0.455 0.776 0.734 0.847 0.823 0.867

COFCI 0 0.675 0.510 0.880 0.960 0.969

Firstly, we take care of the achieved accuracy regarding both training (ACCTR) and
test (ACCTS). Accuracy is computed as the percentage of samples properly classified.
Secondly, we tackle with assessing interpretability. To do so, considering only one in-
dex is not enough as it was pointed out in Section 2.3. Therefore, we have considered
several structural-based but also semantic-based interpretability indexes at rule base
level. NR stands for number of rules. TRL means total rule length, that represents the
total number of linguistic propositions into the whole rule base. ARL stands for aver-
age rule length, computed as T RL divided by NR. We have also reported the average
number of fired rules with respect to both training (AFRT R) and test (AFRT S) sets. One
rule is counted as fired by a given data sample only in the case in which it is activated
with a confidence firing degree greater or equal than 0.1. In addition, we have com-
puted the average confidence firing degree (AFD) regarding again training (AFDTR)
and test (AFDT S) sets. AFD is measured as the firing degree of the winner rule for each

8 The interested reader is referred to [2,3] for further details about algorithms provided by
GUAJE.
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data sample and then averaged for the whole dataset. Finally, COFCI is the novel in-
terpretability index proposed in this work. It is computed following Eq. 4 with MaxT hr
equals 104.

Looking carefully to values shown in Table 1, we can draw some interesting con-
clusions. First, WM generates a lot of complete rules, i.e., each rule takes into account
all inputs. In consequence, generated rules are quite specific and they are likely to be
simplified. Moreover, rule base is affected by overfitting because FRBCW M exhibits
very high ACCT R while ACCT S is not so good. Furthermore, it seems there is a lot of
redundancy inside the rule base. Indeed, AFRT R and AFRT S achieve very high val-
ues while AFDT R and AFDT S remain quite low that implies a lot of overlapping among
rules. Regarding all interpretability indicators (NR, T RL, ARL, AFR, AFD and COFCI),
FRBCWM can be deemed as not interpretable at all. Such feeling is confirmed when ob-
serving the fingrams displayed in Fig. 1. Of course, the rule base is so complex that
is not easy to make any useful interpretation neither focusing on the initial network
(Fig. 1(a)) nor looking at the scaled one (Fig. 1(b)). Anyway, we can appreciate how
the scaling process becomes very effective turning up a quite clear structure that was
hidden.

(a) Complete fingram (b) Scaled fingram

Fig. 1. Fingrams related to FRBCWM before and after network scaling with Pathfinder

Second, FDT produces a smaller set of much more general incompletes rules mini-
mizing the overfitting effect. Thus, FRBCFDT yields much closer values for both ACCTR

and ACCTS. In comparison with FRBCWM , ARL and AFR are significantly decreased
while AFD is increased, so COFCI increases accordingly. We can conclude that
FRBCFDT yields a better interpretability-accuracy trade-off than FRBCWM . Fingrams
corresponding to FRBCFDT are depicted in Fig. 2. Obviously, they are much clearer
than those ones previously presented in Fig. 1.

With respect to the effect of the initial simplification, not guided by fingrams, we
appreciate an improvement in the generalization capabilities of the selected FRBCs. Of
course, simplification is made considering only training data. It preserves ACCT R while
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(a) Complete fingram (b) Scaled fingram

Fig. 2. Fingrams related to FRBCFDT before and after network scaling with Pathfinder

Fig. 3. Scaled fingram related to FRBCFDT−SIMP

interpretability is strongly improved. As a side effect, ACCTS is also increased. Further-
more, AFD grows up regarding both training and test. As a result, simplified FRBCs
become much more trustworthy. Moreover, making a comparison between the two sim-
plified FRBCs under study (FRBCWM−SIMP and FRBCFDT−SIMP), it becomes obvious
that FRBCFDT−SIMP yields the best interpretability-accuracy trade-off. FRBCFDT−SIMP

is made up of only nine rules so its related fingram, plotted in Fig. 3, becomes very
informative.

Each rule is represented by a circular node whose size is proportional to the number
of covered instances, and whose color corresponds to the class pointed out by the rule.
Each node is labeled with the rule identifier Ri but also with two very informative
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numbers, the percentage of instances in the dataset that are covered by the rule (cov)
and the percentage of them matching with the rule output (Ci). In addition, the number
of border lines around a node indicates the number of linguistic propositions minus one
in the rule description. Each link between two nodes is characterized by an attached
label that yields the related co-firing measure. The link thickness is proportional to its
value. Furthermore, the link color is informative too; it is green for those rules pointing
out the same class, while it is red in the case of rules pointing out different classes
(potential inconsistencies).

From Fig. 3 we appreciate how most samples belonging to class C1 are handled by
R1. On the other hand, rules R8 and R9 seem to be the most significant ones for class
C2. If we keep only those three rules while removing the remaining, then we gener-
ate FRBCFDT−SIMP−F1 whose quality indicators are detailed in Table 1. It is a very
simple and highly interpretable FRBC, while its accuracy it is not strongly penalized
with respect to FRBCFDT−SIMP. Finally, looking carefully at rules R8 and R9 they may
be merged into only one rule. In that case we obtain FRBCFDT−SIMP−F2. Again, in-
terpretability gets better while accuracy is only slightly reduced, as it was shown in
Table 1.

5 Conclusions and Future Work

This paper has introduced a new methodology for exploratory analysis of fuzzy rule-
based systems. In addition, we have proposed a novel interpretability index that takes
into account the comprehensibility of fuzzy systems looking at the correspondence be-
tween their linguistic description and their inference process. It deals with semantic-
based interpretability at rule base level and it is therefore aimed to cover the lack of
such kind of indexes in the fuzzy literature.

We have shown the utility of our proposal in a simple but very illustrative classifica-
tion problem where interpretability is highly appreciated because it copes with a med-
ical diagnosis application. Achieved results are encouraging. The analysis of fingrams
has helped us effectively in the hard task of searching for good interpretability-accuracy
trade-offs. Anyway, in the future we will extensively validate the methodology and we
will look for other co-firing metrics able to yield additional information about consis-
tency, generality and/or specificity of rules.

Notice that, a software module for fingrams generation and analysis is available with
the free software tool GUAJE. It can be freely downloaded at:

http://www.softcomputing.es/guaje
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Abstract. In the last few years we have witnessed increased popularity of agent 
systems. This popularity is the result of agents’ ability to work effectively and 
perform complex tasks in a wide range of applications. In this paper, we high-
light the importance of learning mechanisms that are essential for behavioural 
adaptation of agents in complex environments. We provide a high-level intro-
duction and overview of different types of learning approaches proposed in  
recent years. We also argue the necessity of dynamic learning processes for 
handling uncertainty, and propose an uncertainty-oriented architecture of agents 
together with a specialized knowledge base. 

1 Introduction 

Agent systems are becoming increasingly popular due to wide range of applications in 
which they can be deployed [1]. An agent is an autonomous system that acts in a dy-
namic environment towards achieving its goals. In some applications, a team of agents 
may work together towards realization of their goals. It is common that a human su-
pervisor provides initial knowledge to the agent. However, the built-in primary 
knowledge may not suffice to allow an agent to operate in a highly dynamic environ-
ment. Agents’ behaviour should not be limited to actions defined and supplied by a 
human. Agents should be able to adapt their behaviour via a continuous learning pro-
cess [2]. Such agents, referred to as “software agents”, use machine learning tech-
niques to adapt to user’s demands and dynamic environments [3]. In [3], authors ana-
lyze imitation learning as the foundation behind human infants’ learning ability. Their 
research is based on extensive studies of psychologists observing developmental pro-
gress of human infants. Typically, software agents have limited processing capability, 
hence employed learning mechanisms should have low computational complexity.  

Learning mechanisms are essential factors enabling agents to operate in complex 
environments and to achieve human-like behaviour. Software agents’ learning pro-
cesses should provide agents with abilities to perform two important tasks. First, 
agents have to know how to act upon receiving new information in terms of storing 
the new concepts in their memory, forming links to the already known concepts, and 
consciously updating the information. Second, agents should be able to select appro-
priate actions from their repository of behavioural patterns. In this context, if the 
agents’ old behaviours do not provide an acceptable outcome new action patterns 
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have to be learned so that agents can perform their tasks correctly. This means that 
appropriate actions have to be learned and carried out on new situations. The ability to 
adapt to the changes in an environment is a necessary feature of intelligent agents. 

In this paper, we provide a brief survey of some state-of-the-art learning mecha-
nisms. Furthermore, we focus on uncertainty that is a fundamental and unavoidable 
feature of any environment. We emphasize the fact that uncertainty is present in  
discovering and analyzing information, and agents’ abilities to learn should accom-
modate methods and techniques capable of dealing with imprecision, ambiguity, lack 
of full information, and limited trust in information sources. We argue that agents’ 
knowledge bases and architectures should be suitable for storing and reasoning about 
uncertainty. 

2 Learning Mechanisms  

The basic motivation for studying learning models of agent systems stems from the 
strong need for an efficient learning mechanism capable of performing in complex 
and uncertain environments. This model would be much less complicated if agents 
were dealing with certain, precise and complete knowledge.   

A number of different learning approaches have been developed over the last few 
years. These approaches target different aspects of a learning process, and use variety 
of learning approaches and knowledge representation schemas. This section starts 
with a description of two learning tools: conceptual and behavioural. The former pro-
vides an agent with facts and items related to its domain knowledge, while the latter 
leads to a better selection of actions to be preformed. The case-base reasoning and 
human involvement are discussed as important components of a learning process. The 
adaptive mechanisms for behavioural rules are presented next, in which the rules to be 
fired are identified based on pre-conditions activated by an agent’s perception. We 
also discuss elements of reinforcement learning that are used to enhance inference of 
a system that is built based on truth maintenance principles. An interesting approach 
of learning mechanisms that compares new knowledge with the one already known to  
an agent is presented next. Fuzzy clustering process is described, which is used to  
pre-process data and prepares input to a fuzzy controller. The concept of human in-
volvement is presented as an example of interactive learning mechanisms. Different 
levels of human participation are described and evaluated. 

2.1 Conceptual and Behavioural Learning  

Two learning mechanisms - conceptual and behavioural learning – can be used to  
address the adaptability of agents in dynamic environments. Architectures and func-
tionality of two cognitive software agents, namely, CMattie (conscious Mattie)  
and IDA (intelligent distribution agent) are investigated in [4]. A conscious software 
agent is defined as a system that senses the environment through its cognitive charac-
teristics: decision making, reasoning, knowledge perception and processing. This ena-
bles the agent to cope with unusual situations. The processes of these two agents are 
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implemented by small pieces of codes, called codelets. The agents’ architectures are 
composed of two main sections. In the first, a slipnet contains the agent’s domain 
knowledge that initially consists of limited numbers of built-in concepts. In the second, 
a behaviour net holds a set of actions and their links to each other.  

Based on [4], a first step in any learning mechanism is to identify newly encoun-
tered situations by an agent. For this purpose, authors embed a function in an agent’s 
perception module, which is triggered by observing words or phrases that have never 
been experienced by an agent. Next, a conceptual learning is applied as a learning 
mechanism that is founded on case-based memory and case-based reasoning. In con-
ceptual learning, an agent views the newly encountered situations in terms of its past 
experiences. Thus, relevant functions are retrieved for the problem solving process 
depending on its recent activity history. The agent adds new concepts to its slipnet 
and creates relevant links between new and old concepts. Moreover, history of each 
learning process is maintained in the agent’s case-based memory, which enhances the 
learning capabilities of the agent in future [4]. As a solution to the action selection 
mechanism, the authors introduce behavioural learning that helps an agent selects and 
performs appropriate actions based on the received information. To accomplish this 
task, the agent may utilize case-based reasoning that adapts solutions of old problems, 
and apply them to similar perceived information. As an alternative, the agent can 
communicate with its human supervisor to receive proper instruction. This problem is 
referred to as a development period. The authors argue that a development phase will 
be a cost-effective method for the agent to operate in its complex domain. During the 
development period, the agent obtains the needed knowledge of the domain. This may 
include observation, conversational interaction and assistance of a human supervisor. 

2.2 Learning Adaptive Decision Making Rules  

In [5], a real-time self-organisational algorithm is suggested for behavioural learning 
of an agent in autonomous systems. The authors consider a multi-agent cooperation 
system model. The action selection mechanism is modelled on a subsumption method 
[6], where an agent makes an appropriate decision based on the received perception 
from the environment and evaluates possible actions and their pre-conditions. The 
researchers only focus on single-rule scenarios and do not investigate the problem of 
parallel action selection which is a realistic model [5]. They argue that local behav-
iours and their independence to the final goal allow the agent to self-design in dynam-
ic environments. In their approach the learning process is composed of an adaptive 
behavioural rules base (ABRB) component, which selects the best match in the list of 
possible actions by evaluating the pre-conditions. Lastly, the agent will send feedback 
to ABRB reporting the success of the result with the goal of improving the future 
cycles.  See Fig. 1, redrawn from [5].  

The proposed algorithm forms a tree that is composed of a limited number of 
Boolean expressions representing the pre-conditions. According to the received per-
ceptions, values are assigned to each pre-condition in the tree, in order to select the 
action that is more likely to provide the best solution to the current perceived states of 
the environment.  



132 P.D.H. Zadeh and M.Z. Reformat 

 

 

Fig. 1. Adaptive behaviour learning [5] 

2.3 Relational Reinforcement Learning  

The performance of a real-time learning mechanism in a highly dynamic environment 
is investigated in [7]. The authors enhance the adaptive logic interpreter (ADLIN) [7], 
which is a learning algorithm built upon relational reinforcement learning (RRL) [8]. 
The enhancements are due to the poor performance of ADLIN in time-constrained 
environments. They propose a real-time learning mechanism that combines ADLIN 
with a justification-based truth maintenance system (JTMS), a technique for manag-
ing the agents’ beliefs [9], to enhance the inference process. 

Authors argue that logical reasoning mechanisms have to be deployed carefully in 
intelligent agents due to their high computational complexity. JTMS makes the infer-
ence engine more efficient, by storing inferences received through interactions with 
inference engine, and reducing the number of RRL’s states. This way, the previously 
seen instances that are stored in JTMS do not need to be processed by the inference 
engine anymore. Through experiments authors have shown that JTMS-based ADLIN 
outperforms both ADLIN and exhaustive inference systems in learning time. The 
proposed structure is shown in Fig.2. 

 

Fig. 2. Schematic of the  adaptive logic interpreter (ADLIN) built based on justification-based 
truth maintenance system (JTMS) [7] 
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2.4 Participatory Learning  

A quite different learning mechanism called a participatory learning mechanism is 
proposed in [10]. In the approach, the current knowledge of an agent participates in 
the learning process. This learning model is based on the features of human learning 
style, where the current beliefs directly affect the acceptance of newly received in-
formation. The author formulates the above learning process as a smoothing like algo-
rithm [11], where the current observations from the environment are learned only if 
they are compatible to some extent with the old beliefs. For this purpose, a compati-
bility ratio is measured and has to be satisfied in order to consider the current observa-
tion valid. In Fig. 3 the upper feedback loop shows the participatory nature of the 
model, where the old beliefs and theories affect the learning process. 

 

Fig. 3. Participatory learning model [10] 

The learning mechanism is formulated as follows [10]: 

V ( j +1) = V ( j) +αρi (D( j) − V ( j))
 

where V ( j +1), V ( j)  and D( j)  are vectors representing new information, old beliefs 
and current observations, while  and ρi are the base rate and the compatibility rate, 
respectively. In [10] the impact of ߙ and ߩ௜ on learning speed is shown. The author in 
[10] believes that this learning model is most effective when only a small change or a 
high compatibility exists between the new observations and the current beliefs; thus 
only a small change or an update happens to the current beliefs.  

2.5 Online Adaptive Fuzzy Learning 

In [12] an inference technique for agents’ adaptation and learning in ubiquitous envi-
ronments is proposed. In their model, agents learn and adapt their behaviour from a 
human (user) model by observing the user interactions with the environment. For this 
purpose, an adaptive online fuzzy inference system (AOFIS) is presented to model the 
user’s behaviour, via a fuzzy logic controller (FLC), and to provide output actions to 
the environment. The proposed AOFIS technique is composed of five steps, which are 
shown in Fig.4.  

First, agents observe the user’s behaviour while capturing and labelling the inputs 
(from sensors and actuators) over time. Then, the sampled values are quantized into a 
set of fuzzy membership functions using a double clustering approach [13]. This algo-
rithm runs iteratively to merge similar data samples based on their observed values  
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until a predefined number of membership functions are created. In their approach, 
Gaussian membership functions are used as the fuzzy sets. In step 3, rules are extract-
ed from the relationships between the set of inputs and outputs applying the learning 
from examples [14]. By step 4, the agent is capable of observing and controlling the 
environment via the learned FLC without the need for human involvement. In case of 
a new input arrival, the agent evaluates the input value to find which of the previously 
formed fuzzy sets it belongs to. Next, the proper rule is fired by the agent based on the 
calculated weight of the rules. In [12], the performance of AOFIS is evaluated in a 
real test-bed, an intelligent dormitory where 17 sensors were used as inputs and 10 
actuators were used as outputs while in an interaction with a human user for five con-
secutive days. Through experiments it is shown that AOFIS outperforms similar soft-
computing based techniques with fewer errors, and less computational complexity in 
online learning mode.  

       

Fig. 4. Flow diagram of an adaptive online fuzzy inference system [12] 

2.6 Interactive Artificial Learning  

The issue of effectiveness in interactive artificial learning (IAL) is addressed in [15]. 
It is accomplished by comparing interactive learning method to traditional and con-
ventional learning methods. The effectiveness of a learning method is measured as  
the ratio of the agent capability over the amount of inputs and skills from a human 
(designer or end-user). Several other metrics for measuring the quality of a learning 
method are also investigated in [15]. The authors explain two drawbacks of traditional 
learning methods as the significant amount of trial and error cycles in order to evalu-
ate the agent’s behaviour in a dynamic environment, and the need for a domain  
expert in addition to a system designer to encode the agent. Furthermore, in conven-
tional learning methods agents operate more independently than in traditional learning 
methods, yet require human involvement to some extent. Also, conventional learning 
methods suffer from a slow learning process. Another drawback in conventional  
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Fig. 5. Conventional learning steps 

learning techniques is that the domain expert’s role in pre-configuration step,  
consisting of system’s parameter adjustment, reward structure, and learning mecha-
nisms development, is considerably affecting the successfulness of the learning  
process. Fig. 5 shows a typical conventional learning process.  

IAL is a new learning method that recently attracts many researchers’ attention. In 
[15], the authors describe IAL as the learning method in which a human iteratively 
interacts with the agent during the learning process. The main goal of IAL is to keep 
the overall human involvement minimal. A general view of IAL learning steps is 
depicted in Fig. 6. As can be seen the end-user, not necessarily a domain expert, inter-
acts in each step of the learning process thus diminishing the required work on the 
pre-configuration step [15]. Furthermore, IAL provides mutual understanding and 
exchange of knowledge between the end-user and the agent which facilitates the end-
user’s responsibility to provide more efficient inputs to the agent. The authors in [15] 
discuss the potential benefits of IAL learning on each particular learning step as 
shown in Fig. 6. Through simulations it is shown that traditional and conventional 
learning methods require more human involvement in the learning process that leads 
to a lower learning effectiveness than IAL method.  

    

Fig. 6. Interactive artificial learning steps 

2.7 Comparison and Discussion 

All the discussed mechanisms are efficient learning processes equipped with different 
capabilities and features. They support various tasks, such as interactive learning, 
reinforcement learning, fuzzy reasoning, agent’s feedback loops, and adaptive deci-
sion making. Table 1 provides a comparison of the discussed methods. As can be  
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seen, in all of the mentioned approaches agents are able to adapt online in order to 
meet real-time needs. Another important observation is that approaches presented in 
[4] and [15] are the only techniques exploiting continuous human involvement as a 
vital element during the learning process. In other cases, the agent only relies on the 
initial knowledge provided by a human.  

Table 1. Learning approaches for intelligent agents 

Learning mechanisms Learning model 

M
ulti-agent 

cooperation 

R
eal-tim

e 
adaptation 

U
ncertainty 

m
anagem

ent 

H
um

an 
interaction 

Conceptual and 

behavioural leaning [4] Conceptual, behavioural 

learning 
No Yes No Yes 

Adaptive decision making 

rules [5] 
Subsumption model learning Yes Yes No No 

Relational reinforcement 

learning [16] 

Relational reinforcement 

learning 
No Yes No No 

Participatory learning [10] Participatory learning  No Yes No No 

Online adaptive fuzzy 

learning [12] 
Fuzzy inference learning No Yes No No 

Interactive artificial 

learning [15] 
Interactive artificial learning Yes Yes No Yes 

 
As it can be observed, none of the above methods consider adapting the learning 

approach due to uncertainty observed by the agent. In fact, uncertainty is a factor that 
always exists in any complex and dynamic environment. We believe that there exists 
a relation between the level of agent’s uncertainty and the agent’s ability to learn. 
This is due to the fact that levels of uncertainty influence agent’s confidence during 
the learning process.  
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3 Learning and Uncertainty 

The definition of learning – knowledge or skill acquired by instruction or study – 
indicates that learning is a process of assimilating information that contributes to the 
overall knowledge and experiences of an individual. The pivotal element of the learn-
ing process is gaining knowledge. Assimilated knowledge can be evaluated from 
three different perspectives: its source, its quality, and its novelty. A newly acquired 
knowledge has to be analyzed in the context of an agent’s knowledge base, and then 
integrated with this base. This process resembles a decision-making activity in which 
pieces of knowledge are chosen and combined with the existing knowledge. Each of 
the above perspectives, as well as decision-making mechanisms are potential source 
of uncertainty. Therefore, the process of learning has to be equipped with procedures 
suitable for handling uncertainty. 

3.1 Knowledge Sources  

In general, the web is a large uncensored network to which anyone can contribute by 
providing truthful as well as false information. Knowledge can be acquired from web-
sites that can have different degrees of reliability. Recently, a lot of attention is dedi-
cated to the issue of trust [17, 18]. In the initial structure of the semantic web [19], the 
importance of trust is recognized via defining a trust and proof layer as the top layers 
of the semantic web architecture. Some research activities are focused on different 
methods for assigning trust values to different sources, as well as methods dedicated 
to aggregation and inference of trust values. A number of different trust strategies 
have been proposed to rationale about trust: optimistic, pessimistic, centralized, trust 
investigation, and trust transitivity [18]. Each of these approaches deals with uncer-
tainty and tries to discover aspects of the environment that are relevant to reduce un-
certainty. Overall, the issue of trust in knowledge sources is related to the uncertainty 
associated with learning processes.  

Another important aspect is quality of knowledge. The quality of knowledge re-
lates to the amount of missing or ambiguous information. The quality-based 
knowledge uncertainty can be divided into three categories: non-specificity (impreci-
sion), fuzziness (vagueness), and strife [20]. Non-specificity is manifested when two 
or more pieces of information are left unspecified. This may be the result of generali-
zation, simplification, imprecision, or simply time constraints imposed on knowledge 
collecting processes. Fuzziness is characterized by the lack of definite or sharp dis-
tinction among pieces of information and may result from vagueness or any variety of 
indecisiveness. In some cases, especially for linguistic-based knowledge representa-
tion, terms and facts can be ambiguous due to differences in meaning as perceived by 
authors of the information.  Strife or discord is an uncertainty characterized by disa-
greement in a selection process among pieces of information. This may happen due to 
dissonance, incongruity, discrepancy, and conflict. There is no doubt that quality of 
knowledge contributes to the uncertainty associated with the acquired knowledge.  

In learning processes, the concept of uncertainty is also associated with novelty of 
knowledge – new knowledge introduces and changes uncertainty. In general, acquired 



138 P.D.H. Zadeh and M.Z. Reformat 

 

knowledge can be of different levels of novelty. We can distinguish three scenarios of 
how acquired knowledge contributes to an agent’s knowledge base and how it influ-
ences uncertainty. 

- Updating existing knowledge – increases confidence in facts, skills and behavioral 
patterns already known to an agent. The agent’s beliefs are modified and its uncer-
tainty about correctness of facts decreases; the information that is “used” for this 
purpose can be associated with different levels of uncertainty, and it modifies the 
uncertainty levels of known information to a different degree. 

- Modifying existing knowledge – includes changes in facts and skills that an agent 
currently believes in. The execution of those changes requires the agent’s confi-
dence in incoming knowledge; modifications should depend on estimated levels of 
uncertainty.  

- Increasing existing knowledge – means assimilation of acquired knowledge that is 
new by an agent. This process needs procedures able to handle uncertainty; regu-
lations are required to determine up to what degree of uncertainty an agent accepts 
new pieces of information. 

The mentioned scenarios confirm that uncertainty is a crucial element of a learning 
process. Agents’ learning mechanisms should be properly selected depending on envi-
ronments. Also, agents should be able to take advantage of new information to in-
crease their knowledge. 

Based on presented above aspects, we claim that uncertainty is a part of a learning 
process and without it the learning would look quite different.  Uncertainty is associ-
ated with the following issues: 

- uncertainty triggers learning: a state of ambiguity forces an individual to search 
for more information and facts to resolve the vagueness; 

- uncertainty enables adaptability: a constant state of not being sure means that an 
individual has to be prepared for a possible change of his/her opinion, in such a 
case it is easier to accept a change; 

- uncertainty prevents misjudgement: processes of induction and deduction of new 
facts should have the ability to deal with situations which are not clearly true or 
false, it is not desirable to simplify everything to those two values; 

- uncertainty leads to more accurate models of reality: the real world is not just 
“black and white”, it is full of “gray areas”, i.e., vagueness and ambiguity – any 
models real phenomena should be able to accommodate uncertainty. 

3.2 Decision Making  

The existence of uncertainty means that any decision-making mechanism has to cope 
with it. The processes of selecting what actions should be performed or which pieces 
of information should be integrated with the existing agent’s knowledge should use a 
degree of uncertainty as an input. Decision-making mechanisms should be able to 
derive a conclusion in the presence of uncertainty, and provide the results that are 
“labelled” with degrees of uncertainty. Combining uncertainty with decision-making 
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processes is not new. There are a number of different methods and techniques that can 
be applied here. These methods embrace probabilistic approaches – Bayes nets and 
Markov Models, possibilistic logic, preference and utility theories, as well as ele-
ments of game and auction theories [21-26]. 

An interesting investigation of decision models and uncertainty has been conducted 
in [27]. Authors use the bounded rationality concept to describe human decision strat-
egy. They believe in a strong connection between agent rationality and agent model 
uncertainty. For clarifying this relation, four aspects of decision models are defined 
where the agent makes the best possible decision based on its knowledge base. These 
four aspects include: information availability, sampling of alternatives before the 
decision, the measure of assessment before the decision, and selection of an alterna-
tive. Each of those aspects can be associated with different levels of uncertainty. The 
selected decision will be optimum when the agent has full information with no ambi-
guity. This will result in full rationality (un-bounded), but it is not a realistic model 
for making decisions in real-world situations.   

The ability to make decisions under uncertainty and to estimate the uncertainty of 
concluded decisions is a must for an adaptive intelligent agent. The methods and 
techniques for building and updating agents’ knowledge bases with indications about 
uncertainties of acquired or induced knowledge should be part of learning processes. 

4 Uncertainity-Oriented Agent Architecture 

Overall, agents should be equipped with multiple learning mechanisms that are uti-
lized depending on the agents’ environments and levels of uncertainty associated with 
acquired information. In order to make it possible we propose an ontology-based un-
certainty-oriented architecture for intelligent agents, and a special structure for their 
knowledge bases, Fig. 7. 

Before we describe the architecture in detail, we need to explain the structure and 
the role of an agent’s knowledge base (KB). The base is built based on three different 
forms of knowledge representations: ontology, causal nets, and belief structures. The 
ontology provides the basis for expressing facts, their definitions, and different types 
of relations that can exist among them. One of these relationships is a cause-effect 
relation. This relation is a fundamental relation of causal nets that are used to express 
conditional (in)dependence (causal relations) between facts in ontology. Additionally, 
a belief structure is imposed on ontology facts. It is represented by assessment of 
beliefs distributed among relevant facts. It can be said that the agent’s KB is a multi-
dimensional base able to embrace a multi-facet character of information. Furthermore, 
a number of if-then rules can be built using facts and their definitions contained in the 
base. The agent’s KB has two essential parts: temporary KB, and primary KB. The 
temporary KB serves as a working memory and is used to store information that is 
still being retrieved and evaluated. Based on the estimated levels of uncertainty asso-
ciated with different pieces of information from the temporary KB, the information 
and inferred facts that satisfy pre-defined confidence levels are moved into the prima-
ry KB. The primary KB contains information that has been analyzed via mechanisms 
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of approximate reasoning. There are two parts of the primary KB – facts-part and 
definitions-part.  

- The facts-part contains concrete pieces of information; it resembles individuals 
defined in the semantic web definition of ontology.  

- The definitions-part contains general knowledge – definitions of things, concepts, 
and different relations between them; it resembles the definition part of the  
semantic web ontology. Facts from the facts-part and definitions from the defini-
tions-part are connected by the “instance-of” relation. Facts and their definitions 
are associated with belief values that all together constitute a belief structure. Two 
important elements of the definitions-part are relations and rules: 

 

o relations express different types of relations that exist among facts/definitions; 
each fact is just an instance of a single definition; the relations are built 
through observing relations among facts and then are generalized to the level 
of definitions; 

o rules are if-then rules of arbitrary complexity built using facts, definitions, and 
relations between them. 

 

Fig. 7. The proposed uncertainty-oriented agent’s architecture 

The presented agent’s architecture, Fig. 7, can be described in the following way. 
Information is retrieved from the web using different keyword- and concept- based 
information retrieval methods. This acquired knowledge is stored in the temporary 
KB and analyzed using variety of methods such as NLP-based pre-processing, differ-
ent unsupervised and supervised techniques, and ontology-based processing (identifi-
cation of facts included in ontology, synonyms, and ontology-defined relations).  
These analyses are integrated with processes leading to estimation of quality- and 
novelty- based uncertainties – “uncertainty measurement” unit in Fig. 7. The obtained 
uncertainties are combined with trust values associated with sources of information. 
This process results in determining belief values that are assigned to the acquired 
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pieces of knowledge. The new information together with uncertainty values is stored 
in the agent’s primary KB, and to be more precise, in its facts-part.   

However, the learning process is far from done. Depending on available data and 
beliefs assigned, different methods will be used in order to find patterns and rules 
(association mining, decision tree construction, and supervised learning); to identify 
groups of items that exhibit similarity (unsupervised and semi-supervised learning); 
and to award/punish agent’s decision and actions (reinforcement learning with possi-
ble involvement of a human). These processes will be performed on a regular basis. 
The levels of uncertainty associated with different facts, definitions and relations will 
influence the invoked learning mechanism and determine if an additional gathering of 
information is still needed in order to achieve a satisfying level of uncertainty.  

It is worth noting that a human can play a distinct and significant role in almost 
every part of the agent’s architecture by providing raw information to the agent, being 
involved in decision making processes, assisting the agent in estimating knowledge 
uncertainty or in building agent’s knowledge base.  

The importance of dealing with uncertainty and the justification of the proposed 
architecture can be illustrated with a simple, almost naïve example. Let us define a 
scenario in which two agents, “A” and “B”, operate independently in the same  
environment. The agent “B” is designed such that it is capable of representing and 
reasoning under uncertainty, while the agent “A” is not able to do it. The assigned 
task from an end-user to these two agents is to organize a trip to Disneyland. Firstly, 
the agents start discovering the location of Disneyland on the web. The agent “A” 
looks through a number of hits (determined by its configuration parameters) and ac-
cepts the results without any doubt. The agent “B” estimates the uncertainty associat-
ed with the results, and is able to perform more search, i.e., to find more possibilities 
related to the trip’s destination.  

Secondly, once the destination is determined, the agents try to identify the most 
suitable hotel at a given location. Once again, the agent “A” is more rigid – it only 
does what is determined by its parameters – number of selection criteria, number of 
alternative hotels. The agent “B”, on the other hand, is more flexible and is able to 
adapt and modify the selection process in the case the information about alternatives 
involves imprecision and ambiguity – it increases the search, looks for more criteria 
that were used in the past. Conclusively, the agent “B” accomplishes the task but the 
agent “A” struggles to finish it and needs human intervention. 

As can be inferred from this example, the agent’s ability to understand uncertainty 
and properly act based on it lead to increased “curiosity” and adaptation in the process 
of exploring the environment. A large set of available options is evaluated until the 
agent becomes certain whether its selections and decisions match the preferences of 
the requested task.  

5 Conclusion 

Learning is a key feature that converts an ordinary agent into one that intelligently  
interacts with its environment. This means that an agent is capable of dealing with  
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different situations while adjusting its tactical strategies during operation in a dynamic 
environment. A brief survey of a number of state-of-the-art learning mechanisms is 
presented in this paper. The discussed methods address different features of a learning 
process and types of required knowledge. We have argued that the agent’s ability to 
update its learning schema in the presence of uncertainty is an essential element of 
learning mechanisms of an intelligent system. This leads to greater flexibility in the 
agent’s functionality in dynamic environments.  

We also proposed a new architecture with the focus on uncertainty for intelligent 
agents. The architecture reflects the importance of: assessing levels of uncertainty, 
storing the uncertainty values in the agent’s knowledge base, and using these values 
for decision making and learning processes. A new knowledge base structure is also 
proposed which addresses the issue of knowledge representation with uncertainty. 
Among different uncertainty management approaches – such as probabilistic models 
or the Dempster-Schaefer theory – we strongly believe in appropriateness of the fuzzy 
set theory. This opinion is also shared by the author of [20] who believes that the 
fuzzy set theory is the most appropriate tool for modeling human decision making 
processes due to the fact that the fuzzy set theory is inherently suitable for modeling 
information with imprecision – a situation that is normal for complex environments. 
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Abstract. Weighted power means are a flexible and powerful family of aggre-
gation functions. The simplest member of this family, the weighted arithmetic 
mean, previously has been adapted for interval type-2 fuzzy scores and weights. 
This operator has been termed a “linguistic weighted average,” and has been a 
primary instantiation of a “perceptual computer” in recent literature. We present 
an algorithm for computing weighted power means of arbitrary power for type-
1 or interval type-2 fuzzy inputs and weights, which we call “linguistic 
weighted power means.”  We compare the linguistic weighted power mean and 
the linguistic weighted average on an “investment judgment advisor” example. 
Our results illustrate the flexibility and range of logical inference provided by 
this very versatile aggregation operator for computing with words applications. 

Keywords: aggregation operators, type-2 fuzzy logic, computing with words, 
perceptual computing. 

1 Introduction 

In many applications, a choice has to be made amongst a number of alternatives, such 
as investment options, candidates for a job, etc. In evaluating alternatives, partial 
scores are assigned according to the degree to which a candidate satisfies certain 
properties (variously called attributes, goals, factors, criteria, etc.) that are considered 
relevant to the decision. Each property may be weighted to reflect its relative impor-
tance in the decision context. The partial scores and weights are then aggregated to 
provide a global score, which can be ranked against the scores of other alternatives. 
Often this scoring is performed in the context of a hierarchical decision tree, whose 
leaf nodes represent the most basic properties of a candidate alternative. These basic 
properties are sub-properties of higher-level attributes in the tree, which in turn may 
be sub-properties of yet higher-level attributes, all the way up to the root node of the 
tree. In general, the decision tree may have any number of intermediate levels in its 
structure. 
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At the heart of modeling evaluation decisions in this context is the selection of an 

aggregation function L  mapping vectors of scores ( ) [ ]1
, ..., 0,1

n

n
x x= ∈x and their 

associated importance weights ( )
1
, ...,

n
w w=w  into a scalar score ( ) [ ], 0,1L ∈x w . The 

aggregation function may be different for each sub-tree in the overall decision tree. Its 
output in any instance represents the degree to which a particular candidate satisfies 
the properties identified for that sub-tree, in a sense determined by the structure of L  
[1]. This process is a form of data fusion in which scores and weights are generally 
taken to lie in the unit interval.  

The weighted mean of the scores is one of the standard aggregation functions ex-
tensively used in decision analysis [1]. More broadly, aggregation is performed with 
the p-norm [2], which is a generalization of the Euclidean norm.  When the power in 
the p-norm is allowed to vary over the entire real line, the aggregator is called a 
weighted power mean (WPM). While it is no longer always a norm, the WPM is a 
very flexible operator that is used in information retrieval and other ranked decision 
applications [3].   

However, the choice of aggregation function ܮ cannot be made without also taking 
into account imprecision in the decision model. Whether dealing with decision mak-
ing at the cognitive or perceptual levels, imprecision and instability affect the selec-
tion and definition of the properties considered relevant to the decision, affect the 
assessments of their relative importance, affect the way we score a candidate in terms 
of these properties, and affect how scores are aggregated [3]-[8].   

Powerful techniques for handling imprecision can be obtained by using fuzzy 
scores, including scores characterized by interval-valued fuzzy sets, which are also 
known as interval type-2 (IT2) fuzzy sets, and general type-2 fuzzy sets. Aggregation 
functions should therefore be able to deal with these forms of input. As is well known, 
even the weighted arithmetic mean does not extend to an analytically closed form 
when importance weights are interval-valued [9].  Reference [10] presents an effi-
cient algorithm to compute this mean, which is referred to as a linguistic weighted 
average (LWA) since the authors are concerned with aggregation of fuzzy sets 
representing words or terms. The authors use this operator in their approach to “com-
puting with words” (CWW), a problem area originally suggested by Zadeh [11] that 
remains of high interest [12]-[16]. 

The approach to CWW in [10] is motivated by the premise that “words mean dif-
ferent things to different people,” and therefore the inputs, computational engine and 
outputs of a perceptual computer (Per-C) must explicitly take account of this inherent 
imprecision. Inputs to the Per-C are modeled as interval type-2 (IT2) fuzzy member-
ship functions (MFs) spanning an appropriate range (e.g., a 0-10 scale), which is  
perhaps the simplest method for representing imprecise knowledge of membership 
values. However, the LWA Per-C architecture employed in [10] is limited in its abili-
ty to represent how humans aggregate preference scores.  For examples, it cannot 
model a mandatory requirement, nor does it allow for control of the degree  
of conjunction or disjunction. Therefore it is highly desirable to develop more power-
ful and computationally feasible aggregation operators that can be applied to type-2 
inputs. 
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The primary contribution of this chapter is to provide an efficient algorithm to com-
pute general fuzzy weighted power means, in which we accommodate imprecision of 
scores, weights and powers.  The case of IT2 scores, weights and powers is referred to 
as a linguistic weighted power mean (LWPM), in keeping with the terminology of 
[10]. This provides an enhanced and powerful aggregation tool for computing with 
words and other fusion applications involving fuzzy inputs. It is straightforwardly  
extensible to general type-2 inputs using the z-slices (or α -plane) method [17]. We 
present a comparison of Per-C computational engines using the LWPM aggregation 
operator with the LWA Per-C engine using the detailed example of an Investment 
Judgment Advisor presented in [10] and described below.  This example illustrates the 
flexibility and range of logical inferences available using the LWPM as compared to 
the LWA. Thus the LWPM represents a significant generalization and extension of the 
choices of Per-C computational engines available for CWW applications. 

The remainder of this chapter is organized as follows: first, the selection of an ag-
gregation function is discussed in terms of characteristics of the properties relevant to 
the decision, with focus on the weighted power mean. Next, an algorithm is presented 
to compute fuzzy weighted power means and their De Morgan complements when 
inputs, weights and scores are intervals rather than scalar values. We outline how this 
is applied to deal with general fuzzy sets. Then we review the Investment Judgment 
Advisor (IJA) example of [10]. Next, we compare the IJA outputs using the LWPM 
versus the LWA, and discuss the advantages of the LWPM. Finally, we describe how 
even more useful logical aggregation operators can be constructed hierarchically us-
ing combinations of LWPM components. 

2 Weighted Power Mean as a Partial Conjunction or Partial 
Disjunction Operator 

This section looks at the relationship between a given set of properties and the way 
that an aggregation function treats those properties, focusing on the weighted power 
mean. In designing an evaluation system, the aggregation function should be matched 
to known characteristics of the properties. We deal here only with point value scores 
and weights; Section 3 will extend these to the case when scores and weights are in-
tervals or more general fuzzy sets. 

First, consider what aggregators imply about properties, starting with the special 
cases of disjunction and conjunction. Disjunction treats properties as sufficient, as a 
full score against any property leads to a global score of unity.  Disjunction therefore 
implies substitutability or replaceability of the properties whose scores are being ag-
gregated. Conversely, conjunction implies independence of properties, requiring si-
multaneity of satisfaction [1],[4]. Conjunction treats properties as mandatory since a 
score of zero against any property leads to a zero global score. When an aggregation 
function L  treats a property as neither mandatory nor sufficient, as the weighted 
arithmetic mean does, the property is said to be desired (in the context of L ).  

When a parameterized aggregation operator ranges between conjunction and dis-
junction, it is natural to define some measure of similarity between conjunction  
(or disjunction) and the operator at each parameter setting [18]-[20]. Similarity to 
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conjunction is called the degree of andness and similarity to disjunction is called or-
ness, where andness is the complement to orness.  Andness of an aggregator L  for 
which 

1 n
x x∧ ∧ ≤ ( ),L x w ≤  

1 n
x x∨ ∨  everywhere is defined in [4] to be:  

( ) ( )( )1

1 1

( 1) ,,

1
n

g

n n

n n Lx x L

nx x x x
α

− +∨ ∨ −
= =

−∨ ∨ − ∧ ∧

x wx w
 

.                  (1) 

Here, the overbar denotes averaging over the hypercube [ ]0,1
n  in which ܠ lies.  

An aggregator L  that is more similar to conjunction than disjunction is referred to 
as partial conjunction, and if vice versa, as partial disjunction [4]. Property  
requirements are partially substitutable if L is a partial disjunction, and partially si-
multaneous if L  is a partial conjunction. We generalize the terminology in [4] to say 

( )
1

, ...
n

L x x− ∨ ∨x w  is the penalty and ( )
1

, ...
n

L x x− ∧ ∧x w is the reward at 

( )
1
, ...,

n
x x=x  . 

