
Chapter 1
Introduction

The important mathematical problem of evaluating Feynman integrals arises quite
naturally in elementary-particle physics when one treats various quantities in the
framework of perturbation theory. Usually, it turns out that a given quantum-field
amplitude that describes a process where particles participate cannot be completely
treated in the perturbative way. However it also often turns out that the amplitude
can be factorized in such a way that different factors are responsible for contribu-
tions of different scales. According to a factorization procedure a given amplitude
can be represented as a product of factors some of which can be treated only non-
perturbatively while others can be indeed evaluated within perturbation theory, i.e.
expressed in terms of Feynman integrals over loop momenta.

A useful way to perform the factorization procedure is provided by solving
the problem of asymptotic expansion of Feynman integrals in the corresponding
limit of momenta and masses that is determined by the given kinematical situation.
A universal way to solve this problem is based on the so-called strategy of expan-
sion by regions [1, 21]. This strategy can be itself regarded as a (semi-analytical)
method of evaluation of Feynman integrals according to which a given Feynman
integral depending on several scales can be approximated, with increasing accu-
racy, by a finite sum of first terms of the corresponding expansion, where each term
is written as a product of factors depending on different scales. The expansion by
regions applicable to general limits as well as the expansion by subgraphs applicable
to limits typical of Euclidean space are described in details in my other book [21]
and, in a very brief way, in this book in Chap. 9. The main goal of this chapter is to
present a general algorithm [9, 17] which has appeared after the publication of the
book [21] and provides the possibility to find regions relevant to a given limit in a
systematic way.

One needs to take into account various graphs that contribute to a given process.
The number of graphs greatly increases when the number of loops gets large. For
a given graph, the corresponding Feynman amplitude is represented as a Feynman
integral over loop momenta, due to some Feynman rules. The Feynman integral,
generally, has several Lorentz indices. The standard way to handle tensor quantities
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2 1 Introduction

is to perform a tensor reduction that enables us to write the given quantity as a linear
combination of tensor monomials with scalar coefficients. Therefore we will imply
that we deal with scalar Feynman integrals and consider only them in examples.

A given Feynman graph therefore generates various scalar Feynman integrals
that have the same structure of the integrand with various distributions of powers
of propagators (indices). Let us observe that some powers can be negative, due to
some initial polynomial in the numerator of the Feynman integral. A straightforward
strategy is to evaluate, by some methods, every scalar Feynman integral resulting
from the given graph. If the number of these integrals is small this strategy is quite
reasonable. In non-trivial situations, where the number of different scalar integrals
can be at the level of hundreds and thousands, this strategy looks too complicated.
A well-known optimal strategy here is to derive, without calculation, and then apply
some relations between the given family of Feynman integrals as recurrence rela-
tions. A well-known standard way to obtain such relations is provided by the method
of integration by parts1 (IBP) [7] which is based on putting to zero any integral of
the form

∫
ddk1ddk2 . . .

∂ f

∂kμ
i

over loop momenta k1, k2, . . . , ki , . . . within dimensional regularization with the
space-time dimension d = 4 − 2ε as a regularization parameter [5, 6, 8]. Here f is
an integrand of a Feynman integral; it depends on the loop and external momenta.
More precisely, one tries to use IBP relations in order to express a general dimen-
sionally regularized integral from the given family as a linear combination of some
irreducible integrals which are also called master integrals. Therefore the whole
problem decomposes into two parts: solving the IBP relations and evaluating the
master integrals. Observe that in such complicated situations, with the great vari-
ety of relevant scalar integrals, one really needs to know a complete solution of the
recursion problem, i.e. to learn how an arbitrary integral with general integer pow-
ers of the propagators and powers of irreducible monomials in the numerator can be
evaluated.

