

Lecture Notes in Computer Science 7659
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Guy Even Dror Rawitz (Eds.)

Design and Analysis
of Algorithms
First Mediterranean Conference
on Algorithms, MedAlg 2012
Kibbutz Ein Gedi, Israel, December 3-5, 2012
Proceedings

13

Volume Editors

Guy Even
Dror Rawitz

Tel-Aviv University
School of Electrical Engineering
Tel-Aviv 67789, Israel
E-mail: {guy, rawitz}@eng.tau.ac.il

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-34861-7 e-ISBN 978-3-642-34862-4
DOI 10.1007/978-3-642-34862-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012951175

CR Subject Classification (1998): F.2.1-2, G.2.2-3, E.1, G.1.1-2, G.1.6, G.1.10, I.2.8,
I.6.1, I.6.3, G.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at MedAlg 2012: First Mediterranean
Conference on Algorithms held during December 3–5, 2012, in Kibbutz Ein Gedi.

There were 44 submissions. Each submission was reviewed by at least two,
and on average three, Program Committee members. The committee decided to
accept 18 papers.

Four invited speakers volunteered to present talks at the conference: Yosi
Azar, Artur Czumaj, Yishay Mansour, and David Peleg.

We would like to thank the Program Committee members and the reviewers
for their help in selecting the papers in these proceedings. We thank the authors
for submitting their papers. We thank Moti Medina for his devoted service as
our Publicity Chair. Gabriel Scalosub served as the Local Chair and took close
care of organizing the meeting.

We would like to thank the financial support of I-CORE ALGO: The Israeli
Center of Research Excellence in Algorithms headed by Yishay Mansour. Special
thanks to Sarit Cohen Shalev from I-CORE ALGO for the assitance in organizing
the conference.

The EasyChair system was used for the submission of the papers, their re-
viewing, and the generation of these proceedings.

September 2012 Guy Even
Dror Rawitz

Organization

Program Committee

Hannah Bast University of Freiburg, Germany
Niv Buchbinder Open University of Israel
Matthias Englert University of Warwick, UK
Guy Even Tel Aviv University, Israel
Pierre Fraigniaud CNRS and University of Paris 7, France
Chien-Chung Huang Humboldt-Universität zu Berlin, Germany
Giuseppe Italiano Rome University “Tor Vergata”, Italy
Ilan Newman Haifa University, Israel
Dror Rawitz Tel Aviv University, Israel
Liam Roditty Bar-Ilan University, Israel
Christian Scheideler University of Paderborn, Germany
Baruch Schieber IBM T.J. Watson Research Center, USA
Tami Tamir The Interdisciplinary Center, Israel
Anke van Zuylen Max Planck Institute for Informatics, Germany
Berthold Vöcking RWTH Aachen University, Germany
Peter Widmayer ETH Zurich, Switzerland
Christos Zaroliagis Computer Technology Institute and

University of Patras, Greece

Steering Committee

Pankaj Agarwal Duke University, USA
Imrich Chlamtac University of Trento, Italy
Alberto Marchetti-Spaccamela Sapienza University of Rome, Italy
David Peleg Weizmann Institute, Israel
Michael Segal BGU, Israel
Paul Spirakis University of Patras, Greece
Roger Wattenhofer ETH, Switzerland

Local Arrangements Chair

Gabriel Scalosub Ben-Gurion University of the Negev, Israel

Publicity Chair

Moti Medina Tel Aviv University, Israel

VIII Organization

Additional Reviewers

Abed, Fidaa
Aharoni, Ron
Antoniadis, Antonios
Bansal, Nikhil
Brandes, Ulrik
Cacchiani, Valentina
Chatzigiannakis, Ioannis
Ediger, David
Epstein, Leah
Foschini, Luca
Giakkoupis, George
Grigni, Michelangelo
Haeupler, Bernhard
Hassidim, Avinatan
Hermelin, Danny
Hruz, Tomas
Hüllmann, Martina
Keller, Orgad
Kniesburges, Sebastian
Kontogiannis, Spyros
Lovett, Shachar
Maheshwari, Anil

Marathe, Madhav
Medina, Moti
Michail, Panagiotis
Mihalak, Matus
Nielsen, Frank
Nussbaum, Yahav
Ogierman, Adrian
Ott, Sebastian
Patt-Shamir, Boaz
Rabinovich, Yuri
Regnier, Mireille
Sach, Benjamin
Saket, Rishi
Schmid, Stefan
Schwartz, Roy
Shende, Sunil
Smorodinsky, Shakhar
Solomon, Shay
Tsichlas, Kostas
Viola, Emanuele
Wahlström, Magnus
Wong, Prudence W.H.

Table of Contents

Detecting Approximate Periodic Patterns . 1
Amihood Amir, Alberto Apostolico, Estrella Eisenberg,
Gad M. Landau, Avivit Levy, and Noa Lewenstein

Graph Expansion Analysis for Communication Costs of Fast
Rectangular Matrix Multiplication . 13

Grey Ballard, James Demmel, Olga Holtz, Benjamin Lipshitz, and
Oded Schwartz

Multicast Routing for Energy Minimization Using Speed Scaling 37
Nikhil Bansal, Anupam Gupta, Ravishankar Krishnaswamy,
Viswanath Nagarajan, Kirk Pruhs, and Cliff Stein

Reoptimization of the Minimum Total Flow-Time Scheduling
Problem . 52

Guy Baram and Tami Tamir

Energy Efficient Caching for Phase-Change Memory 67
Neal Barcelo, Miao Zhou, Daniel Cole, Michael Nugent, and
Kirk Pruhs

Shortest-Elapsed-Time-First on a Multiprocessor . 82
Neal Barcelo, Sungjin Im, Benjamin Moseley, and Kirk Pruhs

Efficient Route Compression for Hybrid Route Planning 93
Gernot Veit Batz, Robert Geisberger, Dennis Luxen,
Peter Sanders, and Roman Zubkov

Multipath Spanners via Fault-Tolerant Spanners . 108
Shiri Chechik, Quentin Godfroy, and David Peleg

Constant Thresholds Can Make Target Set Selection Tractable 120
Morgan Chopin, André Nichterlein, Rolf Niedermeier, and
Mathias Weller

Faster Variance Computation for Patterns with Gaps 134
Fabio Cunial

Enhancing the Computation of Distributed Shortest Paths on Real
Dynamic Networks . 148

Gianlorenzo D’Angelo, Mattia D’Emidio, Daniele Frigioni, and
Daniele Romano

X Table of Contents

Experimental Analysis of Rumor Spreading in Social Networks 159
Benjamin Doerr, Mahmoud Fouz, and Tobias Friedrich

A Randomised Approximation Algorithm for the Partial Vertex Cover
Problem in Hypergraphs . 174

Mourad El Ouali, Helena Fohlin, and Anand Srivastav

Simulation-Based Analysis of Topology Control Algorithms for Wireless
Ad Hoc Networks . 188

Fabian Fuchs, Markus Völker, and Dorothea Wagner

Cache-Oblivious Dictionaries and Multimaps with Negligible Failure
Probability . 203

Michael T. Goodrich, Daniel S. Hirschberg,
Michael Mitzenmacher, and Justin Thaler

An Efficient Generator for Clustered Dynamic Random Networks 219
Robert Görke, Roland Kluge, Andrea Schumm,
Christian Staudt, and Dorothea Wagner

Slow Down and Sleep for Profit in Online Deadline Scheduling 234
Peter Kling, Andreas Cord-Landwehr, and Frederik Mallmann-Trenn

FIFO Queueing Policies for Packets with Heterogeneous Processing 248
Kirill Kogan, Alejandro López-Ortiz, Sergey I. Nikolenko,
Alexander V. Sirotkin, and Denis Tugaryov

Author Index . 261

Detecting Approximate Periodic Patterns

Amihood Amir1,2,�, Alberto Apostolico3,4,��, Estrella Eisenberg1,
Gad M. Landau5,6,���, Avivit Levy7,8,†, and Noa Lewenstein9

1 Department of Computer Science, Bar-Ilan University,
Ramat-Gan 52900, Israel

amir@cs.biu.ac.il
2 Department of Computer Science, Johns Hopkins University,

Baltimore, MD 21218
3 College of Computing, Georgia Institute of Technology,

801 Atlantic Drive, Atlanta, GA 30318, USA
axa@cc.gatech.edu

4 Dipartimento di Ingegneria dell’ Informazione, Università diPadova,
Via Gradenigo 6/A, 35131 Padova, Italy

5 Department of Computer Science, University of Haifa,
Mount Carmel, Haifa 31905, Israel

landau@cs.haifa.ac.il
6 Department of Computer Science and Engineering,

Polytechnic Institute of New York University,
6 Metrotech Center, Brooklyn, NY 11201

7 Department of Software Engineering, Shenkar College,
12 Anna Frank, Ramat-Gan, Israel

avivitlevy@shenkar.ac.il
8 CRI, Haifa University, Mount Carmel, Haifa 31905, Israel

9 Netanya College, Netanya, Israel
noa.lewenstein@gmail.com

Abstract. Given ε ∈ [0, 1), the ε-Relative Error Periodic Pattern
Problem (REPP) is the following:

INPUT: An n-long sequence S of numbers si ∈ N in increasing order.
OUTPUT: The longest ε-relative error periodic pattern, i.e., the longest
subsequence si1 , si2 , . . . , sik of S, for which there exists a number p such
that the absolute difference between any two consecutive numbers in the
subsequence is at least p and at most p(1 + ε).

The best known algorithm for this problem has O(n3) time complexity.
This bound is too high for large inputs in practice. In this paper we
give a new algorithm for finding the longest ε-relative error periodic
pattern (the REPP problem). Our method is based on a transformation

� Partly supported by NSF grant CCR-09-04581, ISF grant 347/09, and BSF grant
2008217.

�� Partly supported by BSF grant 2008217.
��� Partly supported by the National Science Foundation Award 0904246, Israel Sci-

ence Foundation grant 347/09, Yahoo, Grant No. 2008217 from the United States-
Israel Binational Science Foundation (BSF) and DFG.

† Partly supported by ISF grant 347/09.

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 A. Amir et al.

of the input sequence into a different representation: the ε-active maximal
intervals list L, defined in this paper. We show that the transformation of
S to the list L can be done efficiently (quadratic in n and linear in the size
of L) and prove that our algorithm is linear in the size of L. This enables
us to prove that our algorithm works in sub-cubic time on inputs for
which the best known algorithm works in O(n3) time. Moreover, though
it may happen that our algorithm would still be cubic, it is never worse
than the known O(n3)-algorithm and in many situations its complexity
is O(n2) time.

1 Introduction

Many real world phenomena have a particular type of event that repeats pe-
riodically during a certain period of time. Examples of highly periodic events
include road traffic peaks [5], load peaks on web servers [6], monitoring events in
computer networks [1] and many others. Finding periodicity in real-world data
often leads to useful insights by shedding light on the structure of the data,
and giving a basis to predicting future events. Moreover, in some applications
periodic patterns can point out a problem. In a computer network, for exam-
ple, repeating error messages can indicate a misconfiguration, or even a security
intrusion such as a port scan [4].

However, such periodic patterns typically occur temporarily, and need not
persist throughout the whole period of time covered by the event log. Since short
(approximate) periodic patterns will appear in any sequence of random events
that is long enough, a periodic pattern is more interesting the more repetitions
it contains. Therefore, finding the longest periodic pattern, which contains the
largest number of repetitions of the same event, is of interest.

The input data we are given in such cases can be modeled as a sequence of
events, each associated with a timestamp. Since we study repetition of events
of the same type, we can treat each type of event separately. Thus, the input
consists of a sequence S of n distinct numbers s1, s2, . . . , sn in increasing order,
which are the times at which an event of a particular type has occurred. A
periodic pattern then corresponds to an (approximate) arithmetic progression
in this sequence. For a given sequence of numbers s1, s2, . . . , sk, si ∈ S, the
differences si+1 − si of consecutive numbers in the sequence are called periods.
In most real-world applications, the timestamps which are given as input are
imprecise. Hence, no exact arithmetic progression may be present in the input,
and it is necessary to allow some slack in the periodic patterns.

Though finding approximate periodic patterns is a widely studied subject
in data mining (e.g. [3, 7–9]), bioinformatics (for example tandem repeats in
genomic sequences), or astronomy (Lomb-Scargle periodograms), the input is
rather different from the one considered in this paper and applying existing
methods in these fields directly or through data conversion is inadequate or
inefficient. In this paper, we follow the recent framework of [2] to the study of
approximate periodic arithmetic progressions.

Detecting Approximate Periodic Patterns 3

If the approximate period of the patterns of interest are known, then the
periodic patterns that we want to find can be an absolute error periodic pattern.
In this problem we are given pmin > 0 and pmax ≥ pmin and we want to find
a subsequence si1 , si2 , . . . , sik of the input sequence S, such that the absolute
difference between any two consecutive numbers sij , sij+1 is at least pmin and at
most pmax. This type of pattern is useful if one is interested in a few particular
periods: For example, in a sequence of log file entries, one might be interested
only in events which occur (approximately) every hour, every day, every week,
or every month. In this case, one can define an interval of acceptable distances
for each period of interest. For a given interval [pmin, pmax], it is not difficult
to compute the longest absolute error periodic pattern in linear time. Such an
algorithm is described in [2].

Finding periodic patterns with arbitrary periods, where no period (or range
of periods) of interest is given in advance, is more challenging. In this case, there
are several choices for defining a valid pattern. The definition of [2] bounds the
ratio between the longest and the shortest distance between consecutive events
in the sequence. In contrast to an absolute error bound, this formalization has
the natural property that it is scale invariant. The definition is as follows:

Definition 1. [relative error periodic pattern]
Given1 ε ∈ [0, 1) and a sequence S of numbers in increasing order, an ε-relative
error periodic pattern is a subsequence si1 , si2 , . . . , sik of S, for which there exists
a number p such that the absolute difference between any two consecutive numbers
in the subsequence is at least p and at most p(1 + ε).

The Problem Definition. The problem is formally defined below.

Definition 2. Given ε ∈ [0, 1), the ε-Relative Error Periodic Pattern Problem
(REPP) is the following:

INPUT: An n-long sequence S of numbers si ∈ N in increasing order. OUT-
PUT: The longest ε-relative error periodic pattern, i.e., the longest subsequence
si1 , si2 , . . . , sik of S, for which there exists a number p such that the absolute
difference between any two consecutive numbers in the subsequence is at least p
and at most p(1 + ε).

We call p an approximate period of the REPP.

Note that we may assume, w.l.o.g., that the times of the events are discrete.

Example: Let ε = 0.5 and S = 1, 6, 9, 10, 16, 21. The longest exact periodic
pattern has length 2. However, consider p = 4. p(1 + ε) = 4 · 1.5 = 6. For the
subsequence 1, 6, 10, 16, 21 it holds that:

4 ≤ |6− 1| = 5 ≤ 6,

4 ≤ |10− 6| = 4 ≤ 6,

1 Unlike [2], we assume that ε is strictly less than 1. This assumption is used in our
algorithm.

4 A. Amir et al.

4 ≤ |16− 10| = 6 ≤ 6,

4 ≤ |21− 16| = 5 ≤ 6.

[2] gives a simple O(n3) time algorithm to obtain, for a given ε, the longest
relative error pattern in a sequence of n numbers. This bound is too high for
large inputs in practice. Therefore, [2] explores approximate solutions, which
approximate the longest periodic pattern that is present in the input. For this
relaxed version of the problem, [2] is able to greatly reduce the run time to
O(n1+γ), for any constant γ > 0. This approximation algorithm is indeed faster
and can be used in practical situation where the goal is to detect whether there
are significant periodic patterns in the data. However, it has the following two
drawbacks:

1. The length of the periodic pattern returned by the approximation algorithm
may be larger than the actual REPP.

2. The period of the periodic pattern returned by the approximation algorithm
may be larger than the actual REPP.

Thus, when the goal is to analyze the given data and its periodic patterns, the
approximation algorithmmay not be adequate. In such cases we need to solve the
REPP problem exactly. Yet, no worst-case sub-cubic time algorithm is known
for the REPP problem.

1.1 Paper Contribution

In this paper we give a new algorithm for finding the exact longest ε-relative
error periodic pattern (the REPP problem). Our algorithm is based on a different
method than that of [2]. We use the new concept of an active maximal interval
in the input sequence, formally defined in Sect. 2. Informally, an interval is a
segment in the sequence S and we call it active for some integer d, if there exists
an element in the sequence preceding the interval, called an activating element,
such that all the elements in the interval are within difference at least d and
at most(1 + ε)d from the activating element. The difference d is then called an
activating difference for this interval. We call an active interval maximal for a
specific activating difference d, if it is not contained in another active interval
for d. Given the input sequence S, let

D(S) = {d ∈ N | s, t ∈ S, s < t, such that d = t− s}.

We transform the input sequence into a different representation: the list L, de-
fined as follows.

The Definition of the ε-Active Maximal Intervals List L. Given d ∈
D(S), let Ld(S) be the list of all active maximal intervals I such that d is
an activating difference for I, sorted by their first element. Let L(S) be the
concatenation list of the lists Ld(S), for all d ∈ D(S), sorted by the activating
difference. For simplicity, we omit S from the notation and use the notation

Detecting Approximate Periodic Patterns 5

L and Ld throughout the paper. We call L, the ε-active maximal intervals list
of S.

In Sect 3, we show that L can be constructed from the input sequence S in
time quadratic in n, the size of S, and linear in the size of L. We, therefore,
describe a new algorithm to the problem that is given L as input, and prove
that it is linear in the size of L. This enables us to show that our algorithm
works in sub-cubic time on inputs for which the best known algorithm works in
O(n3) time. Moreover, though it may happen that our algorithm would still be
cubic, it is never worse than the known O(n3)-algorithm and in many situations
its complexity is O(n2) time (see the remark below).

Notations. For a given set A, we denote by |A| the size of A, i.e., the number
of elements A contains.

Results. We prove the following theorem and corollary.

Theorem 1. Let (ε, S) be an instance of the REPP problem and let L be the ε-
active maximal intervals list of S. Then, there exists an algorithm for the REPP
problem with complexity O(|L|).

Corollary 1. Let (ε, S) be an instance of the REPP problem and let L be the ε-
active maximal intervals list of S. Then, if |L| = o(n3), then the REPP problem
on S can be solved in sub-cubic time.

Remark. The algorithm of [2] can also be analyzed in terms of an input pa-
rameter D(S). Specifically, the O(n3)-algorithm of [2] runs in O(|D(S)|n) time.
Thus, whenever |D(S)| = o(n2), this algorithm would be sub-cubic. To compare
with our algorithm, note that the list L contains O(|D(S)|) lists each of length
O(n), therefore, its O(|L|)-worst case performance is never worse than that of [2].
Moreover, as demonstrated in Subsection 3.3, the size of each sub-list in L can
be significantly smaller, even O(1), leading to a substantial improvement over
the algorithm of [2].

2 Preliminaries

In this section we give a basic lemma and some formal definitions needed for the
description of our algorithm and its analysis in Section 3.

Lemma 1 is a basic key property of the problem that we use. It enables the
algorithm we describe to search solutions with approximate periods in the set
D(S) only. It was also implicitly used in [2].

Lemma 1. Let (ε, S) be an instance of the REPP problem, and let P = si1 , . . . ,
sik be a subsequence of S which is a solution to this instance. Let p be the
approximate period of this REPP. Then, there exists p′ ∈ D(S) such that p′ is
an approximate period of this REPP.

6 A. Amir et al.

Proof. Let p′ be the smallest difference between any two consecutive numbers of
P . Note that p′ ∈ D(S). We claim that p′ is an approximate period of P . Let d be
any absolute difference between consecutive numbers of P . Obviously, d ≥ p′. We
now need to show that d ≤ (1 + ε)p′. Assume to the contrary that d > (1 + ε)p′.
Since p is an approximate period of P , we have that p ≤ d ≤ (1+ ε)p. This holds
for any absolute difference d. Since, p′ is also an absolute difference between two
consecutive numbers in P , it holds that p ≤ p′. Therefore, (1+ε)p ≤ (1+ε)p′ < d.
Contradiction. ��

We make use of the following definitions.

Definition 3. [Interval]
An interval is a subsequence of S in which every pair of subsequent elements in
the interval is a pair of subsequent elements in S.

Let si and sj, 1 ≤ i, j ≤ n, be the first and last element of S in the interval,
respectively, then the interval is denoted by [si, sj].

Definition 4. [Active Interval and Virtual Interval]
An interval [si, sj] such that there exists d ∈ D and t ∈ S, t < si, for which for
every s ∈ [si, sj] it holds that d ≤ s− t ≤ d(1 + ε), is called an active interval.

If an interval is not active it is called a virtual interval.

Definition 5. [Activating Difference and Activating Element]
Let [si, sj] be an active interval, and let d ∈ D(S) and t ∈ S, t < si, such that
for every s ∈ [si, sj] it holds that d ≤ s − t ≤ d(1 + ε). We call such a number
d ∈ D(S) an activating difference for the interval [sj , sj]. The element t ∈ S is
called an activating element for the interval [si, sj].

Definition 6. [Active Maximal Interval]
Let [si, sj] be an active interval with activating difference d. Then, [sj, sj] is
called a maximal interval for the activating difference d, if neither [si−1, sj] nor
[si, sj+1] are active intervals with activating difference d.

Definition 7. [Nested Intervals]
Let I1 = [si, sj] and I2 = [sk, s�] be two different intervals. If i ≤ k ≤ � ≤ j or
k ≤ i ≤ j ≤ �, then I1 and I2 are called nested.

3 The REPP Intervals Algorithm

In this section we describe our new method for solving the REPP problem and
prove Theorem 1.

The O(n3) algorithm of [2] processes the n-length sequence S, for each d ∈
D(S). Since |D(S)| can be O(n2) for some input sequences, this gives the bound
on this algorithm’s complexity. Our method still loops for every d ∈ D(S),
however, instead of processing the whole sequence S, we only process the pre-
constructed list L.

For clarity of exposition, we first introduce the algorithm with an inefficient
implementation in Subsection 3.1 and prove its correctness in Subsection 3.2.

Detecting Approximate Periodic Patterns 7

In order to analyze the complexity of the algorithm, we describe an efficient
implementation in Subsection 3.3. The described algorithm finds only the length
of the REPP. Therefore, we explain how to find the REPP itself in Subsection 3.4.
We conclude by showing an efficient algorithm for constructing the list L in
Subsection 3.5.

3.1 The Algorithm

The algorithm’s main loop, given d ∈ D(S), processes Ld to find the longest
relative error periodic pattern with period d. The algorithm maintains a record
for each interval with the field �(I), which holds the length of the longest periodic
pattern starting in this interval until the right end of the sequence S. The detailed
algorithm is given in Fig. 1.

The REPP Intervals Algorithm

Input: L, D(S)
1 max ← 1
2 for each d ∈ D(S) do
3 if Ld = φ then
4 maxd ← 1
5 else
6 maxd ← 2
7 for each I ∈ Ld do
8 �(I)← 2
9 for each I ∈ Ld from right to left do
10 for each I ′ ∈ Ld containing an activating element for I

with activating difference d do
11 �(I ′)← max{�(I ′), �(I) + 1}
12 if �(I ′) > maxd then
13 maxd ← �(I ′)
14 if max d > max then
15 max ← maxd

Output: max

Fig. 1. A REPP algorithm using the ε-active maximal intervals list L

3.2 The Correctness of the REPP Intervals Algorithm

The correctness of the REPP intervals algorithm in Fig. 1 follows from Lemma 2
and Corollary 2 below. The proof of Lemma 2 is omitted due to space limitations
and will appear in the full version of the paper.

Lemma 2. Let (ε, S) be an instance of the REPP problem then the for loop
in lines 2–15 of the REPP intervals algorithm finds the longest ε-relative error
periodic pattern in S with period d.

8 A. Amir et al.

Corollary 2 immediately follows from Lemma 2 and lines 14–15 of the REPP
intervals algorithm.

Corollary 2. Let (ε, S) be an instance of the REPP problem then the REPP
intervals algorithm returns the longest ε-relative error periodic pattern in S.

3.3 The Complexity of the REPP Intervals Algorithm

Our goal in this subsection is to prove the following lemma.

Lemma 3. Let (ε, S) be an instance of the REPP problem and let L be the ε-
active maximal intervals list of S. Then, the REPP intervals algorithm works in
time O(|L|).

The main loop of the intervals algorithm in lines 2–15 (see Fig. 1) processes every
Ld in L. The inner loop in lines 7–8 clearly takes O(|Ld|) time. It remains to
show that the inner loop in lines 9–15 takes O(|Ld|) time. This is not apparent
from Fig. 1, since this loop contains another inner for-loop that may take more
than O(1). We, therefore, describe an efficient implementation of the algorithm
for which the total time complexity of the loop in lines 9–15 is indeed O(|Ld|).

Efficient Implementation of the REPP Intervals Algorithm. We show
that it is possible to implement a sliding window technique on the list Ld. First
note that, by the definition of an activating element t for an interval I = [si, sj],
we know that for every s ∈ [si, sj] it holds that d ≤ s−t ≤ d(1+ε), thus, t ≤ s−d
and s−d(1+ε) ≤ t. Therefore, an interval I ′ that contains an activating element
for I must have an element in the window [sj − d(1+ ε), si− d] that contains all
the possible activating elements for I (there must be at least one such element if
I is active). In order to efficiently find a window in Ld containing all the intervals
I ′, we need to find in the list Ld the interval that starts closest from the left to
the element si−d and the interval that ends closest from the right to the element
sj − (1 + ε)d. This can be easily done in O(1) time by sliding the borders, if we
have Ld sorted both from left to right by starting elements of the intervals and
from right to left by ending elements of the intervals. However, in general such
different sorts may result in different lists, and the borders of the window we get
will not properly define a window in Ld. Note, however, that sorting Ld by start
points of the intervals or by end points of the intervals gives different lists if and
only if Ld contains nested intervals. Fortunately, we have the following lemma.

Lemma 4. For every d ∈ D(S), the list Ld does not contain nested intervals.

Proof. The lemma follows immediately from the maximality of the intervals in
the list Ld. Recall that by definition intervals that share an end point or a start
point are nested. Only the greater of such a pair of intervals can be maximal.
Since by definition the list Ld contains only maximal intervals, the lemma follows.

��

Detecting Approximate Periodic Patterns 9

Lemma 4 assures that sorting Ld by the starting elements from left to right gives
the same list of intervals as sorting it from right to left by the ending elements.
The two borders search, thus, properly defines a window of all intervals I ′ that
contain an activating element for the interval I. Note also, that since we use a
sliding window, we do not have to search the borders in the full list Ld and we
only linearly scan the start (or end, according to the need of the search) point
of the next intervals in the list Ld from the current window borders until we
reach the closest value to the searched value, as explained above. We now have
to show how to efficiently make the computation and update for all the intervals
in this window. In order to avoid re-update of intervals in the window, we only
make the computation in line 11 of the algorithm in Fig 1 when an interval going
out of the scope of the window when the next interval in Ld is processed and
the new borders of the window are found. To this end, we keep for the window
the value of �(I) + 1 in a separate variable. Therefore, each interval in the list
Ld is entering the window once, going out of it once and updated once while
going out. The value max d can be checked, and updated if needed, each time
the �-field of an interval is updated.

This concludes the proof of Lemma 3.

A Sub-Cubic Time Example. We now describe an example of input for which
the REPP intervals algorithm achieves sub-cubic time, whereas the algorithm
of [2] has O(n3) time complexity. In fact, in this example the complexity of our al-
gorithm is O(n2), which is the actual complexity of our algorithm for many prac-
tical situations. The input sequence is as follows: S = 1, 2, 4, 7, 11, 16, 22, In
this example the differences between consecutive numbers are: 1, 2, 3, 4, 5, 6 . . . ,
and D(S) = {1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 18, 20, 21, . . .}. In general, for
|S| = n we have |D(S)| = Θ(n2), and the algorithm of [2] has Θ(n3) time com-
plexity. However, each activating difference in D(S) has very few active maximal
intervals and |L| = O(n2). Thus, our interval algorithm time complexity isO(n2).

In practice, it is rather rare to have a list L of bigger size. This is possible,
however, as the next example demonstrates.

A Worst Case Example. The following example shows that the intervals
algorithm does not improve over the O(n3) algorithm on every input sequence.

Let the first n
2 elements of S be:

s1 = 1

si+1 = si + i, i = 1, . . . ,
n

2
− 1.

The next n
2 elements are:

si+1 = si +
n2

4
, i =

n

2
, . . . , n.

For example, if n = 10 then S = 1, 2, 4, 7, 11, 36, 61, 86, 111, 136.

Note that 1, 2, . . . , n2

4 ∈ D(S), so |D(S)| = Θ(n2).

10 A. Amir et al.

Let ε = 1− 1
n2 .

Each of the last n
2 elements defines an interval. Each of these intervals is an

active maximal interval for d = n2

8 + 1, . . . , n2

4 − 1, i.e. our algorithm’s running
time will be Θ(n3).

3.4 Constructing the REPP

The REPP intervals algorithm described in Fig. 1 gives the length of the REPP
solution, however, the definition of the problem requires returning the REPP
itself. We, therefore, describe how the REPP solution can also be found. To this
end the algorithm maintains another field, next(I), for each interval I. In this
field we keep the interval Inext for which the length of the REPP recorded in
the field �(I) is �(Inext) + 1. This field can be easily updated while updating the
field �(I). In addition, we also keep the interval that gives the maximum value,
when updating max d and max .

Given this additional information we can trace the actual REPP beginning
from the leftmost interval I in which it starts, which is given with the value
max . We know that there exists an element t in the interval I that activates the
interval recorded in next(I), i.e., all the elements can be used in a REPP with
difference d that uses the element s. Such an element s can be easily found in
O(1)-time computation using the border elements values of the interval next(I).
This trace proceeds, then, to the interval next(I). When the last interval (the
one for which the value of next(I) is the initial value Null) is reached the actual
REPP is found. Obviously, the process takes O(|L|) time.

We have, therefore, proven Theorem 1.

3.5 The Construction of the ε-Active Maximal Intervals List L

Since the algorithm in Fig 1 gets as input the list L, however, the input of the
problem is the sequence S, we need to show how to efficiently construct L from
S. We now show how to construct it in time linear in the size of its output L.
The construction algorithm works in four phases.

Phase 1: Given an element s ∈ S, we find for each element s′ ∈ S such that
s′ > s, the range of differences d for which d ≤ s′ − s ≤ (1 + ε)d. The
borders [b1, b2] of this range can be computed in O(1) time, as follows:
b1 = (s′ − s)/(1 + ε) and b2 = s′ − s.

Phase 2: Using the ranges of differences found in phase 1, we find the (maybe
virtual) intervals of elements in S that the element s activates by grouping
the elements s′ that are all within the same range of activating differences,
possibly splitting the ranges of differences we got in phase 1 .

Phases 1 and 2 are repeated for each s ∈ S.

Detecting Approximate Periodic Patterns 11

Phase 3: In order to find the active maximal intervals we search the borders
of the range of activating differences of each interval in the sorted list of
differences D(S). When an interval is found to be active for an actual range
of differences in the list D(S), it is put in the list Ld for each d in this range.
An interval is put in the list Ld only if it is maximal for this d.

Note that, we process the intervals in the order of their starting elements
and, therefore, the output lists Ld are sorted by the starting element of the
intervals it contains with no need to explicitly sort them.

Phase 4: The list L is constructed by concatenating the sorted lists Ld for each
d ∈ D(S) in increasing order of d.

The Time Complexity of the L-Construction Algorithm. Phase 1, clearly,
takes O(n) time for each of the O(n) repetitions, for a total of O(n2) time. Note
that, we write the intervals in phase 2 such that in each interval in the output
list an element of S is added or removed. Therefore, each activating element
s ∈ S has at most 2n intervals and the total length of the list of intervals con-
structed in phase 1 and 2 is O(n2). Therefore, phases 1 and 2 take O(n2) time
and construct a list of intervals of size at most O(n2). This list of intervals is then
processed in phases 3 and 4 to construct the lists Ld, for each d ∈ D(S), and
then the list L. Since the intervals we get in phase 2 are of increasing difference
from the activating elements, we need not actually search their borders in the
whole sorted list D(S), but rather use a sliding window in D(S) in order to find
whether an interval is active. Thus, phase 3 takes total time O(n2 + |L|) rather
than O(n2 logn+ |L|). The overall construction time is, therefore, O(n2 + |L|).

4 Conclusion and Open Problems

In this paper we described a new algorithm to find the longest relative error
periodic pattern in a sequence. This algorithm runs in sub-cubic time for many
practical situations even when the best known algorithm has cubic running time.
Moreover, it never performs worse than the best known algorithm. We have
shown, though, that there are pathological cases where this algorithm requires
cubic running time. It is still an open question whether there exists a sub-cubic
time algorithm for all possible input sequences.

References

1. Bagchi, S., Hung, E., Iyengar, A., Vogl, N.G., Wadia, N.: Capacity planning tools for
web and grid environments. In: Proc. 1st International Conference on Performance
Evaluation Methodolgies and Tools, VALUETOOLS (2006) ISBN = 1-59593-504-5,
article number 25, http://doi.acm.org/10.1145/1190095

2. Gfeller, B.: Finding Longest Approximate Periodic Patterns. In: Dehne, F., Iacono,
J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 463–474. Springer, Heidel-
berg (2011)

http://doi.acm.org/10.1145/1190095

12 A. Amir et al.

3. Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time
series database. In: Proc. of the 15th International Conference on Data Engineering
(ICDE 1999), pp. 106–115. IEEE Computer Society (1999)

4. Ma, S., Hellerstein, J.L.: Mining partially periodic event patterns with unknown
periods. In: The 17th International Conference on Data Engineering (ICDE), pp.
205–214. IEEE Computer Society (2001)

5. Federal Highway Administration U.S. Department of Transportation, Conjestion: a
national issue (August 2011),
http://www.ops.fhwa.dot.gov/aboutus/opstory.htm

6. Panteleenko, V.V.: Instantaneous offloading of web server loads, Ph.D. thesis. Uni-
versity of Notre Dame (2002)

7. Rasheed, F., Alshalalfa, M., Alhajj, R.: Efficient periodicity mining in time series
databases using suffix trees. IEEE Transactions on Knowledge and Data Engineering
99(preprints) (2010)

8. Tanbeer, S., Ahmed, C., Jeong, B.-S., Lee, Y.-K.: Discovering Periodic-Frequent
Patterns in Transactional Databases. In: Theeramunkong, T., Kijsirikul, B., Cer-
cone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 242–253. Springer,
Heidelberg (2009)

9. Yang, J., Wang, W., Yu, P.S.: Mining asynchronous periodic patterns in time series
data. IEEE Trans. on Knowl. and Data Eng. (15), 613–628 (2003)

http://www.ops.fhwa.dot.gov/aboutus/opstory.htm

Graph Expansion Analysis for Communication

Costs of Fast Rectangular Matrix Multiplication

Grey Ballard1,�, James Demmel2,�,��, Olga Holtz3,���,
Benjamin Lipshitz1,�, and Oded Schwartz1,†

1 EECS Department, University of California, Berkeley, CA 94720
{ballard,lipshitz,odedsc}@eecs.berkeley.edu

2 Mathematics Department and CS Division, University of California, Berkeley,
CA 94720

demmel@cs.berkeley.edu
3 Departments of Mathematics, University of California,

Berkeley and Technische Universität Berlin
holtz@math.berkeley.edu

Abstract. Graph expansion analysis of computational DAGs is useful
for obtaining communication cost lower bounds where previous methods,
such as geometric embedding, are not applicable. This has recently been
demonstrated for Strassen’s and Strassen-like fast square matrix multi-
plication algorithms. Here we extend the expansion analysis approach to
fast algorithms for rectangular matrix multiplication, obtaining a new
class of communication cost lower bounds. These apply, for example to
the algorithms of Bini et al. (1979) and the algorithms of Hopcroft and
Kerr (1971). Some of our bounds are proved to be optimal.

1 Introduction

The time cost of an algorithm, sequential or parallel, depends not only on how
many computational operations it executes but also on how much data it moves.
In fact, the cost of data movement, or communication, is often much more ex-
pensive than the cost of computation. Architectural trends predict that compu-
tation cost will continue to decrease exponentially faster than communication
cost, leading to ever more algorithms that are dominated by the communication

� Research supported by Microsoft (Award #024263) and Intel (Award #024894)
funding and by matching funding by U.C. Discovery (Award #DIG07-10227).
Additional support comes from Par Lab affiliates National Instruments, Nokia,
NVIDIA, Oracle, and Samsung.

�� Research is also supported by DOE grants DE-SC0003959, DE- SC0004938, and
DE-AC02-05CH11231.

��� Research supported by the Sofja Kovalevskaja programme of Alexander von Hum-
boldt Foundation and by the National Science Foundation under agreement DMS-
0635607.

† Research supported by U.S. Department of Energy grants under Grant Numbers
DE-SC0003959.

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 13–36, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

14 G. Ballard et al.

costs. Thus, in order to minimize running times, algorithms should be designed
with careful consideration of their communication costs. To that end, we discuss
asymptotic costs of algorithms in terms of both number of computations per-
formed (flops in the case of numerical algorithms) and units of communication:
words moved.

For a sequential algorithm, we determine the communication cost incurred on
a simple machine model which consists of two levels of memory hierarchy, as de-
scribed in Section 1.3. In many cases, näıve implementations of algorithms incur
communication costs much higher than necessary; reformulating the algorithm
to performing the same arithmetic in a different order can drastically decrease
the communication costs and therefore the total running time. In order to de-
termine the possible improvements and identify whether an algorithm is optimal
with respect to communication costs, one seeks communication lower bounds.

Hong and Kung [17] were the first to prove communication lower bounds for
matrix multiplication algorithms. They show that on a two-level machine model,
any algorithm which performs the Θ(n3) flops of classical matrix multiplication
must move at least Ω(n3/

√
M) words between fast and slow memory, where

M is the number of words that can fit simultaneously in fast memory. Irony,
Toledo, and Tiskin [22] generalized their classical matrix multiplication result
to a distributed-memory parallel machine model using a geometric embedding
argument. Ballard, Demmel, Holtz and Schwartz [4] showed this proof technique
is applicable to a more general set of computations, including one-sided matrix
factorizations such as LU, Cholesky, and QR and two-sided matrix factorizations
which are used in eigenvalue and singular value computations, most of which
perform Θ(n3) computations in the dense matrix case. Many of these bounds on
Θ(n3) algorithms have been shown to be optimal.

However, the geometric embedding approach does not seem to apply to com-
putations which do not map to a simple geometric computation space. In the
case of classical matrix multiplication and other O(n3) algorithms, the compu-
tation corresponds to a three-dimensional lattice. In particular, the geometric
embedding approach does not readily apply to Strassen’s algorithm for matrix
multiplication that requires O(nlog2 7) flops. Instead, Ballard, Demmel, Holtz,
and Schwartz [5] show that a different proof technique based on analysis of the
expansion properties of the computational directed acyclic graph (CDAG) can
be used to obtain communication lower bounds for both sequential and parallel
models for these algorithms. The proof technique can also be used to bound how
well the corresponding parallel algorithms can strongly-scale [2]. We use this
same approach here to prove bounds on fast rectangular matrix multiplication
algorithms, which introduce some extra technical challenges.

1.1 Expansion and Communication

The CDAG of a recursive algorithm has a recursive structure, and thus its ex-
pansion can be analyzed combinatorially (similarly to what is done for expander
graphs in [30,1,26]) or by spectral analysis (in the spirit of what was done for the
Zig-Zag expanders [31]). Analyzing the CDAG for communication cost bounds

Graph Expansion Analysis for Communication Costs 15

was first suggested by Hong and Kung [17]. They use the red-blue pebble game
to obtain tight lower bounds on the communication costs of many algorithms, in-
cluding classical Θ(n3) matrix multiplication, matrix-vector multiplication, and
FFT. Their proof is obtained by considering dominator sets of the CDAG.

Other papers study connections between bounded space computation and
combinatorial expansion-related properties of the corresponding CDAG (see e.g.,
[32,9,8] and references therein). The study of expansion properties of a CDAG
was also suggested as one of the main motivations of Lev and Valiant [28] in their
work on superconcentrators and lower bounds on the arithmetic complexity of
various problems.

1.2 Fast Rectangular Matrix Multiplication

Following Strassen’s algorithm for fast multiplication of square matrices [33], the
arithmetic complexity of multiplying rectangular matrices has been extensively
studied (see [19,11,13,29,20,21,14] and further details in [12]). When there is an
algorithm for multiplying an m× n matrix A with an n× p matrix B to obtain
an m × p matrix C using only q scalar multiplications, we use the notation
〈m,n, p〉 = q.1 The above studies try to minimize the number of multiplications
q (as a function of m,n, and p). A particular focus of interest is maximizing
α so that 〈n, n, nα〉 = O(n2 logn) namely maximizing the size of a rectangular
matrix, so that it can be multiplied (from right) with a square matrix, in time
which is only slightly more than what is needed to read the input.2 Recall that
〈m,n, p〉 = 〈n, p,m〉 = 〈p,m, n〉 = 〈m, p, n〉 = 〈p, n,m〉 = 〈n,m, p〉 for all m,n, p
[18].

Rectangular matrix multiplication is used in many algorithms, for solving
problems in linear algebra, in combinatorial optimization, and other areas. Uti-
lizing fast algorithms for rectangular matrix multiplication has proved to be
quite useful for improving the complexity of solving many of those problems (a
very partial list includes [16,25,7,36,27,34,35,23,24]).

1.3 Communication Model

We model communication costs on a sequential machine as follows. Assume the
machine has a fast memory of size M words and a slow memory of infinite size.
Further assume that computation can be performed only on data stored in the
fast memory. On a real computer, this model may have several interpretations
and may be applied to anywhere in the memory hierarchy. For example the slow
memory might be the hard drive and the fast memory the DRAM; or the slow
memory might be the DRAM and the fast memory the cache.

1 Recall that 〈m,n, p〉 = q implies that for all integers t, 〈mt, nt, pt〉 = qt by recursion
(tensor powering), and also that the arithmetic complexity of 〈mt, nt, pt〉 is O(qt)
regardless of the number of additions in 〈m,n, p〉.

2 Note that our approach may not apply to algorithms of the form 〈n, n, nα〉 =
O(n2 log n). It only applies to algorithms that are a recursive application of a base-
case algorithm.

16 G. Ballard et al.

The goal is to minimize the number of words W transferred between fast and
slow memory, which we call the communication cost of an algorithm. Note that
we minimize with respect to an algorithm, not with respect to a problem, and
so the only optimization allowed is re-ordering the computation in a way that
is consistent with the CDAG of the algorithm. The sequential communication
cost is closely related to communication costs in the various parallel models. We
discuss this relationship briefly in Section 6.

1.4 The Communication Costs of Rectangular Matrix
Multiplication

The communication costs lower bounds of rectangular matrix multiplication
algorithms are determined by properties of the underlying CDAGs. Consider
〈mt, nt, pt〉 = qt matrix multiplication that is generated from t tensor powers
of 〈m,n, p〉 = q. Denote the former by the algorithm and the latter by the base
case, and consider their CDAGs. They both consist of four parts: the encoding
graphs of A and B, the scalar multiplications, and the decoding graph of C.
The encoding graphs correspond to computing linear combinations of entries of
A or B, and the decoding graph to computing linear combinations of the scalar
products. See Figure 1 in Section 4 for a diagram of the algorithm CDAG, and
Figure 2 in Section 5 for an example of a base-case CDAG. Let us state the
communication cost lower bounds of the two main cases.

Theorem 1. Let 〈mt, nt, pt〉 = qt be the algorithm obtained from a base case
〈m,n, p〉 = q. If the decoding graph of the base case is connected, then the com-
munication cost lower bound is

W = Ω

(
qt

M logmp q−1

)
.

Further, in the case that n ≤ m and n ≤ p this bound is tight.

Note that in the case m = n = p, this result reproduces the lower bound for
Strassen-like square matrix multiplication algorithms in [5]. In this case, for

ω0 = logn q, we obtain W = Ω
(

(nt)ω0

Mω0/2−1

)
.

Theorem 2. Let 〈mt, nt, pt〉 = qt be the algorithm obtained from a base case
〈m,n, p〉 = q. If an encoding graph of the base case is connected and has no
multiply-copied inputs3, then

W = Ω

(
qt

tlogN qM logN q−1

)
,

where N = mn or N = np is the size of the input to the encoding graph. Further,
this bound is tight if N = max{mn, np,mp}, up to a factor of tlogN q, which is a
polylogarithmic factor in the input size.

3 See Section 2 for a formal definition.

Graph Expansion Analysis for Communication Costs 17

We also treat the cases of disconnected encoding and decoding graphs and obtain
similar bounds with restrictions on the fast memory size M . See Corollaries 1
and 2 in Section 4.

These theorems and corollaries apply in particular to the algorithms of Bini
et al. [11] and Hopcroft and Kerr [19], which we detail in Section 5.

1.5 Paper Organization

In Section 2 we state some preliminary facts about the computational graph
and edge expansion. Section 3 explains the connection between communication
cost and edge expansion. The proofs of the lower bound theorems stated in
Section 1.4, as well as some extensions, appear in Section 4. In Section 5 we
apply our new lower bounds to two example algorithms: Bini’s algorithm and the
Hopcroft-Kerr algorithm. Appendix A gives further details of Bini’s algorithm
and the Hopcroft-Kerr algorithm.

2 Preliminaries

2.1 The Computational Graph

For a given algorithm, we consider the CDAG G = (V,E), where there is a vertex
for each arithmetic operation (AO) performed, and for every input element. G
contains a directed edge (u, v), if the output operand of the AO corresponding
to u (or the input element corresponding to u), is an input operand to the AO
corresponding to v. The in-degree of any vertex of G is, therefore, at most 2 (as
the arithmetic operations are binary). The out-degree is, in general, unbounded,
i.e., it may be a function of |V |.

The Relaxed Computational Graph. For a given recursive algorithm, the
relaxed computational graph is almost identical to the computational DAG with
the following change: when a vertex corresponds to re-using data across recursive
levels, we replace it with several connected “copy vertices,” each of which exists in
one recursive level. While the CDAG of a recursive algorithm may have vertices
of degree that depend on |V |, this relaxed CDAG has constant bounded degree.
We use the relaxed graph to handle such cases in Section 4.2.

Multiply-Copied Vertices. We say that a base-case encoding subgraph has
no multiply-copied vertices if each input vertex appears at most once as an output
vertex. An output vertex v is copied from an input vertex if the in-degree of v
is exactly one. See, for example, Figure 2. The vertex a11 is copied to the third
output of Enc1A but is not copied to any other outputs. Since all other inputs
are also copied at most once, there are no multiply-copied vertices in Figure 2.

This condition is necessary for the degree of the entire algorithm’s encoding
subgraph to be at most logarithmic in the size of the input. We are not aware
of any fast matrix multiplication algorithm that has multiply-copied vertices,
although the recursive formulation of classical matrix multiplication does.

18 G. Ballard et al.

2.2 Edge Expansion

The edge expansion h(G) of a d-regular undirected graph G = (V,E) is:

h(G) ≡ min
U⊆V,|U|≤|V |/2

|E(U, V \ U)|
d · |U |

where E(A,B) ≡ EG(A,B) is the set of edges connecting the vertex sets A
and B. We omit the subscript G when the context makes it clear. Treating a
CDAG as undirected simplifies the analysis and does not affect the asymptotic
communication cost. For many graphs, small sets expand more than larger sets.
Let hs(G) denote the edge expansion for sets of size at most s in G:

hs(G) ≡ min
U⊆V,|U|≤s

|E(U, V \ U)|
d · |U | .

Note that CDAGs are typically not regular. If a graph G = (V,E) is not regular
but has a bounded maximal degree d, then we can add (< d) loops to vertices of
degree < d, obtaining a regular graph G′. We use the convention that a loop adds
1 to the degree of a vertex. Note that for any S ⊆ V , we have |EG(S, V \ S)| =
|EG′(S, V \ S)|, as none of the added loops contributes to the edge expansion
of G′.

2.3 Matching Sequential Algorithm

In many cases, the communication cost lower bounds are matched by the näıve
recursive algorithm. The cost of the recursive algorithm applied to 〈mt, nt, pt〉 =
qt, taking N∗ = max{mn, np,mp} is

W (t) =

{
q ·W (t− 1) +Θ

(
(N∗)t−1

)
if (N∗)t > M/3

3(N∗)t otherwise
,

since the algorithm does not communicate once the three matrices fit into fast
memory. The solution to this recurrence is given by

W = Θ

(
qt

M logN∗ q−1

)
.

3 Communication Cost and Edge Expansion

In this section we recall the partition argument and how to combine it with edge
expansion analysis to obtain communication cost lower bounds. This follows our
approach in [5,2]. A similar partition argument previously appeared in [17,22,4],
where other techniques (geometric or combinatorial) are used to connect the
number of flops to the amount of data in a segment.

Graph Expansion Analysis for Communication Costs 19

3.1 The Partition Argument

Let M be the size of the fast memory. Let O be any total ordering of the vertices
that respects the partial ordering of the CDAG G. This total ordering can be
thought of as the actual order in which the computations are performed. Let P
be any partition of V into segments S1, S2, ..., so that a segment Si ∈ P is a
subset of the vertices that are contiguous in the total ordering O.

Let RS and WS be the set of read and write operands, respectively. Namely,
RS is the set of vertices outside S that have an edge going into S, and WS is
the set of vertices in S that have an edge going outside of S. Then the total
communication costs due to reads of AOs in S is at least |RS | −M , as at most
M of the needed |RS | operands are already in fast memory when the execution
of the segment’s AOs starts. Similarly, S causes at least |WS | −M actual write
operations, as at most M of the operands needed by other segments are left
in the fast memory when the execution of the segment’s AOs ends. The total
communication cost is therefore bounded below by

W ≥ min
P

∑
S∈P

(|RS |+ |WS | − 2M) . (1)

3.2 Edge Expansion and Communication Cost

Consider a segment S and its read and write operands RS and WS .

Proposition 1. If the graph G containing S has hs(G) edge expansion4 for sets
of size s = |S|, maximum (constant) degree d, and at least 2|S| vertices, then
|RS |+ |WS | ≥ 1

2 · hs(G) · |S| .

Proof. We have |E(S, V \ S)| ≥ hs(G) · d · |S|. Either (at least) half of the edges
E(S, V \ S) touch RS or half of them touch WS . As every vertex is of degree d,
we have |RS |+ |WS | ≥ max{|RS|, |WS |} ≥ 1

d ·
1
2 · |E(S, V \S)| ≥ hs(G) · |S|/2. ��

Combining this with (1) and choosing to partition V into |V |/s segments of

equal size s, we obtain: W ≥ maxs
|V |
s ·
(

hs(G)·s
2 − 2M

)
. Choosing the minimal

s so that

hs(G) · s
2

≥ 3M (2)

we obtain

W ≥ |V |
s

·M . (3)

In some cases, as in fast square and rectangular matrix multiplication, the com-
putational graph G does not fit this analysis: it may not be regular, it may have

4 For many algorithms, the edge expansion h(G) deteriorates with |G|, whereas hs(G)
is constant with respect to |G|, which allows for better communication lower bounds.

20 G. Ballard et al.

vertices of unbounded degree, or its edge expansion may be hard to analyze. In
such cases, we may then consider some subgraph G′ of G instead to obtain a
lower bound on the communication cost. The natural subgraph to select in fast
(square and rectangular) matrix multiplication algorithms is the decoding graph
or one of the two encoding graphs.

4 Expansion Properties of Fast Rectangular Matrix
Multiplication Algorithms

There are several technical challenges that we deal with in the rectangular case,
on top of the analysis in [5] (where we deal with the difference between addition
and multiplication vertices in the recursive construction of the CDAG). These
additional challenges arise from the differences between the CDAG of rectangular
algorithms, such as Bini’s algorithm and the Hopcroft-Kerr algorithm on the one
hand, and of Strassen’s algorithm on the other hand. The three subgraphs, two
encoding and one decoding, are of the same size in Strassen’s and of unequal
size in rectangular algorithms. The largest expansion guarantee is given by the
subgraph corresponding to the largest of the three matrices. One consequence is
that it is necessary to consider the case of unbounded degree vertices that may
appear in the encoding subgraphs. Additionally, in some cases the encoding or
decoding graphs consist of several disconnected components.

4.1 The Computational Graph for 〈mt, nt, pt〉 = qt

Consider the computational graph Ht associated with multiplying a matrix A
of dimension mt ×nt by a matrix B of dimension nt× pt. Denote by EnctA the
part of Ht that corresponds to the encoding of matrix A. Similarly, EnctB, and
DectC correspond to the parts of Ht that compute the encoding of B and the
decoding of C, respectively (see Figure 1).

A Top-Down Construction of the Computational Graph. We next con-
struct the computational graph Hi+1 by constructing Deci+1C from DeciC and
Dec1C and similarly constructing Enci+1A and Enci+1B, then composing the
three parts together.

1. Duplicate Dec1C qi times.
2. Duplicate DeciC mp times.
3. Identify the mp · qi output vertices of the copies of Dec1C with the mp · qi

input vertices of the copies of DeciC:
– Recall that each Dec1C has mp output vertices.
– The first output vertex of the qi Dec1C graphs are identified with the

qi input vertices of the first copy of DeciC.
– The second output vertex of the qi Dec1C graphs are identified with the

qi input vertices of the second copy of DeciC. And so on.
– We make sure that the jth input vertex of a copy of DeciC is identified

with an output vertex of the jth copy of Dec1C.

Graph Expansion Analysis for Communication Costs 21

(np)t

qt

t

A B

(mn)t

(mp)t

C

Dect C

Enct A Enct B

Fig. 1. Computational graph for 〈mt, nt, pt〉 = qt rectangular matrix multiplication
generated from t recursive levels with base graph given by 〈m,n, p〉 = q. In this figure
m < p < n.

