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Chapter 1 
Fuzzy Sets and Fuzzy Logic 

1.1   Fuzzy Sets and Operations on Fuzzy Sets 

Definition 1.1 Fuzzy Sets. Let X  be a classical set of objects, called the un-
iverse, whose generic elements are denoted .x  Membership in a classical subset 

A  of X  is often viewed as a characteristic function Aμ  from A  to { }0,1  such 

that  

1
( )

0A

iff x A
x

iff x A
μ

∈
=  ∉

 

where { }0,1  is called a valuation set; 1 indicates membership while 0 - non-

membership. 

If the valuation set is allowed to be in the real interval [ ]0,1 , then A  is called a 

fuzzy set denoted A [2,3,6,8,57,58,114,133], ( )
A

xμ  is the grade of  membership 

of x  in A  

: [0,1]
A

Xμ →   

As closer the value of ( )
A

xμ  is to 1, so much x  belongs to A .  

A  is completely characterized by the set of pairs. 

{( , ( )),   }
A

A x x x Xμ= ∈
   

Fuzzy sets with crisply defined membership functions are called ordinary fuzzy 
sets. 

Properties of Fuzzy Sets 

Definition 1.2. Equality of Fuzzy Sets. Two fuzzy sets A  and B are said to be 
equal if and only if  

   ( ) ( )    .
BA

x X x x A Bμ μ∀ ∈ = = 
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Definition 1.3. The Support and the Crossover Point of a Fuzzy Set. The Sin-
gleton. The support of a fuzzy set A  is the ordinary subset of X  that has nonzero 

membership in A : 

( ){ }+0suppA=A , 0Ax X xμ= ∈ >    

The elements of x  such as ( ) 1 2
A

xμ =  are the crossover points of A .  

A fuzzy set that has only one point in X  with 1
A

μ =  as its support is called a 

singleton.  

Definition 1.4. The Height of a Fuzzy Set. Normal and Subnormal Sets. The 

height of A  is 

( ) ( )sup
A

x X

hgt A Xμ
∈

= 
  

 

i.e., the least upper bound of
A

 ( )xμ  . 

A  is said to be normalized iff x X∃ ∈ , ( ) 1
A

xμ = . This definition implies 

( ) 1hgt A = . Otherwise A  is called subnormal fuzzy set. 

The empty set ∅  is defined as 

, ( ) 0,of course ( ) 1Xx X x x X xμ μ∅∈ = ∀ ∈ =  

Definition 1.5. α-Level Fuzzy Sets. One of important way of representation of 
fuzzy sets is α -cut method. Such type of representation allows us to use proper-
ties of crisp sets and operations on crisp sets in fuzzy set theory. 

The (crisp) set of elements that belongs to the fuzzy set A  at least to the degree 
α  is called the α -level set: 

( ){ },
A

A x X xα μ α= ∈ ≥  
 

( ){ },
A

A x X xα μ α= ∈ >  is called "strong α -level set" or "strong α -cut".  

Now we introduce fuzzy set ,Aα defined as  

( ) (  )A x A xα
α α=  (1.1) 

Then the original fuzzy set A  may be defined as 
[0,1]

A Aα
α∈

=  .   denotes the 

standard fuzzy union. 

Definition 1.6. Convexity of Fuzzy Sets. A fuzzy set A  is convex iff 

1 2 1 2( (1 ) ) min( ( ), ( )) 
A A A

x x x xμ λ λ μ μ+ − >    (1.2) 
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for all 1 2, ,  [0,1]x x R λ∈ ∈ , min denotes the minimum operator. 

Alternatively, a fuzzy set A  on R  is convex iff all its α -level sets are convex 
in the classical sense. 

Definition 1.7. The Cardinality of a Fuzzy Set. When X  is a finite set, the sca-

lar cardinality A of a fuzzy set A  on X  is defined as  

( )
A

x A

A xμ
∈

= 


   

Sometimes A  is called the power of A . A A X=   is the relative cardinality. 

When X  is infinite, A is defined as 

( )
AX

A x dxμ=  
   

Definition 1.8. Fuzzy Set Inclusion. Given fuzzy sets ( ),A B F X∈   A  is said to 

be included in ( )B A B⊆  or A  is a subset of B  if , ( ) ( )
BA

x X x xμ μ∀ ∈ ≤  . 

When the inequality is strict, the inclusion is said to be strict and is denoted as 

A B<  . 
Let consider representations and constructing of fuzzy sets. It was mentioned 

above that each fuzzy set is uniquely defined by a membership function. In the li-
terature one can find different ways in which membership functions are 
represented. 

List Representation. If universal set { }1 2, , , nX x x x=   is a finite set, member-

ship function of a fuzzy set A  on X  ( )
A

xμ  can be represented as table. Such ta-

ble lists all elements in the universe X  and the corresponding membership grades 

as shown below 

1 1
1

( ) / ( ) / ( ) /
n

n n i iA A A
i

A x x x x x xμ μ μ
=

= + + =  
    

Here symbol / (slash) does not denote division, it is used for correspondence be-
tween an element in the universe X  (after slash) and its membership grade in the 

fuzzy set A  (before slash). The symbol + connects the elements (does not denote 
summation). 

If X  is a finite set then 

( ) /
A

X

A x xμ=  
 . 

Here symbol 
X
 is used for denoting a union of elements of set X . 
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Graphical Representation. Graphical description of a fuzzy set A  on the un-

iverse X  is suitable in case when X  is one or two-dimensional Euclidean space. 

Simple typical shapes of membership functions are usually used in fuzzy set 

theory and practice (Table 1.1). 

Fuzzy n  Cube Representation. All fuzzy sets on universe X  with n elements 

can be represented by points in the n-dimensional unit cube – n -cube. Assume that 

universe X  contains n  elements 1 2{ , ,..., }nX x x x= . Each element , 1,ix i n=  

can be viewed as a coordinate in the n dimensional Euclidean space. A subset of 

this space for which values of each coordinate are restricted in [ ]0,1 is called n-

cube. Vertices of the cube, i.e. bit list ( )0,1,...,0 represent crisp sets. The points  

inside the cube define fuzzy subsets. 

Analytical Representation. In case if universe X  is infinite, it is not effective to 

use the above considered methods for representation of membership functions of a 

fuzzy sets. In this case it is suitable to represent fuzzy sets in an analytical form, 

which describes the shape of membership functions. 

There are some typical formulas describing frequently used membership functions 
in fuzzy set theory and practice. 

For example, bell-shaped membership functions often are used for representa-
tion of fuzzy sets. These functions are described by the formula: 

2( )
( ) exp

A

x a
x c

b
μ  −= − 

 
  

which is defined by three parameters, a, b and c. 
In general it is effective to represent the important typical membership func-

tions by a parametrized family of functions.The following are formulas for de-
scribing the 6 families of membership functions 

2 1
1 1( , ) [1 ( ) ]

A
x c c x aμ −= + −  (1.3) 

1

2 2( , ) 1
A

x c c x aμ −
 = + −   (1.4) 

1

3 3( , , ) 1
d

A
x c d c x aμ

−
 = + −   (1.5)

 

4 4( , , ) exp
d

A
x c d c x aμ  = − −   (1.6)
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Table 1.1 Typical membership functions 

 

{ }5 5( , ) max 0, 1
A

x c c x aμ  = − −   (1.7)
 

2

6 6

( )
( , ) exp

A

x a
x c c

b
μ  −= − 

 


 
(1.8)

 

Type of 
Membership 

function 

Graphical 
Representation 

Analytical 
Representation 

     MF

Triangular
 

 
 
 
 
 
 

( )
A

xμ   

    1.0   - 
       r 
 
 
 
 
  1a               2a       3a              x 

1
1 2

2 1

3
2 3

3 2

,   if    ,

,   if    ,( )

0  ,            

A

x a
r a x a

a a

a x
r a x ax

a a

otherwise

μ

− ≤ ≤ −
 − ≤ ≤=  −




  

     MF

Trapezoidal
 

( )
A

xμ   

   1.0 - 
      r 
 
 
 
 
   1a           2a        3a       4a     x 

1
1 2

2 1

2 3

4
3 4

4 3

,    if    ,

 ,              if    , 
( )

,   if    ,

0  ,            

A

x a
r a x a

a a

r a x a
x

a x
r a x a

a a

otherwise

μ

− ≤ ≤ −
 ≤ ≤=  − ≤ ≤
 −





 
 
 

 - 

     MF

S shaped
 

( )
A

xμ   

1 
 
 
 
 
        
 
      a1         a2            a3     x 

1

2

1
1 2

3 1

2

1
2 3

3 1

3

0 ,                     if   x  ,

2 ,     if  <x<  ,

( )

1 2 ,  if  a x<a ,

1 ,                      if   a x 

A

a

x a
a a

a a
x

x a

a a

μ

≤


 −
  − = 

  −− ≤  − 
 ≤


 

      - 

   

     MF

Bell

shaped  

 2( )
( )  exp

A

x a
x c

b
μ  −= ⋅ − 
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Here 0,  1,6 ,  1ic i d> = >  are parameters, a  denotes the elements of corres-

ponding fuzzy sets with the membership grade equal to unity. 
Table 1.1 summarizes the graphical and analytical representations of frequently 

used membership functions (MF). 
The problem of constructing membership functions is problem of knowledge  

engineering. 
There are many methods for estimation of membership functions. They can be 

classified as follows: 

1. Membership functions based on heuristics. 
2. Membership functions based on reliability concepts with respect to the 

particular problem.  
3. Membership functions based on more theoretical demand. 
4. Membership functions as a model for human concepts. 
5. Neural networks based construction of membership functions. 

The estimation methods of membership functions based on more theoretical 
demand use axioms, probability density functions and so on. 

Let consider operations on fuzzy sets. There exist three standard fuzzy opera-
tions: fuzzy intersection, union and complement which are generalization of the 
corresponding classical set operations. 

Let's A  and B  be two fuzzy sets in X  with the membership functions 
A

μ   

and 
B

μ   respectively. Then the operations of intersection, union and complement 

are defined as given below. 

Definition 1.9. Fuzzy Standard Intersection and Union. The intersection ( ) 

and union ( )  of fuzzy sets A  and B  can be calculated by the following  

formulas:  

    ( ) min  ( ( ), ( )) 
BA B A

x X x x xμ μ μ∀ ∈ =    

    ( ) max  ( ( ), ( )) 
BA B A

x X x x xμ μ μ∀ ∈ =    

where 
A B

 ( )xμ    and 
A B

 ( )xμ    are the membership functions of A B   

and A B  , respectively. 

Definition 1.10. Standard Fuzzy Complement. The complement cA  of A  is 
defined by the membership function: 

   ( ) 1 ( )c AA
x X x xμ μ∀ ∈ = −  . 

As already mentioned ( )
A

xμ  is interpreted as the degree to which x  belongs to 

A . Then by the definition  ( )cA
xμ   can be interpreted as the degree to which x 

does not belong to A .  



1.1   Fuzzy Sets and Operations on Fuzzy Sets 7
 

The standard fuzzy operations do not satisfy the law of excluded middle 
cA A X=   and the law of contradiction cA A = ∅  of classical set theory. But 

commutativity, associativity, idempotency, distributivity, and De Morgan laws are 
held for standard fuzzy operations. 

For fuzzy union, intersection and complement operations there exist a broad 
class of functions. Function that qualify as fuzzy intersections and fuzzy unions 
are defined as t-norms and t-conorms. 

Definition 1.11. t-Norms. t-norm is a binary operation in [0,1], i.e. a binary func-
tion t from [0,1] into [0,1] that satisfies the following axioms 

( )( ),1 ( )
A A

t x xμ μ=   (1.9) 

if ( ) ( )
A C

x xμ μ≤   and ( ) ( )
B D

x xμ μ≤   then 

( ( ), ( )) ( ( ), ( ))
B DA C

t x x t x xμ μ μ μ≤      (1.10) 

( ( ), ( )) ( ( ), ( ))
B BA A

t x x t x xμ μ μ μ=     (1.11) 

( ( ), ( ( ), ( ))) ( ( ( ), ( ), ( )))
B BA C A C

t x t x x t t x x xμ μ μ μ μ μ=         (1.12) 

Here (1.9) is boundary condition, (1.10)-(1.12) are conditions of monotonicity, 
commutativity and associativity, respectively. 

The function t takes as its arguments the pair consisting of the element mem-

bership grades in set A  and in set B , and yields membership grades of the ele-

ment in the A B   

( )( ) [ ( ), ( )]     x X.A B x t A x B x= ∀ ∈    

The following are frequently used t-norm-based fuzzy intersection operations: 

Standard Intersection 

0 ( ( ), ( )) min{ ( ), ( )}
B BA A

t x x x xμ μ μ μ=     (1.13) 

Algebraic Product 

1( ( ), ( )) ( ) ( )
B BA A

t x x x xμ μ μ μ= ⋅     (1.14) 

Bounded Difference 

2 ( ( ), ( )) ( ) max(0, ( ) ( ) 1)
B BA A B A

t x x x x xμ μ μ μ μ= = + −∩      (1.15) 

Drastic Intersection 

3

min{ ( ), ( )}      if ( ) 1

( ( ), ( ))                                     or ( ) 1

0                                   otherwise 

BA A

B BA

x x x

t x x x

μ μ μ
μ μ μ

=
= =



  

    (1.16) 
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For four fuzzy intersections the following is true  

3 2 1 0( ( ), ( )) ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))
B B B BA A A A

t x x t x x t x x t x xμ μ μ μ μ μ μ μ≤ ≤ ≤% % % % % % % %    (1.17) 

Definition 1.12. t-Conorms. t-conorm is a binary operation in[0,1] , i.e. a binary 

function :[0,1] [0,1] [0,1]S × →  that satisfies the following axioms 

( )( ),0 ( )
A A

S x xμ μ=  ;(boundary condition) (1.18) 

if ( ) ( )
A C

x xμ μ≤   and ( ) ( )
B D

x xμ μ≤   then 

( ( ), ( )) ( ( ), ( ))
B DA C

S x x S x xμ μ μ μ≤    ; (monotonicity)   (1.19) 

( ( ), ( )) ( ( ), ( ))
B BA A

S x x S x xμ μ μ μ=    ; (commutativity)   (1.20) 

( ( ), ( ( ), ( ))) ( ( ( ), ( ), ( )))
B BA C A C

S x S x x S S x x xμ μ μ μ μ μ=      ; 

(associativity). 
(1.21) 

The function S  yields membership grade of the element in the set A B   on the 
argument which is pair consisting of the same elements membership grades in set 

A  and B  

( )( ) [ ( ), ( )]A B X S A x B x=  (1.22) 

The following are frequently used t-conorm based fuzzy union operations. 