Let us now turn to the case when ܮ is the weighted power mean. Over the full 

range of the exponent r−∞ ≤ ≤ ∞ , satisfaction score vectors ( )1
, ...,

n
x x=x  and 

normalized weight vectors ( )
1
, ...,

n
w w=w  for which 

1

1
i

n

i

w
=

=  and each 0
i

w > , the 

weighted power mean is defined as: 

( ) ( )1/

1

, lim

qn

q r
i

q
i ir w xL

→ =

= x w .         (2) 

Hence ( )
1

0 , i

n

i

w

i
xL

=

= ∏x w , ( ),L
−∞

x w =
1 n

x x∧ ∧  and ( ),L∞ x w = 
1 n

x x∨ ∨ . 

De Morgan duality creates an aggregation function satisfying a sufficiency condi-
tion on the inputs [3],[4].  We denote this operator ( )

rL − , defined as 

 ( ) ( )( )
, 1 ,r rLL − = − −x w 1 x w , where ( )

1
1 , ...,1

n
x x− = − −1 x .      (3) 

When the weights and input scores are fixed, ( ),rL x w  is a continuous and increas-

ing function of the power r . Therefore from (1), the andness ( )r

gα  of ( ),rL x w  is a 

monotonically decreasing function of r . It is easy to see that the andness of ( )
rL −  

equals the orness of rL  and vice versa. The ranges of r  for which rL  and ( )

rL −  are 
partial conjunctions or partial disjunctions are summarized in Table 1, which also 
shows the form of aggregation that is valid when properties are all mandatory, all 
sufficient, all desired (neither mandatory nor sufficient) and partially substitutable, or 
all desired and partially simultaneous [22].  

To aggregate a mandatory input 
1

x  with a desired input 
2

x , [21] sets up bivariate 

operators called conjunctive partial absorption (see also [4]). Conjunctive partial 
absorption aggregators apply a partial disjunction to the two inputs, and then take a 
partial conjunction of that output with the mandatory input.  Disjunctive partial ab-
sorption aggregators defined in [21] and [4] combine a sufficient input  with a 

 
1

x
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Table 1. Aggregator Properties of Operators as a Function of r  

 Partial conjunction Partial disjunction  
All properties mandatory   ( ),rL x w , 0r−∞ ≤ ≤  

( )( ) ,L−
∞ x w  

 

All properties sufficient   ( ),L∞ x w   

( )( )
,rL − x w , 0r−∞ ≤ ≤  

Properties desired, partially 
simultaneous ( ),rL x w , 0 1r< ≤  

( )( ) ,rL − x w , 1 r≤ < ∞  

 

Properties. desired, partially 
substitutable 

 ( ),
r

L x w , 1 r≤ < ∞  

( )( )
,

r
L

− x w , 0 1r< ≤  
 

desired input  using a partial conjunction of the two inputs followed by a partial 

disjunction of that output and the sufficient input.   
We can construct such operators from weighted power means as shown in Table 2. 

Here, ( )( )
1
, ,sx L x w and ( ) ( )( )1

, ,sx L − x w are both 2-dimensional scores, and ′w  is a 2-

dimensional weight vector. However x  and w  may be of higher dimension if there 
are multiple partially substitutable inputs.  

Table 2. Conjunctive/Disjunctive Partial Absorption Operators  

Conjunctive Partial Absorption 
Property 1 mandatory, other prop-
erties desired and  partially substi-
tutable  

( )( ) ( )( )
1
, , , ,1r sx L w wL ′ ′−x w , 0, 1r s≤ ≤ < ∞  

( )( ) ( )( )
1

( )
, , , ,1r sL x L w w

− ′ ′−x w , 0, 0 1r s≤ < ≤  

Disjunctive Partial Absorption  
Property 1 sufficient, other proper-
ties  desired and partially simulta-
neous  

( )( ) ( )( )
1

( )
, , , ',1 '

r sx w wL L
− −x w ., 0, 0 1r s≤ < ≤  

( )( ) ( )( )
1

( ) ( )
, , , ,1

r s
x w wL L

− − ′ ′−x w , 0, 1r s≤ ≤ < ∞  

3 Imprecise Attributes, Weights and Powers 

We turn now to the fuzzy case, starting with interval-valued scores [ ],
i i

x x  and 

weights [ ],
i i

w w , where for { }1, ,i n∈  , ,
i i

x x [ ]0,1∈  and , 0
i i

w w ≥  (so we allow 

weight intervals to include zero).  Drawing on work in [22], we show how to com-
pute the weighted power mean for a precise power r  and then extend this to deal 
with a power range [ ],r r  and thence to an arbitrary fuzzy set on the reals.  

A.  Bounds of an interval-valued weighted arithmetic mean 
Define [ ] [ ]{ }, : , , , , 1, ...,

i i i i i i
x x x w w w i n∈ ∈ =Ω = x w . Then it is easy to see that 

( )
1 1

,
n n

i i
i i iy w x w

= =

=  x w achieves its maximum value at 
i i

x x=  and its minimum value 

2
x
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at 
i i

x x=  for 1, ,i n=  .  Reference [23] shows that the bounds of y  as x and w 
vary over Ω  are given by  

 

( ) { }

( ) { }

,
, ,  where  , 1,...,

,

,
, ,  where  , 1,...,

,

i i

i

i i

i i

i

i i

w x y
y y z i n

w x y

w x y
y y z i n

w x y

<
= = ∈

>

<
= = ∈

>








x z

x z
  

          (4) 

Algorithms for computing these bounds for the fuzzy weighted mean, and extensions 
to interval type-2 fuzzy sets, are given in [23],[24].  These algorithms are called En-
hanced Karnik-Mendel or EKM.  Below, we condense and generalize the EKM algo-
rithm to compute fuzzy weighted power means of arbitrary power.   

 
B.  Bounds of an interval valued weighted power mean 
First we deal with the exceptional cases r = ±∞ , for which inspection of (2) shows 

that ( ),rL x w  is independent of all 0
i

w > ; specifically, ( ) { }
: 0

, min
i

i wi

xL−∞
>

=x w , 

( ) { }
: 0

, max
i

i wi

L x
∞

>
=x w .  When applied to interval values [ ], , 1, ...,

i i
x x i n=  (for example, 

using Zadeh’s Extension Principle) ( ),L−∞ x w  and ( ),L∞ x w  are intervals 

 [ ]
[ ]

{ }{ } [ ]
{ }{ }

, : 0 : 0,
, min min , max min

i i i i i i

i i
x x x i w i wx x xi i

L L x x−∞ −∞
∈ > >∈

=  
  

,     (5) 

 
[ ]

{ }{ } [ ]
{ }{ }

, : 0 , : 0
, min max , max max

i i i i i i

i i
x x x i w x x x i wi i

L L x x∞ ∞
∈ > ∈ >

=       
.    (6) 

Therefore the intervals are determined solely by the 
i

x  interval boundaries, with  

 { } { } { } { }
: 0 : 0 : 0 : 0
min , min max , max;i i i i
i w i w i w i wi i i i

L x L x L x L x−∞ −∞ ∞ ∞
> > > >

= = = =   (7) 

Next, consider the weighted power mean for a finite power r .  The relevant expres-
sions in (2) can be rewritten as  

 ( ) ( )( ) ( )( )1

1 1

, ,
n n

r i r i i r r

i i

r
h w h x w h yL −

= =

= = x w x w ,      (8) 

where 

 ( )
( )

1/ ,     0

exp ,  0

r

r

z r
h z

z r

≠
=

=





    (9) 

and  

 ( ) ( )1

1 1

,
n n

r i i
i i

r iy w h x w
−

= =

=  x w .   (10) 

Note that 
r

h  and 1

rh−  are strictly increasing on the non-negative reals if 0r ≥  and 

are strictly decreasing if 0r < .  Note also that (8) can be used for other invertible 
aggregation functions h , but we restrict attention here to the WPM operator. 

With (8), the value of the weighted power mean applied to intervals [ ] [ ], , ,
i i i i

x x w w  
can be written as the interval 
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[ ] ( )( ) ( )( )
1 1 1 1

1 1
min , max,

n n n n

i i i i
r i r i i r i r i ir r h w h x w h w h x wL L

= = = =

− −=  
  

          (11) 

where min and max are taken over Ω .

 

The lemma below enables the results from [23] to be adapted to this general case.  
The lemma follows from the elementary expression for the derivative of a composite 

function, i.e., ( )( )( ) ( ) ( )( )h g z g z h g z′ ′ ′= . 

Lemma 
Suppose that g  and h  are real valued differentiable functions on an interval 

Z  and that ( ) ( )( )f z h g z=  for all z  in Z .  

(i) If h  is strictly increasing then the locations in Z  of the minima (resp. 
maxima) of f  coincide with each of the locations of minima z  (resp. maxima 
z ) of g , and  

 ( ) ( )( ) ( ) ( )( )min , max
z Z z Z

f z h g z f z h g z
∈ ∈

= =   

(ii) if h  is strictly decreasing then the locations of the minima (resp. maxima) 
of f  coincide with each of the locations of maxima (resp. minima) of g , and  

 ( ) ( )( ) ( ) ( )( )min , max
z Z z Z

f z h g z f z h g z
∈ ∈

= = .  

(If Z  is unbounded or an open interval, the maximum and minimum may not 
be attained, in which case the lemma holds with supremum (resp. infimum) subs-
tituted for maximum (resp. minimum.)           

Applying the lemma to (11) with rh  in the role of h  and ry  in the role of g  we 

see that 

 [ ]
( ) ( )[ ]
( ) ( )[ ]

, 0

, 0
,

r r

r r

r r

r r

r r

y y r

y y r

h h

h h
L L

≥
=

<
,   (12) 

where  

 [ ],
r r

y y =
( ) ( )1 1

1 1

1 1

min , max

n n

i r i r
i i

n n

i i
i i

i iw h x w h x

w w

− −

= =

= =

    
    

    
    

    

 

 
.     (13) 

Now for any { }1, ...,i n∈ , ( ) ( )1 1

r i r i
h x h x− −≤  if rh  is strictly increasing and 

( ) ( )1 1

r i r i
h x h x− −≥  if rh  is strictly decreasing. So to compute (13), we apply Wu  

and Mendel’s results (4) using the input intervals ( ) ( )1 1
,

r i r i
h x h x

− −    when 0r ≥  and 

( ) ( )1 1,
r i r i

h x h x− −    when 0r < . Then we apply rh  to the resulting interval in ac-

cordance with (17). The upper and lower bounds are transposed at this step if rh  is 
strictly decreasing. Thus we see that in all cases, the bounds in (12) are given by:  
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C.  WPMEKM Algorithm for computing fuzzy weighted power means 
The EKM algorithms [23],[24] can be adapted to compute the interval bounds  
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for any strictly monotonic function h  [17]. We call the resulting algorithm 
WPMEKM since it is targeted at computing the special case of weighted power 
means, while recognizing the more general application. For conciseness we also  
conflate what are essentially two identical algorithms that the earlier works used to 
compute the upper and lower bounds. 

 
The WPMEKM Algorithm 

1) If the minimum ( ),r rL L=x w  is to be computed, set 
2.4

nk =     where [ ]x  is 

the nearest integer to x , and set 
i i

x x= , 
i i

u w=  and 
i i

v w=  for each 

1, ,i n=  .  If the maximum ( , )r rL L=x w  is to be computed, set 
1.7

nk =    , 

i i
x x= , 

i i
u w=  and 

i i
v w=  for 1, ,i n=  . 

2) Sort the 
i

x  for 1, ,i n=   in ascending order so that 
1 2 ni i ix x x≤ ≤ ≤  where 

, 1, ,j j ni =   represents the original index values. Rearrange the weight inter-

val endpoints 
i

u  and 
i

v  using the same permutation of index values 

, 1, ,
j

i j n=   that result from the 
i

x  sort. Now refer to , , , 1, ,
i i i

x u v i n=   as the 

sorted sets of inputs and weights.  
3) Compute  

( ) ( )
1 1

1 1
k n

i i
i i k

i ia h x v h x u
= = +
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1 1
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i i
i i k

b v u
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a

y
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=  
 
 

. 

4) Find { }0,1, ...,k n′ ∈  such that ( ) 1k kh yx x′ ′+≤ < . Check if k k′ = .  If yes, set 

( )( , )r h yL =x w  and stop. If no, continue. 

5) Set ( )s sign k k′= − , and compute 
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6) Set ,  and  a a b b k k′ ′ ′= = = .  Go to step 4). 
 
Note that because h  is strictly monotonic, the sort on 

i
x  results in either an  

ascending or descending sort on ( )1
i

h x
−  depending on whether h  is increasing or 

decreasing. 
With the WPMEKM algorithm, the weighted power mean interval boundaries can 

be computed for any value of r  from given input and weight intervals. These inter-
val-valued results enable us directly to compute arbitrarily accurate approximations to 
the weighted power mean membership function for scores and weights which are 
general fuzzy sets, using the α -cut representation theorem [25] as described in [23] 
and [24]. In this case the interval computation is applied for each α -cut of the input 
variables to determine the corresponding α -cut of the output variable. To further 
extend to the interval type-2 case, this computation is applied to both the upper and 
lower bounding functions for the scores and weights, to determine the corresponding 
upper and lower bounding functions of the global score. To extend to the general 
type-2 case, we apply the latter approach to each z-slice. 

 
D.  Allowing for Imprecise Powers in the Weighted Power Mean 
Imprecise weights impart imprecision to the way that input satisfaction scores are 
aggregated into a global score. Imprecision is also involved in the choice of power to 
use in the weighted power mean. Again, we first model this imprecision as an inter-
val, that is, we suppose that the power lies in a range [ ],r r . As mentioned earlier, 
the weighted power mean is known to be a continuous increasing function of the 
power r  as r  varies over the real line. When the power is an interval rather than a 
point, aggregation of scalar input scores for a given set of scalar weights is therefore 
the interval  

 [ ] ( ) ( ) ( )[ ], ; ; , ;rr r rL LL =x w x w x w .      (15) 

If satisfaction scores are intervals [ ],
i i

x x , { }1, ,i n∈   (in vector notation, [ ],x x ), the 
aggregate global preference becomes the wider interval 

 [ ] [ ]( ) ( ) ( ), , , , , ,r rr rL L L=   x x w x w x w .          (16) 

If also weights are fuzzy intervals [ ],
i i

w w , { }1, ,i n∈   the WPMEKM algorithm is 

used to determine the weight vector that gives the smallest value of ( ),rL x w  (call it 

′w ) and the weight vector that gives the largest value of ( ),rL x w  (call it ′′w ).  
Then    

 [ ] [ ] [ ]( ) ( ) ( ), , , , , , ,r rr rL L L′ ′′=   x x w w x w x w      (17) 

From the expression (3) for the De Morgan complement, it is then easy to see that 

 ( ) [ ] [ ]( ) ( ) ( )[ ], , , , 1 , 1 ,,r rr rL L L−

  
′′ ′= − − − −x x w w 1 x w 1 x w   (18) 
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where the weight vector ′w  is computed to find a minimum with respect to the vector 
score −1 x  and the weight vector ′′w  is computed to find a maximum with respect to 
the vector score −1 x .  The extension from intervals to fuzzy sets is made with re-
peated application of the α -cut representation theorem. 

4 Investment Example 

The IJA example in [10] originated with Tong and Bonissone [26], who considered 
the decision confronting an individual with a moderately large amount of capital who 
wishes to select among five investment sector alternatives, using four investment 
criteria.  The alternatives and criteria are as shown in Table 3. The first three  
criteria concern quantities and the fourth is a quality.  The investor rates each crite-
rion for importance and then rates each investment with respect to the criteria. The 
ratings are then aggregated into a decision statistic that can be used to guide capital 
allocation. 

Through a process of interval analysis [27] using inputs from real subjects, Mendel 
and Wu derive three vocabularies associated with the concepts: quantity, quality and 
importance.  The descriptors are represented using IT2 MFs, whose UMF and LMF 
are trapezoids disposed on the domain interval [ ]0,10 . The extreme words in each 

vocabulary are typically represented by left- or right-shoulder MFs, while the  
intermediate words are represented by mid-range MFs.  (For details, see [10].) An 
eight-term vocabulary describes quantity, namely None to Very Little (NVL), Very 
Low (VL), Low (L), More or Less Low (MLL), Fair to More or Less High (FMLH), 
More or Less High (MLH), High (H) and Extremely High (EH). A seven-term voca-
bulary described quality: Very Bad (VB), Bad (B), Somewhat Bad (SB), Fair (F), 
Somewhat Good (SG), Good (G) and Very Good (VG). A four-word vocabulary de-
scribes importance: Unimportant (U), More or Less Unimportant (MLU), More or 
Less Important (MLI) and Very Important (VI).   

Table 3 (drawn from [10]) presents three hypothetical word evaluation matrices 
grading each investment alternative from the perspectives of speculative, conservative 
and in-between investors, respectively. Mendel and Wu use the LWA to aggregate the 
criteria evaluations and importance evaluations for each alternative into correspond-
ing output IT2 MFs, which are then ranked to determine the order of appropriateness 
of the investment categories for each of the three types of investors.  

We next generalize these results using the LWPM with different power exponents 
on the same input data, in order to illustrate the versatility of this aggregation operator 
[28].  In keeping with [10], a simple antonym 

10
( )

A
xμ −   of the respective IT2 MF is 

used for criteria 1 and 2 in the aggregation, i.e., 
10

( ) (10 )
A A

x xμ μ− = −  . Alternative 

forms for the membership functions antonyms which exhibit more intuitive behavior 
are discussed in [29]. 
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Table 3. Linguistic Ratings of Alternatives and Weights WRT Criteria 

 
 

 Risk of 
capital loss

 Inflation 
vulnerability

 Investment 
return

 Liquidity
 

Speculative Investor 
Criterion importance U MLU VI MLU 

Commodities
 

FMLH FMLH EH G 
Stocks

 
MLH FMLH H SG 

Gold
 

VL L VL SB 
Real Estate

 
MLL MLH MLH SG 

Long Term Bonds
 

NVL MLL VL VB 
Conservative investor 

Criterion importance VI MLI VI MLI 
Commodities

 
EH MLH MLL F 

Stocks
 

H H MLH SG 
Gold

 
MLL FMLH FMLH F 

Real Estate
 

MLH MLH H F 
Long Term Bonds

 
NVL MLL MLH SG 

In-between investor 
Criterion importance

 
MLI MLI VI MLI 

Commodities
 

H H MLH SB 
Stocks

 
FMLH FMLH H VG 

Gold
 

L MLL MLL SB 
Real Estate

 
FMLH FMLH H SG 

Long Term Bonds
 

L L L F 
 

 
The following sequences of figures show the output IT2 MF footprint of uncertain-

ty (FOU) of the LWPM for different values of the power exponent r . In each figure 
we also plot the FOU of the weighted average ( 1r = , with andness ( )1

0.5
g

α = ). The 

“+” crosshatch corresponds to the LWA MF, while the “x” crosshatch corresponds to 
the LWPM MF; the UMF is shown as a solid line, while the LMF is shown as a 
dashed line. The solid vertical line indicates the defuzzified centroid of the LWPM 
IT2 MF, and the two dashed vertical lines indicate the left and right endpoints of the 
LWPM centroid interval.  Note that our purpose in the choices of alternatives shown 
below is to illustrate the cases where the LWPM is qualitatively the most similar and 
the least similar to the LWA results for a given value of the parameter r . 

Consider first the extreme cases of r = ±∞ , where the andness of the LWPM is 1  
( r = −∞ ) or 0 ( r = +∞ ).  Figs. 1-3 are for r = +∞ , with andness ( ) 0

g
α ∞ =  (pure dis-

junction), where the LWPM MF lies generally to the right of the LWA MF. The left 
plot correspond to the alternatives for which the LWPM MF FOU is most similar 
qualitatively to that of the LWA, and the right correspond to alternatives for which it 
is most dissimilar to the LWA.  We observe a dramatic range of differences between 
the LWPM and LWA over different alternatives, which is a function of the dispersion 
of the evaluation words’ IT2 MFs over the 0-10 scale with respect to the various  
criteria. The LWA tends to smooth out these differences, resulting in an interior tra-
pezoidal IT2 MF in all cases, while the LWPM for r = +∞  often results in a right-
shoulder trapezoidal IT2 MF. 

 

Alternative/weight 

Criterion 
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5 Conclusion 

We introduce a new family of Per-C computational engines based on the LWPM, and 
compare it with the LWA using an extended example described in [10]. The 
WPMEKM algorithm is presented for the computation of LWPM aggregations with 
interval input and weight variables.  This can be extended to inputs and weights de-
scribed by IT2 MFs using the α -cut Representation Theorem. The LWPM is shown 
to be a much more versatile aggregation operator, and thus it provides a significant 
extension to the suite of tools available for CWW applications. We also show how 
LWPM modules can be used to produce conjunctive partial absorption operators, and 
illustrate their differences with respect to a straightforward LWPM.  These operators 
enable more general hierarchical logic functions to be constructed than are available 
with simple hierarchies of LWAs. 
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1 Introduction

Many authors have made proposals to model and handle databases involving uncertain
data. In particular, the last two decades have witnessed a blossoming of researches on
this topic (cf. e.g., [3,4,19] for some recent ones). Even though most of the literature
about uncertain databases uses probability theory as the underlying uncertainty model,
some approaches rather rest on possibility theory [26]. The initial idea consisting in
applying possibility theory to this issue goes back to the early 80’s [24]. More recent
advances on this topic can be found in [10]. In contrast with probability theory, one
expects the following advantages when using possibility theory:

• the qualitative nature of the model makes easier the elicitation of the degrees at-
tached to candidate values;

• in probability theory, the fact that the sum of the degrees from a distribution must
equal 1 makes it difficult to deal with incompletely known distributions.

Our aim is not to claim (nor to demonstrate) that the possibility-theory-based frame-
work is “better” than the probabilistic one at modeling uncertain databases, but that
it constitutes an interesting alternative inasmuch as it captures a different kind of un-
certainty (of a qualitative nature). An example is that of a person who witnesses a car
accident and is not sure about the model of the car involved. In such a case, it seems
reasonable to model the uncertain value by means of a possibility distribution, e.g.,
{1/Mazda, 1/Toyota, 0.7/Honda} — where 0.7 is a numerical encoding in a usually
finite possibility scale — rather than with a probability distribution which would be
artificially normalized.

The rest of the paper is organized as follows. Section 2 is devoted to a reminder about
basic notions concerning the interpretation of an uncertain database in terms of a set of
possible worlds. In Section 3, two models of uncertain databases founded on possibility
theory are presented. Then, in Section 4, three fairly different families of queries are
proposed, that have quite different meanings. Section 5 concludes the paper and opens
some lines for future works.

2 Basic Notions

2.1 The Possible Worlds Semantics

The possible worlds model is founded on the fact that uncertainty in data makes it
impossible to define what precisely the real world is. One can only describe the set of

R.R. Yager et al. (Eds.): Soft Computing: State of the Art Theory, STUDFUZZ 291, pp. 161–176.
DOI: 10.1007/978-3-642-34922-5 12 c© Springer-Verlag Berlin Heidelberg 2013



162 P. Bosc and O. Pivert

possible worlds which are consistent with the available information. As far as a table
T conveys some imprecision/uncertainty, several interpretations (I) can be drawn from
T and the set of all the interpretations of T is denoted by rep(T ). The notation rep(D)
extends naturally to an uncertain database D involving several tables. A regular database
is nothing but a special case of an uncertain one which has only one interpretation. From
a semantic point of view, such an uncertain database D can be interpreted in terms of
a set of usual databases, also called worlds W1, ..., Wp, and rep(D) = {W1, ..., Wp}. In
the following, we consider the case where rep(D) is finite. Any world Wi is obtained by
choosing a candidate value in each set appearing in a relation Tj pertaining to D. One of
these (regular) databases, let us say Wk, is supposed to correspond to the actual state of
the universe modeled. The assumption of independence between the sets of candidates
is usually made and then any world Wi corresponds to a conjunction of independent
choices (thus the degree associated to a world is based on a conjunction operator, e.g.,
“min” or “product”).

Example 1. Let us consider the uncertain database D involving a single relation im
whose schema is IM(#i, airc, date, place). Relation im is assumed to describe satellite
images of aircrafts. Each image, numbered (#i), was taken on a certain location (place)
a given day (date) and it is supposed that it includes a single aircraft (airc). With the
extension of im depicted in Table 1 six worlds can be drawn, W1, W2, W3, W4, W5 and
W6 since there are three candidates for date in the first tuple and two candidates for
airc in the second one. Two of the worlds associated with the uncertain relation im are
represented in Table 1. �

Table 1. An extension of im (top) and two worlds associated with it (bottom)

#i airc date place
i1 a1 {d1,d3,d7} c1
i3 {a3, a4} d1 c2

#i airc date place
i1 a1 d1 c1
i3 a3 d1 c2

#i airc date place
i1 a1 d7 c1
i3 a4 d1 c2

2.2 Strong Representation Systems and Compact Calculus

When dealing with an uncertain database D, a very important issue is that of the effi-
ciency of the querying process. A naive way of doing would be to make explicit all the
interpretations of D (at least when they are finite) in order to query each of them. Such
an approach is intractable in practice and it is of prime importance to find a more real-
istic alternative. To this end, the notion of a representation system has been introduced
— initially by Imielinski and Lipski [22] — and discussed in [1]. The basic idea is to
look for a way for representing both initial tables and those resulting from queries so
that the representation of the result of a query q against any database D (made of tables
T1, ..., Tp) denoted by q(D), is equivalent (in terms of interpretations, or worlds) to the
set of results obtained by applying q to every interpretation of D, i.e.:
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rep(q(D)) = q(rep(D)) (P1)

where q(rep(D)) = {q(W) |W ∈ rep(D)}. If property P1 holds for a representation
system ρ and a subset σ of the relational algebra, ρ is called a strong representation
system for σ . From a querying point of view, P1 enables a direct (or compact) calculus
of a query q, which then applies to D itself without making the worlds explicit (see
Figure 1). So doing, provided that relational operations are defined over tables of the
system considered, reasonable performances can be expected.

Fig. 1. Compact query evaluation

3 Two Uncertain Database Models Based on Possibility Theory

3.1 Full Possibilistic Model

In the “full possibilistic model” [10], any attribute value can be a possibility distribution
which acts as a restriction over the values that are more or less preferred for a consid-
ered attribute (a precise value is an extreme case where only one candidate is possible).
Besides, there is a need for expressing that some tuples may not be represented in some
worlds. Indeed, a selection may lead to discard candidate values from a distribution, but
one must be able to compute the degree of any world of the answer, including those in
which some tuples are not represented. A simple solution is to introduce a new attribute,
denoted by N, which states whether or not it is legal to build worlds where the corre-
sponding tuple has no representative, and, if so, the influence of this choice in terms of
possibility degree. N expresses the certainty of the presence of a representative of the
tuple in any world. By doing so, it is possible to generate the worlds in which a tuple is
not represented, by taking into account the degree of possibility of its absence, which,
according to possibility theory, is given by (1−N). A tuple is denoted as a pair N/t
where N equals 1 for tuples of initial possibilistic relations as well as when no alter-
native has been discarded. A second aspect is related to the fact that it is sometimes
necessary to express dependencies between candidate values of different attributes of
a same tuple. For instance, let A and B be two attributes whose respective candidates
in a given tuple t are {a1, a2} and {b1, b2, b3}. If, according to a given selection crite-
rion, the only legal associations are (a1, b1) and (a2, b3), one cannot call on a Cartesian
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product of subsets of t.A and t.B. In other words, A and B values cannot be kept sepa-
rate (which would mean that they are independent) and the correct associations can be
explicitly represented if the model incorporates attribute values defined as possibility
distributions over several domains. In this context, candidates can be (weighted) tuples
in a model based on the concept of nested relations. Besides, let us emphasize two par-
ticular aspects, both connected with the fact that nested relations are used to support
possibility distributions: i) tuples of nested relations are weighted since any element
of a possibility dis-tribution is assigned a level of preference and ii) the extension of
a nested relation has a disjunctive meaning according to the semantics of a possibility
distribution. The notation

R(A1, . . . , Am, X1(Ap, . . . , Aq), . . . ,Xn(Ak, . . . , Ar))

stands for a schema in which A1 to Am are elementary attributes (also called level-one
attributes) whose values are either precise or possibility distributions and Xi(Ah, . . . ,A j)
represents a “structured” attribute Xi whose values are possibility distributions made of
tuples built over attributes Ah to A j which are called “nested” attributes. Obviously,
such relations have an interpretation in terms of worlds as it is the case for ordinary
possibilistic relations. When one moves to a given world, a structured candidate value
is split into atomic values and the schema becomes unnested. The idea is to use the
extended model to represent the result of intermediate operations in a correct fashion.

Table 2. An extension of relation r

X
A B C D E π N
a1 {π1/b1, π2/b4} c2 d1 e3 π3 1
a2 b3 c1 d1 e2 π4 0.4

c3 d2 e3 π5
c2 d4 e2 π6
c2 d1 e3 π7

Example 2. Let us consider the intermediate relation of schema R(A, B, X(C, D, E)) rep-
resented by Table 2 where the πi’s denote possibility degrees. Five possibilities exist as
to the second tuple since it may be absent (N < 1). Consequently, ten worlds can be de-
rived from this imprecise relation. The world containing only the tuple 〈a1, b4, c2, d1, e3〉,
in which the second tuple is not represented, is associated with the degree:

min(min(1, π2, π3), 1−0.4).

The world with the two tuples 〈a1, b1, c2, d1, e3〉 and 〈a2, b3, c3, d2, e3〉 can also be
drawn and its degree is:

min(min(1, π1, π3), min(1, 1, π5)).�
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3.2 Certainty-Based Model

3.2.1 Main Features of the Model
In the certainty-based model [13,15], a possibility distribution is “synthetized” by keep-
ing only its most plausible elements. So, to each uncertain value a of an attribute A is
attached a certainty degree α . The underlying possibility distribution associated with an
uncertain attribute value (a, α) is {1/a, (1−α)/ω} where ω denotes domain(A)\{a}
(due to the duality necessity/possibility: N(a) ≥ α ⇔ Π(ω) ≤ 1 −α [21]). For in-
stance, let us assume that the domain of attribute City is {Newton, Quincy, Boston}.
The uncertain attribute value (Newton, α) is assumed to correspond to the possibility
distribution {1/Newton, (1−α)/Quincy, (1−α)/Boston}. More generally, the model
can deal with disjunctive values, and the underlying possibility distributions are of the
form {max(μS(x1), 1−α)/x1, . . . , max(μS(xp), 1−α)/xp} where S is an α-certain
subset of the attribute domain and μS(xi) equals 1 if xi ∈ S, 0 otherwise [20]. Let us
notice that, in general, there is not a strict equivalence between an initial possibil-
ity distribution (e.g., {1/Newton, 1/Malden, 0.6/Quincy, 0.2/Boston} and the distribu-
tion ({1/Newton, 1/Malden, 0.6/Quincy, 0.6/Boston}) derived from its synthetized form
(Newton ∨ Malden, 0.4).

Moreover, since some operations may create “maybe tuples” (e.g., the selection as
in the full possibilistic model), each tuple t from an imprecise relation r has to be asso-
ciated with a degree N expressing the certainty that t exists in r. It will be denoted by
N/t.

Example 3. Let us consider the relation r of schema (#id, Name, City) containing tuple
t1 = 〈1, John, (Boston, 0.8)〉, and the query “find the persons who live in Boston”. Let
the domain of attribute City be {Newton, Quincy, Boston}. The answer contains 0.8/t1
since it is 0.8 certain that t1 satisfies the requirement, while the result of the query “find
the persons who live in Boston, Newton or Quincy” contains 1/t1 since it is totally
certain that t1 satisfies the condition.�
To sum up, a tuple α/〈37, John, (Boston, β )〉 from relation r means that it is α certain
that person 37 exists in the relation, that it is totally sure that the name of that person is
John, and that it is β certain that 37 lives in Boston (independently from the fact that it
is or not in relation r).

Given a query, only answers that are somewhat certain are considered of interest (in
contrast with those that are just possible), which makes the approach much simpler.
Consider the relations r and s from Table 3 and a query asking for the persons who
live in a city with a flea market. John will be retrieved with a certainty level equal to
min(α, β ) (in agreement with the calculus of necessity measures [20]). Although it is
not impossible that Mary lives in a city with a flea market, she does not belong to the
answer because this is just possible.

As mentioned above, it is also possible to handle cases of disjunctive information in
this setting. For instance, 〈3, Peter, (Gardner ∨ Fitchburg, 0.8)〉 represents the fact that
it is 0.8-certain that the person number 3 named Peter lives in Gardner or in Fitchburg.
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Table 3. Relations r (left) and s (right)

#id Name City N
1 John (Newton, α) 1
2 Mary (Norwood, δ ) 1

City Flea Market N
Newton (yes, β ) 1

Norwood (no, γ) 1

3.2.2 Strong Representation System
Let us now examine what becomes of property P1 in such a context. Let us denote by D
an imprecise database involving certainty levels, poss(D) the corresponding imprecise
database involving the simplified possibility distributions of Subsection 3.2.1 (i.e., those
associated with values that are somewhat certain), q an algebraic query, and qc the
compact version of q. The counterpart of property P1 is:

qc(D) = ψ(q(rep(poss(D)))) (P2)

where ψ(r′) denotes the certainty-based relation which gathers the tuples somewhat
certainly in the intersection of all the (more or less) possible worlds from the set r′
(each world from r′ represents a possible result of q applied to D).

Table 4. Extension of im for Example 4

#i airc date place
7 {1/MiG31, 0.8/MiG29} 96/03/02 {1/v1, 0.2/v2}
9 {1/Su27, 0.3/Su30, 0.5/MiG31} 92/12/01 v1
17 MiG31 96/09/27 {1/v2, 0.4/v1}
5 {1/MiG29, 1/Su7} 95/06/09 v2
34 MiG31 95/10/01 v1

Table 5. Result of the query of Example 4

#i airc date place Π N
7 {1/MiG31, 0.8/MiG29} 96/03/02 {1/v1, 0.2/v2} 1 0.2
9 {1/Su27, 0.3/Su30, 0.5/MiG31} 92/12/01 v1 0.5 0
17 MiG31 96/09/27 {1/v2, 0.4/v1} 0.4 0
34 MiG31 95/10/01 v1 1 1

4 Three Families of Query Semantics

Though it would make sense to envisage fuzzy queries (i.e., involving preferences ex-
pressed through fuzzy predicates), for space reasons, we only focus on Boolean queries.

4.1 Event-Oriented Querying

The corresponding model and query language were first introduced in [24] where it
was possible to issue fuzzy queries against a possibilistic database. First, it is important
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to notice that this approach is not related to the possible worlds semantics. The idea
is rather to see a query as a way to build facts (or events) as tuples using algebraic
operations. Each tuple is assigned a pair of grades Π ,N expressing the possibility and
necessity of the corresponding event. The central operator is the selection for which
ouput tuples are input tuples (kept unchanged) accompanied by the two grades Π and
N mentioned before. In the presence of a Boolean selection condition φ applying to
attribute A, the value of Π for tuple t (inside which A is represented as the possibility
distribution πt.A) is defind as:

supd∈domainA min(πt.A(d),φ(d)).

It equals 1 if there is (at least) one value in the core of πt.A that satisfies φ and 0 if no
value of the support of πt.A matches φ . Of course, other values of the unit interval can
be taken (see Example 4). Similarly, the necessity degree is given by:

1− supd∈domain(A) min(πt.A(d),¬φ(d)) = in fd ∈domain(A) max(1−πt.A(d),φ(d)).

It equals 1 if any somewhat possible value of πt.A satisfies φ and 0 if a completely
possible value of πt.A does not comply with φ . Of course, one has the property: Π <
1 ⇒ N = 0, as illustrated in the next example.

Example 4. Let us consider the relation im whose schema is given in Example 1 with
the extension of Table 4. The query looking for images of “MiG31” taken in city v1

returns the relation of Table 5.�
It is worth noticing that, in such an approach, the composition of operations is problem-
atic since input tuples are not “updated”. For instance, the query looking for persons
whose age is between 28 and 32 would reject 〈John,{1/25,1/35}〉 whereas this tuple
is selected if two successive selections are used.

4.2 Possible Worlds

4.2.1 Queries in the Full Possibilistic Model
Let us first point out some difficulties raised by the presence of disjunctive values. Let
us consider the following relations r(A, B) and s(B, C):

r = {〈{α/a1, β/a2, γ/a3}, b〉}; s = {〈b, c1〉, 〈b, c2〉}
where incompleteness is only due to the fact that the actual value of A in the tuple of
r is either a1, or a2, or a3. The natural join of r and s leads to a relation t(A, B, C)
involving two tuples, but it is mandatory to guarantee that only three possible worlds
can be drawn from t (and not 32), since attribute A should take the same value in each
of the two tuples, for property P1 to hold. Now, let us perform the natural join of the
following relations:

r = {〈a, {α/b1, β/b2, γ/b3}〉} and s = {〈b1, c1〉, 〈b3, {η/c2, δ/c3}〉}.

Here, the resulting relation is either empty, or made of a single tuple among three possi-
ble: 〈a, b1, c1〉, 〈a, b3, c2〉 and 〈a, b3, c3〉. It is then necessary to express that these four
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situations are exclusive. This implies using a sophisticated data model such as c-tables
introduced by Imielinski and Lipski [22], which in turn raises important complexity
issues.

Binary relational operations may be categorized the following way. Type 1 (resp.
type 2) operations are such that any tuple from an operand relation can take part in the
generation of at most one (resp. several) tuple(s) in the resulting relation. An example
of a type 1 operation is the union. Type 2 operations include the intersection, the differ-
ence, the Cartesian product and the join (in their most general forms). However, in some
particular cases linked to the presence of keys, an operation that is in general of type 2
can behave as a type 1 one (for instance the join operation when the join attributes are
precise and constitute the keys of the operand relations or the foreign-key join detailed
later). To summarize, let us say that in a strict relational framework, it is not possible
to define a strong representation system allowing to deal with an operation of type 2 in
the presence of imprecise values [9].

We now give an overview of four operators which define a language for which the
full possibilistic model is an SRS. The reader will find more details and examples in [9]
and [10]. In the following, because of space limits, we consider the case where input
relations only include level-one attributes.

Selection

The usual selection keeps the tuples of a relation which satisfy a given predicate. Here,
the idea is to retain only candidate values complying with the selection criterion. We re-
view the various cases of selection conditions and examine their impact on the structure
of the result.

When the condition is of the form “att θ constant” (θ ∈ {=, �=,>, <, ≥, ≤}),
the structure of the result is the same as that of the input relation. If the schema
of the input relation r is R(A, B), the condition concerns attribute A and scv(t.A) de-
notes the non-weighted set of candidate values appearing in t.A, the selection is defined
as:

select(r, θ (A, v)) = {N′/〈restrict(t.A, θ (A,v)), t.B〉 |N/t ∈ r∧
N′ = min(N, 1− supx∈scv(t.A) | ¬θ(x,v)πt.A(x))}

with

restrict(t.A, θ (A,v)) = {. . .+ π/a + . . .} s.t. a ∈ scv(t.A) ∧θ (a,v) ∧π = πt.A(a).

This formula says that, in any tuple t, only the elements of the distribution t.A which
satisfy the condition are retained in the resulting tuple. Moreover, the degree of certainty
associated with this tuple (t.N) is updated according to the highest possible value which
is discarded. It is proven in [9] that property P1 holds with this definition.

Let us now consider with selection conditions of the form “A1θA2” or “cond1(A1)
or cond2(A2)”. In both cases, if A1 and A2 are imprecise attributes, it is necessary to
gather their candidate values in a nested relation so that only the correct pairs of values
are kept in the result. The corresponding definition is given in [9]. The way the operator
works is illustrated in the following example by a condition involving a disjunction.
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Example 5. Let us consider the schema (#c, name, city, mileage) of an intermediate
relation ac describing cars with their number, name, city of last owner and mileage.
The condition (brand = “C*” or city = “Paris”) applied to:

{0.7/〈1, {1/Camry, 0.4/Taurus},{1/Madrid, 0.7/Paris}, 75000〉}
leads to the result:

{0.6/〈1, {1/{Camry, Madrid},
0.7/{Camry, Paris},
0.4/{Taurus, Paris}}, 75000〉}.

The necessity degree 0.6 attached to the tuple corresponds to min(0.7, 1− ρ) where
ρ = 0.4 is the possibility degree of the most possible pair of candidates that does not
satisfy the selection criterion, i.e., 〈Taurus, Madrid〉 here. This way of doing guarantees
the validity of property P1. �

Other Operators

As stated before, the classical join cannot apply in general for possibilistic relations due
to the disjunctive nature of possibility distributions. However, we point out a specific
type of join, called fk-join [9], where this problem does not appear since the tuples
resulting from the join are independent in terms of their interpretation.

The operation f k- join(r, s, (U, V )) composes a possibilistic relation r whose schema
is R(U, Y ) with a regular relation s (whose schema is S(V, Z) where V is compatible
with U) describing the graph of the functional dependencyV → Z. The fk-join computes
the image of any imprecise U-value present in r by means of the function. In order to
keep the elementary associations between antecedents and images of the FD V → Z, it
is mandatory to place U and Z candidate values inside a same nested relation. Let us
consider the case where the schema of r is R(A, B, G) with U = {A, B} and the schema
of s is S(C, D, E) with V = {C, D}. The schema of the result is Res(X(A, B, E), G).

Contrary to the usual case, the projection of a possibilistic relation does not entail
any duplicate removal. One proceeds so that it is impossible to get a world after projec-
tion which would be more possible than the corresponding one before projection. This
means that, for a given tuple, the possibility of the most possible candidate of the at-
tributes which are removed becomes the upper bound of any interpretation of the tuple
issued from the projection [7].

It is also possible to show that this model constitutes a strong representation system
for the union operator provided that input relations are independent. Under this assump-
tion, the union gathers the tuples of the two input relations and produces a result where
the tuples are independent.