4. We similarly obtain Enci+1A from EnciA and Enc1A,
5. and Enci+1B from EnciB and Enc1B.
6. For every i, Hi is obtained by connecting edges from the jth output vertices

of EnciA and EnciB to the jth input vertex of DeciC.

This completes the construction. Let us note some properties of this graphs.
As all out-degrees are at most mp and all in degree are at most 2 we have:

Proposition 2. All vertices of DectC are of degree at most mp+ 2, as long as
n > 1 (that is, as long as the base case is not an outer product).

Proof. If the set of input vertices of Dec1C and the set of its output vertices are
disjoint, then the proposition follows.. Assume (towards contradiction) that the
base graph Dec1C has an input vertex which is also an output vertex. An output
vertex represents the inner product of two n-vectors, i.e., the corresponding row-
vector of A and column vector of B. The corresponding bilinear polynomial is
irreducible. This is a contradiction, since n > 1 an input vertex represents the
multiplication of a (weighted) sum of elements of A with a (weighted) sum of
elements of B. ��
Note, however, that Enc1A and Enc1B may have vertices which are both inputs
and outputs, therefore EnctA and EnctB may have vertices of out-degree which
is a function of t. In [5,2], it was enough to analyzeDectC and lose only a constant
factor in the lower bound. However in several rectangular matrix multiplication
algorithms, it is necessary to consider the encoding graphs as well, since they
may provide a better expansion than the decoding graph.

Lemma 1. If Dec1C is connected, then the edge expansion of DectC is

h(DectC) = Ω

((
mp

q

)t)
.

22 G. Ballard et al.

Proof. The proof follows that of Lemma 4.9 in [5] adapting the corresponding
parameters. We provide it here for completeness. Let Gt = (V,E) be DectC,

and let S ⊆ V, |S| ≤ |V |/2. We next show that |E(S, V \ S)| ≥ c · d · |S| ·
(

mp
q

)t
,

where c is some universal constant, and d is the constant degree of DectC (after
adding loops to make it regular).

The proof works as follows. Recall that Gt is a layered graph (with layers
corresponding to recursion steps), so all edges (excluding loops) connect between
consecutive levels of vertices. We argue (in Proposition 4) that each level of Gt

contains about the same fraction of S vertices, or else we have many edges leaving
S. We also observe (in Fact 5) that such homogeneity (of a fraction of S vertices)
does not hold between distinct parts of the lowest level, or, again, we have many
edges leaving S. We then show that the homogeneity between levels, combined
with the heterogeneity of the lowest level, guarantees that there are many edges
leaving S.

Let li be the ith level of vertices of Gt, so (mp)t = |l1| < |l2| < · · · < |li| =
(mp)t−i+1qi−1 < · · · < |lt+1| = qt. Let Si ≡ S ∩ li. Let σ = |S|

|V | be the fractional

size of S and σi =
|Si|
|li| be the fractional size of S at level i. Let δi = σi − σi+1.

Due to averaging, we observe the following:

Fact 3. There exist i and i′ such that σi ≤ σ ≤ σi′ .

Fact 4

|V | =
t+1∑
i=1

|li| =
t+1∑
i=1

|lt+1| ·
(
mp

q

)i

= |lt+1| ·
(
1−
(
mp

q

)t+2
)
· q

q −mp

=

(
mp

q

)t
· |l1| ·
(
1−
(
mp

q

)t+2
)
· q

q −mp
.

so q−mp
q ≤ |lt+1|

|V | ≤ q−mp
q · 1

1−(mp
q)

t+2 , and
q−mp

q ·
(

mp
q

)t
≤ |l1|

|V | ≤
q−mp

q ·
(

mp
q

)t
·

1

1−(mp
q)

t+2 .

Proposition 3. There exists c′ = c′(G1) so that |E(S, V \ S) ∩ E(li, li+1)| ≥
c′ · d · |δi| · |li|.

Proof (of Proposition 3). Let G′ be a G1 component connecting li with li+1 (so
it has mp vertices in li and q in li+1). G

′ has no edges in E(S, V \S) if all or none
of its vertices are in S. Otherwise, as G′ is connected, it contributes at least one
edge to E(S, V \ S). The number of such G1 components with all their vertices

in S is at most min{σi, σi+1} · |li|
mp . Therefore, there are at least |σi − σi+1| · |li|

mp
G1 components with at least one vertex in S and one vertex that is not. ��

Graph Expansion Analysis for Communication Costs 23

Proposition 4 (Homogeneity between levels). If there exists i so that
|σ−σi|

σ ≥ 1
10 , then

|E(S, V \ S)| ≥ c · d · |S| ·
(
mp

q

)t
where c > 0 is some constant depending on G1 only.

Proof (of Proposition 4). Assume that there exists j so that
|σ−σj |

σ ≥ 1
10 . By

Proposition 3, we have

|E(S, V \ S)| ≥
∑
i∈[t]

|E(S, V \ S) ∩E(li, li+1)|

≥
∑
i∈[t]

c′ · d · |δi| · |li|

≥ c′ · d · |l1|
∑
i∈[t]

|δi|

≥ c′ · d · |l1| ·
(

max
i∈[t+1]

σi − min
i∈[t+1]

σi

)
.

By the initial assumption, there exists j so that
|σ−σj |

σ ≥ 1
10 , therefore maxi σi−

mini σi ≥ σ
10 . By Fact 4, |l1| ≥ q−mp

q ·
(

mp
q

)t
· |V |. As |S| = σ · |V |, we have

|E(S, V \ S)| ≥ c′ · d · |l1| ·
σ

10

≥ c′ · d · q −mp

q
·
(
mp

q

)t
· |V | · σ

10

≥ c · d · |S| ·
(
mp

q

)t

for any c ≤ c′
10 ·

q−mp
q . ��

Let Tt be a tree corresponding to the recursive construction of Gt in the following
way: Tt is a tree of height t+ 1, where each internal node has mp children. The
root r of Tt corresponds to lt+1 (the largest level of Gt). The mp children of r
correspond to the largest levels of themp graphs that one can obtain by removing
the level of vertices lt+1 from Gt. And so on. For every node u of Tt, denote by
Vu the set of vertices in Gt corresponding to u. We thus have |Vr| = qt where r
is the root of Tt, |Vu| = qt−1 for each node u that is a child of r; and in general
we have (mp)i tree nodes u corresponding to a set of size |Vu| = qt−i+1. Each
leaf l corresponds to a set of size 1.

For a tree node u, let us define ρu = |S∩Vu|
|Vu| to be the fraction of S nodes in

Vu, and δu = |ρu − ρp(u)|, where p(u) is the parent of u (for the root r we let
p(r) = r). We let ti be the ith level of Tt, counting from the bottom, so tt+1 is
the root and t1 are the leaves.

24 G. Ballard et al.

Fact 5. As Vr = lt+1 we have ρr = σt+1. For a tree leaf u ∈ t1, we have
|Vu| = 1. Therefore ρu ∈ {0, 1}. The number of vertices u in t1 with ρu = 1 is
σ1 · |l1|.

Proposition 5. Let u0 be an internal tree node, and let u1, u2, . . . , ump be its
mp children. Then

∑
i

|E(S, V \ S) ∩ E(Vui , Vu0)| ≥ c′′ · d ·
∑
i

|ρui − ρu0 | · |Vui |

where c′′ = c′′(G1).

Proof (Proposition 5). The proof follows that of Proposition 3. Let G′ be a G1

component connecting Vu0 with
⋃

i∈[mp] Vui (so it has q vertices in Vu0 and one

in each of Vu1 ,Vu2 ,. . . ,Vump). G
′ has no edges in E(S, V \ S) if all or none of

its vertices are in S. Otherwise, as G′ is connected, it contributes at least one
edge to E(S, V \ S). The number of G1 components with all their vertices in

S is at most min{ρu0 , ρu1 , ρu2 , . . . , ρump} ·
|Vu1 |
mp . Therefore, there are at least

maxi∈[mp]{|ρu0 −ρui |} ·
|Vu1 |
mp ≥ 1

(mp)2 ·
∑

i∈[mp] |ρui −ρu0 | · |Vui | G1 components

with at least one vertex in S and one vertex that is not. ��

By Proposition 5, we have

|E(S, V \ S)| =
∑
u∈Tt

|E(S, V \ S) ∩ E(Vu, Vp(u))|

≥
∑
u∈Tt

c′′ · d · |ρu − ρp(u)| · |Vu|

= c′′ · d ·
∑
i∈[t]

∑
u∈ti

|ρu − ρp(u)| · qi−1

≥ c′′ · d ·
∑
i∈[t]

∑
u∈ti

|ρu − ρp(u)| · (mp)i−1

= c′′ · d ·
∑
v∈t1

∑
u∈v∼r

|ρu − ρp(u)|

as each internal node has mp children, and v ∼ r is the path from v to the root
r. By the triangle inequality for the function | · | and Fact 5,

≥ c′′ · d ·
∑
v∈t1

|ρu − ρr|

≥ c′′ · d · |l1| · ((1− σ1) · ρr + σ1 · (1− ρr))

Graph Expansion Analysis for Communication Costs 25

By Proposition 4, w.l.o.g., |σt+1−σ|/σ ≤ 1
10 and |σ1−σ|/σ ≤ 1

10 . As ρr = σt+1,
and by Fact 4,

≥ 3

4
· c′′ · d · |l1| · σ

≥ c · d · |S| ·
(
mp

q

)t
for any c ≤ 3

4 · c′′. This completes the proof of Lemma 1. ��

Using Lemma 2.1 of [5] (decomposition into edge disjoint small subgraphs) we
deduce that for sufficiently large t,

hs(DectC) = Ω

((
mp

q

)logq s
)
.

Thus there exists a constant c such that for s = cM logmp q, s ·hs(DectC) ≥ 3M .
Plugging this into inequality (3) we obtain Theorem 1.

4.2 Stretching a Segment

We next consider the case where all vertices have a degree bounded by O(t). We
analyze the edge expansion of the relaxed computational graph,5 which corre-
sponds to the same set of computations but has a constant degree bound. We
then show that an augmented partition argument (similar to that in Section 3.1)
results in a communication cost lower bound which is optimal up to at most a
polylogarithmic factor.

Since a relaxed encoding graph has a constant degree bound we can analyze
the expansion of the EnctA and EnctB parts of the computational graph by
exactly the same technique used for DectC above. Plugging in the corresponding
parameters, we thus obtain:

Lemma 2. Let G′
t be the relaxed computational graph of computing 〈mt, nt, pt〉 =

qt based on 〈m,n, p〉 = q. Let Enc′tA and Enc′tB be the subgraphs corresponding
to the encoding of A and B in G′

t. Then

hs(Enc′tA) = Ω

((
mn

q

)logq s
)

and hs(Enc′tB) = Ω

((
np

q

)logq s
)
.

Consider a CDAG G with maximum degree O(t) and its corresponding relaxed
CDAG G′ of constant degree. Given the expansion of G′ we would like to deduce
the communication cost incurred by computing G. To this end we need amended
versions of inequalities (2) and (3); since by transformingG′ back toG |Rs|+|Ws|
may contract by a factor of O(t), we need to compensate for that by increasing

the segment size s. To be precise, we want |Rs|+|Ws|
ct − 2M = M. Following

5 See Section 2 for a formal definition.

26 G. Ballard et al.

inequality (2), we thus choose the minimal s such that hs(EnctA) · s ≥ c′tM ,

where c′ is some universal constant. By inequality (3) and Lemma 2,
(

mn
q

)logq s

·
s = Θ(tM), so

W = Ω

(
qt

(tM)logmn q
M

)
and Theorem 2 follows.

4.3 Disconnected Encoding or Decoding Graphs

The CDAG of any fast (rectangular or square) matrix multiplication algorithm
must be connected, due to the dependencies of the output entries on the input
entries. The encoding and decoding graphs, however, are not always connected
(see e.g., Bini’s algorithm, in Section 5.1 and Appendix A). Consider a case
where each connected components of DectC is small enough to fit into the fast
memory. Then our proof technique cannot provide a nontrivial lower bound.
Even if a connected component is larger than M , but has ≤ M inputs and ≤ M
outputs, the partition into segments approach provides no communication cost
lower bound (see inequality (1) and its proof). In the case that the inputs of an
encoding graph or the output of the decoding graph do not fit into fast memory,
and the disconnected components all have the same number of input and output
vertices, the lower bound technique still applies. Formally,

Corollary 1. If the base-case decoding graph is disconnected and consists
of X connected components of equal input and output size, then W =

Ω
(

qt

M
logmp/X (q/X)−1

)
.

Proof. Since DectC is disconnected h(DectC) = 0. However it consists of Xt

connected components, each of which has nonzero expansion, therefore the en-
tire graph does have expansion for small sets. Each connected component is
recursively constructed from a base graph with q/X inputs and mp/X outputs.
By Lemma 1, each connected component CCt of DectC has expansion

h(CCt) = Ω

((
mp

q

)t)
.

In order to apply Lemma 2.1 of [5] (decomposition into edge disjoint small sub-
graphs), we decompose DectC into connected components of size s, where s
needs to satisfy two conditions. First, s must be smaller than the size of the
connected components of DectC (otherwise we cannot claim any expansion),

namely s = O
((

q
X

)t)
. Second, s must be large enough so that the output of

one component does not fit into fast memory (otherwise the expansion guarantee
does not translate into a communication lower bound):(mp

X

)k
= Ω(M),

Graph Expansion Analysis for Communication Costs 27

where k = logq/X s is the number of recursive steps inside one component. We
then deduce that

hs(DectC) = Ω

((
mp

q

)logq/X s
)
.

Thus there exists a constant c such that for s = cM logmp/X(q/X), s ·hs(DectC) ≥
3M . Plugging this into inequality (3) we obtain Corollary 1. Note that in the

case that M = Ω
((

mp
X

)t)
, the argument above does not apply, but the result

still holds because it is weaker than the trivial bound that the entire output
must be written: W = Ω ((mp)t). ��

Corollary 2. If a base-case encoding graph is disconnected and consists of
X connected components of equal input and output size, has N inputs, where
N = mn or N = np, and has no multiply-copied inputs, then W =

Ω
(

qt

t
logN/x(q/X)

M
logN/X (q/X)−1

)
.

Proof. Let G′
t be the relaxed computational graph of computing 〈mt, nt, pt〉 = qt

based on 〈m,n, p〉 = q. Let Enc′t be the subgraph corresponding to the encoding
of A or B in G′

t, and N be mn (for the encoding of A) or np (for the encoding
of B). Then by the same argument as above,

hs(Enc′t) = Ω

((
N

q

)logq/X s
)
.

Since by transforming G′ back to G the sum |Rs|+ |Ws| may contract by a factor
of O(t) (recall Section 4.2), we need to compensate for that by increasing the seg-

ment size s. Thus the above only holds for
(
N
X

)k
= Ω(Mt), where k = logq/X s.

It follows that there exists a constant c such that for s = c(tM)logmp/X(q/X),
s · hs(Enc′t) ≥ 3tM . Plugging this into inequality (3) we obtain Corollary 2.

Note that in the case that M = Ω
((

N
X

)t)
, the argument above does not apply,

but the result still holds because it is weaker than the trivial bound that the
entire input must be read: W = Ω (N t). ��

5 The Communication Costs of Some Rectangular
Matrix Multiplication Algorithms

In this section we apply our main results to get new lower bounds for rectangular
algorithms based on Bini’s algorithm [11] and the Hopcroft-Kerr algorithm [19].
All rectangular algorithms yield a square algorithm. In the case of Bini the
exponent is ω0 ≈ 2.779, slightly better than Strassen’s algorithm (ω0 ≈ 2.807),
and in the case of Hopcroft-Kerr the exponent is ω0 ≈ 2.811, slightly worse than
Strassen’s algorithm. These algorithms are stated explicitly, which is not true
of most of the recent results that significantly improve ω0. See Table 1 for an
enumeration of several algorithms based on [11,19] and their lower bounds.

28 G. Ballard et al.

5.1 Bini’s Algorithm

Bini et al. [11] obtained the first approximate matrix multiplication algorithm.
They introduce a parameter λ into the computation and give an algorithm that
computes matrix multiplication up to terms of order λ. It was later shown how
to convert such approximate algorithms into exact algorithms without changing
the asymptotic arithmetic complexity, ignoring logarithmic factors [10].6

Bini et al. show how to compute 2×2×2 matrix multiplication approximately
where one of the off-diagonal entries of an input matrix is zero using 5 scalar mul-
tiplications. This can be used twice to give an algorithm for 〈3, 2, 2〉 = 10 matrix
multiplication. Notably this algorithm has disconnected Enc1A (see Figure 2).

• • • • • • • • • •

•
c11 •

c21 •
c31•

c12 •
c22 •

c32

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
..

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
..

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
..

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
..

..............
...............

...............
...............

...............
..............

...............
...............

...............
...............

...............
.............

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

..

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
..

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
..

.................
..................

..................
.................

.................
..................

..................
.................

.................
..................

..................
.................

...

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
..

..............
...............

...............
...............

...............
..............

...............
...............

...............
...............

...............
.............

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
..

.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
........
..

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

......

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

..

• • • • • • • • • •

•
a11

•
a12

•
a22

•
a21

•
a31

•
a32

..

..

..

..

..

..

..

...

...

..

...

..

...

..

...

...

• • • • • • • • • •

•
b11

•
b21

•
b12

•
b22

...

..

..

...

..

...

...

..

..

...

...

..

..

...

..

..

...

...

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

.............
.............

Fig. 2. Computational graph for 1 level of Bini’s 〈3, 2, 2〉 = 10 algorithm. Solid lines
indicate dependencies of additions and make up Enc1A, Enc1B, and Dec1C. Dashed
lines indicate dependencies of multiplications and connect these three subgraphs. Note
that Enc1A, the bottom-left part of the graph, is disconnected and has two connected
components of equal size and equal input/output ratio. Note that the base-case graph
of Bini’s algorithm is presented, for simplicity, with vertices of in-degree larger than
two. A vertex of degree larger than two, in fact, represents a full binary (not necessarily
balanced) tree. The expansion arguments hold for any way of drawing the binary trees.

From this 〈3, 2, 2〉 = 10 algorithm one immediately obtains 5 more algorithms
by transposition and interchanging the encoding and decoding graphs [18]. Other
algorithms can be constructed by taking tensor products of these base cases.
When taking tensor products, the number of connected components of each
encoding and decoding graph is the product of the number of connected com-
ponents in the base cases. For example there are 4 ways to construct algorithms
for 〈6, 6, 4〉 = 100: one where Enc1A and Enc1B each have two components,
one where Enc1A and Dec1C each have two components, one where Enc1B and
Dec1C each have two components, and one where Enc1A has four components.
Similarly there are 8 ways to construct algorithms for the square multiplication
〈12, 12, 12〉 = 1000.

6 We treat here the original, approximate algorithm, not any of the exact algorithms
that can be derived from it.

Graph Expansion Analysis for Communication Costs 29

Table 1. Asymptotic lower bounds for several variants of the algorithms by Bini
et al. and Hopcroft-Kerr. Many more with different shapes and with different dis-
connected subgraphs can be given for Bini’s algorithm, and analyzed by similar means;
we list only a representative sample. Recall that the base case 〈m,n, p〉 = q is used for
the computation of 〈mt, nt, pt〉 = qt.

Algorithm Disconnected Communication Cost Lower Bound by Tight?

B
in
i
et
.
a
l.
[1
1
]

〈3, 2, 2〉 = 10 EncA 10t/M log6 10−1 Thm 1 Yes

〈3, 2, 2〉 = 10 DecC
10t/(tlog6 10M log6 10−1) Thm 2 Up to polylog factor

10t/(M log3 5−1) Cor 1 No

〈2, 3, 2〉 = 10 EncA
10t/M log4 10−1 Thm 1 No

10t/(tlog6 10M log6 10−1) Thm 2 Up to polylog factor

〈2, 3, 2〉 = 10 EncB
10t/M log4 10−1 Thm 1 No

10t/(tlog6 10M log6 10−1) Thm 2 Up to polylog factor

〈2, 2, 3〉 = 10 EncB 10t/M log6 10−1 Thm 1 Yes

〈2, 2, 3〉 = 10 DecC
10t/(tlog6 10M log6 10−1) Thm 2 Up to polylog factor

10t/(M log3 5−1) Cor 1 No

〈6, 6, 4〉 = 100 EncA,EncB
100t/M log24 100−1 Thm 1 No

100t/(tlog18 50M log18 50−1) Cor 2 No

〈12, 12, 12〉 = 1000 EncA,EncB 1000t/M log144 1000−1 [5] Yes

H
o
p
cr
o
ft
-K

er
r
[1
9
]

〈3, 2, 3〉 = 15 None 15t/M log9 15−1 Thm 1 Yes

〈3, 3, 2〉 = 15 None
15t/M log6 15−1 Thm 1 No

15t/(tlog9 15M log9 15−1) Thm 2 Up to polylog factor

〈2, 3, 3〉 = 15 None
15t/M log6 15−1 Thm 1 No

15t/(tlog9 15M log9 15−1) Thm 2 Up to polylog factor

〈9, 6, 6〉 = 225 None 225t/M log54 225−1 Thm 1 Yes

〈6, 6, 9〉 = 225 None 225t/M log54 225−1 Thm 1 Yes

〈6, 9, 6〉 = 225 None
225t/M log36 225−1 Thm 1 No

225t/(tlog54 225M log54 225−1) Thm 2 Up to polylog factor

〈18, 18, 18〉 = 3375 None 3375t/M log324 3375−1 [5] Yes

5.2 The Hopcroft-Kerr Algorithm

Hopcroft and Kerr [19] provide an algorithm for 〈3, 2, 3〉 = 15, and prove that
fewer than 15 scalar multiplications is not possible. In their algorithm, all the
encoding and decoding graphs are connected. Thus, only Theorems 1 and 2 are
necessary for proving the lower bounds. For the square case 〈18, 18, 18〉 = 3375,
Theorem 1 reproduces the result of [5].

6 Discussion and Open Problems

Using graph expansion analysis we obtain tight lower bounds on recursive rect-
angular matrix multiplication algorithms in the case that the output matrix is
at least as large as the input matrices, and the decoding graph is connected. We
also obtain a similar bound in the case that the encoding graph of the largest
matrix is connected, which is tight up to a factor that is polylogarithmic in the
input, assuming no multiply copied inputs. Finally we extend these bounds to
some disconnected cases, with restrictions on the fast memory size. Whenever

30 G. Ballard et al.

the decoding graph is not the largest of the three subgraphs (equivalently, when-
ever the output matrix is smaller than one of the input matrices), or when the
largest graph is disconnected, our bounds are not tight.

6.1 Limitations of the Lower Bounds

There are several cases when our lower bounds do not apply. These are cases
where the full algorithm is a hybrid of several base algorithms combined in an
arbitrary sequence. Consider the case where two base algorithms are applied
recursively. If the recursion alternates between them, our lower bounds apply
to the tensor product of the two base cases, which can be thought of as taking
two recursive steps at once. However, for cases of arbitrary choice of which base
case to apply at each recursive step, we do not provide communication cost
lower bounds. The technical difficulty in extending our results in this case lies in
generalizing the recursive construction of the decoding graph given in Section 4.1.
Similarly, if the base-case decoding (or encoding) graph is disconnected and
contains several connected components of different sizes, our bounds do not
apply. In this case the connected components of the entire decoding (or encoding)
graph are constructed out of all possible interleavings of the different connected
components. Finally, the lower bounds do not apply to algorithms that are not
recursive, including approximate algorithms that are not bilinear.

6.2 Parallel Case

Although ourmain focus is on the sequential case, we note that the sequential com-
munication bounds presented here can be generalized to communication bounds
in the distributed-memory parallel model of [3]. The lower bound proof technique
here can be extended to obtain bothmemory-dependent andmemory-independent
parallel bounds as in [2]. Further, the Communication Avoiding Parallel Strassen
(CAPS) algorithm presented in [3] is shown to be communication-optimal and
faster (both theoretically and empirically) than previous attempts to parallelize
Strassen’s algorithm [6]. The parallelization approach of CAPS is general, and in
particular it can be applied to rectangular matrix multiplication, giving a commu-
nication upper bound which matches the lower bounds in the same circumstances
as in the sequential case.

6.3 Blackbox Use of Fast Square Matrix Multiplication Algorithms

Instead of using a fast rectangular matrix multiplication algorithm, one can
perform rectangular matrix multiplication of the form 〈mt, nt, pt〉 with fewer
than the näıve number of (mnp)t multiplications by blackbox use of a square
matrix multiplication algorithm with exponent ω0 (that is, an algorithm for
multiplying n × n matrices with O(nω0) flops). The idea is to break up the

original problem into
(

mt

nt

)
·
(

pt

nt

)
square matrix multiplication problems of size

Graph Expansion Analysis for Communication Costs 31

(nt)×(nt).7 The arithmetic cost of such a blackbox algorithm is Θ((mpnω0−2)t).

Using the upper and lower bounds in [5], the communication cost isΘ
(

(mpnω0−2)t

Mω0/2−1

)
.

We note that, in some cases, blackbox use of a square algorithm may give a
lower communication cost than a rectangular algorithm, even if it has a higher
arithmetic cost. In particular, if q < mpnω0−2, then the rectangular algorithm
performs asymptotically fewer flops. It is possible to have simultaneously ω0/2 >
logmp q, meaning that for certain values of M and t the communication cost of
the rectangular algorithm is higher. On some machines, the arithmetically slower
algorithm may require less total time if the communication cost dominates.

References

1. Alon, N., Schwartz, O., Shapira, A.: An elementary construction of constant-degree
expanders. Combinatorics, Probability & Computing 17(3), 319–327 (2008)

2. Ballard, G., Demmel, J., Holtz, O., Lipshitz, B., Schwartz, O.: Brief announce-
ment: strong scaling of matrix multiplication algorithms and memory-independent
communication lower bounds. In: Proceedings of the 24th ACM Symposium on
Parallelism in Algorithms and Architectures, SPAA 2012, pp. 77–79. ACM, New
York (2012)

3. Ballard, G., Demmel, J., Holtz, O., Lipshitz, B., Schwartz, O.: Communication-
optimal parallel algorithm for Strassen’s matrix multiplication. In: Proceedings of
the 24th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA
2012, pp. 193–204. ACM, New York (2012)

4. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Minimizing communication in
numerical linear algebra. SIAM J. Matrix Analysis Applications 32(3), 866–901
(2011)

5. Ballard, G., Demmel, J., Holtz, O., Schwartz, O.: Graph expansion and communi-
cation costs of fast matrix multiplication. J. ACM (accepted, 2012)

6. Ballard, G., Demmel, J., Lipshitz, B., Schwartz, O.: Communication-avoiding par-
allel Strassen: Implementation and performance. In: Proceedings of 2012 Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, SC 2012, ACM, New York (2012)

7. Beling, P., Megiddo, N.: Using fast matrix multiplication to find basic solutions.
Theoretical Computer Science 205(1-2), 307–316 (1998)

8. Bilardi, G., Pietracaprina, A., D’Alberto, P.: On the Space and Access Complex-
ity of Computation DAGs. In: Brandes, U., Wagner, D. (eds.) WG 2000. LNCS,
vol. 1928, pp. 47–58. Springer, Heidelberg (2000)

9. Bilardi, G., Preparata, F.: Processor-time tradeoffs under bounded-speed message
propagation: Part II, lower boundes. Theory of Computing Systems 32(5), 1432–
4350 (1999)

10. Bini, D.: Relations between exact and approximate bilinear algorithms. applica-
tions. Calcolo 17, 87–97 (1980), doi:10.1007/BF02575865

11. Bini, D., Capovani, M., Romani, F., Lotti, G.: O(n2.7799) complexity for n × n
approximate matrix multiplication. Information Processing Letters 8(5), 234–235
(1979)

7 Assume, for simplicity, that n < m, p.

32 G. Ballard et al.

12. Bűrgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic Complexity Theory.
Grundlehren der mathematischen Wissenschaften, vol. 315. Springer (1997)

13. Coppersmith, D.: Rapid multiplication of rectangular matrices. SIAM Journal on
Computing 11(3), 467–471 (1982)

14. Coppersmith, D.: Rectangular matrix multiplication revisited. J. Complex. 13, 42–
49 (1997)

15. Fischer, P., Probert, R.: Efficient Procedures for Using Matrix Algorithms. In:
Loeckx, J. (ed.) ICALP 1974. LNCS, vol. 14, pp. 413–427. Springer, Heidelberg
(1974)

16. Galil, Z., Pan, V.: Parallel evaluation of the determinant and of the inverse of a
matrix. Information Processing Letters 30(1), 41–45 (1989)

17. Hong, J.W., Kung, H.T.: I/O complexity: The red-blue pebble game. In: STOC
1981: Proceedings of the Thirteenth Annual ACM Symposium on Theory of Com-
puting, pp. 326–333. ACM, New York (1981)

18. Hopcroft, J., Musinski, J.: Duality applied to the complexity of matrix multiplica-
tions and other bilinear forms. In: Proceedings of the Fifth Annual ACM Sympo-
sium on Theory of Computing, STOC 1973, pp. 73–87. ACM, New York (1973)

19. Hopcroft, J.E., Kerr, L.R.: On minimizing the number of multiplications necessary
for matrix multiplication. SIAM Journal on Applied Mathematics 20(1), 30–36
(1971)

20. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplications and improving par-
allel matrix computations. In: Proceedings of the Second International Symposium
on Parallel Symbolic Computation, PASCO 1997, pp. 11–23. ACM, New York
(1997)

21. Huang, X., Pan, V.Y.: Fast rectangular matrix multiplication and applications. J.
Complex. 14, 257–299 (1998)

22. Irony, D., Toledo, S., Tiskin, A.: Communication lower bounds for distributed-
memory matrix multiplication. J. Parallel Distrib. Comput. 64(9), 1017–1026
(2004)

23. Kaplan, H., Sharir, M., Verbin, E.: Colored intersection searching via sparse rectan-
gular matrix multiplication. In: Proceedings of the Twenty-Second Annual Sympo-
sium on Computational Geometry, SCG 2006, pp. 52–60. ACM, New York (2006)

24. Ke, S., Zeng, B., Han, W., Pan, V.: Fast rectangular matrix multiplication and
some applications. Science in China Series A: Mathematics 51, 389–406 (2008),
doi:10.1007/s11425-007-0169-2

25. Knight, P.: Fast rectangular matrix multiplication and QR decomposition. Linear
Algebra and its Applications 221, 69–81 (1995)

26. Koucky, M., Kabanets, V., Kolokolova, A.: Expanders made elementary (2007) (in
preparation), http://www.cs.sfu.ca/~kabanets/papers/expanders.pdf

27. Kratsch, D., Spinrad, J.: Between O(nm) and O(n)?. In: Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, pp.
709–716. Society for Industrial and Applied Mathematics, Philadelphia (2003)

28. Lev, G., Valiant, L.G.: Size bounds for superconcentrators. Theoretical Computer
Science 22(3), 233–251 (1983)

29. Lotti, G., Romani, F.: On the asymptotic complexity of rectangular matrix multi-
plication. Theoretical Computer Science 23(2), 171–185 (1983)

30. Mihail, M.: Conductance and convergence of Markov chains: A combinatorial treat-
ment of expanders. In: Proceedings of the Thirtieth Annual IEEE Symposium on
Foundations of Computer Science, pp. 526–531 (1989)

http://www.cs.sfu.ca/~kabanets/papers/expanders.pdf

Graph Expansion Analysis for Communication Costs 33

31. Reingold, O., Vadhan, S., Wigderson, A.: Entropy waves, the zig-zag graph prod-
uct, and new constant-degree expanders. Annals of Mathematics 155(1), 157–187
(2002)

32. Savage, J.: Space-time tradeoffs in memory hierarchies. Technical report, Brown
University, Providence, RI, USA (1994)

33. Strassen, V.: Gaussian elimination is not optimal. Numer. Math. 13, 354–356 (1969)
34. Yuster, R., Zwick, U.: Detecting short directed cycles using rectangular matrix

multiplication and dynamic programming. In: Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, pp. 254–260. Society
for Industrial and Applied Mathematics, Philadelphia (2004)

35. Yuster, R., Zwick, U.: Fast sparse matrix multiplication. ACM Trans. Algo-
rithms 1(1), 2–13 (2005)

36. Zwick, U.: All pairs shortest paths using bridging sets and rectangular matrix
multiplication. J. ACM 49, 289–317 (2002)

A Details of Bini’s and the Hopcroft-Kerr Algorithm

In this appendix we give the details of Bini’s algorithm [11] and the Hopcroft-
Kerr algorithm [19].

We express an algorithm for 〈m,n, p〉 = q matrix multiplication by giving the
three adjacency matrices of the encoding and decoding graphs: U of dimension
mn×q, V of dimension np×q, andW of dimension mp×q. The rows of U , V , and
W , correspond to the entries of A, B, and C, respectively, in row-major order.
The columns correspond to the q multiplications. To be precise, each column of
U specifies a linear combination of entries of A; and each column of V specifies
a linear combination of entries of B. These two linear combinations are to be
multiplied together, and then the corresponding column of W specifies to which
entries of C that product contributes, and with what coefficient.8

A.1 Bini’s Algorithm

We provide all 6 base cases for Bini’s algorithm that appear is Section 5.1. They
are labeled by the shape of the multiplication and which graph is disconnected.
The first algorithm is:

U 〈3,2,2〉,EncA =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 1 0 1 0 0 0 0 0
0 0 0 λ λ 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1
1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 λ λ
0 0 0 0 0 1 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦ ≡
⎡
⎢⎢⎢⎢⎢⎢⎣

U1

U2

U3

U4

U5

U6

⎤
⎥⎥⎥⎥⎥⎥⎦

8 The sparsity of the matrices in this notation correspond loosely to the number of
additions and subtractions, but this notation is not sufficient to specify the leading
constant hidden in the computational costs. In particular, this notation does not
show the advantage of Winograd’s variant of Strassen’s algorithm [15] over Strassen’s
original formulation [33].

34 G. Ballard et al.

V 〈3,2,2〉,EncA =

⎡
⎢⎢⎣
λ 0 0 −λ 0 1 1 −1 1 0
0 0 0 0 λ 0 0 −1 0 1
0 −1 0 1 0 0 0 0 λ 0
1 −1 1 0 1 λ 0 0 0 −λ

⎤
⎥⎥⎦ ≡
⎡
⎢⎢⎣
V1

V2

V3

V4

⎤
⎥⎥⎦

W 〈3,2,2〉,EncA =

⎡
⎢⎢⎢⎢⎢⎢⎣

λ−1 λ−1 −λ−1 λ−1 0 0 0 0 0 0
0 0 −λ−1 0 λ−1 0 0 0 0 0
0 0 0 1 0 1 0 0 −1 0
1 0 0 0 −1 0 0 0 0 1
0 0 0 0 0 0 −λ−1 0 λ−1 0
0 0 0 0 0 λ−1 −λ−1 λ−1 0 λ−1

⎤
⎥⎥⎥⎥⎥⎥⎦ ≡
⎡
⎢⎢⎢⎢⎢⎢⎣

W1

W2

W3

W4

W5

W6

⎤
⎥⎥⎥⎥⎥⎥⎦

The remaining 5 algorithms can be concisely expressed in terms of the rows of
the first algorithm:

U 〈3,2,2〉,DecC =

⎡
⎢⎢⎢⎢⎢⎢⎣

W1

W2

W3

W4

W5

W6

⎤
⎥⎥⎥⎥⎥⎥⎦ V 〈3,2,2〉,DecC =

⎡
⎢⎢⎣
V1

V3

V2

V4

⎤
⎥⎥⎦ W 〈3,2,2〉,DecC =

⎡
⎢⎢⎢⎢⎢⎢⎣

U1

U2

U3

U4

U5

U6

⎤
⎥⎥⎥⎥⎥⎥⎦

U 〈2,3,2〉,EncA =

⎡
⎢⎢⎢⎢⎢⎢⎣

U1

U3

U5

U2

U4

U6

⎤
⎥⎥⎥⎥⎥⎥⎦ V 〈2,3,2〉,EncA =

⎡
⎢⎢⎢⎢⎢⎢⎣

W1

W2

W3

W4

W5

W6

⎤
⎥⎥⎥⎥⎥⎥⎦ W 〈2,3,2〉,EncA =

⎡
⎢⎢⎣
V1

V2

V3

V4

⎤
⎥⎥⎦

U 〈2,3,2〉,EncB =

⎡
⎢⎢⎢⎢⎢⎢⎣

W1

W3

W5

W2

W4

W6

⎤
⎥⎥⎥⎥⎥⎥⎦ V 〈2,3,2〉,EncB =

⎡
⎢⎢⎢⎢⎢⎢⎣

U1

U2

U3

U4

U5

U6

⎤
⎥⎥⎥⎥⎥⎥⎦ W 〈2,3,2〉,EncB =

⎡
⎢⎢⎣
V1

V3

V2

V4

⎤
⎥⎥⎦

Graph Expansion Analysis for Communication Costs 35

U 〈2,2,3〉,EncB =

⎡
⎢⎢⎣
V1

V3

V2

V4

⎤
⎥⎥⎦ V 〈2,2,3〉,EncB =

⎡
⎢⎢⎢⎢⎢⎢⎣

U1

U3

U5

U2

U4

U6

⎤
⎥⎥⎥⎥⎥⎥⎦ W 〈2,2,3〉,EncB =

⎡
⎢⎢⎢⎢⎢⎢⎣

W1

W3

W5

W2

W4

W6

⎤
⎥⎥⎥⎥⎥⎥⎦

U 〈2,2,3〉,DecC =

⎡
⎢⎢⎣
V1

V2

V3

V4

⎤
⎥⎥⎦ V 〈2,2,3〉,DecC =

⎡
⎢⎢⎢⎢⎢⎢⎣

W1

W3

W5

W2

W4

W6

⎤
⎥⎥⎥⎥⎥⎥⎦ W 〈2,2,3〉,DecC =

⎡
⎢⎢⎢⎢⎢⎢⎣

U1

U3

U5

U2

U4

U6

⎤
⎥⎥⎥⎥⎥⎥⎦

A.2 The Hopcroft-Kerr Algorithm

For the Hopcroft-Kerr algorithm we give only 3 of the 6 base cases, since all the
graphs are connected.

U 〈3,2,3〉 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 −1 0 −1 0 0 0 0 0 0 −1
1 −1 0 0 1 0 0 1 0 1 0 0 0 0 1
0 0 1 1 1 0 0 0 1 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 −1 1 −1 0 1 −1 0
0 0 0 0 0 1 1 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 1 1 −1 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎦ ≡
⎡
⎢⎢⎢⎢⎢⎢⎣

U1

U2

U3

U4

U5

U6

⎤
⎥⎥⎥⎥⎥⎥⎦

V 〈3,2,3〉 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 1 −1 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 −1 0 −1 −1 0
0 0 0 0 0 1 1 0 0 1 0 1 1 0
1 0 0 0 0 −1 0 1 0 1 0 0 0 0 −1
0 0 1 0 −1 0 0 0 1 1 −1 0 0 −1 0
0 0 0 0 0 1 0 −1 0 0 1 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦ ≡
⎡
⎢⎢⎢⎢⎢⎢⎣

V1

V2

V3

V4

V5

V6

⎤
⎥⎥⎥⎥⎥⎥⎦

W 〈3,2,3〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 −1 1 −1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 −1 1 −1 0 0 0 0 0 0 0
−1 0 0 0 1 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 −1 1 0 1 0
0 1 0 0 0 0 0 1 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 −1 0 0 0 −1 −1 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1

W2

W3

W4

W5

W6

W7

W8

W9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

36 G. Ballard et al.

U 〈2,3,3〉 =

⎡
⎢⎢⎢⎢⎢⎢⎣

U1

U3

U5

U2

U4

U6

⎤
⎥⎥⎥⎥⎥⎥⎦ V 〈2,3,3〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1

W2

W3

W4

W5

W6

W7

W8

W9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W 〈2,3,3〉 =

⎡
⎢⎢⎢⎢⎢⎢⎣

V1

V2

V3

V4

V5

V6

⎤
⎥⎥⎥⎥⎥⎥⎦

U 〈3,3,2〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W1

W2

W3

W4

W5

W6

W7

W8

W9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

V 〈3,3,2〉 =

⎡
⎢⎢⎢⎢⎢⎢⎣

V1

V4

V2

V5

V3

V6

⎤
⎥⎥⎥⎥⎥⎥⎦ W 〈3,3,2〉 =

⎡
⎢⎢⎢⎢⎢⎢⎣

U1

U2

U3

U4

U5

U6

⎤
⎥⎥⎥⎥⎥⎥⎦

Multicast Routing for Energy Minimization

Using Speed Scaling

Nikhil Bansal1,�, Anupam Gupta2,��, Ravishankar Krishnaswamy3,���,
Viswanath Nagarajan4, Kirk Pruhs5,†, and Cliff Stein6,‡

1 Mathematics and Computer Science, Eindhoven University of Technology
2 Computer Science, Carnegie Mellon University

3 Computer Science, Princeton University
4 IBM T.J. Watson Research Center

5 Computer Science, University of Pittsburgh
6 Industrial Engineering and Operations Research, Columbia University

Abstract. We consider virtual circuit multicast routing in a network of
links that are speed scalable. We assume that a link with load f uses
power σ + fα, where σ is the static power, and α > 1 is some constant.
We assume that a link may be shutdown if not in use. In response to
the arrival of client i at vertex ti a routing path (the virtual circuit) Pi

connecting a fixed source s to sink ti must be established. The objective
is to minimize the aggregate power used by all links.

We give a polylog-competitive online algorithm, and a polynomial-
time O(α)-approximation offline algorithm if the power functions of all
links are the same. If each link can have a different power function,
we show that the problem is APX-hard. If additionally, the edges may
be directed, then we show that no poly-log approximation is possible
in polynomial time under standard complexity assumptions. These are
the first results on multicast routing in speed scalable networks in the
algorithmic literature.

1 Introduction

The amount of energy used by data networks is significant, worldwide more
50 billion kWH are used per year according to a US Department of Energy
study [1]. As the number of processors per chip grows, interprocessor communi-
cation is widely expected to become the dominant energy component for com-
puter chips. Thus there has been significant recent interest, both within industry

� Supported in part by the NWO Vidi grant 639.022.211.
�� Supported in part by NSF awards CCF-0964474 and CCF-1016799.

��� Supported in part by NSF awards CCF-0964474 and CCF-1016799 and an IBM
Graduate Fellowship.

† Supported in part by NSF grants CCF-0830558, CCF-1115575, CNS-1253218 and
an IBM Faculty Award.

‡ Supported in part by NSF grant CCF-0915681.

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 37–51, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

38 N. Bansal et al.

and academia, to develop methods to manage networks, from on-chip up to wide-
area, in a more energy efficient manner. The same US Department of Energy
study [1] estimates that at least a 40% reduction in wide-area network energy
would be possible if network components were able to dynamically adjust their
power in response to the traffic experienced. Simulation results by Benoit et
al. [5] suggest using speed scalable link technology, such as those proposed by
Kim and Horowitz [11], would save significant energy in an on-chip network for
a chip multiprocessor.

Virtual circuit routing is a common means of providing reliable communica-
tions in a network. A virtual circuit gives the user a reserved portion of the
network with a guaranteed bandwidth in which to route messages. Algorithmic
problems associated with virtual circuit routing have been studied for many years
(e.g. [4,7]). Here we consider algorithmic problems that combine the traditional
virtual circuit routing with the the traditional energy management mechanisms:
changing the speed of a component and/or shutting the component off.

We consider the same setting as was proposed in several previous papers. The
network is a graph, with a power function associated with each edge.1 The power
used by edge e as

ene(fe) =

{
σe + fα

e if fe > 0
0 if fe = 0

, (1)

where fe is the number of circuits (flow) passing through each edge, σ is the
static power, and α > 0 is a given constant. An important special case is when
all edges have the same fixed cost σ. We call such cost functions homogeneous and
call the general case heterogeneous. We consider both directed and undirected
graphs, unless explicitly stated graphs are undirected. The input further consists
of a sequence of requests for the establishment of a virtual circuit. In response
to the arrival of a source-sink request (si, ti) a routing path (the virtual circuit)
Pi connecting si to ti must be established. The objective is to minimize the
aggregate power used over all the edges.

Andrews et al. [2] gave a polynomial-time poly-log-approximation algorithm
if the graph is undirected, and edges e have homogeneous cost functions. It was
previously noted [3] that a polynomial-time algorithmwith a better than poly-log
approximation ratio would violate standard complexity theoretic assumptions.
Gupta et al. [8] considered online algorithms and gave an αα-competitive online
algorithm under the same assumptions, plus the additional assumption that the
static power σe for each edge was zero.

In this paper we consider applications in which there is a common source
vertex, as would be the case if a multicast communication pattern was imple-
mented using unicast. We consider both the online and offline cases and give
several positive and negative results:

– For undirected networks and homogeneous power functions of the form
given in (1), in Section 3 we give a poly-log competitive online algorithm.

1 Power functions are associated with edges and not vertices primarily because the
resulting algorithmic problems are more tractable.

Multicast Routing for Energy Minimization Using Speed Scaling 39

(These are the same assumptions under which an offline poly-log approxima-
tion algorithm was given by [2], although the result of [2] holds more gener-
ally without the single source assumption.) This result shows that poly-log
competitiveness can be achieved by an online algorithm for multicast com-
munication.

– For undirected networks and homogeneous power functions of the form given
in (1), in Section 4, we give an O(α) offline approximation algorithm.

– In Section 5.1, we show that if the graph is directed instead of undirected,
and we allow heterogeneous power functions, then even for the s–t rout-
ing case (i.e. when all the sinks are also located at the same node), there
is no polynomial-time poly-log-approximation algorithm under a standard
complexity theoretic assumption.

– In Section 5.2, we show that for the heterogeneous case in an undirected
graph, the offline problem is APX-hard even in the s–t case.

In Section 6 we discuss some of the natural open questions arising from these
results.

2 Notation and Background

In the Energy-Aware Routing Problem (EERP), we are given an undirected graph
G = (V,E) with |V | = n and a distinguished source vertex s. We are given k
sinks Rk = {t1, t2, . . . , tk} corresponding to k different routing requests, One
unit of flow needs to be routed from the source s to each sink ti, on a single s-ti
path Pi. Given a solution P1, P2, . . . , Pk, the flow on edge e, fe, is the number of
paths that use e, that is fe =

∑
i:e∈Pi

1, and the energy used by edge e is defined
by equation (1) above. For our positive results, we consider the homogeneous
case where all the edges have a common σ. Furthermore, we are interested in the
case where 1 � σ and α > 1. (If σ is small, for the purposes of approximation,
it can be treated as 0, and if α < 1, this problem exhibits economies of scale
and has been well studied.) The objective is to find a feasible routing which
minimizes the total power, which is obtained by summing the power usage over
all edges. In other words, the total power used is

∑
e∈E

ene =
∑
e∈E

(
σ · 1(e∈∪iPi) +

(k∑
i=1

1(e∈Pi)

)α)
(2)

We will usually refer to the power used as the cost incurred.
We consider both the offline and online variants: in the online variant, the

sinks are given online and we must choose a path for sink ti before learning
about sink ti+1.

The fixed σ term is called the buying or opening cost: the net buying cost
is the first term in (2). The second term is sometimes called the renting cost.
In designing our algorithms, we will sometimes want to balance the renting and
buying costs, we therefore define q = σ1/α, the minimum number of paths that
must use an edge for the renting cost to be at least the buying cost.

40 N. Bansal et al.

We will compare our results to an optimal solution and use opt(Rk) to denote
the cost incurred by the set of optimal paths {P ∗

1 , P
∗
2 , . . . , P

∗
k }.

Steiner Trees: We will use Steiner trees, both in our algorithm design and for
showing lower bounds. Given S ⊆ V , a min-cost Steiner tree on S is a tree T in
G with the fewest edges that connects all the nodes in S. We denote the number
of edges in the min-cost Steiner tree by StTree(S). Since the union of the paths
Pi in any solution {Pi}ki=1 to EERP also connects {s} ∪ Rk, we get that the
optimal buying cost is at least σ · StTree({s} ∪Rk), and hence

opt(Rk) ≥ σ · StTree({s} ∪Rk). (3)

We will sometimes use opt as shorthand for opt(Rk).

Probabilistic Bounds: Our analysis will use the following result on the expecta-
tions of the sums of powers of random variables.

Theorem 1 ([10,13]). Let X1, X2, . . . , XN be independent non-negative ran-
dom variables. Let α > 1 and Kα = Θ(α/ logα). Then it is the case that

(E[(
∑

i Xi)
α])

1/α ≤ Kα max

(∑
i E[Xi],

(∑
i E[X

α
i]

)1/α)
.

Corollary 1. Let p ≥ 0, and let X1, X2, . . . , Xn be i.i.d. random variables taking
value D with probability max{1, p}. Then E[(

∑
i Xi)

α] ≤ (Kα)
α ·max{1, pN Dα+

(pND)α}, where Kα = Θ(α/ logα).

Proof. For the case when p ≥ 1, Xi = D with probability 1, and hence we can
conclude that E[(

∑
i Xi)

α] = (ND)α. For the case when p ∈ [0, 1], E[Xi] =
pD, and E[Xα

i] = pDα. From this we can conclude that the upper bound in
Theorem 1 is Kα max(pND, (pN)1/αD). Taking αth powers and replacing the
max by a sum, we get E[(

∑
i Xi)

α] ≤ (KαD)α((pN)α + pN). ��

3 Online Algorithm for Homogeneous Setting

We now give an online algorithm, in which the sinks arrive one-by-one, and we
have to choose the path Pi connecting ti to the source s before knowing the
identity of the next sink ti+1.

3.1 The Algorithm

We assume (without loss of generality, by adding zero cost edges) that each sink
appears at a distinct vertex; so the number of sinks k ≤ n the number of vertices
in G. We let Ri = {t1, t2, . . . , ti} denote the set of demands that have already
arrived and let R′

i = {s} ∪ Ri. The algorithm maintains a tree Ti that initially
contains only the source s. When a request ti arrives, a path Pi will be chosen
and the tree will be updated, however, the routing paths may use edges outside

Multicast Routing for Energy Minimization Using Speed Scaling 41

this tree. We will also maintain a subset of the vertices which we call leaders.
The set of leaders in step i is denoted by Li, and is initialized to L0 = {s}. We
will maintain various counters, all initialized to 0. A counter Λj will denote the
number of nodes assigned to a particular leader j. A counter ρe will count the
number of times an edge has been used in non-tree paths from the source to a
leader and a counter λe will count the number of times an tree-edge is used to
route flow.

We will denote trees and paths by their sets of edges.
When a sink ti arrives, we do the following:

1. Let P̃i be the shortest path from ti to any node in R′
i−1 and let Ti = Ti−1∪P̃i.

2. With probability min{1, c logn
q }, let ti be a leader (i.e., set Li = Li−1∪{ti}),

else let Li = Li−1.
If ti is a leader, find a path Qi from ti to the root that minimizes∑

e∈Qi

((ρe + 1)α − (ρe)
α) . (4)

For each edge e on the path Qi, set ρe ← ρe + 1.
3. Choose the leader j ∈ Li that minimizes the expression:

(3/2)(Λj+1)/(q logn) − (3/2)Λj/(q logn)

+
∑

e∈Ti[ti,j]

(
(3/2)(λe+1)/(q logn) − (3/2)λe/(q logn)

)
(5)

where Ti[a, b] is the unique path between nodes a and b in the tree Ti. If
this minimizer is the leader j∗ ∈ Li, set Λj∗ ← Λj∗ + 1; for every edge e in
Ti[ti, j

∗], set λe ← λe + 1.
4. Set the s-ti path Pi to be Qj∗ (which is a s-j∗ path) concatenated with

Ti[j
∗, ti]. We call the latter part of the path Pi to be the “tree” portion, and

the former to be the “non-tree” portion.

Above, c > 1 is some constant. The choice of expression (5) is from the online
path selection algorithm to minimize the congestion (maximum load) [4]; simi-
larly the choice of (4) is from the online algorithm to minimize the sum of αth

powers of edge loads [8].

3.2 Analysis

The algorithm maintains the tree Ti, the source to leader paths Qj∗ and the
routing paths Pi. Recall that the flow on an edge e is defined from the Pi.
Observe that it is an easy consequence of the algorithm that after step k′ there
is non-zero flow on all edges in Tk′ ∪ ∪j∗∈Lk′Qj∗ , and hence we have “bought”
all of these edges. In the following analysis, we will use k as an index into the
number of sinks, rather than (necessarily) the total number of sinks. We first
bound the cost associated with the tree-edges. We divide the analysis into buying
cost (the number of tree edges) and renting cost (a function of the load on the
tree edges).

42 N. Bansal et al.

Claim 1. The total buying cost for edges in Tk is at most O(log k)opt(Rk).

Proof. The edges in Tk are all bought in Step 1. This step implements a greedy
Steiner tree algorithm, and hence the number of edges bought by the greedy
Steiner tree algorithm is at most O(log k) times the optimal Steiner tree on
R′

k [9]. As mentioned in Section 2 the optimal Steiner tree gives a lower bound
on opt(Rk), and we get that the total cost of edges bought in Step 1 is at most
O(log k)opt. ��

Now we show that in step 3, no edge is used too many times.

Lemma 1. With probability at least 1− n−2α over the choice of the leaders:

1. There exists an assignment of sinks to leaders so that (a) each edge of Tk is
used in the tree portion of at most O(q logn) sinks, and (b) each leader is
assigned at most O(q) sinks.

2. Thus our algorithm obtains a path assignment in Step 3 where each edge of
Tk is used O(q log2 n) times and each leader is assigned O(q logn) sinks.

Proof. Each sink becomes a leader with probability min{1, c logn
q }. So if q ≤

c logn then no edges are ever used and each leader is only assigned one sink
(namely itself). For the rest of the argument we assume that q ≥ c logn.

