
An Efficient Design of Publication
and Subscription Model Based on WSN

Xianli Li

Abstract The purpose of the Web Services Notification (WSN) is to define a set of
specifications that standardize the way Web services interact using “Notifications”
or “Events”. They form the foundation for Event Driven Architectures built using
Web services. These specifications provide a standardized way for a Web service,
or other entity, to disseminate information to a set of other Web services, without
having to have prior knowledge of these other Web Services. They can be thought
of as defining “Publish/Subscribe for Web services”. We provide an overview of the
WS-Notification specification and describe a modified Publish and Subscribe model
based on WS-Notification. The model is an adaptive policy-driven notification
framework that helps enterprises to meet the flexibility and responsiveness require-
ments of the enterprise. With the modified publish/subscribe model, information
consumers can dynamically and declaratively create and configure entities on their
behalf to manage their distribution requirements.

Keywords Publish/subscribe • Notification broker service • Notification
consumer proxy service

1 Introduction

In a Service Oriented Architecture (SOA), there is often a need to monitor situations.
This occurs from a computer management perspective or a much more broad scope
of keeping up to date on real world events such as weather, financial transactions,
etc. To monitor these events, a client can poll for status changes or subscribe for
status changes. In polling case, the client is configured to actively ask the resource

X. Li (�)
Computer Network Information Center, Yangtze Normal University, Chongqing, China
e-mail: lisansanchqi@163.com

B. Xu (ed.), 2012 International Conference on Information Technology and Management
Science (ICITMS 2012) Proceedings, DOI 10.1007/978-3-642-34910-2 52,
© Springer-Verlag Berlin Heidelberg 2013

451



452 X. Li

for its latest state. The more often the client polls for state, the more likely the
client has an accurate resource representation. However, frequent polling requires
bandwidth and resources on both sides to handle the connection. Thus polling
is useful when monitoring timeliness is not an issue or network and hardware
resources are abundant. But in the SOAP world, polling is less common as a client
typically receives requests from the producer of events. With this peer to peer style,
a publish/subscribe system can be created. In this system, the client requests that
notifications be sent when they occur. This reduces the latency between the event
occurring and the client processing it.

WS-Notification has been standardized by OASIS and is a standard that solves
this business problem of event distribution in heterogeneous complex event process-
ing systems. It specifies an interface for a consumer to subscribe, filter notifications,
and manage subscriptions and an interface for publishers to send notifications.
Further, it describes a notification broker to allow for scaling of the system
(Chumbley and Eisinger 2009).

2 WS-Notification

Associated with the WS-Resource Framework, IBM, Sonic, and other companies
introduced a family of related specifications called WS-Notification. The basic idea
behind WS-Notification is to standardize the way that a Web service can notify
interested parties (other Web services) that something of interest has happened. It is
not meant to replace all messaging infrastructure such as low latency buses, industry
standards, or existing infrastructure like JMS. However, WS-Notification systems
should be able to integrate with these systems through simple adapters.

Obviously, the key value to WS-Notification is its ability as a standard to
allow for greater interoperability with a greater number of vendors and, thus, a
lower cost for implementation. The key features of WS-Notifications allow for
it to be used as well in general purposes publish/subscribe (pub/sub) situations.
It defines a unified message format to achieve interoperability between kinds of
systems, procedures and components in different platforms and systems, and it
defines a set of a standard Web services approach to notification using a topic-based
publish/subscribe notification pattern.

WS-Notification family is made up of the following three components (Sams
2006): WS-Topics, WS-BaseNotification and WS-BrokeredNotification. Figure 1
shows the relationship between them.

Based on the WS-Notification, the publish/subscribe model is needed to handle
the real-world information integration scenario by allowing a subscriber to specify
on behalf of an information consumer filtering rules and policy constraints, not only
to select what types of messages or content the subscriber wants the consumer
to receive, but also to specify transformation, scheduling, distribution, and other
constraints to be applied to selected messages before they reach the consumer. The
architecture must enable the generation (on behalf of a consumer) of a proxy service,



An Efficient Design of Publication and Subscription Model Based on WSN 453

Broker
alert

Create 
publisher

Brokered notification

Consumer alert

WS-BaseNotification

NotificationProducer

NotificationConsumer

WS-TOPICS

topics

Subscriber

WS-Resource

Subscription
resource

WS -BrokerNotification WS-BaseNotification

Subscribe request message

NotificationBroker

Implement Notify
Message exchange

Fig. 1 Relationship between WS-Topics, WS-BaseNotification and WS-BrokeredNotification

or agent, that includes the engines to enforce and manage these constraints at run-
time. The proxy service can receive the messages on behalf of the information
consumer and apply the specified constraints to the message before delivering it
to its consumer (Czajkowski et al. 2004).