Standard Union 

0 ( ( ), ( )) max{ ( ), ( )}
B BA A

S x x x xμ μ μ μ=     (1.23) 

Algebraic Sum 

1( ( ), ( )) ( ) ( ) ( ) ( )
B B BA A A

S x x x x x xμ μ μ μ μ μ= + − ⋅       (1.24) 

Drastic Union 

3

max{ ( ), ( )}      if ( ) 0

( ( ), ( ))                                     or ( ) 0

1                                   otherwise 

BA A

B BA

x x x

S x x x

μ μ μ
μ μ μ

=
= =



  

    (1.25) 

For four fuzzy union operations the following is true  

0 1 2 3( ( ), ( )) ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))
B B B BA A A A

S x x S x x S x x S x xμ μ μ μ μ μ μ μ≤ ≤ ≤         (1.26) 

Definition 1.13. Cartesian Product of Fuzzy Sets. The Cartesian product of 

fuzzy sets 1 2, , , nA A A    on universes 1 2, , , nX X X  respectively is a fuzzy set 
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in the product space 1 2 nX X X× × ×  with the membership func-

tion { }
1 2 1 2...

( ) min ( ) | ( , ..., ),
n i

i n i iA A A A
x x x x x x x Xμ μ× × × = = ∈    . 

Definition 1.14. Power of Fuzzy Sets. m-th power of a fuzzy set mA  is defined as 

+( ) [ ( )]   ,  x X,  m Rm

m
AA

x xμ μ= ∀ ∈ ∀ ∈  (1.27) 

where R+  is positively defined set of real numbers. 

Definition 1.15. Concentration and Dilation of Fuzzy Sets 

Let A  be fuzzy set on the universe: 

( ){ }, /
A

A x x x Xμ= ∈
  

Then the operator {( ,[ ( )] )/x X}m
m A

Con A x xμ= ∈
  is called concentration of A  

and the operator {( , ( )  )/x X}n A
Dil A x xμ= ∈

 is called dilation of A . 

Definition 1.16. Difference of Fuzzy Sets. Difference of fuzzy sets is defined by 
the formula: 

A -
,   ( ) max(0, ( ) ( ))BB A

x X x x xμ μ μ∀ ∈ = −    (1.28) 

A B−   is the fuzzy set of elements that belong to A  more than to B . 

Symmetrical difference of fuzzy sets A  and B  is the fuzzy set A B∇   of ele-

ments that belong more to A  than to B : 

A B
    ( ) ( ) ( )BA

x X x x xμ μ μ∇∀ ∈ = −    (1.29) 

Definition 1.17. Fuzzy Number. A fuzzy number is a fuzzy set A  on R  which 

possesses the following properties: a) A  is a normal fuzzy set; b) A  is a convex 

fuzzy set; c) α-cut of A , Aα  is a closed interval for every ( ]0,1α ∈ ; d) the sup-

port of A , 0A+  is bounded.  

In Fig. 1.1 some basic types of fuzzy numbers are shown. For comparison of a 
fuzzy number with a crisp number in Fig. 1.2 crisp number 2 is given. 

Let consider arithmetic operation on fuzzy numbers. There are different me-
thods for developing fuzzy arithmetic. In this section we present three methods. 

Method based on the extension principle. By this method basic arithmetic oper-

ations on real numbers are extende to operations on fuzzy numbers. Let A  and B  
be two fuzzy numbers and ∗  denote any of four arithmetic operations 
{+, - ,  , : }⋅ . 
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Fig. 1.1 Types of fuzzy numbers 

 

Fig. 1.2 Crisp number 2 

A fuzzy set A B∗   on R  can be defined by the equation 

( * )
  z R     ( ) sup min[ ( ), ( )]BA B A

z=x* y

z =  x  yμ μ μ∀ ∈        (1.30) 

It is shown in [57] that A B∗   is fuzzy number and the following theorem has 
been formulated and proved.  

Theorem 1.1. Let { ,  -,  , : }∗∈ + ⋅ , and let A , B  denote continuous fuzzy num-

bers. Then, the fuzzy set A B∗   defined by (1.30) is a continuous fuzzy number. 
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Then for four basic arithmetic operations on fuzzy numbers we can write 

( )
( ) sup min[ ( ), ( )]BA B A

z x y

z x yμ μ μ+
= +

=    (1.31) 

( )
( ) sup min[ ( ), ( )]BA B A

z x y

z x yμ μ μ−
= −

=    (1.32) 

( )
( ) sup min[ ( ), ( )]BA B A

z x y

z x yμ μ μ⋅
= ⋅

=    (1.33) 

( : )
:

( ) sup min[ ( ), ( )]BA B A
z x y

z x yμ μ μ
=

=    (1.34) 

Method Based on Interval Arithmetic and α-Cuts. This method is based on re-
presentation of arbitrary fuzzy numbers by their α-cuts and use interval arithmetic 

to the α-cuts. Let ,A B R⊂   be fuzzy numbers and ∗  denote any of four opera-

tions. For each (0,1]α ∈ , the α-cut of A B∗   is expressed as  

( )A B A Bα α α∗ = ∗   (1.35) 

For ∗   we assume 0 supp(B)∉  .  

The resulting fuzzy number A B∗   can be defined as 

[0,1]
( )A B A B α

α
α

∈
∗ = ∗    (1.36) 

Next we using (1.35), (1.36) illustrate four arithmetic operations on fuzzy  
numbers. 

Addition. Let A and B  be two fuzzy numbers and Aα  and Bα  their α-cuts 

1 2 1 2[ , ]; [ , ]A a a B b bα α α α α α= =  (1.37) 

Then we can write  

1 2 1 2 1 1 2 2[ , ] [ , ] [ , ]A B a a b b a b a bα α α α α α α α α α+ = + = + + , [0,1]α∀ ∈  (1.38) 

here 

{ / ( ) }; { / ( ) }
BA

A x x B x xα αμ α μ α= ≥ = ≥   (1.39) 

Subtraction. Subtraction of given fuzzy numbers A and B  can be defined as  

1 2 2 1( ) [ , ], [0,1]A B A B a b a bα α α α α α α α− = − = − − ∀ ∈  (1.40) 

We can determine (1.40) by addition of the image B−  to A  



12 1   Fuzzy Sets and Fuzzy Logic
 

2 1[0,1], [ , ]B b bα α αα
−

∀ ∈ = − −  (1.41) 

Multiplication. Let two fuzzy numbers A and B  be given. Multiplication A B⋅   
is defined as 

1 2 1 2( ) [ , ] [ , ] [0,1]A B A B a a b bα α α α α α α α⋅ = ⋅ = ⋅ ∀ ∈  (1.42) 

Multiplication of fuzzy number A in R  by ordinary numbers Rk +∈  is 

performed as follows 

RA∀ ⊂ 1 2[ , ]kA ka kaα α α=  (1.43) 

Division. Division of two fuzzy numbers A and B  is defined by 

1 2 1 2: [ , ] :[ , ]A B a a b bα α α α α α= [0,1]α∀ ∈  (1.44) 

Definition 1.18. Absolute Value of a Fuzzy Number. Absolute value of fuzzy 
number is defined as: 

+

-

max( , ),   for   R
( )

0,                    for    R

A A
abs A

 −= 


 
  (1.45) 

Let consider Z-number and operations on Z –numbers [128]. Decisions are based 
on decision-relevant information which must be reliable. Basically, the concept of 
a Z -number relates to the issue of reliability of information. A Z -number, Z , 

has two components, Z=(A, B)  . The first component, A , is a restriction (con-

straint) on the values which a real-valued uncertain variable, X , is allowed to 

take. The second component, B , is a measure of reliability (confidence)of the first 

component. Typically, A  and B  are described in a natural language. 
The concept of a Z -number has a potential for many applications, especially in 

the realms of economics and decision analysis. 
Much of the information on which decisions are based is uncertain. Humans 

have a remarkable capability to make rational decisions based on information 
which is uncertain, imprecise and or incomplete. Formalization of this capability, 
at least to some degree motivates the concepts Z -number [128]. 

The ordered triple (X,A,B)   is referred to as a Z -valuation. A Z -valuation is 

equivalent to an assignment statement, X is (A, B)  . X  is an uncertain random 

variable. For convenience, A  is referred to as a value of X , with the understand-

ing that, A  is not a value of X  but a restriction on the values which X  can take. 

The second component, B , is referred to as confidence(certainty). When X  is a 

random variable, certainty may be equated to probability. Typically, A  and B  



1.1   Fuzzy Sets and Operations on Fuzzy Sets 13
 

are perception-based and are described in NL. A  collection of Z -valuations is re-
ferred to as Z -information. It should be noted that much of everyday reasoning 
and decision-making is based on Z -information. For purposes of computation, 

when A  and B  are described in NL, the meaning of A  and B  is precisiated  
through association with membership functions, 

A
μ   and 

B
μ  , respectively. Simple 

examples of Z -valuations are: 

(anticipated budget deficit, about 3 million dollars, likely); 

(price of oil in the near future, significantly over 50 dollars/barrel, veri likely). 

The Z -valuation (X,A,B)   may be viewed as a restriction on X  defined by:  

Prob ( X  is A ) is B .  

In a Z -number, (A, B)  , the underlying probability distribution Xp , is not 

known. What is known is a restriction on Xp  which may be expressed as [128]: 

( ) ( )XA
R

u p u duμ  is B  

An important qualitative attribute of a Z -number is informativeness. Generally, 
but not always, a Z -number is informative if its value has high specificity, that is, 
is tightly constrained [110], and its certainty is high. Informativeness is a desidera-
tum when a Z -number is a basis for a decision. A basic question is: When is the 
informativeness of a Z -number sufficient to serve as a basis for an intelligent  
decision?  

The concept of a Z -number is based on the concept of a fuzzy granule 
[120,121,124]. A concept which is closely related to the concept of a Z -number 

is the concept of a +Z -number. Basically, a +Z -number, +Z , is a combination of 

a fuzzy number, A , and a random number, R , written as an ordered pair 
+Z ( , )A B=   . In this pair, A plays the same role as it does in a Z -number, and 

R  is the probability distribution of a random number. Equivalently, R may be 
viewed as the underlying probability distribution of X  in the Z -valuation 

(X,A,B)  . Alternatively, a +Z -number may be expressed as X(A, p )  or 

XA
( , p )μ  , where 

A
μ   is the membership function of A . A Z + -valuation is ex-

pressed as ( , , )XX A p  or, equivalently, as ( , , )XA
X pμ  , where Xp  is the proba-

bility distribution (density) of X . 
The scalar product of 

A
μ   and Xp , XA

pμ   is the probability measure, 
A

P , of 

A . More concretely, 

( ) ( )X XA A A
R

p P u p u duμ μ= =       (1.46) 

It is this relation that links the concept of a Z -number to that of a +Z -number.  
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More concretely, 

( , ) ( , )XA
Z A B Z A p is Bμ+= 
    

What should be underscored is that in the case of a Z -number what is known is 

not Xp  but a restriction on Xp  expressed as 
A

is BXpμ 
 . 

Let X  be a real-valued variable taking values in U . For our purposes, it will 

be convenient to assume that U  is a finite set { }1U= ,..., nu u . We can associate 

with X  a possibility distribution μ , and a probability distribution p , expressed 

as: 

1 1= / ..., /n nu uμ μ μ+ +  

1 1p= \ ..., \n np pμ μ+ +  

Here /i iuμ  means that ,iμ  1,... ,i n=  is the possibility that iX u= . Similarly, 

\i ip u  means that ip  is the probability that iX u= .  

The possibility distribution, μ , may be combined with the probability distribu-

tion, p , through what is referred to as confluence. More concretely,  

1 1 1: ( , ) / ... ( , ) /n n np p u p uμ μ μ= + +   

As was noted earlier, the scalar product, expressed as µ⋅p, is the probability meas-

ure of A . In terms of the bimodal distribution, the +Z -valuation and the Z -
valuation associated with X  may be expressed as:  

( , , )XX A p  

( , , ),  XA
X A B p is Bμ 
   , 

respectively, with the understanding that B  is a possibilistic restriction on 

A Xpμ  .  

A  key idea which underlies the concept of a Z -mouse [128] is that visual in-
terpretation of uncertainty is much more natural than its description in natural lan-
guage or as a membership function of a fuzzy set. This idea is closely related to 
the remarkable human capability to precisiate (graduate) perceptions, that is, to as-
sociate perceptions with degrees.  

Using a Z -mouse, a Z -number is represented as two f-marks on two different 
scales. The trapezoidal fuzzy sets which are associated with the f-marks serve as 
objects of computation. 

Let us consider computation with Z -numbers. Computation with +Z -numbers 
is much simpler than computation with Z -numbers. Assume that ∗  is a  
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binary operation whose operands are +Z -numbers, +Z ( , )X X XA R=  and 
+Z ( , )Y Y YA R=   By definition, 

+Z ( )X Y X Y X YZ A A R R+∗ = ∗ ∗        (1.47) 

with the understanding that the meaning of ∗  in X YR R∗  is not the same as the 

meaning of ∗  in X YA A∗  . In this expression, the operands of ∗  in X YA A∗   are 

fuzzy numbers; the operands of ∗  in X YR R∗  are probability distributions. 

Assume that ∗  is sum. In this case, X YA A+   is defined by: 

( )
( ) sup ( ( ) ( )), min

X Y X YuA A A A
v u v uμ μ μ+ = ∧ − ∧ =       (1.48) 

Similarly, assuming that XR  and YR  are independent, the probability density 

function of X YR R∗  is the convolution,  , of the probability density functions  

of XR  and YR . Denoting these probability density functions as 
XRp  and

YRp ,  

respectively, we have: 

( ) ( ) ( )
X Y X YR R R R

R
p v p u p v u du+ =  −   (1.49) 

Thus, 

( , )
X Y

X Y X Y R RZ Z A A p p+ ++ = +    (1.50) 

More generally, to compute XZ YZ∗  what is needed is the extension principle of 

fuzzy logic [114,115].  
Turning to computation with Z -numbers, assume for simplicity that sum∗ = . 

Assume that ( , )X X XZ A B=    and ( , )Y Y YZ A B=   . Our problem is to compute the 

sum Z=X+Y . Assume that the associated Z -valuations are ( ,  ,  )X XX A B  , 

( ,  ,  )Y YY A B   and ( ,  ,  )Z ZZ A B  . 

