

Lecture Notes
in Business Information Processing 119

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Esther David Valentin Robu
Onn Shehory Sebastian Stein
Andreas Symeonidis (Eds.)

Agent-Mediated
Electronic Commerce

Designing Trading Strategies
and Mechanisms for Electronic Markets

AMEC 2011, Taipei, Taiwan, May 2, 2011
and TADA 2011, Barcelona, Spain, July 17, 2011
Revised Selected Papers

13

Volume Editors

Esther David
Ashkelon Academic College
Ashkelon, Israel
E-mail: astrdod@acad.ash-college.ac.il

Valentin Robu
University of Southampton
Southampton, UK
E-mail: vr2@ecs.soton.ac.uk

Onn Shehory
IBM Haifa Research Lab
Haifa, Israel
E-mail: onn@il.ibm.com

Sebastian Stein
University of Southampton
Southampton, UK
E-mail: ss2@ecs.soton.ac.uk

Andreas Symeonidis
Aristotle University of Thessaloniki
Thessaloniki, Greece
E-mail: asymeon@eng.auth.gr

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-642-34888-4 e-ISBN 978-3-642-34889-1
DOI 10.1007/978-3-642-34889-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012951308

ACM Computing Classification (1998): K.4.4, J.1, I.2.11, H.3.5

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Recent years have witnessed a vast increase in the number, diversity, and
complexity of electronic marketplaces. Such distributed electronic markets are
frequently seen as an essential tool for efficient allocation of resources in a va-
riety of fields, ranging from electronic commerce, financial markets, distributed
supply chain management, to next-generation power grids or the allocation of
user attention space in online advertising. The rapid growth in these areas has
also led to increasing interest into developing tools for the efficient automation of
market-based interactions. In some areas, such automation is already a reality.
For example, most of the trading occurring in financial markets is performed by
algorithmic strategies, and much of the advertising space on the Web is allocated
by automated engines.

Multi-agent systems, which consist of autonomous, proactive, and interacting
software components, have long been identified as an important solution for the
efficient automation of electronic markets. Unlike humans, automated trading
agents are able to react almost instantaneously to changes in the market and
perform exponentially more transactions in a matter of seconds. However, ef-
ficient automation of large-scale markets using multi-agent techniques requires
addressing a host of complex challenges. Perhaps the most easily recognized
challenge in designing and using such a system is the lack of centralized control.
Agents are autonomous actors that take their own decisions, rather than simply
deterministically executing operations assigned to them by their owners. Another
important challenge in multi-agent systems is the presence of uncertainty, i.e.,
incomplete or imperfect information, both regarding the market environment,
the preferences, strategies and behavior of the other agents and, sometimes, even
uncertainty in specifying the agent’s own preferences. Furthermore, agents are
boundedly rational actors and often have to make decisions in limited time,
under risk aversion, or based on other constraints imposed by their owners or
the market environment. In order to deal which these challenges, the science
underpinning multi-agent systems draws from a variety of diverse disciplines
ranging from artificial intelligence, operations research, and machine learning to
economics and game theory.

These trends are also evidenced by the papers collected in this volume, which
are revised and extended versions of work that appeared at two leading inter-
national workshops on electronic markets held in 2011. The first is the 13th In-
ternational Workshop on Agent Mediated Electronic Commerce (AMEC 2011),

VI Preface

co-located with the 10th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2011) conference in Taipei, Taiwan, and the sec-
ond is the International Workshop on Trading Agent Design and Analysis (TADA
2011), co-located with the 22nd International Joint Conference on Artificial In-
telligence (IJCAI 2011) in Barcelona, Spain.

The papers presented at these workshops illustrate both the depth and the
broad range of research topics in this field. They range from providing solutions
to open theoretical problems in online scheduling and bargaining under uncer-
tainty, to designing bidding agents in a wide range of application areas, such as
electronic commerce, supply chain management, or keyword advertising, to de-
signing agents that can successfully replicate actual human behaviors in realistic
games.

In a theoretical line of work, Ceppi et al. consider the problem of designing
equilibrium strategies for non-cooperative bargaining with arbitrary one-sided
uncertainty. They provide an algorithm to solve bargaining with any type of one-
sided uncertainty, and show its computational complexity is polynomial with two
types, while with more types the problem becomes hard. Wu et al. consider the
problem of designing efficient acceptance strategies for agents in online schedul-
ing, and compare the performance of online solutions to the theoretically optimal
offline strategies.

Taking a human-agent interaction perspective, Kim et al. address the chal-
lenge of evaluating the fidelity of autonomous agents that are attempting to
replicate human behaviors. The authors introduce and investigate the Social
Ultimatum Game and discuss the efficacy of a set of metrics in comparing var-
ious autonomous agents to human behavior collected from experiments. Rosen-
feld et al. study the domain of recommender systems, and describe the algo-
rithms used in a hybrid recommender and the authors’ experience in designing
a pilot application in recommending alternative products in an online shopping
environment.

A number of papers discuss novel strategies developed for different tracks of
the Trading Agent Competition (TAC). Chatzidimitriou et al., Siranovic et al.,
and Tsung et al. propose strategies for trading agents participating in the TAC
Ad Auctions game. Groves and Gini propose a method for improving predictions
in the Supply Chain Management (SCM) game, by integrating multivariate and
temporal aspects of partial least squares (PLS) regression. Rayner et al. discuss
the testing of expectation models in continuous double auctions against empirical
facts, while Tsekourakis and Symeonidis propose a method for dealing with trust
and reputation in unreliable multi-agent trading environments.

Overall, we hope the papers in this volume will offer readers a comprehensive
and informative snapshot of the current state of the art in this stimulating and
timely area of research.

Preface VII

Finally, we would like to thank the members of the Program Committees of
both workshops for careful reviews, which significantly improved the presentation
of the papers and helped ensure the high quality of the papers included in these
proceedings. We are also grateful to all of the authors for submitting their papers,
and for their efforts in carefully revising their papers for this volume. Finally, we
would like to thank the participants to both workshops for their questions and
lively discussions, which contributed greatly to the success of these events.

August 2012 Esther David
Valentin Robu
Onn Shehory

Sebastian Stein
Andreas Symeonidis

Organization

AMEC Workshop Organizers

Esther David Ashkelon Academic College, Israel
Valentin Robu University of Southampton, UK
Onn Shehory IBM Haifa Research Lab, Israel
Sebastian Stein University of Southampton, UK

TADA Workshop Organizer

Andreas Symeonidis Aristotle University of Thessaloniki, Greece

Program Committee

Bo An University of Massachusetts, Amherst, USA
Michael Benisch Carnegie Mellon University, USA
Ken Brown University College Cork, Ireland
Maria Chli Aston University, UK
John Collins University of Minnesota, USA
Florin Constantin Georgia Institute of Technology, USA
Yagil Engel IBM Research, Haifa, Israel
Maria Fasli Essex University, UK
Shaheen Fatima Loughborough University, UK
Nicola Gatti Politecnico di Milano, Italy
Enrico Gerding University of Southampton, UK
Maria Gini University of Minnesota, USA
Amy Greenwald Brown University, USA
Mingyu Guo University of Liverpool, UK
Noam Hazon Carnegie Mellon University, USA
Minghua He Aston University, UK
Sverker Janson SICS, Sweden
Patrick Jordan University of Michigan, USA
Radu Jurca Google, Switzerland
Wolfgang Ketter Erasmus University, The Netherlands
Han La Poutré CWI, The Netherlands
Jérôme Lang Université Paris-Dauphine, France
Kate Larson University of Waterloo, Canada
Kevin Leyton-Brown University of British Columbia, Canada
Peter McBurney King’s College London, UK
Pericles A. Mitkas Aristotle University of Thessaloniki, Greece
Tracy Mullen Penn State University, USA

X Organization

Jörg Müller Technische Universität Clausthal, Germany
Jinzhong Niu Brooklyn College, City University of New York,

USA
Benno Overeinder Vrije Universiteit Amsterdam, The Netherlands
David Pardoe UT Austin, USA
Simon Parsons Brooklyn College, USA
Steve Phelps University of Essex, UK
Zinovi Rabinovich Bar-Ilan University, Israel
Juan Antonio Rodriguez

Aguilar IIIA, Spain
Alex Rogers University of Southampton, UK
Jeffrey Rosenschein The Hebrew University of Jerusalem, Israel
Norman Sadeh Carnegie Mellon University, USA
Alberto Sardinha Instituto Superior Técnico, Portugal
David Sarne Bar-Ilan University, Israel
Ben Kwang-Mong Sim GIST, South Korea
Peter Stone University of Texas at Austin, USA
Andreas Symeonidis Aristotle University of Thessaloniki, Greece
Ioannis A. Vetsikas University of Southampton, UK
Perukrishnen Vytelingum University of Southampton, UK
William Walsh Google, USA
Michael Wellman University of Michigan, USA
Dongmo Zhang University of Western Sydney, Australia
Haizheng Zhang Penn State University, USA

Table of Contents

Non–cooperative Bargaining with Arbitrary One–Sided Uncertainty 1
Sofia Ceppi, Nicola Gatti, and Claudio Iuliano

An Adaptive Proportional Value-per-Click Agent for Bidding in Ad
Auctions . 15

Kyriakos C. Chatzidimitriou, Lampros C. Stavrogiannis,
Andreas L. Symeonidis, and Pericles A. Mitkas

Improving Prediction in TAC SCM by Integrating Multivariate and
Temporal Aspects via PLS Regression . 28

William Groves and Maria Gini

Testing Adaptive Expectations Models of a Continuous Double Auction
Market against Empirical Facts . 44

Neil Rayner, Steve Phelps, and Nick Constantinou

Autonomously Revising Knowledge-Based Recommendations through
Item and User Information . 57

Avi Rosenfeld, Aviad Levy, and Asher Yoskovitz

A Bidding Agent for Advertisement Auctions: An Overview of the
CrocodileAgent 2010 . 71

Irena Siranovic, Tomislav Cavka, Ana Petric, and Vedran Podobnik

Dealing with Trust and Reputation in Unreliable Multi-agent Trading
Environments . 87

Iraklis Tsekourakis and Andreas L. Symeonidis

Analysis of Stable Prices in Non-Decreasing Sponsored Search
Auction . 102

ChenKun Tsung, HannJang Ho, and SingLing Lee

Acceptance Strategies for Maximizing Agent Profits in Online
Scheduling . 115

Mengxiao Wu, Mathijs de Weerdt, and Han La Poutré

Author Index . 129

Non–cooperative Bargaining with Arbitrary

One–Sided Uncertainty

Sofia Ceppi, Nicola Gatti, and Claudio Iuliano

Dipartimento di Elettronica e Informazione, Politecnico di Milano
Piazza Leonardo da Vinci 32, I-20133 Milano, Italy

{ceppi,ngatti,iuliano}@elet.polimi.it

Abstract. Non-cooperative bargaining is modeled as an extensive–form
game with uncertain information and infinite actions. Its resolution is a
long–standing open problem and no algorithm addressing uncertainty
over multiple parameters is known. We provide an algorithm to solve
bargaining with any kind of one–sided uncertainty. Our algorithm re-
duces a bargaining problem to a finite game, solves this last game, and
then maps its strategies with the original continuous game. Computa-
tional complexity is polynomial with two types, while with more types
the problem is hard and only small settings can be solved in exact way.

1 Introduction

The automation of economic transactions through negotiating software agents is
receiving a large attention in the artificial intelligence community. Autonomous
agents can lead to economic contracts more efficient than those drawn up by
humans, saving also time and resources [14]. We focus on the main bilateral
negotiation setting: the bilateral bargaining. This setting is characterized by the
interaction of two agents, a buyer and a seller, who can cooperate to produce a
utility surplus by reaching an economic agreement, but they are in conflict on
what specific agreement to reach. The most expressive model for non–cooperative
bargaining is the alternating–offers [11]: agents alternately act in turns and each
agent can accept the offer made by her opponent at the previous turn or make
a new offer. Agents’ utility over the agreements depends on some parameters:
discount factor, deadline, reservation price. In real–world settings, agents have
a Bayesian prior over the values of the opponents’ parameters.

The alternating–offers is an infinite–horizon (agents can indefinitely bargain)
extensive–form (the game is sequential) Bayesian (information is uncertain)
game and the number of available actions to each agent is infinite (an offer is
a real value). The appropriate solution concept is the sequential equilibrium [8].
The game theoretic study of bargaining with uncertain information is an open
challenging problem. No work presented in the literature so far is applicable
regardless of the uncertainty kind (i.e., the uncertain parameters) and degree
(i.e., the number of the parameters’ possible values). Microeconomics provides
analytical results for settings without deadlines, for single uncertainty kinds,

E. David et al. (Eds.): AMEC/TADA 2011, LNBIP 119, pp. 1–14, 2013.
© Springer-Verlag Berlin Heidelberg 2013

2 S. Ceppi, N. Gatti, and C. Iuliano

and with narrow degrees of uncertainty, e.g., over the discount factor of one
agent with two possible values [12] and over the reservation price of both agents
with two possible values per agent [1]. Computer science provides algorithms to
search for sequential equilibria [9] only with finite games and without producing
belief systems off the equilibrium path. This makes such algorithms not suitable
for bargaining. Several efforts have been accomplished to extend the backward
induction algorithm to solve games with uncertain information [4]. However, as
shown in [5], the solutions produced by these algorithms may not be equilibria.
Finally, the algorithm provided by [5] solves settings with one–sided uncertain
deadlines, but its extension to general settings appears to be impractical due to
the mathematical machinery it needs.

The work in [5] provides the unique known computational complexity result,
showing that with one–sided uncertain deadlines the problem is polynomial in
the length of the bargaining independently of the number of types. However, this
uncertainty situation is very special because all the types have the same utility
functions before their deadlines. This fact leads all the types whose deadline is
not expired to have the same behavior, drastically reducing thus the complex-
ity of the problem. When discount factors and reservation prices are uncertain,
the types have different utility functions and we expect that they have differ-
ent optimal behaviors. The difficulty of developing an exact algorithm for the
bargaining problem pushed the scientific community to produce approximate so-
lutions. A large number of tactic–based heuristics are available, e.g., see [3], but
none provides bounds over the solution quality in terms of ε–Nash equilibrium.

In this paper, after having reviewed the alternating–offers protocol and its
solution with complete information (Section 2), and after having discussed the
model with uncertainty (Section 3), we present a sound and complete algorithm
to solve settings with arbitrary kinds and degrees of uncertainty (Section 4). Our
algorithm reduces the bargaining game to a finite game, solves this last game,
and finally maps its equilibirum strategies to the original continuous game. We
initially focus on settings with two possible types. We define a belief system
μ and a strategy profile σ where agents can make a finite number of offers
and the randomization probabilities with which agents make such offers are
parameters. To compute the values of these parameters such that (μ,σ) is a
sequential equilibrium, we build a finite game and we provide an algorithm based
on support–enumeration to solve it. We show that the problem is polynomial in
the deadline length. Then, we extend the algorithm to more than two types by
exploiting mathematical programming and we experimentally evaluate it.

2 Bargaining Model and Complete Information Solution

We present the alternating–offers protocol [11] with deadlines. There are two
agents, a buyer b and a seller s, who can play alternatively at discrete time points
t ∈ N. The function ι ∶ N → {b, s} returns the agent that plays at time point t,
and it is such that ι(t) ≠ ι(t + 1). We study single–issue bargaining because our
aim is the study of settings with uncertainty and algorithms for single–issue

Non–cooperative Bargaining with Arbitrary One–Sided Uncertainty 3

problems can be easily extended to multi–issue problems as it is shown in [4,2].
Agents bargain on the value of a variable x ∈ R, e.g., representing the price. The
pure strategies σι(t)(t) available to agent ι(t) at t > 0 are: offer(x), where x is
the offer for the issue; accept, that concludes the bargaining with an agreement,
formally denoted by (x, t), where x is such that σι(t−1)(t − 1) = offer(x) (i.e.,
the value offered at t− 1), and t is the time point at which the offer is accepted;
exit, that concludes the bargaining with a disagreement, formally denoted by
NoAgreement. At t = 0 only actions offer(x) and exit are available.

Seller’s and buyer’s utility functions, denoted by Us ∶ (R×N)∪NoAgreement→
R and Ub ∶ (R × N) ∪ NoAgreement → R respectively, return the agents’ utility
for each possible outcome. Each utility function depends on the following pa-
rameters: the reservation prices, denoted by RPb ∈ R

+ and RPs ∈ R
+ for buyer

and seller respectively (we assume RPb ≥ RPs), the discount factor, denoted by
δb ∈ (0,1] and δs ∈ (0,1] for buyer and seller respectively, and the deadlines,
denoted by Tb ∈ N and Ts ∈ N for buyer and seller respectively. The buyer’s
utility function is:

Ub(⋅) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

NoAgreement 0

(x, t) {
(RPb − x) ⋅ (δb)

t if t ≤ Tb

ε otherwise

,

where ε < 0 (after Ti, Ui(x, t) is strictly negative and thus agent i strictly prefers
to leave the game rather than reaching any agreement). The seller’s utility func-
tion is analogous, except for Us(x, t) = (x −RPs) ⋅ (δs)

t if t ≤ Ts .
With complete information, the appropriate solution concept is the subgame

perfect equilibrium. The solution can be found by using backward induction as
follows. We call T =min{Tb, Ts} and we call x∗(t) the ι(t)’s best offer at t, if this
offer exists. It can be easily observed that the outcome of each subgame which
starts at t ≥ T is NoAgreement, because at least one agent strictly prefers to exit
the game rather than to reach any agreement. Now we consider the subgame
which starts at t = T − 1. This subgame is essentially an ultimatum game [6].
ι(T) accepts any offer x such that Uι(T)(x,T) ≥ 0 (x ≤ RPb if ι(T) = b and
x ≥ RPs if ι(T) = s), she leaves the game otherwise. The ι(T − 1)’s optimal offer
x∗(T − 1) maximizes ι(T − 1)’s utility (i.e., x∗(T − 1) = RPb if ι(T − 1) = s and
x∗(T − 1) = RPs if ι(T − 1) = b). The subgames which start at time t < T − 1 can
be studied in a similar way. Suppose that we have found x∗(t + 1) and that we
want to derive x∗(t). We can consider the subgame composed of time points t
and t + 1 as an ultimatum game variation in which ι(t + 1) accepts any offer x
such that Uι(t+1)(x, t+1) ≥ Uι(t+1)(x

∗(t+1), t+2) and offers x∗(t+1) otherwise.
The ι(t)’s best offer, among all the acceptable offers at time point t + 1, is the
one which maximizes ι(t)’s utility. We can compute this offer as:

x
∗

(t) = {
RPs + (x

∗(t + 1) −RPs) ⋅ δs if ι(t) = b

RPb − (RPb − x∗(t + 1)) ⋅ δb if ι(t) = s
.

The computation of the values x∗(t) is linear in t. We report the buyer’s subgame
perfect equilibrium strategies (the seller’s ones are analogous):

4 S. Ceppi, N. Gatti, and C. Iuliano

σ
∗

b(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

t = 0 offer(x∗(0))

0 < t < T

⎧
⎪⎪

⎨

⎪⎪
⎩

accept if s’s offer ≤ x∗(t − 1)

offer(x∗(t)) otherwise

t = T

⎧
⎪⎪

⎨

⎪⎪
⎩

accept if s’s offer ≤ x∗(t − 1)

exit otherwise

t > T exit

.

3 Introducing Uncertainty

We consider one–sided uncertain settings where the buyer’s parameters are
uncertain to the seller (the reverse situation is analogous). Our game is an
imperfect–information game in which the buyer can be of different types, each
one with different values of RPb, δb, and Tb. Uncertainty is over the actual type
of the buyer. For the sake of presentation, we describe our algorithm for the
basic case where the number of buyer’s types is two, we call them b1 and b2.
Then, we discuss how to extend it with more than two types. Without loss of
generality we assume Tb1 ≤ Tb2 . We call μ(t) = ⟨Θb(t), Pb(t)⟩ the s’s beliefs
about b’s type where Θb(t) ∈ ℘({b1,b2})/∅ and Pb(t) = {ωb1

(t), ωb2
(t)} (℘

denotes the power set and ωbi(t) denotes the probability that b’s type is bi at
time t). μ(0) are data of the problem.

Example 31. The parameters values are: RPs = 0, δs = 0.75, Ts = 10; RPb1 = 1,
δb1 = 0.7, Tb1 = 5; the b2’s parameters values are: RPb2 = 0.9, δb2 = 0.8, Tb2 = 5.
Assume that ι(0) = b and that the values ωb1(0) and ωb2(0) are arbitrary.

The appropriate solution concept is the sequential equilibrium [8]. It is a couple
a = (μ,σ), also called assessment, in which μ is a belief system that specifies how
agents must update their beliefs during the game and σ is the agents’ strategy
profile that specifies how they must act. μ must be consistent with σ and σ
must be sequentially rational given μ. On the equilibrium path, μ is consistent
to σ if it is equal to the beliefs derived from σ by using the Bayes rule. Off the
equilibrium path, the Bayes rule is not applicable and two notions of consistency
can be employed: weak consistency does not pose any constraint, while strong
consistency requires that a sequence of fully mixed strategies exists such that its
limit converges to σ and that the limit of the sequence of beliefs derived from
the fully mixed strategies by using the Bayes rule converges to μ. In bargaining
problems, strong consistency is commonly used because it allows one to exclude
non reasonable equilibria. We remark that every game admits at least one strong
sequential equilibrium. Off the equilibrium path we impose that is, if at time
point t we have ωbi(t) = 0, then for any τ > t we keep ωbi(τ) = 0.

4 The Algorithm

Since bargaining with uncertainty may not admit any equilibrium in pure strate-
gies, as shown in [5], we directly search for equilibria in mixed strategies. The
basic idea behind our work is to solve the bargaining problem by reducing it to
a finite game, deriving equilibrium strategies such that on the equilibrium path

Non–cooperative Bargaining with Arbitrary One–Sided Uncertainty 5

the agents can act only a finite set of actions, and then by searching for the
agents’ optimal strategies on the path. Our work is structured in the following
three steps. 1) We analytically derive an assessment a = (μ,σ) in which the
randomization probabilities of the agents are parameters and such that, when
the parameters’ values satisfy some conditions, a is a sequential equilibrium. 2)
We formulate the problem of finding the values of the agents’ randomization
probabilities in a as the problem of finding a sequential equilibrium in a reduced
bargaining game with finite actions, and we prove that there always exist values
such that a is a sequential equilibrium. 3) We develop an algorithm based on
support enumeration to solve the reduced game when the types are two and we
show that its computational complexity is polynomial in the agents’ deadlines.
Then we develop an algorithm based on linear complementarity mathematical
programming to solve the case with more than two types.

4.1 Deriving Equilibrium Strategies

Without loss of generality, on the equilibrium path we study only time points
t < Tb1 . This is because, if agents reach time points t ≥ Tb1 on the equilibrium
path, then the bargaining at t is a game with complete-information in which
agents are b2 and s. Indeed, b1 never makes offers at time t ≥ Tb1, action
exit being the dominant action, and therefore, if action offer(x) is observed
at t ≥ Tb1 , the Bayes rule imposes that ωb1(t) = 0. We build an assessment
a such that, on the equilibrium path, the ι(t)’s offers at t < Tb1 belong to a
finite set X(t) ∶= {x∗bi

(t) ∶ ∀i}, where x∗bi
(t) is the ι(t)’s optimal offer at t in

the corresponding complete-information game between bi and s computed as
previously discussed. Offering at t any x /∈ X(t) does not allow ι(t) to improve
her expected utility. In Fig. 1 we show x∗b1

(t) and x∗b2
(t) related to Example 31.

We connect the offers x∗b1
(t) with a dotted line and the offers x∗b2

(t) with a
dashed line.

We focus on a. For each t < Tb1 we rank the values in X(t) in increasing order
and we call bw = argmaxi∈{b1,b2}{x

∗
i (0)} and bs = argmini∈{b1,b2}{x

∗
i (0)} where

w means weak and s means strong. In Fig. 1 we have bw = b1 and bs = b2. Ac-
cording to [13], the adjectives ‘strong’ and ‘weak’ refer to the contractual power

�

�
�

�

�
x∗
b1

(0)

x∗
b1

(1)

x∗
b1

(2) x∗
b1

(3)

�

�
�

�
�
x∗
b2

(0)

x∗
b2

(1)

x∗
b2

(2) x∗
b2

(3) x∗
b1

(4)

x∗
b2

(4)

0 1 2 3 4 5
b s b s b s

Tb1 = Tb2

RPs

RPb2

RPb1

Fig. 1. x∗bi
(t) in the complete information games between s and bi (see Example 31)

6 S. Ceppi, N. Gatti, and C. Iuliano

of the corresponding buyer’s type: in complete–information settings the seller’s
expected utility is larger when it bargains with bw rather than when it bargains
with bs. In two cases, the type with the strongest contractual power at t = 0 is
not the strongest for all t > 0. This happens, first, when there exists at least a
time point t where x∗bs

(t) > x∗bw
(t), second, when Tbw > Tbs . These two cases

represent two exceptions that can be easly tackled by modifying the computa-
tion of x∗bs

(t) and x∗bw
(t). For reasons of space, we omit their description. The

basic idea behind a is that, when agents are forced to make the offers in X(t),
bw can gain utility from disguising herself as bs, making the optimal bs’s offers,
while bs prefers to signal her own type, making offers different from the bw’s
ones. That is, bw acts in order to increase her expected utility with respect to
the situation where s believes b’s type to be bw with certainty. The same idea
is used in [1].

We focus on the buyer’s behaviour. On the equilibrium path, bw random-
izes between offering x∗bw

(t) (or, equivalently, accepting x∗bw
(t−1)) and offering

x∗bs
(t) (the offer x∗bs

(t − 1) is always accepted, leading to the largest possible
utility), whereas bs offers x∗bs

(t) in pure strategies (or, equivalently, accepts
x∗bs
(t−1)). We denote by 1−α(t) and α(t) the bw’s randomization probabilities

over offering x∗bw
(t)/accepting x∗bw

(t − 1) and offering x∗bs
(t), respectively, and

we consider α(t) as parameters. We remark that, if α(t) = 1, then the strate-
gies of bw and bs are pure and they are the same. On the equilibrium path,
the beliefs are updated according to the Bayes rule. We call ω∗bi

(t) the proba-
bility over type bi at time t produced according to the Bayes rule after that b

made offer(x∗bs
(t−1)) at time t−1. We have ω∗bs

(t) =
ωbs(t−1)

α(t−1)ωbw(t−1)+ωbs(t−1)
and

ω∗bw
(t) = 1−ω∗bs

(t). We notice that when the strategies are pure, if α(t − 1) = 1,
then ω∗bw

(t) = ωbw(t − 1) and ω∗bs
(t) = ωbs(t − 1), while, if α(t − 1) = 0, then

ω∗bw
(t) = 0 and ω∗bs

(t) = 1.
To characterize b’s strategies off the equilibrium path, at each time t we

divide the domain of x as: D1 ∶= (x∗bw
(t− 1),+∞), D2 ∶= (x∗bs

(t− 1), x∗bw
(t− 1)],

D3 ∶= (−∞, x∗bs
(t − 1)]. We call y the value such that σs(t − 1) = offer(y). The

bw’s strategies are: if y ∈ D1, then y is rejected; if y ∈ D2, then y is accepted
with probability of 1 − α(t) and rejected to offer x∗bs

otherwise, and, if y ∈ D3,
then the offer is accepted (no better agreement can be reached from time point
t+ 1 on). The bs’s strategies are exactly her optimal strategies in the complete–
information game between bs and s: if y ∈ D1 or y ∈ D2, then the offer is refused
and, if y ∈ D3, then the offer is accepted. We notice that, if α(t) = 1, then bw and
bs have the same strategies also off the equilibrium path. Formally, the strategies
are (at t > Tb1 the buyer’s strategies are those with complete information; the
strategies in the case in which the buyer’s type is bs and ωbs(t) = 0 are):

σ
∗

bw
(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

t = 0

⎧
⎪⎪⎪

⎨

⎪⎪⎪
⎩

offer(x∗
bw

(0)) 1 −α(0)

offer(x∗
bs
(0)) α(0)

0 < t < Tb1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

y ∈ D1

⎧
⎪⎪⎪

⎨

⎪⎪⎪
⎩

offer(x∗
bw

(t)) 1 −α(t)

offer(x∗
bs
(t)) α(t)

y ∈ D2

⎧
⎪⎪

⎨

⎪⎪
⎩

accept 1 −α(t)

offer(x∗
bs
(t)) α(t)

y ∈ D3 accept

, σ
∗

bs
(t) =

⎧
⎪⎪⎪⎪⎪

⎨

⎪⎪⎪⎪⎪
⎩

t = 0 offer(x∗
bs
(0))

0 < t < Tb1

⎧
⎪⎪

⎨

⎪⎪
⎩

y ∈ D1,D2 offer(x∗
bs
(t))

y ∈ D3 accept

.

Non–cooperative Bargaining with Arbitrary One–Sided Uncertainty 7

To characterize the beliefs and s’s strategies off the equilibrium path, at each time
t we divide the domain of x as: D1′ ∶= [x∗bw

(t−1),+∞), D2′ ∶= [x∗bs
(t−1), x∗bw

(t−
1)), D3′ ∶= (−∞, x∗bs

(t − 1)). We call y the value such that σb(t − 1) = offer(y).
If ωbw(t − 1) > 0, then the beliefs are: if y ∈ D1′, then b is believed bw with a
probability of 1; if y ∈ D3′, then the probabilities of b’s types are the same that
we compute on the equilibrium path when y = x∗bs

(t−1); if y ∈ D2′, then the bs’s
probability increases linearly in y such that, if y goes to x∗bw

(t− 1), then ωbs(t)
goes to 0 and, if y goes to x∗bs

(t− 1), then ωbs(t) goes to ω∗bs
(t) (notice that we

cannot use ‘=’, since the cases with ‘=’ are on the equilibrium path). Defining

κ(t, y) =
x∗bw

(t)−y

x∗
bw
(t)−x∗

bs
(t)

, the belief system is:

μ(t) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

y ∈ D1′ ωbs(t) = 0

y ∈ D2′ ωbs(t) = ω∗bs
(t)κ(t− 1, y)

y ∈ D3′ ωbs(t) = ω∗bs
(t)

.

We focus on the seller’s behaviour. On the equilibrium path, s randomizes be-
tween offering x∗bs

(t) (or, equivalently, accepting x∗bs
(t−1)) and offering x∗bw

(t)
(the offer x∗bw

(t − 1) is always accepted, leading to the largest possible utility).
We denote by β(t) and 1−β(t) the s’s randomization probabilities over offering
x∗bs
(t)/accepting x∗bs

(t − 1) and offering x∗bw
(t), respectively, and we consider

β(t) as parameters. Off the equilibrium path, the s’s strategies are: if y ∈ D1′,
then the offer is accepted; if y ∈ D2′, then the acceptance probability decreases
linearly in y such that, if y goes to x∗bw

(t − 1), then it goes to 1 and, if y goes
to x∗bs

(t − 1), then it goes to β(t) (the s’s probability to offer x∗bw
(t) is 1 mi-

nus the acceptance probability); if y ∈ D3′, then it is rejected to offer x∗bw
(t) if

β(t) < 1 and x∗bs
(t) otherwise. Formally the strategies are (at t > Tb1 the seller’s

strategies are those with complete information):

σ
∗

s (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

t = 0

⎧
⎪⎪⎪

⎨

⎪⎪⎪
⎩

offer(x∗
bw

(0)) 1 − β(0)

offer(x∗
bs
(0)) β(0)

0 < t < Tb1

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

y ∈ D1′ accept

y ∈ D2′
⎧
⎪⎪

⎨

⎪⎪
⎩

offer(x∗
bw

(t)) κ(t − 1, y)(1 − β(t))

accept 1 −κ(t − 1, y)(1 − β(t))

y ∈ D3′
⎧
⎪⎪⎪

⎨

⎪⎪⎪
⎩

offer(x∗
bw

(t)) ⌈1 − β(t)⌉

offer(x∗
bs
(t)) ⌊β(t)⌋

.

Call σ = (σ∗bw
, σ∗bs

, σ∗s). We state the following theorem.

Theorem 41. If α(t), β(t) ∈ [0,1] are such that, limited to the offers in X(t),
σ is sequentially rational given μ, then a = (μ,σ) is a sequential equilibrium.

Proof. We assume that there are values α(t), β(t) ∈ [0,1] such that, limited to
the offers in X(t), σ is sequentially rational given μ and we prove: (i) sequential
rationality off the equilibrium path and (ii) Kreps andWilson’s consistency. (The
computation of the values of α(t), β(t) is discussed in the following sections.)

To prove (i) we need to show that agents cannot gain more by making offers
not belonging to X(t). At first, we characterize agents’ strategies on the equilib-
rium path because it is useful for our proof. We do not consider the trivial cases
in which ωbw(0) = 1 or ωbs(0) = 1; they can be solved as complete–information
games. It can be easily observed that if ωbw(0) < 1 then α(t) > 0 for every

8 S. Ceppi, N. Gatti, and C. Iuliano

t. Indeed, let suppose ι(0) = b and ωbw(0) < 1, if α(0) = 0, then bw and bs

make different offers at time t = 0 and s accepts both of them at t = 1. In this
case bw can increase her utility acting as bs. Thus, two situations are possible:
either 0 < α(t) < 1 or α(t) = 1. If 0 < α(t) < 1, then bw randomizes between
offering xbw(t) and xbs(t), so necessarily 0 < β(t + 1) < 1 because the game is
non–degenerate. Otherwise, if α(t) = 1, then necessarily β(t+ 1) = 1 because the
game in non-degenerate and the case β(t + 1) = 0 cannot lead to an equilibrium
(bw can increase her utility by offering x∗bw

(t) that will be always accepted).
Now, we are in the position to prove sequential rationality off the equilibrium

path. We focus on the case 0 < α(t) < 1 and 0 < β(t + 1) < 1. We consider bw.
Offering any x > x∗bw

(t) at time t is dominated by offering x∗bw
(t) because all

these offers are accepted with a probability of one and x∗bw
(t) gives a larger

utility to bw. By construction, all the offers x∗bs
(t) < x < x∗bw

(t) give to bw

the same expected utility and all the offers x < x∗bs
(t) are rejected, so the bw’s

expected utility cannot be increased by performing them. In a similar way, it
is possible to analyze the strategies of bs and s. In the case of s, if she acts at
t = 0 or t > 0 after that b makes an off–equilibrium–path offer, her strategy will
be pure. It can be shown that, if σb(t − 1) = offer(x) with x < x∗bs

(t − 1) and
β(t) < 1, then s’s optimal action is to offer x∗bw

(t). Therefore, agents cannot gain
more by making offers not belonging to X(t).

In order to prove (ii), we need to provide a fully mixed strategy σbi,n(t) such
that limn→∞ σbi,n(t) = σ

∗
bi
(t) and limn→∞ ωbi,n(t) = ωbi(t) where ωbi,n(t) are

the sequences of beliefs derived from σbi,n(t) by Bayes rule and ωbi(t) are the
beliefs prescribed by μ(t). The fully mixed strategies are:

σbw,n(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪
⎪

⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎪⎪
⎪
⎩

y > x∗
bw

(t) 1
n

y = x∗
bw

(t) 1 −α(t) −A(n)

x∗
bw

(t) > y > y 1
n

y ≥ y > x∗
bs
(t) 1 − (1 −α(t))

y−x∗
bs
(t)

n(y−x∗
bs
(t))

y = x∗
bs
(t) α(t) −A(n)

x∗
bs
(t) > y

α(t)
n

,σbs,n(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

y ≥ x∗
bw

(t) 1

n
Tb1

x∗
bw

(t) > y > y
x∗
bw

(t)−y

n(x∗
bw

(t)−y)

y ≥ y > x∗
bs
(t) 1

n
y = x∗

bs
(t) 1 −B(n)

x∗
bs
(t) > y 1

n

,

where A(n) and B(n) are functions of n such that they go to zero as n goes to
infinity and the sum over the probabilities of all actions is one. ◻

4.2 Building the Reduced Bargaining Game

The previous section drastically reduces the complexity of solving a bargaining
game, leaving open only the determination of the values of the randomization
probabilities such that Theorem 41 holds. In this section, we formulate the prob-
lem of computing these values as the problem of solving a reduced bargaining
game with finite actions. Since each finite game admits at least one equilibrium
strategy, there always exist values such that Theorem 41 holds.

To compute the values of α(t) and β(t) we “extract” the equilibrium path
prescribed by assessment a given in the previous section. We build an imperfect–
information extensive–form game with finite actions. It can be represented by

Non–cooperative Bargaining with Arbitrary One–Sided Uncertainty 9

a game tree built as follows. Fig. 2 depicts the tree related to Example 31; for
the sake of simplicity, we denote accept by ‘A’ and offer(x) by ‘x’; A′ and A′′

label two different As of the same buyer’s type at the same t. In the root of the
tree, nature plays drawing the buyer’s type: b1 or b2 with probability ωb1

(0)
and ωb2

(0), respectively. Since the game is with imperfect information, s cannot
distinguish whether her opponent’s type is b1 or b2 unless she observes an action
that can be made only by b1 or by b2, respectively (e.g., in Fig. 2, action x∗b1

(0)
can be accomplished only by b1). Customarily in game theory, decision nodes
that an agent cannot distinguish constitute an information set (in Fig. 2, dashed
lines connect decision nodes of the same information set).

ι(0) = b

ι(1) = s

ι(2) = b

ι(3) = s

ι(4) = b

ι(5) = s

Tb1

�

� �

� � �

� �

�

�

�

�

� �

�

�

�

�

�

�

�

Nature

ωb1
(0) ωb2

(0)

x∗
b1

(0) x∗
b2

(0) x∗
b2

(0)

A′ A′′
x∗
b1

(1)
A

x∗
b1

(1)

A
x∗
b2

(2) x∗
b2

(2)

A
x∗
b1

(3)
A

x∗
b1

(3)

A
x∗
b2

(4)

A

.26, .46 .16, .55 .16, .55

.26, .27

.06, .30 .06, .39

.09, .17

.00, .29

Fig. 2. Tree of the reduced game related to Example 31. We denote accept by A and
offer(x) by value x. We report utilities Us(x, t),Ub(x, t) under the terminal nodes.