About Generalized Yes-No Queries

Queries addressed to an imprecise database may raise the problem of the interpretability
of their results by an end-user. Indeed, even when “simple” models based on relations
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without any conditions are used — such as that presented above —, it appears difficult
for an end-user to grasp the content of a relation that may include nested subrelations,
distributions of possible values and necessity degrees. This is why several authors have
considered a class of queries which are more specialized (or targeted) to fit user needs.
This is the case, for instance, of S. Abiteboul who studied such queries in the context
of Codd-tables and tables with conditions [2]. In the context of possibilistic databases,
the queries considered in [11,12] are basically yes-no questions about some properties
possessed (or not) by some of the worlds of an imprecise database. Their general query
format is: “to what extent is it possible {and/or} certain that the answer to q fulfills
condition C?” where q is a (constrained) relational algebraic query which may include
only the operators for which the model is an SRS, i.e. projection, selection, fk-join and
union (cf. above). More precisely, the following types of queries are considered:

• vacuity-based yes-no queries: to what extent is it possible and certain that the an-
swer to q is non-empty?

• tuple-membership-based yes-no queries: to what extent is it possible and certain
that tuple t belongs to the answer to q?

• cardinality-based yes-no queries: to what extent is it possible and certain that the
answer to q contains at least (resp. at most, exactly) k items?

• inclusion-based yes-no queries: to what extent is it possible and certain that the
answer to q contains the set of tuples {t1, ..., tk}?

For each of these queries, the authors show that the processing obeys the following three
step scheme:

1. pre-processing in order to eliminate the unnecessary attributes (and, for tuple-
membership-based queries, to remove from the relations the tuples that cannot gen-
erate the target tuple);

2. evaluation of q, which yields a resulting possibilistic relation res;
3. post-processing aimed at computing the final possibility and certainty degrees Π

and N.

The four previous types of queries can be clustered into two categories: those which
require only a sequential scan of the result of q (vacuity and tuple-membership-based
queries) and those for which it is necessary to use a “trial and error” type of algorithm
(cardinality and inclusion-based queries).

4.2.2 Queries in the Certainty-Based Model
We now outline the compact version of the relational algebraic operators in the certainty-
based database model [13,15]. The only limitation with respect to the usual algebraic
framework consists in the fact that the operands of union, Cartesian product and join
must be independent relations. Indeed, the presence of non-independent relations (for
instance stemming from two selections on the same relation or a self join) might induce
dependencies between uncertain values in a same tuple of the result, which cannot be
handled in the model.
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Selection

Let us consider a relation r of schema (A, X) where A is an attribute and X is a set of
attributes, and a selection condition φ on A. Let us denote by scv(t.A) the disjunctive
set of values — which may be a singleton — somewhat certain for attribute A in tuple
μ/t, and by cl(t.A) the associated certainty level. Let us first deal with the case where
φ writes A θ v where θ denotes a comparator and v a constant.

select(r, A θ v) = {μ ′/t | ∃μ/t ∈ r s.t. ∀ai ∈ scv(t.A), ai θ q∧
μ ′ = min(μ , 1) = μ if ∀ai ∈ domain(A), ai θ v;

μ ′ = min(μ , cl(t.A)) otherwise}.
The proof that this definition of the selection satisfies property P2 can be found in [13].
The case of a condition φ of the form A1 θ A2 where A1 and A2 denote two attributes is
dealt with in [13] but is omitted here for space reasons.

Example 6. Let us consider the database D made of the sole relation emp of schema
(#id, name, city, job). Let us suppose that emp only contains tuple t = 0.9/〈17, John,
(Boston, 0.8), (Engineer, 0.7)〉 and let us consider the query:

q = select(emp, city = ’Paris’ and job = ’Engineer’).

Its compact result is 0.7/〈17, John, (Boston, 0.8), (Engineer, 0.7)〉. Let us show that
property P2 is satisfied. Identifier 17 is present in every completely possible world
of the result. The most possible world of emp where 17 is not present in the result
of the selection is made of the tuple 〈17, John, Boston, ε)〉 (where ε ∈ ω
= domain( job)\{Engineer}) and has the possibility degree min(1, 1 − 0.7) = 0.3.
Hence, the certainty degree attached to 17 in the result is 1 – 0.3 = 0.7. The most
possible world where 17 has a city value different from Boston in the result has the
possibility degree 1− 0.8 = 0.2. Hence, the certainty degree attached to the city value
Boston in the tuple identified by 17 in the result is 1− 0.2 = 0.8. The most possible
world where 17 has a job value different from Engineer in the result has the possibility
degree 1−0.7 = 0.3. Hence the certainty degree attached to the job value Engineer in
the tuple identified by 17 in the result is 1− 0.3 = 0.7. The compact calculus is thus
correct. �

Join

The compact definition of the join is:

join(r1, r2, A = B) = {min(α, β , χ , δ )/t1 ⊕ t2 | ∃α/t1 ∈ r1, ∃β/t2 ∈ r2 s.t.

card(scv(t1.A)) = 1∧ card(scv(t2.B)) = 1∧
scv(t1.A) = scv(t2.A)∧ cl(t1.A) = χ ∧ cl(t2.B) = δ}

where ⊕ denotes the concatenation and card returns the cardinality of a set. Notice that
only the tuples whose value for the join attribute is non-disjunctive (i.e., is a singleton)
can participate in the result: for the other ones, one cannot be certain at all that they
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match a tuple from the other relation. Indeed, for a tuple t1 of r whose join attribute value
t1.A is disjunctive, it is always possible to find a completely possible interpretation such
that the (equi-)join condition is false, whatever the tuple t2 from s. Note that property
P2 would not hold in the case of a θ -join where θ is not equality. In [13], it is shown
that the usual equivalence between a semi-join and a join followed by a projection:
r1 � r2 ≡ (r1 �� r2)[X ] where X denotes the attributes of r1, is not valid anymore in the
context of the certainty-based model. However, the semi-join can be defined in a sound
way in this framework, see [13]. The key to the fact that join (and semi-join) can be
easily handled in this model lies in the property that a tuple involving disjunctive values
can produce at most one tuple in the result (due to the semantics of certainty).

Projection

Let r be a relation of schema (X ,Y ). The projection operation is straightforwardly de-
fined as follows:

pro ject(r, X) = {α/t.X |α/t ∈ r∧ � ∃α ′/t ′ s.t. posbs(α ′/t ′.X , α/t.X)}.
The only difference with respect to the definition of the projection in a classical database
context concerns duplicate elimination, which is here based on the concept of “possi-
bilistic subsumption” (using predicate posbs). Intuitively, an X-value of a tuple t is kept
in the result if there is no other tuple t ′ with the same candidate values and a higher
certainty level. More formally, letting X = {A1, . . . , An}, predicate posbs is defined as
follows:

posbs(α ′/t ′.X , α/t.X) ≡∀i ∈ 1..n, scv(t.Ai) = scv(t ′.Ai)∧ cl(t.Ai) ≤ cl(t ′.Ai)∧
α ≤ α ′ ∧ ((∃i ∈ 1..n, cl(t.Ai) < cl(t ′.Ai)) ∨ α < α ′).

The validity of the result before duplicate removal is guaranteed by the satisfaction of
P2. As to the duplicate removal step, its soundness relies on the axioms of possibility
theory. The definitions of the other relational algebraic operators in the certainty-based
model can be found in [15].

4.3 Representation-Based Querying

The main motivation underlying the representation-based querying approach is to be
able to exploit at a query level all the information available concerning the qualification
of imperfectness in the data. In other words, one wants to be able to express condi-
tions on the descriptions of ill-known data. Hereafter, we present a framework that was
introduced in [5]. Representation-based queries can notably be used to:

• express conditions on specified sets of candidates (the specified set being a subset
of a distribution representing an ill-known attribute value). The generic query is:
“find the tuples such that all the elements of a specified subset of the candidate
values (for a given attribute) satisfy a given condition”,

• compute aggregates on the weighted sets corresponding to the representations of
ill-known data (e.g., the cardinality of a specified subset of candidate values for a
given attribute) and to use these aggregates inside conditions,
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• compare a piece of data with a given vague pattern. In the representation-based
querying framework, the comparison is based on the notion of synonymy of rep-
resentations, contrary to the “value-based” framework where the comparison is
founded on the notion of possibility/necessity of matching.

It is important to notice that representation-based queries are not just value-based queries
expressed another way, but that they are queries of a different nature. A value-based
criterion applying to an ill-known value has to be evaluated on each possible world as-
sociated with the attribute value (even though the explicit computation of those worlds
is not always necessary, cf. Section 4.2.1), while a representation-based condition does
not at all refer to worlds.

Example 7. We consider again a database containing aerial images of aircrafts (each
image is supposed to represent a single aircraft), described by the set of attributes:
(#id, location, date, type). The attributes #id, location, and date are supposed to take
precise values whereas the attribute type describing the type of aircraft present in the
picture will generally take imperfect values due to ambiguities in image interpretations.
Examples of conditions involving one representation are:

• find the images which represent more likely a MiG29 than a MiG23,
• find the images such that all the candidates which are possible over 0.3 are of the

type MiG,
• find the images for which at most 2 types of airplane are considered possible over

0.3,
• find the images for which the only best candidate is ’MiG29’,
• find the images representing airplanes whose type is not precisely known (i.e., there

are more than one candidate).�
A language for representation-based conditions is described in [5]. In this framework,
conditions involving two representations deserve a particular attention. Several meth-
ods have been proposed to compare possibility distributions or fuzzy sets and one can
distinguish among two families of approaches. In the first family, a measure is used to
evaluate the possibility degree of (approximate) equality between two imprecise values
[17,18,24]. In the second family, what is measured is the extent to which two representa-
tions are globally close to each other [6,16,23,25]. In the representation-based querying
framework, it is quite clear that only the second family of approach makes sense. Let
us consider an attribute A and two items x and y whose A-values are ill-known. Let
us denote by πA(x) and πA(y) the possibility distributions to be compared. Let D be the
domain of attribute A. First, let us recall the expression of strict equality:

∀d ∈ D, πA(x)(d) = πA(y)(d).

Several authors have proposed to relax the preceding measure into a measure of approx-
imate equality. Raju and Majumdar [25] define the fuzzy equality measure, denoted EQ,
in the following way:

μEQ(πA(x),πA(y)) = minu∈D ψ(πA(x)(u), πA(y)(u))
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where ψ is a resemblance relation (i.e., reflexive and symmetric) over [0, 1]. An al-
ternative approach consists in defining the similarity of two fuzzy sets (two possibility
distributions in our case) A and B as a function of A∩B, B−A and A−B. This ap-
proach is studied in particular by Bouchon-Meunier et al. [16] where different kinds of
measures of comparison are considered.

Example 8. Let us consider the following description of an image I1:

I1 = 〈27, Krasnoyarsk, 1992-12-01,{1/Su27, 1/Su30, 0.7/Mig29, 0.2/Yak130}〉.

Let us consider the query: “find the pictures taken over Krasnoyarsk in 1992 repre-
senting an airplane similar to the one in image I1” and let us assume that the database
contains notably the following description:

I2 = 〈51,Krasnoyarsk, 1992-04-15,{1/Su30, 0.9/Mig29, 0.8/Su27, 0.4/Mig23}〉.

If strict equality were used, it is clear that image I2 would not belong to the result.
Using Raju-Majumdar’s measure of approximate equality with (a, b) = 1−|a−b|, the
matching degree between I1 and I2 is equal to:

EQ(I1.type, I2.type) = min(0.8 (Su27), 1 (Su30), 0.8 (Mig29),
0.8 (Yak130), 0.6 (Mig23)) = 0.6.�

On the other hand, these measures can be used to compare an ill-known attribute value
D with a linguistic label P. The basic idea is the same: one evaluates the extent to
which the value and the linguistic label represent the same concept. For example, let us
consider a possibility distribution D representing John’s age and a linguistic label P =
“middle-aged” (represented by a fuzzy set). While the value-based querying approach
aims at assessing the extent to which John is possibly (resp. necessary) middle-aged,
the representation-based approach can be used to measure the extent to which the de-
scription of John’s age and the linguistic label “middle-aged” are close to each other.
This approach is especially useful in the context of applications where user queries can
be conveniently expressed by means of linguistic terms defined on continuous domains.
Lastly, the concept of representation-based comparison can be used to define the notions
of representation-based intersection, union and difference in a straightforward manner.

5 Conclusion

In this paper, we have reviewed different types of queries that can be addressed to a
database containing imprecise values represented in the possibilistic framework. We
have distinguished three main lines: i) the initial approach proposed by Prade and
Testemale which is intended for building “events” and their associated possibility and
necessity degrees from data, ii) works based on the possible worlds semantics with two
data models: the full possibilistic model where queries are constrained and the certainty-
based model which offers the richness of the entire relational algebra, iii) queries where
the conditions bear on the representation of imprecise data. The focus has been put
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on the semantic aspects, not on implementation and performances due to space limits.
However, most of the operators proposed are very similar to those defined in regular
database systems and reasonable performances can be expected. Among others, future
works could concern queries involving preferences in the spirit of [8,14].
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Abstract. The current definition of complex fuzzy logic has two limitations. 
First, the derivation uses complex fuzzy relations; hence, it assumes the 
existence of complex fuzzy sets. Second, current theory is based on a restricted 
polar representation of complex fuzzy proposition, where only one component 
of a complex fuzzy proposition carries fuzzy information. In this chapter we 
present a novel form of complex fuzzy logic. The new theory, referred to as 
generalized complex fuzzy logic, overcomes the limitations of the current 
theory and provides several advantages. First, the derivation of the new theory 
is based on axiomatic approach and does not assume the existence of complex 
fuzzy sets or complex fuzzy classes. Second, the new form supports Cartesian 
and polar representation of complex logical propositions with two components 
of fuzzy information. Hence, the new form significantly improves the 
expressive power and inference capability of complex fuzzy logic. Finally, the 
new form is compatible with (yet independent of) the definition of complex 
fuzzy classes; thereby providing further improvement in the expressive power 
and inference capability. The chapter surveys the current state of complex fuzzy 
sets, complex fuzzy classes, and complex fuzzy logic; and provides a new and 
generalized complex fuzzy propositional logic theory. The new theory has 
potential for usage in advanced complex fuzzy logic systems and latent for 
extension into multidimensional fuzzy propositional and predicate logic. 
Moreover, it can be used for inference with type 2 (or higher) fuzzy sets. 
Furthermore, the introduction of complex logic can be used for analysis of 
periodic temporal fuzzy processes where the period is fuzzy.  

1 Introduction 

In 1965, L. A. Zadeh has established the theory of fuzzy sets [1]. In fuzzy set theory 
the degree of membership of an item in a set can get any value in the interval [0, 1], 
rather than the two values  ሼב, ሽא ; where higher values denote higher degree of 
membership [1,2]. Fuzzy logic, introduced later, is a multilevel extension of classical 
logic where propositions can get truth values in the interval [0, 1], and are not limited 
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to one of the two values {True, False} (or the equivalent Boolean logic values of {0, 
1}) [3]. The four decades that followed his pioneering work has shown a multitude of 
research work and applications related to, control theory [4], inference [5], data 
mining [6], and reasoning [7,8]. In 1975 Zadeh introduced the concept of linguistic 
variable and the induced concept of type-2 (type-n) fuzzy sets [9]. In recent years, 
type-1 and type-2 along with interval type1/type-2 fuzzy logic and fuzzy systems 
have been applied in many areas including classification [10], fuzzy neural networks 
[11], fuzzy clustering [12], data base management and data mining [13, 14], and 
software testing [11]. 

Ramot et al. propose an extension of fuzzy set theory and fuzzy logic where the 
range of degrees of membership and the range of truth values is the complex unit 
circle [15,16]. The definition of complex fuzzy logic provided by Ramot, however, 
has two constraints. First, the derivation uses complex fuzzy relations thereby 
presumes the existence of complex fuzzy sets. Second, under the formalism proposed 
by Ramot, complex fuzzy membership functions and complex fuzzy propositions are 
represented in polar coordinates where only the absolute value of the complex 
membership function conveys fuzzy information.  

Tamir and Kandel provide further generalization of the concept of complex  
fuzzy membership function and use a Cartesian complex fuzzy membership function 
where both the real part and the imaginary part can be fuzzy functions. Alternatively, 
polar representation where both the absolute value and the phase value of the  
complex membership function convey fuzzy information can be utilized [17]. 
Furthermore, they provide a new interpretation of complex fuzzy grades of 
membership as a representation of a complex fuzzy class along with complex fuzzy 
set / class operations.  

In this chapter we present a new formal definition of complex fuzzy logic referred 
to as generalized complex fuzzy logic. The new theory resolves most of the 
limitations of the current complex fuzzy logic theory. Moreover, it presents several 
advantages. Including: 

• The derivation of the new formalism is based on axiomatic approach that does 
not assume the existence of complex fuzzy sets or complex fuzzy classes. Hence, 
complex fuzzy logic is independent of complex fuzzy classes and vice versa. On 
the other hand, the new formalism, presented here, is compatible with previous 
work. 

• The new theory supports Cartesian as well as polar representation of complex 
logical fuzzy propositions with two components of ambiguous information. 
Hence, this form significantly improves the expressive power and inference 
capability of complex fuzzy logic. 

• The compatibility with the definition of complex fuzzy classes provides for 
further improvement in the expressive power and inference capability.  

The chapter reviews the current state of complex fuzzy sets theory, provides a brief 
overview of complex fuzzy classes, and complex fuzzy logic; and introduces a new 
and generalized complex fuzzy propositional logic theory. The new formalism can be 
used in advanced complex fuzzy logic systems and provides ways for extension into 
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multidimensional fuzzy propositional and first order logic. Furthermore, it can be 
used for inference with type 2 (or higher) fuzzy sets. Finally, the new formalism can 
be used as the basis for new definition of fuzzy temporal logic.  

The rest of the chapter is organized in the following way: section II introduces the 
concepts of complex fuzzy set and complex fuzzy classes [15-18]. Section 3 provides 
the definition of generalized fuzzy complex logic along with interesting examples, 
and section 4 includes conclusions and directions for further research. 

2 Complex Fuzzy Sets and Classes  

This section reviews the basic concepts and operations of complex fuzzy sets and 
complex fuzzy classes [15-17, 19]. 

2.1 Complex Fuzzy Sets 

A complex fuzzy set ܵ on a universe of discourse ܷ is defined by a complex-valued 
grade of membership function ߤௌሺݔሻ [15,16]: ߤௌሺݔሻ ൌ  ሻ݁௝ఠೄሺ௫ሻ (1)ݔௌሺݎ

Where ݆ ൌ √െ1. The function ߤௌሺݔሻ maps ܷ into the unit disc of the complex plane. 
This definition utilizes polar representation of complex numbers along with 
conventional fuzzy set definition; where ݎௌሺݔሻ, the amplitude part of the grade of 
membership, is a fuzzy function defined in the interval [0, 1]. And ߱ௌሺݔሻ is a real 
number, derived from a real function ( ߱ௌሺሻ), standing for the phase part of the grade 
of membership.  

Basic Operations on Complex Fuzzy Sets 

Ramot et al. propose a directional complex (DC) fuzzy complement which is a 
combination of phase rotation and traditional fuzzy complement of the amplitude. 
Suppose that ܵ  is a complex fuzzy set, and its degree of membership is defined by 
the function ߤௌሺݔሻ ൌ ሻሻݔௌሺߤఏሺݐ݋ܴ   :radians is defined as ߠ ሻ݁௝ఠሺ௫ሻ. The rotation of ܵ byݔௌሺݎ ൌ  ሻ݁௝ሺఠೄሺ௫ሻାఏሻ (2)ݔௌሺݎ

The DC fuzzy complement follows the traditional “axioms” of complement and 
induces the following membership function     ܿሺߤௌሺݔሻሻ ൌ ܿሺݎௌሺݔሻሻ݁௝ሺఠೄሺ௫ሻାఏሻ  (3) 

Note that the set of axioms listed in [15,16,19] is actually a set of theorems that can be 
proved using axiomatic fuzzy set theory [7,20-23].   

The union function, ׫, of two complex fuzzy sets ܣ and ܤ returns a complex-
valued grade of membership of the elements in the set ܣ  ׫ ܤ . The membership 
function of ܣ ׫ ሻݔ஻ሺ׫஺ߤ :is defined to be ܤ ൌ ሾݎ஺ሺݔሻ ْ ሻሿݔ஻ሺݎ · ݁௝ఠಲ׫ಳሺ௫ሻ  (4) 
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where ْ represents a t-conorm function of [24]; and
 
߱஺׫஻ሺݔሻ is a real function. 

The definition of intersection of complex fuzzy sets is analogous to the definition 
of the union operation. The intersection function ת, of two complex fuzzy sets A and 
B, returns a complex-valued grade of membership of the element in the set ܣ ת  The .ܤ
membership function of ܣ ת  :is defined to be ܤ

ሻݔ஻ሺת஺ߤ         ൌ ሾݎ஺ሺݔሻ ٖ ሻሿݔ஻ሺݎ · ݁௝ఠಲתಳሺ௫ሻ (5) 

where ٖ  represents a t-norm [24]; and
 
߱஺׫஻ሺݔሻ is a real function. 

Current and Related Research on Complex Fuzzy Sets 

Ramot et al. propose several applications for the concept of fuzzy set, and 
demonstrate the use of the theory for inference about periodic time sequences [15,16]. 
In this sense, the concept can be used for fuzzy temporal reasoning.  Nevertheless, 
they have limited their focus to periodic signals with a fixed period. Hence, only the 
amplitude term of their complex fuzzy membership function is a fuzzy function. The 
generalization provided in this chapter, however, enables dealing with periodic 
processes with fuzzy period.  These types of processes, e.g., the behaviour of the 
stock market, occur in numerous applications of interest. Dick expands the research 
on complex fuzzy sets [19,25-30]. It is interesting to note that the idea of complex 
grade of membership and the utilization of the concept in complex fuzzy sets as well 
as complex fuzzy classes shares common features with complex neural networks 
where the excitation, the outputs, and weights can get complex values [31-35].  It 
should be noted that there is a substantial difference between the definitions of 
complex fuzzy numbers given by J. Buckley [36-40] and the concept of complex 
fuzzy sets or complex fuzzy logic proposed by Ramot et al. [15,16], and generalized 
in this chapter. Buckley is concerned with generalizing number theory; while the 
papers by Ramot as well as the current paper are concerned with the generalization of 
fuzzy set theory and fuzzy logic [15,16]. Complex fuzzy numbers have been utilized 
in several numerical applications [41-43].Yet, the concept of a complex fuzzy number 
is different than the concept of complex fuzzy sets or complex fuzzy classes.   

2.2 New Interpretation of Complex Fuzzy Classes 

Tamir et al. introduced a new interpretation of complex fuzzy membership grade and 
derive the concept of complex fuzzy classes [17,18]. This section introduces the 
concept of a complex fuzzy grade of membership, the interpretation of this concept as 
the denotation of a fuzzy class, and the basic operations on fuzzy classes.  In 
addition, the section outlines coordinate transformations. To distinguish between 
Ramot’s interpretation of complex fuzzy sets and classes and Tamir’s interpretation of 
the same concepts we refer to the later as “pure.” 

Pure Complex Fuzzy Membership Grade  

To distinguish between classes, sets, and elements of a set we use the following 
notation: a class is denoted by an upper case Greek letter, a set is denoted by an upper 
case Latin letter, and a member of a set is denoted by a lower case Latin letter. 
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The Cartesian representation of the complex grade of membership is given in the 
following way: ߤሺܸ, ሻݖ ൌ ௥ሺܸሻߤ ൅  ሻ (6)ݖ௜ሺߤ݆

Where ߤ௥ሺܸሻ and ߤ௜ሺݖሻ, the real and imaginary components of the complex fuzzy 
grade of membership, are real value fuzzy grades of membership.  That is, ߤ௥ሺܸሻ 
and ߤ௜ሺݖሻ can get any value in the interval ሾ0,1ሿ. The polar representation of the 
complex grade of membership is given by: ߤሺܸ, ሻݖ ൌ ሺܸሻ݁௝ఙథሺ௭ሻݎ  (7) 

Where ݎሺܸሻ and  ߶ሺݖሻ, the amplitude and phase components of the complex fuzzy 
grade of membership, are real value fuzzy grades of membership.  That is, they can 
get any value in the interval ሾ0,1ሿ. The scaling factor, ߪ is in the interval ሺ0,2ߨሿ. It is 
used to control the behavior of the phase within the unit circle according to the 
specific application. Typical values of ߪ are ሼ1, గଶ , ,ߨ  ,ሽ. Without loss of generalityߨ2

for the rest of the discussion in this section we assume that ߪ ൌ   .ߨ2
The difference between generalized complex fuzzy grades of membership 

proposed here and the complex fuzzy grade of membership proposed by Ramot et al. 
[15,16], is that both components of the membership grade are fuzzy functions that 
convey information about a fuzzy set. This entails different interpretation of the 
concept as well as a different set of operations and a different set of results obtained 
when these operations are applied to complex grades of membership. This is detailed 
in the following sections. 

Pure Complex Fuzzy Class  

A fuzzy class is a finite or infinite collection of objects and fuzzy sets that can be 
defined in an unambiguous way and complies with class theory [23], the axioms of 
fuzzy sets given by Tamir et al. [7], and the axioms of fuzzy classes given by 
Běhounek, Montagna, Hájek, Cintula, and others [21,22,44-47]. While a general 
fuzzy class can contain individual objects as well as fuzzy sets, a fuzzy class of order 
one can contain only fuzzy sets. In other words, individual objects cannot be members 
of a fuzzy class of order one.  A fuzzy class of order ܯ is a collection of fuzzy 
classes of order ܯ െ 1. We define a Complex Fuzzy Class ߁ to be a fuzzy class of 
order one i.e., a fuzzy set of fuzzy sets. That is, ߁ ൌ ሼ ௜ܸሽ௜ୀଵஶ ; or ߁ ൌ ሼ ௜ܸሽ௜ୀଵ ே  where ௜ܸ is a fuzzy set and ܰ is a finite integer.  Note that despite the fact that we use the 
notation ߁ ൌ ሼ ௜ܸሽ௜ୀଵஶ  we do not imply that the set of sets ሼ ௜ܸሽ is enumerable. The set 
of sets ሼ ௜ܸሽ can be finite, countably infinite, or uncountably infinite. The use of the 
notation ሼ ௜ܸሽ௜ୀଵஶ  is just for convenience. 

The class  ߁  is defined over a universe of discourse ܶ. It is characterized by a 
complex membership function ,௰ሺܸߤ   ሻ that assigns a complex-valued grade ofݖ
membership in ߁ to any element ݖ א ܷ (where ܷ is the universe of discourse). The 
values that ߤ௰ሺܸ,  ሻ can receive lie within the unit square or the unit circle in theݖ
complex plane, and are in one of the following forms:  ߤ௰ሺܸ, ሻݖ ൌ ௥ሺܸሻߤ ൅  ሻ (8a)ݖ௜ሺߤ݆
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,ݖ௰ሺߤ  ܸሻ ൌ ሻݖ௥ሺߤ ൅  ௜ሺܸሻ (8b)ߤ݆

Where ߤ௥ሺߙሻ and ߤ௜ሺߙሻ, are real functions with a range of [0,1].  
Alternatively:  ߤ௰ሺܸ, ሻݖ ൌ ,ݖ௰ሺߤ  ሺܸሻ݁௝ఏథሺ௭ሻ (9a)ݎ ܸሻ ൌ  ሻ݁௝ఏథሺ௏ሻ (9b)ݖሺݎ

Where ݎሺߙሻ and ߶ሺߙሻ, are real functions with a range of [0, 1] and ߠ א ሺ0,2ߨሿ.   
In order to provide a concrete example we define the following fuzzy class. Let the 

universe of discourse be the set of all the stocks that were available for trade on the 
opening of the New York stock exchange (NYSE) market on January 3, 2012 along 
with a set of attributes related to historical price performance of each of these stocks. 
Let ܯ௜ denote the set of NYSE stocks in the portfolio of an NYSE tradable Mutual 
Fund ݅, on the same day. Furthermore consider a function ሺ ଵ݂ሻ  that associates a 
number between 0 and 1 with each subset of stocks, such as the portfolio of each 
NYSE tradable mutual fund. For example, this function might reflect the performance 
of the portfolio in the last quarter. In addition, consider a second function ሺ ଶ݂ሻ that 
associates a number between 0 and 1 with each tradable stock. For example, this 
function might be a normalized value of volatility of this stock. The functions ሺ ଵ݂, ଶ݂ሻ 
can be used to define a fuzzy class of order one. A compound of the two functions in 
the form of a complex number can represent the degree of membership in the fuzzy 
class of “volatile stocks in the portfolio of high performance mutual funds.” 

Formally, let ܷ be a universe of discourse and let 2௎ be the power set of ܷ. Let ଵ݂ be a function from 2௎ to [0, 1] and let ଶ݂ be a function that maps elements of ܷ 
to the interval [0, 1].  For ܸ א 2௎  and ݖ א ܷ define  ߤ௰ሺܸ, ,௰ሺܸߤ :ሻ to beݖ ሻݖ ൌ ௥ሺܸሻߤ  ൅ ሻݖ௜ሺߤ݆ ൌ ଵ݂ሺܸሻ ൅ ݆ ଶ݂ሺݖሻ (10) 

Then,  ߤ௰ሺܸ, ܸ ሻ defines a fuzzy class of order one, where for everyݖ א 2௎, and for 
every ݖ א ,௰ሺܸߤ   ,ܷ  can be represented as the set of ordered ߁ Hence, a complex fuzzy class  .߁ in ܸ and the degree of membership of  ܸ in ݖ ሻ; is the degree of membership ofݖ
triples: ߁ ൌ ሼܸ, ,ݖ ,௰ሺܸߤ ܸ|ሻݖ א 2௎, ݖ א ܷሽ (11) 

Depending on the form of  ߤ௰ሺߙሻ (Cartesian or polar), ߤ௥ሺߙሻ, ì௜ሺߙሻ, ݎሺߙሻ, and ߶ሺߙሻ denote the degree of membership of ݖ in ܸ and / or the degree of membership 
of ܸ in ߁. Without loss of generality, however, we assume that ߤ௥ሺߙሻ and ݎሺߙሻ 
denote the degree of membership of ܸ  in ߁  for the Cartesian and the polar 
representations respectively. In addition, we assume that ߤ௜ሺߙሻ and ߶ሺߙሻ denote the 
degree of membership of ݖ in ܸ for the Cartesian and the polar representations 
respectively. Throughout this chapter, the term "complex fuzzy class" refers to a fuzzy 
class with complex-valued membership function, while the term "fuzzy class" refers to 
a traditional fuzzy class such as the one defined by Běhounek [22]. 
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Coordinate Transformations 

Changing the coordinate system from Cartesian to polar and vice versa according to 
the classical transformation, is straightforward. Nevertheless, due to the nonlinear 
nature of the transformation it might produce a completely different and often 
meaningless class. Moreover, depending on the value of ߠ, a scaling may be required. 
On the other hand, as shown in the next paragraph, it is very simple to define a set of 
transformations that maintains the same semantics.  

Cartesian to polar coordinate transformation: ߤ௰ሺܸ, ሻݖ ൌ  ௥ܶሺߤ௥ሺܸሻ ൅ ሻሻݖ௜ሺߤ ൌ  ௥ሺܸሻ݁௝ఏథሺ௫ሻ (12)ߤ

 

Polar to Cartesian Coordinate Transformation: ߤ௰ሺܸ, ሻݔ ൌ  ௥ܶሺݎሺܸሻ݁௝ఏథሺ௫ሻሻ ൌ ሺܸሻݎ ൅  ሻ (13)ݔሺ߶ߠ݆

Where ௥ܶሺߙሻ denotes the coordinate transformation function. Note that this definition 
assumes that:  ߤ௥ሺܸሻ and ݎሺܸሻ denote the degree of membership of ܸ in ߁ and 
that ߤ௜ሺݖሻ and ߶ሺݖሻ denote the degree of membership of ݖ in ܸ.  

Figure 1 illustrates the dual Cartesian representations of complex fuzzy classes. 
Each stripe that is parallel to the ܻ axis in the left image represents a fuzzy set. The ݔ 
coordinate of each pixel in the left image represent the degree of membership of the 
fuzzy set that contains this pixel in the complex fuzzy class, and the gray level of the 
pixel (normalized to (0,1)) represents the value ߤ௜ሺݖሻ ; that is, the degree of 
membership of the pixel in the fuzzy set that contains this pixel. In the right image, 
the role of the ܺ axis and the ܻ axis is interchanged. 

 

 

Fig. 1. An illustration of the Cartesian representation of complex fuzzy classes 

Figure 2 shows the two polar coordinate system based representation inter-
pretations. Assuming that ߪ  ൌ ߨ2 . Each ring around the origin in the left image 
represents a fuzzy set; for each pixel in that image, the distance of the pixel from the 
origin represents the degree of membership of the fuzzy set that contains this pixel, in 
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the complex fuzzy class; and the normalized gray level of the pixel represents the 
value  ߶ሺݖሻ; that is, the degree of membership of the pixel in the fuzzy set that 
contains this pixel.   

In the right image, the role of the radius ݎ  and the angle ߠ  is interchanged. 
Several additional linear transformations that maintain the same class semantics can 
be considered. Without loss of generality, the class operations given in the next 
sections use only the Cartesian form. 

Degree of Membership of Order ࡺ 

The traditional fuzzy grade of membership is a real number that defines a fuzzy set. It 
can be considered as degree of membership of order 1. The complex degree of 
membership defined in this chapter is a complex number that defines a fuzzy class. 
That is, a fuzzy set of fuzzy sets. This degree of membership can be considered as 
degree of membership of order 2 and the class defined can be considered as a fuzzy 
class of order 1. Additionally, one can consider the definition of a fuzzy set (a class of 
order 0) as a mapping into a one dimensional space and the definition of a fuzzy class 
(a class of order 1) as a mapping into a two dimensional space. Hence, it is possible to 
consider a degree of membership of order ܰ  as well as a mapping into an ܰ -
dimensional space. The following is a recursive definition of a fuzzy class of order ܰ. 
Note that part 2 of the definition is not really necessary; it is given in order to connect 
the terms complex fuzzy grade of membership and the term grade of membership of 
order 2.  

 

 

Fig. 2. An illustration of the polar representation of complex fuzzy classes 

Definition: 

1) A fuzzy class of order 0 is a fuzzy set; it is characterized by a degree of 
membership of order 1 and a mapping into a one dimensional space. 

2) A fuzzy class of order 1 is a fuzzy class; that is, set of fuzzy sets. It is 
characterized by a complex degree of membership. Alternatively, it can be 
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characterized by a degree of membership of order two and a mapping into a two 
dimensional space. 

3) A fuzzy class of order ܰ  is a fuzzy set of fuzzy classes of order  ܰ-1; it is 
characterized by a degree of membership of order ܰ ൅ 1 and a mapping into an ሺܰ ൅ 1ሻ-dimensional space. 

Operations on Pure Complex Fuzzy Classes 

This section defines the three basic operations on complex fuzzy classes; 
complement, union, and intersection. The definitions are provided in terms of 
operations on grades of membership and the implication of these operations on the 
underlying complex fuzzy classes. Note that the definitions utilize the Cartesian form. 
This is general enough due to the fact that one can change the role of the real and 
imaginary parts and / or perform coordinate transform without changing the semantics 
of complex fuzzy grade of membership. 

The Complement of a Pure Complex Fuzzy Class  

Let ߁ ൌ ሼܸ, ,ݖ ,௰ሺܸߤ ܸ|ሻݖ א 2௎, ݖ א ܷሽ  be the class defined by:  ߤ௰ሺܸ, ሻݖ ൌ ߤ௥ሺܸሻ ൅ ሻݖ௜ሺߤ݆ , where ߤ௥ሺߙሻ,  and ߤ௜ሺߙሻ  stand for the real and imaginary parts 
of ,௰ሺܸߤ  ሻݖ . The complement operation ሺܿሺߙሻሻ  on ߁   is defined via complement 
operations on ߤ௰ሺߙሻ and denoted as ܿሺߙሻ.  ܿ ሺߤ௰ሺܸ, ሻሻݖ ൌ ܿሺߤ௥ሺܸሻሻ ൅ ݆ܿሺߤ௜ሺݖሻሻ (14) 

That is, the complement function operates on the sets that comprise the class ߁ as 
well as on the individual members of each of these sets. It changes the degree of 
membership of each set ܸ in ߁ and each element ݖ in the set ܸ. There are several 
ways to define the operation ሺܿሺߙሻሻ. A simple and straightforward way would be to 
use the classical fuzzy definition. That is ܿሺߤ௫ሺݕሻሻ ൌ 1 െ ሻݕ௫ሺߤ   ; where ݔ  is 
either ݎ (real part) or ݅ (imaginary part) and ݕ is either ܸ or ݖ. 

Pure Complex Fuzzy Class Union Operation 

Consider the two complex fuzzy classes: 

߁  .1 ൌ ሼܸ, ,ݖ ,௰ሺܸߤ ܸ|ሻݖ א 2௎, ݖ א ܷሽ 
ߖ  .2 ൌ ሼܶ, ,ݖ ,అሺܶߤ ܶ|ሻݖ א 2௎, ݖ א ܷሽ    

Where ܸ and ܶ are fuzzy sets. Assume that ߁ and ߖ are defined over a universe of 
discourse ܷ and let 2U denote the power set of ܷ.  Further assume that the degree of 
membership of an object ݖ  א ܸ , and an object ݕ   א ܶ  is given by:  ߤ௰ሺܸ, ሻݖ ൌ ߤ௰௥ሺܸሻ ൅ ሻݖ௰௜ሺߤ݆ ,ஏሺܶߤ ; ሻݕ ൌ అ௥ሺܶሻߤ  ൅ ሻݕఅ௜ሺߤ݆  respectively, where ߤ௰௥ሺߙሻ, ,ሻߙఅ௥ሺߤ ,ሻߙ௰௜ሺߤ  and ߤఅ௜ሺߙሻ  stand for the real and imaginary parts of  ߤ௰ሺܸ, ,ஏሺܶߤ ሻ andݖ ܹ ሻ. Finally, letݕ א  2U, and let ْ denote a t-conorm operation. 
The union function ߁ ׫ ,అሺܹ׫௰ߤ  :is defined to be ߖ ሻݖ ൌ ቀߤ௰௥ሺܸሻ ْ అ௥ሺܶሻሻߤ ൅ ݆൫ߤ௰௜ሺݖሻ ْ  ሻ൯ቁ (15)ݖఅ௜ሺߤ
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Pure Complex Fuzzy Class Intersection Operation 

The discussion on complex fuzzy intersection is analogous to the discussion on union. 
Consider be two complex fuzzy classes: 

߁  .1 ൌ ሼܸ, ,ݖ ,௰ሺܸߤ ܸ|ሻݖ א 2௎, ݖ א ܷሽ 
ߖ  .2 ൌ ሼܶ, ,ݖ ,అሺܶߤ ܶ|ሻݖ א 2௎, ݖ א ܷሽ    

Where ܸ and ܶ are fuzzy sets. Assume that ߁ and ߖ are defined over a universe of 
discourse ܷ and let 2U denote the power set of ܷ.  Further assume that the degree  
of membership of an object ݖ א ܸ , and an object  ݕ א ܶ  is given by:  ߤ௰ሺܸ, ሻݖ ൌ ߤ௰௥ሺܸሻ ൅ ሻݖ௰௜ሺߤ݆  and  ߤஏሺܶ, ሻݕ ൌ అ௥ሺܶሻߤ  ൅ ሻݕఅ௜ሺߤ݆  respectively, where ߤ௰௥ሺߙሻ, ,ሻߙఅ௥ሺߤ ,ሻߙ௰௜ሺߤ  and ߤఅ௜ሺߙሻ  stand for the real and imaginary parts of  ߤ௰ሺܸ, ,ஏሺܶߤ ሻ andݖ ܹ ሻ. Finally, letݕ א  2U, and let ۨ denote a t-norm operation. 
The intersection function ߁ ת ,అሺܹת௰ߤ :is defined as ߖ ሻݖ ൌ  ቀߤ௰௥ሺܸሻۨߤఅ௥ሺܶሻ ൅ ݆൫ߤ௰௜ሺݖሻۨߤఅ௜ሺݖሻ൯ቁ  (16) 

3 Generalized Complex Propositional Fuzzy Logic 

There are several ways to define fuzzy logic, fuzzy inference, and fuzzy logic system 
(FLS). One of these ways is to use fuzzy set theory to define fuzzy relations, and then 
define logical operations, such as implication and negation, as well as inference rules, 
as special types of relations on fuzzy sets. Alternatively, fuzzy logic can be formalized 
as a direct generalization of classical logic. Under this “traditional” approach, notions 
that relate to the syntax and semantics of classical logic, such as propositions, 
interpretation, and inference are used to define fuzzy logic. Although the relations 
based definition can be carefully formalized it is generally less rigorous than the 
traditional approach. 

Ramot et al. use the first approach [16]. They use the definition of complex fuzzy 
relations to define complex fuzzy logic via the definition of logical operations. In the 
current paper, however, we use the traditional approach. This section provides the 
definition of generalized complex propositional fuzzy logic using direct generalization 
of fuzzy logic. 

A fuzzy proposition ܲ can get any truth value in the real interval [0, 1]. The 
intuitive interpretation of truth values in the range [0, 1], referred to in this chapter as 
fuzzy truth values, is that Ԣ0Ԣ denotes “False,” and Ԣ1ᇱ denotes “True”. Furthermore, 
the relations  ൑ , over the set of real numbers in the interval ሾ0, 1ሿ  implies a 
monotonically increasing ordering on the truth values associated with every ݔ, ݕ ,ሾ0א 1ሿ. Formally a fuzzy interpretation of a proposition ܲ is an assignment of fuzzy 
truth value to ܲ.  

