
Chapter 7
Motion Detection and Digital Polarization

Flying insects have extraordinary visual capabilities. Their ability to detect fast
motion in the visual scene and avoid collision using low level image processing and
little computational power makes their visual processing interesting for real time
motion/collision detection in machine vision applications.

In this chapter, some bio-inspired models of motion and collision detection based
on differential imaging and correlation will be presented. Section 7.1 describes
the process of obtaining motion from a sequence of images. The conventional
models for motion detection using differential imaging, background subtraction
and optical flow are also briefly introduced. Motion detection using differential
imaging is described in section 7.2. Section 7.3 describes the most popular bio-
inspired elementary motion detector. It also discusses on the possible simplification
of elementary motion detection using one-dimensional binary optical flow. The
spatial summation of differential one-dimensional binary optical flow is shown to be
able to detect both horizontal and vertical object motion. The partial charge transfer
method to increase the dynamic range and the background illumination invariance
are described in section 7.4. A digital representation of polarization is presented in
section 7.5, where the one-dimensional binary optical flow is shown to vary with the
polarization angle of the incoming light rays.

7.1 Motion Detection

Motion is usually determined from image sequences. The spatiotemporal image
sequences can be represented using the plenoptic function. The plenoptic func-
tion was introduced by Adelson and Bergen [1] to describe all the information
available to an observer at any point in space and time, when a light ray passes
through the imaging device. In its most general form, the plenoptic function is a
seven-dimensional function given by the equation (7.1)

P = P (θ, ϕ, t, λ, Vx, Vy, Vz) (7.1)
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where (Vx, Vy , Vz) is the position of the imaging sensor in three-dimensional space,
λ is the wavelength of light, (θ, ϕ) represents the azimuth and elevation angles
that index the viewable rays and t is time. In a pinhole camera only one sample
of the viewpoint is available at any given instance, thus the plenoptic function can
be adapted to standard Cartesian parametrization of the rays (x,y), where x and y are
the spatial coordinates in the image plane.

P = P (x, y, t, λ) (7.2)

Though multispectral imaging has started to become popular, most motion analysis
are done for a single wavelength and thus the plenoptic function can be rewritten as

P = P (x, y, t) (7.3)

The plenotic function of a time sampled set of images or “snapshots” is denoted by

P = P (x, y, {t = i, i+ δt, ..., i+ nδt}) (7.4)

where i is the time instance of an image capture, δt is the time interval between two
consecutive images and n is total number of images captured. In machine vision, the
variations in the plenotic function across sequences of images are used to calculate
the image velocity or motion. One of the measurable parameters of a point object
which is assumed not to change with time for changing plenoptic function is the
intensity or the brightness of the object given by I(x,y,t), where (x,y) represents the
spatial x and y dimensions and t denotes time [2]. It is thus useful to combine
the geometrical description of the scene with brightness information for motion
detection [3]. The brightness constancy equation assuming the intensity of a point
to remain constant as it moves δx, δy for a time interval δt can be written as

I(x− δx, y − δy, t− δt) = I(x, y, t) (7.5)

Taylor series expansion of equation (7.5) can be written as:

I(x− δx, y − δy, t− δt) = I(x, y, t) +
∂I
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∂y
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δt

+ higher order terms (7.6)

Neglecting the higher order terms in equation (7.6) and using the brightness
constancy equation [1] we get
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δt = 0 (7.7)
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where ∂I/∂x, ∂I/∂y and ∂I/∂t are the derivatives of the image (x,y,t) in
the corresponding directions and thus can be represented by Ix, Iy and It.
Equation (7.7) can be rewritten as:

Ixδx+ Iyδy + Itδt = 0 (7.8)

Dividing all the terms in equation (7.8) by δt we get:

Ixu+ Iyv + It = 0 (7.9)

where u(x,y,t) and v(x,y,t) are the horizontal and vertical components of the motion
respectively.

Equation (7.9) relates the image velocity to the spatiotemporal derivative of the
image at a particular location and is commonly referred to as the motion constraint
equation.

Based on the variation in the intensity obtained from the projection of the
plenoptic function on the image sensor from the moving object, three conventional
approaches are used to detect motion: temporal differencing [4]; background
subtraction [5], [6]; and optical flow [2].

Temporal differencing is based on frame difference, and attempts to detect
moving regions by making use of the difference of consecutive frames (two or
three) in a video sequence. This method is highly adaptive to dynamic environments,
but generally does a poor job of extracting the complete shapes of certain types of
moving objects [7].

Background subtraction uses a model of the background and compares the
current image with the reference image to separate the background and fore-
ground [8]. The main disadvantage of background subtraction method is that both
the background scene and the camera are required to be stationary when this method
is applied. They are also extremely sensitive to dynamic scene changes due to
background illumination changes.

When either the optical scene or the camera is in motion, optical flow is usually
used. An object in motion may exhibit both translation and rotational velocities,
which are usually projected as the movement of brightness patterns on the image
plane. As per the smoothness constraints, the corresponding points in two successive
frames should not move more than a few pixels. Thus in an uncertain environment
the camera motion or background changes should be relatively small and thus
motion can still be detected with optical flow. Optical flow estimation methods
can be classified into three main groups: differential methods; matching-based
methods and frequency/phase-based. All the three methods consist of three basic
components: pre-filtering, local motion estimation and integration over the field of
view. Pre-filtering or smoothing of the image data with a low-pass or band-pass
filter allows extracting the signal of interest thus enhancing signal-to-noise ratio.
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The local motion estimation is done using spatiotemporal derivatives to measure
the velocity component and the integration over the field of view produces a two-
dimensional flow field of the moving object.