Let be t = 0. If ι(0) = b, the available actions are offer(x) with x ∈ X(0) if
bi = bw and x = x∗bs

(0) if bi = bs (we recall that in Example 31, b1 = bw and
b2 = bs). When ι(0) = s, the available actions are offer(x) with x ∈X(0).

Let be 0 < t < Tb1 −1. Suppose ι(t) = b. If bi = bw and σs(t−1) = offer(x
∗
bs
(t−

1)), then the only possible action is accept, otherwise, if σs(t−1) = offer(x
∗
bw
(t−

1)), the available actions are accept and offer(x∗bs
(t)). Action accept at time t

leads to a terminal node in which the agents reach the agreement (x, t) where x is
such that σι(t−1)(t−1) = offer(x). In Fig. 2, under the terminal nodes, we report
the agents’ utilities Us(x, t), Ub(x, t). If bi = bs and σs(t − 1) = offer(x

∗
bs
(t − 1))

then the only possible action is accept, otherwise, if σs(t − 1) = offer(x∗bw
(t −

1)), the only available action is offer(x∗bs
(t)). Suppose ι(t) = s. If σb(t − 1) =

offer(x∗bw
(t−1)) then the only possible action is accept, otherwise, if σb(t−1) =

offer(x∗bs
(t − 1)), the available actions are accept and offer(x∗bw

(t)).
Let be t = Tb1−1. If x

∗
bw
(t) > x∗bs

(t), the tree building rules are those described
for the previous case. Otherwise, if x∗bw

(t) = x∗bs
(t), when bi = bw and σs(t−1) =

offer(x∗bw
(t)) the only available action is accept, as in Example 31 (see Fig. 1).

10 S. Ceppi, N. Gatti, and C. Iuliano

There cannot be any equilibrium when a buyer’s type bi randomizes at t over
accepting and offering offers of the same sequence of offers x∗bi

(t).
We notice that the size of the tree is linear in Tb1 . The values of α(t) and

β(t) can be computed finding a sequential equilibrium in the above reduced
bargaining problem. By definition, the value of α(t) is equal to the probability
with which bw makes offer(x∗bs

(t)) at t in the reduced bargaining game, while
the value of 1−β(t) is equal to the probability with which s makes offer(x∗bw

(t))
at t in the reduced bargaining game. Since any finite game admits at least one
sequential equilibrium, there always exist values of α(t) and β(t) such that a is
a strong sequential equilibrium, namely, Theorem 41 always holds.

4.3 Solving the Reduced Bargaining Game

To compute an equilibrium, at first we represent the game in the sequence
form [7] where agents’ actions are sequences in the game tree.

The sequence form is represented with a sparse matrix in which the agent i’s
actions are the sequences of her extensive form actions connecting the root of the
tree to any information set of i. To avoid confusion, we shall use ‘sequence’ for the
actions of the sequence form and ‘action’ for the actions of the extensive-form.
For the sake of simplicity, we define different b’s sequences for each different type.
Considering the game tree reported in Fig. 2, the set of agent i’s sequences Qi is:
Qs = {∅, ⟨A

′⟩, ⟨A′′⟩, ⟨x∗b1
(1)⟩, ⟨x∗b1

(1),A⟩, ⟨x∗b1
(1), x∗b1

(3)⟩, ⟨x∗b1
(1), x∗b1

(3),A⟩},
Qb1 = {∅, ⟨x

∗
b1
(0)⟩, ⟨x∗b2

(0)⟩, ⟨x∗b2
(0),A⟩, ⟨x∗b2

(0), x∗b2
(2)⟩, ⟨x∗b2

(0), x∗b2
(2),A⟩},

Qb2 = {∅, ⟨x
∗
b2
(0)⟩, ⟨x∗b2

(0), x∗b2
(2)⟩, ⟨x∗b2

(0), x∗b2
(2), x∗b2

(4)⟩}; where ∅ is the
empty sequence. Given two sequences q and q′ with q ∈ Qbi and q′ ∈ Qs, the
payoffs are non–null only if the node reached performing the combination of
sequences q and q′ is a terminal node. Let consider the subtree of type b1 shown
in Fig. 2. The node reached performing q = ⟨x∗b2

(0)⟩ and q′ = ⟨x∗b1
(1)⟩ is a non

terminal node and, therefore, the payoffs are null, whereas the node reached
performing q = ⟨x∗b2

(0)⟩ and q′ = ⟨A′′⟩ is a terminal node and the payoffs are
Us = 0.16 and Ub = 0.55. We show in Table 1 the payoff bimatrix for b1 and s
(for reason of space we omit the empty sequences ∅). The payoff bimatrix for
b2 and s is defined similarly.

The sequence form presents some constraints over the probabilities with which
the sequences are played by agents. We denote by pi(q) the probability with
which agent i makes sequence q. The constraints on the probabilities of the
empty sequences are (by convention, we set ωs(0) = 1):

Table 1. Payoff bimatrix for b1 and s

b1, s A′ A′′ x∗
b1
(1) x∗

b1
(1),A x∗

b1
(1), x∗

b1
(3)

x∗
b1
(0) .26, .46 − − − −

x∗
b2
(0) − .16, .55 − − −

x∗
b2
(0),A − − .26, .27 − −

x∗
b2
(0), x∗

b2
(2) − − − .06, .30 −

x∗
b2
(0), x∗

b2
(2),A − − − − .09, .17

Non–cooperative Bargaining with Arbitrary One–Sided Uncertainty 11

pi(∅) = ωi(0) ∀i, (1)

constraints on the probabilities of non-empty sequences are:

pi(q) = ∑
a at hq

pi(q∣a) ∀i, q ∈ Qi, hq ∈ Iq , (2)

where Iq is the set of information sets reachable performing q, hq is a information
set belonging to Iq, a is an action available at information set hq, and q∣a is the
sequence obtained by adding action a to sequence q. Let consider s in Fig. 2, if q =
⟨x∗b1
(1)⟩, then the constraint (2) is ps(q) = ps(⟨x

∗
b1
(1),A⟩)+ps(⟨x

∗
b1
(1), x∗b1

(3)⟩),
because only one information set is reachable by performing q. The values of α(t)
and β(t) are easily computable on the basis of probability pi(q). More precisely,
called q a bw’s sequence that ends at time point t − 1 with ι(t) = b, we have

α(t) =
pbw (q∣x

∗

bs
(t))

pbw (q)
. The values of β(t) can be computed on the basis of ps(q) in

a similar way.
To solve the game we use the PNS algorithm [10] because it results very

efficient: we can safely check a very small number of supports.

Theorem 42. Excluded the degenerate case ωbw(0) = 1, agents’ Nash equilib-
rium strategies on the equilibrium path in the reduced bargaining game are: if
ι(0) = b, either bw’s and s’s strategies are fully mixed or bw makes offer(x∗bs

(t))
with probability of 1 at t = 0 and s makes accept with probability of 1 at t = 1;
if ι(0) = s, either s makes offer(x∗bw

(0)) with probability of 1 at t = 0 and from
t = 1 on bw’s and s’s strategies are fully mixed or s makes offer(x∗bs

(0)) with
probability of 1 at t = 0 and bw makes accept at t = 1.

Proof.We show that on the equilibrium path bw cannotmake accept at time twith
probability of 1 in all the decision nodes where multiple actions are available. As-
sume by contradiction that bw makes it. Then, s’s best response is to make accept
at time t + 1 with probability of 1. However, if s makes such action at t + 1, bw’s
best response is to make offer(x∗bs

(t)) at time t and thus we have a contradiction.
We show that on the equilibrium path bw cannot make offer(xbs(t)) at time t > 0
with probability of 1 in all the decision nodes where multiple actions are avail-
able. Assume by contradiction that it happens. Then, s’s best response is to make
accept at time t − 1 with probability of 1. Therefore, time point t would never be
reached on the equilibrium path and then we have a contradiction.

The same above reasoning can be applied to show that on the equilibrium path
s cannot make with probability of 1 neither accept at time t > 1 nor offer(xbw(t))
at time t > 0. Thus, the unique possible agents’ strategies on the equilibrium
path are those reported in the theorem. If the fully mixed strategy is a Nash
equilibrium, then it is by definition a sequential equilibrium. This is because
every action is played with positive probability. If it is not an equilibrium, then
necessarily the game concludes at t = 1. ◻

The above theorem shows that for each bargaining problem we need to check
only one joint support: if the fully mixed strategy is not an equilibrium, then on

12 S. Ceppi, N. Gatti, and C. Iuliano

the equilibrium path the game concludes at t = 1. In this second case, to com-
pute agents’ equilibrium strategies off the equilibrium path it is sufficient to solve
the reduced bargaining game from t ≥ 2 with initial beliefs. The computational
complexity of finding agents’ equilibrium strategies on the equilibrium path is
polynomial in Tb1 , because the computational complexity of solving a linear fea-
sibility problem is polynomial in the number of variables, this last number rises
linearly in Tb1 , and the number of joint supports to be checked is constant in the
size of the game. Off the equilibrium path a number of joint supports that rises
linearly in Tb1 must be checked, then the computational complexity is polyno-
mial in Tb1 . We use AMPL and CPLEX to solve the game. The computational
times are negligible (< 1 s) even for large problems (up to Tb1 = 500) with a
2.33 GHz 8 GB RAM UNIX computer. We report in Tab. 2 the values of α(t)
and β(t) for Example 31 with different values of initial beliefs.

Table 2. Values of α(t)s and β(t)s. When ωb1(0) = 0.1 and ωb1(0) = 0.7 players always
act in pure strategies; when ωb1(0) = 0.8 players randomize.

ωb1
(0) ωb2

(0) α(0) β(1) α(2) β(3)

0.10 0.90 1.00 1.00 1.00 1.00
0.70 0.30 1.00 1.00 0.86 0.77
0.80 0.20 0.68 0.69 0.44 0.77

4.4 Extension to More Than Two Types

Here the idea is the same of the two–type solution. At first, we compute all the
sequences of optimal offers x∗bi

(t) in the complete–information games between
bi and s. We rank the buyer’s types from the strongest to the weakest according
to x∗bi

(0). At t each buyer’s type bi randomizes over all the offers x∗bj
(t) such

that bj is not weaker than bi and bj is believed by s with positive probabil-
ity. More precisely, we denote by αi,j(t,Θb(t)) the probability with which bi

makes offer x∗bj
at time point t given that the buyer’s types believed by s with

strictly positive probability are those belonging to Θb(t). Only the probabilities
αi,j(t,Θb(t)) with x∗bi

(t) > x∗bj
(t) and bj ∈ Θb(t) can be non–null. The sys-

tem of belief is such that, once offer x∗bi
(t) is observed, all the types bj with

x∗bj
(t) < x∗bi

(t) are removed from Θb(t). Then, the number of possible Θb(t) is

linear in the size Θb(0), e.g., if Θb(0) = {b1,b2,b3}, then the possible Θb(t)
are {b1,b2,b3}, {b2,b3}, and {b3}. Similarly, the seller’s strategy can be rep-
resented by probabilities βj(t,Θb(t)), i.e., the probability to accept x∗bi

(t − 1)/
offer x∗bi

(t) at t when types Θb(t) are believed with positive probabilities.
The construction of the game tree is accomplished according to the following

rules: 1) no buyer’s types makes offer strictly weaker than her optimal offer in
the complete–information game; 2) at time t > 0, no agent (buyer and seller)
makes offers strictly weaker (w.r.t. her utility function) than the one made by
the opponent at the previous time point t − 1; 3) at time t > 0, no agent (buyer
and seller) makes offers that, if accepted at t + 1, provide her the same utility
she receives by accepting the offer made by the opponent at t − 1; 4) no buyer’s

Non–cooperative Bargaining with Arbitrary One–Sided Uncertainty 13

type makes offers besides min{Tbi, Ts} and the seller does not make offer besides
min{max{Tbi}, Ts}; 5) at time t > 0, an offer xi is not made if the buyer’s type
bi is out of the game (i.e., t >= Tbi or type bi has been excluded because the
buyer has previously made an offer strictly weaker than the optimal complete–
information offer of bi).

It can be easily observed that the size of the tree rises exponentially in
the length of the deadlines. Differently from what we did for the two–type
case, here do not use support–enumeration techniques, but we resort to linear–
complementarity mathematical programming. This is because the number of
supports rises as 4n where n is the number of agents’ actions, while the space of
solutions over which linear complementarity works rises as 2.6n.

We implemented an ad hoc version of the Lemke’s algorithm with perturbation
as described in [9] to compute a sequential equilibrium. The algorithm is based
on pivoting (similarly to the simplex algorithm) where perturbation affects only
the choice of the leaving variable. We coded the algorithm in C language by
using integer pivoting and the same approach of the revised simplex (to save
time during the update of the rows of the tableau). We executed our algorithm
with a 2.33 GHz 8 GB RAM UNIX computer. We produced several bargaining
instances characterized by the number of buyer’s types (from 2 up to 6) and the
deadline T =min{max{Tbi}, Ts} (from 6 up to 500). Tab. 3 reports the average
computational times over 10 different bargaining instances; we denote by ‘–’ the
cases whose execution exceeds one hour.

Table 3. Computational times for solving a bargaining game with linear complemen-
tarity mathematical programming (T =min{max{Tbi}, Ts})

T number of buyer’s types
2 3 4 5 6

6 < 0.01 s 0.06 s 0.29 s 3.47 s 929.73 s
8 < 0.01 s 1.32 s 32.94 s 1890.96 s –
10 < 0.01 s 15.16 s 2734.29 s – –
12 < 0.01 s 211.11 s – – –
14 < 0.01 s 3146.20 s – – –
50 0.22 s – – – –
100 1.55 s – – – –
500 175.90 s – – – –

As it can be observed, the computational times are exponential in the bargain-
ing length and have the number of types as basis and only small settings can be
solved by using linear–complementarity mathematical programming. Notice that
the support–enumeration approach used for the two–types case is much faster
than the linear–complementarity approach. This pushes for the development of
algorithms for finding approximate solutions.

5 Conclusions and Future Works

The study of strategic bargaining with uncertainty is a challenging game
theoretic problem. The literature provides several heuristics–based approaches

14 S. Ceppi, N. Gatti, and C. Iuliano

generally applicable to any uncertain setting, while the optimal approaches work
only with very narrow uncertainty settings. In particular, no algorithm works
with uncertainty over multiple parameters. In this paper, we focused on one–
sided uncertainty. Our main result is the reduction of the bargaining to a finite
game. This allows one to resort to well known techniques to solve finite games.
We proved that with two types the problem is polynomial (by using support–
enumeration techniques), while with more types our algorithm requires exponen-
tial time. As a result, only small settings can be solved in exact way. Nevertheless,
our reduction allows one to resort to techniques to find approximate equilibria.

In future works, on the one hand, we shall develop algorithms to find an
ε–approximate equilibrium with a provable bound over ε and, on the other hand,
we characterize solutions to produce insight over the structure of the problem
and design more efficient exact algorithms.

References

1. Chatterjee, K., Samuelson, L.: Bargaining under two-sided incomplete information:
The unrestricted offers case. Oper. Res. 36(4), 605–618 (1988)

2. Di Giunta, F., Gatti, N.: Bargaining over multiple issues in finite horizon
alternating-offers protocol. Ann. Math. Artif. Intel. 47(3-4), 251–271 (2006)

3. Faratin, P., Sierra, C., Jennings, N.R.: Negotiation decision functions for au-
tonomous agents. Robot. Auton. Syst. 24(3-4), 159–182 (1998)

4. Fatima, S.S., Wooldridge, M.J., Jennings, N.R.: On Efficient Procedures for Multi-
issue Negotiation. In: Fasli, M., Shehory, O. (eds.) TADA/AMEC 2006. LNCS
(LNAI), vol. 4452, pp. 31–45. Springer, Heidelberg (2007)

5. Gatti, N., Di Giunta, F., Marino, S.: Alternating-offers bargaining with one-sided
uncertain deadlines: an efficient algorithm. Artif. Intell. 172(8-9), 1119–1157 (2008)

6. Gneezy, U., Haruvy, E., Roth, A.E.: Bargaining under a deadline: Evidence from
the reverse ultimatum game. Game Econ. Behav. 45, 347–368 (2003)

7. Koller, D., Megiddo, N., von Stengel, B.: Efficient computation of equilibria for
extensive two-person games. Game Econ. Behav. 14(2), 220–246 (1996)

8. Kreps, D.R., Wilson, R.: Sequential equilibria. Econometrica 50(4), 863–894 (1982)
9. Miltersen, P.B., Sorensen, T.B.: Computing sequential equilibria for two-player

games. In: SODA, pp. 107–116 (2006)
10. Porter, R., Nudelman, E., Shoham, Y.: Simple search methods for finding a Nash

equilibrium. In: AAAI, pp. 664–669 (2004)
11. Rubinstein, A.: Perfect equilibrium in a bargaining model. Econometrica 50(1),

97–109 (1982)
12. Rubinstein, A.: A bargaining model with incomplete information about time pref-

erences. Econometrica 53(5), 1151–1172 (1985)
13. Rubinstein, A.: Choice of conjectures in a bargaining game with incomplete infor-

mation. In: Roth, A.E. (ed.) Game-Theoretic Models of Bargaining, pp. 99–114.
Cambridge University Press, Cambridge (1985)

14. Sandholm, T.: Agents in electronic commerce: Component technologies for auto-
mated negotiation and coalition formation. Auton. Agent Multi-AG 3(1), 73–96
(2000)

An Adaptive Proportional Value-per-Click Agent
for Bidding in Ad Auctions

Kyriakos C. Chatzidimitriou1,2, Lampros C. Stavrogiannis3,
Andreas L. Symeonidis1,2, and Pericles A. Mitkas1,2

1 Department of Electrical and Computer Engineering,
Aristotle University of Thessaloniki, Greece

2 Informatics and Telematics Institute,
Centre for Research and Technology Hellas, Greece

3 School of Electronics and Computer Science
University of Southampton, UK

mertacor@olympus.ee.auth.gr

Abstract. Sponsored search auctions constitutes the most important source of
revenue for search engine companies, offering new opportunities for advertisers.
The Trading Agent Competition (TAC) Ad Auctions tournament is one of the
first attempts to study the competition among advertisers for their placement in
sponsored positions along with organic search engine results. In this paper, we
describe agent Mertacor, a simulation-based game theoretic agent coupled with
on-line learning techniques to optimize its behavior that successfully competed
in the 2010 tournament. In addition, we evaluate different facets of our agent to
draw conclusions about certain aspects of its strategy.

Keywords: sponsored search, advertisement auction, trading agent, game the-
ory, machine learning.

1 Introduction

The advent of the Internet has radically altered current business landscape. One of its
prominent applications is on-line advertising in search engine results, known as spon-
sored search, where paid advertisements are shown along with regular results (called
impressions). Sponsored search is the highest source of revenue for on-line advertise-
ment, yielding a profit of approximately $10.67 billions for 2009 only in the U.S. [1].

In the sponsored search setting, whenever a user enters a query in the search engine
(publisher), an auction is run among interested advertisers, who must select the amount
of their bids, as well as the advertisements that they deem to be more relevant to the user.
There is a number of positions (slots) for placement, but higher slots are more desirable,
given that they generally yield higher levels of Click-Through-Rate (CTR). This field
started in 1998 by GoTo.com, where slots were allocated via a Generalized First Price
(GFP) auction, but received its current form in 2002, when GFP was replaced by the
well known Generalized Second Price (GSP) auction [2]. According to this auction, bids
are sorted by bid (that is usually multiplied by an advertiser-specific quality factor), and
the winner of a slot pays the minimum bid needed to get this position, which is slightly

E. David et al. (Eds.): AMEC/TADA 2011, LNBIP 119, pp. 15–27, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

16 K.C. Chatzidimitriou et al.

higher than the next bidder’s offer and independent of her bid. What makes this type of
auctions different is the fact that payment is made on a per click (cost-per-click or CPC)
rather than a per impression (cost-per-mille or CPM) basis.

Against this background, we present the strategy of agent Mertacor, our entrant that
participated in the TAC Ad Auctions 2010 competition [3] and was placed 3rd in the
finals. At a high level, Mertacor’s strategy can be decomposed into two parts: (a) es-
timating the Value-per-Click (VPC) for each query and (b) choosing a proportion of
VPC for bidding in each auction based on the state of the game (the adaptive propor-
tional part). The approach is similar to the QuakTAC agent [4], which participated in
the 2009 competition, with two extensions: (a) a k-nearest-neighbors algorithm to help
in the estimation of VPC and (b) an associative to the state of the game, n-armed bandit
formulation of the problem of selecting the proportion of VPC to bid.

The remainder of this paper is organized as follows: Section 2 provides a brief de-
scription of the game. Section 3 presents strategies of agents participated in the pre-
vious competition. Section 4 builds the background upon which our agent was based
and gives a detailed description of the extension points. A discussion of the conducted
experiments is given in Section 5. Finally, Section 6 concludes the paper and provides
our future research directions.

2 The TAC Ad Auctions Game

Sponsored search auctions are open, highly complex mechanisms, that are non-
dominant-strategy-solvable, hence bidding strategies are a topic of active research. To
investigate their behavior, a realistic agent-based simulator seems essential [5]. The Ad
Auctions (AA) platform in the international Trading Agent Competition (TAC) is such
a system. The TAC AA game specifications are defined in detail in [3]. To familiarize
the reader with the game, we will provide some basic information about the entities
involved and the interactions between them.

In TAC AA tournament, there are three main types of entities: the publisher,
a population of 90000 users, and eight advertiser entrants represented by au-
tonomous software agents. The advertisers compete against each other for advertise-
ment (ad) placement, across search pages. Each one of the search pages contains search
engine results for one of the queries of 16 different keyword sets. In order to promote
their products, the agents participate in ad auctions by submitting a bid and an ad to the
publisher for the query (set of keywords) they are interested in. Ads are ranked on each
search page, based on a generalized method that interpolates between rank-by-bid and
rank-by-revenue schemes. Each day, users, according to their preferences and state, re-
main idle, search, click on ads and make purchases (conversions) from the advertisers’
websites. The products being traded are combinations of three brands and three types
of components from the domain of home entertainment. The small number of products
enables competing teams to focus only on a small set of predefined keywords, abstract-
ing away from the problems of keyword selection. The three manufacturers (namely,
Lioneer, PG and Flat) and the three types of devices (TV, Audio and DVD) constitute a
total of nine products. The simulation runs over 60 virtual days, with each day lasting
10 seconds. A schematic of the interactions between game entities is found in Figure 1.

An Adaptive Proportional VPC Agent 17

Fig. 1. The entities participating in a TAC AA game along with their actions. The majority of the
users submit queries, fewer click on ads and an even smaller percentage makes transactions.

2.1 Advertisers

Each advertiser is a retailer of home entertainment products and can supply the user
with any of the nine products available. Upon initialization of each simulation, ad-
vertisers are given a component and a manufacturer specialty, yielding an increase
in conversion rates for the former and an increase in profit per unit sold for the
later. Additionally, entrants are assigned a weekly maximum stock capacity Ccap ∈
{CLOW , CMED, CHIGH}, so conversions above this threshold are less likely to hap-
pen during this week (5 working days). During its daily cycle of activities the advertiser
agent on day d has to:

– Send the bids for ad placement per query for day d+ 1.
– Select an ad for ad placement per query for day d + 1. The ad can be either

generic (i.e. referring to a general electronics shop) or targeted (i.e. stating a spe-
cific manufacturer-component combination). A targeted ad that is a match to the
user preferences increases the probability of clicking that ad.

– Set spending limits for each query and across all queries for day d+ 1.
– Receive reports about the market and its campaign for day d− 1.

18 K.C. Chatzidimitriou et al.

2.2 Publishers

As mentioned above, the publisher runs a GSP auction to determine the rank of bids
and determine the payment per click. The ad placement algorithm takes into account
predefined reserve scores. There is one reserve score, below which, an ad will not be
posted, and one above which, an ad will be promoted. If the spending limit set by
an agent is passed, the rankings are recalculated. The auction implemented is a GSP,
where the ranking takes into account the quality of the advertisements, weighted by a
squashing parameter that is disclosed to the entrants at the beginning of the game.

2.3 Users

Each user has a unique product preference and can be in different states representing
his or her searching and buying behavior (i.e. non-searching, informational searching,
shopping, with distinct levels of shopping focus, and transacted). The product prefer-
ence distribution is even for all products. Users submit three kinds of queries, defined
by their focus level for a total of 16 queries. There is one (1) F0 query, where no
manufacturer or component preference is revealed, six (6) F1 queries, where only the
manufacturer or the product type is included in the query and nine (9)F2 queries, where
the full product definition (manufacturer and type) is exposed. Users’ daily state transi-
tion is modeled as a Markov chain. Non-searching and transacted agents do not submit
queries. Informational agents submit one of the three queries by selecting any one of
the them uniformly and focused users submit a query depending on their focus level.
While both information seeking and focused users could click on an ad, only focused
users make purchases and go to the transacted state. Users click on the advertisements
based on an extended version of the cascade model [6]. After clicking on an ad, whether
a conversion will be made or not depends on user’s state, advertisers’ specialty and re-
maining distribution capacity.

3 Related Work

Given that the tournament started in 2009, relevant published work on TAC AA is lim-
ited. The majority of strategies is focused on two target metrics, namely the Return on
Investment (ROI), i.e. the ratio of profit to cost, and the Value per Click (VPC), i.e. the
expected profit from a conversion given a click, and combined with multiple choice
knapsack (MCKP) models to deal with the distribution constraint effect.

TacTex [7], the winner of the previous competitions, implements a two-stage strat-
egy of estimation and optimization. The former incorporates self and opponent related
predictions of desired variables as well as user state estimation. More specifically, this
agent tries to extract the range of impressions, ranking and amount of bids, as well as the
type of ads shown. Then, it estimates the proportion of users in each state and utilizes
this information to predict the most profitable number of conversions per query type.
The optimization takes into consideration the distribution constraint effect, hence both
short-term and long-term optimizers are incorporated in the strategy. Finally, there is an
estimator for the unknown game parameters, i.e. continuation probability and quality
factor.

An Adaptive Proportional VPC Agent 19

Another competitor for 2009, Schlemazl, employs rule-based as well as dynamic
programming techniques. According to the latter, the bidding process is modeled as a
penalized MCKP, where the value of each query is the profit made and the weight is
the number of sales [8]. For the rule-based method, the agent’s strategy targets for the
same ROI in all queries. A similar principle is implemented in EPFLAgent 2010 [9],
targeting for the same profit per conversion over all queries, and distributes the number
of sales uniformly on the five most recent days. If the number of sales exceeds this
threshold, the bid for the most profitable keyword is increased, otherwise the bid on the
least profitable keyword is decreased.

Tau [10] follows a reinforcement learning (soft greedy) approach, based on regret
minimization, where the agent selects a value from a distribution on the space of bids,
so that the regret, which is the difference between actual profit and maximum profit,
is minimized. On the other hand, DNAgent [11] follows an evolutionary computation
technique, by creating a population of agents (referred as finite state machines) that are
genetically evolved until the fittest is determined. Each agent can be in seven differ-
ent states, based on its previous position, which is combined with the matching of the
advertisement to the user to determine bid adjustments for the next day.

Finally, AstonTAC [12] and QuakTAC [4] follow VPC-based strategies. The former
estimates the market VPC, which is the VPC minus relevant cost, and then bids a pro-
portion of this value based on the critical capacity (i.e. capacity beyond which the ex-
pected cost is higher than the corresponding revenue) and the estimated quality factor
for the advertiser. Priority is also given to the most profitable queries. On the other hand,
QuakTAC follows a simulation based Bayes-Nash equilibrium estimation technique to
find the optimum percentage of the VPC to bid. One important advantage of the VPC
strategy is that it does not require any opponent modeling techniques, which in turn,
demand historical information about opponents’ bidding behavior, difficult to obtain in
reality.

4 Agent Mertacor

4.1 Background

The baseline strategy of agent Mertacor is a modified version of the aforementioned
QuakTAC strategy for the 2009 tournament [4]. This is one of the few reported strate-
gies in TAC that employs simulation based game theoretic analysis and was proven
quite successful in that tournament, as QuakTAC was placed 4th in the finals. It is a
sound, elegant and yet simple strategy. For the bidding part, Vorobeychik considers a
simple strategy space, with bids that are linear to the valuation of the player. For the
AA scenario, this valuation is the advertiser’s VPC, υ, and the agent bids a proportion
(shading), α, of this value. For each query q, the bid for day d+ 1 would be:

bidqd+1 = α · υq
d+1 (1)

Given that GSP auctions are not incentive compatible [13], we expect that α < 1. An
estimation of the VPC for a keyword can be expressed as the product of the probability

20 K.C. Chatzidimitriou et al.

of converting after a click on the ad and the expected revenue from such a conversion.
So for each query q, the agent’s estimated VPC value can be calculated as:

υ̂q = P̂ r
q{conversion|click} ·E[revenueq|conversion] (2)

The expected revenue for a query q given a conversion, (E[revenueq|conversion]),
solely depends on the advertiser’s Manufacturer Specialty (MS) and can be calculated
with no additional information for the three possible cases as follows:⎧⎨

⎩
(USP · (3 +MSB))/3 MS not defined in q
USP · (1 +MSB) MS matched in q
USP MS not matched in q

(3)

where USP is the unit sales profit ($10 in TAC 2010) and MSB the manufacturer spe-
cialty bonus (0.4 in TAC 2010).

However, for calculating the probability of conversion, we need two additional esti-
mations, the proportion of focused users and past and future conversions that have an
impact on the conversion probability due to the distribution constraint effect:

P̂ r
q

d+1{conversion|click} = ̂focusedPercentage
q·

Prq{conversion|focused}(Îd+1)
(4)

To calculate a value for the ̂focusedPercentage
q

estimate, we used the following pro-
cedure. If we fix advertisers’ policies, then the proportion of focused users is equal to
the ratio of the clicks that result in conversions divided by their individual probability of
conversion (incorporating the distribution constraint effect). The user population model
in TAC AA is a Markov chain and, despite the incorporation of the burst transitions,
it will typically converge to a stationary distribution. Hence, instead of using a more
sophisticated and accurate particle filter, we have used Monte Carlo simulations, run-
ning 100 games with symmetric, fixed strategy profiles, making sure that their bids are
always higher than those requested by reserve scores, and have then recorded the mean
values for our desired ratios (every day results for individual queries are aggregated for
each focus level). Historical proportions are kept in log files and are updated incremen-
tally. In our experiments, we have used last day’s probability of conversion as a close
estimate of the requested value for the denominator.

Our first differentiation compared to the original strategy lies in the estimation of the
conversion probability, Prq{conversion|focused}(Îd+1), which is a function of the
distribution constraint effect, Id. As Jordan has noticed in his thesis [14], the distribution
constraint effect, Id, is the second most influential factor in an advertiser’s performance
after the manufacturer specialty in terms of the coefficient of determination values.
This effect radically affects the probability of purchase. Based on the specifications of
the game for the calculation of the distribution constraint effect for day d+1, we need,
but don’t have the conversions, c, of day d and d+ 1:

Id+1 = g(cd−3 + cd−2 + cd−1 + ĉd + ĉd+1 − Ccap) (5)

where g is a function defined in the specification that gives the value of Id.

An Adaptive Proportional VPC Agent 21

Given that an entrant must calculate a bid with a 2-day lag in available information,
QuakTAC estimates tomorrow’s Id+1 value using a two-step bootstrapping technique.
More specifically, it estimates conversions on day d as the product of current game’s his-
torical click-through rate, recorded historical impressions and (optimistically) estimated
conversion probability. Then it uses this information to estimate day’s d+1 conversion
rate and corresponding conversions and uses an averaged value for the Id+1.

Having implemented that strategy, we realized that it performs poorly on the 2010
server specifications. It seems that it underestimates the VPC, systematically bidding
much lower than what is allowed by the publisher’s reserve scores. It is important to
note that these scores for 2010 are much higher than 2009. Jordan describes the effect
of the reserve score on publisher’s revenue as well as players’ equilibrium showing that
AstonTAC and Schlemazl perform much better than TacTex for these higher reserve
scores. To rectify this shortcoming, we have implemented a simpler but more reasonable
expectation: we aggregate last three days’ conversions and set 1

4 of this value as our
number of conversions for day d as well as day d + 1. This is slightly lower than their
corresponding mean value so as to intentionally be more conservative. However, when
our capacity is CLOW , we have used instead the mean value, which was experimentally
shown to yield better results in this case.

Finally, we had to select the percentage of our VPC to bid. Following the methodol-
ogy of Vorobeychik, we restrict our interest in simple symmetric equilibria and discrete
values ranging from 0 to 1 with a step of 0.1. This means that all but one advertisers fol-
low the same strategy (bid = αυ) and a single player bids another αsingle percentage,
which varies among games. The values for αsingle are determined via an iterative best
response method, where we start from a truthful homogeneous strategy profile (α = 1,
αsingle = 1). This is a reasonable value to start, as GSP is considered a generaliza-
tion of the Vickrey auction. Then we find the best αsingle deviation from this profile
and use this last value as the new homogeneous profile. This process is repeated until
self-response is a Bayes-Nash equilibrium. We have validated the speed of this method,
being able to get the best value of αsingle = 0.3 in three iterations (1, 0.4 and 0.3).
The alpha value of 0.3 and the new method for calculating Id are the differentiation
we made to the agent playing in the qualifications round of TAC AA 2010 and further
defined as Mertacor-Quals.

Ad Selection Strategy. It is also important to describe our ad selection strategy. This
task is straightforward forF0 (no keywords) andF2 (containing both brand and product
keywords) type queries. For the first case, there is a 1

9 probability of matching a user’s
preference, so a generic ad seems most appropriate. On the other hand, users reveal
truthfully their preferences, hence a targeted F2 ad will always match them. For the F1
keywords (containing either brand or product keywords), we have also used a targeted
advertisement, where our agent’s respective specialty is shown when the manufacturer
or the component are not disclosed, hoping that our increased profit or conversion prob-
ability benefits will outweigh our higher probabilities of mismatch. This strategy also
proved to be effective in the original QuakTAC agent [4].

22 K.C. Chatzidimitriou et al.

4.2 Extensions

For the final rounds, we tried to improve our agent in the two critical calculations of:
a) estimating the distribution constraint effect and b) finding an appropriate α value by
adapting it on-line according to the current market conditions.

In the first case, we used the k-Nearest-Neighbors (k-NN) algorithm to estimate the
capacity to be committed for the current day cd and then using that estimate to further
predict the capacity to be purchased on day cd+1. We chose k = 5 and stored 5-day tu-
ples for the last 10 games (600 samples). We adopted this kind of modeling because the
agent executes a clear 5-day cycle in its bidding and conversion behavior. This behavior
is derived from the strategy of the agent since when having enough remaining capacity,
it will produce high bids due to high VPC values and get ranked in the first positions.
That way it will receive many clicks and a high volume of conversions will take place.
This behavior will continue for one more day, until the agent’s store is depleted. Then
the bids will be low and the agent will maintain a no conversions status for three days.

In order to choose the proportion of the VPC to bid in a real antagonistic environ-
ment, we have formulated the problem of choosing α into an associative n-armed ban-
dit problem [15]. Under this formulation, we switched bidding from b(υ) = α · υ to
b(α, υ) = α · υ.

Based on the experience gained from the TAC Supply Chain Management domain,
we tried to maintain a low dimensionality in the state and action spaces for sampling
efficiency. We chose VPC and query types as a state variables. The choice of VPC was
made because its calculation incorporates many parameters that characterize the state
of the agent and the market such as: specialties, distribution capacity constraint, and
proportion of focused users. The query type was added as state variable in order to
provide additional information about the current state from another dimension. VPC
was quantized over 11 states, 10 for VPC values between $0 and $10 and 1 for VPC
values above $10. The 16 query types were mapped into 8 states as presented in Table 1.
There were 6 discrete actions picking values of α between equal spaced points from
0.275 to 0.325 inclusive. So a total of 528 Q(s,a) values need to be stored and updated.
For exploration purposes ε-greedy policy was used with ε = 0.1. The goal is to learn a
policy for selecting one of the 6 actions that would maximize the daily profit given the
state of the game. Updates to Q values were made using the learning rule:

Q(s, a)k+1 = Q(s, a)k + 0.1 · (rk −Q(s, a)k) (6)

Reward is the daily profit calculate as the revenue minus the cost for the corresponding
state and action.

r = revenue− CPC ·#clicks (7)

On day d we receive the report for day d − 1 from which we can calculate the reward
for day d− 1. That reward concerns the bids made on day d− 2 for day d− 1.

5 Analysis

To validate the effectiveness of this iterative best response technique, after the tour-
nament we have also repeated the experiments for all possible combinations of ho-
mogeneous and single α values and have plotted the best αsingle as a function of the

An Adaptive Proportional VPC Agent 23

Table 1. Mapping query types to states. One state for the F0 query, 3 states for F1 queries and 4
states for F2 queries

Query Type State ID

F0 1
F1 with no matching specialty 2
F1 with matching manufacturer specialty 3
F1 with matching component specialty 4
F2 with no matching specialty 5
F2 with matching manufacturer specialty 6
F2 with matching component specialty 7
F2 with all matching specialties 8

Fig. 2. Best response function

symmetric opponent profile. Each experiment was repeated 5 times for a total of 500
log files. Results are given in Figure 2. As can be seen, there are only two close val-
ues for αsingle(0.3, 0.4), although 0.3 is best response for more reasonable strategies
(α < 0.5). Hence, this technique yields robust results in only 3% of total required time
for extensive experiments. Moreover, we should note that the values of 0.1 and 0.2
used by QuakTAC last year are not profitable at all in this year’s platform due to the
aforementioned reserve score effect.

The final version of agent Mertacor got the third place in the TAC AA 2010 compe-
tition. The standings are shown in Table 2.