To illustrate the methods of evaluation that we are going to study in this book
let us first orient ourselves at the evaluation of individual Feynman integrals, which
might be master integrals, and take the simple scalar one-loop graph Γ shown in
Fig. 1.1 as an example. The corresponding Feynman integral constructed with scalar
propagators is written as

1 As is explained in textbooks on integral calculus, the method of IBP is applied with the help of
the relation

∫ b
a dxuv′ = uv|ba − ∫ b

a dxu′v as follows. One tries to represent the integrand as uv′
with some u and v in such a way that the integral on the right-hand side, i.e. of u′v will be simpler.
We do not follow this idea in the case of Feynman integrals. Instead we only use the fact that an
integral of the derivative of some function is zero, i.e. we always neglect the corresponding surface
terms. So the name of the method looks misleading. It is however unambiguously accepted in the
physics community.
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Fig. 1.1 One-loop self-
energy graph. The dashed
line denotes a massless propa-
gator

FΓ (q2, m2; d) =
∫

ddk

(k2 − m2)(q − k)2 , (1.1)

where the usual +i0 is implied in the propagators.
The same picture Fig. 1.1 can also denote the Feynman integral with general

powers of the two propagators,

FΓ (q2, m2; a1, a2; d) =
∫

ddk

(k2 − m2)a1[(q − k)2]a2
. (1.2)

Suppose, one needs to evaluate the Feynman integral FΓ (q2, m2; 2, 1; d) ≡
F(2, 1; d) which is finite in four dimensions, d = 4. (It can also be depicted by
Fig. 1.1 with a dot on the massive line.) There is a lot of ways to evaluate it. For
example, a straightforward way is to take into account the fact that the given func-
tion of q is Lorentz-invariant so that it depends on the external momentum through
its square, q2. One can choose a frame q = (q0, 0), introduce spherical coordinates
for k, integrate over angles, then over the radial component and, finally, over k0. This
strategy can be, however, hardly generalized to multi-loop2 Feynman integrals.

Another way is to use a dispersion relation that expresses Feynman integrals in
terms of a one-dimensional integral of the imaginary part of the given Feynman
integral, from the value of the lowest threshold to infinity. This dispersion integral
can be expressed by means of the well-known Cutkosky rules. We will not apply this
method, which was, however, very popular in the early days of perturbative quantum
field theory, and only briefly comment on it in Appendix E.

Let us now turn to the methods that will be indeed actively used in this book.
To illustrate them all let me use this very example of Feynman integrals (1.2) and
present main ideas of these methods, with the obligation to present the methods in
great details in the rest of the book.

First, we will exploit the well-known technique of alpha or Feynman parame-
ters. In the case of F(2, 1; d), one writes down the following Feynman-parametric
formula:

1

(k2 − m2)2(q − k)2 = 2
∫ 1

0

ξdξ

[(k2 − m2)ξ + (1 − ξ)(q − k)2 + i0]3 . (1.3)

2 Since the Feynman integrals are rather complicated objects the word ‘multi-loop’ means the
number of loops greater than one ;-)

http://dx.doi.org/10.1007/978-3-642-34886-0_14
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Then one can change the order of integration over ξ and k, perform integration over
k with the help of the formula (10.1) (which we will derive in Chap. 3) and obtain
the following representation:

F(2, 1; d) = −iπd/2Γ (1 + ε)

∫ 1

0

dξ ξ−ε

[m2 − q2(1 − ξ) − i0]1+ε
. (1.4)

This integral can easily be evaluated at d = 4 with the following result:

F(2, 1; 4) = iπ2 ln
(
1 − q2/m2

)
q2 . (1.5)

In principle, any given Feynman integral F(a1, a2; d) with concrete numbers a1
and a2 can similarly be evaluated by Feynman parameters. In particular, F(1, 1; d)

reduces to

F(1, 1; d) = iπd/2Γ (ε)

∫ 1

0

dξ ξ−ε

[m2 − q2(1 − ξ) − i0]ε . (1.6)

There is an ultraviolet (UV) divergence which manifests itself in the first pole of the
function Γ (ε), i.e. at d = 4. The integral can be evaluated in expansion in a Laurent
series in ε, for example, up to ε0. We obtain

F(1, 1; d) = iπd/2e−γEε

[
1

ε
− ln m2 + 2

−
(

1 − m2

q2

)
ln

(
1 − q2

m2

)
+ O(ε)

]
, (1.7)

where γE is the Euler’s constant.
In fact, the integration in (1.6) can straightforwardly be performed at general ε

with the result

− iπd/2m−2εΓ (ε − 1) 2 F1

(
1, ε; 2 − ε; q2/m2

)
(1.8)

which can then be expanded in ε. However, for sufficiently complicated Feynman
integrals, this strategy of evaluating at general ε and expanding results is hardly
feasible.

