
Multicast Routing for Energy Minimization

Using Speed Scaling

Nikhil Bansal1,�, Anupam Gupta2,��, Ravishankar Krishnaswamy3,���,
Viswanath Nagarajan4, Kirk Pruhs5,†, and Cliff Stein6,‡

1 Mathematics and Computer Science, Eindhoven University of Technology
2 Computer Science, Carnegie Mellon University

3 Computer Science, Princeton University
4 IBM T.J. Watson Research Center

5 Computer Science, University of Pittsburgh
6 Industrial Engineering and Operations Research, Columbia University

Abstract. We consider virtual circuit multicast routing in a network of
links that are speed scalable. We assume that a link with load f uses
power σ + fα, where σ is the static power, and α > 1 is some constant.
We assume that a link may be shutdown if not in use. In response to
the arrival of client i at vertex ti a routing path (the virtual circuit) Pi

connecting a fixed source s to sink ti must be established. The objective
is to minimize the aggregate power used by all links.

We give a polylog-competitive online algorithm, and a polynomial-
time O(α)-approximation offline algorithm if the power functions of all
links are the same. If each link can have a different power function,
we show that the problem is APX-hard. If additionally, the edges may
be directed, then we show that no poly-log approximation is possible
in polynomial time under standard complexity assumptions. These are
the first results on multicast routing in speed scalable networks in the
algorithmic literature.

1 Introduction

The amount of energy used by data networks is significant, worldwide more
50 billion kWH are used per year according to a US Department of Energy
study [1]. As the number of processors per chip grows, interprocessor communi-
cation is widely expected to become the dominant energy component for com-
puter chips. Thus there has been significant recent interest, both within industry

� Supported in part by the NWO Vidi grant 639.022.211.
�� Supported in part by NSF awards CCF-0964474 and CCF-1016799.

��� Supported in part by NSF awards CCF-0964474 and CCF-1016799 and an IBM
Graduate Fellowship.

† Supported in part by NSF grants CCF-0830558, CCF-1115575, CNS-1253218 and
an IBM Faculty Award.

‡ Supported in part by NSF grant CCF-0915681.

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 37–51, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

38 N. Bansal et al.

and academia, to develop methods to manage networks, from on-chip up to wide-
area, in a more energy efficient manner. The same US Department of Energy
study [1] estimates that at least a 40% reduction in wide-area network energy
would be possible if network components were able to dynamically adjust their
power in response to the traffic experienced. Simulation results by Benoit et
al. [5] suggest using speed scalable link technology, such as those proposed by
Kim and Horowitz [11], would save significant energy in an on-chip network for
a chip multiprocessor.

Virtual circuit routing is a common means of providing reliable communica-
tions in a network. A virtual circuit gives the user a reserved portion of the
network with a guaranteed bandwidth in which to route messages. Algorithmic
problems associated with virtual circuit routing have been studied for many years
(e.g. [4,7]). Here we consider algorithmic problems that combine the traditional
virtual circuit routing with the the traditional energy management mechanisms:
changing the speed of a component and/or shutting the component off.

We consider the same setting as was proposed in several previous papers. The
network is a graph, with a power function associated with each edge.1 The power
used by edge e as

ene(fe) =

{
σe + fα

e if fe > 0
0 if fe = 0

, (1)

where fe is the number of circuits (flow) passing through each edge, σ is the
static power, and α > 0 is a given constant. An important special case is when
all edges have the same fixed cost σ. We call such cost functions homogeneous and
call the general case heterogeneous. We consider both directed and undirected
graphs, unless explicitly stated graphs are undirected. The input further consists
of a sequence of requests for the establishment of a virtual circuit. In response
to the arrival of a source-sink request (si, ti) a routing path (the virtual circuit)
Pi connecting si to ti must be established. The objective is to minimize the
aggregate power used over all the edges.

Andrews et al. [2] gave a polynomial-time poly-log-approximation algorithm
if the graph is undirected, and edges e have homogeneous cost functions. It was
previously noted [3] that a polynomial-time algorithmwith a better than poly-log
approximation ratio would violate standard complexity theoretic assumptions.
Gupta et al. [8] considered online algorithms and gave an αα-competitive online
algorithm under the same assumptions, plus the additional assumption that the
static power σe for each edge was zero.

In this paper we consider applications in which there is a common source
vertex, as would be the case if a multicast communication pattern was imple-
mented using unicast. We consider both the online and offline cases and give
several positive and negative results:

– For undirected networks and homogeneous power functions of the form
given in (1), in Section 3 we give a poly-log competitive online algorithm.

1 Power functions are associated with edges and not vertices primarily because the
resulting algorithmic problems are more tractable.

Multicast Routing for Energy Minimization Using Speed Scaling 39

(These are the same assumptions under which an offline poly-log approxima-
tion algorithm was given by [2], although the result of [2] holds more gener-
ally without the single source assumption.) This result shows that poly-log
competitiveness can be achieved by an online algorithm for multicast com-
munication.

– For undirected networks and homogeneous power functions of the form given
in (1), in Section 4, we give an O(α) offline approximation algorithm.

– In Section 5.1, we show that if the graph is directed instead of undirected,
and we allow heterogeneous power functions, then even for the s–t rout-
ing case (i.e. when all the sinks are also located at the same node), there
is no polynomial-time poly-log-approximation algorithm under a standard
complexity theoretic assumption.