The first step involves computation of Zp . To begin with, let us assume that 

Xp  and Yp  are known, and let us proceed as we did in computing the sum of 
+Z -numbers. Then 

Z X Yp p p=   

or more concretely 

( ) ( ) ( )Z X Y
R

p v p u p v u du=  −

In the case of Z -numbers what we know are not Xp  and Yp  but restrictions on 

Xp  and Yp  
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( ) ( )
X XA

R
u p u duμ  is XB  

( ) ( )
Y YA

R
u p u duμ  is YB  

In terms of the membership functions of XB  and YB , these restrictions may be 

expressed as: 

( ( ) ( ) )
X X XB A

R
u p u duμ μ 

( ( ) ( ) )
Y Y YB A

R
u p u duμ μ 

Additional restrictions on Xp  and Yp  are: 

( ) 1X
R

p u du =

( ) 1Y
R

p u du =

( )

( )
( )

X

X

A
R

X
R

A
R

u u du

up u du
u du

μ

μ
 =









  (compatibility) 

( )

( )
( )

Y

Y

A
R

Y
R

A
R

u u du

up u du
u du

μ

μ
 =









 (compatibility)  

Applying the extension principle, the membership function of Zp  may be ex-

pressed as: 

,( ) sup ( ( ( ) ( ) ) ( ( ) ( ) ))
Z X Y X YX Yp Z p p X YB BA A

R R
p u p u du u p u duμ μ μ μ μ=  ∧    

 
subject to 

Z X Yp p p=   

( ) 1X
R

p u du =

( ) 1Y
R

p u du =

( )

( )
( )

X

X

A
R

X
R

A
R

u u du

up u du
u du

μ

μ
 =
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( )

( )
( )

Y

Y

A
R

Y
R

A
R

u u du

up u du
u du

μ

μ
 =









 

The second step involves computation of the probability of the fuzzy event, Z  is 

ZA , given Zp . As was noted earlier, in fuzzy logic the probability measure of the 

fuzzy event X  is A , where A  is a fuzzy set and X  is a random variable with 
probability density Xp , is defined as:  

( ) ( )XA
R

u p u duμ 

 

Using this expression, the probability measure of ZA  may be expressed as: 

( ) ( ) ,
ZZ ZA

R
B u p u duμ=  

 
where 

( ) sup ( ( ) ( ))
Z X YvA A A

u v u vμ μ μ= ∧ −  
 

It should be noted that ZB  is a number when Zp  is a known probability density 

function. Since what we know about Zp  is its possibility distribution, ( )
Zp Zpμ , 

ZB  is a fuzzy set with membership function 
ZBμ  . Applying the extension prin-

ciple, we arrive at an expression for 
ZBμ  . More specifically, 

( ) sup ( )
Z ZZ p p ZB

w pμ μ=
 

subject to 

( ) ( )
Z ZA

R
w u p u duμ=  

 

Where ( )
Zp Zpμ  is the result of the first step. In principle, this completes compu-

tation of the sum of Z -numbers, XZ  and YZ .  

In a similar way, we can compute various functions of Z -numbers. The basic 
idea which underlies these computations may be summarized as follows.  
Suppose that our problem is that of computing ( , )X Yf Z Z , where XZ  and  

YZ  are Z -numbers, ( , )X X XZ A B=    and ( , )Y Y YZ A B=    respectively, and 

( , ) ( , )X Y Z Zf Z Z A B=   . We begin by assuming that the underlying probability 

distributions Xp  and pY are known. This assumption reduces the computation of 

( , )X Yf Z Z  to computation of ( , )X Yf Z Z+ + , which can be carried out through 
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the use of the version of the extension principle which applies to restrictions 

which are +Z -numbers. At this point, we recognize that what we know are not 

Xp  and Yp  but restrictions on Xp  and Yp . Applying the version of the exten-

sion principle which relates to probabilistic restrictions, we are led to 

( , )X Yf Z Z . We can compute the restriction, ZB , of the scalar product of 

( , )X Yf A A   and ( , )X Yf p p . Since ( , )Z X YA f A A=   , computation of ZB  com-

pletes the computation of ( , )X Yf Z Z . 

There are many important directions which remain to be explored, especially in 
the realm of calculi of Z -rules and their application to decision analysis and mod-
eling of complex systems. 

Computation with Z -numbers may be viewed as a generalization of computation 
with numbers, intervals, fuzzy numbers and random numbers. More concretely, the 
levels of generality are: computation with numbers (ground level1);computation 
with intervals (level1); computation with fuzzy numbers (level 2); and computation 
with Z -numbers (level3). The higher the level of generality, the greater is the capa-
bility to construct realistic models of real-world systems, especially in the realms of 
economics and decision analysis. 

It should be noted that many numbers, especially in fields such as economics 
and decision analysis are in reality Z -numbers, but they are not treated as such 
because it is much simpler to compute with numbers than with Z -numbers. Basi-
cally, the concept of a Z -number is a step toward formalization of the remarkable 
human capability to make rational decisions in an environment of imprecision and 
uncertainty. 

We now consider fuzzy relations, linguistic variables. In modeling systems the 
internal structure of a system must be described first. An internal structure is cha-
racterized by connections (associations) among the elements of system. As a rule 
these connections or associations are represented by means of relation. We will 
consider here fuzzy relations which gives us the representation about degree or 
strength of this connection. 

There are several definitions of fuzzy relation [54,113,117]. Each of them de-
pends on various factors and expresses different aspects of modeling systems. 

Definition 1.19. Fuzzy Relation. Let 1 2, ,..., nX X X  be nonempty crisp sets. 

Then, a 1 2( , ,..., )nR X X X  is called a fuzzy relation of sets 1 2, ,..., nX X X , if 

1 2( , ,..., )nR X X X  is the fuzzy subset given on Cartesian product 

1 2 ... nX X X× × × . 

If 2n = , then fuzzy relation is called binary fuzzy relation, and is denoted as 

( , )R X Y . For three, four, or n sets the fuzzy relation is called ternary, quaternary, 

or n-ary, respectively. 
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In particular, if 1 2 ... nX X X X= = = =  we say that fuzzy relation R  is given 

on set X  among elements 1 2, ,..., nx x x X∈ . 

Notice, that fuzzy relation can be defined in another way. Namely, by two or-
dered fuzzy sets. 

Assume, two fuzzy sets ( )
A

xμ   and ( )
B

yμ   are given on crisp sets X  and Y , 

respectively. Then, it is said, that fuzzy relation ( , )
AB

R X Y   is given on sets X  

and Y , if it is defined in the following way 

,
( , ) min[ ( ), ( )]

ABR BAx y
x y x yμ μ μ=

   
 

 

for all pairs ( , )x y , where x X∈  and y Y∈ . As above, fuzzy relation 
AB

R    is de-

fined on Cartesian product. 
Let fuzzy binary relation on set X  be given. Consider the following three 

properties of relation R : 

1. Fuzzy relation R  is reflexive, if 

( , ) 1
R

x xμ =   

for all x X∈ . If there exist x X∈  such that this condition is violated, then rela-

tion R  is irreflexive, and if ( , ) 0R x x =  for all x X∈ , the relation R  is antiref-

lective; 

2. A fuzzy relation R  is symmetric if it satisfies the following condition: 

( , ) ( , )
R R

x y y xμ μ=    

for all ,x y X∈ . If from ( , ) 0R x y >  and ( , ) 0R y x >  follows x y=  for all 

,x y X∈  relation R  is called antisymmetric; 

3. A fuzzy relation R  is transitive (or, more specifically, max-min transitive) if 

( , ) max  min( ( , ),  ( , ))R R Ry Y
x z x y y zμ μ μ

∈
≥     

is satisfied for all pairs ( , )x z X∈ . 

Definition 1.20. Fuzzy Proximity. A fuzzy relation is called a fuzzy proximity or 

fuzzy tolerance relation if it is reflexive and symmetric. A fuzzy relation is called 

a fuzzy similarity relation if it is reflexive, symmetric, and transitive. 

Definition 1.21. Fuzzy Composition. Let A  and B  be two fuzzy sets on X Y×  

andY Z× , respectively. A fuzzy relation  R on X Z×  is defined as 

{(( , ), ( , ) | ( , ) }
R

R x z x z x z X Zμ= ∈ ×
   (1.51) 
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here 

[ ]: 0,1
R

X Yμ × →  

( , ) ( , ) ( , ) (T( ( , ), ( , )))
R BA B A

y Y
x z x z x z x y y zSμ μ μ μ

∈
= =     (1.52) 

For x X∈ and ,z Z∈  T  and S  are triangular norms and triangular conorms, 

respectively. 

Definition 1.22. Equivalence (Similarity) Relation. If fuzzy relation R  is reflex-

ive, symmetric and transitive then relation R  is an equivalence relation or similar-
ity relation. 

A fuzzy relation R  is a fuzzy compatibility relation if it is reflexive and symme-
tric. This relation is cutworthy. Compatibility classes are defined by means of α -
cut. In fact, using α -cut a class of compatibility relation is represented by means 
of crisp subset. 

Therefore a compatibility relation can also be represented by reflexive undi-
rected graph. 

Now consider fuzzy partial ordering. 
Let X  be nonempty set. It is well known, that to order a set it is necessary to 

give an order relation on this set. But sometimes our knowledge and estimates of 
the elements of a set are not accurate and complete. Thus, to order such set the 
fuzzy order on set must be defined. 

Definition 1.23. Fuzzy Partial Ordering Relation. Let R  be binary fuzzy rela-

tion on X . Then fuzzy relation R  is called fuzzy partial ordering, if it satisfies the 
following conditions: 

1.Fuzzy relation R  is reflexive; 

2.Fuzzy relation R  is antisymmetric; 

3.Fuzzy relation R  is fuzzy transitive. 

If fuzzy partial order is given on set X  then we will say that set X  is fuzzy par-
tially ordered. 

Next we consider projections and cylindric extension. 

Let R  be n-dimensional fuzzy relation on Cartesian product 

1 2 ... nX X X X= × × ×  of nonempty sets 1 2, ,..., nX X X  and 1 2( , ,..., )ki i i  be a  

subsequence of (1,2,..., )n . 

The practice and experimental evidence have shown that decision theories de-
veloped for a perfect decision-relevant information and ‘well-defined’ preferences 
are not capable of adequate modeling of real-world decision making. The reason is 
that real decision problems are characterized by imperfect decision-relevant in-
formation and vaguely defined preferences. This leads to the fact that when solv-
ing real-world decision problems we need to move away from traditional decision 
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approaches based on exact modeling which is good rather for decision analysis of 
thought experiments. 

More concretely, the necessity to sacrifice the precision and determinacy is by 
the fact that real-world problems are characterized by perception-based informa-
tion and choices, for which natural language is more covinient and close than  
precise formal approaches. Modeling decision making from this perspective is im-
possible without dealing with fuzzy categories near to human notions and imagi-
nations. In this connection, it is valuable to use the notion of linguistic variable 
first introduced by L.Zadeh [119]. Linguistic variables allow an adequate reflec-
tion of approximate in-word descriptions of objects and phenomena in the case if 
there is no any precise deterministic description. It should be noted as well that 
many fuzzy categories described linguistically even appear to be more informative 
than precise descriptions. 

Definition 1.24. Linguistic Variable. A linguistic variable is characterized by the 
set ( , , , , )u T X G M , where u is the name of variable; T denotes the term-set of  u 

that refer to as base variable whose values range over a universe X ; G  is a 

syntactic rule (usually in form of a grammar) generating linguistic terms; M is a 

semantic rule that assigns to each linguistic term its meaning, which is a fuzzy set 

on X . 

A certain t T∈  generated by the syntactic rule G  is called a term. A term con-
sisting of one or more words, the words being always used together, is named an 
atomary term. A term consisting of several atomary terms is named a composite 
term. The concatenation of some components of a composite term (i.e. the result 
of linking the chains of components of the composite term) is called a subterm. 
Here 1 2, ,...t t  are terms in the following expression 

1 2 ...T t t= + +  

The meaning of ( )M t  of the term t is defined as a restriction ( ; )R t x  on the basis 

variable x conditioned by the fuzzy variable X : 

( ) ( ; )M t R t x≡  

it is assumed here that ( ; )R t x  and, consequently, ( )M t can be considered as a 

fuzzy subset of the set X  named as t. 
The assignment equation in case of linguistic variable takes the form in which 

t-terms in T  are names generated by the grammar G , where the meaning as-
signed to the term t is expressed by the equality 

( ) ( )M t R terminT=  

In other words the meaning of the term t is found by the application of the seman-
tic rule M to the value of term t assigned according to the right part of equation. 
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Moreover, it follows that ( )M t  is identical to the restriction associated with the 

term t. 
It should be noted that the number of elements in T  can be unlimited and then 

for both generating elements of the set T  and for calculating their meaning, the 
application of the algorithm, not simply the procedure for watching term-set, is 
necessary. 

We will say that a linguistic variable u is structured if its term-set T  and the 
function M , which maps each element from the term-set into its meaning, can be 
given by means of algorithm. Then both syntactic and semantic rules connected 
with the structured linguistic variable can be considered algorithmic procedures 
for generating elements of the set T  and calculating the meaning of each term 
inT , respectively. 

However in practice we often encounter term-sets consisting of a small number 
of terms. This makes it easier to list the elements of term-set T  and establishes a 
direct mapping from each element to its meaning. For axample, an intuitive de-
scription of possible economic conditions may be represented by linguistic terms 
like “strong econonmic growth”, “weak economic growth” etc. Then the term set 
of linguistic variable “state of economy” can be written as follows: 

T(state of economy) = “strong growth” + “moderate growth” + “static situa-
tion” + “recession”. 

The variety of economic conditions may also be described by ranges of the im-
portant economic indicators. However, numerical values of indicators may not be 
sufficiently clear even for experts and may arise questions and doubts. In contrast, 
linguistic description is well perceived by human intuition as qualitative and 
fuzzy. 

1.2   Classical and Extented Fuzzy Logic 

First we consider classical fuzzy logic. We will consider the logics with multi-
valued and continuous values (fuzzy logic). Let’s define the semantic truth func-

tion of this logic. Let P be statement and ( )T P  its truth value, where  

[ ]( ) 0,1T P ∈  

Negation values of the statement P are defined as: 

( )( ) 1T P T P¬ = − . 

Hence 

( )( )T P T P¬¬ = . 

The implication connective is always defined as follows: 

( ) ( )T P Q T P Q→ = ¬ ∨ , 
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and the equivalence as 

( ) ( ) ( )T P Q T P Q Q P↔ =  → ∧ →   .  

It should be noted that exclusive disjunction ex, disjunction of negations (Shiffer's 

connective) | , conjunction of negations ↓  and ~→  (has no common name) are 

defined as negation of equivalence ↔ , conjunction ∧ , disjunction ∨ , and impli-
cation → , respectively.  