2.1 WS-Topics

The WS-Topics specification (Vambenepe et al. 2006a) defines a mechanism to
organize and categorize items of interest for subscription known as “topics.” This is
achieved by associating each notification with a topic, and means that subscribers
can define the specific category of event that they are interested in hearing about.
A web service can publish a set of topics used to organize and categorize a set
of notification messages that clients can subscribe to, and receive a notification
whenever the topic changes.

WS-Topics are very versatile, as they even allow us to create topic trees, where a
topic can have a set of child topics. By subscribing to a topic, a client automatically
receives notifications from all the descendant topics (without having to manually
subscribe to each of them). As part of the publication of a Notification-Message, the
Publisher associates it with one or more Topics.

WS-Topics also provide a coarse-grained filtering mechanism that allows large
sets of uninteresting notifications to be excluded quickly. For example, in a sport
results scenario a subscriber can indicate that he or she is only interested in
receiving notifications about football, which excludes any events about baseball or
hockey. More fine-grained control of filtering can be achieved using other filtering
mechanisms, such as the message content filter defined in WS-BaseNotification. For
example, by selecting only those football games in which the home team beat the
away team. In many situations, the topic does not actually appear in the body of
the notification message itself since the classification of the notification is made at
a higher level than the generation of the notification content.



454 X. Li

Notify

Subscribe
request/response

Subscriber Publisher

Notification
producer

Subscription
manager

Subscriptions

Notification
consumer

Fig. 2 A typical WS-notification interaction

In order to avoid naming collisions, and to facilitate interoperation between inde-
pendently developed Notification Producers and Subscribers, every WS-Notification
Topic is assigned to an XML Namespace. The set of Topics associated with a given
XML Namespace is termed a Topic Namespace.

2.2 WS-BaseNotification

The WS-BaseNotification specification defines the standard Web services interfaces
for Notification Producers and Notification Consumers. It includes standard mes-
sage exchanges to be implemented by service providers that wish to act in these
roles, along with operational requirements expected of them. Notification producers
have to expose a subscribe operation that notification consumers can use to request
a subscription. Consumers, in turn, have to expose a notify operation that producers
can use to deliver the notification (Sotomayor 2007; Vambenepe et al. 2006b).
Figure 2, “A typical WS-Notification interaction” shows how the five primary
entities work together to pass data through the WS-BaseNotification. Initially, the
Subscriber is responsible for setting up a subscription between the Notification-
Producer Web service and a NotificationConsumer Web service. This subscription
is managed by the SubscriptionManager Web service working on behalf of the
producer. Subsequently, when a Situation is observed by the Publisher, the Publisher
creates a notification message and passes it to the NotificationProducer. It is the
responsibility of the producer to establish whether the notification message matches
the subscription that has been registered, and, if so, to send the notification message
to the consumer.

2.3 WS-BrokeredNotification

In even the most simple publish/subscribe environments, the amount of connections
and boot strapping information can grow very quickly. If there are only two



An Efficient Design of Publication and Subscription Model Based on WSN 455

publishers and two consumers, and each consumer wants to be notified from each
publisher, four connections need to be set up. Add one more consumer and you now
have six connections. The number of connections starts to grow very quickly as
more distributors and consumers are added; the required number of connections for
m publishers and n consumers is m � n connections. To simplify this topology, WS-
Notification standardized a notification broker that acts as an intermediary between
publishers and consumers. Here, publishers and consumers are decoupled from
each other and instead only require boot strap information to the broker. So, in
the scenario of m publishers and n consumers, the required number of connections
is m C n.