A linguistic variable is a variable whose domain of values is formal or natural 
language words [9]. Generally, a linguistic variable is related to a fuzzy set such as: ሼ݃݊ݑ݋ݕ ݕݎ݁ݒ ݈݉ܽ݁, ,݈݁ܽ݉ ݃݊ݑ݋ݕ ,݈݁ܽ݉ ݈݀݋  ሽ and can get any value݈݁ܽ݉ ݈݀݋ ݕݎ݁ݒ
from the set. A linguistic constant has a fixed and unmodified linguistic value i.e., a 
single word or phrase from formal or natural language. 
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One form of a fuzzy proposition is: “ݔ … ܣ  …;” where ܣ is a linguistic variable 
such as “young male”, or “tall person”, and ‘…’ denote natural language constants 
such as “Moses”, “is a,” “portfolio,” “mutual fund” etc.   

For example, under one interpretation, the fuzzy truth value associated with the 
fuzzy proposition: ܲ ൌ “Moses is a ݃݊ݑ݋ݕ ݈݉ܽ݁”  can be 0.3, and under another 
interpretation, the fuzzy truth value associated with the proposition ܲ can be 0.9. In 
this case, the linguistic variable is “young ݈݉ܽ݁”, and it is distinguished from the 
Fuzzy constants “Moses,” and “is” by its Italics font. Set theory and fuzzy logic can 
be connected through fuzzy membership functions. For example, let ܣ denote the 
fuzzy set of young males, and let ஺݂ be a specific fuzzy membership function of ܣ, 
then ஺݂ can be used as the basis for interpretations of ܲ. 

Following the definition of propositions (syntax) and interpretation (semantics), 
one may want to define the syntax and semantics of fuzzy logical operations 
(connectives).  Table 1 includes a specific definition of connectives along with their 
interpretation. In this table ܲ, ܳ, and ܴ denote fuzzy propositions and ݂ሺܴሻ denotes 
the fuzzy interpretation of ܴ. We use the fuzzy Łukasiewicz logical system as the 
basis for the definitions [22]. Hence, the max t-norm is used for conjunction and the 
min t-conorm is used for disjunction.  Nevertheless, other logical systems such as 
Gödel fuzzy systems can be used [47].  

Table 1. Basic Propositional Fuzzy Logic Connectives 

Operation Interpretation 
Negation ݂ሺԢܲሻ ൌ 1 െ ݂ሺܲሻ
Implication ݂ሺܲ ื ܳሻ ൌ min ሺ1,1 െ ݂ሺܲሻ ൅ ݂ሺܳሻሻ
Conjunction ݂ሺܲ ٔ ܳሻ ൌ min ሺ݂ሺܲሻ, ݂ሺܳሻ) 
Disjunction  ݂ሺܲ ْ ܳሻ ൌ max ሺ݂ሺܲሻ, ݂ሺܳሻ) 

 
We assume the following set of axioms [22, 47]: 

A1:  (P → Q) → ((Q → R) → (P → R))  
A2:  (P ٔ Q) → P  
A3:  (P ٔ Q) → (Q ٔ P)  
A4:  (P ٔ (P → Q)) → (Q ٔ (Q → P))  
A5a:  (P → (Q → R)) → ((P ٔ Q) → R)  
A5b:  ((P ٔ Q) → R) → (P → (Q → R))  
A6:  ((P → Q) → R) → (((Q → P) → R) → R)  
A7:  0 → P 

In order to completely specify propositional fuzzy complex logic, it is enough to 
specify a universal set of operators along with a rule of inference. A commonly used 
inference rule is Modus ponens defined as: ܣ ר ሺܣ ื ሻܤ ื  (17) ܤ

That is, using degree of confidence as a synonym for fuzzy logical truth value, and 
given the propositions and the interpretations provided above we can infer ܤ  from ܣ and ሺܣ ื  ሻ with the implied fuzzy degree of confidence; calculated using tableܤ



188 D.E. Tamir, M. Last, and A. Kandel 

 

1. In the next section, we define generalized complex fuzzy logic using generalized 
complex fuzzy connectives and generalized complex fuzzy Modus ponens [22, 47]. 

Generalized Complex Fuzzy Logic 

A general form of a complex fuzzy proposition is: “ݔ … ܣ  … ܤ …” where ܣ and ܤ 
are values assigned to linguistic variables and ‘…’ denotes natural language constants. 
A complex fuzzy proposition ܲ can get any pair of truth values from the Cartesian 
interval ሾ0, 1ሿ ൈ ሾ0, 1ሿ  or the unit circle. Formally a fuzzy interpretation of a 
complex fuzzy proposition ܲ is an assignment of fuzzy truth value of the form ݌௥ ൅݆݌௜ , or of the form ݎሺ݌ሻ݁௝ఏሺ௣ሻ, to ܲ. In this case, assuming a proposition of the form 
ݔ“ … ܣ  … ܤ …,” then ݌௥ (ݎሺ݌)) is assigned to the term ܣ and ݌௜  is assigned ((݌ሺߠ) 
to term ܤ. 

For example, under one interpretation, the complex fuzzy truth value associated 
with the complex fuzzy proposition: "x is a ݇ܿ݋ݐݏ ݈݁݅ݐ݈ܽ݋ݒ in a ݋݈݅݋݂ݐݎ݋݌ ݃݊݋ݎݐݏ, " 
can be  0.1 ൅ ݆0.5. Alternatively, in another context, the same proposition can be 
interpreted as having the complex truth value 0.3݁௝଴.ଶ. As in the case of traditional 
propositional fuzzy logic we use the tight relation between complex fuzzy classes / 
complex fuzzy membership to determine the interpretation of connectives. For 
example, let ܥ denote the complex fuzzy set of volatile stocks in a strong portfolio, 
and let ஼݂ ൌ ܿ௥ ൅ ݆ܿ௜, be a specific fuzzy membership function of ܥ, then ஼݂ can be 
used as the basis for interoperations of ܲ. Next we define several connectives along 
with their interpretation. 

Table 2 includes a specific definition of connectives along with their interpretation. 
In this table ࡽ ,ࡼ, and ࡿ denote complex fuzzy propositions and ࢌሺࡿሻ denotes the 
complex fuzzy interpretation of ࡿ. We use the fuzzy Łukasiewicz logical system as 
the basis for the definitions [22,47]. Hence, the max t-norm is used for conjunction 
and the min t-conorm is used for disjunction.  Nevertheless, other logical systems 
such as Gödel fuzzy systems can be used [22,47] .  

Table 2. Basic Complex Propositional Fuzzy Logic Connectives 

Operation Interpretation 
Negation ݂ሺԢܲሻ ൌ 1 ൅ ݆1 െ ݂ሺܲሻ
Implication ݂ሺܲ ื ܳሻ ൌ min ሺ1,1 െ ௥݌ ൅ ݆+௥ሻݍ ൈ min ሺ1,1 െ ௜݌ ൅  ௜ሻݍ
Conjunction ݂ሺܲ ٔ ܳሻ ൌ min ሺ݌௥, ݆+௥ሻݍ ൈ min ሺ݌௜,  ௜ሻݍ
Disjunction ݂ሺܲ ْ ܳሻ ൌ max ሺ݌௥, ݆+௥ሻݍ ൈ maxሺ݌௜,  ௜ሻݍ
 
The same axioms used for fuzzy logic are used for complex fuzzy logic, and 

Modus ponens is the rule of inference. 

Complex Fuzzy Propositions and Connectives Examples 

Consider the following propositionsሺܲ and ܳ respectively): 

1) ԢԢx is a ݇ܿ݋ݐݏ ݈݁݅ݐ݈ܽ݋ݒ in a ݋݈݅݋݂ݐݎ݋݌ ݃݊݋ݎݐݏ. ԢԢ  
2) ԢԢx is a stock in a ݈݀݁ܿ݅݊݁ ݀݊݁ݎݐ in a ݋݈݅݋݂ݐݎ݋݌ ݃݊݋ݎݐݏ. ԢԢ  
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Hence, ܲ is of the form: "x is a ܣ in a ܤ, "and ܳ is of the form"x is a stock ܥ in  ܤ . " 
In this case, ԢԢ݇ܿ݋ݐݏ ݈݁݅ݐ݈ܽ݋ݒ, ԢԢ  ԢԢܽ ݋݈݅݋݂ݐݎ݋݌ ݃݊݋ݎݐݏ, ԢԢ and ԢԢܽ ݈݀݁ܿ݅݊݁ ݀݊݁ݎݐԢԢ  
are values assigned to the linguistic variables { ,ܣ ,ܤ ሽܥ . Assume that the  
complex fuzzy interpretation (i.e., degree of confidence or complex fuzzy truth  
value) of ܲ  is ௥݌  ൅ ௜݌݆ , while the complex fuzzy interpretation of ܳ  is  ݍ௥ ൅ ௜݌݆ ௜ݍ)  ൌ ோ݌ ᇱᇱ is,݇ܿ݋ݐݏ ݈݁݅ݐ݈ܽ݋ݒ ܽ ݏ݅ ݔ௜). Thus, the truth value of  ԢԢ݌ , the truth 
value of  ԢԢ݋݈݅݋݂ݐݎ݋݌ ݃݊݋ݎݐݏ ܽ ݊݅ ݏ݅ ݔ,ᇱᇱ  is ௜݌  , and the truth value of  ԢԢ݀݊݁ݎݐ ݈݁݊݅ܿ݁݀ ܽ ݊݅ ݏ݅ ݔ,ᇱᇱ  is ݍ௥.  Suppose that the term  ԢԢ݊݊݋ െ volatileԢԢ  stands 
for  ԢԢ݈݊݁݅ݐ݈ܽ݋ݒ ݐ݋, ԢԢ the term ԢԢ݇ܽ݁ݓԢԢ  stands for ݊ᇱᇱ ,݃݊݋ݎݐݏ ݐ݋ ԢԢ  and the 
term ԢԢ݃݊݅ݏ݅ݎԢԢ  stands for  ԢԢ݊ݐ݋ ݈݀݁ܿ݅݊݅݊݃. ԢԢ Note that this is not the only way to 
define these linguistic terms and it is used to exemplify the expressive power and the 
inference power of the logic. Then, the complex fuzzy interpretation of the following 
composite propositions is: 

1) ݂ሺԢܲሻ ൌ ሺ1 െ ௥ሻ݌ ൅ ݆ሺ1 െ  ூሻ݌

That is, Ԣܲ  denotes the proposition ԢԢx is a non െ volatile stock in a weak  portfolio. ԢԢ  The confidence level in Ԣܲ  is  ሺ1 െ ௥ሻ݌ ൅ ݆ሺ1 െ ௜ሻ݌ ; where the fuzzy 
truth value of the term  ԢԢx is a non െ volatile stock, ԢԢ  is ሺ1 െ ௥ሻ݌  and the fuzzy 
truth value of the term ԢԢweak portfolio, ԢԢ is  ሺ1 െ  ௜ሻ݌

2) Ԣܲ ื Ԣܳ ൌ min ሺ1, ௥ݍ െ ݆+(௥݌ ൈ minሺ1, ௜ݍ െ  ூሻ݌

Thus,  ሺԢܲ ืᇱ ܳሻ denotes the proposition ԢԢIF x is a ݊݊݋ െ ,݋݂݅ݐݎ݋݌ ݇ܽ݁ݓ  in a ݇ܿ݋ݐݏ ݈݁݅ݐ݈ܽ݋ݒ THEN x is a stock in a ݀݊݁ݎݐ ݃݊݅ݏ݅ݎ in a ݋݈݅݋݂ݐݎ݋݌ ݃݊݋ݎݐݏ. ԢԢ  The 
truth values of individual terms, as well as the truth value of  Ԣܲ ื Ԣܳ are calculated 
according to table 2. 

3) ݂ሺԢܲ ٔ ܳሻ ൌ min ሺ1 െ ,௥݌ ݆+௥ሻݍ ൈ min ሺ1 െ ,௜݌  .௜ሻݍ

That is,  ሺԢܲ ٔ ܳሻ  denotes the proposition ԢԢx is a volatile stock in a  ݋݈݅݋݂ݐݎ݋݌ ݃݊݋ݎݐݏԢԢ AND ԢԢ x is a stock in a ݃݊݅ݏ݅ݎ .݋݈݅݋݂ݐݎ݋݌ ݃݊݋ݎݐݏ in a ݀݊݁ݎݐ  ԢԢ 
The truth values of individual terms, as well as the truth value of Ԣܲ ٔ ܳ  are 
calculated according to table 2. 

4) ݂ሺܲ ْ Ԣܳሻ ൌ max ሺ݌௥, 1 െ ݆+௥ሻݍ ൈ max ሺ݌௜, 1 െ  .௜ሻݍ

That is,  ሺܲ ْᇱ ܳሻ  denotes the proposition ԢԢx is a volatile stock in a  strong ݋݈݅݋݂ݐݎ݋݌ԢԢ OR ԢԢ x is a stock in a ݀݊݁ݎݐ  ݃݊݅ݏ݅ݎ in a ݋݈݅݋݂ݐݎ݋݌ ݇݁ݓ. ԢԢ The 
truth values of individual terms, as well as the truth value of  ܲ ْ Ԣܳ are calculated 
according to table 2. 

Complex Fuzzy Inference Example 

Assume that the degree of confidence in the proposition ܴ ൌ Ԣܲ defined above is ݎ௥ ൅ ܵ ௜, letݎ݆ ൌ Ԣܳ and assume that the degree of confidence in the fuzzy implication  ܶ ൌ ܴ ื ܵ is ݐ௥ ൅ ܴ ܴ :௜. Then, using Modus ponensݐ݆ ื ܵ   
S 
one can infer S with a degree of confidence minሺݎ௥, ௥ሻݐ ൅ ݆ ൈ minሺݎ௜,   .௜ሻݐ
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In other words using:  ԢԢx is a non െ in ݇ܿ݋ݐݏ ݈݁݅ݐ݈ܽ݋ݒ a ݇ܽ݁ݓ .݋݈݅݋݂ݐݎ݋݌ ԢԢ
IF ԢԢx is a non volatile stock in a ݇ܽ݁ݓ ,݋݈݅݋݂ݐݎ݋݌ ԢԢ THEN ԢԢx is a stock in a ݀݊݁ݎݐ ݃݊݅ݏ݅ݎ in a ݃݊݋ݎݐݏ .݋݈݅݋݂ݐݎ݋݌ ԢԢ"x is a stock in a ݀݊݁ݎݐ ݃݊݅ݏ݅ݎ in a ݃݊݋ݎݐݏ "݋݈݅݋݂ݐݎ݋݌

we can infer  "x is a stock in a ݀݊݁ݎݐ ݃݊݅ݏ݅ݎ  in a ݋݈݅݋݂ݐݎ݋݌ ݃݊݋ݎݐݏ" with a degree 
of confidence minሺݎ௥, ௥ሻݐ ൅ ݆ ൈ minሺݎ௜,   .௜ሻݐ
4 Conclusions and Directions for Further Research 

A new and innovative formal definition of complex fuzzy logic, referred to as 
generalized complex fuzzy logic, is presented in this chapter. The new form 
significantly improves the expressive power and inference capability of complex 
fuzzy logic. In the future, we plan to extend the theory to multidimensional fuzzy 
propositional and predicate logic; explore the utility of the theory for fuzzy temporal 
logic; and further explore its potential for usage in advanced complex fuzzy logic 
systems as well as inference with type 2 (or higher) fuzzy sets.  
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Abstract. We adopt the interpretation of fuzzy set as coherent conditional prob-
ability, and we study coherent enlargement of a probability distribution (on a
random variable) and of a membership function on “fuzzy conditional events”.
We consider a family of fuzzy sets closed with respect to the union and the inter-
section, whose membership functions are ruled by Frank t-norms and t-conorms.
We study the concept of degree of fuzzy inclusion by focusing in particular on in-
clusion of degree 1, which can be regarded as a default rule. We get also a default
logic with the relevant inference rules.

1 Introduction

We refer to the interpretation of a fuzzy set E∗
ϕ as a pair (Eϕ, μϕ(x)) with μϕ(x) =

P (Eϕ|X = x), where X is a variable with range CX , ϕ any property related to X,
Eϕ the event “You claim that X has the property ϕ” and P a coherent conditional
probability (see Section 3, for details, see, e.g., [5–7]).

In this context it has been proved in [5] that, under the hypothesis of logical inde-
pendence between Eϕ and Eψ , the membership functions μϕ∨ψ and μϕ∧ψ of the fuzzy
sets E∗

ϕ ∪ E∗
ψ and E∗

ϕ ∩ E∗
ψ can be coherently computed as extensions of the coherent

conditional probabilities μψ and μϕ related to a t-conorm and a t-norm of the Frank
class. In this context logical independence is not a very strong condition: for instance
Eϕ and E¬ϕ (which differs from ¬Eϕ) are logical independent, in fact You can claim
both X is ϕ and X is ¬ϕ or claim only one of them or none.

Starting from a family of fuzzy sets C = {E∗
ϕi
} related to a variable X , with Eϕi

logical independent, let us consider the class < C > obtained as closure of C with re-
spect to the union and intersection of fuzzy sets ruled by a Frank t-norm and t-conorms.
Our main aim is to study, given C and a probability distribution on X , coherent condi-
tional probability on the “conditional fuzzy events” A|B, where A and B are the events
related to the elements of < C >. The possibility of defining this conditional probability
assessment in the class of interest is assured by coherence.

In this paper we study the concept of “degree of inclusion” (introduced in [23]) as a
fuzzy relation on the family < C > of fuzzy subsets E∗

π of CX , which should measure
“how much” a given element of < C > is contained into another element of < C >.

In particular, considering a set D of (ordered) pairs (E∗
ϕ, E∗

ψ) of fuzzy sets in < C >
with degree of inclusion (of E∗

ϕ in E∗
ψ) equal to 1, we show that D can be seen as a

“generalized” set of default rules.

R.R. Yager et al. (Eds.): Soft Computing: State of the Art Theory, STUDFUZZ 291, pp. 193–208.
DOI: 10.1007/978-3-642-34922-5 14 c© Springer-Verlag Berlin Heidelberg 2013



194 G. Coletti, R. Scozzafava, and B. Vantaggi

Moreover, we get also the corresponding inference rules of default logic (as given,
for example, by D. Lehmann and M. Magidor [17]).

2 Preliminaries

We first recall the basic concepts of coherent conditional probability theory necessary
to give a rigorous formulation of our interpretation of fuzzy sets, fuzzy event and fuzzy
inclusion.

2.1 Coherent Conditional Probability

The approach to probability adopted here is based on coherence (a notion that goes
back to de Finetti [10]). The starting point is conditional probability as a function of
two variable ruled by a set of axioms.

Definition 1. Let E = B×H, with B a Boolean algebra andH ⊆ B an additive set (i.e.,
closed with respect to finite logical sums), not containing ∅. A function P : E → [0, 1]
is a conditional probability if the following conditions hold:

(C1) P (H |H) = 1, for every H ∈ H ,
(C2) for any H ∈ H the function P (·|H) is a (finitely additive) probability on B ,
(C3) for every A ∈ B, E ∧ H ∈ H,

P (E ∧ A|H) = P (E|H)P (A|E ∧ H).

We recall an easy consequence of the above axioms, i.e. the disintegration formula for
the probability of an event E|H with respect to a partition of an event H

P (E|H) =
N∑

k=1

P (Hk|H)P (E|Hk) (1)

Actually, when P0(·) = P (·|Ω) is strictly positive on H, any conditional probability
can be derived as a ratio by means of this unique “unconditional” probability P0; while
otherwise (when P0 is not strictly positive on H) to get a similar representation we
need to resort to a sequence of unconditional probabilities (see [5, 2, 3]), each of them
defined where the previous one is equal to zero.

The above definition of (conditional) probability is strictly based on the Boolean
structure of the domains. Actually, in real problems, the logical conditions on the do-
main can be unrealistic: in fact, the expert (or decision maker) usually has information
and interest only on a “bunch” of (conditional) events.

The concept of coherence, introduced by de Finetti [10] in probability theory, has
the fundamental role to manage partial assessments of an uncertainty measure and its
enlargements. In other words, coherence is a tool to check whether a function defined
on an arbitrary set of (conditional) events is consistent with a probability and to make
inference in the general sense, that is to extend this function to new conditional events.
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Definition 2. Given an arbitrary set F = {Ei|Hi} of conditional events, a real func-
tion P on F is a coherent assessment if there exists a conditional probability P ′(·|·)
extending P on E = B×H, with B the Boolean algebra spanned by the events {Ei, Hi}
and H the additive set spanned by the events {Hi}.

In the literature many characterizations of a coherent conditional probability assessment
are present, we recall here one of them (see [5]), that is given in terms of solutions of
finite sequences of linear systems for every finite subset of the assessment (slightly
different versions are given in [2, 3, 15]). This condition is based on the notion of
atoms generated by a finite subset of conditional events. Given a family of conditional
events E1|H1, ..., En|Hn the relevant atoms are all the possible events obtained by the
following conjunctions E∗

1 ∧H∗
1 ∧ ... ∧ E∗

n ∧ H∗
n where E∗

i (similarly for H∗
i ) stands

for either Ei or ¬Ei.

Theorem 1. Let C be an arbitrary family of conditional events andF any finite subfam-
ily. Denote by AF

o the set of the relevant atoms Ar generated by F . For a real function
P on C the following three statements are equivalent:

a) P is a coherent conditional probability on C;
b) for every finite subfamily

F = {Ej1 |Hj1 , . . . , Ejn |Hjn} ⊆ C
there exists a probability distribution P ′ defined in AF

o such that for every Eji |Hji ∈
F , P (Eji |Hji) is solution of the equation

x · P ′(Hji) = P ′(Eji ∧ Hji),

and the solution is unique for at least one element of F .
c) for every finite subfamily F ⊆ C, there exists a solution of the following systems S

with unknowns xr = P0(Ar), Ar ∈ AF
o ,⎧⎪⎪⎨

⎪⎪⎩
∑

Ar⊆Eji
∧Hji

xr = P (Eji |Hji)
∑

Ar⊆Hji

xr

[
for all Eji |Hji ∈ F] ,

∑
Ar⊆Ho

xr = 1

where Ho =
∨

Ei|Hi∈F Hi .

The above result states that coherence for an infinite set of conditional events can be
reduced to check the coherence on any finite subset. In the finite case, the above result
can be reformulated [2] (see also [5, 3]) in a way to avoid to check the coherence in any
subset. In fact, the following result (in particular condition (c)) gives an operative tool
to check coherence by solving a sequence of linear systems where the unknowns are
probabilities of atoms. This result provides a procedure to prove coherence in a finite
set of conditional events:

Theorem 2. Let C = {Ej1 |Hj1 , . . . , Ejn |Hjn} be an arbitrary finite family of condi-
tional events and by Ao denote the set of the relevant atoms Ar. For a real function P
on C the following three statements are equivalent:
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a) P is a coherent conditional probability on C;
b) there exists (at least) a family of probabilities P = {P0, ..., Pk}, (k ≤ n) each

probability being defined on a suitable subset Aα ⊆ Ao (with A0 = Ao and Aα =
{E ∈ Aα−1 : Pα−1(E) = 0}), for α = 1, ..., k, such that for any Eji |Hji ∈ F
there exists a unique Pα such that P (Eji |Hji) is solution of the equations

x · Pβ(Hji ) = Pβ(Eji ∧ Hji)

for every β ≤ α and P (Eji |Hji) is the unique solution for β = α;
c) there exists a sequence of compatible systems Sβ (β = 0, . . . , k), with unknowns

xβ
r = Pα(Ar), Ar ∈ Aβ for β = 0, 1, 2, . . . , k ≤ n

(A0 = AF
o , Aβ = {E ∈ Aβ−1 :

∑
Ar⊆E

xβ−1 = 0}),

⎧⎪⎪⎨
⎪⎪⎩

∑
Ar⊆Eji

∧Hji

xβ
r = P (Eji |Hji)

∑
Ar⊆Hji

xβ
r

[
for Eji |Hji ∈ C s.t.

∑
Ar⊆Hji

xβ−1
r = 0

]
∑

Ar⊆Hβ
o

xβr = 1

(put, for all Hji ’s ,
∑

Ar⊆Hji
x−1

r = 0), where Ho
o = Ho = H1 ∨ . . . ∨ Hn , and

xβ−1
r denotes a solution of (Sβ−1) and Hβ

o is, for β ≥ 1, the logical sum of the
Hji ’s such that

∑
Ar⊆Hji

xβ−1
r = 0 .

The two previous theorems allow to easily prove some sufficient conditions assuring
the coherence on suitable sets of conditional events:

Corollary 1. Let C = {E|Hi}i∈I , where card(I) is arbitrary and the events Hi’s are
a partition of Ω. Then any function P : C → [0, 1] such that P (Ei|Hi) = 0 if
Ei ∧ Hi = ∅ and P (Ei|Hi) = 1 if Hi ⊆ Ei (and taking otherwise any value in the
interval [0, 1]) is a coherent conditional probability.

Moreover, if the only coherent conditional probability assessment is such that
P (E|Hi) ∈ {0, 1} for any Hi with i ∈ I , then Hi ∧ E = ∅ for every Hi ∈ Ho ,
and Hi ⊆ E for every Hi ∈ H1 , where Hr = {Hi : P (E|Hi) = r} , r = 0, 1 .

We recall now that the events Ei with i = 1, ..., n , are logically independent if the
cardinality of the set of relevant atoms is 2n. Given a partition {Hj} the events Ei

with i = 1, ..., n , are said logically independent with respect to {Hj} if, for any Hj ,
Ei∧Hj �= ∅ for any i = 1, ..., n, then ∧n

i=1Ei∧Hj �= ∅. Note that logical independence
with respect to a partition is stronger than logical independence.

Corollary 2. Let C = {Ej |Hi}j=1,...,n;1=i,...,m be a set of conditional events such that
the events Hi are a partition of Ω and the events Ej are logically independent with
respect to {Hi}. Let p(·) be a probability on the partition H1, ..., Hm. Then for every
function P : C → [0, 1] with P (Ej |Hi) = 0 if Ej ∧ Hi = ∅ and P (Ej |Hi) =
1 if Hi ⊆ Ej , the global assessment P = {P (Ej|Hi), p(Hi)}j=1,...,n;1=i,...,m is a
coherent conditional probability assessment.
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Proof - Coherence follows from Theorem 3, in particular condition c). Since the events
Ej’s are logically independent with respect to {Hi}, it follows that any atom of the
form

∧
j Ej ∧ Hi is different from ∅ whenever there is no Ej with Ej ∧ Hi = ∅.

By considering the relevant system, the subsystem related to each Hi (without the last
equation) admits solution.

Moreover, since the events Hi’s are a partition, the relevant system has independent
equations related to Hi. So it admits a solution which is given by a suitable vector
obtained by concatenation of the solutions related to Hi. In fact the last equation of the
system is satisfied, since p(·) on H1, ..., Hm is a probability distribution.

Remark 1. Corollary 2 can be stated in a way to hold also by considering the
assessment

P ′ = {P (Ej |Hi), p(Hi), p(Hi|B)}
(with B event of the algebra spanned by the events Hi). In fact, if p(Hi) > 0, for
every i, p(Hr|B) is univocally determined by the p(Hi)’s and so the whole assessment
carries the same information of the assessment {P (Ej |Hi), p(Hi)} and it is coherent
only if p(Hi|B) can be computed from p(Hi)’s. On the contrary, if p(Hi) = 0 for
some i, the proof goes along the same line of that of Corollary 2. In fact, the equations
related to the events Hi|B with p(B) = 0 have no role in the first system but just in
systems Sβ (β > 0), where the variable related to some of the Hi’s contained in B have
positive value. Then there is no constraint for them and so the coherence of assessment
{p(Hr|Hr ∨ Hs)} is sufficient to assure global coherence.

2.2 Extending Coherent Conditional Probability Assessments

Concerning coherence, we recall the following fundamental result for conditional prob-
ability (essentially due to de Finetti [10]):

Theorem 3. Let C = {Ei|Hi} be any family of conditional events, and take an arbi-
trary family C′ ⊇ C. Let P be an assessment on C; then there exists a (possibly not
unique) coherent extension of P to C′ if and only if P is coherent on C.

In particular, if C′ = C ∪ {E|H}, then the possible coherent values p = P (E|H) are
all the values of a suitable closed interval [p, p] ⊆ [0, 1], with p ≤ p. If moreover C is
finite, then it is possible to compute the bounds of the interval p ≤ p by solving a linear
programming problem (see e.g. [5]).

We recall here the procedure, related to this last problem, only for the case of events
E ∧ H and H logically dependent on {Ei, Hi} (i.e. they are union of some atoms
generated by {Ei, Hi}), since they are the only of interest in this paper. The problem is
to find the minimum and maximum value of

P (E|H) =
Pα(E ∧ H)

Pα(H)

with α such that Pα(H) > 0, for every class P agreeing with P (in the sense of con-
dition b) of Theorem 2). Actually, the problem can be solved by adding to systems Sα
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(with α ≥ 0) of condition c) of Theorem 2 the constraint
∑

Cr⊆H xα
r = 0 till the system

is compatible. If for α the system Sα with the above constraint has no solution, then all
possible solutions of system Sα give positive probability to H . Then, the minimum and
maximum coherent value for P (E|H) coincides with

min / max
∑

Cr⊆E∧H

yα
r

under S′
α that is⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑
Cr⊆Ei∧Hi

yα
r = P (Ei|Hi)

∑
Cr⊆Hi

yα
r if Pα−1(Hi) = 0

∑
Cr⊆H

yα
r = 1

yα
r ≥ 0 Cr ∈ CF ∩Aα

Note that the solutions xα
r and yα

r are linked by a normalization constant, xα
r =

yα
r∑

Cr∈CF∩Aα

yα
r

.

3 Fuzzy Sets as Coherent Conditional Probabilities

We adopt the interpretation of fuzzy sets in terms of coherent conditional probabilities,
introduced in [5–7]. We briefly recall here the main concepts.

3.1 Main Definition

Let X be a (not necessarily numerical) variable, with range CX , and, for any x ∈ CX ,
let us indicate by x the event {X = x}, for every x ∈ CX .

Let ϕ be any property related to the variable X .
Let us refer to the state of information of a real (or fictitious) person that will be

denoted by “You”. It is natural to think that You have some information about possible
values of X , which allows You to refer to a suitable membership function of the fuzzy
subset of elements of CX with the property ϕ.

It follows that You may assign to each of these conditional events a degree of be-
lief P (Eϕ|x), without any syntactical restriction. Corollary 1 assures in fact that any
assessment {P (E|x)}x∈X is a coherent conditional probability assessment.

Moreover, this conditional probability P (Eϕ|x) is directly introduced as a function
on the set of conditional events (and without assuming any given algebraic structure).

From the above considerations, it follows that the coherent conditional probability
P (Eϕ|·) comes out to be a natural interpretation of the membership function μϕ(·),
according to [6] (see also [5, 7]).
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Definition 3. For any variable X with range CX and a related property ϕ, the fuzzy
subset E∗

ϕ of CX is the pair
E∗

ϕ = {Eϕ , μEϕ},
with μEϕ(x) = P (Eϕ|x) for every x ∈ CX .

Note that, by the Corollary 1, a fuzzy subset E∗
ϕ is a crisp set when the property ϕ is

such that, for every x ∈ CX , either Eϕ ∧ x = ∅ or x ⊆ Eϕ.

In the relevant literature there are several papers (see e.g. [16, 18, 12, 19]) containing
approaches which are similar to that expounded here.

3.2 Operations

By referring to [6] we recall the operations between fuzzy subsets: under the hypothesis
of logical independence between Eϕ and Eψ with respect to X (i.e. with respect the
partition {(X = x)}x∈CX ), the binary operations of union and intersection and that of
complementation can be obtained directly by using the rules of coherent conditional
probability.

For this aim let us denote by ϕ ∨ ψ , ϕ ∧ ψ, respectively, the properties “ϕ or ψ ” ,
“ϕ and ψ ”.

Define
Eϕ∨ψ = Eϕ ∨ Eψ , (2)

Eϕ∧ψ = Eϕ ∧ Eψ . (3)

Let us consider two fuzzy subsets E∗
ϕ, E∗

ψ , related to the same variable X , with the
events Eϕ, Eψ logically independent with respect to X . As proved in [6], for any given
x in the range of X , the assessment P (Eϕ ∧Eψ |x) = v is coherent if and only if takes
values in the interval

max{P (Eϕ|x) + P (Eψ|x) − 1, 0} ≤ v ≤ min{P (Eϕ|x), P (Eψ |x)}.
From probability rules, given a value to P (Eϕ∧Eψ |x), we get also the value of P (Eϕ∨
Eψ|x). Then, as proved in [6] the t-norms and the t-conorms of the class of Frank
([14]) give rise to coherent assessments for the probability assessments P (Eϕ∧ψ) and
P (Eϕ∨ψ).

Then, we put

E∗
ϕ ∪ E∗

ψ = {Eϕ∨ψ , μϕ∨ψ} , E∗
ϕ ∩ E∗

ψ = {Eϕ∧ψ , μϕ∧ψ} ,

with
μϕ∨ψ(x) = P (Eϕ ∨ Eψ|x) , μϕ∧ψ(x) = P (Eϕ ∧ Eψ|x) .

Moreover, denoting by E∗
¬ϕ the complementary fuzzy set of E∗

ϕ, the relation E¬ϕ �=
(¬Eϕ) holds, since the propositions “You claim ¬ϕ” and “You do not claim ϕ” are
logically independent with respect to X . Then, while

Eϕ ∨ (¬Eϕ) = CX ,
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we have instead
Eϕ ∨ E¬ϕ ⊆ CX ,

and, if we consider the union of a fuzzy subset and its complement

E∗
ϕ ∪ E∗

¬ϕ = {Eϕ∨¬ϕ , μϕ∨¬ϕ}
we obtain in general a fuzzy subset of (the universe) CX .

4 Probability of “Fuzzy Events”

For simplicity we refer to variables X with a finite codomain. First of all we notice that
in this context the concept of fuzzy event, as introduced by Zadeh, is nothing else than
an ordinary event of the kind Eϕ = “You claim that X has the property ϕ”. We recall
that for any probability distribution on X the global assessment {μϕ(x), P (x)}x∈CX

is coherent (see Corollary 2) and so coherently extendible to Eϕ. According to the
disintegration formula, we get only one coherent value for the probability of Eϕ, that is

P (Eϕ) =
∑

x∈CX

μϕi(x)P (x),

which coincides with the definition proposed by Zadeh in [25].
Now let C be a finite family of fuzzy subsets E∗

ϕi
= (Eϕi , μϕi) of X (with the

events {Eϕi}ϕi logically independent with respect to X). We denote with < C > its
closure with respect to intersection, unions and by F<C> the sets of events Eϕi related
to the elements of < C >.

It is easy to prove (see also [6]) that for every t-norm � and t-conorm of the class of
Frank, the probability assessment {P	(Eϕi), P	(Eϕi ∧ Eϕj )} with

P	(Eϕi) =
∑

x∈CX

μϕi(x)P (x)

P	(Eϕi ∧ Eϕj ) =
∑

x∈CX

(μϕi � μϕj )(x)P (x)

is coherent.
So we can extend the assessment also to the events Eϕi ∨ Eϕj and this extension is

univocally determined by coherence: it satisfies the following equation

P	(Eϕi∨Eϕj) =
∑

x∈CX

(μϕi⊕μϕj)(x)P (x) = P	(Eϕi)+P	(Eϕj )−P	(Eϕi∧Eϕi),

where ⊕ is the dual t-conorm of �.

Remark 2. The assumption of logical independence of events Eϕ, Eψ with respect to
X is necessary for all the above assertions, however this condition is not strong in this
context, in fact, for example also Eϕ and E¬ϕ are logically independent, even if they
are seemingly linked.



Coherent Conditional Probability, Fuzzy Inclusion and Default Rules 201

The above assessment P	 is a coherent conditional probability, so by using Theorem
3 it can be furthermore extended to any conditional event A|B where A, B are events
of the algebra B generated by {Eϕj |(X = x), Eϕi |(X = x), (X = x) : x ∈ CX},
with B �= ∅. This extension is not unique in general, but for the events A = Eϕi and
B = Eϕj (i �= j), with P	(Eϕj ) > 0 the only coherent extension is:

P	(Eϕi |Eϕj ) =

∑
x∈CX

(μϕi � μϕj )(x)P (x)

∑
x∈CX

μϕj (x)P (x)
. (4)

We call the above extension of P a coherent �-extension.
When P	(Eϕj ) = 0, we obtain in general a not unique extension to the events

Eϕi |Eϕj .
We note that we have P	(Eϕj ) = 0 if and only if P (x) = 0 for every x such

that μϕ(x) > 0. In this case to obtain a unique extension we need to have also the
conditional probability P (·|B), where B is the logical sum of the events x such that
P (Eϕj |x) = 0 (see Remark 1).

In fact, since Pβ of condition b) of Theorem 2 is related to P (x|B) and there is at
least one event x in B such that P (x|B) > 0 and so

P	(Eϕi |Eϕj ) =

∑
x∈CX

(μϕi � μϕj )(x)P (x|B)

∑
x

μϕj (x)P (x|B)
. (5)

Remark 3. The values P	(Eϕi |Eϕj ) through equation (5) are coherent only when the
events Eϕi and Eϕj are logically independent with respect to X . For instance, the same
formula cannot be used for obtaining the coherent extension of P	 to Eϕj |Eϕj∧Eϕi (or
Eϕj |Eϕj ) which is necessarily 1, independently of the Frank t-norm used for computing
the coherent values of P	(Eϕi ∧ Eϕj ).

Theorem 4. Let � be a strict t-norm. Given a strictly positive probability distribution
on X , if P (Eϕi |Eϕj ) = 1, then Eϕi and Eϕj are not logically independent with respect
to X .

Proof - If Eϕi and Eϕj were logically independent with respect to X , the relevant
coherent conditional probability would be

P	(Eϕi |Eϕj ) =

∑
x∈CX

(μϕi � μϕj )(x)P (x)

∑
x∈CX

μϕj (x)P (x)
.

Then P	(Eϕi |Eϕj ) = 1 implies, for any x ∈ CX , the equality μϕi �μϕj(x) = μϕj (x)
that contradicts the fact that � is a strict t-norm.

Then the two events cannot be logically independent with respect to X .
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Note that by construction of the family < C >, any pair of events Eϕ, Eψ in F<C>

not logically independent is such that Eϕ ⊆ Eψ or Eψ ⊆ Eϕ. Thus, the coherent values
of the relevant (conditional) events are univocally determined and they are computed
through the min t-norm (as shown in the next result).

Theorem 5. Let C = {E∗
ϕi
}i be a family of fuzzy sets related to a variable X , with

Eϕi logical independent, and consider the class < C > obtained as closure of C with
respect to the union, intersection of fuzzy sets. The assessment

{P	(A|(X = x)), P (X = x), P	(A|B) : A, B ∈ F<C> with P	(B) > 0},
where � is the t-norm of the minimum, is coherent.

Proof - By construction < C > involves events Eϕi related to C that are logically
independent and the union and intersection of them. Then, by the above results the
assessment

P1 = {P (Eϕi |(X = x)), P (X = x)}x∈CX ,

is coherent since Eϕi are logically independent.
Moreover, again from the above results also P	(B|(X = x)), P	(B) are coherent

with P1 since the coherent values on them can be obtained through any Frank t-norm
and so also through minimum.

We need to prove that also P	(A|B) is coherent with the previous assessment. Ac-
tually B and A are logically dependent on Eϕi ∈ C so their coherent values have been
computed through minimum t-norm and t-conorm as well as P	(A∧B), so the follow-
ing cases can occur:

– A and B logically independent, then P	(A|B) can be computed as ratio of P	(A∧
B) and P	(B) since the latter is positive;

– A ⊆ B, then P	(A ∧ B) is obtained through the minimum of P	(A) and P	(B)
and then by the ratio we get P	(A|B) since P	(B) is positive;

– B ⊆ A, then P	(A ∧ B) is obtained through the minimum of P	(A) and P	(B)
and then by the ratio we get P	(A|B) = 1.

5 Fuzzy Inclusion

By using the above concepts and results it is immediate to understand the concept of
“degree of inclusion”, introduced in [23]. It is in fact seen as a fuzzy relation on the
family < C > of fuzzy subsets E∗

π of CX , which should measure “how much” a given
element of < C > is “contained” into another element of < C >. Fuzzy inclusion (with
different approaches) has been studied by many authors (see, e.g., [1, 9, 13, 20, 22, 24]).

Consider a probability distribution P on the set H of the events x = {X = x} .
Finally consider a Frank t-norm � and dual t-conorm ⊕.

Thus, since the assessment P (·|·) defined on the following set of conditional events

C = {Eϕ|x , Eψ|x , x : x ∈ CX}
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is coherent by Corollary 2, it can be extended (preserving coherence) to any set D ⊃ C.
We recall from [23] the following

Definition 4. The degree I(E∗
ϕi

, E∗
ϕj

) of fuzzy inclusion of the fuzzy subset E∗
ϕi

=
(Eϕi , μϕi) in the fuzzy subset E∗

ϕj
= (Eϕj , μϕj ) is a function

I : F<C> ×F<C> → [0, 1]

with
I(E∗

ϕi
, E∗

ϕj
) = P	

(
Eϕj |Eϕi

)
,

obtained as any coherent �-extension of P (·|·) from C ∪ H to the conditional event
Eϕj |Eϕi ∈ F<C>.

The semantic behind the above definition is the following: “the more” E∗
ϕi

is included
in E∗

ϕj
, “the more” if we claim the property ϕi we are willing to claim also the property

ϕj .
We say that a fuzzy set E∗

ϕi
is included in E∗

ϕj
if the degree I(E∗

ϕi
, E∗

ϕj
) is maxi-

mum, that is equal to 1. Clearly, any fuzzy set E∗
ϕj

is included in itself if I(E∗
ϕj

, E∗
ϕj

) =
1 for every coherent extension P	 of P (see Remark 3). So fuzzy inclusion is reflexive
(as in the crisp case).

Moreover, the degree of inclusion of two fuzzy sets has the lowest possible value
0 when they are “disjoint” (i.e., the corresponding membership functions have disjoint
supports). In fact in this case P	(Eϕj |Eϕi) is equal to zero, for every coherent exten-
sion P	 of P .

We recall the following definition of inclusion due to Zadeh [25].