To evaluate the effectiveness of the agent and the extensions incorporated, two
tournaments were conducted. Four versions of agent Mertacor were constructed.
Mertacor-Quals is the agent that participated in the qualifications of the 2010 tour-
nament. Mertacor-kNN has only the k-NN capability, while it continues to bid with

24 K.C. Chatzidimitriou et al.

Table 2. TAC AA 2010 tournament results

Position Agent Average Score ($)

1 TacTex 58 130
2 Schlemazl 52 868
3 Mertacor 52 383
4 MetroClick 52 210
5 Nanda AA 48 084
6 crocodileagent 47 779
7 tau 44 419
8 McCon 43 415

α = 0.3. Mertacor-RL has the ability to adapt α, but is not equipped with k-NN. Last
but not least, Mertacor-Finals combines all the modifications and extensions described
in this paper and is the agent participated in the 2010 finals. In the first tournament,
two agents from each one of the four versions of the agent competed, having all the
same storage capacity equal to CMED . In the second tournament the storage capacities
were selected in competition terms (2 agents with CLOW , 4 with CMED and 2 with
CHIGH).

Results in Table 3 indicate that the extension added to the Mertacor-Finals version of
the agent is giving the agent a small boost. Both versions were able to get the first two
positions in this tournament. Even though the differences are not large enough and not
statistical significant under paired t-testing, in tightly played competitions they could
make the difference over ranking positions, like in 2010. Moreover, we believe that by
optimizing these techniques, now implemented rather crudely, more profit is possible.
It is also evident that including both extensions has more benefits than anyone of them
alone.

When dealing with different capacities between games, the domain becomes more
challenging, especially for on-line learning methods. In Table 4, one can find the results
of the second tournament. Again the differences are not large enough, but there are small
deviations between versions. The k-NN version is able to estimate better the capacity

Table 3. Average scores over 88 games of different versions of agent Mertacor with equal distri-
bution capacity constraint C = CMED

Agent Mean Score Aggregate Score

Mertacor-Quals-1 $53 330
$53 036

Mertacor-Quals-2 $52 742
Mertacor-kNN-1 $53 575

$53 151
Mertacor-kNN-2 $52 727
Mertacor-RL-1 $53 006

$52 959
Mertacor-RL-2 $52 912
Mertacor-Finals-1 $53 819

$53 806
Mertacor-Finals-2 $53 793

An Adaptive Proportional VPC Agent 25

to be used by the agent and this benefits the final scoring of the agent In Figure 3,
one can obverse the quality of the k-NN predictions. It is possible that by optimizing
this algorithm, extremely accurate results could be possible. As general comment, all
versions of the agent, in both tournaments, were able to maintain their bank accounts
to the level agent Mertacor scored in the finals. This is evidence of a robust strategy
against both similar and different opponents.

Table 4. Average scores over 88 games of different versions of agent Mertacor in competition
mode with respect to distribution capacity constraints

Agent Mean Score Aggregate Score

Mertacor-Quals-1 $53 679
$53 289

Mertacor-Quals-2 $52 900
Mertacor-kNN-1 $54 632

$53 998
Mertacor-kNN-2 $53 365
Mertacor-RL-1 $52 712

$53 271
Mertacor-RL-2 $53 831
Mertacor-Finals-1 $53 615

$53 334
Mertacor-Finals-2 $53 054

10 20 30 40 50

0
10

0
20

0
30

0
40

0
50

0

Conversions prediction

day

co
nv

er
si

on
s

Fig. 3. k-NN enabled predictions of conversions for the future day (dashed line). The solid line
indicates the actual conversions made.

26 K.C. Chatzidimitriou et al.

6 Conclusions and Future Work

In this report we have described our agent, Mertacor, for the TAC AA 2010 tournament.
We have seen how empirical game theory can provide robust and effective results in a
restricted real-world setting, when operationalized appropriately using simple abstrac-
tions. We were also able to discuss about the importance of the distribution constraint
effect and the reserve score in our results, which significantly influenced our agent’s
performance before and during the tournament. Last but not least, we have elaborated
on two extensions, k-nearest neighbors and reinforcement learning that differentiate our
agent from related work and provide added value to the agent with respect to making
better predictions and adapting to the environment and the competition.

As future work, we would first need to use a more accurate user state predictor, such
as the one implemented by TacTex. Moreover, we would like to extend our strategy
to quadratic functions of the VPC, to incorporate the decrease in α for smaller corre-
sponding valuations [16], as was also implemented in QuakTAC during the finals of
2009. Other non-linear function approximators could also be tested, under off-line pa-
rameter learning schemes for boosting time to converge to an optimal policy. Finally,
it would be desirable to identify key parameters that influence more or less the optimal
bidding percentage.

References

1. PwC: IAB U.S. Internet Advertising Revenue Report for 2009 (April 2010)
2. Jansen, B.J., Mullen, T.: Sponsored search: an overview of the concept, history, and technol-

ogy. International Journal of Electronic Business 6(2), 114–131 (2008)
3. Jordan, P.R., Cassell, B., Callender, L.F., Kaul, A., Wellman, M.P.: The ad auctions game for

the 2010 trading agent competition. Technical report, University of Michigan, Ann Arbor,
MI 48109-2121 USA (2010)

4. Vorobeychik, Y.: A Game Theoretic Bidding Agent for the Ad Auction Game. In: Third In-
ternational Conference on Agents and Artificial Intelligence, ICAART 2011 (January 2011)

5. Feldman, J., Muthukrishnan, S.: Algorithmic methods for sponsored search advertising. In:
Liu, Z., Xia, C.H. (eds.) Performance Modeling and Engineering (2008)

6. Das, A., Goitis, I., Karlin, A.R., Mathieu, C.: On the effects of competing advertisements in
keyword auctions. Working Paper (2008)

7. Pardoe, D., Chakraborty, D., Stone, P.: TacTex09: A champion bidding agent for ad auctions.
In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2010) (May 2010)

8. Berg, J., Greenwald, A., Naroditskiy, V., Sodomka, E.: A knapsack-based approach to bid-
ding in ad auctions. In: Proceeding of the 2010 Conference on ECAI 2010: 19th European
Conference on Artificial Intelligence, pp. 1013–1014. IOS Press, Amsterdam (2010)

9. Cigler, L., Mirza, E.: EPFLAgent: A Bidding Strategy for TAC/AA. Presentation in Work-
shop on Trading Agent Design and Analysis (TADA), ACM EC 2010 (July 2010)

10. Mansour, Y., Schain, M.: TAU Agent. Presentation in Workshop on Trading Agent Design
and Analysis (TADA), ACM EC 2010 (July 2010)

11. Munsey, M., Veilleux, J., Bikkani, S., Teredesai, A., De Cock, M.: Born to trade: A geneti-
cally evolved keyword bidder for sponsored search. In: 2010 IEEE Congress on Evolutionary
Computation (CEC), pp. 1–8 (2010)

An Adaptive Proportional VPC Agent 27

12. Chang, M., He, M., Luo, X.: Designing a successful adaptive agent for tac ad auction. In:
Proceeding of the 2010 Conference on ECAI 2010: 19th European Conference on Artificial
Intelligence, pp. 587–592. IOS Press, Amsterdam (2010)

13. Lahaie, S.: An analysis of alternative slot auction designs for sponsored search. In: EC 2006:
Proceedings of the 7th ACM Conference on Electronic Commerce, pp. 218–227. ACM, New
York (2006)

14. Jordan, P.R.: Practical Strategic Reasoning with Applications in Market Games. PhD thesis,
University of Michigan, Ann Arbor, MI (2010)

15. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge
(1998)

16. Vorobeychik, Y.: Simulation-based game theoretic analysis of keyword auctions with low-
dimensional bidding strategies. In: Twenty-Fifth Conference on Uncertainty in Articial In-
telligence (2009)

Improving Prediction in TAC SCM by Integrating
Multivariate and Temporal Aspects via PLS Regression

William Groves and Maria Gini

University of Minnesota
Department of Computer Science and Engineering

Minneapolis, MN 55455 USA
{groves,gini}@cs.umn.edu

Abstract. We address the construction of a prediction model from data available
in a complex environment. We first present a data extraction method that is able to
leverage information contained in the movements of all variables in recent obser-
vations. This improved data extraction is then used with a common multivariate
regression technique: Partial Least Squares (PLS) regression. We experimentally
validate this combined data extraction and modeling with data from a competi-
tive multi-agent supply chain setting, the Trading Agent Competition for Supply
Chain Management (TAC SCM). Our method achieves competitive (and often su-
perior) performance compared to the state-of-the-art domain-specific prediction
techniques used in the 2008 Prediction Challenge competition.

Keywords: prediction, price modeling, feature selection, regression, machine
learning.

1 Introduction

The basic purpose of prediction in decision making scenarios is to provide information
about the future that is relevant to decisions that must be made now. In a supply chain
scenario, prediction is generally concerned with providing information about future
costs, prices, and demand so that decisions can be made today that maximize utility.
Other aspects such as limited information, informational delays, changing conditions,
and observation noise can add complexity to the environment and make prediction more
difficult. The Trading Agent Competition for Supply Chain Management (TAC SCM)
is a market simulation game that possesses all these challenges.

TAC SCM is a complex, heterogeneous-agent supply chain game that is designed to
simulate an oligopoly market of competing computer manufacturing agents who must
autonomously purchase component parts, manufacture computers, and sell the finished
computers to end customers over a simulated product lifetime of a year. Each run of
the simulation, which takes approximately one hour in real-time, is unique because the
market’s behavior will vary both due to changes in the underlying market conditions
(available component supply and customer demand), and due to changes in the behavior
of individual agents. This competition, which has been held annually since 2003, has
attracted many participants from around the world [1].

E. David et al. (Eds.): AMEC/TADA 2011, LNBIP 119, pp. 28–43, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Improving Prediction in TAC SCM 29

For the purposes of this paper, we are primarily concerned with the price prediction
aspects of the competition. A subcompetition called the “Prediction Challenge” was
initiated in 2007 to isolate this aspect of the simulation for study [2]. This subcompeti-
tion facilitated direct comparisons of prediction performance on four prediction types:
(1) current product prices, (2) future product prices, (3) current component prices, and
(4) future component prices. “Current” refers to predictions about prices revealed to an
agent on the next day; “future” refers to predictions about prices revealed to an agent
an additional 20 days in the future from the current day. For each prediction class, we
show how to generate an optimal feature set and the prediction results of PLS regression
using these features.

The challenge of predicting in this environment is that many variables have relation-
ships to other variables that are not easily quantified. Economic theory suggests that
there is a direct relationship between the cost of parts and the cost of finished goods,
but, in a situation where parts are shared across many products, the relationships are dy-
namic. Instead of modeling these relationships individually, we use partial least squares
(PLS) regression, which is able to implicitly determine correlations between input vari-
ables based on historical data. To effectively model these relationships, a corpus of
historical data is required to calibrate the model. The observations used to construct
the training set features should be representative of the range of values the model will
need to predict over. In a multi-agent setting, this means that the training data should be
generated by a similar set of opponents as when predictions are to be made.

We make two novel contributions: (1) we include time-delayed observations as ad-
ditional elements in the feature vector, in addition to the most recent observed value of
each variable, and (2) we segment the features hierarchically into classes, based on their
relationship to the variable of interest. Searching for the optimal combination of time-
delayed features is done by varying independently for each class the depth of lagged
data to be included in the feature vector. This makes the computation tractable and ef-
ficient. Despite the fact our method uses very little domain-knowledge, we achieved
competitive (and often superior) performance compared to the domain-specific predic-
tion techniques in the 2008 Prediction Challenge.

The paper is structured as follows: in the next section, we present related work
relevant to PLS regression and previous prediction approaches used in TAC SCM. In
Section 3, our data extraction and prediction methodology is outlined including how
the feature vector is augmented to include data from past observations. Our prediction
results are presented and compared with the state-of-the-art methods in Section 5. Sec-
tion 6 concludes with a discussion of future work.

2 Background and Related Work

The majority of prediction models can be classified as one of two types: on-line (only
information from a short window of recent observations is used) and off-line (significant
volumes of historical data are used to calibrate the model). While on-line methods can
be more robust to changes in the environment and can provide good performance in
a dynamic environment, often better performance can be achieved by incorporating
training on historical data. For these reasons, typically on-line models are tried first,
and off-line models are used as higher performance becomes necessary.

30 W. Groves and M. Gini

The TAC SCM competition as well as other autonomous agent competitions require
agents to do significant forecasting to achieve consistent, strong performance.

TAC SCM: Current and Future Product Prices. In TAC SCM component prices are
the prices agents must pay when buying component parts. Product prices are the prices
agents must be concerned with when selling their finished goods to end customers.
There is a mismatch between the phases of buying components and selling products
which is due to the fact that the lowest component costs are generally seen for orders for
components with a long lead time (up to 220 days), which are far beyond the maximum
lead time of the customer requests for finished computers (up to 12 days).

The prediction methods employed by top performers in the TAC SCM competition
involve a combination of offline training on historical data for computation of latent
(or not always visible) information. Overall, an agent has significant tactical reasons to
estimate next day prices due to the need to assign a specific bid price for each customer
request the agent wants to bid for.

The TacTex agent makes next day product price predictions using a particle filter to
compute the lowest price offered by any agent in response to each request [3].

The Deep Maize agent uses a k-nearest neighbor technique over a large set of his-
torical data. The feature vector, over which similarity is computed, includes current
day estimates of supplier capacity (which features prominently in the pricing equation),
today’s observed customer demand, and recently observed computer prices [4]. This
method explicitly limits the contribution of individual games by using only the most
similar observation from each game in the data set.

The CMieux agent (an agent not participating in the prediction challenge) uses a
decision tree variant called a distribution tree that tracks several distinct distributions
of prices and chooses the most relevant normal distribution to use based on publicly
known attributes of the price to estimate [5].

The MinneTAC agent (also not in the prediction challenge) uses a double exponential
smoothing time series over the recently observed high and low price for each product
type to estimate next day product prices [6]. A classification-based approach used in [7]
involves clustering observed market behaviors into economic regimes to build both cur-
rent and future product price distribution models.

For 20 day ahead sales price predictions (“future product”), most agents report to use
methods similar to their next day approaches.

The TacTex agent uses the result of its next day particle filter and augments this value
by computing an adjustment for 20 day ahead predictions using an additive regression
model. The additive regression model estimates the difference between the next day
price and the 20 day ahead price and is derived from a set of 31 visible features (16
product prices, 3 demand signals, storage cost, interest rate, and 10 unique component
prices) from the current day’s observations. This technique is similar to the PLS regres-
sion method discussed in Section 3 but differs by not using information observed prior
to the current day.

Deep Maize estimates future product prices using the same k-nearest neighbor used
in next day predictions but instead trained on 20 day ahead observations.

Improving Prediction in TAC SCM 31

Some agents do not estimate 20 day ahead product prices at all because this predic-
tion is not required when operating in TAC SCM. However, some agents use some form
of long-term product price prediction to plan their long lead-time procurement.

TAC SCM: Current and Future Component Prices. A component request is priced
depending on the amount of uncommitted factory capacity on the supply line between
the current day and the delivery date. Prices are sensitive to the actions of the competing
agents, since requests from other agents reduce the available capacity of the suppliers.

Component pricing is significantly more complex due to the need to consider lead
time. When an agent makes a request for component parts it must also specify a delivery
lead-time. This is critical because the prices quoted vary significantly over the range of
possible lead times. Generally, the longest lead-time requests are the cheapest, but this
is not always true. Interestingly, the lead-time aspect of product prices is not explicitly
considered by many TAC SCM agents.

TacTex predicts next day component prices with a domain-specific approach by esti-
mating the available production capacity of each supplier. This is done using knowledge
of how component prices are calculated. The fraction of unallocated supplier capacity
between the request date and the delivery date is directly proportional to the quoted
per unit cost for each request. This value can be estimated by observing differences in
the recent quoted prices. Note, however, that this approach cannot be generalized to
other domains. For future component requests (20 days ahead), TacTex again employs
additive regression to learn an adjustment between the current day’s price and the fu-
ture price (20 day ahead). Their algorithm is otherwise unchanged from the next day
method.

Deep Maize uses a linear interpolation over recent samples to estimate the compo-
nent price for a specific due date. An adjustment to the linear interpolation is computed
from a reduced error pruning tree, a decision tree variant. The reduced error pruning
tree offset values are trained offline using historical data of next day predictions. This
same method is used for 20 day ahead predictions [4].

The CMieux agent uses a k-nearest neighbor approach to estimate next day com-
ponent costs. The contribution of the k-nearest neighbors is averaged using inverse
distance weighting, where distance refers to the temporal difference between the due
date requests [5].

Multivariate Techniques. The literature contains several classes of methods that sys-
tematically leverage information from multiple related time series including vector au-
toregressive moving average (ARMA) and multivariate regression methods.

Vector ARMA is the multivariate analog of the ARMA time-series predictor pre-
sented in [8,9]. Vector ARMA is applied in [10] using the MISO TFN algorithm
(Multiple Input Single Output Transfer Function-Noise model) to improve river flow
predictions on a network of hydropower generating stations. Given daily flow data from
three upstream and one downstream reservoirs, the authors developed an improved flow
prediction model for both next-day and two day ahead predictions. The improvement
was made using three years of daily flow measurements from all four sites and reduced

32 W. Groves and M. Gini

standard error over the conventional approach of using separate time-series ARMA
models for each site.

The vector ARMA also appears to be effective in domains with a small sample size.
Disadvantages of vector ARMA stem from its sensitivity to collinearity in the input
variables; the examples from the literature use only a small number (3-5) of input vari-
ables.

Multiple linear regression (MLR), principal component regression (PCR), and par-
tial least squares (PLS) regression are techniques first used with significant success in
chemometrics, social science, and econometrics [11]. PLS regression was particularly
successful, compared to other methods, on problems having a large number of highly
collinear variables and a small number of samples [12].

The behavior of PLS, MLR, and PCR regression techniques differ from the time-
series based techniques due to the absence of a “memory” component. Time series
models like ARMA can be affected by outliers in the input data, and the effect of an
outlier can persist in the output prediction long after the outlier was first observed [13].
This is in contrast to the regression techniques: input observations that are outliers will
only affect the output variable when the outlier is still in the input set. In adversar-
ial settings like TAC SCM, where opponents have the ability to temporarily affect the
input data to a prediction computation, the long term effect of outliers in time-series
predictors is particularly undesirable.

3 Our Approach

The prediction model that PLS regression computes for a variable y is a weighted linear
function in terms of the feature values xi, i = 1..m (where m is the number of features).
Mathematically, the prediction model for a variable y can be expressed as1: y = b̂0 +
b̂1x1 + b̂2x2 + . . .+ b̂mxm where b̂i, i ∈ 0..m are the regression coefficients computed
in the model calibration stage. This form of linear model is suitable for the economic
modeling we are interested in and is discussed next.

3.1 A Simple Model

In an economic supply chain context, this simple linear model maps naturally into the
domain: the long-run price of a product should be equivalent to a linear sum of the
costs of its constituent parts plus the profit margin taken by the manufacturer. The cost
of a component could similarly be computed from this ideal model: the long-run cost
of some component should be equivalent to a fraction of the prices of products that use
the component.

This ideal model, while intuitively attractive, is not sufficient for modeling prices
in TAC SCM for several reasons. First, the model does not directly address lead time

1 This is a parsimonious expression of the regression model. In practice, it may be useful to
compute y values in a two step process employing, first, the dimensionality reduction and,
second, the regression.

Improving Prediction in TAC SCM 33

effects2. Also, particularly in the component market, prices vary significantly by lead
time: longer lead time requests typically have lower cost. This mismatch between possi-
ble lead times in the two markets drives the need for agents to develop mechanisms for
coordination, dynamic planning, and prediction. For this reason our model incorporates
price observations for multiple component lead times.

Second, the model does not address trends that can be anticipated by observing
changes in price over time. Observations of prices of an individual product over sev-
eral past time steps (pt,pt−1,pt−2,. . .) provide information to form a prediction about
the next product price (pt+1). This is equivalent to a univariate time series prediction.
Information from previous time steps is included in our model.

Third, visible non-price information about the environment also has an effect on
prices. For instance, the current bank interest rate (the cost of borrowing), and the cur-
rent storage cost (the cost of holding inventory) both affect price. They are also included
in our model.

Fourth, information about the current market situation also has an effect on price.
Information about overall aggregate demand is available to the agents by observing
the number of products requested by customers each day. This information can also
be included in the feature vector. In keeping with the domain-agnostic nature of our
approach, we assume a linear relationship for the non-price features as well.

Including all observable information that could have an effect on price into the fea-
ture vector is an obvious approach. But in practice, this is impractical. First, as the
number of features rises significantly, the effectiveness of the prediction algorithm is
likely to degrade. Second, there is almost no limit to the number of possible features
that can be added. The inclusion of irrelevant (or low informational value) features is a
problem that we address next.

3.2 Input Feature Computation

We now illustrate how several distinct types of data are aggregated into a feature vector
of consistent size. Data observable from an individual agent’s perspective consists of
four feature types:

1. Game instance features include values that remain invariant throughout the simu-
lation instance, such as the bank interest rate and storage cost.

2. Daily market segment demand is computed from the total number of product Re-
quests for Quotes (RFQs) in each of the three product market segments (low,
medium, and high range) on each day.

3. Daily price observations for products are the mean sale prices for each of the 16
product types, as observed from the agent. Days with missing product price obser-
vations (no successful sales for a specific product on a given day) have their values

2 In both the component and product markets, agents must commit to buy components or sell
products far in advance of the delivery date. In the component market, delivery lead times can
be between 1 and 220 days into the future. When an agent makes a component request, it must
also specify the delivery date for the request. In the product market, delivery lead times are
between 3 and 12 days into the future. The delivery date is specified in the request from the
customer, and the agent with the winning bid must honor it or a significant financial per-unit
late fee is imposed.

34 W. Groves and M. Gini

Table 1. List of all the features available to an agent during the TAC SCM competition

Feature Type Count Feature

1 Game Instance 2
– storage cost
– interest rate
– low market

2 Daily Demand 3 – medium market
– high market
– SKU 1

3 Price for products 16 . . .
– SKU 16
– comp100sup1lt2β

– comp101sup1lt2
4 Price for parts at LT2α 16 – comp110sup2lt2

– comp111sup2lt2
. . .
– comp100sup1lt6

Price for parts at LT6 16 – comp101sup1lt6
. . .

Price for parts at LT10 16 . . .
Price for parts at LT20 16 . . .
Price for parts at LT30 16 . . .

All Features 101

α LT2 denotes a delivery lead time of 2 days from the order date.
β Price of component 100 from supplier 1 with a delivery lead-time of 2 days.

computed using a radial basis function interpolation. No consideration is made for
variations in lead-time among product price observations.

4. Daily price observations for components are the prices of each of the 10 unique
components, as observed by the agent. There are 16 product lines for the 10 com-
ponents, often with significant price difference for the components produced by
more than one line. The prices are added to the feature vector for a pre-defined
schedule of lead times of 2, 6, 10, 20, and 30 days. Because we use 5 lead times,
each component contributes 5 features to the overall feature set. Days with miss-
ing component observations on these lead times have their values computed using
a radial basis function interpolation over observations for the component from the
previous 5 days.

These input features combine to produce a vector of 101 features (see Table 1). A fea-
ture vector of the complete feature set can be computed for each day for each agent
perspective in a simulation run. The feature vectors can be computed sequentially in as-
cending time unit order from day 1 to 219. The features for each type can be computed
based on messages visible to an individual agent (in the case of these experiments, the
prediction challenge agent’s perspective is used). For a day when there are no observed
values for a particular component and lead-time (the agent did not request any of a par-
ticular component, for example), the value for that day is computed using radial basis
function interpolation of data available to the agent on that day (including data from

Improving Prediction in TAC SCM 35

previous days). For days at the beginning of a simulation (when no past observations
are available), a lookup table of price statistics from the beginning of all training set
simulations is used to bootstrap the feature vector.

Labeled training instances are generated by computing the matrix of observations for
the features and appending the known true value (label) for the regression target. The
true value is the actual median unit price for each game, time unit, product, and lead
time combination. This labeled training set is read by the PLS algorithm to produce a
regression model.

Table 2. A simple configuration for product prediction. A “•” denotes inclusion of a particular
feature class having the specified time lag.

Class
Lagged Offsets

0 1 2 4 8 16

P3 •
P3b •
P3c •
P2 •
P4 •

P4h •

3.3 Lagged Features and Hierarchical Segmentation

Using only the most recent values of the 101 possible features as the entire feature set
may provide reasonable prediction results in some domains, but, it cannot predict trends
or temporal relationships present in the data. The need to represent temporally-offset
relationships motivates the idea of adding time-delayed observations to the feature set
as well; we refer to this as the addition of lagged features. For instance, if it is known
that the cost of a component on day t−8 is most representative of the price of a product
sold on day t+ 1, the 8 day delayed observation of that component should have a high
weight in the model. The time delay could correspond to the delay between persistent
changes in the observations and the resulting effect in the mean agent behavior.

Our technique uses the assumption that more recent observations are likely to have
high informational value for price prediction, but time-delayed features may hold infor-
mational value as well (i.e. the environment is not completely stochastic). The reason
for valuing recent observation more is that customer demand in each market segment
follows a Poisson distribution with a random walk. The lead time between a change in
the market and its effect on other prices may be longer than one day, but the minimum
possible lead time for this effect is 1 day. To cover the possibility of changes in the
design of opponent agents outside of our control, we keep most recent (current day)
observations in the model. For reasons of tractability, features with long time delays
are only added after features with shorter delays are added. Even with this constraint,
searching for the optimal subset from 101 available features is still an intractably large
search space.

To reduce the number of possible configurations of features, we introduce the notion
of a hierarchical segmentation of the feature set. In this domain, each of the 101 features

36 W. Groves and M. Gini

is placed into one of several classes based on its relationship to the target variable. In
cases where a feature belongs to multiple classes, the feature is placed in the class
that is most specific. From a minimal amount of domain knowledge derived from the
specification document of TAC SCM, we have compiled a class hierarchy for each
type of target variable. These hierarchies can be seen for the product prediction and
component prediction tasks in Figures 1 and 2, respectively.

Class: P2
Demand in

Market Segs.
1, 2, 3

Class:P3
Product
SKU 5

Class: P3b
All products in
same market

segment:
SKU 3,4,5,12,13,14

Class: P4
Components

in SKU 5:
101, 200, 300,

400

Class: P3c
All products:
SKU 1. . . 16

Class: P4h
All

components:
100. . . 401

Fig. 1. Lag scheme class hierarchy for product price prediction. Arrow denotes a not greater than
relationship (i.e. class P4 should have an equal or lower maximum time offset than class P3).

Thus far we have explained how a better feature set can be chosen based on some
knowledge of the domain. Now we will address how to choose the time-delayed data
from each class. The simplest lag configuration, shown in Table 2, contains the most
recent day’s value from all feature classes. We posit that time-delayed observations
from the variable of interest (Class P3) are likely to be predictive as well. Time-delayed
observations from other feature classes may also be but are less likely to be predictive.
This is the principle on which the choice of hierarchy and strict ordering of lagged data
additions is based.

We need to chose the set of permitted lagged offsets from each class. In this do-
main, we have found two sets of time-delays to be useful: time-delays with integer
offsets {∅3, 0, 1, 2, 3, 4, 5, . . .} and time-delays with geometrically increasing offsets
{∅, 0, 1, 2, 4, 8, 16, . . .}.

As as example, let’s consider product SKU 5. In Figure 1, the earlier observations of
the variable to be predicted (Class P3) are most likely to contain predictive information.
Information about other similar products (Class P4) will also provide some information
(but likely are less informationally dense). Finally, information about all other prod-
ucts is expected to contain the least information density (Class P4h). By constraining

3 This symbol refers to the lack of any observation.

Improving Prediction in TAC SCM 37

Class: C2
Demand in

Market Segs.
1, 2, 3

Class: C4
Component
comp 401,
supplier 7

Class: C4b
All Lines

Producing this
Component:
suppliers 7, 8

Class: C3
All Products
Using This

Component:
SKU 1, 3, . . .

Class: C4h
All

Components:
100, . . . , 401

Class: C3c
All Products:

SKU 1, . . . , 16

Fig. 2. Lag scheme class hierarchy for component prediction

the classes so that the less informationally dense classes have lower time delays and
contribute fewer additional features, we prevent the inclusion of extraneous, irrelevant
features.

Next, we will show how the time lagged data is constructed to form the augmented
features set. An expansion of the feature set is referred to as a lag scheme expansion.
Of course, the optimal lag scheme may be different for each variable modeled; a search
of the possible configurations is performed to find the best performing configuration in
each prediction class.

The number of possible lag schemes as formulated with the hierarchies in Figures 1
and 2 for a maximum time delay of 16 days are 111724 for both products and com-
ponents. Without the constraints between classes, there are 117649 configurations5 of
the 6 feature classes if constrained to possible time delays of {∅, 0, 1, 2, 4, 8, 16}, but
many of these configurations are uninteresting variants. Finally, without the hierarchical
segmentation and constraints between classes, there are 7101 (≈ 1085) configurations
of the 101 original features. Thus imposing both the feature classification and the con-
straint hierarchy allows for a greater range of “interesting” lag schemes to be tested for
the same amount of lag scheme search.

The optimal lag schemes we use in our experimental results in each of the four
prediction classes are provided in Table 3. For instance, the current product prediction
shown in Table 3(a) uses 35 raw features that are expanded into 56 augmented features.
Feature classes contributing features are: P3 (1 raw feature × 10 discrete lags), P3b (5

4 This is the subset of the 117649 configurations where all constraints between classes are satis-
fied. For example, if in a specific configuration class P2 contains time delays {0, 1, 2} it would
not be permissible for P3 to have time delays {0, 1, 2, 4}. All configurations with this set of
values would be discarded from the set of possible lag configurations.

5 There are 7 possible configurations of each class, and there are 6 classes. Therefore, there are
76 = 117649 possible configurations.

38 W. Groves and M. Gini

Table 3. Optimal lag schemes for the four prediction classes. Each prediction class was searched
independently to find the optimal lag scheme. There are 57 augmented features for current product
prediction, 51 for future product prediction, 10 for current component prediction, and 102 for
future component prediction. A “•” indicates time lags for feature classes that are included.

Class
Lagged Offsets

0 1 2 3 4 5 6 7 8 9

P3 • • • • • • • • • •
P3b •
P3c •
P2 • • • • •
P4 •

P4h •

Class
Lagged Offsets

0 1 2 4 8 16

P3 • • • • •
P3b • • • • •
P3c
P2 • • • • •
P4 •
P4h

(a) current product prediction (b) future product prediction

Class
Lagged Offsets

0 1 2 3 4 5 6 7 8 9

C4 • • • • • • • •
C4b
C4h
C3
C3c
C2

Class
Lagged Offsets

0 1 2 4 8 16

C4 • • • • •
C4b
C4h
C3 • • • • •
C3c
C2 • • • • •

(c) current component prediction (d) future component prediction

raw features (P3 contains the 6th feature) × 1 discrete lag), P3c (10 raw features (P3
and P3b handle 6 of the 16 SKUs) × 1 discrete lag), P2 (3 raw features × 5 discrete
lags), P4 (7 raw features× 1 discrete lag), P4h (9 raw features× 1 discrete lag), and two
game invariant features (game storage cost, game interest rate). While a domain expert
could conceive of a generally high-performance feature set, the automated lag scheme
search produces a configuration similar to what a domain expert could build without
the cost of requiring a domain expert. Also, the results of the optimal lag scheme search
can elicit some surprising relationships found in the data.

3.4 Partial Least Squares Regression

The methodology presented here does not modify the PLS algorithm, so our treatment
of PLS is brief. Several implementations of PLS exist [14,15,11]; each with its own per-
formance characteristics. This work uses the orthogonalized PLS, Non-Integer Partial
Least Squares (NIPALS), implementation presented in [12]. PLS was chosen over sim-
ilar multivariate techniques including multiple linear regression, ridge regression [16],
and principal component regression [17] because it produces generally equivalent or
better performance than the others and has the ability to adjust model complexity. Spe-
cific advantages of this algorithm are presented.

Partial least squares regression is particularly applicable to modeling economic phe-
nomena. First, PLS regression is able to handle very high-dimensionality inputs because

Improving Prediction in TAC SCM 39

Algorithm 1. PLS1 Calibration
input : A matrix X containing n training samples, n rows each with m features.

The corresponding vector y containing n labels for the training set. Model
complexity Amax chosen so that a = 1, . . . , Amax.

output: Loading arrays Ŵ , Q̂, and P̂ .

STEP 1 X0 = X − 1x̄′, where x̄′ is a vector of the
mean values of the variables in X .
y0 = y − 1ȳ, where ȳ is the mean value of y

optional Normalize columns in X0 to have equivalent variance. (Divide each column by
its variance.)
for a = 1 → Amax do

STEP 2.1 Using least squares, compute normalized local model ŵa

ŵa = X ′
a−1ya−1/‖X ′

a−1ya−1‖
STEP 2.2 Estimate scores t̂a using model ŵa.

t̂a = Xa−1ŵa (since ŵ′
aŵa = 1)

STEP 2.3 Estimate x-loadings pa using scores t̂a.
p̂′a = X ′

a−1 t̂a/t̂
′
at̂a

STEP 2.4 Estimate y-loadings qa using scores t̂a.
ya−1 = t̂aqa + f

q̂a = y′
a−1t̂a/t̂

′
a t̂a

STEP 2.5 Update X and y with contribution of current a.
Xa = Xa−1 − t̂ap̂

′
a

ya = ya−1 − t̂aq̂a
end

it implicitly performs dimensionality reduction from the number of inputs to the number
of PLS factors. Second, the model complexity can be adjusted by changing the number
of PLS factors to use in computing the regression result. This value is adjusted in our
experiments to determine the optimal model complexity in each prediction class. Third,
the algorithm is generally robust to the inclusion of highly collinear or irrelevant fea-
tures. Fourth, the structure of a trained model can be examined for knowledge about the
domain.

Mathematically, PLS regression deterministically computes a linear function that
maps a vector of the input features xi into the output variable yi (the label). Using a
PLS regression model for a particular variable y requires a calibration to be performed
over a set of training samples to determine the model as computed using Algorithm 1.

The model can be used for prediction as described mathematically in Algorithm 2.

4 Model Parameter: Dimensionality Reduction

The PLS regression algorithm in [12] allows users to adjust the model complexity by
selecting the number of PLS factors to generate when training. (These factors are anal-
ogous to the principal component vectors used in principal component regression.) The
number of PLS factors determines the dimensionality of the intermediate variable space

40 W. Groves and M. Gini

Algorithm 2. PLS1 Prediction
input : Populated feature vector xi, calibration x̄, calibration ȳ, loading weights

Ŵ , loadings P̂ , loadings Q̂, (for optional step) matrix X containing n
training samples (denoted as row vectors xi)

output: Prediction of ŷi

STEP 1 Center observation of feature vector xi.
xi,0 = xi − 1x̄′

optional Normalize variance x′
i,0 by dividing each value by its column variance in

calibration X .
for a = 1 → Amax do

STEP 2.1 Compute contribution of ŵa to yi.
t̂i,a = x′

i,a − 1ŵa

xi,a = xi,a−1 − t̂i,ap̂
′
a

end
STEP 3 Compute prediction of yi

ŷi = ȳ +ΣA
a=1t̂i,aq̂a

Alt. Alternative formulation in 1 step using b̂.

b̂0 = ȳ − x̄′b̂
B̂ = Ŵ (P̂ ′Ŵ)−1Q̂

ŷi = 1b̂0 + x′
iB̂

that the data is mapped to. The computational complexity does not significantly increase
for a larger number of factors but the choice does have an effect on prediction perfor-
mance: too large a number can cause over-fitting, and too small a number can cause the
model to be unable to represent the relationships in the data. We varied the number of
factors systematically in the optimal lag scheme search. The best performing number
of components is shown for each prediction category in Section 5.

When computing the optimal lag scheme it is also critical to determine the correct
value for model complexity in PLS. Figure 3 shows how the prediction accuracy varies
based on model complexity relative to the best observed prediction error (the lag scheme
is not varied in the data in this graph). The future component class has a slightly dif-
ferent pattern: we conjecture that future component achieves optimal error with a lower
number of latent variables because it has a relatively larger number of inputs from the
lag scheme search. Empirical results show that it is generally better to err on the side
of excess model complexity but excess complexity can also reduce prediction accuracy
by, in one case, over 10% above the lowest achievable error.

5 Experimental Results

We evaluate our approach on the TAC SCM 2008 Prediction challenge data set consist-
ing of 48 experimental runs divided into 3 sets of 16 games. Each set has a different
mixture of agents. The games were divided using a standard 6-fold cross validation for
training and scoring. For example, the first fold consisted of a training set of games 9-16
in set A and all games from sets B and C, and a test set of games 1-8 in set A.

Improving Prediction in TAC SCM 41

1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40

 1 5 9 13 17 21 25 29 33E
rr

or
 R

el
at

iv
e

to
 M

in
. E

rr
or

No. of Latent Vars. in Model

current product
future product

current component
future component

Fig. 3. Effect of varying the model complexity (number of PLS factors) for the optimal lag
scheme. The number of factors used in our experiments varied by prediction class: (1) current
product used 18 factors, (2) future product used 22 factors, (3) current component used 22 factors,
and (4) future component used 4 factors. The listed number of features used for each prediction
class is found by searching the range of possible values (between 1 and the number of features).

In order to compute prices for all variables in each prediction class, one prediction
model is generated for each variable to predict. The number of prediction models by
class is:

1. 16 for current product prices (one for each product type),
2. 16 for future product prices,
3. 16 × 59 for current component prices (one for each component line-lead time pair

for lead times 2 to 60), and
4. 16 × 26 for future component prices (lead times 5 to 30)

The lag scheme used for each prediction class was computed using an exhaustive search
over all lag schemes with valid hierarchical relationships on folds 1, 3, and 5 of the 6-
fold cross validation set.