For the sake of the analysis, we choose the leaders in a different way: for each
sink, we flip c logn independent coins of bias 1/q, if the ith coin is the first of
these to turn up heads, we designate the sink as a leader of color i. If all coins
turn up tails, the sink is not considered a leader. Since the probability that a sink
is a leader (of any color) according to this process is 1− (1− 1/q)c log n ≤ c log n

q ,
proving the statements with this new way of choosing leaders also proves the
original statement (via a standard coupling argument).

Consider the tree Tk and partition it into connected edge-disjoint groups, so
that each group (apart from possibly one) contains between 2q and 4q sinks. This
partition can be achieved by rooting the tree Tk, making it binary by adding
dummy edges, and repeatedly choosing the deepest subtree containing at least 2q
sinks. Consider a particular group S of sinks, and order the sinks in S according
to their arrival times. The probability that there is at least one leader of color 1
among the first q sinks in S is at least 1− (1− 1/q)q ≥ 1/2. For such groups, at
least half their sinks can route to this leader of color 1. Since the groups were
chosen to included edge-disjoint parts of the tree, this routing incurs a maximum
load of 4q on any edge of the tree (and on any color-1 leader). Also, this reduces
the number of remaining sinks to 3k/4 in expectation. Now we can recurse on
the remaining sinks: form edge-disjoint groups on them, and assign 3/4 fraction
of these sinks (in expectation) to leaders of color 2, and continue. After repeating
this process c logn times, the expected number of unassigned sinks is at most
(3/4)c logn · k ≤ k

n3α ≤ n
n3α , by setting c ≥ 9α. Thus (by Markov’s inequality)

there is no unassigned sink with probability at least 1− n−2α.
Altogether, this assignment routes at most 4q sinks to each leader, and uses

each edge of Tk at most 4c logn ·q times. This proves the first part of the lemma.

Multicast Routing for Energy Minimization Using Speed Scaling 43

If each edge of Tk is given capacity O(q logn) and each leader is given capacity
O(q), the above path assignment corresponds to a solution having congestion
(i.e. load/capacity) one for the following routing problem: each sink ti has to use
edges of Tk to route unit flow from any node of Li (i.e. leader among {t1, . . . , ti}).
The result of Aspnes et al. [4] implies that path assignment according to (5) gives
a solution with congestion O(log n) times the optimal. This proves the second
part of the lemma. ��

We now combine the previous two arguments.

Lemma 2. The expected total cost (from both buying and renting) incurred by
the algorithm on the tree portions of the paths {Pi}ki=1 is O(log2α n log k)opt(Rk).

Proof. By Claim 1, the buying cost for the tree edges is O(log k)opt(Rk), and
hence the number of edges bought |Tk| ≤ O(log k)opt(Rk)/σ.

By the second part of Lemma 1, with probability at least 1−n−2α, each edge
of Tk carries at most O(q log2 n) flow. Thus the expected renting cost incurred
over Tk is at most |Tk| · O(q log2 n)α + 1

n2α |Tk| · kα ≤ O(log n)2α |Tk| · σ =

O(log k · log2α n)opt(Rk). ��

We now bound the cost of using the edges in the non-tree portion ∪Qj∗.

Lemma 3. Consider the following random experiment: choose a random subset
S of sinks, with each sink ti chosen independently with probability min{1, c logn

q };
thereafter for each ti ∈ S, send Θ(q logn) flow from s to ti on its optimal
path P ∗

i . The expected cost (both buying and renting) incurred by this routing
is O(log2α n)opt(Rk).

Proof. Since we buy a subset of the edges bought by the optimal solution, the
buying cost is bounded by opt(Rk). For the expected renting cost, consider an
edge e, and all the sinks whose optimal paths P ∗

i use e: if there are N of them,
the optimal’s renting cost for e is Nα. Since each sink chooses independently,
we can use Corollary 1 with p = c log n

q and D = c′q logn to bound the expected

renting cost for e. Ignoring terms of the form O(α)α and using qα = σ, we get

pNDα + (pND)α ≈ (logα+1 n)σN/q + (log2α n)Nα ≤ (log2α n)(2Nα + σ),

which is the claimed polylogarithmic factor times the optimal’s cost incurred on
this edge. (For the last inequality, observe that if q ≤ N then σN/q = qα−1N ≤
Nα, and if q > N then σN/q ≤ σ.) Now summing over all edges, and using
linearity of expectations completes the proof. ��

Lemma 4. The expected cost incurred by our algorithm for routing on the non-
tree edges ∪j∗Qj∗ is at most O(log2α n)opt(Rk).

Proof. Consider a random instance on the original graph where each sink is ac-
tivated independently (as leader) with probability c logn

q and requires Θ(q logn)

unsplittable flow from s, with the objective of minimizing
∑

e:fe>0 (σ+fα
e) where

44 N. Bansal et al.

fe denotes the flow on edge e. Since the routing is unsplittable, each positive fe
has fe ≥ Ω(q logn) ≥ q; so σ+ fα

e ≤ 2 · fα
e . Thus (up to a factor of 2) the objec-

tive is simply
∑

e fα
e . By Lemma 3, the expected optimal value of this random

instance is O(log2α n)opt(Rk). The path selection {Qj} in Step 2 corresponds
to an αα-competitive online algorithm for this random instance [8]. Thus, if we
send O(q logn) flow along each of these paths, the expected cost incurred is
αα · O(log2α n)opt(Rk) = O(log2α n)opt(Rk).

Now, by the second part of Lemma 1, with probability at least 1− n−2α, the
number of sinks assigned to each leader is O(q logn), in which case reserving
capacity O(q logn) on each leader’s path from s (as in above instance) suffices.
With the remaining n−2α probability, the worst case cost is nk(σ+kα). Thus the
expected cost of our algorithm on the non-tree portion is O(log2α n)opt(Rk). ��

Theorem 2. There is an Oα

(
logO(α) n

)
-competitive randomized online algo-

rithm for single-source EERP with homogeneous power functions of form σ+fα
e .

4 Offline Algorithm for Homogeneous Setting

In this section we give an O(α)-approximation algorithm for the offline EERP
problem. with a homogeneous energy function. The algorithm has two phases
(similar to the online setting), aggregation and batched routing. We assume
that σ ≥ αα; otherwise aggregation is not necessary and the algorithm proceeds
directly to the network flow instance2.

Set p := σ1/α/α ≥ 1, which may not be integral. We first describe an algorithm
to compute a splittable routing for each sink: then we show that this can be easily
converted to an unsplittable routing.

Aggregation: Let T denote an approximately minimum Steiner tree, which we
can compute in polynomial time. Using an Euler tour of T we can fractionally
partition the k demands to obtain r groups {Vj ⊆ {t1, . . . , tk}}rj=1 where Vj

induces a subtree Tj on T , so that:

– For each group j ∈ [r], there is positive (fractional) demand only on sinks
Vj , which totals to exactly p.

– For each sink ti, the total demand over all groups is exactly one.
– Each edge of T appears in at most two subtrees {Tj}rj=1.

If k is not an integral multiple of p, by adding dummy demand, we can ensure
that each group contains exactly p demand (this only affects the approximation
ratio by a constant factor). In doing so, we may need to add one fractional
demand, for that sink the second condition is modified so that the total demand
is equal to the fractional amount.

2 In this case the algorithm is even simpler: all capacities are one and the copies of an
edge are: �α� edges of cost σ each; and for each integer h ≥ �α� + 1, an edge of cost
hα− (h−1)α. That this is an O(α) approximation, follows easily from the arguments
for “Batched Routing” below.

Multicast Routing for Energy Minimization Using Speed Scaling 45

Batched routing: We now define a minimum-cost network flow instance G′ corre-
sponding to the above grouping {Vj}rj=1 of sinks. We create r new sinks {t′j}rj=1

where each t′j requires flow p and is connected to all sinks in Vj with zero cost
and infinite capacity edges. Then we replace each edge e in G by the following
parallel edges:

– There are �α� identical edges with capacity p and cost (per unit flow) σ
p .

– For each integer h ≥ 0, there is an edge of capacity p and cost
(
1 + h

α

)α−1 · σp .

We use g(x) = σ+xα to denote the homogeneous power function applied to the
flow on one edge. The transformation above corresponds to a natural discretiza-
tion of the power function into linear pieces, and was also used in Andrews et
al. [2]. Let ce(x) denote the minimum cost way to send x units of flow through
the above set of parallel edges corresponding to an edge e. This minimum cost
routing uses the edges in order of increasing cost.

Before analyzing our algorithm, we prove two technical claims about the be-
havior of our cost functions. The choice of our discretization parameter p implies:

Claim 2. For all x ≥ 0, g(x+ p) ≤ 9 · g(x).
Moreover, by the definition of the parallel edges,

Claim 3. For each x ≥ 0, c(x) ≤ (α + 1) · g(x); and for each x ≥ p, g(x) =
O(c(x)).

We now return to the description of our algorithm. The algorithm computes
a minimum cost flow in this network G′ with demands of p units to each of
t′1, . . . , t

′
r. Since all capacities and demands are multiples of p, we can obtain in

polynomial time (by integrality of single commodity flow) an optimal solution
given by paths {Qj}rj=1 where each Qj is a path from s to some t∗j ∈ Vj carrying
p flow. For each edge e ∈ G (the original graph), let fe denote the total flow
sent through “copies” of e in this solution; note that since fe is a multiple of p,
either fe = 0 or fe ≥ p. Let E′ ⊆ E denote the edges e with fe > 0, so the cost
of this solution is

∑
e∈E′ c(fe).

Lemma 5. The cost of the flow
∑

e∈E′ c(fe) ≤ (α+1) · opt. Moreover, the total
energy cost,

∑
e∈E′ g(fe) = O(α) · opt.

Proof. We will show the existence of a feasible solution of cost (α + 1) · opt to
the above network flow instance: since we obtain an optimal solution, our cost∑

e∈E′ c(fe) is no worse. Consider the optimal paths {P ∗
i }ki=1 in EERP carrying

unit flow to each sink {ti}ki=1. For each group j ∈ [r] and sink t ∈ Vj we
send demandj(t) units of flow to t′j by extending path P ∗

t . The property of the
aggregation step ensures that each {t′j}rj=1 receives exactly p flow, and the flow

f∗
e through any edge in G is exactly the number of paths {P ∗

i }ki=1 using it. Thus
the cost of this solution is

∑
e c(f

∗
e) ≤Claim 3 (α+ 1)

∑
e g(f

∗
e) = (α+ 1) · opt.

Next, observe that our optimal solution {fe : e ∈ E′} has any positive flow at
least p. Hence using Claim 3,

∑
e∈E′ g(fe) ≤ O(1)

∑
e∈E′ c(fe) = O(α) · opt. ��

46 N. Bansal et al.

Obtaining a solution. We now combine the solutions from the above two phases
to obtain a splittable EERP routing in G. The flow {fe : e ∈ E′} sends p units of
flow to t∗j ∈ Vj for each group j ∈ [r]. Then for each j ∈ [r], using the edges on
subtree Tj , these p units can be redistributed from t∗j so that each sink t ∈ Vj

gets exactly demandj(t) flow, and the flow on each edge of Tj is at most p. This
flow is a feasible splittable EERP solution, since the total demand of each sink
(over all groups) is one. Since each edge in T appears in at most two subtrees
{Tj}rj=1, the final flow on any edge e is at most fe + 2p. So the cost of this
combined routing is at most:∑

e∈E′
g(fe + 2p) +

∑
e∈T\E′

(σ + (2p)α) ≤ 92 ·
∑
e∈E′

g(fe) + 92 ·
∑

e∈T\E′
σ

≤ 92
∑
e∈E′

g(fe) + 2 · 92 · opt

The first inequality is by Claim 2 and the definition of p. The second inequality
is by the fact that T can be chosen to be a 2-approximate Steiner tree. Finally,
using Lemma 5,

∑
e∈E′ g(fe) = O(α) · opt, and the total cost of this splittable

routing is O(α) · opt.
We now obtain an unsplittable routing. If {�e}e∈E denotes the flow in this

solution, define a network with each edge e ∈ G having capacity ��e�. The
source is s and there is a unit demand at each {ti}ki=1. This instance is feasible
as shown by the fractional solution {�e}e∈E . Again, using integrality of flow, we
can find an integer valued flow within these capacities, yielding the unsplittable
EERP solution. Using Claim 2, we see that the cost is at most

∑
e g(�e + 1) ≤∑

e g(�e + p) ≤ 9
∑

e g(�e) = O(α) · opt.

Theorem 3. There is an O(α)-approximation algorithm for EERP with a single
source and homogeneous power functions of the form σ + fα

e .

5 Hardness of Approximation Results

5.1 Hardness of s-t Directed Routing with Heterogeneous Functions

We now consider the heterogeneous case in which all sinks are located at the same
node. Since all sinks are located at the same node, we will speak of a demand r
(which is equivalent to the number of sinks k in our original formulation). We
therefore want to compute an s-t flow of r units having the minimum total power
(summed over all edges). We will consider the case when the exponent α being a
small constant that is larger than one, i.e. α = 1+ ε where ε > 0 is any constant.
The main result of this section is the following inapproximability:

Theorem 4. The s-t routing problem on directed graphs with heterogeneous
power functions and constant exponent α > 1 does not admit an approximation

ratio better than 2log
1−δ n for any δ > 0, unless NP ⊆ DTIME(polylog(n)).

Multicast Routing for Energy Minimization Using Speed Scaling 47

Proof. We reduce from the label cover problem. The input is a bipartite graph
(A∪B,F) where each vertex in A and B has degree d, a label set L and a relation
πa,b ⊆ L × L for each (a, b) ∈ F . We let |A| = |B| = n and |F | = m = n · d.
The goal is compute a labeling φ : A ∪ B → L that maximizes the number of
consistent edges, where edge (a, b) ∈ F is consistent if (φ(a), φ(b)) ∈ πa,b. For
any δ > 0 it is known [12] that unless NP ⊆ DTIME(polylog(n)), there is no
polynomial time algorithm to distinguish between:

– Yes instances: with optimal value |F |, i.e. there is a labeling with all edges
consistent.

– No instances: with optimal value at most |F |/2log1−δ n, i.e. no labeling makes

more than |F |/2log1−δ n edges consistent.

The reduction here is similar to one for the related s-t capacitated network design
problem [6], where each edge has a fixed cost and capacity (instead of a power
function), and the goal is to choose a minimum-cost set of edges that support f
units of flow from s to t. It is straightforward to reduce s-t capacitated network
design to our problem when the exponent α ≈ n. Below we show that the same
hardness persists even for any constant exponent α > 1.

The graph G = (V,E) for the heterogeneous power s-t directed routing prob-
lem is as follows. The vertex set V = {s, t}∪A∪B∪{a(u) : a ∈ A, u ∈ L}∪{b(u) :
b ∈ B, u ∈ L}. The edge set E contains:

– For each a ∈ A, there is an edge (s, a) with function d · fα. (To ensure
functions of the form σe + fα, we can subdivide this edge into d smaller
edges each having function fα.)

– Similarly, for each b ∈ B, there is an edge (b, t) with function d · fα.
– For each a ∈ A and u ∈ L, there is an edge (a, a(u)) with function dα+1+fα.
– Similarly, for each b ∈ B and u ∈ L, there is an edge (b(u), b) with function

dα+1 + fα.
– For each (a, b) ∈ F and (u, v) ∈ πa,b there is an edge (a(u), b(v)) with

function dα · fα. (Again each such edge can be subdivided into dα edges
with function fα.)

We denote the last set of edges as E′. The flow demand is set to m = |F | = d ·n
units.

Yes instances: Observe that if the label cover instance has a labeling φ that is
consistent for all edges, there is a routing in G of total cost at most 7m · dα.

No instances: Suppose that there is a routing in G of total power ρ · m · dα.
Then we show that one can recover a labeling for the label cover instance that

satisfies at least |F |/ρ2+ 3
α−1 edges.

Let fe denote the flow on edge e in the given routing (having power ρ ·m ·dα).
For each a ∈ A, define Na := {u ∈ L : f(a,a(u)) > 0}. Similarly for b ∈ B,
Nb := {u ∈ L : f(b(u),b) > 0}. We consider an arbitrary flow decomposition of
{fe}e∈E into s-t flow-paths (of total value m), and modify it as follows (below

β := (4ρ)
1

α−1).

48 N. Bansal et al.

a

s
t

b

A B

dα · �α

dα+1 + �α

d · �α
d · �α

dα+1 + �α

Fig. 1. The s− t directed network with power functions

1. For each a ∈ A, if f(s,a) > β · d or |Na| > 4βρ then delete all flow-paths
through (s, a).

2. For each b ∈ B, if f(b,t) > β · d or |Nb| > 4βρ then delete all flow-paths
through (b, t).

3. For each e ∈ E′, if fe > β then delete all flow-paths through e.

Claim 4. The total flow remaining after this pruning is at least m
4 .

Proof. We bound the flow lost in each step separately. Consider first the edges
Ea = {(s, a) : f(s,a) > β · d}. We have:∑

e∈Ea
fe∑

e∈Ea
fα
e

≤ max
e∈Ea

f1−α
e ≤ 1

(βd)α−1
=⇒

∑
e∈Ea

fe ≤
∑

e∈Ea
fα
e

(βd)α−1

An identical analysis implies that
∑

e∈Eb
fe ≤ (βd)1−α ·

∑
e∈Eb

fα
e where Eb =

{(b, t) : f(b,t) > β · d}.
Recall that the total cost due to edges Ea∪Eb is d·

∑
e∈Ea

fα
e +d·

∑
e∈Eb

fα
e ≤

ρmdα. This implies:

∑
e∈Ea

fe +
∑
e∈Eb

fe ≤
∑

e∈Ea
fα
e +
∑

e∈Eb
fα
e

(βd)α−1
≤ ρmdα−1

4ρ dα−1
=

m

4
.

Let Va = {a ∈ A : |Na| > 4ρβ, f(s,a) ≤ βd} and Vb = {b ∈ B : |Nb| >
4ρβ, f(b,t) ≤ βd}. The total cost of edges {(a, a(u)) : a ∈ A, u ∈ L}∪{(b(u), b) :
b ∈ B, u ∈ L} is at least

∑
a∈A |Na| · dα+1 +

∑
b∈B |Nb| · dα+1 ≥ (|Va|+ |Vb|) ·

4ρβ dα+1. Since the total routing cost is at most ρmdα, we have |Va| + |Vb| ≤
ρmdα

4ρβ dα+1 = n
4β . Thus

∑
w∈Va

f(s,w) +
∑

w∈Vb
f(w,t) ≤ (|Va|+ |Vb|) · βd ≤ nd

4 = m
4 .

Note that the flow lost in Step 1 above is at most
∑

e∈Ea
fe +
∑

w∈Va
f(s,w),

and that in Step 2 is at most
∑

e∈Eb
fe + +

∑
w∈Vb

f(w,t). So the total loss in
flow is at most m

2 . Finally consider Step 3. Let E′′ = {e ∈ E′ : fe > β}. As in
the calculation for Ea and Eb, using the fact that

∑
e∈E′′ fα

e ≤ ρm (since cost
of edge e ∈ E′ is dα · fα

e), we have
∑

e∈E′′ fe ≤ ρm
(βd)α−1 = m

4 . ��

Multicast Routing for Energy Minimization Using Speed Scaling 49

The flow after the above pruning has magnitude at least m
4 and edges in E′

carry at most β flow each. If we choose one label for each vertex c ∈ A ∪ B
randomly from Nc, the expected number of consistent edges in F is at least
m
4β · 1

(4βρ)2 = m
64ρ2β3 = |F |

64ρ
2+ 3

α−1
.

Finally, the hardness of label cover implies that the s-t routing problem with
any exponent α = 1+ ε (for constant ε > 0) is hard to approximate better than

ratio 2log
1−δ n for any δ > 0. ��

5.2 APX-Hardness of Undirected s− t Routing with Heterogeneous
Functions

We now consider the same case as the previous section, but in undirected graphs.
Undirected graphs tend to be easier to route in than directed graphs, but we are
still able to prove an inapproximability result.

Theorem 5. The s− t routing problem on undirected graphs with heterogeneous
power functions and constant exponent α > 1 is APX-Hard.

Proof. The proof is a reduction from the problem of 3SAT(2d), i.e., 3SAT where
each variable appears in exactly 2d clauses (d as the positive form, and d as the
negative form), for which the following hardness is known [14].

Theorem 6. There exist constants d and ε for which it is NP-hard to distinguish
between 3SAT(2d) instances which are fully satisfiable and those which are at
most (1 − ε) satisfiable.

From 3SAT(2d) to Independent Set.We first reduce the problem of 3SAT(2d),
to that of finding large independent sets in bounded degree graphs. Indeed, given
an instance of 3SAT(2d) with m = 2dn/3 clauses on n variables, we construct the
following graph: For each clause, we create a triangle with nodes corresponding
to the literals. These triangles are disjoint across clauses. To tie up the instance,
we place edges between x and x for all the occurrences of literals x and x. Notice
that there are N := 3m variables, and M := 3m+ d2n = N(1 + d/2) edges in
this graph. Furthermore, each node has degree d+ 2 (two edges in the triangle,
and d edges to the opposite literal).

We now relate independent sets on this graph with satisfying assignments
in the 3SAT(2d) instance. In the yes case, suppose there is a fully satisfying
assignment for the SAT instance. Then, we can pick one satisfying literal from
each clause and it forms an independent set (there are no triangle edges picked,
and because the assignment is consistent, there are no literal edges as well). The
size of this independent set is N/3 = m nodes.

In the opposite direction, suppose we have an independent set of size N
3 (1 −

ε) = m(1− ε) nodes in the graph. Then, clearly, it has to pick at most one node
from each of the clause triangles. Furthermore, these nodes must correspond to
consistent literals (else we would include a literal edge). Therefore, the inde-
pendent set naturally recovers an assignment which satisfies at least m(1 − ε)
clauses. We can therefore conclude this step with the following theorem:

50 N. Bansal et al.

Theorem 7. There are constants d and ε for which it is NP-hard to distinguish
between d+ 2-regular graphs on N nodes which have an independent set of size
at least N/3 and those where all independent sets are at most N/3(1− ε).

From Independent Set to Power-Routing. We now reduce from indepen-
dent set instances to the routing instances. Indeed, given a d+ 2-regular graph
on N nodes G = (V,E), we create the following routing instance H = (W,F).

Routing Instance H . For each edge e ∈ E, there is an edge-vertex we ∈ V ′,
and for each node v ∈ V , we have a node-vertex wv ∈ V ′. We connect each edge-
vertex to the corresponding node-vertices (according to G). That is, if e = (u, v)
in G, then we connect we with wu and wv. These edges have a buy cost of
1 and no load cost. These are called the intermediate edges in our graph H .
Likewise, we connect each node-vertex wv vertex to a sink t, with edges of buy
cost B := 1

2(d+1) . Finally, we connect each edge-vertex we to a source s with

cost lα, where l is the load. For the demand, we require s to route M units of
flow to t. In the remainder of the proof, we will use C to denote (2N/3).

Lemma 6. If there is a vertex cover of size C := (2N/3) in G, there is a routing
solution in H of total cost at most BC + 2M .

This is easy to see, as the source can send a unit flow along to each edge-vertex,
which will then send the flow to the node which covers it (in the vertex cover in
G), and finally this flow gets routed to the sink. For the soundness direction, we
show the following lemma in the full version of the paper.

Lemma 7. For large enough constant α, if there is routing in H of cost at
most (1 + ε′)(2M + BC), then we can recover an “almost vertex cover” of size
C(1 + ε′) + 8ε′M(d+ 1) in G. Here, an “almost vertex cover” is a collection of
nodes incident on at least a (1− 10ε′(d+ 2)2) fraction of the edges.

We now complete our proof. In particular, we will be interested in the case
when C := 2N/3 (recall that it was hard to distinguish between independent
sets of size N/3 and those of size (1− ε)N/3 in G). Indeed, suppose there is an
independent set of size N/3. Then there is a vertex cover of size 2N/3, and by
Lemma 6, there is a routing in H of cost at most BC + 2M .

Now, in the other direction, suppose there is a routing of cost at most (1 +
ε′)(BC +2M). Then by the above Lemma 7, we can recover a set of C(1+ ε′)+
8ε′M(d+1) nodes which are incident on (1− 10ε′(d+2)2) fraction of the edges.
But we can extend this to a complete vertex cover by adding at most 10ε′(d +
2)2M nodes by picking one node from each of the uncovered edges. This implies
there is an independent set of size at least N/3−O(ε′d2)N = N/3(1− ε) nodes,
for small enough constant ε′ (recall that d is a constant determined in Thm 7).
But by Theorem 7, this is impossible if P �= NP , thus proving Theorem 5. ��

6 Open Problems

Perhaps the most natural open question is whether there exists a poly-log com-
petitive online algorithm for the case of multiple sources and multiple sinks.

Multicast Routing for Energy Minimization Using Speed Scaling 51

Is the following simple algorithm good? Consider request (si, ti). With proba-
bility 1/2k “pretend” that the demand D is 2k, and open all edges used in the
cheapest way to route demand D from si to ti assuming previous routes. Then
route one unit of flow between si and ti in the cheapest possible way along open
edges.

References

1. Proceedings of the vision and roadmap workshop on routing telecom and data
centers toward efficient energy use (October 2008)

2. Andrews, M., Antonakopoulos, S., Zhang, L.: Minimum-cost network design with
(dis)economies of scale. In: FOCS, pp. 585–592 (2010)

3. Andrews, M., Fernández, A., Zhang, L., Zhao, W.: Routing for energy minimization
in the speed scaling model. In: INFOCOM, pp. 2435–2443 (2010)

4. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line routing of virtual
circuits with applications to load balancing and machine scheduling. J. ACM 44(3),
486–504 (1997)

5. Benoit, A., Melhem, R., Renaud-Goud, P., Robert, Y.: Power-aware manhattan
routing on chip multiprocessors. In: IEEE International Parallel and Distributed
Processing Symposium (IPDPS) (May 2012)

6. Chakrabarty, D., Chekuri, C., Khanna, S., Korula, N.: Approximability of Capac-
itated Network Design. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS,
vol. 6655, pp. 78–91. Springer, Heidelberg (2011)

7. Gafni, E.M., Bertsekas, D.P.: Path assignment for virtual circuit routing. In: Pro-
ceedings of the Symposium on Communications Architectures & Protocols, SIG-
COMM 1983, pp. 21–25. ACM, New York (1983)

8. Gupta, A., Krishnaswamy, R., Pruhs, K.: Online primal-dual for non-linear opti-
mization with applications to speed scaling. CoRR, abs/1109.5931 (2011)

9. Imase, M., Waxman, B.M.: Dynamic Steiner tree problem. SIAM J. Discrete
Math. 4(3), 369–384 (1991)

10. Johnson, W.B., Schechtman, G., Zinn, J.: Best constants in moment inequalities
for linear combinations of independent and exchangeable random variables. Ann.
Probab. (1), 234–253 (1985)

11. Kim, J., Horowitz, M.A.: Adaptive supply serial links with sub-1-v operation and
per-pin clock recovery. IEEE Journal of Solid-State Circuits 37(11), 1403–1413
(2002)

12. Raz, R.: A parallel repetition theorem. SIAM J. Comput. 27(3), 763–803 (1998)
13. Rosenthal, H.P.: On the subspaces of Lp (p > 2) spanned by sequences of indepen-

dent random variables. Israel J. Math. 8, 273–303 (1970)
14. Trevisan, L.: Non-approximability results for optimization problems on bounded

degree instances. In: ACM Symposium on Theory of Computing, pp. 453–461
(2001)

Reoptimization of the Minimum Total

Flow-Time Scheduling Problem

Guy Baram and Tami Tamir

School of Computer Science, The Interdisciplinary Center, Herzliya, Israel
guy.baram@gmail.com, tami@idc.ac.il

Abstract. We consider reoptimization problems arising in production
planning. Due to unexpected changes in the environment (out-of-order
or new machines, modified jobs’ processing requirements, etc.), the pro-
duction schedule needs to be modified. That is, jobs might be migrated
from their current machine to a different one. Migrations are associated
with a cost – due to relocation overhead and machine set-up times. The
goal is to find a good modified schedule, which is as close as possible to
the initial one. We consider the objective of minimizing the total flow
time, denoted in standard scheduling notation by P ||∑Cj .

We study two different problems: (i) achieving an optimal solution
using the minimal possible transition cost, and (ii) achieving the best
possible schedule using a given limited budget for the transition. We
present optimal algorithms for the first problem and for several classes
of instances for the second problem.

1 Introduction

This work studies a reoptimization variant of the classical scheduling problem
of minimizing the total flow time (denoted in standard scheduling notation by
P ||
∑

Cj [12]). This problem can be solved efficiently by the simple greedy SPT
rule [23,9] that assigns the jobs in nondecreasing order by their length. This
algorithm, as many other algorithms for combinatorial optimization problems,
solves the problem from scratch, for a single arbitrary instance without having
any constraints or preferences regarding the required solution - as long as it
achieves the optimal objective value. However, many of the real-life scenarios
motivating these problems involve systems that change dynamically over time.
Thus, throughout the continuous operation of such a system, it is required to
compute solutions for new problem instances, derived from previous instances.

Moreover, since there is some cost associated with the transition from one
solution to another, a natural goal is to have the solution for the new instance
close to the original one (under certain distance measure). Thus, solving a re-
optimization problem combines the challenge of computing an optimal (or close
to the optimal) solution for the new instance, with the challenge of efficiently
converting the initial solution to the new one. Each of these challenges, even
when considered alone, gives rise to many theoretical and practical questions.

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 52–66, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Reoptimization of the Minimum Total Flow-Time Scheduling Problem 53

Obviously, combining the two challenges is an important goal, which naturally
shows up in many applications.

Reoptimization variants of scheduling problems arise naturally in production
planning – due to unexpected changes in the environment (out-of-order or new
machines, modified jobs’ processing requirements, etc.). Migrating tasks among
the machines is costly, due to relocation overhead and machine set-up times.
This work studies the problem of finding a good modified schedule, which is as
close as possible to the initial one. To the best of our knowledge, no previous
work combines these two objectives in a scheduling setting.

Applications: As mentioned above, the scenario we consider often arises in
manufacturing systems. In fact, our work is relevant to any dynamic scheduling
environment. We describe below two less intuitive applications in cloud comput-
ing and semiconductor wafers production line.

Consider an RPC (Remote Procedure Call) service. In this environment, a
cloud of servers can provide service to a limited number of simultaneous users.
If the number of requests is high, another virtual server could be temporarily
rented, where the cost for using it is per user. The options are to put the RPC
in a queue, thus causing latency in the service, or renting more virtual servers,
enabling faster service and paying the additional servers’ cost. In this application,
the transition cost is not due to the migration itself, but due to the activation
cost of the additional resources.

Some of our results will be extended to consider modifications that occur after
the processing has begun, that is, at time t > 0. For this extension (see Section
2.1.1) we distinguish between environments in which the currently processed jobs
can migrate and be restarted on a different machine, and applications in with
restarts are not allowed, and a currently processed job must complete its partial
processing. The following application describes a system in which restarts are not
allowed: In a semiconductor wafers production line, some of the coating methods
involve purely physical processes such as high temperature vacuum evaporation
(physical vapor deposition - PVD). During the process, a vacuum is created to
enable the coating. Once the elements are in a vacuum environment, the process
can not be stopped as if the machine halts, it will be severely damaged [16].
Assume that at time t > 0 machines are added. Transferring jobs is costly - to
capture the transition overhead and the changes required in programming the
machines workplan. Also, the elements that are currently produced, that are
already in vacuum state, must complete their production.

1.1 Problem Statement and Notation

An instance of our problem consists of a set J0 of n0 jobs and a set ofm0 identical
machines. Denote by pj the processing time of job j. A schedule S0 of the initial
instance is given. That is, for every job in J0, it is specified on which machine it
is assigned and on which time interval it is going to be processed. At any time,
a machine can process at most one job and a job can be processed by at most
one machine.

54 G. Baram and T. Tamir

At time t ≥ 0, a change in the system occurs. Possible changes include addition
or removal of machines and/or jobs, as well as modification of processing time
of jobs in J0. Let J denote the modified set of jobs, and let n = |J |. Let M
denote the modified set of machines, and let m = |M |. Our goal is to suggest a
new schedule, S, for the modified instance, with good objective value and small
transition cost form S0. Assignment of a job to a different machine in S0 and
S is denoted migration and is associated with a cost. Formally, we are given a
price list θii′j , such that it costs θii′j to migrate job j from machine i to machine
i′. We consider two problems:

1. Rescheduling to an optimal schedule using the minimal possible transition
cost.

2. Given a budget B, find the best possible modified schedule that be be
achieved without exceeding the budget B.

Some of our results assume identical transition costs, that is, for all j and i �= i′,
θii′j = 1.1 For a given schedule, let Cj be the completion time of job j, that is,
the time when the process of j completes.

Example: Assume that six jobs of lengths 1, . . . , 6 are scheduled on a single
machine in an optimal SPT order. Assume that a second machine is added, and
that all migrations have unit transition cost. Figure 1(a) presents an optimal
modified schedule, for which the total flow-time is

∑
Cj = 34. The budget

required to reach this schedule (or any other schedule with
∑

Cj = 34) is 3. For a
given budget, B = 2, it is possible to move, for example, to the modified schedules
given in Figures 1(b) and (c), having total flow-time 36 and 35, respectively. The
schedule (c) is optimal for this budget. Note that the natural greedy approach of
migrating the long jobs if the budget is low (as in schedule (b)) is sub-optimal.
Two other natural approaches of prefix-SPT, or suffix-SPT (use the budget to
maximize the prefix of the schedule or the suffix of the schedule that is identical
to an SPT schedule) are also sub-optimal.2

1

2

3

4

5

6

M1

M2

1 2

3

4

5

6M1

M2

1 2 3 4

5 6

M1

M2

(a) (b) (c)

1 2 3 4 5 6M1S0:

Fig. 1. An initial assignment (top), an optimal reassignment achieved with transition
cost 3 (a), a possible (b) and an optimal (c) reassignments achieved with budget 2

1 Note that the constant 1 can be replaced by any other constant.
2 In the example, schedule (c) is suffix-SPT and optimal, however, suffix-SPT fail on
other instances.

Reoptimization of the Minimum Total Flow-Time Scheduling Problem 55

1.2 Related Work

The ‘single-shot’ minimum total flow-time, P ||
∑

Cj , can be solved in polynomial
time by using the shortest processing time (SPT) rule [23,9]. The problem is
solvable also on unrelated machines, R||

∑
Cj , [7,14] by a reduction to a min-

weight complete matching problem.
The work on reoptimization problems started with the analysis of dynamic

graph problems (see e.g. [10,24]). Reoptimization algorithms were developed also
for some classic problems on graphs, such as shortest-path [18,17] and minimum
spanning tree [1]. A different line of research deals with the computation of a
good solution for an NP-hard problem, given an optimal solution for a close
instance. Among the problems studied in this setting are TSP, [4,6], Steiner
Tree on weighted graphs [11] and Knapsack [2]. A survey of other research in
this direction is given in [3]. In all of the above works, the goal is to compute
an optimal (or approximate) solution for the modified instance. The resulting
solution may be significantly different from the original one, since there is no
cost associated with the transition among solutions.

The paper [21] suggests the framework we adopt for this work, in which the
solution for the modified instance is evaluated also with respect to its difference
from the initial solution. This framework is in use also in [20], to analyze algo-
rithms for data placement in storage area network. Considering both the quality
of the solution and the transition cost from an initial solution can also be seen as
a special case of multiobjective optimization problems. In these problems, there
are several weight functions associated with the input elements. The quality of
a solution is measured with respect to a combination of these weights (see e.g.,
[19,13]).

1.3 Our Results

In Section 2 we explore the problem of moving to a modified optimal schedule
using the minimal required budget. We present optimal algorithms that return
both an optimal schedule and the minimum budget B required to reach an
optimal schedule. We first describe an optimal algorithm for arbitrary migration
costs and arbitrary changes in the instance. Its running time is dominated by
the time required to find a minimum weight complete matching in a complete
bipartite graph with O(nm) vertices. We then present a more efficient algorithm
for instances with uniform migration costs. The time complexity of this algorithm
is varies between O(n) (if the initial schedule is an SPT schedule) and O(n log n)
(for arbitrary initial schedule). The first algorithm is described assuming the
modification takes place at time t = 0. In Section 2.1.1 we describe how and
under which conditions it can be extended to handle modifications at time t > 0.
The second algorithm is valid for changes at any time t ≥ 0.

In section 3 we consider the problem of rescheduling with a limited budget.
The goal is to utilize the budget in the best possible way, that is, the modified
schedule should have a low total flow-time - the minimal possible among all
schedules that can be achieved using the given budget. Our results for this model

56 G. Baram and T. Tamir

assume unit migration costs, thus, the budget B gives the maximal number
of allowed migrations. We present optimal algorithms for two cases: when the
budget is a constant and when migrations are allowed only to new machines.

We conclude, in Section 4, with a discussion and some directions for future
work. We note that our results can be applied also on a sequence of modifications.
That is, the environment might change more than once, and the algorithms are
performed after each modification. Due to space constraints, some of the proofs
are omitted. All proofs are available in the full version [5].

2 Optimal Modified Schedule Using Minimum Budget

In this section we consider the problem of moving to a modified optimal schedule
with respect to the minimal total flow objective using the minimal required
budget.

2.1 Arbitrary Costs and Modifications

Let S0 be a given initial schedule. We do not assume that S0 is optimal nor
that it has a specific structure or properties. Assume that at time t = 0, the
environment is modified. Possible modifications include addition or removal of
machines and/or jobs, and changes in jobs’ processing times. The price list θii′j
specifies for every job j assigned to machine i, how much it costs to migrate j to
machine i′. The goal is to find a new schedule, S, that is optimal with respect
to the total flow-time, and has the minimal transition cost from S0 among all
optimal schedules.

We reduce the problem into a minimum weight complete matching problem
in a bipartite graph. This approach was used by Horn [14], and Bruno, Coffman
and Sethi [7] for solving the problem of minimum flow time on unrelated ma-
chines (R||

∑
Cj). While the processing time of the jobs do not change due to

migrations, it is possible to adopt this technique for our problem by setting the
weights in the corresponding bipartite graph in a way that reflects the migration
overhead.

Recall that n andm represent the number of jobs and machines in the modified
instance. Let G = (V,E), where V = J∪U . The set J represents the set of n jobs
(a single node per job). The set U consists of mn nodes, qik, for i = 1, . . . ,m and
k = 1, . . . , n, where node qik represents the kth from last position on machine
i. The edge set E includes an edge (vj , qik) for every node in J and every node
in U (a complete bipartite graph). The following is an optimal algorithm for
our problem. Note that edge weights (determined in Steps 1-2) consist of two
components: first, a dominant component corresponding to the contribution of
a job assigned in a specific position to the total flow-time, and second, a minor
component corresponding to the associated transition cost. Both components are
combined to form a single weight. Figure 2 illustrates the edges corresponding
to a single job.

Reoptimization of the Minimum Total Flow-Time Scheduling Problem 57

Algorithm 1. An optimal algorithms for rescheduling using minimum budget

1. Let θii′j be a price list, i.e., it costs θii′j to migrate job j from machine i to machine
i′. In particular, for all i, j, θiij = 0.
Let Δ = maxj,i,i′ θii′j and let Z be a constant lager than nΔ.

2. Let G be the complete bipartite graph corresponding to the problem. Set the edge
weights as follows:
– For every job that is assigned to i , the weight of (vj , qik) is Zkpj .
– For every i′ 	= i, the weight of (vj , qi′k) is Zkpj + θii′j .

3. Find a min-cost complete matching in G. Let H denote the set of edges in this
matching.

4. Return the schedule corresponding to H . That is, for every (vj , qi′,k) ∈ H , assign
j in the kth from last position on machine Mi′ . The minimum transition cost is∑

(vj ,qi′,k)∈H θii′j , where i is the machine on which j is assigned in S0.

In the following claims we show that H induces an optimal schedule with the
minimal possible transition cost from S0. First, we show that H corresponds to a
schedule with minimum total flow-time, then we show that among all schedules
achieving minimum total flow-time, the schedule induced by H has minimum
transition cost from S0.

1

j

n

q11

q1k

q1n

qi1

qik

qin

qm1

qmk

qmn

Zpj+θi1j

Zkpj

Znpj+θimj

Znpj+θi1j

Zkpj+θi1j

Zpj

Znpj

.

.

.

.

.

.

Fig. 2. The bipartite graph for Algorithm 1. The job j is assigned to machine i in S0.

Claim. The set of edges H corresponds to a feasible schedule with minimum
total flow-time.

Claim. Among all schedules achieving minimum total flow, the schedule induced
by H has the minimal transition cost.

58 G. Baram and T. Tamir

Proof. Let H∗ be any perfect matching in G, corresponding to a schedule,
S(H∗), achieving minimum total flow-time. We show that the transition cost
to S(H∗) is not lower than the transition cost to S(H). We know that H is
a min-cost matching in G, therefore,

∑
e∈H w(e) ≤

∑
e∈H∗ w(e). Also, since

both achieve minimum total flow-time and the weights w′ reflect the total
flow-time without the transition costs,

∑
e∈H w′(e) =

∑
e∈H∗ w′(e). The def-

inition of w implies that for every matching H ′, it holds that
∑

e∈H′ w(e) =
Z
∑

e∈H′ w′(e) +
∑

e=(vj ,qik)∈H′ θii′j , where the second term is exactly the tran-

sition cost from the initial schedule to the schedule induced by H ′. We conclude
that the transition cost to S(H∗) is not lower than the transition cost to S(H).

2.1.1 Extension: When the Modification Occurs at Time t > 0
The change in the system might occur after the processing has begun, that is,
at time t > 0. Let Jt be the set of jobs processed at time t. In some systems the
processing of j ∈ Jt must complete on its current machine. In others, j can be
migrated to another machine. If reassigned, the corresponding transition cost is
applied and the job must restart. We assume that preemptions are not allowed3.
For every machine i, let γi denote the time required to complete the job from Jt
processed at time t on machine i.

When restarts are not allowed, the only modification we consider is machines
addition. Note that if machines can be removed, and restarts are not allowed then
the problem is not well-defined for the jobs that are currently processed. The
problem can be viewed as a scheduling problem in which machine i is available
starting at time γi. Algorithm 1 can be generalized by setting the weights in the
bipartite graph (described in Section 2.1) in the following way:

– For every job that is assigned to Mi , the weight of (vj , qik) is Z(kpj + γi).

– For every i′ �= i, the weight of (vj , qi′k) is Z(kpj + γi′) + θii′j .

When restarts are allowed, for every job j ∈ Jt an additional possibility is to
migrate j to a different machine and restart its processing. For this case our
extension assumes that the initial schedule was optimal, that is, in SPT order.
We set the weights in the bipartite graph as follows:

– For every job j ∈ Jt that is currently processed on Mi the weight of (vj , qik)
is Zkγi.

– For every job j �∈ Jt that is assigned to Mi, the weight of (vj , qik) is Zkpj.

– For every i′ �= i, the weight of (vj , qi′k) is Zkpj + θii′j .

Note that the above weights correspond to the contribution of jobs to the total
flow-time, assuming the following property: if a currently processed job j remains
on Mi then in the optimal modified assignment it is processed first on Mi. The
proof of this property and the extensions’ proofs are given in the full version [5].

3 Enabling preemptions affects all the jobs of the instance, thus causing the problem
to be intractable [22].

Reoptimization of the Minimum Total Flow-Time Scheduling Problem 59

2.2 An Efficient Algorithm for Identical Migration Costs

In this section we consider systems with identical migration costs, that is, for all
j, i, i′, it holds that θj,i,i′ = 1. We present an efficient algorithm for finding an
optimal modified schedule using the minimal possible budget. The algorithm can
be applied for addition or removal of machines and/or jobs, as well as changes
in jobs’ processing times.

The algorithm is based on some properties of the SPT algorithm [23,9] for
P ||
∑

Cj . For completeness, we describe a specific form of SPT algorithm: Given
an instance of n jobs and m parallel machines, add dummy jobs of length 0 such
that the total number of jobs is a multiple ofm. Specifically, if n is not a multiple
of m, then add to the instance m− (n mod m) jobs of length 0. The dummy jobs
can be scheduled on arbitrary machines and (when rescheduling) their migration
cost is 0. Given that n is a multiple of m, the SPT algorithm can be described
as follows: First, sort the jobs in non-decreasing order of processing time (break
ties arbitrarily). Next, partition the jobs into n/m rounds of m jobs each. The
k-th round consists of the jobs indexed (k − 1)m+ 1, . . . , km in the sorted list.
Schedule on each machine one job from the first round, followed by one job from
the second round, etc.

We use the following known property of SPT schedules: the internal assign-
ment of jobs from a particular round to the machines does not affect the total
flow-time. That is, any schedule in which the m jobs of round k are assigned on
the k-th slots of the m machines is optimal.

Let L be the set of job lengths in the modified instance. The set L includes
at most n distinct values. By the above property of SPT schedules, an optimal
schedule can be characterized by the numbers n�,k, for all � ∈ L and 1 ≤ k ≤ n

m ,
where n�,k is the number of jobs of length � in round k, in any optimal schedule.
Moreover, the problem of finding an optimal schedule using minimum transition
cost reduces to the problem of finding a schedule obeying the optimal n�,k values
with a minimal number of migrations from the initial schedule. The following is
an overview of our optimal algorithm:

Algorithm 2. An efficient optimal algorithm for rescheduling with identical
migration costs.

1. For every length � ∈ L and round 1 ≤ k ≤ n
m
, calculate n�,k, the number of jobs

of length � in round k, in any optimal modified schedule.
2. Partition L into two sets of job lengths: Let L1 ⊆ L be the set of lengths such that

� ∈ L1 if and only if n�,k > 0 for a single round k. Let L2 = L \ L1 be the set of
lengths such that � ∈ L2 if and only if n�,k > 0 for more than a single round.

3. For every round 1 ≤ k ≤ n
m
, schedule a maximal number of non-migrating jobs in

round k. First, assign jobs having lengths in L1, then in L2. When assigning jobs
from L2, give higher priority to short jobs.

4. Schedule migrating jobs.

60 G. Baram and T. Tamir

The idea is to assign first a maximal number of non-migrating jobs, and then
assign the migrating jobs. When assigning the non-migrating jobs, we first assign
the more restricted jobs – having lengths in L1, and then the more flexible jobs
whose lengths are in L2.

Denote by S the schedule built by the algorithm. Steps (3-4) are implemented
as follows: Denote by Si,k the slot in the kth round on machine i. Initially, for all
1 ≤ i ≤ m, 1 ≤ k ≤ n

m it holds that Si,k is available (=EMPTY). During steps
(3-4) some slots are assigned to non-migrating jobs. Whenever a job j of length
� is assigned to the k-th slot on machine i, the corresponding variable Si,k is set
to j, and the corresponding counter of n�,k is reduced by one. Specifically, steps
(3-4) are implemented as follows:

Step 3: Step 3 consists of n
m iterations. In iteration k, the algorithm assigns

non-migrating jobs into slots of round k. Consider a slot Si,k. Let ForFree(i, k)
denote the set of jobs that can be assigned to Si,k with no migration. Formally,
j ∈ ForFree(i, k) if and only if (i) npj ,k > 0, (ii) j is assigned to Mi in S0, and
(iii) j was not assigned to Mi in earlier rounds.

In step 3, if possible, the algorithm assigns to Si,k a job from ForFree(i, k)
giving priority to lengths in L1, and then to shorter lengths in L2. Formally,

For k = 1 to n
m

For i = 1 to m
Calculate ForFree(i, k).
If ForFree(i, k) 	= ∅

If there exists j ∈ ForFree(i, k) such that pj ∈ L1. Set Si,k = j , npj ,k −−.
Else, let j be the shortest job in ForFree(i, k) such that pj ∈ L2.

Set Si,k = j , npj ,k −−.

Step 4: Step 4 consists of n
m iterations. In iteration k, the algorithm assigns,

with migrations, jobs to slots Si,k for which ForFree(i, k) = ∅. Formally,

While there exist �, k such that n�,k > 0,
Assign any unassigned job j of length � to any machine i s.t. Si,k = EMPTY .

Set Si,k = j , n�,k −−.

The number of migrations is the number of non-dummy jobs assigned in step 4.
This number is the minimum budget required to reach an optimal schedule. We
prove the optimality of the algorithm by combining two lemmas.

Lemma 1. The algorithm produces an optimal schedule with respect to the total
flow-time.

Proof. The schedule S satisfies the n�,k values calculated by SPT algorithm,
therefore it must be optimal. Since these values were calculated according to
the amounts of jobs in the modified instance, all jobs are assigned, that is, in
Step 4, while there exist �, k such that n�,k > 0, it is guaranteed that there is an
available empty slot for a job of length � in round k.

Reoptimization of the Minimum Total Flow-Time Scheduling Problem 61

Lemma 2. Every schedule minimizing the total flow-time requires at least the
same number of migrations as the number of migrations applied by the algorithm.

Proof. We prove the following greedy choice property: for every round k there
exists an optimal solution minimizing the total number of migrations, in which
the non-migrating jobs assigned to round k are identical to those selected by the
algorithm. The following simple observation will be used to analyze the assign-
ment of jobs having lengths in L2.

Observation 1. For every round k, there are at most two lengths �1, �2 ∈ L2

such that n�1,k > 0 and n�2,k > 0.

Proof. By definition, jobs of lengths in L2 span across more than one round
in any optimal schedule. Another known property of SPT schedules is that all
job lengths in round k are not shorter than job lengths in round k − 1 and not
longer than job lengths in round k+1. Therefore, it is not possible to have three
different lengths, all spanning over round k and an additional round. In order to
preserve the above SPT property, jobs of the middle length, must all be assigned
to round k.

We prove the greedy choice property for round k: Assume that an optimal sched-
ule agrees with the algorithm in rounds earlier than k, and consider the assign-
ment to round k. For every machine i, if ForFree(i, k) = ∅ then this is valid
also for the optimal assignment, and a migration from another machine to Si,k

is inevitable. If ForFree(i, k) includes at least one job then we use exchange
argument to show that any selection of job to Si,k that is different from the
algorithm’s choice can be changed to the algorithm’s choice without hurting the
total number of non-migrating jobs. Let j ∈ ForFree(i, k) be the job assigned
by the algorithm to Si,k. Let j

′ �= j be the job assigned in the optimal schedule
to Si,k. If j

′ �∈ ForFree(i, k), then by switching j and j′, we can only reduce
the number of non-migrating jobs. If j′ ∈ ForFree(i, k), we distinguish between
two cases:

1. pj ∈ L1. In this case, j must be assigned to round k, and assigning it to
Si,k is the only way to assign it for free. By switching the assignment of j′

and j in the optimal assignment, we avoid the migration of j, and cause a
migration to j′, thus, the total number of migrations does not increase.

2. pj ∈ L2. Since the algorithm gives priority to jobs whose lengths are in L1, it
must be that all job lengths in ForFree(i, k) are in L2 and in particular, pj′ ∈
L2. By Observation 1, pj , p

′
j are the only lengths of jobs in ForFree(i, k).

Among lengths in L2, the algorithm gives priority to shorter jobs, therefore,
pj < pj′ . Moreover, k is the last round in which jobs of length pj will be
assigned, as otherwise, the SPT order is not preserved (given that jobs of
length pj′ are assigned on both k and k+1). Therefore, assigning j to Si,k is
the only way to assign it for free. By switching the assignment of j′ and j in
the optimal assignment, we avoid the migration of j, and cause a migration
to j′, thus, the total number of migrations does not increase.

62 G. Baram and T. Tamir

We conclude that any optimal assignment can be modified such that it agrees
with the algorithm’s choice, without hurting the number of migrations. Thus,
the algorithm produces an optimal assignment.

Thus, our algorithm produces an optimal schedule using the minimal number of
migrations.

Time Complexity Analysis: Algorithm 2 consists of 4 steps. In order to
calculate the n�,k values in step 1 the jobs should be sorted by processing times.
If the initial schedule S0 is arbitrary, or if the modification includes jobs addition
or jobs’ length modification, then the sorting takes in O(n log n) time. If the
initial schedule is optimal, that is, in SPT order, and the modification does not
include jobs’ length modification, then the algorithm only needs to sort the jobs
of each round in S0 separately, and concatenate the resulting lists. As there are
m0 jobs in each round we get an O(n logm0) time algorithm. If in the initial
SPT schedule the jobs are assigned sequentially on the machines, or if m0 is a
constant, then Step 1 takes O(n) time.

The partition of job lengths into L1, L2 in Step 2 is clearly linear. Step 3
iterates on the rounds and in each round assigns jobs using the already sorted
list. The ForFree structure can be implemented using a list of pointers. Since
ForFree jobs are assigned in a non-decreasing order and by observation 1, we
conclude that this step takes O(m n

m) = O(n). In step 4, the algorithm assigns
the remaining jobs in time O(n).

We conclude that the time complexity of the algorithm varies between O(n)
and O(n log n), depending on the initial schedule and the allowed modification
in the instance.

3 Rescheduling with a Limited Budget - Unit Migration
Costs

In this section we consider the rescheduling problem assuming a limited budget.
Naturally, the goal is to utilize the budget in the best possible way, that is,
the modified schedule should have a low total flow-time – the minimal possible
among all schedules that can be achieved using the given budget. We assume
unit migration costs, that is, θii′j = 1, independent of the job j and the involved
machines. Thus, the budget B gives the maximal number of allowed migrations.
We also assume that n > B, as otherwise an optimal schedule can be found by
ignoring the migration costs.