Definition 5. A fuzzy subset E∗
ϕ of CX is included in a fuzzy subset E∗

ψ (in symbol
E∗

ϕ � E∗
ψ) iff

μϕ(x) ≤ μψ(x) for any x ∈ CX . (6)

In [23] the following result has been proved:

Proposition 1. Let X be a variable with finite range. If two fuzzy subsets E∗
ϕ =

(Eϕ, μϕ) , E∗
ψ = (Eψ , μψ) of CX are such that I(E∗

ϕ, E∗
ψ) = 1 for any probability

distribution on CX , then they satisfy Zadeh’s definition of inclusion.
Conversely, given two fuzzy subsets E∗

ϕ = (Eϕ, μϕ) , E∗
ψ = (Eψ, μψ) of CX and

their intersection E∗
ϕ ∩ E∗

ψ = {Eϕ∧ψ , μϕ∧ψ}, take

μϕ∧ψ(x) = min{μϕ(x), μψ(x)}
for any x. If μϕ(x) ≤ μψ(x) for any x ∈ CX , then I(E∗

ϕ, E∗
ψ) = 1 for any probability

distribution on CX .

In [23] there is also a discussion of the connections between fuzzy inclusion and simi-
larity, whose degree is defined as

S(E∗
ϕ, E∗

ψ) = P
(
(Eϕ ∧ Eψ)|(Eϕ ∨ Eψ)

)
,
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proving, in particular, the following equality

(I1 + I2 − I1 I2)S = I1 I2 , (7)

where
I1 = I(E∗

ϕ, E∗
ψ) , I2 = I(E∗

ψ, E∗
ϕ) , S = S(E∗

ϕ, E∗
ψ) .

6 Maximum Degree of Fuzzy Inclusion

Given a conditional event E|H , notice that P (E) = 1 does not imply P (E|H) = 1
(as in the usual framework where it is necessary to assume P (H) > 0). We can take
instead P (H) = 0 (the conditioning event H – which must be a possible one – may in
fact have zero probability, since in the assignment of P (E|H) we are driven only by
coherence [5]). Then a probability equal to 1 can be, in our framework, updated (see
e.g. [5]).

Moreover, notice that P (E|H) = 1 does not imply the inclusion H ⊆ E (corre-
sponding to implication, in terms of events as propositions): take in fact, e.g., an event E
with P (E) > 0 and an event H ⊃ E such that P (H) = P (E), that is P (¬E∧H) = 0.
(In particular, if ¬H ∨ E = Ω, then H ⊆ E, so we certainly have P (E|H) = 1).

In most real situations, a base of knowledge is given by an arbitrary set C of (condi-
tional) events, with a function P (a coherent conditional probability) that summarizes
the relevant state of information.

Now, as far as fuzzy inclusion is concerned, let us consider a set D of (ordered) pairs
(Eϕ, Eψ) of fuzzy subsets of FC (such that Eϕ|Eψ ∈ C) with degree I(Eψ , Eϕ) of
fuzzy inclusion (of Eψ in Eϕ) equal to 1, i.e. with P (Eϕ|Eψ) = 1. We call any such
set a MDFI–set (“Maximum Degree of Fuzzy Inclusion”).

Notice that, if I(Eϕ, Eψ) = 1, then by eq. (7) the reverse degree of inclusion
I(Eψ , Eϕ) coincides with the similarity S(Eϕ, Eψ).

We wonder now whether, given D, it is possible to find further pairs of fuzzy subsets
in FC with maximum degree of fuzzy inclusion (MDFI–pairs).

This enlarging of the given assessment to new events (maintaining the rules required
to the conditional probability P , i.e. coherence) is clearly a particular way of making
inference.

Even if for any coherent assessment on C its enlargement to a family K ⊇ C is not (in
general) unique, nevertheless for some events we can have a unique coherent extension,
so giving rise to the important concept of entailment.

Note that also in the case of coherent �-extension (see eq. (4)) we obtain a unique
value, since we choose a t-norm �.

Definition 6. The MDFI–set D ⊆ FC entails the pair (Eϕ, Eψ) of fuzzy sets if the only
coherent value for P (Eψ |Eϕ) is 1.

In other words, the pair (Eϕ, Eψ) is entailed by the MDFI–set D if every possible exten-
sion of the probability assessment P on C such that P (Eψi |Eϕi) = 1 (i.e. (Eϕi , Eψi) ∈
D) assigns the value 1 also to P (Eψ |Eϕ).
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In the following we denote by E the set of entailed MDFI–pairs, that is (E∗
ϕ, E∗

ψ) ∈ E
means that the only coherent value for P (Eϕ|Eψ) is 1 (or equivalently the degree of
inclusion I(E∗

ψ , E∗
ϕ) of E∗

ψ in E∗
ϕ is 1).

Theorem 6. Let C be a set of conditional events, P a coherent probability assessment
on C, D a MDFI–set and E the set of entailed MDFI–pairs. Then the following proper-
ties hold:

(i) D entails (E∗
ψ , E∗

ψ), i.e. (E∗
ψ , E∗

ψ) ∈ E , for any E∗
ψ �= (∅, μ∅),

(ii) if (E∗
ψ � E∗

ϕ , E∗
ϕ � E∗

ψ) and (E∗
δ , E∗

ψ) ∈ D then (E∗
δ , E∗

ϕ) ∈ E ,

(iii) if (E∗
ψ � E∗

ϕ) and (E∗
ψ , E∗

δ ) ∈ D then (E∗
ϕ, E∗

δ ) ∈ E ,

(iv) if (E∗
δ , E∗

ψ ∧ E∗
ϕ) , (E∗

ϕ, E∗
ψ) ∈ D then (E∗

δ , E∗
ψ) ∈ E ,

(v) if (E∗
ϕ, E∗

ψ) , (E∗
δ , E∗

ψ) ∈ D then (E∗
δ , E∗

ψ ∧ E∗
ϕ) ∈ E ,

(vi) if (E∗
ϕ, E∗

ψ) , (E∗
ψ , E∗

ϕ) , (E∗
δ , E∗

ψ) ∈ D
then (E∗

δ , E∗
ϕ) ∈ E ,

(vii) if (E∗
ϕ, E∗

ψ) , (E∗
δ , E∗

ψ) ∈ D then (E∗
ϕ ∧ E∗

δ , E∗
ψ) ∈ E ,

(viii) if (E∗
δ , E∗

ψ) , (E∗
δ , E∗

ϕ) ∈ D then (E∗
δ , E∗

ψ ∨ E∗
ϕ) ∈ E .

Proof - (i), (ii) trivially follow from the notion of Zadeh inclusion (eq. (6)) and elemen-
tary properties of conditional probability.

(iii) Since (E∗
ψ � E∗

ϕ), from eq. (6) it follows that μψ(x) ≤ μϕ for any x, (consid-
ering the same t-norm in order to build the intersection of two fuzzy sets) we have, for
any E∗

δ ,
μψ∧δ(x) ≤ μϕ∧δ

for any x and so P (Eϕ ∧ Eδ) ≥ P (Eψ ∧ Eδ).
Moreover, P (Eψ |Eδ) = 1 implies

P (Eϕ|Eδ) = P (Eϕ ∧ Eδ|Eδ) ≥ P (Eψ ∧ Eδ|Eδ) = 1.

(iv): from P (Eδ|Eψ ∧ Eϕ) = P (Eϕ|Eψ) = 1 it follows, by the disintegration
formula (1) for P (·|Eψ),

P (Eδ|Eψ) = P (Eδ|Eψ ∧ Eϕ)P (Eϕ|Eψ) + P (Eδ|Eψ ∧ ¬Eϕ)P (¬Eϕ|Eψ) =

= P (Eδ|Eψ ∧ Eϕ)P (Eϕ|Eψ) + P (Eδ|Eψ ∧ ¬Eϕ) · 0 = 1 .
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(v): since 1 = P (Eϕ|Eψ) = P (Eδ|Eψ), we have that

1 = P (Eδ|Eψ) = P (Eδ|Eψ ∧ Eϕ)P (Eϕ|Eψ) + P (Eδ|Eψ ∧ ¬Eϕ)P (¬Eϕ|Eψ) =

= P (Eδ|Eψ ∧ Eϕ) .

(vi): since at least one conditioning event must have positive probability P (·|Eψ ∨
Eϕ ∨ Eδ), it follows from the premises that Eψ, Eϕ, Eδ have all positive probability;
then

P (Eψ ∧ Eδ) = P (Eψ) = P (Eψ ∧ Eϕ) = P (Eϕ) ,

which implies P (¬Eψ ∧ Eϕ) = 0.
Moreover,

P (Eψ ∧ Eϕ ∧ Eδ) = P (Eψ)P (Eϕ ∧ Eδ|Eψ) = P (Eϕ)P (Eψ ∧ Eδ|Eϕ) ,

so that
P (Eψ ∧ Eϕ ∧ Eδ) = P (Eψ)P (Eϕ|Eψ)P (Eδ|Eψ ∧ Eϕ) =

= P (Eϕ)P (Eψ |Eϕ)P (Eδ|Eψ ∧ Eϕ) = P (Eψ) = P (Eϕ) .

It follows

P (Eϕ∧Eδ) = P (Eψ∧Eϕ∧Eδ)+P (¬Eψ∧Eϕ∧Eδ) = P (Eψ∧Eϕ∧Eδ) = P (Eϕ) ,

and so P (Eδ|Eϕ) = 1.
(vii): since

1 ≥P (Eϕ∨Eδ |Eψ)= P (Eϕ|Eψ)+P (Eδ|Eψ)−P (Eϕ∧Eδ|Eψ)= 2−P (Eϕ∧Eδ|Eψ) ,

it follows P (Eϕ ∧ Eδ|Eψ) = 1.
(viii): since

P (Eδ|Eψ ∨ Eϕ) = P
(
(Eδ ∧ Eψ) ∨ (Eδ ∧ Eϕ)|(Eψ ∨ Eϕ)

)
= P

(
(Eδ ∨ Eψ)|(Eψ ∨ Eϕ)

)
+

+P
(
(Eδ∨Eϕ)|(Eψ∨Eϕ)

)−P
(
(Eψ∧Eϕ∧Eδ)|(Eψ∨Eϕ)

)
= P (Eδ|Eψ)P (Eψ|Eψ∨Eϕ)+

+P (Eδ|Eϕ)P (Eϕ|Eψ ∨Eϕ)−P (Eδ|Eψ ∨Eϕ)P (Eψ ∧Eϕ|Eψ ∨Eϕ) = P (Eψ|Eψ ∨Eϕ)+

+P (Eϕ|Eψ ∨ Eϕ) − P (Eδ|Eψ ∨ Eϕ)P (Eψ ∧ Eϕ|Eψ ∨ Eϕ) ≥ 1 ,

we get P (Eδ|Eψ ∨ Eϕ) = 1.

7 Default Rules

In a previous paper [8], given a coherent conditional probability P on a family C of
conditional events, a default rule (denoted by H �−→ E) between events (i.e. crisp
sets), has been defined as any conditional event E|H ∈ C such that P (E|H) = 1.

By applying Theorem 6 to crisp sets, we get that any MDFI–pair of crisp sets can be
interpreted as a default rule. In fact, notices that properties (i)–(viii) correspond to those
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that, in default logic (see, e.g., [17]), are called, respectively, Reflexivity, Left Logical
Equivalence, Right Weakening, Cut, Cautious Monotonicity, Equivalence, And, Or.

Thus a MDFI-set can be looked on as a set of generalized set default rules between
fuzzy sets.

In particular, taking into account eq.(7) relating similarity and fuzzy inclusion, it
follows that if S(E∗

ϕ, E∗
ψ) = 1 (i.e. E∗

ϕ and E∗
ψ have the maximum degree of similar-

ity) then either inclusions I(E∗
ϕ, E∗

ψ) and I(E∗
ψ , E∗

ϕ) are maximal or both I(E∗
ϕ, E∗

ψ)
and I(E∗

ψ , E∗
ϕ) are not maximal. Then, under S(E∗

ϕ, E∗
ψ) = 1, if I(E∗

ϕ, E∗
ψ) is maxi-

mal, then necessarily the converse inclusion I(E∗
ψ , E∗

ϕ) is maximal and in this case the
equivalence property (vi) says that, E∗

ϕ �−→ E∗
δ implies also E∗

ψ �−→ E∗
δ .
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Abstract. In this chapter, we present a tutorial about fuzzy answer set program-
ming (FASP); we give a gentle introduction to its basic ideas and definitions.
FASP is a combination of answer set programming and fuzzy logics which has
recently been proposed. From the answer set semantics, FASP inherits the declar-
ative nonmonotonic reasoning capabilities, while fuzzy logic adds the power to
model continuous problems. FASP can be tailored towards different applications
since fuzzy logics gives a great flexibility, e.g. by the possibility to use different
generalizations of the classical connectives. In this chapter, we consider a rather
general form of FASP programs; the connectives can in principal be interpreted
by arbitrary [0,1]n → [0,1]-mappings. Despite that very general connectives are
allowed, the presented framework turns out to be an intuitive extension of answer
set programming.

1 Introduction

In this chapter we will present and illustrate the basic definitions of fuzzy answer set
programming (FASP). In recent years a variety of approaches to FASP have been pro-
posed (e.g. [7], [13], [15], [25]). This framework is a generalization of answer set pro-
gramming using fuzzy logics, a class of logics whose semantics are based on truth
values taken from the unit interval [0,1] [11]. Answer set programming (ASP) [1] is a
tool for modeling combinatorial search problems in a declarative way. It has its roots in
logic programming and nonmonotonic reasoning.

Nonmonotonicity enables human-like reasoning; humans constantly revise their
knowledge when they obtain new information. In contrast, classical logic works mono-
tonically; when new knowledge is added, the set of conclusions that can be inferred
increases. To overcome this limitation of classical logic when imitating human reason-
ing, several nonmonotonic logics, e.g. autoepistemic logic [17] and default logic [20],
and logic programming with negation-as-failure such as ASP [9] have been proposed. In
logic programming, and ASP in particular, nonmonotonicty is obtained by the negation-
as-failure operator “not”. The difference with classical negation ¬ is that ¬a is true if
we can derive ¬a, whereas nota is true is we fail to derive a. Note that this means that
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ASP can deal with incomplete information; one can draw conclusions if information is
absent.

The basic idea of ASP is that a search problem is translated into an ASP program,
i.e. a set of rules of the form α ← β . Such a rule indicates that whenever the body β
holds, the head α holds as well. The expression α is a disjunction of literals and β a
conjunction of extended literals. A literal is an atom or an expression of the form ¬a
with a an atom. An extended literal is a literal or an expression of the form not l with l
a literal. Given an ASP program, the idea is to find a minimal set of literals that can be
derived from the program. A program can have several of such “answer sets” or none
at all. The answer sets then correspond to the solutions of the original search problem.
Let us consider a concrete example. Suppose one wants to color the vertices of a graph
in either black or white but adjacent nodes must be colored differently. This search
problem can be modeled by the program P:

black(X) ← notwhite(X)
white(X) ← notblack(X)

← edge(X ,Y )∧white(X)∧white(Y )
← edge(X ,Y )∧black(X)∧black(Y )

The first two rules express that each node should have exactly one of the two colors. The
last two rules are constraints expressing that two nodes connected by an edge should
have a different color. The empty head of a constraint can be thought of as always
being “false”. Hence, a constraint rule only holds if its body is false as well. Note that
we use variables X and Y ; this is to allow a compact description of the problem. By
grounding the program, i.e. replacing the variables in all meaningful ways, one gets all
the rules. For instance, for a graph with nodes a and b, the first rule from the program
P above, gives rise to the grounded rules “black(a)← notwhite(a)” and “black(b) ←
notwhite(b)”. In addition, a number of facts, rules of the form “edge(a,b)←” with a
and b nodes, are added to the program. The empty body of a fact can be thought of as
always being “true”. Hence, such a rule implies that there is an edge between node a
and b, since a rule with a body that is true can only hold if the head is true as well. After
grounding the program, the answer set semantics defines the solutions to the program.
For instance, if there are three nodes a, b and c such that there is an edge between a and
b and one between b and c, then there are two answer sets. One of these will contain the
atoms black(a), white(b) and black(c) and the other the atoms white(a), black(b) and
white(c).

Unfortunately, ASP is not suitable for expressing continuous optimization problems
since it is limited to expressing problems in boolean logic. For example, suppose one
wants to travel by car from one city to another in Winter. The driving time that is needed
to do this depends on several factors; for instance the amount of snow, the distance and
the traffic. These concepts are a matter of degree rather than boolean properties, thus
we cannot directly use ASP to model this problem. One solution to this problem is to
allow propositions to be true to a certain degree in [0,1] and to generalize the syntax
and semantics of ASP using fuzzy logics. We can then write the rule

driving time ← f (snow,distance, traffic)
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where “driving time”, “snow” and “traffic” now have to be seen as atoms that can be
assigned a degree in [0,1]. The function f defines how these degrees have to be com-
bined to give the driving time. Note that it is not realistic to assume that f is a linear
function. For example, if it starts to snow, not even taking into account the other factors,
then the driving time will increase very fast; after that the increase of driving time due
to the snow will slow down. In practice, one can use statistical information to define f .
Finally, remark that FASP is used to deal with partial truth and not with uncertainty or
vagueness. See [8] for a discussion on the difference between these concepts. To deal
with uncertainty, among others, ASP can be extended with possibility theory (e.g. [18])
or with probability theory (e.g. [3]).

The basic idea of FASP is to model search problems with continuous domains. A
continuous search problem can then be translated into a FASP program, i.e. a set of
rules of the form α ← β where α and β are built from atoms, expressions of the form
nota with a an atom, constants and connectives that can in principal be interpreted
by arbitrary [0,1]n → [0,1]-mappings. Such a rule now intuitively means that the truth
degree of α must be greater or equal to the truth degree of β . Reconsider our example
about the driving time. The rule

snow ← 0.2

can be used to indicate that it snows to at least degree 0.2 which could mean, depending
on how you define the degree of snow, that the snow melts immediately when it touches
the ground. This rule is thus satisfied if it snows to degree 0.9. However this attaches
a higher value to “snow” than the rule actually supports. If the degree of “snow” does
not depend on other atoms, it is reasonable to attach the degree 0.2 to “snow”. This is
in line with the idea of ASP which attempts to make as few literals true as possible to
satisfy the rules of a program. Hence here we are interested in finding the lowest truth
degrees that we can assign to each of the atoms, such that the rules are still satisfied.
Although α and β may be built from very general connectives, FASP can model search
problems entirely similar as ASP does for search problems with discrete domains.

Although it has been studied by several authors, FASP is by far not as developed
as ASP. For example, very little is known about its computational complexity and few
techniques are known to compute the answer sets of FASP programs. Also, many ex-
tensions proposed for ASP have not yet been considered in FASP. With the exceptions
of e.g. [15], [21] and [23], most work is even restricted to FASP programs with exactly
one atom in the head.

In the following section, we will give the necessary background on fuzzy logics
followed by an introduction to FASP in Section 3. We present a motivating real life
example in Section 4 and some remarks and open problems about FASP in Section 5.

2 Background on Fuzzy Logics

Fuzzy logics [11] form a class of logics whose semantics are based on truth degrees
taken from the unit interval [0,1]. We will consider general fuzzy logics whose formulas
are built from a set of atoms A, the truth constants in [0,1]∩Q and arbitrary n-ary
connectives for each n ∈ N. A fuzzy interpretation is a mapping I : A → [0,1], also
called a fuzzy set on A. The set of all fuzzy sets on A will be written as F (A). We can
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extend a fuzzy interpretation I as follows. Each n-ary connective f is interpreted by a
function f : [0,1]n → [0,1]. For instance, the n-ary connective “average” can correspond
to the function [0,1]n → [0,1] : (x1, . . . ,xn) �→ 1

n ∑n
i=1 xi. We define [ f (α1, . . . ,αn)]I =

f([α1]I , . . . , [αn]I) for formulas αi (1 ≤ i ≤ n). For c ∈ [0,1]∩Q we have [c]I = c. If C is
a set of formulas we say that I is a fuzzy model of C iff [α]I = 1 for all α ∈C; we write
this as I |=C. For fuzzy interpretations I1, I2 ∈ F (A) we write I1 ≤ I2 iff I1(a) ≤ I2(a)
for all a ∈ A. If I1 ≤ I2 and I1 �= I2, we write I1 < I2. A fuzzy model I is a minimal fuzzy
model of a set of formulas C if there does not exist a fuzzy model J of C such that J < I.

We will now recall some generalizations of the classical connectives. Specifically,
triangular norms (short t-norm) are used to generalize classical conjunction. These are
mappings T : [0,1]2 → [0,1] that are commutative, associative, increasing and for which
it holds that T(x,1)= x for each x∈ [0,1]. Disjunction can be generalized by a triangular
conorm (short t-conorm). These are mappings S : [0,1]2 → [0,1] that are commutative,
associative, increasing and for which it holds that S(x,0) = x for each x ∈ [0,1]. Logical
implication can be generalized by an implicator, i.e. a function I : [0,1]2 → [0,1] such
that I(0,0) = I(0,1) = I(1,1) = 1 and I(1,0) = 0 and I is decreasing in the first
component and increasing in the second. Given a t-norm T, the residual implicator IT
of T, defined as

IT(x,y) = sup{λ | λ ∈ [0,1] and T(x,λ )≤ y}
satisfies all these conditions. If T is a left-continuous t-norm, then for all x,y ∈ [0,1]
it holds that x ≤ y iff IT(x,y) = 1 ([11]). In general, residual implicators are a good
choice to generalize classical implication since they satisfy a generalization of the
modus ponens rule: T(x,IT(x,y)) ≤ min(x,y). For continuous t-norms T there is an
even stronger property: T(x,IT(x,y)) = min(x,y). Consider a residual implicator I and
a t-norm T. The biresiduum of I and T is defined as ET,I(x,y) = T(I(x,y),I(y,x)). This
function is a generalization of the logical equivalence. Note that I does not need to be
the residual implicator of T; for an arbitrary residual implicator I it holds that either
I(x,y) = 1 or I(y,x) = 1. Finally, negation can be generalized by a negator, i.e. a func-
tion N : [0,1]→ [0,1] such that N is decreasing, N(1) = 0 and N(0) = 1. Every implicator
I induces a negator NI defined as NI(x) = I(x,0).

Logics whose semantics are based on (left-)continuous triangular norms form an
important subclass of fuzzy logics; they generalize the classical logical connectives in
a natural way. In examples we will often use the fuzzy logic based on the Łukasiewicz
t-norm. For the connectives conjunction ⊗, disjunction ⊕, implication → and negation
¬, and a fuzzy interpretation I ∈ F (A) we then have

• [α ⊗β ]I = max([α]I +[β ]I − 1,0)
• [α ⊕β ]I = min([α]I +[β ]I,1)
• [α → β ]I = min(1− [α]I +[β ]I,1)
• [¬α]I = 1− [α]I

Łukasiewicz logic is often used in applications because it preserves many nice proper-
ties from classical logic. Moreover, among the t-norm based logics, Łukasiewicz logic
is the only one with a continuous residual implicator. This means that a set of formulas
in Łukasiewicz logic can be seen as a set of constraints on continuous functions. This
logic is also closely related to mixed integer programming. McNaughton [16] showed
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this in a non-constructive way and Hähnle [10] gave a concrete translation from a set of
formulas in Łukasiewicz logic into a mixed integer program. Finally, Łukasiewicz logic
is also very close to linear logic, see e.g. [6].

More general, truth values do not need to be values in [0,1]. An arbitrary complete
lattice will do the trick as well. We restrict to the unit interval because it is intuitive and
convenient in practice.

3 Fuzzy Answer Set Programming (FASP)

Recall the example from the introduction of the chapter. Suppose you want to travel by
car from one city to another and you want to have an idea about the time needed to do
this. The driving time can depend on several factors, for instance the amount of snow,
the distance and the traffic. These concepts are a matter of degree rather than boolean
properties, thus we cannot directly use ASP to model this problem. One solution is to
allow propositions to be true to a certain degree in [0,1] and to generalize the syntax and
semantics of ASP using fuzzy logics. We now see “driving time”, “snow” and “traffic”
as atoms that can be assigned a truth value in [0,1]. To do this, an appropriate rescaling
is needed. For instance, “snow” will have truth value 0 if there is no snow at all and
it will have a truth degree x > 0 if there is snow, but it will be given a different value
depending on how much snow falls from the sky and if it melts or not. The degree
of “driving time” then depends on f (snow,distance, traffic) with f corresponding to
a [0,1]3 → [0,1]-mapping that is increasing in each of its arguments. In practice, this
function f can be defined by using statistical information. We can then write the rule

driving time ← f (snow,distance, traffic).

The syntax and semantics of FASP, as we will define below, can deal with such general
functions f . A lower bound on the driving time can then be found in an answer set that
corresponds to a solution of the FASP program.

3.1 Programs and Fuzzy Models

Consider a set of atoms A. An atom corresponds to a property that may have a certain
truth degree in [0,1], not restricted to only 1 (true) or 0 (false).

Definition 1. A FASP program is a finite set of rules of the form

r : g(a1, . . . ,an)← f (b1, . . . ,bm,not1 c1, . . . ,notk ck),

with ai,b j,cl ∈ A∪ ([0,1]∩Q) (i ∈ {1, . . . ,n}, j ∈ {1, . . . ,m} and l ∈ {1, . . . ,k}), f and
g resp. (m + k)-ary and n-ary connectives. We assume f resp. g is interpreted by a
function f : [0,1]m+k → [0,1] resp. g : [0,1]n → [0,1] such that f and g are increasing
in all their arguments. We also assume that ← is interpreted by a residual implicator
and each negation-as-failure operator notj corresponds to a negator Nj. We refer to the
rule by its label r.
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Note that in line with the tradition in logic programming we write a rule as α ← β
where ← is actually an implication →. Also remark that in the definition of rules,
we restrict to rational numbers to ensure that the language remains recursively enu-
merable. The expression g(a1, . . . ,an) is called the head rh of rule r and f (b1, . . . ,bm,
not1 c1, . . . ,notk ck) is called the body rb. Typically the connectives correspond to the
connectives from a given fuzzy logic (see Section 2), but other choices, e.g. averaging
operators, can be useful as well. A rule of the form “0 ← a” is usually written as “← a”
and a rule of the form “a ← 1” as “a ←”.

If the connectives in Definition 1 are restricted to compositions of the classical con-
nectives, i.e. conjunctions in the body and disjunctions in the head, and the truth values
are restricted to 0 and 1, we obtain the same syntax as classical ASP. Note that in classi-
cal ASP, it is for example not needed to consider disjunctions in the body of rules since
a rule a ← b∨ c can be expressed by the two rules a ← b and a ← c. As will become
clear, for FASP this is not the case.

By using fuzzy interpretations (see Section 2), one can assign truth degrees to atoms
and rules. For instance, in a FASP program, a rule

open ← 0.5

is modeled by a fuzzy interpretation I iff I(open)≥ 0.5.

Definition 2. A fuzzy interpretation I of a FASP program P is an element of F (BP),
with BP the set of atoms occurring in P. A fuzzy interpretation I is called a fuzzy model
of P iff [r]I = 1 for all r ∈ P.

If we restrict the fuzzy interpretations in Definition 2 to mappings BP →{0,1}, we get
classical interpretations of ASP programs.

Recall that we are interested in the “minimal” knowledge that can be derived from
a program: from a single rule “open ← 0.5”, we want to derive that the truth degree of
“open” is 0.5. One can use minimal fuzzy models to deal with this.

Example 1. Consider the following program P:

r1 : open ← notclosed
r2 : closed ← notopen

We assume that “←” and “not” correspond to resp. the Łukasiewicz implicator and the
Łukasiewicz negator. The properties “open” and “closed” can be given a value [0,1]
depending on the extent, e.g. the angle, to which a door is opened resp. closed. Each
combination of degrees of “open” and “closed”, not necessarily meaningful, is repre-
sented by a fuzzy interpretation. The rule r1 intuitively means that the door is open to a
degree greater or equal than the extent to which the door is not closed. Rule r2 implies
the opposite property. Specifically, a fuzzy interpretation I models the program P iff

I(open) ≥ 1− I(closed)
I(closed) ≥ 1− I(open).

By considering for example the rule

r3 : open ← 0.5
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we add the information that the door must be open to at least degree 0.6. The minimal
fuzzy model of the program only containing rule r3 is the fuzzy interpretation I such that
I(open) = 0.6. As will become clear later, the fuzzy interpretation I with I(open) = 0.6
and I(closed) = 0.4 is an answer set of the program consisting of rule r1, r2 and r3.

One can consider different types of programs, depending on the rules they contain.
Programs without negation-as-failure are called positive, programs with exactly one
atom in the head are called normal and normal programs that are positive are called
simple. Let us discuss these programs more in detail. We start with generalizing the
idea of forward chaining from ASP to simple programs.

3.2 Simple Programs and Answer Sets

For simple programs, the minimal fuzzy model exists and is unique [24]. Similar to
ASP, minimal fuzzy models of simple FASP programs can be characterized by forward
chaining, as illustrated below and subsequently defined more formally.

Example 2. Consider the program P:

a ← 0.1
b ← 0.8
c ← a⊕ b
a ← b⊗ c

First, consider the fuzzy interpretation I0 : BP → [0,1] : x �→ 0 by which every atom has
truth degree 0. However, I0 is not a fuzzy model: for example the first rule imposes that
the truth degree of a must be greater or equal to 0.1. Let us increase the truth values by
defining I1 : BP → [0,1]. To model a← 0.1 and b← 0.8, we put I1(a) = 0.1 and I1(b) =
0.8. To model the third rule, we put I1(c) = max(I1(a)⊕ I1(b),0) = 0.9. We check if I1

models the last rule. This is not the case since I1(a) = 0.1 and I1(b)⊗ I1(c) = 0.7. We
need to adjust I1 once more: we define a new fuzzy interpretation I2 with I2(a) = 0.7,
I2(b) = I1(b) and I2(c) = I1(c) The fuzzy interpretation I2 is the unique minimal fuzzy
model of P.

Definition 3. Consider a simple FASP program P. A fuzzy interpretation I is the answer
set of P if it is the minimal fuzzy model of P.

For simple programs the minimal fuzzy model, i.e. the answer set, coincides with the
least fixpoint of the immediate consequence operator ΠP [7]. This operator maps fuzzy
interpretations to fuzzy interpretations and is defined as

ΠP(I)(a) = sup{[rb]I | (a ← rb) ∈ P},
for a ∈ BP and a fuzzy interpretation I. Intuitively, the minimal fuzzy model of a sim-
ple FASP program corresponds to the maximal information one can derive by forward
chaining until no new knowledge can be discovered anymore.

Note that, unlike ASP, it is not always possible to compute this fixpoint in a finite
number of steps. Consider for instance the program containing the single rule “a ←
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a+1
2 ”. It will take infinitely many steps taken by the immediate consequence operator to

find the least fixpoint I(a) = 1 [22].
If constraints, i.e. rules in which the head is a constant, are allowed in simple pro-

grams, the least fixpoint of the immediate consequence will exist, but there may be no
fuzzy model at all.

Example 3. Consider the program P:

a ← 1
0 ← a

The least fixpoint of ΠP is the fuzzy interpretation I with I(a) = 1. However, P has no
fuzzy model since there cannot exist a fuzzy interpretation M such that M(a) ≥ 1 and
0 ≥ M(a). To deal with constraints one can use the fact that a fuzzy interpretation I is
an answer set of P∪C, with P a simple FASP program and C a set of constraints iff I is
an answer set of P and a fuzzy model of C.

3.3 Positive Programs and Answer Sets

If the heads of the rules in a positive program P can be more general formulas than only
single atoms, P can have several minimal fuzzy models, or none at all. In any case, they
present the minimal knowledge that can be derived from P.

Example 4. Consider the program P:

a⊕ b ← 0.3
a ← b
b ← 0.1

A minimal fuzzy model of P is the fuzzy interpretation I such that I(a) = 0.2 and
I(b) = 0.1. But, for example I′ such that I′(a) = 0.15 and I′(b) = 0.15 is a minimal
fuzzy model as well. On the other hand the program

min(a,0.5) ← b
b ← 0.1⊕ a

has no (minimal) fuzzy models. Indeed, for a fuzzy interpretation I to model this pro-
gram it must hold that min(0.1+ I(a),1)≤ min(I(a),0.5). If 0.1+ I(a)≤ 1, this would
imply that 0.1+ I(a)< I(a) and if 0.1+ I(a)≥ 1, then it would follow that 1 < 0.5.

Definition 4. Consider a positive FASP program P. A fuzzy interpretation I is an an-
swer set of P if it is a minimal fuzzy model of P.

Note that the immediate consequence operator cannot be used for programs with more
than one atom in the heads of rules; the truth value of the body of a rule does not
necessarily have an equal impact on the truth values of each of the atoms in the head.
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3.4 General Programs and Answer Sets

In this section, we will generalize the definitions of ASP to arbitrary FASP programs.
For FASP programs that are not positive, answer sets can no longer be defined directly
in terms of minimal fuzzy models.

Example 5. Consider for example the program

a ← a
0 ← nota

with “not” interpreted by the Łukasiewicz negator. The only minimal fuzzy model is
I such that I(a) = 1. However, the justification for deriving a truth value for a only
depends on itself, so this fuzzy model is not in line with the intuition of forward chain-
ing. To solve this problem, we will reduce a general FASP program to a positive FASP
program.

Intuitively, we “guess” an answer set I and replace all negation-as-failure literals
notc by their fuzzy interpretation [notc]I . For the program from Example 1

open ← notclosed
closed ← notopen

a suitable guess would be I with I(open) = 0.6 and I(closed) = 0.4; a door is closed
to the degree 0.4 if it is opened to the degree 1− 0.4 = 0.6. Let us now consider the
same program, but we replace “notclosed” and “notopen” by their fuzzy interpretations
under I:

closed ← 0.4
open ← 0.6

The minimal fuzzy model of this program is exactly I. Hence, I was a stable guess and
we say that it is answer set of the program.

Note that Ix with Ix(open) = x and Ix(closed) = 1−x with x ∈ [0,1] are stable guesses
as well.

Definition 5. Consider a FASP program P and a fuzzy interpretation I. The reduct rI

of a rule r in P w.r.t. I is obtained by replacing all expressions of the form notj a by the
fuzzy interpretation [notj a]I . The reduct PI of P w.r.t. I is the set of rules

PI = {rI | r ∈ P}.

Note that this definition generalizes the well-known Gelfond-Lifschitz transformation
[9], used to transform general ASP programs to positive ASP programs.

Formally, we have the following definition.

Definition 6. Consider a FASP program P and a fuzzy interpretation I. I is called an
answer set of P iff I is an answer set of PI.

A FASP program can have several answer sets as in Example 5, or none at all, as in
Example 6.
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Example 6. Consider the program P consisting of the one rule

p ← not p

with “not” interpreted by the negator N : [0,1]→ [0,1] with N(x) = 0 if x > 0 and N(0) =
1. For each fuzzy interpretation I with I(p)> 0 we have that PI is is the positive program
consisting of the rule

p ← 0.

The unique minimal model of PI is J with J(p) = 0, hence our original guess I is clearly
not a minimal model of PI . If, on the other hand, we start with this fuzzy interpretation
J(p) = 0, then we obtain for PJ the rule

p ← 1.

J is not a fuzzy model of PJ , let alone a minimal fuzzy model. We conclude that P has
no answer sets.

However, if a different negator is used, this program can have an answer set for
instance if not is interpreted by the Łukasiewicz negator. For a guess M(p) = x with
x ∈ [0,1], we now obtain for PM the rule

p ← 1− x.

Hence, M is the minimal fuzzy model of PM if x = 1− x or x = 0.5.

By Definition 6 it follows that an answer set of a FASP program P is also a fuzzy model
of P. One can even prove that it must be a minimal fuzzy model of P [12]. The converse
however does not hold.

Example 7. Recall the program from Example 5

a ← a
0 ← nota

with “not” interpreted by the Łukasiewicz negator. The only minimal fuzzy model is
the fuzzy interpretation I such that I(a) = 1. However it is not an answer set since I is
not a minimal fuzzy model of

a ← a
0 ← 0

4 Motivating Example

Forest fires cause massive loss of vegetation and animal life. If a fire is detected on
time, suppression units are able to reach the fire in its initial stages which is important to
avoid huge losses. Moreover suppression costs will be considerably reduced. Wireless
sensor networks can be effectively used for this purpose [26]. These networks consist
of a number of devices that can sense their environment and communicate wirelessly.
We will use FASP to determine, given measurements made by the sensors about the
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temperature, if there are sensors that are not working optimally and if so, within what
range we can reasonably assume the temperature to be.

Suppose we have n sensors. By assuming an appropriate linear rescaling, we can see
temperature as a value in [0,1]. Although we will not be able to derive an exact temper-
ature, we will try to find a subinterval of [0,1] in which we may assume the temperature
to be. More specifically, for each sensor i ∈ {1, . . . ,n}, we denote the upper bound on
the exact temperature at its location as tup

i and the lower bound as tlow
i . The measured

temperature is t ′i . The sensor network defines a weighted graph G as follows. The ver-
tices are the sensors and there is an edge with weight wi j ∈ [0,1] between the vertices
corresponding to sensor i and sensor j. The value wi j is such that we can reasonably as-
sume, based on the locations of sensors i and j that the temperature difference between
these locations must be less than 1−wi j. Finally, we suppose that bi represents the error
on the temperature measured by sensor i.

We can write the following program P. For i, j ∈ {1, . . . ,n} we have the rules

1. tlow
i ← t ′i ⊗ notbi

2. tup
i ← t ′i ⊕ bi

3. bi ⊕ b j ← (t ′i � t ′j)⊗wi j

where we use the connectives from Łukasiewicz logic and assume that the negation-as-
failure operator is interpreted by the Łukasiewicz negation. The constants t ′i � t ′j, which
define the degree to which t ′i and t ′j are different are defined as 1− (t ′i ↔ t ′j) with ↔ the
Łukasiewicz biresiduum.

Rules 1 and 2 define the relationship between the actual and the measured tempera-
ture. For a fuzzy interpretation I to model these rules, it most hold for each sensor i that
I(t ′i )− I(bi)≤ I(tlow

i ) and I(t ′i )+ I(bi)≤ I(tup
i ). An answer set I is such that I(tup

i ) and
I(tlow

i ) will be chosen minimal. Rule 3 imposes that if the difference between t ′i and t ′j
is too large with respect to 1−wi j, then there must be something wrong with sensors
i and/or j. The semantics of FASP makes sure that the “total error” is distributed over
sensor i and j in a minimal way.

Consider as a concrete example a forest with three sensors. Suppose we have t ′1 =
0.4, t ′2 = 0.9 and t ′3 = 0.5 and w1,2 = 0.8, w1,3 = 0.8 and w2,3 = 0.8. Hence, we have
I(t ′1 � t ′2) = 0.5, I(t ′1 � t ′3) = 0.1 and I(t ′2 � t ′3) = 0.4.

For I to be a fuzzy model of rule 3, it most hold, for each sensor i that

max(I(t ′i � t ′j)+ I(wi j)− 1,0)≤ I(bi)+ I(b j),

or more specifically,

1. 0.3 ≤ I(b1)+ I(b2)
2. 0 ≤ I(b1)+ I(b3)
3. 0.2 ≤ I(b2)+ I(b3)

A possible “guess” for an answer set I could be such that I(b1) = 0.29, I(b2) = 0.01
and I(b3) = 0.19. From rules 1 and 2, we obtain that for I to be an answer set of P, i.e.
a minimal fuzzy model of PI , we must have I(tlow

1 ) = 0.11 and I(tup
1 ) = 0.69, I(tlow

2 ) =
0.89 and I(tup

2 ) = 0.91, I(tlow
3 ) = 0.31 and I(tup

3 ) = 0.69.
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Another possibility is a fuzzy interpretation J with J(b1) = 0.15, J(b2) = 0.15 and
J(b3) = 0.05.

The answer sets provide us with all possible ways in which the “total error” can be
“divided” over the sensors. For each such setting, we also obtain an upper and lower
bound on the actual temperature at the locations of the sensors.

5 Some Remarks about FASP

In ASP, there are two types of negation: negation-as-failure and strong negation. When
an atom a and its negation ¬a both appear in the head of rules, there is the possibility
of inconsistency. In a fuzzy context, the classical definition of consistency must be
modified since a literal a and its negation ¬a can be both true in a consistent way. One
solution could be to define fuzzy interpretations of a program P as elements in LP, i.e.
the set of literals in P and to add the rules 1 ← a⊕¬a for each a ∈ LP. In [25], degrees
of consistency of fuzzy interpretations are discussed.

Logic programming, which contains ASP as a special case, has had a significant
impact on the development of nonmonotonic logics and vice versa [2]. It is closely re-
lated to e.g. autoepistemic, equilibrium and default logic. Equilibrium logic [19] is one
of the most general approaches to ASP. Programs, seen as sets of formulas in equilib-
rium logic, can be arbitrary propositional theories without restrictions on where the two
types of negation may occur. When restricting to the syntax of ASP, there is a one-to-
one correspondence between the equilibrium models of a program and its answer sets.
This result is generalized to FASP in [21] by introducing a fuzzy equilibrium logic.
Even when very general constructs such as in this chapter are allowed, the answer sets
of a FASP program correspond to its fuzzy equilibrium models. Furthermore, a reduc-
tion from the problem of finding fuzzy equilibrium models to the problem of solving a
particular bilevel mixed integer program is proposed, allowing to implement reasoners
already existing for these types of problems for FASP. By using the complexity of fuzzy
equilibrium logic, it was also shown that computational complexity of FASP is equal to
that of ASP in the general case. This means that in general, adding fuzziness to ASP,
does not imply an increase in the computational complexity. In [4] some results about
the computational complexity of FASP with Łukasiewicz semantics are presented. For
simple programs a correspondence to an open problem was shown, which indicates that
setting the complexity may not be easy. However, there is P-membership for several
interesting subclasses. The correspondence between autoepistemic logic and ASP [14]
was generalized in [5].

