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Chapter 3 
Uncertain Preferences and Imperfect 
Information in Decision Making 

3.1   Vague Preferences 

One of the main aspects defining solution of a decision problem is a preferences 
framework. In its turn one of the approaches to formally describe preferences is 
the use of utility function. Utility function is a quantitative representation of a 
DM’s preferences and any scientifically ground utility model has its underlying 
preference assumptions.  

The first approach to modeling human preferences was suggested by von 
Neumann and Morgenstern [70] in their expected utility (EU) model. This 
approach is based on axioms of weak order, independence and continuity of 
human preferences over actions set A . As it was shown by many experiments and 
discussions conducted by economists and psychologists, the assumption of 
independence appeared non-realistic [4,9,20]. There were suggested a lot  
of preferences frameworks which departs from that of EU by modeling a series of 
key aspects of human behavior. 

Reconsideration of preferences framework underlying EU resulted in 
development of various advanced preferences frameworks as generalizations of 
the former. These generalizations can be divided into two types: rank-dependence 
generalization and sign-dependence generalization [11]. Advanced preference 
frameworks include various reconsiderations and weakening of the independence 
axiom [24,27,31,63] , human attitudes to risk and uncertainty (rank-dependent 
generalization), gains and losses [42,68] (sign-dependent generalization) etc. 

Various notions of uncertainty aversion (ambiguity aversion) in various 
formulations were included into many preference models starting from 
Schmeidler’s Choquet expected utility (CEU) [63] preferences framework and 
Gilboa and Schmeidler’s maximin expected utility preferences framework [31], to 
more advanced uncertainty aversion formulations of Ghirardato, Maccheroni, 
Marinacci, Epstein, Klibanoff  [10,12,21,23,25,27,28,44,45]. 

In [25] they provide axiomatization for α − MMEU – a convex combination of 
minimal and maximal expected utilities, where minimal expected utility is 
multiplied by a degree of ambiguity aversion (ambiguity attitude). This approach 
allows differentiating ambiguity and ambiguity attitude. However, the approach in 
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[25] allows to evaluate overall utility only comparing ambiguity attitudes of DMs 
with the same risk attitudes. The analogous features of comparative ambiguity 
aversion are also presented in [28]. Ambiguity aversion as an extra risk aversion is 
considered in [12,22]. 

In [43] they suggested a smooth ambiguity model as a more general way to 
formalize decision making under ambiguity than MMEU. In this model 
probability-relevant information is described by assessment of DM’s subjective 
probabilistic beliefs to various relevant probability distributions. In contrast to 
other approaches to decision making under ambiguity, the model provides a strong 
separation between ambiguity and ambiguity attitude. To describe whether a DM 
is an ambiguity averse, loving or neutral it is suggested to use well known 
technique of modeling risk attitudes. More concretely, to reflect a considered 
DM’s reaction to ambiguity it is suggested to use a concave nonlinear function 
with a special parameter α  as the degree of ambiguity aversion – the larger α  
correspond to a more ambiguity averse DM. In its turn ambiguity loving is 
modeled by a convex nonlinearity. As opposed to the models in [21,25,28], the 
model in [43] allows for comparison of ambiguity attitudes of DMs whose risk 
attitudes are different. 

The other important property included into some modern preference 
frameworks is a tradeoff-consistency which reflects strength of preferences with 
respect to coordinates of probabilistic outcomes. 

The preference framework of the Cumulative Prospect Theory (CPT), 
suggested by Kahneman and Tversky [68], as opposed to the other existing 
frameworks includes both rank-dependence and sign-dependence features [11].  

But are the modern preferences frameworks sufficiently adequate to model 
human attitudes to alternatives? Unfortunately, the modern preferences 
frameworks miss very important feature of human preferences: human preferences 
are vague [58]. Humans compare even simple alternatives linguistically using 
certain evaluation techniques such as “much better”, “much worse”, “a little 
better”, “almost equivalent” [81] etc. So, a preference is a matter of an imprecise 
degree and this issue should be taken into account in formulation of preferences 
framework. Let us consider an example. 

Suppose that Robert wants to decide among two possible jobs 1 2,a a  based on 

the following criteria: salary, excitement and travel time. The information Robert 
has is that the job 1a  offers notably higher salary, slightly less travel time and is 

significantly less interesting as compared to the job 2a . What job to choose? 

Without doubt, evaluations like these are subjective and context-dependent but 
are often faced. If to suppose that for Robert salary is “notably” more important 
than the time issues and “slightly” more important than excitement then it may be 
difficult to him to compare these alternatives. The relevant information is too 
vague for Robert to clearly give preference to any of the alternatives. Robert may 
feel that superiority of the a1 on the first criterion is approximately compensated  
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by the superiority of the a2 in whole on the second and the third criteria. But, at the 
same time Robert may not consider these jobs equally good. As a result, in 
contrast to have unambiguous preferences, Robert has some “distribution” of his 
preferences among alternatives. In other words, he may think that to some degree 
the job a1 is as good as the job a2 and, at the same time, that to some degree job a2 
is as good as the job a1.  

In this example we see that vagueness of subjective comparison of alternatives 
on the base of some criteria naturally passes to the preferences among alternatives. 
For example, the term “notably higher” is not sharply defined but some vague 
term because various point estimates to various extents correspond to this term – 
for a given point estimate its correspondence to a “notably higher” term may not 
be true or false but partially true. This makes use of interval description of such 
estimates inadequate as no point may partially belong to an interval – it belongs or 
not. It is impossible to sharply differentiate “notably higher” and not “notably 
higher” points. As a result, vague estimates (in our case vague preferences) cannot 
be handled and described by classical logic and precise techniques. Fuzzy logic 
[1,81] is namely the tool to handle vague estimates and there is a solid number of 
works devoted to fuzzy and linguistic preference relations [57,74]. This is due to 
the fact that vagueness is more adequately measured by fuzziness. As a result, 
fuzzy degree-based preference axiomatization is more adequate representation 
from behavioral aspects point of view as it is closer to human thinking. In view of 
this, linguistic preference relations as a natural generalization of classical 
preference relations are an appropriate framework to underlie human-like utility 
model. 

Fuzzy preferences or fuzzy preference relations (FPRs) are used to reflect the 
fact that in real-world problems, due to complexity of alternatives, lack of 
knowledge and information and some other reasons, a DM can not give a full 
preference to one alternative from a pair. Preferences remain “distributed” 
reflecting that one alternative is to some extent better than another. In contrast to 
classical preference relations, FPR shows whether an alternative a is more 
preferred to b than alternative c is preferred to d.   

Given a set of alternatives A , any fuzzy preference relation on A  is a mapping 
:R A A T× →  where T  is a totally ordered set. Very often fuzzy preference 

relation is considered as : [0,1]R A A× →  which assigns to any pair of 

alternatives ,a b A∈  a degree of preference ( , ) [0,1]R a b ∈  to which a  is 

preferred to b . The higher ( , )R a b  is, the more a  is preferred to b . In other 

words, FPR is characterized by membership function ( , ) ( , )R a b R a bμ =  which 

returns a degree of membership of a pair ( , )a b  to R . FPR is a valued extension of 

classical preference relations. For example, a weak order is a special case of FPR 

when { }: 0,1R A A× →  with ( , ) 1R a b =  if and only if a b  and ( , ) 0R a b =  

otherwise.  
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Consider a general case of a classical preference relation (CPR) implying that 
a  is either strictly preferred, or equivalent or incomparable to b . This means that 
CPR is decomposed into a strict preference relation P , indifference preference 
relation I  and incomparability preference relation J , that is, ,a b A∀ ∈  
either ( , )a b P∈ , or ( , )a b I∈  or ( , )a b J∈ . An important extension of this case 

to FPR can be defined as follows:  

( , ) ( , ) ( , ) ( , ) 1P a b P b a I a b J a b+ + + =  

where , , : [0,1]P I J A A× →  are fuzzy strict, fuzzy indifference and fuzzy 

incomparability preference relations respectively.  
Another important type of FPR is described by a function : [0,1]R A A× →  

where ( , ) 1R a b =  means full strict preference of a  over b , which is the same as 

( , ) 0R b a =  (full negative preference) and indifference between a  over b  is 

modeled as ( , ) ( , ) 1/ 2R a b R b a= = . In general, R is an additive reciprocal, 

i.e. ( , ) ( , ) 1R a b R b a+ = . This is a degree-valued generalization of completeness 

property of classical relation, and ( , ) 1/ 2R a b >  is a degree of a strict preference. 

However, such an R  excludes incomparability. 
Consider yet another important type of FPR within which indifference is 

modeled by ( , ) ( , ) 1R a b R b a= = , incomparability – by ( , ) ( , ) 0R a b R b a= =  

and completeness – by max( ( , ), ( , )) 1R a b R b a = . 

FPR are a useful tool to handle vague preferences. Linguistic preferences, or 
linguistic preference relations (LPRs), sometimes called fuzzy linguistic 
preferences, are generalization of FPR used to account for a situations when a DM 
or an expert cannot assign precise degree of preference of one alternative to 
another, but express this degree in a form of linguistic terms like “much better”, “a 
little worse” etc. Indeed, under imperfect environment where relevant information 
is NL-based, there is no sufficient information to submit exact degrees, but is 
natural to express degrees in NL also corresponding to the kind of initial 
information. 

To formalize LPR it is first necessary to define a set of linguistic terms as a set 
of verbal expressions of preference degrees which would be appropriate for a 
considered problem. As a rule, they consider a finite and totally ordered linguistic 
term set { }, {0,..., }iT t i m= ∈  with an odd cardinal ranging between 5 and 13. 

Each term is semantically represented by a fuzzy number, typically triangular or 
trapezoidal, placed over some predefined scale, e.g. [0,1]. For example: “no 
preference” – (0,0,0), “slightly better” – (0,0.3,0.5), “more or less better” – 
(0.3,0.5,0.7), “sufficiently better” – (0.5,0.7,1), “full preference” – (0.7,1,1). The 
cardinality of the term set is usually an odd.  

Consider a finite set of alternatives { , 1,2,..., ( 2)}iA f i n n= = ≥ . Then an 

LPR is formally defined as follows: 
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Definition 3.1 [36]. Let { , 1,2,..., ( 2)}iA f i n n= = ≥  be a finite set of 

alternatives, then a linguistic preference relation R  is a fuzzy set in 2A  
characterized by a membership function 

2:
R

A Tμ →  

( , ) , ,i j ij i jf f r f f Aμ = ∀ ∈
 

indicating the linguistic preference degree of alternative if  over ,jf , i.e. ijr T∈ . 