The results shown in Table 4 are the aggregate scores obtained from experiments
on the entire 6-fold set using the best performing lag schemes. The results show that
incorporating time-delayed features onto the prediction task does improve the overall
prediction accuracy when compared with no use of lagged data. A comparison with the
published results shows that our method is competitive against state-of-the-art methods
used within the top performing agents. In particular, our method outperforms existing
methods on 20 day ahead predictions in both the component market and the product
market. The prediction category for which our method does worst (“current product”)
can be explained by the fact that the regression model computes a point estimate for
sales of each product on each day and uses the same price for all queries of the same
product on a specific day. There may be some attribute in product requests that causes
prices to vary significantly among the set of requests for the same product on the same

42 W. Groves and M. Gini

Table 4. Comparison between the error scores of an agent implementing our method for each
of the 4 classes of prediction and the scores of the top performing agents in the 2008 Prediction
Challenge. The Student’s t-test p-value when compared against 2008 First Place agent for Future
Product of PLS with geom. lag is 0.2660, for Future Component is 0.0012. A p-value (p-val)
of less than 0.05 indicates that the results of the two algorithms being compared are statistically
different at the 95% confidence level.

RMSE Current Product Future Product Current Component Future Component

PLS (geom. lag) 0.06308 0.08553 0.04063 0.09910
PLS (int. lags) 0.06295 0.09264 0.04008 0.10020
PLS (no lag) 0.06300 0.09039 0.04468 0.10947
2008 First Place 0.04779 0.08726 0.03476 0.09964
2008 Third Place 0.0531 0.09934 0.04029 0.10281

day. For “future product”, a point estimate is sufficient because the true value represents
the median price for product sales 20 days ahead.

The optimal lag schemes used in each of the four prediction classes is provided
in Table 3. There are some feature classes that are not included at all in the optimal
lag scheme, an example of this appears in Table 3(c): data from class C4 are the only
lagged features used in the prediction model. This suggests that the other variables are
not significant to the prediction of current component prices.

6 Conclusions and Future Work

Prediction problems that are dynamic and possess high dimensionality are generally dif-
ficult to model well. It is easy to disregard predictive information sources in exchange
for model simplicity. Imposing a class-based feature hierarchy and using time-delayed
data extraction in conjunction with a multivariate regression approach provides a model-
ing framework that maximizes the use of available predictive inputs while being robust
to irrelevant data. Hierarchical classification of features is of benefit because it reduces
the search space for finding the best lag configurations.

We believe that the time-delayed data extraction and classification is not tied to PLS
Regression for good performance. But, PLS regression was chosen because of its desir-
able properties for high-dimensional domains. In applications where performance is a
significant consideration, it may be possible to compute the regression results for several
target variables simultaneously in a single model PLS model using a variant called PLS2
regression. Also, the mathematical description of the trained regression model itself can
be leveraged to develop domain knowledge about relationships between variables in the
domain. More opaque, “black box” machine learning models may not facilitate this.
There are several aspects of PLS regression that could be explored to refine and expand
on these results. First, in prediction mode, PLS regression can also measure prediction
confidence on each observation by analysis of the residuals computed in the regression.
Another direction of future research is related to analysis of the loading vectors of the
PLS model to attempt to compute causal relationships between lagged variables. Addi-
tionally, this information could be used for manual validation of the computed models.

Improving Prediction in TAC SCM 43

Also, this analysis may facilitate better decision making in the application domain. In
TAC SCM, empirically constructed causal models may allow agent developers to focus
on specific behaviors that affect prices.

We believe this approach is highly applicable to other economic data sets. In partic-
ular, this data preparation and prediction method may have application in cases where
there are significant spatial relationships between input sources. Examples of such do-
mains include airline ticket pricing and river-flow prediction. This is an area left for
future work.

References

1. Collins, J., Arunachalam, R., Sadeh, N., Ericsson, J., Finne, N., Janson, S.: The Supply Chain
Management Game for the 2006 Trading Agent Competition. Technical Report CMU-ISRI-
07-100, Carnegie Mellon University, Pittsburgh, PA (December 2006)

2. Pardoe, D., Stone, P.: The 2007 TAC SCM Prediction Challenge. In: Ketter, W., La Poutré,
H., Sadeh, N., Shehory, O., Walsh, W. (eds.) AMEC 2008. LNBIP, vol. 44, pp. 175–189.
Springer, Heidelberg (2010)

3. Pardoe, D., Stone, P.: An Autonomous Agent for Supply Chain Management. In: Adomavi-
cius, G., Gupta, A. (eds.) Handbooks in Information Systems Series: Business Computing.
Elsevier (2007)

4. Kiekintveld, C., Miller, J., Jordan, P.R., Callender, L.F., Wellman, M.P.: Forecasting Market
Prices in a Supply Chain Game. Electronic Commerce Research and Applications 8(2), 63–77
(2009)

5. Benisch, M., Sardinha, A., Andrews, J., Ravichandran, R., Sadeh, N.: CMieux: Adaptive
Strategies for Competitive Supply Chain Trading. Electronic Commerce Research and Ap-
plications 8(2), 78–90 (2009)

6. Collins, J., Ketter, W., Gini, M.: Flexible Decision Control in an Autonomous Trading Agent.
Electronic Commerce Research and Applications 8(2), 91–105 (2009)

7. Ketter, W., Collins, J., Gini, M., Gupta, A., Schrater, P.: Detecting and Forecasting Economic
Regimes in Multi-Agent Automated Exchanges. Decision Support Systems 47(4), 307–318
(2009)

8. Box, G., Pelham, E., Jenkins, G.M.: Time Series Analysis: Forecasting and Control, 3rd edn.
Prentice Hall PTR (1994)

9. Tiao, G.C., Box, G.E.P.: Modeling Multiple Time Series with Applications. Journal of the
American Statistical Association 76(376), 802–816 (1981)

10. Olason, T., Watt, W.E.: Multivariate Transfer Function-Noise Model of River Flow for Hy-
dropower Operation. Nordic Hydrology 17(3), 185–202 (1986)

11. Martens, H., Næs, T.: Multivariate Calibration. John Wiley & Sons (July 1992)
12. Wold, S., Martens, H., Wold, H.: The multivariate calibration problem in chemistry solved

by the PLS method. In: Matrix Pencils. LNM, vol. 973, pp. 286–293. Springer (1983)
13. Hillmer, S.C., Larcker, D.F., Schroeder, D.A.: Forecasting Accounting Data: A Multiple

Time-Series Analysis. Journal of Forecasting 2(4), 389–404 (1983)
14. de Jong, S.: SIMPLS: An Alternative Approach to Partial Least Squares Regression. Chemo-

metrics and Intelligent Laboratory Systems 18(3), 251–263 (1993)
15. Dayal, B.S., MacGregor, J.F.: Recursive Exponentially Weighted PLS and its Applications

to Adaptive Control and Prediction. Journal of Process Control 7(3), 169–179 (1997)
16. Hoerl, A.E., Kennard, R.W.: Ridge Regression: Biased Estimation for Nonorthogonal Prob-

lems. Technometrics 42(1), 80–86 (2000)
17. Jolliffe, I.T.: A Note on the Use of Principal Components in Regression. Journal of Royal

Statistical Society (Applied Statistics) 31(3), 300–303 (1982)

Testing Adaptive Expectations Models of a Continuous
Double Auction Market against Empirical Facts

Neil Rayner1, Steve Phelps1, and Nick Constantinou2

1 Center for Computational Finance and Economic Agents (CCFEA), University of Essex,
Colchester, CO4 3SQ, United Kingdom

njwray@essex.ac.uk
2 Essex Business School, University of Essex, Colchester, CO4 3SQ, United Kingdom

Abstract. It is well known that empirical financial time series data exhibit long
memory phenomena: the behaviour of the market at various times in the past con-
tinues to exert an influence in the present. One explanation for these phenomena
is that they result from a process of social learning in which poorly performing
agents switch their strategy to that of other agents who appear to be more suc-
cessful. We test this explanation using an agent-based model and we find that the
stability of the model is directly related to the dynamics of the learning process;
models in which learning converges to a stationary steady state fail to produce
realistic time series data. In contrast, models in which learning leads to dynamic
switching behaviour in the steady state are able to reproduce the long memory
phenomena. We demonstrate that a model which incorporates contrarian trading
strategies results in more dynamic behaviour in steady state, and hence is able to
produce more realistic results.

Keywords: agent-based models, adaptive expectations, market microstructure,
long memory.

1 Introduction

With the explosion of algorithmic trading, financial markets now constitute some of the
largest and most mission critical multi-agent systems in our society. Understanding the
behaviour of these markets would make an important contribution to the prevention of
future financial crises. There is a need to build models of actual electronic markets, and
to validate these models against empirical facts – that is, to attempt to reverse engineer
existing multi-agent systems in order to understand how they work. Such an exercise is
now possible with the availability of electronic data detailing every transaction in the
market which can run to gigabytes per year per financial asset, and can be purchased
from the major financial exchanges by any third party. Towards this end we introduce
an agent-based model which produces behaviour consistent with several phenomena
that have been widely documented from studies of empirical financial data. Our model
is in the tradition of adaptive expectations [5] models in which: (i) agents’ valuations
are determined by their expectations of what will happen in the market in the future,
for example their belief that the market price will rise or fall; and (ii) expectations are
formed inductively through a learning process, rather than through the framework of ra-
tional expectations. This type of model is in contrast to auction theoretic models which

E. David et al. (Eds.): AMEC/TADA 2011, LNBIP 119, pp. 44–56, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Testing Adaptive Expectations Models 45

typically assume that valuations are private information, are well defined, uncorrelated,
or do not change over time, or some combination of these. In contrast the adaptive ex-
pectations framework proposes a much more dynamic view of agents’ beliefs as they
constantly revise their expectations, and hence valuations, in response to observations
of other agents and the market itself: the market is an “expectations feedback system”
from which valuations emerge [6].

The focus of our analysis is to determine to what extent this picture of the market is
consistent with the empirical data from real exchanges. Initially we examine properties
which are observable in empirical high frequency trading data with a view to model val-
idation. Once our model is validated, we can use it to answer counter factual questions
such as how changes in the design of the market mechanism would affect the efficiency
of the market. Therefore we focus on well known “stylized facts” of high-frequency
time series data observed in real financial markets and we analyse to what extent differ-
ent model assumptions are consistent with these phenomena. Specifically we analyze
long memory in the following attributes:

1. Volume: Over periods of time volume can be consistently high or low [12];
2. Volatility: Periods of similar volatility (price fluctuations) are observed

[3,4,7,14,13,15];
3. Order Signs: Signs of orders (that is, buy orders have a positive sign and sell orders

have a negative sign) exhibit long memory [10]; and
4. Returns: Returns do not exhibit long memory [1]. (Similar returns do not cluster

together in time).

In Section 2 we describe an existing agent-based model [8,9] within which agents learn
trading strategies from each other. These landmark experiments demonstrated the power
of agent-based modelling and specifically its ability to address poorly understood phe-
nomena like long memory in high frequency financial data. We extend this model by
introducing more contrarian forecasting strategies and demonstrate that this leads to
an improvement in the robustness of the model. We validate the existing LeBaron and
Yamamoto model in Section 3 and present our results in Section 4. In Section 5 we com-
pare the ability of the LeBaron and Yamamoto model and our more contrarian model
to produce long memory “stylized facts” of financial markets. Finally in Section 6 we
conclude.

2 The Model

We attempt to explain the long memory phenomena using an adaptive expectations
model with three classes of strategy which are used to form expectations about future
returns:

1. fundamentalists value a stock through an understanding of its hypothetical under-
lying value, in other words, based on expectations of the long term profitability of
the issuing company;

2. chartists form valuations inductively from historical price data; and

46 N. Rayner, S. Phelps, and N. Constantinou

3. noise traders who trade based on the fluctuations of the price of a stock. The buying
and selling behaviour of traders for a particular stock generates characteristic fluc-
tuations in price. A stock has an emergent volatility, understanding this volatility
allows traders to identify when the price is relatively low and when it is relatively
high.

Although chartist strategies should not be profitable according to the efficient markets
hypothesis, this is not necessarily true if the market is outside of an efficient equilibrium.
For example, if many agents adopt a chartist forecasting strategy it may be rational to
follow suit as the chartist expectations may lead to a self-fulfilling prophecy in the form
of a speculative bubble. Thus there are feedback effects from these three classes of
forecasting strategy and it is important to study the interaction between them in order
to understand the macroscopic behaviour of the market as a whole.

We model the market mechanism as a continuous double auction with limit orders.
Each agent submits a limit order to the market on every round of trading. Orders are
executed using a time priority rule: the transaction price is the price of the order which
was submitted first regardless of whether it is a bid or ask. If an order cannot be executed
immediately it is queued on the order-book.

The sign (buy or sell) and the price of the order for agent i at time t is determined as
a function of each agent’s forecast of expected return r̂(i,t,t+τ) for the period t+ τ (τ a
constant defining the time horizon over which price expectations are made). The price
of the order is set according to:

p(i,t+τ) = pt · er̂(i,t,t+τ)

where pt is the market quoted price at time t, and the sign of the order is buy iff.
p(i,t+τ) ≥ pt or sell iff. p(i,t+τ) < pt.

In [8,9] the forecasted expected return for the period t+τ of agent i at time t is calcu-
lated with a linear combination of fundamentalist, chartist and noise-trader forecasting
rules:

r̂(i,t,t+τ) = r̂f(i,t,t+τ) + r̂c(i,t,t+τ) + r̂n(i,t,t+τ) (1)

r̂f(i,t,t+τ) = f(i,t) · (F − pt
pt

) (2)

r̂c(i,t,t+τ) = c(i,t) · r̂Li (3)

r̂n(i,t,t+τ) = n(i,t) · ε(i,t) (4)

In the above F is the so-called “fundamental price” (which is exogenous and fixed for
all agents), pt is the current market quoted price which is the value of the transaction at
the previous time step or in the absence of a transaction the midpoint of the spread, ε(i,t)
are random iid. variables distributed ∼ N(0, 1) and r̂Li is a forecast based on historical
data; in our case a moving average of actual market returns over the period Li:

r̂Li =
1

Li

Li∑
j=1

pt−j − pt−j−1

pt−j−1

Testing Adaptive Expectations Models 47

The period Li is randomly and uniformly initialised from the interval (1, lmax). The
linear coefficients f(i,t), c(i,t) and n(i,t) denote the weight that agent i gives to each
class of forecast amongst fundamentalist, chartist and noise-trader respectively at time
t. Bids (bit) and asks (ait) (that is buys and sells) are entered into the with a markup or
markdown.

bit = pit,t+τ (1− ki) (5)

ait = pit,t+τ (1 + ki) (6)

ki is randomly and uniformly initialised from an interval (0, kmax).

1. If a bid exceeds the best ask (lowest ask price on the order book) it is entered at the
ask price (converted into a market order rather than a limit order).

2. If an ask is lower than the best bid (highest bid price on the order book) it is entered
at the bid price (converted into a market order rather than a limit order).

Each agent enters the market with a constant probability λ. All orders have a limited
order life, after which they are removed from the order book should they have not been
successfully matched (a constant exogenously set to 200 units of time).

2.1 Learning

As in [8,9], agents use a co-evolutionary Genetic Algorithm to learn the coefficients
f(i,t), c(i,t) and n(i,t). Each agent records its own forecast error as the market progresses
and generates a fitness score si over a period of 5000 units of time. Each unit of time
corresponds to the entry of an order into the market by an agent. Each agent presents 5
orders to the market in this period (the number of agents in these models being 1000).

si =
1∑5000

t=1 (pt − p(i,t+τ))2
(7)

After 5000 units of time each combination of weights held by the agents is assigned a
relative fitness score (Si) normalised with respect to the population fitness.

Si =
si∑
i si

(8)

The strategy weights are copied by the learning agents in proportion to this score.
The initial values at time t = 0 for the fundamentalist f(i,0), chartist c(i,0) and noise

n(i,0) weights are drawn from the following distributions:

f(i,0) ∼ |N(0, σf)|, c(i,0) ∼ N(0, σc), n(i,0) ∼ |N(0, σn)| (9)

In addition to the learning of weights after each 5000 units of time, agents also may
mutate one of their weights drawing a weight at random from the distributions in
Equation 9.

48 N. Rayner, S. Phelps, and N. Constantinou

We analyse two variants of this basic model; an existing model in the literature [8,9]
in which forecasting strategies are linear combinations as per Equation 1 (henceforth
we refer to this model as the LY model), and our own model in which each agent
adopts either an atomic fundamentalist (Equation 2) , chartist (Equation 3) or noise
trader (Equation 4) forecasting rule and not a linear combination as in the LY model
above (Equation 1). Both our model and the LY model occupy the same strategy space.
However, in our model, two out of the three weights are zero reducing each agent to
just one of the return forecast rules (Equation 2, Equation 3 or Equation 4).

In [2] two main types of strategy are identified; momentum strategies based on the
following of trends, and contrarian strategies based on the reversal of trends. Contrar-
ian traders predict price reversals and make profit (when they are correct) by position-
ing themselves to take advantage of that reversal. These two diametrically opposed
strategies appear to exist simultaneously [2]. For example, in a rising trend momentum
strategists will place bid orders (buys) in the market while contrarian strategists will
place asks orders (sells). Other factors contribute to contrarian like behaviour. For ex-
ample,“pairs trading” where a pair of related stocks are traded together such that when
one is relatively expensive and the other cheap, traders sell the expensive one and buy
the cheap one which can be a behaviour which is entirely independent of the current
trends in the market. Other contrarian-like behaviours can be caused by events exter-
nal to the market, for example arbitrage opportunities; prices for the same stock can
differ between two markets so traders buy in the cheaper market and sell in the more
expensive market (gaining risk-free profit). This arbitrage behaviour can be counter to
the trends in the market.

The LY Model implements contrarianism by allowing the chartist weight to go neg-
ative (Equation 9). In the LY Model agents imitate successful strategies: if the most
successful strategy employs a negative chartist weight then agents will tend to adopt
that strategy. The negative chartist weight would then represent not a contrarian posi-
tion but the strategy of the momentum strategists. Contrarian strategists seek to behave
in a contrary way to the momentum strategists. To capture this behaviour we introduce
additional contrarianism. We add two contrarian strategies; one is to negate the learned
trend, so the contrarian agent predicts a price move in the opposite direction of the
learned trend (e.g if the learned chartist trend is negative then the contrarians will pre-
dict a price move in a positive direction and vice versa), and the second to zero the trend
predicting that the price will not trend in the learnt direction at all but will remain at its
current level. We have chosen to implement this firstly by setting the contrarian chartist
strategy to the negative of the non-contrarian chartist strategy:

r̂cc(i,t,t+τ) = −r̂c(i,t,t+τ)

Secondly we set the contrarian fundamentalist and noise strategies to be the zeroed
non-contrarian fundamentalist and noise strategies:

r̂fc(i,t,t+τ) = r̂nc(i,t,t+τ) = 0

Testing Adaptive Expectations Models 49

In the contrarian variant agents can choose from the following discrete set of return
forecasting strategies:

{r̂c(i,t,t+τ), r̂f(i,t,t+τ), r̂n(i,t,t+τ),

r̂fc(i,t,t+τ), r̂nc(i,t,t+τ), r̂cc(i,t,t+τ)}

The same learning process operates in this model as in the LY model (but with the
addition of the contrarian parameter). So an agent can change from fundamentalist to
chartist or contrarian to non-contrarian to take advantage of a better strategy. During ini-
tialisation of the model values are drawn randomly from the distributions in Equation 9
as in the LY model, but each agent also chooses randomly between being a fundamen-
talist, chartist or noise trader and contrarian or non-contrarian. Henceforth we refer to
this latter model as “the Contrarian Model”.

3 Methodology and Model Validation

We compare model assumptions according to how well a particular model reproduces
the long-memory phenomena. To compare models we test their long-memory prop-
erties using Lo’s modified rescaled range (R/S) statistic [11] (sometimes called range
over standard deviation). The statistic is designed to compare the maximum and mini-
mum values of running sums of deviations from the sample mean, re-normalized by the

0 1 2 3 4 5

x 10
5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time

W
ei

gh
t

(f
,c

,n
)

M
ea

n
va

lu
es

an
d

C
ha

rt
is

t
St

an
da

rd
D

ev
ia

ti
on

(σ
c
)

 mean c

mean f

mean n

Fig. 1. LY Model. Fundamentalist (f), Chartist (c), Noise (n) mean weights and Chartist Standard
Deviation (σc) with time

50 N. Rayner, S. Phelps, and N. Constantinou

sample standard deviation. The deviations are greater in the presence of long-memory
than in the absence of long-memory. The Lo R/S statistic includes the weighted auto-
covariance up to lag q to capture the effects of short-range dependence.

Our first experiment tests the conjecture that imitation (in the LY Model) is suffi-
cient to produce the long memory phenomena by attempting to reject the null hypothesis
that long memory is caused by the strategies that each agent adopts and not by
learning at all. The model is simulated in two sequential phases with different treat-
ment factors:

1. a learning phase in which the agent’s genetic algorithm searches for strategies with
high relative fitness (see Equation 7 and Equation 8).

2. a commitment phase where agent’s commit to a learned strategy and perform no
further learning.

The default experiment time is 250000 time units (taken from [8,9]). The experiment
has been executed for twice the default experiment time (2 x 250000 units of time); the
learning phase is executed for half the experiment time (the default time) and then the
commitment phase is started and runs for the same period. Default parameter values
are displayed in Table 1 these values have been taken from [8,9] except the standard
deviations of the weight distributions which are all set to 1.5 and the probability of
entering the market which is set to 1.0. These values are all varied in our tests on model
stability.

4 Validation Results for LY Model

In Figure 1 we show the mean value (across all agents) of the fundamentalist (f),
chartist (c) and the noise trader weight (n) with respect to time. It also shows the chartist
weight distribution standard deviation (σc) (the noise and fundamentalist weight distri-
bution standard deviation are not shown but behave in a similar manner). As we can
see in Figure 1 the agents move initially very quickly to a region in the strategy space.
There is then a period of mean fluctuation as the agents move about in that region
(not converging to any specific strategy). When the commitment phase starts and the
agents stick with the strategy they have found, movement in the weights cease and
we end up with a straight line for the mean value of the weights over the remain-
der of the experiment time with no change in the weight distribution standard devia-
tions.Results are shown in tables which present the percentage of executions exhibiting
long memory in volume, volatility, signs of orders (buy or sell orders) and returns for
each experiment. The experiment was executed 100 times; the results are summarised in
Tables 2 and 3. In the first phase (the learning phase presented in Table 2) we see the
long memory characteristics we are expecting with this model. In the second phase
(the commitment phase presented in Table 3) we fail to generate any long memory
properties.

As soon as we switch off learning, these long memory phenomena disappear. It is not
sufficient to have just the correct mix of strategies in order to generate long memory. So
there is something about the dynamics of weight changing (caused in this case by the
learning process) which is causing these phenomena.

Testing Adaptive Expectations Models 51

Table 1. Default Values for All Models

Parameter Value

Std dev of fundamental weight (σf) 1.5

Std dev of chartist weight (σc) 1.5

Std dev of noise weight (σn) 1.5

Probability of Mutating 0.08

Probability of entering the λ 1.0

Maximum markup or markdown
(kmax)

50%

Maximum period over which trends
are calculated (lmax)

100 units of time

Period over which price expecta-
tions are made (τ)

200 units of time

Fundamental price (F) 1000

Number of Traders 1000

Order Life 200 units of time

Tick Size (the smallest price differ-
ential)

0.1

Table 2. LY Model Learning Phase. Percentages of runs with long memory for volume, volatility,
order signs and returns at various time lags ranging From 4× 50 (200 units of time) to 10× 50
(500 units of time).

Lag Volume Volatility Order
Signs

Returns

q=4 100 100 87 4

q=6 100 100 89 4

q=8 100 100 89 4

q=10 100 100 89 4

5 Model Stability

In this section we review the stability of the LY Model. We vary some of the free-
parameters described earlier, the standard deviations of the Gaussian distributions from
which the weights are chosen (Equation 9) and the mutation degree. The mutation de-
gree is the probability that any individual will mutate it’s strategy and draw a new weight
from the distributions in (Equation 9). We have extended the experiment execution time
to highlight any problems in stability with respect to time. The experiments were run
for 10 times the default time (10 x 250000 units of time) and parameter values were

52 N. Rayner, S. Phelps, and N. Constantinou

Table 3. LY Model Commitment. Percentages of runs with long memory for volume, volatility,
order signs and returns at various time lags ranging From 4× 50 (200 units of time) to 10× 50
(500 units of time).

Lag Volume Volatility Order
Signs

Returns

q=4 0 0 0 0

q=6 0 0 0 0

q=8 0 0 0 0

q=10 0 0 0 0

Table 4. Ranges of Parameter Values

Parameter Value

Std dev of fundamental weight (σf) 0.0 to 3.0

Std dev of chartist weight (σc) 0.0 to 3.0

Std dev of noise weight (σn) 0.0 to 3.0

Mutation Constant 0.05 to 0.20

randomly drawn (uniformly) from the ranges in Table 4. Fifty sets of random parame-
ter variations were executed with 10 executions for each set (totalling 500 for 2500000
units of time). In Table 5 we present the results of the first experiment. We note we get
negative results from the LY Model which produces weak Order Sign long memory but
also long memory in returns (not a stylised fact of financial markets). In Tables 6 and
7 we have separated out the long memory properties of the execution of the LY Model
into an early part of the test and a later part. We note that the long memory properties
of the model are changing with respect to time. The state of the population in the LY
Model converges to a relatively static steady-state. At the same time, the long memory
properties of the market diminish; the long memory phenomena are not stable over time
in the LY Model. In Table 8 we display the results for the execution of the LY Model
with just the atomic extensions and finally in Table 9 we display the results for the
Contrarian model. Comparing Tables 8 and 9 with the LY Model execution in Table 5
we see a substantial improvement in the stability of the Contrarian model over the LY
model.

In Figure 2 the weight means of LY Model change relatively smoothly, the Con-
trarian Model (Figure 3), in contrast, is very much more dynamic, the mean values for
fundamentalist and chartist are moving a great deal relative to the LY model. Compar-
ing the bars (which indicate the fundamentalist SD (σf) and chartist SD (σc) with time)
in Figure 2 and 3 we see that the LY Model fundamentalist and chartist weight distribu-
tions tend to converge while with the Contrarian Model the chartist weight distribution
hardly converges at all and the fundamentalist distribution is diverging.

Testing Adaptive Expectations Models 53

Table 5. Parameter Variation Experimental Results for LY Model. Percentages of runs with long
memory for volume, volatility, order signs and returns at various time lags ranging From 4× 50
(200 units of time) to 10× 50 (500 units of time).

Lag Volume Volatility Order
Signs

Returns

q=4 76 86 18 12

q=6 76 83 18 14

q=8 76 82 18 14

q=10 75 81 18 15

Table 6. Early Phase Execution Results for LY Model. Percentages of runs with long memory for
volume, volatility, order signs and returns at various time lags ranging From 4× 50 (200 units of
time) to 10× 50 (500 units of time).

Lag Volume Volatility Order
Signs

Returns

q=4 100 99 50 50

q=6 100 99 52 55

q=8 100 99 53 57

q=10 100 99 54 61

Table 7. Later Phase Execution Results for LY Model. Percentages of runs with long memory for
volume, volatility, order signs and returns at various time lags ranging From 4× 50 (200 units of
time) to 10× 50 (500 units of time).

Lag Volume Volatility Order
Signs

Returns

q=4 69 79 27 25

q=6 70 77 28 28

q=8 70 76 29 29

q=10 70 75 29 31

We are seeing the convergence of the LY Model into a region in the strategy space.
The GA in the LY model has been successful in finding a region in this space (the
successful completion of its learning). The Contrarian Model is failing to converge
in the strategy space. The LY Model is not generating stable long memory properties,

54 N. Rayner, S. Phelps, and N. Constantinou

−0.5 0 0.5 1 1.5 2 2.5

x 10
5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time

W
ei

gh
t

(f
,c

,n
)

M
ea

n
va

lu
es

w
it

h
Fu

nd
am

en
ta

lis
t

SD
an

d
C

ha
rt

is
t

SD
(σ

c
,
σ

f
)

mean c

mean f

mean n

Fig. 2. LY Model. Mean Fundamentalist (f), Chartist (c) and Noise (n) weights with time and
Fundamentalist and Chartist Standard Deviation (σf , σc)

Table 8. Experimental Results for Atomic Model. Percentages of runs with long memory for
volume, volatility, order signs and returns at various time lags ranging From 4× 50 (200 units of
time) to 10× 50 (500 units of time).

Lag Volume Volatility Order
Signs

Returns

q=4 96 90 43 0

q=6 96 89 41 0

q=8 96 89 40 0

q=10 96 89 39 1

because the successful genetic algorithm is converging to a region in the strategy space.
By restructuring the agent strategy space and increasing contrarianism we are able to
retain the dynamic necessary to produce stable long memory results (Tables 8 and 9).

Testing Adaptive Expectations Models 55

0 0.5 1 1.5 2 2.5

x 10
5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time

W
ei

gh
t

(f
,c

,n
)

M
ea

n
va

lu
es

w
it

h
Fu

nd
am

en
ta

l
SD

an
d

C
ha

rt
is

t
SD

(σ
c
,
σ

f
)

mean c

mean f

mean n

Fig. 3. Contrarian Model: Mean Fundamentalist (f), Chartist (c) and Noise (n) weights with time
and Fundamentalist and Chartist Standard Deviation (σf , σc)

Table 9. Experimental Results for Contrarian Model. Percentages of runs with long memory for
volume, volatility, order signs and returns at various time lags ranging From 4× 50 (200 units of
time) to 10× 50 (500 units of time).

Lag Volume Volatility Order
Signs

Returns

q=4 94 93 58 0

q=6 94 92 58 0

q=8 93 91 58 0

q=10 92 91 58 0

6 Conclusion

While imitation may contribute to the generation of long memory phenomena in real
financial markets other factors must play a role in producing stable long memory phe-
nomena over time. Our model which incorporates contrarianism and strong dispar-
ity between strategies is able to generate a more dynamic behaviour in steady state,
and is therefore able to produce more consistent long memory results across different
free-parameter settings. The LY model [8,9] is not stable with respect to variation in

56 N. Rayner, S. Phelps, and N. Constantinou

free-parameter settings and model execution time. This was caused by the convergence
of the Genetic Algorithm to a smaller and smaller strategy space and a loss, therefore, of
the dynamic that causes the long memory phenomena. We modify the LY model adding
atomic agents and increased contrarianism (the Contrarian Model) which retains the
dynamic necessary to generate stable long memory phenomena (Section 5).

We conjecture that any model that causes and maintains a dynamic switching be-
haviour will produce stable long memory and that a non-learning heuristic model would
also produce positive long memory phenomena; this is the subject of future research.

References

1. Cont, R.: Empirical Properties of Asset Returns: Stylised Facts and Statistical Issues. Quan-
titative Finance 1, 223–236 (2001)

2. Cont, R.: An Anatomy of Trading Strategies. The Review of Financial Studies 11(3), 489–519
(1998)

3. Ding, Z., Granger, C.W.J., Engle, R.F.: A Long Memory Property of Stock Market Returns
and a New Model. Journal of Empirical Finance 1, 83–106 (1993)

4. Engle, R.F.: Autoregressive Conditional Heteroskedasticity with Estimates of the Variance
of United Kingdom Inflation. Econometrica 50, 987–1008 (1982)

5. Evans, G.W., Honkapohja, S.: Learning and Expectations in Macroeconomics. Princeton
University Press (2001)

6. Heemeijer, P., Hommes, C.H., Sonnemans, J., Tuinstra, J.: Forming Price Expectations in
Positive and Negative Feedback Systems. Technical Report 04-15, Universiteit van Amster-
dam (2004)

7. Lamoureux, C.G., Lastrapes, W.D.: Heteroskedasticity in Stock Return Data: Volume Versus
GARCH Effects. Journal of Finance 45(1), 221–229 (1990)

8. LeBaron, B., Yamamoto, R.: Long-memory in an Order-Driven Market. Physica A 383, 85–89
(2007)

9. LeBaron, B., Yamamoto, R.: The Impact of Imitation on Long-Memory in an Order Driven
Market. Eastern Economic Journal 34, 504–517 (2008)

10. Lillo, F., Mike, S., Farmer, J.D.: Theory for Long Memory in Supply and Demand. Physical
Review E 7106, 287–297 (2005)

11. Lo, A.W.: Long-Term Memory in Stock Market Prices. Econometrica 59, 1279–1314 (1991)
12. Lobato, I., Velasco, C.: Long Memory in Stock-Market Trading Volume. Business and Eco-

nomic Statistics 18(4), 410–426 (2000)
13. Mantegna, R.N., Stanley, E.H.: Stock Market Dynamics and Turbulence: Parallel Analysis

of Fluctuation Phenomena. Physica A 239(1-3), 255–266 (1997)
14. Mantegna, R.N., Stanley, E.H.: Scaling Behavior in the Dynamics of an Economic Index.

Nature 376, 46–49 (2002)
15. Pagan, A.: The Econometrics of Financial Markets. Journal of Empirical Finance 3(1), 15–102

(1996)

Autonomously Revising Knowledge-Based
Recommendations through Item and User Information

Avi Rosenfeld, Aviad Levy, and Asher Yoskovitz

Jerusalem College of Technology, Jerusalem 91160, Israel
{rosenfa,aviadl}@jct.ac.il,

asher.yoskovitz@mysupermarket.com

Abstract. Recommender systems are now an integral part of many e-commerce
websites, providing people relevant products they should consider purchasing. To
date, many types of recommender systems have been proposed, with major cat-
egories belonging to item-based, user-based (collaborative) or knowledge-based
algorithms. In this paper, we present a hybrid system that combines a knowledge
based (KB) recommendation approach with a learning component that constantly
assesses and updates the system’s recommendations based on a collaborative and
item based components. This combination facilitated creating a commercial sys-
tem that was originally deployed as a KB system with only limited user data,
but grew into a progressively more accurate system by using accumulated user
data to augment the KB weights through item based and collaborative elements.
This paper details the algorithms used to create the hybrid recommender, and de-
tails its initial pilot in recommending alternative products in an online shopping
environment.

1 Introduction

Recommender systems have become an integral part of many e-commerce websites,
giving consumers suggestions for additional or alternative products to purchase. These
systems are part of well known websites such as Amazon.com, Pandora, Yahoo!, and
Netflix [2–4, 7]. In fact, Netflix recently offered a Million Dollar Prize [2] for signif-
icantly increasing the quality of its recommendations, highlighting the importance of
this field to e-commerce websites.

For commercial companies, recommendations are important to both directly and in-
directly generate sales. Direct sales can be generated in two ways. First, a person may
wish to buy a specific product from a website, but not be able to complete the transaction
due to the product no longer being in stock. The recommender system can then provide
alternate products, still completing a sale. In a second scenario, even if the product is
in stock, the recommendation system may be able to provide additional items that the
user may wish to buy, even furthering the revenue from the website. Even if the rec-
ommender system does not directly produce sales, they can be critical in providing an
improved shopping experience thus attracting more shoppers to the website and indi-
rectly producing more sales. In these types of scenarios, the recommender system can
provide additional information about related products or services that might aid the user
in better using a product they just purchased. In these types of cases, the recommender

E. David et al. (Eds.): AMEC/TADA 2011, LNBIP 119, pp. 57–70, 2013.
© Springer-Verlag Berlin Heidelberg 2013

58 A. Rosenfeld, A. Levy, and A. Yoskovitz

system can provide an after sales support system, ensuring the buyer is satisfied with
the purchase.

In this paper, we describe the recommender system we built for the e-commerce web-
site, mysupermarket.co.uk. MySupermarket is a relatively small private e-commerce
company that makes its revenues by providing recommendations of grocery products to
buy. All revenues are generated as a percentage of the total order places, so it is critical
that the shopping experiences be as pleasant as possible, and recommendations be as
relevant as possible, to boost sales. One of the key features of MySupermarket is its five
ways it helps users save money1. The first and most important mechanism is a “swap
and save” feature where the recommender system provides alternate (swap), yet similar,
items to the user that are cheaper (save). This paper focuses on the algorithms involved
with the recommender agent in this system.

The novelty of MySupermarket’s swap and save agent lies in its combination of
knowledge based, collaborative filtering and item based algorithms. In the next sec-
tion, we details the background of the recommender algorithms upon which our hybrid
system is based, and stress the contribution of this work. In Section 3, we describe My-
Supermarket’s current recommender agent, which integrates the expert’s knowledge
exclusively to produce recommendations. Unique to our system is a learning agent that
creates recommendations based on the current expert recommendations, but also au-
tonomously updates the expert’s recommendation with item based and collaborative
information. This approach is novel in that it presents the first hybrid of all major types
of recommender technologies: knowledge, item based and collaborative. We detail this
approach in Section 4. Section 5 concludes and provides directions for how this work
can be generally applied to other systems as well.

2 Related Work

To date, two major groups of algorithms have been proposed for use in recommender
systems, collaborative and item based approaches [1, 3, 5, 7, 10]. The term collabora-
tive filtering was coined by the designers of one of the first of these systems, Tapestry
[6], to capture that people often obtain information through collaborating with one an-
other to obtain information. Systems based on collaborative approaches (also called
user based) have been widely used in many commercial applications [2, 4–7] and facil-
itate giving a given user recommendations based on the past behavior of a known group
of similar users. A second popular group of recommenders are item based (often called
content based) approaches and focus on similarities between items to produce recom-
mendations, typically based on the type of content of the item that is being search for
[1, 4, 7, 10]. These approaches assume a generality between all types of users, and fo-
cus on shared characteristics between all members of the system. For example, assume
preset categories exists for types of genre for books or movies (e.g. comedy, mystery,
documentary, and classic). Once we have identified the genre of one item that is being
searched for by all users, we can recommend other items of the same type. Theoret-
ically there is no need within this approach to consider a given user’s history once a
categorization scheme has been implemented based on the item based approach.