The tautology denoted • and contradiction denoted ° will be, respectively: 

        
( ) ( ); .T P T P P T P T P P

•   = ∨ ¬ = ∧ ¬   
   


 

More generally 

     
( ) ( )( )T PQ T P P Q Q

•  = ∨ ¬ ∨ ∨ 
 

 

( ) ( )( )T PQ T P P Q Q  = ∧ ¬ ∧ ∧ 
 


 

Semantic Analysis of Different Fuzzy Logics. Let A  and B  be fuzzy sets of the 

subsets of non-fuzzy universeU ; in fuzzy set theory it is known that A  is a sub-

set of B  iff  

,
BA

μ μ≤  i.e. ( ) ( ), .
BA

x U x xμ μ∀ ∈ ≤   

Definition 1.25. Power Fuzzy Set. For given fuzzy implication → and fuzzy set 

B  from the universe U , the power fuzzy set PB   from B  is given by member-

ship function 
PB

μ   [3,19]: 

( ( ) ( ))
PB BAX U

A x xμ μ μ
∈

= ∧ →   
  

Then the degree to which A  is subset of B , is 

( )
PB

A B Aπ μ⊆ =  
   

Definition 1.26. If fuzzy implication operator [3,19] is given on the closed unit in-

terval [0,1] then 

a b b a← = →  

( ) ( ) ( ) ( )a b a b a b a b a b↔ = → ∧ ← = → ∧ ←  
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Definition 1.27. Degree of ″Equivalency″. Under the conditions of the definition 

PB  the degree to which fuzzy sets A  and B  are equivalent is: 

( ) ( )A B A Bπ π≡ = ⊆   ∧ ( );B Aπ ⊆   

or 

( ) ( )
x U BA

A B x xπ μ μ
∈

≡ = ∧ →
 

 
 

For practical purposes [3,19] in most cases it is advisable to work with multi-
valued logics in which logical variable takes values from the real interval 

[0,1]I =  divided into 10 subintervals, i.e. by using set 11 [0,0.1,0.2,...,1]V = . 

We denote the truth values of premises A  and B  through ( )T A a=  and 

( )T B b= . The implication operation in analyzed logics [2,3,88] has the following 

form:  

1) min-logic 

min

,

, .

a if a b
a b

b otherwise

≤
→ = 


 

2) #S - logic 

#

1, 1 1,

0 , .S

if a or b
a b

otherwise

 ≠ =
→ = 


 

3) S - logic (″Standard sequence″) 

1, ,

0, .S

if a b
a b

otherwise

≤
→ = 

  

4) G - logic (″Gödelian sequence″) 

1, ,

, .G

if a b
a b

b otherwise

≤
→ = 


 

5) 43G - logic 

43

1, 0,

min(1, / ), .G

if a
a b

b a otherwise

=
→ = 
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6) L - logic (Lukasiewicz's logic)  

( )min 1,1
L

a b a b→ = − + . 

7) KD - logic 

((1 ) max(1 , )
KD

a b a b a b→ = − ∨ = − . 

In turn ALI1-ALI4 - logics, suggested by us, which will be used in further chap-
ters are characterized by the following implication operations [4,5]:  

8) ALI1 – logic 

1

1 , ,

1, ,

,
ALI

a if a b

a b if a b

b if a b

− <
→ = =
 >

 

9) ALI2 - logic 

2

1, ,

(1 ) ,ALI

if a b
a b

a b if a b

≤
→ =  − ∧ >

 

10) ALI3 - logic 

3

1, ,

/[ (1 )], .ALI

if a b
a b

b a b otherwise

≤
→ =  + −

 

11) ALI4 – logic  

4

1 a
, a b,

2
1, a b.

ALI

b
a b

− + >⎯⎯⎯→ = 
 ≤

 

A necessary observation to be made in the context  of this discussion is that with 
the only few exceptions for S -logic (3) and G -logic (4), and ALI1-ALI4 (8)-
(11),  all other known fuzzy logics (1)-(2), (5)-(7) do not satisfy either the classical 
“modus-ponens” principle, or other criteria which appeal to the human perception 
of mechanisms of  a decision making process being formulated in [74]. The pro-
posed fuzzy logics ALI1-ALI4 come with an implication operators, which satisfy 
the classical principle of “modus-ponens” and meets some additional criteria being 
in line with human intuition.  

The comparative analysis of the first seven logics has been given in [19]. The 
analysis of these seven logics has shown that only S - and G - logics satisfy the 
classical principle of Modus Ponens and allow development of improved rule of 
fuzzy conditional inference. At the same time the value of truthness of the impli-
cation operation in G -logic is equal either to 0 or 1; and only the value of  
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truthness of logical conclusion is used in the definition of the implication opera-
tion in S -logic. Thus the degree of “fuzziness” of implication is decreased, which 
is a considerable disadvantage and restricts the use of these logics in approximate 
reasoning.  

Definition 1.28. Top of a Fuzzy Set. The top of fuzzy set B  is  

( ).
B

U

HB xμ= ∨ 
  

Definition 1.29. Bottom of a Fuzzy Set. The bottom of fuzzy set B  is 

( ).
B

U

pB xμ= ∧ 
  

Definition 1.30. Nonfuzziness. Nonfuzziness a U∈  is (1 )ka a a= ∨ − . Then 

nonfuzziness of fuzzy set B  is defined as: 

( )
B

U

kB k xμ= ∧ 
  

Let us give a brief semantic analysis of the proposed fuzzy logics ALI1-ALI3 by 
using the terminology accepted in the theory of power fuzzy sets. For this purpose 
we formulate the following.  

Proposal. Possibility degree of the inclusion of set ( )A Bπ ⊆   in fuzzy logic 

ALI1-ALI3 is determined as:  

( )1

1 ( ), ( ) ( ),

1,              ( ) ( ),

( ) ,         ( ) ( );

BA A

BA

B BA

x if x x

A B if x x

x if x x

μ μ μ
π μ μ

μ μ μ

− <
⊆ = =
 >

  

 

  

   

( ) ( )2

1,  ( ) ( ),

1 ( ) ( ), ( ) ( );

BA

B BA A

if x x
A B

x x if x x

μ μ
π

μ μ μ μ

≤⊆ =  − ∧ >

 

   

   

( )
( )

3

1,    ( ) ( ),

( )
, ( ) ( ).

( ) 1 ( )
B

BA

BA

BA

if x x

A B x
if x x

x x

μ μ
π μ

μ μ
μ μ

≤
⊆ =  > + −



 

 

 

   

We note, that if ( ) 0
A

xμ =  or A ≠ ∅ , then the crisp inclusion is possible for 

fuzzy logic ALI1. Below we consider the equivalence of fuzzy sets.  
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Proposal. Possibility degree of the equivalence of the sets ( )A Bπ ≡ 
  is deter-

mined as: 

( )
( )

( )
1

1 1 ( ) ( ) ,  ( ) ( ),

1,     ,

1 1 ( ) ( ) ,      ( ) ( ),

B BA A

B BA A

x x if x x

A B if A B

x x if x x

μ μ μ μ

π
μ μ μ μ

  − − ∨ < ≡ = =
  − − ∨ >  

   

   

    

( )
( ) ( ){ }

( )
( )

2

1, ,

1 ( ) ( ) , 1 ( ) ( ) ,

0, | | | ( ) 0, ( ) 0     ,

| | | ( ) 1, ( ) 1  ,

BA B A

A B

A B

if A B

x x x x if A B
TA B

if x x x or vice versa

and also x x x or vice versa

μ μ μ μ
π

μ μ

μ μ

 =


   ∧ − ∧ − ∧ ≠       ≡ = 
 ∃ = ≠

 ∃ = ≠

 

 

 

 

 
   

( )
( )

3

1, ( ) ( ),

( )
, ( ) ( ).

( ) 1 ( )

BA

B
BA

BA

if x x

xA B
if x x

x x

μ μ
μπ

μ μ
μ μ

≤
⊆ =  > + −

 


 

 

   

Here the set { }
A B

T x U x xμ μ= ∈ ≠   and A B=   means that x∀  

( ) ( )BA
x xμ μ=   or in other words, T = ∅ .  

The symbol |||  means "such as ". From the expression ( )i A Bπ ≡  , 1,3i = , it 

follows that for ALI1 fuzzy logic the equivalency ( )1 1A Bπ ≡ =   takes place only 

when A B=  . It is obvious that the equivalence possibility is equal to 0 only in 
those cases when one of the statements is crisp, i.e. either true or false, while the 
other is fuzzy.  

Proposal. Degree to which fuzzy set B  is empty ( )Bπ ≡ ∅  is determined as 

( )1

1, ,

0, ;

if B
B

otherwise
π

 = ∅
≡ ∅ = 



  

( )2

1, 1 ,

0, ;

if HB or B
B

otherwise
π

 < = ∅
≡ ∅ = 



   

( )3

1, ,

0, .

if B
B

otherwise
π

 = ∅
≡ ∅ = 
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Here B = ∅  means that for ( ) 0
B

x xμ∀ = , or equivalently 0HB = . 

We introduce the concept of disjointness of fuzzy sets. There are two kinds of 

the disjointness. For a set A  the first kind is defined by degree to which set A  is 

a subset of the complement of cB . The second kind is the degree to which the in-
tersection of sets is empty. Therefore, we formulate the following.  

Proposal. Degree of disjointness of sets A  and B  is degree to which A  and B  

are disjoint 

( ) ( ) ( )1 ,C CA disj B A B B Aπ π π= ⊆ ∧ ⊆      

( ) ( )( )2 .A disj B A Bπ π= ∩ = ∅    

Proposal. Disjointness grade of sets A  and B  is determined as  

  ( ) ( ) ( )1 1

1,   | | | ( ) 1 ( ),

1 ( ) 1 ( ) , ,

0,  ;

BA

BA

if x x x

A disj B x x otherwise

never

μ μ

π μ μ

∃ = −


= − ∧ −



 

 
   

( )
( ) ( )

12

1, ( ) 1 ( ),

0, | | | ( ) 1,    ( ) 0,

( ) 1, ( ) 0,

1 ( ) , 1 ( ) , ;

BA

A B

B A

A B

if x x

if x x but x

A disj B or x but x

x x otherwise
T

μ μ
μ μ

π μ μ

μ μ

≤ −


∃ = ≠=  = ≠

  ∧ − − 



 



 

    

( ) ( ) ( )13

1, ( ) ( ) ( ) 0,

1 ( ) 1 ( )
, , ,

( ) 1 ( ) ( ) 1 ( )

0,                                              .

A B B

B A

A B B A

if x x or x

x x
A disj B otherwise

x x x xT

never

μ μ μ

μ μ
π

μ μ μ μ

= =


  − −  = ∧
 + − + −  




  



  

    

here { | | | ( ) 1 ( )}
BA

T x x xμμ= > −  . 

We note that, the disjointness degree of the set is equal to 0 only for fuzzy logic 
ALI2, when under the condition that one of the considered fuzzy sets is normal, 
the other is subnormal. 

Proposal. Degree to which set is a subset of its complement for the considered 

fuzzy logics ( )C
i A Bπ ⊆   takes  the following form 
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1

1, 0,

( ) 0, 1,

1 , ;

C

if HA

A A if HA

HA otherwise

π

 =
  ⊆ = = 
 −  


  


 

2

1, 0,

( ) 0, 1,

1 , ;

C

if HA

A A if HA

HA otherwise

π

 ≤
  ⊆ = = 
 −  


  


 

3

1, 0.5,

( ) 0, 1,

(1 ) /(2 ), ;

C

if HA

A A if HA

HA HA otherwise

π

 ≤
  ⊆ = = 
 −  


  

 
 

It is obvious that for the fuzzy logic ALI1 the degree to which a set is the subset of 
its complement is equal to the degree to which this set is empty. It should also be 
mentioned that the semantic analysis given in [6,8,9] as well as the analysis given 
above show a significant analogy between features of fuzzy logics ALI1 and KD . 
However, the fuzzy logic ALI1, unlike the KD  logic, has a number of advantages. 
For example, ALI1 logic satisfies the condition ( )

B BA A
x x x xμ μ μ μ∧ → ≤    neces-

sary for development of fuzzy conditional inference rules. ALI2 and ALI3 logics  
satisfy this inequality as well. This allows them to be used for the formalization of 
improved rules of fuzzy conditional inference and for the modeling of relations be-
tween main elements of a decision problem under uncertainty and interaction among 
behavioral factors.  

Extended Fuzzy Logic [127] 

Fuzzy logic adds to bivalent logic an important capability—a capability to reason 
precisely with imperfect information. In classical fuzzy logic, results of reasoning 
are expected to be provably valid, or p -valid for short. Extended fuzzy logic adds 

an equally important capability—a capability to reason imprecisely with imperfect 
information. This capability comes into play when precise reasoning is infeasible, 
excessively costly or unneeded. In extended fuzzy logic, p -validity of results is 

desirable but not required. What is admissible is a mode of reasoning which is 
fuzzily valid, or f -valid for short. Actually, much of everyday human reasoning 

is f -valid reasoning. What is important to note is that f -valid reasoning based 

on a realistic model may be more useful than p -valid reasoning based on an  

unrealistic model. As John Maynard Keynes states, “It is better to be roughly right 
than precisely wrong”  In constructing better models of reality, a problem that has 
to be faced is that as the complexity of a system, increases, it becomes  



30 1   Fuzzy Sets and Fuzzy Logic
 

increasingly difficult to construct a model, which is both cointensive, that is, 
close-fitting, and precise. This applies, in particular, to systems in which human 
judgment, perceptions and emotions play a prominent role. Economic systems, le-
gal systems and political systems are cases in point. As the complexity of a system 
increases further, a point is reached at which construction of a model which is both 
cointensive and precise is not merely difficult—it is impossible. It is at this point 
that extended fuzzy logic comes into play. Actually, extended fuzzy logic is not 
the only formalism that comes into play at this point. The issue of what to do 
when an exact solution cannot be found or is excessively costly is associated with 
a vast literature. Prominent in this literature are various approximation theories 
[16], theories centered on bounded rationality [100], qualitative reasoning [106], 
commonsense reasoning [65,78] and theories of argumentation [101]. Extended 
fuzzy logic differs from these and related theories both in spirit and in substance. 
The difference will become apparent in Section 1.3, in which the so-called f -

geometry is used as an illustration. To develop an understanding of extended 
fuzzy logic, it is expedient to start with the following definition of classical fuzzy 
logic. Classical fuzzy logic is a precise conceptual system of reasoning, deduction 
and computation in which the objects of discourse and analysis are, or are allowed 
to be, associated with imperfect information. In fuzzy logic, the results of reason-
ing, deduction and computation are expected to be provably valid ( p -valid) with-

in the conceptual structure of fuzzy logic. In fuzzy logic precision is achieved 
through association of fuzzy sets with membership functions and, more generally, 
association of granules with generalized constraints [126]. What this implies is 
that classical fuzzy logic is what may be called precisiated logic. 