So, LPR is represented by a membership function whose values are not precise 
degrees in [0,1] but fuzzy numbers in [0,1]. This means that LPR is a kind of FPR 
if to recall that the latter is in general defined by MF whose range is an ordered 
structure. 

Traditional Fuzzy Linguistic Approach (TFLA). TFLA preserves fuzzy information 
about degrees of preference by direct computations over fuzzy numbers and, as a 
result, is of a high computational complexity. There are various other approaches to 
modeling LPR, some of which allow reducing computational complexity of the TFLA 
or suggesting some reasonable trade-off between preserving information and 
computational complexity. One of them is referred to as ordinal fuzzy linguistic 
modeling (OFLM). This approach is based on an idea of the adopting symbolic 
computations [35] over indices of terms in a term set instead of direct computations 
over the terms themselves as fuzzy numbers. This makes the approach sufficiently 
simpler in terms of computational complexity than TFLA. In OFLM, they consider a 
finite linguistic term set with an odd cardinality and the terms described by fuzzy 
numbers over the unit interval [0,1]. Also, a mid term is used to express 
approximate equivalence of alternatives by a fuzzy number with a mode equal to 0.5 
and labeled like “almost equivalent”. The other terms are distributed around the 
mid term expressing successively increasing preference degrees to the right and 
their symmetrical counterparts to the left. For example: “sufficiently worse”, “more 
or less worse”, “slightly worse”, “almost equivalent”, “slightly better”, “more or 
less better”, “sufficiently better”.  

There exist also approaches to model uncertainty of preferences, other than 
FPR. These approaches accounts for comparison of ill-known alternatives under 
crisp (non-fuzzy) preference basis. In one of these approaches, which is used for 
modeling valued tournament relations, ( , )R x y measures the likelihood of a crisp 

weak preference x y  [13,17]. Formally, ( , )R x y  is defined as follows: 

1
( , ) ( ) ( )

2
R x y P x y P x y= + 

, 

where x y x y⇔   and y x , which implies ( , ) ( , ) 1R x y R y x+ = . Thus, 

uncertainty of preference is described by a probability distribution P  over  
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possible conventional preference relations, i.e., iT A A⊂ × with 

( , )i ix y x y T⇔ ∈  and ( ) , 1,...,i iP T p i N= = . Then 

: :

1
( , )

2
i i

i i
i x y i x y

R x y p p= + 
   

For more details one can refer to [14]. This approach to modeling uncertain 
preferences was the first interpretation of fuzzy preference relations in the existing 
literature and was considered in the framework of the voting theory. It is needed to 
mention that such relations may be considered fuzzy because a degree of 
preference is used whereas the approach itself is probabilistic. However, this 
degree is a measured uncertainty about preferences which are themselves crisp but 
are not known with certainty. So, in its kernel, this approach does not support an 
idea underlying FPR – preference itself is a matter of a degree.  

Another application of this approach may be implemented when there exists a 
utility function which quantifies preferences between alternatives a,b,c on some 
numerical scale and the latter is supported by additional information in form of a 
probability distribution. Then, ( , ) ( ( ) ( ))R x y P u x u y= > , where :u S R→  is a 

utility function. 
Other measures of uncertainty can also be used to describe uncertainty of 

preference. One of them is the possibility measure, by using thereof the uncertain 
preference is defined as 

( , ) ( ),R x y P x y=   

where ( )P x y  is the degree of possibility of preference. The use of the 

possibility theory defines max( ( , ), ( , )) 1R x y R y x = . At the same time, in terms 

of the possibility theory, 1 ( , ) ( )R x y N x y− =  is the degree of certainty of a 

strict preference.  
A large direction in the realm of modeling uncertain preferences is devoted to 

modeling incomplete preferences. In line with transitivity, completeness of 
preferences is often considered as a reasonable assumption. However, transitivity 
is used as a consistency requirement whereas completeness is used as a 
requirement which exclude indecisiveness. The reasonability and intuitiveness of 
these basics are not the same: for completeness they may loss their strength as 
compared to transitivity because in real choice problems lack of information, 
complexity of alternatives, psychological biases etc may hamper someone’s 
choice up to indecisiveness. From the other side, indecisiveness may take place in 
group decision making when members’ preferences disagree. The issue that 
completeness may be questionable was first addressed by Aumann [6]: 

“Of all the axioms of utility theory, the completeness axiom is perhaps the most 
questionable. Like others of the axioms, it is inaccurate as a description of real life; 
but unlike them, we find it hard to accept even from the normative viewpoint.  
 
 



3.1   Vague Preferences 95
 

For example, certain decisions that [an] individual is asked to make might involve 
highly hypothetical situations, which he will never face in real life; he might feel 
that he cannot reach an “honest” decision in such cases. Other decision problems 
might be extremely complex, too complex for intuitive “insight,” and our individual 
might prefer to make no decision at all in these problems. Is it “rational” to force 
decisions in such cases?” 

If to assume that preferences are not complete, one has to reject the use 
numerical utility functions and has to deal with more complex representations. As 
it is argued in [56], the use of a numerical utility is naturally leads to loss of 
information and then should not be dogmatic if one intends to model bounded 
rationality and imperfect nature of choice. In [56] they suggest to handle 
incomplete preferences by means of a vector-valued utility function as its range is 
naturally incompletely ordered. The other main argument for such an approach is 
that the use of a vector-valued utility is simpler than dealing with preferences 
themselves and in this case well-developed multi-objective optimization 
techniques may be applied. The idea of incomplete preferences underlying the 
approach in [56] is realized by the following assumption: given the set of 
alternatives A  there exist at least one pair of alternatives ,x y A∈  for which 

neither x y  nor y x  is assumed. 

There exist also other approaches dealing with incomplete preferences by 
means of imprecise beliefs and/or imprecise utilities. The following classification 
of these approaches is given in [54]: 

 
1) Probabilities alone are considered imprecise. For this setting preferences are 

represented by a convex set of probability distributions and a unique, utility 
function u(). Such models are widely used in robust Bayesian statistics [41, 
61,73]; 

2) Utilities alone are considered imprecise. In this setting preferences are 
represented by a set of utility functions {u(c)} and a unique probability 
distribution p(s). Such representations were axiomatized and applied to economic 
models by Aumann [6] and Dubra, Maccheroni and Ok [19];  

3) Both probabilities and utilities are considered imprecise. This is represented by sets 
of probability distributions {p(s)} and utility functions {u()}. These sets are 
considered separately from each other allowing for all arbitrary combinations of 
their elements. This is the traditional separation of imprecise information about 
beliefs and outcomes.  Independence of two sets is practically justified and 
simplifies the decision analysis. However, this approach does not have axiomatic 
foundations. From the other side, the set of pairs may be non-convex and 
unconnected [40,41]. 

 
In order to compare adequacy of FPR and incomplete preferences models, we can 
emphasize the following classification of preference frameworks in terms of 
increasing uncertainty: complete orders, FPR, incomplete preferences. The first 
and the third one are idealized frameworks: the first implies that preference is  
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absolutely clear, the third deals with the case when some alternatives are 
absolutely not comparable. Incomplete preference deals with lack of any  
information which can elucidate preferences. This is a very rare case in the sense 
that in most of real-world situations some such information does exist, though it 
requires to be obtained. In its turn FPR implies that preference itself is not “single-
valued” and should reflect competition of alternatives even if the related 
information is precise. 

3.2   Imperfect Information 

In real-life decision making problems DM is almost never provided with perfect, 
that is, ideal decision-relevant information to determine states of nature, outcomes, 
probabilities, utilities etc and has to construct decision background structure based 
on his/her perception and envision. In contrast, relevant information almost always 
comes imperfect. Imperfect information is information which in one or more 
respects is imprecise, uncertain, incomplete, unreliable, vague or partially true 
[79]. We will discuss these properties of imperfect information and relations 
among them. 

Two main concepts of imperfect information are imprecision and uncertainty. 
Imprecision is one of the widest concepts including variety of cases. For purposes 
of differentiation between imprecision and uncertainty, Prof. L.A. Zadeh 
suggested the following example: “For purposes of differentiation it is convenient 
to use an example which involves ethnicity. Assume that Robert's father is German 
and his mother's parents were German and French. Thus, Robert is 3/4 German 
and 1/4 French. Suppose that someone asks me: What is Robert's ethnicity. If my 
answer is: Robert is German, my answer is imprecise or, equivalently, partially 
true. More specifically, the truth value of my answer is 3/4.  No uncertainty is 
involved. Next, assume that Robert is either German or French, and that I am 
uncertain about his ethnicity. Based on whatever information I have, my 
perception of the likelihood that Robert is German is 3/4. In this case, 3/4 is my 
subjective probability that Robert is German. No partiality of truth is involved.” In 
the first case imprecision is only represented by partial truth and no uncertainty is 
involved. As Prof. L.A. Zadeh defines, such imprecision is referred to as strict 
imprecision or s-imprecision for short. In the second case, imprecision is only 
represented by uncertainty and no partial truth is involved. 

Information is partially true if it is neither absolutely true nor absolutely false 
but in an intermediate closeness to reality. For example, suppose you needed to 
write down ten pages of a text and have already written 8 pages. Certainly ‘the 
work is done’ is not absolutely true and is not absolutely false, and, if to assume 
that all pages are written equivalently difficult, ‘the work is done’ is true with 
degree 0.8. Form the other side, ‘the work is not done’ is not true and is not false 
from viewpoint of intuition because it is not informative and requires to be 
substituted by a more concrete evaluation. 
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Another example on imprecision and uncertainty is provided by P. Smets: 
 
“To illustrate the difference between imprecision and uncertainty, consider the 

following two situations: 
 

1. John has at least two children and I am sure about it. 
2. John has three children but I am not sure about it. 
 
In case 1, the number of children is imprecise but certain. In case 2, the number of 
children is precise but uncertain. Both aspects can coexist but are distinct. Often 
the more imprecise you are, the most certain you are, and the more precise, the 
less certain. There seems to be some Information Maximality Principle that 
requires that the ‘product’ of precision and certainty cannot be beyond a certain 
critical level. Any increase in one is balanced by a decrease in the other.” 

Imprecision is a property of the content under consideration: either more than 
one or no realization is compatible with the available information [65].  

One realization of imprecise information is ambiguous information. Ambiguous 
information is information which may have at least to different meanings. For 
example, a statement ‘you are aggressive’ is ambiguous because aggressive may 
mean ‘belligerent’ or ‘energetic’. For example, homonyms are typical carriers of 
ambiguity. 