The differential methods include the gradient based models that determine
two-dimensional velocities of the moving object employing first or second order
spatiotemporal derivatives of the image sequence. The velocity is obtained by
dividing the temporal derivative of local luminance by its spatial derivative. The
major problem with gradient based methods is that if the spatial derivative is small,
the noise in the temporal derivative is amplified and the velocity is poorly defined.
Thus due to the differentiation of the image sequence and their susceptibility to
errors under noisy conditions they are usually not preferred in low signal-to-noise
ratio regimes [9].

Matching-based methods include feature-based and region-based methods. They
are also known as block-based, area-based and correlation based methods. These
methods usually use techniques to either maximize cross-correlation or minimize
differential error. Feature based methods locate and trace identifiable features
of the image over time while region based methods try to locate a delineated
region in consecutive frame within a search space. To match the feature or the
regions in subsequent images either probabilistic approaches like Kalman filters and
Monte Carlo localizations or neural networks are used. Matching based methods
are robust to large motion and brightness variations however these methods are
found to be accurate only at high velocities and it is difficult to estimate sub-pixel
displacements [10]. Further correlation based models are normally very sensitive
to the amount of data involved because these algorithms are mainly based on byte-
level operations of the whole image. These methods involve an operation of all
the pixels in the image even though most pixels may not have changed from one
frame to another, severely limiting the bandwidth and speed or motion detection for
real-time applications.

Frequency/phase based methods use local energy or phase information to
determine the velocity of the moving object. These techniques for determining
image motion rely on the phase behaviour of arrays of band-pass filters or changes
in the output energy of the velocity tuned filters. These filters decompose the input
signal according to scale, speed and orientation. However these methods are still
susceptible to noise and discontinuity limitations like the gradient based methods.
Additionally the outputs of these methods are limited by the design of the filters
used [10].

7.1.1 Motion Detection - Models

The problem of real-time motion detection and tracking is an important issue in arti-
ficial vision. The main constraints for real-time implementation of these algorithms
are the large amount of data to be processed and the high-computational cost of the
algorithms employed. To solve the problems, analog VLSI chips employing early
vision processing of the optical scene are becoming popular [11], [12], [13], [14].
They employ simple, low accuracy operations at each pixel in an image or sequence
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of images, resulting in a low-level description of a scene useful for higher level
machine vision applications. These often results in compact, high speed and low
power solutions.

The motion detection can be done either on a pixel level or on a region level. The
pixel level analysis shows whether the pixel is stationary or transient by observing
its intensity value over time. Region analysis deals with the agglomeration of groups
of pixels into moving and stationary regions.

It is usually known that the pixel’s intensity value displays three characteristic
profiles as shown in the figure 7.1. When an object moves through the pixel it
displays a profile that exhibits a step change in intensity, followed by a period of
instability, then another step back to the original background intensity. When the
object moving through the pixel stops at the pixel location, it exhibits a change in
intensity, followed by a period of instability and then settling to the new intensity
levels. With variations in the ambient lighting, the intensity changes smoothly with
no large steps [15]. To know the state of the object, the nature of the pixel intensity
profile is important. To interpret the meaning of a step change (for example object
passing through, stopping at, or leaving the pixel), one needs to observe the intensity
curve re-stabilizing after the step change. This introduces a time-delay into the
process. For detection of fast motion this time delay has to be minimized.

Object moving
through pixel

(a)

Object stops
at pixel

Ambient change
in illumination

(c)(b)

I I I

tt t

Fig. 7.1 Characteristic pixel intensity profiles for (a) object moving though the pixel, (b)
object stopping at the pixel and (c) variations in the ambient illumination changes

In motion detection algorithms where the image motion is analyzed by sending
the complete frame out of the image sensor, a very high data rate is required to keep
the time delay small. The common method employed to obtain differential images
is to use the CCD or CMOS image sensor in high speed frame mode combined with
fast readout, a frame buffer to store the frame and a digital subtractor to generate the
differential image. The high frame rate is needed to prevent temporal aliasing, which
prevents the output signal from being a smooth function of the image parameters
thus affecting the efficiency of motion detection algorithms. Furthermore a long
time between two image captures will give a difficult correspondence problem in
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a dynamic scene. Such an image sensor is highly complex and consumes lot of
power. Thus such motion sensing algorithms though in use, for example in MPEG
encoders, are not very convenient for real-time motion applications in machine
vision. These algorithms for fast motion detection become design overkill for slow
motion detections where the time delay can be large.

Temporal differencing at a pixel level rather than at a frame level can help
to decrease the data coming from the camera as only the data from the pixel
with changed states will be sent out [12], [16]. The focal plane computations are
also free from temporal aliasing, which is usually a problem in motion detection
algorithms. Further temporal differencing is useful for ambient light suppression.
Two methods are discussed, one analog and one digital, in the subsequent sections
that can be employed for speeding up low level motion detection without much
complexity and power consumption. These algorithms are based on pixel changes
instead of full image processing and thus improve performance. The pixel level
processing provides an extreme data rate compression; it has a high data rate in
(image sequence) and low data rate out (motion).