– In Section 5.2, we show that for the heterogeneous case in an undirected
graph, the offline problem is APX-hard even in the s–t case.

In Section 6 we discuss some of the natural open questions arising from these
results.

2 Notation and Background

In the Energy-Aware Routing Problem (EERP), we are given an undirected graph
G = (V,E) with |V | = n and a distinguished source vertex s. We are given k
sinks Rk = {t1, t2, . . . , tk} corresponding to k different routing requests, One
unit of flow needs to be routed from the source s to each sink ti, on a single s-ti
path Pi. Given a solution P1, P2, . . . , Pk, the flow on edge e, fe, is the number of
paths that use e, that is fe =

∑
i:e∈Pi

1, and the energy used by edge e is defined
by equation (1) above. For our positive results, we consider the homogeneous
case where all the edges have a common σ. Furthermore, we are interested in the
case where 1 � σ and α > 1. (If σ is small, for the purposes of approximation,
it can be treated as 0, and if α < 1, this problem exhibits economies of scale
and has been well studied.) The objective is to find a feasible routing which
minimizes the total power, which is obtained by summing the power usage over
all edges. In other words, the total power used is

∑
e∈E

ene =
∑
e∈E

(
σ · 1(e∈∪iPi) +

(k∑
i=1

1(e∈Pi)

)α
)

(2)

We will usually refer to the power used as the cost incurred.
We consider both the offline and online variants: in the online variant, the

sinks are given online and we must choose a path for sink ti before learning
about sink ti+1.

The fixed σ term is called the buying or opening cost: the net buying cost
is the first term in (2). The second term is sometimes called the renting cost.
In designing our algorithms, we will sometimes want to balance the renting and
buying costs, we therefore define q = σ1/α, the minimum number of paths that
must use an edge for the renting cost to be at least the buying cost.

40 N. Bansal et al.

We will compare our results to an optimal solution and use opt(Rk) to denote
the cost incurred by the set of optimal paths {P ∗

1 , P
∗
2 , . . . , P

∗
k }.

Steiner Trees: We will use Steiner trees, both in our algorithm design and for
showing lower bounds. Given S ⊆ V , a min-cost Steiner tree on S is a tree T in
G with the fewest edges that connects all the nodes in S. We denote the number
of edges in the min-cost Steiner tree by StTree(S). Since the union of the paths
Pi in any solution {Pi}ki=1 to EERP also connects {s} ∪ Rk, we get that the
optimal buying cost is at least σ · StTree({s} ∪Rk), and hence

opt(Rk) ≥ σ · StTree({s} ∪Rk). (3)

We will sometimes use opt as shorthand for opt(Rk).

Probabilistic Bounds: Our analysis will use the following result on the expecta-
tions of the sums of powers of random variables.

Theorem 1 ([10,13]). Let X1, X2, . . . , XN be independent non-negative ran-
dom variables. Let α > 1 and Kα = Θ(α/ logα). Then it is the case that

(E[(
∑

i Xi)
α])

1/α ≤ Kα max

(∑
i E[Xi],

(∑
i E[X

α
i]

)1/α
)
.

Corollary 1. Let p ≥ 0, and let X1, X2, . . . , Xn be i.i.d. random variables taking
value D with probability max{1, p}. Then E[(

∑
i Xi)

α] ≤ (Kα)
α ·max{1, pN Dα+

(pND)α}, where Kα = Θ(α/ logα).

Proof. For the case when p ≥ 1, Xi = D with probability 1, and hence we can
conclude that E[(

∑
i Xi)

α] = (ND)α. For the case when p ∈ [0, 1], E[Xi] =
pD, and E[Xα

i] = pDα. From this we can conclude that the upper bound in
Theorem 1 is Kα max(pND, (pN)1/αD). Taking αth powers and replacing the
max by a sum, we get E[(

∑
i Xi)

α] ≤ (KαD)α((pN)α + pN). �	

3 Online Algorithm for Homogeneous Setting

We now give an online algorithm, in which the sinks arrive one-by-one, and we
have to choose the path Pi connecting ti to the source s before knowing the
identity of the next sink ti+1.

3.1 The Algorithm

We assume (without loss of generality, by adding zero cost edges) that each sink
appears at a distinct vertex; so the number of sinks k ≤ n the number of vertices
in G. We let Ri = {t1, t2, . . . , ti} denote the set of demands that have already
arrived and let R′

i = {s} ∪ Ri. The algorithm maintains a tree Ti that initially
contains only the source s. When a request ti arrives, a path Pi will be chosen
and the tree will be updated, however, the routing paths may use edges outside

Multicast Routing for Energy Minimization Using Speed Scaling 41

this tree. We will also maintain a subset of the vertices which we call leaders.
The set of leaders in step i is denoted by Li, and is initialized to L0 = {s}. We
will maintain various counters, all initialized to 0. A counter Λj will denote the
number of nodes assigned to a particular leader j. A counter ρe will count the
number of times an edge has been used in non-tree paths from the source to a
leader and a counter λe will count the number of times an tree-edge is used to
route flow.