1 http://www.mysupermarket.co.uk/Help/FAQ.aspx/

http://www.mysupermarket.co.uk/Help/FAQ.aspx/

Autonomously Revising Knowledge-Based Recommendations 59

One major disadvantage in both the collaborative and item based approaches is the
time required and / or the needed data required to build these models. This is often re-
ferred to as the “cold start” or “ramp up” problems whereby the system cannot make
effective recommendations at the beginning of its operation [4, 5, 7]. The “cold start”
element within user based approaches refers to the challenge in a-priori knowing what
this user, or similar users, will do in new or in the early stages of a given system. It can
take weeks, or even months until enough data is collected on new items to attempt a col-
laborative solution. Even within item based approaches, it is not necessary clear which
characteristics should be used to find similar items without any a-priori knowledge.
This problem is very significant for MySupermarket as new products are constantly
being added to the system and there is no clear connection between the new item and
others in the database. Thus, alternative recommendation approaches are necessary.

A third, less popular approach, involves knowledge based recommendation [3, 5]
which uses some preset rules for generating recommendations. The advantage of this
approach is a complete solution to the cold-start problem – accurate recommendations
can be immediately generated. The major disadvantage to this approach is the steep
overhead involved with the knowledge engineering. MySupermarket currently employs
9 knowledge experts who create rules for generating recommendations for new prod-
ucts. Not only are these rules expensive to generate, but they are not necessarily ac-
curate. The goal of this paper is to describe an approach that uses a knowledge based
approach for the early stages of the system, but also create recommender agents that
can autonomously update these initial recommendations based on both item based and
collaborative approaches.

To the best of our knowledge, this paper represents the first of its kind – a knowledge
based approach with item based and collaborative elements to update the original rec-
ommendations. Many hybrid recommendation models have been previously suggested
with combinations of these approaches and surveys of these models have been previ-
ously published [1, 4, 5]. These algorithms often combine the two popular families of
recommendation algorithms – collaborative and item-based approaches [1, 8]. Clos-
est to our approach are the Libra [9] and MovieLens [11] systems. However, both of
these systems augment collaborative systems with content based approaches. However,
many other hybrid combinations are possible, with previous work described a theoret-
ical number of 53 possible different types of hybrid systems [4]. The same article also
points out that most theoretical combinations have not been studied or implemented,
and particularly singles out directions involving hybrid systems with knowledge based
components should be further explored. Particularly, our system goes one step further
from previous hybrids, by also integrating expert knowledge along with a more classic
content based – collaborative hybrid. We now detail the exact algorithms used by the
system, and how the expert’s recommendations are augmented by the item based and
collaborative elements.

3 Using MySupermarket’s Expert Data

As most recommendation systems are based on collaborative or item based data that can
be cheaply obtained and analyzed [3, 5], it may seem strange that MySupermarket bases

60 A. Rosenfeld, A. Levy, and A. Yoskovitz

its system on a costly team of experts. In this section, we describe the motivation behind
MySupermarket’s business decision to use this approach, as well how the company uses
this data in creating its recommendation system.

MySupermarket.com’s use of experts to create recommendation system is indeed
costly. The company employees a team of experts that evaluate thousands of products
that are sold through the website, and create an expert measure which they call a simi-
larity score which compares all products to each other. To slightly simplify the process,
these experts defined “Product Families” of similar products such as types of wines,
dairy product, diapers, etc., and only consider creating scores for all products within
all given product families. Nonetheless, this process is expensive, as the company em-
ployees a team of 9 experts who on average study 100 products a day checking and
updating products’ similarity rating. The current trigger for this analysis is when new
products are added for sale by MySupermarket, thus requiring the experts to reconsider
how these new products are comparable to existing ones.

With the growth of automated recommendation systems, one might think that there
is no longer a need for this costly knowledge engineering process and these experts
should be replaced by automated recommendation agents. However, MySupermarket’s
use of these expert’s knowledge goes well beyond its application for helping recom-
mend products to end users, or its Business to Consumer (B2C) e-commerce website.
In addition, these experts’ knowledge forms the foundation for a second Business to
Business (B2B) application, called MySupermarket insights that provides information
about trends and possible strategic growth opportunities related to products supermar-
kets stock. While our focus is on how the recommendations from the first system can
be improved, it should be noted that the second types of recommendations for busi-
nesses are no less important to the business strategy of the company and cannot be
replaced by known recommendation algorithms. This is because the B2C application
has already been functioning for several years and has now created enough historical
data to overcome the classic cold start problem in new recommendation systems [4, 5].
However, the B2B application has far less historical data and the experts’ knowledge is
not easily encodable. For example, these experts maintain a blog about product trends
and prices and thus cannot be replaced with automated agents. More about the B2B ap-
plication, and the recommendations it provides can be found at the company’s website
at: http://www.mysupermarket-insights.co.uk/Marketing/Services.aspx.

In creating the B2C application, the expert’s knowledge is central towards deciding
what recommendations are presented to the user, and in generating what the company
calls “swap recommendations”. While shopping, items can be presented to the user
that may be of interest, such as items that may save the user money by purchasing
them in larger bulk, or alternative products that should be considered, especially when
these items are discounted due to sales promotions or are a comparable generic alterna-
tive. Furthermore, these recommendations are especially important when the item they
wished to buy is not in stock.

The expert’s knowledge is then used in conjunction with item based data to create
recommendations. Similar to item based recommendation systems, swap recommen-
dations are generated by constructing a similarity vector between the desired product

Autonomously Revising Knowledge-Based Recommendations 61

and characteristics of all other products within the company [1, 4, 7, 10]. However,
non-hybrid item based recommenders are based on generic item data, which for this
domain are likely to include characteristics like the product family, its quantity, price,
weight, and color. In contrast, MySupermarket’s hybrid system includes one new char-
acteristic, the expert’s similarity measure, and explicitly gives this item with very high
weight in generating the vector to decide what products to recommend. Additionally, as
opposed to classic item based methods that use machine learning techniques to decide
how to weigh each characteristic within the vector, MySupermarket currently uses a
hard-coded proprietary weight function between these items. For example, this weight
system presents up to 5 recommendation if it finds items that are comparable based
on these hard-coded weights taking into account all item’s characteristics. In addition,
MySupermarket also leaves one field, the last recommendation, where recommenda-
tions are based only one characteristic, price alone. Here, the system always presents an
alternative if a cheaper generic substitute exists in the product database even if it is not
deemed as similar by the other characteristics.

To better understand the system, please see Figure 1 depicting a screen shot from the
company’s website. Note that in the screenshot the user is given up to four swap rec-
ommendations by the system. Only items that are deemed worthy based on this weight
function are presented to the user, and thus the full maximal number of 6 recommen-
dations were not presented here. Please note in the first row of Figure 1 that the user
is encouraged to consider buying similar diapers in bulk, with the first choice being
cheaper than the second, but both being the same brand as the original product, and
only then is the user presented a third choice that is a different generic brand, yet far
cheaper. In the second row, the user is informed that there is a buy one get one free sale
on the item they selected, and she can receive a second product for no additional price.
Here no additional products are presented, as the expert’s hard coded threshold decides
no other products are sufficiently similar given the price differences. Similarly, in the
third row, the user is informed there is a sale and she could save money per item if she
chooses to buy 2 products instead of one, but no other products are given from different
brand. In the last row, the user is again encouraged to consider a sale item or a generic
substitute for the selected item.

4 Creating a New Type of Hybrid System

One important question MySupermarket must address is how good are the system’s
recommendations, and if they are not always effective, how could they be improved?
Intuitively, it seems unlikely that the system of static weights described above will al-
ways be accurate, especially as the items in the product database are constantly in flux,
as sales and changes in stock are frequent. Thus, these static weights do not necessarily
have the ability to deal with these dynamics. Furthermore, the need to constantly update
these weights is costly. Clearly some mechanism is needed to autonomously update the
system.

Towards building a more effective system, we believe a new type of hybrid model
is needed, as presented in this section. The basis of this hybrid is the above knowledge

62 A. Rosenfeld, A. Levy, and A. Yoskovitz

based system, which is useful for providing initial recommendations and is critical for
other MySupermarket applications. However, once a sufficient history is stored through
system use, item based and collaborative components can be potentially useful in im-
proving the system. However, one key question that must be addressed is when and how
can this data be useful in improving the system. Thus, care must be taken to properly
evaluate the usefulness of this added information, as we now detail.

Fig. 1. A Sample Webpage from MySupermarket’s Website

Autonomously Revising Knowledge-Based Recommendations 63

4.1 A High Level System Overview

We propose constructing a three pronged hybrid that is knowledge based, but uses item
based and collaborative elements. A high level overview of our solution is shown in
Figure 3. As per MySupermarket’s business model, the Knowledge Based component
is at the core of the system and is shown at the top left corner of the diagram. As people
begin using the system, historical data is accumulated and this data is sent as input into
item based and collaborative components. If this data is found to be useful, a hybrid
model is formed where these models can be used in several ways: First, and on the most
basic level, assuming the expert’s knowledge is not equivalent to these models, we can
manually query the expert for input. It may be the expert will then wish to manually
revise or accept the values automatically generated by these components. However, as
we have begun to find, the experts are willing to forgo this step, thus automatically
accepting the autonomously generated agent changes. The outcome is a revised hybrid
system, that began exclusively as being knowledge based, but has accepted many key
components from the item based and collaborative algorithms.

Fig. 2. An architecture of a Hybrid Recommender System that is based on expert knowledge, but
also revises the system with item-based and collaborative components

To better understand the process by which the knowledge based recommender is
modified, please refer to Algorithm 1. As lines 1 and 2 state, initially the experts must
manually evaluate every item within the system, assigning a similarity value for every
product versus all other products. This similarity values is then evaluated in conjunction

64 A. Rosenfeld, A. Levy, and A. Yoskovitz

with all other item attributes in a hard-coded formula to produce the system’s initial rec-
ommendations. However, as the system is used, some critical size of product history is
likely to become available for this product (line 5), to reevaluate these initial knowledge
based recommendations. Assuming this is the case, we currently perform three checks.
First, in line 6, we evaluate the overall effectiveness for the recommendation output
of this product. We found that for many products the users were willing to accept the
system’s recommendations, and for others users almost never accepted the system’s
recommendation. Currently, we simply flag those products with a very low user accep-
tance of the system’s recommendations (line 6) and present these results to the experts
for consideration. However, our goal is to automate any such evaluations through al-
lowing the recommender agents to autonomously change the system. To accomplish
this, we use verify and change the system through item-based and collaborative data
when available. In line 8, agents automatically evaluate the effectiveness of the expert’s
hard-coded initial weights through machine learning techniques, e.g. decision trees, as
described in the next subsection. Assuming this item-based model is not built around the
expert’s information (line 9), the system can either prompt the expert to accept the item
based recommendations or as we have begun to allow, autonomously update the system
(line 10). Furthermore, the recommender agent checks the initial expert’s recommen-
dations against acquired collaborative data (line 11). Assuming these weights are not
equal (line 12), we again either prompt the user to accept the changes or automatically
update the system.

Algorithm 1. The major steps for dynamically updating / changing the recommenda-
tion system
01 for Every product in System do
02 Create initial recommendations based on Expert’s Knowledge
03 while the System is in use do
04 for Every product in System do
05 if data history exists for this product then
06 if User acceptance for product < threshold then
07 Flag product in system
08 Build Item Based Model with Decision trees
09 if Expert’s Information not the root of the decision tree then
10 Present findings to Expert / Accept Item Based Recommendations
11 if Hybrid-Item weight �= Collaborative Values then
12 Present findings to Expert / Accept Collaborative Values

As Algorithm 1 indicates, the recommender system is one in flux, beginning ex-
clusively based on expert knowledge, but allows agents to autonomously update the
initial system. However, in doing so, several challenges exist with implementing this
algorithm, which are addressed in the following subsection. All three system checks of
the expert’s initial recommendations (lines 6 – 12) are built around the assumption that
the recommender system can be objectively be evaluated. However, as we present in the
next Section (4.2), evaluating recommender systems is far from trivial, especially if a
controlled dataset cannot be formed. Second, we present a novel approach where agents

Autonomously Revising Knowledge-Based Recommendations 65

can check the expert’s recommendations using item based information. This again is not
simple, and our approach for doing so is presented in Section 4.3. Finally, the use of
collaborative data is again non-trivial, and our approach for doing so is presented in
Section 4.4.

4.2 Evaluating the Overall System

MySupermarket’s B2B and B2C applications are both built on their experts’ knowledge.
Thus, the key question about the accuracy of the expert’s knowledge is not limited to the
recommendations for their e-commerce website, but also for their B2B application as
well. In general, many metrics have been proposed to date to evaluate the effectiveness
of recommendation systems [7]. For example, one popular choice, used in the Netflix
competition [2] is to use the root mean error level of prediction between a set of pre-
viously tagged known ratings that people provide, and a set of automatically generated
recommendations by the system. However, this possibility is not available to us, as we
have no previously tagged data to use as a baseline. Instead, we use the bottom line user
satisfaction measure most intuitive to use in commercial systems [7].

We propose that two types of bottom line measures are useful in evaluating the ex-
pert’s knowledge of this system. The first, and possibly more intuitive measure is to
measure the number of purchases made because of the recommended product swaps.
As the company has logged all transactions to its website over the past 5 years, ex-
tensive historical data is available to allow for this analysis. A second complementary
measure searches for statistical correlation between those elements that were swapped
in the past (line 5 of Algorithm 5) and the expert’s recommendations. Note that the two
studies are intrinsically linked: If no swaps are performed, the recommendation system
is clearly not producing quality alternatives, and no correlation will be found between
people’s decisions and their swap purchases. If swaps are frequently performed, the
question then becomes, “why”? Are these swaps due to something inherent with these
products, or due to the expert’s knowledge, both factors, or something else?

We found that the number of swap purchases made varied greatly between different
product families. Figure 2 presents a look at 5 different product families and their aver-
age number of executed “swaps” or acceptance of the system’s recommendation. Note
that these 5 product families are a small samples of the 950 product families within the
system. However, we did find overall great differences in the acceptance of the system’s
recommendations across different types of products. Intuitively, such differences may
be because people are naturally more picky about accepting certain product substitu-
tions other others. For example, we found that people looking to buy a certain type of
dental accessories (e.g. dental floss) were most likely to accept the system’s recom-
mendation and chose an alternate product approximately 80% of the time. However,
people who were looking to buy a certain type of insecticide were only nearly 60%
likely to accept the system’s recommendation, and people looking for hand cream were
accepted the system’s recommendation about 40% of the time. The percentage of times
users accepted certain recommendations were extremely low, such as slightly more than
20% for chocolate mints, and less than even 5% for soup mixes. Overall we found that
these examples represent a wide range of acceptance levels, and that people accepted
the system’s recommendations approximately 35% of the time. However, is this level

66 A. Rosenfeld, A. Levy, and A. Yoskovitz

Fig. 3. Five Different Product Families and their Average Number of Accepted Recommendations

of success due to some inherent pickiness of users about some types of products ver-
sus others, or is this the truly optimal state? If it is not the optimal state, what changes
would be necessary to further improve the system’s performance?

At present, MySupermarket uses this swap analysis to create a report to the experts.
The experts are then asked to manually analyze the data to question if their knowledge
is in fact effective in generating more sale. For example, we may present the system’s
5% success in generating swaps for soup mixes and ask the expert to manually change
its recommendation scheme for the products in this group. However, the company’s
vision involves using autonomous agents to automatically update these expert’s values,
as described in the following sections.

4.3 Evaluating the System with Item Data

Our first goal was to verify and update the expert’s similarity measure through using
machine learning techniques to check the predictive ability of the expert’s informa-
tion. To do so, we use the well recognized Weka [12] package to create a predictive
model regarding when people purchased a product from the among the system’s rec-
ommendations. Realistically, some complex relationship likely exists between the type
of product, the quality of the expert’s information, the possible savings to the user, and
other factors in determining if a swap purchase is made. For example, this analysis may
find that price is used for some categories, other products are only swapped when the
expert’s similarity measure is less than a certain amount, and certain products are never
swapped.

Autonomously Revising Knowledge-Based Recommendations 67

The use of machine learning techniques to validate the recommendation model is
a twist from the classic use of these algorithms within item based recommenders. In
classic item-based classification, a collection of all item characteristics are used in con-
junction with historical data about purchases to create a learned model that correlates
between the two [10]. This type of learning can use any machine learning algorithm,
including Bayes, decision trees, and nearest neighbor methods to accurate find a corre-
lation between items, their characteristics, and historical data. No a-priori assumption
is made as to which characteristics will make the best model – in fact the purpose of the
model is to find these characteristics. In contrast, our goal is exactly the opposite. The
expert has already decided and hard-coded her own similarity measure as being most
important, and fixed the relative value of all other item characteristics. In the best case
scenario, the expert has discovered certain domain specific knowledge, encapsulated
in its similarity measure, allowing it to surpass the recommendations of a pure item
based system. Alternatively, the item based rules may approximate the expert based
knowledge, and comparing the derived rules will allow us to confirm the accuracy of
the expert knowledge. However, the pure item based system might be more accurate,
allowing us to pinpoint for exactly which items the expert’s knowledge is less accurate.

We chose to evaluate the expert’s knowledge through creating a model based on
decision trees. The advantage towards using trees versus any other model is that Weka
[12] not only creates a machine learning model, but also outputs the exact rules used in
this model. Assuming the expert’s knowledge is critical to the system, one would expect
to find the expert’s similarity measure to be the key rule, or at the root of the decision
tree. If the expert’s knowledge is not effective, one would expect it to either not appear
in the tree, or be limited to only very specific instances.

In creating these decision trees, we used as input the history of people’s swap pur-
chases for given product families, and entered all items’ data into Weka [12]. The item’s
input data included information the expert’s similarity measure, the projected saving by
choosing the new item, as well as items characteristics not currently given significant
weight by the expects, such as the serial number of the product and the serial number of
the proposed product. We recognize that it is quite possible that items the overlooked,
say the serial number of the proposed product, may produce recommendations that the
experts overlooked.

For many product families, we were able to confirm the importance of the expert’s
knowledge, while for other products the expert’s knowledge seemed much less impor-
tant. For example, Weka’s decision tree for purchases made for squash had at the root
of the tree: similarity <= 1.25, or if the similarity measure is less than 1.25, then peo-
ple are likely to buy in certain conditions. In other product families, such as for milk
products, the similarity function was of secondary importance to the difference in cost
between products. Here we found the rule: If the AlternativePrice < 0.85 and simi-
larity < 1.1, then given certain other conditions the person will purchase the product.
However, for other product families similarity had seemingly no significance. For ex-
ample, for toilet paper the root rule was if the OriginalPricePerUnit <= 0.35 and the
AlternativePricePerUnit <= 0.28, then a person will buy given other conditions. Thus,
we found that using decision trees were useful in automatically generating where the
expert’s knowledge was most useful.

68 A. Rosenfeld, A. Levy, and A. Yoskovitz

Note that as per line 9 of Algorithm 1, two possibilities exist when decision trees
found that the expert’s similarity measure was not the most important item characteris-
tic. Until recently, this information was presented to the expert, who could then decide if
she would like to revise the values, or accept the decision tree’s rules instead. However,
we have begun a pilot whereby the agent autonomously updates the expert’s recom-
mendation, especially for products where the expert’s recommendations yielded a low
recommendation (e.g. set the threshold of line 6 of Algorithm 1 to 10%).

4.4 Evaluating the System with Collaborative Data

We also use historical data to create a collaborative model to augment the expert’s rec-
ommendations. The above machine learning approach to validate the expert’s similarity
measure can validate the importance of this item to the recommender agent for how the
average, or typical user, behaved. Furthermore, the weights set by the expert, and even
by the hybrid knowledge-item based system, are still uniform across all users. However,
this approach does not validate how a specific user behaved, and if this model is appro-
priate for a specific user. For example, the experts may have hard-coded the system
to only present alternatives where a similarity value of 1.0 or less is found. However,
it may be found that certain users are willing to buy items that are even less similar
(e.g. values of greater than 1.0) and some are more discriminating and only purchase
items that are far more similar (say similarity 0.5 or less). Thus, the above approach can
only verify that user’s in general are willing to make purchases based on the expert’s
measures, it cannot predict if a specific user deviates from this assumption.

Note that the difference of the behavior of a general user and the behavior of a spe-
cific user is the inherent difference between item-based and collaborative recommen-
dation systems. As our goal is to customize the system’s recommendations as much
as possible, we present a heuristic approach where the hybrid knowledge-item based
agent’s recommendations are further customized based on that specific user’s history.

In general, we found that users generally decide to purchase a product based on
the expert’s similarity measure and the potential cost savings of the new item. How-
ever, while we found that these two attributes were important across all users, and thus
formed an effective hybrid item-knowledge based system, the actually savings and sim-
ilarity measures used by a specific user could differ greatly. To address this issue, we
found that an heuristic approach, where the similarity and savings measures were tuned
based on a specific user’s past activity for a given product, was highly effective in im-
proving the system’s recommendations. This led to an effective automatic tuning of
these parameters, increasing the companies sales through customers’ swaps.

In general, it is important to stress that the company’s experts were initially extremely
hesitate to forgo their initial values in favor of these found by the item based and col-
laborative elements as described in the paper. This issue is further complicated by the
fact that the system lacks any proper evaluating dataset, and thus it was extremely dif-
ficult to convince the experts of the importance of the agent’s recommendations. We
overcame this obstacle by first revising the systems only for those products where the
initial success of the expert’s system was extremely low (see line 6 of Algorithm 1).
This work is ongoing, and will take nearly a year before we can quantify where this

Autonomously Revising Knowledge-Based Recommendations 69

approach was successful. However, the generality of this approach leads and our initial
feedback from the company’s experts have led us to be confident about its importance.

5 Conclusions and Future Work

In this paper we introduced a novel hybrid approach to combine a knowledge based rec-
ommender system with item based and collaborative filtering elements. The system’s
recommender agent begins with a system exclusively based on the expert’s knowledge,
thus avoiding the classic cold start problem. However, as the system is used, a progres-
sively larger history of user transactions are recorded. The system then uses this infor-
mation to create hybrid models with item and collaborative items. An item based model
is used to validate or even replace the user’s knowledge. We describe using a novel vari-
ation of machine learning techniques to create a classic item based model can be used to
validate the expert’s knowledge. When the item based model finds the expert’s knowl-
edge is at the root of the item based model, the expert’s knowledge is accepted. When it
is found to not be a critical item in the model, the system can prompt the expert to up-
date item data, or automatically replace and update the user’s knowledge. Additionally,
if the expert’s knowledge is validated by the item based model, collaborative models are
useful for further improving the system’s recommendations by automatically tweaking
the system’s item’s parameters based on a specific user’s purchases. We present the sys-
tem’s prototype implementation and initial results demonstrating the importance and
success of this approach.

Several related problems are worthy of future consideration. One key hurdle we
needed to overcome was convincing the data experts that the agent’s item and col-
laborative recommendations should replace or augment their own. We hope to further
study at what point can one assume the agent’s recommendations are definitive, and
how to convince the experts of this. Achieving this goals would significantly aid us in
the goal of fully automating system revisions. Additionally, we hope to further address
how the system’s evaluation can be better automated without explicitly labeled data as
is done in many classic recommendation system’s, such as the Netflix challenge [2].
We believe the approach we present, of using machine learning techniques to create
an item based approach for evaluation, can be further generalized to address this point.
The importance of hybrid systems such as the knowledge, item and collaborative sys-
tem we present, are likely to be of significance to other areas and fields as well. It is
likely that use of expert information can help avoid the “cold start” problem in other
problems as well. Our model, where collaborative and item based information are later
used, are likely to be equally useful for these problems as well. We hope to study what
modifications to our approach are necessary, if any, in addressing new problems.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: A sur-
vey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and
Data Engineering 17(6), 734–749 (2005)

70 A. Rosenfeld, A. Levy, and A. Yoskovitz

2. Bennett, J., Lanning, S.: The netflix prize. In: KDD Cup and Workshop in Conjunction with
KDD, pp. 3–6 (2007)

3. Burke, R.: Knowledge-based Recommender Systems. In: Encyclopedia of Library and In-
formation Systems, vol. 69 (2000)

4. Burke, R.D.: Hybrid recommender systems: Survey and experiments. User Model and User-
Adapted Interaction 12(4), 331–370 (2002)

5. Burke, R.: Hybrid Web Recommender Systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W.
(eds.) The Adaptive Web. LNCS, vol. 4321, pp. 377–408. Springer, Heidelberg (2007)

6. Goldberg, D., Nichols, D., Oki, B.M., Terry, D.: Using collaborative filtering to weave an
information tapestry. Commun. ACM 35, 61–70 (1992)

7. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative filtering
recommender systems. ACM Trans. Inf. Syst. 22, 5–53 (2004)

8. Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering for im-
proved recommendations. In: Eighteenth National Conference on Artificial Intelligence,
pp. 187–192. American Association for Artificial Intelligence (2002)

9. Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering for im-
proved recommendations. In: Eighteenth National Conference on Artificial Intelligence,
pp. 187–192. American Association for Artificial Intelligence, Menlo Park (2002)

10. Pazzani, M., Billsus, D.: Content-Based Recommendation Systems, pp. 325–341 (2007)
11. Sarwar, B.M., Konstan, J.A., Borchers, A., Herlocker, J., Miller, B., Riedl, J.: Using filtering

agents to improve prediction quality in the grouplens research collaborative filtering system.
In: Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work,
CSCW 1998, pp. 345–354 (1998)

12. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd
edn. Morgan Kaufmann (2005)

A Bidding Agent for Advertisement Auctions:
An Overview of the CrocodileAgent 2010

Irena Siranovic, Tomislav Cavka, Ana Petric, and Vedran Podobnik

University of Zagreb, Faculty of Electrical Engineering and Computing
Zagreb, Croatia

{irenasiranovic,tomislavcavka1}@gmail.com,
{ana.petric,vedran.podobnik}@fer.hr

Abstract. Sponsored search is a popular form of targeted online advertising and
the most profitable online advertising revenue format. Online publishers use dif-
ferent formats of unit price auctions to sell advertising slots. In the Trading Agent
Competition Ad Auctions (TAC/AA) game, intelligent software agents represent
a publisher which conduct keyword auctions and advertisers which participate
in those auctions. The publisher is designed by game creators while advertisers
are designed by game entrants. Advertisers bid for the placement of their ads on
the publisher’s web page and the main challenge placed before them is how to
determine the right amount they should bid for a certain keyword. In this pa-
per, we present the CrocodileAgent, our entry in the 2010 TAC AA Tournament.
The agent’s architecture is presented and a series of controlled experiments are
discussed.

Keywords: trading agents, sponsored search, keyword auctions.

1 Introduction

Internet advertising provides a significant income stream for online publishers. Revenue
of major search engines such as Google1, Yahoo!2 and MSN3 amounts to tens of billions
of dollars annually (e.g., in 2010, Google reported total advertising revenues over USD
$28 billion4). According to the report5 published by the Interactive Advertising Bureau6

and PricewaterhouseCoopers LLP7, sponsored search is the most profitable online ad-
vertising revenue format which accounted for 47% of the total Internet advertisement
revenue in the USA in the first half of 2010. In sponsored search (i.e., keyword adver-
tising) publishers (i.e., search engines) use different formats [1] of unit price auctions
(e.g., keyword auctions) to sell advertising slots (i.e., positions in the list that contains
search results) [2].

1 http://www.google.com/
2 http://www.yahoo.com/
3 http://www.msn.com/
4 http://investor.google.com/financial/tables.html
5 http://www.iab.net/media/file/IAB_report_1H_2010_Final.pdf
6 http://www.iab.net/
7 http://www.pwc.com/

E. David et al. (Eds.): AMEC/TADA 2011, LNBIP 119, pp. 71–86, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.google.com/
http://www.yahoo.com/
http://www.msn.com/
http://investor.google.com/financial/tables.html
http://www.iab.net/media/file/IAB_report_1H_2010_Final.pdf
http://www.iab.net/
http://www.pwc.com/

72 I. Siranovic et al.

In a keyword auction advertisers bid for the placement of their ads (i.e., rank of the ad
in the results of the sponsored search) which are then displayed on the publisher’s web
page. The format of sponsored search results is very much alike the format of generic
search results. Usually, it is comprised of the title of the ad, a short description and a
hyperlink to the advertiser’s web page or the web page of the advertised product. An ad
is chosen for a specific keyword(s) from the user’s query, thus targeting users interested
in advertiser’s products.

A publisher conducts keyword auctions and solicits bids. When a user submits a
query containing one or more keywords, sponsored ads are displayed to the user along-
side the results of a generic search mechanism. At the end of an auction, the publisher
ranks advertisers’ bids (i.e., determines the placement of their ads and the cost-per-click
(CPC) for those ads) [3]. CPC is the price that an advertiser pays to the publisher each
time its ad is clicked on.

According to earlier studies on user behaviour (e.g., [4]) the higher the position of
the search result (e.g., ad, document) is, the users will be more likely to click on it. This
phenomenon, where the probability that the result will be clicked depends not only on
its relevance, but also on its position in the search results, is known as the position
bias. Several models of the position bias have been proposed and the cascade model
gave the best explanation for the position bias in early ranks [5]. However, the latest
research has shown that 46% of the users do not click sequentially (i.e., start from the
best ranked result and continue to lower ranked ones) and 57% of them do not behave
as suggested by the cascade model (i.e., first click on the higher and afterwards on the
lower positioned results) [6].

A challenge placed upon publishers evolves around the selection of a mechanism
which will result with highest profits. There are two frequently used mechanisms for
ranking solicited bids: i) rank-by-bid, and, ii) rank-by-revenue. As the name of the
rank-by-bid mechanism states the bids are sorted in a descending order (i.e., the bids
offering a higher CPC get higher ranked positions), while the rank-by-revenue mecha-
nism multiplies the offered CPC with the ad’s expected relevance (i.e., the percentage
of users that will click on the ad once it is displayed to them) and afterwards sorts bids
in a descending order of the calculated product [7]. In addition, some mechanisms offer
advertisers the possibility to target a certain group of users by specifying the context for
viewing ads (e.g., user’s location, time of day) and to control exposure by limiting the
number of times an ad should be displayed to users [8].

From the advertisers’ point of view, the question is how to determine the right amount
they should bid for a certain keyword(s) since the probability that their ad will be better
ranked than other ads rises as they place higher bids [9]. The complexity of the answer
to this question increases as the availability of information about user behaviour, as well
as bidding behaviour of other advertisers decreases.

The paper is organized as follows. Section 2 describes the characteristics of the Trad-
ing Agent Competition Ad Auctions (TAC/AA) game. A brief overview of the research
in the area of TAC/AA bidding strategies is given in Section 3. Section 4 presents the
CrocodileAgent 2010, our entrant in the 2010 TAC/AA Tournament. Section 5 presents
the conducted experiments and the obtained results, while Section 6 concludes the paper
and gives an outline for future work.

An Overview of the CrocodileAgent 2010 73

2 TAC/AA Game

Researchers test advertisers’ bidding strategies by using the designed market simula-
tors which provide a risk free environment [10]. The TAC/AA game [11,12], which
was released in 2009, is based on such a market simulator. In other TAC games mar-
ket simulators are used to find perspective solutions for the supply chain management
problem [13,14,15], market design problem [6,16,17] and energy trading in smart grid
environments [18].

The TAC/AA game enables advertisers to bid on multiple queries and to define bud-
get constraints in an information-lacking and competitive environment. Eight intelli-
gent program agents which represent online advertisers participate in the game. Each
advertiser sells 9 different products which are specified by the manufacturer (i.e., Flat,
Lioneer and PG) and the component (i.e., TV, Audio and DVD). Furthermore, each
advertiser is specialized for one manufacturer and for one component type.

The ad ranking mechanism varies between rank-by-bid and rank-by-revenue [19]
and is chosen at the beginning of each game. Users can generate 9 different queries by
specifying both manufacturer and component (i.e., F2 level query), 6 different queries
by specifying only manufacturer or component (i.e., F1 level query) and one query
where neither manufacturer nor component are specified (i.e., F0 level query). Corre-
spondingly, the conversion probability increases as more keywords are specified in the
query. Users can find themselves in one of the following states: i) non-searching, ii)
searching, and, iii) transacted; while the user population in each state (and sub-state) is
modelled as a Markov chain.

In the TAC/AA game scenario, when a user submits a query, an auction for the given
keyword(s) starts. The auction is an instance of the repeated generalized second price
auction (i.e., the price that the advertiser pays for the position of its ad is determined by
the price which was offered by the winner of the next-best position in its bid) and the
first position is allocated to the bidder with the highest bid. An advertiser sends a bid
bundle (i.e., one bid for each query class) to the publisher every day. A bid consists of: i)
the CPC an advertiser is ready to pay, ii) the chosen ad which can be generic or targeted
(i.e., specified manufacturer and/or component), iii) budget limits for each query class,
and, iv) budget limit for all queries altogether for the following day (optional). The
publisher uses the information from the bids when it runs ad auctions for the received
user queries. Advertisers receive daily reports about the outcomes of the prior (i.e.,
two days old) auctions and use those information to generate new bids. Daily reports
include: i) query report, ii) account status report, and, iii) sales report. The game lasts
60 virtual days.

3 Related Work

The bidding strategy for keyword auctions has been a great challenge for researchers
that conducted various simulations and empirical analyses on this matter. Berg et.al.
[20] have presented autonomous bidding strategies for ad auctions which are based the
on click probability and the CPC estimations. They use two kind of algorithms for bid
optimization: i) rule-based algorithms, and, ii) greedy multiple choice Knapsack algo-
rithms. Pardoe and Stone [21] have shown a particle filter that can be used for estimating

74 I. Siranovic et al.

other agents’ bids given a periodic ranking of their bids. The particle filter is used for
estimating bids of other advertisers. Since the information revealed about competing
advertisers is limited, they have shown how such models can learn from the past bid-
ding data. Cigler [22] has described several bidding strategies (Return-on-investment
(ROI), Knapsack ROI, Balanced Best-response, online Knapsack) and evaluated their
performance empirically. The best performing strategies were ROI and Balanced Best-
response. Furthermore, Cigler presented a new profit maximizing strategy for multiple
keyword ad campaigns that takes into account the budged constraint and has shown to
be successful particularly for small budgets.

4 CrocodileAgent 2010

With an intention to better investigate strategic approaches to ad auctions mechanisms,
an advertiser agent CrocodileAgent has been designed. A bidding strategy was chosen
among several strategies (i.e., profit maximization, linear regression) [23] and analysed
through controlled experiments. The CrocodileAgent’s bidding model used for partic-
ipating in ad auctions is shown in Figure 1 and can be divided into three logical seg-
ments: i) the ad generator, ii) the CPC generator, and, iii) the daily spend limit generator.

Fig. 1. CrocodileAgent’s bidding model

An Overview of the CrocodileAgent 2010 75

4.1 The ad Generator Algorithm

The method chosen for ad generation is based on query focus levels and is shown in
Algorithm 1. This method was chosen by analysing final results in game simulations
with several different implemented algorithms for ad generation. The results shown
that the conversion probability is the highest when a user submits a query with the
focus level F2. Since there are 9 different products and each user has a preference for
just one of them, it is highly probable that a user will click on the ad that matches the
query when he/she submits an F2 query. Furthermore, we have concluded that if an
agent provides the generic ad for the submitted F2 query, the probability that the user
will click on the ad decreases significantly, especially if competing agents chose one of
targeted ads.

Algorithm 1. CrocodileAgent’s ad generation algorithm

if query focus level = F0 or F1 then
generated ad = generic

else
generated ad = targeted (F2 manufacturer, F2 component)

end

For a submitted F1 query, the CrocodileAgent generates generic ads – if the
CrocodileAgent generated a targeted ad, it would have to decide which component or
manufacturer to add alongside the specified keyword (i.e., manufacturer or component,
respectively). The negative aspect of the latter approach is that the targeted ad has to
match user preferences in order to accomplish a conversion (the probability that the
generated ad matches user preferences is 1/3). If the ad does not match user prefer-
ences, the click probability decreases according to the targeting factor [11], and vice
versa. Moreover, if the ad does not match user preferences, the user may click on the
ad, but he/she will not convert and thus he/she will only increases the agent’s cost. On
the other hand, the benefit of the approach that results with a targeted ad manifests in
case when the ad matches the submitted query – positive aspects of this approach are: i)
additional profit gained by component through component specialization bonus (CSB)
or manufacturer specialization bonus (MSB), ii) increased odds of converting based on
CSB, and, iii) increased targeting effect.

4.2 The CPC Generator Algorithm

The CPC bid is defined for every query type with an intention to maximize the profit
(profit = revenue - cost). Taking into consideration the two days old information in the
received reports, the algorithm for generating the CPC for the first two days of the game
contains fixed values of CPC. Values for all query types are defined based on matches
between the component and manufacturer in a query and agent’s specialties as shown
in Algorithm 2.

76 I. Siranovic et al.

Algorithm 2. CrocodileAgent’s initial bidding algorithm

result = match between query and agents specialties;
switch result do

case miss
bid = α;

case miss-neutral
bid = β;

case miss-hit
bid = γ;

case neutral
bid = δ;

case neutral-hit
bid = ε;

case hit
bid = ξ;

endsw
where β < γ < α ≤ δ ≤ ε < ξ;

The more accurate the match is, the higher the bid is. Additionally, the values are
scaled by agent’s capacity (i.e., the bid is slightly decreased in case of medium or low
capacity). Definitions of matching values are listed in Table 1, while Table 2 contains the
parameter values. All parameter values were determined by using a heuristic approach.
The decisions were based on conducted game simulations (locally and in the TAC/AA
2010 qualifying rounds) by comparing the CrocodileAgent’s profit for different sets of
parameters used.

Table 1. Definitions of specialty matching values

Value Query type Definition

miss F2
Component and manufacturer from query

do not match agent’s specialties.

miss-neutral F1
Component or manufacturer from query does not match

agent’s specialties, second keyword is null.

miss-hit F2
Component or manufacturer from query does not match

agent’s specialties, second keyword is a match.

neutral F0
A query without specified

manufacturer and component.

neutral-hit F1
Component or manufacturer from query matches

agent’s specialties, second keyword is null.

hit F2
Component and manufacturer from query

are agent’s specialties.