Alpha parameters are closely related to Feynman parameters. For usual propaga-
tors, one starts from the representation

1

k2 − m2 = −i
∫ ∞

0
dα ei(k2−m2)α, (1.9)

http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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changes the order of integration over alpha parameters and loop momenta and takes
d-dimensional integrals over the loop momenta. For example, one obtains

F(1, 1; d) = e−iπ(1+d/2)/2πd/2
∫ ∞

0

∫ ∞

0
e

iq2 α1α2
α1+α2

−im2α1 dα1dα2

(α1 + α2)d/2 . (1.10)

Then one can turn to Feynman parameters, i.e. to (1.6), by changing variables by
α1 = ηξ,α2 = η(1 − ξ) and integrating over η.

We will study the method of Feynman and alpha parameters in Chap. 3, by deriving
a lot of useful formulae and considering various examples. The next chapter also
deals with parametric representations which are used there to resolve the singularity
structure in ε. In contrast to examples of Chap. 3, where some subtractions are used
for this purpose when analytically evaluating Feynman integrals, here the goal is to do
this in an algorithmic way by introducing so-called sector decompositions which can
be used either for analysis of convergence of regularized or renormalized Feynman
integrals, or for numerical evaluation.

To illustrate the basic idea of sector decompositions let us turn again to the integral
(1.1) which can be represented by (1.10) and reveal its UV divergence. (And let us
forget that we did this in a simple way using Feynman parameters (1.6) where the
divergence manifested itself as a pole of the overall gamma function.) We cannot
expand the integral in ε under the integral sign because the initial term, i.e. its value
at d = 4 is divergent. In alpha parameters, UV divergences manifest themselves as
divergences at small values, so that let us consider just the integral

I (ε) =
∫ 1

0

∫ 1

0
dα1dα2(α1 + α2)

ε−2 f (α1,α2), (1.11)

where f is regular at the origin.
To reveal the analytic structure in ε near ε = 0 let us decompose the integration

domain into two sectors, α1 ≤ α2 and α2 ≤ α1 and represent I as I1 + I2. The two
integrals are similar so that let us consider only I1. Let us introduce sector variables
by α1 = t1t2, α2 = t2. We have again an integration over the unit square:

I1(ε) =
∫ 1

0

∫ 1

0
dt1dt2 tε−1

2 g(t1, t2), (1.12)

where g(t1, t2) = (1 + t1)ε−2 f (t1t2, t2). Such a form of the integral easily provides
the possibility of expanding under the integral sign. To reveal the pole in ε we
then write down g(t1, t2) as g(t1, 0) plus g(t1, t2) − g(t1, 0). Taking explicitly the
integration over t2 in the first term we arrive at

I1(ε) = 1

ε

∫ 1

0
dt1 g(t1, 0) +

∫ 1

0

∫ 1

0
dt1dt2 tε−1

2 [g(t1, t2) − g(t1, 0)] . (1.13)

http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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We see that we have achieved our goal because the first term is just a simple pole
in ε while the second term can be expanded in ε. In Chap. 4, such procedure will be
extended to general Feynman integrals and various methods of sector decompositions
[2–4, 10, 19] will be described.