The problem can be described as the following weighted matching problem:
Similar to the technique used in Section 2.1, let G = (V,E), be a complete bipar-
tite graph with n nodes on one side and mn nodes in the other side. The node
qik, for i = 1, . . . ,m and k = 1, . . . , n, corresponds to the kth from last position
on machine i. The edge (j, qik) has weight kpj , reflecting the contribution of j
to the total flow-time if it is assigned on the kth from last position on machine i.
We color the edges of G as follows: If an edge (j, qik) corresponds to a migration

Reoptimization of the Minimum Total Flow-Time Scheduling Problem 63

of j, that is, i is not the machine j is assigned to in S0, then the edge is red,
otherwise the edge is blue.

It is easy to verify that a min-weight perfect matching with at most B red
edges corresponds to an optimal reschedule. For an arbitrary bipartite graph
with arbitrary weights, the complexity of the above restricted matching problem
is unknown. Some special cases for which efficient algorithms exist include bi-
partite graphs with unit-weights [15], or with equal sizes (Kn,n) [25]. The more
general problem of determining whether a complete weighted bipartite graph
has a complete matching with a specific weight w in known to be NP-hard [8].
We present optimal polynomial time algorithms for several classes of instances
of our problem.

3.1 The Budget B Is a Constant

Assume that the modification occurs at time t = 0, and the budget B is a
constant. Clearly, every job j may either migrate or not, and as the budget is a
constant, there are at most nB possible ways to select the subset of jobs that are
allowed to migrate. The following algorithm considers each selection separately.

Algorithm 3. An optimal algorithm for rescheduling when the budget B is a
constant

For every possible selection of B jobs J ′ ⊂ J :

1. Let G = (V,E), be a bipartite graph with n nodes on one side and mn nodes in
the other side. The node qik, for i = 1, . . . ,m and k = 1, . . . , n, corresponds to the
kth from last position on machine i. For every job j ∈ J ′, there is an edge (j, qik)
for every i = 1, . . . ,m and k = 1, . . . , n. For every job j 	∈ J ′, there is an edge
(j, qik) for every k = 1, . . . , n, but only for the machine i on which j is assigned to
in S0. The weight of (j, qik) is kpj .

2. Find a min-cost complete matching in G.

Return the schedule induced by the minimal min-cost matching.

Theorem 2. Algorithm 3 returns a modified schedule whose total flow-time is
minimal among all schedules achieved with budget at most B.

3.2 Migrations Are Allowed Only to New Machines

Another case for which it is possible to solve the problem optimally is when
the system’s modification consists of machines addition and the only allowed
migrations are to the new machines. This scenario arises in practice when the
system is upgraded with new machines that are ready to receive tasks, while
the old machines are not capable to accept new tasks. We present an optimal
algorithm for this problem based on a reduction to a min-cost max-flow problem.
An illustration of the flow network is given in Figure 3.

64 G. Baram and T. Tamir

An Overview of the Flow Network: The set of nodes rik for 1 ≤ i ≤ m0, 1 ≤
k ≤ n correspond to positions on the initial machines. The set of nodes qi′k for
1 ≤ i′ ≤ m′, 1 ≤ k ≤ B correspond to positions on the added machines. All the
q-nodes are connected to node d. The capacity of the edge (d, t) is the budget B.
This limited capacity guarantees that the total number of slots occupied on the
new machines will not exceed B. The set of nodes 1 ≤ j ≤ n correspond to the
jobs. Every job j that is assigned to machine i in S0 is connected to the nodes
corresponding to positions on machine i and to all the q-nodes. The capacities
of all edges except for (d, t) are 1. The cost of an edge connecting job j to a node
corresponding to a kth from last position (on any machine) is kpj . All other
edges have cost 0.

Theorem 3. A minimum-cost maximum-flow (of value n) in G corresponds to
an optimal schedule without exceeding the budget B.

Proof. (Sketch) First, note that every valid schedule corresponds to a maximum-
flow in G. On the other hand, not every maximum-flow in G corresponds to a
schedule, since a job might be assigned to the kth from last position in some
machine, while less than k jobs are assigned to that machine. However, such a
maximum-flow is clearly not of minimal cost - a better matching can be obtained
by shifting the k′ < k jobs assigned to that machine into the k′ last slots.
Therefore, a schedule of minimum total flow-time corresponds to a minimum-
cost maximum-flow in G.

As the capacity of (d, t) is B, while all other edges’ capacity is 1, at most B
q-nodes have incoming flow. These nodes correspond to migrating jobs. Thus, a
minimum-cost maximum-flow in G corresponds to an optimal schedule without
exceeding the budget B.

1

j

n

q11

qi’k

qm’B

s

1,0

1,0

1,0

q1B

qm’1

d

t

ri1

rik

rin

B,0

1,0

1,0

1,0

1,pj

1,kpj

1,npj

1,pj

1,kpj

1,Bpj

1,0

1,0

1,0

r11 rm1

rmnr1n

1,0

1,0

Fig. 3. The flow network built for the rescheduling with limited budget problem. Each
edge is labeled by its capacity and the cost of one flow unit.

Reoptimization of the Minimum Total Flow-Time Scheduling Problem 65

This algorithm can be extended for the case in which the systems’ modification
occurs at time t > 0 - similar to the extensions described in Section 2.1.1. If
restarts are allowed, then our extension assumes that every currently processed
job is the shortest job on its machine (which is true if the initial schedule is
optimal, or if the schedule is a result of our algorithm - even on a sequence of
modifications). If restarts are not allowed then our extension is valid for any
initial schedule.

4 Conclusions and Future Work

We studied reoptimization problems arising in production planning, in which the
goal is to combine the objective of finding a schedule with low total flow-time,
with the goal of efficiently converting a given initial schedule to the modified
one. We presented the first positive results in this framework. We presented
algorithms for finding an optimal schedule achieved using the minimal possible
transition cost, and algorithms for optimal utilization of a limited number of
migrations.

Several interesting important problems remain open:

1. Identify the complexity status of the second problem for arbitrary transition
costs and arbitrary modifications. As explained in Section 3, even with unit
transition costs this is a special case of a more general open problem (min-
weight matching with limited number of red edges).

2. Identify the range of budget B for which it is guaranteed that an optimal
reschedule can be achieved using no internal migrations. It is easy to see
that this range is included in m′ < B ≤ m′ n

m0+m′ .
3. Another open research direction is to consider different objective functions.

In particular, minimizing the makespan of the schedule, given by the last
completion time of some job. Since the problem is NP-hard, the reoptimiza-
tion problem is clearly also NP-hard. The goal is to develop an algorithm
for the reoptimization problem whose approximation-ratio is similar to the
best approximation-ratio known for the original problem.

References

1. Amato, G., Cattaneo, G., Italiano, G.F.: Experimental analysis of dynamic mini-
mum spanning tree algorithms. In: Proc. of 8th SODA (1997)

2. Archetti, C., Bertazzi, L., Speranza, M.G.: Reoptimizing the 0-1 knapsack problem.
Discrete Applied Mathematics 158(17) (2010)

3. Ausiello, G., Bonifaci, V., Escoffier, B.: Complexity and approximation in reopti-
mization. In: Cooper, B., Sorbi, A. (eds.) Computability in Context: Computation
and Logic in the Real World. Imperial College Press/World Scientific (2011)

4. Ausiello, G., Escoffier, B., Monnot, J., Paschos, V.T.: Reoptimization of minimum
and maximum traveling salesmans tours. J. of Discrete Algorithms 7(4), 453–463
(2009)

66 G. Baram and T. Tamir

5. Baram, G., Tamir, T.: Reoptimization of the minimum total flow-time scheduling
problem (full version),
http://www.faculty.idc.ac.il/tami/Papers/BTfull.pdf

6. Böckenhauer, H.J., Forlizzi, L., Hromkovič, J., Kneis, J., Kupke, J., Proietti, G.,
Widmayer, P.: On the approximability of TSP on local modifications of optimally
solved instances. Algorithmic Operations Research 2(2) (2007)

7. Bruno, J.L., Coffman, E.G., Sethi, R.: Scheduling independent tasks to reduce
mean finishing time. Communications of the ACM 17, 382–387 (1974)

8. Chandrasekaran, R., Kaboadi, S.N., Murty, K.G.: Some NP-complete problems in
linear programming. Operations Research Letters 1, 101–104 (1982)

9. Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. AddisonWesley
(1967)

10. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Atallah, M.J.
(ed.) CRC Handbook of Algorithms and Theory of Computation, ch. 8 (1999)

11. Escoffier, B., Milanič, M., Paschos, V.T: Simple and fast reoptimizations for the
Steiner tree problem. DIMACS Technical Report 2007-01

12. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization
and approximation in deterministic sequencing and scheduling: A survey. Annals
of Discrete Math. 5, 287–326 (1979)

13. Grandoni, F., Zenklusen, R.: Optimization with more than one budget. In: Proc.
of ESA (2010)

14. Horn, W.: Minimizing average flow-time with parallel machines. Operations Re-
search 21, 846–847 (1973)

15. Karzanov, A.V.: Maximum matching of given weight in complete and complete
bipartite graphs. Kibernetika 1, 7–11 (1987); English translation in CYBNAW 23,
8–13

16. Mattox, D.: Handbook of Physical Vapor Deposition (PVD) Processing, 2nd edn.
Elsevier (2010)

17. Nardelli, E., Proietti, G., Widmayer, P.: Swapping a failing edge of a single source
shortest paths tree is good and fast. Algorithmica 35 (2003)

18. Pallottino, S., Scutella, M.G.: A new algorithm for reoptimizing shortest paths
when the arc costs change. Operations Research Letters 31 (2003)

19. Ravi, R., Goemans, M.X.: The Constrained Minimum Spanning Tree Problem. In:
Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 66–75. Springer,
Heidelberg (1996)

20. Shachnai, H., Tamir, G., Tamir, T.: Minimal Cost Reconfiguration of Data Place-
ment in Storage Area Network. In: Bampis, E., Jansen, K. (eds.) WAOA 2009.
LNCS, vol. 5893, pp. 229–241. Springer, Heidelberg (2010)

21. Shachnai, H., Tamir, G., Tamir, T.: A Theory and Algorithms for Combinatorial
Reoptimization. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp.
618–630. Springer, Heidelberg (2012)

22. Sitters, R.A.: Two NP-Hardness Results for Preemptive Minsum Scheduling of
Unrelated Parallel Machines. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS,
vol. 2081, pp. 396–405. Springer, Heidelberg (2001)

23. Smith, W.E.: Various optimizers for single-stage production. Naval Research Lo-
gistics Quarterly 3, 59–66 (1956)

24. Thorup, M., Karger, D.R.: Dynamic Graph Algorithms with Applications. In:
Halldórsson, M.M. (ed.) SWAT 2000. LNCS, vol. 1851, pp. 1–9. Springer, Hei-
delberg (2000)

25. Yi, T., Murty, K.G., Spera, C.: Matchings in colored bipartite networks. Discrete
Applied Mathematics 121, 261–277 (2002)

http://www.faculty.idc.ac.il/tami/Papers/BTfull.pdf

Energy Efficient Caching

for Phase-Change Memory

Neal Barcelo, Miao Zhou, Daniel Cole, Michael Nugent, and Kirk Pruhs

Department of Computer Science,
University of Pittsburgh, Pittsburgh, Pennsylvania 15260,
{ncb30,miaozhou,dcc20,mnugent,kirk}@cs.pitt.edu

Abstract. Phase-Change Memory (PCM) has the potential to replace
DRAM as the primary memory technology due to its non-volatility, scal-
ability, and high energy efficiency. However, the adoption of PCM will re-
quire technological solutions to surmount some deficiencies of PCM, such
as writes requiring significantly more energy and time than reads. One
way to limit the number of writes is by adopting a last-level cache replace-
ment policy that is aware of the asymmetric nature of PCM read/write
costs. We first develop a cache replacement algorithm, Asymmetric Land-
lord (AL), and show that it is theoretically optimal in that it gives the
best possible guarantee on relative error. We also propose an algorithm
Variable Aging (VA), which is a variation of AL. We have carried out a
simulation analysis comparing the algorithms LRU, N-Chance, AL, and
VA. For benchmarks that are a mixture of reads and writes, VA is com-
parable or better than N-Chance, even for the best choice of N , and uses
at least 11% less energy than LRU. For read dominated benchmarks, we
find that AL and VA are comparable to LRU, while N-Chance (using
the N that was best for benchmarks that were a mixture of reads and
writes) uses at least 20% more energy.

Keywords: cache replacement, algorithms,phase changememory, energy,
power.

1 Introduction

Dynamic Random Access Memory (DRAM) has been the memory of choice for
most computer systems for decades, but it now faces two critical problems. First,
DRAM is projected to encounter severe scalability problems in coming years be-
cause DRAM relies on charge placement and control logic, which are inherently
unscalable [1]. Second, increasingly large DRAM components have become a ma-
jor consumer of energy in computer systems. Currently main memory consumes
up to 40% of the energy in computer systems, comparable to, or slightly higher
than, the energy consumption of processors [2].

In reaction to these problems, Phase-Change Memory (PCM) has been pro-
posed as a replacement technology for DRAM (or maybe an add-on technology
to DRAM). Desirable properties of PCM include: non-volatility, good scalability,

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 67–81, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

68 N. Barcelo et al.

and high energy efficiency (due to its low read power and very low idle power).
Undesirable properties of PCM include: non-durability to writes (PCM memory
can fail after 107 or 108 writes, which can happen in days or even hours without
wear-leveling techniques [3–6]), PCM is slower than DRAM, and with current
technology, PCM writes have up to 20 times higher latency, and 10 times higher
energy consumption than PCM reads [1,7].

To mitigate these shortcomings, researchers have proposed to organize PCM
main memory with a small cache [1,8,9]. The cache could be an on-chip cache or
an off-chip DRAM cache. Logically, it is the last-level cache (LLC) of the PCM
main memory. The LLC improves performance by caching highly accessed data,
and further, extends PCM lifetime and reduces energy consumption by filtering
a large portion of destructive and energy costly PCM writes.

The LLC replacement policy will be crucial for improving the energy efficiency
of PCM as a main memory technology. An ideal replacement strategy must take
into account the read/write asymmetry of PCM: PCM reads are relatively fast
and energy efficient, while PCM writes are very slow and energy hungry. PCM
bits are stored as the physical state of chalcogenide material, and writes are costly
because changing this state is a process of heating followed by controlled cooling.
However, since PCM can be written to one bit at a time (unlike DRAM), how
much time and energy is needed to write a page is directly related to how many
bits of that page have changed. So intuitively a good replacement strategy should
be more hesitant (than a replacement strategy for DRAM) to evict dirty cache
pages since this involves writing to PCM, and just how hesitant may depend on
the number of bits that have changed in that page. The most common DRAM
replacement strategy, Least Recently Used (LRU), does not differentiate between
evicting clean and dirty pages.

To the best of of our knowledge, there is only one paper in the literature
specifically addressing the issue of developing a good cache replacement strategy
for PCM. Ferreira et al. [6] proposed a policy N -Chance, where N is a tunable
integer parameter, that is a variation of LRU. N -Chance evicts the least recently
accessed clean page from cache, unless all of the N least recently accessed pages
are dirty, in which case it evicts the least recently accessed page. Note that
when N = 1, N -Chance is exactly LRU, so there is always a choice of the
parameter N where N -Chance is at least as good as LRU. In a simulation study,
[6] showed that N -Chance can be significantly better than LRU on common
benchmarks, given an appropriate choice for the parameter N . However, [6] also
showed that the best choice of the parameter N can vary significantly based on
the application, and on the ratio of the write to read cost in PCM.

The goal of the research reported here is to theoretically and experimentally
investigate other replacement strategies that account for the read/write cost
asymmetry of PCM, and in particular, to develop algorithms that do not re-
quire an application specific tunable parameter and that take into account how
dirty a page is. We primarily focus on the energy costs of accessing PCM. We
adopt the most natural simple model, which assumes that a PCM read costs
1 unit of energy, and a PCM write costs some constant c > 1 units of energy.

Energy Efficient Caching for Phase-Change Memory 69

Most naturally c might be the cost to change half of the bits in the page, which
would be approximately the number of bits that would have to be written if
there was no correlation between a page’s original value and the page’s new
value. Actually our theoretical results generalize to a setting where the write
cost is concave in the number of times that page has been written to while being
in cache. Discussion of why this might be a reasonable assumption for common
applications can be found in [10]. For example, if a random fixed percentage
of the bits are changed with each write then the cost to write back to PCM is
concave in the number of writes.

One of our research goals was to design provably scalable algorithms. A scal-
able algorithm guarantees a bounded error relative to the minimum possible
achievable cost with slightly less resources, which in our case means a slightly
smaller cache. A scalable algorithm guarantees that for every access pattern,
if the PCM energy costs were high for the scalable algorithm, then the energy
costs would be high for every algorithm equipped with a slightly smaller cache.
Thus intuitively scalability means that, for every access pattern, either the cache
size was at a phase change point for the access pattern where the costs change
dramatically for that cache size, or the high energy costs were unavoidable for
that access pattern (and thus not the algorithm’s fault).

It is not too difficult to see that even for very simple memory access patterns,
N -Chance can have very high PCM energy costs, even if low energy costs are
achievable with a smaller cache. Intuitively if N is too large, N -Chance can have
an unnecessarily high cost for cycles of read requests to clean pages, because
N -Chance can indefinitely freeze up to N dirty pages in cache, which effectively
reduces the cache size available for the clean pages. And if N is too small, N -
Chance can have unnecessarily high cost for a sequence that alternates between
reads to one working set of pages, and writes to another working set of pages,
because N -Chance won’t keep enough of the dirty pages in cache.

In section 3 we develop and analyze a scalable cache replacement algorithm
Asymmetric Landlord (AL) that guarantees a bounded error. We show that for
all access patterns, the PCM energy cost for AL is at most 1

ε times the minimum
possible cost for that access pattern for a cache of size (1− ε) times the current
cache. Roughly speaking, AL associates a Time-To-Live (TTL) value with each
page in cache, and always evicts the least recently used page among the pages
with the lowest TTL value (and reduces the TTL of the other pages by the TTL
of the evicted page). When clean pages are brought into cache, they are initially
given a TTL of 1. When dirty pages are brought into cache they are given a
TTL of c1 + 1, where c1 is the average energy cost to write back a page that
has been written to once. When write costs are small, AL is intuitively similar
to LRU (but it is not exactly LRU). Further, AL does not have any application
specific tunable parameters.

In an effort to more intuitively describe AL (there are a few more cases than
described above), we discovered another intuitive algorithm, that we call Variable
Aging (VA). VA is another generalization of LRU. In LRU, each page in cache
can be viewed as having an age equal to the number of accesses since it was

70 N. Barcelo et al.

last accessed (so pages are reborn when they are accessed), where upon eviction,
LRU evicts the oldest page in cache. In VA, the rate at which pages age is
inversely proportional to the energy cost that the page will incur when evicted.
So clean pages age at a rate of 1, and dirty pages age at a rate of 1/c, where c is
the average cost of writing a page to memory. Again VA always evicts the oldest
page. So both AL and VA have ages, but in AL the age is a time until death,
and in VA the age is a time since rebirth. It is not difficult to see that there are
access patterns where VA can have high energy costs, even if low energy costs
were achievable with a small cache.

LRU, N -Chance, AL, and VA, all assume that pages must be brought into
cache to be accessed. In principle, one might also read-through or write-through
cache by accessing the page directly from PCM, avoiding having to move the
page into cache. This would be the right choice for example if the cache was all
dirty, and there was a single read to a page that was not in cache; a read-through
would cost a PCM read, while an eviction would cost a PCM read and a PCM
write. In section 3 we develop a replacement algorithm that incorporates read-
throughs and write-throughs (and also the possibility of variable sized pages).
We show that for all access patterns, the PCM energy cost for this algorithm
is at most 2

ε times the minimum possible cost (again assuming the possibilities
of read-throughs and write-throughs) for that access pattern for a cache of size
(1− ε) times the current cache.

We have carried out a simulation analysis comparing the algorithms that do
not use read-through and write-through, namely LRU, N -Chance, AL, and VA.
In section 4, we give the experimental set-up. We evaluate the energy efficiency
and performance of the proposed policies with SPEC CPU 2006 benchmarks
using a trace-driven cycle-accurate simulator. In section 5, we report on our
experimental results. For benchmarks that are a mixture of reads and writes,
VA is comparable or better than N -Chance, even for the best choice of N , and
uses at least 11% less energy than LRU. For read dominated benchmarks, we
find that AL and VA are comparable to LRU, while N -Chance (using the N
that was best for benchmarks that were a mixture of reads and writes) uses at
least 20% more energy.

2 Related Work

The design and analysis of AL is heavily indebted to the design and analysis
of the Landlord algorithm for browser caching [11]. In browser caching, there
is a cost and a size associated with each page. There are two main differences
between browser caching, and caching for PCM. The first is that the costs in
browser caching can take on any value, not just 1 or c. This would seem to make
browser caching harder than PCM caching. The second difference is that the
page cost in PCM is time dependent, as it can rise from 1 to c when a previously
clean page is written to. This would seem to make PCM caching harder than
browser caching. And in fact, while the problem of optimal browser caching with
equal sized files can be computed by a min-cost flow computation [12], we do

Energy Efficient Caching for Phase-Change Memory 71

not know how to compute the optimal PCM caching cost with a polynomial
time algorithm. The main conceptual difficulty in adapting the Landlord results
in [11] to our purposes was that in PCM caching a cost can be incurred without
a change in the contents of cache (when a page is dirtied).

For online randomized caching with uniform costs and page sizes, [13] pre-
sented the log 2k-competitive marking algorithm and [14] gave a log k-competitive
algorithm, which is the best possible competitive ratio. [15] gave a O(log2 k)-
competitive algorithm when pages have arbitrary sizes and weights, and re-
cently [16] used similar ideas to develop a O(log k)-competitive algorithm for
this problem.

One might also wish to limit the number of writes to reduce wear in a memory
technology where durability is an issue, such as flash or PCM. [17] develops an
algorithm similar to N -Chance for flash memory, with part of the motivation
being the asymmetric cost of reads and writes in flash memory.

3 Theoretical Development of the Asymmetric Landlord
Algorithm

3.1 Problem Model

Consider the following model for the problem of asymmetric weighted page
caching to minimize total energy consumption. There is a fully associative cache
of size k, and we are given a sequence of requests I = r1, r2, . . . rm where
ri = (fi, s) denotes a request for page fi with s ∈ {r, w} denoting a read or
write. There is a read cost, normalized to 1, representing the cost in terms of
energy of reading a page from slow memory (PCM). There is a concave function
C mapping the number of writes to a page to the cost in terms of energy of
writing it to slow memory. An algorithm must satisfy each request by bringing
the requested page into cache and when necessary evicting other pages from
cache to maintain that the number of pages in cache is no more than k. All
requests are received on-line, meaning an algorithm must make a decision for
request ri without knowledge of future requests rj , where j > i. We assume that
there is no cost for reading or writing to a page in cache, however, any page
that is written to s times while in cache must pay the write cost C(s) when
evicted. For convenience, we define the incremental cost of the ith write to be
ci = C(i)− C(i − 1). We say a page has “dirtiness i” if it has been written to i
times without being evicted, and a page is “dirty” if has dirtiness is at least 1.
For an on-line algorithm A, and a request sequence I, let Ak(I) denote the cost
of algorithm A with cache size k, where the cost is the total energy consumed
by A in satisfying all requests in I. We say that an algorithm A is (k/h)-cache

c-competitive if maxI
Ak(I)
Oh(I)

≤ c, where Oh(I) is the optimal cost using a cache

of size h ≤ k.
The algorithm Asymmetric Landlord (AL) was informally described in the

introduction; a formal description may be found in the adjacent figure. The one
situation not discussed in the informal description was how to handle the case

72 N. Barcelo et al.

that a page in cache with dirtiness i is written to. In this case AL increments
the age of this page by ci+1. In Theorem 1 we show that Asymmetric Landlord
is (k/h)-cache (k/(k − h + 1))-competitive. Even for symmetric read and write
costs, this is the best achievable ratio [18]. AL and the proof of Theorem 1 are
derived from the Landlord algorithm and corresponding analysis given in [11].

Algorithm 1. Asymmetric Landlord

1: When there is a request (g, s)
2: if g is not in the cache then
3: Δ = minf∈cache TTL[f]
4: For each page f in cache, decrease TTL[f] by Δ
5: Evict the oldest page f such that TTL[f] = 0
6: Bring g into the cache
7: if s = r then Set TTL[g] = 1
8: else Set TTL[g] = c1 + 1

9: else Case 1: g has dirtiness i and s = w then Set TTL[g] = max(TTL[g] +
ci+1, c1 + 1)

10: Case 2: g is clean and s = r then Set TTL[g] = 1
11: Case 3: g is dirty and s = r then Do nothing

Theorem 1. Asymmetric Landlord (AL) is (k/h)-cache k
k−h+1 -competitive for

asymmetric weighted page caching.

Proof. We use a potential function argument very similar to the one found in [11].
That is we find a function Φ that maps the state of AL and the state of the
optimal solution to a nonnegative integer, where Φ is zero if the cache is empty
in both states. Further we need that for every access:

(k − h+ 1) ·ΔAk +ΔΦ ≤ k ·ΔOh (1)

where Δ denotes the change due to that request. The claim then follows by
summing up these inequalities over all requests, and noting that the various
terms telescope.

To define the potential function Φ that we use, let AL be the set of pages in the
cache of Asymmetric Landlord, OPT be the set of pages in the Optimal’s cache,
and OPTl ⊆ OPT be the set of pages in Optimal’s cache that have dirtiness
l or higher. By convention, we assume that for any page f not in the cache
TTL[f] = 0. Define the potential function

Φ = (h− 1) ·
∑
f∈AL

TTL[f] + k
(∑
f∈OPT

max
(
1 +

∑
l:f∈OPTl

cl − TTL[f], 0
))

(2)

We define Φ1 = (h − 1) ·
∑

f∈AL TTL[f] and Φ2 = k · (
∑

f∈OPTmax(1 +∑
l:f∈OPTl

cl − TTL[f], 0)), so Φ = Φ1 + Φ2. Clearly Φ is initially 0 when the

Energy Efficient Caching for Phase-Change Memory 73

cache is empty, and Φ ≥ 0 since the max term is at least 0. For simplicity, we
split up write requests into a read followed by a write (any requested page not
in the cache is always read first, so writes are always performed on pages in
the cache). When there is a write request to a page having dirtiness l for either
algorithm, we assume that the cost of cl+1 is paid immediately as opposed to
when the page is evicted. In order to prove inequality (1), we show that:

– if Optimal brings a (clean) page into cache, Φ increases by at most k.
– if Asymmetric Landlord brings a page into cache, Φ decreases by at least

k − h+ 1 (regardless of whether or not it is a write).
– if there is a write to a page having dirtiness l1 in Optimal and l2 in Landlord,

Φ increases by at most kcl1+1 − (k − h+ 1)cl2+1.
– at all other times Φ does not increase.

The total effect of each request on Φ can be broken down into steps, and we
analyze the effect of each step on Φ. Note that each step assumes all previous
steps have completed.

– Optimal evicts a page f : Since this just removes a term from Φ2 and each
term is nonnegative, Φ cannot increase.

– Optimal retrieves a page g: Optimal pays the read cost 1 (if it is a write
request, the write is performed in a future step). Since TTL[g] ≥ 0, Φ can
increase by at most k.

– Asymmetric Landlord decreases TTL[f] for all f ∈ AL: All TTL’s are de-
creased by the same amount, call it Δ. Φ1 decreases by Δ(h − 1)k. Φ2

increases by at most Δk for each page in both OPT and AL. Therefore,
the net decrease in Φ is at least Δ times (h − 1)k − k · size(OPT ∩ AL)
where size(OPT ∩ AL) denotes the number of pages that appear in both
OPT and AL. We know the requested page g is in OPT but not AL, so
size(OPT∩AL) ≤ h− 1. Therefore, the decrease in the potential function is
at least Δ times (h− 1)k − k(h− 1) = 0 and thus Φ does not increase.

– Asymmetric Landlord evicts a page f : Asymmetric Landlord only evicts f
when TTL[f] = 0. Thus Φ is unchanged.

– Asymmetric Landlord retrieves the requested page g and sets TTL[g] to 1:
In this step, Asymmetric Landlord pays the read cost of 1. Since g was not
previously in the cache (and so TTL[g] was zero), and because we know
g ∈ OPT, Φ decreases by −(h− 1) + k = k − h+ 1.

– Optimal writes to page g with dirtiness l1 and Asymmetric Landlord writes
to page g with dirtiness l2 and adds cl2+1 to TTL[g]: Here, Optimal pays the
write cost cl1+1 and Asymmetric Landlord pays the write cost cl2+1. First
note that an increase of TTL[g] by cl2+1 increses Φ1 by (h− 1)cl2+1. There
are two cases: either g is dirtier in Asymmetric Landlord’s cache, or it is not.
If g is dirtier in Asymmetric Landlord’s cache, then l2 > l1. When g is

added to OPTl1+1, Φ2 increases by some amount δ1, which is at most cl1+1.
Adding cl2+1 to TTL[g] then decreases Φ2 by δ2 = min(cl2+1, δ1). Since C is
concave, cl2+1 ≤ cl1+1, so δ1−δ2 has a maximum value of cl1+1−cl2+1. Since

74 N. Barcelo et al.

the total increase toΦ2 is k(δ1 − δ2) ≤ k(cl1+1 − cl2+1), the total increase in
Φ is at most k(cl1+1 − cl2+1) + (h− 1)cl2+1 = kcl1+1 − (k − h+ 1)cl2+1.
If g is not dirtier in Asymmetric Landlord’s cache, then l2 ≤ l1. Since

before the increase to TTL[g] it was the case that TTL[g] ≤ 1 +
∑

l≤l2
cl ≤

1 +
∑

l≤l1
cl the addition of g to OPTl1+1 increases Φ2 by cl1+1 and the

increase to TTL[g] decreases Φ2 by cl2+1, so the total increase to Φ2 is
k(cl1+1− cl2+1), and thus the total increase of Φ is kcl1+1− (k−h+1)cl2+1.

– Asymmetric Landlord increases TTL[g] to a maximum of 1 if the request is
a read or c1 + 1 if the request is a write: Again, we know g ∈ OPT, and if
the request is a write we further know g ∈ OPT1. If TTL[g] changes, it can
only increase. In this case, since h− 1 < k, Φ decreases (though the amount
of decrease depends on whether or not the request is a write).

3.2 Asymmetric Landlord with Read-throughs and Write-throughs

In this section, we consider the situation where a page need not be brought into
cache to be accessed. We also assume that pages may be of different sizes, and
that there is only one level of dirtiness (i.e., ci = 0 for i > 1 and c1 = c). Note
that in the case of a write-through, the cost is just the cost to write the page
(i.e., the cost is c, not c + 1). For a page f , we denote its size by size(f). The
algorithm AL2 that we give is similar to Asymmetric Landlord. Intuitively, the
difference is when there is a cache miss, AL2 gives the accessed page the TTL
that it would have gotten had it been moved into cache, and then performs the
steps of AL; if AL would then have evicted this new page, then AL2 will access
the page directly from PCM memory. To accomplish this, AL2 keeps both TTLr

and a TTLw credits for each page which are affected differently by reads and
writes. The time-to-live of a page can be thought of as the sum of these two
values. The pseudo-code for AL2 can be found in the adjacent figure. Note that
in line 10 when decreasing the sum we must make two assignment statements
to ensure neither TTL goes negative. We then claim that AL2 is k/h-cache
2(k + 1)/(k − h+ 1)-competitive.

Theorem 2. Asymmetric Landlord 2 is 2(k + 1)/(k − h + 1) competitive for
asymmetric weighted page caching with read-throughs and write-throughs.

Proof. To prove theorem 2, we start with a definition of fake caches that we will
need to fully define the potential function.

Fake Caches: The concept of a fake cache is used to maintain a consistent
relationship between OPT’s cache and AL2’s cache even if one or both of the
algorithms satisfy a request for file f with a read-through or write-through. Both
OPT and AL2 have a fake cache that is empty between requests, and during a
request (sometimes) holds the currently requested file. Whether a fake cache
holds the currently requested file simply depends on the actions of AL2 and
OPT. Fake caches are not part of either algorithm, rather, they can be thought
of as part of the potential function in that they are used for the accounting of
costs only. We now describe each fake cache:

Energy Efficient Caching for Phase-Change Memory 75

Algorithm 2. Asymmetric Landlord 2

1: When there is a request (g, s)
2: if g is not in the cache then
3: TTLr[g] = 1
4: if s = w then TTLw [g] = c

5: until |C|+ size(g) ≤ k or TTLr [g]+ TTLw [g] = 0
6: Λ = minf∈C∪g(TTLr[f] + TTLw[f])/size[f]
7: for each f ∈ C ∪ g: Decease TTLr [f] + TTLw [f] by Δ· size[f]
8: Evict all f such that TTLr [f]+ TTLw [f] = 0
9: if TTLr [g]+ TTLw [g] > 0 then Bring g into the cache
10: else Perform requested operation directly in memory

11: else Case 1: g is clean and s = w then Set TTLw[g] = c
12: Case 2: g is dirty and s = w then Set TTLw [g] = c
13: Case 3: g is clean and s = r then Set TTLr[g] = 1
14: Case 4: g is dirty and s = r then Do nothing

OPT’s Fake Cache: If OPT fulfils a request for file f with a read-through
or write-through, then we say that OPT pays the read or write cost for f and
brings f into a “fake” cache. At some point before the next request, we say that
OPT then evicts f from the fake cache. When, exactly, the eviction occurs is
dependent on AL2’s actions for the current request, but it is always prior to the
next request.

AL2’s Fake Cache: On an AL2 cache miss, we say that AL2 sets TTLr[f] to
1, puts f in AL2’s “fake” cache and pays cost 1. If the request is a write then
when AL2 sets TTLw[f] to c, AL2 writes to clean file f in the fake cache and
pays c. The decrease step will then determine if f is brought into the actual
cache or evicted from the fake cache (i.e. a read or write through is performed).
In either case, the fake cache will be empty prior to the next request.

We can now define the potential function to prove our result.

Φ =
h

k − h+ 1

∑
f∈AL2

(TTLr[f] + TTLw[f])

+
k + 1

k − h+ 1

(∑
f∈OPT

(1− TTLr[f]) +
∑

f∈OPTd

(c− TTLw[f])
)

where OPT and OPTd are the set of all pages and dirty pages respectively
in OPT’s cache and AL2 is the set of pages in AL2’s cache. OPT and OPTd

contain the file in OPT’s fake cache, and likewise AL2 contain the file in AL2’s
fake cache.

To prove theorem 2, we will show that for every request,

ΔAk +ΔΦ ≤ 2
k + 1

k − h+ 1
ΔOh (3)

76 N. Barcelo et al.

To do this we start with what we call Actions, which are basic operations that
either AL2 or OPT perform to fulfill a request. We will first show that equation 3
holds independent of when the Action happens or as long as some precondition
is met. Then we consider what OPT and AL2 do when requests arrive. We show
that when a request arrives, AL2 and OPT perform a sequence of Actions plus
some additional steps, and that equation 3 holds at every point in this sequence.

Actions:

1. OPT evicts from real or fake cache: As 1 ≥ TTLr[f] and c ≥ TTLw[f], Φ
cannot increase.

2. Landlord evicts : Landlord only evicts when TTLr[f] +TTLw[f] = 0, thus Φ
cannot increase.

3. OPT reads from memory, writes to memory, or writes to a clean page in
real or fake cache:
(a) OPT reads: OPT pays 1, and Φ can increase by at most k+1

k−h+1 , giving,

ΔΦ ≤ k+1
k−h+1 ≤ 2 k+1

k−h+1ΔOPTh

(b) OPT writes: Follow the read case with cost of c instead of cost of 1.
4. AL2 reads g from memory, writes g to memory, or writes to a clean page

g in real or fake cache (precondition: g ∈ OPT if reading, g ∈ OPTd if
writing):
(a) AL2 reads g and sets TTLr[g] to 1: AL2 pays a cost of 1 while Φ increases

by h
k−h+1 and decreases by k+1

k−h+1 as we know g ∈ OPT . This gives,1 +
h

k−h+1 −
k+1

k−h+1 = (1− k−h+1
k−h+1) = 0

(b) AL2 writes to clean page g and sets TTLw[g] to c: Follow the read case
but with cost of c instead of cost of 1 and OPTd instead of OPT .

5. Landlord performs a decrease (precondition: OPT’s fake cache is empty): If
size(X) denotes the sum of the sizes of all files in X , then because the de-
crease of TTLr[f]+TTLw[f] is Λ size(f), Φ increases by Λ k+1

k−h+1 size((OPT∪
OPTd) ∩ AL2) and decreases by Λ h

k−h+1 size(AL2). Thus we get, ΔΦ =

Λ(k+1
k−h+1 size((OPT ∪OPTd) ∩ AL2)− h

k−h+1 size(AL2)). However, because
OPT’s fake cache is empty, any file in OPTd is also in OPT, thus size((OPT∪
OPTd) ∩ AL2) = size(OPT ∩ AL2) ≤ size(OPT) ≤ h. It must be that
size(AL2) ≥ k + 1, otherwise everything could fit in AL2’s cache and AL2
wouldn’t perform a decrease. Thus we have that ΔΦ ≤ Λ(h k+1

k−h+1 − (k +

1) h
k−h+1) = 0.

We break Requests into two main cases, when AL2 has a cache hit and when AL2
has a cache miss. For the cache miss case, we have three sub-cases, if OPT does
a read-through, if OPT does a write-through, or if OPT does neither (OPT will
never do both for a single request). We break each case into a number of steps
where each step is either an Action or a more complex step which we explain in
detail. If a step is an Action, then the number at the end of a step represents
the Action of the current step, thus implying 3 holds at that step. For steps
consisting of an Action with a precondition, we specify why the precondition is
met at that step. For the rest of the steps we describe explicitly why equation 3

Energy Efficient Caching for Phase-Change Memory 77

holds. Lastly, note that the case of a write request to clean file in AL2’s cache
will be accounted for as an AL2 cache miss. This is mainly because AL2 pays a
cost in this case, while in the normal AL2 cache hit case, AL2 pays no cost.

Requests:

1. AL2 Cache Hit :
(a) (if necessary) OPT evicts file h �= g from cache. (1)
(b) (if g /∈ OPT) OPT reads from memory, writes to memory, or writes to

a clean page in real or fake cache. (3)
(c) Landlord resets either TTLr[g] or TTLw[g]: Call the amount increased

in either case λ ≥ 0. In both cases Φ increases by h/(k−h+1) ·λ. In the
first case, it must be that g ∈ OPT , and in the second g ∈ OPTd, thus
in both cases, Φ decreases by (k+ 1)/(k− h+ 1) · λ. Because k + 1 > h,
Φ cannot increase.

(d) (if necessary) OPT evicts from fake cache. (1)
2. AL2 Cache Miss :

(a) OPT doesn’t perform a read-through or write-through:
i. (if necessary) OPT evicts file h �= g from cache. (1)
ii. (if necessary) OPT reads from memory and/or writes to a clean file

in cache. (3)
iii. AL2 reads/writes into fake or real cache: By the definition of the case,

it must be that g ∈ OPT and if the request is a write, g ∈ OPTd

also, thus we can apply 4.
iv. (if necessary) AL2 performs a decrease step: By the definition of the

case, OPT’s fake cache is empty, thus we can apply 5.
v. (if necessary) AL2 evicts. (2)

(b) OPT does a read-through:
i. OPT reads into fake cache. (3)
ii. AL2 reads into fake cache: By the definition of the case and the

previous step, it must be that g ∈ OPT , thus we can apply 4.
iii. OPT evicts from fake cache. (1)
iv. (if necessary) AL2 decreases: By the previous step, OPT’s fake cache

is empty, thus we can apply 5.
v. (if necessary) AL2 evicts. (2)

(c) OPT does a write-through:
i. We combine the case when OPT writes into fake cache and when

AL2 reads/writes into fake cache. Here ΔOPTh = c and ΔAL2k =
c+1. When OPT writes, Φ increases by k+1

k−h+1c, when AL2 does the

read, Φ increases by h
k−h+1 . When AL2 does the write, Φ decreases

by k+1
k−h+1c and increases by h

k−h+1c. After cancelling we have that

ΔAL2k+ΔΦ is bounded by c+1+ h
k−h+1+

h
k−h+1 c ≤ 2 k+1

k−h+1ΔOPTh.
ii. OPT evicts from fake cache. (1)
iii. (if necessary) LL decreases: By the previous step, OPT’s fake cache

is empty, thus we can apply 5.
iv. (if necessary) LL evicts. (2)

We have shown that for all requests, equation 3 holds. The desired result then
follows by summing over all requests.

78 N. Barcelo et al.

4 Experimental Methodology

4.1 The Variable Aging Algorithm

Here we formally describe the Variable Aging (VA) algorithm. Let c be the
average cost of writing a page to memory, and 1 be the cost of reading a page
from memory. Each page in cache has an age associated with it. When a page f
is requested, each page in cache has its age increased by 1 if it is clean and 1/c
if it is dirty. If f is not in cache, if necessary (i.e., if the cache is full) evict the
page with the highest age, and bring f into the cache. Reset the age of f to 0.

4.2 Methodology and Experimental Setup

The main memory architecture we consider consists of three levels of caches
and the PCM main memory. The L1 instruction and data cache is a 4-way
64KB cache and the L2 cache is a unified 2MB 8-way associative cache. The
8MB L3 cache (i.e., the last level cache or LLC) works as a traditional write-
allocate cache with a write-back policy (to PCM). That is, when a modified
cache line is evicted from the LLC, it must be written to the PCM. A primary
benefit the LLC provides to PCM main memory is that by coalescing a sequence
of writes to the same line in the cache, the LLC partially mitigates the negative
impacts of PCM writes. We assume the PCM write energy cost is 10x of PCM
read [1,19].

We use Simics [20] to model the processor, L1 and L2 caches, and generate
memory traces, which are input to an in-house cycle-accurate simulator that
models the LLC and PCM. The memory trace contains, for each memory request
by the CPU, the time stamp (assuming zero memory latency, that is, counting
only CPU cycles to execute the task and L1/L2 cache latency), the type of
request (read vs. write) and the physical address of the memory reference.

We use the SPEC CPU2006 [21] benchmarks for evaluation. Each benchmark
was run in Simics for 2 billion instructions.

5 Evaluation Results

To understand the effectiveness of our schemes, we compare Asymmetric Land-
lord (AL) and Variable Aging (VA) to N -Chance [6].

Figures 1 (a) and (b) show the number of PCM reads and writes of 4-, 8-,
12-, 16-Chance, AL and VA normalized to LRU. The bar labeled “average” is
the average result of all 15 benchmarks. In general, picking a large parameter N
for N -Chance reduces the number of PCM writes at the cost of incurring more
PCM reads. However, the impact of the parameter N on the number of PCM
reads and writes depends on benchmarks.

To better understand this impact, we categorize the benchmarks into three
groups. For gcc and mcf, N -Chance reduces the number of PCM reads as well
as writes. This is because the dirty pages of these benchmarks are frequently
accessed, and keeping the frequently accessed dirty pages is good for reducing

Energy Efficient Caching for Phase-Change Memory 79

Fig. 1. Impact on number of (a) PCM reads, and (b) PCM writes (c) Energy

the LLC miss rate and writeback rate. As a result, 16-Chance is always the
best choice. On the contrary, for GemsFDTD, lbm, and xalancbmk, N -Chance
slightly reduces the number of PCM writes, while increasing the number of PCM
reads substantially. Notice that even though 8-Chance eliminates all the PCM
writes for xalancbmk, the benefit is limited due to the fact that memory accesses
of xalancbmk are dominated by read references (i.e., ≥ 98%). In this case, we
should pick N = 1. Lastly, for other benchmarks such as milc, cactusADM,
and leslie3d, N -Chance reduces the number of PCM writes with comparable
increase in the number of PCM reads. In this case, it is difficult to identify the
value of N which leads to the best energy efficiency. In summary, there exists
no universal value of the parameter N for N -Chance policy that minimizes the
energy consumptions for applications.

On average, 4-, 8-, 12-, and 16-Chance increase the number of PCM reads by
3%, 5%, 21%, and 35%, and reduce the number of PCM writes by 22%, 30%,
33%, and 35% over LRU, respectively. As one might imagine, N -Chance will
tend to rigidly reserve part of the LLC space to preferably store dirty pages,
effectively reducing the LLC cache size therefore hurting the cache hit rate. For
instance, for xalancbmk, N -Chance saves limited number of PCM writes (i.e.,
the total number of dirty pages is limited), but increases the number of PCM
reads by up to 88%, compared to LRU. Compared to N -Chance, AL and VA do
a better job in balancing the trade-off between PCM write reduction and PCM
read increase, and adapting to various applications. Instead of rigidly reserving
partial LLC capacity for dirty pages, AL and VA make replacement decisions

80 N. Barcelo et al.

based on liveliness and age information: AL assigns different TTL values to
clean and dirty pages; VA ages clean and dirty pages at different rates. These
mechanisms ensure that AL and VA do not suffer from the instances mentioned
above. On average, AL and VA only increase the number of PCM reads by 11%
and 3% for xalancbmk over LRU, respectively.

Figure 1 (c) shows the PCM energy consumption of 4-, 8-, 12-, 16-Chance,
AL and VA normalized to LRU. Overall, N -Chance and our proposed policies
save energy. For example, for mcf, 16-Chance outperforms LRU by 83% due to
the 40% reduction in the number of PCM reads and the 98% reduction in the
number of PCM writes. AL and VA also save 80% and 91% of the PCM energy
consumption for mcf. As we pointed out, N -Chance fails to pick a universal pa-
rameter that is suitable for all benchmarks. 16-Chance is the best choice for mcf,
milc, and calculix ; 12-Chance is favorable for astar ; 8-Chance ensures the best
energy efficiency for cactusADM, and libquantum; while 1-Chance (i.e., LRU)
is suitable for xalancbmk. The benchmark xalancbmk represents a pathological
case for N -Chance replacement policy such that any parameter N except 1 will
result in large increase in energy consumption. On the contrary, AL and VA can
easily adjust to the access patterns of the applications to avoid the pathological
cases. For instance, for xalancbmk, AL results in the same energy consumption
as LRU, and VA even outperforms LRU by 3%.

AL achieves comparable energy savings against the best N -Chance for most
of the benchmarks except cactusADM and lbm. VA delivers comparable energy
efficiency to, or even outperforms the best N -Chance. On average, 4-, 8-, 12-,
16-Chance, AL and VA reduce the PCM energy by 5%, 7%, 6%, 6%, 5%, and
10% over LRU, respectively.

Acknowledgment. Supported in part by an IBM Faculty Award, and NSF
grants CCF-0830558, CNS-1012070, CNS-1253218, and CCF-1115575.We thank
Neal Young and Rami Melhem for invaluable discussions.

References

1. Lee, B.C., Ipek, E., Mutlu, O., Burger, D.: Architecting phase change memory
as a scalable dram alternative. In: 36th International Symposium on Computer
Architecture, ISCA, pp. 2–13 (2009)

2. Li, D., Vetter, J.S., Marin, G., McCurdy, C., Cira, C., Liu, Z., Yu, W.: Identifying
opportunities for byte-addressable non-volatile memory in extreme-scale scientific
applications. In: 26th IEEE International Parallel and Distributed Processing Sym-
posium, IPDPS, pp. 945–956 (2012)

3. Zhou, P., Zhao, B., Yang, J., Zhang, Y.: A durable and energy efficient main
memory using phase change memory technology. In: 36th International Symposium
on Computer Architecture, ISCA, pp. 14–23 (2009)

4. Qureshi, M.K., Karidis, J.P., Franceschini, M., Srinivasan, V., Lastras, L., Abali,
B.: Enhancing lifetime and security of pcm-based main memory with start-gap
wear leveling. In: 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO, pp. 14–23 (2009)

Energy Efficient Caching for Phase-Change Memory 81

5. Cho, S., Lee, H.: Flip-n-write: a simple deterministic technique to improve pram
write performance, energy and endurance. In: 42nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO, pp. 347–357 (2009)

6. Ferreira, A.P., Zhou, M., Bock, S., Childers, B.R., Melhem, R.G., Mossé, D.: In-
creasing pcm main memory lifetime. In: Design, Automation and Test in Europe,
DATE, pp. 914–919 (2010)

7. Chen, S., Gibbons, P.B., Nath, S.: Rethinking database algorithms for phase change
memory. In: Fifth Biennial Conference on Innovative Data Systems Research,
CIDR, pp. 21–31 (2011)

8. Ferreira, A.P., Childers, B.R., Melhem, R.G., Mossé, D., Yousif, M.: Using pcm in
next-generation embedded space applications. In: IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS, pp. 153–162 (2010)

9. Qureshi, M.K., Srinivasan, V., Rivers, J.A.: Scalable high performance main mem-
ory system using phase-change memory technology. In: 36th International Sympo-
sium on Computer Architecture, ISCA, pp. 24–33 (2009)

10. Hay, A., Strauss, K., Sherwood, T., Loh, G.H., Burger, D.: Preventing pcm banks
from seizing too much power. In: 44th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, MICRO, pp. 186–195 (2011)

11. Young, N.E.: On-line file caching. In: Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, pp. 82–86 (1998)

12. Chrobak, M., Woeginger, G.J., Makino, K., Xu, H.: Caching Is Hard – Even in the
Fault Model. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346,
pp. 195–206. Springer, Heidelberg (2010)

13. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Com-
petitive paging algorithms. J. Algorithms 12(4), 685–699 (1991)

14. McGeoch, L.A., Sleator, D.D.: A strongly competitive randomized paging algo-
rithm. Algorithmica 6(6), 816–825 (1991)

15. Bansal, N., Buchbinder, N., Naor, J.: Randomized competitive algorithms for gen-
eralized caching. In: 40th Annual ACM Symposium on Theory of Computing,
STOC, pp. 235–244 (2008)

16. Adamaszek, A., Czumaj, A., Englert, M., Räcke, H.: An o(log k)-competitive algo-
rithm for generalized caching. In: Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA, pp. 1681–1689 (2012)

17. Park, S.Y., Jung, D., Kang, J.U., Kim, J., Lee, J.: Cflru: a replacement algorithm
for flash memory. In: International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, CASES, pp. 234–241 (2006)

18. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update rules. In: 16th
Annual ACM Symposium on Theory of Computing, STOC, pp. 488–492 (1984)

19. Joo, Y., Niu, D., Dong, X., Sun, G., Chang, N., Xie, Y.: Energy- and endurance-
aware design of phase change memory caches. In: Design, Automation and Test in
Europe, DATE, pp. 136–141 (2010)

20. Magnusson, P.S., Christensson, M., Eskilson, J., Forsgren, D., H̊allberg, G.,
Högberg, J., Larsson, F., Moestedt, A., Werner, B.: Simics: A full system sim-
ulation platform. Computer 35, 50–58 (2002)

21. Henning, J.L.: Spec cpu 2006 benchmark descriptions. SIGARCH Comput. Archit.
News 34, 1–17 (2006)

Shortest-Elapsed-Time-First on a Multiprocessor

Neal Barcelo1, Sungjin Im2, Benjamin Moseley2, and Kirk Pruhs1

1 Department of Computer Science, University of Pittsburgh
{ncb30,kirk}@cs.pitt.edu

2 Computer Science Department, University of Illinois
{im3,bmosele2}@illinois.edu

“I would like to call it a corollary of Moore’s Law that the number of
cores will double every 18 months.” — Anant Agarwal, founder and chief
technology officer of MIT startup Tilera

Abstract. We show that SETF, the idealized version of the uniproces-
sor scheduling algorithm used by Unix, is scalable for the objective of
fractional flow on a homogeneous multiprocessor. We also give a poten-
tial function analysis for the objective of weighted fractional flow on a
uniprocessor.

1 Introduction

At the hardware level, Moore’s law continues unabated, with the number of
transistors per chip doubling about every 1.5 to 2 years. However, we are in
the midst of a revolutionary change in the effect of Moore’s law on the software
layers of the information technology stack. Instead of an exponential increase in
processor speed over time, these layers are now expected to see an exponential
increase in the number of processors over time. MIT startup Tilera now produces
chips with up to 100 processors, and the expectation is that chips with 1000
processors will be available within the decade.

The natural research question motivating our research is whether the standard
priority scheduling algorithms used for uniprocessors will be appropriate in the
multiprocessor setting. In particular, we consider scheduling algorithm Shortest
Elapsed Time First (SETF), as it is the idealized version of Unix’s uniprocessor
scheduling algorithm. (Of course the implementation in Unix has many practical
kludges/modifications, such as maintaining equivalence queues of jobs that have
been processed about the same amount so as to logarithmically bound the num-
ber of preemptions per job). For a uniprocessor using SETF for scheduling, all
jobs that have been processed the least share the processing equally; it is useful
to think of SETF giving higher priority to jobs that have been processed less.
The natural generalization of SETF to a homogeneous multiprocessor setting
assigns jobs to processors in priority order (recall jobs that have been processed
less have higher priority); the x jobs of the next priority are either assigned to x
processors, or evenly share the remaining unassigned processors if there are less
than x previously unassigned processors.

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 82–92, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Shortest-Elapsed-Time-First on a Multiprocessor 83

Two natural quality of service measures for individual jobs are integer flow
and fractional flow. The integer flow of a job is the total time a job has to
wait to be completed. The fractional flow of a job is the integral over times
between when a job arrives and when it is completed of the fraction of the job
that is uncompleted. Integer flow is a more appropriate objective if no benefit
is gained from a job being partially completed, and fractional flow is a more
appropriate objective if some benefit is gained from partially completing a job.
The corresponding two natural scheduling objectives are the integer flow of the
schedule, which is the sum of the integer flow of the jobs, and fractional flow of
the schedule, which is the sum of the fractional flow of the jobs.