7.2 Motion Detection - Differential Imaging

In differential imaging two consecutive images are stored in the pixel as an analog
voltage and a difference signal is obtained during the readout. Differential imaging
can be used for machine vision applications like motion detection, object tracking
or object recognition etc. All the stationary objects with constant illumination will
be ignored by the imaging system.

An active differential sensing method is described here, with focal plane com-
putations which need minimal external active components. The subtraction of the
two images captured at varying exposure time is done pixel by pixel. The process
is repeated for each image line and thus a differential image is obtained without a
requirement for an off-chip computation.

The designed image sensor explained in chapter 3 can operate in two modes:
double differential mode (DDS) and differential imaging mode (DI) using the two
available analog memories in the pixel. The operation of the image sensor in the
DDS mode was shown in section 3.6.5.1. The pixel diagram with the two analog
memories and the operational timing diagram of the DI mode of the pixel are shown
in the figure 7.2.

In the DI mode the sensor takes two samples and subtracts one from the other.
The first sample is taken after an integration time T1 while the second sample is
taken after an integration time TFT and are stored in the two analog memories in
the pixel. The imaging array operates in global shutter mode as the signals after the
integration time is transferred to the memories at the same time for all the pixels of
the imaging array. However while reading out, each row is read at a time. The two
signals stored in the pixel are subtracted at the column level of the analog signal
chain shown in figure 3.33. The subtraction of the two images reduces the FPN and
since there is no reset between the two image captures the reset noise is the same in
both images and it is removed with subtraction.
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Fig. 7.2 Differential imaging mode

Figure 7.3 shows an example of motion detection, when the object moves to a
pixel position and stops, similar to the situation shown in figure 7.1(b).

When the exposure time of the two samples is the same (T1 = TFT ) = 20ms,
a black image is observed when there is no change in the background as shown in
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Fig. 7.3 Motion detection using differential mode of operation

figure 7.3(a). When a DC light source is switched on (to resemble motion), there is a
change in the background and the change is visible in the differential image 7.3(b).
The histograms shows the gray values of the pixels. When there is no motion, most
of the pixels have lower gray values while when there is motion pixels start to get
higher gray values.

For motion detection all the static objects or DC light sources in the background
have to be removed and only the AC change is to be detected. Thus a very high
Common-Mode Rejection Ratio (CMRR) is desired to remove the common mode
or DC signal in subsequent images of a scene. Common-mode rejection ratio of a
device is the measure of the tendency of the device to reject common input signal. A
high CMRR is desired for applications where the signal of interest is a small voltage
fluctuation superimposed on a large voltage offset or when the required information
is contained in the voltage difference of two signals.

The definition of the CMRR of the differential image is simplified from the
conventional definition of CMRR and defined to be the change in the common
mode signal divided by the change in the differential signal due to the change in
the common mode signal [17]. A high CMRR is desired to have the same effect
when two white images or two black images are subtracted from each other. The
maximum voltage swing obtained after DDS for the designed sensor is 488mV as
seen in section 3.7.2.1, for dark to saturation exposure of the sensor. The output
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voltage swing obtained when operating in the differential mode (T1 = TFT ) is
2.44mV for varying illumination from dark till the sensor saturation. The CMRR
thus obtained is 200 or 46dB which is higher than the CMRR of 100 reported in [17].

The changes in the differential signal when the normal exposure period (TFT ) is
held constant at 20ms while the short integration time (T1) is varied is shown in the
figure 7.4.
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Fig. 7.4 Variation in the differential swing and CMRR with changes in the exposure time

A non-linear behavior is seen when T1 is very low compared to TFT . If the ratio
of the two integration periods is defined as RDE = TFT /T1, then it is observed
that for larger values of RDE the non-linearity is quite high. The accumulated
electrons for a given illumination condition decrease with the increase in RDE

due to shorter accumulation period (The accumulated electrons are proportional to
1/RDE). When the accumulated electrons are low, the error in transferring these
accumulated electrons from the photodiode to the floating diffusion node is higher.
Thus the non linearity increases with increase inRDE . The results are very much in
agreement with the theoretical studies of [18]. The CMRR practically remains low
for all values of T1. When T1 is equal to TFT , it reaches the maximum value of 200.

7.3 Motion Detection - Optical Flow

A one-dimensional motion can either be in a horizontal direction or in a vertical
direction. Vertical motion of an object towards the sensor leads to a collision
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and thus needs to be prevented. The visual guided collision avoidance has been
extensively studied using conventional cameras and digital processing devices.
However conventional cameras are not suitable for real time applications as they
rely on motion estimation using sequential images.

It is well known that flying insects are able to detect obstacles in their flying path
efficiently with little computational power by using optical flow. Optical flow is the
pattern of apparent motion of objects, surfaces, and edges in a visual scene caused by
the relative motion between an observer and the scene. Optical flow usually contains
information about self motion and distance to potential obstacles and thus it is very
useful for navigation [19]. In section 7.1, the three methods of obtaining optical flow
for motion detection have been summarized. These methods are however broadly
equivalent. In biological motion vision, the correlation based model or the gradient
detector model are often used to account for the direction selectivity [20]. The
correlation based model is shown to have significant advantages over the gradient
based model in regimes where signal-to-noise ratio is low and detector noise is of
concern.