We will denote trees and paths by their sets of edges.
When a sink ti arrives, we do the following:

1. Let P̃i be the shortest path from ti to any node in R′
i−1 and let Ti = Ti−1∪P̃i.

2. With probability min{1, c logn
q }, let ti be a leader (i.e., set Li = Li−1∪{ti}),

else let Li = Li−1.
If ti is a leader, find a path Qi from ti to the root that minimizes∑

e∈Qi

((ρe + 1)α − (ρe)
α) . (4)

For each edge e on the path Qi, set ρe ← ρe + 1.
3. Choose the leader j ∈ Li that minimizes the expression:

(3/2)(Λj+1)/(q logn) − (3/2)Λj/(q logn)

+
∑

e∈Ti[ti,j]

(
(3/2)(λe+1)/(q logn) − (3/2)λe/(q logn)

)
(5)

where Ti[a, b] is the unique path between nodes a and b in the tree Ti. If
this minimizer is the leader j∗ ∈ Li, set Λj∗ ← Λj∗ + 1; for every edge e in
Ti[ti, j

∗], set λe ← λe + 1.
4. Set the s-ti path Pi to be Qj∗ (which is a s-j∗ path) concatenated with

Ti[j
∗, ti]. We call the latter part of the path Pi to be the “tree” portion, and

the former to be the “non-tree” portion.

Above, c > 1 is some constant. The choice of expression (5) is from the online
path selection algorithm to minimize the congestion (maximum load) [4]; simi-
larly the choice of (4) is from the online algorithm to minimize the sum of αth

powers of edge loads [8].

3.2 Analysis

The algorithm maintains the tree Ti, the source to leader paths Qj∗ and the
routing paths Pi. Recall that the flow on an edge e is defined from the Pi.
Observe that it is an easy consequence of the algorithm that after step k′ there
is non-zero flow on all edges in Tk′ ∪ ∪j∗∈Lk′Qj∗ , and hence we have “bought”
all of these edges. In the following analysis, we will use k as an index into the
number of sinks, rather than (necessarily) the total number of sinks. We first
bound the cost associated with the tree-edges. We divide the analysis into buying
cost (the number of tree edges) and renting cost (a function of the load on the
tree edges).

42 N. Bansal et al.

Claim 1. The total buying cost for edges in Tk is at most O(log k)opt(Rk).

Proof. The edges in Tk are all bought in Step 1. This step implements a greedy
Steiner tree algorithm, and hence the number of edges bought by the greedy
Steiner tree algorithm is at most O(log k) times the optimal Steiner tree on
R′

k [9]. As mentioned in Section 2 the optimal Steiner tree gives a lower bound
on opt(Rk), and we get that the total cost of edges bought in Step 1 is at most
O(log k)opt. �	
Now we show that in step 3, no edge is used too many times.

Lemma 1. With probability at least 1− n−2α over the choice of the leaders:

1. There exists an assignment of sinks to leaders so that (a) each edge of Tk is
used in the tree portion of at most O(q logn) sinks, and (b) each leader is
assigned at most O(q) sinks.

2. Thus our algorithm obtains a path assignment in Step 3 where each edge of
Tk is used O(q log2 n) times and each leader is assigned O(q logn) sinks.

Proof. Each sink becomes a leader with probability min{1, c logn
q }. So if q ≤

c logn then no edges are ever used and each leader is only assigned one sink
(namely itself). For the rest of the argument we assume that q ≥ c logn.

For the sake of the analysis, we choose the leaders in a different way: for each
sink, we flip c logn independent coins of bias 1/q, if the ith coin is the first of
these to turn up heads, we designate the sink as a leader of color i. If all coins
turn up tails, the sink is not considered a leader. Since the probability that a sink
is a leader (of any color) according to this process is 1− (1− 1/q)c log n ≤ c log n

q ,
proving the statements with this new way of choosing leaders also proves the
original statement (via a standard coupling argument).

Consider the tree Tk and partition it into connected edge-disjoint groups, so
that each group (apart from possibly one) contains between 2q and 4q sinks. This
partition can be achieved by rooting the tree Tk, making it binary by adding
dummy edges, and repeatedly choosing the deepest subtree containing at least 2q
sinks. Consider a particular group S of sinks, and order the sinks in S according
to their arrival times. The probability that there is at least one leader of color 1
among the first q sinks in S is at least 1− (1− 1/q)q ≥ 1/2. For such groups, at
least half their sinks can route to this leader of color 1. Since the groups were
chosen to included edge-disjoint parts of the tree, this routing incurs a maximum
load of 4q on any edge of the tree (and on any color-1 leader). Also, this reduces
the number of remaining sinks to 3k/4 in expectation. Now we can recurse on
the remaining sinks: form edge-disjoint groups on them, and assign 3/4 fraction
of these sinks (in expectation) to leaders of color 2, and continue. After repeating
this process c logn times, the expected number of unassigned sinks is at most
(3/4)c logn · k ≤ k

n3α ≤ n
n3α , by setting c ≥ 9α. Thus (by Markov’s inequality)

there is no unassigned sink with probability at least 1− n−2α.
Altogether, this assignment routes at most 4q sinks to each leader, and uses

each edge of Tk at most 4c logn ·q times. This proves the first part of the lemma.

Multicast Routing for Energy Minimization Using Speed Scaling 43

If each edge of Tk is given capacity O(q logn) and each leader is given capacity
O(q), the above path assignment corresponds to a solution having congestion
(i.e. load/capacity) one for the following routing problem: each sink ti has to use
edges of Tk to route unit flow from any node of Li (i.e. leader among {t1, . . . , ti}).
The result of Aspnes et al. [4] implies that path assignment according to (5) gives
a solution with congestion O(log n) times the optimal. This proves the second
part of the lemma. �	
We now combine the previous two arguments.