The WS-BrokeredNotification specification extends the definitions made in the
WS-BaseNotification specification to define the concept of a NotificationBroker,
which is an intermediary service to which producers and consumers can connect in
order to pass notifications. Critically, the NotificationBroker is capable of accepting
subscription requests from consumers, as well as receiving notification messages
from producers. The broker is then responsible for matching the notifications with
the subscriptions and sending them to the consumer. In this way, the broker takes
on some of the more painstaking functions of the producer, freeing developers of
producer applications to concentrate on the business task of observing situations
and generating the appropriate notifications without having to worry about the
challenging but mechanical task of managing subscriptions and matching them to
notifications. Advantages of the brokered notification pattern are as follows:

• Relieves the publisher of having to implement message exchanges associated
with the notification producer; for example, managing subscriptions (Subscrip-
tionManager) and distributing notifications (NotificationProducer);

• Avoids the need for synchronous communications between the producer and the
consumer;

• Can reduce the number of inter-service connections and references;
• Acts as a finder service; for example, if a new publisher is added that publishes

notification x, a consumer does not have to issue a new subscription if it is already
subscribed to the broker with x.

• Provides anonymous notification, which means that publishers and consumers
need not be aware of each other’s identity.

In many scenarios, the NotificationBroker service is implemented by a middle-
ware provider, ensuring that the brokering facilities are written to enterprise quality
expectations and often providing additional value-add services over and above the
basic definition of the service, for example logging, transformation, or quality of
service enhancements above those required by the specification (Vambenepe et al.
2006c). As shown in Fig. 3, “A typical brokered WS-Notification interaction”, the
producer must register with the broker and publish its topics there. The subscriber
must also subscribe through the broker, not directly with the producer. Finally, when
a notification is produced, it is delivered to the consumer through the broker.



456 X. Li

Fig. 3 A typical brokered WS-notification interaction

3 Publish/Subscribe Model Based on WS-Notification

The modified publish/subscribe architectural model is as shown in Fig. 4. It extends
the basic publish and subscribe pattern by extending the subscription capabilities to
include the specification of transformation, distribution, and scheduling constraints
as part of the publish and subscribe subscription (Bou-Ghannam and Roberts
Matt 2007).

Additionally, this architecture enables non-pub/sub-enabled systems (that is,
information consumers that are not able to consume notification messages of the
pub/sub system) to participate in the pub/sub pattern by allowing the model to
dynamically create a proxy service to receive pub/sub notifications on behalf of the
consumer. This is the Notification Consumer Proxy Service (NCPS) shown in Fig. 4,
which also manages the distribution of notifications to the consumer based on the
transformation, distribution, and scheduling constraints specified by the consumer
upon subscribing.

As shown, the model highlights the following components:

Notification producer: Contains information of interest to a consumer. Good
examples of information producers are systems that manage business information
for an enterprise and include master data stores for customer, product, order
information, and so on, in addition to enterprise operational data stores.

Notification consumer: Depends on and must consume information from an infor-
mation producer. For example, many enterprise business applications like order
fulfillment systems depend on data from the business information sources.

Subscriber: Requests creation of a subscription. It sends a subscribe request
message to a notification broker (pub/sub broker). The subscribe request message



An Efficient Design of Publication and Subscription Model Based on WSN 457

Subscribe

Notification
producer

Notification
consumer

Publisher Subscriber Adapter

Notification
broker service

Notification
subscriptions

Distribution
broker service

Scheduling
broker service

Transformation
broker service

Transformation
contraints

Scheduling
contraints

Distribution
contraints

Notification Consumer Proxy Service

Notify

Fig. 4 The publish/subscribe architectural model

identifies a notification consumer. A subscription is an entity that represents the
relationship between an information consumer and an information producer. It
records the fact that the consumer is interested in some or all of the notifications
that the producer can provide. It can contain filter expressions, and may be long-
running or have a limited lifetime.

Publisher: Creates notification message instances. A publisher receives information
from entities in the information producer that monitor and detect a situation.
A situation is an occurrence that is noted by one party and is of interest to other
parties. A notification is a one-way message that conveys information about a
situation to other services.

Notification broker service: Performs a notification broker function between no-
tification consumers and notification producers, and is responsible for sending
notifications to the appropriate consumers. It also acts as a subscription manager
and manages requests to query, delete, or renew subscriptions.

Notification Consumer Proxy Service (NCPS): Receives notifications from the noti-
fication broker on behalf of the information consumer. Typically, the consumer is
not able to receive notification messages, hence the need for this service to act on
its behalf, collect the notifications, perform some business logic (if the scenario
calls for it), enforce the transformation, scheduling, and distribution constraints
for the consumer, and then send the results to the consumer.