Ambiguous information may be approximate, e.g. ‘the temperature of water in 
the glass is between 40 and 50°C is approximate if the temperature is 47°C. 
Ambiguous information like ‘the temperature is close to 100C’ is vague. Such 
vague information is fuzzy, because in this case the temperature is not sharply 
bounded. Both 99C and 103 corresponds to this, but the first corresponds stronger. 
Correspondence of a temperature value to ‘the ‘temperature is close to 100C’ 
smoothly decreases as this value moves away from 100C. In general, vague 
information is information which is not well-defined; it is carried by a ‘loose 
concept’. The worst case of vague information is unclear information. Ambiguous 
information may also be incomplete: “the vacation will be in a summer month” 
because a summer month may be either June, July or August.  

Uncertain information is commonly defined as information which is not certain.  
P. Smets defines uncertainty as a property that results from a lack of information 
about the world for deciding if the statement is true or false. The question on 
whether uncertainty is objective or subjective property is still rhetoric.  

Objective uncertainty may be probabilistic or non-probabilistic. Probabilistic 
uncertainty is uncertainty related to randomness – probability of an event is related 
to its tendency to occur. Main kinds of non-probabilistic uncertainty are 
possibilistic uncertainty and complete ignorance. Possibilistic uncertainty reflects 
an event’s ‘ability’ to occur. To be probable, an event has to be possible. At the 
same time, very possible events may be a little probable. The dual concept of 
possibility is necessity. Necessity of an event is impossibility of the contrary event 
to occur. Complete ignorance is related to situations when no information on a 
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variable of interest (e.g. probability) is available. For case of probability complete 
ignorance may be described by a set of all probability distributions. 

Objective uncertainty relates to evidence on a likelihood of phenomena. 
Subjective uncertainty relates to DM’s opinion on a likelihood of phenomena. 
More specifically, subjective uncertainty is a DM’s belief on occurrence of an 
event. Classification of subjective uncertainty is very wide and its primitive forms 
are, analogously to that of objective uncertainty, subjective probability, subjective 
possibility and subjective necessity. The structures of these forms of subjective 
uncertainty are the same as those of objective probability, possibility and 
necessity. However, the sources of them differ: subjective uncertainty is a DM’s 
opinion, whereas objective uncertainty is pure evidence. For example, 
mathematical structure of subjective probability is a probability measure but the 
values of this measure are assigned on the base of a DM’s opinion under lack of 
evidence. Analogously, subjective possibility and necessity are a DM’s opinions 
on possibility and necessity of an event. 

Unreliable information is information to which an individual does not trust or 
trusts weakly due to the source of this information. As a result, an individual does 
not rely on this information. For example, you may not trust to the meteorological 
forecast if it is done by using old technology and equipment. 

Imperfect information is impossible to be completely caught in terms of 
understanding what this concept means (e.g. uncertainty concept), and thus, 
cannot be perfectly classified. Any classification may have contradictions, flows 
and changes of concepts. 

In real-world, imperfect information is commonly present in all the components 
of the decision making problem. States of nature reflects possible future 
conditions which are commonly ill-known whereas the existing theories are based 
on perfect construction – on partition of the future objective conditions into 
mutually exclusive and exhaustive states. Possible realizations of future are not 
completely known. The future may result in a situation which was not thought and 
unforeseen contingencies commonly take place [26]. From the other side, those 
states of nature which are supposed as possible, are themselves vaguely defined 
and it is not always realistic to strictly differentiate among them. The outcomes 
and probabilities are also not well known, especially taking into account that they 
are related to ill-known states of nature. However, the existing theories do not pay 
significant attention to these issues. The most of the theories, including the famous 
and advanced theories, take into account only imperfect information related to 
probabilities. Moreover, this is handled by coarse description of ambiguity – either 
by exact constraints on probabilities (a set of priors) or by using subtle techniques 
like probabilistic constraints or specific non-linear functions. These are, however, 
approaches rather for frameworks of the designed experiments but not for real-
world decision problems when information is not sufficiently good to apply such 
techniques. In the Table 3.1. below we tried to classify decision situations on the  
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Table 3.1 Classification of decision-relevant information 

 Probabilities 

Outcomes Utilities Precise 
Complete 

Ignorance 
Ambiguous Imperfect 

Precise 
Precise Situation 1 Situation 2 Situation 3 Situation 4 

Fuzzy Situation 5 Situation 6 Situation 7 Situation 8 

Complete 

Ignorance 

Precise Situation 9 Situation 10 Situation 11 Situation 12 

Fuzzy Situation 13 Situation 14 Situation 15 Situation 16 

Ambiguous 
Precise Situation 17 Situation 18 Situation 19 Situation 20 

Fuzzy Situation 21 Situation 22 Situation 23 Situation 24 

Imperfect 
Precise Situation 25 Situation 26 Situation 27 Situation 28 

Fuzzy Situation 29 Situation 30 Situation 31 Situation 32 

 
base of different types of decision relevant information that one can be faced with 
and the utility models that can be applied. In this table, we identify three important 
coordinates (dimensions). The first one concerns information available for 
probabilities, the second captures information about outcomes, while the third 
looks at the nature of utilities and their description. The first two dimensions 
include precise information (risk), complete ignorance (absence of information), 
ambiguous information, and imperfect information. Two main types of utilities are 
considered, namely precise and fuzzy. Decision-relevant information setups are 
represented at the crossing of these coordinates; those are cells containing 
Situations from 1 to 32. They capture combinations of various types of 
probabilities, outcomes, and utilities. 

The most developed scenarios are those positioned in entries numbered from 1 
to 4 (precise utility models). A limited attention has paid to situations 5-8 with  
fuzzy utilities, which are considered in [5,7,29,51]. For the situations 9-12 with 
complete ignorance with respect to outcomes and with precise utilities a few 
works related to interactive obtaining of information were suggested. For 
situations 13-16, to our knowledge, no works were suggested.  Few studies are 
devoted to the situations with ambiguous outcomes (situations 17-20) [37,38,39] 
and precise utilities and no works to ambiguous outcomes with fuzzy utilities are 
available (situations 21-24). For situations 25-32 a very few studies were reported 
including the existing fuzzy utility models [5,7,29,51]. The case with imperfect 
probabilities, imperfect outcomes, and fuzzy utilities (situation 32) generalize all 
the other situations. An adequate utility model for this situation is suggested in [3] 
and is expressed in Chapter 4 of the present book. 

The probability theory has a large spectrum of successful applications. 
However, the use of a single probability measure for quantification of uncertainty 
has severe limitations main of which are the following [3]: 1) precise probability 
is unable to describe complete ignorance (total lack of information); 2) one can 
determine probabilities of some subsets of a set of possible outcomes but  
cannot always determine probabilities for all the subsets; 3) one can determine 
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probabilities of all the subsets of a set of possible outcomes but it will require 
laborious computations. 

Indeed, classical probability imposes too strong assumptions that significantly 
limit its use even in simple real-world or laboratory problems. Famous Ellsberg 
experiments and Schmeidler’s coin example are good illustrative cases when 
available information appears insufficient to determine actual probabilities. Good 
discussion of real-world tasks which are incapable to be handled within 
probabilistic framework is given in [30]. In real problems, quality of decision-
relevant information does not require the use of a single probability measure. As a 
result, probabilities cannot be precisely determined and are imprecise. For such 
cases, they use constraints on a probability of an event A  in form of lower and 

upper probabilities denoted ( )P A  and ( )P A  respectively. That is, a probability 

( )P A  of an event A  is not known precisely but supposed to be somewhere 

between ( )P A  and ( )P A : ( ) [ ( ), ( )]P A P A P A∈  where 0 ( ) ( ) 1P A P A≤ ≤ ≤ ; 

in more general formulation, constraints in form of lower and upper expectations 

for a random variable are used. In special case when ( ) ( )P A P A=  a framework 

of lower and upper probabilities degenerates to a single probability ( )P A . 

Complete lack of knowledge about likelihood of A  is modeled by ( ) 0P A =  

and ( ) 1P A = . This means that when likelihood of an event is absolutely 

unknown, they suppose that probability of this event may take any value from 
[0,1] (from impossibility to occur up to certain occurrence). 

Constraints on probabilities imply existence of a set of probability distributions, 
that is, multiple priors, which are an alternative approach to handle incomplete 
information on probabilities. Under the certain consistency requirements the use 
of multiple priors is equivalent to the use of lower and upper probabilities. 
Approaches in which imprecise probabilities are handled in form of intervals 

1 2[ , ]p p . Such representation is termed as interval probabilities. 

An alternative way to handle incomplete information on probabilities is the use 
of non-additive probabilities, typical cases of which are lower probabilities and 
upper probabilities and their convex combinations. However, multiple priors are 
more general and intuitive approach to handle incomplete probability information 
than non-additive probabilities.  

The most fundamental axiomatization of imprecise probabilities was suggested 
by Peter Walley who suggested the term imprecise probabilities. The behavioral 
interpretation of Walley’s axiomatization is based on buying and selling prices for 
gambles. Walley’s axiomatization is more general than Kolmogorov’s 
axiomatization of the standard probability theory. The central concept in Walley’s 
theory is the lower prevision concept which generalizes standard (additive) 
probability, lower and upper probabilities and non-additive measures. However, in 
terms of generality, the concept of lower prevision is inferior to multiple priors. 
Another disadvantage of lower prevision theory is its high complexity that limits 
its practical use. 
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Alternative axiomatizations of imprecise probabilities were suggested by 
Kuznetsov [47] and Weichselbergern [75] for the framework of interval 
probabilities. Weichselberger generalizes Kolmogorov’s axioms to the case of 
interval probabilities but, as compared to Walley, does not suggest a behavioral 
interpretation. However, his theory of interval probability is more tractable in 
practical sense. 

What is the main common disadvantage of the existing imprecise probability 
theories? This disadvantage is missing the intrinsic feature of probability-related 
information which was pointed out by L. Savage even before emergence of the 
existing imprecise probability theories: 

Savage wrote [62]: “…there seem to be some probability relations about which 
we feel relatively ‘sure’ as compared with others…. The notion of ‘sure’ and 
‘unsure’ introduced here is vague, and my complaint  is precisely that neither the 
theory of personal probability as it is developed in this book, nor any other device 
known to me renders the notion less vague”. Indeed, in real-world situations we 
don’t have sufficient information to be definitely sure or unsure in whether that or 
another value of probability is true. Very often, our sureness stays at some level 
and does not become complete being hampered by a lack of knowledge and 
information. That is, sureness is a matter of a strength, or in other words, of a 
degree. Therefore, ‘sure’ is a loose concept, a vague concept. In our opinion, the 
issue is that in most real-world decision-making problems, relevant information 
perceived by DMs involves possibilistic uncertainty. Fuzzy probabilities are the 
tools for resolving this issue to a large extent because they represent a degree of 
truth of a considered numeric probability.  