A method for defining the CPC bids in the remainder of the game is based on the
calculations of the conversion rate (i.e., the ratio of average number of clicks to con-
versions). If the rate is satisfactory, the new bid is based on the CPC bid from two days
ago. Otherwise, the new bid is based on the CPC that the agent actually paid. The bid is

An Overview of the CrocodileAgent 2010 77

Table 2. Values of parameters for initial bidding

Parameter α β γ δ ε ξ

Value 1.15 0.65 1.05 1.15 1.15 1.25

later adjusted depending on the query focus level and the CrocodileAgent’s specialties.
The CPC generator algorithm is shown in Algorithm 3.

Algorithm 3. CrocodileAgent’s CPC generator algorithm

revenue = last revenue for a query received in report;
nclick = average number of clicks per day;
nconversion = average number of conversions per day;
queryfl = query focus level;
result = match between query and agent’s specialties;

if revenue �= 0 then
mod = nclick/nconversion;
bid = DefineBid(mod);

if queryfl == F0 or queryfl == F1 then
bid = focus level parameter · bid

end

if result == hit then
bid = specialty parameter · last paid bid

end
else

if queryfl == F2 then
bid = min(minimum bid zero, hit parameter · last bidday−2);
if manufacturer and component of query == agent′s specialties then

bid = specialty parameter zero · bid
end

else
bid = parameter zero · last bidday−2;

end
end

function DefineBid(mod)

if mod < ratio lower bound then
bid = max(minimum bid, decrease factor · last bidday−2);

else if ratio lower bound ≤ mod ≤ ratio middle value then
bid = max(minimum bid, increase factor · last paid bid);

else
bid = max(minimum bid, max increase factor · last paid bid);

end
return bid;

78 I. Siranovic et al.

Table 3. Values of bidding parameters during a game

Parameter Definition Value
ratio lower bound 10
ratio middle value 0.65

minimum bid minimum CPC that an agent will bid 0.10
decrease factor decrease factor in case of very good mod 0.97
increase factor increase factor in case of average mod 1.15

max increase factor increase factor in case of very bad mod 1.20
focus level parameter 0.80
speciality parameter 1.30

minimum bid zero
minimum CPC that an agent will bid

0.30
in case that last revenue was zero

hit parameter 1.30
speciality parameter zero 1.20

parameter zero
a parameter used when

1.05
agent’s last revenue was zero

When determining CPC bids the most important aspect is the ”quality” of an ad,
which is measurable through the agent’s profit. The quality of an ad is defined as an esti-
mation that the user’s click on that ad will turn into a conversion. The CrocodileAgent’s
bidding strategy does not change during the game. Table 3 contains the parameters that
gave the most satisfactory results in the conducted experiments.

4.3 The Spend Limit Manager

General Spend Limit. Too many conversions lead to decrease of the possible conver-
sions in the future due to stock shortage, as defined by the game rules [12]. The stock
management policy is necessary since it can happen that a certain amount of products
must be immediately available in order to avoid significant profit loss. On the other
hand, excessive product storage becomes ”dead capital”. Additionally, the other driver
for using spend limits are the clicks generated by informational searchers.

The general spend limit manager algorithm adjusts the bid according to the agent’s
capacity and it is shown in Algorithm 4, while corresponding parameter values are listed
in Table 4. In the first five days of the game the limit is fixed and determined based on
the agent’s capacity. After analysing the results of the controlled experiment we have
concluded that the lack of spend limit has the most significant (negative) impact on
CrocodileAgent’s profit when its capacity is low.

Query Spend Limit. The query spend limit manager defines a distribution of agent’s
investments in order to maximize its profit and ensures that the maximum number of
clicks for a certain ad is limited in accordance with its predicted quality. The spend
limits for the first two days are fixed and they are calculated based on the matching
of the CrocodileAgent’s specialties with the keywords in a query. In the remainder
of the game the spend limit is defined according to the click and conversion ratio, as
well as earlier profits. The low ratio corresponds with the successful advertisement.

An Overview of the CrocodileAgent 2010 79

Algorithm 4. General spend limit manager

if first five days then
switch capacity do

case low
spend limit = spend limit low fixed;

case medium
spend limit = spend limit medium fixed;

case high
spend limit = spend limit high fixed;

endsw
else

switch capacity do
case low

spend limit = spend limit low;
case medium

spend limit = min(spend limit medium, custom profit);
case high

spend limit = min(spend limit high, custom profit);
endsw

end

Table 4. Values of parameters for general spend limit

Parameter Min Parameter Min
spend limit low fixed 700 spend limit medium fixed 1000
spend limit high fixed 1200 spend limit low 750
spend limit medium 1150 spend limit high 1350

Table 5. Values of parameters for general spend limit

Parameter Value Parameter Value Parameter Value Parameter Value
a 60 b 80 ratio lower bound 5 neutral 1.10
c 100 d 120 ratio middle value 10 neutral-hit 1.20
e 140 f 180 minimum limit 20 hit 1.30

default limit 40

Therefore, the lower the ratio is, the higher the limit will be. The query spend limit
manager algorithm is shown in Algorithm 5, while the corresponding parameter values
are listed in Table 5.

80 I. Siranovic et al.

Algorithm 5. Query spend limit manager

nclick = average number of clicks per day;
nconversion = average number of conversions per day;
mod = nclick/nconversion;
result = a match between query and agent’s specialties;
if first two days then

switch result do
case miss

limit = a;
case miss-neutral

limit = b;
case miss-hit

limit = c;
case neutral

limit = d;
case neutral-hit

limit = e;
case hit

limit = f ;
endsw

else
if mod < ratio lower bound then

limit = min (minimum limit, revenue/2);
else if ratio lower bound ≤ mod ≤ ratio middle value then

limit = min (minimum limit, revenue/3);
else

limit = default limi;
end
limit = SpecialtyMatchingLimit(result, limit)

end

function SpecialtyMatchingLimit(result, limit)

switch result do
case neutral

limit = neutral · limit;
case neutral-hit

limit = neutral − hit · limit;
case hit

hit : limit = hit · limit;
endsw

5 Controlled Experiment

In order to evaluate the performance of the CrocodileAgent, which placed 6th in the
TAC/AA 2010 Competition Finals, an experiment was conducted by repeating games
taking into consideration a fer distribution of agent capacity. Based on the analysis of

An Overview of the CrocodileAgent 2010 81

the results, the CrocodileAgent’s deficiencies were identified and guidelines for future
improvements were set.

The participants in the experiment were the following agents which competed in
the TAC/AA 2010 Competition: TacTex, Mertacor, Schlemazl, CrocodileAgent, taua-
gent, EPFLAgent. Additionally, due to the lack of TAC/AA 2010 agents in the of-
ficial agent repository8, two agents from TAC/AA 2009 Competition, AstonTAC and
WayneAd, were included in the experiment. The controlled experiment consisted of 40
games whose average results are shown in Table 6.

Table 6. Average results in the conducted competition

Position Agent Game score
1. TacTex 57 848
2. Mertacor 53 998
3. Schlemazl 53 933
4. CrocodileAgent 49 435
5. tauagent 47 789
6. AstonTAC 45 104
7. EPFLAgent 44 179
8. WayneAd 36 456

The games in the controlled experiment were configured to ensure fair capacity dis-
tribution among competing agents so each agent played ten games with high capacity,
twenty games with medium capacity and ten games with low capacity. In each game,
two agents had low capacity, two agents had high capacity and four of them had medium
capacity. The goal of the experiment was to observe agents’ behaviour in respect with
the assigned capacities. The results of these observations are shown in Figure 2.

In the graph shown on Figure 2 the bars represent the ratio between the average result
of a single agent in those games where the specified capacity (i.e., high, medium or low)
was assigned to it and the average result of the same agent in all games. We call this ratio
the intra-agent relative profitability. On the other hand, the horizontal lines represent the
ratio between average results of all agents in those games where the specified capacity
(i.e., high, medium and low) was assigned to them and the average results of all agents
in all games. This measure represents the average intra-agent relative profitability of all
agents. Finally, squares, triangles and diamonds represent the ratio between the average
result of a single agent in those games where the specified capacity (i.e., high, medium
or low) was assigned to it and the average result of all agents in those games where
the same capacity was assigned to them. This graph enables the comparison of the
single agent’s average profit achieved in those games where different capacities were
assigned to it with: i) its average profit in all games, and, ii) the average profit of all
agents in the games where the same capacity was assigned to them. While the former
measure enables us to compare the profitability of agent’s strategies in those games
where different capacities were assigned to it with the agent’s overall profitability, the
latter measure provides relative benchmarking among different agents.

8 http://www.sics.se/tac/showagents.php

http://www.sics.se/tac/showagents.php

82 I. Siranovic et al.

Fig. 2. Agents’ relative profit with respect to assigned capacity

If we take a look at the average values of profits achieved in the games with the
assigned low capacity, we can notice that the CrocodileAgent has the highest intra-
agent relative profitability among all agents in the controlled experiment. However,
the CrocodileAgent has smaller intra-agent relative profitability than the average intra-
agent relative profitability of all agents in the games where medium and high capacity
were assigned to it. At the same time, we can also notice that, when comparing the aver-
age score of different agents, the CrocodileAgent has a 12% better score than all agents’
average in the games where low capacity was assigned to them, while its performance
in both medium and high capacity games is equal to all agents’ average in those games.

From this analysis we can identify certain CrocodileAgent’s deficiencies. The im-
provement of those drawbacks in future versions could significantly increase its profits.
Namely, we can conclude that the CrocodileAgent should examine the possibility of
using other strategies in the games when the agent is assigned with medium or high
capacity in order to increase its profit in those games.

Another interesting thing we can learn from Figure 2 is that the relative intra-agent
profitability of the TacTex agent, the best agent in the competition, is approximately
equal to the average intra-agent profitability of all competing agents (for all three ca-
pacity allocations). Furthermore, it is attention-grabbing that the WayneAd agent, who
placed last in the competition, has the highest relative intra-agent profitability in those
games where the high capacity was assigned to it. However, WayneAd’s weakest abso-
lute results in medium and low capacity games are the reason for it placing last in the
competition.

After analysing the impact of the assigned capacity on agents’ achieved profits,
we have also analysed the correlation of the achieved profit and the query category.
As mentioned earlier, there are three types of queries (i.e., F0, F1 and F2) that users

An Overview of the CrocodileAgent 2010 83

Fig. 3. Distribution of profit achieved from transactions originating from different query classes

generate. Each advertiser selects an ad for display for each query type, choosing be-
tween a generic or targeted ad which mentions a particular product [11]. The agents’
profits from all games in the controlled experiment were grouped based on the type of
user query from which the transaction originated from. The mentioned distribution of
agents’ profits is presented in Figure 3.

In the graph shown on Figure 3, the horizontal lines represent the ratio between
average results of all agents achieved from transactions originating from queries of the
specified type (i.e., F0, F1 and F2) and the average results of all agents for all types
of queries. On the other hand, the bars represent the ratio between the agent’s average
result achieved from transactions originating from queries of the specified type (i.e., F0,
F1 and F2) and the agent’s average result achieved from transactions originating from
all types of queries.

84 I. Siranovic et al.

If we look at the average values of profits originating from different query types, we
can notice that agents, who placed higher in the competition, also achieve higher profits
on targeted ads. The last three agents in the competition (i.e., AstonTAC, EPFLAgent
and WayneAd) achieved the lowest relative profits from transactions originating from
focus level F2 queries and the highest relative profits from transactions originating from
focus level F1 queries.

Expressed in percentages and in correlation with the average results for queries of all
types, the TacTex made 78% of its total profit from transactions originating from focus
level F2 queries and only 22% of its total profit was made from transactions originating
from focus level F0 and focus level F1 queries. Agent Schlemazl, who has the highest
relative score for transactions originating from focus level F2 queries, achieved 86% of
its total profit from those transactions.

Another interesting thing we can learn from Figure 3 is that overall profits are not
highly correlated with the fraction of clicks received under manufacturer specialty (i.e.,
focus level F2-hit). Therefore, we can conclude that shifting spend towards queries
focusing on manufacturer speciality is not a guarantee of greater profitability for agents,
despite bonuses they get if such transactions take place.

If we analyse the CrocodileAgent’s profit distribution depending on the type of user
query that the transactions originated from, we can notice that the CrocodileAgent
achieves approximately 85% of its total profit from transactions originating from focus
level F2 queries. This percentage is higher for the CrocodileAgent than for two leading
agents, TacTex and Mertacor. On the other hand, the CrocodileAgent achieved lower
relative profits than the TacTex and Mertacor from transactions originating from focus
level F1 queries. We can conclude that the CrocodileAgent should try to redistribute a
few percent of its profit obtained from F2-queries to F1-queries, while maintaining the
share of F0-queries.

6 Conclusion and Future Work

The Trading Agent Competition Ad Auctions (TAC/AA) game enables the academic
community and advertising industry to analyse the effects of various bidding strategies
by running simulations of sponsored search scenarios. Furthermore, the fact that spon-
sored search is the most profitable online advertising revenue format also gives great
importance to ad auction research.

In this paper, we presented bidding strategies of the CrocodileAgent, the represen-
tative of University of Zagreb in the TAC/AA 2010 Tournament. Furthermore, we
conducted a controlled experiment with the best-ranked agents from 2010 and 2009
TAC/AA Finals. Based on the analysis of the controlled experiment, we: i) explained
some of the reasons why certain agents performed better than others, and, ii) identified
CrocodileAgent’s behaviours that should be improved in order to boost its performance.

For future work we plan to enhance CrocodileAgent’s performance by implement-
ing guidelines for improvements derived from the analysis of the controlled experi-
ment. Namely, we will: i) redesign strategies for achieving profits in the games with
assigned medium or high capacity to our agent, and ii) redistribute a part of the relative
CrocodileAgent’s profit made from transactions originating from focus level F2 queries
to transactions originating from focus level F1 queries.

An Overview of the CrocodileAgent 2010 85

Acknowledgments. The authors acknowledge the support of research project ”Con-
tent Delivery and Mobility of Users and Services in New Generation Networks” (036-
0362027-1639), funded by the Ministry of Science, Education and Sports of the Repub-
lic of Croatia.

References

1. Feng, J., Bhargava, H.K., Pennock, D.M.: Implementing sponsored search in web search
engines: Computational evaluation of alternative mechanisms. INFORMS Journal on Com-
puting 19(1), 137–148 (2007)

2. Chen, J., Feng, J., Whinston, A.B.: Keyword auctions, unit-price contracts, and the role of
commitment. Production and Operations Management 19(3), 305–321 (2010)

3. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Con-
nected World. Cambridge University Press (2010)

4. Joachims, T., Granka, L., Pan, B., Hembrooke, H., Gay, G.: Accurately interpreting click-
through data as implicit feedback. In: Proceedings of the 28th ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR 2005, pp. 154–161. ACM, New
York (2005)

5. Craswell, N., Zoeter, O., Taylor, M., Ramsey, B.: An experimental comparison of click
position-bias models. In: Proceedings of the International Conference on Web Search and
Web Data Mining, WSDM 2008, pp. 87–94. ACM, New York (2008)

6. Jeziorski, P., Segal, I.: What makes them click: Empirical analysis of consumer demand for
search advertising. Economics Working Paper Archive 569, The Johns Hopkins University,
Department of Economics (2010)

7. Lahaie, S.: An analysis of alternative slot auction designs for sponsored search. In: Proceed-
ings of the 7th ACM Conference on Electronic Commerce, EC 2006, pp. 218–227. ACM,
New York (2006)

8. Lahaie, S., Parkes, D.C., Pennock, D.M.: An expressive auction design for online display
advertising. In: Proceedings of the 23rd National Conference on Artificial Intelligence, vol. 1,
pp. 108–113. AAAI Press (2008)

9. Varian, H.R.: Online ad auctions. American Economic Review 99(2), 430–434 (2009)
10. Acharya, S., Krishnamurthy, P., Deshpande, K., Yan, T., Chang, C.C.: A Simulation Frame-

work for Evaluating Designs for Sponsored Search Markets. In: 16th International World
Wide Web Conference (2007)

11. Jordan, P.R., Cassell, B., Callender, L.F., Wellman, M.P.: The ad auctions game for the 2009
trading agent competition. Technical report (2009)

12. Jordan, P.R., Wellman, M.P.: Designing an Ad Auctions Game for the Trading Agent Compe-
tition. In: David, E., Gerding, E., Sarne, D., Shehory, O. (eds.) AMEC/TADA 2009. LNBIP,
vol. 59, pp. 147–162. Springer, Heidelberg (2010)

13. Arunachalam, R., Sadeh, N.M.: The supply chain trading agent competition. Electronic Com-
merce Research and Applications 4(1), 66–84 (2005)

14. Podobnik, V., Petric, A., Jezic, G.: An Agent-Based Solution for Dynamic Supply Chain
Management. Journal of Universal Computer Science 14(7), 1080–1104 (2008)

15. Sardinha, A., Benisch, M., Sadeh, N., Ravichandran, R., Podobnik, V., Stan, M.: The 2007
procurement challenge: A competition to evaluate mixed procurement strategies. Electronic
Commerce Research and Applications 8(2), 106–114 (2009)

16. Niu, J., Cai, K., Parsons, S., Gerding, E., McBurney, P.: Characterizing effective auction
mechanisms: insights from the 2007 TAC market design competition. In: Proceedings of the
7th International Joint Conference on Autonomous Agents and Multiagent Systems, AA-
MAS 2008, pp. 1079–1086. International Foundation for Autonomous Agents and Multia-
gent Systems (2008)

86 I. Siranovic et al.

17. Petric, A., Podobnik, V., Grguric, A., Zemljic, M.: Designing an Effective E-Market: An
Overview of the CAT Agent. In: Proceedings of AAAI 2008 Workshop on Trading Agent
Design and Analysis, TADA 2008, pp. 62–65. AAAI Press (2008)

18. Block, C., Collins, J., Ketter, W.: Agent-based competitive simulation: Exploring future retail
energy markets. In: Twelfth International Conference on Electronic Commerce (ICEC 2010),
pp. 67–76. ACM (2010)

19. Lahaie, S., Pennock, D.M.: Revenue analysis of a family of ranking rules for keyword auc-
tions. In: Proceedings of the 8th ACM Conference on Electronic Commerce, EC 2007,
pp. 50–56. ACM, New York (2007)

20. Berg, J., Greenwald, A., Naroditskiy, V., Sodomka, E.: A first approach to autonomous bid-
ding in ad auctions. In: EC 2010 Workshop on Trading Agent Design and Analysis, TADA
2010. ACM, New York (2010)

21. Pardoe, D., Stone, P.: A particle filter for bid estimation in ad auctions with periodic ranking
observations. In: EC 2010 Workshop on Trading Agent Design and Analysis, TADA 2010.
ACM, Cambridge (2010)

22. Cigler, L.: Semester project: Bidding agent for advertisement auctions. Technical report,
Ecole Polytechnique Federale de Lausanne (2009)

23. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann Publishers, San Francisco (2005)

Dealing with Trust and Reputation in Unreliable

Multi-agent Trading Environments

Iraklis Tsekourakis and Andreas L. Symeonidis

Electrical and Computer Engineering Department, Aristotle University
of Thessaloniki Thessaloniki, Greece

htsekourakis@gmail.com, asymeon@eng.auth.gr

Abstract. In shared competitive environments, where information
comes from various sources, agents may interact with each other in a
competitive manner in order to achieve their individual goals. Numerous
research efforts exist, attempting to define protocols, rules and interfaces
for agents to abide by and ensure trustworthy exchange of information.
Auction environments and e-commerce platforms are such paradigms,
where trust and reputation are vital factors determining agent strategy.
And though the process is always secured with a number of safeguards,
there is always the issue of unreliability. In this context, the Agent Rep-
utation and Trust (ART) testbed has provided researchers with the abil-
ity to test different trust and reputation strategies, in various types of
trust/reputation environments. Current work attempts to identify the
most viable trust and reputation models stated in the literature, while it
further elaborates on the issue by proposing a robust trust and reputation
mechanism. This mechanism is incorporated in our agent, HerculAgent,
and tested in a variety of environments against the top performing agents
of the ART competition. The paper provides a thorough analysis of ART,
presents HerculAgent s architecture and dis-cuss its performance.

1 Introduction

Agent Technology (AT) is constantly gaining ground in domains where continu-
ous interaction is required. Software Agents may act in uncertain and dynamic
environments, adapt illustrating various levels of autonomy and collaborate or
compete in order to achieve their goals. Examples of such dynamic domains are
Peer to Peer (P2P) networks, e-business and m-commerce solutions, autonomic
and grid computing, as well as pervasive computing environments. [1]

It is more than obvious that interaction may entail malice, with agents (human
or software) aiming to promote own interest while at the same time disserving
others. In order to deal with this problem, the concepts of trust and reputation
(T&R) are employed, providing agents with useful insight on which agents to
trust and interact with.

Current work aims to analyze and discuss existing approaches on trust and rep-
utation. Analysis is performed against the Agent Reputation and Trust testbed,

E. David et al. (Eds.): AMEC/TADA 2011, LNBIP 119, pp. 87–101, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

88 I. Tsekourakis and A.L. Symeonidis

a multi-parametric environment designed and developed for testing various trust
strategies. Based on the analysis performed, a trust and reputation mechanism is
developed and embedded into HerculAgent that is benchmarked against the top
scoring agents of the ART competition. The paper is organized as follows: Section
2 discusses state-of-the-art on the available trust and reputation models, while
Section 3 provides an overview of ART, discusses the winning T&R strategies and
performs a preliminary analysis in order to identify the key factors affecting per-
formance. Section 4 introduces the proposed T&R model and outlines the Hercu-
lAgent architecture. Finally, Section 5 discusses the performance of the agent on
a set of experiments, while Section 6 proposes future directions and concludes the
paper.

2 Trust and Reputation Models

There exists extensive literature related to trust and reputation, since it is
strongly related to the application domain and the technologies used. Neverthe-
less, all approaches share a set of common factors, which are discussed within
the context of this Section. Additionally, one should keep in mind that current
work is focused on the T&R aspects in multi-agent trading environments, thus
emphasis is given in that direction.

2.1 Specifying Trust and Reputation

Trust is the fundamental concern in open distributed systems. It lies at the core
of all interactions between the entities that have to operate in uncertain and
constantly changing environments. [2] In case of open multi-agent trading envi-
ronments, trust pervades multi-agent interactions at all levels. In general, trust
models are useful in spotting and marginalizing unreliable/malicious agents, in
evaluating the outcome of an interaction and in leading to decisions on trust-
worthy agents to transact with.

Trust may be conceptualized in the following ways:

– Individual-level trust, whereby an agent has a set of beliefs about the
honesty or reciprocate nature of the agents it interacts with;

– System-level trust, whereby agents operating in an environment are forced
to be trustworthy by the rules of encounter (i.e. protocols and mechanisms)
that regulate the system.

Should one discuss trust in the broader context where agents may act according
to self-interest, and given that system-level trust mechanisms take a de facto
approach on agent honesty, it is evident that individual-level trust issues are
of great importance in contemporary trading environments. Research literature
proposes three main approaches for specifying trust: the use of A priori evidence,
the use of Experienced evidence, and the use of Reputation.

Dealing with Trust and Reputation in Multi-agent Environments 89

A Priori Evidence. A priori evidence is evidence provided by specific proto-
cols, policies and mechanisms which guarantee trust between participants. [3] In
other words, when an agent acts following the rules that the protocols, policies,
or mechanisms dictate ensures that this agent can be trusted.

Experienced Evidence. As its name implies, experienced evidence is retrieved
by agent interactions. This category is classified into two sub-categories: direct
experience evidence [4] and witness evidence. [5]

Direct experience is the most relevant and reliable evidence source for trust
management. It is the information an agent gains through the direct interactions
with its partners. The trust reasoning efficiency of an agent is proportionate to
the size of the interaction history saved by the agent. It is, though, dispropor-
tionate to the evidential effectiveness.

Witness evidence originates from the interactions of other agents in the com-
munity, which in turn may come from direct experience or witness evidence.
Thus, the accuracy of evidence is strongly related to the source of evidence;
due to its uncertainty, witness evidence is rarely exploited in existing trading
environments.

Reputation Management. Reputation is the most exploited concept in trust
management of multi-agent systems. Though the definition of reputation varies
with respect to the context of the domain it is applied, one could argue that
reputation is expressed as three levels of rating that may express the trustwor-
thiness of an agent against other agents: individual ratings, collective ratings
and the rating transmissions. In terms of rating, the techniques that manage the
ratings could be divided to rating retrieval techniques, and rating aggregation
techniques.

Rating retrieval is applied on distributed trading environments, where the
topology is not known beforehand and network analysis techniques are employed
in order to retrieve ratings.[6] [7] Having retrieved ratings, rating aggregation is
performed in order to calculate reputation and define trust. In literature, rating
aggregation may be performed in a number of manners, ranging from naive to
more sophisticated ones.

2.2 Efficiency of Trust and Reputation Models

A successful trust and reputation model depends on the type of evidence the
model provides to agents, the techniques used to get the above evidence, and
the way an agent handles such evidence to extract trustworthiness for others.
Efficiency of a T&R model is defined with respect to the following axes [8]:

– Accuracy. T&R models must provide good prediction on another agents
future behavior. [9]

– Adaptivity. T&R models must be able to adapt in order to accommodate
dynamic trustworthiness characteristics of other agents. [10]

90 I. Tsekourakis and A.L. Symeonidis

– Quick Convergence. T&R modeling algorithms must quickly generate new
models when unknown agents enter the system. [11]

– Multidimensionality. T&R models must differentiate between another agents
varied trustworthiness characteristics across multiple categories. [12]

– Efficiency. T&R algorithms must generate models with minimal computa-
tional cost and in minimal time.

3 The ART Testbed

3.1 The ART Scenario and Architecture

As already discussed, a variety of approaches exist, aiming to model trust and
reputation in multi-agent systems. The Agent Reputation and Trust (ART)
testbed [13] provides an ideal framework for benchmarking different T&R strate-
gies.

Within the context of ART, each agent represent an art appraiser, compet-
ing against all other agents (appraisers) in the system. Clients (handled by the
ART server) request appraisals for paintings from different eras. In case an ap-
praiser is an expert on paintings of the specific era, it is capable for providing
an accurate appraisal, thus satisfying the client that will buy the painting and
pay the appraiser. In case the agent is not an expert on paintings of the era, it
may request paying a fee an evaluation (defined as opinion) by other apprais-
ers. Appraisers may also transact with each other on reputation information on
other appraisers. Based on their T&R strategy, agents must decide when and
from whom to request opinions and reputation information, in order to generate
accurate appraisals for clients. The more accurate the appraisals, the more the
clients attracted and profit for the appraiser. Winner agent is declared the one
with the highest bank account balance. Figure 1 illustrates the possible inter-
actions and the type of information ex-changed between appraisers and clients.
More information on ART can be found at [13].

The ART testbed comprises four basic modules [14]:

– The Simulation Engine, which is responsible for generat-ing controlled T&R
environments by enforcing user-defined parameters.

– The ART Database, which stores all game information for reporting and
later retrieval.

– The ART GUI, providing access to online game monitor-ing and result vi-
sualization.

– The Agent Skeleton, an agent wrapper for researchers to embed their T&R
strategy, while ensuring unflustered communication with the other ART en-
tities.

3.2 ART T&R Modeling and State-of-the-Art

Within the context of ART, an agent T&R strategy should span across three
axes: (i) modeling of the other agents (environment), (ii) modeling request and,

Dealing with Trust and Reputation in Multi-agent Environments 91

Fig. 1. ART entities and their interactions

(iii) modeling response. The response strategy directly affects its reputation,
while the request and response strategies have an effect on environment model-
ing. [15]

The basic challenges in building an efficient T&R strategy have been identified
by Costa et al. [2008] [16] and are: (i) the start game opinion requests, (ii)
the identification of trustworthy agents, (iii) the appraisal definition policy and
complexity, (iv) the reputation definition, request and response policies and,
finally, the aggregation of all the above. Researchers may focus on one or more
aspects of the strategy, in order to build an efficient agent.

May one go through related literature, one may identify several approaches
that perform ART T&R modeling. Nevertheless, two are the ones that stand
out: UNO and IAM.

UNO. Probably the most successful and efficient ART T&R model. Murillo
and Munoz [17] focused on the request and response aspects of the T&R model.
In both cases they exploit knowledge the agent builds on the other agents, based
on:

– the error of own appraisals
– if an agent has responded to an UNO request and,
– the total number of requests an agent has made to UNO.

It is worth mentioning that UNO does not employ a reputation mechanism to
extract trust values, since the UNO team considered that the number of par-
ticipating agents is too small for generating trustworthy reputation estimations.
Thus, they selected to work directly with the real appraisal error of each agent.

92 I. Tsekourakis and A.L. Symeonidis

IAM. IAM is another successful ART agent paradigm. Teacy et al [18] describe
IAM behavior as Intelligent (using statistic-al models for opponent modeling),
Abstemious (spending its budget parsimoniously based on its trust model) and
Moral (providing fair and honest feedback to those that request it). IAM decides
based on the following information:

– Appraisal responses from the Simulator Engine and other appraisers
– Information on the behavior of other agents (e.g. reputation values).

The trust model of IAM comprises three parts: (a) the lie detector, which identi-
fies malicious agents, (b) the variation appraiser, which estimates the variation
of appraisal errors of the other agents and (c) the weight estimator of the most
accurate agents. In contrast to UNO, IAM employs reputation in order to build
its T&R model.

3.3 Preliminary Analysis of the ART Environment

In order to identify the factors that mostly affect appraiser performance, we
performed an extensive set of experiments, where different game parameters
and simple policies were tested. We employed the SimpleAgent (provided by the
ART framework) and gradually tested it against the TestAgent (SimpleAgent
equipped with a simple policy), the Cheatin-gAgent and HonestAgent, as well as
the agents that participated in the 2008 ART competition. In the latter experi-
ments, more elaborate policies where followed, based on the analysis performed.
In all cases the game parameters were the same; these are defined in Table 1.

Table 1. Game parameters during experimentation

Time Epochs 50

Eras 10

Average number of clients per appraiser 20

Client fee 100

Appraisal cost 10

Certainty cost 1

Reputation cost 0.1

Appraisal messages 2

Certainty messages 20

Denial of personal opinion True

Variable eras 2

Expertise value change 0.05

The types of policies investigated are discussed in Ta-ble 2, where the last
column defines the number of discrete steps selected for each of the T&R factors.
It should be mentioned that the following results are aggregates following monte
carlo analysis.

Dealing with Trust and Reputation in Multi-agent Environments 93

Table 2. The various policies applied

Policy T&R factor Steps

Pol-1 Reputation definition policy 7

Pol-2 Reputation request policy (reputation only) 5

Pol-3 Reputation response policy 3

Pol-4 Honesty policy (based on agent trustworthiness) 3

Pol-5 Reputation request policy (reputation and certainty) 3

Pol-6 Appraisal cost for trustworthy agents 5

Pol-7 Appraisal cost for unreliable agents 5

Pol-8 Trustworthiness with respect to appraisal cost 3

Pol-9 Optimal reputation definition policy (Pol-1) 4
Optimal trustworthiness policy (Pol-4)
Honest response to trustworthy agents
Dishonest response to unreliable agents

Pol-10 Optimal reputation definition policy (Pol-1) 3
Honest response to trustworthy agents
Dishonest response to unreliable agents
Optimal appraisal cost policy (Pol-6)

Pol-11 Optimal reputation definition policy (Pol-1) 3
Optimal reputation response policy (Pol-3)
Optimal appraisal cost policy (Pol-6)
Honest response to trustworthy agents
Dishonest response to unreliable agents

Pol-12 Optimal reputation definition policy (Pol-1) 3
Optimal reputation response policy (Pol-3)
Optimal appraisal cost policy (Pol-6, Pol-7)
Honest response to trustworthy agents
Dishonest response to unreliable agents

TestAgent vs. SimpleAgent. An extensive set of tests was performed on the
simple policies applied (Pol.1 Pol.8), in order to identify which of the T&R fac-
tors affect appraiser performance. Subfigures 2.1 2.8 illustrate the performance
of the competing agents in various configurations (omitted due to space limita-
tions). Block 1 denotes the set of basic rules identified and the optimal values of
the most important factors:

BLOCK 1. BASIC RULES IDENTIFIED

Rule-1. IF ME > 0.5 THEN rep = rep-0.02 ELSE rep = rep+0.04

Rule-2. IF repAppraiser > 0.5 THEN it is considered trustworthy

Rule-3. IF an appraiser is trustworthy

THEN provide accurate opinions

ELSE provide falsified opinions

Rule-4. IF an appraiser is trustworthy

THEN pay 0,7*AppCost to get an appraisal

ELSE pay 0,15*AppCost

94 I. Tsekourakis and A.L. Symeonidis

TestAgent vs. HonestAgent and CheatingAgent. The ART testbed pro-
vides two more agents for benchmarking: the CheatingAgent and HonestAgent.
TestAgent equipped with the knowledge base generated during the first experi-
mentation stage (Pol.1 Pol.8), was benchmarked against these agents. Subfigures
2.9 2.11 illustrate the performance of the competing agents in various configura-
tions. Apart all other observations, one should also point out that in some cases,
SimpleAgent stills outperforms TestAgent, since the strategy the latter follows
is oriented towards more complex strategies.

TestAgent vs. ART 2008 Winning Agents. Finally, TestAgent was bench-
marked against the top per-forming agents of the ART 2008 competition. Sub-
figure 2.12 illustrates the performance of the competing agents in various con-
figurations. At this point TestAgent outperforms SimpleAgent, since the latter
cannot cope with the complexity of the competitors strategies. Nevertheless, it
is obvious that the approach TestAgent follows still lacks dynamicity and ad-
justability.

A number of useful observations were made through the analysis performed.
First of all, computing reputation based on direct interactions with other agents
proved more efficient than using information from reputation responses. Addi-
tionally, experimentation dictated that neither honesty, nor unreliability work
alone. Competitors should be forced to play fair, so as to be rewarded with
trust (or penalized with unreliability). Finally, the ranges of metric values were
identified, where our agent increased efficiency. Outside of these ranges agent per-
formance decreases. Based on these observations, HerculAgent was developed.

4 HerculAgent Architecture

HerculAgent follows a modular architecture, so as to meet each of the diverse
needs imposed by the ART framework (Figure 3). Its behavior is expressed
through nine strategy functions, which are aggregated into three behavior mod-
ules implementing three protocols: the reputation protocol, the certainty protocol
and the opinion protocol.

4.1 HerculAgent Protocols

Reputation Protocol. The reputation protocol manages the reputation val-
ues Repijt(i: Agenti,, j: Eraj , t: Epocht), primarily based on previous direct
interactions, and secondarily on indirect sources such as observation informa-
tion. The reputation module actually deliberates on the reward or admonition
strategy to follow, based on the appraisal estimates provided by other apprais-
ers in the past. It also defines the number of reputation re-quests HerculAgent
will make and the agents to request reputation information from. Finally, the
reputation module determines the response strategy to reputation requests the
agent receives from other agents.

Dealing with Trust and Reputation in Multi-agent Environments 95

Fig. 2. Appraiser Revenue with respect to the various Policies applied and the config-
uration settings selected

96 I. Tsekourakis and A.L. Symeonidis

Fig. 3. The HerculAgent architecture

CertaintyProtocol. The certainty protocolmanages the certainty valuesCerijt
(i:Agenti,, j:Eraj , t:Epocht) and refers to the confidence an agent has on the rep-
utation of other appraisers. The certainty module implements the strategy Her-
culAgent has with respect to which agents to ask for their certainty values.

Opinion Protocol. Finally, the opinion protocol is the core business protocol
of the agent, responsible for issuing accurate painting appraisals/opinions. The
opinion module selects the agents to trust and request their opinion, while it also
builds its own personal opinions base to respond to competition agents. It con-
templates the strategy that the agent uses to define the combination of the other
agents appraisals to create its own final appraisal and finally send it to the client.

4.2 HerculAgent Metrics

HerculAgent employs four metrics in order to design and develop its T&R strat-
egy:

Mean error (ME(i,j,t)) is the weighted average of the appraisal relative er-
rors an agent makes and varies for each era. ME depends on past interactions
and is defined as:

ME(i, j, t) =
((ME(i, j, t− 1) ∗ ErC(i, j, t− 1) + Er(i, j, t− 1)))

(ErC(i, j, t − 1) + 1)
(1)

where Er(i,j,t), is the relative appraisal error Agenti, makes for a painting
of Eraj at Epocht of the game. ErC(i,j,t) is the respective number of the
errors.

Reputation (Rep(i,j,t)) expresses the level of trustworthiness of Agenti, for
a painting of Eraj at Epocht of the game. It ranges in the [0,1] interval.

Dealing with Trust and Reputation in Multi-agent Environments 97

Certainty (Cer(i,j,t)) indicates the certainty that an Agenti claims on its
appraisal values for a painting of Eraj at epoch Epocht of the game. It
ranges in the [0,1] interval.

Self Confidence (SC(i,j,t)) expresses the certainty HerculAgent has on the
other appraiser agents, as defined through past interactions. It denotes the
possibility that the Rep(i,j,t) value computed for an appraiser is similar to
its Cer(i,j,t) value. Block-2 denotes the pseudocode implementation of SC:

BLOCK 2. calculates() PSEUDOCODE

FUNCTION calculateSC(Agent i, Era j, Epoch t){

L1: tempConf <- selfConfidence(Agenti(Appraisal(Eraj)));

L2: IF (tempConf EQUALS 0) THEN tempConf = a

ELSE tempConf = tempConf+((1-tempConf)*b); {1}

L3: selfConfidence(Agent_{i}(Appraisal(Era_{j}))) <- tempConf;

}

{1} After experimentation, a = 0.01, b = 0.005

Metrics are continuously calculated for each agent, era and epoch.