As was illustrated by examples, some FASP programs have no solutions. In practice
however, it might be suitable to opt for an imperfect solution. One strategy is to add
weights to the rules in a FASP program: rules do not have to be satisfied to degree 1.
In [12], aggregated FASP is proposed. The idea is not to immediately state the extent
to which each rule should be satisfied, but to let an aggregator function determine an
overall score of suitability of a solution. Contrary to the case of classical ASP, there is
not yet an efficient FASP solver, even without considering aggregators. A well-known
technique for ASP consists of translating a program to a propositional theory whose
models correspond to the answer sets of the program. In [12] the first steps towards an
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efficient FASP solver are taken by generalizing the ideas of translating an ASP program
to a SAT instance. A FASP solver could then use existing techniques for solving fuzzy
satisfiability problems such as mixed integer programming. The completion of a FASP
program is introduced and it was shown that in case the program has no cyclic depen-
dencies, which induce so called loops, the models of this completion are the answer
sets of the original program. For programs that contain loops, a reduction to fuzzy SAT
is proposed using a generalization of the notion of loop formulas in ASP to FASP [12].
One of the most important issues that still need to be tackled for building a good solver
is optimizing the grounding of FASP programs.

6 Conclusions

We presented an introduction to fuzzy answer set programming, a recently developed
framework that is suitable for modeling search problems with continuous domains. The
syntax and semantics make FASP highly configurable and applicable in different do-
mains. However, a lot of topics still need to be investigated, FASP is by far not as devel-
oped as ASP. Little is known about the computational complexity of specific fragments
and there are almost no techniques available to actually calculate answer sets.
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Abstract. This paper presents the results of research devoted to the 
implementation of an intelligent information system for learning and control of 
knowledge. The system is developed in order to create an effective environment 
capable of providing high-quality training functions with minimal involvement of 
the teacher, and to ensure adequate control of learning processes of individuals. 
The basic principles of the presented research are methods of analysis and 
algorithmic behavior of the teacher delivering the training and control of 
knowledge. The system is equipped with multiple solutions to a number of issues: 
organizing information material, formalizing the meaning of question-answer 
pairs in different circumstances, and accounting subjective opinions of experts. 

Keywords: automated educational system, intelligent system, expert system, 
teacher’s behavior, learning format, control knowledge, subjective expert’s 
opinion, artificial neural networks, fuzzy logic, fuzzy rules, and linguistic 
variables. 

1 Introduction 

This paper presents the results of research activities related to the application of 
modern mathematical technologies, as well as methods of analytical and information 
modeling, to the development of an integrated learning system. The system provides 
students with the ability to study under the control of intelligent automated models 
and methods. Provided solutions, which are the fundamental elements presented here, 
have been evaluated to determine practical effectiveness of using the intelligent 
system in the learning process. Developed and implemented models and methods are 
capable of taking on intellectually complex tasks and carry out functions related to 
teaching and controlling knowledge procedures with minimal involvement of the 
teacher and the main educational institutions.  

This article describes the solution to a knowledge control process, which allows for 
a whole new way of determining the volume of knowledge provided to and absorbed 
by a student. We study the algorithm of managing knowledge based on selection of 
questions corresponding to the current level of student’s knowledge, as well as on 
determining the basic misconceptions and knowledge gaps.  
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The developed decision-making algorithm is potentially able to determine the 
knowledge of students based on a minimum possible number of questions with 
accuracy comparable to traditional methods of examination carried out by teachers. 
The developed decision-making block uses fuzzy neural network technologies in 
combination with a knowledge base. It brings a new level of quality to decision-
making processes. Its flexibility and transparency allows for easy modifications so it 
can work with practically with any educational material. 

The proposed system is equipped with methods suitable for visualization of the 
outcome of the learning process, and building a “map of student” that allows a teacher 
to estimate, in a matter of seconds, the volume and quality of academic material 
learned by a student. 

The methodology applied to the development of software package called Intelligent 
Information Systems Learning and Control Knowledge Student (IISLCKS) has been 
proposed. Multiple aspects of the system are analyzed and studied in [13, 14]. 

2 The Principles of Presentation Information Resources in 
System and the Functioning the Block of Control of the 
Educational Materials 

At the initial stage of designing a complex system, one should plan for analysis of 
curriculum that ought to be split into separate educational materials (EMs). As the 
EMs, we understand the objects, phenomena, concepts and methods relevant to a 
specific domain of science and selected as topics that need to be covered in the 
process of education, Figure 1.  

The set of EMs can be represented as a tree – a directed graph of the course content 
reflecting its hierarchical structure. Nodes (vertices) of a graph are single EMs, while 
the edges represent hierarchical relationships between them. 

 

 

Fig. 1. The general model of a database of educational materials 
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The formation of a graph requires following the rules for constructing a 
hierarchical tree structure. For example, the presence of individual nodes that are not 
associated with higher-level nodes in the hierarchy of the EMs is unacceptable except 
for the root. At the same time, the group of EM nodes at any level should be 
implemented using a general principle of building trees. 

In parallel with the construction of the graph, there is a need to compile a table of 
the EMs. The table, that requires the EMs’ names, is similar to the table of content of 
the educational materials split (pre-processed) into chapters, sections, and paragraphs. 
However, the construction of the graph of educational material does not require, as 
opposed to chapters of contents, taking care of the sequence of EM statements. It is 
important to display a hierarchical structure of educational material. 

After structuring and selecting the content of educational material, it is necessary 
to formulate the requirements regarding desired levels of presentation (visibility), 
easiness of learning, and automation (for example, for practical and laboratory 
classes). At the same time, for every EM it is necessary to generate two items: 1) the 
required level of initial knowledge that a student should have as a result of previous 
learning activities in other disciplines or subjects; and 2) the level that needs to be 
reached when the learning of a specific EM is successful. The educational material, 
represented a directed graph, is a set of interconnected various educational courses or 
individual topics in one academic discipline, Figure 2. 

 

 

Fig. 2. Union of the set of educational fragments in the volume of knowledge eliminate some 
misconceptions 
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• generate complete representation of the content of educational material, both for 
developers and users of the complex (teachers and students); 

• generate requirements for the type, number and sequence of exercises for 
comprehension and consolidation of the theoretical material. 

 

 

Fig. 3. The breakdown of educational materials to the minimum meaningful fragments 

However, the model of the content of educational material does not contain 
answers to questions related to EMs, the sequence in which the EMs should be 
studied, as well as logical connection between them. These issues are considered 
during development of educational material. 

The part of the system that controls the students' knowledge is based on the formal 
representation of the educational process. In some areas of science and technology, 
the educational material is divided into specific logically interconnected groups of 
courses, Figure 3. A set of educational materials (Ω) consists of subsets of educational 
courses (ω), and a complex network of intersected subsets, Figure 4. 

 

 

Fig. 4. Compilation of a set of questions determining understanding of a fragment of EM 

An educational course (ω) consists of educational elements, which can be 
described as the head of the relevant courses, Figure 5. 

The knowledge control system is based on question-answer objects representing 
links between the three components – information materials, the modulus of 
knowledge controls, and a student. The concept of question-answers (Α) is illustrated 
in Figure 6. Even if questions are not so critical for the traditional learning processes, 
they play an important role in the proposed system.  

 

A fragment of educational 
material Mi 

Educational material  

A fragment of educational 
material Mi+1 

 

Creating by specialist set of 
questions specifically designed 
to determine the understanding 
of the selection fragment 

Set of questions 
{Qi} 

A fragment of 
educational material Mi 



 Applied Research in the Field of Automation of Learning and Knowledge Control 227 

 

Fig. 5. The structure of educational resources 

Wrong answers are pointers to the relevant sections of the knowledge. An 
important feature of the developed system for knowledge control is its flexibility in 
evaluation of incorrect answers. Incorrect answers are used to determine the student’s 
level of error. For example, if the “value” of a correct answer is 100 points, then for 
incorrect answers give the student a number of points reflecting the error of a 
classification process – a distance from the correct answer. 

 

 

Fig. 6. Incorrect answers defining lack of understanding of educational material 
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Fig. 7. Communication incorrect version of answers with relevant educational courses 

remote to a student. Consideration of personal characteristics of students allows for 
simple indicators of successful testing, as well as recognizing person’s advantages 
and disadvantages. All this leads to the construction of more accurate individual 
training plans. 
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Fig. 8. Block diagram of the educational process 

of not absorbing necessary amounts of educational material due to the weak capacity 
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educational material allows a more objective identification of prioirty relations and 
logical connections between the EMs. 

The finalizing and improving of the model of educational materials include a 
sequence of manual steps. Many of these steps depend on the success of the 
educational process, and are directly related to the results of student knowledge 
evaluation processes obtained during control procedures. All this leads to the 
indiviually contrcuted curricula.  

An importnat element of the learning system is its ability to make decisions 
regarding the level of difficulty of questions which shouldbe be asked to students. 
This should be preformed based on the result of answerings previous questions. The 
solution to this problem depends on many parameters, most of which are unknown to 
the system. A fairly accurate answer can be found with the help of mathematical 
apparatus of fuzzy logic. 

The analysis of current situation depends on the following: 

• questions correctly answered by a student; 
• questions answered incorrectly; 
• preliminary analysis of student’s abilities; 
• the number of correct answers to questions, coupled with their difficulty with 

respect to errors. 

This list reflects the real computational tasks. A decision-making process is carried 
out in order to select questions, which according to the program, correspond to 
student's abilities. An incorrect answer triggers a re-evaluation process of the data 
about the student, and the next time she will be given less difficult questions. In the 
case of a correct answer, the program asks questions with progressive difficulty. This 
decision-making method allows an individual to make a progress during the learning 
process. Furthermore, it gives the most accurate evaluation of the student abilities. 

At the end of the evaluation process, when a student and teacher want to sum up 
the results of the educational session, the number of correct answers and their 
complexity is available to the analysis program. The program updates the relevant 
database records of the student, and then begins the process of analysis that aims at 
providing updated and correct information about the student. This information can 
include: the current level of intelligence of the student; the comparison with the 
previous results of analysis of responses to which the student answered incorrectly, 
the visualization of the correct answers with commentary, as well as comments 
provided by the teacher while entering question into the database. 

The importance of evaluation of the executed tests could be adjusted by the 
program and/or by the teacher. This approach allows for performing individual pre-
tests and tests at different levels of difficulty. 

As it has been previously stated due to the large number of external parameters a 
decision-making process is done with the help of the mathematical apparatus of fuzzy 
logic. The responsible subsystem also includes conducting tests that satisfy the 
following requirements: 
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1. protecting answers from unauthorized access; 
2. preventing a student from modification of the number of correct answers to 

questions; 
3. providing equal conditions for all tests. 

 

During the process of testing, the next question is read from the database based on the 
inference results obtained from the Knowledge Base, located in the local network. 
The question is displayed in a form convenient for a student. 
 

 

Fig. 9. A simplified diagram of the control system of knowledge 

The Knowledge Base consists of fuzzy rules (1), which are detailed consideration 
of earlier logical constructions that interpret the data obtained by the fuzzy neural 
block [2, 4, 5]. 

 

 (1) 

The selection of questions is done by execution of several fuzzy expressions, whose 
ultimate aim is to transfer its results to the decision-making block. The algorithm of 
sampling the first and subsequent questions is based on the results of the following 
tasks, Figure 9: 

1. preliminary analysis of the student's knowledge – this task is to evaluate the 
student's knowledge, to select the first question: a lagging student will be asked a 
question from a group of simple questions, whereas the prepared student will be 
given more a difficult question, Figure 10; 
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Fig. 10. The strategy of selecting the first question 

Below, there are formulas that describe one of the functions of the decision-
making block. They are related to the selection of the next question, which 
corresponds to the student's knowledge. With the correct answer program will 
select a more difficult question (2). An incorrect answer revaluation data about 
the student and the next will be given less difficult question (3). 

2. selection of the next question if the previous question is answered correctly - in 
this case, a student is asked the question of increased complexity, Figure 11. The 
simplified formula used to select the next question would be: IF ሺYA ୮୰ୣ୴୧୭୳ୱ A୬ୱ୵ୣ୰ ൌ Trueሻ THEN fT୦ୣ ୡ୭୰୰ୣୡ୲ ୟ୬ୱ୵ୣ୰I୬ୡ୰ୣୟୱ୧୬୥ ୢ୧୤f୧ୡ୳୪୲୷൫QT୦ୣ ୢ୧୤୤୳ୡ୳୪୲୷ ୭୤ ୲୦ୣ ୯୳ୣୱ୲୧୭୬൯ 

 (2) 

where, Q - the next question, (A+) - the level of the correct answer, Max (A+) - the 
maximum difficulty level of questions to which the student gave the correct answer, 
(A-) - value of the difficulty level of an incorrect response, Max (A-) - the maximum 
level of difficulty of questions to which a student gave a wrong answer, if there are 
 

 

Fig. 11. Selection strategy question after correct answer 
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not wrong answers (the student answered all questions correctly) the default value of 
the maximum is taken, ± 2% - a maximum deviation in the range of which the next 
question is randomly selected. 

3. selection of the next question if the previous question is answered incorrectly - in 
this case for complexity is reduced (Fig.12), the formula for selection of the next 
question would be: 

 IF ሺYA ୮୰ୣ୴୧୭୳ୱ A୬ୱ୵ୣ୰ ൌ ሻ THEN fT୦ୣ ୧୬ୡ୭୰୰ୣୡ୲ ୟ୬ୱ୵ୣ୰I୬ୡ୰ୣୟୱ୧୬୥ ୢ୧୤f୧ୡ୳୪୲୷݁ݏ݈ܽܨ ൫QT୦ୣ ୢ୧୤୤୳ୡ୳୪୲୷ ୭୤ ୲୦ୣ ୯୳ୣୱ୲୧୭୬൯     
 

 (3) 

 

 

Fig. 12. Strategy selection the next question after incorrect answer 

Maximum deviation creates a situation where for every group of students we do 
not have two students who will be asked the same questions even if the order of 
correct and incorrect answers is the same [7, 12, 14, 16]. 

4. processing the results and calculating a decision regarding continuation or 
termination of a testing/evaluation process – the number of correct answers is 
multiplied by their difficulty in respect to errors, multiple correct and incorrect 
answers are considered in order to performed evaluation, however if there is a 
high probability of uncertainty, a testing/evaluation process continues. 

 (4) 

where, Z - evaluation of knowledge, P - uncertainty evaluation, f – input to the 
decision-making subprogram has the following characteristics: (Ai) - the set of values  
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representing levels of difficulty of correct answers, (Aj-) - the set of difficulty levels 
of incorrect answers, N – the number of questions that received correct answers, M – 
the number of questions that received the incorrect answers.  

The obtained complex number, formula (4), is a response of decision-making 
subprogram, which characterizes the evaluation of students' knowledge with some 
uncertainty [17, 18]. This uncertainty represents a level of confidence in the 
evaluation performed by decision-making block. Its value reflects the coverage of 
educational course, the higher the coverage, the less uncertainty, this in turn depends 
on the number of questions (Figure 13). For example, a given student can answer a 
small number of questions, and receive excellent evaluation, but the uncertainty in 
this case is very high. So, it is difficult to determine a proper number of questions that 
the student should be asked in order cover a meaningful amount of the educational 
course. 

 

 

Fig. 13. An example of the distribution of answers at the end of testing 

Thus, the system is equipped with a flexible algorithm for questioning. The teacher 
decides how much of the educational course needs to be included in questions, as well 
as the number of questions the student should be asked to determine the quality of 
students' knowledge. It could be for an interim test and a small volume of the 
educational course (10-20 questions - 20-30 minutes), or for a full-scale examination 
of the whole volume of the studied material (100-150 questions - 3-4 hours). 

In the process, students can not only determine their knowledge, but also learn to 
analyze their own mistakes, which affect the generation of the curriculum. By 
achieving stable results in questions about a specific topic, students can go to the 
following sections of the course. 

Aliasing in the training will give the necessary time to complete assimilation and 
retention of material, and then transition to a new, more difficult material. Each 
transition is accompanied by a small test on the previous analysis of the material with 
its absorption. 

 

+ 
++

+
++-

++
-

-

+
+

-
-

-

+

+
+-

+

+-

-

+

-
-

-



 Applied Research in the Field of Automation of Learning and Knowledge Control 235 

4 Definition of Membership Functions, the Principle of 
Defuzzification and Hybrid Method Correction Valuation  
of Errors 

Using a threshold function of the logical structure constructed with application, the 
apparatus of fuzzy logic allowed us to avoid the problem of neural networks "black 
box" and use instead the scalar values of the weights and activation functions - a set 
of fuzzy expressions [10]. 

Initially, the decision-making bloc was developed based on two parallel 
technologies of fuzzy logic and neural networks. However, in many situations, the 
neural network was proved to be of a little use because of the impossibility to 
logically control and interpret the results [3, 9]. The transition to the use of a fuzzy 
neuron allowed qualitatively improves the mechanism of interim solutions, and 
simplifying the debugging and network training [6, 8]. 

The input fuzzy neurons use signal Xi to calculate the sum  

based on the size of fuzzy weights  and inputs
 

, and taking into 

account the correction factor . 
Visually, the fuzzy neuron used in the system is shown in Figure 14 [11, 19]. 

 

 

Fig. 14. The general scheme of the structure of a fuzzy neuron 

 

Fig. 15. The standard curve is a function of defuzzification: a) to evaluate the credited / not 
credited; b) to evaluate on a scale 
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Each signal, coming through the filter (configured to limit weak signals), is 
transformed into the domain of fuzzy sets associated with the available levels of 
activations. An output signal represents the aggregated value of system response 
signals passing through the defuzzification function, Figure 15. The output is a scalar 
representation of the fuzzy variable block included in the decision-making block. 

The real scheme of the structure of fuzzy neural network used for the experiments 
is based on the well-proven technology ANFIS (Adaptive Neuro Fuzzy Inference 
System). Its realization for use in the educational system environment is shown in 
Figure 16 [1]. 

 

Fig. 16. Diagram of the structure of fuzzy neural network 

In learning and testing phases of the fuzzy neural networks two evaluation 
techniques have been used to determine the quality of a decision-making: the 
traditional procedure of testing, and evaluation performed by the teacher. 

During the experiments on various configurations of neural networks a single 
network has been selected. It has the mean square error equal to 0.227. Also, it was 
subjected to ten pilot phases involving groups of 5-6 subjects. The error was obtained 
by measuring the deviation between the evaluations of the student’s knowledge 
provided by the teacher and the usual procedure of testing a specific curriculum. In 
calculating the evaluations, the confidence coefficients have been introduced: 3 for 
the teacher, and 1 for the evaluation obtained by the tests. 

By the end of the learning procedures the obtained fuzzy neuron has been a system: 
{fuzzy signal} => {fuzzy activation function} => {fuzzy output} with the fuzzy 
output of a time variable representing the total representation of signals generated by 
the decision making block. 
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Fig. 17. An example of the resulting evaluation according to on the distribution and 
effectiveness of answers at the end of testing 

Figure 17 shows the fuzzy function of knowledge evaluation that is convenient for 
processing in the computing environment. It represents the evaluation of student 
knowledge. 

5 The General Model of Implementation of the Control 
Knowledge System 

One of the most important factors influencing selection of models is related to 
simplicity and easiness of deploying the software package at virtually any educational 
institution. The only equipment needed is the hardware database server, which can be 
either a single server or a cluster with at least one server operating under a single 
management. 

 

 

Fig. 18. The architecture of the system 

All the logic of the system lies in the Web-application software. One of the most 
important parts of which is a knowledge control subsystem. During its development, 
the most perspective algorithms intellectualizing information processes have been 
used. As mentioned above, the basis of its power and flexibility is to use a 
combination of fuzzy logic and fuzzy neural network, Figure 19. 
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Fig. 19. The subsystem of decision-making 

For implementing security policies in the system we have introduced several 
categories of users and define their roles and functional features in IISLCKS: 

• Customers may be of two types: internal and external. An internal customer is 
anyone physically present at the university, and working on local computers. All 
queries of these customers are processed via the internal server. An external 
visitor can access the system through the Internet gateways. 

• Authorized users are the users of information system, equipped with rights 
defined by the security policy: 

1) students – they are authorized users, registered in the system as consumers of 
services; 
2) corporate users – the authorized users, who are employees of educational 
institutions; 
3) content managers – corporate users who have rights to change data in a 
database information system.  

Depending on the level of access we distinguish: 

1) Teachers who have rights to add and edit their own training materials, and 
can be associated with a specific number of students.  

2) Application administrators who are corporate users and have the rights to 
modify directories, shareware, information, lists of users. Application 
administrators shall assign permissions to users of information systems. 

3) System administrators who ensure the normal functioning of information 
system, backing up and restoring data, carry out procedural maintenance 
work on the system, control system security logs, and carry out the 
monitoring of system resources. 

The system’s kernel allows teachers to create basis educational processes that satisfy 
the needs of a wide range of educational institutions, built educational materials 
which can be formalized, and build decisions making mechanisms expressed in the 
form of logical expressions. The structure of the access levels is simplistic, but at the 
same time providing the necessary protection and flexibility, Figure 20. 
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The access control mechanism consists of two groups of three-level privileges. 
This model is powerful enough and yet simple and functional, that fully satisfies the 
practical conditions and safety requirements. 
 

 

Fig. 20. The hierarchy of levels of access control systems 

6 Conclusion 

This article presents the results of analytical work and modeling of information, 
which allows us to formulate and develop a set of models and methods required for 
building an autonomous learning system. The developed approaches deal with a 
complex set of functions required by teaching processes as well as the knowledge 
control procedures with minimum participation of teachers and the majors of 
educational institutions. 

The presented solution for the control of knowledge brings the process of 
determining the volume of knowledge provided to each student to a whole new level. 
This algorithm is based on the original method of sample questions. Thanks to it, the 
system matches the current level of knowledge of students to the level of difficult of 
questions, as well as is able to determine the basic misconceptions and knowledge 
gaps. 

Developed algorithm of decision-making is able to determine the level of 
knowledge of each student based on the smallest possible number of questions. This 
allows for quick evaluation of the knowledge with a high level of reliability 
comparable to the traditional method of survey, carried out by the teacher. 

The decision-making block, built on fuzzy neural network technology coupled with 
a knowledge base containing a set of fuzzy rules, enables making well-balanced 
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decisions. Flexibility and logic transparency of the approach allows its modifications 
so it can easily work with virtually any educational material. 

The methodology required for development of the software package IISLCKS is 
presented. All aspects of the system are analyzed and investigated.  
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Bio-inspired Optimization of Interval Type-2 Fuzzy 
Controllers 
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Abstract. A review of the optimization methods used in the design of type-2 
fuzzy systems, which are relatively novel models of imprecision, has been con-
sidered in this paper. The fundamental focus of the work has been based on the 
basic reasons of the need for optimizing type-2 fuzzy systems for different areas 
of application. Recently, bio-inspired methods have emerged as powerful opti-
mization algorithms for solving complex problems. In the case of designing 
type-2 fuzzy systems for particular applications, the use of bio-inspired optimi-
zation methods have helped in the complex task of finding the appropriate pa-
rameter values and structure of the fuzzy systems. In this paper, we consider the 
application of genetic algorithms, particle swarm optimization and ant colony 
optimization as three different paradigms that help in the design of optimal 
type-2 fuzzy systems. We also provide a comparison of the different optimiza-
tion methods for the case of designing type-2 fuzzy systems. 

Keywords: Intelligent Control, Type-2 Fuzzy Logic, Interval Fuzzy Logic. 

1 Introduction 

Uncertainty affects decision-making and appears in a number of different forms. The 
concept of information is fully connected with the concept of uncertainty [17]. The 
most fundamental aspect of this connection is that the uncertainty involved in any 
problem-solving situation is a result of some information deficiency, which may be 
incomplete, imprecise, fragmentary, not fully reliable, vague, contradictory, or defi-
cient in some other way.  Uncertainty is an attribute of information [24].  The general 
framework of fuzzy reasoning allows handling much of this uncertainty and fuzzy 
systems that employ type-1 fuzzy sets represent uncertainty by numbers in the range 
[0, 1].  When something is uncertain, like a measurement, it is difficult to determine 
its exact value, and of course type-1 fuzzy sets make more sense than using crisp sets 
[14].  However, it is not reasonable to use an accurate membership function for some-
thing uncertain, so in this case what we need is higher order fuzzy sets, those which 
are able to handle these uncertainties, like the so called type-2 fuzzy sets [14].  So, the 
amount of uncertainty can be managed by using type-2 fuzzy logic because it offers 
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better capabilities to handle linguistic uncertainties by modeling vagueness and unre-
liability of information [5] [23]. 

Recently, we have seen the use of type-2 fuzzy sets in Fuzzy Logic Systems (FLS) 
in different areas of application [1] [2] [6] [10] [12]. In this paper we deal with the 
application of interval type-2 fuzzy control to non-linear dynamic systems [3] [4] [5] 
[15] [19].  It is a well known fact, that in the control of real systems, the instrumenta-
tion elements (instrumentation amplifier, sensors, digital to analog, analog to digital 
converters, etc.) introduce some sort of unpredictable values in the information that 
has been collected [20].  So, the controllers designed under idealized conditions tend 
to behave in an inappropriate manner [11]. 

2 Fuzzy Logic Systems 

In this section, a brief overview of type-1 and type-2 fuzzy systems is presented. This 
overview is considered to be necessary to understand the basic concepts needed to 
develop the methods and algorithms presented later in the paper. 

2.1 Type-1 Fuzzy Logic Systems 

Soft computing techniques have become an important research topic, which can be 
applied in the design of intelligent controllers, which utilize the human experience in 
a more natural form than the conventional mathematical approach [16, 18]. A FLS, 
described completely in terms of type-1 fuzzy sets is called a type-1 fuzzy logic sys-
tem (type-1 FLS). In this paper, the fuzzy controller has two input variables, which 
are the error e(t) and the error variation Δe(t), 

)()()( tytrte −=  
(1) 

)1()()( −−=Δ tetete  
(2) 

so the control system can be represented as in Figure 1. 

 

Fig. 1. System used for obtaining the experimental results 
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2.2 Type-2 Fuzzy Logic Systems 

If for a type-1 membership function, as in Figure 2, we blur it to the left and to the 
right, as illustrated in Figure 3, then a type-2 membership function is obtained. In this 
case, for a specific value 'x , the membership function ( 'u ), takes on different values, 
which are not all weighted the same, so we can assign an amplitude distribution to all 
of those points.  

 
Fig. 2. Type-1 membership function 

 
Fig. 3. Blurred type-1 membership function 

A type-2 fuzzy set A~ , is characterized by the membership function [14, 17]: 

( ){ }]1,0[,|),(),,(~
~ ⊆∈∀∈∀= xA JuXxuxuxA μ  (3) 

in which 1),(0 ~ ≤≤ uxAμ .  Another expression for A~  is, 

),/(),(
~

~ uxuxA
Xx Ju A

x
 ∈ ∈

= μ      ]1,0[⊆xJ  (4) 

Where   denotes the union over all admissible input variables x and u.  For dis-

crete universes of discourse  is replaced by  .  In fact ]1,0[⊆xJ  represents 
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the primary membership of x, and ),(~ uxAμ is a type-1 fuzzy set known as the sec-

ondary set.  Hence, a type-2 membership grade can be any subset in [0,1], the primary 
membership, and corresponding to each primary membership, there is a secondary 
membership (which can also be in [0,1]) that defines the possibilities for the primary 
membership. Uncertainty is represented by a region, which is called the footprint of 

uncertainty (FOU). When ]1,0[,1),(~ ⊆∈∀= xA Juuxμ  we have an interval 

type-2 membership function, as shown in Figure 4.  The uniform shading for the FOU 
represents the entire interval type-2 fuzzy set and it can be described in terms of an 

upper membership function )(~ xAμ and a lower membership function )(~ xAμ .  

A FLS described using at least one type-2 fuzzy set is called a type-2 FLS.  Type-1 
FLSs are unable to directly handle rule uncertainties, because they use type-1 fuzzy 
sets that are certain [14].  On the other hand, type-2 FLSs, are very useful in circum-
stances where it is difficult to determine an exact membership function, and there are 
measurement uncertainties [7, 8, 15]. 

 
Fig. 4. Interval type-2 membership function 

A type-2 FLS is again characterized by IF-THEN rules, but its antecedent or con-
sequent sets are now of type-2. Similar to a type-1 FLS, a type-2 FLS includes a 
fuzzifier, a rule base, fuzzy inference engine, and an output processor, as we can see 
in Figure 5. The output processor includes type-reducer and defuzzifier; it generates a 
type-1 fuzzy set output (type-reducer) or a crisp number (defuzzifier).   

 

Fig. 5. Type-2 Fuzzy Logic System 
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2.2.1   Fuzzifier 
The fuzzifier maps a crisp point x=(x1,…,xp)

T ∈X1xX2x…xXp ≡ X  into a type-2 fuzzy 

set xA
~

in X [17], interval type-2 fuzzy sets in this case.  We will use type-2 singleton 

fuzzifier, in a singleton fuzzification, the input fuzzy set has only a single point on 

nonzero membership [14].  xA
~

is a type-2 fuzzy singleton if 1/1)x(
xA

~ =μ  for x=x' 

and 0/1)x(
xA

~ =μ  for all other x≠x'[17]. 

2.2.2   Rules 
The structure of rules in a type-1 FLS and a type-2 FLS is the same, but in the latter 
the antecedents and the consequents will be represented by type-2 fuzzy sets.  So for a 
type-2 FLS with p inputs x1∈X1,…,xp ∈Xp  and one output y∈Y, Multiple Input Sin-
gle Output (MISO), if we assume there are M rules, the lth rule in the type-2 FLS can 
be written as follows [14]: 

Rl: IF x1 is lF1
~ and ···and xp is l

pF~  , THEN y is lG~       l=1,…,M (5) 

2.2.3   Inference 
In the type-2 FLS, the inference engine combines rules and gives a mapping from 
input type-2 fuzzy sets to output type-2 fuzzy sets.  It is necessary to compute the join 

⊔, (unions) and the meet Π (intersections), as well as extended sup-star compositions 

(sup star compositions) of type-2 relations [14].  If l
p

ll AFF ~~~
1 =××L , equation (5) 

can be re-written as 
lll

p
lll GAGFFR ~~~~~: 1 →=→××L     l=1,…,M (6) 

Rl is described by the membership function ),,...,(),( 1 yxxy pRR ll μμ =x , where 

),(),( ~~ yy lll GAR
xx →= μμ  (7) 

can be written as [14]: 

)(),(),( 1~~~
1

xyy llll FGAR
μμμ == → xx  Π···Π )(~ pF

xl
p

μ Π )(~ ylG
μ   

                    = [Π p
i 1= )(~ iF

x
i

lμ ]Π )(~ ylG
μ  (8) 

In general, the p-dimensional input to Rl is given by the type-2 fuzzy set xA~ whose 

membership function is 

)()( 1~~
1

xxAx
μμ =x  Π···Π )(~ ppx xμ =Π p

i 1= )(~ iix xμ  (9) 

where ),...,1(~ piX i = are the labels of the fuzzy sets describing the inputs.  Each rule 

Rl determines a type-2 fuzzy set l
x

l RAB o~~ = such that [14]: 

== l
x

l RAB
y

o~~ )( μμ ⊔ [ )(~ xX xAx μ∈ Π ]),( ylR
xμ       y∈Y  l=1,…,M (10) 
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This equation is the input/output relation in Figure 5 between the type-2 fuzzy set that 
activates one rule in the inference engine and the type-2 fuzzy set at the output of that 
engine [14]. In the FLS we used interval type-2 fuzzy sets and meet under product t-
norm, so the result of the input and antecedent operations, which are contained in the 

firing set Π )'(( '
~1 xl

iF
p
i Fx

ii
≡= μ , is an interval type-1 set [14], 


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


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l
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where 

)(**)()'( '

~

'
1

~
1

p
FF

l xxf
l

p
l −−−

= μμ Lx  (12) 

)(**)()'( '
~

'
1~

1 pFF

l

xxf l
p

l

−−−
= μμ Lx  (13) 

where * is the product operation. 

2.2.4   Type Reducer  

The type-reducer generates a type-1 fuzzy set output, which is then converted in a 
crisp output through the defuzzifier.  This type-1 fuzzy set is also an interval set, for 
the case of our FLS we used center of sets (cos) type reduction, Ycos which is ex-
pressed as [14]:  
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this interval set is determined by its two end points, yl and yr, which corresponds to 

the centroid of the type-2 interval consequent set iG
~

[14],  
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before the computation of  Ycos (x), we must evaluate equation (15), and its two end 
points, yl and yr.  If the values of fi and yi that are associated with yl are denoted fl

i and 
yl

i, respectively, and the values of fi and yi that are associated with yr are denoted fr
i 

and yr
i, respectively, from (14), we have [14]  
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2.2.5   Defuzzifier  

From the type-reducer we obtain an interval set Ycos, to defuzzify it we use the average 
of yl and yr, so the defuzzified output of an interval singleton type-2 FLS is [14]  

2
)( rl yy

y
+

=x  (18) 

3 Bio-inspired Optimization Methods 

In this section a brief overview of the basic concepts from bio-inspired optimization 
methods needed for this work is presented. 

3.1 Particle Swarm Optimization 

Particle swarm optimization is a population based stochastic optimization technique 
developed by Eberhart and Kennedy in 1995, inspired by social behavior of bird 
flocking or fish schooling [1]. PSO shares many similarities with evolutionary com-
putation techniques such as the GA [9]. 

The system is initialized with a population of random solutions and searches for 
optima by updating generations. However, unlike the GA, the PSO has no evolution 
operators such as crossover and mutation. In the PSO, the potential solutions, called 
particles, fly through the problem space by following the current optimum particles 
[16]. Each particle keeps track of its coordinates in the problem space, which are as-
sociated with the best solution (fitness) it has achieved so far (The fitness value is also 
stored). This value is called pbest. Another "best" value that is tracked by the particle 
swarm optimizer is the best value, obtained so far by any particle in the neighbors of 
the particle. This location is called lbest. When a particle takes all the population as its 
topological neighbors, the best value is a global best and is called gbest [19]. 

The particle swarm optimization concept consists of, at each time step, changing 
the velocity of (accelerating) each particle toward its pbest and lbest locations (local 
version of PSO). Acceleration is weighted by a random term, with separate random 
numbers being generated for acceleration toward pbest and lbest locations [1]. In the 
past several years, PSO has been successfully applied in many research and applica-
tion areas. It is demonstrated that PSO gets better results in a faster, cheaper way 
when compared with other methods [19]. Another reason that PSO is attractive is that 
there are few parameters to adjust. One version, with slight variations, works well in a 
wide variety of applications. Particle swarm optimization has been considered for 
approaches that can be used across a wide range of applications, as well as for specif-
ic applications focused on a specific requirement. 

The basic algorithm of PSO has the following nomenclature: 

x
i

z
      -Particle position 

v
i

z
       -Particle velocity 
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wij       
-Inertia weight 

p
i

z
      -Best “remembered” individual particle position 

p
g

z

      -Best “remembered” swarm position 

cc 21
,   -Cognitive and Social parameters 

rr 21
,   -Random numbers between 0 and 1 

The equation to calculate the velocity is: 
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z 22111
                          (19) 

and the position of the individual particles is updated as follows: 

vxx
i

z

i

z

i

z 11 ++
+=                                                      (20) 

The basic PSO algorithm is defined as follows: 

1) Initialize 

a) Set constants ccz 21max
,,  

b) Randomly initialize particle position Dxi ∈0  in Rn for pi ,...,1=  

c) Randomly initialize particle velocities vvi max
000 ≤≤  for  pi ,...,1=  

d) Set Z = 1 

2) Optimize 

a) Evaluate function value f
i

k
using design space coordinates x

i

k
 

b) If ff
i

best

i

z
≤ then xpff i

z

i

z

i

z

i

best
== , . 

c) If ff
g

best

i

z
≤ then xpff i

z

g

z

i

z

g

best
== , . 

d) If stopping condition is satisfied then go to 3. 

e) Update all particle velocities v
i

z
 for pi ,...,1=  

f) Update al particle positions x
i

z
 for pi ,...,1=  

g) Increment z. 
h) Goto 2(a). 

3) Terminate 
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3.2 Genetic Algorithms 

Genetic Algorithms (GAs) are adaptive heuristic search algorithms based on the evo-
lutionary ideas of natural selection and genetic processes [8]. The basic principles of 
GAs were first proposed by John Holland in 1975, inspired by the mechanism of natu-
ral selection, where stronger individuals are likely the winners in a competing envi-
ronment [9]. GA assumes that the potential solution of any problem is an individual 
and can be represented by a set of parameters. These parameters are regarded as the 
genes of a chromosome and can be structured by a string of values in binary form. A 
positive value, generally known as a fitness value, is used to reflect the degree of 
"goodness" of the chromosome for the problem, which would be highly related with 
its objective value. The pseudocode of a GA is as follows: 

1. Start with a randomly generated population of n chromosomes (candidate  
solutions to a problem). 

2. Calculate the fitness of each chromosome in the population. 
3. Repeat the following steps until n offspring have been created: 

a. Select a pair of parent chromosomes from the current population, 
the probability of selection being an increasing function of fitness. 
Selection is done with replacement, meaning that the same chromo-
some can be selected more than once to become a parent. 

b. With probability (crossover rate), perform crossover to the pair at a 
randomly chosen point to a form two offspring.  

c. Mutate the two offspring at each locus with probability (mutation 
rate), and place the resulting chromosomes in the new population. 

4. Replace the current population with the new population. 
5. Go to step 2. 

The simple procedure just described above is the basis for most applications of GAs 
found in the literature [21] [22]. 

3.3 Ant Colony Optimization 

Ant Colony Optimization (ACO) is a probabilistic technique that can be used for solv-
ing problems that can be reduced to finding good paths along graphs. This method is 
inspired on the behavior presented by ants in finding paths from the nest or colony to 
the food source. 

The S-ACO is an algorithmic implementation that adapts the behavior of real ants 
to solutions of minimum cost path problems on graphs [12]. A number of artificial 
ants build solutions for a certain optimization problem and exchange information 
about the quality of these solutions making allusion to the communication system of 
real ants [13]. 

Let us define the graph G = (V, E), where V is the set of nodes and E is the matrix 

of the links between nodes. G has VnG = nodes. Let us define KL  as the number of 

hops in the path built by the ant k from the origin node to the destiny node. Therefore, 
it is necessary to find: 
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Q = { Cqqq fa ∈1,..., } (21) 

where Q is the set of nodes representing a continuous path with no obsta-

cles; , ...,a fq q are former nodes of the path and C is the set of possible configurations 

of the free space. If xk(t) denotes a Q solution in time t, f(xk(t)) expresses the quality of 
the solution. The S-ACO algorithm is based on Equations (22), (23) and (24): 
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Equation (22) represents the probability for an ant k located on a node i selects the 

next node denoted by j,   where, k
iN  is the set of feasible nodes (in a neighborhood) 

connected to node i with respect to ant k, ijτ is the total pheromone concentration of 

link ij, and α is a positive constant used as a gain for the pheromone influence. 
Equation (23) represents the evaporation pheromone update, where ]1,0[∈ρ  is 

the evaporation rate value of the pheromone trail. The evaporation is added to the 
algorithm in order to force the exploration of the ants, and avoid premature conver-
gence to sub-optimal solutions. For 1=ρ  the search becomes completely random. 

Equation (24), represents the concentration pheromone update, where k
ijτΔ  is the 

amount of pheromone that an ant k deposits in a link ij in a time t. 
The general steps of S-ACO are the following: 

1. Set a pheromone concentration τij to each link (i,j).  
2. Place a number k=1, 2,…, nk in the nest. 
3. Iteratively build a path to the food source (destiny node), using Equation (22) for 

every ant. 

• Remove cycles and compute each route weight ( )( )kf x t . A cycle could be gen-

erated when there are no feasible candidates nodes, that is, for any i and any k, 
k
iN = ∅ ; then the predecessor of that node is included  as a former node of the 

path. 
4.  Apply evaporation using Equation (23). 
5. Update of the pheromone concentration using Equation (24) 
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6. Finally, finish the algorithm in any of the three different ways: 

− When a maximum number of epochs has been reached. 
− When it has found an acceptable solution, with f(xk (t)) < ε. 
− When all ants follow the same path. 

3.4 General Remarks about Optimization of Type-2 Fuzzy Systems 

The problem of designing type-2 fuzzy systems can be solved with any of the above 
mentioned optimization methods. The main issue in any of these methods is deciding 
on the representation of the type-2 fuzzy system in the corresponding optimization 
paradigm. For example, in the case of GAs, the type-2 fuzzy systems must be repre-
sented in the chromosomes. On the other hand, in PSO the fuzzy system is represent-
ed as a particle in the optimization process. In the ACO method, the fuzzy system can 
be represented as one of the paths that the ants can follow in a graph. Also, the eval-
uation of the fuzzy system must be represented as an objective function in any of the 
methods.  

4 General Overview of the Area and Future Trend 

In this section a general overview of the area of type-2 fuzzy system optimization is 
presented. Also, possible future trends that we can envision based on the review of 
this area are presented. It has been well-known for a long time that designing fuzzy 
systems is a difficult task, and this is especially true in the case of type-2 fuzzy sys-
tems [5]. The use of GAs, ACO and PSO in designing type-1 fuzzy systems has be-
come a standard practice for automatically designing this sort of systems [1] [2] [13] 
[21]. This trend has also continued to the type-2 fuzzy systems area, which has been 
accounted for with the review of papers presented in the previous sections. In the case 
of designing type-2 fuzzy systems the problem is more complicated due to the higher 
number of parameters to consider, making it of upmost importance the use of bio-
inspired optimization techniques for achieving the optimal designs of this sort of sys-
tems. In this section a summary of the total number of papers published in the area of 
type-2 fuzzy system optimization is presented, so that the increasing trend occurring 
in this area can be better appreciated. Also, the distribution of papers according to the 
used optimization technique is presented, so that a general idea of how these different 
techniques are contributing to the automatic design of optimal type-2 fuzzy systems is 
obtained. 