Onauniprocessor, SETF is knowntobe scalable, (1+ε)-speedO(1)-competitive,
for the standard objective of integer flow [1], and it is known that speed augmenta-
tion is required to achieve bounded competitiveness in a general operating system
setting requiring a nonclairvoyant scheduler, that is one that does not know the size
of the jobs [2]. To the best of our knowledge, there are no results in the literature
explicitly analyzing the fractional flow for nonclairvoyant algorithms on a unipro-
cessor (although it is possible that such results might be derivable from results on
integer flow).

The main result of this paper is to show in Section 2 that for a homogeneous
multiprocessor, SETF is universally1 scalable for the objective of fractional flow.

The analysis in [1] shows that SETF is locally competitive for integer flow on
a uniprocessor, that is, at all points in time the increase for the quality of service
objective for SETF is not too much greater than the increase for an arbitrary
schedule. But it is straightforward to see that no online scheduling algorithm
can be locally competitive for either fractional or integer flow on a homogeneous
multiprocessor. Thus the next logical approach is to try to use an amortized lo-
cal competitiveness argument using the so called “standard potential function”
method for these sorts of scheduling problems (for more background, see [3]).
However, this standard approach is not immediately applicable in this setting as
this approach requires a reasonably simple algebraic expression for the online al-
gorithm’s future cost given no more job arrivals, and after some thought, one can
see that a simple algebraic expression does not exist for SETF’s future costs on a
multiprocessor. For fractional flow, we are able to surmount this difficultly by us-
ing a potential function based on an algebraic expression for SETF’s future costs
on a uniprocessor. The primary differences between our potential function and
the “standard potential function” are that it takes the difference of future costs
between the work remaining in the optimal schedule and the online algorithm
instead of the future cost of the difference in remaining work, and additionally
our potential function discounts the optimal’s future costs. These modifications
are necessary to get the running condition to hold; however, these modifications
cause the potential function to jump when jobs arrive. Fortunately, we are able
to complete the analysis by showing that the aggregate increase in these jumps

1 An algorithm is said to be universally scalable if it is (1+ε)-speedO(f(ε)) competitive
for any fixed constant ε > 0 and the algorithm is not parameterized by ε. Here f is
a function of only ε.

84 N. Barcelo et al.

can be bounded by total processing times of all the jobs. Unfortunately we are
unable to make this approach work for integer flow for SETF. Although one can
resort to a technique to convert an algorithm that is fractionally scalable to an
algorithm that is integrally scalable (see [4] for details). This technique combined
with our analysis shows that a variation of SETF is scalable for integer flow.

There are two closely related results in the literature. It was known that if
newly arriving jobs were randomly assigned to a processor, and if each processor
ran SETF, that the resulting algorithm is universally scalable in expectation
for integer flow [5]. Roughly this analysis combines the fact that SETF is uni-
versally scalable on a uniprocessor, with the fact that randomly assigning jobs
roughly balances the processor loads (although the fact that there will be some
unevenness in the loads in part explains why the competitive ratio that is proved
is quite large, something like O(1

ε7)). It is also known that the algorithm Late
Arrival Processor Sharing (LAPS) is existentially2 scalable for integer flow on a
homogeneous multiprocessor [6].

There are often situations where one would like the operating system to view
some jobs as being more important than other jobs. One way to formalize this is
to assume that jobs have weights specifying their importance, and then consider
the objective of minimizing the weighted fractional or integral flow of the jobs.
WSETF is a natural generalization of SETF, where jobs are prioritized by the
ratio of their weight to the time that jobs have been processed. It was shown
in [7] that WSETF is scalable for a uniprocessor using a local competitiveness
argument. In Section 3, we show that WSETF is scalable using an amortized
local competitiveness argument using a potential function. As in our analysis
of SETF, the starting point for the design of the potential function was an
algebraic expression for the future cost of WSETF. However, we again had to
make modifications to the “standard potential function” in order for the running
condition to hold. We believe that our analysis is at least modestly interesting
for a couple reasons. When one is analyzing algorithms in non-work-conserving
scheduling settings, there is usually no hope of using a local competitiveness
argument. In this context, a scheduling environment is said to be non-work-
conserving if at any given time two reasonable scheduling algorithms could have
completed a different amount of total work thus far. The lack of a potential
function analysis of SETF and WSETF meant that these algorithms could not
be used to design algorithms in non-work-conserving scheduling settings. For
example, the analysis of nonclairvoyant speed scaling algorithms for a speed
scalable processor in [8] considered the Late Arrival Processor Sharing Algorithm
(LAPS) instead of SETF because a potential function analysis was known for
LAPS [9]. It is our hope that our potential functions for SETF and WSETF will
be useful in other non-work-conserving scheduling settings. Although in fairness
we need to mention that we were unable to adapt our potential function analysis
of WSETF for a uniprocessor to the multiprocessor setting because we do not

2 An algorithm is said to be existentially scalable if it is (1 + ε)-speed O(f(ε)) com-
petitive for any fixed constant ε > 0 and the algorithm is parameterized by ε. Here
f is a function of only ε.

Shortest-Elapsed-Time-First on a Multiprocessor 85

know how to bound the aggregate increases in the potential function when jobs
arrive. But it is our hope that that one further idea would be enough to surmount
this issue, and allow the application of this potential function (or some variation
thereof) to non-work-conserving scheduling settings. Note that an existentially
scalable algorithm, Weighted Late Arrival Processor Sharing, is known for the
objective of integer flow on a homogeneous multiprocessor [10].

There is currently a debate within the architectural community as to whether
a homogeneous multiprocessor or a heterogeneous multiprocessor is a better
design [11]. There are advantages to each option. [12] points out that some stan-
dard priority scheduling algorithms, such as Highest Density First and WSETF,
are not scalable for a heterogeneous multiprocessor, and that it is not clear
whether other standard priority algorithms, such as Shortest Remaining Pro-
cessing Time, Shortest Job First, and SETF, are scalable. So while this paper
certainly does not settle the issue, taken together with [12], the results in this
paper indicate that one advantage of homogeneous multiprocessors over hetero-
geneous multiprocessors is that they seem to be easier to schedule, and that in
fact the standard uniprocessor scheduling algorithms should perform similarly
well on a homogeneous multiprocessor as on a uniprocessor.

1.1 Basic Definitions

The input consists of n jobs. We let ri denote the release time of job i, pi denote
the size of job i, and in some instances, wi denote the weight of job i. An online
scheduler does not learn about job i until time ri. At time ri, a nonclairvoyant
scheduler learns the weight wi but not the size pi. For each time t, the online
algorithm must choose some job i to run such that ri ≥ t. We assume that the
processor has unit speed, so a job of size pi, takes pi units of time to complete.

If Ci is the completion time for job i, then
∫ Ci

t=ri
wi dt is the weighted integer

flow for job i. The integer flow of a schedule is the sum over the jobs of the

integer flow of each job. The weighted fractional flow of job i, is
∫∞
t=ri

wi · pi(t)
pi

dt,

where pi(t) represents the remaining processing time of job i. The fractional flow
of a schedule is the sum over the jobs of the fractional flow of each job. If the
schedule is not obvious from context, we superscript a variable with the name
of the schedule that is referred to.

An algorithm A is s-speed c-competitive if

max
I

As(I)

OPT1(I)
≤ c,

where As(I) denotes the cost of algorithm A on input I with a speed s processor,
OPT1(I) denotes the cost of the optimal schedule with a speed 1 processor, and
the maximum is taken over all possible inputs. A class {A(1+ε)} of algorithms is
existentially scalable if for all ε > 0, A(1+ε) is (1 + ε)-speed O(f(ε))-competitive
for some function f that only depends on ε. An algorithmA is universally scalable
if for all ε > 0, A is (1 + ε)-speed O(f(ε))-competitive for some function f .

86 N. Barcelo et al.

To show that an algorithm A is (c+ d)-competitive using a locally amortized
competitiveness argument, one finds a potential function Φ such that the follow-
ing conditions hold [3]:

Boundary condition: Φ is initially 0 and finally non-negative.
Completion condition: Φ does not increase due to completion of jobs by A or
OPT.
Arrival condition: Φ does not increase by more than d ·OPT due to arrival
of jobs.
Running condition: At all times t when no job arrives or is completed, we
have,

d

dt
A+

d

dt
Φ(t) ≤ c

d

dt
OPT

Here d
dtA denotes the increase in the objective in A’s schedule, while d

dtOPT

denotes the increase in the objective in OPT’s schedule. (c+d)-competitiveness
follows by integrating these conditions over time.

2 SETF on a Homogeneous Multiprocessor

As our first result, we show in Theorem 1 that SETF is universally scalable
on a homogeneous multiprocessor for the objective of fractional flow using an
amortized local competitiveness argument.

Theorem 1. SETF is (1+ ε)-speed (1+ 5
ε)-competitive on a homogeneous mul-

tiprocessor for the objective of fractional flow.

Proof. We use A to denote SETF. Let m denote the number of homogeneous
mutliprocessors. We let qAj (t) denote the amount of job j that has been processed

up to time t. Note that qAj (t)+pAj (t) = pj . Let, (x)
+ return x when x is positive,

and 0 otherwise. Then, define pAi,j(t) := (min(pi, pj) − qAj (t))
+. This represents

the amount of time job i must wait on job j assuming no more jobs arrive. Note
that it is possible that i = j. Similarly forOPT, pOi,j(t) := (min(pi, pj)−qOj (t))

+.
We let QA(t) and QO(t) denote the algorithm A’s queue and OPT’s queue, at
time t respectively. Finally, let ZA

i (t) :=
∑

j∈QA(t) p
A
i,j(t). Similarly, ZO

i (t) :=∑
j∈QO(t) p

O
i,j(t). We use an amortized local competitiveness argument. We define

the potential function Φ(t) as follows.

Φ(t) =
1

mε

∑
i∈QA(t)

pAi (t)

pi

(
ZA
i (t) +mpAi (t)− ZO

i (t)
)

=
1

mε

∑
i∈QA(t)

pAi (t)

pi

(∑
j∈QA(t)

(min(pi, pj)− qAj (t))
+ +mpAi (t)

−
∑

j∈QO(t)

(min(pi, pj)− qOj (t))
+
)

Shortest-Elapsed-Time-First on a Multiprocessor 87

Boundary Condition: The boundary condition is trivially satisfied, as there
are no jobs contributing to Φ at t = 0 or when all jobs have been finished.

Job Completion: Fix some job i ∈ QA(t). Consider first when A completes job
i. Note that at this time, pAi (t) = 0 and therefore there is no change in Φ from
removing this term from the sum. Next, consider when A completes some job
j �= i. Since, qAj (t) = pj, p

A
i,j(t) = 0, so there is no change in Φ from removing

this term. Similarly, the completion of a job by OPT does not change Φ.

Job Arrival: We first show the following lemma.

Lemma 1. Consider any job i ∈ QA(t) and time t. Then it is the case that
ZA
i (t)− ZO

i (t) ≤ mpi.

Proof. Fix time t. Let J(t) denote the set of all jobs in A’s queue that have
been processed less than job i’s total processing time. More formally, we have
J(t) = {j ∈ QA(t) | qAj (t) < pi}. If |J(t)| ≤ m, then there are at most m terms

contributing to ZA
i (t) each of which have value at most pi and so the desired

result holds. So suppose |J(t)| > m. Consider the earliest time t′ ≤ t such that
at any time τ ∈ [t′, t], |J(τ)| > m. By definition of t′, at time t′ − δ, there are at
mostm jobs that have elapsed processing times at most pi. Now consider all jobs,
denoted by S, which arrive during [t′, t]. Note that for any time τ ∈ [t′, t], for any
job j that is run, qAj (τ) < pi since |J(τ)| > m. Therefore, J(t) ⊆ J(t′ − δ) ∪ S.

Consider J(t)’s contribution to ZA
i (t)− ZO

i (t) at time t. Let t′′ = t′ − δ.∑
j∈J(t)

(min(pi, pj)− qAj (t))
+ − (min(pi, pj)− qOj (t))

+

≤
∑

j∈J(t)

(min(pi, pj)− qAj (t))− (min(pi, pj)− qOj (t)) (1)

=
∑

j∈J(t)

(qOj (t)− qAj (t))

≤
∑

j∈J(t′′)

(qOj (t′′)− qAj (t
′′)) +

∑
j∈J(t′′)

(qOj (t)− qOj (t
′′))− (qAj (t)− qAj (t

′′))

+
∑
j∈S

(qOj (t)− qAj (t)) (2)

≤ mpi (3)

Inequality (1) holds as based on the definition of J(t) the first term in the sum
will always be positive. (2) holds by noting that J(t) = J(t′)∪S and rearranging
terms while letting δ → 0. Finally, (3) is true because the first sum is less than
mpi as there are at mostm terms of value pi. Further,

∑
j∈J(t′′)(q

A
j (t)−qAj (t

′′))+∑
j∈S qAj (t) represents the total work that SETF did during this interval and∑
j∈J(t′′)(q

O
j (t)−qOj (t′′))+

∑
j∈S qOj (t) cannot be more than the work that OPT

did during this interval, therefore their difference is non-positive.

88 N. Barcelo et al.

Given this lemma, note that when job i arrives, Φ increases by at most 2
εpi and

so summing over all arrivals, the increase is at most 4
εOPT since pi/2 is a lower

bound for job i’s fractional flow time in any schedule.

Running Condition: First note that d
dtA =

∑
i∈QA(t)

pA
i (t)
pi

. Also, d
dtOPT =∑

i∈QO(t)
pO
i (t)
pi

. We now bound the change in Φ at some time t when no jobs
arrive or complete. We have that,

d

dt
Φ(t) =

1

mε

∑
i∈QA(t)

(dpA
i (t)
pi

dt
· (ZA

i (t) +mpAi (t)− ZO
i (t))

+
pAi (t)

pi
· d(Z

A
i (t) +mpAi (t)− ZO

i (t))

dt

)
First consider the change of

pA
i (t)
pi

. This occurs only when job i is being processed

by SETF. Since SETF runs at speed (1 + ε),
pA
i (t)
pi

is decreasing at a rate of

(1+ ε) 1
pi
. To bound the overall rate of increase in Φ this can have, we ignore the

positive terms ZA
i (t) and mpAi (t) and consider only −ZO

i (t). Then, the rate of

increase in Φ due to change in
pA
i (t)
pi

is bounded by

1

mε
(1 + ε)

1

pi

∑
j∈QO(t)

(min(pi, pj)− qOj (t))
+

To bound this sum, there are two cases to consider. First, consider all jobs j
such that pj < pi. Then, we have that

1

pi
(min(pi, pj)− qOj (t))+ =

1

pi
pOj (t) ≤

pOj (t)

pj

For all jobs j such that pj ≥ pi, we have that

1

pi
(min(pi, pj)− qOj (t))+ =

(
pi − qOj (t)

pi

)+

=

(
1−

qOj (t)

pi

)+

≤
pOj (t)

pj

So, in total we have that

1

mε
(1 + ε)

1

pi

∑
j∈QO(t)

(min(pi, pj)− qOj (t))+

≤ 1

mε
(1 + ε)

∑
j∈QO(t)

pOj (t)

pj

=
1 + ε

mε

d

dt
OPT

Since there are at most m such jobs as i running, the total rate of increase in Φ

due to change in
pA
i (t)
pi

is bounded by (1 + 1
ε)

d
dtOPT.

Shortest-Elapsed-Time-First on a Multiprocessor 89

We now turn our attention to the change of (ZA
i (t)+mpAi (t)−ZO

i (t)) for any
job i ∈ QA(t). Note that pAi (t) > 0, i.e. qAi (t) < pi. If SETF is working on job i,
then mpAi (t) decreases at a rate of m(1 + ε). Otherwise, if SETF does not work
on i at time t, then there must exist m jobs j such that qAj (t) < pi that SETF

is working on. In either case, ZA
i (t)+mpAi (t) decreases at a rate of m(1+ ε). On

the other hand, ZO
i (t) can increase at a rate of at most m. Therefore, the rate

of change of Φ due to change in (ZA
i (t) +mpAi (t)− ZO

i (t)) is bounded by,

1

mε

∑
i∈QA(t)

pAi (t)

pi
(−m(1 + ε) +m) = −

∑
i∈QA(t)

pAi (t)

pi
= − d

dt
A

So, in total, we have that

d

dt
A+

d

dt
Φ(t) ≤ d

dt
A+

(
1 +

1

ε

)
d

dt
OPT− d

dt
A =

(
1 +

1

ε

)
d

dt
OPT

We note that one can achieve an existentially scalable nonclairvoyant algorithm
for integer flow by maintaining the invariant that each job is either done or has
processed (1 + ε) times as much as SETF would have processed it on (1 + ε)
slower processors.

3 WSETF on a Uniprocessor

We now show that WSETF is scalable on a single processor for the objective of
weighted fractional flow. Recall the WSETF shares the processor equally among
all jobs that have maximal ratio between weight and the amount that the job
has been processed.

Theorem 2. WSETF is (1+ ε)-speed (1+ 3
ε)-competitive on a uniprocessor for

the objective of weighted fractional flow.

Proof. We use A to denote the algorithmWSETF. Let qAj (t) denote the amount

of job j that has been processed up to time t. Let pAi,j(t) := (min(
wj

wi
pi, pj) −

qAj (t))
+ and pOi,j(t) := (min(

wj

wi
pi, pj)−qOj (t))

+. We again use an amortized local
competitiveness argument. Consider the following potential function Φ(t).

Φ(t) =
1

ε

∑
i∈QA(t)

wi · pAi (t)
pi

(ZA
i (t) + pAi (t)− ZO

i (t))

=
1

ε

∑
i∈QA(t)

wi · pAi (t)
pi

(∑
j∈QA(t)

(min(
wj

wi
pi, pj)− qAj (t))

+ + pAi (t)

−
∑

j∈QO(t)

(min(
wj

wi
pi, pj)− qOj (t))+

)

It is worth noting that
∑

i∈QA(t)
wi·pA

i (t)
pi

(ZA
i (t) + pAi (t)) represents the approxi-

mate future cost of WSETF assuming no more jobs arrive. We now verify that
all four conditions hold.

90 N. Barcelo et al.

Boundary Condition: The boundary condition is trivially satisfied, as there
are no jobs contributing to Φ at t = 0 or when all jobs have been finished.

Job Completion: Consider first when A completes job i. Note that at this time,
pAi (t) = 0 and therefore there is no change in Φ from removing this term from
the sum. Next, consider when A completes job j. Since, qAj (t) = pj , p

A
i,j(t) = 0,

so there is no change in Φ from removing this term. Similarly, the completion of
job i or job j by OPT does not change Φ.

Job Arrival: We first show the following lemma.

Lemma 2. Consider any job i ∈ A(t) and time t. Then it is the case that
ZA
i (t)− ZO

i (t) ≤ 0.

Proof. Fix time t. Consider the earliest time t′ ≤ t such that at any time τ ∈
[t′, t] = I, WSETF works only on jobs j such that qj(τ) ≤ wj

wi
pi. By definition of

t′, at time t′ − ε, all unfinished jobs have elapsed processing times at least
wj

wi
pi,

which thus contribute zero to ZA
i (t), so we can ignore those jobs. Now consider

all jobs, denoted by S, which arrive during [t′, t]. Consider S’s contribution to
ZA
i (t)− ZO

i (t) at time t,∑
j∈S

(min(
wj

wi
pi, pj)− qAj (t))

+ − (min(
wj

wi
pi, pj)− qOj (t))

+

≤
∑
j∈S

(min(
wj

wi
pi, pj)− qAj (t)) − (min(

wj

wi
pi, pj)− qOj (t)) (4)

=
∑
j∈S

qOj (t)− qAj (t) (5)

Note that (4) holds as based on the definition of S and I, for any job j ∈ S,
qAj (t) ≤

wj

wi
pi. Now consider the term in (5),

∑
j∈S qOj (t)− qAj (t). First note that∑

j∈S qAj (t) captures the total work that WSETF did during the interval, and

further
∑

j∈S qOj (t) cannot exceed the amount of work that OPT did during the
same interval. Therefore, this term is non-positive.

Given this lemma, note that when job i arrives, Φ increases by at most 1
ε (wi ·pi).

So, summing over all arrivals, Φ increases by at most 1
ε

∑
i wi · pi ≤ 2

εOPT as
desired.

Running Condition: First note that d
dtA =

∑
i∈QA(t) wi· p

A
i (t)
pi

. Also, d
dtOPT =∑

i∈QO(t) wi · pO
i (t)
pi

. We now bound the change in Φ at some time t when no job
arrives or is completed. We have that,

d

dt
Φ(t) =

1

ε

∑
i∈QA(t)

(dwip
A
i (t)
pi

dt
· (ZA

i (t) + pAi (t)− ZO
i (t))

+
wip

A
i (t)

pi
· d(Z

A
i (t) + pAi (t)− ZO

i (t))

dt

)
(6)

Shortest-Elapsed-Time-First on a Multiprocessor 91

First consider the change of
wip

A
i (t)
pi

. This occurs only when job i is being pro-
cessed by A. We assume without loss of generality that A works on a single job

at each time t. Then, since WSETF runs at speed (1 + ε),
wip

A
i (t)
pi

is decreasing

at a rate of (1 + ε)wi

pi
. To bound the overall rate of increase in Φ this can have,

we ignore the positive terms ZA
i (t) and pAi (t) and consider only −ZO

i (t). Then,

the rate of increase in Φ due to change in
wip

A
i (t)
pi

is bounded above by

1

ε
(1 + ε)

wi

pi
ZO
i (t) =

(
1 +

1

ε

)
wi

pi

∑
j∈QO(t)

(
min(

wj

wi
pi, pj)− qOj (t)

)+

To bound this sum, we again consider two cases. First, consider all jobs j such
that

wj

pj
> wi

pi
. Then,

wi

pi
(min(

wj

wi
pi, pj)− qOj (t))

+ =
wi

pi
(pj − qOj (t)) ≤ wj ·

pOj (t)

pj

Now, for all jobs j such that
wj

pj
≤ wi

pi
, we have that

wi

pi
(min(

wj

wi
pi, pj)−qOj (t))+ =

wi

pi
(
wj

wi
pi−qOj (t))

+ = (wj−
wi

pi
qOj (t))+ ≤ wj ·

pOj (t)

pj

Combining these, we have that(
1 +

1

ε

)
wi

pi

∑
j∈QO(t)

(
min(

wj

wi
pi, pj)− qOj (t)

)+
≤
(
1 +

1

ε

)
d

dt
OPT

We now turn our attention to the change of (ZA
i (t) + pAi (t)−ZO

i (t)) for any job
i ∈ QA(t). Note that pAi (t) > 0, i.e. qAi (t) < pi. Thus if WSETF does not work

on i at time t, then there must exist a job j such that
qAj (t)

wj
< pi

wi
that WSETF

is working on. In either case, ZA
i (t) + pAi (t) decreases at a rate of 1 + ε. On the

other hand, ZO
i (t) can increase at a rate of at most 1. Therefore, the rate of

change in Φ due to change in (ZA
i (t) + pAi (t)− ZO

i (t)) is bounded above by

1

ε

∑
i∈QA(t)

wip
A
i (t)

pi
(−(1 + ε) + 1) = −

∑
i∈QA(t)

wip
A
i (t)

pi
= − d

dt
A

So, in total, we have that

d

dt
A+

d

dt
Φ(t) ≤ d

dt
A+

(
1 +

1

ε

)
d

dt
OPT− d

dt
A =

(
1 +

1

ε

)
d

dt
OPT

Our analysis of WSETF does not extend to a homogeneous multiprocessor be-
cause we do not know how to bound the jumps in the potential function when
jobs arrive, in part because when a job i arrives the increase in the potential
involves terms of the form piwj . We are able to surmount this difficulty in our
analysis of SETF because all jobs have equal weight, and the sum of the pro-
cessing times is a lower bound to optimal.

92 N. Barcelo et al.

Acknowledgment. Supported in part by an IBM Faculty Award, and NSF
grants CCF-1016684, CCF-0830558, CCF-1115575, CNS-1012070, CNS-1115575,
and CNS-1253218.

References

1. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J.
ACM 47(4), 617–643 (2000)

2. Motwani, R., Phillips, S., Torng, E.: Non-clairvoyant scheduling. Theor. Comput.
Sci. 130(1), 17–47 (1994)

3. Im, S., Moseley, B., Pruhs, K.: A tutorial on amortized local competitiveness in
online scheduling. SIGACT News 42(2), 83–97 (2011)

4. Chadha, J.S., Garg, N., Kumar, A., Muralidhara, V.N.: A competitive algorithm for
minimizing weighted flow time on unrelated machines with speed augmentation.
In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, pp. 679–684 (2009)

5. Chekuri, C., Khanna, S., Goel, A., et al.: Multi-processor scheduling to minimize
flow time with resource augmentation. In: Proc. 36th Symp. Theory of Computing
(STOC), pp. 363–372. ACM (2004)

6. Edmonds, J., Pruhs, K.: Scalably scheduling processes with arbitrary speedup
curves. In: SODA, pp. 685–692 (2009)

7. Bansal, N., Dhamdhere, K.: Minimizing weighted flow time. ACM Trans. Algo-
rithms 3(4) (November 2007)

8. Chan, H.L., Edmonds, J., Lam, T.W., Lee, L.K., Marchetti-Spaccamela, A., Pruhs,
K.: Nonclairvoyant speed scaling for flow and energy. Algorithmica 61(3), 507–517
(2011)

9. Chan, H.L., Edmonds, J., Pruhs, K.: Speed scaling of processes with arbitrary
speedup curves on a multiprocessor. Theory Comput. Syst. 49(4), 817–833 (2011)

10. Bansal, N., Krishnaswamy, R., Nagarajan, V.: Better Scalable Algorithms for
Broadcast Scheduling. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der
Heide, F., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 324–335.
Springer, Heidelberg (2010)

11. Merrit, R.: Cpu designers debate multi-core future. EE Times (February 2010)
12. Gupta, A., Im, S., Krishnaswamy, R., Moseley, B., Pruhs, K.: Scheduling hetero-

geneous processors isn’t as easy as you think. In: Proceedings of the Twenty-Third
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, pp. 1242–
1253. SIAM (2012)

Efficient Route Compression

for Hybrid Route Planning�

Gernot Veit Batz, Robert Geisberger, Dennis Luxen,
Peter Sanders, and Roman Zubkov

Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
{batz,luxen,sanders}@kit.edu

Abstract. We describe an algorithmic framework for lossless compres-
sion of route descriptions. This is useful for hybrid route planning where
routes are computed by a server and then transmitted to a client device
in a car using some mobile radio communication where bandwidth may
be low. Compressed routes are represented by only a few via nodes which
are the connection points when the route is decomposed into unique op-
timal segments. To reconstruct the route efficiently a client device needs
basic but fast route planning capability. Contraction hierarchies make
this approach fast enough for practice: Compressing takes only a few
milliseconds. And previous experiments suggest that a client can decom-
press each route segment virtually instantaneously. So, as the segments
can be decompressed successively while driving, it is not likely that the
driver experiences any delay except for the time needed by the mobile
communication.

1 Introduction

Today GPS-based car navigation is quite common. Routes can be computed
either by a device located in the car or by a server system located in a computing
center. The latter requires that routes are transmitted to the client device in the
car using some mobile radio communication like the cellular phone network. We
denote this server-based mobile setting as hybrid route planning.

Hybrid route planning is not only useful to take the current traffic situation or
the latest changes of POI data into account. It also makes the benefits of several
advanced route planning algorithms available for car drivers. Such algorithms,
which compute high quality routes within milliseconds, are often quite sophisti-
cated and adapting them to work well on mobile devices is usually not trivial – if
at all possible. Examples are time-dependent route planning [1–7] where routes
depend on the departure time, flexible route planning [8] where routes depend on
a freely selectable parameter which models a tradeoff between energy consump-
tion and travel time for example, multi-criteria route planning [9] where routes
are assessed with respect to multiple costs, customizable route planning [10]
where cost functions can be altered rapidly, or the computation of alternative
routes [11, 12]. Possible benefits are, for example,

� This work was partially supported by DFG project SA 933/5-1,2.

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 93–107, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

94 G.V. Batz et al.

– that routes are optimized with respect to the time of day which means that
congestions can be avoided based on statistical data,

– that inconvenient roads can be avoided and that toll charges, energy con-
sumption, or detours can be reduced even if travel time is the main objective,

– or that the driver can dynamically choose or fine-tune the cost function.

To make hybrid route planning convenient to use, the latency experienced by the
driver should be as small as possible. However, the descriptions of the routes that
have to be transmitted over the mobile communication can be quite complex and
bandwidths can be low (as in the countryside for example). So, good compression
rates are desirable. Also, the time needed for compressing and decompressing the
routes has to be small.

In this work we present an algorithmic framework for lossless and efficient
compression of route descriptions in the context of hybrid route planning. It
provides good compression rates and the running times needed for compressing
and decompressing are small. As a result, the user should not notice any latency
except for the latency of the mobile communication. Our approach requires that

– the client has basic but fast route planning capability,
– client and server use the same road network topology, and
– the cost function used by the client changes rarely and is known to the server.

A route provided by a sophisticated algorithm running on the server is most
probably not an optimal route with respect to a simple cost function that can
be handled by the mobile client device. We observe, however, that the route can
be composed of a few unique route segments which are optimal with respect to
the client. Our compression exploits this in a simple but effective way: We repre-
sent the route by only giving the few locations where this unique optimal route
segments meet. We call these locations the via nodes. The client can reconstruct
the route from the few via nodes by simply computing the optimal routes be-
tween them. The uniqueness of the segments guarantees that the reconstructed
route is exactly the route originally provided by the server.

To provide efficient decompression, the client device must be able to to per-
form fast and exact1 computation of optimal routes. There, it is enough to de-
compress the first route segment fast. All other segments can be decompressed
successively when driving. Contraction hierarchies (CH) [13, 14] is a fast and ex-
act method for route planning which has also been adapted to run efficiently on
mobile devices. Using these mobile CH the client should be able to decompress
each segment of the route within less than 0.1 s [15]. From the drivers point of
view this is as good as instantaneous. Note that Dijkstra’s well known algorithm
is not an alternative. Though it computes optimal routes, it has running times
of more than a second even on server systems which is far to slow.

Our Contributions. With CH the client is already able to decompress each seg-
ment of the route fast enough. So, we focus on the server-side algorithmic meth-
ods of computing the compressed representation of a path P as a sequence Q

1 We speak of exact route planning to indicate that the computed routes are optimal
with respect to the underlying cost function and no heuristic is used.

Efficient Route Compression for Hybrid Route Planning 95

of via nodes. All these algorithmic methods are instances of a generic frame
algorithm (Sect. 2). The first instantiation of the frame algorithm is based on
Dijkstra’s well known algorithm and yields the minimum possible number of
via nodes. In practice, however, the Dijkstra-based compression is to slow. The
second instantiation uses an algorithmic scheme inspired by binary search. It
also yields minimal sequences of via nodes. Like the frame algorithm the binary
scheme is a generic algorithm itself. More precisely, it requires a subroutine that
decides whether a route is the unique optimal route between two nodes. This
subroutine is invoked O(|Q| log |P |) times (Sect. 3).

Realizing the subroutine using the aforementioned CH (Sect. 4) yields a very
fast compression technique, fast enough for practice. Interestingly, this approach
needs sometimes even less via nodes than the Dijkstra-based approach (Sect. 5).
This is because the definition of a unique optimal route is different in the context
of CH. Our experiments indicate that via nodes provide good compression rates
in practice. Also the running time needed by the compression is quite low if CH
are used to realize the subroutine in the generic binary scheme (Sect. 6).

Related Work. We described some of the ideas presented in this work previ-
ously in a technical report [16]. To our knowledge, there is no other publica-
tion directly covering the efficient representation of routes beyond traditional
data compression and error-correction. Tao et al. [17] show how to efficiently
compute a representation that includes at least one out of every k consecutive
nodes. While this can be seen as a compact representation of a shortest path it is
not clear how to conduct a loss-less reconstruction of the represented path. Via
nodes have been applied to CH in a different way [11, 12] to provide reasonable
alternatives to the optimal route. Here, reasonable means that the alternative
is not much longer, has not too much in common with the optimal route and is
locally optimal.

2 Via Nodes and a Generic Frame Algorithm

We model road networks as directed graphs G = (V,E). As the mobile device has
limited main memory and computing power, it uses a very simple cost function:
Every edge (u, v) has a constant weight c(u, v) ∈ IR>0 assigned. Routes are
modeled as paths in G. A path 〈u1, . . . , uk〉 is a shortest path if it has minimal
cost c(〈u1, . . . , uk〉) := c(u1, u2) + · · · + c(uk−1, uk) among all paths from u1 to
uk. A shortest path 〈u, . . . , v〉 is called a unique if it is the only shortest path
from u to v. Subpaths of unique shortest paths are unique shortest paths too.
By G� we denote the transpose graph of G where all edges are reversed.

Consider a path P := 〈u1, . . . , un〉 which is not necessarily a shortest path.
Let Q := 〈〈ui1 , . . . , uik〉〉 be a subsequence of P s.t. the subpaths 〈u1, . . . , ui1〉,
〈uik , . . . , un〉, and 〈uij , . . . , uij+1〉 of P are unique shortest paths for all 1 ≤ j < k.
Then, we callQ a representation of P (with via nodes). Certainly, P is completely
determined by Q. For |Q| � |P | we can speak of a compressed representation.

Observation 1. If all edges in G are unique shortest paths, then all paths in G
can be represented with via nodes.

96 G.V. Batz et al.

Algorithm 1. Generic frame algorithm computing a representation with via

nodes for a path P . Requires a subprocedure uniqueShortestPrefix (Path) : Path .

1 function frameAlgorithm(P : Path) : Sequence
2 Q := 〈〈〉〉 : Sequence
3 while P 	= 〈〉 do
4 R := uniqueShortestPrefix (P)
5 append last node of R to the end of Q
6 remove prefix R from P

7 remove last node of Q
8 return Q

A trivial representation of P is P itself. If not all edges of G are unique shortest
paths, then this property can be established easily by a simple transformation
of G: For every edge (u, v) in G we run a Dijkstra search starting from u with
the constraint that the edge (u, v) must not be relaxed. This yields a shortest
path Puv in the graph (V,E \ {(u, v)}). If c(Puv) ≤ c(u, v) holds, we introduce
a new node x to G and replace (u, v) by the new edges (u, x) and (x, v) with
c(u, x) := c(x, v) := c(u, v)/2. In the following we assume that all edges of G
are unique shortest paths. Thus, every path in G can be represented with via
nodes. A representation Q of P with via nodes is called minimal if there exists
no other representation Q′ of P s.t. |Q′| < |Q|. If P is a unique shortest path,
then the minimal representation is 〈〈〉〉.

A prefix Ri := 〈u1, . . . , ui〉 with i < n is called a real prefix of P . If Ri is a
unique shortest path, then Ri is called a unique shortest prefix of P . If Ri+1 is
not a unique shortest path, then Ri is called the maximal unique shortest prefix
of P . A generic frame algorithm (see Algorithm 1) computes a representation
with via nodes for a given path. It requires that a procedure uniqueShortestPrefix
is present, which computes a unique shortest prefix of a given path. Obviously,
uniqueShortestPrefix is called O(|Q|) times. The frame algorithm can also be
used to find minimal representations as the following theorem shows.

Theorem 2. If uniqueShortestPrefix provides the maximal unique shortest pre-
fix, then Algorithm 1 yields a minimal representation with via nodes.

Proof. Set 〈s, . . . , t〉 := P and let Q = 〈〈u1, . . . , uk〉〉 be the result of the frame
algorithm. Assume there is another representation Q′ = 〈〈v1, . . . , v�〉〉 of P with
� < k. Then 〈s, . . . , vi〉 is a prefix of 〈s, . . . , ui〉 for 1 ≤ i ≤ �. For i = 1 this
is true because 〈s, . . . , u1〉 is computed by uniqueShortestPrefix and hence the
maximal unique shortest prefix of P . For i > 1 we apply induction and assume
〈s, . . . , vi−1〉 is prefix of 〈s, . . . , ui−1〉. But then 〈s, . . . , vi〉 must also be prefix of
〈s, . . . , ui〉. Otherwise 〈ui−1, . . . , ui〉, which is the maximal unique shortest prefix
of 〈ui−1, . . . , t〉, would be a real prefix of the unique shortest path 〈ui−1, . . . , vi〉.
But this is not possible. Hence, 〈s, . . . , v�〉 is a prefix of 〈s, . . . , u�〉. But this
means that 〈u�, . . . , t〉 is subpath of 〈v�, . . . , t〉 and hence a unique shortest path.

Efficient Route Compression for Hybrid Route Planning 97

Algorithm 2. Modification of Dijkstra’s algorithm computing a maximal unique

shortest prefix path of a given path P = 〈u1, . . . , un〉.
1 function uniqueShortestPrefix(〈u1 , . . . , un〉 : Path) : Path
2 d[u] :=∞, p[u] := ⊥, unique[u] := true for all u ∈ V
3 k := n, d[u1] := 0
4 M := {(u1, 0)} : PriorityQueue
5 while M 	= ∅ do
6 u := M.deleteMin() // settle node u
7 if u = ui ∈ P then
8 if ¬unique[ui] or c(〈u1, . . . , ui〉) 	= d[ui] then
9 k := min{k, i− 1}

10 for (u, v) ∈ E do
11 if d[u] + c(u, v) < d[v] then // relax edge (u, v)
12 if d[v] =∞ then M.insert(v, d[u] + c(u, v))
13 else M.decreaseKey (v, d[u] + c(u, v))
14 d[v] := d[u] + c(u, v)
15 p[v] := u
16 unique[v] := true

17 else if d[u] + c(u, v) = d[v] then unique[v] := false

18 if d[u] > c(〈u1, . . . , uk〉) then break

19 return 〈u1, . . . , uk〉

But this contradicts the fact that 〈u�, . . . , u�+1〉 with u�+1 �= t is the maximal
unique shortest prefix of 〈u�, . . . , t〉. ��

All compression methods described in this work are instantiations of the frame
algorithm with different realizations of the procedure uniqueShortestPrefix .

3 Dijkstra-Based Compression and a Generic Scheme

The first realization of the procedure uniqueShortestPrefix which we describe is
actually Dijkstra’s well known algorithm plus some additional actions. It returns
the maximal unique shortest prefix of a given path as we will see (Algorithm 2).

The original version of Dijkstra’s algorithm computes shortest paths from a
given start node s to all reachable nodes in a graph. To do so it successively
labels all nodes w with labels d[w] and p[w], where d[w] is the tentative cost
from s to w and p[w] the predecessor of w on the corresponding tentative path.
After termination we can obtain a shortest path Psu from s to a node u by
successively selecting the next predecessor node starting from u:

Psu =
〈
s = p[. . . p[u] . . .], . . . , p[p[u]], p[u], u

〉
When a node is settled (i.e., removed from the priority queue, Line 6), its ten-
tative cost equals the cost of a shortest path and changes no more. A detailed

98 G.V. Batz et al.

explanation of Dijkstra’s algorithm can be found in textbooks (e.g., [18]). Our
modified Dijkstra starts from u1 and maintains an index k which is initialized
with n and repeatedly decreased until 〈u1, . . . , uk〉 is a unique shortest prefix.

Lemma 3. For u ∈ V let Pu := 〈u1, . . . , p[p[u]], p[u], u〉 be the shortest path
found by Algorithm 2. If unique[w] holds for all w ∈ Pu, then Pu is unique.

Proof. Otherwise, there is a shortest path P ′ := 〈u1, . . . , w
′, w〉 with w′ �∈ Pu for

some w ∈ Pu. After (p[w], w) and (w′, w) have been relaxed (Lines 11 to 17) we
have ¬unique[w] because P ′ and 〈u1, . . . , p[w], w〉 ⊆ Pu are shortest paths, and
d[w] = d[p[w]] + c(p[w], w) = d[w′] + c(w′, w) can not further decrease. But this
also means that unique[w] will not be changed anymore – a contradiction. ��

Lemma 4. Algorithm 2 computes a unique shortest prefix.

Proof. Let k0 be the final value of k. Surely, 〈u1, . . . , uk0〉 is a shortest path.
Otherwise, the algorithmwould return a real prefix of 〈u1, . . . , uk0〉 because of the
second condition in Line 8. Also, 〈u1, . . . , uk0〉 is unique according to Lemma 3 as
unique[uj] holds for 1 ≤ j ≤ k0. Otherwise, we would have ¬unique[uj] for some
uj at the time when uj is settled, because unique does not change for settled
nodes as their tentative cost is already minimal. But then, the algorithm would
perform k := j − 1 < k0 which can not be the case. ��

Theorem 5. Algorithm 2 computes the maximal unique shortest prefix.

Proof. Otherwise, 〈u1, . . . , uk0+1〉 is a unique shortest prefix with k0 the final
value of k. As the algorithm sets k to k0, one of the conditions in Line 8 must
be fulfilled. But as 〈u1, . . . , uk0+1〉 is a shortest path, it is ¬unique[uk0+1] which
holds when uk0+1 is settled. This means that uk0+1 is reached by two different
paths with the same cost which must be minimal as it is not decreased afterwards.
But we assumed that the shortest path 〈u1, . . . , uk0+1〉 is unique. ��

So, if we instantiate the procedure uniqueShortestPrefix in the frame algorithm
(Algorithm 1) by our modified Dijkstra search (Algorithm 2), we get a method
to compute the minimal representation of a given path with via nodes.

But we also consider another realization of uniqueShortestPrefix which we
call the generic binary scheme (Algorithm 3). It is heavily inspired by binary
search and like the frame algorithm it is also generic. It requires that a procedure
isUniqueShortestPath is present, which decides whether a given path is a unique
shortest path or not. This subprocedure is invoked O(log |P |) times.

Corollary 6. Algorithm 3 computes the maximal unique shortest prefix.

Instantiating the procedure uniqueShortestPrefix in the frame algorithm (Algo-
rithm 1) by the generic binary scheme (Algorithm 3) we get a further generic
method to compute the minimal representation with via nodes Q of a path P .
Obviously, the procedure isUniqueShortestPath is called O(|Q| log |P |) times.

In the following we instantiate the subprocedure isUniqueShortestPath in the
generic binary scheme using the aforementioned CH. This yields a quite fast

Efficient Route Compression for Hybrid Route Planning 99

Algorithm 3. A generic binary scheme checking whether 〈u1, . . . , un〉 is a unique

shortest path. Requires a subprocedure isUniqueShortestPath (Path) : bool .

1 function uniqueShortestPrefix(〈u1 , . . . , un〉 : Path) : Path
2 (�,m, r) := (1, n, n)
3 while �+ 1 < r do
4 if isUniqueShortestPath(〈u1, . . . , um〉) then � := m
5 else r := m
6 m := �(�+ 1 + r)/2�
7 return 〈u1, . . . , u�〉

realization. It should be noted, however, that the structure of a CH is different
from the structure of the original road network. As a result, via nodes are no
longer nodes where unique shortest paths meet, but nodes where paths meet
that are uniquely representable with respect to CH.

4 Representing Paths Uniquely with CH

In the CH framework [13, 14] we derive a hierarchical structure from the original
road networkG in a relatively expensive preprocessing step. There, all nodes of G
are ordered by some notion of importance with more important nodes higher up
in the hierarchy. Roughly, a node is more important, the more shortest paths run
over it. The hierarchy is constructed bottom up by successively contracting the
least important remaining node. Contracting a node v means, that v is removed
from the graph while preserving all shortest paths. To preserve the shortest
paths we have to insert an artificial shortcut edge (u,w) for every removed path
〈u, v, w〉 which is a unique shortest path at that time. If a shortcut (u,w) is
inserted, we set c(u,w) := c(u, v) + c(v, w) and annotate (u,w) with the middle
node v such that (u,w) can be expanded to 〈u, v, w〉. When inserting (u,w) it
may happen that an edge (u,w) is already present. In this case we merge the
two edges. This means we check whether c(u,w) > c(u, v) + c(v, w) holds, and
if it does we replace the middle node by v and the weight by c(u, v) + c(v, w).

Having contracted all nodes we have a hierarchy of graphs which we store in
a condensed way: Every node is materialized exactly once and the original edges
and all shortcuts are put together. The resulting graph is the actual contraction
hierarchy (also abbreviated CH) H . We have G ⊆ H . Fig. 1 shows an example.

Corollary 7. Let H be a CH derived from G. Then he shortest path distances
in H and G are equal (but usually H contains paths not present in G).

We say an edge (u, v) in H leads upward if u is less important than v. Otherwise,
we say (u, v) leads downward. Let H↑ ⊆ H and H↓ ⊆ H be the subgraphs
that only consist of upward and downward edges respectively. Then we have
H = H↑ ∪H↓ where H↑ and H↓ are edge disjoint DAGs. Most probably, a path
P := 〈s, . . . , t〉 in H contains shortcuts. These can be expanded recursively until

100 G.V. Batz et al.

v1

v2

v3

v4 v5

2 1

1 2
1 im

p
o
rt
a
n
ce

v1

v2

v3

v4

v5

2

1

1

2

1

im
p
o
rt
a
n
ce

v1

v2

v3

v4

v5

2

1

1

2

1

4, v2

2, v4

3, v4

Fig. 1. Example road network (left) whose nodes are ordered by importance according
to v4 ≺ v3 ≺ v2 ≺ v1 ≺ v5 (middle). Doing preprocessing we get a CH (right) with three
shortcut edges (dotted) annotated with their weight and the respective middle node.
When contracting v3 we insert no shortcut because there is more than one shortest
path from v1 to v5 in the remaining network which still contains the nodes v1, v2, v5.

no shortcuts are present in the resulting path P ′ ⊆ G. We say that P represents
P ′. A path 〈s, . . . , x, . . . , t〉 in H with 〈s, . . . , x〉 ⊆ H↑ and 〈x, . . . , t〉 ⊆ H↓ is
called an up-down-path in H with top node x.

Lemma 8 ([14]). Let H be a CH derived from G and s, t be two nodes. Then,
there is an up-down-path in H that represents a shortest path from s to t in G.

Up-down-paths being also shortest paths are called shortest up-down-paths.
Shortest paths in G can only be represented by shortest up-down-paths in H .
If there is exactly one shortest up-down-path in H representing a shortest path
P ⊆ G, we say P is uniquely representable (by a shortest up-down-path) in H .

A shortest up-down-path from a node s to a node t can be found by performing
a bidirectional Dijkstra search that runs upward. That is two Dijkstra searches
that run at the same time, a forward and a backward search each starting from s
and t and running in H↑ and H�

↓ respectively.2 This is exactly what Algorithm 4
does. Similar to the Algorithm 2 we maintain tentative cost, predecessor, and
uniqueness information, but separately for forward and backward search: ds
and dt, for example, denote the tentative cost of forward and backward search
respectively. Whenever the two searches meet in a node u, we put u into the set C
of top node candidates, but only if the weight of the corresponding up-down-path
with top node u is minimal at that time (Line 10). After the bidirectional search
is finished, we check whether the shortest of the up-down-paths that we found is
unique (Lines 19 to 26). Algorithm 4 runs very fast because well-constructed CH
are flat and sparse. This means H only contains few shortcuts and the paths in
H↑ and H�

↓ only have few hops. Note that we also apply stall-on-demand [13, 14]
to further reduce running time.

Theorem 9. A path 〈s, . . . , t〉 ⊆ G is uniquely representable by a shortest up-
down-path in H, if and only if Algorithm 4 returns true.

2 In reality we run the two searches in an alternating manner instead of simultaneously.

Efficient Route Compression for Hybrid Route Planning 101

Algorithm 4. Modified bidirectional Dijkstra search checking whether 〈s, . . . , t〉
is uniquely representable by a shortest up-down-path in the CH H = H↑ ∪H↓.

1 function isUniquelyRepresentable(P := 〈s, . . . , t〉 : Path) : bool
2 dX [u] :=∞, pX [u] := ⊥, uniqueX [u] := true for all u ∈ V , X ∈ {s, t}
3 ds[s] := dt[t] := 0
4 Ms := {(s, 0)},Mt := {(t, 0)} : PriorityQueue
5 X := t, C := ∅ // search direction, candidate set
6 while Ms 	= ∅ or Mt 	= ∅ do
7 if minMs ∪Mt > min{ds[x] + dt[x] | x ∈ C} ∪ {∞} then break
8 if M¬X 	= ∅ then X := ¬X // with s = ¬t and t = ¬s
9 u := MX .deleteMin()

10 if ds[u] + dt[u] ≤ min{ds[x] + dt[x] | x ∈ C} then C := C ∪ {u}
11 foreach edge (u, v) in HX do // Hs := H↑, Ht := H�

↓
12 if dX [u] + c(u, v) < dX [v] then
13 if dX [v] =∞ then MX .insert(v, dX [u] + c(u, v))
14 else MX .updateKey(v, dX [u] + c(u, v))
15 dX [v] := dX [u] + c(u, v)
16 pX [v] := u
17 uniqueX [v] := true

18 else if dX [u] + c(u, v) = dX [v] then uniqueX [v] := false

19 if there is exactly one x ∈ C minimizing ds[x] + dt[x] then
20 x0 := argminx∈C ds[x] + dt[x]
21 Ps := 〈s, . . . , ps[ps[x0]], ps[x0], x0〉 ⊆ H↑
22 Pt := 〈x0, pt[x0], pt[pt[x0]], . . . , t〉 ⊆ H↓
23 if concatenated up-down-path PsPt not represents P then return false
24 if there is X ∈ {s, t}, w ∈ PX s.t. ¬uniqueX [w] then return false
25 return true

26 return false

Proof. First note that both forward and backward search settle the top node
of every shortest up-down-path from s to t adding it to C (Line 10). So, in
the end C contains the top nodes of all shortest up-down-paths from s to t and
min{ds[x]+dt[x] | x ∈ C} is the respective cost of these shortest up-down-paths.

Now, assume the algorithm returns false . Then, only the following reasons are
possible: First, there is no up-down-path from s to t in H at all, or there are
multiple shortest up-down-paths with different top nodes (Line 19 with the above
statement). Second, Ps or Pt is not unique in H↑ orH↓ respectively (Line 24 with
Lemma 3), so there are multiple shortest up-down-paths even if they have the
same top node. Third, the concatenated up-down-path PsPt does not represent
P (Line 23) even it is the only shortest up-down-path from s to t in H .

Assume the algorithm returns true. We know that all shortest up-down-paths
from s to t have the same top node (Line 19). Also, Ps and Pt are unique in
H↑ and H↓ respectively (Line 24 with Lemma 3). So, PsPt is the only shortest
up-down-path from s to t in H and it represents P (Line 23). ��

102 G.V. Batz et al.

5 Compression Based on CH

If we instantiate uniqueShortestPrefix in the frame algorithm (Algorithm 1) with
the binary scheme (Algorithm 3) and isUniqueShortestPath in the binary scheme
with isUniquelyRepresentable (Algorithm 4), we get a very fast CH-based method
to compute representations with via nodes.

As mentioned before, the resulting representations are no longer in terms
of the original road network G but in terms of the CH H which has different
properties. Consider a path P := 〈u1, . . . , un〉 ⊆ G which is not necessarily a
shortest path. Let Q := 〈〈ui1 , . . . , uik〉〉 be a subsequence of P with the property
that the subpaths 〈u1, . . . , ui1〉, 〈uik , . . . , un〉, and 〈uij , . . . , uij+1〉 of P with 1 ≤
j < k are all uniquely representable by up-down-paths in H . Then, we call
Q a CH-based representation of P (with via nodes). Note that the original road
networkG is not enough to reconstruct the path from a CH-based representation
with via nodes. Instead, we have to compute unique shortest up-down-paths
between the via nodes using bidirectional upward searches in the CH. This is
due to Observation 10.

Observation 10. Let H be a CH derived from G. Then, a not unique shortest
path P ⊆ G may still be uniquely representable by an up-down-path in H.

To understand that take a look at Fig. 1. There, the CH contains exactly one
shortest up-down-path from v1 to v5, namely 〈v1, v5〉 which represents the short-
est path 〈v1, v2, v4, v5〉 in the original road network. However, this shortest path
is not unique as the original road network also contains another shortest path
from v1 to v5, namely 〈v1, v3, v4, v5〉.

As a consequence of Observation 10 less via nodes may be needed by a repre-
sentation in terms of CH than in terms of the original road network. Again, look
at Fig. 1. The minimal representation with via nodes of the path 〈v1, v2, v4, v5〉
in terms of the original road network is 〈〈v2〉〉. The minimal CH-based represen-
tation is 〈〈〉〉.

All subpaths of unique shortest paths in G are unique shortest paths them-
selves. In case of CHs, however, the analogous condition does not hold. Again,
Fig. 1 shows an example: The path 〈v1, v2, v4, v5〉 in the original network is
uniquely representable by an up-down-path in H but its subpath 〈v1, v2, v4〉 is
not uniquely representable as there are two up-down-paths from v1 to v4.

Observation 11. Let H be a CH derived from G. Then, a shortest path P ⊆ G
may be uniquely representable in H, but one of its subpaths may be not.

It is because of Observation 11 that the CH-based method does not necessary
yield the minimal possible number of via nodes with respect to H . However, we
are never worse than the minimal representation in terms of the original road
network G. This is due to Lemma 12 as we show in the proof of Theorem 13.

Lemma 12. Let H be a CH derived from G. Then, every unique shortest path
P ⊆ G is uniquely representable by an up-down-path in H.

Efficient Route Compression for Hybrid Route Planning 103

Theorem 13. A CH-based representation computed by our binary CH-based
method needs not more via nodes than a minimal representation with respect
to the original road network.

Proof. Let P = 〈s, . . . , t〉 ⊆ G be the given path. Let QG := 〈〈u1, . . . , uk〉〉 be
a minimal representation of P with respect to G. Assume our binary method
finds a CH-based representation QH := 〈〈v1, . . . , v�〉〉 with respect to H such that
� > k. Then, we know that i, j exist such that the subpath 〈vj , . . . , vj+1〉 ⊆ P
is also a subpath of R := 〈ui, . . . , ui+1〉 with vj+1 �= ui+1.