The circuit of each pixel of the designed image sensor contains a comparator
to detect the difference between the integrated charge from the photodiode and an
external threshold voltage (chapter 3). This allows the generation of binary optical
flow similar to the effect of “flickering” in the eyes of insects. The binary optic flow
is the change in the digital pixel values in response to objects motion in the focal
plane of the image sensor. The generated optical flow can be used to detect motion
both in vertical (section 7.3.1) and horizontal (section 7.3.2) direction with minimal
processing and hardware.

7.3.1 Motion in Vertical Direction - Collision Detection

In this section vertical motion in the focal plane is considered to estimate the time to
collision of a moving object with the image sensor using binary optic flow. Reliable
estimation of the time to collision between two moving objects is very important
in many applications such as autonomous agent navigation or predictive crash
sensors for autonomous safety systems. Currently existing non-biologically inspired
collision avoidance systems use a CCD/CMOS camera and digital processing
devices to detect the approaching object. Such a collision detection system is
not suitable for compact real-time computations as it requires large amount of
computations.

7.3.1.1 Elementary Motion Detector (EMD)

The most popular bio-inspired visual guided collision avoidance approach uses the
correlation-type elementary motion detector (EMD), first proposed by Hassenstein
and Reichardt to compute the optical flow [21]. They have been used to explain
directional selective motion in a wide variety of insects, birds and mammals
including humans [10]. This model is very well established and often used in
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bio-inspired robots [22], [23] and [24]. The EMD correlates the response of
one photoreceptor to the delayed response (inhibitory response) of an adjacent
photoreceptor, both looking in the same direction as shown schematically in
figure 7.5.
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Fig. 7.5 The Hassenstein-Reichardt or correlational elementary motion detector (EMD) [25]

The elementary motion detector consists of two spatially separate inputs to
measure the changes across space, temporal filters (delay) to measure the changes
across time and a comparator to evaluate spatial and temporal changes. The
coincidence of the original signal from one point in space and the delayed signal
from the neighboring point in space leads to a positive output signal. The final
output signal of the EMD is a transient response obtained by subtracting two images.
The output image is sensitive to temporal changes in intensity of light, enhancing
the directional properties and motion detection by rejecting the effects of temporal
contrast not resulting from motion. The motion detection by subtracting two images
is better suited than the motion detection using derivative which amplify the noise.

The two separate inputs of the EMD model achieve what is referred to as “tem-
poral decorrelation” or “transient enhancement” [23], which is a way of removing
the redundant information from the photoreceptor signal before further processing
to determine motion. The temporal decorrelation is a filtering mechanism, in which
the DC light (mean ambient light) which doesn’t have any motion information will
be subtracted and AC light (which corresponds to motion) would be allowed to the
next stage for further processing.

Existing implementations of the EMD use a complex circuit with many active and
passive components in order to obtain the inhibition of the signal and the correlation.
Further because the basic collision detectors try to measure the velocity of the
approaching object, they need dedicated processing blocks for velocity calculation
from optical flow field. Additionally, the outputs of the EMD are not invariant
to the changes in the background illumination and their responses are not only
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proportional to velocity changes but are strongly affected by the contrast and the
spatial frequency components of the scene [26]. Because the EMD multiples its
two input, it has quadratic dependence on the contrast and is thus not suitable
for low contrast motions. This problem of quadratic dependence can be solved by
introducing static expansive non-linearity in the channels [23] however this makes
the model more complex. Further because the time delay in the two channels is
constant, the EMD may infer a wrong conclusion if the time intervals of the moving
object between the two points is not the same as the delay.

The standard output of a collision detector using an EMD is a response
which stays low when the object is far enough and peaks before collision for an
approaching object and then collapses to low values again [23]. The peaking of the
collision detection algorithm depends on the delay in the delaying channel and the
time an object takes to appear in the neighboring channel as well as the variations
in the background illuminations [27]. Thresholding of this response to ascertain
collision is thus difficult.

7.3.1.2 Proposed EMD Model for Collision Detection

The correlation based models are usually computationally intensive and have
difficulties in selecting reliable estimates. In order to have compact and low-power
real time autonomous motion detection systems, the estimation of the optical flow
has to be simplified. This means that rough qualitative properties of the optical
flow are more desirable for efficient collision detection than accurate target distance
estimation [19]. The collision avoidance maneuvers in insects can be explained in
terms of perception of looming stimuli or expanding images. The landing behavior
of insects and the saccade (rapid turns) exhibited by example flies are believed to be
triggered by image expansion as detected by an array of local motion detectors [28].
Collision detection using expanding images is also relatively independent of the
spatial structure of the object being approached.