Adapter: An entity that enables the interaction with an information consumer.

4 Conclusions

This paper discussed how the WS-Notification bundle of standards, WS-
BaseNotification, WS-Topics, and WS-BrokeredNotification, can be used as a
general purpose publish/subscribe interface for a Service Oriented Architecture.



458 X. Li

We described an adaptive, policy-driven notification architectural model to support
a generalized publish/subscribe interaction pattern. This model is based on the
WS-Notification standards, a set of reusable integration services. We introduced
the teacher-student interactive scenario to help demonstrate the WS-Notification
features and explained how the publish/subscribe model is the standard of choice
for event distribution and processing.

References

Bou-Ghannam A, Roberts M (2007) GPASS: a generalized publish and subscribe solution using
WS-Notification standards. 2007-8. Online available at http://www.ibm.com/developerworks/
websphere/library/techarticles/0708 boughannam/0708 boughannam.html. Accessed 27 Aug
2009

Chumbley RB, Eisinger JD (2009) Leveraging key WS-notification features in your business ap-
plications, 2009-04. On line available at http://download.boulder.ibm.com/ibmdl/pub/software/
dw/webservices/ws-wsnotificationWAS7/ws-wsnotificationWAS7-pdf.pdf. Accessed 25 Aug
2009

Czajkowski K, Ferguson D, Foster I et al (2004) WS-resource framework. 2004-06-9. Online
available at http://www.globus.org/wsrf/specs/ws-wsrf.pdf. Accessed 9 May 2009

Sams Publishing (2006) WS Notification and WS Topics in the WS resources framework, 2006-07.
Online available at http://www.devarticles.com/c/a/Web-Services/WS-Notification-and-WS-
Topics-in-the-WS-Resources-Framework/. Accessed 9 May 2009

Sotomayor B (2007) The globus toolkit 4 programmer’s tutorial, 2007-08-19. Online available at
http://gdp.globus.org/gt4-tutorial/multiplehtml/ch08s02.html. Accessed 9 June 2009

Vambenepe W, Graham S, Niblett P (2006a) wsn-ws topics-1.3-spec-c, 2006-10-09. Online
available at http://docs.oasis-open.org/wsn/wsn-ws topics-1.3-spec-cs. Accessed 10 May 2009

Vambenepe W, Graham S, Niblett (2006b) P wsn-ws base notification-1.3-spec-cs.pdf, 2006-08-
09. Online available at http://docs.oasis-open.org/wsn/wsn-ws base notification-1.3-spec-cs-
01.pdf. Accessed 9 June 2009

Vambenepe W, Graham S, Niblett P (2006c) wsn-ws brokered notification-1.3-spec-cs, 2006-08-
09. Online available at http://docs.oasis-open.org/wsn/wsn-ws brokered notification-1.3-spec-
cs-01.pdf. Accessed 9 June 2009

http://www.ibm.com/developerworks/websphere/library/techarticles/0708_boughannam/0708_boughannam.html
http://www.ibm.com/developerworks/websphere/library/techarticles/0708_boughannam/0708_boughannam.html
http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/ws-wsnotificationWAS7/ws-wsnotificationWAS7-pdf.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/webservices/ws-wsnotificationWAS7/ws-wsnotificationWAS7-pdf.pdf
http://www.globus.org/wsrf/specs/ws-wsrf.pdf
http://www.devarticles.com/c/a/Web-Services/WS-Notification-and-WS-Topics-in-the-WS-Resources-Framework/
http://www.devarticles.com/c/a/Web-Services/WS-Notification-and-WS-Topics-in-the-WS-Resources-Framework/
http://gdp.globus.org/gt4-tutorial/multiplehtml/ch08s02.html
http://docs.oasis-open.org/wsn/wsn-ws_topics-1.3-spec-cs
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-cs-01.pdf
http://docs.oasis-open.org/wsn/wsn-ws_base_notification-1.3-spec-cs-01.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-cs-01.pdf
http://docs.oasis-open.org/wsn/wsn-ws_brokered_notification-1.3-spec-cs-01.pdf

	An Efficient Design of Publication and Subscription Model Based on WSN
	1 Introduction
	2 WS-Notification
	2.1 WS-Topics
	2.2 WS-BaseNotification
	2.3 WS-BrokeredNotification

	3 Publish/Subscribe Model Based on WS-Notification
	4 Conclusions
	References