Fuzzy probabilities are superior from the point of view of human reasoning and 
available information in real-world problems than interval probabilities which are 
rather the first departs from precise probabilities frameworks. Indeed, interval 
probabilities only show that probabilities are imprecise and no more. In real-
world, the bounds of an interval for probability are subjectively ‘estimated’ but 
not calculated or actually known as they are in Ellsberg experiment. Subjective 
assignments of probability bounds will likely inconsistent with human choices in 
real-world problems as well as subjective probabilities do in Ellsberg experiment. 
Reflecting imperfect nature of real-world information, probabilities are naturally 
soft-constrained. 

As opposed to second-order probabilities which are also used to differentiate 
probability values in terms of their relevance to available information, fuzzy 
probabilities are more relaxed constructs. Second-order probabilities are too 
exigent to available information and more suitable for designed experiments. 

Fuzzy probability is formally a fuzzy number defined over [0,1] scale to 
represent an imprecise linguistic evaluation of a probability value. Representing 
likelihoods of mutually exclusive and exhaustive events, fuzzy probabilities are 
tied together by their basic elements summing up to one. Fuzzy probabilities 

define a fuzzy set Pρ  of probability distributions ρ  which is an adequate 

representation of imprecise probabilistic information related to objective 



102 3   Uncertain Preferences and Imperfect Information in Decision Making
 

conditions especially when the latter are vague. As compared to the use of second-
order probabilities, the use of possibility distribution over probability distributions 
[2,3] is appropriate and easier for describing DM’s (or experts’) confidence. This 
approach does not require from DM to assign beliefs over priors directly. 
Possibility distribution can be constructed computationally from fuzzy 
probabilities assigned to states of nature [7,80]. This means that a DM or experts 
only need to assign linguistic evaluations of probabilities to states of nature as 
they usually do. For each linguistic evaluation a fuzzy probability can then be 
defined by construction of a membership function. After this possibility 
distribution can be obtained computationally [7,80] without involving a DM. 

We can conclude that fuzzy probabilities [8,50,51,66,76] are a successful 
interpretation of imprecise probabilities which come from human expertise and 
perceptions being linguistically described. For example, in comparison to multiple 
priors consideration, for majority of cases, a DM has some linguistic additional 
information coming from his experience or even naturally present which reflects 
unequal levels of belief or possibility for one probability distribution or another. 
This means, that it is more adequate to consider sets of probability distributions as 
fuzzy sets which allow taking into account various degrees of belief or possibility 
for various probability distributions. Really, for many cases, some probability 
distributions are more relevant, some probability distributions are less relevant to 
the considered situation and also it is difficult to sharply differentiate probabilities 
that are relevant from those that are irrelevant. This type of consideration involves 
second-order uncertainty, namely, probability-possibility modeling of decision-
relevant information. 

The existing utility theories are based on Savage’s formulation of states of 
nature as “a space of mutually exclusive and exhaustive states” [62]. This is a 
perfect consideration of environment structure. However, in real-world problems 
it is naïve to suppose that we can so perfectly partition future into mutually 
exclusive objective conditions and predict all possible objective conditions. Future 
is hidden from our eyes and only some indistinct, approximate trends can be seen. 
From the other side, unforeseen contingencies are commonly met which makes 
impossible to determine exhaustive states and also rules out sharp differentiation 
to exclusive objective conditions. This requires tolerance in describing each 
objective condition to allow for mistakes, misperceptions, flaws, that are due to 
imperfect nature of information about future. From the other side, tolerance may 
also allow for dynamic aspects due to which a state of nature may deviate from its 
initial condition. 

In order to see difficulties with determination of states of nature let us consider 
a problem of differentiating future economic conditions into states of economy. 
Commonly, states of economy can be considered as “strong growth”, “moderate 
growth”, “stable economy”, “recession”. These are not ‘single-valued’ and cannot 
be considered as ‘mutually exclusive’ (as it is defined in Savage’s formulation of 
state space): for example, moderate growth and stable economy don’t have sharp 
boundaries and as a result, may not be “exclusive” – they may overlap. The same 
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concerns ‘moderate growth’ and ‘strong growth’ states. For instance, when 
analyzing the values of the certain indicators that determine a state of economy it 
is not always possible to definitely label it as moderate growth or strong growth. 
Observing some actual situation an expert may conclude that it is “somewhere 
between” ‘strong growth’ and ‘moderate growth’, but “closer” to the latter. This 
means that to a larger extent the actual situation concerns the moderate growth and 
to a smaller extent to the strong growth. It is not adequate to sharply differentiate 
the values related to ‘moderate growth’ from those related to the “strong growth”. 
In other words, various conditions labeled as “strong growth” with various extents 
concerns it, not equally. How to take into account the inherent vagueness of states 
of nature and the fact that they are intrinsically not exclusive but overlapping? 
Savage’s definition is an idealized view on formalization of objective conditions 
for such cases. Without doubt, in real-life decision making it is often impossible to 
construct such an ideal formalization, due to uncertainty of relevant information. 
In general, a DM cannot exhaustively determine each objective condition that may 
be faced and cannot precisely differentiate them. Each state of nature is, 
essentially, some area under consideration which collects in some sense similar  
objective conditions one can face, that is some set of “elementary” states or 
quantities [26]. Unfortunately, in the existing decision making theories a small 
attention is paid to the essence and structure of states of nature, consideration of 
them is very abstract (formal) and is unclear from human perception point of view. 

Formally speaking, a state of nature should be considered as a granule - not 
some single point or some object with abstract content. This will result to some 
kind of information granulation of objective conditions. Construction of states of 
nature on the base of similarity, proximity etc of objective conditions may be 
adequately modeled by using fuzzy sets and fuzzy information granulation 
concepts [78]. This will help to model vague and overlapping states of nature. For 
example, in the considered problem economic conditions may be partitioned into 
overlapping fuzzy sets defined over some relative scale representing levels of 
economic welfare. Such formalization will be more realistic for vagueness, 
ambiguity, partial truth, impreciseness and other imperfectness of future-related 
information. 

In real-life decision making a DM almost always cannot precisely determine 
future possible outcomes and have to use imprecise quantities like, for example, 
high profit, medium cost etc. Such quantities can be adequately represented by 
ranges of numerical values with possibility distribution among them. From the 
other side, very often outcomes and utilities are considered in monetary sense, 
whereas a significantly smaller attention is paid to other types of outcomes and 
utilities. Indeed, utilities are usually subjectively assigned and, as a result, are 
heuristic evaluations. In extensive experiments conducted by Kahneman and 
Tversky, which uncovered very important aspects of human behavior only 
monetary outcomes are used. Without doubt, monetary consideration is very 
important, but it is worth to investigate also other types of outcomes which are 
naturally present in real-life decision activity. In this situation it is not suitable to 
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use precise quantities because subjective evaluations are conditioned also by non-
monetary issues such as health, time, reputation, quality etc. The latter are usually 
described by linguistic evaluations. 

In order to illustrate impreciseness of outcomes in real-world problems, let us 
consider a case of an evaluation of a return from investment into bonds of an 
enterprise which will produce new products the next year. Outcomes (returns) of 
investment will depend on future possible economic conditions. Let us suppose 
these conditions of economy to be partitioned into states of nature labeled as 
“strong growth”, “moderate growth”, “stable economy”, and “recession” which 
we considered above. It is impossible to precisely know values of outcomes of the 
investment under these states of nature. For example, the outcome of the 
investment obtained under “strong growth” may be evaluated “high” (off course 
with underlying range of numerical values). The vagueness of outcomes 
evaluations are resulted from uncertainty about future: impreciseness of a demand 
for the products produced by the enterprise in the next year, future unforeseen 
contingencies, vagueness of future economic conditions, political processes etc. 
Indeed, the return is tightly connected to the demand the next year which cannot 
be precisely known in advance. The investor does not really know what will take 
place the next year, but still approximately evaluate possible gains and losses by 
means of linguistic terms. In other words, the investor is not completely sure in 
some precise value of the outcome – the future is too uncertain for precise 
estimation to be reasonably used. The investor sureness is ‘distributed’ among 
various possible values of the perceived outcome. One way to model is the use of 
a probabilistic outcome, i.e. to use probability distribution (if discrete set of 
numerical outcomes is considered) or probability density function (for continuous 
set) over possible basic outcomes [30] to encode the related objective probabilities 
or subjective probabilities. However, this approach has serious disadvantages. 
Using objective probabilities requires good representative data which don’t exist 
as a demand for a new product is considered. Even for the case of a common 
product, a good statistics does not exist because demands for various years take 
place in various environmental conditions. The use of subjective probabilities is 
also not suitable as they commonly fail to describe human behavior and perception 
under ambiguity of information.  

The use of probabilistic outcomes does not also match human perceptions 
which are expressed in form of linguistic evaluations of outcomes. Humans don’t 
think within the probabilistic framework as this is too strong for computational 
abilities of a human brain; thus, a more flexible formalization is needed to use. 
Fuzzy set theory provides more adequate representation of linguistic evaluations. 
By using this theory a linguistic evaluation of an outcome may be formalized by a 
membership function (a fuzzy set) representing a soft constraint on possible basic 
outcomes. In contrast to probabilistic constraint, a membership function is not 
based on strong assumptions and does not require good data. A membership 
function is directly assigned by a DM to reflect his/her experience, perception, 
envision etc. which cannot be described by classical mathematics but may act well 
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under imperfect information. Fuzzy sets theory helps to describe future results as 
imprecise and overlapping, especially under imprecise essence of states of nature. 
Also, a membership function may reflect various basic outcomes’ possibilities, 
which are much easier to determine than probabilities. 

From the other side, the use of fuzzy sets allows to adequately describe non-
monetary outcomes like health, reputation, quality which are often difficult to be 
defined in terms of precise quantities. 