To understand the plenoptic function of expansion of images the motion con-
straint equation (7.9) is used. Since in collision detection the motion is assumed to
be only in the vertical direction of the focal plane, the motion constraint equation
can be rewritten as

Iyv + It = 0 (7.10)

Equation (7.10) shows that the time of impact or time of collision of the object
is directly proportional to the reciprocal of velocity of the object. Equation (7.10)
can be better understood using figure 7.6, which shows an image of an approaching
object of diameter D at a constant velocity V along the optical axis. The distance
between the lens and the object is d(t) while the focal length of the lens is f.

The diameter of the obtained image and its derivative with respect to time is given
as:

a(t) =
f ×D

d(t)
(7.11)
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Fig. 7.6 Perception of approaching objects

d(a(t))

dt
= −f ×D

d(t)2
(7.12)

The size of the image a(t) in equation (7.11) increases with a decreasing distance
d(t) and vice versa. The change in the image size affects the optical flow perceived
by the image sensor.

To simplify the optical flow generation algorithm, the binary output of the pixel
is used. The binarization of the data in the pixel is explained in section 2.6.2.3.
In the collision detection experiments, the image sensor is held stationary so that
the optical flow is always generated by the motion of the object in the visual field.
Figure 7.7 shows the variation in the light spot (approaching object). As the object
moves closer to the image sensor, the image size (spot size on the imaging plane)
grows or the optical flow expands. With the expanding of the optic flow the intensity
profile of the pixel will also increase (figure 7.1(c)), and more pixels will have an
output voltage higher than the reference voltage, and a digital ‘1’ will be stored in
the SRAM cells.

Fig. 7.7 Perception of approaching objects
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From the digital images, the percentage of active high pixels for a given
illumination condition can be computed as the ratio of total active high pixel to
the total number of pixels in the array:

% of active high pixels =
Total active high pixels
Total number of pixels

(7.13)

Equation (7.13) represents the one-dimensional binary optical flow. The percentage
of the active high pixels will increase with the approaching bright object as predicted
by equation (7.11). The measured variations in the percentage of active high pixels
with the variation in the distance of the light source for single image capture is
shown in figure 7.8. It shows that when the light source approaches the image sensor,
the optical flow, which is the variation in the intensity with motion, causes more
pixels to become active thus increasing the percentage of active high pixels.
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Fig. 7.8 One-dimensional binary optical flow variation with approaching object

One of the major requirements of motion detection using correlation models is
temporal decorrelation. Temporal decorrelation refers to the process of reducing
the autocorrelation with a signal in time domain, this helps in removing redundant
information in images separated in time. Temporal decorrelation can be obtained
using differential imaging, where two samples are spaced in time. The differential
image is generated using partial charge transfer, where the integrated charge at the
photodiode capacitance is transferred to the FD node multiple times in one frame
(chapter 3). Figure 7.9 shows the algorithm used.
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Fig. 7.9 Modified EMD model for collision detection

The first image capture is at a time instance of T1 and the second capture is at
TFT . The captured samples are then compared with the reference voltage and the
digital output is stored in the two SRAM cells available in the pixel. The differential
image of the two spatially integrated digital images obtained from SRAM1 and
SRAM2 was computed off chip for this version of the sensor.

The temporal decorrelation of the optic flow obtained using the partial charge
transfer is shown in figure 7.10. The figure shows the variation in the percentage of
active high pixels of two image captures for varying distance of the object from the
imager. The first image is captured after an integration time of T1 and the second
after the total frame time TFT . Two measurements for T1 when 10ms and 1.5s are
shown in the figure 7.10. The variation of the time instances allows to generate
varying decorrelated one-dimensional binary optical flow.

The difference of the two temporally decorrelated optical flows is plotted in the
figure 7.11. It can be observed that as the object moves towards the image sensor, it
has a certain threshold of percentage of pixels with changed states below which the
object is very near to collision. In this case the collision detection mechanism does
not need to use dedicated motion processing blocks. The collision can be detected
to a very good degree of reliability using the percentage of changed pixels with the
varying one-dimensional differential optical flow.

Harrison [23] uses a collision detection algorithm based on the basic EMD model
and the algorithm peaks at 230ms before collision for an object with a velocity of
17cm/s. Thus the collision alert is generated at a distance of approximately 4cm.
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A similar method used by Okuno and Yagi [22] produces a collision detection alert
at a distance of 63m. The differential optical flow is shown to generate a collision
alert for distances less than 2cm. For narrow path autonomous agent navigations,
a collision alert for very small distance is desired. For example in applications like
endoscopy, a collision alert distance of less than a cm would be ideal. The distance
of collision alert can also be modulated by varying the T1 and TFT , depending on
the application and situation.

Table 7.1 Performance comparison

[22] [23] This work
Method used EMD model based Delay and Differential optical

on locust correlate EMD flow imaging
Collision alert 63m ∼4cm ≤2cm

distance

Furthermore the proposed algorithm doesn’t suffer from the inherent disadvant-
age of the EMD model in the accurate detection of the output peak. The output of the
differential optical flow continues to stay low near collision allowing thresholding
and thus is more stable. By modulating the differential time, it would be possible
to prevent collision in very narrow paths thus helping navigation of the autonomous
agents. Further as most of the computations are done on focal plane there is no
image transfer bottleneck, which is usually present in the conventional approach of
using an image sensor together with a digital signal processor.