Lemma 2. The expected total cost (from both buying and renting) incurred by
the algorithm on the tree portions of the paths {Pi}ki=1 is O(log2α n log k)opt(Rk).

Proof. By Claim 1, the buying cost for the tree edges is O(log k)opt(Rk), and
hence the number of edges bought |Tk| ≤ O(log k)opt(Rk)/σ.

By the second part of Lemma 1, with probability at least 1−n−2α, each edge
of Tk carries at most O(q log2 n) flow. Thus the expected renting cost incurred
over Tk is at most |Tk| · O(q log2 n)α + 1

n2α |Tk| · kα ≤ O(log n)2α |Tk| · σ =

O(log k · log2α n)opt(Rk). �	
We now bound the cost of using the edges in the non-tree portion ∪Qj∗.

Lemma 3. Consider the following random experiment: choose a random subset
S of sinks, with each sink ti chosen independently with probability min{1, c logn

q };
thereafter for each ti ∈ S, send Θ(q logn) flow from s to ti on its optimal
path P ∗

i . The expected cost (both buying and renting) incurred by this routing
is O(log2α n)opt(Rk).

Proof. Since we buy a subset of the edges bought by the optimal solution, the
buying cost is bounded by opt(Rk). For the expected renting cost, consider an
edge e, and all the sinks whose optimal paths P ∗

i use e: if there are N of them,
the optimal’s renting cost for e is Nα. Since each sink chooses independently,
we can use Corollary 1 with p = c log n

q and D = c′q logn to bound the expected

renting cost for e. Ignoring terms of the form O(α)α and using qα = σ, we get

pNDα + (pND)α ≈ (logα+1 n)σN/q + (log2α n)Nα ≤ (log2α n)(2Nα + σ),

which is the claimed polylogarithmic factor times the optimal’s cost incurred on
this edge. (For the last inequality, observe that if q ≤ N then σN/q = qα−1N ≤
Nα, and if q > N then σN/q ≤ σ.) Now summing over all edges, and using
linearity of expectations completes the proof. �	
Lemma 4. The expected cost incurred by our algorithm for routing on the non-
tree edges ∪j∗Qj∗ is at most O(log2α n)opt(Rk).

Proof. Consider a random instance on the original graph where each sink is ac-
tivated independently (as leader) with probability c logn

q and requires Θ(q logn)

unsplittable flow from s, with the objective of minimizing
∑

e:fe>0 (σ+fα
e) where

44 N. Bansal et al.

fe denotes the flow on edge e. Since the routing is unsplittable, each positive fe
has fe ≥ Ω(q logn) ≥ q; so σ+ fα

e ≤ 2 · fα
e . Thus (up to a factor of 2) the objec-

tive is simply
∑

e fα
e . By Lemma 3, the expected optimal value of this random

instance is O(log2α n)opt(Rk). The path selection {Qj} in Step 2 corresponds
to an αα-competitive online algorithm for this random instance [8]. Thus, if we
send O(q logn) flow along each of these paths, the expected cost incurred is
αα · O(log2α n)opt(Rk) = O(log2α n)opt(Rk).

Now, by the second part of Lemma 1, with probability at least 1− n−2α, the
number of sinks assigned to each leader is O(q logn), in which case reserving
capacity O(q logn) on each leader’s path from s (as in above instance) suffices.
With the remaining n−2α probability, the worst case cost is nk(σ+kα). Thus the
expected cost of our algorithm on the non-tree portion is O(log2α n)opt(Rk). �	

Theorem 2. There is an Oα

(
logO(α) n

)
-competitive randomized online algo-

rithm for single-source EERP with homogeneous power functions of form σ+fα
e .

4 Offline Algorithm for Homogeneous Setting

In this section we give an O(α)-approximation algorithm for the offline EERP
problem. with a homogeneous energy function. The algorithm has two phases
(similar to the online setting), aggregation and batched routing. We assume
that σ ≥ αα; otherwise aggregation is not necessary and the algorithm proceeds
directly to the network flow instance2.

Set p := σ1/α/α ≥ 1, which may not be integral. We first describe an algorithm
to compute a splittable routing for each sink: then we show that this can be easily
converted to an unsplittable routing.

Aggregation: Let T denote an approximately minimum Steiner tree, which we
can compute in polynomial time. Using an Euler tour of T we can fractionally
partition the k demands to obtain r groups {Vj ⊆ {t1, . . . , tk}}rj=1 where Vj

induces a subtree Tj on T , so that:

– For each group j ∈ [r], there is positive (fractional) demand only on sinks
Vj , which totals to exactly p.

– For each sink ti, the total demand over all groups is exactly one.
– Each edge of T appears in at most two subtrees {Tj}rj=1.

If k is not an integral multiple of p, by adding dummy demand, we can ensure
that each group contains exactly p demand (this only affects the approximation
ratio by a constant factor). In doing so, we may need to add one fractional
demand, for that sink the second condition is modified so that the total demand
is equal to the fractional amount.

2 In this case the algorithm is even simpler: all capacities are one and the copies of an
edge are: �α� edges of cost σ each; and for each integer h ≥ �α� + 1, an edge of cost
hα − (h−1)α. That this is an O(α) approximation, follows easily from the arguments
for “Batched Routing” below.