3.3   Measures of Uncertainty 

Uncertainty is intrinsic to decision making environment. No matter whether we 
deal with numerical or non-numerical events, we are not completely sure in their 
occurrence. Numerical events are commonly regarded as values of a random 
variable. Non-numerical events can be encoded by, for example, natural numbers 
and then treated as values of a random variable. To formally take into account 
uncertainty in decision analysis, we need to use some mathematical constructs 
which will measure quantitatively an extent to what that or another event is likely 
to occur. Such constructs are called measures of uncertainty. The most famous 
measure is the probability measure. Probability measure assigns its values to 
events to reflect degrees to which events are likely to occur. These values are 
called probabilities. Probability is a real number from [0,1], and the more likely an 
event to occur the higher is its probability. Probability equal to 0 implies that it is 
impossible for an event to occur or we are completely sure that it cannot occur, 
and probability equal to 1 means that an event will necessary occur or we are 
completely sure in its occurrence. The axiomatization of the standard probability 
measure was suggested by Kolmogorov [46]. Prior to proceeding to the 
Kolmogorov’s axiomatization, let us introduce the necessary concepts. The first 
concept is the space of elementary events. Elementary event, also called an atomic 
event, is the minimal event that may occur, that is, an event that cannot be divided 
into smaller events. Denote S  the space of elementary events and denote s S∈  
an elementary event. A subset H S⊆  of the space of elementary events s S∈  is 

called an event. An event H occurs if any s H∈  occurs. The next concept is a 
σ -algebra of subsets denoted  . 
 
Definition 3.2.σ -algebra [46]. A set , elements of which are subsets of S  (not 
necessarily all) is called σ -algebra if the following hold: 
 
(1)  S ∈  

(2)  if H ∈  then cH ∈  

(3)  if 1 2, ,...H H ∈  then 1 2 ...H H∪ ∪ ∈  

 
Now let us proceed to the Kolmogorov’s axiomatization of a probability measure. 
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Definition 3.3. Probability Measure [46]. Let S  be a space of elementary events  
and   is a σ -algebra of its subsets. The probability measure is a function 

[ ]: 0,1P →  satisfying: 

 
(1)  ( ) 0P H ≥  for any H ∈ . 

(2) For any set 1 2, ,...H H ∈  with ,...i jH H∩ ∅ : 
11

( ) ( )i i
ii

P H P H
∞ ∞

==

=  

(3) ( ) 1P S =  

 
The first condition is referred to as non-negativity. The second condition is 
referred to as additivity condition. The third condition implies that the event S  
will necessary occur. Conditions (1)-(3) are called probability axioms. From (1)-
(3) it follows ( ) 0P ∅ =  which means that it is impossible that no elementary 

event s S∈  will occur. Let us mention that probability of a union H G∪  of two 
arbitrary events is ( ) ( ) ( ) ( )P H G P H P G P H G∪ = + − ∩ . When 

H G∩ = ∅  one has ( ) ( ) ( )P H G P H P G∪ = + . 

Definition 3.3 provides mathematical structure of a probability measure. 
Consider now natural interpretations of a probability measure. There exist two 
main types of probabilities: objective probabilities and subjective probabilities. 
Objective probabilities, also called empirical probabilities, are quantities which 
are calculated on the base of real evidence: experimentations, observations, logical 
conclusions. They also can be obtained by using statistical formulas. Objective 
probabilities are of two types: experimental probabilities and logical probabilities. 
Experimental probability of an event is a frequency of its occurrence. For 
example, a probability that a color of a car taken at random in a city is white is 
equal to the number of white cars divided by the whole number of the cars in the 
city. Logical probability is based on a reasonable conclusion on a likelihood of an 
event. For instance, if a box contains 70 white and 30 black balls, a probability 
that a ball drawn at random is white is 70/100=0.7.  

The use of objective probabilities requires very restrictive assumptions. For 
experimental probabilities the main assumptions are as follows: 

(1) Experimentation (or observations) must take place under the same conditions 
and it must be assumed that the future events will also take place under these 
conditions. Alternatively, there need to be present clear dynamics of conditions 
in future; 

(2) Observations of the past behavior must include representative data (e.g., 
observations must be sufficiently large). 

As to logical probabilities, their use must be based on quite reasonable 
conclusions. For example, if to consider the box with balls mentioned above, an  
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assumption must be made that the balls are well mixed inside the box (not a layer 
of white balls is placed under the layer of black balls) to calculate probability of a 
white ball drawn as 70/100=0.7. 

From the other side, as Kahneman, Tversky and others showed [42] , that even  
if objective probabilities are known, beliefs of a DM don’t coincide with them. As 
being perceived by humans, objective probabilities are affected by some kind of 
distortion – they are transformed into so-called decision weights and mostly small 
probabilities are overweighted, whereas high probabilities are underweighted. The 
overweighting and underweighting of probabilities also are different for positive 
and negative outcomes [68]. 

Subjective probability is a degree of belief of an individual in the likelihood of 
an event. Formally, subjective probabilities are values of a probability measure. 
From interpretation point of view, subjective probability reflects an individual’s 
experience, perceptions and is not based on countable and, sometimes, detailed 
facts like objective probability. Subjective probabilities are more appropriate and 
‘smart’ approach for measuring likelihood of events in real-life problems because 
in such problems the imperfect relevant information conflicts with the very strong 
assumptions underlying the use of objective probabilities. Real-life relevant 
information is better handled by experience and knowledge that motivates the use 
of a subjective basis.  

Subjective probability has a series of disadvantages. One of the main 
disadvantages is that different people would assign different subjective 
probabilities. It is difficult to reason uniquely accurate subjective probabilities 
among those assigned by different people. Indeed, given a lack of information, 
people have to guess subjective probabilities as they suppose. As it is mentioned 
in [52], using subjective probabilities is a “symptom of the problem, not a 
solution”. Subjective probability is based not only on experience but also on 
feelings, emotions, psychological and other factors which can distort its accuracy. 
The other main disadvantage is that subjective probability, due to its preciseness 
and additivity, fails to describe human behavior under ambiguity. 

The use of the additive probability measure is unsuitable to model human 
behavior conditioned by uncertainty of the real-world, psychological, mental and 
other factors. In presence of uncertainty, when true probabilities are not exactly 
known, people often tend to consider each alternative in terms of the worst case 
within the uncertainty and don’t rely on good cases. In other words, most of 
people prefer those decisions for which more information is available. This 
behavior is referred to as ambiguity aversion – people don’t like ambiguity and 
wish certainty. Even when true probabilities are known, most people exhibit non-
linear attitude to probabilities – change of likelihood of an event from 
impossibility to some chance or from a very good chance to certainty are treated 
much more strongly than the same change somewhere in the range of medium 
probabilities. Therefore, attitude to values of probabilities is qualitative.  

Due to its additivity property, the classical (standard) probability measure 
cannot reflect the above mentioned evidence. Axiomatizations of such evidence 
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required to highly weaken assumptions on a DM’s belief which was considered as 
the probability measure. The resulted axiomatizations are based either on non-
uniqueness of probability measure or on non-additivity of a measure of 
uncertainty reflecting humans’ beliefs. The first axiomatization of choices based 
on a non-additive measure was suggested by Schmeidler [63]. This is a significant 
generalization of additive measures-based decisions because the uncovered non-
additive measure inherited only normalization and monotonicity properties from 
the standard probability measure. 

Nowadays non-additive measures compose a rather wide class of measures of 
uncertainty. Below we list non-additive measures used in decision making under 
ambiguity. For these measures a unifying term non-additive probability is used. 

We will express the non-additive probabilities in the framework of decision 
making under ambiguity. Let S  be a non-empty set of states of nature and   be 

a family of subsets of S . We will consider w.l.o.g. 2S= . 
The definition of a non-additive probability is as follows [63]. 

 
Definition 3.4 [63]. Non-additive Probability. A set function : [0,1]v →   is 

called a non-additive probability if it satisfies the following: 

1. ( ) 0v ∅ =  

2. ,H G∀ ∈ , H G⊂  implies ( ) ( )v H v G≤  

3.   ( ) 1v S =  

The non-additive probability is also referred to as Choquet capacity. Condition (2) 
is called monotonicity with respect to set inclusion and conditions (1) and (3) are 
called normalization conditions. Thus, a non-additive probability does not have to 
satisfy ( ) ( ) ( )v H G v H v G∪ = + . A non-additive probability is called super-

additive if ( ) ( ) ( )v H G v H v G∪ ≥ +  and sub-additive if ( ) ( ) ( )v H G v H v G∪ ≤ + , 

provided H G∩ = ∅ . 
There exist various kinds of non-additive probability many of which are 

constructed on the base of a set C  of probability measures P  over S .  The one of 

the well known non-additive probabilities is the lower envelope * : [0,1]v →   

which is defined as follows: 

*( ) min ( )
P C

v H P G
∈

=
 

(3.1)

The dual concept of the lower envelope is the upper envelope * : [0,1]v →   

which is defined by replacing min  operator in (3.1) by max  operator. Lower and 
upper envelopes are respectively minimal and maximal probabilities of an 

event H S⊂ . Therefore, *
*( ) ( ) ( ), ,v H P H v H H S P C≤ ≤ ∀ ⊂ ∈ . Lower 

envelope is super-additive, whereas upper envelope is sub-additive. A non-
additive probability can also be defined as a convex combination of *( )v H  and 
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*( )v H : *
*( ) ( ) (1 ) ( )v H v H v Hα α= + − , [0,1]α ∈ . The parameter α  is 

referred to as a degree of ambiguity aversion. Indeed, α is an extent to which 
belief ( )v H  is based on the smallest possible probability of an event H ; 1 α−  is 

referred to as a degree of ambiguity seeking. 
The generalizations of lower and upper envelopes are lower and upper 

probabilities which are respectively super-additive and sub-additive probabilities. 
Lower and upper probabilities, denoted respectively v  and v , satisfy 

( ) 1 ( )cv H v H= − H S∀ ∈ , where \cH S H= . 

The special case of lower envelopes and, therefore, of lower probabilities are 2-
monotone Choquet capacities, also referred to as convex capacities. A non-
additive probability is called 2-monotone Choquet capacity if it satisfies 

( ) ( ) ( ) ( ), ,v H G v H v G v H G H G S∪ ≥ + − ∩ ∀ ⊂  

A generalization of 2-monotone capacity is an n-monotone capacity. A capacity is 
an n-monotone, if for any sequence 1,..., nH H  of subsets of S  the following 

holds: 

1

{1,..., }

( ... ) ( 1) I
i n i

I n i I
I

v H H v H−

⊂ ∈
≠∅

 ∪ ∪ ≥ −  
 

   

A capacity which is n-monotone for all n  is called infinite monotone capacity or a 
belief function. 