At this point, a key idea comes into play. The idea is that of constructing a 
fuzzy logic, which, in contrast to classical, is unprecisiated. What this means is 
that in unprecisiated fuzzy logic UFL  membership functions and generalized 
constraints are not specified, and are a matter of perception rather than measure-
ment. A question which arises is: What is the point of constructing UFL  - a logic 
in which provable validity is off the table? But what is not off the table is what 
may be called fuzzy validity, or f -validity for short. As will be shown in section 

1.3 a model of UFL  is f -geometry. Actually, everyday human reasoning is pre-

ponderantly f -valid reasoning. Humans have a remarkable capability to perform 

a wide variety of physical and mental tasks without any measurements and any 
computations. In this context, f -valid reasoning is perception-based. The con-

cept of unprecisiated fuzzy logic provides a basis for the concept of extended 
fuzzy logic, EFL . More specifically, EFL is the result of adding UFL to clas-
sical fuzzy logic. Basically, extended fuzzy logic. Effect, extended fuzzy logic 
adds to fuzzy logic a capability to deal imprecisely with imperfect information 
when precision is infeasible, carries a high cost or is unneeded. This capability is a 
necessity when repeated attempts at constructing a theory which is both realistic 
and precise fail to achieve success. Cases in point are the theories of rationality, 
causality and decision-making under second order uncertainty, that is, uncertainty 
about uncertainty. There is an important point to be made. f -Validity is a fuzzy 
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concept and hence is a matter of degree. When a chain of reasoning leads to a con-
clusion, a natural question is: What is the possibly fuzzy degree of validity, call it 
the validity index, of the conclusion? In most applications involving f -valid rea-

soning a high validity index is a desideratum. How can it be achieved? Achieve-
ment of a high validity index is one of the principal objectives of extended fuzzy 
logic. The importance of extended fuzzy logic derives from the fact that it adds to 
fuzzy logic an essential capability—the capability to deal with unprecisiated im-
perfect information. 

1.3   Fuzzy Analyses and Fuzzy Geometry 

In this section we concern with the necessary concepts related to the calculus of 
fuzzy set-valued mappings, for short fuzzy functions. Let X  be an arbitrary set.A 
family τ of fuzzy sets in X  is called a fuzzy topology for X  and the pair ( , )X τ  

a fuzzy topological space if: (i) Xμ τ∈  and φμ τ∈ ; (ii) i
i I

A τ
∈
∪ ∈

 
whenever 

each ( )iA i Iτ∈ ∈ ; and (iii) A B τ∩ ∈  whenever ,A B τ∈  [25]. 

Definition 1.31. Fuzzy Function [25]. A fuzzy function f  from a set X  into a 

set Y assigns to each x in X  a fuzzy subset ( )f x  of Y . We denote it 

by :f X Y→ . We can identify f  with a fuzzy subset 
f

G   of X Y×  and 

( )( ) ( , )
f

f x y G x y= 
 . 

If A  is a fuzzy subset of  X , then the fuzzy set ( )f A   in Y  is defined by 

( )( ) [ ( , ) ( )]sup f
x X

f A y G x y A x
∈

= ∧
  

 

The graph 
f

G 


 of f  is the fuzzy subset of X×Y  associated with f , 

}{( , ) :[ ( )]( ) 0
f

G x y X Y f x y= ∈ × ≠
  

Let X  be a fuzzy topological space. Neighborhood of a fuzzy set A X⊂  is any 

fuzzy set B  for which there is an open fuzzy set V  satisfying A V B⊂ ⊂   . Any 

open fuzzy set V  that satisfies A V⊂   is called an open neighborhood of A . 

A fuzzy function :f X Y→  between two fuzzy topological spaces X  and Y 

is: upper semicontinuous at the point x , if for every open neighborhood U  of 

( ), ( )uf x f U   is a neighborhood of x  in X ; lower semicontinuous at x, if for 

every open fuzzy set V  which intersects ( ), ( )lf x f U  is a neighborhood of x ; 

and  continuous if it is both upper and lower semicontinuous. 
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Let n  [34,62] be a space of all fuzzy subsets of n . These subsets satisfy the 
conditions of normality, convexity, and are upper semicontinuous with compact 
support. 

Definition 1.32. Fuzzy Closeness [25]. A function :f X Y→  between two 

fuzzy topological spaces is fuzzy closed or has fuzzy closed graph if its graph is a 

closed fuzzy subset of X Y×  

Definition 1.33. Composition [25]. Let :f X Y→  and :g Y Z→  be two fuzzy 

functions. The composition :g f X Z→  :f X Z→  is defined by 

( )( )g f x =  { }( ) :[ ( )]( ) 0g y f x y= ∪ ≠ . 

Theorem 1.2. Convex Hull of a Fuzzy Set [25]. Let X , Y  and Z  be three fuzzy 

topological spaces. Let :f X Y→ and :g Y Z→ be two fuzzy functions. Then 

(i) 0( ) ( ) ( ( ))u u ug f A f g A=     

and 

(ii) 0( ) ( ) ( ( ))l l lg f A f g A=     

where A  is an open fuzzy subset of Z. 

A  fuzzy set A  in E  is called convex if for each 

[0,1],[ (1 ) ]( ) ( )t tA t A x A x∈ + − ≤ . The convex hull of a fuzzy set B  is smallest 

convex fuzzy set containing B  and is denoted by 0 ( )c B . 

Definition 1.34. Fuzzy Topological Vector Space [25]. A fuzzy linear topology 
on a vector space E  over K is a fuzzy topology τ  on E  such that the two  

mappings: 

: , ( , ) ,f E E E f x y x y× → = +  

: , ( , ) ,h K E E h t x tx× → =  

are continuous when K has the usual fuzzy topology and K E× , E E×  the cor-
responding product fuzzy  topologies. A linear space with a fuzzy linear topology 
is called a fuzzy topological vector space. A fuzzy topological vector space E  is 
called locally convex if it has a base at origin of convex fuzzy sets. 

Definition 1.35. Fuzzy Multivalued Functions [25]. If , :f g X Y→   are two 

fuzzy multivalued functions, where Y is a vector space, then we define: 

(1) The sum fuzzy multivalued function f g+   by 

{ }( )( ) ( ) ( ) : ( ) ( )f g x f x g x y z y f x and z g x+ = + = + ∈ ∈      
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(2) The convex hull of a fuzzy multivalued function 0 ( )c f
 
of f  by 

0 0( ( ))( ) ( ( ))c f x c f x=   . 

(3) If Y is a fuzzy topological vector space, the closed convex hull of a fuzzy mul-

tivalued function 0( ( ))cl c f  of f by 

0 0( ( ( )))( ) ( ( ( )))cl c f x cl c f x=    

Below a definition of measurability of fuzzy mapping : nF T →  is given. 

Definition 1.36. Measurability of Fuzzy Mapping [34,62]. We say that a map-

ping : nF T →   is strongly measurable if for all [0,1]α ∈  the set-valued map-

ping : ( )n
KF T Pα →   defined by  

( ) [ ( )]F t F t α
α =  

is (Lebesgue ) measurable , when ( )n
KP   is endowed with the topology generat-

ed by  the Hausdorff  metric Hd . 

If : nF T →   is continuous with respect to the metric Hd  then it is strongly 

measurable [34,62]. 

A mapping : nF T →   is called integrably bounded if there exists an integra-

ble function h such that || || ( )x h t≤  for all 0 ( )x F t∈  . 

Definition 1.37. Integrability of Fuzzy Mapping [34,62]. Let : nF T →   . The 

integral of  F  over T , denoted ( )
T

F t dt   or ( )
b

a
F t dt  , is defined levelwise by 

the equation 

[ ( ) ] ( ) { ( ) | : }n

T T T
F t dt F t dt f t dt f T isameasurableselection for Fα α= = →     

for all 0 1α< ≤ . A strongly measurable and interably bounded mapping 

: nF T →   is said to be integrable over T if ( ) n

T
F t dt ∈   . 

Hausdorff Distance [34,62]. Let ( )n
KP R  denote the family of all nonempty 

compact convex subsets of nR  and define the addition and scalar multiplication 

in ( )n
KP R  as usual. Let C  and D  be two nonempty bounded subsets of nR . 

The distance between C  and D  is defined by using  the Hausdorff metric 

{ }( , ) max(supinf ,sup inf )H
d D c Cc C d D

d C D c d c d
∈ ∈∈ ∈

= − −  

 

   (1.53) 
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where ⋅  denotes the usual Euclidean norm in nR . Then it becomes clear that 

( ( ),n
K HP R d ) becomes a metric space. 

The next necessary concept that will be used in the sequel is the concept of dif-

ference of two elements of n  referred to as Hukuhara difference: 

Definition 1.38. Hukuhara Difference [34,62]. Let , nX Y ∈   . If there exists 
nZ ∈   such that X Y Z= +   , then Z  is called a Hukuhara difference of X  and 

Y  and is denoted as hX Y−  .  

Note that with the standard fuzzy difference for Z  produced of X  

andY , X Y Z≠ +   . We use Hukuhara difference when we need X Y Z= +   . 

Let us consider and example. Let X  and Y  be triangular fuzzy sets 

(3,7,11)X =  and (1,2,3)Y = . Then Hukuhara difference of X  and Y  is 

hX Y−   (3,7,11) (1,2,3)h= − (3 1,7 2,11 3)= − − − = (2,5,8)  Indeed, 

( )hY X Y+ −    (1,2,3)=  (2,5,8)+  (3,7,11) X= =  . 

Definition 1.39. Fuzzy Hausdorff Distance [10,11]. Let , nA B ∈   . The fuzzy 

Hausdorff distance 
f

d Η
  between A  and B  is defined as 

1 1

1[0,1]

( , ) ( , ), sup ( , )
f H Hd A B d A B d A Bα α
Η

α αα
α

≤ ≤∈

 =   
    ,   (1.54) 

where Hd  is the Hausdorff distance [34,62] and 1 1,A B  denote the cores ( 1α =  

level sets) of fuzzy sets ,A B   respectively. Let us denote by hA B− =   

ˆ( ,0)fH hd A B−   a fuzzy norm of the Hukuhara difference. We note that 

ˆ( ,0) ( , )fH h fHd A B d A B− =   . We will be using this difference in further  

considerations. 

Let us consider a small example. Let A  and B  be triangular fuzzy sets 

(2,3,4)A =  and (6,8,12)B = . Then the fuzzy Hausdorff distance 
f

d Η  between 

A  and B  is defined as a triangular fuzzy set ( , ) (5,5,8)
f

d A BΗ =   . 

Fuzzy Norms. Let , nx y E∈  . We denote by h fH
x y−   a fuzzy norm defined as 

( , )h fHfH
x y d x y− =    . 

 

  (1.55) 
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It is the fuzzy Haussdorf distance mentioned above. 

Let 1 2( , ,..., ) n
nu u u u E= ∈    . We denote by || || fu  a fuzzy norm defined by 

the formula  

1 2|| || | | | | ... | |f nu u u u= + + +    . 
 

  (1.56) 

where | . |  is the absolute value of a fuzzy number [3,7]. 

Derivatives of Fuzzy Functions and Fuzzy Derivatives [46,52]. It is necessary to 

distinguish between the following cases:  

–we are given a fuzzy function and our interest is to determine its derivative at a 

particular point a  (see Fig 1.3 (a));  

–we have a function but the information about the point a  at which we are to 

consider the derivative is vague (uncertain) (see Fig 1.3 (b)); 

–we have a fuzzy function and we are interested in its derivative at a vague point 

a  (see Fig 1.3 (c)). 

 y

vague point 

: ( )/a

x

a x x
 
 
 
  μ  

x

( )y f x=  

1

1:

x R

y E

f R E

∈
∈

→

  

1f α=

lf
α

rf
α

(c) 

( )a xμ

y

particular point a  

x

( )y f x=  

1

1:

x R

y E

f R E

∈
∈

→

  

1f α=  
rf
α  

(a) 

( )y f x=y

:

x R

y R

f R R

∈
∈

→

vague point 

: ( )/a

x

a x x
 
 
 
  μ  

(b) 

( )a xμ

x

lf
α

 

Fig. 1.3 Derivatives of fuzzy functions and fuzzy derivatives 

In this paper, we analyze the situations in which the points are not exactly 
known, and therefore they need to be substituted by subjective and vague esti-
mates, viz. could be treated as fuzzy sets (numbers) defined over some interval. 

Strongly Generalized Differentiability [24]. Let : ( ,  )  nf a b E→  and 

0 ( , )t a b∈ . We say that f  is strongly generalized differentiable at 0t  if there 

exists an element 0 ( ) nf t E′ ∈ , such that  
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a) for all 0h >  sufficiently small, ∃  0 0( ) ( )hf t h f t+ − , 0 0( ) ( )hf t f t h− −  

(i.e. the length of ( )( )( )diam f t
α  increases) and the limits (in the supremum 

metric [34])  

0 0

0

(   )  ( )
lim h

h

f t h f t

h+→

+ −
= 0 0

0

( )  (  )
lim h

h

f t f t h

h+→

− −
= 0( )f t′ , 

or 

b) for all 0h >  sufficiently small, ∃  0 0( ) ( )hf t f t h− + , 

0 0( ) ( )hf t h f t− −   (i.e. the length of ( )( )( )diam f t
α

 decreases) and the 

limits (in the supremum metric [34]) interval 

0 0

0

( )  (  )
lim

( )
h

h

f t f t h

h+→

− +
−

= 0 0

0

(  )  ( )
lim

( )
h

h

f t h f t

h+→

− −
−

= 0( )f t′ , 

( h  and ( )h−  shown in the denominators mean 1/ h  and 1/( )h−  respectively). 

Let 1: ( , )f a b E→  be a differentiable function. We introduce the notation 

( ) ( ), ( )l rf t f t f tα α α =   . Then ( )lf tα  and ( )rf tα  are differentiable and 

( ) ( ) ( ) ( ) ( )( ) min ( ) , ( ) ,max ( ) , ( )l r l rf t f t f t f t f t
α α α α α    ′ ′ ′ ′′ =         

. 

If f  is continuous then ( ) ( )
t

a

g t f dτ τ=   is differentiable on ( , )a b  and 

( ) ( )g t f t′ = , ( , )t a b∀ ∈ . Moreover, if f  is differentiable on ( , )a b  and 

( )f ′ ⋅  is integrable on ( , )a b  then for all ( , )t a b∈  we have 

0

0( ) ( ) ( )
t

t

f t f t f dτ τ′= +  , 0a t t b< ≤ < . 