Multicast Routing for Energy Minimization Using Speed Scaling 45

Batched routing: We now define a minimum-cost network flow instance G′ corre-
sponding to the above grouping {Vj}rj=1 of sinks. We create r new sinks {t′j}rj=1

where each t′j requires flow p and is connected to all sinks in Vj with zero cost
and infinite capacity edges. Then we replace each edge e in G by the following
parallel edges:

– There are �α
 identical edges with capacity p and cost (per unit flow) σ
p .

– For each integer h ≥ 0, there is an edge of capacity p and cost
(
1 + h

α

)α−1 · σp .
We use g(x) = σ+xα to denote the homogeneous power function applied to the
flow on one edge. The transformation above corresponds to a natural discretiza-
tion of the power function into linear pieces, and was also used in Andrews et
al. [2]. Let ce(x) denote the minimum cost way to send x units of flow through
the above set of parallel edges corresponding to an edge e. This minimum cost
routing uses the edges in order of increasing cost.

Before analyzing our algorithm, we prove two technical claims about the be-
havior of our cost functions. The choice of our discretization parameter p implies:

Claim 2. For all x ≥ 0, g(x+ p) ≤ 9 · g(x).
Moreover, by the definition of the parallel edges,

Claim 3. For each x ≥ 0, c(x) ≤ (α + 1) · g(x); and for each x ≥ p, g(x) =
O(c(x)).

We now return to the description of our algorithm. The algorithm computes
a minimum cost flow in this network G′ with demands of p units to each of
t′1, . . . , t

′
r. Since all capacities and demands are multiples of p, we can obtain in

polynomial time (by integrality of single commodity flow) an optimal solution
given by paths {Qj}rj=1 where each Qj is a path from s to some t∗j ∈ Vj carrying
p flow. For each edge e ∈ G (the original graph), let fe denote the total flow
sent through “copies” of e in this solution; note that since fe is a multiple of p,
either fe = 0 or fe ≥ p. Let E′ ⊆ E denote the edges e with fe > 0, so the cost
of this solution is

∑
e∈E′ c(fe).

Lemma 5. The cost of the flow
∑

e∈E′ c(fe) ≤ (α+1) · opt. Moreover, the total
energy cost,

∑
e∈E′ g(fe) = O(α) · opt.

Proof. We will show the existence of a feasible solution of cost (α + 1) · opt to
the above network flow instance: since we obtain an optimal solution, our cost∑

e∈E′ c(fe) is no worse. Consider the optimal paths {P ∗
i }ki=1 in EERP carrying

unit flow to each sink {ti}ki=1. For each group j ∈ [r] and sink t ∈ Vj we
send demandj(t) units of flow to t′j by extending path P ∗

t . The property of the
aggregation step ensures that each {t′j}rj=1 receives exactly p flow, and the flow

f∗
e through any edge in G is exactly the number of paths {P ∗

i }ki=1 using it. Thus
the cost of this solution is

∑
e c(f

∗
e) ≤Claim 3 (α+ 1)

∑
e g(f

∗
e) = (α+ 1) · opt.

Next, observe that our optimal solution {fe : e ∈ E′} has any positive flow at
least p. Hence using Claim 3,

∑
e∈E′ g(fe) ≤ O(1)

∑
e∈E′ c(fe) = O(α) · opt. �	

46 N. Bansal et al.

Obtaining a solution. We now combine the solutions from the above two phases
to obtain a splittable EERP routing in G. The flow {fe : e ∈ E′} sends p units of
flow to t∗j ∈ Vj for each group j ∈ [r]. Then for each j ∈ [r], using the edges on
subtree Tj , these p units can be redistributed from t∗j so that each sink t ∈ Vj

gets exactly demandj(t) flow, and the flow on each edge of Tj is at most p. This
flow is a feasible splittable EERP solution, since the total demand of each sink
(over all groups) is one. Since each edge in T appears in at most two subtrees
{Tj}rj=1, the final flow on any edge e is at most fe + 2p. So the cost of this
combined routing is at most:

∑
e∈E′

g(fe + 2p) +
∑

e∈T\E′
(σ + (2p)α) ≤ 92 ·

∑
e∈E′

g(fe) + 92 ·
∑

e∈T\E′
σ

≤ 92
∑
e∈E′

g(fe) + 2 · 92 · opt

The first inequality is by Claim 2 and the definition of p. The second inequality
is by the fact that T can be chosen to be a 2-approximate Steiner tree. Finally,
using Lemma 5,

∑
e∈E′ g(fe) = O(α) · opt, and the total cost of this splittable

routing is O(α) · opt.
We now obtain an unsplittable routing. If {	e}e∈E denotes the flow in this

solution, define a network with each edge e ∈ G having capacity �	e
. The
source is s and there is a unit demand at each {ti}ki=1. This instance is feasible
as shown by the fractional solution {	e}e∈E . Again, using integrality of flow, we
can find an integer valued flow within these capacities, yielding the unsplittable
EERP solution. Using Claim 2, we see that the cost is at most

∑
e g(e + 1) ≤∑

e g(e + p) ≤ 9
∑

e g(e) = O(α) · opt.

Theorem 3. There is an O(α)-approximation algorithm for EERP with a single
source and homogeneous power functions of the form σ + fα

e .