3 But all subpaths
〈vj , . . . , w〉 ⊆ R are unique shortest paths in G and thus, by Lemma 12, uniquely
representable by a shortest up-down-path in H . So, the binary scheme (Algo-
rithm 3) instantiated with Algorithm 4 does not return 〈vj , . . . , vj+1〉 as resulting
prefix path but a longer one – a contradiction. ��

6 Experiments

Setup. As input we use a German road network provided by PTV AG for scien-
tific use. It has 4.7M nodes, 10.8M edges, and 7.2% time-dependent edge weights
reflecting the travel times of midweek (Tuesday till Thursday) traffic collected
from historical data – that is a high traffic scenario. For all edges (u, v) also the
driving distance dd(u, v) is available. The units of time and distance are 0.1 s and
1m respectively. From this we obtain four different metrics, that is edge weights
and objective functions defining different kinds of optimal routes. With these
metrics we simulate the hybrid route planning scenario, where server-provided
routes are not necessary optimal with respect the client’s objective function.

In the time-dependent metric edge weights are time-dependent travel times.
Optimal routes minimize the travel time depending on the departure time
[2–4, 6]. In the free flow metric we also minimize travel time but there is no
time-dependency. As weight of an edge (u, v) we use the minimum travel time
mtt(u, v) of the respective time-dependent edge weight. In the distance metric
we simply use the driving distance dd(u, v) as weight of an edge (u, v). Opti-
mal routes are minimum distance routes. With the energy metric we optimize
an approximation of energy consumption. As weight of an edge (u, v) we use
dd(u, v)+4 ·mtt(u, v). With typical gasoline prices we assume that driving 1 km
costs 0.1�. This implies that travel time is prized with a rate of 14.4� per hour.

To simulate the server, we compute optimal routes with respect to the metrics
time-dependent and distance. To simulate possible objective functions of the
client, we use the metrics free flow, distance, and energy. This leads to five
combinations of server metrics and client metrics. For all three client metrics
the road network contains edges which are not unique shortest paths. This means
we have to transform the road network a little as described in Sect. 2. For the
client metrics free flow, distance, and energy this increases the number of nodes
by 2.37%, 1.48%, and 2.16% respectively. The reported average numbers of
nodes of the uncompressed paths refers to the non-transformed network.

3 This can be shown by induction over k.

104 G.V. Batz et al.

Table 1. Behavior of the Dijkstra-based and the binary CH-based compression for all
five combinations of server and client metrics. Algor.= numbers of combined algorithms
as used in this work, max.= maximum, rate= compression rate. All figures except for
the maxima are average values.

route client via nodes time
nodes metric method Algor. # max. rate[%] [ms]

server metric: time-dependent

996

free flow
Dijkstra-based 1+2 0.071 3 0.006 1 500.78
binary CH-based 1+3+4 0.068 3 0.006 0.36

distance
Dijkstra-based 1+2 9.771 26 1.045 481.60
binary CH-based 1+3+4 9.677 25 1.036 20.98

energy
Dijkstra-based 1+2 1.103 6 0.125 1 326.17
binary CH-based 1+3+4 1.094 6 0.124 1.72

server metric: distance

1 763
free flow

Dijkstra-based 1+2 29.312 76 1.689 162.49
binary CH-based 1+3+4 29.284 76 1.688 12.56

energy
Dijkstra-based 1+2 24.902 69 1.434 182.87
binary CH-based 1+3+4 24.876 69 1.433 15.63

The experimental evaluation was done on different 64 bit machines with
Ubuntu Linux 10.04. The running times have been measured on a machine with
8 GiB main memory and a Core i5 Double-Core CPU at 3.33 GHz. There, all
programs were compiled using GCC 4.4.3 with optimization level 3. We evaluate
the performance of our compression algorithms in terms of running time, num-
ber of via nodes, and compression rate. The compression rate is defined as the
number of via nodes divided by the number of nodes of the uncompressed path.

Results. To generate “server provided” routes, we randomly select 1 000 pairs of
start and destination nodes computing the optimal routes with respect to both
server metrics. For the metric time-dependent we also select random departure
times from [0, 24h). Table 1 shows the resulting performance of the Dijkstra-
based and the binary CH-based compression. The average compression rate is
never worse than 1.7% which means that 29 via nodes are needed to represent
a path with 1 763 nodes. The maximum number of via nodes is 76. The number
of via nodes gets larger if server and client metrics are less correlated. The
compression rate achieved by the CH-based method is only sightly better than for
the Dijkstra-based method. However, the minimum number of via nodes possible
with CH is unknown. And unfortunately our implementation of Algorithm 4 is
a bit pessimistic and potentially rejects some uniquely representable subpaths.

The binary CH-based method runs much faster than the Dijkstra-based one.
With average compression times below 21ms it is fast enough for high through-
put servers. Previous experiments with mobile CH [15] suggest that a client needs
clearly less than 0.1 s to decompress each segment of a compressed route. So, for
our German road network compression and decompression should not raise any
noticeable latency – remember that it is enough to decompress the next segment
fast. It is not surprising that the CH-based method runs faster if the number of

Efficient Route Compression for Hybrid Route Planning 105

via nodes is very small as isUniqueShortestPath is invoked O(|Q| log |P |) times.
It looks surprising, however, that the compression runs faster with 29.3 than
with 9.7 nodes. A possible explanation is that different metrics entail different
distributions of via nodes as well as different numbers of shortcuts in the CH.
Both can influence the compression time of a single segment.

The running time of the Dijkstra-based method behaves contrary to the CH-
based one: It runs faster the more via nodes we need. Whenever Algorithm 2 finds
a maximum unique shortest prefix, it can be stopped (Line 18). But Dijkstra’s
algorithm has roughly quadratic running time on road networks. So, if we stop
it more early but invoke it more often, the overall running time decreases.

●●●●●● ●●●●●●●●●●
●●

●●●

●●
●

●

●●●●

●

●
●

●
●
●●●●

ru
nn

in
g

tim
e

[m
s]

Dijkstra rank

26 28 210 212 214 216 218 220 222

1

10

100

1000

●●● ●●●●●●● ●●●●
●●●

●

●●

●●

●●

●

●●●●●●●
●●●

●●●●●
●●●●●●●

●●●●●●●●●●
●●●

●
●
●
●●
●

●

●
●●
●●●●
●

●

●●●●●●

●

●

●

●

●

●

●

●●
●

●

●●
●
●
●
●
●
●
●

●

●
●

●●
●

●●

●

●
●●

●
●

● ●
●●●

●

●●●●

●
●

●

●
●
●

●

●●
●

●● ●
●●●

●
●●

●●
●
●●

●
●●●
●
●●

●

●
●
●

●

●
●

●
●

server metric / client metric

time−dependent / free flow
time−dependent / energy
time−dependent / distance
distance / energy
distance / free flow

●
●●
●●●●●●
●

●

●

●

●

●

●●

●●●●

●●●

●

●

●

●
●

ru
nn

in
g

tim
e

[m
s]

Dijkstra rank

26 28 210 212 214 216 218 220 222

0.01

0.1

1

10

100

●●●●
●
●

●

●

●●

●

●
●●

●●●

●

●

●●●●
●●
●
●●●
●

●

●●

●
●
●●

●

●
●
●

●

●

●
●

●●

●●
●●●

●
●
●

●

●

●●

●

●
●

●
●●●

●●
●●●●

●●●

●●

●
●●
●

●●

●

●
●●

●
●●
●●

●
●●●

●●●●●
●●
●●
●●●●●
●
●●

●

●●●
●●
●
●●●●
●●●●
●

●

●

●

●
●

●
●●●

●
●●

●

●
●●●
●
●●
●●●●●●

●●

●●●

●
●
●

●
●●●

●
●●●

●●

server metric / client metric

time−dependent / free flow
time−dependent / energy
time−dependent / distance
distance / energy
distance / free flow

● ●●●

●●●●

●

●

●●

●

●

vi

a
no

de
s

Dijkstra rank

26 28 210 212 214 216 218 220 222

≤ 1

3

10

30

100

● ●● ●●●●●●●● ●●●●●●●●●

●

●

●

●●●●●●●

●

●

●

●●●●●●●●●

●

●●

●

●

●●

●

● ●●● ●●●●● ●●●●●

●

●●●

●●

●●●● ●●

●●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●●●●●

●

● ●●●●

●

●●

●●

●●●●●●

●●

●

●●●

●●

●

●●●●●

●● ●●●●

●

●●

●

●●●●

●●

●●●●●●●●●●●

●
●

●
●

●●

●●●
●

●
●●●

server metric / client metric

time−dependent / free flow
time−dependent / energy
time−dependent / distance
distance / energy
distance / free flow

Fig. 2. The compression time of the Dijkstra-based (top) and the CH-based method
(middle) plotted over the Dijkstra rank for all five combinations of server and client
metrics. The number of via nodes computed by the CH-based method is also plotted
(bottom). There are 100 compressed routes per rank and combination.

106 G.V. Batz et al.

Fig. 2 shows the compression time of both methods as well as the number of
via nodes plotted over Dijkstra rank4. For all combinations of server and client
metrics the compression time of both methods as well as the number of via nodes
increases with the Dijkstra rank.

7 Conclusions and Future Work

We describe an algorithmic framework for convenient hybrid route planning.
Routes computed by servers can be transmitted to client devices in cars effi-
ciently, even when the bandwidth is low. To do so routes are represented as
sequences of only a few via nodes. These are the connection points when routes
are decomposed into unique shortest subpaths with respect to the clients ob-
jective function. Utilizing CH we achieve very good performance: On a German
road network an average compression takes less than 21ms and yields less than
30 via nodes. The maximum number of via nodes we observe is 76. Using mobile
CH the client can decompress the first subpath of the route in less than 0.1 s as
previous experiments suggest [15]. The following subpaths can be decompressed
one after another during driving. So, except for the time needed by the mobile
communication the driver will most likely not experience any latency. Note that
the low number of via nodes also helps to keep the communication time small.

We also describe a Dijkstra-based method that runs much slower than the
CH-based one. But applying Arc-Flags [19] or ALT [20], two algorithmic tech-
niques for fast and exact route planning, may bring a substantial speedup there.
An interesting question is, whether subpaths that are uniquely representable
with CH can be computed “directly”, that is without repeated bidirectional Di-
jkstra searches. This could further speedup the CH-based compression. Finally,
it should be noted that we could also use via edges instead of via nodes.

References

1. Delling, D., Wagner, D.: Time-Dependent Route Planning. In: Ahuja, R.K.,
Möhring, R.H., Zaroliagis, C.D. (eds.) Robust and Online Large-Scale Optimiza-
tion. LNCS, vol. 5868, pp. 207–230. Springer, Heidelberg (2009)

2. Batz, G.V., Delling, D., Sanders, P., Vetter, C.: Time-Dependent Contraction Hi-
erarchies. In: Proceedings of the 11th Workshop on Algorithm Engineering and
Experiments (ALENEX 2009), pp. 97–105. SIAM (April 2009)

3. Batz, G.V., Geisberger, R., Neubauer, S., Sanders, P.: Time-Dependent Contrac-
tion Hierarchies and Approximation. In: [21], pp. 166–177

4. Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed Time-Dependent Con-
traction Hierarchies. In: [21] pp. 83–93

5. Batz, G.V., Sanders, P.: Time-Dependent Route Planning with Generalized Ob-
jective Functions. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501,
pp. 169–180. Springer, Heidelberg (2012)

4 For i = 6..22 we each select 100 random queries such that the time-dependent variant
of Dijkstra’s algorithm settles 2i nodes. We call 2i the Dijkstra rank.

Efficient Route Compression for Hybrid Route Planning 107

6. Delling, D.: Time-Dependent SHARC-Routing. Algorithmica 60(1), 60–94 (2011),
Special Issue: European Symposium on Algorithms (2008)

7. Brunel, E., Delling, D., Gemsa, A., Wagner, D.: Space-Efficient SHARC-Routing.
In: [21], pp. 47–58

8. Geisberger, R., Kobitzsch, M., Sanders, P.: Route Planning with Flexible Objective
Functions. In: Proceedings of the 12th Workshop on Algorithm Engineering and
Experiments (ALENEX 2010), pp. 124–137. SIAM (2010)

9. Delling, D., Wagner, D.: Pareto Paths with SHARC. In: Vahrenhold, J. (ed.) SEA
2009. LNCS, vol. 5526, pp. 125–136. Springer, Heidelberg (2009)

10. Delling, D., Goldberg, A.V., Pajor, T., Werneck, R.F.: Customizable Route Plan-
ning. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
376–387. Springer, Heidelberg (2011)

11. Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: Alternative Routes in
Road Networks. In: [21], pp. 23–34

12. Luxen, D., Schieferdecker, D.: Candidate Sets for Alternative Routes in Road Net-
works. In: Klasing, R. (ed.) SEA 2012. LNCS, vol. 7276, pp. 260–270. Springer,
Heidelberg (2012)

13. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies:
Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C.
(ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

14. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact Routing in Large
Road Networks Using Contraction Hierarchies. Transportation Science (accepted
for publication, 2012)

15. Sanders, P., Schultes, D., Vetter, C.: Mobile Route Planning. In: Halperin, D.,
Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 732–743. Springer, Heidelberg
(2008)

16. Batz, G.V., Geisberger, R., Luxen, D., Sanders, P.: Compressed Transmission of
Route Descriptions. Technical report, Karlsruhe Institute of Technology (KIT)
(2010), arXiv:1011.4465v1

17. Tao, Y., Sheng, C., Pei, J.: On k-skip shortest paths. In: Proceedings of the 2011
ACM SIGMOD International Conference on Management of Data, SIGMOD 2011,
pp. 421–432. ACM, New York (2011)

18. Mehlhorn, K., Sanders, P.: Algorithms and Data Structures: The Basic Toolbox.
Springer (2008)

19. Möhring, R.H., Schilling, H., Schütz, B., Wagner, D., Willhalm, T.: Partitioning
Graphs to Speed Up Dijkstra’s Algorithm. In: Nikoletseas, S.E. (ed.) WEA 2005.
LNCS, vol. 3503, pp. 189–202. Springer, Heidelberg (2005)

20. Goldberg, A.V., Harrelson, C.: Computing the Shortest Path: A* Search Meets
Graph Theory. In: Proceedings of the 16th Annual ACM–SIAM Symposium on
Discrete Algorithms (SODA 2005), pp. 156–165. SIAM (2005)

21. Festa, P. (ed.): SEA 2010. LNCS, vol. 6049. Springer, Heidelberg (2010)

Multipath Spanners via Fault-Tolerant Spanners

Shiri Chechik1,�, Quentin Godfroy2,��, and David Peleg3,�

1 Microsoft Research, Silicon Valley Center, USA
shiri.chechik@gmail.com

2 LaBRI, Université Bordeaux-I, 351 cours de la Libération, Talence, France
quentin@godfroy.eu

3 Department of Computer Science, The Weizmann Institute, Rehovot, Israel
david.peleg@weizmann.ac.il

Abstract. An s-spanner H of a graph G is a subgraph such that the
distance between any two vertices u and v in H is greater by at most a
multiplicative factor s than the distance in G. In this paper, we focus on
an extension of the concept of spanners to p-multipath distance, defined
as the smallest length of a collection of p pairwise (vertex or edge) dis-
joint paths. The notion of multipath spanners was introduced in [15, 16]
for edge (respectively, vertex) disjoint paths. This paper significantly im-
proves the stretch-size tradeoff result of the two previous papers, using
the related concept of fault-tolerant s-spanners, introduced in [6] for gen-
eral graphs. More precisely, we show that at the cost of increasing the
number of edges by a polynomial factor in p and s, it is possible to obtain
an s-multipath spanner, thereby improving on the large stretch obtained
in [15, 16].

1 Introduction

Consider a graph G = (V,E). An s-spanner H of a graph G is a spanning
subgraph that preserves distances between all pairs of nodes within a factor of
s, namely, such that δ(u, v,H) ≤ s · δ(u, v,G) for every two nodes u, v ∈ V ,
where δ(u, v,G′) for a graph G′ is the distance from u to v in G′.

Graph spanners were introduced in [21, 22] in the context of distributed
networks. It is well-known how to efficiently construct an s-spanner of size

O(n1+ 2
s+1) [1], for an odd integer s. Spanners have numerous applications, such

as synchronizers [22], efficient routing [7, 8, 22, 25, 26], broadcasting [14], near-
shortest path algorithms [11–13], covers [2], dominating sets [10], distance or-
acles [4, 27], or emulators and distance preservers [5]. For recent reviews on
spanners see [23, 28].

This paper considers spanners for the multipath graph length. A p-vertex
(resp., p-edge) multipath between two vertices u and v is a subgraph consisting

� Supported in part by the Israel Science Foundation (grant 894/09), the United
States-Israel Binational Science Foundation (grant 2008348), the Israel Ministry of
Science and Technology (infrastructures grant), and the Citi Foundation.

�� Supported by the Institut Universitaire de France.

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 108–119, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Multipath Spanners via Fault-Tolerant Spanners 109

of the union of p pairwise vertex-disjoint (resp., edge-disjoint) paths between u
and v (except for the endpoints). The cost of a p-vertex (resp., p-edge) multipath
between u and v is the sum of the weights of its edges.

For a weighted graph G and two vertices u and v, let δpV (u, v,G) (resp.,
δpE(u, v,G)) be the minimum cost of a p-vertex (resp., p-edge) multipath in G
between u and v if one exists, and ∞ otherwise. We say that a subgraph H is a
p-vertex (resp., p-edge) multipath s-spanner of G if δpV (u, v,H) ≤ s · δpV (u, v,G)
(resp., δpE(u, v,H) ≤ s · δpE(u, v,G)) for every two vertices u and v such that
δpV (u, v,G) �= ∞ (resp., δpE(u, v,G) �= ∞).

Our interest in the disjoint multipath graph length stems from the need for
multipath routing in networks. Using multiple paths between a pair of nodes is
an obvious way to aggregate bandwidth. Additionally, a classical approach to
quickly overcome link failures consists in pre-computing alternate paths which
are disjoint from the primary paths [18, 24, 20]. Multipath routing can be used
for traffic load balancing and for minimizing delays. It has been extensively
studied in ad hoc networks for load balancing, fault-tolerance, higher aggregate
bandwidth, diversity coding, minimizing energy consumption (see [19] for a quick
overview). Considering only a subset of links is a practical concern in link state
routing in ad hoc networks [17]. This raises the problem of computing span-
ners for the multipath graph length, a first step towards constructing compact
multipath routing schemes.

Edge-disjoint multipath spanners were first introduced in [15], where the au-
thors provided construction examples. More specifically, they showed how to

construct a p-edge multipath spanner with O(pn1+ 2
s+1) edges and stretch s · p.

It was also shown that the factor p in the stretch can be discarded by an ad-
hoc construction for p = 2 and s = 3. In [16] the authors proved that for
every weighted graph one can efficiently construct a p-vertex multipath spanner

with O(p2n1+ 2
s+1) edges, but with a large stretch for large values of p (about

(1 + p/s)s).
In this paper, we significantly improve the stretch bounds from the two previous

papers, using the related concept of fault-tolerant s-spanners, introduced in [6] for
general graphs. We show that the constructions of edge-fault tolerant s-spanners
from [6] and vertex-fault tolerant s-spanners from [9] can yield p-multipath s-
spanners, by fixing the right number of faults. Specifically, for edge multipath
spanners we reduce the stretch from s · p to s, thus deriving edge multipath span-
ners with stretch-size tradeoff close to the best known bounds for standard span-
ners. For vertex multipath spanners we reduce the stretch bound from a function
of both s and p to just s in the case of unweighted graphs, and to s · p in the case
of weighted graphs, s being the stretch of the underlying fault-tolerant spanner.

More precisely, we show the following theorems.

Theorem 1. Given a weighted graph G = (V,E) with maximal edge weight
ω̂ and minimal edge weight 1, odd integer s and integer p, one can efficiently

construct a p-edge-multipath s-spanner with O
(
sp2 · log ω̂ · n1+ 2

s+1

)
edges.

110 S. Chechik, Q. Godfroy, and D. Peleg

Theorem 2. Given an unweighted graph G = (V,E), odd integer s and integer
p, one can efficiently construct a p-vertex-multipath s-spanner with

O
((

s6αp2α + (s · p)4α
)
n1+ 2

s+1 logn
)
edges, where α = 1− 1

s+1 .

Theorem 3. Given a weighted graph G = (V,E), odd integer s and integer p,
one can efficiently construct a p-vertex-multipath (s · p)-spanner with

O
(
(p · s)2α · n1+ 2

s+1 logn
)
edges, where α = 1− 1

s+1 .

2 Preliminaries

For a graph H and two vertices u and v, let δ(u, v,H) denote the distance
between u and v in H . A subgraph H of G is a spanner of stretch s (or, an
s-spanner) of G if δ(u, v,H) ≤ s · δ(u, v,G) for every u, v ∈ V . For a path P and
two vertices x and y on it, let P [x, y] denote the subpath of P from x to y.

A graph H is an r-vertex (resp., edge) fault-tolerant s-spanner of G if for
any set F ⊆ V (resp., F ⊆ E) of size at most r, the subgraph H \ F is an
s-spanner of G \F , where H ′ \F ′ for a subgraph H ′ and set of vertices F ′ is the
graph obtained by removing all vertices F ′ from H ′ together with their edges.
Similarly H ′ \ F ′ for a subgraph H ′ = (V ′, E′) and set of edges F ′ is the graph
(V ′, E′ \ F ′).

For a subgraph H , let cost(H) denote the sum of weights of the edges in H .
For a path P , let V (P) be the set of vertices on P and let E(P) be the set of

edges on P . Similarly for a set of paths S, let V (S) =
⋃

P∈S V (P) and E(S) =⋃
P∈S E(P). Consider two paths P1 and P2 between the same two vertices x and

y. We say that P1 and P2 are internal vertex-disjoint if V (P1)∩ V (P2) = {x, y}.
We say that a path is an s-path if it is of length at most s.

3 Edge Disjoint Multipath Spanners

In this section we show that every edge fault-tolerant spanner is an edge multi-
path spanner with the same stretch, by fixing the right number of faults.

We begin by considering the unweighted case, and show later how to proceed
with weighted graphs.

A set of paths B is called a set of edge-disjoint-s-bypasses of u and v if the
paths in B are edge-disjoint s-paths between u and v.

Consider two vertices x and y and let S = {Q1, ..., Qp} be the set of p vertex-
disjoint paths from x to y in G of minimal cost. Consider an edge e = (u, v)
such that e ∈ E(S). The next lemma shows that G does not contain “many”
edge-disjoint-s-bypasses, namely, edge disjoint s-paths between u and v, that
intersect with the other paths of S.

Lemma 1. Consider two vertices x and y and let S = {Q1, ..., Qp} be the set
of p edge-disjoint paths from x to y in G of minimal cost. Consider an edge
e = (u, v) ∈ Qi for some 1 ≤ i ≤ p. There are at most 2sp+ 2p edge-disjoint-s-
bypasses between u to v, that intersect with E(S) \ E(Qi).

Multipath Spanners via Fault-Tolerant Spanners 111

Proof: Assume towards contradiction that there are more than 2sp+ 2p edge-
disjoint-s-bypasses between u and v that intersect with E(S) \E(Qi). Let B be
the set of all these edge-disjoint-s-bypasses that intersect with E(S) \ E(Qi).
Let J be the set of indices j such that 1 ≤ j ≤ p, j �= i and E(Qj) ∩ E(B) �= ∅.
For an index j ∈ J , let ejh = (uj

h, v
j
h) be the edge in E(Qj) ∩ E(B) closest to

x in Qj , and let ejl = (uj
l , v

j
l) be the edge in E(Qj) ∩ E(B) closest to y in Qj .

Let Mj = [uj
h, v

j
l] for j ∈ J and let M =

⋃
j∈J Mj . We show that it is possible

to replace the set of edges E(M) with a set of edges E′ such that the resulting
graph contains p edge disjoint paths from x to y and its cost is less than cost(S)
and thus derive a contradiction to the optimality of S.

We now explain how to gradually build the set of edges E′. Roughly speaking,
the set of edges E′ is the union of some prefixes and suffixes of the paths Mj

together with some edge-disjoint-s-bypasses from B.
Let pj = ejh (resp., sj = ejl) be the prefix (resp., suffix) ofMj . Our construction

process will gradually add edges to these prefixes and suffixes.
Let tip(pj) (resp., tip(sj)) be the edge in E(pj) ∩E(B) (resp., E(sj) ∩E(B))

closest to y on Qj (resp., to x on Qj). We examine the set of tips of the prefixes
and suffixes, and the set of edge-disjoint-s-bypasses B′ in which they appear. Let
X be the set of prefixes and suffixes, namely, X =

⋃
j∈J {pj, sj}. The set B′ is

the set of edge-disjoint-s-bypasses containing one of the edges {tip(pj), tip(sj) |
j ∈ J}. For an edge e ∈ E(B′), let B(e) be the edge-disjoint-s-bypass such
that e ∈ E(B). Note that there is exactly one such edge-disjoint-s-bypass since
the edge-disjoint-s-bypasses are disjoint. We say that a path P ∈ X is clean if
the sub-path B(tip(e))[tip(P), u] does not contain other edges from E(X). For
an edge-disjoint-s-bypass B ∈ B′, let Pclean(B) be the path P ∈ X such that
tip(P) ∈ E(B) and P is clean; note that there is exactly one such path.

We say that a prefix pj ∈ X (resp., suffix sj) is complete if pj ◦ sj = Mj. We
apply the following process until all paths in X are clean. Choose an unclean
incomplete path and add edges to it until it becomes clean. By adding an edge to
a prefix pj (resp., suffix sj) we mean adding the edge on Mj adjacent to tip(pj)
(resp., tip(sj)) closest to y (resp., to x).

Note that it could happen that during this process some clean path becomes
unclean. Note also that edge-disjoint-s-bypasses are only added to B′ (but never
removed). Namely, B′(t1) ⊆ B′(t2) for t1 ≤ t2, where B′(t) is the set B′ in the
t’th step of this process. To see this, note that the process does not add edges to
Pclean(B) for any B ∈ B′. Thus in any stage of this process, B contains tip(P)
for P = Pclean(B). Hence, by definition, B ∈ B′. Notice that the path Pclean(B)
itself may change (since the process might add an edge to another path and this
edge could belong to the path from tip(P) to u).

We claim that B′ contains at most 2p edge-disjoint-s-bypasses. This follows
directly from the fact that each edge-disjoint-s-bypassB ∈ B′ contains a different
path Pclean(B) and that there are 2p paths in X .

We now show that it possible to substitute the paths in M with “cheaper”
paths and thus derive a contradiction to the optimality of S. For every incomplete
prefix pj ∈ X , let p′j be the clean subpath B(pj)[tip(pj), u]. Similarly, let s′j be

112 S. Chechik, Q. Godfroy, and D. Peleg

the clean subpath B(sj)[u, tip(sj)]. For every index j ∈ J , if pj is complete then

set Q′
j = Qj, otherwise set Q′

j = Qj[x, u
j
h] ◦ pj ◦ p′j ◦ s′j ◦ sj ◦Qj[v

j
l , y].

Let D′ =
⋃

j∈J E(p′j ◦ s′j) and D =
⋃

j �=i E(Mj) \ (E(pj) ∪ E(sj)). Let S ′ =
{Q′

1, ..., Q
′
p}. Note that |E(S ′)| = |E(S)| + |D′| − |D|. It is not hard to verify

that the paths Q′
j are disjoint and each of them leads from x to y. Moreover, M

intersects with at least 2sp+2p+1 edge-disjoint-s-bypasses, and the set E(pj)∪
E(sj) intersects with at most 2p edge-disjoint-s-bypasses, thus |D| > 2sp + 1.
In addition, |D′| ≤ 2sp. We get that |D| > |D′| and thus cost(S ′) < cost(S),
contradiction.

We now show that edge fault-tolerant spanners constructed by the algorithm of
[6] are also edge multipath spanners with the same stretch, by fixing the right
number of faults. For completeness, we outline the algorithm and its properties
that are essential for our needs. The algorithm operates in q iterations. Initially,
set H = (V, ∅). In each iteration i, consider the graph Gi = (V,E \ E(H)), and
construct an s-spanner Hi for this graph, (say, using the algorithm of [1]), and
add the edges of Hi to the subgraph H .

We summarize the required properties for our purposes in the following lemma.

Lemma 2. [6] For every graph G = (V,E), odd integer s and integer q, one can
efficiently construct in polynomial time a collection of edge disjoint subgraphs
{H1, ..., Hq} with the following properties. Let H be the union of the subgraphs
{H1, ..., Hq}.

(1) The number of edges in H is at most O(q · n1+ 2
s+1).

(2) For every edge e = (u, v) ∈ E, either e ∈ E(H) or each Hi contains a path
from u to v of length at most s.

Theorem 4. Given a graph G = (V,E), odd integer s and integer p, one can

efficiently construct a p-multipath s-spanner with O
(
sp2 · n1+ 2

s+1

)
edges.

Proof: Construct the collection of subgraphs {H1, ..., H2sp2+2p2+p} of Lemma 2
with parameters s and q = 2sp2 + 2p2 + p. Let H be the union of all subgraphs
{H1, ..., H2sp2+2p2+p}. Consider two vertices x and y and let S = {Q1, ..., Qp} be
the set of p edge-disjoint paths from x to y in G of minimal cost. We now show
how to find a set of edge-disjoint paths S ′ = {Q′

1, ..., Q
′
p} from x to y such that

E(S ′) ⊆ E(H) and cost(Q′
i) ≤ s · cost(Qi). Let Ti = {Hj | (2sp+ 2p+ 1) · (i−

1)+1 ≤ j ≤ (2sp+2p+1) ·i} for 1 ≤ i ≤ p. Note that E(Ti) contains 2sp+2p+1
edge-disjoint paths from u to v for every edge (u, v) /∈ E(H). Moreover, the sets
E(Ti) are disjoint for 1 ≤ i ≤ p.

The path Q′
i is constructed as follows. For every edge e ∈ E(Qi) ∩E(H) add

e to Q′
i. For every edge e = (u, v) ∈ E(Qi) \ E(H), consider the set Bi with

the maximum number of edge-disjoint-s-bypasses from u to v in Ti. By Lemma
1, there are at most 2sp+ 2p edge-disjoint-s-bypasses in Bi that intersect with
E(S)\E(Qi). Since Bi contains at least 2sp+2p+1 edge-disjoint-s-bypasses, at
least one edge-disjoint-s-bypass B(e) ∈ Bi does not intersect with E(S)\E(Qi).
Add B(e) to Q′

i instead of e.

Multipath Spanners via Fault-Tolerant Spanners 113

We claim that (1) the paths Q′
i for 1 ≤ i ≤ p are edge-disjoint, and (2)

cost(S ′) ≤ s · cost(S).
To see claim (1), consider an edge e = (u, v) such that e ∈ E(Q′

i) for some
1 ≤ i ≤ p. We consider two cases. The first case is when e ∈ E(Qi). Note that
e does not appear in any E(Qj) for i �= j, since the paths in S are disjoint.
Moreover, e does not appear in any B(e′) for e′ ∈ E(Qj) for some j �= i. To see
this, recall that B(e′) does not intersect with E(S) \E(Qj). The second case is
when e ∈ B(ẽ) for some ẽ ∈ E(Qi). The edge-disjoint-s-bypass B(ẽ) does not
intersect with E(S)\E(Qi). Moreover, the edge-disjoint-s-bypass B(ẽ) does not
intersect with any B(e′) for e′ ∈ E(Qj) for some j �= i. To see this, recall that
E(B(ẽ)) ⊆ E(Ti), E(B(e′)) ⊆ E(Tj), and E(Ti)∩E(Tj) = ∅. It follows that the
paths Q′

i are edge-disjoint for 1 ≤ i ≤ p.
To see claim (2), note that for every edge e ∈ E(Qi), either e itself or an

alternative path of length s is added to E(Q′
i). We get that cost(Q′

i) ≤ s ·
cost(Qi). Claim (2) follows.

Weighted Graphs. We now show the modifications needed for weighted graphs.
Assume the minimal edge weight is 1 and let ω̂ be the maximal edge weight. We
now describe the algorithm for constructing p-edge multipath s-spanner. Initially,
set H = (V, ∅). Consider the graphs Gi = (V,Ei) such that Ei = {e ∈ E | 2i−1 ≤
ω(e) ≤ 2i} for every 1 ≤ i ≤ �log ω̂�. Construct the collection of subgraphs
Fi = {H1, ..., H4sp2+2p2+p} of Lemma 2 for parameters s and q = 4sp2 +2p2 + p
on the graph Gi. Add E(Fi) to H .

We claim that H is a p-edge multipath s-spanner. The analysis is very similar
to the unweighted case. We now outline the slight changes.

Here we call a set of paths B a set of edge-disjoint-s-bypasses of two nodes u
and v that are connected by an edge if the paths in B are edge-disjoint paths
between u and v of length at most s · ω(u, v) each.

Consider two vertices x and y and let S = {Q1, ..., Qp} be the set of p edge-
disjoint paths from x to y in G of minimal cost. Consider an edge e = (u, v) ∈ Qi

for some 1 ≤ i ≤ p. Let i be the index such 2i−1 ≤ ω(e) ≤ 2i. In Lemma 1
we prove that the graph (V,E(Fi)) contains at most 4sp + 4p edge-disjoint-s-
bypasses B from u to v. Note that since the weight of the edges in the edge-
disjoint-s-bypasses B could be half the weight ω(e), we double the factor of sp2

in the number of edge-disjoint-s-bypasses. The rest of the proof of Lemma 1 is
similar to the unweighted case.

The proof of Theorem 4 is also similar to the unweighted case, where for each
edge e = (u, v) ∈ Qj for some 1 ≤ j ≤ p such that e /∈ E(H), we pick an
edge-disjoint-s-bypass from Fi that does not intersect E(S) \ E(Qj), for i such
that 2i−1 ≤ ω(e) ≤ 2i.

We thus conclude with Theorem 1.

4 Vertex Disjoint Multipath Spanners

In this section we show that every vertex fault-tolerant s-spanner is a vertex
multipath spanner with the same stretch, by fixing the right number of faults.

114 S. Chechik, Q. Godfroy, and D. Peleg

Note that it is unclear how to generalize the analysis from the previous section
to vertex disjoint multipath spanners. To see this, recall that in the previous
section we consider a set S = {Q1, ..., Qp} of p vertex-disjoint paths from x to y
in G of minimal cost. We claim that every edge e ∈ E(Qi) does not contain too
many bypasses that intersect with the other paths of S. To prove this claim, we
substitute sub-paths of each Qj with some E-bypasses of the edge e = (u, v). All
these E-bypasses are edge disjoint but not vertex-disjoint. Specifically, all these
E-bypasses contain the nodes u and v. Therefore, it is unclear how to use these
E-bypasses to substitute multiple sub-paths and stay with vertex disjoint paths.
We thus present a different analysis for vertex disjoint multipath spanners at
the price of slightly increasing the size of the spanner. Moreover, our analysis for
vertex disjoint multipath spanners works only for unweighted graphs. We later
show a simple construction for weighted vertex multipath spanners with stretch
sp (instead of s).

A subgraph H is q-vertex-resilient with stretch s if for every edge e = (x, y) ∈
E, either e ∈ E(H) or H has at least q internal vertex-disjoint s-paths between
x and y. For a path P between two nodes x and y and a vertex v ∈ V (P), let
index(v, P) be the distance (number of hops) between x and v in P . Two paths
are said to intersect if they have at least one common vertex.

A set of paths B is called a set of vertex-disjoint-s-bypasses of u and v if the
paths in B are internal vertex-disjoint s-paths between u and v. The next lemma
shows that every vertex fault-tolerant s-spanner H has “many” vertex-disjoint-
s-bypasses between u and v for every edge e = (u, v) in E \ E(H).

Lemma 3. Every r-fault tolerant s-spanner is �r/(s − 1)�-vertex-resilient with
stretch s.

Proof: Consider an r-fault tolerant s-spanner H . Consider an edge e = (u, v) ∈
E\E(H). We need to show thatH contains �r/(s−1)� vertex-disjoint-s-bypasses.
Assume towards contradiction that H contains only k vertex-disjoint-s-bypasses
between u and v such that k < �r/(s − 1)�. Let B be the set of these k vertex-
disjoint-s-bypasses. Note that V (B)\{u, v} contains at most (s−1)·k < r vertices.
Fix the set of vertices F = V (B) \ {u, v} to be faulty. Since the subgraph H is
an r-fault tolerant s-spanner, by definition H \ F contains an s-path between u
and v. Therefore H contains more than k vertex-disjoint-s-bypasses between u
and v, contradiction.

Throughout, we consider a graph G(V,E). Consider two vertices x and y and
let S = {Q1, ..., Qp} be a set of p vertex-disjoint paths from x to y in G of mini-
mal cost. Consider an edge e = (u, v) in one of the paths of S. The next lemma
shows that G does not contain “many” vertex-disjoint-s-bypasses, namely, inter-
nal vertex disjoint s-paths between u and v, that intersect with the other paths
of S.

Lemma 4. Consider two vertices x and y and let S = {Q1, ..., Qp} be a set of
p vertex-disjoint paths from x to y in G of minimal cost. Consider an edge e =
(u, v) ∈ Qi and /∈ H for some 1 ≤ i ≤ p. There are at most 2sp(p−1)+2p(p−1)
vertex-disjoint-s-bypasses between u and v that intersect with V (S) \ V (Qi).

Multipath Spanners via Fault-Tolerant Spanners 115

Proof: Assume towards contradiction that there are more than 2sp(p − 1) +
2p(p − 1) such vertex-disjoint-s-bypasses that intersect V (S) \ V (Qi). By the
Pigeonhole principle, there exists a path Qj for some j �= i such that at least
2sp+ 2p+ 1 of these vertex-disjoint-s-bypasses intersect with Qj . Let B be the
set of all these vertex-disjoint-s-bypasses that intersect Qj . For every vertex-
disjoint-s-bypass A ∈ B, let top(A) be the earliest vertex of A on Qj , i.e., the
vertex in V (A) ∩ V (Qj) with minimal index(top(A), Qj), and let bottom(A)
be the last vertex of A on Qj , i.e., the vertex in V (A) ∩ V (Qj) with maximal
index(top(A), Qj). Let Bh be the set of p vertex-disjoint-s-bypasses A ∈ B with
minimal index(top(A), Qj) and let Bl be the set of p vertex-disjoint-s-bypasses
A ∈ B with maximal index(bottom(A), Qj). Let Ah ∈ Bh be the vertex-
disjoint-s-bypass with maximal index(top(Ah), Qj) and let qh = top(Ah). Let
Al ∈ Bl be the vertex-disjoint-s-bypass with minimal index(bottom(Al), Qj)
and let ql = bottom(Al). Let M = Qj[qh, ql] (i.e., the subpath of Qj from qh
to ql). See Figure 1 for illustration.

Fig. 1. Illustration of the sets Bh, Bl (p = 2) and the path M

We claim that (1) the subgraph H ′(V,S ′) for S ′ = (E(S) \E(M)) ∪E(Bh)∪
E(Bl) contains p vertex-disjoint paths from x to y and (2) cost(S ′) ≤ cost(S).

To prove claim (1) we use Menger’s theorem. We show that there is no set
F of p − 1 vertices such that x and y are disconnected in S ′ \ F . Consider a
set F of at most p − 1 vertices. If F fails to intersect a path Qr ∈ S, for some
r �= j, then clearly x and y are connected in S ′ \ F . So suppose the set F
disconnects every path Qr ∈ S, for r �= j, hence F contains exactly one vertex
from each path Qr ∈ S for every r �= j. In particular, F contains only one vertex
of Qi. Therefore, one of u or v is not in F . Assume without loss of generality
that u /∈ F . Note that both sets Bh and Bl contain p vertex-disjoint-s-bypasses.

116 S. Chechik, Q. Godfroy, and D. Peleg

Since F contains at most p− 1 vertices, there must be a vertex-disjoint-s-bypass
Bh ∈ Bh and a vertex-disjoint-s-bypass Bl ∈ Bl whose internal vertices are
not in F . Let x1 = top(Bh) and y1 = bottom(Bl). Note that the subpaths
Qj[x, x1] and Qj[y1, y] do not contain any vertex from F , as F ∩ V (Qj) = ∅.
Moreover, the vertex-disjoint-s-bypasses Bh and Bl contain subpaths Bh[x1, u]
and Bl[u, y1] that do not intersect F . Concatenating all these paths together, we
get a path Qj[x, x1]◦Bh[x1, u]◦Bl[u, y1]◦Qj[y1, y] from x to y. We thus conclude
that H ′ contains p vertex-disjoint paths from x to y, establishing (1). Next, we
show claim (2). Recall that B contains at least 2sp + 2p + 1 vertex-disjoint-
s-bypasses where each of which intersects Qj. Moreover, each of the subpaths
Qj[x, qh] and Qj [ql, y] intersect with exactly p vertex-disjoint-s-bypasses from
B. We get that the remaining part of Qj, namely, the path M = Qj [qh, ql],
intersects with at least 2sp + 2p + 1 − 2p = 2sp + 1 vertex-disjoint-s-bypasses
from B. Thus, the length of M is at least 2sp + 1. In contrast, the number of
edges in the edge collection E(Bh)∪E(Bl) that replaced M in S is at most 2ps.
Hence, cost(S ′) < cost(S).

Finally parts (1) and (2) of the claim imply a contradiction to the optimality
of S. The lemma follows.

Let f = ((4s+ 2)(p− 1)s+ 1 + 2sp(p− 1) + 2p(p− 1)).

Lemma 5. Every f -vertex-resilient subgraph H is a p-vertex disjoint multipath
spanner.

Proof: Consider two vertices x and y and let S = {Q1, ..., Qp} be the set of
p vertex-disjoint paths from x to y in G of minimal cost. Consider an edge
e = (u, v) ∈ E(Qi) such that e /∈ E(H) for some 1 ≤ i ≤ p. By definition of H ,
H contains f vertex-disjoint-s-bypasses between u to v. By Lemma 4, there are
at most 2sp(p − 1) + 2p(p − 1) vertex-disjoint-s-bypasses between u to v, that
intersect V (S) \ V (Qi). We thus get that there exists a set Bypasses(e) of at
least f − 2sp(p− 1)− 2p(p− 1) vertex-disjoint-s-bypasses between u to v in H ,
that do not intersect V (S) \ V (Qi). We now show how to select for each edge
e ∈ Qi for some i a vertex-disjoint-s-bypass Be ∈ Bypasses(e), such that Be is
vertex disjoint with any Be′ for any e′ ∈ Qj such that e′ /∈ H and j �= i.

Consider an edge e = (u, v) ∈ Qi such that e /∈ E(H). Let Ee be the set of
edges e′ such that e′ ∈ E(Qj) \ E(H) and V (B) ∩ V (B′) �= ∅ for some j �= i,
B ∈ Bypasses(e) and B′ ∈ Bypasses(e′). Towards proving Lemma 5, we first
prove the next auxiliary lemma.

Lemma 6. For every edge e ∈ E(S) \E(H), the set Ee contains at most (4s+
2)(p− 1) edges

Proof: Assume, towards contradiction, that |Ee| ≥ (4s+ 2)(p− 1) + 1. By the
Pigeonhole principle, there is a path Qj (for j �= i) such that |E(Qj) ∩ Ee| >
4s+2. Let eh = (uh, vh) be the edge in E(Qj)∩Ee closest to x in Qj, and let el =
(ul, vl) be the edge in E(Qj)∩Ee closest to y in Qj. Let h1, h2 ∈ Bypasses(e),
h3 ∈ Bypasses(eh) and h4 ∈ Bypasses(el) such that h1 and h3 intersect and
h2 and h4 intersect (it could be that h1 = h2). Let M be the subpath Qj [vh, vl].

Multipath Spanners via Fault-Tolerant Spanners 117

We now claim that (1) the subgraph H ′′(V,S ′′) for S ′′ = E(S) \ E(M) ∪
E(h1)∪E(h2)∪E(h3)∪E(h4) contains p vertex disjoint paths from x to y and
(2) cost(S ′′) < cost(S).

We show claim (1) by using Menger’s theorem to establish that S ′′ contains
p vertex-disjoint paths from x to y. Consider a set F of at most p− 1 vertices.
If F fails to intersect a path Qr ∈ S, for some r �= j, then clearly x and y are
connected in S ′′ \ F . So suppose the set F disconnects every path Qr ∈ S, for
r �= j, hence F contains exactly one vertex from each path Qr ∈ S for every
r �= j. Note that all vertices in h3 and h4 are not in F as h3 and h4 are disjoint
from allQr for r �= j and we assume that F contains only nodes from Qr for some
r �= j. Since F contains exactly one vertex in Qi then one of u and v are not in F ,
assume w.l.o.g. that u /∈ F . Let r3 be a vertex in h3∩h1 and let r4 be a vertex in
h4∩h2. Note that the subgraph (E(Qj)\E(M))∪E(h3) contains a path from x
to r3 that does not intersect F . Similarly, the subgraph (E(Qj)\E(M))∪E(h4)
contains a path from r4 to y that does not intersect F . The cycle h1 ∪ {(u, v)}
contains at most one vertex in F and thus there is a path from r3 to u that does
not contain vertices from F . Similarly, h1 ∪ {(u, v)} contains a path from r4 to
u that does not contain vertices from F . Concatenating all these paths together
we get a path from x to y. Claim (1) follows. Next, we show claim (2) and thus
derive a contradiction to the optimality of S. the path Qj contains at least 4s+3
edges from Ee and since the path M contains all these edges but two (eh and el),
the length of M is at least 4s+ 1. In contrast, the number of edges in the edge
collection E(h1)∪E(h2)∪E(h3)∪E(h4) that replaced M in S is at most 4s. We
thus get that cost(S ′′) < cost(S). This implies a contradiction to the optimality
of S. The lemma follows.

Consider the edges e ∈ E(S) \ E(H) one by one. For each edge e ∈ E(Qi) \
E(H), choose a vertex-disjoint-s-bypass Be that does not intersect with any
Be′ for an edge e′ that was already considered by this process and such that
e′ ∈ E(Qr) \ E(H) for some r �= i. We claim that this process never gets stuck,
namely, each time we consider an edge e ∈ E(Qi) \ E(H), there is at least one
vertex-disjoint-s-bypass in Bypasses(e) that does not intersect with the other
vertex-disjoint-s-bypasses selected so far. Let Ẽe ⊆ Ee be the set of edges that
were considered before e by this process. Note that |Ẽe| ≤ (4s + 2)(p − 1) by
Lemma 6. Moreover, note that each path Be′ for some e′ ∈ Ẽe intersects with
at most s vertex-disjoint-s-bypasses in Bypasses(e). Since there are more than
(4s+2)(p− 1)s vertex-disjoint-s-bypasses in Bypasses(e), at least one of these
vertex-disjoint-s-bypasses does not intersect with any of Be′ for e

′ ∈ Ẽe.
For each path Qr ∈ S for 1 ≤ r ≤ p, construct a path Q̃r as follows. For

every edge e ∈ E(Qr), if e ∈ E(H) then add e to Q̃r, otherwise add Be to
Q̃r. It is not hard to verify that V (Qi) ∩ V (Qj) = ∅ for any i �= j and that

each Qr is a path from x to y such that cost(Q̃r) ≤ s · cost(Qr). The lemma
follows.

The following theorem was shown by Dinitz and Krauthgamer in [9].

118 S. Chechik, Q. Godfroy, and D. Peleg

Theorem 5. [9] For every graph G = (V,E), odd integer s and integer r, one
can construct in polynomial time with high probability a r-vertex fault-tolerant

s-spanner with O
(
r2−

2
s+1n1+ 2

s+1 logn
)
edges.

Combining Theorem 5, Lemma 3 and Lemma 5, we get Theorem 2.
We note that for weighted graphs, every p-vertex-resilient H with stretch s is

a p-vertex multipath (s · p)-spanner. To see this, consider two vertices x and y
and let S = {Q1, ..., Qp} be the set of p vertex-disjoint paths from x to y in G of
minimal cost. We now show how to construct a subgraph H ′(V,S ′) such that (1)
H ′ contains p vertex-disjoint paths from x to y and (2) cost(S ′) ≤ s · cost(S).

Initially, set S ′ = ∅. For every edge e = (u, v) ∈ E(Qr), if e ∈ E(H) then add
e to S ′, otherwise add to S ′ a set B(e) of V -bypasses such that |B(e)| = p and
E(B(e)) ⊆ E(H). Note that such a set B(e) exists since H is p-vertex-resilient
with stretch s.

To prove claim (1) we use Menger’s theorem. We show that there is no set F
of p− 1 vertices such that x and y are disconnected in S ′ \ F . Consider a set F
of at most p − 1 vertices. Note that, for every edge e ∈ (E(Qr) \ E(H)), there
exists a V -bypass B(e) ∈ B(e) that is internal vertex disjoint from F . To see
this, recall that B(e) contains p V -bypasses. In addition, there exists at least one
path Qr ∈ S such that V (Qr) ∩ F = ∅ for some 1 ≤ r ≤ p. Construct the path
Q′

r as follows. For every edge e = (u, v) ∈ E(Qr), if e ∈ E(H) then add e to Q′
r,

otherwise add the alternative path B(e) to Q′
r. It is not hard to verify that Q′

r

leads from x to y, E(Q′
r) ⊆ E(H), and V (Q′

r) ∩ F = ∅. Claim (1) follows.
To see claim (2), note that for every edge e ∈ E(S), either e itself or an

alternative path of length s is added to E(S ′). We get that cost(S ′) ≤ s·cost(S).
We note that Lemma 3 can be generalized to weighted graphs. This can be

done by invoking a construction for s-spanner, in the algorithm for constructing
vertex fault-tolerant spanners of Dinitz and Krauthgamer in [9], that satisfies
the following property, defined in [16]. Every edge e is either included in the
spanner H or H contains an alternative path to e of length at most s · ω(e) and
with at most s hops. The details are omitted.

Combining with Theorem 5, we conclude Theorem 3.

References

1. Althöfer, I., Das, G., Dobkin, D., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

2. Awerbuch, B., Berger, B., Cowen, L., Peleg, D.: Near-linear cost sequential and dis-
tributed constructions of sparse neighborhood covers. In: Proc. 34th IEEE FOCS,
pp. 638–647 (1993)

3. Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring in polyloga-
rithmic time. In: Proc. 29th ACM PODC, pp. 410–419 (2010)

4. Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and
all-pairs small stretch paths. In: Proc. 47th IEEE FOCS, pp. 591–602 (2006)

5. Bollobás, B., Coppersmith, D., Elkin, M.: Sparse distance preservers and additive
spanners. In: Proc. 14th ACM-SIAM SODA, pp. 414–423 (2003)

Multipath Spanners via Fault-Tolerant Spanners 119

6. Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for gen-
eral graphs. In: Proc. 41st ACM STOC, pp. 435–444 (2009)

7. Cowen, L.: Compact routing with minimum stretch. J. Algo. 38, 170–183 (2001)
8. Cowen, L., Wagner, C.: Compact roundtrip routing in directed networks. J.

Algo. 50, 79–95 (2004)
9. Dinitz, M., Krauthgamer, R.: Fault-Tolerant Spanners: Better and Simpler. In:

Proc. 30th ACM PODC, pp. 169–178 (2011)
10. Dubhashi, D., Mei, A., Panconesi, A., Radhakrishnan, J., Srinivasan, A.: Fast dis-

tributed algorithms for (weakly) connected dominating sets and linear-size skele-
tons. J. Computer and System Sciences 71, 467–479 (2005)

11. Elkin, M.: Computing almost shortest paths. ACM Tr. Algo. 1, 283–323 (2005)
12. Elkin, M.: A near-optimal distributed fully dynamic algorithm for maintaining

sparse spanners. In: Proc. 26th ACM PODC, pp. 185–194 (2007)
13. Elkin, M., Zhang, J.: Efficient algorithms for constructing (1 + ε, β)-spanners in

the distributed and streaming models. In: Proc. 23rd ACM PODC, pp. 160–168
(2004)

14. Farley, A.M., Proskurowski, A., Zappala, D., Windisch, K.: Spanners and message
distribution in networks. Discrete Applied Mathematics 137(2), 159–171 (2004)

15. Gavoille, C., Godfroy, Q., Viennot, L.: Multipath Spanners. In: Patt-Shamir, B.,
Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 211–223. Springer, Heidel-
berg (2010)

16. Gavoille, C., Godfroy, Q., Viennot, L.: Node-Disjoint Multipath Spanners and
Their Relationship with Fault-Tolerant Spanners. In: Fernàndez Anta, A., Lipari,
G., Roy, M. (eds.) OPODIS 2011. LNCS, vol. 7109, pp. 143–158. Springer, Heidel-
berg (2011)

17. Jacquet, P., Viennot, L.: Remote spanners: what to know beyond neighbors. In:
Proc. 23rd IEEE IPDPS (2009)

18. Kushman, N., Kandula, S., Katabi, D., Maggs, B.M.: R-BGP: Staying connected
in a connected world. In: Proc. 4th NSDI (2007)

19. Mueller, S., Tsang, R.P., Ghosal, D.: Multipath Routing in Mobile Ad Hoc Net-
works: Issues and Challenges. In: Calzarossa, M.C., Gelenbe, E. (eds.) MASCOTS
2003. LNCS, vol. 2965, pp. 209–234. Springer, Heidelberg (2004)

20. Nasipuri, A., Castañeda, R., Das, S.R.: Performance of multipath routing for
on-demand protocols in mobile ad hoc networks. Mobile Networks and Applica-
tions 6(4), 339–349 (2001)

21. Peleg, D., Scháffer, A.A.: Graph spanners. J. Graph Theory, 99–116 (1989)
22. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J.