Possibility Measure [3,110,121]. Given two fuzzy sets defined in the same un-

iverse of discourse X , a fundamental question arises as to their similarity or prox-

imity. There are several well-documented approaches covered in the literature. 

One of them concerns a possibility measure. The possibility measure, denoted by 

( , )Poss A X   describes a level of overlap between two fuzzy sets and is ex-

pressed in the form 
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( , ) sup ( ) ( )x XPoss A X A x tX x∈  =  
   , 

where t  is a t -norm. Computationally, we note that the possibility measure is 

concerned with the determination of the intersection between A  and X , 

( ) ( )A x tX x  , that is followed by the optimistic assessment of this intersection. It 

is done by picking up the highest values among the intersection grades of  A  and 

X  that are taken over all elements of the universe of discourse X . For example, 

let a  and b  be fuzzy sets with trapezoidal membership functions: 

1 1
1 1 1 1

1 2 1 2

2 2
2 2 2

1 , 1 ,

1, 1,
( ) ( )

1 , 1 ,

0, 0,

l l
l l

a b

r r r
r r

a x b x
if a x a if b x b

if a x a if b x b
x x

x a x b
if a x a if b x b

otherwise otherwise

α β
α β

μ μ
α β

α β

− − − − ≤ ≤ − − ≤ ≤ 
 
 ≤ ≤ ≤ ≤ = = − − − − ≤ ≤ − − ≤ ≤
 
 
  


 

The graphs of the corresponding membership functions ( )a xμ   and ( )b xμ  are 

shown in Fig.1.4.  

Then the possibility measure of the proposition “ a  is equal to b ” is defined as 
follows: 

 

   lα       rα  
    1a      2a  

( )a xμ  

  x    lβ     rβ       2b  

( )b xμ

   1b    x 
 

Fig. 1.4 Trapezoidal fuzzy numbers a  and b  

1 2
1 2

1 1 2 2

1 2
1 2

1 , 0

1, max( , ) min( , )
( ) ( / ) maxmin( ( ), ( ))

1 , 0

0,

l r
l r

a b

r l
r l

a b
if a b

if a b a b
a b Poss a b x x

b a
if b a

otherwise

α β
α β

μ μ
α β

α β

− − < − < + +
≤= = = = − − < − < +

 +




    (1.57) 
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Fuzzy Geometry 

In general, fuzzy geometry may be considered as extension of conventional geo-
metry to the fuzzy case [29,77,90-94,96,107]. Fuzzy geometry includes the topo-
logical concepts of area, perimeter, compactness, length, adjacency etc. These 
measures can be used to reflect the  ambiguity in decision relevant information. 

Definition 1.40. Fuzzy Point. Fuzzy point 0x  is a convex fuzzy subset of .iR  

Fuzzy point in R  is characterized by kernel x0 whose precise location is only ap-

proximately known. 

A crisp point i
0x R∈  is the kernel, from which membership function decreases in 

all directions monotonically [17]. In Fig. 1.5 and Fig. 1.6 fuzzy points with hyperpy-
ramidal (Fig.1.5) and hyperparaboloidal (Fig. 1.6) membership functions are shown. 
In first case imprecision of location of fuzzy point is expressed by intervals for the 
components, in second case by definite matrix in all directions of the space.  
 

 

Fig. 1.5 Fuzzy points with hyperpyramidal membership 

 

Fig. 1.6 Fuzzy points with hyperparaboloidal membership 

1 

x1 

x2 

μ 

μ 

x1 

x2 
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Definition 1.41. Fuzzy Interval. If fuzzy domain I  of the real line R  is bounded 

by two normalized convex fuzzy sets then it is called fuzzy interval. In Fig. 1.7 
fuzzy interval with fuzzy ends a (x)μ  and 

b
(x)μ   is given. A crisp interval [a, b] is 

the kernel, from which the membership function decreases to zero [17]. 

Analogously, fuzzy region in iR  is represented as a crisp region, which  is 

surrounded  by a  fuzzy   transition   zone,   in  which   the  membership function 

decreases monotonically to zero [18]. 
 

 

Fig. 1.7 Fuzzy interval 

Definition 1.42. Length of a Fuzzy Interval. Length of fuzzy interval I  is de-

fined as 

0

( )  ( )I

I

L I x dxμ= 
  

Here { }0 |  ( ) 0II cl x xμ= >  is support of fuzzy interval. 

Definition 1.43. Distance between Fuzzy Points. A distance between two 
points 1 2d(x ,x ) by using the extension principle translates to a fuzzy distance  

between fuzzy sets. 

The fuzzy distance between two fuzzy sets A  and B  on X  ( X is metric space) 

is defined as [18,81] 

1 2

1 2

1 2( , )
( , )

( , )

( ) sup  min( ( ),  ( ))Bd A B A
x x X X

d x x y

y x xμ μ μ
∈ ×

=

=    

Example. Fuzzy distance in case when 1X R= , 1 2 1 2( , )d x x x x= −  is shown in 

Fig 1.8.  

 

 

a b~ ~ I 

a 

µI(x) 

x 
b
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Some distances frequently used in practical problems are given below (for 1R ): 
 

2
1 2 1 2d(x ,x )= (x -x )    Euclidean distance 

p 1/p
1 2 1 2d(x ,x )= (|x -x | )   Minkowski metric 

1 2 1 2d(x ,x )= c |x -x |   Tschebyscheff metric 

      1 2 1 2d(x ,x )=  |x -x |   Hamming distance 

Definition 1.44. Fuzzy Area. The area of fuzzy subset is defined as the area of 

fuzzy subset A  given on 2R  is defined as 

 

Fig 1.8 Fuzzy distance between fuzzy sets 

0

( ) ( , )
A

A

S A x y dxdyμ=  


  
(1.58) 

Here 0 {( , ) | ( , ) 0}
A

A x y m x y= >
  is support of fuzzy region A . 

For fuzzy region, represented by piecewise membership function, the area is 
defined as [96] 

( ) ( )
i

S A iμ=  (1.59) 

Definition 1.45. Perimeter. In case of fuzzy set A  when 
A

μ   is piecewise con-

stant, the perimeter of fuzzy set A  is defined as 

( ) ( ) ( )
, ,

P * , ,
A

i j k

i j L i j kμ μ= −  (1.60) 
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Here ( )iμ  and ( )jμ  are the membership values of two adjacent regions, 

( , , )L i j k is length of a k-th arc of these regions. 

Definition 1.46. Compactness. The compactness of a fuzzy set A  with area 
A

S   

and perimeter 
A

P  is defined as 

( ) 2P
A

A

S
C A = 




 

(1.61)

 

Definition 1.47. Length and Breadth of a Fuzzy Set. The length of a fuzzy set 

A  is defined as 

( ) ( ){ }max , ,
Ax

l A x y dyμ=  
  (1.62) 

where the integral is taken over the region with ( ), 0.
A

x yμ >  For discrete case 

formula (1.62) takes form 

( ) ( )max ,
Ax

y

l A x yμ
 

=  
 
 

  (1.63) 

The breadth of a fuzzy set A  is defined as 

( ) ( ){ }max ,
Ay

b A x y dxμ=  
  (1.64) 

or 

( ) ( )max ,
Ay

x

b A x yμ =  
 
 

  (1.65) 

Definition 1.48. Index of Area Coverage (IOAC). IOAC of a fuzzy set A  is  

defined as 

( ) ( ) ( )
A

S
IOAC A

l A b A
=

⋅


   (1.66) 

This index for fuzzy region represents the fraction of the maximum area (covered 
by the length and breadth of the region) actually covered by the region. 

Now let us consider f -Geometry and f-transformation suggested by Zadeh 

[127]. 
In the described above geometry  the underlying logic is precisiated fuzzy  

logic. In the world of f -geometry, suggested by Zadeh [127] the underlying  
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logic is unprecisiated fuzzy logic, UFL . This f -Geometry differs both in spirit 

and in substance from Poston’s fuzzy geometry [87], coarse geometry [89], fuzzy 
geometry of Rosenfeld [94], fuzzy geometry of Buckley and Eslami [29], fuzzy 
geometry of Mayburov [71], and fuzzy geometry of Tzafestas [102].  

The counterpart of a crisp concept in Euclidean geometry  is a fuzzy concept in 
this fuzzy geometry. Fuzzy concept may be obtained by fuzzy transformation ( f -

transform) of a crisp concept. 
For example, the f -transform of a point is an f -point, the f -transform of a 

line is an f -line, the f-transform of a triangle is an f -triangle, the f -transform 

of a circle is an f -circle and the f -transform of parallel is f -parallel (Fig. 

1.9). In summary, f -geometry may be viewed as the result of application of f -

transformation to Euclidean geometry. 

 

Fig. 1.9 Examples of f -transformation 

A key idea in f -geometry is the following: if C  is p-valid then its f -

transform, f - C , is f-valid with a high validity index. 

An important f -principle in f -geometry, referred to as the validation prin-

ciple, is the following. Let p  be a p -valid conclusion drawn from a chain of pre-

mises 1 np ,..., p .∗ ∗  Then, using the star notation, p∗ is an f -valid conclusion 

drawn from 1 np ,..., p∗ ∗ , and p∗  has a high validity index. It is this principle that is 

employed to derive f -valid conclusions from a collection of f-premises. 

A  basic problem which arises in computation of f -transforms is the follow-

ing. Let g be a function, a functional or an operator. Using the star notation, let an 
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f-transform , *C  , be an argument of g . The problem is that of computing (* )g C . 

Generally, computing  (* )g C  is not a trivial problem. 

An f -valid approximation to (* )g C  may be derived through application of  

an f -principle which is referred to as precisiation / imprecisiation principle or P/I  

principle, for short [123]. More specifically, the principle may be expressed as 

(* )* * ( )g C g C=  

where*=should be read as approximately equal. In words, (* )g C is approximate-

ly equal to the f -transform of ( )g C . 

1.4   Approximate Reasoning 

In our daily life we often make inferences where antecedents and consequents a 
represented by fuzzy sets. Such inferences cannot be realized adequately by the 
methods, which are based either on two-valued logic or many-valued logic. In or-
der to facilitate such an inference, Zadeh [114,118,119,122,123,125] suggested an 
inference rule called a “compositional rule of inference”. Using this inference rule, 
Zadeh, Mamdani [68], Mizumoto et al [38,74,75], R.Aliev and A.Tserkovny 
[7,9,12,13] suggested several methods for fuzzy reasoning in which the antecedent 
contain a conditional proposition involving fuzzy concepts: 

                                   

Ant 1: If x  is P%  then y  is Q%

Ant2: x is P′%

Cons: y is Q′% .                          

(1.67)

 

Those methods are based on implication operators present in various fuzzy logics. 
This matter has been under a thorough discussion for the last couple decades. 
Some comparative analysis of such methods was presented in [20-
23,38,40,47,50,51,53,69,70,74,75,98,111,112]. A number of authors proposed to 
use a certain suite of fuzzy implications to form fuzzy conditional inference rules 
[7,9,38,39,59,68,74,75]. The implication operators present in the theory of fuzzy 
sets were investigated in [7,9,14,26-28,30-33,35,36,41,42,45,48,55,60,61,63,66, 
67,69,72,73,76,79,80,82,84,86,99,103,104,108,109,112,129,131,132].On the other 
hand, statistical features of fuzzy implication operators were studied in [83,105] In 
turn, the properties of stability and continuity of fuzzy conditional inference rules 
were investigated in [37,39,49,56]. We will begin with a formation of a fuzzy 
logic regarded as an algebraic system closed under all its operations. In the sequel 
an investigation of statistical characteristics of the proposed fuzzy logic will be 
presented. Special attention will be paid to building a set of fuzzy conditional in-
ference rules on the basis of the fuzzy logic proposed in this study. Next, continu-
ity and stability features of the formalized rules will be investigated. Lately in 
fuzzy sets research the great attention is paid to the development of Fuzzy Condi-
tional Inference Rules (CIR) [1,5,36,56,64,72,80,95]. This is connected with the 
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feature of the natural language to contain a certain number of fuzzy concepts (F-
concepts), therefore we have to make logical inference in which the preconditions 
and conclusions contain such F-concepts. The practice shows that there is a huge 
variety of ways in which the formalization of rules for such kind of inferences can 
be made. However, such inferences cannot be satisfactorily formalized using the 
classical Boolean Logic, i.e. here we need to use multi-valued logical systems. 
The development of the conditional logic rules embraces mainly three types of 
fuzzy propositions: 

1P IF x is A THEN y is B=    

2P IF xis A THEN yis B=    

OTHERWISE C  

3 1 1 2 2... ... n nP IF x is A AND x is A AND AND x is A=     

THEN yis B  

The conceptual principle in the formalization of fuzzy rules is the Modus Ponens 
inference (separation) rule that states: 

( )IF α β→ is true and α  is true THEN β  is true. 

The methodological base for this formalization is the compositional rule suggested 

by L.Zadeh [114,116]. Using this rule, he formulated some inference rules in 

which both the logical preconditions and consequences  are conditional proposi-

tions including F -concepts. Later E.Mamdani [68] suggested  inference rule, 

which like Zadeh's rule was developed for  the logical proposition of type P1. In 

other words the following type F -conditional inference is considered: 

 

Proposition 1: IF x is A THEN y is B   

                      Proposition 2: 'x is A  

 

                    Conclusion: y is B , 

   (1.68) 

 

where A  and 'A  are F  -concepts represented as F  -sets in the universe U ; B  
is F  -conceptions or F  -set in the universe V  . It follows that 'B  is the conse-
quence represented as a F -set in V  . To obtain a logical conclusion  based on 
the CIR, the Propositions 1 and 2 must be transformed accordingly to the form of 

binary F -relation 1 2( ( )), ( ))R A x A y  and unary F  -relation 1( ( ))R A x .  
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Here 1( )A x  and 2( )A y  are defined by the attributes x and y which take values 

from the universes U  and V , respectively. Then 

1 ( ( ))R A x A′=     (1.69) 

According to Zadeh-Mamdani's inference rule 1 2( ( )), ( ))R A x A y  is defined as 

follows. 
The maximin conditional inference rule 

1 2( ( ), ( )) ( ) ( )mR A x A y A B A V= × ∪ ¬ ×       (1.70) 

The arithmetic conditional inference rule 

1 2( ( ), ( )) ( ) ( )aR A x A y A V U B= ¬ × ⊕ ×      (1.71) 

The mini-functional conditional inference rule 

1 2( ( ), ( ))cR A x A y A B= ×      (1.72) 

where × , ∪  and ¬  are the Cartesian product, union, and complement operations, 
respectively; ⊕ is the limited summation. 