5 Hardness of Approximation Results

5.1 Hardness of s-t Directed Routing with Heterogeneous Functions

We now consider the heterogeneous case in which all sinks are located at the same
node. Since all sinks are located at the same node, we will speak of a demand r
(which is equivalent to the number of sinks k in our original formulation). We
therefore want to compute an s-t flow of r units having the minimum total power
(summed over all edges). We will consider the case when the exponent α being a
small constant that is larger than one, i.e. α = 1+ ε where ε > 0 is any constant.
The main result of this section is the following inapproximability:

Theorem 4. The s-t routing problem on directed graphs with heterogeneous
power functions and constant exponent α > 1 does not admit an approximation

ratio better than 2log
1−δ n for any δ > 0, unless NP ⊆ DTIME(polylog(n)).

Multicast Routing for Energy Minimization Using Speed Scaling 47

Proof. We reduce from the label cover problem. The input is a bipartite graph
(A∪B,F) where each vertex in A and B has degree d, a label set L and a relation
πa,b ⊆ L × L for each (a, b) ∈ F . We let |A| = |B| = n and |F | = m = n · d.
The goal is compute a labeling φ : A ∪ B → L that maximizes the number of
consistent edges, where edge (a, b) ∈ F is consistent if (φ(a), φ(b)) ∈ πa,b. For
any δ > 0 it is known [12] that unless NP ⊆ DTIME(polylog(n)), there is no
polynomial time algorithm to distinguish between:

– Yes instances: with optimal value |F |, i.e. there is a labeling with all edges
consistent.

– No instances: with optimal value at most |F |/2log1−δ n, i.e. no labeling makes

more than |F |/2log1−δ n edges consistent.

The reduction here is similar to one for the related s-t capacitated network design
problem [6], where each edge has a fixed cost and capacity (instead of a power
function), and the goal is to choose a minimum-cost set of edges that support f
units of flow from s to t. It is straightforward to reduce s-t capacitated network
design to our problem when the exponent α ≈ n. Below we show that the same
hardness persists even for any constant exponent α > 1.

The graph G = (V,E) for the heterogeneous power s-t directed routing prob-
lem is as follows. The vertex set V = {s, t}∪A∪B∪{a(u) : a ∈ A, u ∈ L}∪{b(u) :
b ∈ B, u ∈ L}. The edge set E contains:

– For each a ∈ A, there is an edge (s, a) with function d · fα. (To ensure
functions of the form σe + fα, we can subdivide this edge into d smaller
edges each having function fα.)

– Similarly, for each b ∈ B, there is an edge (b, t) with function d · fα.
– For each a ∈ A and u ∈ L, there is an edge (a, a(u)) with function dα+1+fα.
– Similarly, for each b ∈ B and u ∈ L, there is an edge (b(u), b) with function

dα+1 + fα.
– For each (a, b) ∈ F and (u, v) ∈ πa,b there is an edge (a(u), b(v)) with

function dα · fα. (Again each such edge can be subdivided into dα edges
with function fα.)

We denote the last set of edges as E′. The flow demand is set to m = |F | = d ·n
units.

Yes instances: Observe that if the label cover instance has a labeling φ that is
consistent for all edges, there is a routing in G of total cost at most 7m · dα.

No instances: Suppose that there is a routing in G of total power ρ · m · dα.
Then we show that one can recover a labeling for the label cover instance that

satisfies at least |F |/ρ2+ 3
α−1 edges.

Let fe denote the flow on edge e in the given routing (having power ρ ·m ·dα).
For each a ∈ A, define Na := {u ∈ L : f(a,a(u)) > 0}. Similarly for b ∈ B,
Nb := {u ∈ L : f(b(u),b) > 0}. We consider an arbitrary flow decomposition of
{fe}e∈E into s-t flow-paths (of total value m), and modify it as follows (below

β := (4ρ)
1

α−1).

48 N. Bansal et al.

a

s
t

b

A B

dα · �α
dα+1 + �α

d · �α
d · �α

dα+1 + �α

Fig. 1. The s− t directed network with power functions

1. For each a ∈ A, if f(s,a) > β · d or |Na| > 4βρ then delete all flow-paths
through (s, a).

2. For each b ∈ B, if f(b,t) > β · d or |Nb| > 4βρ then delete all flow-paths
through (b, t).

3. For each e ∈ E′, if fe > β then delete all flow-paths through e.

Claim 4. The total flow remaining after this pruning is at least m
4 .

Proof. We bound the flow lost in each step separately. Consider first the edges
Ea = {(s, a) : f(s,a) > β · d}. We have:
∑

e∈Ea
fe∑

e∈Ea
fα
e

≤ max
e∈Ea

f1−α
e ≤ 1

(βd)α−1
=⇒

∑
e∈Ea

fe ≤
∑

e∈Ea
fα
e

(βd)α−1

An identical analysis implies that
∑

e∈Eb
fe ≤ (βd)1−α ·∑e∈Eb

fα
e where Eb =

{(b, t) : f(b,t) > β · d}.
Recall that the total cost due to edges Ea∪Eb is d·

∑
e∈Ea

fα
e +d·∑e∈Eb

fα
e ≤

ρmdα. This implies:

∑
e∈Ea

fe +
∑
e∈Eb

fe ≤
∑

e∈Ea
fα
e +

∑
e∈Eb

fα
e

(βd)α−1
≤ ρmdα−1

4ρ dα−1
=

m

4
.