So far the collision detection algorithm is employed in an environment with an
illuminated object moving towards the image sensor in a dark background. However
since the temporally decorrelated signal is a differential signal, it would also work
in an environment condition where a dark object moves vertically with respect to
the image sensor in a light background. In such a case initially the binary optic
flow would be composed off all digital ‘1’ and as the dark object approaches the
image sensor, the optic flow would toggle to digital ‘0’. The temporally decorelated
difference image would thus subtract two images whose optic flow would be
dominated by digital ‘0’. The difference image would thus show the % percentage
of active high pixels to exhibit a behavior similar to figure 7.11.

7.3.2 Motion in Horizontal Direction

In this section only horizontal motion is considered. From the pixel array only the
binary output of the comparators are used for the motion detection. The 7-bit counter
counts the number of ‘1’ in each row of the pixel for each frame. The algorithm for
motion detection then compares the counter outputs to decide if there is motion.
If the difference of the counter outputs for two exposures is higher than a certain
threshold, motion occurrence is flagged.

For the designed sensor the brightness control voltage is the reference voltage to
which the analog signal obtained after each exposure is compared. The two SRAM
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cells in the pixels serve as frame latches and offer both past and current data. The
pixel converts the image data into a one-bit data stream by the comparators.

To verify the proposed model two consecutive frames of a light source moving
over the image sensor are shown in figure 7.12.
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Fig. 7.12 Horizontal motion detection using spatially integrated binary optical flow

The left image shows the light source at its initial position and the right image
shows it after a slight movement. The two images look very similar, as only a
very small motion was introduced. The histograms of the two images are shown
in figure 7.12. The subtraction of the two images results in a difference image, and
the histogram of the pixels which changed states are shown at the bottom of the
figure. By selecting a proper threshold, accurate detection of motion can be done.
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7.4 Illumination Invariant and High Dynamic Range Motion
Detection

The outputs of the EMD are not invariant to the changes in the background
illuminations as discussed in section 7.3. This problem is illustrated in figure 7.13
which shows the increase in the EMD output with the increase in the background
illumination.

Fig. 7.13 The correlational elementary motion detector showing increased motion for change
in illumination

An increase in the background illumination increases the output of the EMD
and this increased output can be confused with motion. Also it is shown than the
optical flow computed on the image doesn’t match actual motion with non-uniform
illumination [29]. The estimation of motion parameters from the spatiotemporal
patterns of visual stimuli or optical flow implicitly requires responses that are
invariant with respect to absolute illumination levels, contrast and the spatial
structure of the scene.

For the EMD model to have a good performance over varying illumination
conditions, the dynamic range of the sensor also needs to be high. A real-world
scene is composed of varying level of brightness within it. The dynamic range of the
scene is typically always higher than the dynamic range of the sensor used to capture
the scene. A typical image sensor has a dynamic range of about 65 to 75dB while a
scene can have a dynamic range of over 120dB. In high illumination conditions the
photodiode of the pixel saturates very quickly. For a very bright object most of the
photodiodes will be saturated and thus finer details and motion cannot be captured.

To increase the dynamic range either the maximum signal at the photodiode
node (well capacity) has to be increased or the read noise has to be decreased
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(equation (3.15)). The relationship between output, integration time and photocur-
rent at the floating diffusion node of a linear image sensor is given by:

Vsignal =
tint × Iphoto

Ceff
(7.14)

The photocurrent produced in the photodiode is proportional to the irradiance and
the light collection area or the photodiode area. The larger the pixel exposed surface,
the more light it can collect during the exposure period and thus the higher is
the dynamic range. The photodiode area is limited by pixel size constraints. For
high resolution a small pixel size is desired. This leaves us with two parameters in
equation (7.14) that can be modified to increase the dynamic range: the integration
time tint and the effective capacitance to store the collected charges during
integration Ceff . The total capacitance Ceff on the photodiode sense node is the
sum of the junction capacitance proportional to the diode area and the parasitics due
to the sensing and amplifying circuitry.

From equation (7.14) it is clear that the slope of the pixel response can be changed
by the scaling of the effective capacitance. Changing the effective capacitance varies
the well capacity. The effective capacitance can be varied using either smart reset
pixels [30], using overflow MOSFET capacitors [31] or by using multiple shorter
exposure periods [32], [33]. In the smart reset pixels, the reset gate voltage is monoton-
ically decreased during integration causing the well capacity (charge capacity) of the
sensor to monotonically increase. Using a lateral overflow capacitor, the overflowed
chargesfromafullydepletedphotodiodeduringanexposurecanstillbeintegrated.The
disadvantage of such a scheme is the effective increase of thefloating node capacitance
which reduces the charge conversion gain and also the fill factor of the pixel. In the
multiple shorter integration period methods, several images with different exposure
time are captured. The images with a shorter exposure timecaptures the brightest areas
of the scene, while the images with longer exposure time capture the darker areas of
the scene. A high dynamic range image is then synthesized from the multiple captures.

Since differential imaging is used in the proposed model of the EMD to obtain
the temporal decorrelation necessary for motion detection, a partial charge transfer
method is used to increase the dynamic range of the model. This method provides
a signal after a short integration time in addition to a signal after a long integration
time [18]. The difference of the two charge accumulation times in one frame extends
the dynamic range of the sensor by removing the static or DC light.