Thus, in accordance with [68,114,116] the logical consequence 2( ( ))R A y , 

( 'B in (1.72)) can be derived as follows: 

2( ( )) [( )] [ )]R A y A A B A U′= × ∪ ¬ ×     

2( ( )) [( )] [ )]R A y A A V U B′= ¬ × ⊕ ¬ ×    

or 

2( ( )) ( )R A y A A B′= ×    
where − is the F -set maximin composition operator. 

On the base of these rules the conditional inference rules for type 2P  were sug-

gested in [15]: 

4 1 2( ( ), ( ))

[( ) ( )] [( ) ( )]

R A x A y

A V U B A V U C

=

= × ⊕ × ∩ × ⊕ ×

 
         (1.73) 

5 1 2( ( ), ( ))

[( ) ( )] [( ) ( )]

R A x A y

A V U B A V U C

=

= ¬ × ∪ × ∩ × ∪ ×


      (1.74) 

6 1 2( ( ), ( )) [( ) ( )]R A x A y A B A C= × ∪ ¬ ×   
    (1.75) 

Note that in [15] also the fuzzy conditional inference rules for type 3P  were  

suggested: 
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7 1 2
1,

( ( ), ( )) ( ) [( )]i
i n

R A x A y A V U B
=

 = ∩ ¬ × ⊕ ×  
        (1.76) 

8 1 2
1,

( ( ), ( )) ( ) [( )]i
i n

R A x A y A V U B
=

 = ∩ ¬ × ∪ ×  
    (1.77) 

9 1 2( ( ), ( )) ( ) ( )

1 (1 ( ) ( )) /( , )
BA

U V

R A x A y A V U B

u v u vμ μ
×

= ¬ × ⊕ × =

= ∧ − +  

 
    (1.78) 

In order to analyze the effectiveness of rules (1.68)-(1.78) we use some criteria for F -
conditional logical inference suggested in [38]. The idea of these criteria is to compare 
the degree of compatibility of some fuzzy conditional inference rules with the human 
intuition when making approximate reasoning. These criteria are the following: 

Criterion I  Precondition 1: IF x is A  THEN y is B  

   Precondition 2: x is A   

________________________________________________ 

   Conclusion: y is B  

Criterion II-1 Precondition 1: IF x is A  THEN y is B  

   Precondition 2: x is very A  

___________________________________________________ 

   Conclusion: y is very B  

Criterion II-2 Precondition 1: IF x is A  THEN y is B  

   Precondition 2: x is very A  

___________________________________________________ 

   Conclusion: y is B 

Criterion III  Precondition 1: IF x is A  THEN y is B  

   Precondition 2: x is more or less A  

___________________________________________________ 

   Conclusion: y is more or less B  

Criterion IV-1 Precondition 1: IF x is A  THEN y is B  

   Precondition 2: x is not A  

___________________________________________________ 

   Conclusion: y is unknown 

Criterion IV-2 Precondition 1: IF x is A  THEN y is B  

   Precondition 2: x is not A  

___________________________________________________ 

              Conclusion: y is not B  
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In [38] it was shown that in Zadeh-Mamdani's rules the relations mR , cR  and cR  

do not always satisfy the above criteria. For the case of mini-operational rule cR  it 

has been found that criteria I and II-2 are satisfied while criteria II-1 and III are 
not. 

In [38] an important generalization was made that allows some improvement to 
the mentioned F -conditional logical inference rules. It was shown there that for 
the conditional proposition arithmetical rule defined by Zadeh 

1P IF x is A THEN y is B=    

the following takes place 

9 1 2( ( ), ( )) ( ) ( )

1 (1 ( ) ( )) /( , )
BA

U V

R A x A y A V U B

u v u vμ μ
×

= ¬ × ⊕ × =

= ∧ − +  

 
 

The membership function for this F-relation is 

1 (1 ( ) ( ))
BA

u vμ μ∧ − +   

that obviously meets the implication operation or the Ply-operator for the multi-
valued logic L (by Lukasiewicz), i.e. 

( ), ( )
L

T P Q T P→          (1.79) 

where ( ), ( )
L

T P Q T P→  and ( )T Q  - are the truth values for the logical proposi-

tions ,
L

P Q P→  and Q  respectively. 

In other words, these expressions can be considered as adaptations of implica-
tion in the L -logical system to a conditional proposition. 

Having considered this fact, the following expression was derived: 

1 2( ( ), ( )) ( ) ( )

1 (1 ( ) ( )) /( , )

( ( ) ( )) /( , ) ( ) ( )

a

BA
U V

BA L
U V

R A x A y A V U B

u v u v

u v u v A V U B

μ μ

μ μ
×

∈

= ¬ × ⊕ × =

= ∧ − + =

= → = × → ×





 

 

 

 

 
   (1.80) 

In [38] an opinion was expressed that the implication operation or the Ply-operator 
in the expression (1.80) may belong to any multi-valued logical system.  

The following are guidelines for deciding which logical system to select for de-

veloping F -conditional logical inference rules [38]. Let F -sets A  from U  and 
B  from V  are given in the form: 
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( ) / , ( ) /
BA

V V

A u u B v vμ μ= =  
   

Then, as mentioned above, the conditional logical proposition 1P  can be trans-

formed to the F -relation 1 2( ( ), ( ))R A x A y  by adaptation of the Ply-operator in 

multi-valued logical system, i.e. 

1 2( ( ), ( )) ( ( ) ( )) /( , )
BA

U V

R A x A y A V U B u v u vμ μ
×

= × → × = →  
    (1.81)

where the values ( ) ( )
BA

u vμ μ→   are depending on the selected logical system. 

Assuming 1( ( ))R A x A=   we can conclude a logical consequence 2( ( ))R A y , 

then using the CIR for 1( ( ))R A x  and 1 2( ( ), ( ))R A x A y  , then 

2 1 2( ( )) ( ( ), ( ))

( ) / ( ) ( )) /( , )

[ ( ) ( ( ) ( ))]

BA A
U U V

BA Au V
V

R A y A R A x A y

u u u v u v

u u v

μ μ μ

μ μ μ
×

∈

= =

= → =

= ∨ ∧ →

 



  

  

 

  
(1.82) 

For the criterion I to be satisfied, one of the following equalities must hold true 

2( ( )) ,R A y B=   

[ ( ) ( ( ) ( ))] ( ),
B BA Au V

u u v vμ μ μ μ
∈
∨ ∧ → =     

or 

[ ( ) ( ( ) ( ))] ( )
B BA A

u u v vμ μ μ μ∧ → ≤        (1.83) 

the latter takes place for any u∈U and v∈V or in terms of truth values: 

( ( )) ( )T P P Q T Q∧ → ≤     (1.84) 

The following two conditions are necessary for formalization of F -conditional 
logical inference rules: the conditional logical inference rules (CIR) must meet the 
criteria I-IV; the conditional logical inference  rules (CIR) satisfy the inequality 
(1.84). Now we consider formalization of the fuzzy conditional inference for a dif-
ferent type of conditional propositions.  As was shown above, the logical inference 

for conditional propositions of type 1P  is of the following form: 

Proposition 1: IF x is A THEN y is B   

                    Proposition 2: x is A′
 

 

                    Conclusion: y is B′  

     (1.85) 
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where A , B , and A′  are F -concepts represented as F -sets inU , V , andV , 
respectively, which should satisfy the criteria I, II-1, III, and IV-1. 

For this inference if the Proposition 2 is transformed to an unary F -relation in 

the form 1( ( ))R A x A′=   and the Proposition 1 is transformed to an F -relation 

1 2( ( ), ( ( ))R A x R A y   defined below, then the conclusion 2( ( ))R A y is derived by 

using the corresponding F -conditional logical inference rule, i.e. 

2 1 1( ( ) ( ( )) ( ( ))R A y R A x R A x=       (1.86) 

where 2( ( ))R A y  is equivalent to B′  in (1.85).  

Fuzzy Conditional Inference Rule 1 

Theorem 1.3. If the F -sets A  from U  and B  from V  are given in the tradi-

tional form: 

( ) / , ( ) /
BA

U V

A u u B v vμ μ= =  
      (1.87) 

and the relation for the multi-valued logical system ALI1 

1 1 2 1

1

1

( ( ), ( ))

( ) /( , ) ( ) /( , )

( ( ) ( )) /( , )

ALI

BALIA
U V U V

BALIA
U V

R A x A y A V U B

u u v v u v

u v u v

μ μ

μ μ
× ×

×

= × ⎯⎯⎯→ × =

= ⎯⎯⎯→ =

= ⎯⎯⎯→

 



 

 

 

 
   (1.88) 

where 

1

1 ( ), ( ) ( )

( ) ( ) 1, ( ) ( )

( ), ( ) ( )

BA A

ALI B BA A

B BA

u u v

u v u v

v u v

μ μ μ
μ μ μ μ

μ μ μ

 − < 
 ⎯⎯⎯→ = = 
 > 

  

   

  

 

then the criteria I-IV are satisfied. 
We will consider ALI4 in detailes. 
Consider a continuous function ( , )F p q p q= −  which defines a distance be-

tween p  and q where p , q assume values in the unit interval. Notice that 

( , ) [ 1,1]F p q ∈ − , where min( , ) 1F p q = −  and max( , ) 1F p q = . The normalized 

version of ( , )F p q  is defined as follow 

min

max min

( , ) ( , ) ( , ) 1 1
( , )

( , ) ( , ) 2 2
norm F p q F p q F p q p q

F p q
F p q F p q

− + − += = =
−

 (1.89) 
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It is clear that ( , ) [0,1]normF p q ∈ . This function quantifies a concept of “close-

ness” between two values (potentially the ones for the truth values of antecedent 

and consequent), defined within unit interval, which therefore could play signifi-

cant role in the formulation of the implication operator in a fuzzy logic. 

Definition 1.49. An implication is a continuous function I from [0,1] [0,1]×  into 

[0,1]  such that for  ,p∀ ,p′ ,q q′ [0,1]r ∈   the following properties are  

satisfied  

(I1) If ,p p′≤  then ( , ) ( , )I p q I p q′≥ (Antitone in first argument), 

(I2) If ,q q′≤  then ( , ) ( , )I p q I p q′≤ (Monotone in second argument), 

(I3) (0, ) 1,I q = (Falsity), 

(I4) (1, )I q q≤ (Neutrality), 

(I5) ( , ( , )) ( , ( , ))I p I q r I q I p r= (Exchange), 

(I6) ( , ) ( ( ), ( ))I p q I n q n p= (Contra positive symmetry), where ()n  - is a nega-

tion, which could be defined as ( ) ( ) 1 ( )n q T Q T Q= ¬ = −  
Let us define the implication operation  

1 ( , ) ,
( , )

1,

normF p q p q
I p q

p q

 − >
=  

≤ 
 (1.90) 

where ( , )normF p q  is expressed by (1.89). Before showing that operation ( , )I p q  

satisfies axioms (I1)-(I6), let us show some basic operations encountered in pro-

posed fuzzy logic. 
Let us designate the truth values of the antecedent P  and consequent Q as 

( )T P p= and ( )T P q= , respectively. The relevant set of proposed fuzzy logic 

operators is shown in Table 1.2. 
To obtain the truth values of these expressions, we use well known logical 

properties such as 

, ( )p q p q p q p q→ = ¬ ∨ ∧ = ¬ ¬ ∨ ¬ and alike. 

In other words, we propose a new many-valued system, characterized by the set of 
union ( )∪  and intersection ( )∩  operations with relevant complement, defined as 

( ) 1 ( )T Q T Q¬ = − . In addition, the operators ↓  and ↑  are expressed as nega-

tions of the ∪  and ∪  , respectively. It is well known that the implication opera-
tion in fuzzy logic supports the foundations of decision-making exploited in  
numerous schemes of approximate reasoning. Therefore let us prove that the pro-
posed implication operation in (1.90) satisfies axioms (I1)-(I6). For this matter, let 
us emphasize that we are working with a many-valued system, whose values for 
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our purposes are the elements of the real interval [0,1]R = . For our discussion the 

set of truth values  11 {0,0.1,0.2,...,0.9,1}V =  is sufficient. In further investiga-

tions, we use this particular set 11V . 

Table 1.2 Fuzzy logic operators 

Name Designation Value 

Tautology P
•

 1 

Controversy P


 0 

Negation P¬  1 P−  

Disjunction P Q∨  
, 1,

2
1, 1

p q
p q

p q

+ + ≠

 + =

 

Conjunction P Q∧  
, 1,

2
0, 1

p q
p q

p q

+ + ≠

 + =

 

Implication P Q→  

1
, ,

2
1,

p q
p q

p q

− + ≠

 =

 

Equivalence P Q↔  
min(( ), ( )), ,

1,

p q q p p q

p q

− − ≠
 =

 

Pierce Arrow P Q↓  
1 , 1,

2
0, 1

p q
p q

p q

+ − + ≠

 + =

 

Shaffer Stroke P Q↑  
1 , 1,

2
1, 1

p q
p q

p q

+ − + ≠

 + =

 

 
Theorem 1.4. Let a continuous function ( , )I p q be defined by (1.90) i.e. 

1
,1 ( , ) ,

( , ) , 2
1, 1,

norm p q
p qF p q p q

I p q p q
p q p q

− +  >− > = > =  ≤   ≤

   (1.91) 

where ( , )normF p q  is defined by (1.89). Then axioms (I1)-(I6) are satisfied and, 

therefore (1.91) is an implication operation. 
It should be mentioned that the proposed fuzzy logic could be characterized by 

yet some other three features: 
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0 0, 1,p p∧ ≡ ≤  whereas 1 , 0p p p∧ ≡ ≥ and p p¬¬ = . 
As a conclusion, we should admit that all above features confirm that resulting 

system can be applied to 11V for every finite and infinite n  up to that 

11( , , , , )V ¬ ∧ ∨ →  is then closed under all its operations. 

Let us investigate Statistical Properties of the Fuzzy Logic. In this section, we 
discuss some properties of the proposed fuzzy implication operator (1.91), assum-
ing that the two propositions (antecedent/consequent) in a given compound propo-
sition are independent of each other and the truth values of the propositions are 
uniformly distributed [64] in the unit interval. In other words, we assume that the 
propositions P and Q are independent from each other and the truth values ( )v P  

and ( )v Q are uniformly distributed across the interval [0,1]  . Let ( )p v P=  

and ( )q v Q= . Then the value of the implication ( )I v p q= →  could be repre-

sented as the function ( , )I I p q= . 