Computing 18(4), 740–747 (1989)
23. Pettie, S.: Low Distortion Spanners. In: Arge, L., Cachin, C., Jurdziński, T., Tar-

lecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 78–89. Springer, Heidelberg
(2007)

24. Pan, P., Swallow, G., Atlas, A.: Fast Reroute Extensions to RSVP-TE for LSP
Tunnels. RFC 4090 (Proposed Standard) (2005)

25. Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in
directed graphs. ACM Trans. Algorithms 3(4), Article 29 (2008)

26. Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. SPAA, pp. 1–10 (2001)
27. Thorup, M., Zwick, U.: Approximate distance oracles. JACM 52, 1–24 (2005)
28. Woodruff, D.P.: Lower bounds for additive spanners, emulators, and more. In:

Proc. 47th IEEE FOCS, pp. 389–398 (2006)

Constant Thresholds

Can Make Target Set Selection Tractable�

Morgan Chopin1,��, André Nichterlein2,
Rolf Niedermeier2, and Mathias Weller2,� � �

1 LAMSADE, Université Paris-Dauphine, France
chopin@lamsade.dauphine.fr

2 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
{andre.nichterlein,rolf.niedermeier,mathias.weller}@tu-berlin.de

Abstract. Target Set Selection, which is a prominent NP-hard
problem occurring in social network analysis and distributed comput-
ing, is notoriously hard both in terms of achieving useful approximation
as well as fixed-parameter algorithms. The task is to select a minimum
number of vertices into a “target set” such that all other vertices will
become active in course of a dynamic process (which may go through
several activation rounds). A vertex, which is equipped with a thresh-
old value t, becomes active once at least t of its neighbors are active;
initially, only the target set vertices are active. We contribute further in-
sights into islands of tractability for Target Set Selection by spotting
new parameterizations characterizing some sparse graphs as well as some
“cliquish” graphs and developing corresponding fixed-parameter tractabil-
ity and (parameterized) hardness results. In particular, we demonstrate
that upper-bounding the thresholds by a constant may significantly alle-
viate the search for efficiently solvable, but still meaningful special cases
of Target Set Selection.

1 Introduction

The NP-hard graph problem Target Set Selection (TSS) is defined as fol-
lows: Given an undirected graph G = (V,E) where each vertex v ∈ V is as-
signed a positive integer threshold value thr(v), the task is to find a minimum-
cardinality target set S ⊆ V . A vertex set S ⊆ V is called a target set of G if it
“activates” all vertices in G in a dynamic process where a vertex v gets activated
once at least thr(v) many of its neighboring vertices are activated. Initially,
only the vertices in S are active. TSS generalizes well-known graph problems
such as Dominating Set with thresholds [14], Vector Dominating Set [24],
k-Tuple Dominating Set [18] (all these variants allow for only one “activa-
tion round”), Vertex Cover [5] (where the threshold value equals the vertex
degree), Irreversible k-Conversion Set [10] and r-Neighbor Bootstrap

� Major part of this work was done while all authors were at TU Berlin.
�� Main work done during a three-month visit of TU Berlin supported by DAAD.

� � � Supported by the DFG, project DARE (NI 369/11).

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 120–133, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Constant Thresholds Can Make Target Set Selection Tractable 121

Percolation [1] (where the threshold of each vertex is k or r, respectively),
and so-called dynamic monopolies [23] (where the threshold of a vertex v with
degree deg(v) equals �deg(v)/2�—in the following this condition is referred to as
majority thresholds). Besides being a problem of considerable graph-theoretic
interest, TSS is also motivated by applications in areas such as social network
analysis [5, 17] and distributed computing [23]. Indeed, different research com-
munities using different names for describing the same or similar concepts, some
work has been done independently from each other.

Since previous work has shown that TSS is computationally very hard [2, 5,
21], it is a natural approach to search for practically relevant, but computation-
ally tractable special cases. We contribute to this line of research by starting
from the following: While TSS is linear-time solvable both on trees [5] and on
cliques [21, 25], it turns hard if the treewidth is unbounded [2] (more specifically,
it is W[1]-hard with respect to the parameter treewidth of the graph) and it is
NP-hard on graphs with diameter two [21] (cliques are exactly the diameter-one
graphs). In this work, we focus on parameterizations measuring the distance
from being a tree or forest and parameterizations measuring the distance from
being a clique or cluster graph. Along these lines, we are particularly interested
in the role of the allowed thresholds and one of our main conclusions is that
bounding the thresholds by a constant (independent of the vertex degree) may
be decisive in order to gain (fixed-parameter) tractability. This is of interest
since in several applications (such as influence spreading in social networks) it is
conceivable that constant thresholds suffice to model the underlying application
scenarios.1

Previous Work. We focus on previous results that have direct relation to our
work and refrain from discussing the history of work on TSS (a more thorough
review of previous work can be found in [21]).

Chen [5] showed hardness of approximation for TSS, and Ben-Zwi et al. [2]
obtained parameterized hardness results, particularly with respect to the pa-
rameter “treewidth”.2 Recently, further parameterized complexity studies for the
structural graph parameters “diameter”, “cluster editing number”, “vertex cover
number”, and “feedback edge set number” have been undertaken [21]. Moreover,
polynomial-time algorithms for TSS restricted to special graph classes including
chordal graphs and block-cactus graphs have been developed [4, 6, 25].

The role of the threshold values resp. threshold functions has been studied in
some publications. For instance, Dreyer and Roberts [10] showed NP-hardness for
TSS when all vertices have a threshold of t, t ≥ 3. Centeno et al. [4] and Chiang
et al. [6] exploited threshold values being upper-bounded by two to develop
polynomial-time algorithms for TSS on chordal graphs. Most interesting in our
context, however, is the result of Ben-Zwi et al. [2] who showed that TSS is

1 For instance, independent of my total number of friends it may suffice that at least
five of my friends (that is, neighbor vertices) in a social network buy a certain product
to convince me about the product’s usefulness.

2 Indeed, they also showed that TSS is polynomial-time solvable on constant-treewidth
graphs. However, the degree of the polynomial depends on the treewidth.

122 M. Chopin et al.

Vertex Cover
Number

[21] [21] [21]

Feedback Edge
Set Number

[21] [21] [21]

Distance to
Clique

� �

Cluster Vertex
Deletion Number

� �

Clique Cover
Number

�

Bandwidth

� � �

Distance to
Cograph

� [2]

Feedback Vertex
Set Number

[2] � [2]

Distance to
Interval

� [2]

Pathwidth

[2] � [2]

Treewidth

[2] � [2]

Fig. 1. Overview of the relations between structural graph parameters and our results
for TSS. An edge from a parameter α to a parameter β below of α means that β can
be upper-bounded in a linear function in α. The three rectangles below each parameter
indicate the known results for TSS with (from left to right:) constant, majority, and
general threshold function. The white star at the “clique cover number” means NP-
hard for constant values of this parameter, dark violet background means W[1]-hard,
light green background means FPT, and white background indicates an open question.
Results marked with a star are obtained in this paper.

W[1]-hard with respect to the treewidth in case of unbounded threshold values
whereas they showed it to be fixed-parameter tractable for the same parameter
once the threshold values are bounded by a constant.

Our Contributions. Starting from the efficient solvability of TSS on trees and
cliques [5, 21, 25], we also investigate to what extent efficient algorithms can
be obtained for more general graph classes. On the one hand, we generalize
from trees, thus in a way following previous work [2, 21] and consider further
parameters measuring tree-likeness or sparseness, and, on the other hand we spot
several parameters measuring distance to “cliquish” graphs. In both lines, we put
particular emphasis on how the allowed threshold functions (arbitrary versus
majority versus constant) influence computational complexity.3 Our findings,
which are pictorially presented (including the relations between parameters) in
Figure 1, read as follows.

We start with the “sparse setting”. For majority thresholds, we show that
W[1]-hardness results for parameters such as “feedback vertex set number” and
“pathwidth” for general threshold functions (which are due to Ben-Zwi et al. [2])

3 Notably, all our positive results for constant thresholds generalize to the case that
the maximum threshold tmax is given as an additional parameter. However, to keep
matters simple and in accordance with previous work we focus on constant thresholds.

Constant Thresholds Can Make Target Set Selection Tractable 123

extend to the case of majority thresholds. Conversely, the very same parameter-
izations lead to fixed-parameter tractability results in case of constant threshold
values [2]. Further, we briefly indicate that TSS is fixed-parameter tractable for
the parameter bandwidth4 even in case of arbitrary threshold functions.

Our main results are related to the “cliquish setting”. The most central re-
sult here is that, with respect to the parameter “cluster vertex deletion number”
(that is, the minimum number of vertices to delete from a graph to transform
it into a union of disjoint cliques [15]), TSS is W[1]-hard for general thresholds
but becomes fixed-parameter tractable in case of constant thresholds (the case
of majority thresholds is open). For the larger (thus “weaker” [19]) parameter
“distance to clique” (the minimum number of vertices to delete to make a graph
a clique), however, TSS is fixed-parameter tractable for both constant and ma-
jority thresholds whereas this is open for general thresholds. Finally, for the
parameter “clique cover number” (the minimum number of cliques needed to
cover all vertices of a graph) we show NP-hardness even for parameter value
two (rendering fixed-parameter tractability very unlikely) whereas the (parame-
terized) complexity is open in case of majority and constant thresholds.

Several proof details (particular concerning hardness proofs) are deferred to
a full version of the paper.

2 Preliminaries and Parameter Identification

Preliminaries. We use standard graph-theoretic notation. For graphsG = (V,E),
we use n := |V | and m := |E|. We omit the index of the neighborhood NG(v) or
degree degG(v) of a vertex v if G is clear from the context. To formally define
Target Set Selection, consider a graph G = (V,E) and a function thr : V →
N ∪ {0}. For a vertex set S ⊆ V , we define the set of vertices that are activated
by S in the ith round as Ai

G,thr(S) with

A0
G,thr(S) := S and

Aj+1
G,thr(S) := Aj

G,thr(S) ∪ {v ∈ V | |N(v) ∩Aj
G,thr(S)| ≥ thr(v)}.

We call r(S) := max{i | Ai−1
G,thr �= Ai

G,thr} the number of activation rounds and

say that S is a target set for (G, thr) if Ar(S)
G,thr(S) = V . We can now formally

define the central problem of this work:

Target Set Selection (TSS)

Input: An undirected graph G = (V,E), a threshold function
thr : V → N ∪ {0} and an integer k ≥ 0.

Question: Is there a target set S ⊆ V for G with |S| ≤ k?

We denote the maximum threshold of an instance (G, thr) by tmax(G, thr) :=
max{thr(v) | v ∈ V (G)}. Again, we omit (G, thr) if it is clear from the context.

4 A graph with bandwidth k has a linear arrangement of its vertices v1, . . . , vn such
that the length |i− j| of each edge {vi, vj} is at most k.

124 M. Chopin et al.

Parameterized Complexity. One dimension of a parameterized problem is the
input size s, and the other one is the parameter (usually a positive integer). A
parameterized problem is called fixed-parameter tractable (fpt) with respect to
a parameter k if it can be solved in f(k) · sO(1) time, where f is a computable
function only depending on k. A core tool in the development of fixed-parameter
algorithms is polynomial-time preprocessing by data reduction [3, 13]. Here, the
goal is to transform a given problem instance I with parameter k in polynomial
time into an equivalent instance I ′ with parameter k′ ≤ k such that the size of I ′

is upper-bounded by some function g only depending on k. If this is the case,
we call I ′ a (problem) kernel of size g(k). Usually, this is achieved by applying
polynomial-time executable data reduction rules. We call a data reduction ruleR
correct if the new instance I ′ that results from applying R to I is a yes-instance
if and only if I is a yes-instance. An instance is called reduced with respect to
some data reduction rule if further application of this rule has no effect on the
instance. The whole process is called kernelization.5

Downey and Fellows [9] developed a parameterized theory of computational
complexity to show (presumable) fixed-parameter intractability by means of pa-
rameterized reductions. A parameterized reduction from a parameterized prob-
lem P to another parameterized problem P ′ is a function that, given an in-
stance (x, k), computes in f(k) · sO(1) time an instance (x′, k′) (with k′ only
depending on k) such that (x, k) is a yes-instance of P if and only if (x′, k′) is
a yes-instance of P ′. The basic complexity class for fixed-parameter intractabil-
ity is called W [1] and there is good complexity-theoretic reason to believe that
W [1]-hard problems are not fpt [9, 12, 22].

Parameter Identification. Fixed-parameter algorithms work best if the param-
eter they are designed for is small in practice. TSS having many applications
on social networks [11], it is natural to extract small parameters from typical
properties of social networks.

When the network models friendships for example, we expect the network to
be made up of multiple cliques (or otherwise dense substructures) that overlap.
This motivates considering the number of cliques needed to cover all vertices
[16] (the “clique cover number”) or the number of vertices to remove to obtain a
clique (the “distance to clique”). As the latter parameter is somewhat restrictive,
we also considered the number of vertices to delete in order to obtain a collection
of disjoint cliques (the “cluster vertex deletion number”). Recently, the cluster
vertex deletion number was also used to parameterize problems related to color-
ing and hamiltonicity [8].

In some applications, we deal with very sparse social networks, for instance
networks modeling sexual contacts [11, Chap. 2, Fig. 2.7]. In these cases, param-
eters related to the sparseness of the input graph are interesting. Among them,
we consider the number of vertices to remove to obtain an edgeless graph (“ver-
tex cover number”), the number of edges or vertices to remove to obtain a forest

5 It is well-known that a parameterized problem is fixed-parameter tractable if and
only if it has a problem kernel.

Constant Thresholds Can Make Target Set Selection Tractable 125

(“feedback edge set number” and “feedback vertex set number”) as well as some
graph width parameters (treewidth, pathwidth, bandwidth). For definitions of
treewidth, pathwidth, cographs, and interval graphs see for example Diestel’s
book [7].

Data Reduction. We use the following two data reduction rules throughout this
work.

If the threshold of a vertex exceeds its degree, it cannot be activated by its
neighbors and, hence, the vertex is part of any target set. Moreover, we consider
threshold-0 vertices as already active.

Reduction Rule 1 ([21, Reduction Rule 1]). Let G = (V,E) and v ∈ V .
If thr(v) > deg(v), then delete v, decrease the threshold of all its neighbors by one
and decrease k by one. If thr(v) = 0, then delete v and decrease the thresholds
of all its neighbors by one.

If the instance is reduced with respect to Reduction Rule 1, then every degree-
one vertex has threshold one. Thus, considering an arbitrary degree-one vertex
we do not choose it to be in the target set as choosing its neighbor is at least
as good. Hence, this vertex does not help in activating any other vertex. This is
formalized in the next data reduction rule.

Reduction Rule 2 ([21, Reduction Rule 5]). Let (G = (V,E), thr, k) be an
instance of TSS reduced with respect to Reduction Rule 1 and let v ∈ V with
thr(v) = deg(v) = 1. Then delete v from G.

3 Parameters Related to Sparse Structures

In this section, we consider parameters that measure the sparseness of the input
graph. Since trees are the most sparse connected graphs and TSS is polyno-
mial time solvable on trees [5], parameters measuring the distance to trees are
most interesting. Canonical candidates for this are the treewidth, the pathwidth,
and the feedback vertex set of the input graph. Notably, a fixed-parameter al-
gorithm of Ben-Zwi et al. [2] for the parameter treewidth tw can solve TSS

in t
O(tw)
max nO(1) time, implying fixed-parameter tractability for the three param-

eters mentioned above if the maximum threshold tmax is some constant. We
extend this result by showing W[1]-hardness for them if we, instead of limiting
the maximum threshold by a constant, require the thresholds to respect the
majority condition. The proof even shows hardness for the combination of the
feedback vertex set, the pathwidth, the vertex-deletion-distance to cograph, and
the vertex-deletion-distance to interval graph. The proof is based on and further
extends the W[1]-hardness reduction presented by Ben-Zwi et al. [2].

Theorem 1. Target Set Selection with majority threshold is W [1]-hard
even with respect to the combination of the following parameters: feedback vertex
set, distance to cograph, distance to interval graph, and pathwidth.

126 M. Chopin et al.

Bandwidth. Another possible measure for sparseness is the bandwidth of the
input. Here, our result is of more positive nature.

Theorem 2. Target Set Selection is fixed-parameter tractable with respect
to the parameter bandwidth.

Proof. Let (G = (V,E), thr, k) be an instance of TSS. First, exhaustively ap-
ply Reduction Rule 1 to get a new equivalent instance (G′ = (V ′, E′), thr′, k′).
Let bw denote the bandwidth of G′. It is not hard to show that thr′(v) ≤
degG′(v) ≤ 2 bw for all v ∈ V ′. Moreover, Ben-Zwi et al. [2] gave a (tmax)

O(tw)n-
time algorithm for solving TSS, where tw is the treewidth of the input graph
and tmax is the maximum threshold value. It follows that this algorithm applied
to G runs in time (2 bw)O(bw)n since tw ≤ 2 bw. ��

4 Parameters Related to Dense Structures

In contrast to the previous section, we now consider TSS with respect to pa-
rameters related to the denseness of the input graph. Since cliques are the most
dense graphs and TSS is polynomial time solvable on cliques [21], parameters
measuring the distance to cliques are most interesting. In particular, we consider
the vertex deletion distance to clique and to a collection of disjoint cliques (also
called cluster vertex deletion set size), and the clique cover number.

Unrestricted Thresholds. Here, we research the general TSS setting without con-
straints on the thresholds of the input. As hinted in the introduction, these
variants are hard with respect to the denseness measures employed.

Theorem 3. Target Set Selection is W[1]-hard with respect to the param-
eter “cvd number”.

Theorem 4. Target Set Selection is NP-hard and W [2]-hard with respect
to the parameter “target set size” k, even on graphs with clique cover number
two.

Restricted Thresholds. In the spirit of researching the influence of bounded
thresholds to TSS, we consider the parameters distance to clique and cluster
vertex deletion number (cvd number). Recall that we showed W[1]-hardness for
the parameter cvd number (for unbounded thresholds) in the previous paragraph.
By presenting an exponential-size problem kernel, we show that the problem be-
comes tractable for this parameter if the maximum threshold is a constant.

First, we show that TSS with majority thresholds or constant thresholds is
fixed-parameter tractable with respect to the parameter distance � to clique. We
can even show fixed-parameter tractability for less restrictive threshold functions.
To this end let P(V) be the power set of V .

Theorem 5. Target Set Selection is fixed-parameter tractable with respect
to the parameter distance � to clique when the threshold function thr fulfills the
restriction “thr(v) > g(�) ⇒ thr(v) = f(N(v))” for all vertices v ∈ V and
arbitrary functions f : P(V) → N and g : N → N.

Constant Thresholds Can Make Target Set Selection Tractable 127

Proof. We prove the theorem by giving a fixed-parameter algorithm computing
a minimum-size target set for (G, thr). To this end, we introduce some notations.
Let X ⊂ V , |X | = �, denote a set of vertices such that G[V \X] is a clique. We
define a non-standard “twins” equivalence relation ≡ by

u ≡ v ⇐⇒ (N [u] = N [v]) ∧ (thr(u) = thr(v)) ∧ (u ∈ X ⇐⇒ v ∈ X).

Since the thresholds and neighborhoods of all vertices in an equivalence class Z
are equal, we can denote this threshold and this neighborhood by thr(Z) andN [Z],
respectively. Let Z1, Z2, . . . , Zs be a list of all nonempty equivalence classes of ≡.
Since G[V \ X] is a clique, we know that for all u, v ∈ V \ X : N [u] = N [v]
if and only if NG[X][u] = NG[X][v]. Due to the condition thr(v) > g(�) ⇒
thr(v) = f(N(v)), for each subset X ′ ⊆ X , there are at most g(�) + 1 equiv-
alence classes disjoint from X whose neighborhood in X is exactly X ′. Hence,
s ≤ 2�(g(�) + 1) + �.

Let S be a minimum-size target set for (G, thr). With S, we can define ri as
the number of the first activation round in which all vertices of Zi are active.
More formally, ri := min{j | Zi ⊆ Aj

G,thr(S)}. Let r := max{ri | 1 ≤ i ≤ s}.
In the following, we upper-bound r by s. We do this by showing that for

each 1 ≤ j ≤ r, there is an 1 ≤ i ≤ s such that ri = j. Assume this was
false, that is, there is some activation round j such that none of the equivalence
classes gets activated in round j. Since j ≤ r, there is some vertex v that gets
activated in round j. Let Zi denote the equivalence class of v. Since j ≥ 1, we
know that |N(v) ∩ Aj−1

G,thr(S)| ≥ thr(v). Since for each vertex u ∈ Zi, thr(u) =

thr(v) and N(u) = N(v), we conclude that Zi ⊆ Aj
G,thr(S), contradicting the

assumption that ri �= j.
Now we describe our algorithm. In the first phase, we guess the correct values

of ri for all 1 ≤ i ≤ s. There are at most rs ≤ ss possibilities to do so.
In the second phase of the algorithm, we use an ILP formulation to solve

the problem. Each variable xi in the ILP represents the number of vertices in
the equivalence class i that are in the target set S. We use the constraints
to model the activation process: For each equivalence class Zi, the number of
active neighbors in round ri exceeds thr(Zi). Two types of active neighbors are
considered. First, the vertices in N [Zi]∩S. Second, the vertices in all equivalence
classes Zj ⊆ N [Zi] that are active in round i, that is, rj < ri. More formally,

Minimize:
s∑

i=1

xi

subject to: ∀1 ≤ i ≤ s : thr(Zi) ≤
∑

Zj⊆N [Zi]

rj≥ri

xj +
∑

Zj⊆N [Zi]

rj<ri

|Zj |

∀1 ≤ i ≤ s : xi ∈ {0, 1}.

By the discussion above, a solution to this ILP corresponds to a minimum-size
target set for (G, thr). Since the ILP formulation has s variables, a result by
Lenstra [20] implies that solving it is fixed-parameter tractable with respect to s.

128 M. Chopin et al.

Since at most ss such ILPs have to be solved and s ≤ 2�(g(�) + 1) + �, fixed-
parameter tractability with respect to � follows. ��

Clearly, Theorem 5 is a pure complexity classification result. Since the major-
ity thresholds and constant thresholds both satisfy the restrictions required in
Theorem 5, the next corollary immediately follows.

Corollary 1. Target Set Selection with majority thresholds and constant
thresholds is fixed-parameter tractable with respect to the parameter distance to
clique.

Next, we show fixed-parameter tractability for TSS with constant thresholds
with respect to the parameter “cvd number”. In the following, we assume that
an optimal cvd set X of the input graph is given. If this is not the case, then
one might instead use a simple factor-3 approximation.6 Either way, we abbre-
viate � := |X |.

In this section we use the notation of “critical cliques”. Here, a clique K in a
graph is critical if all its vertices have the same closed neighborhood and K is
maximal with respect to this property.

First, we present a data reduction rule allowing us to bound the number of
vertices with the same open or closed neighborhood by the maximum thresh-
old tmax.

Reduction Rule 3. Let I := (G = (V,E), thr, k) be an instance of TSS that
is reduced with respect to Reduction Rule 1 and let v1, v2, . . . , vtmax+1 ∈ V be
vertices such that either

N(v1) = N(v2) = . . . = N(vtmax+1) or N [v1] = N [v2] = . . . = N [vtmax+1].

Furthermore, let v1 be the vertex with the highest threshold, that is, for all 1 ≤
i ≤ tmax + 1 it holds that thr(v1) ≥ thr(vi). Then delete v1.

Lemma 1. Reduction Rule 3 is correct and can be applied exhaustively in O(n+
m) time.

In the following we assume that the input graph G is reduced with respect
to Reduction Rule 1 and Reduction Rule 3. Thus, G[V \X] consists of disjoint
cliques, each of size at most 2�tmax. Hence, in order to show a problem kernel it
remains to bound the number of cliques in G[V \X]. To this end, we introduce
the following notation:

Definition 1. Let I := (G = (V,E), thr, k) be an instance of TSS, let X ⊆ V be
a cvd set, and let S ⊆ V . Let C1, C2 ⊆ V be two clusters in G[V \X]. We call C1

and C2 equivalent with respect to X, denoted by C1 ≡X C2, if there exists a
bijection f : C1 → C2 such that for every v ∈ C1 it holds that thr(v) = thr(f(v))

6 A graph is a cluster graph if and only if it contains no induced P3, that is, an induced
path of three vertices. Using this characterization, the factor 3-approximation simply
deletes all vertices occurring in an induced P3.

Constant Thresholds Can Make Target Set Selection Tractable 129

and N(v) ∩ X = N(f(v)) ∩ X. Furthermore, we call C1 and C2 equivalent
with respect to X and S, denoted by C1 ≡S

X C2, if the bijection f additionally
fulfills v ∈ S ⇐⇒ f(v) ∈ S for all v ∈ C1.

Note that ≡X is an equivalence relation on the clusters in G[V \ X] with at

most (tmax + 1)2
�tmax equivalence classes. To see this, observe that each equiva-

lence class is uniquely determined by 2� (possibly empty) sequences of thresholds.
One for each subset of X . Since G is reduced with respect to Reduction Rule 3,
each such sequence contains between 0 and tmax thresholds. Since each threshold
is at most tmax, the number of equivalence classes is at most

(
tmax∑
i=0

timax

)2�

≤
(
(tmax + 1)tmax

)2�
= (tmax + 1)

2�tmax .

In the following, our goal is to bound the number of cliques in one equivalence
class in a function depending only on tmax and �. Note that once we achieve this
goal, we have a problem kernel with respect to the parameter “cvd number”.
The next lemma is a first step towards this goal.

Lemma 2. Let I := (G = (V,E), thr, k) be an instance of TSS, let X ⊆ V be
a cvd set for G, and let S ⊆ V , |S| ≤ k, be a target set for G. Furthermore
let C1, C2, . . . , Ctmax+1 ⊆ V be clusters in G[V \X] that are pairwise equivalent
with respect to X and S. Then, S \ C1 is a target set for G[V \ C1].

Proof. Let S′ = S\C1 and G′ = G[V \C1]. We prove the lemma by contradiction:
Assume that S′ is not a target set for G′. Let Y ⊆ V \ C1 be the set of vertices
that are activated in G in some round i but are not activated in G′ in the round i.
Formally, Y := {v ∈ V \C1 | ∃i ≥ 1 : v ∈ Ai

G,thr(S) ∧ v /∈ Ai
G′,thr(S

′)}. Since S′

is not a target set for G′, the set Y is not empty. In particular, Y contains all
vertices in G′ that are not activated by S′. Let v ∈ Y be the vertex that is
activated first in G, that is, for all u ∈ Y it holds that u ∈ Ai

G,thr(S) ⇒ v ∈
Ai

G,thr(S), 1 ≤ i.
Since v ∈ Y and Y ⊆ V \ C1, it holds that v /∈ S. Let i ≥ 1 be the round in

which v becomes active in G, that is, v ∈ Ai
G,thr(S) \Ai−1

G,thr(S). Thus, |NG(v)∩
Ai−1

G,thr(S)| ≥ thr(v). Since v is in G′ not activated by S′, it follows that |NG′(v)∩
Ai−1

G′,thr(S
′)| < thr(v). From the selection of v it follows that Y ∩ Ai−1

G,thr(S) =

∅. Thus, Ai−1
G,thr(S) \ A

i−1
G′,thr(S

′) ⊆ C1. Since NG(v) \ NG′(v) ⊆ C1, it follows

that NG(v) ∩ Ai−1
G,thr(S) ∩ C1 �= ∅ and v ∈ X . Let u ∈ NG(v) ∩ Ai−1

G,thr(S) ∩ C1.
Note that C1 and Cj , 1 < j ≤ tmax + 1, are equivalent with respect to X and S
and, hence, there is a bijection fj as described in Definition 1. Thus, it is easy
to see that u ∈ Ai−1

G,thr(S) ⇒ fj(u) ∈ Ai−1
G,thr(S). Moreover, since u ∈ NG(v) it

follows that fj(u) ∈ NG(v) and, thus, fj(u) ∈ NG′(v). Hence, fj(u) ∈ NG′(v) ∩
Ai−1

G′,thr(S
′) for all 2 ≤ j ≤ tmax+1 and thus |NG′(v)∩Ai−1

G′,thr(S
′)| ≥ tmax. Hence,

thr(v) > |NG′(v) ∩Ai−1
G′,thr(S

′)| ≥ tmax, a contradiction. ��

130 M. Chopin et al.

Since we do not know the target set S for G, two problems have to be solved
in order to convert this lemma into a data reduction rule: The first problem
is to find out by how much we have to decrease k, or, equivalently, how to
compute |S ∩ C1| in polynomial time? The second problem is that we do not
know the target set S. As we show in the following, the key in overcoming
these two problems is to increase the number of equivalent clusters Cj in the
assumption of the lemma.

To this end, we first compute a lower and upper bound on the size of the
target set for G. Let GX be the graph that results from activating all vertices
in X and applying Reduction Rule 1 exhaustively. Let CX

1 , CX
2 , . . . , CX

ζ denote

the maximal cliques of GX . Clearly, for each clique CX of GX there is a cluster C
in G[V \X] such that CX ⊆ C. Let SX ⊆ V be an optimal solution for GX . Note
that SX can be computed in linear time [21, 25]. By construction of GX it is clear
that |SX | is a lower bound for the size of any target set for G. Furthermore, SX∪
X is a target set for G. Hence, if k < |SX | we can immediately answer no and
if k ≥ |SX |+ |X | = |SX |+� we can answer yes. Thus, we assume in the following
that |SX | ≤ k < |SX | + �. Besides these general bounds on the target set size
we can also derive bounds for the number of vertices in a target set for each
cluster C in G[V \ X]: If there is a (uniquely determined) clique CX in GX

such that CX ⊆ C, then set min(C) = |SX ∩ CX |. In case there is no such
clique in GX , set min(C) = 0. Finally, set max(C) = min{tmax,min(C) + �}.
Clearly, min(C) and max(C) are lower resp. upper bounds on the number of
vertices of C that are in an optimal target set for G. Note that if two clusters C1

and C2 in G[V \X] are equivalent with respect to X , then min(C1) = min(C2).
Furthermore, having �+ 1 clusters C1, . . . , C�+1 in G[V \X] that are equivalent
with respect to X , we can conclude that for any optimal target set S there is a
cluster Ci, 1 ≤ i ≤ �+1, having exactly min(C1) vertices in the target set, since
otherwise, the solution SX ∪X for G contains fewer vertices than S. Likewise, if
there are �+ r clusters C1, . . . , C�+r that are equivalent with respect to X , then
it is clear that for any optimal target set S at least r of these clusters contain
exactly min(C1) vertices of S. Hence, increasing the number of equivalent clusters
to at least �+ tmax + 1 solves the first problem.

We overcome the second problem by relaxing the condition for the clus-
ters C1, . . . , Ctmax ⊆ V to “equivalent with respect to X” instead of “equivalent
with respect to X and S” and increase the number of equivalent clusters: We
can assume that, out of each cluster C, at most max(C) ≤ tmax vertices are in

a target set. Thus, there are at most t2
�

max possibilities for choosing tmax vertices
from a cluster to be in a target set: Choose at most tmax vertices with the highest
threshold from each of the at most 2� critical cliques of the cluster.7 Thus, when
increasing the number of clusters that have to be equivalent with respect to X

to � + t2
�

max(tmax + 1) we can conclude with the pigeonhole principle that there
are clusters Ci1 , . . . , Citmax+1 that are equivalent with respect to X and S for

7 Having a set of vertices with the same closed neighborhood and the task is to choose s
of them to be in a target set, it is best to choose the s vertices with the highest
thresholds [21, Observation 7].

Constant Thresholds Can Make Target Set Selection Tractable 131

any target set S and each cluster Cij contains min(Cij) vertices of S. Hence,
applying Lemma 2 to this set we arrive at the following reduction rule.

Reduction Rule 4. Let I := (G = (V,E), thr, k) be an instance of TSS that
is reduced with respect to Reduction Rule 1 and let X ⊆ V be a cvd set of size
�. Let C1, C2, . . . , Cα ⊂ V be disjoint clusters in G[V \ X] such that α = � +

t2
�

max(tmax + 1) and for each pair Ci, Cj, 1 ≤ i, j ≤ α, it holds that Ci ≡X Cj.
Then delete C1 and reduce k by min(C1).

The correctness of the data reduction rule follows from Lemma 2 and the above
discussion. As to the running time, note that Reduction Rule 4 can be exhaus-
tively applied in O(n2) time. Since we require that the cvd set X is given, we
can compute the clusters in G[V \X] in linear time. Then, we sort the vertices in
these clusters by neighborhood and threshold. This can be done in O(n log(n))
time. After this sorting the check whether two clusters are equivalent with re-
spect to X can be done in linear time: Simply iterate over the sorted vertices
and check whether the current vertices in both clusters have the same neighbor-
hood and threshold. Overall, iterating over all clusters in G[V \ X], determin-
ing the equivalent clusters, and deleting the respective clusters can be done in
O(n2) time.

With these data reduction rules we now arrive at the following theorem.

Theorem 6. Target Set Selection admits a problem kernel with t
O(2�tmax)
max �

vertices, where � is the size of a cvd set and tmax the maximum threshold. The
problem kernel can be found in O(n2) time.

Proof. Let I := (G = (V,E), thr, k) be an instance of TSS that is reduced with
respect to Reduction Rules 1, 3, and 4. Furthermore let X ⊆ V be a cvd set and
let � = |X |.

Since I is reduced with respect to Reduction Rule 3, the clusters in G[V \X]

have size at most 2�tmax. Hence, there are at most (tmax + 1)2
�tmax clusters

in G[V \X] that are all pairwise not equivalent with respect to X . Furthermore,
since I is reduced with respect to Reduction Rule 4, each equivalence class of ≡X

contains at most �+t2
�

max(tmax+1) clusters. Thus, the number of clusters in G[V \
X] is bounded by (� + t2

�

max(tmax + 1))(tmax + 1)2
�tmax , each of these clusters

contains at most 2�tmax vertices. Overall this gives t
O(2�tmax)
max � vertices in G[V \X]

and, thus, G contains at most t
O(2�tmax)
max � vertices. The Reduction Rules 1 and 3

can both be applied exhaustively in O(n+m) time and Reduction Rule 4 can be
applied exhaustively in O(n2). Overall, the kernelization runs in O(n2) time. ��

Clearly this problem kernel implies that TSS is fixed-parameter tractable with
respect to the combined parameter (tmax, �). This leads to our next corollary
considering TSS with constant thresholds.

Corollary 2. Target Set Selection with constant thresholds is fixed-
parameter tractable with respect to the parameter “cvd number”.

132 M. Chopin et al.

5 Conclusion

We showed that constant threshold values, as can be assumed in several real-
world applications of TSS, can help to find efficient algorithms that exactly
solve TSS. This extends previous work of Ben-Zwi et al. [2] where this observa-
tion was made for the parameter treewidth. A question left open in our work is
whether or not TSS is fixed-parameter tractable with respect to the parameter
cluster vertex deletion number for majority thresholds. A second open question
arising from our work is whether or not TSS is fixed-parameter tractable with
respect to the parameter “distance to clique” for general thresholds. Indeed,
these two cases are part of the more general open question whether, in terms
of computational complexity, TSS with majority thresholds is basically as hard
as for general thresholds but significantly easier for constant thresholds8—the
results we achieved in this paper may be interpreted as directing to a corre-
sponding conjecture. Considering the practical relevance of TSS, it would be
interesting to incorporate further natural parameters into the search for islands
of tractability; among these we clearly have “graph diameter” (note, however,
that this parameter needs to be combined with others since TSS is already hard
on diameter-two graphs [21]) and “number of activation rounds” (the case of only
activation round—that is, the non-dynamic setting—leads to variants of domi-
nation [14, 18, 24]; again, in order to lead to tractability results, this parameter
needs to be combined with others [21]).

References

[1] Balogh, J., Bollobás, B., Morris, R.: Bootstrap percolation in high dimensions.
Combinatorics, Probability & Computing 19(5-6), 643–692 (2010)

[2] Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the
complexity of target set selection. Discrete Optimization 8(1), 87–96 (2011)

[3] Bodlaender, H.L.: Kernelization: New Upper and Lower Bound Techniques. In:
Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer,
Heidelberg (2009)

[4] Centeno, C.C., Dourado, M.C., Penso, L.D., Rautenbach, D., Szwarcfiter, J.L.:
Irreversible conversion of graphs. Theoretical Computer Science 412(29), 3693–
3700 (2011)

[5] Chen, N.: On the approximability of influence in social networks. SIAM Journal
on Discrete Mathematics 23(3), 1400–1415 (2009)

[6] Chiang, C.-Y., Huang, L.-H., Li, B.-J., Wu, J., Yeh, H.-G.: Some results on the
target set selection problem. Journal of Combinatorial Optimization (2012)

[7] Diestel, R.: Graph Theory, 4th edn. Graduate Texts in Mathematics, vol. 173.
Springer (2010)

[8] Doucha, M., Kratochv́ıl, J.: Cluster Vertex Deletion: A Parameterization between
Vertex Cover and Clique-Width. In: Rovan, B., Sassone, V., Widmayer, P. (eds.)
MFCS 2012. LNCS, vol. 7464, pp. 348–359. Springer, Heidelberg (2012)

8 Recall that majority thresholds are of particular interest in distributed comput-
ing [23].

Constant Thresholds Can Make Target Set Selection Tractable 133

[9] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
[10] Dreyer Jr., P.A., Roberts, F.S.: Irreversible k-threshold processes: Graph-

theoretical threshold models of the spread of disease and of opinion. Discrete
Applied Mathematics 157, 1615–1627 (2009)

[11] Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning about a
Highly Connected World. Cambridge University Press (2010)

[12] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
[13] Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization.

ACM SIGACT News 38(1), 31–45 (2007)
[14] Harant, J., Pruchnewski, A., Voigt, M.: On dominating sets and independent sets

of graphs. Combinatorics, Probability and Computing 8(6), 547–553 (1999)
[15] Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algo-

rithms for cluster vertex deletion. Theory of Computing Systems 47(1), 196–217
(2010)

[16] Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press (1972)

[17] Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proc. 9th ACM KDD, pp. 137–146. ACM Press (2003)

[18] Klasing, R., Laforest, C.: Hardness results and approximation algorithms of k-
tuple domination in graphs. Information Processing Letters 89(2), 75–83 (2004)

[19] Komusiewicz, C., Niedermeier, R.: New Races in Parameterized Algorithmics. In:
Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp.
19–30. Springer, Heidelberg (2012)

[20] Lenstra, H.W.: Integer programming with a fixed number of variables. Mathemat-
ics of Operations Research 8, 538–548 (1983)

[21] Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of
target set selection. Social Network Analysis and Mining (2012)

[22] Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

[23] Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theo-
retical Computer Science 282, 231–257 (2002)

[24] Raman, V., Saurabh, S., Srihari, S.: Parameterized Algorithms for Generalized
Domination. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS,
vol. 5165, pp. 116–126. Springer, Heidelberg (2008)

[25] Reddy, T., Krishna, D., Rangan, C.: Variants of Spreading Messages. In: Rahman,
M. S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 240–251. Springer,
Heidelberg (2010)

Faster Variance Computation

for Patterns with Gaps

Fabio Cunial�

College of Computing, Georgia Institute of Technology, Atlanta, GA, USA
fabio.cunial@gatech.edu

Abstract. Determiningwhether a pattern is statistically overrepresented
or underrepresented in a string is a fundamental primitive in computa-
tional biology and in large-scale text mining. We study ways to speed up
the computation of the expectation and variance of the number of occur-
rences of a pattern with rigid gaps in a random string. Our contributions
are twofold: first, we focus on patterns in which groups of characters from
an alphabet Σ can occur at each position. We describe a way to com-
pute the exact expectation and variance of the number of occurrences of
a pattern w in a random string generated by a Markov chain in O(|w|2)
time, improving a previous result that requiredO(2|w|) time.We then con-
sider the problem of computing expectation and variance of themotifs of a
string s in an iid text. Motifs are rigid gapped patterns that occur at least
twice in s, and in which at most one character from Σ occurs at each posi-
tion.We study the case in which s is given offline, and an arbitrary motifw
of s is queried online.We relate computational complexity to the structure
of w and s, identifying sets of motifs that are amenable to o(|w| log |w|)
time online computation after O(|s|3) preprocessing of s. Our algorithms
lend themselves to efficient implementations.

Keywords: gapped patterns, variance, convolution, tiling motifs.

1 Introduction and State of the Art

Given a string w ∈ Σ+ and a random text Z ∈ Σ+, the statistical properties
of the occurences of w as a substring of Z have been extensively studied and
repeatedly applied to biological sequences (see e.g. [1] and references therein).
Quantities of interest are typically the number of occurrences, the waiting time
before the first occurrence, r-scans (the distance between an occurrence and the
r-th next one), and corresponding quantities applied to higher-order structures,
like renewals and clumps (maximal sets of overlapping occurrences). Tradition-
ally, the focus has been on producing exact closed forms of the distribution
and moments of such quantities or of corresponding asymptotic approximations,
and bounds on approximation error. Comparatively little is known about the
algorithmic aspects of computing such quantities.

� Current affiliation: Helsinki Institute for Information Technology (hiit), Department
of Computer Science, University of Helsinki, Finland.

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 134–147, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Faster Variance Computation for Patterns with Gaps 135

When Z is generated by an iid source, the expected value and variance of
the number of occurrences of all prefixes of w in Z can be derived in overall
O(|w|) time, by embedding the computation in a landmark string searching al-
gorithm for constructing the longest border of all prefixes of w [2]. This technique,
combined with the linear-time construction of the suffix tree of a string s, al-
lows to score and discover all significantly overrepresented and underrepresented
substrings of s in overall O(|s|) time, assuming that the measure of statistical
significance f satisfies w ≡ wx ⇒ f(w) ≤ f(wx) for any x ∈ Σ+, where ≡
means left-equivalence in s [3, 4]. Similar dynamic programming schemes apply
to strings with mismatches : the expected number of occurrences of a string w
with up to k mismatches in an iid text Z can be computed in O(k2) time after
a O(k|w|) preprocessing of w [5]. A related algorithm allows to compute the
expectation of all substrings of w with prescribed length in O(k|w|) time, both
for iid and for Markov sources [5, 6].

Measuring the statistical significance of strings with gaps or don’t cares is a
core primitive in computational biology [7]. Some natural ways to model gaps
are requiring a pattern to occur as a subsequence of a given text with local [8]
or global [9] flexibility constraints, representing a pattern as a regular expression
[10], and allowing gaps to be flexible but forcing them to occur only in the middle
of the pattern [11]. Closed-form, fast approximations have been proposed for the
expected number of distinct rigid maximal motifs with length �, with k solid
characters, and with exactly n occurrences in an iid string Z [12]. Intuitively, a
rigid maximal motif (to be defined in Section 4) is a pattern with rigid gaps that
occurs at least two times in Z, and that cannot be made more specific without
losing support [13]. Most significance scores are monotonically nondecreasing
with respect to motif specification, thus maximal motifs usually have the greatest
significance among all motifs with the same support, and at the same time
they embed any motif with exactly the same support and score (see e.g. [14]
and references therein). Approximations like those in [12], or even simpler ones,
back popular motif discovery tools (see e.g. [15, 16]), but crucially rely on the
assumption that the occurrences of a motif w in Z are independent.

Independence is waived in [17], which gives exact formulas for the expecta-
tion and variance of the number of occurrences of a rigid gapped pattern with
symbols in Γ ⊂ 2Σ in a random string generated by a Markov chain. These
formulas will be detailed in Section 2; here we just remark that they are used at
the core of a popular algorithm that discovers transcription factor binding sites
in dna [18], and that the kernels of such computations iterate over a number of
strings that grows exponentially in the length of the pattern, thus limiting this
approach to very small queries. In Section 3 we describe a simple observation
that brings the running time of the formulas in [17] from O(2|w|) to O(|w|2). In
the iid case, the time to compute such formulas is dominated by convolution, and
thus belongs to O(|w| log |w|). Given a string s provided offline, Section 4 studies
the problem of computing expectation and variance for an arbitrarymotif w of s

136 F. Cunial

provided online. We relate computational complexity to the structure of w and
to the basis of tiling motifs of s, and we identify sets of rigid gapped motifs whose
variance can be computed in less than O(|w| log |w|) time. The key idea behind
our construction is reusing a suitable set of convolutions performed offline.

2 Notation and Problem Definition

In this section we summarize the algorithm described in [17], highlighting its
computational kernels. For clarity of presentation, our notation differs slightly
from [17]. Let Σ be a finite alphabet, and let Γ ⊂ 2Σ \ ∅ be such that {a} ∈ Γ
for all a ∈ Σ. In what follows, we will assume that |Σ| and |Γ | are bounded
by a constant. We call pattern any string s ∈ Γ+, and we say that a position
i in s is a gap if s[i] = Σ. Given patterns s and t, we write s ⊗k t to mean a
pattern of length k+ |t| with set s[i]∩t[i−k] at position i. We postulate s[i] = Σ
for i /∈ [0, |s| − 1], and we set s ⊗k t = ε if s[i] ∩ t[i − k] = ∅ for some i. With
w " s we indicate that pattern w ∈ Γ |s| is a copy of pattern s in which every
nonsingleton set G ∈ Γ that occurs in s, where G �= Σ, has been transformed
into a corresponding character c ∈ G: we call w an instantiation of s. In other
words, an instantiation of pattern s forces all positions of s, except for those
occupied by a gap, to equal a symbol in Σ. With w ≺ s we indicate that string
w ∈ Σ|s| is a copy of pattern s in which every set G ∈ Γ that occurs in s has
been transformed into a corresponding character c ∈ G, including gaps.

Given a pattern s, we call selector a diagonal square matrix I(s, i) with |Σ|d
rows, such that every diagonal element corresponding to a string w ∈ Σd with
w ≺ s[i, i+d−1] is equal to one, and all other elements are zero. We overload the
term selector to include vectors as well: e(s, i) is a vector with |Σ|d components,
such that every component corresponding to a string w ∈ Σd : w ≺ s[i, i+d−1]
is one, and all other components are zero. Whether we will be referring to matri-
ces or vectors will be clear from the context. Clearly e(s, i) (respectively, e(s, i)′)
is a right (respectively, left) eigenvector of I(s, i) associated with eigenvalue 1.

Recall that our purpose is computing expectation and variance of the number
of occurrences of a pattern in a random string. Consider thus a Markov chain of

order d with matrix of transition probabilities P ∈ [0, 1]|Σ|d×|Σ|d and stationary

distribution p ∈ [0, 1]|Σ|d . In what follows, we will treat d as a constant. Let

v ∈ [0, 1]|Σ|d be a vector of a priori probabilities for d-mers, let Z be a string
generated by the Markov chain, and let s be a pattern with |s| ≤ |Z|. With
p(s|v) we denote the probability that s occurs at position 0 ≤ i ≤ |Z| − |s|
of Z in the form of one or more of its instantiations, assuming that v is the
probability distribution of d-mers at i. If Z is long enough, it is safe to set v = p
independent of i (see e.g. [17] and references therein). Given a pattern w, we
define the random variable Xw to be the number of occurrences of w in Z, and
we set the indicator random variable Xw,i to be one iff w occurs at position i
in Z in the form of one or more of its instantiations. The expectation of Xs is
clearly:

Faster Variance Computation for Patterns with Gaps 137

E(Xs) =
∑

w∈A(s)

(|Z| − |w|+ 1) · p(w|p) (1)

where A(s) = {w " s} and p(w|p) = p′ ·I(w, 0) ·
[∏|w|−d

i=1 PI(w, i)
]
·e(w, |w|−d).

After standard manipulations, computing the variance ofXs reduces to Equation
1 and to the two following kernels, that relate to overlapping and nonoverlapping
occurrences of s, respectively:

|Z|−|s|−1∑
i=0

|Z|−|s|∑
j=i+1

E(Xs,iXs,j) =

|Z|−|s|−1∑
i=0

m∑
l=1

∑
v�s

∑
w�s

E(Xv,iXw,i+l)

=
∑

w∈B(s)

(|Z| − |w|+ 1) · p(w|p) (2)

|Z|−2|s|∑
i=0

|Z|−|s|∑
j=i+|s|

E(Xs,iXs,j) =

|Z|−2|s|∑
i=0

|Z|−2|s|−i∑
l=0

∑
v�s

∑
w�s

E(Xv,iXw,i+|s|+l)

=
∑

w∈C(s)

(|Z| − |w| + 1) · p(w|p) (3)

where m = min{|s| − 1, |Z| − i − |s|}, B(s) = {v ⊗l w | v " s, w " s, 1 ≤ l <
|s|} \ {ε} is the set of all valid overlaps of two instantiations of s, and C(s) =
{v⊗|s|+lw | v " s, w " s, 0 ≤ l ≤ |Z|−2|s|} is the set of all spaced concatenation
of two instantiations of s. Sets A(s), B(s) and C(s) are enumerated explicitly
in [17], thus computing Equations 1, 2 and 3 requires time O(|s| · |Σ|2d+|s|),
O(|s|2 · |Σ|2d+|s|), and O(|Z|2 · |Σ|2d+|s|), respectively, which become O(|s| ·
2|s|), O(|s|2 · 2|s|), and O(|Z|2 · 2|s|) if we assume |Σ| and d to be constants.
The exponential dependency of running time on |s| is not a problem in the
application domain of [17], where patterns have length approximately 20 and
|Σ| = 4, however it does not allow to scale this approach to longer patterns. In
Section 3 we describe a way to compute Equations 1, 2 and 3 in O(|s|2) time.

3 Gapped Patterns

Equations 1, 2 and 3 can be computed without explicitly iterating over sets A(s),
B(s) and C(s). Avoiding the explicit construction of such sets brings both an
asymptotic speedup, and the practical advantage of removing string operations
altogether from the implementation of the corresponding equations.

Lemma 1. Let s be a pattern, and let v be a vector of d-mer probabilities. Then,
p(s|v) = v′I(s, 0) ·PI(s, 1) ·PI(s, 2) · · ·Pe(s, |s| − d).

Proof. Clearly I(s, i) =
∑

w�s[i,i+d−1] I(w, 0), and the matrices in this

sum select disjoint subsets of Σd. Similarly, e(s, i) =
∑

w�s[i,i+d−1] e(w, 0),

138 F. Cunial

and the vectors in the sum select disjoint subsets of Σd. Thus,
v′I(s, 0) ·PI(s, 1) ·PI(s, 2) · · ·Pe(s, |s| − d) can be written as:

v′

⎛
⎝ ∑

w�s[0,d−1]

I(w, 0)

⎞
⎠ ·P

⎛
⎝ ∑

w�s[1,d]
I(w, 0)

⎞
⎠ · · ·P ·

⎛
⎜⎝ ∑

w�s[|s|−d,
|s|−1]

e(w, 0)

⎞
⎟⎠

=
∑

w0�s[0,d−1],

...
w|s|−1�s[|s|−d,|s|−1]

v′I(w0, 0) ·PI(w1, 0) · · ·P · e(w|s|−d, 0)

Two selectors I(wi, 0) and I(wj , 0) in the sum above are called incompatible if
either i < j < i+ d and wi⊗j−i wj = ε, or j < i < j+ d and wj ⊗i−j wi = ε. By
the structure of P, products containing incompatible selectors do not contribute
to the sum, and set {(w0, w1, . . . , w|s|−d) | wi ⊗j−i wj �= ε ∀ i < j} can be put
in one-to-one correspondence with A(s). ��

Using Lemma 1, Equation 1 reduces to:

(|Z| − |s|+ 1) · p′I(s, 0) ·PI(s, 1) ·PI(s, 2) · · ·Pe(s, |s| − d) (4)

which can be computed in O(|s|) time assuming |Σ| and d to be constants.
Applying Lemma 1 to Equation 3, we get:

p′I(s, 0) · · ·PI(s, |s| − d) ·

⎛
⎝|Z|−2|s|∑

i=0

|Z|−2|s|−i∑
l=0

Pl+d

⎞
⎠ I(s, 0) · · ·Pe(s, |s| − d)

After using the expression for sums of powers of stochastic matrices given in
[19], this becomes:

q′QP|Z|−2|s|+3QPd−1r− q′QP2QPd−1r+ (5)

+(|Z| − 2|s|+ 1)q′QP1p′Pd−1
r− (|Z| − 2|s|+ 1)q′QPdr+

+

(
|Z|2
2

+ 2|s|2 − 2|s| · |Z|+ 1 +
3

2
|Z| − 3|s|

)
q′1p′Pd−1

r

where q′ = p′I(s, 0)·PI(s, 1) · · ·PI(s, |s|−d), r = I(s, 0)·PI(s, 1) · · ·Pe(s, |s|−d),
1 is the vector of |Σ|d ones, and Q = (P−I+1p′)−1 as defined in [19]. Assuming
|Σ| and d to be constants, this equation can be computed in O(|Z|) time in the
current form, or in constant time if we postulate |Z| $ |s| and approximate
P|Z|−2|s|+3 with 1p′, as done in [17]. Equation 2 can be similarly computed in
O(|s|2) time:∑

w=s⊗ks,

1≤k<|s|

(|Z| − |s| − k + 1) · p′I(w, 0) ·PI(w, 1) ·PI(w, 2) · · ·Pe(w, |w| − d) (6)

Faster Variance Computation for Patterns with Gaps 139

It is also easy to show that Lemma 1 can speed up the few remaining kernels of
[17] that depend on the specific domain of transcription factor binding sites.

When Z is generated by an iid source, Equation 6 becomes the bottleneck of
the whole computation, and it assumes the following form:

∑
w=s⊗|s|−bs,

b∈β(s)

(|Z| − 2|s|+ b+ 1) ·
|s|−b−1∏

i=0

P(s[i]) ·
|s|−1∏

i=|s|−b

P(w[i]) ·
|s|−1∏
i=b

P(s[i]) (7)

where β(s) is the set of borders of s, i.e. the set of all integers b such that
s = wu = vw′, w ⊗0 w

′ �= ε, and |w| = |w′| = b. The second and fourth terms
in the sum can be accessed in constant time after a O(|s|) preprocessing of s.
The third term is clearly convolutional, thus it can be accessed in constant time
after an overall O(|s| log |s|) preprocessing of s based on the landmark match-
count algorithm by Fischer and Paterson [20] (or by using one of its randomized
variants, e.g. [21]). In the next section, we study ways to bring the complexity
of Equation 7 below O(|s| log |s|) when s is a motif of a string provided offline.