Figure 6 shows the distribution of the published papers in optimizing type-2 fuzzy 
systems according to the different bio-inspired optimization techniques previously 
mentioned. From Figure 6 it can be noted that the use of GAs have been decreasing 
recently, on the other hand the use of PSO, ACO and other methods have been in-
creasing. The reason for the increase in use of PSO and ACO may be due to recent 
works in which either PSO or ACO have been able to outperform GAs for different 
applications. Regarding the question of which method would be the most appropriate 
for optimizing type-2 fuzzy systems, there is no easy answer. At the moment, what we 
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can be sure of is that the techniques mentioned in this paper and probably newer ones 
that may appear in the future, would certainly be tested in the optimization of type-2 
fuzzy systems because the problem of designing automatically these types of systems 
is complex enough to require their use. 

 
Fig. 6. Distribution of publications per area and year 

There are other bio-inspired or nature-inspired techniques that at the moment have 
not been applied to the optimization of type-2 fuzzy systems that may be worth men-
tioning. For example, membrane computing, harmony computing, electromagnetism 
based computing, and other similar approaches have not been applied (to the moment) 
in the optimization of type-2 fuzzy systems. It is expected that these approaches and 
similar ones could be applied in the near future in the area of type-2 fuzzy system 
optimization. Of course, as new bio-inspired and nature-inspired optimization meth-
ods are being proposed at any time in this fruitful area of research, it is expected that 
newer optimization techniques would also be tried in the near future in the automatic 
design of optimal type-2 fuzzy systems. 

5 Conclusions  

In the previous sections we have presented a representative account of the different 
optimization methods that have been applied in the optimal design of type-2 fuzzy 
systems. To the moment, genetic algorithms have been used more frequently to opti-
mize type-2 fuzzy systems. However, more recently PSO and ACO have attracted 
more attention and have also been applied with some degree of success to the problem 
of optimal design of type-2 fuzzy systems. There have been also other optimization 
methods applied to the optimization of type-2 fuzzy systems, like artificial immune 
systems and the chemical optimization paradigm. At this time, it would be very diffi-
cult to declare one of these optimization techniques as the best for optimizing type-2 
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fuzzy systems, as different techniques have had success for different applications of 
type-2 fuzzy logic. In any case, the need for bio-inspired optimization methods is 
justified due to the complexity of designing type-2 fuzzy systems. 
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Abstract. Many of the activities associated with the systems planning and oper-
ation require forecasts of future events. For instance, thermal models of distribu-
tion transformers with core immersed in oil are of utmost importance for power
systems operation and safety. Its hot spot temperature determines the degrada-
tion speed of the insulation material and parts. High temperatures cause loss of
mechanical stiffness, generating failures. Insulation degradation determines the
lifetime limits of power transformers. Thermal models are needed to generate re-
liable data for lifetime forecasting methodologies. One of the greatest difficulties
in thermal modeling is the non stationary nature of the transformers due to aging,
parts replacement, and operational overloads. In this paper we use an evolving
fuzzy model to build adaptive thermal models of distribution transformers. The
model is an evolving fuzzy linear regression tree. The tree grows adaptively by
replacing leaves with subtrees whenever they improve the model quality. The
performance of the evolving regression is evaluated using actual data from an ex-
perimental transformer. The results suggest that the evolving fuzzy tree approach
outperforms current state of the art models.

1 Introduction

The last decades have witnessed a steadily increase in energy consumption in major
urban and rural areas worldwide. In particular, the raise in electric energy consumption
has caused the number of distribution networks, and consequently the number of operat-
ing transformers, to increase. Distribution transformers with core oil-immersed are one
of the most common equipments in electric energy distribution networks. Using reliable
methods to predict transformer lifetime, the power companies can find the ideal value
of the power of the transformer to be located in each place because models provide
estimates the loading curve with which the transformer will work. With a suitable load
forecast and methodology to predict transformers lifetime, companies can determine
the electrical power that minimizes cost and maximizes transformers lifetime. This im-
proves the cost-benefit of electricity distribution networks. Lifetime prediction is also

R.R. Yager et al. (Eds.): Soft Computing: State of the Art Theory, STUDFUZZ 291, pp. 255–268.
DOI: 10.1007/978-3-642-34922-5_18 c© Springer-Verlag Berlin Heidelberg 2013
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important because it allows to evaluate the optimal replacement and maintenance pe-
riod of power transformers. This prevents failures, unexpectedly interruptions of power
supply, and improves distribution system safety [35].

Lifetime forecasting methodologies of power distribution transformers need ther-
mal models [1]. The purpose of a thermal model is to estimate the temperature of the
transformer insulation. For instance, it is known that the insulating paper is the part
which degrades faster since, when subjected to high temperatures, it undergoes a poly-
merization process, causing the breakdown of the cellulose fibers. When the average
fiber size is reduced, the paper loses its mechanical strength. By becoming brittle, the
paper breaks due to vibration which occurs during the transformer operation, result-
ing in failure of electrical insulation. High temperatures reduce the lifetime of power
transformers [1].

The IEEE Loading Guidelines [1] suggest a deterministic thermal model based on
transient heating equations. This model was evaluated in [20] where discrepancies ex-
ceeding 10◦C have been verified between model outputs and actual values. Since the
model is used to estimate the temperature, which in turn is used to predict transformers
lifetime, inaccurate thermal models mean inaccurate lifetime estimation.

Given the complexity to develop high accuracy deterministic models, several recent
works develop thermal models using black box models from data. Neural networks
and fuzzy systems are examples of data driven methods which have been shown to be
efficient in thermal modeling [15, 16] because they are able to learn complex nonlinear
relations and process imprecise data.

However, most if not all current forecasting models lack an important requirement to
be useful in real world circumstances. They should be adaptive, but they are not. As any
physical device, power transformer behavior changes through time due to variations in
the environment, structural parts changes, maintenance, aging, etc. In general, a model
may not be valid after a period of time if the structure and parameters of the model, or
both, do not modify to accommodate changes.

The interest in adaptive system modeling has motivated the development of highly
adaptive and intelligent systems denominated evolving intelligent systems (EIS) [3].
EIS models are self-developed from a stream of data. EIS are able to address problems
of modeling, control, prediction, classification and data processing in a non-stationary,
dynamic changing environments. Such systems embody online learning methods and
one-pass incremental algorithms that evolve or gradually change individual models to
guarantee life-long learning and self-organization of the system structure [5].

Pioneering work in this area were addressed in the realm of neural networks [2, 12,
37]. In the turn of the centuries the area has expanded to encompass fuzzy rule-based
systems (evolving fuzzy systems) [4, 30] and neuro-fuzzy hybrids [22, 26]. During the
last years, statistical modeling [17] and granular computing mechanisms [23] became
important components of EIS.

Recently a new evolving fuzzy modeling technique called evolving fuzzy linear re-
gression tree (eFT) [25] has been developed. Evolving fuzzy linear regression tree is a
fuzzy regression tree with linear models in its leaves. The eFT can be built using data
streams in an incremental and scalable manner. In general, an eFT encodes a nonlinear
regression model whose output is defined as a weighted sum of linear local models.



System Modeling and Forecasting with Evolving Fuzzy Algorithms 257

The evolving approach for regression trees requires only features of the current sam-
ple plus a small amount of aggregated information to perform classification, function
approximation and prediction tasks.

This chapter addresses the use of eFT to perform thermal modeling of power trans-
formers. The aim is to predict the hot-spot temperature based on historical data. The
main advantage of the eFT approach is its ability to adapt to changes, what makes it a
good candidate in electrical energy distribution systems in which power transformers
are key time-varying devices.

The remainder of the chapter is organized as follows. Section 2 briefly reviews the
state of the art of evolving fuzzy systems area. Section 3 details the eFT model sug-
gested by the authors recently. Section 4 uses eFT for adaptive thermal modeling of
distribution power transformers and compares the results with advanced non-evolving
and evolving methods. Finally, the conclusions and issues for further investigation are
summarized in section 5.

2 Evolving Fuzzy Systems

Evolving fuzzy systems (eFS) can be seen as a synergy between fuzzy systems, as a
mechanism for evolvable information compactation and representation, and recursive
methods of machine learning [21]. The first eFS reported in the literature are dated
from the beginning of this century [7, 22]. These models were developed to address a
growing need for flexible, adaptive and interpretable models to develop intelligent sen-
sors, autonomous navigation and control systems, classification and regression systems.
Evolving fuzzy systems have advantages over other evolving black-box models such as
evolving neural networks because they are linguistically interpretable. It is possible to
extract information from the model structure as information granules (linguistic terms
represented by fuzzy sets) [3].

Several forms of eFS can be found in literature, among them evolvable functional
fuzzy rule-based systems in which the model structure (number of rules and rule an-
tecedents) continuously evolves based on clusters created and/or excluded by recursive
clustering algorithms [32]. The parameters of the consequents are updated using recur-
sive least squares or its variations [28, 39].

One of the pioneering approaches in this area was introduced in [4] in the form of
a functional fuzzy model in the form of Takagi-Sugeno. The evolving Takagi-Sugeno
model (eTS) uses an incremental version of the subtractive clustering algorithm [9]
with recursive evaluation of the information potential of new data samples to create
new clusters or revise the existing ones. The rule consequent parameters are updated
with the recursive least squares algorithm.

In [6] an extended version of eTS (xTS) was developed to include a mechanism to
update the radius of influence of each rule recursively using data samples only. The xTS
model also includes a new measure of the cluster quality to update the rule base.

The DENFIS (Dynamic Evolving Neural-Fuzzy System) [22] is another evolving
TS type ofsystem derived from a distance-based recursive evolving clustering method
(ECM) to adapt the rule base, and a weighted recursive least squares with forgetting
factor algorithm to update rules consequent parameters.
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FLEXFIS (Flexible Fuzzy Inference System), detailed in [30], uses a recursive clus-
tering algorithm derived from a modification of the vector quantization technique [14]
called eVQ (Evolving Vector Quantization) [29]. Consequent parameters estimation
uses the weighted recursive least squares algorithm.

The ePL (evolving Participatory Learning) [27] is an evolving rule-based model
based on the idea of participatory learning. Participatory learning [38] is a learning
paradigm which assumes that learning and beliefs about the system to be modeled de-
pend on what the learning process has already learned. The participatory learning mech-
anism is a potential candidate to develop evolving systems because it balances learning
and model update, yet accounting for the knowledge accumulated.

The ePL model has been extended recently as a fuzzy rule-based system with mul-
tivariable membership functions, namely evolving Multivariable Gaussian (eMG) [24].
This model assumes that input variables may interact, avoids the curse of dimensional-
ity when handling clusters formation, and introduces a sound and systematic approach
for learning that results in an algorithm with few parameters.

Recently a new evolving fuzzy modeling approach called evolving Fuzzy linear re-
gression Tree [25] has been developed. Linear regression trees [36] are generalizations
of regression trees [8] in which the mean value of the output variable in the tree leaves
are replaced by linear models. The internal nodes of these types of trees perform split
tests that first divide the input space in non-overlapping regions and then associate a
linear model to each resulting partition. Fuzzy linear regression trees replace the binary
splitting decision in each internal node by a pair of membership functions, similarly as
in fuzzy decision trees [40]-[19]. As a consequence, input space partitions may overlap.
Evolving fuzzy linear regression trees are built from data streams in an incremental and
scalable manner.

Next section focusses on the details of the structure and on the incremental learning
algorithm developed for the evolving fuzzy tree model.

3 Evolving Fuzzy Linear Regression Tree

Linear regression trees generalize regression trees by assigning to leaves a linear model
of the input variables instead of a zero-order model (e.g., the mean value of the out-
put). Each region of the underlying input space comes with a linear model of the form
yi = a0+a1x1 + ...+amxm = ∑m

i=0 aixi, where x0 = 1 and m is the number of input vari-
ables. In other words, linear regression trees are recursive structures capable to perform
piecewise linear regression.

Figure 1 gives an example of a linear regression tree.
To estimate the output associated with a given input, start from the root (top) node

and apply splitting decision tests until a leaf is reached. The output is computed using
the input values and the linear model of the leaf. For example, for the tree shown in
Figure 1, the model outputs −2.6 when inputs are x1 = 4 and x2 = 3.

Fuzzy linear regression trees replace the split tests in their internal nodes by two
membership functions describing the concepts less than and greater than. The sharp
partition boundaries of the original tree vanish when fuzzy sets are considered in the
internal nodes of the tree. Given an input sample x =(x1, ...,xm), all branches and leaves
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x1 < 1

x2 < 2

y1 = 2x1 + x2 +3

y2 = 0.1x1 − x2

y3 = x1 +2.6x2 y4 = x1 − x2

x1 ≥ 1

x2 ≥ 2

x1 < 4 x1 ≥ 4

Fig. 1. Example of a linear regression tree

of a fuzzy linear regression tree fire to some degree. The weighted sum of the local linear
models defines the tree output.

Reference [25] suggests sigmoid membership functions in each internal node of the
tree as a way to represent the very nature of the concepts less than and greater than.
Sigmoids (1) have two parameters, the center c and the spread σ . Depending on the
sign of the parameter σ , the sigmoid is inherently open to the right or to the left. Figure
2 shows examples of membership functions describing the concepts less than 5 and
greater than 5 choosing σ =−0.5 and σ = 0.5, respectively.

μ(x) =
1

1+ exp− 1
σ (x− c)

(1)

To compute the output for a given input, start at the root node and find the membership
values for each pair of membership functions in the internal nodes considering all paths.
Next, the membership values are combined using an aggregation operator, typically a
t-norm. This results in a membership value linked to the model of each tree leaf. These
values are used to compute the output as the weighted average of all local model outputs
as follows:

ŷ =

l
∑

i=1
yiwi

l
∑

i=1
wi

(2)

where l is the number of leaves, and wi is found using:

wi = μ1(x) t μ2(x) t ... t μo(x) = T o
j=1μ j(x) (3)
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Fig. 2. Membership functions for less than and greater than 5

where t is a t-norm [33], o is the number of internal nodes reached from the root to leaf
i, and μ j is one of the sigmoid membership functions associated with node j.

3.1 Incremental Learning Algorithm

The data driven learning algorithm used to grow the tree starts with a single global
linear model. The algorithm evolves the tree replacing leaves by subtrees using a statis-
tical model selection test and the newest input data. All previously sampled values are
discarded, and decisions are made using statistics computed recursively.

We assume that the tree leaves have λ candidate splits for each of the m input vari-
ables, totaling λ ×m possible splits. Any of these can be used to replace an existing
leaf. Every candidate split has a subtree comprising an internal node with two sigmoid
membership functions (less than and greater than) centered on the split point, and two
leaves (the left and the right one) containing linear models. Figure 3 illustrates a general
candidate split.

xi < c xi > c

y =
m
∑

i=0
aixi y =

m
∑

i=0
aixi

Fig. 3. General candidate split
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As discussed above, leaves represent regions of the input space. Split points for dif-
ferent input variables are defined depending on the range of values in which samples
fall within. They are chosen to uniformly divide the range of possible values into λ +1
intervals. Although each leaf defines a fuzzy region of the input space, splits are sharp
and found using the centers of the membership functions of internal nodes.

Given an input, the model output can be estimated using equation (2) and the linear
models of existing leaves can be updated using the weighted recursive least squares
(WRLS) algorithm, similar as in [28, 39]. In this case, the updating formulas for pa-
rameters of the leaf i model at the k-th step are:

γk+1
i = γk

i +Qk+1
i xkΨi(x

k)
[
yk

i − ((xk)T γk
i )
]

Qk+1
i = Qk

i −
Ψi(xk)Qk

i xk(xk)T Qk
i

1+(xk)T Qk
i xk

(4)

where Ψi(xk) for i = 1, ..., is the normalized firing degree associated with the i-th local
linear model:

Ψi(x
k) =

wi

lk

∑
j=1

wj

(5)

where lk is the number of leaves at step k.
Next, membership function spreads σi lying in the path from the root to the highest

active leaf are revised using the steepest descent method. For example, consider a fuzzy
linear regression tree whose structure is as shown in Figure 1. Assume that for a given
input, the leaf with the highest firing degree is y2. In this case, the membership functions
describing x1 ≥ 1 and x2 ≥ 2 should have their spreads updated.

Membership function spread updating aims to minimize at each step the squared
error, in other words, the squared difference between the model output and the actual
output:

ek =
1
2

(
ŷk − yk

)2
(6)

The recursive expression to update the spread of a membership function is:

σi = σi −β
∂ek

∂ ŷk

∂ ŷk

∂ μi

∂ μi

∂σi
(7)

where β is the basic learning rate. The partial derivatives of the error (6) and sigmoidal
functions (1) are:

∂ek

∂ ŷk = ŷk − yk (8)

∂ μi

∂σi
=

(
exp− 1

σi
(xk − ci)

)
(xk − ci)

1+ exp− 1
σi
(xk − ci)

2σ2
i

(9)
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The partial derivative ∂ ŷk/∂ μi in (7) is obtained combining equations (2) and (3). To
compute the derivative, we must first find paths from the root node to the leaves that
pass through the membership function μi. Thus,

∂ ŷk

∂ μi
=

npk

∑
r=1

wr
μi

yr − ŷk
npk

∑
r=1

wr
μi

lk

∑
j=1

wj

(10)

where wr results from t-norm aggregation of the membership functions in a path cross-
ing μi; npk is the number of paths satisfying this condition at step k. Note that (10) is
valid only if the t-norm is the algebraic product. The product t-norm is adopted in all
computational experiments reported in this chapter.

The linear models of all candidate splits associated with the selected leaf are also
updated using (4). For each candidate split, the weights of all leaves (5), including those
weights of the leaves of the candidate split, are revised . Next, the output of the resulting
tree (with the selected leaf replaced by the candidate split) is computed. Finally, the
linear models in the leaves of the selected candidate split are updated using (4).

Once a leaf is updated, tests are performed to evaluate whether or not the new tree
is better than the previous. The test is a goodness of fit test that considers the accuracy
and the number of parameters of the tree, with and without the subtree. Fundamentally,
the test compares the quality of two models, the simpler original tree, and the more
complex tree composed by the original tree with the subtree added. The assumption is
that the simpler model can be nested in the complex model, and that the complex model
should be more accurate. The test essentially tries to answer the following question:
does the gain in accuracy worth the cost of having a more complex tree?

The test assumes that the parameters of the two tree models are estimated using the
same samples of a data stream. It computes the following statistics [34]:

Finc =
(RSS1 −RSS2)× (n2 − p2)

RSS2 × (n1 − n2 + p1)
(11)

where RSS1 and RSS2 is the sum of residual squares of the simpler and complex model,
respectively; p1 and p2 is the number of free parameters of each model; and n1 and n2

are the number of samples used to build the tree and set the candidate split parameters,
respectively.

Finc is distributed according to a Fisher’s F distribution with (n2−n1+ p2− p1,n2−
p2) degrees of freedom. The use of this statistics requires computation of the p-values
(probability in the tail of the distribution) for all candidate splits of the last modified
leaf. The candidate split associated with the smallest p-value is selected. The subtree
of the selected candidate split replaces the corresponding leaf if its p-value is smaller
than a confidence level α . It is necessary to introduce a multiple-comparison statistical
correction because the same hypothesis is tested λ ×m times using the same data set
[34]. The Bonferroni correction [31] is used by dividing the desired significance level
by the number of tests. Therefore, the selected subtree is added into the tree if
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p-value <
α

λ ×m
(12)

Notice that the model selection test described requires the sum of squared residuals, the
amount of candidate splits and samples processed to be updated at each step.

The evolving fuzzy linear regression trees algorithm is summarized in Algorithm 1.
Additional details about the learning algorithm can be found in [25].

Algorithm 1. Algorithm to evolve fuzzy linear regression tree models
1: Compute the output and membership value of all leaves
2: Update the linear local models
3: Select the leaf with the highest membership value
4: for all inputs (m) do
5: for all candidate splits (λ ) do
6: Estimate the output replacing the selected leaf with the candidate split
7: Compute the p-value of the model selection test for the candidate split
8: end for
9: end for

10: Select the candidate split with the minimum p-value
11: if p-value < α

λ×m then
12: Replace the selected leaf by the candidate split
13: end if

Four parameters need to be chosen, respectively:

• significance level α adopted for model selection tests;
• number of candidate splits for each variable, λ ;
• initial spread of sigmoid membership functions, σ0; and
• basic learning rate β to update the spreads.

As a rule of thumb, typical values of the significance level are 0.05 or 0.01. These are
values that have shown to work well for a range of problems.

The balance between modeling accuracy and computational cost dictates how the
number of candidate splits is chosen. Low values of λ may decrease accuracy of the
model because fewer candidate splits will be created for each leaf. High values increase
accuracy, but also increase the number of local models to be adapted.

Initial values for the spread of the membership functions are chosen from a priori
information about the scale of the data. Appropriate adjustment of σ0 speeds up the
convergence of parameters to potentially optimal values.

The basic learning rate β usually is small values, normally between 10−5 and 10−1.

4 Computational Experiments

In this section the eFT model is used to estimate the hot-spot temperature of an power
transformer. Data used in the experiments were obtained from [13]. They were collected
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from measurements performed in a experimental power transformer. Data correspond to
three 24-hour load curves, totalling 72 hours of data acquisition. The data was sampled
from each sensor at 5-min intervals and different load current profiles. Two load curves
exceed the transformer nominal power. Detailed information about the measurement
system can be obtained from [13].

The model is a one-step ahead forecaster whose purpose is to predict the next (5 min)
hot-spot temperature value using the actual and lagged values of hot-spot temperature
(T ) and load (K). Previous work [15] suggest as inputs the current and one step delayed
values of hot-spot temperature and load:

T̂ k+1 = f (T k,Kk,T k−1,Kk−1) (13)

The forecasting performance was evaluated using the root mean squared error (RMSE),
the non-dimensional error (NDEI) and the mean absolute error (MAE). The NDEI is
the ratio of the root mean squared error by the standard deviation of the target data. The
error measures are computed as follows:

RMSE =

(
1
n

n

∑
k=1

(yk − ŷk)

) 1
2

(14)

NDEI =
RMSE
std(yk)

(15)

MAE =
1
n

n

∑
k=1

∣∣∣yk − ŷk
∣∣∣ (16)

where n is the size of the test data set, yk is the target output, and std() is the standard
deviation.

The experiment was conducted as follows. Data corresponding to 2 operation days
were input to the eFT algorithm (576 observations) and the evolving model performance
evaluated using data of the last day (288 observations), keeping the model structure and
parameters fixed at the values found after evolving during the period of 2 days. The eFT
parameters are α = 0.05, σ0 = 0.01, β = 0.01 and λ = 25.

Fig. 4 shows the eFT forecasts against the actual data for the last day. The resulting
tree has 3 leaves and 2 internal nodes associated with the current temperature (T k) and
the first delayed load value (Kk−1).

Table 1 shows how eFT performs against the deterministic IEEE [1] model and al-
ternative evolving and fixed structure data-driven modeling methods using the error
measures (14,15,16). The multilayer perceptron (MLP) has one hidden layer with four
neurons trained with backpropagation algorithm, the artificial neural network fuzzy in-
ference system (ANFIS) has four fuzzy sets for each input variable and four fuzzy
rules generated by means of the fuzzy c-means clustering procedure. The MLP used
the following scheme for initialization phase: small weights values randomly assigned;
α = 0.9 as momentum parameter; 500 as the maximum number of epochs, and a adap-
tive learning-rate starting from η = 0.01 as initial step size. The ANFIS has 100 as
maximum number of epochs, ηi = 0.01 as initial step size, sd = 0.9 as step size de-
crease rate and si = 1.1 as step size increase rate. The parameters of the eTS model
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Fig. 4. Actual transformer temperature and eFT temperature forecast

Table 1. Performance of thermal modeling methods

Model Number of rules (or nodes) RMSE NDEI MAE

IEEE - 0.4005 1.5671 0.3846
MLP [11] 4 0.0327 0.1278 0.0158
xTS [6] 8 0.0259 0.1015 0.0157
eTS [4] 8 0.0171 0.0670 0.0105
ANFIS [18] 4 0.0154 0.0604 0.0092
eFT 3 0.0123 0.0481 0.0079

were set to r = 0.3 and Ω = 750. The xTS [6] has a Ω = 750. The parameters of the
models were those which produced their best results.

Table 1 suggests that the eFT model performs best among all models.
The error indices used in Table 1 are good to measure model accuracy. However,

they do not reveal whether the results from one model is statistically superior to any
other model. Therefore, is desired to employ some statistical test to help comparisons
between any two models in terms of accuracy.

For instance, the MGN test [10] is a parametric test to compare the accuracy of two
forecasting models. The statistics to perform the MGN test is computed as follows:

MGN =
ρ̂sd√
1−ρ̂2

sd
n−1

(17)
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where ρ̂sd is the estimated correlation coefficient between s = r1 + r2, and d = r1 − r2,
with r1 and r2 the residuals of the two models considered. In this case, the statistic is
distributed as Student’T distribution with n− 1 degrees of freedom. In MGN testing,
the correlation between s and d will be zero if the forecasts are equally accurate.

Table 2 shows the pairwise comparisons between eFT and the alternative non-
evolving and evolving approaches using the MGN test (17). The table shows the MGN
statistics and the corresponding p-value (tail of the distribution). Table 2 confirms the
superior accuracy of the eFT model for thermal modeling.

Table 2. MGN test evaluation for thermal modeling

Models MGN p-value
eFT vs IEEE 80.7356 0.0000
eFT vs MLP 36.2298 0.0000
eFT vs xTS 14.6436 0.0000
eFT vs eTS 8.9733 0.0000
eFT vs ANFIS 5.9374 0.0000

5 Conclusion

This paper has addressed evolving fuzzy modeling approaches emphasizing the fuzzy
linear regression tree, a newly developed approach to build nonlinear fuzzy regression
models from a set of local linear models in a tree structure. Evolving fuzzy tree models
are build incrementally from a data stream. The usefulness and efficacy of the approach
has been shown through adaptive thermal modeling of distribution transformers.

The evolving fuzzy tree modeling approach was evaluated using actual data from an
experimental transformer. The experiments performed and the results obtained suggest
that the method introduced in this chapter is a promising alternative to build adaptive
thermal models to estimate transformer lifetime limits in actual electric energy distri-
bution system.
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Abstract. Defuzzification has long been a bottleneck for fast implementations of 
fuzzy logic controllers, due to the large number of computationally expensive 
multiplication and division operations that are required. In this paper, we report a 
high-speed fuzzy inferential system based on log-domain arithmetic, which only 
requires addition, subtraction and multiplexing operations. The system is 
implemented on a Xilinx Virtex-II FPGA with a processing speed of 67.6 
MFLIPS and a maximum combinational path delay of 4.2 ns. A pipelined version 
of the controller is also implemented, which achieves a speed of 248.7 MFLIPS. 
Although a small approximation error is introduced, software simulation and 
hardware implementation on FPGA confirm high similarity of the outputs for 
typical and log-domain control surfaces and a number of second-order plants. 

1 Introduction 

Fuzzy logic controllers, first proposed by Zadeh [1] and implemented in automatic 
control by Mamdani [2], are a particular class of intelligent controllers built on fuzzy 
expert systems that show substantial performance improvement over standard 
algorithms for these problems. However, the implementation of a fuzzy controller is 
not straightforward. Software simulations on general-purpose microprocessors are 
typically slow, implying the need for hardware implementations. Research on fuzzy 
hardware began with a voltage-mode analog circuit in the late 1960s. Although analog 
implementations [3] provide lower power consumption and smaller chip size [4], they 
are slower, less accurate, less flexible, and less scalable to larger problem sizes as 
compared to their digital counterparts. Thus, research into digital hardware 
implementations is ongoing, with the reported performance of ASIC implementations 
ranging from 20 to 50 million fuzzy logic inferences per second (MFLIPS) [5]. 
However, digital fuzzy hardware implementations have a performance bottleneck due 
to the large number of costly multiplication and division operations required in the 
defuzzifier, the last module in the fuzzy controller [6]. 



270     A. Razib, S. Dick, and V. Gaudet 

For many applications involving the control of physical systems, current 
implementations of fuzzy hardware are adequate; a sampling rate of 50 MHz will be 
sufficient for a very large class of control problems. However, some control problems 
require a much higher sampling rate than this. Data communication networks are a 
good example; a number of network optimization goals (e.g. policing, active queue 
management) can be formulated as control problems. Linear control approaches are 
not very effective in these problems, and simulations often show that fuzzy controllers 
would be superior. However, even the fastest current fuzzy controllers are far too 
slow for communication network applications [26][27][28].    

In this paper, we propose and implement a high-speed hardware-based fuzzy 
controller using log-domain arithmetic. The basic principle of our approach is to 
represent all fuzzy quantities by their logarithmic values, therefore transforming 
multiplication and division functions into much simpler addition and subtraction 
operations. Logarithmic values can be stored in lookup tables (LUTs) to facilitate 
rapid conversion between a log value and its exponential value. Summation of log-
domain values is approximated as the maximum logarithmic value to simplify 
calculations. Although this introduces an approximation error, simulation and 
hardware implementation results indicate that it is minor. This paper refines our initial 
design from [29], conducts a much more thorough evaluation, and reports on an 
FPGA implementation of the log-domain fuzzy controller. 

The rest of the paper is organized as follows. Basic concepts for fuzzy controllers 
are reviewed in Section 2. A survey of published literature on fast defuzzification is 
also presented. Section 3 reviews log-domain arithmetic principles and describes our 
log-domain controller. Simulation results for a number of second-order plants are 
reported in Section 4. Section 5 presents a hardware implementation with speed and 
resource usage comparisons between pipelined and non-pipelined versions of the log-
domain controller. Section 6 concludes the paper. 

2 Background Concepts  

2.1 Fuzzy Sets and Fuzzy Control 

The underlying mathematical construct of fuzzy logic is a fuzzy set, which is a 
generalization of the classical set theory [8]. It is a set having a characteristic function 
with a co-domain consisting of the unit interval [0,1] rather than the usual discrete set 
{0,1}, and the characteristic function is known as a membership function. This allows 
for a gradual transition from non-membership to full membership in the set [9]. In a 
fuzzy system, each input is associated with a group of fuzzy sets on that measurement 
dimension. 

Figure 1 shows the general structure of a fuzzy controller. A preprocessor deals 
with any necessary formatting of input data. A fuzzifier module calculates the 
membership grade for each input in each fuzzy set defined on that dimension. A 
lookup table [11] usually contains the membership values for all possible (discrete) 
numerical inputs. This approach, albeit requiring more memory space, can be much 
faster than calculating the membership values in real-time [12]. The input-output 
mapping of the controller is controlled by fuzzy rules stored in the rulebase. In the 
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current paper, we focus on TSK controllers, whose rules are of the form: IF x is A and 
y is B THEN z = f(x, y) where A and B are fuzzy set antecedents and z = f(x, y) is a 
crisp polynomial function or a constant (usually termed a singleton) forming the 
consequent [9]. Some of the benefits of using singleton consequents are simpler 
calculations and the possibility of setting extremal values for the control signal [10]. 

 

Fig. 1. Fuzzy controller block diagram (based on [10]) 

For each rule, the inference engine determines the firing strength αi of a rule i, 
defined as the degree of fulfilment of the rule premise. The memberships for each 
antecedent predicate are aggregated using a fuzzy conjunction (a t-norm function, 
usually either the algebraic product or the minimum operator) to form the activation 
of the rule. For TSK controllers, the activation of a rule is used to weight the 
consequent function. The consequent functions are then accumulated using fuzzy 
disjunction, most commonly the maximum operator. This is the fuzzy output of the 
controller. 

The fuzzy output from the inference engine has to be converted in the defuzzifier to 
a single real number to form a control signal to the plant. There are dozens of 
defuzzification schemes, such as Center of Gravity (COG), Mean of Maxima (MOM), 
and Bisector of Area (BOA) [13], with COG being the most common choice in the 
literature. The crisp control value uCOG is the abscissa of the center of gravity of the 
fuzzy set. For singleton consequents we have: 




=

i
i

i
ii

COGS y

wy
u ,                                                      (1) 

where yi is the firing strength of each rule, and wi is the consequent output. This is a 
widely used method, but it is also computationally expensive due to the numerous 
multiplication and division operations. 

2.2 Fast Defuzzification 

Defuzzification has always been a bottleneck for fast implementation of fuzzy 
systems. Therefore, a number of techniques have been proposed to speed up this 
processing stage. In [14], a heuristic approach based on adapting any fuzzy output 
shape into one single triangle and estimating the centroid position is presented. The 
processing time for this approach is reported to be 23 times less than that of COG 
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defuzzification. Runkler and Glesner [15] propose a centroid-approximation 
algorithm (DECADE) that avoids multiplication and division operations, and the 
maximum error is reported to be about 7%. 

Eisele et al. [16] present an approach that reduces the number of computations by 
skipping all the regions for which the output possibility distribution is zero. One 
drawback of this method is that the implementation becomes complicated because of 
the extra circuitry needed to determine the relevance of the regions. Three different 
implementations of COG defuzzification are proposed in [17, 18]. These methods are 
specific to the case of trapezoidal output membership functions that form a fuzzy 
partition (and thus, specific to Mamdani-type controllers).   

A COG method with only integer additions and one integer division is presented in 
[19]. The algorithm maps the real values of fuzzy membership functions onto an 
integer grid. It is reported to be 12.75 times faster than conventional COG for the 
truck-backer problem. Introduction of quantization error is one disadvantage. 
Although multiplication is eliminated, one division operation is still required. 

3 Log-Domain Arithmetic and Controller 

3.1 Logarithmic Arithmetic 

Logarithmic-domain arithmetic has been used to accelerate hardware for many 
applications where there are a large number of multiplication and/or division 
operations, e.g. [20]. The fundamental principle of a log-domain system is to take the 
logarithmic transform of all quantities. For instance, instead of performing a 
computation x = f(q1, q2), the quantity log(x) is computed using an equivalent function 
g(log(q1), log(q2)). For example, if x = q1/q2, then log(x) = log(q1) – log(q2), and 
hence a divider is replaced by a much simpler subtractor. Similarly, multiplication is 
transformed into addition. If all quantities fall in the range (0, 1], all the logarithmic 
values are either 0 or a negative number, and the negative signs can be safely ignored, 
further simplifying calculations. As fuzzy membership values are always within (0, 
1], (assuming we ignore membership values equal to 0 in our computations, as is 
commonly done) fuzzy logic controllers are amenable to this type of implementation. 
In particular, since the COG method requires multiplication, summation and division, 
the defuzzifier may see the greatest potential improvement in performance. 

A summation operation is complicated in the log-domain. If x = q1 + q2, with q1 > 
0 and q2 > 0, then it can be shown [21]: 

)1log())log(),max(log(

)log()log(
)|log()|log(

21

21

21 qqeqq

qqx
−−++=

+=
      (2) 

The second logarithmic term in equation (2) becomes almost zero when q1 and q2 are 
not close in value. This term is often ignored in log-domain arithmetic at a small loss 
in precision [20], but can also be crudely approximated by a correction factor for 
some applications [21]. For fuzzy logic, we can use absolute values of all logarithmic 
quantities, so minimum operations can be changed to maximum and vice versa in the 
inference engine.   
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3.2 Approximate Correction Factor 

In this section we describe how a sequence of numbers is added in the log-domain 
controller. Say we need to calculate the sum x of a sequence of numbers q1, q2, …, qn, 
while the only information available to us is the set of their logarithmic values. 

Now, )...log()log( 21 nqqqx +++=  

)...log( )log()log()log( 21 nqqq eee +++=               (3) 

If q1 is the maximum among all the qi’s, log(q1) is also the maximum among all the 
log values. Now, from (3), 

  ))...1(log()log( )log()log()log()log()log( 1121 qqqqq neeex −− +++=  
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If q2 is the second largest value, the impact of )log()log( 12 qqe − is the highest among all 
the other terms. So in our approximation, we treat them as follows: 
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This is the correction factor applied to our system, instead of the one given in (2). It 
involves determining two maximum (or, minimum) values instead of one. As will be 
shown in Section 4, the advantage of using this correction factor is that the control 
surface becomes better in terms of root-mean-square (RMS) difference with respect to 
some typical fuzzy controllers. However, step response curves for log-domain 
controllers with and without a correction factor show no significant difference. The 
drawback of the correction factor is the added computational cost. Four 
addition/subtraction operations and two lookup tables are required. 

3.3 Design of the Controller 

Figure 2 shows a dataflow block diagram of the log-domain controller. The inputs are 
first passed to the fuzzifier module. It consists of a lookup table (LUT) with m+1 
columns, where m is the number of membership functions. The first column of each 
row contains the possible values of the inputs within the input universe and the other 
columns have the logarithmic membership values. As all the log values are negative, 
we store the values without the signs. We note that storing logarithmic values in the 
fuzzifier LUT does not require any extra hardware compared to a conventional LUT 
fuzzifier. 

The inference engine module usually determines the minimum value among the 
antecedents for each rule. As discussed, all of our values are negative numbers, and so 
we use the maximum function instead of minimum. The outputs (Ai) are passed to the 
subtractor block, SUB1, inside defuzzifier. The other input for SUB1, the log of all 
consequent outputs (Si), comes from the rulebase. The subtracted outputs Di go to the 
COMP1 block, which calculates the first two maximum values, D1 and D2. The 
second maximum value is retained for later use in the CORRECTION block. At the 
same time, two minimum values, A1 and A2, are determined from Ai. 
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Fig. 2. Block diagram of the log-domain controller 

 

Fig. 3. Block diagram of CORRECTION block 

Inside the CORRECTION block (see Fig. 3), a subtractor block, SUB2, computes 
the difference between D2 and D1, and passes this to EXP_LUT1 to get the 
corresponding exponential value, exp_diff1. An adder block, ADD1, computes term1 
as D1 plus exp_diff1. Similarly, a parallel subtractor block, SUB2, is used for A1 and 
A2, and the output is sent to EXP_LUT2 to determine exp_diff2. Then A1 is subtracted 
from exp_diff2 to obtain term2. This subtraction functions as an addition with the 
exception that A1 is changed back to its original negative value. The final subtractor 
block, SUB5, calculates the difference, LO, between term1 and term2, and passes it 
back to defuzzifier module for exponential calculation, which results in the final crisp 
output. If the approximate correction factor is ignored, the CORRECTION block only 
contains an adder block that sums D1 with A1. This is a significant simplification with 
a negligible performance penalty. 

4 Simulation Results 

Three controllers: (1) a typical fuzzy controller, (2) a log-domain controller without a 
correction factor, and (3) one with the correction factor described in Section 3, are 
implemented in a MATLAB simulation. 

Experiment 1 
We compare and analyze the performance of the log-domain controllers (with and 
without correction factor) with a typical fuzzy controller. The benchmark controllers 
and the plant are taken from [22]. The transfer function of the second-order plant  
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(a) 

 
(b) 

 
(c) 

Fig. 4. Step responses for: (a) typical fuzzy control, (b) log-domain without correction, and (c) 
log-domain with correction 
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(representing a DC servomotor) used in our experiments is
ss +202.0

1 . We measure 

the performance of our controllers by examining the step response curves and control 
surface plots. Rise time, settling time and overshoot of the step response and the RMS 
difference between control surfaces are compared.  

Table 1. Rise time, settling time, and overshoot for a sampling period of 0.01 second 

Controllers Rise Time (s) Settling Time 
(s) 

Overshoot 
(%) 

Typical 
fuzzy 

0.0719 0.1298 0 

Log-domain  
(uncorrected) 

0.0567 0.1 0.0009 

Log-domain 
(corrected) 

0.0548 0.0997 0.0025 

 
Results - A comparison of the step response of the different controllers is presented in 
Fig. 4. Table 1 illustrates the rise time, settling time, and overshoot for different 
controllers. Rise time is defined as the time the plant outputs take to get to 90% of the 
step size from a value of 10%. Settling time is the time for outputs to settle to within 
2.5% of the steady state from control start. We express overshoot (output exceeds the 
steady state value) as a percentage relative to the final value of the plant output. 

Table 2. RMS difference between control surfaces 

Controllers Log-domain 
(uncorrected) 

Log-
domain 

(corrected) 
Typical 11.7040 5.2965 

Log-domain 
(uncorrected) 

 16.5292 

 
Figure 5 shows the control surface outputs generated for a typical fuzzy-logic 

controller, and log-domain controllers (with and without a correction factor). Table 2 
reports the RMS difference between control surfaces of the controllers.  

Analysis - The log-domain controller without correction uses only the maximum 
value to approximate the sum of a set of logarithmic values. While this approach 
relieves us from using computationally expensive multiplication and division 
operations, the RMS difference between the typical and log-domain controller 
(uncorrected) is higher (see also Fig. 5(b)). However, with a small correction factor 
involving the second-highest value in a sequence, the approximate output becomes 
much more similar to that of typical fuzzy-logic controller (see Fig. 5(c)). The 
corresponding RMS difference confirms the effectiveness of this approach through a 
greater than 50% reduction in value of the difference. The impact of having a  
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correction factor is also clear from the RMS difference value between the log-domain 
controllers.  There is not much obvious difference among the step responses of the 
different controllers, as shown in Fig. 4. Table 1, however, presents some very 
interesting insights. For each log-domain controller, the rise time is lower than that of 
the typical fuzzy controller. Log-domain controllers also have lower settling times, 
although a small overshoot is introduced. 

 
 
 

 

(a) 

 

(b) 

 

(c) 

 
Fig. 5. Control surfaces of: (a) typical fuzzy control, (b) log-domain without correction, and (c) 
log-domain with correction 

 



278     A. Razib, S. Dick, and V. Gaudet 

 
(a) 

 
(b) 

 
(c) 

 
Fig. 6. Step responses of: (a) typical fuzzy control, (b) log-domain without correction, and (c) 
log-domain with correction 
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(a) 

 
(b) 

 
(c) 

 
Fig. 7. Control surfaces of: (a) typical fuzzy, (b) log-domain without correction, and (c) log-
domain with correction 

 
Experiment 2 
We have used three more second-order plants from the literature to verify and analyze 
the performance of our controller. The plant transfer functions have the general form 
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of 400/(s2+ σs), where σ is given three different values: 20, 48.5 and 360, respectively 
[24]. The membership functions and rule base for the fuzzy controller are also taken 
from [24]. 

 
Results - Figure 6 compares the step response of our log-domain controllers (both 
with and without correction) with a typical fuzzy controller for the plants mentioned 
above. Table 3 presents a comparison of rise time, settling time, and overshoot for 
different controllers and different plants. 