The belief function theory, also known as Dempster-Shafer theory, or 
mathematical theory of evidence, or theory of random sets, was suggested by 
Dempster in [15], and developed by Shafer in [64]. Belief functions are aimed to 
be used for describing subjective degrees of belief to an event, phenomena, or 
object of interest. We will not explain this theory but just mention that it was not 
directly related to decision making. As it was shown in [33,34], axiomatization of 
this theory is a generalization of the Kolmogorov’s axioms of the standard 
probability theory. Due to this fact, a value of a belief function denoted ()Bel  for 

an event H  can be considered as a lower probability, that is, as a lower bound on 
a probability of an event H . An upper probability in the belief function theory is 
termed as a plausibility function and is denoted Pl . So, in the belief functions 
theory probability ( )P H  of an event H  is evaluated as ( ) ( ) ( )Bel H P H Pl H≤ ≤ . 

The motivation of using non-additive probabilities in decision making 
problems is the fact that information on probabilities is imperfect, which can be 
incomplete, imprecise, distorted by psychological factors etc. Non-additive 
measure can be determined from imprecise objective or subjective probabilities of 
states of nature. Impreciseness of objective probabilities can be conditioned by the 
lack of information ruling out determination of actual exact probabilities (as in 
Ellsberg experiments). Impreciseness of subjective probabilities can be 
conditioned by natural impreciseness of human beliefs. Let us consider the case 
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when imprecise information is represented in form of interval probabilities. Given 
a set of states of nature 1 2{ , ,..., }nS s s s= , interval probabilities are defined as 

follows [32]. 
 
Definition 3.5 [32]. Interval Probability. The intervals *

*( ) [ , ]i i iP s p p=  are 

called the interval probabilities of S  if for *
*[ , ]i i ip p p∈  there exist 

*
1 *1 1[ , ]p p p∈ ,…, *

1 * 1 1[ , ]i i ip p p− − −∈  , *
1 * 1 1[ , ]i i ip p p+ + +∈  ,…, *

*[ , ]n n np p p∈   

such that 

1

1
n

i
i

p
=

=  

From this definition it follows, in particular, that interval probabilities cannot be 
directly assigned as numerical probabilities. The issue is that in the case of interval 
probabilities, the requirement to numerical probabilities to sum up to one must be 
satisfied throughout all the probability ranges. Sometimes, interval probabilities 

( )i iP s P=  can be directly assigned consistently to 1n −  states of 

nature 1 2 1 1, ,..., , ,...,j j ns s s s s− + , and on the base of these probabilities, an interval 

probability ( )j jP s P=  for the rest one state of nature js  will be calculated. For 

example, consider a set of states of nature with three states 1 2 3{ , , }S s s s= . Let 

interval probabilities for 2s  and 3s  be assigned as follows: 

2 3[0.2,0.3], [0.5,0.6]P P= =  

Then, according to the conditions in Definition 3.5, 1P will be determined as 

follows: 

1 [1 0.3 0.6, 1 0.2 0.5] [0.1,0.3]P = − − − − = . 

Given interval probabilities *
*[ , ]i i iP p p=  of states of nature is , 1,...,i n=  a value 

*( )v A  of a lower probability for an event A  can be determined as follows: 

*

1

*

*

( ) min

. .

1

i

i
s A

n

i
i

i i

i i

v A p

s t

p

p p

p p

∈

=

=

=

≤
≥





 

(3.2)
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A value *( )v A  of an upper probability for an event A  can be determined by 

replacing min operator by max operator in the above mentioned problem. Consider 

an example. Given interval probabilities 1 [0.1,0.3]P = , 2 [0.2,0.3],P =  

3 [0.5,0.6]P = , the values of the lower and upper probabilities *v  and *v  for 

1 3{ , }A s s= , obtained as solutions of the problem (3.2) are *( ) 0.7v A =  and 
*( ) 0.8v A = .  

The above mentioned measures of uncertainty can be listed in terms of the 
increasing generality between the probability measure and the Choquet capacity as 
follows: 

 
probability measure   belief function   convex capacity lower envelope 

  lower probability   Choquet capacity 
 
In [48], it is suggested a decision model based on a new kind of measure called bi-
capacity. Bi-capacity is used to model interaction between ‘good’ and ‘bad’ 
performances with respect to criteria. As compared to capacity, bi-capacity is a 
two-place set function. The values the bi-capacity takes are from [-1,1]. More 
formally, the bi-capacity is defined as a set function 

: [-1,1]Wη → , where {( , ) : , , }W H G H G I H G= ⊂ ∩ = ∅  

satisfying  

( , ) ( , ), ( , ) ( , )H H H G H G G G H G H Gη η η η′ ′ ′ ′⊂  ≤ ⊂  ≤  

and  

( , ) 1, ( , ) 1, ( , ) 0I Iη η η∅ = ∅ = − ∅ ∅ = . 

I  is the set of indexes of criteria. The attributes in H  are satisfied attributes 
whereas the attributes in G  are dissatisfied ones. The integral with respect to bi-
capacity as a representation of an overall utility of an alternative :f I R→  is 

defined as follows: 

( ) ( 1)
1

( ) ( ( ) ( )) ({(1),..., ( )} ,{(1),..., ( )} )
n

l l
l

U f u f u f l I l Iη + −
+

=

= − ∩ ∩ , (3.3)

provided ( ) ( 1)( ) ( )l lu f u f +≥ ; { : ( ) 0}, \iI i I u f I I I+ − += ∈ ≥ =  where ( )( )lu f  

is a utility of a value of (l)-th criterion for f , ( , )η ⋅ ⋅  is a bi-capacity. 

In special case, when η  is equal to the difference of two capacities 1η  and 2η  

as 1 2( , ) ( ) ( )H G H Gη η η= − , (3.3) reduces to the CPT model. In general case,  
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as compared to CPT, (3.3) is not an additive representation of separately 
aggregated satisfied and dissatisfied criteria that provides more smart way for 
decision making.

 The disadvantage of a bi-capacity relates to difficulties of its determination, in 
particular, to computational complexity. In details the issues are discussed in [48]. 

The bi-capacity-based aggregation which was axiomatized for multicriteria 
decision making [48] can also be applied for decisions under uncertainty due to 
formal parallelism between these two problems [53]. Indeed, states of nature are 
criteria on base of which alternatives are evaluated. 

The non-additive measures provide a considerable success in modeling of 
decision making. However, the non-additive measures only reflect the fact that 
human choices are non-additive and monotone, which may be due to attitudes to 
uncertainty, distortion of probabilities etc, but nothing more. However, in real-
world it is impossible to accurately determine precisely the ‘shape’ of a non-
additive measure due to imperfect relevant information. Indeed, real-world 
probabilities of subsets and subsets themselves, outcomes, interaction of criteria, 
etc are imprecisely and vaguely defined. From the other side, attitudes to 
uncertainty, extent of probabilities distortion and other behavioral issues violating 
additivity are also imperfectly known. These aspects rule out exact determination 
of a uniquely accurate non-additive measure. 

Above we considered non-additive measures which are used in the existing 
decision theories to model non-additivity of DM’s behavior. Main shortcoming of 
using non-additive measures is the difficulty of the underlying interpretation. One 
approach to overcome this difficulty is to use a lower envelope of a set of priors as 
a non-additive probability and then to use it in CEU model. However, in real-
world problems determination of the set of priors itself meets difficulty of 
imposing precise constraint determining what prior should be included and what 
should not be included into this set. In other words, due to lack of information, it 
is impossible to sharply constraint a range for a probability of a state of nature, 
that is, to assign accurate interval probability. From the other side, if the set of 
priors is defined, why to construct lower envelope and use it in the CEU? It is 
computationally simpler to use the equivalent model – MMEU. Let us consider 
very important a class of non-additive measures called fuzzy measures. Fuzzy 
measures have their own interpretations that do not require using a set of priors to 
define them and makes construction of these measures computationally simple. 
Finally, we will consider an effective extension of non-additive measures called 
fuzzy-valued fuzzy measures which have a good suitability for measuring vague 
real-world information. 

The first fuzzy measure we consider is a possibility measure. Possibility means 
an ability of an event to occur. It was recently mentioned that probability of an 
event can hardly be determined due to a series of reason, whereas possibility of 
occurrence of an event is easier to be evaluated. Possibility measure has also its 
interpretation in terms of multiple priors. 
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Possibility measure [77] is a non-additive set function : ( ) [0,1]SΠ →  

defined over a σ -algebra ( )S  of subsets of S  and satisfying the following 

conditions: 

(1) ( ) 0Π ∅ =  

(2) ( ) 1SΠ =  

(3) For any collection of subsets ( )iH S∈  and any set of indexes I  the 

following holds: 

( ) sup ( )i i
i Ii I

H HΠ Π
∈∈

=  

Possibility measure Π  can be represented by possibility distribution function, or 
possibility distribution, for short. Possibility distribution is a function 

: [0,1]Sπ →  and by means of π  possibility measure Π  is determined as 

follows: 

( ) sup ( )
s H

H sΠ π
∈

=  

Condition (2) predetermines normalization condition sup ( ) 1
s S

sπ
∈

= . Given S  as a 

set of states of nature, possibility measure provides information on possibility of 
occurrence of an event H S⊂ . A possibility distribution 1π  is more informative 

than 2π  if 1 2( ) ( ),s s s Sπ π≤ ∀ ∈ . 

The dual concept of the possibility is the concept of necessity. Necessity 
measure is a set function : ( ) [0,1]N SΡ →  that is defined as ),(1)( cHHN Π−=  

HSH c \= . This means, for example, that if an event H  is necessary (will 

necessary happen), then the opposite event cH  is impossible. 
From the definitions of possibility and necessity measures one can find that the 

following hold: 

1) ( ) ( )N H HΠ≤  

2)  if ( ) 1HΠ <  then ( ) 0N H =  

3)  if ( ) 0N H >  then ( ) 1HΠ =  

4)  max( ( ), ( )) 1cH HΠ Π =  

5)  min( ( ), ( )) 0cN H N H =  

The possibility differs from probability in various aspects. First, possibility of two 
sets H  and G  provided H G∪ = ∅  is equal to the maximum possibility 
among those of H  and G : ( ) max( ( ), ( ))H G H GΠ Π Π∪ = . In its turn 

probability GH ∪  is equal to the sum of those of H  and G : 
( ) ( ) ( )P H G P H P G∪ = + . 
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Another difference between possibility measure and probability measure is that 
the first is compositional that make it more convenient from computational point 
of view. For example, given ( )P H  and ( )P G , we cannot determine 

precisely ( )P H G∪ , but can only determine its lower bound which is equal to 

max( ( ), ( ))P H P G  and an upper bound which is equal to 

min( ( ) ( ),1)P H P G+ . At the same time possibility of H G∪  is exactly 

determined based on ( )HΠ  and ( )GΠ : ( ) max( ( ), ( ))H G H GΠ Π Π∪ = . 