4.3 Dynamic Behavior Adaptation

HerculAgent employs two methods in order to adapt its behavior and strategy
with respect to the data collected throughout the game:

setRepLimit() which adapts, for each Agenti, for paintings of Eraj at each
Epocht the minimum Rep(i,j,t) value Agenti has to meet to be trusted.

setErrorsLimit() which defines, for each Agenti, for paintings of Eraj at each
Epocht the error limit that is acceptable for an appraiser agent.

Block-3 denotes the pseudocode implementation of setErrorsLimit(). Function
setRepLimit() is deployed in a similar manner.
BLOCK 3. setErrorsLimit() PSEUDOCODE

FUNCTION setErrorsLimit(Agent i, Era j, Epoch t){

L1: FOR (1 TO numberOfEras){

L2: min <- 1;

L3: max <- 0;

L4: FOR (1 TO numberOfAgents){

L5: IF (errors(Agent_{i}, Era_{j}) < min

L6: THEN min <- errors(Agent_{i}, Era_{j});

L7: IF errors(Agent_{i}, Era_{j})> max

L8: THEN max <- errors(Agent_{i}, Era_{j});

}

L9: ErrrorsLimit <- min + *max^2; {1}

}

}

{1} After experimentation, = 0.2

98 I. Tsekourakis and A.L. Symeonidis

4.4 HerculAgent Behavior

The core T&R model of HerculAgent focuses on trust, and the degree of trust-
worthiness we show to opponents. In order to decide, three behaviors were imple-
mented: (i) the typical behavior (our basic strategy), (ii) the optimistic behavior,
where opponents are given more credit and, (iii) the pessimistic behavior, where
opponents are given less credit. In a similar manner, three behaviors were im-
plemented in order to calculate the weighted average of the final appraisal: the
typical, aggressive, and submissive behaviors. All behaviors are specified in the
respective HerculAgent.conf file and behavior changes dynamically (upon game
initiation).

5 Experiments

A number of experiments were performed with HerculAgent participating in
all agent scenarios, as defined in Section 3. Various strategies were applied and
interesting conclusions were drawn. The following results are aggregates following
monte carlo analysis.

At first, HerculAgent was tested against the nave set of agents that were tested
in the preliminary phase, and easily outperformed them. Figure 4 illustrates
agent revenue (Bank balance) of an indicative game, as depicted by the ART
Light Game Monitor Interface.

Consequently, HerculAgent was tested against the top performing agents of
the ART 2008 competition. Figure 5 illustrates agent revenue (Bank balance) of
an indicative game, while Figure 6 presents the aggregate results with respect
to the different HerculAgent behaviors.

Through the numerous experiments performed in order to compare our strat-
egy against the winning agents of the ART 2008 competition, we observe that
our results are satisfactory but could be further improved. HerculAgent often
succeeded in finished second third, nevertheless never succeeded in beating Uno.

Fig. 4. HerculAgent against the naive set of agents

Dealing with Trust and Reputation in Multi-agent Environments 99

Fig. 5. HerculAgent against the ART 2008 top performing agents

The strategy of HerculAgent did not perform adequately at the first half of the
game (start game effect). This can be justified based on the fact that HerculA-
gent computes trust mainly on information received through direct interactions.
Thus, during the initial epochs there is not enough information available for rea-
soning. Whenever accurate initial appraisals are performed, the agent performs
very well. In all cases, though, in the second half of the game, the bank total of
HerculAgent improves significantly, at a rate even greater than the winner agent
Uno.

Fig. 6. Aggregate performance of HerculAgent against the ART 2008 top performing
agents

6 Conclusions - Future Work

Current work discusses HerculAgent, an agent designed and developed for the
analysis of various T&R models in dynamic trading environments. The ART
platform was selected for experimentation, given that it provides a unique testbed
for testing various game parameters. Preliminary analysis indicated the basic
factors affecting performance, and a set of rules of thumb were identified, which
where later embedded in our agent model.

100 I. Tsekourakis and A.L. Symeonidis

Results show the strong points and drawbacks of HerculAgent.
Future enhancements include the development of an off-line mechanism that

exploits regression techniques for estimating reputation values, as well as the
improvement of the agent behavior during the first epochs of the game.

References

1. Simon, H.A.: The sciences of the artificial, 3rd edn. MIT Press, Cambridge (1996)

2. Ramchurn, S.D., Huynh, D., Jennings, N.R.: Trust in multi-agent systems. Knowl.
Eng. Rev. 19, 1–25 (2004)

3. Huang, H., Zhu, G., Jin, S.: Revisiting trust and reputation in multi-agent systems.
In: ISECS International Colloquium on Computing, Communication, Control and
Management, vol. 1, pp. 424–429 (2008)

4. Ramchurn, S.D., Sierra, C., Godo, L., Jennings, N.R.: A computational trust model
for multi-agent interactions based on confidence and reputation. In: Proceedings
of 6th International Workshop of Deception, Fraud and Trust in Agent Societies,
pp. 69–75 (2003)

5. Gómez, M., Carbó, J., Benac-Earle, C.: An Anticipatory Trust Model for Open
Distributed Systems. In: Butz, M.V., Sigaud, O., Pezzulo, G., Baldassarre, G.
(eds.) ABiALS 2006. LNCS (LNAI), vol. 4520, pp. 307–324. Springer, Heidelberg
(2007)

6. Fullam, K.K., Barber, K.S.: Learning trust strategies in reputation exchange net-
works. In: Proceedings of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2006, pp. 1241–1248. ACM, New York
(2006)

7. Sabater, J., Sierra, C.: Reputation and social network analysis in multi-agent sys-
tems. In: Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems: Part 1, AAMAS 2002, pp. 475–482. ACM, New
York (2002)

8. Fullam, K.K., Klos, T.B., Muller, G., Sabater, J., Schlosser, A., Topol, Z., Barber,
K.S., Rosenschein, J.S., Vercouter, L., Voss, M.: A specification of the agent repu-
tation and trust (art) testbed: Experimentation and competition for trust in agent
societies. In: The Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems, Utrecht, The Netherlands, pp. 512–518 (July 2005)

9. Fullam, K.K.: An expressive belief revision framework based on information valu-
ation. Master’s thesis, Dept. of EE, U. Texas (Austin) (2003)

10. Fullam, K.K., Barber, K.S.: A Temporal Policy for Trusting Information. In: Fal-
cone, R., Barber, S.K., Sabater-Mir, J., Singh, M.P. (eds.) Trusting Agents. LNCS
(LNAI), vol. 3577, pp. 75–94. Springer, Heidelberg (2005)

11. Ding, L., Kolari, P., Ganjugunte, S., Finin, T., Joshi, A.: Modeling and Evaluating
Trust Network Inference. In: Seventh International Workshop on Trust in Agent
Societies at AAMAS 2004 (July 2004)

12. Muller, G., Vercouter, L., Boissier, O.: Towards a general definition of trust and
its application to openness in MAS. In: Falcone, R., Barber, K., Korba, L., Singh,
M. (eds.) Proceedings of the Workshop on Deception, Fraud and Trust in Agent
Societies at Autonomous Agents and Multi-Agent Systems, pp. 49–56 (July 2003)

13. ART testbed website: http://www.ncbi.nlm.nih.gov/

http://www.ncbi.nlm.nih.gov/

Dealing with Trust and Reputation in Multi-agent Environments 101

14. Fullam, K.K., Klos, T., Muller, G., Sabater-Mir, J., Barber, K.S., Vercouter, L.:
The Agent Reputation and Trust (ART) Testbed. In: Stølen, K., Winsborough,
W.H., Martinelli, F., Massacci, F. (eds.) iTrust 2006. LNCS, vol. 3986, pp. 439–442.
Springer, Heidelberg (2006)

15. Kafalı, Ö., Yolum, P.: Trust strategies for ART Testbed. In: Ninth International
Workshop on Trust in Agent Societies, AAMAS, pp. 43–49 (2006)

16. da Costa, A.D., de Lucena, C.J.P., da Silva, V.T., Azevedo, S.C., Soares, F.A.:
Computing reputation in the art context: Agent design to handle negotiation chal-
lenges (2008)

17. Muñoz, V., Murillo, J.: Agent uno: Winner in the 2nd spanish art competition.
Inteligencia Artificial, Revista Iberoamericana de Inteligencia Artificial 12(39),
19–27 (2008)

18. Teacy, W.T.L., Huynh, T.D., Dash, R.K., Jennings, N.R., Patel, J., Luck, M.: The
art of iam: The winning strategy for the 2006 competition (2006)

Analysis of Stable Prices

in Non-Decreasing Sponsored Search Auction

ChenKun Tsung1, HannJang Ho2, and SingLing Lee1

1 Dep. of Computer Science and Information Engineering,
National Chung Cheng University,

168 University Road, Minhsiung, Chiayi 62102, Taiwan, ROC
2 Dep. of Applied Digital Media,

WuFeng University
117, Sec 2, Chiankuo Road, Minhsiung, Chiayi 62102, Taiwan, ROC

{tck95p,hjho,singling}@cs.ccu.edu.tw

Abstract. Most critical challenge of applying generalized second price
(GSP) idea in multi-round sponsored search auction (SSA) is to prevent
revenue loss for search engine provider (SEP). In this paper, we pro-
pose non-decreasing Sponsored Search Auction (NDSSA) to guarantee
SEP’s revenue. Each advertiser’s bid increment is restricted by mini-
mum increase price (MIP) in NDSSA. The MIP determination strategy
influences bid convergence speed and SEP’s revenue. Fixed MIP strat-
egy and Additive-Increase/Multiplicative-Decrease (AIMD) principle are
applied to determine MIP values, and they are evaluated in this paper.
For the convergence speed analysis, fixed MIP strategy converges faster
than AIME in most instances. For SEP’s revenue, AIMD assists SEP
to gain more revenue than fixed MIP strategy by experiments. Simulta-
neously, SEP’s revenue in Vickrey-Clarke-Groves auction (VCG) is the
lower bound of that in AIMD.

Keywords: Sponsored Search Auction, Generalized Second Price Auc-
tion, Minimum Increase Price, Additive-Increase/Multiplicative-Decrease,
lower bound.

1 Introduction

Recently, search engine provider (SEP) combines advertising and search results
on the screen. This kind of advertising application is called as sponsored search
auction (SSA).

Many advertisers would like to join SSA due to the pay-per-click design. Only
advertiser whose advertisement is clicked by the Internet user is charged. To
simulate the click event, the click-through-rate (CTR) is introduced [1]. CTR is a
probability that the Internet user clicks on. Thus, the quality of each advertising
slot can be estimated by the CTR assumption.

Aggarwal et al. suggest that the CTR should be evaluated according a
merchant-specific factor and a position-specific factor [9]. So, the relevance of

E. David et al. (Eds.): AMEC/TADA 2011, LNBIP 119, pp. 102–114, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Analysis of Stable Prices in Non-Decreasing Sponsored Search Auction 103

each advertisement and inputted keywords impacts CTR. For simplification,
most related works only consider position-specific factor, such as [1] [2].

Generalized Second price (GSP) [1] is the famous charging function in real
world SSA applications. Each clicked advertiser pays equal to the bid value
of next ranked advertiser. Comparing to the idea of paying what he/she bids,
advertisers in GSP will save more money.

Bu et al. [7] and Cary et al. [6] study the multi-round SSA, while SEP’s
revenue may be reduced round by round. When an advertiser is benefited in a
worse position, he/she will propose a lower bid in the next round. Therefore,
SEP’s revenue will be decreased because the revenue comes from the sum of
payments.

According to [6] [7], we propose Non-decreasing Sponsored Search Auction
(NDSSA) to improve SEP’s revenue by allowing biding on only non-decreasing
prices. Thus, advertisers will compete for better slots to improve utilities, that
is similar to English auction, and the revenue loss problem is resolved.

However, SEP suffers an extended issue: long-term revenue loss problem.
SEP’s long-term revenue is the sum of payments after several rounds. Less pay-
ment will also improve advertiser’s long-term utility. Either the initial bid with
extremely low value is proposed or increasing bid values slightly is beneficial
for long-term utility of each advertiser. So, SEP’s revenue in each round will be
raised slowly, and the long-term revenue loss problem is taken place.

All kinds of initial bid values are available in NDSSA. We only focus on
solving the second counterattack strategy, increasing bids slowly, by restricting
bid increments. The essential bid increment is called as Minimum Increase Price
(MIP) in this paper. Each advertiser is allowed to propose only the bid value
which is either equal to that in the last round or increased by the MIP value.
Thus, advertisers will bid actively due to MIP consideration.

For SEP, the first issue in NDSSA is the convergence speed. After NDSSA
begins, each advertiser continuously updates his/her bid value to compete better
slot. SEP’s revenue is improved during this phase. When no advertiser would like
to propose higher bid, NDSSA is converged. Requiring more rounds to reach sta-
ble allocation is caused from that bids are increased slowly. So, the convergence
speed is an important factor to evaluate the mechanism for SEP.

The second issue is SEP’s revenue, and this is most interested by SEP. Since
SEP’s revenue comes from advertisers’ payments, maximizing bid values in each
round implies SEP’s revenue is improved.

To determine MIP settings, two MIP strategies are proposed: fixed and adap-
tive MIP strategies. The MIP setting is invariant in each round in fixed MIP
strategy. The idea of additive-increase/multiplicative-decrease (AIMD) is applied
in adaptive MIP strategy to calculate MIP setting in each round.

Convergence speed and SEP’s revenue are discussed in this paper. We proof
that fixed MIP strategy converges faster than AIMD in most instances. On the
other hand, SEP will obtain more revenue than fixed MIP strategy according to
our experiment results.

104 C. Tsung, H. Ho, and S. Lee

In the following context, NDSSA is defined in section 2 which includes the
mechanism, bidding strategy, and MIP strategies. The convergence speed issue is
analyzed in section 3. SEP’s revenue comparisons between different MIP strate-
gies are measured by experiments in section 4. The conclusion and future works
are shown in section 5.

1.1 Related Work

Most popular payment calculations in SSA are GSP [1] and Vickrey-Clarke-
Groves auction (VCG) [2]. Each winner pays bid value ranked in the next slot
and the social welfare gap between the winner leaves and joins the auction in
GSP and VCG respectively.

Incentive compatibility is the major advantage of VCG. Advertisers are ranked
by their advertising valuations, because bidding on other prices is not beneficial
for each advertiser. For SEP’s revenue and computation cost, VCG is not prac-
tical in real word applications [4]. Moreover, VCG is the revenue lower bound of
GSP for SEP in some instances [2]. To build a more realistic mechanism, SEP
should consider GSP.

Winning the slot to improve the utility is the natural objective of each adver-
tiser. After receiving a satisfied allocation, no advertiser wishes for any deviation,
and the auction meets the equilibrium result [5]. Edelman et al. apply the stable
idea to define locally envy-free equilibrium [1].

Since the allocation is steady under locally envy-free equilibrium, SEP’s rev-
enue is invariant and expectable. Moreover, VCG is the revenue lower bound
for SEP when advertisers bid truthfully [2]. Because the steady allocation is the
natural target and produces expectable revenue for each advertiser and SEP re-
spectively, winning an envy-free slot is the bidding behavior discussed in NDSSA.

The multi-round assumption is close to the real world instance. Major prop-
erty in this assumption is that participants will learn from previous result [5].
Cary et al. study the “balance bidding strategy” in the multi-round SSA [7].
Similar to our work, Cary et al. restrict the bid value, but not all instances meet
the steady allocation. The outcome stability is important for SEP due to the
revenue expectation, so the stability is considered in NDSSA.

Restricting minimum bid prices has the same effect with MIP. Even-Dar et
al. modified Tâtonnement process to compute the minimum bid value [8]. When
applying the idea of Even-Dar et al., SEP will gains more revenue than VCG. If
the auction efficiency is guaranteed, the mechanism is more useful for SEP.

2 NDSSA

SEP must solve the revenue loss problem when applying GSP in multi-round
SSA. Consider the advertiser occupied 1st slot, for example. If he/she is benefited
in the 2nd slot, he/she will propose a lower bid price for moving to 2nd slot in the
next round. The advertiser is benefited by payment decrease, but SEP revenue
is reduced simultaneously.

Analysis of Stable Prices in Non-Decreasing Sponsored Search Auction 105

2.1 Auction Mechanism

An NDSSA instance includes an SEP, and k + 1 advertisers that compete for k
advertising slots. Suppose that each advertiser is interested in the same keyword
and has the ability to update his/her bid value in each round. Payments are
calculated by GSP, i.e. pxi = bxi+1, where pxi is adi’s payment in xth round and
bxi+1 is adi+1’s bid in xth round.

Each advertiser adi has two parameters: the valuation and the initial bid rate
(IBR) IBRi. The valuation vi is the worth per each click, and IBR indicates the
ratio of valuation to the initial bid value. So the initial bid value is vi × IBRi.

In xth round, each advertiser is allowed to propose two kinds of bids bxi .

1. same bid value , i.e. bxi = bx−1
i , or

2. higher value, i.e. bxi ≥ bx−1
i +MIP x−1 + ε, ∀ε ≥ 0.

where all advertisers obey the same MIP value in each round.
Each slot slj has a click probability, called click-through rate (CTR), to sim-

ulate the slot importance. Without Lost of Generality, the better slot has higher
CTR value. Therefore, adi allocated in slj pays bxy × CTRj expectedly, where
ady is the winner of slj+1.

2.2 Bidding Strategy

Consider adi occupies slj, the utility in xth round is denoted by ux
i (j) = CTRj×

(vi−pxi). We only consider Rational Bidding advertiser in this paper. This implies
no advertiser will bid higher than his/her valuation, i.e. bxi ≤ vi.

According to the concept of locally envy-free equilibrium, bxi will be increased
only when slj−1 is more beneficial than slj , i.e. u

x
i (j−1) > ux

i (j). Thus, adi will
bid min{(bxy + 1), (bxi +MIP)}, where ady is ranked in slj−1

2.3 MIP Strategies

The MIP value of fixed MIP strategy determines SEP’s revenue. For higher
settings, higher bid increment will limit the final bid value. Advertisers can not
bid close to their valuations, so SEP’s revenue in higher MIP setting may be
less than in lower MIP setting. Consider the advertiser with valuation 50, bid
value 40, and MIP 11, for example. The advertiser must propose $51 at least.
According to rational bidding, SEP will lose $10 at most.

AIMD is used to probing unknown bandwidth in a TCP connection [3]. We
apply the adjustability of AIMD to determine the MIP setting in each round. No
bid update indicates the congestion in TCP, so the MIP value is set to one half.
Otherwise, MIP is increased by one continuously. When each advertiser keeps
the same bid under MIP = 1, advertisers have no idea to increase bids, and
NDSSA converges.

To maximizing SEP’s revenue, AIMD requires more rounds than fixed MIP
strategy to check that NDSSA converges or not. SEP has the trade-off between
the convergence speed and the revenue for determining MIP strategies.

106 C. Tsung, H. Ho, and S. Lee

3 Convergence Speed Analysis

3.1 Fixed MIP Strategy

SEP requires determining the MIP value before NDSSA begins. The MIP setting
is invariant throughout the auction. In the worst case, Theorem 1 shows the
number of rounds required to converge by fixed MIP strategy.

Theorem 1. Consider admab has maximum available bid amount over all ad-
vertisers in an NDSSA instance, where MIP 0 is initial MIP setting and mab =
argmax∀i�=1 vi(1 − IBRi). In the worst case, the number of rounds rF required
to meet the stable allocation by fixed MIP strategy is as follows.

rF =
vmab(1 − IBRmab)

MIP 0
�

Proof. This proof is divided into two portions. We first deal with why the ad-
vertiser admab dominates the convergence speed and then calculate the number
of convergence rounds.

The advertiser admab, where mab = argmax∀i�=1 vi(1−IBRi), represents that
he/she has most available prices to bid. In other words, admab still can increase
his/her bid value while others meet their valuations. The advertiser with highest
valuation is excluded, because he/she will win the 1st slot when bidding over
2nd ranked advertiser rather than his/her valuation. Therefore, admab, except
for ad1, dominates the convergence bottleneck in fixed MIP strategy.

We have the maximum available bid increment vmab(1 − IBRmab), and the
increment divided by the MIP setting is the number of convergence rounds re-
quired in the worst case.

3.2 AIMD

The convergence speed of AIMD is analyzed by two portions. The first part is
the first decrease of MIP value, and the second portion is the remainder rounds.
They are shown in Lemma 1 and 2.

Lemma 1. In the worst case of the NDSSA with AIMD, MIP h+1 will be de-
creased, where h = 2

√
(MIP 0)2 + 2vmab −MIP 0.

Proof. Suppose the MIP value is decreased at (h + 1)th round. All bids in hth

and (h + 1)th rounds are the same, i.e. bhi = bh+1
i . In Fig. 1, the bid value is

bhmab +MIP h where MIP h = MIP 0 + h, and the pink area indicates the sum
of bid increments in the auction, that is h× (MIP 0 + (MIP 0 + h))/2.

If admab still increases his/her bid in (h+1)th round, he/she will overbid, i.e.
bhmab +MIP h ≥ vmab. The first round of MIP decrease h can be derived.

bhmab +MIP h ≥ vmab

h× (MIP 0 + (MIP 0 + h)) ≥ 2vmab

h2 + 2MIP 0h− 2vmab ≥ 0

Analysis of Stable Prices in Non-Decreasing Sponsored Search Auction 107

h ()hMIP +−log 2 1

Fig. 1. The MIP modification history of NDSSA in the worst case

h ≥ −2MIP 0 ± 2
√
4(MIP 0)2 + 8vmab

2

= 2
√
(MIP 0)2 + 2vmab −MIP 0

According to Lemma 1, we derive that higher initial MIP settings result in faster
convergence. Then, we focus on the remainder rounds in the worst case.

Lemma 2. After first MIP decrease, NDSSA with AIMD requires 2
log(MIP 0+
h)� rounds to converge, where h = 2

√
(MIP 0)2 + 2vmab − MIP 0 and mab =

argmax∀i�=1 vi(1− IBRi) in the worst case.

Proof. As shown in Fig. 1, the available bid increment is at most MIP 0 + h in
(h+ 1)th round. If the assumption is false, MIP 0 + h+ 1 for example, admab is
able to update his/her bid in (h+1)th round due to MIP h+1 = (MIP 0+h)+1.

The remainder rounds in the worst case is composed of decrease-increase
pairs. Consider the idea in (h+ 2)th round. We have MIP h+2 = MIP h+1/2 =
(MIP 0 + h + 1)/2 and the available bid increment is MIP 0 + h. So admab

increases his/her bid by (MIP 0 + h + 1)/2. The remainder bid increment is
(MIP 0+h)−(MIP 0+h+1)/2 = (MIP 0+h−1)/2 in the first round of decrease-
increase pair, and the MIP value should be increased by one. Because the MIP
value is higher than the available bid increment, e.g. ((MIP 0 + h+ 1)/2) + 1 ≥
(MIP 0 + h − 1)/2, no bid update will be taken place in the second round of
decrease-increase pair.

The NDSSA with AIMD will decrease the MIP setting to one half, and each
decrease contains a pair of rounds. WhenMIP = 1, each advertiser will no longer
update his/her bid value. Therefore, the remainder rounds is 2
log(MIP h)� =
2
log(MIP 0 + h)�.

108 C. Tsung, H. Ho, and S. Lee

Combining Lemma 1 and 2, the total number of convergence rounds required by
the NDSSA with AIMD is shown in Theorem 2.

Theorem 2. NDSSA with AIMD will converge at most rA = h +
2
log(MIP 0 + h)� rounds, where h = 2

√
(MIP 0)2 + 2vmab −MIP 0 and mab =

argmax∀i�=1 vi(1− IBRi).

The upper bound of convergence rounds for fixed MIP strategy and AIMD are
shown in Theorem 1 and 2 respectively. Now, we are analyzing the condition
that fixed MIP strategy converges faster than AIMD.

Theorem 3. When the MIP value is decreased after (rF −2 log vmab) rounds in
AIMD, fixed MIP strategy converges faster than AIMD, where rF =
vmab(1 −
IBRmab)/MIP 0�, in the worst case.

Proof. Combining Theorem 1 and 2, assume that fixed MIP strategy converges
faster than AIMD, i.e. rF ≤ rA. The objective is to proof h ≥ rF − 2 log vmab.

rF ≤ rA

= h+ 2 log(MIP 0 + h)

≤ h+ 2 log(
vmab

2
) + 2

= h+ 2 log vmab

⇒ h ≥ rF − 2 log vmab

4 Simulation

The distributions of valuation, CTR, and IBR, are shown in table 1, 2, and 3
respectively. The gaps of valuation and CTR settings include uniform, linear,
exponential increasing, exponential decreasing, and random. The IBR settings
are not required to restrict as a decreasing order, so the previous advertiser may
have smaller IBR value than the next one. Since the maximum valuation is 50,
initial MIP values are evaluated from 1 to 50 for each instance. So, we have 6250
measurements.

Following experiments are evaluated in this paper: (1) robustness, comparing
which mechanism produces more SEP’s revenue in more instances, (2) overall
SEP’s revenue comparison, evaluating SEP’s revenue for all mechanisms under
stable allocations, (3) SEP’s average revenue, analyzing SEP’s average revenue
after converging, and (4) SEP’s long-term revenue comparison, discussing the
SEP’s total revenue during a specific round.

4.1 Robustness

For two mechanisms x and y, we say that x is more robust than y if the number
of instances with more SEP’s revenue in x is more than that in y.

Analysis of Stable Prices in Non-Decreasing Sponsored Search Auction 109

Table 1. Valuation settings

case # ad1 ad2 ad3 ad4 ad5
1 50 40 30 20 10
2 50 34 22 14 10
3 50 46 38 26 10
4 50 45 38 26 10
5 44.46 41.00 40.68 28.80 26.96

Table 2. CTR settings

case # sl1 sl2 sl3 sl4
1 0.8 0.6 0.4 0.2
2 0.8 0.376 0.164 0.053
3 0.8 0.747 0.641 0.429
4 0.8 0.76 0.4 0.38
5 0.8 0.598 0.475 0.39

Table 3. IBR settings

case # ad1 ad2 ad3 ad4 ad5
1 0.9 0.7 0.5 0.3 0.1
2 0.1 0.3 0.5 0.7 0.9
3 0.9 0.3 0.7 0.1 0.5
4 0.5 0.1 0.7 0.3 0.9
5 0.87 0.36 0.57 0.10 0.92

Fig. 2. SEP’s revenue comparison between AIMD and fixed MIP strategy in the stable
allocation.

The pairwise comparisons of fixed MIP strategy, AIMD, and VCG are evalu-
ated in this experiment, and results are shown in Figure 2, 3, and 4. The labels
x > y, x = y, and x < y in each figure denote the number of instances that
SEP’s revenue of mechanism x is more than, same to, and less than mechanism
y respectively.

110 C. Tsung, H. Ho, and S. Lee

Fig. 3. SEP’s revenue comparison between AIMD and VCG in the stable allocation

Fig. 4. SEP’s revenue comparison between fixed MIP strategy and VCG in the stable
allocation

In Figure 2, AIMD is more robust than fixed MIP strategy. After initial MIP
46, SEP gains more revenue in AIMD than in fixed MIP strategy in all instances.
Recall our claim in suction 2.3: higher MIP values will increase the gap between
stable bid value and the valuation for fixed MIP strategy. The conjecture is
confirmed in this measurement.

The robustness comparison between AIMD and VCG is shown in Figure 3.
AIMD is also more robust than VCG. SEP’s revenue in VCG is the lower bound
of that in GSP just in some instances [1]. The revenue lower bound of GSP is
extended to all instances in NDSSA according to our simulation.

Figure 4 draws the comparison between fixed MIP strategy and VCG. As
the initial MIP increases, fixed MIP strategy performs worse and worse. The
disadvantage of fixed MIP strategy, less SEP’s revenue in higher MIP settings,
is explored clearly in this simulation. Under lower MIP settings, SEP is benefited,
and fixed MIP strategy is more robust than VCG in average.

Analysis of Stable Prices in Non-Decreasing Sponsored Search Auction 111

Fig. 5. Overall SEP’s revenue comparison between all mechanisms

4.2 Overall SEP’s Revenue Comparison

Fig 5 shows the overall comparison about SEP’s revenue between AIMD, fixed
MIP strategy, and VCG. Each square includes three comparison results: “>”,
“=”, and “<”, and they stand for how many instances that the left mechanism
is better than, equal to, and worse than above one respectively. The VCG-ALL
comparison, for example, represents that VCG produces more SEP’s revenue
than all mechanisms in 892 instances, identical to 98 instances, and less than in
11510 instances.

AIMD produces more revenue in 11134 instances (89.07%) approximately,
and only 192 instances (1.54%) are worse than other mechanisms. The second
one is the NDSSA with fixed MIP strategy, and last one is VCG. Comparing to

Fig. 6. SEP’s average revenue comparison under different initial MIP values

112 C. Tsung, H. Ho, and S. Lee

VCG, AIMD improves 990 instances (15.84%) of fixed MIP strategy. Therefore,
SEP’s revenue of the stable allocation is maximized by adopting AIMD in most
instances.

4.3 SEP’s Average Revenue

In this simulation, we deal with the impact of initial MIP values on SEP’s revenue
in the stable allocation. Figure 6 shows the result. The x-axis indicates initial
MIP values, and the y-axis is SEP’s revenue averaged by all instances under the
same MIP value.

(a) After 50 rounds. (b) After 75 rounds.

(c) After 100 rounds. (d) After 125 rounds.

(e) After 150 rounds.

Fig. 7. SEP’s total revenue comparison for given different rounds

Analysis of Stable Prices in Non-Decreasing Sponsored Search Auction 113

Since the payment of VCG is calculated according to valuations, SEP’s rev-
enue is identical to various initial MIP values. In average, AIMD and fixed MIP
strategy perform better than VCG.

AIMD receives a more stable result than fixed MIP strategy, and the impact
of initial MIP values is slight. Since AIMD adjust MIP values in each round, bid
values are optimized in average.

SEP’s revenue of fixed MIP strategy decreases slightly in lower initial MIP
settings. After initial MIP is 18 approximately, SEP’s revenue drops dramatically
until MIP 46. Increasing initial MIP value implies that the gap between the
valuation and the stable bid value becomes larger. Therefore, SEP’s revenue is
decreased. Lower initial MIP values are better for SEP’s revenue in the stable
allocation.

4.4 SEP’s Long-Term Revenue Comparison

Given a maximum round, the long-term revenue of SEP is the sum of revenue in
each round. Only AIMD and fixed MIP strategy is compared in this simulation,
and the result is shown in Figure 7.

Given different maximum rounds, the variance degree of SEP’s long-term
revenue is not different too much for both AIMD and fixed MIP strategy. Similar
to Figure 6, initial MIP values almost do not vary SEP’s total revenue in AIMD.
SEP gains less revenue when initial MIP value increase in fixed MIP strategy. In
Figure 7(a), SEP gains more revenue in fixed MIP strategy than AIMD in a few
instances. As the number of maximum rounds increases, AIMD performs better
in all initial MIP values. AIMD is more appropriate than fixed MIP strategy for
the long term revenue for SEP.

5 Conclusion

When applying GSP to a multi-round SSA, SEP suffers the revenue loss problem.
We propose Non-decreasing Sponsored Search Auction (NDSSA) to solve this
problem while each advertiser is allowed to propose only non-decreasing bids in
next round. Minimum Increase Price (MIP) is used in NDSSA to control the bid
value for improving long term revenue.

Fixed MIP strategy and AIMD are applied to compute MIP values. For the-
oretical convergence speed analysis, fixed MIP strategy converges faster than
AIMD in most instances. For SEP’s revenue comparison of our simulations,
AIMD not only produces better but is more robust than fixed MIP strategy.
Thus, fixed MIP strategy is outstanding in short-term plan, and AIMD is for
long-term consideration.

SEP’s revenue is improved in NDSSA in this paper. However, SEP has no
idea to capture advertiser’s satisfaction. If the expected objectives, the utility
for example, are not achieved, advertisers may leave the auction. SEP’s revenue
will also be decreased potentially. Therefore, measuring satisfactions for any
participant will be studied in the future.

114 C. Tsung, H. Ho, and S. Lee

Acknowledgement. This work was supported in part by Taiwan NSC under
grant no. NSC 98-2221-E-274-006 and NSC 99-2221-E-274-007. The author like
to thank reviewers for their insightful comments which helped to significantly
improve the paper.

References

1. Edelman, B., Ostrovsky, M., Schwarz, M.: Internet Advertising and the Generalized
Second Price Auction: Selling Billions of Dollars Worth of Keywords. American
Economic Review 97(1), 242–259 (2007)

2. Varian, H.R.: Position Auction. International Journal of Industrial Organiza-
tion 25(6), 1163–1178 (2007)

3. Chiu, D.-M., Jain, R.: Analysis of the Increase and Decrease Algorithms for Con-
gestion Avoidance in Computer Networks. Computer Networks and ISDN Sys-
tems 17(1), 1–14 (1989)

4. Rothkopf, M.H.: Thirteen Reasons Why the Vickrey-Clarke-Groves Process Is Not
Practical. Operations Research 55(2), 191–197 (2007)

5. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory.
Cambridge University Press (2007)

6. Bu, T.M., Deng, X., Qi, Q.: Forward looking Nash equilibrium for keyword auction.
Information Processing Letters 105, 41–46 (2008)

7. Cary, M., Das, A., Edelman, B., Giotis, I., Heimerl, K., Karlin, A.R., Mathieu, C.,
Schwarz, M.: Greedy Bidding Strategies for Keyword Auctions. In: Proceedings of
the 8th ACM Conference on Electronic Commerce, pp. 262–271. ACM Press, San
Diego (2007)

8. Even-Dar, E., Feldman, J., Mansour, Y., Muthukrishnan, S.M.: Position Auctions
with Bidder-Specific Minimum Prices. In: Papadimitriou, C., Zhang, S. (eds.) WINE
2008. LNCS, vol. 5385, pp. 577–584. Springer, Heidelberg (2008)

9. Aggarwal, G., Goel, A., Motwani, R.: Truthful Auctions for Pricing Search
Keywords. In: Proceedings of the 7th ACM Conference on Electronic Commerce,
pp. 1–7. ACM Press, Ann Arbor (2006)

Acceptance Strategies for Maximizing Agent
Profits in Online Scheduling

Mengxiao Wu1, Mathijs de Weerdt2, and Han La Poutré1

1 Center for Mathematics and Computer Science (CWI), The Netherlands
2 Delft University of Technology, The Netherlands

{wu,hlp}@cwi.nl, m.m.deweerdt@tudelft.nl

Abstract. In the global logistics market, agents need to decide upon whether to
accept jobs offered sequentially. For each offer, an agent makes an immediate se-
lection decision with little knowledge about future jobs; the goal is to maximize
the profit. We study this online decision problem of acceptance of unit length
jobs with time constraints, which involves online scheduling. We present theoret-
ically optimal acceptance strategies for a fundamental case, and develop heuristic
strategies in combination with an evolutionary algorithm for more general and
complex cases. We show experimentally that in the fundamental case the perfor-
mance of heuristic solutions is almost the same as that of theoretical solutions.
In various settings, we compare the results achieved by our online solutions to
those generated by the optimal offline solutions; the average-case performance
ratios are about 1.1. We also analyze the impact of the ratio between the number
of slots and the number of jobs on the difficulty of decisions and the performance
of our solutions.

Keywords: Online decisions, Resource allocation, Admission control.

1 Introduction

Consider a market of global logistics in which a large number of jobs are dispatched
day and night to many logistics companies. During a period of time, each company gets
sequential offers of jobs from the market. Given its limited capacity and time resources,
usually, a company can only accept part of the offers. Because of the competition in
the market, we suppose the selection decisions are immediate and irrevocable. The
company’s target is to maximize its profit through selecting (and executing) jobs. This
is an online decision problem, as the company makes the decision on each job offer
without prior knowledge of future jobs. To solve it, we make an agent-based model for
simulating the decision process of the company (an agent) in the market and design
acceptance strategies (algorithms) for the agent’s optimal decisions.

We first introduce our problem briefly. When job offers arrive one at a time, each
job is characterized by a time window for scheduling and a payment. The agent needs
to make a take-it-or-leave-it decision immediately. The agent must schedule and exe-
cute every accepted job within its time window so as to get its payment. The utility
(profit) that the agent would get is the sum of the payments of all accepted jobs. In

E. David et al. (Eds.): AMEC/TADA 2011, LNBIP 119, pp. 115–128, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

116 M. Wu, M. de Weerdt, and H.L. Poutré

our analysis, we assume all jobs have the same processing time, i.e. one time slot, and
the agent can execute only one job in each time slot. In this work, we focus on the
selection decisions, so we make the scheduling part relatively easy, in which all jobs
are assumed to be future activities and no execution happens during the whole offering
process.

Our problem may be categorized as a variant of online admission control for inter-
val scheduling [1,2,3]. In such problems, the interval between a job’s release time and
deadline equals the time window in our problem. The authors emphasize the immedi-
ate notification of whether to schedule each job at its arrival, which is similar to our
selection decision. The decisions in our problem, however, are made at the jobs’ offer-
ing time, which is not their release time, i.e. the earliest available time for execution.
Hence, an accepted job can be rescheduled (within its time window) during the whole
offering process. This point distinguishes our problem from almost all online interval
scheduling/selection problems in previous work, in which decisions are made at the
jobs’ release time. Because no job will be executed during the decisions of the jobs that
followed, the scheduling part of our problem is more flexible, which increases the com-
plexity of selection. The reason is that with such flexibility in scheduling, the agent has
higher expectations of future jobs, but these can also cause him to reject current jobs
with good payments that he would otherwise accept.

The agent makes the decision on each job offer in two steps, i) whether this job can
be feasibly scheduled together with all previously accepted jobs, and ii) when one or
more feasible schedules exist, whether this job is worthy of taking. The focus of this
work is on the acceptance strategies rather than the scheduling algorithms. We analyze
theoretical solutions in a fundamental case and develop heuristic solutions in general
and complex cases. We also present a general idea of using a theoretical analysis of
a simple case to determine which are the most important parameters, and then using
an evolutionary algorithm to find the optimal values of the parameters also in more
complex settings. The approach presented in this work can be used to support online
decisions in e-commerce applications related to logistics.