Let Va = {a ∈ A : |Na| > 4ρβ, f(s,a) ≤ βd} and Vb = {b ∈ B : |Nb| >
4ρβ, f(b,t) ≤ βd}. The total cost of edges {(a, a(u)) : a ∈ A, u ∈ L}∪{(b(u), b) :
b ∈ B, u ∈ L} is at least

∑
a∈A |Na| · dα+1 +

∑
b∈B |Nb| · dα+1 ≥ (|Va|+ |Vb|) ·

4ρβ dα+1. Since the total routing cost is at most ρmdα, we have |Va| + |Vb| ≤
ρmdα

4ρβ dα+1 = n
4β . Thus

∑
w∈Va

f(s,w) +
∑

w∈Vb
f(w,t) ≤ (|Va|+ |Vb|) · βd ≤ nd

4 = m
4 .

Note that the flow lost in Step 1 above is at most
∑

e∈Ea
fe +

∑
w∈Va

f(s,w),
and that in Step 2 is at most

∑
e∈Eb

fe + +
∑

w∈Vb
f(w,t). So the total loss in

flow is at most m
2 . Finally consider Step 3. Let E′′ = {e ∈ E′ : fe > β}. As in

the calculation for Ea and Eb, using the fact that
∑

e∈E′′ fα
e ≤ ρm (since cost

of edge e ∈ E′ is dα · fα
e), we have

∑
e∈E′′ fe ≤ ρm

(βd)α−1 = m
4 . �	

Multicast Routing for Energy Minimization Using Speed Scaling 49

The flow after the above pruning has magnitude at least m
4 and edges in E′

carry at most β flow each. If we choose one label for each vertex c ∈ A ∪ B
randomly from Nc, the expected number of consistent edges in F is at least
m
4β · 1

(4βρ)2 = m
64ρ2β3 = |F |

64ρ
2+ 3

α−1
.

Finally, the hardness of label cover implies that the s-t routing problem with
any exponent α = 1+ ε (for constant ε > 0) is hard to approximate better than

ratio 2log
1−δ n for any δ > 0. �	

5.2 APX-Hardness of Undirected s− t Routing with Heterogeneous
Functions

We now consider the same case as the previous section, but in undirected graphs.
Undirected graphs tend to be easier to route in than directed graphs, but we are
still able to prove an inapproximability result.

Theorem 5. The s− t routing problem on undirected graphs with heterogeneous
power functions and constant exponent α > 1 is APX-Hard.

Proof. The proof is a reduction from the problem of 3SAT(2d), i.e., 3SAT where
each variable appears in exactly 2d clauses (d as the positive form, and d as the
negative form), for which the following hardness is known [14].

Theorem 6. There exist constants d and ε for which it is NP-hard to distinguish
between 3SAT(2d) instances which are fully satisfiable and those which are at
most (1 − ε) satisfiable.

From 3SAT(2d) to Independent Set.We first reduce the problem of 3SAT(2d),
to that of finding large independent sets in bounded degree graphs. Indeed, given
an instance of 3SAT(2d) with m = 2dn/3 clauses on n variables, we construct the
following graph: For each clause, we create a triangle with nodes corresponding
to the literals. These triangles are disjoint across clauses. To tie up the instance,
we place edges between x and x for all the occurrences of literals x and x. Notice
that there are N := 3m variables, and M := 3m+ d2n = N(1 + d/2) edges in
this graph. Furthermore, each node has degree d+ 2 (two edges in the triangle,
and d edges to the opposite literal).

We now relate independent sets on this graph with satisfying assignments
in the 3SAT(2d) instance. In the yes case, suppose there is a fully satisfying
assignment for the SAT instance. Then, we can pick one satisfying literal from
each clause and it forms an independent set (there are no triangle edges picked,
and because the assignment is consistent, there are no literal edges as well). The
size of this independent set is N/3 = m nodes.

In the opposite direction, suppose we have an independent set of size N
3 (1 −

ε) = m(1− ε) nodes in the graph. Then, clearly, it has to pick at most one node
from each of the clause triangles. Furthermore, these nodes must correspond to
consistent literals (else we would include a literal edge). Therefore, the inde-
pendent set naturally recovers an assignment which satisfies at least m(1 − ε)
clauses. We can therefore conclude this step with the following theorem:

50 N. Bansal et al.

Theorem 7. There are constants d and ε for which it is NP-hard to distinguish
between d+ 2-regular graphs on N nodes which have an independent set of size
at least N/3 and those where all independent sets are at most N/3(1− ε).

From Independent Set to Power-Routing. We now reduce from indepen-
dent set instances to the routing instances. Indeed, given a d+ 2-regular graph
on N nodes G = (V,E), we create the following routing instance H = (W,F).

Routing Instance H . For each edge e ∈ E, there is an edge-vertex we ∈ V ′,
and for each node v ∈ V , we have a node-vertex wv ∈ V ′. We connect each edge-
vertex to the corresponding node-vertices (according to G). That is, if e = (u, v)
in G, then we connect we with wu and wv. These edges have a buy cost of
1 and no load cost. These are called the intermediate edges in our graph H .
Likewise, we connect each node-vertex wv vertex to a sink t, with edges of buy
cost B := 1

2(d+1) . Finally, we connect each edge-vertex we to a source s with

cost lα, where l is the load. For the demand, we require s to route M units of
flow to t. In the remainder of the proof, we will use C to denote (2N/3).