However, the possibility of an intersection is not exactly defined: it is only known 
that ( ) min( ( ), ( ))A B A BΠ Π Π∩ ≤ . As to necessity measure, it is exactly 

defined only for an intersection of sets: ( )N H G∩ min( ( ), ( ))N H N G= . 

Yet another difference is that as compared to probability, possibility is able to 
model complete ignorance, that is, absence of any information. Absence of any 
information about H  is modeled in the possibility theory as 

( ) ( ) 1cH HΠ Π= =  and ( ) ( ) 0cN H N H= = . From this it follows 

max( ( ), ( )) 1cH HΠ Π =  and min( ( ), ( )) 0cN H N H = . 

The essence of the possibility is that it models rather qualitative information 
about events than quantitative one. Possibility measure only provides ranking of 
events in terms of their comparative possibilities. For example, 1 2( ) ( )s sπ π≤  
implies that 1s  is more possible than 2s . ( ) 0sπ =  implies that occurrence of s  

is impossible whereas ( ) 1sπ =  implies that s  is one of the most possible 

realizations. The fact that possibility measure may be used only for analysis at 
qualitative, comparative level [69], was proven by Pytyev in [60], and referred to 
as the principle of relativity in the possibility theory. This principle implies that 
possibility measure cannot be used to measure actual possibility of an event but 
can only be used to determine whether the possibility of one event is higher, equal 
to, or lower than the possibility of another event. Due to this feature, possibility 
theory is less self-descriptive than probability theory but requires much less 
information for analysis of events than the latter. 

One of the interpretations of possibility measure is an upper bound of a set of 
probability measures [18,62,72]. Let us consider the following set of probability 
measures coherent with possibility measure Π : 

( ) { : ( ) ( ), }P P H H H SΠ Π= ≤ ∀ ⊆  

Then the upper bound of probability for an event H  is  

( )
( ) sup ( )

P
P H P H

Π∈
=


 

and is equal to possibility ( )HΠ . The possibility distribution is then defined as 

( ) ({ }),s P s s Sπ = ∀ ∈  
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Due to normalization condition sup ( ) 1
s S

sπ
∈

= , the set ( )Π  is always not empty. 

In [18,72] they show when one can determine a set of probability measures given 
possibility measure. 

Analogous interpretation of possibility is its representation on the base of lower 
and upper bounds of a set of distribution functions. Let information about 
unknown distribution function F  for a random variable X  is described by means 

of a lower F and an upper F distribution functions: ( ) ( ) ( ),F x F x F x x X≤ ≤ ∀ ∈ . 

The possibility distribution π  then may be defined as  

( ) min( ( ),1 ( ))x F x F xπ = − . 

Baudrit and Dubois showed that a set of probabilities generated by possibility 
distribution π  is more informative than a set of probabilities generated by 
equivalent distribution functions. 

In order to better explain what possibility and necessity measures are, consider 
an example with a tossed coin. If to suppose that heads and tails are equiprobable, 
then the probabilities of heads and tails will be equal to 0.5. As to possibilities, we 
can accept that both heads and tails are very possible. Then, we can assign the 
same high value of possibility to both events, say 0.8. At the same time, as  
the result of tossing the coin is not intentionally designed, we can state that the 
necessity of both events is very small. It also follows from N({ })heads =  
1 ({ }), N({ }) 1 ({ })tails tails headsΠ Π− = − . As this example suggests, we can 

state that possibility measure may model ambiguity seeking (hope for a good 
realization of uncertainty), where as necessity measure may model ambiguity 
aversion. 

One of the most practically efficient and convenient fuzzy measures are Sugeno 
measures. Sugeno measure is a fuzzy measure : ( ) [0,1]g SΡ →  that satisfies 

 
(1) ( ) 0g ∅ = , 

(2) ( ) 1g S = ; 

(3) ( ) ( )H G g H g G⊂  ≤ ; 

(4) iH H↑ or lim ( ) ( )i i iH H g H g H→+∞↓  =  

 
From these conditions it follows ( )g H G∪ ≥  max( ( ), ( ))g H g G  and 

( )g H G∩ ≤  min  ( ( ), ( ))g H g G . In special case, when ( )g H G∪ =  

max( ( ), ( ))g H g G= , Sugeno measure g  is the possibility measure. When 

( )g H G∩ min( ( ), ( ))g H g G= , Sugeno measure g  is the necessity measure. 

The class of Sugeno measures that became very widespread due to its practical 
usefulness are gλ  measures. gλ measure is defined by the following condition 

referred to as the λ -rule: 
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( ) ( ) ( ) ( ) ( ), [ 1, )g H G g H g G g H g Gλ λ λ λ λλ λ∪ = + + ∈ − +∞  

For the case of H S= , this condition is called normalization rule. λ is called 
normalization parameter of gλ  measure. For 0λ >  gλ  measure satisfy 

( )g H Gλ ∪ ( ) ( )g H g Gλ λ> +  that generates a class of superadditive measures. 

For 0λ >  one gets a class of subadditive measures: ( )g H Gλ ∪ <  
( ) ( )g H g Gλ λ< + . The class of additive measures is obtained for 0λ = . 

One type of fuzzy measures is defined as a linear combination of possibility 
measure and probability measure. This type is referred to as vg  measure. 

vg measure is a fuzzy measure that satisfies the following: 

(1) ( ) 0vg ∅ =  

(2) ( ) 1vg S =  

(3) , ( ),ii N H S i j∀ ∈ ∈ ∀ ≠  

(4) ( ) (1 ) ( ) ( ), 0i j v i v i v i
i N i N

i N

H H g H v g H v g H v
∈ ∈ ∈

∩ = ∅  ∪ = − ∨ + ≥  

(5) , ( ) : ( ) ( )v vH G S H G g H g G∀ ∈ ⊆  ≤  

vg is an extension of a measure suggested by Tsukamoto which is a special case 

obtained when [0,1]v∈  [67]. For [0,1]v∈ one has a convex combination of 

possibility and probability measures. For purposes of decision making this can be 
used to model behavior which is inspired by a mix of probabilistic judgement and 
an extreme non-additive reasoning, for instance, ambiguity aversion. Such 
modeling may be good as reflecting that a person is not only an uncertainty averse 
but also thinks about some ‘average’, i.e. approximate precise probabilities of 
events. This may be justified by understanding that, from one side, in real-world 
situations we don’t know exactly the boundaries for a probability of an event. 
From the other, we don’t always exhibit pure ambiguity aversion by try to guess 
some reasonable probabilities in situations of ambiguity. 

When 0v = , vg  is the possibility measure and when 1v = , vg  is the 

probability measure. For 1v = , vg  describes uncertainty that differs from both 

probability and possibility [59]. 
Fuzzy measures are advantageous type of non-additive measures as compared 

to non-additive probabilities because they mainly have clear interpretation and 
some of them are “self-contained”. The latter means that some fuzzy measures, 
like possibility measure, don’t require a set of priors for their construction. 
Moreover, a fuzzy measure can be more informative than a set of priors or a set of 
priors can be obtained from it. Despite of these advantages, fuzzy measures are 
also not sufficiently adequate for solving real-world decision problems. The issue 
is that fuzzy measures suffer from the disadvantage of all the widespread additive 
and non-additive measures: fuzzy measures are numerical representation of 
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uncertainty. In contrast, real-world uncertainty cannot be precisely described – it 
is not to be caught by a numerical function. This aspect is, in our opinion, one of 
the most essential properties of real-world uncertainty. 

The precise non-additive measures match well the backgrounds of decision 
problems of the existing theories which are characterized by perfect relevant 
information: mutually exclusive and exhaustive states of nature, sharply 
constrained probabilities. However, as we discussed above chapter, real-world 
decision background is much more ‘ill-defined’. Essence of information about 
states of nature makes them rather blurred and overlapping but not perfectly 
separated. For example, evaluations like ‘moderate growth’ and ‘strong growth’ of 
economy cannot be precisely bounded and may overlap to that or another extent. 
This requires to use fuzzy sets as more adequate descriptions of real objective 
conditions. Probabilities of states of nature are also fuzzy as they cannot be 
sharply constrained. This is conditioned by lack of specific information, by the 
fact that human sureness in occurrence of events stays in form of linguistic 
estimations like “very likely”, “probability is medium”, “probability is small” etc 
which are fuzzy. From the other side, this is conditioned by fuzziness of states of 
nature themselves. When the “strong growth” and “moderate growth” and their 
likelihoods are vague and, therefore, relations between them are vague – how to 
obtain precise measure? Natural impreciseness, fuzziness related to states of 
nature must be kept as the useful data medium in passing from probabilities to a 
measure – the use of precise measure cannot be sufficiently reasonable and leads 
to loss of information. From the other side, shape of non-additivity of a DM’s 
behavior cannot be precisely determined, whereas some linguistic, approximate, 
but still ground relevant information can be obtained. Fuzziness of the measure in 
this case serves as a good interpretation. 

Thus, a measure which models human behavior under real-world imperfect 
information should be considered not only as non-additive, but also as fuzzy 
imprecise quantity that will reflect human evaluation technique based on, in 
general, linguistic assessments. In this sense a more adequate construction that 
better matches imperfect real-world information is a fuzzy number-valued fuzzy 
measure. Prior to formally express what is a fuzzy number-valued measure, let us 
introduce some formal concepts. The first concept is a set of fuzzy states of nature 

{ }1,..., nS S=   , where , 1,...,iS i n=  is a fuzzy set defined over a universal set 

U  in terms of membership function : [0,1]
iS

Uμ → . The second concept relates 

to comparison of fuzzy numbers: 
 

Definition 3.6. [82]. For 1, ,A B∈    we say that ,A B≤   if for every 

( ]0,1 ,α ∈ 1 1A Bα α≤ and 2 2A Bα α≤ . 

We consider that ,A B<   if  ,A B≤   and there exists an ( ]0 0,1α ∈  such that 

0 0
1 1 ,A Bα α< or  0 0

2 2A Bα α< . 
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We consider that A B=   if ,A B≤   and B A≤   
The third concept is a fuzzy infinity:   

 
Definition 3.7. Fuzzy Infinity [82]. Let A  be a fuzzy number. For every positive 

real number M , there exists a 0 (0,1]α ∈  such that 0
2M Aα<  or 0

1A Mα < − . 