Typically, an online solution is evaluated by comparison with an optimal offline so-
lution that knows the entire sequence of jobs in advance. In our experimental analysis,
we use an average-case performance ratio, which is defined as the ratio between the
average result generated by the optimal offline solution and the average result achieved
by the online solution on a large number of instances. Our (theoretical and heuristic)
solutions generate performance ratios around 1.1 in experiments with various settings.
In the fundamental case, the performance of the heuristics is very close to that of the
theoretically optimal online solutions. We also analyze the impact of the ratio between
the number of slots and the number of jobs. The decision is most difficult when there
are two to three times as many jobs as time slots.

The rest of this paper is organized as follows. We first present the problem model
in Section 2 and then propose the solutions and acceptance strategies in Section 3.
Following the descriptions, in Section 4, the performance of the strategies is evaluated
and compared through experiments. Next, we give a brief summary of related work.
Finally, conclusion and future work are given.

Acceptance Strategies for Maximizing Agent Profits in Online Scheduling 117

2 Problem Model

Suppose an agent is offered a finite set N of n ∈ N independent jobs sequentially. Each
job j ∈ N is characterized by a time window [xj , yj] (xj , yj ∈ N) and a payment
zj ∈ [0, 1], which are independent of each other. Notice that the approach proposed by
us works for any given range of payments, but we use the normalized values for ease
of presentation. Every job’s processing time is one time slot; it must be executed within
the given time window. The agent has a set T of t ∈ N time slots available for all jobs
in N . We let L denote the maximum length of all time windows where 1 ≤ L ≤ t, so
all jobs’ time windows are in T . Given any subset of jobs A ⊆ N , we let S(A, T) = 1
denote the existence of one (or more) feasible schedule such that every job j ∈ A can
be uniquely paired with a slot i ∈ T where xj ≤ i ≤ yj . When a new job j is offered,
the agent needs to judge whether the set of jobs Aj∪{j} can be feasibly scheduled first,
where Aj denotes the set of jobs previously accepted before job j and S(Aj , T) = 1.
If S(Aj ∪ {j}, T) = 1, then the agent needs to make a decision to accept it or not,
otherwise the agent can only reject it. Given the set of all accepted jobs A ⊆ N (with
S(A, T) = 1), the utility U that the agent would get equals the sum of the payments of
all accepted jobs, i.e. U =

∑
j∈A zj .

3 Acceptance Strategies

A solution to the problem above is composed of two parts: a scheduling algorithm and
an acceptance strategy. For each new job j ∈ N , we consider the scheduling problem
of Aj ∪ {j} as a variant of the Bipartite Matching Problem. All slots T are on one side
and all jobs in Aj ∪ {j} are on the other side; each job only connects to the slots of
its time window. A feasible schedule is an one-sided matching in which every job is
matched with one slot connected to it. We use the Ford-Fulkerson algorithm [4] to find
this kind of matching between jobs in Aj ∪ {j} and slots in T . If S(Aj ∪ {j}) = 1, the
agent then decides whether to take job j by using acceptance strategies.

We first present two theoretical strategies for a fundamental case in which all jobs
have unit time windows; we analyze how to calculate the optimal values of strategy
parameters, which maximize the agent’s expected utility. Next, we study a general case
in which the maximum length of time windows is larger than one: it is very difficult to
give analytic solutions for such a setting. Therefore, we develop heuristic strategies for
the general case. At last, we give extensions of our strategies for a more complex case
in which the precise number of jobs is unknown.

Notice that in the rest of this paper, when we discuss the acceptance decision on a
new job j, this is always based on the premise that job j can be feasibly scheduled
together with previously accepted jobs in Aj .

3.1 Theoretical Strategies for Unit Time Windows

In this section, we study a fundamental case of the problem, in which every job j’s
time window is a single slot denoted by xj . For theoretical analysis, we assume that
the positions of all unit time windows are uniformly distributed on all slots T . We also
assume that all jobs’ payments are uniformly distributed on the range of [0, 1].

118 M. Wu, M. de Weerdt, and H.L. Poutré

Single Threshold. Perhaps the simplest acceptance strategy is setting a single threshold
for the payments. If the new job j’s payment is no less than a threshold α ∈ [0, 1], the
agent will accept it. We let Dj = 1 and Dj = 0 denote the agent’s acceptance and
rejection of job j respectively. The single threshold strategy is given by

D(j) =

{
1 if zj ≥ α and S(Aj ∪ {j}) = 1
0 otherwise

(1)

We call this the Theoretical Single Threshold strategy (T 1T). Next, we present how to
determine the theoretically optimal value of α, given the uniform distributions.

We let Ei denote the initially expected utility that the agent would get on each slot
i ∈ T ; the expected utility on all t slots is E = t·Ei. Because t is a constant, the optimal
value of α maximizing Ei also maximizes E. As we know, only if at least one job j
with (xj = i) ∧ (zj ≥ α) exists, slot i will finally be occupied by a job; the expected
payment of the slot (and the job) is (1 + α)/2. The probability of the existence of such
job j equals 1 minus the probability that no job has a time window including slot i and
a payment of at least α. Reasoning in this way, Ei is given by

Ei =P (∃ j, xj = i ∧ zj ≥ α) ·
(
1 + α

2

)

= {1− [P (j ∈ N, xj �= i ∨ zj < α)]
n} ·

(
1 + α

2

)

=

[
1−

(
1− 1− α

t

)n]
·
(
1 + α

2

) (2)

We can get the optimal value of α by solving formula dEi

dα = 1
2 − 1

2

(
1− 1−α

t

)n −
n
2t (1 + α)

(
1− 1−α

t

)n−1
= 0. In our experiments presented later, we solve it in an

approximate way by searching α in [0, 1] with step size of 0.001.

n Thresholds. During the whole offering process, the agents may need to make a total
of (at most) n decisions: one for each job. In this section, we present a strategy with n
thresholds instead of a single threshold for all jobs. If the new job j’s payment is no less
than the jth threshold αj ∈ [0, 1], the agent will accept it. The strategy is given by

D(j) =

{
1 if zj ≥ αj and S(Aj ∪ {j}) = 1
0 otherwise

(3)

We call this the Theoretical n Thresholds strategy (TnT). Notice that the jth threshold
αj is independent of the jth job exactly offered.

We let Ei
j denote the expected utility that the agent would get on an available slot i

when the jth job is offered. There are three possibilities. If job j’s slot is slot i and its
payment is no less than αj , which happens with probability 1/t · (1 − αj), the agent
will accept it and get an expected payment (1 + αj)/2. Otherwise, if job j’s payment
is less than αj (happening with probability 1/t · αj) or its slot is not slot i (happening
with probability (t − 1)/t), the agent will reject it in the expectation of slot i for the
next job j + 1. Therefore, the expected utility Ei

j is given by

Acceptance Strategies for Maximizing Agent Profits in Online Scheduling 119

Table 1. Simple example

(xj, zj) (2, 0.12) (1, 0.83) (3, 0.29) (3, 0.41) (2, 0.23)

T1T N(< 0.295) Y(> 0.295) N(< 0.295) Y(> 0.295) N(< 0.295) U = 1.24

TnT N(< 0.435) Y(> 0.368) Y(> 0.282) N(occupied) Y(> 0) U = 1.35

Offline N Y N Y Y U = 1.47

Ei
j =

1

t
· (1 − αj) · 1 + αj

2
+

1

t
· αj · Ei

j+1 +
t− 1

t
· Ei

j+1 (4)

We calculate the optimal value of αj by solving formula
dEi

j

dαj
=

Ei
j+1−αj

t = 0 and get

αj = Ei
j+1. So if job j’s payment is no less than the agent’s expectation of job j + 1,

given any available slot, the agent will accept it. Otherwise, the agent should leave the
slot to job j + 1 to get a possibly higher payment. As the expectation of job n + 1 is
zero, αn = 0. Replacing Ei

j and Ei
j+1 with αj−1 and αj in Eq. (4) respectively, we get

a recursive function f(j, n, t) to calculate threshold αj where 1 ≤ j ≤ n.

αj = f(j, n, t) =

{
1
2t · (f(j + 1, n, t))

2
+ t−1

t · f(j + 1, n, t) + 1
2t j < n
0 j ≥ n

(5)

Given a fixed t and a sequence of n, we find that i) for each setting of t and n, threshold
αj is non-linear decreasing; ii) the smaller the n is, the faster the decreasing is; iii) the
smaller the n is, the lower the first threshold α1 is. These match with the intuition that
given the same number of slots, the expectations and thus the thresholds decline faster
when there are less (future) jobs.

Simple Example. Given their definitions, strategy T 1T is theoretically optimal (in ex-
pectation) among single-threshold strategies and strategy TnT is theoretically optimal
(in expectation) among n-threshold strategies in the fundamental case. We use a simple
example with five jobs and three slots to illustrate the differences. In Table 1, the pairs
of (xj , zj) in the first row represent the jobs in order of arrival (from left to right) where
1 ≤ j ≤ 5. In the subsequent rows, the decisions are followed by the thresholds for
both of the strategies. Although TnT loses some utility on the fourth job by accepting
the third one, the advantage of the adaptive thresholds of TnT shows in accepting the
last job in spite of its relatively low payment.

3.2 Heuristic Strategies

In the fundamental case above, once a job is accepted, its schedule is fixed. However,
the length of time windows is generally not unit. The flexibility of (re)scheduling ben-
efits applicability while increasing the difficulty of decisions. In this general case, even
if all distributions are sill uniform, it is hard to get the optimal values of thresholds
in the above way, given the multiple possibilities of time windows and tremendous
possibilities of (re)scheduling. Hence, it is necessary to consider approximate solu-
tions. In this section, we therefore develop heuristic strategies. The basic idea is using

120 M. Wu, M. de Weerdt, and H.L. Poutré

multiple parameters to define a decision function; their optimal values are learned by
an evolutionary algorithm (EA) [5] through a large number of training sessions.

Single Threshold. The first heuristic strategy proposed by us is similar to the the-
oretical single threshold strategy defined by Eq. (1) except that the optimal value of
α ∈ [0, 1] is determined by the EA. We call this the Heuristic Single Threshold strategy
(H1T); its performance is expected to be very close to that of T 1T in the fundamental
case.

n Thresholds. Analogously, we also try a heuristic strategy of a different threshold
for each job similar to the theoretical one defined by Eq. (3), but let the EA search the
optimal combination of the values of those n thresholds αj ∈ [0, 1] where 1 ≤ j ≤ n.
We call this the Heuristic n Thresholds strategy (HnT).

Three Thresholds. This strategy divides the whole offering process into three stages by
using two parameters β1, β2 ∈ [0, 1] (β1 < β2) and sets a single threshold αk ∈ [0, 1]
(1 ≤ k ≤ 3) for jobs’ payments per stage. The agent will accept job j which is offered
in the kth stage only if its payment is no less than αk. The whole strategy is given by

D(j) =

⎧⎪⎪⎨
⎪⎪⎩

1 if j ≤ β1 · n, zj ≥ α1, and S(Aj ∪ {j}) = 1
1 if β1 · n < j ≤ β2 · n, zj ≥ α2, and S(Aj ∪ {j}) = 1
1 if j > β2 · n, zj ≥ α3, and S(Aj ∪ {j}) = 1
0 otherwise

(6)

We call this the Heuristic 3 Thresholds strategy (H3T).

Linear Function. To be more precise than the strategies with one or three thresholds
for payments, we propose heuristic strategies based on Piecewise Linear Functions
(PLF). As they have fewer parameters to be learned by the EA, it will be easier and
faster to find the optimal solutions than the n threshold strategies. The simplest one is
a linear function (PLF1). We set one parameter α as the slope of the linear function
which generates the thresholds for payments, and also set a parameter γ to determine
the constant. The agent will accept job j, if its payment is no less than the threshold
given by function p(j). The whole strategy is defined by

D(j) =

{
1 if zj ≥ p(j) and S(Aj ∪ {j}) = 1
0 otherwise

where p(j) = α · j + γ (7)

To find the global optimum of parameters α and γ for the PLF-based heuristics, we
use the EA to learn these within a reasonable range. Any threshold is only reasonable
within the range of [0, 1], so γ ∈ [0, 1]. Next, given that j ∈ N and zj ∈ [0, 1], we can
derive the range for α as follows.

0 ≤ α · j + γ ≤ 1 and γ ∈ [0, 1] =⇒ α · j ∈ [−1, 1] =⇒ α ∈ [−1, 1].

Acceptance Strategies for Maximizing Agent Profits in Online Scheduling 121

Two-Piece Piecewise Linear Function. The second PLF-based strategy is a two-piece
piecewise linear function (PLF2). One parameter β ∈ [0, 1] cuts the whole offering
process into two stages. The slopes of these two pieces are α1, α2 ∈ [−1, 1] and the
constant of the first piece is γ ∈ [0, 1]. The agent will accept job j, if its payment is no
less than the threshold given by function p(j). The strategy is defined by

D(j) =

{
1 if zj ≥ p(j) and S(Aj ∪ {j}) = 1
0 otherwise

where p(j) =

{
α1 · j + γ if j ≤ β · n

α2 · j + (α1 − α2) · β · n+ γ if j > β · n (8)

Three-Piece Piecewise Linear Function. The last one is a three-piece piecewise linear
function (PLF3). The whole process is divided into three stages by two parameters
β1, β2 ∈ [0, 1] where β1 < β2. The slopes of the three pieces are α1, α2, α3 ∈ [−1, 1].
The constant of the first piece is γ ∈ [0, 1]. Similarly, the thresholds are still given by
function p(j) and the strategy is defined by

D(j) =

{
1 if zj ≥ p(j) and S(Aj ∪ {j}) = 1
0 otherwise

where p(j) =

⎧⎪⎪⎨
⎪⎪⎩

α1 · j + γ if j ≤ β1 · n
α2 · j + (α1 − α2) · β1 · n+ γ if β1 · n < j ≤ β2 · n

α3 · j + (α1 − α2) · β1 · n
+(α2 − α3) · β2 · n+ γ if j > β2 · n

(9)

3.3 Dealing with Uncertainty over the Number of Jobs

For the strategies presented above, the number of jobs n is required as an input. We
extend the model to a more general case where the total number of jobs is unknown
until the whole offering process finishes. Instead of the precise number of jobs n, the
agent is only given a range of [nmin, nmax] and a random distribution. In this work, we
assume that n is always uniformly distributed on the range.

For the theoretical strategy T 1T , it is straightforward to use the expected value of
n to calculate the optimal value of the single threshold. This variant of T 1T is still
theoretically optimal. However, we cannot immediately use the expected value of n in
the theoretical strategy TnT , because the expected value changes after job j > nmin.

We propose an approximate solution based on TnT . We let n̄ denote the initially
expected value of n, i.e. n̄ = (nmin + nmax)/2, which is consistent with the offering
process until job nmin is offered. The agent can calculate threshold αj by Eq. (5) with
input n̄ until j = nmin. After that j > nmin, the agent’s expectation of n is changed
by each new offer. We treat the distributions on the range of [j, nmax] approximately
as uniform distributions. We let n̂ denote the average of j and nmax, i.e. n̂ = (j +
nmax)/2. For jobs still coming after job nmin, the agent calculates αj based on n̂
instead of n̄. The formal definition is given by

D(j) =

{
1 if zj ≥ αj and S(Aj ∪ {j}) = 1
0 otherwise

122 M. Wu, M. de Weerdt, and H.L. Poutré

where

αj =

{
f(j, n̄, t) if j ≤ nmin

f(j, n̂, t) if nmin < j ≤ nmax

n̄ = �nmin + nmax

2
�, n̂ = �j + nmax

2
� (10)

where f(j, n, t) is defined in Eq. (5).
To ensure that the heuristics define a threshold for any possible time slot, we replace

n by nmax in their definitions. By using a representative training set for the EA, the
found parameters then incorporate the distribution of n over the range of [nmin, nmax].

4 Experiments

In the previous sections, we presented two theoretical strategies: T 1T , TnT and six
heuristic strategies: H1T , HnT , H3T , PLF1, PLF2 and PLF3. In order to evalu-
ate and compare their performance, we set up various experiments. The experimental
setting includes the number of jobs n, the number of slots t, the maximum length of
time windows L, the random distribution of the starts of time windows xj , the random
distribution of the length of time windows, and the random distribution of payments
zj where j ∈ N . The length of all jobs’ time windows is uniformly distributed on the
range of [1, L], unless the randomly generated start of the time window plus the maxi-
mum length exceeds the slots, i.e. xj + L − 1 > t. In this case, the range is reduced to
[1, t − xj + 1] and the length is uniformly distributed on this new range. The variable
settings will be specified when we present the experiments one by one below.

Typically, the performance of online solutions is evaluated by the comparison with
the problem’s optimal offline solutions. The offline version of our problem is a variant of
the Rectangular Assignment Problem, which can be solved by the Hungarian Algorithm
[6]. In this work, we use an implementation in MATLAB [7].

Figure 1 illustrates the experimental flow that we follow for each experiment in this
work. For instance, given an experimental setting, a theoretical strategy and a heuristic
strategy, the experiment will be performed in two stages. First, for the heuristic strat-
egy, use the EA to search the optimal combination of the values of its parameters, given
100 sets of n jobs. Each evaluation of the EA includes 100 simulations based on the
100 instances and the evaluation fitness is defined by the average of the 100 simulation
outcomes. As the result, we get an optimal combination of the parameters’ values. The
heuristic strategy and the optimal values of its parameters form a heuristic solution.
Repeat this part 10 times with different sets of 100 instances; 10 heuristic solutions
are achieved. Second, cross-evaluate the 10 heuristic solutions by simulations with new
2000 sets of n jobs. The theoretical strategy is also evaluated on the same 2000 in-
stances. To generate benchmarks, we also let the optimal offline solution work on the
same 2000 instances in this step.

In this way, for each setting, we get 2000 results of each theoretical strategy and
10 × 2000 results of every heuristic strategy. We define the performance of a theoreti-
cal strategy by the average of the 2000 results. For a heuristic, the average of the 2000

Acceptance Strategies for Maximizing Agent Profits in Online Scheduling 123

Heuristic
strategy

10 runs

Solution
1

Solution
10

Simulations with
2000 evaluation sets

100
training

sets

Offline
optimal
solution

2000
results

2000
results

2000
results

2000
results

Theoretical
strategy

(solution)

Experimen-
tal setting

Fig. 1. Experimental flow

Table 2. Experimental settings I

t n t/n L

30 90, 75, 50, 35 0.33, 0.4, 0.6, 0.86 1

15, 50, 70 75 0.2, 0.67, 0.93 1

results of each solution indicates the solution’s performance. We then define the perfor-
mance of a heuristic strategy by the average of the 10 averages of different solutions.
We also have 2000 results of the optimal offline solution. We define the ratio between
the average of the 2000 results achieved by the optimal offline solution and the perfor-
mance of an online strategy to be the average-case performance ratio, which is no less
than 1. The smaller the performance ratio is, the better the online solution performs.

A guideline for the EA’s population size is given as at least 17 + 3 ·m1.5 where m
is the number of parameters [5]. The number of parameters of HnT is the same as the
number of jobs; the maximum n that we plan to experiment is 110. The numbers of
parameters of all the other heuristics are constants: the maximum one is 6. Therefore,
we set the population size as 3000 for HnT and set it as 1000 for other heuristics,
which are quite sufficient. We also set the EA’s evaluation limit as one million. These
settings guarantee that the convergence happens before the evaluation limit is reached,
so the (near) optimal results can be found.

4.1 Known Number of Jobs

First, we evaluate all strategies in two cases, unit time windows (L = 1) and general
time windows (L ≥ 1), under the environment that the number of jobs n is known. Both
cases use the same 7 settings (Table 2); all distributions are uniform distributions.

124 M. Wu, M. de Weerdt, and H.L. Poutré

0.2 0.33 0.4 0.6 0.67 0.86 0.93
1.1

1.11

1.12

1.13

1.14

1.15

1.16

Ratio between the number of slots and the number of jobs

P
er

fo
rm

an
ce

 r
at

io
Unit time window (L=1)

1: T1T
2: TnT
3: H1T
4: HnT
5: H3T
6: PLF1
7: PLF2
8: PLF3

0.2 0.33 0.4 0.6 0.67 0.86 0.93
1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

Ratio between the number of slots and the number of jobs

P
er

fo
rm

an
ce

 r
at

io

General time window (L>=1)

1: T1T
2: TnT
3: H1T
4: HnT
5: H3T
6: PLF1
7: PLF2
8: PLF3

Fig. 2. Strategy performance in settings I

Unit Time Windows. We first compare these strategies in the case of unit time win-
dows, in which strategies T 1T and TnT are theoretically optimal. Besides them, the n
thresholds strategy is regarded as a more precise one. Therefore, we expect that strate-
gies TnT and HnT will perform best in this case.

Figure 2 (left) illustrates the experimental results. As we expected, the performance
of TnT is best in all settings. All PLF-based strategies perform very close to the bench-
marks of the online solutions set by TnT ; the three-piece one, i.e. PLF3, is the best
among them. As the three thresholds of H3T are constants, its performance is slightly
worse than that of the PLF-based strategies. Because of the n thresholds, the perfor-
mance of HnT was expected to be close to that of TnT , but it actually performs worse
than the PLF-based strategies and H3T here. One reason is that the size of training
sets, i.e. 100 instances per evaluation, is sufficient for other heuristics but is not big
enough to prevent over-fitting of the n parameters of HnT . Hence, the results are not
optimal in general. By increasing the size of training sets for HnT , the problem can be
resolved but the searching time will be significantly extended. The two single threshold
strategies perform worst but the largest performance ratio is still small. When the single
parameter of heuristic H1T is learned by the EA sufficiently, its performance is almost
the same as that of the theoretical strategy T 1T .

In Figure 2 (left), we notice that the worst performance of all strategies is generated
at the point of t/n = 0.33; the performance at its right point t/n = 0.4 is also low. On
one side, when ratio t/n is very close to 1, as the distribution of positions is uniform,
each slot is expected to assign one job. The agent’s decisions are relatively easy without
considering future jobs too much. On the other side, when ratio t/n is very close to
0, each slot is expected to assign many jobs. Because of the uniform distribution of
payments, the decisions are also relatively easy: the agent only accepts jobs with very
high payments. When the decision problem is easier, the performance of all strategies
will be better. The middle area is the most difficult part, in which the agent is indeed in
a dilemma between the current job and the expectation/uncertainty of future jobs. Even
in this part, however, TnT and PLF3 can still generate performance ratios around
1.14.

Acceptance Strategies for Maximizing Agent Profits in Online Scheduling 125

Table 3. Experimental settings II

t n t/n̄ L

30 [70, 110], [70, 80], [35, 65], [30, 40] 0.33, 0.4, 0.6, 0.86 5

15, 50, 60 [60, 90] 0.2, 0.67, 0.8 5

General Time Windows. We extend to the case of general time windows. This in-
creases the flexibility of scheduling and also the difficulty of decisions. As our theoreti-
cal strategies are derived from the case of unit time windows, their threshold values are
no longer optimal in this general case. We still evaluate them here to show the change.

Figure 2 (right) illustrates the experimental results. We notice that when ratio t/n ≥
0.6, the performance ratios of all strategies are very close. The reason is, as we men-
tioned, the decision problem becomes easier in this part as the agent knows that there is
a little choice on every slot. On the side of t/n < 0.6, the performance of strategies is
clearly distinguished. Compared to T 1T , we find that H1T performs much better, al-
though both of them use a single threshold. This indicates the advantage of the heuristic.
By using the EA, the strategy can learn to find the good solutions in various settings.
Compared to the results of unit time windows shown in Figure 2 (left), we find that the
performance ratios are decreased (so the results are better). We will study the impact
of the length of time windows on the performance of the heuristics in our future work.
As we expected, the theoretical strategies (derived from the case of unit time windows)
perform significantly worse than other heuristics here, because they cannot adapt to the
change of the length of time windows.

4.2 Unknown Number of Jobs

The previous experiments evaluated the strategies where the number of jobs n is known.
Next, we study the performance of our solutions where n is unknown but uniformly dis-
tributed over a given range . Table 3 shows a new set of 7 settings. The expectations of
n in all settings correspond to the values of n in Table 2. Although strategy HnT pro-
vides good solutions in previous experiments, we omit it in the following experiments
with consideration of the cost of experimental time.

Unit Time Windows. We compare the strategies under settings with unit time windows
and unknown n. As we described, when we use the expectation of n instead of n for
T 1T , the resulting α is still theoretically optimal. Although the approximate variant of
TnT is no longer strictly optimal in the theoretical analysis, we think the difference
between the approximate solution and the theoretical solution is very small.

Figure 3 (left) illustrates the experimental results. Apparently, TnT still performs
best as we expected. The value of the threshold of T 1T is still theoretically optimal and
the performance of H1T is very close to that of T 1T . Totally, the performance ratios of
all strategies in this case are very similar to those generated in the same settings (except
for the issue of n) shown in Figure 2 (left). Considering the increased complexity of the
problem, our solutions are robust under dynamic environments.

126 M. Wu, M. de Weerdt, and H.L. Poutré

0.2 0.33 0.4 0.6 0.67 0.8 0.86
1.1

1.11

1.12

1.13

1.14

1.15

1.16

Ratio between the number of slots and the number of jobs

P
er

fo
rm

an
ce

 r
at

io
Unit time window (L=1)

1: T1T
2: TnT
3: H1T
5: H3T
6: PLF1
7: PLF2
8: PLF3

0.2 0.33 0.4 0.6 0.67 0.8 0.86
1.06

1.07

1.08

1.09

1.1

1.11

1.12

1.13

Ratio between the number of slots and the number of jobs

P
er

fo
rm

an
ce

 r
at

io

General time window (L>=1)

1: T1T
2: TnT
3: H1T
5: H3T
6: PLF1
7: PLF2
8: PLF3

Fig. 3. Strategy performance in settings II

General Time Windows. Analogously, we also evaluate the strategies in the case of
general time windows and unknown n. Figure 3 (right) illustrates the experimental re-
sults, which are quite similar to those shown in Figure 2 (right), except for the results
where t/n = 0.2. This indicates the robust and adaptive properties of our approach of
defining key parameters and using the EA to learn their optimal values.

4.3 Non-uniform Distributions

Further, we evaluate the strategies in more general and complex settings where the
random distributions of the starts of time windows and the payments are non-uniform
distributions. We experiment various settings, e.g. all payments being exponentially
distributed or all starts being normally distributed around a slot close to one end of T ;
the resulting average-case performance ratios are between 1.09 to 1.22.

5 Related Work

Our problem relates to the online weighted bipartite matching problem, which is to
assign each of sequentially arriving requests to one of the servers given in advance to
maximize/minimize the total weight of the matching being produced [8,9]. Instead of
accepting all requests, we focus on selecting a subset of requests to maximize the utility.
Thus, our problem is also similar to the multiple secretary problem, which is to select
the best m items out of the total n > m items in an online fashion [10]. Instead of the
ordinal criterion, Babaioff et al. present generalized secretary problems as a framework
for online auctions which defines the objective in terms of the numerical values of
items [11]. Different from these models, the selection problem studied by us involves
a special assignment, i.e. interval scheduling [12]; this combination is also known as
an online problem of admission control [1,3]. Given that jobs arrive online, a scheduler
needs to choose whether to schedule each job to maximize the gain. An acceptance
notification can either be given when the job really starts or be given once it can be
feasibly scheduled. The latter is the same as the requirement of our problem, but our
model permits all accepted jobs to be rescheduled. The scheduling part in our work

Acceptance Strategies for Maximizing Agent Profits in Online Scheduling 127

may be relatively easy, but the online acceptance decision becomes more complex. The
reason is that the decision on the current job may influence the decisions about all future
jobs in our problem rather than the next few jobs in the problem of interval scheduling.

The problem in [2] is more similar to our work, but the goal is different. They use
greedy algorithms, e.g. accepting any job which can be feasibly scheduled (with com-
mitment), and analyze competitive-ratios of these algorithms. We focus on the develop-
ment of acceptance strategies to maximize the profit rather than the server’s utilization
and provide exact solutions. Their algorithm called GREEDY can indeed be used for
our problem as well and is actually very similar to our single-threshold strategy with
a low value. Comparing the resulting average-case performance ratios, on average our
other threshold-algorithms perform much better than the GREEDY algorithm.

Summarizing, our model’s uniqueness lies in the combination of scheduling and
selection, which are influenced by each other during the whole decision process. Our
approach also provides a new direction of solving this kind of online decision problem
and we evaluate the performance of online solutions by the average-case performance
ratio instead of the worst-case competitive ratio.

6 Conclusion and Future Work

In this paper, we have introduced and studied an online decision problem which requires
an agent to make acceptance decisions on sequential job offers. The objective is to
maximize the utility, the sum of the payments of all accepted jobs. During the whole
offering process, the agent’s concern is the limited time resources and the expectation
of high-payment jobs in the future.

We have presented both theoretical and heuristic solutions. In a fundamental case
with unit time windows and uniform distributions, when it is necessary to use the sim-
plest one, our theoretical single threshold strategy T 1T can provide the optimal value
of the threshold. Our theoretical n threshold strategy TnT can generate the theoreti-
cally optimal outcomes in expectation when the number of jobs n is known and still
has the best performance amongst all proposed strategies when n is unknown. From
fundamental settings to complex settings, compared to the optimal offline solutions, the
average-case performance ratios achieved by our online solutions are around 1.1. Over-
all, the strategy of three-piece piecewise linear function PLF3 performs very close to
the theoretically optimal online solution in the fundamental case and shows the best
performance in all complex settings. As it only has 6 parameters determined by the EA,
we say it is a high performance solution which can be specified in a short time. Other
heuristics, e.g. H1T,H3T, PLF, PLF2, are also very good online solutions requir-
ing even less EA searching time. Even without sufficient training, strategy HnT also
generates good results and its performance can be improved if time permits.

Through the experimental analysis, we have pointed out the impact of one key factor,
i.e. the ratio between the number of slots and the number of jobs t/n, on the strategy
performance. When t/n is at the middle part of [0, 1], the online decision is most dif-
ficult. Although the performance of our solutions is a little lower in this part, the per-
formance ratios between 1.09 and 1.22 illustrate the advantage of our solutions for this
dynamic problem. Given various settings, in which it is difficult to find any analytical
clue, our solutions show their generality, robustness and adaptivity. Although we make

128 M. Wu, M. de Weerdt, and H.L. Poutré

an assumption of unit processing time for all jobs, this work provides an approach that
also applies to more generic problems involving both acceptance decisions and com-
plex scheduling. For instance, the heuristic strategies proposed by us could be used in
settings with arbitrary length jobs.

Through this work, we have learned that EAs can be used to tune the relevant pa-
rameters for settings that are hard to analyze theoretically; this thus gives a general
approach, which also works for new settings (although we don’t know how good it is in
new settings). We answered questions such as i) how to deal with acceptance decisions
and scheduling separately, ii) how to find good acceptance strategies, even if it is very
hard or impossible to derive an optimal strategy (in expectation) analytically, and iii)
which heuristic strategy works best (PLF3), and why (a good balance between accuracy
and number of parameters).

In our future work, we would like to derive theoretically optimal solutions for gen-
eral time windows in addition to our heuristic solutions. Another interesting topic is to
extend the problem to a model where the processing time of jobs can vary. We may
still use the approach presented in this work but need to add other key factors espe-
cially related to scheduling to achieve good results in complex environments. Analysis
of competitive-ratios of our algorithms will also be included in our next work.

References

1. Goldwasser, M., Kerbikov, B.: Admission control with immediate notification. Journal of
Scheduling 6(3), 269–285 (2003)

2. Garay, J., Naor, J., Yener, B., Zhao, P.: On-line admission control and packet scheduling with
interleaving. In: Proc. of INFOCOM 2002, vol. 1, pp. 94–103. IEEE (2002)

3. Fung, S.P.Y.: Online Preemptive Scheduling with Immediate Decision or Notification and
Penalties. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 389–398.
Springer, Heidelberg (2010)

4. Ford, L., Fulkerson, D.: Maximal flow through a network. Canadian Journal of Mathemat-
ics 8(3), 399–404 (1956)

5. Bosman, P.: On empirical memory design, faster selection of bayesian factorizations and
parameter-free gaussian EDAs. In: Proc. of the 11th Annual Conference on Genetic and
Evolutionary Computation, pp. 389–396. ACM (2009)

6. Kuhn, H.: The Hungarian method for the assignment problem. Naval Research Logistics
Quarterly 2(1-2), 83–97 (1955)

7. Buehren, M.: Algorithms for the Assignment Problem (2009),
http://www.markusbuehren.de

8. Kalyanasundaram, B., Pruhs, K.: On-line weighted matching. In: Proc. of the Second Annual
ACM-SIAM Symposium on Discrete Algorithms, p. 240. SIAM (1991)

9. Khuller Stephen, G., et al.: On-line algorithms for weighted bipartite matching and stable
marriages. Theoretical Computer Science 127(2), 255–267 (1994)

10. Ajtai, M., Megiddo, N., Waarts, O.: Improved algorithms and analysis for secretary problems
and generalizations. In: Proc. of the 36th Annual Symposium on Foundations of Computer
Science, pp. 473–482. IEEE (1995)

11. Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: Online auctions and generalized
secretary problems. ACM SIGecom Exchanges 7(2), 1–11 (2008)

12. Goldman, S.A., Parwatikar, J., Suri, S.: On-line Scheduling with Hard Deadlines. In: Rau-
Chaplin, A., Dehne, F., Sack, J.-R., Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp.
258–271. Springer, Heidelberg (1997)

http://www.markusbuehren.de

Author Index

Cavka, Tomislav 71
Ceppi, Sofia 1
Chatzidimitriou, Kyriakos C. 15
Constantinou, Nick 44

de Weerdt, Mathijs 115

Gatti, Nicola 1
Gini, Maria 28
Groves, William 28

Ho, HannJang 102

Iuliano, Claudio 1

La Poutré, Han 115
Lee, SingLing 102
Levy, Aviad 57

Mitkas, Pericles A. 15

Petric, Ana 71
Phelps, Steve 44
Podobnik, Vedran 71

Rayner, Neil 44
Rosenfeld, Avi 57

Siranovic, Irena 71
Stavrogiannis, Lampros C. 15
Symeonidis, Andreas L. 15, 87

Tsekourakis, Iraklis 87
Tsung, ChenKun 102

Wu, Mengxiao 115

Yoskovitz, Asher 57

	Title

	Preface
	Organization
	Table of Contents
	Non–cooperative Bargaining with Arbitrary
One–Sided Uncertainty
	Introduction
	Bargaining Model and Complete Information Solution
	Introducing Uncertainty
	The Algorithm
	Deriving Equilibrium Strategies
	Building the Reduced Bargaining Game
	Solving the Reduced Bargaining Game
	Extension to More Than Two Types

	Conclusions and Future Works
	References

	An Adaptive Proportional Value-per-Click Agent
for Bidding in Ad Auctions
	Introduction
	The TAC Ad Auctions Game
	Advertisers
	Publishers
	Users

	Related Work
	Agent Mertacor
	Background
	Extensions

	Analysis
	Conclusions and Future Work
	References

	Improving Prediction in TAC SCM by Integrating
Multivariate and Temporal Aspects via PLS Regression
	Introduction
	Background and Related Work
	Our Approach
	A Simple Model
	Input Feature Computation
	Lagged Features and Hierarchical Segmentation
	Partial Least Squares Regression

	Model Parameter: Dimensionality Reduction
	Experimental Results
	Conclusions and Future Work
	References

	Testing Adaptive Expectations Models of a Continuous
Double Auction Market against Empirical Facts
	Introduction
	The Model
	Learning

	Methodology and Model Validation
	Validation Results for LY Model
	Model Stability
	Conclusion
	References

	Autonomously Revising Knowledge-Based
Recommendations through Item and User Information
	Introduction
	Related Work
	Using MySupermarket's Expert Data
	Creating a New Type of Hybrid System
	A High Level System Overview
	Evaluating the Overall System
	Evaluating the System with Item Data
	Evaluating the System with Collaborative Data

	Conclusions and Future Work
	References

	A Bidding Agent for Advertisement Auctions:
An Overview of the CrocodileAgent 2010
	Introduction
	TAC/AA Game
	Related Work
	CrocodileAgent 2010
	The ad Generator Algorithm
	The CPC Generator Algorithm
	The Spend Limit Manager

	Controlled Experiment
	Conclusion and Future Work
	References

	Dealing with Trust and Reputation in Unreliable
Multi-agent Trading Environments
	Introduction
	Trust and Reputation Models
	Specifying Trust and Reputation
	Efficiency of Trust and Reputation Models

	The ART Testbed
	The ART Scenario and Architecture
	ART T&R Modeling and State-of-the-Art
	Preliminary Analysis of the ART Environment

	HerculAgent Architecture
	HerculAgent Protocols
	HerculAgent Metrics
	Dynamic Behavior Adaptation
	HerculAgent Behavior

	Experiments
	Conclusions - Future Work
	References

	Analysis of Stable Prices
in Non-Decreasing Sponsored Search Auction
	Introduction
	Related Work

	NDSSA
	Auction Mechanism
	Bidding Strategy
	MIP Strategies

	Convergence Speed Analysis
	Fixed MIP Strategy
	AIMD

	Simulation
	Robustness
	Overall SEP's Revenue Comparison
	SEP's Average Revenue
	SEP's Long-Term Revenue Comparison

	Conclusion
	References

	Acceptance Strategies for Maximizing Agent
Profits in Online Scheduling
	Introduction
	Problem Model
	Acceptance Strategies
	Theoretical Strategies for Unit Time Windows
	Heuristic Strategies
	Dealing with Uncertainty over the Number of Jobs

	Experiments
	Known Number of Jobs
	Unknown Number of Jobs
	Non-uniform Distributions

	Related Work
	Conclusion and Future Work
	References

	Author Index