Lemma 6. If there is a vertex cover of size C := (2N/3) in G, there is a routing
solution in H of total cost at most BC + 2M .

This is easy to see, as the source can send a unit flow along to each edge-vertex,
which will then send the flow to the node which covers it (in the vertex cover in
G), and finally this flow gets routed to the sink. For the soundness direction, we
show the following lemma in the full version of the paper.

Lemma 7. For large enough constant α, if there is routing in H of cost at
most (1 + ε′)(2M + BC), then we can recover an “almost vertex cover” of size
C(1 + ε′) + 8ε′M(d+ 1) in G. Here, an “almost vertex cover” is a collection of
nodes incident on at least a (1− 10ε′(d+ 2)2) fraction of the edges.

We now complete our proof. In particular, we will be interested in the case
when C := 2N/3 (recall that it was hard to distinguish between independent
sets of size N/3 and those of size (1− ε)N/3 in G). Indeed, suppose there is an
independent set of size N/3. Then there is a vertex cover of size 2N/3, and by
Lemma 6, there is a routing in H of cost at most BC + 2M .

Now, in the other direction, suppose there is a routing of cost at most (1 +
ε′)(BC +2M). Then by the above Lemma 7, we can recover a set of C(1+ ε′)+
8ε′M(d+1) nodes which are incident on (1− 10ε′(d+2)2) fraction of the edges.
But we can extend this to a complete vertex cover by adding at most 10ε′(d +
2)2M nodes by picking one node from each of the uncovered edges. This implies
there is an independent set of size at least N/3−O(ε′d2)N = N/3(1− ε) nodes,
for small enough constant ε′ (recall that d is a constant determined in Thm 7).
But by Theorem 7, this is impossible if P �= NP , thus proving Theorem 5. �	

6 Open Problems

Perhaps the most natural open question is whether there exists a poly-log com-
petitive online algorithm for the case of multiple sources and multiple sinks.

Multicast Routing for Energy Minimization Using Speed Scaling 51

Is the following simple algorithm good? Consider request (si, ti). With proba-
bility 1/2k “pretend” that the demand D is 2k, and open all edges used in the
cheapest way to route demand D from si to ti assuming previous routes. Then
route one unit of flow between si and ti in the cheapest possible way along open
edges.

References

1. Proceedings of the vision and roadmap workshop on routing telecom and data
centers toward efficient energy use (October 2008)

2. Andrews, M., Antonakopoulos, S., Zhang, L.: Minimum-cost network design with
(dis)economies of scale. In: FOCS, pp. 585–592 (2010)

3. Andrews, M., Fernández, A., Zhang, L., Zhao, W.: Routing for energy minimization
in the speed scaling model. In: INFOCOM, pp. 2435–2443 (2010)

4. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual
circuits with applications to load balancing and machine scheduling. J. ACM 44(3),
486–504 (1997)

5. Benoit, A., Melhem, R., Renaud-Goud, P., Robert, Y.: Power-aware manhattan
routing on chip multiprocessors. In: IEEE International Parallel and Distributed
Processing Symposium (IPDPS) (May 2012)

6. Chakrabarty, D., Chekuri, C., Khanna, S., Korula, N.: Approximability of Capac-
itated Network Design. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS,
vol. 6655, pp. 78–91. Springer, Heidelberg (2011)

7. Gafni, E.M., Bertsekas, D.P.: Path assignment for virtual circuit routing. In: Pro-
ceedings of the Symposium on Communications Architectures & Protocols, SIG-
COMM 1983, pp. 21–25. ACM, New York (1983)

8. Gupta, A., Krishnaswamy, R., Pruhs, K.: Online primal-dual for non-linear opti-
mization with applications to speed scaling. CoRR, abs/1109.5931 (2011)

9. Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM J. Discrete
Math. 4(3), 369–384 (1991)

10. Johnson, W.B., Schechtman, G., Zinn, J.: Best constants in moment inequalities
for linear combinations of independent and exchangeable random variables. Ann.
Probab. (1), 234–253 (1985)

11. Kim, J., Horowitz, M.A.: Adaptive supply serial links with sub-1-v operation and
per-pin clock recovery. IEEE Journal of Solid-State Circuits 37(11), 1403–1413
(2002)

12. Raz, R.: A parallel repetition theorem. SIAM J. Comput. 27(3), 763–803 (1998)
13. Rosenthal, H.P.: On the subspaces of Lp (p > 2) spanned by sequences of indepen-

dent random variables. Israel J. Math. 8, 273–303 (1970)
14. Trevisan, L.: Non-approximability results for optimization problems on bounded

degree instances. In: ACM Symposium on Theory of Computing, pp. 453–461
(2001)

	Multicast Routing for Energy Minimization Using Speed Scaling

	Introduction
	Notation and Background
	Online Algorithm for Homogeneous Setting
	The Algorithm
	Analysis

	Offline Algorithm for Homogeneous Setting
	Hardness of Approximation Results
	Hardness of s-t Directed Routing with Heterogeneous Functions
	APX-Hardness of Undirected s-t Routing with Heterogeneous Functions

	Open Problems
	References