Then A  is called fuzzy infinity, denoted by ∞ . 

Now denote { }1 0A A+ = ∈ ≥   . Thus, 1
+  is a space of fuzzy numbers 

defined over + . Let Ω  be a nonempty finite set and   be σ -algebra of 

subsets of Ω . A definition of a fuzzy number-valued fuzzy measure as a 
monotone fuzzy number-valued set function suggested by Zhang [82] and referred 
to as a (z)-fuzzy measure, is as follows: 
 
Definition 3.8. Fuzzy Number-Valued Fuzzy Measure ((z)-Fuzzy Measure) 
[82]. A (z) fuzzy measure on   is a fuzzy number-valued fuzzy set function 

1:η +→    with the properties: 

 
(1) ( ) 0η ∅ = ; 

(2) if ⊂   then ( ) ( )η η≤   ; 

(3) if 1 2 ..., ...n⊂ ⊂ ⊂ ∈    , then
1

( ) lim ( )n nn n
η η∞

= →∞
=    ; 

(4) if 1 2 ..., n⊃ ⊃ ∈    , and there exists 0n  such that
0

( )nη ≠ ∞  , then  

1
( ) lim ( )n nn n

η η∞

= →∞
=    . 

 

Here limits are taken in terms of supremum metric d [16,49]. A pair ( , ( ))Ω Ω  

is called a fuzzy measurable space and a triple ( , ( ), )Ω Ω η   is called a (z) fuzzy 

measure space. 

So, a fuzzy number-valued fuzzy measure 1:η +→    assigns to every subset 

of Ω  a fuzzy number defined over [0,1]. Condition (2) of Definition 3.8 is called 

monotonicity condition. 1:η +→    is monotone and is free of additivity 

requirement. Consider an example.  Let 1 2 3{ , , }Ω ω ω ω= . The values of the 

fuzzy number-valued set function η  for the subsets of Ω  can be as the triangular 

fuzzy numbers given in Table 3.2: 

Table 3.2 The values of the fuzzy number-valued set functionη  

Ω⊂  { }1ω  { }2ω  { }3ω  { }1 2,ω ω  { }1 3,ω ω  { }2 3,ω ω  

( )η   (0.3,0.4,0.4) (0,0.1,0.1) (0.3,0.5,0.5) (0.3,0.5,0.5) (0.6,0.9,0.9) (0.3,0.6,0.6) 
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Fuzzy number-valued set function η  is a fuzzy number-valued fuzzy measure.  

For instance, one can verify that condition 2 of Definition 3.8 for η  is satisfied. 

Let us consider η  as a fuzzy number-valued lower probability constructed 

from linguistic probability distribution lP : 

1 1 2 2/ / ... /l
n nP P S P S P S= + + +       

Linguistic probability distribution lP  implies that a state iS ∈   is assigned a 

linguistic probability iP  that can be described by a fuzzy number defined over 

[0,1]. Let us shortly mention that the requirement for numeric probabilities to sum 

up to one is extended for linguistic probability distribution lP  to a wider 
requirement which includes degrees of consistency, completeness and redundancy 

that will be described in details in Chapter 4. Given lP , we can obtain from it a 

fuzzy set Pρ  of possible probability distributions ( )sρ . We can construct a 

fuzzy-valued fuzzy measure from Pρ  as its lower probability function [55] by 

taking into account a degree of correspondence of ( )sρ  to lP . A degree of 

membership of an arbitrary probability distribution ( )sρ  to Pρ  (a degree of 

correspondence of ( )sρ  to lP ) can be obtained by the formula  

1,
( ( )) min( ( ))

i iP Pi n
s pπ ρ π

=
=  , 

where ( ) ( )
ii S

S

p s s dsρ μ=    is numeric probability of fuzzy state iS  defined 

by ( )sρ . ( ) ( ) ( )
i i iiP P S

S

p s s dsπ μ ρ μ
 

=  
 
  

 

is the membership degree of ip  to iP . 

To derive a fuzzy-number-valued fuzzy measure lP
η   we suggest to use the 

following formulas [3]: 

1 2
(0,1]

( ) ( ), ( )α α

α
η α η η

∈

 =      (3.4) 

where 

{ } 1

1

2

1,

( ) inf ( ) max ( ) ( ) ,

( ) inf ( ) max ( ) ( ) ( ) ,

( ) min( ( )) , ( ) ,
i iPi n

s s ds s P

s s ds s core P

P s p core P P

α

α α

α ρ

α ρ

ρ ρ ρ

η ρ μ ρ

η ρ μ ρ

ρ π α
=

∈

∈

=

  = ∈ 
  
  = ∈ 
  

= ≥ = ⊂











  


  






 

 (3.5)
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The support of η  is defined as 
(0,1]

supp cl α

α
η η

∈

 
=  

 
  . So, lP

η  is constructed by 

using ( )
S

sμ   which implies that in construction of the non-additive measure lP
η   

we take into account impreciseness of the information on states of nature 
themselves. Detailed examples on construction of a fuzzy number-valued measure 
are considered in the upcoming chapters. 

In this section we will discuss features of various existing precise additive and 
non-additive measures and fuzzy-valued fuzzy measures. The discussion will be 
conducted in terms of a series of criteria suggested in [72]: interpretation, calculus, 
consistency, imprecision, assessment, computation. The emphasis will be given to 
situations in which all the relevant information is described in NL.  
 
Interpretation, Calculus and Consistency. Linguistic probabilities-based fuzzy-
valued lower and upper probabilities and their convex combinations have clear 
behavioral interpretation: they represent ambiguity aversion, ambiguity seeking 
and their various mixes when decision-relevant information is described in NL. 
Updating these measures is to be conducted as updating the underlying fuzzy 
probabilities according to fuzzy Bayes’ rule and new construction of these 
measures from the updated fuzzy probabilities. 

Formal validity of the considered fuzzy-valued measures is defined from 
verification of degrees of consistency, completeness and redundancy of the 
underlying fuzzy probabilities as initial judgments.  

Among the traditional measures, Bayesian probability and coherent lower 
previsions suggested by Walley [72] (these measures are crisp, non-fuzzy) are 
only measures which satisfy the considered criteria. Bayesian probability has 
primitive behavioral interpretation, on base of which the well-defined rules of 
combining and updating are constructed. Coherent lower previsions have clear and 
more realistic behavioral interpretation. The rules for updating, combining and 
verification of consistency of lower previsions are based on the natural extension 
principle [71,72] which is a general method. However, it is very complex both 
from analytical and computational points of view. 

Possibility theory and the Dempster-Shafer theory, as it is mentioned in 
[71,72], suffer from lack of the methods to verify consistency of initial judgments 
and conclusions. 
 
Imprecision. Fuzzy-valued lower and upper previsions and their convex 
combinations are able to transfer additional information in form of possibilistic 
uncertainty from states of nature and associated probabilities to the end up 
measuring of events. As a result, these measures are able to represent vague 
predicates in NL and partial and complete ignorance as degenerated cases of 
linguistic ambiguity. 

Dempster-Shafer theory is a powerful tool for modeling imprecision and 
allows to model complete ignorance. However, this theory suffers from series of 
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significant disadvantages [69]. Determination of basic probabilities in this theory 
may lead to contradictory results. From the other side, under lack of information 
on some elements of universe of discourse, values of belief and plausibility 
functions for these elements become equal to zero which means that occurrence of 
them will not take place. However, this is not justified if the number of 
observations is small. 

Possibility theory is able to model complete ignorance and requires much less 
information for modeling than probability theory. Possibility measure, as opposed 
to probability measure, is compositional, which makes it computationally more 
convenient. However, possibility measure has a serious disadvantage as compared 
with the probability measure. This theory allows only for qualitative comparative 
analysis of events – it allows determining whether one event is more or less 
possible than another, but does not allow determining actual possibilities of 
events. 

Dempster-Shafer theory, lower prevision theory and possibility theory can be 
considered as special cases of multiple priors representations [69]. In this sense, 
belief and plausibility functions can be considered as an upper and lower bounds 
of probability respectively. Possibility theory also can be used for representation 
of bounds of multiple priors and is used in worst cases of statistical information. 

Possibility theory, Dempster-Shafer theory and coherent lower previsions as 
opposed to Bayesian probabilities are able to model ignorance, impreciseness and 
NL-based vague evaluations. However, as these theories are based on precise 
modeling of uncertainty, use of them lead to significant roughening of NL-based 
information. For example, linguistic description of information on states of nature 
and their probabilities creates a too high vagueness for these precise measures to 
be believable or reliable in real-life problems.  
 
Assessment. Fuzzy-valued lower probability is obtained from the linguistic 
probability assessments which are practical and human-like estimations for real-
world problems. Coherent lower prevision can also be obtained from the same 
sources, but, as a precise quantity, it will be not reliable as very much deviated 
from vague and imprecise information on states of nature and probabilities. From 
the other side, fuzzy-valued lower or upper probabilities are computed from fuzzy 
probabilities. 

The other main advantage of fuzzy-valued lower probabilities and fuzzy 
probabilities constructed for NL-based information is that they, as opposed to all 
the other measures, don’t require independence or non-interaction assumptions on 
the measured events, which are not accurate when we deal with overlapping and 
similar objective conditions.  
 
Computation. The construction of unknown fuzzy probability, the use of fuzzy 
Bayes’ formula and construction of a fuzzy-valued lower prevision are quite 
complicated variational or nonlinear programming problems. However, the 
complexity here is the price we should pay if we want to adequately formalize and 
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compute from linguistic descriptions. However, as opposed to the natural 
extension-based complex computations of coherent lower previsions which 
involves linear programming, the computation of fuzzy-valued previsions is more 
intuitive, although arising the well known problems of nonlinear optimization.  

Computations of coherent lower previsions (non-fuzzy) can be reduced to 
simpler computations of possibility measures and belief functions as their special 
cases, but it will lead to the loss of information. 

Adequacy of the use of a fuzzy-valued lower (upper) probability consists in its 
ability to represent linguistic information as the only adequate relevant 
information on dependence between states of nature in real-life problems. The 
existing non-additive measures, being numerical-valued, cannot adequately 
represent such information. To some extent it can be done by lower previsions, but 
in this case one deals with averaging of linguistic information to precise values 
which leads to loss of information. 
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