Because p and q are assumed to be uniformly and independently distributed 

across[0,1] , the expected value of the implication is 

( ) ( , ) ,
R

E I I p q dpdq=      (1.92) 

Its variance is equal to 

2 2 2 2( ) [( ( )) ] ( ( , ) ( )) [ ] [ ]
R

Var I E I E I I p q E I dpdq E I E I= − = − = −   (1.93)

where {( , ) : 0 1,0 1}R p q p q= ≤ ≤ ≤ ≤  From (1.92) and given (1.93) as well as 

the fact that  

1

2

( , ), ,
( , )

( , ), ,

I p q p q
I p q

I p q p q

>
=  ≤

we have the following 

1 1 1 1

1 1

0 0 0 0

1 2 2

0

1 1
( ) ( , ) , ( (1 ) )

2 2

1 11 1 1 1
( )

0 02 2 2 2 2 2

p q
E I I p q dpdq dpdq p q dp dp

p qp q
p p dq

p q

ℜ

− += = = − + =

    = =
= − + = + =    = =     

    


 (1.94) 

Whereas 2( ) 1E I = Therefore 1 2( ) ( ( ) ( )) / 2 0.75E I E I E I= + =  

From (1.93) we have 

2 2 2 2
1

1 1
( , ) (1 ) (1 2 2 2 )

4 4
I p q p q p q p pq q= − + = − + + − +  
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1 1
2 2 2 2
1 1

0 0

1 12 3 2
2 2

0 0

2 3

1
( ) ( , ) , ( (1 2 2 2 ) )

4

11 1 1
[ 2 2 2 ] ( )

04 2 3 2 4 3

11 7

04 3 2 3 24

E I I p q dpdq p q p pq q dp dq

pp p p
p q q q dq q q dq

p

qq q q

q

ℜ

= = − + + − + =

=
− + − + + = + + =

=

= 
= + + =  = 

  

   

Here 2
2( ) 1E I =  Therefore 2 2 2

1 2

31
( ) ( ( ) ( )) / 2

48
E I E I E I= + =  From (1.93) and 

(1.94) we have 
1

( ) 0.0833
12

Var I = =  

Both values of ( )E I  and ( )Var I demonstrate that the proposed fuzzy implica-

tion operator could be considered as one of the fuzziest from the list of the exiting 
implications [45]. In addition, it satisfies the set of important Criteria I-IV, which 
is not the case for the most implication operators mentioned above. 

As it was mentioned in [38] “in the semantics of natural language there exist a 
vast array of concepts and humans very often make inferences antecedents and 
consequences of which contain fuzzy concepts”. A formalization of methods for 
such inferences is one of the most important issues in fuzzy sets theory. For this 
purpose, let U  and V (from now on) be two universes of discourses and P  and 
Q  are corresponding fuzzy sets: 

( ) /
P

U

P u uμ=  
 , ( ) /

Q
V

Q v vμ=  
    (1.95) 

Given (1.95), a binary relationship for the fuzzy conditional proposition of the 

type: “If x  is P  then y  is Q ” for proposed fuzzy logic is defined as 

  

1 2( ( ), ( )) ( ) /( , ) ( ) /( , )

( ( ) ( )) /( , )

P Q
U V U V

P Q
U V

R A x A y P V U B u u v v u v

u v u v

μ μ

μ μ
× ×

×

= × → × = → =

= →

 



 

 

  

 

 
  (1.96) 

Given (1.90), expression (1.96) reads as  

1 ( ) ( )
, ( ) ( )

( ) ( ) 2
1, ( ) ( )

P Q

P Q
P Q

P Q

u v
u v

u v
u v

μ μ
μ μ

μ μ
μ μ

− +
>→ = 

 ≤

 
 

 

 

   (1.97) 

It is well known that given a unary relationship 1( ( ))R A x  one can obtain the con-

sequence 2( ( ))R A y  by applying a compositional rule of inference (CRI) to 

1( ( ))R A x  and 1 2( ( ), ( ))R A x A y  of type (1.91): 
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2 1 2( ( )) ( ( ), ( )) ( ) / ( ) ( ) /( , )

[ ( ) ( ( ) ( ))] /

P P Q
U U V

P P Qu V
V

R A y P R A x A y u u u v u v

u u v v

μ μ μ

μ μ μ
×

∈

= = → =

∪ ∧ →

 



  

  

   
   (1.98)

In order to have Criterion I satisfied, that is 2( ( ))R A y Q=  from (1.98), the  

equality 

[ ( ) ( ( ) ( ))] ( )
P P Q Qu V

V

u u v vμ μ μ μ
∈
∪ ∧ → =        (1.99) 

has to be satisfied for any arbitrary v  in V . To satisfy (1.99), it becomes neces-

sary that the inequality  

( ) ( ( ) ( )) ( )
P P Q Q

u u v vμ μ μ μ∧ → ≤      (1.100) 

holds for arbitrary u U∈  and v V∈ . Let us define a new method of fuzzy condi-
tional inference of the following type: 

Ant 1: If x  is P%  then y  is Q%

Ant 2: x is P′%

Cons: y is Q′% . 

 

(1.101)

where ,P P U′ ⊆   and ,Q Q V′ ⊆  . Fuzzy conditional inference in the form given 

by (1.101) should satisfy Criteria I-IV. It is clear that the inference (1.100) is de-

fined by the expression (1.98), when 2( ( ))R A y Q′=  . 

Theorem 1.5. If fuzzy sets P U⊆  and Q V⊆ are defined by (1.96) and (1.97), 

respectively and  

1 2( ( ), ( ))R A x A y
 is expressed as  

1 2 4

4

4

( ( ), ( ))

( ) /( , ) ( ) /( , )

( ( ) ( )) /( , )

ALI

ALIP Q
U V U V

ALIP Q
U V

R A x A y P V U Q

u u v v u v

u v u v

μ μ

μ μ
× ×

×

= × ⎯⎯⎯→ × =

= ⎯⎯⎯→ =

= ⎯⎯⎯→

 



 

 

 

 

where 

4

1 ( ) ( )
, ( ) ( )

( ) ( ) 2
1, ( ) ( )

P Q

P Q
P ALI Q

P Q

u v
u v

u v
u v

μ μ
μ μ

μ μ
μ μ

− +
>⎯⎯⎯→ = 

 ≤

 
 

 

 

   (1.102) 
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then Criteria I, II, III and IV-1 [38]  are satisfied [13]. 

Theorem 1.6. If fuzzy sets P U⊆  and Q V⊆ are defined by (1.96) and (1.97), 

respectively, and  

1 2( ( ), ( ))R A x A y
 is defined as 

1 1 2 4 4

4 4

( ( ), ( )) ( ) ( )

( ( ) ( )) ((1 ( )) (1 ( ))) /( , )

ALI ALI

ALI ALIP PQ Q
U V

R A x A y P V U Q P V U Q

u v u v u vμ μ μ μ
×

= × ⎯⎯⎯→ × ∩ ¬ × ⎯⎯⎯→ × ¬ =

= ⎯⎯⎯→ ∧ − ⎯⎯⎯→ −    

   
 (1.103) 

where 

4 4
( ( ) ( )) ((1 ( )) (1 ( )))

1 ( ) ( )
, ( ) ( ),

2
1, ( ) ( ),

1 ( ) ( )
, ( ) ( ),

2

P PALI ALIQ Q

P Q

P Q

P Q

P Q

P Q

u v u v

u v
u v

u v

u v
u v

μ μ μ μ

μ μ
μ μ

μ μ

μ μ
μ μ

⎯⎯⎯→ ∧ − ⎯⎯⎯→ − =

 − +
 >
= =
 − + <

   

 
 

 

 
 

 

Then Criteria I, II, III and IV-2 [38] are satisfied. 
Theorems 1.4 and 1.5 show that fuzzy conditional inference rules, defined in 

(1.103) could adhere with human intuition to the higher extent as the one defined 
by (1.102). The major difference between mentioned methods of inference might 
be explained by the difference between Criteria IV-1 and IV-2. In particular, a sat-
isfaction of the Criterion IV-1 means that in case of logical negation of an original 
antecedent we achieve an ambiguous result of an inference, whereas for the case 
of the Criterion IV-2 there is a certainty in a logical inference. Let us to investigate 
stability and continuity of fuzzy conditional inference in this section. We revisit 
the fuzzy conditional inference rule (1.101). It will be shown that when the mem-

bership function of the observation P  is continuous, then the conclusion Q de-

pends continuously on the observation; and when the membership function of the 

relation R  is continuous then the observation Q  has a continuous membership 

function. We start with some definitions. A fuzzy set A  with membership func-

tion : [0,1]
A

Iμ → =   is called a fuzzy number if A  is normal, continuous, 

and convex. The fuzzy numbers represent the continuous possibility distributions 
of fuzzy terms of the following type 

( ) /AA x xμ= 
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Let A  be a fuzzy number, then for any 0θ ≥  we define ( )Aω θ  the modulus of 

continuity of A  by 

1 2
1 2( ) max ( ) ( )

A A Ax x
x x

θ
ω θ μ μ

− ≤
= −    (1.104) 

An α -level set of a fuzzy interval A  is a non-fuzzy set denoted by [ ]A α and is 

defined by [ ] { ( ) }
A

A t R tα μ α= ∈ ≥  for (0,1]α =  and 0

(0,1]

[ ] [ ]A cl Aα α

α

=

∈

 
=  

 
  

for 0α = . Here we use a metric of the following type 

[0,1]
( , ) sup ([ ] ,[ ] )D A B d A Bα α

α∈
=   (1.105) 

where d  denotes the classical Hausdorff metric expressed in the family of com-
pact subsets of 2R , i.e. 

1 1 2 2([ ] ,[ ] ) max{ ( ) ( ) , ( ) ( )}d A B a b a bα α α α α α= − −
, 

whereas 

1 2 1 2[ ] [ ( ), ( )],[ ] ( ), ( ).A a a B b bα αα α α α= =  When the fuzzy sets A  and B  

have finite support 1{ ,..., }nx x  then their Hamming distance is defined as 

1

( , ) ( ) ( )
n

i iBA
i

H A B x xμ μ
=

= −  
   

In the sequel we will use the following lemma. 

Lemma 1.1 [28]. Let 0δ ≥  be a real number and let A , B  be fuzzy intervals. If 

( , ) ,D A B δ≤ 
 Then 

`sup ( ) ( ) max{ ( ), ( )}B BA A
t

t tμ μ ω δ ω δ
∈

− ≤  


 

Consider the fuzzy conditional inference rule with different observations P  

and P′ : 

Ant 1: If x  is P  then y  is Q  

Ant2: x is P  

Cons: y is Q . 

Ant 1: If x  is P  then y  is Q  

Ant2: x is P′  

Cons: y is Q′ . 
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According to the fuzzy conditional inference rule, the membership functions of the 
conclusions are computed as 

( ) [ ( ) ( ( ) ( ))],
P PQ Qu R

v u u vμ μ μ μ
∈

= ∪ ∧ →     

( ) [ ( ) ( ( ) ( ))],
P PQ Qu R

v u u vμ μ μ μ′′ ∈
= ∪ ∧ →     

or 

( ) sup[ ( ) ( ( ) ( ))],
P PQ Q

v u u vμ μ μ μ= ∧ →     

 

( ) sup[ ( ) ( ( ) ( ))],
P PQ Q

v u u vμ μ μ μ′′ = ∧ →     

(1.106) 

The following theorem shows the fact that when the observations are closed to 
each other in the metric (.)D  of (1.105) type, then there can be only a small devia-

tion in the membership functions of the conclusions. 

Theorem 1.7. (Stability theorem) Let 0δ ≥ and let P , P′ be fuzzy intervals and 

an implication operation in the fuzzy conditional inference rule (1.106) is of type 

(1.97). If ( , )D P P δ′ ≤  ,  then 

sup ( ) ( ) max{ ( ), ( )}
P P P P

v R
v vμ μ ω δ ω δ′ ′

∈
− ≤     

Theorem 1.8. (Continuity theorem) Let binary relationship ( , )R u v =  

4
( ) ( )p ALI Q
u vμ μ= ⎯⎯→   be continuous. Then Q  is continuous and ( )

Q
ω δ  ( )Rω δ≤   

for each 0δ ≥ . 

While we use extended fuzzy logic to reason with partially true statements we 

need to extend logics (6) for partial truth. We consider here only extension at the 
Lukasewicz logic for partial truth. In order to deal with partial truth Pavelka [85] 
extended this logic by adding truth constants for all reals in [0,1]  Hajek [43]  

simplified it by adding these truth constants r  only for each rational [0,1]r ∈   

(so r  is an atomic formula with truth value r). They also added 'book - keeping 

axioms' 

r s r s ≡ → for r, s rational [0,1]∈  . 

This logic is called Rational Pavelka logic (RPL). RPL was introduced in order to 
reason with partially true statements. In this section we note that this can already 
be done in Lukasiewicz logic, and that the conservative extension theorems allow 
us to lift the completeness theorem, that provability degree equals truth  
degree from RPL to Lukasiewicz logic. This may be regarded as an additional 
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conservative extension theorem, confirming that, even for partial truth, Rational 
Pavelka logic deals with exactly the same logic as Lukasiewicz logic - but in a 
very much more convenient way. RPL extends the language of infinite valued 
Łukasiewicz logic by adding to the truth constants 0 and 1 all rational numbers r  
of the unit interval [0,1]  A  graded formula is a pair ( , )rϕ  consisting of a for-

mula ϕ  of Łukasiewicz logic and a rational element [0,1]r ∈ , indicating that the 

truth value ofϕ  is at least r , rϕ ≥ [107]. For example, ( )1( ), 2p x expresses the 

fact that the truth value of ( ),p x x Dom∈ , is at least 1
2  . The inference rules of 

RPL are the generalization rule  

,
( )( )x

ϕ
ϕ∀

     (1.107) 

and a modified version of the modus ponens rule, 

( , ), ( , )

( , )

r s

r s

ϕ ϕ ψ
ψ

→
⊗

 (1.108) 

Here ⊗  denotes the Łukasiewicz t-norm. Rule (1.108) says that if formula ϕ  holds 

at least with truth value r, and the implication ϕ ψ→  holds at least with truth val-

ue s, then formula ψ  holds at least with truth value r s⊗ . The modified modus 

ponens rule is derived from the so-called book-keeping axioms for the rational truth 
constants r. The book-keeping axioms add to the axioms of Łukasiewicz logic and 
provide rules for evaluating compound formulas involving rational truth constants 
[44]. The use of fuzzy reasoning trades accuracy against speed, simplicity and inter-
pretability for lay users. In the context of ubiquitous computing, these characteristics 
are clearly advantageous. 
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