Control surface outputs generated for a typical fuzzy controller, and log-domain 
controllers are shown in Fig. 7. Table 4 provides the root-mean-square (RMS) 
difference between control surfaces. 

 
Analysis - The step responses confirm the effectiveness of the log-domain controllers. 
The plots from Fig. 6 are qualitatively similar, demonstrating that log-domain 
controllers perform as well as a typical fuzzy controller.  

Table 3. Rise time, settling time and overshoot for different plants 

 
Plant 

 Typical 
Fuzzy 

Log-domain 
(uncorrected) 

Log-
domain 

(corrected) 
 
 

400/(s2+20s) 

Rise Time 0.0024 0.0022 0.0024 
Settling 

Tine 
0.0145 0.0126 0.0145 

Overshoot 
(%) 

11.7373 10.8925 11.5596 

 
 

400/(s2+48.5s) 

Rise Time 0.0024 0.0022 0.0024 
Settling 

Tine 
0.0145 0.0132 0.0148 

Overshoot 
(%) 

11.5669 9.6103 11.4486 

 
 

400/(s2+360s) 

Rise Time 0.0030 0.0027 0.0030 
Settling 

Tine 
0.0122 0.0099 0.0123 

Overshoot 
(%) 

10.1534 8.7054 9.4037 

Table 4. RMS difference between control surfaces 

 Log-domain 
(uncorrected) 

Log-domain 
(corrected) 

Typical 355.0986 120.1319 

Log-domain 
(uncorrected) 

 332.6803 

 
 

Table 3 presents some interesting insights. The log-domain controller without 
correction performs better than both the typical fuzzy controller and its peer with 
correction for all cases of rise time, settling time and overshoot. The log-domain 
controller with correction factor has the same rise time and better overshoot compared 
to the typical controller for all the three plants, although the settling time is slightly 
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higher for a couple of plants. This is a very promising result considering the fact that 
our log-domain controllers are much faster in processing than the typical fuzzy 
controller. 

The control surface plots are also quite similar in shape for the log-domain and 
typical fuzzy controllers. Obviously, the surface of log-domain controller with 
correction factor better resembles the typical fuzzy controller, because of the 
approximate correction factor. Without this factor, the output is crudely approximated 
based on only the maximum value in a sequence. That is why there are some extra 
staircase outputs in the surface of log-domain controller without the correction factor. 
The RMS difference table also confirms this. A 67% reduction in output difference 
between the log-domain and typical fuzzy controller is obtained because of the 
correction factor. The impact of having a correction factor is also clear from the 
difference between the log-domain controllers. 

5 Hardware Implementation 

5.1 Design Considerations 

We have implemented the log-domain controller without the correction factor on a 
Xilinx Virtex II FPGA device. The plant and the rulebase are taken from [22]. The 

transfer function of the second-order plant is 
ss +202.0

1 . By using the substitution 

Tz

z
s

1−= , with T = 0.01 s being the sampling period, as in the backward rule 

approach [25], the continuous-time transfer function is converted to the discrete-time 
transfer function: 

21 667.0667.11

0033.0
−− +− zz

                     (6)                       

This corresponds to the standard form of a second order digital filter: 
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where a0 = 0.0033, a1 = a2 = 0, b1 = -1.667, and b2 = 0.667. This type of digital filter 
is implemented in the following form [23]: 
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−+−+=
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   ,        (8) 

where k = current sample in time, x(k) = input to the plant at kth sample, and y(k) = 
output from the plant at kth sample.  

The fuzzifier module of the log-domain controller accepts two input values, 
namely the error and rate of change of error, both being 10 bits wide. The error value 
uses 2 bits for the integer part and 8 bits for the fractional part. Simulation results 
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show the possible error values ranging from 0.0 to 2.0. The rate of change values, 
however, can be anything between -39.0 and 0.0. Therefore, the 10 bits for rate input 
actually represent 6 bits for integer and 4 bits for the fractional part. As the rate values 
are negative, we only consider the absolute quantities without the sign. The lower 
number of bits for the fractional part does not have any visible impact because of the 
rate values being sparse. This bit width also determines the size of the LUTs used in 
the fuzzifier module. The error and rate LUTs have 1024 rows and five columns 
representing the logarithm of membership function values for NB, NM, ZR, PM and 
PB. The log values stored in the LUTs are all negative; therefore the sign is ignored. 
Each value is 16 bits wide with 4 bits for integer part and 12 bits for the fractional 
part, since the maximum log value can be 9.0. Another LUT contains 4096 rows each 
having an exponential value for an output value. Since the logarithm of the output can 
take any value within the range -11.0 to +5.0, we use 1 sign bit, 3 bits for the integer 
part and 8 bits for the fractional part. The use of 3 integer bits can only represent a 
negative number as low as -7; but it is justified by the fact that any lower number 
results in the exponential value being essentially zero. The output from the defuzzifier 
is represented by 20 bits, where 1 bit is used as sign, 7 integer bits and 12 fractional 
bits. Since the fuzzy controller output can go as high as 100.0, we have to use at least 
7 integer bits to represent the value. Note that for a generalized hardware log-domain 
controller, the bit widths may be different, making the rows and columns in the LUTs 
bigger or smaller. The performance, however, should be the same except for a 
different amount of resource utilization. 

The step signal is implemented on the same FPGA as the plant model and the 
fuzzy inference engine as a square wave to enable the plant outputs to be shown on 
the oscilloscope. On the positive cycle, the step value goes to 2 from 0; therefore, the 
first error value becomes 2.0 while the first rate value is zero. These values are sent to 
the log-domain controller, which produces a defuzzified output to be passed to the 
plant. The plant output is compared to 2.0 and the difference becomes the next error 
value. The next rate value is calculated based on the current and the previous error 
values. Eventually both the error and rate values become zero. 

5.2 Log-Domain Controller 

The block diagram of our log-domain controller with the plant implemented on FPGA 
is shown in Fig. 8. 

 

Fig. 8. Block diagram of log-domain controller with plant as implemented on Xilinx Virtex II 
FPGA 
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The fuzzifier module passes the corresponding row from both of the error and rate 
LUTs to the inference engine. The inference engine calculates the maximum value 
(log of firing strength for a rule) for each of the 25 possible pairs. Although the 
conventional task of inference engine is to calculate the minimum values, we use 
maximum instead, since all the negative log values are stored as positive. The six 
maximum values are passed to the defuzzifier module.  

The defuzzifier module subtracts the log of firing strength values (log_fs) from the 
log of consequent values (log_c), and stores the results in an array named log_d. The 
maximum value among log_d (log_dmax) is calculated, while the minimum for log_fs 
is also determined. These two values are added together and the summation result 
(log_output) is used to find the corresponding exponential value from a LUT. This 
exponential value is assigned to the output, when the particular value of log_c (that 
contributes to the calculation of the value log_dmax) comes from a positive consequent 
value. Otherwise the exponential value is made negative before assigning it to the 
final output.  

The output from the log-domain controller goes to the plant. It also accepts the 
plant output and an adding factor from the previous sample. The previous adding 
factor is used to calculate the current plant output, whereas the previous plant output 
contributes to generate the new adding factor. The fuzzy controller output (x(k)) gets 
multiplied by a0 (0.0033) and added to Adding_factor(k-1) to generate the new plant 
output (y(k)). Adding_factor(k) is calculated as Adding_factor(k) = –b1*y(k) –b2*y(k-1) 

The plant output (y(k)) is passed to Next Input Calculator which generates the next 
error and rate values. Error(k+1) is calculated as step minus plant output at kth sample, 
whereas Rate(k+1) is calculated in two steps. First, a new error value is subtracted 
from the previous error value, and then the result is multiplied by 1/T (100.0). All the 
multiplication operations are basically a group of additions because one of the 
operands is always a constant value. Figure 9 illustrates the operations that take place 
in the control system. 

 

 
Fig. 9. Operations inside the control system 
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Results - Figure 10 displays the plant outputs on an oscilloscope for the log-domain 
controller. Here the positive cycle refers to the plant outputs for a step signal. The 
negative cycle simply mirrors the plant outputs along the horizontal axis. Note that in 
Figure 10, one waveform represents the reference and the other waveform represents 
the step response, i.e. the outputs of the plant.  

 

 

Fig. 10. Plant outputs for log-domain controller implemented on FPGA and displayed on an 
oscilloscope for both positive and negative cycles 

Throughput - From the synthesis report, the maximum clock frequency of our log-
domain controller is 67.6 MHz; since our controller produces one plant output per 
clock cycle, this implies a throughput of 67.6 MFLIPS. This is an improvement over 
the reported fastest fuzzy controller implementation [7] at 50 MFLIPS.  

5.3 Pipelined Log-Domain Controller 

One drawback of feedback systems is that the inputs at any sample depend on the 
outputs from previous samples. This results in a substantial waste of resources for 
systems where there is no dependency among the inputs. However, we believe our 
controller is more suitable for networking applications (e.g. per-packet inspection) 
where inputs would be independent of one another and the output ports cannot be idle 
for the entire processing time. Hence we report a pipelined version of the controller 
that generates one plant output at every clock cycle. Figure 11 shows the block 
diagram of the pipelined version. REG blocks refer to the registers used for 
pipelining. 

 

 

Fig. 11. Pipeline stages of log-domain controller 
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Results - Figure 12 shows the oscilloscope plot for pipelined version of the controller. 
Naturally, pipelining in a closed-loop control system results in significant chattering, 
due to the dependence between successive sample instants. As discussed, we believe 
that this would nto be a problem in other applications. 

 

 

Fig. 12. Plant outputs for pipelined log-domain controller implemented on FPGA and displayed 
on an oscilloscope for both positive and negative cycles 

Throughput - Pipelining results in a processing speed of 248.7 MFLIPS, a speedup 
of ~370%.  

6 Conclusions 

In this paper, a logarithmic-arithmetic-based fuzzy-logic controller is described, 
which results in a very high-speed hardware implementation. This approach removes 
computationally expensive multiplication and division operations that have been the 
bottlenecks for fuzzy control systems. As the simulation results illustrate, log-domain 
implementations – with and without the approximate correction factor – perform 
better than the typical fuzzy controller in terms of rise time and settling time of the 
step response curves. The hardware implementation on FPGA without the correction 
factor also achieves similar response to the step signal. The processing speed of the 
hardware version is 67.6 MFLIPS, which exceeds the fastest fuzzy controller 
implementation in the literature that we are aware of by 33%. Note, however, that that 
implementation [7] was performed with two 8-bit inputs, one 8-bit output, 5 
membership functions for each variable and 25 rules. If we had implemented this 
controller on the same Xilinx Virtex II FPGA that we have used for our log-domain 
controller, it would have resulted in a different speed. Nevertheless, in this paper, we 
have been able to develop a very fast fuzzy controller using logarithmic arithmetic, 
which is a new approach for fuzzy logic control systems. The experiments show the 
ability of the controllers to produce outputs that are close to the expected ones. A 
further speedup to 248.7 MFLIPS is achieved by a pipelined version of the log-
domain controller. We believe that this is a very promising result making the log-
domain controllers potentially suitable for high-speed and large networks. 
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Abstract. Not long ago primary census data became available to publicity. It 
opened qualitatively new perspectives not only for researchers in demography 
and sociology, but also for those people, who somehow face processes 
occurring in society. 

In this paper authors propose using Data Mining methods for searching 
hidden interconnections in census data. A novel clustering-based technique is 
described as well. It allows determining factors which influence people 
behavior, in particular decision-making process (as an example, a decision 
whether to have a baby or not). Proposed technique concerns contrast mining as 
it is based on dividing the whole set of respondents on two contrasting groups. 
The first group consists of those, who possess a certain feature (for instance, has 
a baby) unlike members of the second group. We propose define clustering 
based subgroups out of the first group and their prototypes out of the second 
one. By means of analyzing subgroups' and their prototypes' characteristics it is 
possible to identify which factors influence the decision-making process. 
Authors also provide an experimental example of the described approach usage, 
which additionally shows that fuzzy clustering provides more accurate results 
than hard clustering techniques. 

1 Introduction 

Nowadays there exist two considerable global tendencies. The first trend is that the 
amount of digital information yearly produced by humanity increases significantly. 
Thus, for the last five years it grew up by 9 times and comprised almost 1.8·1012 Gb 
[1]. The second trend is related to the fact that not only aggregated (consolidated) data 
but also primary ones become more available. Researchers can relatively easy get 
access to the great variety of primary data such as information on patients' hospital 
treatment (so-called Clinical Data Repositories [2]), electronic commerce results in 
big automated collections of consumer data, microfiles with large census data samples 
etc. 

Usually, the access is given not to the complete primary data sets but to the data 
samples (microfiles). In addition, values of some attributes are masked somehow, or 
even absolutely unavailable. These restrictions are necessary to provide the published 
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data anonymity, which is a subject to special legal regulation in different countries 
(e.g., see the Health Insurance Portability and Accountability Act of 1996 (HIPAA) 
[3]; the Patient Safety and Quality Improvement Act of 2005 (PSQIA) [4] concerning 
the health data protection in the USA; Directive on privacy and electronic 
communications [5] about electronic commerce in the EU; the State Statistics Law [6] 
about providing confidentiality of the primary statistical information in Ukraine). 

However, the amount of available primary data keeps growing. The IPUMS project 
is the most significant example. It started in 1992 [7] with the main goal to collect and 
distribute census data for researchers from around the world. Within it, more than 397 
million person records collected from 185 censuses held in 62 countries (at the 
moment this paper is being written) are accessible. The social importance of results, 
which can be obtained through such data analysis, can scarcely be overestimated. 
Still, such analysis requires using appropriate tools. 

2 Related Works 

2.1 Methods for Census Data Analysis 

Statistical and OLAP databases are the main sources of population census data [8]. 
Different statistical methods are actively used for analyzing it, among them analysis 
of variance (ANOVA), regression analysis, log-linear analysis, nonparametric 
approaches [9]. While using statistical methods it is possible to achieve important 
results, but this approach requires prior knowledge or at least assumptions about some 
patterns or interconnections existence. 

2.2 Basic Data Mining Techniques 

As opposite to statistical methods intelligent data analysis (Data Mining) makes  
it possible to discover such patterns, which even wasn't suspected to exist. That is 
why Data Mining refers to extracting ("mining") knowledge from large amounts of 
data [10]. 

Among the most widely used Data Mining techniques it is possible to define [11]: 
clustering, classifying, nearest neighbor prediction, decision trees, neural networks, 
and association rules. 

Clustering is a process of grouping related points in a given set on the basis of 
having similar characteristics [12]. Thus, clustering discovers natural accumulations 
in data sets. 

Modern clustering algorithms can be divided in two groups: on-line and off-line 
methods [13]. On-line methods use every new data point for cluster centers 
identification. Thus, the system learns while adding new elements. The other approach 
computes cluster centers only once and they can't be changed lately. Considering static 
nature of the census data it is logical to use off-line methods. 

Commonly used off-line algorithms are k-means clustering, fuzzy c-means 
clustering, mountain clustering, and subtractive clustering [13]. First two algorithms 
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require prior knowledge of clusters number. Both mountain and subtractive clustering 
techniques implement the same algorithm. The only major difference is that the first 
one examines every possible point in the data space (bounded by minimum and 
maximum values in each dimension) in order to discover cluster centers, and the 
second one goes only over points of the clustered data set. The latter approach 
significantly speeds up the algorithm's performance. 

2.3 Contrast Data Mining 

As it was said in [14] "contrast data mining is concerned with the mining of patterns 
and models that contrast two or more datasets". 

It is natural for humanity to contrast different things and notions: day and night, 
good and evil, true and false. "Without darkness there would be no concept of light. In 
order to realize light itself there must be its antipode – darkness". This aphorism 
belongs to Lion Feuchtwanger and represents philosophical view on the nature of 
contrasting and its importance in cognitive process. Probably this confrontation takes 
its origin from the very beginning of mankind evolution. We can see it, for example, 
in fairy tale characters, which are bad and evil or kind and just. This tendency 
continues in modern culture as well (cinema and literature keep contrasting good and 
evil characters). 

In the late 90s and early 00's a new direction based on the similar contrasting of two 
or more datasets have occurred in Data Mining research field. It was successfully used 
for solving problems of different nature and thus gained a wide popularity. Papers [15, 
16] provide a comprehensive study of contrast mining and its applications. 

According to [15] data analysis techniques in this field can be divided into 
predictive and descriptive induction. Predictive induction mainly dials with labeled 
data and subgroup discovery trying to predict class value of previously unseen 
examples. The latter approach works with contrast sets introduced by S.D. Bay and 
M.J. Pazzati in [17] and emerging patterns proposed by G. Dong and J. Li in [18]. 
Although until recently this techniques have evolved separately mainly in machine 
learning and data mining communities respectively, Novak et al. in their paper [15] 
proved equivalence of notions "subgroup discovery", "contrast sets" and "emerging 
patterns". Authors also marked out some approaches which are closely related to 
contrast mining. Among them fundamental rule changes [19], closed sets [20] and 
exception rule [21] mining. 

Despite the fact that contrast mining is a relatively new approach it has been 
developed intensively by researchers from different countries. Dong and Bailey in 
their paper [16] mentioned that scientists have already developed more powerful 
constructs based on contrasting patterns. Among them disjunctive emerging patterns 
[22], fuzzy emerging patterns [23], contrast inequalities [24], contrast functions [25] 
and emerging cubes [26]. 

Theoretical researches in contrast mining also concern developing contrast patterns 
mining algorithms. The basic ones are STUCCO [17] and border based algorithm 
[18]. 
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Among most prominent results in contrast mining application we can mention 
classification [27] and clustering [28] algorithms based on contrast patterns notion, 
researches in bioinformatics [29], blog community [30] and image [31] analysis. 

2.4 Data Mining in Census Analysis 

Intelligent data analysis techniques are widely used in different scopes of human 
activities: education [32], medicine [33], banking [34], marketing [35], and so on. 
Still, Data Mining methods are almost not used for census data analysis. There are 
only few works dealing with intelligent analysis of census data. 

References [36-38] describe SPADA (spatial pattern discovery algorithm) system, 
which was designed for discovering spatial association rules in census data. Proposed 
method of rules discovery is based on a multi-relational data mining approach and 
uses representation and reasoning techniques developed in inductive logic 
programming. 

CHARM, an algorithm for mining all frequent closed itemsets is proposed in [39]. 
CHARM is an alternative to Apriori-inspired algorithms [40, 41]. It was tested on 
census databases. 

In contrast mining researches census data was primary used for patterns 
discovering algorithms testing. In [17] authors tried to find differences between 
people holding PhD and bachelor degrees analyzing adult census data and STUCCO 
algorithm. In [18] dissimilarities between Texas and Michigan census data were 
investigated. Authors didn't provide any significant interpretation of the obtained 
contrast patterns. 

Paper [42] discusses special requirements that occur for subgroup mining of spatial 
census data. Authors also describe subgroup mining system (SubgroupMiner), which 
provides multi-relational hypotheses support, efficient data base integration, 
discovery of causal subgroup structures, and visualization based interaction options. 

Summing up we can say that data mining techniques are poorly used in census data 
analysis and mainly dial with consolidated data. We believe that using primary data 
can give qualitatively new and more interesting results. 

Despite the fact, that contrast mining was previously applied to census data 
analysis, the purpose of such investigations didn’t concern searching factors, which 
can stimulate natural moving of objects from one contrasting set to another. We are 
also not aware of any works dealing similar tasks for other demographic or social 
data. Still this problem remain actual, especially when it is necessary to find ways of 
encouraging people to make important for the society decisions, such as to increase 
number of family members, to migrate to another region and so on. 

Basic concept of this work was presented on the World Conference on Soft 
Computing, San-Francisco, USA in May 2011 [43]. We presented novel Influence 
Search Algorithm, which uses hard clustering as one of the steps. With its help we 
achieved some interesting results: 

• providing financial support or cheep housing loans increases birth-rate; 
• providing financial support to the youngest age group representatives with high 

education level probably won't contribute to their desire having babies, because 
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most highly educated couples decide to have a baby after both spouse are 30 
years old; 

• if we want couples from the oldest age group to have a baby, we should actively 
encourage them materially, a lot of families from this group lack of money or 
own dwelling; besides, if the first child is not born before one of spouse reaches 
40 years, the probability of his appearance reduces significantly. 

Still world around us is not strict and all concepts are usually fuzzy. Often objects 
belong to several groups with some membership grade. Thus the main scope of this 
paper is to investigate fuzzy clustering application within Influence Search Algorithm. 

3 Problem Formulation and Solution 

3.1 Microfile Structure 

A census microfile is a set of records of two types [44]: household records and person 
records. Each record contains certain attributes. For example, among household 
attributes there are state code, building size, number of rooms, type of unit (housing 
unit, institutional group quarters, noninstitutional group quarters) so on; person 
records contain such information as sex, age, marital status, race. All attributes are 
numerically coded. 

Each person record has a field which determines this person's relationship with a 
householder. This field can take different values: "husband/wife", "natural born 
son/daughter", "uncle/aunt" so on. 

3.2 Paper Purpose 

The main purpose of this paper is to expand proposed approach for identifying 
factors, which stimulate or vice versa do not contribute to the decision making 
process concerning respondents' life arrangement, with fuzzy clustering. 

During the experiment we analyzed population census microfile, as it contains all 
necessary socio-economical data. Clustering was chosen as an analysis technique, 
because it allows discovering natural data accumulations, thus, it gives an opportunity 
to identify which parameters consolidate certain people groups. We used subtractive 
clustering algorithm to identify cluster number, because it doesn't require prior 
knowledge of this parameter and is relatively fast [45]. Note, that in our case it is 
almost impossible to define clusters number beforehand. FCM algorithm [46] was 
chosen as a fuzzy clustering technique. 

3.3 Subtractive Clustering Algorithm 

Before using subtractive algorithm all data points must be rescaled in order to fall 
within a unit hypercube [47]. After this potential (1)

iP  of each data point ix  is 

calculated by (1). 
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where ar  is a positive constant called cluster radius, n  is a number of data-points 

in the clustered set. 
A point with the highest potential is considered to be a first cluster center 1c . Then 

all potentials are recalculated by (2): 
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where 
1c

P  is a potential of the first cluster center, η  is a quash factor. By means of 

this recalculating influence of the first cluster center is excluded, as potentials of all 
close to it data points are reduced significantly. 

Data point with the next highest potential (2)
kP  is tested to be the second cluster 

center. 
In general, after the m-th cluster center has been obtained potentials of all data 

points are recalculated by (3): 
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where mc  is the m-th cluster center. 

Point *
1mc +  with the highest potential ( 1)m

lP +  is accepted as an ( 1)m + -th cluster 

center if 

 
1

( 1)m
l cP P+ > ε ,   (4) 

where ε  is an accept ratio – the potential of the cluster center candidate as a fraction 

of the first cluster center potential, above which data point *
1mc +  is accepted as a 

cluster center. 
Else if condition (5) holds point *

1mc +  is rejected as a cluster center and the 

clustering process ends. 
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where ε  is a reject ratio. 

Otherwise the following condition is verified 
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where mind  is the minimal distance between *
1mc +  and all previously defined cluster 

centers. 
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If (6) holds *
1mc +  is accepted as a cluster center and the algorithm starts next 

iteration. Else *
1mc +  is rejected and its potential is set to 0; data point with the next 

highest potential on the current iteration is re-tested. 
Quash factor, accept and reject ratios are specified by the user. Their default values 

in MATLAB framework are 1.25, 0.5 and 0.15 respectively. Cluster radius is also an 
input argument. After all centers are defined the origin set can be divided into 
appropriate number of clusters by referring each point to that cluster, which center is 
the closest to it. 

3.4 Fuzzy C-Means Clustering Algorithm 

Fuzzy c-means clustering algorithm (FCM) [46] assigns each data point to every 
cluster with a certain membership grade, which is represented by a value within unit 
segment [0, 1]. 

Data partitioning is represented with a membership matrix U. Matrix columns 
correspond to data points and its rows – to clusters. Equation (7) represents the 
condition imposed on membership grades: sum of data point belongingness degrees to 
all clusters is always equal to unity. 
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where c  is number of clusters, n  is number of data points. 
At the beginning of the algorithm membership matrix is initialized with random 

values within [0; 1] holding condition  (7). 
After that centers of fuzzy clusters are calculated by (8): 
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with ic  as a center of the i -th cluster, [ )1;m ∈ ∞  as weighting exponent and jx  as 

a data point. 
Then cost (objective) function J  of the data dissimilarity is calculated by (9): 
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Here clustering process finishes if one of the following conditions holds: 

• J  is less then a certain tolerance value; 
• its improvement over previous iteration is below a certain threshold 

(minimum amount of improvement). 

In practice other stopping conditions can also be used, for example, if number of 
iterations exceeds some predefined value (MATLAB framework). 

If algorithm doesn't stop, values of the membership matrix U are recalculated by 
(10), cluster centers are updated according to (8) and new iteration starts. 
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So, fuzzy c-means clustering algorithm (consider realization implemented in 
MATLAB) accepts following input arguments: a set of data points, cluster number, 
weighting exponent, maximum number of iterations and minimum amount of 
improvement. Default values of the latter three arguments are 2, 100 and 510−  
respectively. 

Considering the fact that initially matrix U contains random values, the algorithm 
results may vary. Hard clustering techniques can be also used beforehand in order to 
identify number of clusters. FCM returns membership matrix and found cluster 
centers. 

3.5 Novel Influence Search Algorithm Based on Clustering and Prototype 
Definition 

We proposed a novel Influence Search Algorithm for solving a problem posed in the 
current section. This algorithm consists of the following steps. 

1. Separate two contrasting groups 1N  and 2N  out of the origin dataset. The 

first group should contain records about those respondents who possess a 
certain characteristic, and the second one – records about respondents who do 
not possess it. Additional restrictions can be also imposed on the group 
definition process (according to the results of the problem domain analysis).  

2. Identify those attributes, which can potentially influence the chosen 
characteristic presence. Mark out attributes for clustering, i.e., attributes which 
are numerical or can be compared by numbers. Basing on the problem specific 
define invariant parameters for groups 1N  and 2N . 

3. Cluster group 1N , divide it on subgroups. 

4. Identify range of values for each invariant parameter corresponding to the 
subgroups bounds. 

5. Using obtained values ranges define subgroups prototypes out of the group 

2N . 

6. Compare characteristics of clustering based subgroups and their prototypes; 
summarize results. 

4 Experimental Results 

The task of the experiment was to identify which factors influence human desire to 
have a baby. 

We took a microfile with 5-percent sample of the California census data for 2000, 
which contains records about 610369 family households (we ignored subfamilies as 
number of households with subfamilies comprise only 3.6% of the initial sample) [44]. 
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Following attributes were considered:  

• home ownership, 
• type of building, 
• number of vehicles available, 
• commercial business on property, 
• spouse age, 
• spouse education, 
• spouse ancestry, 
• class of worker for each spouse, 
• husband's total income (in 1999). 

Such parameter as wife's total income wasn't considered as a lot of women go on a 
maternity leave, thus, in our case this parameter can't be used as a family state factor. 

We separated two contrasting groups out of the origin set of families. Group 1N  

contains families with one or two children aged from 0 to 2 years, group 2N  is 

composed of families without children. Such restrictions on the children's age were 
imposed in order to track the change in family state from childless to a family with a 
little child (children). 

To obtain reliable results we also imposed some additional restrictions on groups 

1N  and 2N : 

• all the families must be complete (presence of both spouse is obligate); 
• both husband and wife must be without disabilities; 
• spouse age must be within the most favorable period for having babies. 

These conditions are quite relevant and obvious. For instance, it is clear that illness of 
the potential parents affects significantly their willingness and ability to have children. 

In order to identify bounds of the most favorable age for having babies authors had 
to conduct additional researches. We calculated the number of families having a child 
or two children from 0 to 2 years depending on spouse age. Obtained results are 
shown on Fig. 1. 

From the diagrams it is clearly seen that the age of the first babies bearing in 
families is almost normally distributed with average values 32 years for men and 30 
years for women. As the interval of the most favorable age for having babies we took 
ranges 24-38 for men and 22-37 for women (values which correspond to 400 and 
more families). The size of the obtained sample is 3/4 of the initial set of families with 
a child or two children from 0 to 2 years. 

Considering all imposed above restrictions we got groups 1N  and 2N  with 8299 

and 12249 elements respectively. 
The next step of the analysis was to identify parameters for clustering group 1N . 

We decided to use following parameters: 

• spouse age,  
• spouse education, 
• total husband's income. 
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Such attributes as home ownership, class of worker and ancestry can't be used for 
clustering as they are qualitative, not quantitative characteristics and can be hardly 
compared by numbers. 

As an invariant parameter for both contrasting groups we took spouse age, because 
all other parameters can change their values depending on state government policy 
(for example, young families can be provided with cheap education loans or material 
assistance). 
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Fig. 1. Husband's (a) and wife's (b) age distribution in families with little children 

Using subtractive algorithm for clustering group 1N  on the mentioned above 

attributes (we used default values of input arguments and 0.5 as a cluster radius) 
resulted in 3 clusters. This value was taken as an input argument for the FCM (other 
arguments were taken with their default values). Because FCM itself doesn't perform 
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data normalization we scaled data into a unit hypercube beforehand. It was done in 
order to eliminate strong influence of the variables with large ranges over those with 
narrow rage (compare, for example, variable "husband's total income" varying from 

( ) 41 *10−  to 472*10  and "education" with range interval 1–16). 

As a result we obtained membership matrix and cluster centers (the latter was 
rescaled to the initial ranges). Cluster centers are given in Table 1 (education codes 
presented in Table 2). Because FCM algorithm considers data set as points in 
continuous space, it can result in fractional values of the cluster centers' coordinates, 
even if data is discrete itself. Unlike FCM subtractive clustering works only with data 
points of the investigated set. So each resulting cluster center corresponds to a point 
from the original set. Fractional coordinates of cluster centers obtained with FCM 
must be interpreted correctly. For example, husband's age in the first cluster center 
with value 30.94 means that most men from this cluster are of age close to 31. Still 
value 30.94 provides minimum of the objective function (9). 

Table 1. Cluster Centers 

Clusters 1 2 3 

Husband's age 30.94 27.24 34.66 

Wife's age 29.24 25.39 32.97 

Husband's education 11.61   9.28 12.25 

Wife's education 11.68   9.58 12.24 

Husband's total income (in 1999), 
$ *10 ^ 4  

  5.26   3.19   

6.80 

Table 2. Education Codes 

1 No schooling completed 9 High school graduate 

2 Nursery school to 4th 

grade 

10 Some college, but less than 

1 year 

3 5th grade or 6th grade 11 One or more years of 

college, no degree 

4 7th grade or 8th grade 12 Associate degree 

5 9th grade 13 Bachelor’s degree 

6 10th grade 14 Master’s degree 

7 11th grade 15 Professional degree 

8 12th grade, no diploma 16 Doctorate degree 

 
Analyzing obtained cluster centers we can say that: 

• cluster №2 contains the youngest couples with the lowest education level and the 
lowest incomes; relatively low income and education levels are partly a 
consequence of the fact that some respondents are still studying; 

• cluster №3 contains the oldest couples with the highest education and income 
levels; 
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• cluster №1 is comprised of those couples whose age is the closest to the expected 
values of the age distribution; education and income have intermediate values 
between 2-d and 3-d clusters; 

• in each cluster husband and wife have almost the same education levels. 

After that all data points were divided into 3 clusters: a point was related to that 
cluster to which it belongs with the highest grade. 
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Fig. 2. Husband's (a) and wife's (b) age distribution through clusters for fuzzy clustering (FCM) 
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In order to divide group 1N  on subgroups we calculated the percentage of 

representatives of a certain age through clusters. Results are presented on Fig. 2. 
From it we can clearly see that almost all young couples belong to the second cluster, 
families with the oldest husbands and wives fall mostly within the third cluster, and a 
lot of families where spouse are of middle age correspond to the first cluster. It is also 
clearly seen that there are two cross-over areas between the first and the second, and 
the second and the third clusters, with high values of representatives in more than one 
cluster. 

So, original group 1N  was divided into five subgroups in each invariant parameter 

with three subgroups corresponding to "pure" clusters and two crossovering ones. We 
assigned a certain age to a "pure" clustering group if it has more then 25% of 
representatives only in one cluster. Resulting subgroups' bounds are given in Table 3. 

Table 3. Subgroup Bounds 

Subgroup Husband's age Wife's age 

1 – "young" 24-27 22-25 

2 – "young-middle" 28-29 26-27 

3 – "middle" 30-31 28-30 

4 – "middle-old" 32-34 31-32 

5 – "old" 35-38 33-37 

 
For the comparison purposes we present the same figures (see Fig. 3) for clusters 

obtained with hard, namely subtractive algorithm. It is almost impossible to define 
age bounds using it, so in our previous work [43] we used slightly different technique. 
We calculated the percentage of representatives of the same age within each cluster 
and values corresponding to 80 or more percents of the appropriate number series 
maximum value were considered as cluster-defining bounds (Fig. 4). As a result we 
got age ranges 30-34 for men and 28-32 for women as the first cluster bounds, 27-30 
and 24-31 as the second cluster bounds, 32-36 and 29-34 as the third cluster bounds. 
Resulting subgroups were more overlapping. Thus we've got an interesting result: 
using fuzzy clustering gives us more distinct subgroups. 

Considering age of both husband and wife we got 25 subgroups. Distribution of 
families within subgroups and their prototypes is given in tables 4 and 5 with diagonal 
elements in bold, row maximums crossed and column maximums shadowed (values 
less than 1% are in italics). Note that absolute difference between corresponding 
elements in tables doesn't exceed 1.4%. Subgroups within bold frame were considered 
for more detailed investigation according to the next steps of the proposed algorithm. 
Subgroups were chosen by to following criteria: 

• diagonals elements; 
• maximal elements in rows and columns; 
• all other elements with values greater or equal 5%. 
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Fig. 3. Husband's (a) and wife's (b) age distribution through clusters for hard clustering 
(subtractive algorithm) 

Chosen subgroups were organized in a sequence S : 1-1, 1-2, 2-2, 2-3, 3-3, 4-3, 4-
4, 4-5, 5-5 (first digit represents husband age group, second – wife age group). This 
sequence covers 66.45% of group 1N  and 66.68% of group 2N . 

The next stage of the experiment was to compare characteristics of subgroups from 

1N  and their prototypes from 2N . After the appropriate calculations were held, it 

turned out that significant differences take place only for the following attributes: 
husband's total income, spouse education and ancestry, home ownership, type of 
building. 
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Fig. 4. Husband's (a) and wife's (b) age distribution within clusters for hard clustering 
(subtractive algorithm) 

Table 4. Percentage of families within subgroups of 1N  

Wife age group 1 2 3 4 5 

Husband age group 

1 10.74 4.63 2.55 0.51 0.39 

2 3.66 3.59 6.06 1.43 0.90 

3 1.77 2.63 6.98 3.33 1.86 

4 1.60 2.13 7.18 6.65 8.38 

5 0.91 1.19 4.13 4.41 12.27 



304 O. Chertov and M. Aleksandrova 

 

Table 5. Percentage of families within subgroups of 2N  

Wife age group 1 2 3 4 5 

Husband age group 

1 9.89 5.51 2.78 0.60 0.63 

2 3.28 4.53 7.04 1.43 1.07 

3 2.13 2.98 7.52 3.03 2.03 

4 1.28 1.83 6.80 6.00 6.95 

5 0.74 1.09 4.15 4.13 12.44 

 
Fig. 5 shows husband's total income distribution within each subgroup and 

appropriate prototype. Corresponding income intervals are given in Table 6. Figure 6 
reveals that families from contrasting groups 1N  and 2N  have practically the same 

income levels. While moving through the elements of the sequence S  income levels 
tend to increase. Subgroups with younger couples (from 1-1 to 2-3) born children 
despite the fact, that they usually have slightly lower incomes than families from 
prototypes. Still families from the elder age groups require more money for having 
babies. 

Fig. 7 shows both husband's and wife's education distribution. By analyzing it we 
can say that the families from the beginning of the sequence S  born children much 
more often if they are less educated. Young couples (from 1-1 to 2-2) with high 
education level usually don’t have babies. This trend becomes smoother while spouse 
age increases. Subgroups from 2-3 to 4-4 have almost the same education levels, and 
in subgroups 4-5 and 5-5 we can see the inverse dependency (families with children 
have slightly higher education levels). 

It should be noted that prototypes of young subgroups are the source of 
replenishment for the elder subgroups. Indeed, with the course of time families with 
highly educated spouse can move to one of the 1N  subgroups depending on when the 

first baby (babies) appears. 
Most families in California either own a dwelling with a mortgage or loan or rent it 

for the cash rent. In order to take into account influence of this parameter we 
calculated difference between the percentages of representative who own a dwelling 
or rent it in subgroups and their prototypes. Thus positive values indicate that 
parameter has a positive effect on desire to have a baby and vice versa. Absolute 
value indicates the effect strength. Obtained distribution is shown on Fig. 7a. 

Table 6. Husband's Total Income Intervals ( *10 ^ 4 ) 

1 [-1; 0) 7 [8; 10) 

2 [0; 1) 8 [10; 20) 

3 [1; 2) 9 [20; 30) 

4 [2; 4) 10 [30; 40) 

5 [4; 6) 11 [40; 72] 

6 [6; 8)   
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Fig. 5. Husband's income distribution in subgroups (dashed black line) and their prototypes 
(gray line) 

From the figure we can see that prior to subgroup 2-2 the fact of having own 
dwelling doesn't increase the desire to have a baby. But starting from this point most 
families from prototypes lack own dwelling. The strongest effect is observed in 
subgroup 3-3, where people are of the most favorable age for having children. 

Fig. 7b shows the same distribution for such values of the parameter "building 
type": 
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• a one-family house detached from any other house; 
• a one-family house attached to one or more houses; 
• а building with 2..50 apartments. 

The general distribution tendency is similar to above described case. Still we can see 
that having detached house have strong positive effect in all subgroups. Also there is 
almost strong monotonous increase in intervals from 1-1 to 3-3 and from 4-3 to 5-5.  
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Fig. 6. Husband's and wife's education distribution in subgroups (dashed black line) and their 
prototypes (gray line) 
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Fig. 7. Distribution of difference between percentage of representatives in subgroups and their 
prototypes for parameters ownership (a) and building type (b) 

It is interesting to note that prior to subgroup 4-3 families living in attached houses 
are much more willing to born a baby than elder couples. 

Figure 8 shows distributions of representatives within groups 1N  and 2N  by 

spouse ancestry (Table 7 reveals ancestry codes). As we can see this parameter has 
three dominant values: 

• West Europe; 
• Mexico; 
• other (not South) Asia. 
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Table 7. Ancestry Codes 

1 West Europe 5 Central America Islands 9 Australia 

2 East Europe 6 North Africa and South Asia 10 Pasific 

3 Mexico 7 other Africa 11 Afro-American 

4 Latino 8 other Asia  12 Other American 
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Fig. 8. Distribution of families by husband's (a) and wife's (b) ancestry 

These values were examined in details. Once again we calculated the difference 
between percentage of representatives of a certain ancestry in each subgroup and its 
prototype. Resulting distributions are presented on Fig. 9. 

Analyzing figure we can say that people with origin from West Europe are least 
inclined to have children. This effect goes monotonously from -15% difference for 
subgroup 1-1 to almost 0% for subgroup 5-5. 
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Fig. 9. Distribution of difference between percentage of representatives of a certain ancestry in 
subgroups and their prototypes: West Europe (a), Mexico (b) and not South Asia (c) 
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People with Mexican origins are vice versa most inclined to born children. This 
parameter has positive effect for almost all subgroups except the eldest 4-5 and 5-5, 
where appropriate values are slightly less than zero. 

An interesting situation occurs for people with non South Asia ancestry. Prior to 
subgroup 4-4 parameter has negative effect with the strongest impact for subgroup  
1-2. While moving from 4-4 to 5-5 we can see positive values with maximum for 
group 4-5. 

Summing up experimental results we can supplement conclusions from our 
previous work [43] and say the following: 

• indeed providing financial support contributes to the birth rate increase but most 
people lack not money but own separate dwelling; 

• young age subgroups (1-1, 1-2) with low education level should be encouraged 
by providing cheep house rents (as we saw from the experiment this age group is 
less susceptible to ownership type); house can be detached or attached to another 
one; 

• young families with high education level usually don't born children, so they 
shouldn't be considered before spouse become older; 

• special attention should be paid to young couples with Mexican origins, because 
it is their best reproductive age; 

• families from the middle age subgroups must be actively encouraged with cheep 
housing loans, because as it is seen from Fig. 7 these parameters have the 
strongest effect in this case; also it should be noted that this period is the most 
favorable for having babies in general, so investment will probably yield the 
greatest effect here; 

• if spouse belong to the elder age subgroups they most likely lack own detached 
houses (note that attached houses have rather negative effect here); in this case 
special attention must be provided to people originated from not South Asia and 
West Europe. 

5 Conclusions 

Current paper shows that using Data Mining techniques for statistical data analysis, in 
particular for census data analysis, we can get results unreachable by other analysis 
methods. However, using only Data Mining may not be enough. Analysis algorithms 
which include Data Mining techniques as elements, just like the algorithm proposed 
in this paper, are of particular interest. 

Developed Influence Search Algorithm is based on clustering a set which elements 
possess a certain feature, defining clustering based subgroups from it and subgroups 
prototypes out of the set with elements without this feature. Comparing characteristics 
of clustering subgroups and their prototypes we can give some recommendations 
regarding question how to "move" respondents from the second set to the first one 
(i.e., add this feature to respondents). 

Methodologically this algorithm belongs to the contrast mining field. Nevertheless 
previous works in contrast mining are dedicated to other problems; they usually 
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investigate some area, but not identify factors which can stimulate decision making 
process. 

It was also shown that fuzzy clustering techniques are more effective than hard 
clustering and despite the fact that algorithm is fuzzy it helps determine more strict 
bounds. 

Among prospects for further researches we can outline the following: 

• joint analysis of such population influencing factors as natality and migration; 
• providing similar analysis for different US states and countries; 
• further development of the proposed approach with another Data Mining 

techniques, such as decision trees and association rules learning. 
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