A powerful method of evaluating Feynman integrals is based on the Mellin–Barnes
(MB) representation [20, 22]. The underlying idea is to replace a sum of terms raised
to some power by the product of these terms raised to certain powers, at the cost of
introducing an auxiliary integration that goes from −i∞ to +i∞ in the complex
plane. The most obvious way to apply this representation is to write down a massive
propagator in terms of massless ones. For F(2, 1; 4), we obtain

1

(m2 − k2)2 = 1

2πi

∫ +i∞

−i∞
dz

(m2)z

(−k2)2+z
Γ (2 + z)Γ (−z). (1.14)

Applying (1.14) to the first propagator in (1.2), changing the order of integration
over k and z and evaluating the internal integral over k by means of the one-loop
formula (10.7) (which we will derive in Chap. 3) we arrive at the following onefold
MB integral representation:

F(2, 1; d) = − iπd/2Γ (1 − ε)

(−q2)1+ε

1

2πi

∫ +i∞

−i∞
dz

(
m2

−q2

)z

× Γ (1 + ε + z)Γ (−ε − z)Γ (−z)

Γ (1 − 2ε − z)
. (1.15)

The contour of integration is chosen in the standard way: the poles with a Γ (· · ·+ z)
dependence are to the left of the contour and the poles with a Γ (· · ·− z) dependence
are to the right of it. If |ε| is small enough we can choose this contour as a straight
line parallel to the imaginary axis with −1 < Rez < 0. For d = 4, we obtain

F(2, 1; 4) = − iπ2

q2

1

2πi

∫ +i∞

−i∞
dz

(
m2

−q2

)z

Γ (z)Γ (−z). (1.16)

By closing the integration contour to the right and taking a series of residues at the
points z = 0, 1, . . ., we reproduce (1.5). Using the same technique, any integral from
the given family can similarly be evaluated.

We will study the method of MB representation in Chap. 5. This method provides
the possibility to resolve singularities in ε in an easy way. We will see, through
various examples, how one can analytically evaluate rather complicated Feynman
integrals. Moreover, this method can be applied almost in an automatic way because
various public computer codes for the application of this method are available.

Let us, however, think about a more economical strategy based on IBP relations
which would enable us to evaluate any integral (1.2) as a linear combination of some
master integrals. Putting to zero dimensionally regularized integrals of ∂

∂k ·k f (a1, a2)

and q · ∂
∂k f (a1, a2), where f (a1, a2) is the integrand in (1.2), and writing down

http://dx.doi.org/10.1007/978-3-642-34886-0_4
http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_5
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obtained relations in terms of integrals of the given family we obtain the following
two IBP relations:

d − 2a1 − a2 − 2m2a11+ − a22+(1− − q2 + m2) = 0, (1.17)

a2 − a1 − a11+(q2 + m2 − 2−) − a22+(1− − q2 + m2) = 0, (1.18)

in the sense that they are applied to the general integral F(a1, a2). Here the standard
notation for increasing and lowering operators has been used, e.g. 1+2−F(a1, a2) =
F(a1 + 1, a2 − 1).

Let us observe that any integral with a1 ≤ 0 is zero because it is a massless
tadpole which is naturally put to zero within dimensional regularization. Moreover,
any integral with a2 ≤ 0 can be evaluated in terms of gamma functions for general
d with the help of (10.3) (which we will derive in Chap. 3). The number a2 can be
reduced either to one or to a non-positive value using the following relation which
is obtained as the difference of (1.17) multiplied by q2 + m2 and (1.18) multiplied
by 2m2:

(q2 − m2)2a22+ = (q2 − m2)a21−2+

− (d − 2a1 − a2)q
2 − (d − 3a2)m

2 + 2m2a11+2−.

(1.19)

Indeed, when the left-hand side of (1.19) is applied to F(a1, a2), we obtain integrals
with reduced a2 or, due to the first term on the right-hand side, reduced a1.