The photo-conversion characteristics for the complete charge transfer (DDS) and
the differential signal for the partial charge transfer with various integration is shown
in figure 7.14. T1 is varied from 5ms to 20ms.

Figure 7.15 shows the variation in the saturation intensity with varying T1 : TFT

ratio. The saturation intensity is the intensity of light causing the photodiode to
saturate. It is observed that the saturation intensity increases with an increase in
T1 : TFT ratio or with an increase in the accumulation time T1. By appropriately
changing the T1 : TFT ratio, the saturation intensity can be doubled thus increasing
the sensitivity to the background brightness.
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Fig. 7.14 Photo-conversion characteristics at λ = 550nm
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Fig. 7.15 Saturation intensity variation with variation in T1 : TFT ratio
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Fig. 7.16 DC light source images with T1 : TFT of (a) 0.0005 and (b) 0.05

Figure 7.16 shows an example of increasing the saturation level using partial
charge transfer. Images of a DC light source were taken with different T1 : TFT

ratios. Figure 7.16(a) and (b) show the images with T1 : TFT values of 0.0005 and
0.05 respectively. In figure 7.16(a) the pixels at the bright portions of the DC light
source saturate, causing an overflow with a very short accumulation time T1. The
differential signal with increased T1 is shown in figure 7.16(b) and is able to capture
the bright portion of the DC light source.

In partial charge transfer, when the charges are transferred from the photodiode
to the sense node, some amount of charge is left in the photodiode, as shown
in figure 3.24(d) (chapter 3). This introduces image lag and can be removed by
resetting the photodiode. However, a reset introduces kT/C noise. The amount
of residual charge in the photodiode depends on the accumulated charge. Since
the accumulated charge is proportional to the exposure time, the residual charge
increases with the exposure time. The increase in the residual charge increases in
turn the non-linearity of the photo-conversion characteristic and further decreases
the sensitivity. The accumulated signal obtained after partial charge transfer with a
shorter (T1) period is also non-linear with respect to the incident light. The non-
linearity is believed to be caused by the carrier diffusion and the initial condition of
the photodiode [18].



7.4 Illumination Invariant and High Dynamic Range Motion Detection 237

TFT

T11 T12 T13 T14

NT11

NT12

NT13

NFT

It

Imin

Imax

Fig. 7.17 Charge accumulation for various illumination and integration periods

The increase in non-linearity at higher illumination levels for the partial charge
transfer can be modeled using figure 7.17. It shows the accumulated charges for
various intensities of light It (normal), Imax (maximum) and Imin (minimum) and
varying T1 (T11, T12, T13 and T14).
NFT is the number of electrons accumulated when the sensor is operated in

conventional or complete charge transfer mode with a frame time of TFT . For the
partial charge transfer mode T1 can vary and four different time instances are shown
in figure 7.17. For illumination It, the following equations hold

q ×NT12 = It × T12 (7.15)

If Na1 is the number of residual charges after the first charge transfer at T12 for a
illumination of It then

q × (NFT −Na1) = It × TFT (7.16)

NT12 =
T12
TFT

× (NFT −Na1) (7.17)

For the highest illumination Imax, the photodiode saturates very quickly.Na2 is the
residual charge after the first charge transfer at T12 for an illumination of Imax
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q ×NT12 = Imax × T11 (7.18)

q × (NFT −Na2) = Imax × T12 (7.19)

NFT
2 − a1 ×NFT + b1 = 0 (7.20)

where
a1 = Na1 +Na2 (7.21)

b1 = Na1 ×Na2 − TFT

T11
NT12

2 (7.22)

Figure 7.18 shows the photo-conversion characteristics of the synthesized wide
dynamic range signals with the dynamic range extension ratio T1 to TFT set to
1:20, 5:20 and 10:20 for higher illuminations. It is observed that for decreasing T1
to TFT ratios the non-linearity increases at high illumination. It is further observed
that with the decrease in the T1 to TFT ratio the sensitivity increases.

The sensitivities obtained for T1 : TFT ratio of 10:20, 5:20 and 1:20 are 11.46
mV/ms, 12.89 mV/ms and 14.37 mV/ms respectively.
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The associated non-linearity at high illumination with partial charge transfer is
interesting, as in motion detection a non-linear interaction between two spatially
separated signals is usually desired [34]. In insects the photoreceptors adapt to the
mean luminance in the enviornment and give an approximately logarithmic response
to changes in light intensity [35]. This compressive non-linearity allows a better
response to contrast than absolute luminance. Non-linearity in the Hassenstein-
Reichardt EMD model is introduced either by thresholding or rectification to obtain
a saturating contrast response curve for motion adaptation [36], [37]. The effect of
the non-linearities associated with high illumination obtained with partial charge
transfer on motion detection is yet to be explored.