Suppose now that a2 = 1. Then we can use the difference of relations (1.17) and
(1.18),

d − a1 − 2a2 − a11+(2− − q2 + m2) = 0, (1.20)

and rewrite it down, at a2 = 1, as

(q2 − m2)a11+ = a1 + 2 − d + a11+2−. (1.21)

This relation can be used to reduce the index a1 to one or the index a2 to zero. We
see that we can now express any integral of the given family as a linear combination
of the integral F(1, 1) and simple integrals with a2 ≤ 0 which can be evaluated for
general d in terms of gamma functions. In particular, we have

F(2, 1) = 1

m2 − q2 [(1 − 2ε)F(1, 1) − F(2, 0)] . (1.22)

At this point, we might stop our activity because we have already essentially
solved the problem. However, mathematically (and aesthetically), it is natural to be
more curious and wonder about the minimal number of master integrals which form
a linearly independent basis in the family of integrals F(a1, a2). We will do this in

http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_3
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Chap. 6. We will also consider other simple examples where IBP relations can be
solved ‘by hand’, as in this example.

The are two news. The bad news is that solving IBP relations by hand is hardly
possible at the high modern complexity level of practical calculations. The good news
is that one can solve IBP relations automatically using various algorithms. The most
popular one is the Laporta’s algorithm [14, 15] based on solving overconstrained
systems of linear equations. There are public codes where this algorithm is imple-
mented. We will turn to this algorithm in Chap. 6 where some other algorithms will
be also briefly presented.

Two powerful methods described in this book are based on equations: differential
equations for one of them and difference equations for the other one. Within both
of them, it is assumed that one can solve IBP relations for the family of Feynman
integrals to which a given integral belongs. Practically, these methods are used to
evaluate master integrals.

Let us illustrate the method of differential equations (DE) [11–13, 18] again
with the help of our favourite example. To evaluate the master integral F(1, 1)

let us observe that its derivative in m2 is nothing but F(2, 1) (because
(
∂/(∂m2)

)
(
1/(k2 − m2)

) = 1/(k2 − m2)2) which is expressed, according to our reduction
procedure, by (1.22). Therefore we arrive at the following differential equation for
f (m2) = F(1, 1):

∂

∂m2 f (m2) = 1

m2 − q2

[
(1 − 2ε) f (m2) − F(2, 0)

]
, (1.23)

where the quantity F(2, 0) is a simpler object because it can be evaluated in terms
of gamma functions for general ε. The general solution to this equation can easily
be obtained by the method of the variation of the constant, with fixing the general
solution from the boundary condition at m = 0. Eventually, the above result (1.7)
can successfully be reproduced.

As we will see in Chap. 7, the strategy of the method of DE in much more non-
trivial situations is similar: one takes derivatives of a master integral in some argu-
ments, expresses them in terms of original Feynman integrals, by means of some
variant of solution of IBP relations, and solves resulting differential equations.

The recently developed method based on difference equations [16] uses relations
between Feynman integrals in shifted dimension, d. To illustrate it let us turn again
to our favourite example. To evaluate the master integral F1(d) ≡ F(1, 1; d) let us
use its alpha representation (1.10) and consider F1(d − 2). Up to simple changes of
exponents in the prefactors, the most essential change is the appearance of the extra
factor (α1 + α2) in the integrand. Then each of these two terms can be described
as a Feynman integral with a shifted index, i.e. either F(2, 1; d) or F(1, 2; d). As
we will see in Chap. 6 any integral of this family can be reduced to the two master
integrals, F1(d), and F2(d) = F(1, 0; d). (A partial reduction, where F(2, 0; d)

can be reduced further, to F2(d), is given by (1.22).) This is how one obtains the
following dimensional recurrence relation for the master integral F1(d):

http://dx.doi.org/10.1007/978-3-642-34886-0_6
http://dx.doi.org/10.1007/978-3-642-34886-0_6
http://dx.doi.org/10.1007/978-3-642-34886-0_7
http://dx.doi.org/10.1007/978-3-642-34886-0_6
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F1(d − 2) = 2
(d − 3)x

(1 − x)2 F1(d) − (d − 2)(1 + x)

2(1 − x)2 F2(d), (1.24)

where we set x = q2/m2 and m = 1.
We will see in Chap. 8 how this and other similar equations can be systematically

solved. In this example, one can arrive at a result in terms of a hypergeometric function
which, after using some identity, can be reduced to (1.8). Within this method, one
obtains solutions in terms of multiple series with excellent convergence. For one-scale
integrals, this provides the possibility to evaluate each term in an ε expansion with a
big accuracy and then obtain analytic results in very high orders of this expansion.

As promised in the beginning of this introduction, the semi-analytic method of
expansions in limits of momenta and masses [1, 21] is briefly presented in Chap. 9.
Let us take again the integral F(2, 1; d) given by (1.2) as an example and study it in
the limit m2/q2 → 0. As explained in Chap. 9, one can proceed either by expansion
by regions, or using an explicit formula for the expansion written in graph-theoretical
language. In both cases, one has the sum of two contributions to the expansion. One
of them is obtained by expanding the propagator 1/(k2 − m2)2 in a Taylor series in
the mass m and the other one is obtained by expanding the propagator 1/(q − k)2 in
a Taylor series in the loop momentum k. This and other typical examples are studied
in Chap. 9. It will be also explained how to find regions relevant to a given limit by
a geometrical algorithm [9, 17].

Before studying these methods, basic definitions are presented in Chap. 2 where
tools for dealing with Feynman integrals are also introduced. Methods for evaluat-
ing individual Feynman integrals are studied in Chaps. 3–5, 7–9 and the reduction
problem is studied in Chap. 6. In Appendix A, one can find a table of basic one-
loop and two-loop Feynman integrals as well as some useful auxiliary formulae.
Appendix B contains definitions and properties of special functions that are used in
this book. A table of summation formulae for onefold series is given in Appendix C.
In Appendix D, a table of onefold MB integrals is presented.

Some other methods are briefly characterized in Appendix E. These are mainly
old methods whose details can be found in the literature. If I do not present some
methods, this means that either I do not know about them, or I do not know physically
important situations where they work not worse than the methods I present.

I will use almost the same examples in Chaps. 3–9 and Appendix E to illustrate
all the methods. On the one hand, this is done in order to have the possibility to
compare them. On the other hand, the methods often work together: for example, MB
representation can be used in alpha or Feynman parametric integrals, the methods
based on differential and difference equations require a solution of the reduction
problem, boundary conditions within the method of DE can be obtained by means
of the method of MB representation, etc.

Basic notational conventions are presented below. The notation is described in
more detail in the List of Symbols. In the Index, one can find numbers of pages
where definitions of basic notions are introduced.

http://dx.doi.org/10.1007/978-3-642-34886-0_8
http://dx.doi.org/10.1007/978-3-642-34886-0_9
http://dx.doi.org/10.1007/978-3-642-34886-0_9
http://dx.doi.org/10.1007/978-3-642-34886-0_9
http://dx.doi.org/10.1007/978-3-642-34886-0_2
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_5
http://dx.doi.org/10.1007/978-3-642-34886-0_7
http://dx.doi.org/10.1007/978-3-642-34886-0_9
http://dx.doi.org/10.1007/978-3-642-34886-0_6
http://dx.doi.org/10.1007/978-3-642-34886-0_10
http://dx.doi.org/10.1007/978-3-642-34886-0_11
http://dx.doi.org/10.1007/978-3-642-34886-0_12
http://dx.doi.org/10.1007/978-3-642-34886-0_13
http://dx.doi.org/10.1007/978-3-642-34886-0_14
http://dx.doi.org/10.1007/978-3-642-34886-0_3
http://dx.doi.org/10.1007/978-3-642-34886-0_9
http://dx.doi.org/10.1007/978-3-642-34886-0_14
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1.1 Notation

We use Greek and Roman letters for four-indices and spatial indices, respectively:

xμ = (x0, x),

q ·x = q0x0 − q ·x ≡ gμνqμxν .

The parameter of dimensional regularization is

d = 4 − 2ε.

The d-dimensional Fourier transform and its inverse are defined as

f̃ (q) =
∫

dd x eiq·x f (x),

f (x) = 1

(2π)d

∫
ddq e−ix ·q f̃ (q).

In order to avoid Euler’s constant γE in Laurent expansions in ε, we usually pull
out the factor e−γEε per loop.
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