The collision detection algorithm in section 7.3 is designed using one-dimensional
binary optical flow. Figure 7.19 shows the percentage of active high pixels when the
photodiode is operated in complete charge transfer (T1 = 0ms) and partial charge
transfer (T1 = 10ms) respectively. It is observed that with partial charge transfer
higher illumination levels are captured, thus increasing the digital dynamic range of
the image sensor.
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Fig. 7.19 Variations in the optical flow for partial charge transfer

7.5 Digital Polarization

In chapter 4 a CMOS polarization sensor with embedded metallic wire gird was
discussed. The image sensor was shown to respond to the changes in the polarization
angle. This polarization sensitivity was further shown to be useful in machine vision
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applications like material classification and autonomous agent navigation in chapter
5 and 6 respectively. However the proposed solutions for these applications were
based on using the analog signals from the pixels. In section 7.3, a simple way to
calculate one-dimensional-correlational optical flow using the number of active high
pixels at a given time was introduced. The number of active high pixels will vary
depending on the horizontal and vertical motion of the object source and its relative
intensity variations on the focal plane. Here only motion in vertical direction to
the imaging plane is considered. Thus depending on the object moving close or far
away from the image sensor, the spot on the focal plane increases or decreases. The
size of the spot will be further dependent on the polarization angle of the incoming
light ray and the one-dimensional binary optical flow can thus be used to represent
polarization in digital format.

The expected theoretical behaviour of the one-dimensional binary optical flow
for the two polarization sense regions (chapter 4) is shown in figure 7.20.
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For the polarization sense region 1, when the object is moving towards the
imaging plane the intensity of the pixels slowly increases. As the light intensity
reaches the threshold level, one expects the two intensity sensitive pixels to store a
digital ‘1’, the output of the comparator, in the SRAM cells. The percentage of active
high pixels shows a step rise to around 50%. As the intensity is further increased
around 90°, the 90° sensitive pixels will slowly start to have a have a digital ‘1’,
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as their comparators’ outputs, and hence the percentage of active high pixels will
increase above 50%. Ideally, when all the 90° sensitive pixels turn high, 75% of the
pixels in region 1 will be active high. However due to the attenuation of the light by
the external polarizer not all 90° sensitive pixels turn high. In the polarization sense
region 2, the theoretical behavior of the percentage of active high pixels would be
the same as region 1, except that as the intensity increases, the 45° sensitive pixels
start to turn high. Thus there is an additional step rise when the polarizer angle is
45°. In the experiments, the optical flow is obtained by increasing the light spot
gradually from the center to the periphery of the polarization sense regions, using
a linear polarizer. This results in a linear increase in the percentage of active high
pixels with the variations in the linear polarizer angle, instead of the expected step
rise.

The experimental setup for the measurement is the same as described in chapter 4
for analog polarization measurements. The analog performance for the 90° polarizer
filter in the two polarization sense regions 1 and 2 is compared with the one-
dimensional binary optical flow for varying angle of linear polarizer in figure 7.21.

The measured one-dimensional binary optical flow is shown to have an angular
dependence on the angle of the linear polarizer and is very similar to the theoretic-
ally predicted behavior. The optical flow and analog representations of polarization
in region 2 match closely. It can be predicted that by increasing the number
of metallic wire grid orientations over the photodiode a digital representation of
polarization very similar to the analog representation can be obtained [38].

A generalized algorithm to represent polarization information will have multiple
advantages in low level polarization based machine vision applications. Based on
the one-dimensional binary optical flow variations with the polarization angle, a way
to determine the Stokes parameters, degree of polarization and polarization Fresnel
ratio in binary format can be formulated which will allow focal plane processing
of applications like material classification and autonomous agent navigation. Such
a sensor would be miniaturized, bandwidth compressor and low power which are
highly desirable in the future generations of sensors in machine vision applications.

7.6 Summary

• Motion is usually determined from image sequences. The spatiotemporal image
sequences can be represented using the plenoptic function.

• For changing plenoptic function, the intensity of the point object is assumed to
be constant.

• Three conventional approaches are used to detect motion: temporal differencing;
background subtraction; and optical flow.

• Temporal differencing is based on frame difference. Background subtraction
separates the background and foreground and optic flow detects the movement
of the brightness patterns on the image plane.

• Optical flow estimation methods can be classified into three main groups:
differential methods; matching-based methods and frequency/phase-based.
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• The differential methods determines two-dimensional velocities of the moving
object employing first or second order spatiotemporal derivatives of the image
sequence.

• Matching based methods usually use techniques to either maximize cross-
correlation or minimize differential error.

• Frequency/phase based methods use local energy or phase information to
determine the velocity of the moving object.

• In motion detection algorithms where the image motion is analyzed by sending
the complete frame out of the image sensor, a very high data rate is required to
keep the time delay small.

• Temporal differencing at a pixel level rather than at a frame level can help to
decrease the data coming from the camera as only the data from the pixel with
changed states will be sent out.

• The most popular bio-inspired visual guided motion detector is the correlation-
type elementary motion detection (EMD). The optic flow is computed by
correlating the response of one photoreceptor to the delayed response of an
adjacent photoreceptor, both looking in the same direction.

• The compound eyes of insects are better suited for detection of motion. In-
spired by the them, a CMOS image senor operating in temporal differential
mode and spatial integration of one-dimensional binary optical flow to detect
motion/collision of moving objects was designed.

• The dynamic range of a sensor can be enhanced using partial charge transfer,
which also provides for a background illumination invariant motion detection
system.

• The one-dimensional binary optical flow also have an angular dependence on the
angle of the linear polarizer. By increasing the number of wire grid orientations,
a digital representation of the polarization very similar to the analog can be
obtained.
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