4 Motifs

In many applications we are given a fixed text s ∈ Σ+ provided offline, and
we are asked to compute the expectation and variance of arbitrary patterns
provided online. This scenario models popular websites that allow to search for
biologically significant patterns in genomes and proteomes (e.g. [22]), and it
captures the post-processing stage of most pattern-discovery algorithms, which
rank their results according to statistical significance (e.g. [15]). In what follows
we will focus on computing Equation 7 in the iid case. The main intuition
behind performing less than O(|w| log |w|) operations for a pattern w given online
consists in moving some convolutions offline, and in reusing such convolutions
at query time with the help of suitable data structures.

Given a string w ∈ Γ+, we define �w,a[i] to be the number of positions in
which w ⊗i w equals a ∈ Γ , 0 ≤ i < |w|. We define �w,a[i, j, k] to be the number
of positions in which w[i, i+k−1]⊗0w[j, j+k−1] equals a ∈ Γ , 0 ≤ i, j ≤ |w|−k.
Finally, we define �s,t,a[i] to be the number of positions in which s ⊗i t equals
a ∈ Γ , −|t|+1 ≤ i < |s|. To simplify notation, we use symbol • to denote set Σ,
and we indicate with ||w|| the number of positions in which w is different from
•. We first study ways in which the convolution of w can be reused to compute
the convolution of its prefixes and suffixes.

Lemma 2. Let w ∈ Σ(Σ ∪ {•})∗Σ, and assume that �w,a[i] is known for every
1 ≤ i < |w| and every a ∈ Σ. Then, the value of �wk,a[i] for 1 ≤ i ≤ k and a ∈ Σ
can be computed for all prefixes wk = w[0, k] of w (similarly, the value of �wk,a[i]
for 1 ≤ i < |w|− k and a ∈ Σ can be computed for all suffixes wk = w[k, |w|− 1]
of w) in overall optimal O(|w|2) time and space and in overall O(||w|| · |w|)
arithmetic operations.

140 F. Cunial

1 2 3 4 5 6 7 8 9 10 11
1 0 0 0 -1 -1 0 0 -1 1 -1 -1

2 0 0 -2 -1 0 1 -2 0 -1 -1

3 0 -2 -2 0 1 -1 0 -1 -1

4 -1 -2 0 0 -1 1 -2 -1

5 -1 0 0 -1 1 -1 -2

6 0 0 -2 0 -1 -1

7 0 -2 0 -1 -1

8 -1 0 -2 -1

9 0 -2 -2

10 -1 -2

11 -1

Fig. 1. Matrix Ta of Lemma 2 for string ab••baa•babaa. Light gray highlights column
11 and its shifts.

Proof. For a generic offset i, �w[0,|w|−2],a[i] = �w,a[i] + τa,i,|w|−2, where:

τa,i,j = −�w,a[j +1, j + 1, 1]− �w,a[j +1, j − i+1, 1] + �w,a[j − i+1, j − i+ 1, 1]

In particular, w[j + 1] = • implies τa,i,j = 0 for all i and a ∈ Σ. Let Ta be an
upper-triangular matrix with |w| − 2 rows and columns, indexed starting from
one, in which row i corresponds to offset i, column j corresponds to prefix w[0, j],
and Ta[i, j] = τa,i,j . Matrix Ta is filled in column-major order, starting from
column |w| − 2. It is easy to see that Ta has a regular structure (Figure 1).
First, as mentioned above, since w[|w|−1] ∈ Σ, the fact that Ta[i, |w|−2] = −2
implies that T[k, |w| − i − 2] = 0 for all 1 ≤ k ≤ |w| − i − 2. Second, let
ja = max{j : w[j] = a, 0 ≤ j < |w|}; then, every column Ta[:, j] such that
w[j + 1] = a equals column T[:, ja − 1] shifted up by ja − j − 1 cells. Third,
there is only one other type of column in Ta, not considering shifts and columns
that are identically zero: the column corresponding to symbols different from
a, which contains only zeros and ones, and appears sequentially shifted up (for
j < ja − 1) and down (for j > ja − 1) as described above. We can thus compute
these two types of column in O(|w|) time and space, and store them rather
than Ta itself in practice. To compute �w[0,k],a for every k, traverse the columns
of Ta from right to left, keeping a running sum of the cells associated with
every row i. If Ta[i, j] = 0, then the corresponding �w[0,j],a[i] is just copied from
�w[0,j+1],a[i]. ��

Lemma 2 generalizes easily to suffixes and to strings in Γ+. Given a string w,
in what follows we will call Pw,a the upper-triangular matrix with |w| − 2 rows
and columns, indexed starting from one, in which row i corresponds to offset i,
column j corresponds to prefix w[0, j], and Pw,a[i, j] = �w[0,j],a[i]. We similarly

Faster Variance Computation for Patterns with Gaps 141

define Sw,a for suffixes. Pw,a and Sw,a can be used as indexes to answer questions
on arbitrary substrings of w in linear time1.

Lemma 3. Let w ∈ Γ+. After O(|w|2) preprocessing, we can compute the fol-
lowing quantities: (1) �v,a[k] for all 1 ≤ k < |v| and a ∈ Γ in O(|v|) time, for
any substring v of w; (2) �w1,w2,a[i] for all −|w2| + 1 ≤ i < |w1| and a ∈ Γ in
O(|w1|+ |w2|) time, for any pair of substrings w1 and w2 of w.

Proof. (1) Build Pw,a in O(|w|2) time. Then, build the suffix tree Tw of w, and
assign to every internal node the starting position of one of the suffixes in its
subtree. This can be done in overall O(|w|) time. Given a substring v of w,
find its proper locus in Tw, extract the associated starting position i in w, set
j = i+ |w| − 1, and apply the following identity to every a ∈ Γ (see Figure 2a):

�w[i,i+|w|−1],a[k] = �w[0,i+|w|−1],a[k]− �w[0,i+k−1],a[k] + 2 · �w,a[i, i, k] (8)

The first two terms in the right-hand side can be computed from Pw,a, and
the last term can be accessed in constant time after O(|w|) preprocessing of w.
The equation above could be set up for using Sw,a rather than Pw,a. Notably,
just one of Pw,a and Sw,a suffices to answer queries on single substrings. (2)
Preprocess w as above. Let i1 and i2 be the starting positions of w1 and w2 in
w, respectively. For clarity of presentation, we describe the formula for the case
0 < k < i2− i1−|w1| (see Figure 2b), leaving the general case to the reader. Let
k′ = i2 − i1 − k and i∗ = i1 + |w1|. Then:

�w1,w2,a[k] = �w,a[k
′] +

−�w[0,i2−1],a[k
′] + �w,a[i1 + k, i1 + k, k′] + �w,a[i1, i1, k] + (9)

−�w[i1+|w1|,|w|−1],a[k
′] + �w,a[i1 + |w1|, i1 + |w1|, k′] + (10)

+�w,a[i
∗ + k′, i∗ + k′, i2 + |w2| − i∗ − k′] (11)

where all terms can be accessed in constant time by either querying Pw,a and
Sw,a, or by accessing values that have been precomputed in O(|w|) time. ��

In what follows, we will also be interested in computing �v,a[i] for a string v that
is less specific than a known string w. Given a string w ∈ Γ+, we say that string
v ∈ Γ |w| is less specific than w (or, equivalently, that v is a sparsification of w)
if w[i] ⊆ v[i] for all 0 ≤ i < |w|, and if w[i∗] ⊂ v[i∗] in at least one position i∗.
When the maximum distance between two sparsified positions of v is bounded
by a sublinear function of |w|, computing the convolution of v by exploiting the
convolution of w is asymptotically faster than computing the convolution of v
with no prior information.

Lemma 4. Let w be a string in (Σ ∪ {•})+, and let v ∈ (Σ ∪ {•})|w| be a
sparsification of w such that v[i] = w[i] for all 0 ≤ i < |w|, except for a set of
positions V = {i0, i1, . . . , ik−1} where w[ij] ⊂ v[i], 0 ≤ j < k. We can compute
�v,a[i] from �w,a[i] for all offsets i in overall O(|v| log(ik−1 − i0)) time.

1 They thus recall the match matrix described in [23].

142 F. Cunial

i1 i2

k

k'

i1 i20

0 |w|-1

|w|-1

i*

i*+k'

(b) w
w

w1 w2

i j0
w

w
i j0k

i+k-1

i+k-1

v

(a)

Fig. 2. Illustrating Lemma 3. Reusing the convolution of a string w to compute the
convolution of a substring v (a) and of two substrings w1 and w2.

Proof. By applying the convolution strategy of the match-count algorithm.

Lemma 4 can be easily generalized to strings in Γ+, and it can be extended
to pairs of strings w1, w2 with different sparsifications, at cost O((|w1| +
|w2|) log(|w1| + |w2|)). Another natural way to constrain the sparsification of
w is forcing sparsified positions to occur inside a contiguous interval.

Lemma 5. Let w be a string in (Σ ∪ {•})+, and let v ∈ (Σ ∪ {•})|w| be a
sparsification of w such that v[i] = w[i] for all 0 ≤ i < |w|, except possibly at
positions V = {d, d + 1, . . . , d + k − 1} where v[d + i] = •, 0 ≤ i < k. After
O(||w|| · |w|) preprocessing, we can compute �v,a[i] for all i in O(|v|) time.

Proof. Let
−→
� w,a[x, y, z] be the number of positions in w[x, x+ z− 1]⊗0w[y, y+

z − 1] that have an a in w[x, x+ z − 1] and a gap in w[y, y+ z − 1]. Such values
can be computed for w using convolution, then they can be propagated to all
prefixes and suffixes of w following a strategy similar to the proof of Lemma 2.
The resulting matrices support substring queries as described in Lemma 3, thus
enabling the computation of the following correction in constant time:

�v,a[i] = �w,a[i]− �w,a[d+ i, d, k − i]−−→
� w,a[d+ k − i, d+ k, i]−−→

� w,a[d, d− i, i]

��

Recall that the purpose of this section is preprocessing a given text s ∈ Σ+

provided offline to compute the expectation and variance of arbitrary patterns
w ∈ Γ+ provided online. From now on, we will restrict to a specific class of
patterns, called motifs. Given a string s ∈ Σ+, a motif is a string w ∈ Σ(Σ ∪
{•})∗Σ that occurs at least two times in s [13]. The number of distinct motifs in
a string s grows exponentially with |s|. Among all motifs of s, a notable subset
cannot be intuitively made “more specific” without losing support.

Definition 1 (Maximal motif [13]). Let w be a motif occurring at positions
L(w) = {i0, i1, . . . , in−1} in a string s ∈ Σ+, n ≥ 2. We say that w is maximal

Faster Variance Computation for Patterns with Gaps 143

in composition if no other motif v �= w of s has L(v) = L(w) and v[i] ⊆ w[i] for
all i ∈ {0, . . . , |w| − 1}. We say that w is maximal in length if no other motif
v �= w of s is such that |L(v)| = |L(w)| and w is a substring of v. We say that
w is a maximal motif of s if it is both maximal in composition and maximal in
length.

Unfortunately, even the number of maximal motifs can grow exponentially in |s|.
A landmark result in pattern discovery states that the subset of tiling maximal
motifs is bounded by a linear function of |s| [13, 24].

Definition 2 (Tiling motif [24]). A maximal motif w of a string s is tiled
is there exist maximal motifs w0, w1, . . . , wn−1 of s (wi �= w ∀ i) and integers

d0, d1, . . . , dn−1 such that L(w) =
⋃n−1

i=0 L(wi) + di. We call tiling a maximal
motif of s that is not tiled.

The set of tiling motifs of s, together with their occurrence lists, contains suffi-
cient information to generate any other maximal motif in s and its occurrences,
without knowing s itself [13, 25]. It is thus standard to call this set a basis : in
what follows, we will denote it with Bs. We are interested here in the mechanism
by which the basis generates a motif of s.

Fact 1 ([25]). The motifs of s are all and only the strings in Σ(Σ ∪ {•})∗Σ
that can be obtained as follows: (1) take a substring of a tiling motif that starts
and ends with a character in Σ; (2) replace an arbitrary set of solid characters
(excluding the first and last ones) with gaps.

This fact, combined with the sparsification tools described above, will be the core
of our construction. Before describing the main result of this section, however,
we need one last piece of notation.

Definition 3. The tiling factorization of a string w ∈ (Σ ∪ {•})+ induced by a
string s ∈ Σ+ is the decomposition w = u0 •d0 u1 •d1 · · · •dk−2 uk−1, di > 0 ∀
0 ≤ i < k − 1, where each ui starts with a solid character, and is the shortest
prefix of ui •di ui+1 •di+1 . . . uk−1 that matches a maximal substring v of Bs. By
“matching” we mean that v[j] ⊆ ui[j] for all 0 ≤ j < |v|.

We are now ready to state our main theorem.

Theorem 1. Let s ∈ Σ+, let w be a motif of s provided online, and let w =
u0 •d0 u1 •d1 · · · •dk−2 uk−1 be the tiling factorization of w induced by s. After a
O(|s|3) offline preprocessing of s, we can compute �w,a[i] for all i ∈ {1, . . . , |w|−
1} and all a ∈ Σ in worst-case time:

O

⎛
⎝k−1∑

i=0

k−1∑
j=i+1

(|ui|+ |uj |) log(|ui|+ |uj |) +
k−1∑
i=0

|ui| log |ui|

⎞
⎠

144 F. Cunial

Proof. Build Bs = {t0, t1, . . . , t|Bs|−1} in O(|s|2 log |s|) time [24]: the result is a
set of O(|s|) tiling motifs of length O(|s|) each [24]. For all i ∈ {0, . . . , |Bs| − 1},
compute the convolution of ti with itself in O(|s|2 log |s|) time overall. Build

matrices Pti,a and Sti,a for every a ∈ Σ using Lemma 2, in overall
∑|Bs|

i=0 ||ti|| ·
|ti| ∈ O(|s|3) time and space. At the same cost, build the matrices used by
Lemma 5. Then, build in O(|s|2) time the generalized suffix tree Ts of the strings
in Bs, treating • as different from every other symbol in Σ. In what follows, we
will decorate the nodes of Ts with additional information that will help answering
online queries. For clarity, given a tree T , we will denote with T [α] the value
stored at node α of T . First, we initialize a digital search tree Qs with height
two. For every tiling motif ti ∈ Bs, let Ti be its corresponding suffix tree. We set
Ti[α] = j for every node α in Ti, where j is a position at which the substring of ti
associated with α occurs in ti. This can be done in O(|s|) time. Then, we mark
all nodes α of Ts that correspond to nodes of Ti in O(|s2|) time, by traversing
Ti and Ts top-down in parallel. Let α be a node of Ts that corresponds to node
ᾱ in Ti: we set Ts[α] = (i, Ti[ᾱ]). Similarly, let α and β be two nodes of Ts that
correspond to nodes ᾱ and β̄ in Ti, respectively. Then, we add to Qs strings αβ
and βα, and we store at the corresponding leaves of Qs the triplet (i, Ti[ᾱ], Ti[β̄]).
This can be done in O(|s|2) time. Ti is then discarded and we proceed to the
next i. The overall preprocessing of s thus takes O(|s|3) time and space.

Let now w be a motif of s provided online. Follow w in Ts: if w is a substring
of Bs, then it has a proper locus α in Ts, and Ts[α] is sufficient to compute �w,a[i]
for all i and a in O(|w|) time using Lemma 3. If w is not a substring of Bs, then
there is a position 0 ≤ i < |w| such that w[i] = • and one of the two following
cases occurs: (1) the current position in the suffix tree lies inside an edge, but
• is not the next symbol in the suffix tree: in this case, we continue matching
w; (2) the current position in the suffix tree is a node: this node corresponds
to string v0, the shortest maximal substring of Bs that matches prefix u0 of w.
We then continue reading from the next solid character of w starting from the
root of Ts, thus finding substrings v1, v2, . . . , vk of Bs that match u1, u2, . . . , uk,
respectively. In the worst case, the value of �ui,a[j] for 1 ≤ j < |ui| can be
computed in O(|ui| log |ui|) time from the information stored at the node of Ts
that corresponds to vi, using Lemma 4. To compute �w,a[i] we also need to know
�ui,uj ,a[h] for 0 ≤ i < j < k. Let αi and αj be the nodes of Ts that correspond
to vi and vj , respectively. Fact 1 and the structure of Ts guarantee that there is
at least one string in Bs in which both vi and vj occur, thus string αiαj must
occur in Qs: using the information returned by Qs and Lemma 3, we can thus
access �vi,vj ,a[h] in constant time for any h. The value of �ui,uj ,a[h] can then be
derived using natural adaptations of Lemmas 4 and 5 to pairs of strings. ��

For arbitrary motifs, the worst-case online running time of Theorem 1 is never
asymptotically faster than the convolution of motif w with itself: for example, if
k is bounded by a constant, the worst-case running time is O(|w| log |w|); if k is
O(log |w|) the worst-case running time is O(|w|(log |w|)3); and if k is O(|w|), the
worst-case running time is O(|w|2). However, Theorem 1 establishes a previously
unknown connection between the time to compute �w,a[i] for a motif w of a string

Faster Variance Computation for Patterns with Gaps 145

s (a ∈ Σ, 1 ≤ i < |w|) and the structure of w and s. The following corollary,
that derives immediately from Theorem 1 and Lemma 5, identifies families of
motifs that are amenable to o(n log(n)) online processing, where n is the length
of the motifs in such families.

Corollary 1. Let s be a string, let w be a motif of s, let w = u0•d0u1•d1 · · ·•dk−2

uk−1 be the tiling factorization of w induced by s, and let v0, v1, . . . , vk−1 be the
corresponding substrings of Bs that match the factors of w. A block in a factor
ui, 0 ≤ i < k, is a substring ui[d, d+ �− 1] such that (ui[j] = •)∧ (vi[j] �= •) for
j = d and j = d+ �− 1, and such that ui[j] = • for d < j < d+ �− 1. A block is
maximal if it is not contained in any other block. If bi, the number of maximal
blocks in factor ui, is bounded by a constant for all i, then we can compute
�w,a[i] for all i ∈ {1, . . . , |w| − 1} and all a ∈ Σ in O(k|w|) time after O(|s|3)
preprocessing. Similarly, if k is bounded by a constant, then we can compute
�w,a[i] for all i ∈ {1, . . . , |w| − 1} and all a ∈ Σ in O(|w|

∑k−1
i=0 bi) time after

O(|s|3) preprocessing.

5 Discussion and Extensions

Speeding up the computation of statistical properties of gapped patterns is cru-
cial in large-scale molecular biology and text mining. The implicit technique used
in Section 3 to bring the computational complexity of expectation and variance
of a gapped pattern w from O(2|w|) to O(|w|2) has the desirable practical effect
of limiting string operations to the construction of selectors, thus keeping only
matrix and vector operations in the kernels. This likely allows to take better ad-
vantage of existing software libraries and hardware in a practical implementation
of such equations. The offline preprocessing of Theorem 1 is clearly amenable to
multiple levels of parallelization and tuning, which could help reducing its cubic
running time in practice. Similarly, the factorization of a motif w provided online
defines a formal way to process w in parallel and to aggregate partial results.

From an algorithmic standpoint, Lemma 1 is likely applicable to the condi-
tional expectation and variance of a pattern given the occurrences of others (see
e.g. [26]), and to the expectation and variance of a set of patterns allowed to
overlap each other. The setup in Theorem 1 heavily relies on having string s
available offline: assuming that even s is given online would be more realistic
in applications like security and logging, and it would probably require a com-
pletely different set of data structures and algorithms. The tiling factorization
of a motif seems also a notion of independent interest, and resonates with ideas
in conditional algorithmic information and data compression (e.g. [27]): it would
be interesting to push this relationship further, for example by explicitly relating
the time to compute the variance of a motif to a measure of mutual algorithmic
information between the motif and the basis. Finally, embedding the efficient
computation of expectation and variance into existing algorithms that produce
all motifs of a string from its tiling basis (e.g. [28]) could be another stimulating
extension of this work.

146 F. Cunial

Acknowledgements. Partially funded by the Academy of Finland under grant
250345.

References

[1] Reinert, G., Schbath, S., Waterman, M.: Probabilistic and statistical properties
of words: an overview. Journal of Computational Biology 7, 1–46 (2000)

[2] Apostolico, A., Bock, M., Xu, X.: Annotated statistical indices for sequence anal-
ysis. In: Proceedings of the Compression and Complexity of Sequences, Sequences
1997, pp. 215–229. IEEE Computer Society, Washington, DC (1997)

[3] Apostolico, A., Bock, M., Lonardi, S.: Monotony of surprise and large-scale quest
for unusual words. In: Proceedings of the Sixth Annual International Conference
on Computational Biology, RECOMB 2002, pp. 22–31. ACM, New York (2002)

[4] Apostolico, A., Bock, M., Lonardi, S., Xu, X.: Efficient detection of unusual words.
Journal of Computational Biology 7(1), 71–94 (2000)

[5] Apostolico, A., Pizzi, C.: Monotone Scoring of Patterns with Mismatches. In:
Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 87–98.
Springer, Heidelberg (2004)

[6] Pizzi, C., Bianco, M.: Expectation of Strings with Mismatches under Markov
Chain Distribution. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009.
LNCS, vol. 5721, pp. 222–233. Springer, Heidelberg (2009)

[7] Ferreira, P., Azevedo, P.: Evaluating deterministic motif significance measures in
protein databases. Algorithms for Molecular Biology 2(1), 16 (2007)

[8] Flajolet, P., Guivarc’h, Y., Szpankowski, W., Vallée, B.: Hidden Pattern Statistics.
In: Yu, Y., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076,
pp. 152–165. Springer, Heidelberg (2001)

[9] Gwadera, R., Atallah, M., Szpankowski, W.: Reliable detection of episodes in
event sequences. In: Knowledge and Information Systems, pp. 67–74 (2004)

[10] Nicodème, P., Salvy, B., Flajolet, P.: Motif statistics. Theoretical Computer Sci-
ence 287, 593–617 (2002)

[11] Robin, S., Daudin, J.J., Richard, H., Sagot, M.F., Schbath, S.: Occurrence prob-
ability of structured motifs in random sequences. Journal of Computational Biol-
ogy, 761–774 (2002)

[12] Stolovitzky, G., Califano, A.: Statistical significance of patterns in biosequences.
IBM research report (1998)

[13] Parida, L., Rigoutsos, I., Floratos, A., Platt, D., Gao, Y.: Pattern discovery on
character sets and real-valued data: linear bound on irredundant motifs and an
efficient polynomial time algorithm. In: Proceedings of the Eleventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2000, pp. 297–308. Society for
Industrial and Applied Mathematics, Philadelphia (2000)

[14] Apostolico, A., Comin, M., Parida, L.: Conservative extraction of over-represented
extensible motifs. Bioinformatics 21, i9–i18 (2005)

[15] Califano, A.: SPLASH: structural pattern localization analysis by sequential his-
tograms. Bioinformatics 16, 341–357 (2000)

[16] Rigoutsos, I., Floratos, A.: Combinatorial pattern discovery in biological se-
quences: the TEIRESIAS algorithm. Bioinformatics 14(1), 55–67 (1998)

[17] Sinha, S., Tompa, M.: A statistical method for finding transcription factor binding
sites. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., vol. 8, pp. 344–354 (2000)

Faster Variance Computation for Patterns with Gaps 147

[18] Sinha, S., Tompa, M.: Discovery of novel transcription factor binding sites by
statistical overrepresentation. Nucleic Acids Research 30(24), 5549–5560 (2002)

[19] Kleffe, J., Borodovsky, M.: First and second moment of counts of words in random
texts generated by Markov chains. Bioinformatics/Computer Applications in the
Biosciences 8, 433–441 (1992)

[20] Fischer, M., Paterson, M.: String-matching and other products. Technical report,
Massachusetts Institute of Technology, Cambridge, MA, USA (1974)

[21] Cole, R., Hariharan, R.: Verifying candidate matches in sparse and wildcard
matching. In: Proceedings of the Thiry-fourth Annual ACM Symposium on The-
ory of Computing, STOC 2002, pp. 592–601. ACM, New York (2002)

[22] Sigrist, C., Cerutti, L., de Castro, E., Langendijk-Genevaux, P., Bulliard, V.,
Bairoch, A., Hulo, N.: PROSITE, a protein domain database for functional char-
acterization and annotation. Nucleic Acids Research 38, 161–166 (2010)

[23] Apostolico, A., Parida, L.: Incremental paradigms of motif discovery. Journal of
Computational Biology 11, 15–25 (2004)

[24] Pisanti, N., Crochemore, M., Grossi, R., Sagot, M.-F.: A Basis of Tiling Motifs
for Generating Repeated Patterns and Its Complexity for Higher Quorum. In:
Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 622–631. Springer,
Heidelberg (2003)

[25] Pisanti, N., Crochemore, M., Grossi, R., Sagot, M.: Bases of motifs for generating
repeated patterns with wildcards. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 2(1), 40–50 (2005)

[26] Blanchette, M., Sinha, S.: Separating real motifs from their artifacts. Bioinfor-
matics 17(1), S30–S38 (2001)

[27] Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Transactions on
Information Theory 22(1), 75–81 (1976)

[28] Parida, L., Rigoutsos, I., Platt, D.: An Output-Sensitive Flexible Pattern Discov-
ery Algorithm. In: Amir, A., Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089,
pp. 131–142. Springer, Heidelberg (2001)

Enhancing the Computation of Distributed

Shortest Paths on Real Dynamic Networks�

Gianlorenzo D’Angelo1, Mattia D’Emidio2,
Daniele Frigioni2, and Daniele Romano2

1 MASCOTTE Project INRIA/I3S(CNRS/UNSA) 2004 Route Des Lucioles, 06902
Sophia–Antipolis Cedex, France
gianlorenzo.d angelo@inria.fr

2 Department of Information Engineering, Computer Science and Mathematics,
University of L’Aquila, Via Gronchi 18, I–67100, L’Aquila, Italy

{mattia.demidio,daniele.frigioni}@univaq.it,
daniele.romano.vis@gmail.com

Abstract. The problem of finding and updating shortest paths in dis-
tributed networks is considered crucial in today’s practical applications.
In the recent past, there has been a renewed interest in devising new effi-
cient distance-vector algorithms as an attractive alternative to link-state
solutions for large-scale Ethernet networks. In this paper we present Dis-
tributed Computation Pruning (DCP), a new technique, which can be
combined with every distance-vector algorithm based on shortest paths,
allowing to reduce the total number of messages sent by that algorithm
and its space occupancy per node. To check its effectiveness, we com-
bined DCP with DUAL (Diffuse Update ALgorithm), one of the most
popular distance-vector algorithm in the literature, and with the recently
introduced LFR (Loop Free Routing) which has been shown to have good
performances on real networks. We give experimental evidence that these
combinations lead to a significant gain both in terms of number of mes-
sages sent and memory requirements per node.

1 Introduction

The problem of computing and updating shortest paths in a distributed network
whose topology dynamically changes over the time is a core functionality of
today’s communication networks. This problem has been widely studied in the
literature, and the solutions found are classified as distance-vector and link-state.
Distance-vector algorithms require that a node knows the distances from each
of its neighbors to every destination and stores them in a data structure called
routing table; a node uses its own routing table to compute the distance and the
next node in the shortest path to each destination. Most of the known distance-
vector solutions (see e.g. [3,5]) are based on the classical Distributed Bellman-
Ford method (DBF), which is still used in real networks and implemented in

� Support for the IPv4 Routed/24 Topology Dataset is provided by National Sc. Foun-
dation, US Dept of Homeland Security, WIDE Project, Cisco Systems, and CAIDA.

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 148–158, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Enhancing the Computation of Distributed Shortest Paths 149

the RIP protocol [15]. DBF has been shown to converge to the correct distances
if the link weights stabilize and all cycles have positive lengths [2]. However, the
convergence can be very slow (possibly infinite) due to the well-known looping
phenomenon. Link-state algorithms, as for example the Open Shortest Path First
(OSPF) protocol used in the Internet [11], require a node to know the entire
network topology, to compute its distance to any destination, usually running
the Dijkstra’s algorithm, thus requiring quadratic space per node. Link-state
algorithms are free of looping, however each node needs to receive and store
up-to-date information on the entire network topology after a change. This is
achieved by broadcasting each change of the network topology to all nodes [11]
and by using a dynamic centralized algorithm for shortest paths, as for example
that in [8].

Related Works. In the last years, there has been a renewed interest in devis-
ing new efficient light-weight distributed shortest paths solutions for large-scale
Ethernet networks (see, e.g., [4,6,12,14,16]), where distance-vector algorithms
seem to be an attractive alternative to link-state solutions when scalability and
reliability are key issues or when the memory power of the nodes of the network
is limited. Notwithstanding this increasing interest, the most important distance
vector algorithm is still DUAL (Diffuse Update ALgorithm) [9], which is free of
looping and is part of CISCO’s widely used EIGRP protocol, although it requires
a quite big space occupancy per node. Another distance vector algorithm, named
LFR (Loop Free Routing), has been recently proposed in [7]. Compared with
DUAL, LFR has the same theoretical message complexity but it uses an amount
of data structures per node which is much smaller than that of DUAL. More-
over, LFR has been experimentally shown to be very effective in terms of both
messages sent and memory requirements per node in some real-world networks.
Recently, in [6] a general strategy named DLP (Distributed Leaf Pruning) has
been introduced which can be combined with every distance vector algorithm
with the aim of reducing the number of messages sent by that algorithm. In [6]
the effectiveness of DLP has been confirmed by combining it with DUAL and
by running experiments on both real-world and artificial instances.

Results of the Paper. We provide a new technique, named Distributed Com-
putation Pruning (DCP), which is a generalization of DLP and can be combined
with every distance-vector algorithm with the aim of overcoming some of their
main limitations in real-world networks (high number of messages sent, high
space occupancy per node, etc.). DCP has been designed to be efficient mainly
in networks following a power-law node degree distribution, which from now on
will be referred as power-law networks. Power-law networks includes many of
the currently implemented communication infrastructures, like the Internet, the
World Wide Web, some social networks, and so on [1]. The main idea underlying
DCP rely on the fact that a power-law network with n nodes typically has av-
erage node degree much smaller than n and a high number of nodes with small
degree (less than 3). Nodes with small degree often do not provide any useful
information for the distributed computation of shortest paths, that is there are
many topological situations in which these nodes should neither perform nor be

150 G. D’Angelo et al.

involved in any kind of distributed computation, as their shortest paths depend
on those of higher degree nodes.

In order to check the effectiveness of DCP, we combined it with DUAL and
LFR by obtaining two new algorithms named DUAL-DCP and LFR-DCP,
respectively. Then, we implemented the two new algorithms in the OMNeT++
simulation environment [13], a network simulator widely used in the literature.
We also implemented DUAL, LFR, DUAL-DLP and LFR-DLP, where the
last two algorithms are the combination of DUAL and LFR with DLP [6].
As input to the algorithms, we considered the power-law Internet topologies of
the CAIDA IPv4 topology dataset [10]. The results of our experiments can be
summarized as follows: the combination of DUAL and LFR with DCP provides
a huge improvement in the number of messages sent with respect to DUAL and
LFR, respectively. In particular, the number of messages sent by DUAL-DCP

is always between 3% and 16% that of DUAL, while the number of messages
sent by LFR-DCP is always between 10% and 26% that of LFR. The gain is
significant also with respect to DUAL-DLP and LFR-DLP. We observed also
an improvement in the maximum space occupancy per node of DUAL-DCP

and LFR-DCP, and in the average space occupancy per node of DUAL-DCP.
This is due to the fact that nodes with small degree do not need to store some
of the data structures implemented by DUAL and LFR, respectively.

2 Preliminaries

We consider a network made of processors linked through communication chan-
nels that exchange data using a message passing model. We are interested in the
practical case of networks whose topologies dynamically change over the time
due to update operations on the edges (weight increase, weight decrease, insert,
delete).

Graph Notation. We represent a network by an undirected weighted graph
G = (V,E,w), where V is a finite set of n nodes, one for each processor, E is
a finite set of m edges, one for each communication channel, and w is a weight
function w : E → R

+ that assigns to each edge a real value representing the
optimization parameter associated to the corresponding channel. An edge in E
that links nodes u, v ∈ V is denoted as {u, v}. Given v ∈ V , N(v) denotes the
set of neighbors of v, and deg(v) = |N(v)| denotes the degree of v. A path P in
G between nodes u and v is denoted as P = {u, ..., v}. The weight of P , denoted
as w(P) is the sum of the weights of the edges in P . A shortest path between
nodes u and v is a path from u to v with the minimum weight. The distance
d(u, v) from u to v is the weight of a shortest path from u to v. Given two nodes
u, v ∈ V , the via from u to v is the set of neighbors of u that belong to a shortest
path from u to v. Formally: via(u, v) ≡ {z ∈ N(u) | d(u, v) = w(u, z) + d(z, v)}.
Given a time t, we denote as wt(), dt(), and viat() the edge weight, the distance,
and the via at time t, respectively. We denote a sequence of update operations
on the edges of G by C = (c1, c2, ..., ck). Assuming G0 ≡ G, we denote as Gi,
0 ≤ i ≤ k, the graph obtained by applying ci to Gi−1. We consider the case of
weight increase and weight decrease operations.

Enhancing the Computation of Distributed Shortest Paths 151

Distance-Vector Algorithms. Given a graph G = (V,E,w), distance-vector
routing algorithms based on shortest-paths usually share a set of common fea-
tures. In detail, a generic node v of G: (i) knows the identity of every other
node of G, the identity of all its neighbors and the weights of the edges incident
to it; (ii) maintains and updates its own routing table that has one entry for
each s ∈ V , which consists of at least two fields: D[v, s], the estimated distance
between v and s, and VIA[v, s], the neighbor used to forward data from v to
s; (iii) handles edge weight changes either by a single procedure (see, e.g., [9]),
which we denote as WeightChange, or separately (see, e.g., [4,7]) by two pro-
cedures, which we denote as WeightIncrease and WeightDecrease; (iv)
asks information to its neighbors through a message denoted as query and re-
ceives reply through a message denoted as reply. If the routing information on
a node changes, such a variation is propagated as follows: if v is performing
WeightChange, then it sends to its neighbors a message, from now on de-
noted as update; a node that receives this kind of message executes a procedure
named Update; if v is performing WeightIncrease or WeightDecrease,
then it sends to its neighbors message increase or decrease, resp.; a node that
receives increase/decrease executes a procedure named Increase/Decrease,
respectively.

3 Dynamic Scenarios

In this section, we introduce some preliminary definitions that are useful to cap-
ture the dynamic scenarios typical of power-law networks and we show some
properties of shortest paths in these scenarios. Given an undirected weighted
graph G = (V,E,w), we classify the nodes of G with respect to their degree
as follows. A node v ∈ V is: central if deg(v) ≥ 3; peripheral if deg(v) = 1;
semiperipheral if deg(v) = 2. An edge {u, v} of G is: central if both u and v are
central; peripheral if either u or v is peripheral; semiperipheral if either u or v is
semiperipheral and neither of them is peripheral. A path P = {v0, v1, ..., vj−1}
in G is: central if it is made only of central edges; peripheral if it contains ex-
actly one peripheral edge and exactly one central node; the unique central node
of P is called owner of P ; semiperipheral if it is formed only by semiperiph-
eral edges. If v0 and vj−1 are two distinct central nodes, then they are called
semiowners of P . If v0 ≡ vj−1, then P is a semiperipheral cycle, and v0 ≡ vj−1

is called the cycleowner of P . The following lemmata, which proofs are quite
straightforward, introduce some basic relationships between central and non-
central shortest paths of the network.

Lemma 1 (Peripheral shortest paths). Given a graph G = (V,E,w), let
P = {v, p1, ..., pj−1} be a peripheral path of G whose owner is node v, and let
P ′ = {v, p1, ..., pi}, 1 ≤ i ≤ j − 1, be a sub-path of P containing v. Then, for
each x ∈ V \ {p1, ..., pj−1}, d(x, pi) = d(x, v) + w(P ′).

Lemma 2 (Semi-peripheral shortest paths). Given a graph G = (V,E,w),
let S = {u, sp1, ..., spj−2, v} be a semiperipheral path of G whose semiowners

152 G. D’Angelo et al.

are nodes u and v, and let S′ = {u, sp1, ..., spi}, 1 ≤ i ≤ j − 2, and S′′ =
{spi, ..., spj−2, v} be two sub-paths of S, containing u and v, respectively. Then,
for each x ∈ V \{sp1, ..., spj−2}, d(x, spi) = min{d(x, u)+w(S′), d(x, v)+w(S′′)}.

Lemma 3 (Semi-peripheral cycle shortest paths). Given a graph G =
(V,E,w), let C = {u, c1, ..., cj−1, u} be a semiperipheral cycle of G whose cycle-
owner is node u, and let C′ = {u, c1, ..., ci} and C′′ = {ci, ..., cj−1, u}, 1 ≤ i ≤
j − 1, be two sub-paths of C. Then, for each x ∈ V \ {c1, ..., cj−1}, d(x, ci) =
min{d(x, u) + w(C′), d(x, u) + w(C′′)}.

Some useful additional relationships can be derived introducing time instants in
the above Lemmata. In particular, by Lemma 1 we know that, if between the time
instants ti and ti+1 the weight of the edge {p1, p2} between two nodes belonging
to a peripheral path P = {v, ..., p1, p2, ..., pj−1} changes, that is wti(p1, p2) �=
wti+1(p1, p2), then for each x ∈ V that does not belong to P , the distance from
p1 to x does not change, while the distance from p2 to x changes as follows:

dti+1(p2, x) = dti(p2, x) + wti+1(p1, p2)− wti (p1, p2) (1)

By Lemma 2 we know that, if between the time instants ti and ti+1 the weight
of the edge {sp1, sp2} between two nodes belonging to a semiperipheral path
S = {u, ..., sp1, sp2, ..., v} changes, that is wti(sp1, sp2) �= wti+1(sp1, sp2), then
for each x ∈ V , both the distances from sp1 to x and from sp2 to x change as
follows:

dti+1(sp1, x) = min
z∈N(sp1)

{dti+1(z, x) + wti+1 (sp1, z)} (2)

dti+1(sp2, x) = min
z∈N(sp2)

{dti+1(z, x) + wti+1 (sp2, z)} (3)

Let us assume that, between ti and ti+1, the weight of the edge {c1, c2} between
two nodes belonging to a semiperipheral cycle C = {u, ..., c0, c1, c2, c3, ..., u}
changes, that is wti(c1, c2) �= wti+1(c1, c2). If we denote as C0 = (u, ..., c0, c1),
C1 = (c1, c2, ..., u), C2(u, ..., c1, c2) and C3 = (c2, c3, ..., u) then by Lemma 3, for
each x ∈ V , the distances from c1 to x and from c2 to x change as follows:

dti+1(c1, x) = dti(x, u) + min{
∑

{l,q}∈C0

wti+1(l, q),
∑

{l,q}∈C1

wti+1(l, q)} (4)

dti+1(c2, x) = dti(x, u) + min{
∑

{l,q}∈C2

wti+1(l, q),
∑

{l,q}∈C3

wti+1(l, q)} (5)

If the distance between a generic node x ∈ V and a central node c changes
between the time instants ti and ti+1 (that is, dti+1(x, c) �= dti(x, c)), then the
following relationships hold:

Enhancing the Computation of Distributed Shortest Paths 153

– by Lemma 1, for each peripheral path P = {c, ..., p, ..., pj−1} with owner c,
and for each p ∈ P :

dti+1(x, p) = dti(x, p) + dti+1(x, c)− dti(x, c), (6)

– by Lemma 2, for each semiperipheral path S = {c, ..., sp, ..., d} with semiown-
ers c and d and for each sp ∈ S such that c belongs to the shortest path from
sp to x at time ti, if we denote as D = (d, ..., sp) the sub-path of S from d
to sp, and by k =

∑
{l,q}∈D

wti(l, q), then:

dti+1(x, sp) = min{dti+1(x, sp) + dti+1(x, c) − dti(x, c), dti (x, d) + k} (7)

– by Lemma 3, for each cyclic path C = {c, c1, ..., c, ..., cj−1, c} with cycleowner
c, and for each c ∈ C:

dti+1(x, c) = dti(x, c) + dti+1(x, c)− dti(x, c), (8)

4 The New Technique

Distributed Computation Pruning (DCP) has been designed to be efficient
mainly in power-law networks, by forcing the distributed computation to be
carried out only by the central nodes, which are few in practice. The non-central
nodes, which are the great majority in power-law networks, receive updates about
routing information passively from the respective owners, without starting any
kind of distributed computation. Then, the larger is the set of non-central nodes
of the network, the bigger is the improvement in the pruning of the distributed
computation and, consequently, in the global number of messages sent.

Data Structures. Given a generic distance-vector algorithm A, DCP requires
that a generic node of G stores some additional information with respect to those
required by A. In particular, a node v needs to store and update information
about non-central paths of G. To this aim, v maintains a data structure called
ChainPath, denoted as CHPv, which is an array containing one entry CHPv[s], for
each central node s. CHPv[s] stores the list of all edges, with the corresponding
weight, belonging to the non-central paths containing s. A central node is obvi-
ously not present in any list of CHPv. A peripheral node is present in exactly one
list CHPv[s], where s ∈ V is its owner. A semi-peripheral node is present in exactly
two lists CHPv[v0] and CHPv[vj−1], if it belongs to a semi-peripheral path (v0 and
vj−1 are its semiowners), while it is present in a single list CHPv[v0], if it belongs
to a semi-peripheral cycle (v0 is its cycleowner). The space occupancy overhead
per node due to ChainPath can be quantified using the following observations:
the ChainPath contains at most as many entries as the number of the central
nodes; the sum of the sizes of all the lists in the ChainPath is twice the number
of non-central edges of G in the worst case; the number of non-central edges of
G is O(n), as they belong to paths in which every node has degree at most two.
Hence, the space overhead per node due to CHPv is O(n). Note that, despite the

154 G. D’Angelo et al.

overhead due to the ChainPath data structure, the use of DCP can induce a
decrease in the space occupancy per node required by A for the following ob-
servations: (i) in most of the cases nodes do not ask and do not need to store
information received from non-central nodes; (ii) computations which involves
the whole network are performed only with respect to central destinations.

Distributed Computation Pruning. The combination of DCP with a dis-
tance vector algorithm A induces a new algorithm denoted as A-DCP. The
behavior of A-DCP can be summarized as follows. While in a classic routing
algorithm every node performs the same code thus having the same behavior, in
A-DCP central and non-central nodes have different behaviors. In particular,
central nodes detect changes concerning all kind of edges, while semiperipheral,
peripheral and cyclic nodes detect changes concerning only semiperipheral, pe-
ripheral and cyclic edges, respectively.

If the weight of a central edge {u, v} changes, then node u (v, resp.) performs
the procedure provided by A for the distributed computation of the shortest
paths, only with respect to central nodes. During this computation, if u (v)
needs information by its neighbors, it asks only to central neighbors or, if u
(v) is the semiowner of one or more semiperipheral paths, it asks information
also to the other semiowner of each semiperipheral path, by means of a strategy
we called Mod-DBF. In detail, node u (v) sends to each semiperipheral neigh-
bor a queryDBF message, whose aim is to traverse the semiperipheral path,
in order to get information by the other semiowner. The queryDBF message
contains just one field, the source object of the computation. A semiperipheral
node, which receives a queryDBF message from one of its two neighbors, simply
performs a store-and-forward step and sends a queryDBF message to the other
neighbor. A central node, which receives a queryDBF message, simply replies
the information that queryDBF is asking for. Once u (v) has updated its own
routing information, it propagates the variation to all its neighbors through the
update, increase or decrease messages of A. When a generic node x receives an
update, increase or decrease message, it stores the current value of D[x, s] in a
temporary variable.

Now, if x is a central node, then it handles the change and updates its routing
information toward s, by using the proper procedure of A (Update, Increase,
or Decrease) and propagates the new information to its neighbors. Otherwise,
if x is a peripheral, semiperipheral or cyclic node, it handles the change and
updates its routing information toward s by using Lemmata 1–3, and the data
provided by its owner, semiowner and cycleowner, respectively. At the end, x
verifies whether the routing table entry of s is changed or not and, in the afferma-
tive case, it updates the routing information about the non-central neighbors of
s, if they exist, by implementing Equations 6–8. Note that, node x uses the data
contained in CHP in order to properly update its routing information towards the
non-central nodes of s, if they exist.

If a weight change occurs on a peripheral edge {u, v}, then nodes u and v
both send a p change(u, v, w(u, v)) message to each of their neighbors. When a
generic node x receives message p change, it first verifies whether the update has

Enhancing the Computation of Distributed Shortest Paths 155

been already processed or not, by comparing the new value of w(u, v) with the
one stored in its CHP. In the first case the message is discarded. Otherwise, node
x updates its CHP with the updated value of w(u, v) and its routing information
by using Equation 1. Then, it propagates the change by a flooding algorithm to
forward the message over the network.

If the weight of a semiperipheral edge {u, v} changes, then node u (v resp.)
sends two kind of messages: a sp change(u, v, w(u, v)), to each of its owners,
and a sp update(s, D[u, s]) (sp update(s, D[v, s])) to v (u), for each s such that
VIA[u, s] �= v (VIA[v, s] �= u). When a generic node x receives message sp change,
it first verifies whether the update has been already processed or not, by com-
paring the new value of w(u, v) with the one stored in its CHP. In the first case
the message is discarded. Otherwise, node x simply updates its CHP with the
updated value of w(u, v). When a generic node x receives a sp update(s, D[u, s])
message from a neighbor u, two cases can occur. If x is a central node, it sim-
ply performs procedure update of A. Otherwise, it updates routing information
towards s by using Equations 2–3. Note that, in this case, node x uses the in-
formation contained in CHP in order to verify whether it belongs or not to the
same semiperipheral path of s and to properly update its routing information.

If the weight of a cyclic edge {u, v} changes, nodes u and v both send a
cy update(u, v, w(u, v)) message to each of their neighbors. When a generic node
x receives message cy update, it first verifies whether the update has been already
processed or not, by comparing the new value of w(u, v) with the one stored in
its CHP. In the first case the message is discarded. Otherwise, node x updates
its CHP with the updated value of w(u, v) and its routing information by using
Equations 4–5. Then, it propagates the change by a flooding algorithm to forward
the message over the network.

5 Experimental Analysis

Our experiments have been performed on a workstation equipped with a Quad-
core 3.60 GHz Intel Xeon X5687 processor, with 12MB of internal cache and 24
GB of main memory, and consist of simulations within the OMNeT++ 4.0p1
environment [13].

Executed Tests. For the experiments we used the power-law networks of the
CAIDA IPv4 topology dataset [10]. We parsed the files provided by CAIDA to
obtain a weighted undirected graph, denoted as GIP , where a node represents
an IP address in the dataset (both source/destination hosts and intermediate
hops), edges represent links among hops and weights are given by Round Trip
Times. As the graph GIP consists of almost 35000 nodes, we could not use it for
the experiments, due to the big amount of memory required to store the routing
tables for DUAL. Hence, we performed our tests on connected subgraphs of GIP

induced by the settled nodes of a breadth first search starting from a node taken
at random. We denoted a h nodes subgraph of GIP with GIP−h. We generated a
set of different tests, each test consists of a subgraph of GIP and a set of k edge
updates, where k assumes values in {5, 10, . . . , 200}. An edge update consists of

156 G. D’Angelo et al.

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

1.4e+08

0 20 40 60 80 100 120 140 160 180 200

k

DUAL

DUAL-DLP

DUAL-DCP

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

0 20 40 60 80 100 120 140 160 180 200

k

LFR

LFR-DLP

LFR-DCP

Fig. 1. Number of messages sent by DUAL, DUAL-DLP and DUAL-DCP (left) and
by LFR, LFR-DLP and LFR-DCP (right) on GIP−8000

multiplying the weight of a random selected edge by a percentage value randomly
chosen in [50%, 150%]. For each test configuration (a graph with a fixed value of
k) we performed 5 different experiments (for a total of 200 runs) and we report
average values.

Analysis. We ran simulations on CAIDA instances with different number of
nodes n ∈ {1200, 5000, 8000}. The results of our experiments on the different
instances are similar, hence we report those on the bigger instances, which has
8000 nodes and 11141 edges. In particular, in Figures 1(left) and 1(right) we
report the number of messages sent by DUAL, DUAL-DLP and DUAL-DCP

and by LFR, LFR-DLP and LFR-DCP, respectively, on GIP−8000. Note that,
GIP−8000 has average node degree equal to 2.8, a percentage of degree 1 nodes
approximately equal to 38.5%, and a percentage of degree 2 nodes approximately
equal to 33%. The figures show that the combinations of DUAL and LFR with
DCP provide a huge improvement in the global number of messages sent. The
gain is significant also with respect to DUAL-DLP and LFR-DLP. In the tests
of Fig. 1(left) the ratio between the number of messages sent by DUAL-DCP

and DUAL is within 0.03 and 0.16 which means that DUAL-DCP sends a
number of messages which is between 3% and 16% that of DUAL. Similarly,
the ratio between the number of messages sent by DUAL-DCP and DUAL-
DLP is within 0.11 and 0.40. In the tests of Fig. 1(right) the ratio between the
number of messages sent by LFR-DCP and LFR is within 0.10 and 0.26 which
means that the number of messages sent by LFR-DCP is always between 10%
and 26% that of LFR. Similarly, the ratio between the number of messages sent
by LFR-DCP and LFR-DLP is within 0.21 and 0.58.

To conclude our analysis, we consider the space occupancy per node of each
algorithm. The results are summarized in Table 1 where we report the maxi-
mum and the average space occupancy per node, in Bytes, of each algorithm on
GIP−8000. We also report the ratio between the space occupancy per node of
the algorithms integrating DLP and DCP and that of the original algorithms,
for each test instance. Note that, since the space occupancy per node of LFR,
LFR-DLP and LFR-DCP depends on the number of weight change operations,
we show median values for each of these algorithms. Our experiments show that
the use of DCP induces, in most of the cases, a clear improvement also in

Enhancing the Computation of Distributed Shortest Paths 157

Table 1. Space occupancy per node of the implemented algorithms

Graph Algorithm
MAX AVG

Bytes Ratio Bytes Ratio

GIP−8000

DUAL 8 320 000 1 311 410 1
DUAL-DLP 5 161 984 0.62 240 754 0.77
DUAL-DCP 2 517 680 0.30 252 625 0.81

GIP−8000

LFR 549 170 1 192 871 1
LFR-DLP 421 862 0.77 204 675 1.06
LFR-DCP 392 658 0.72 295 930 1.53

the space requirements per node. In particular, DUAL-DCP (LFR-DCP) re-
quires a maximum space occupancy per node which is 0.30 (0.72) times that
of DUAL (LFR). Notice that, the improvement is more evident in the case of
DUAL, as its maximum space occupancy per node is by far higher than that of
LFR. Concerning DUAL, this behavior is confirmed also in the average case,
where DUAL-DCP requires 0.81 times the average space occupancy per node
of DUAL. On the contrary, our data show that the average space occupancy
per node of LFR-DCP is slightly greater than that of LFR and that the use
of DCP induces an overhead in the average space occupancy per node which is
equal to 53%. This is due to the fact that the average space occupancy of LFR
is quite low by itself and that, in this case, the space overhead needed to store
the ChainPath is greater than the space occupancy reduction induced by the
use of DCP.

References

1. Albert, R., Barabási, A.-L.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

2. Bertsekas, D., Gallager, R.: Data Networks. Prentice Hall International (1992)
3. Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D.: Partially dynamic efficient

algorithms for distributed shortest paths. Theoretical Computer Science 411, 1013–
1037 (2010)

4. Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D., Maurizio, V.: Engineering
a new algorithm for distributed shortest paths on dynamic networks. Algorithmica
(to appear, 2012), doi: 10.1007/s00453-012-9623-9

5. Cicerone, S., Stefano, G.D., Frigioni, D., Nanni, U.: A fully dynamic algorithm for
distributed shortest paths. Theoretical Comp. Science 297(1-3), 83–102 (2003)

6. D’Angelo, G., D’Emidio, M., Frigioni, D., Maurizio, V.: A Speed-Up Technique for
Distributed Shortest Paths Computation. In: Murgante, B., Gervasi, O., Iglesias,
A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part II. LNCS, vol. 6783, pp.
578–593. Springer, Heidelberg (2011)

7. D’Angelo, G., D’Emidio, M., Frigioni, D., Maurizio, V.: Engineering a New Loop-
Free Shortest Paths Routing Algorithm. In: Klasing, R. (ed.) SEA 2012. LNCS,
vol. 7276, pp. 123–134. Springer, Heidelberg (2012)

8. Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Fully dynamic algorithms for
maintaining shortest paths trees. Journal of Algorithms 34(2), 251–281 (2000)

158 G. D’Angelo et al.

9. Garcia-Lunes-Aceves, J.J.: Loop-free routing using diffusing computations.
IEEE/ACM Trans. on Networking 1(1), 130–141 (1993)

10. Hyun, Y., Huffaker, B., Andersen, D., Aben, E., Shannon, C., Luckie, M., Claffy,
K.: The CAIDA IPv4 routed/24 topology dataset,
http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml

11. Moy, J.T.: OSPF: Anatomy of an Internet routing protocol. Addison-Wesley (1998)
12. Myers, A., Ng, E., Zhang, H.: Rethinking the service model: Scaling ethernet to a

million nodes. In: ACM SIGCOMM HotNets. ACM Press (2004)
13. OMNeT++. Discrete event simulation environment, http://www.omnetpp.org
14. Ray, S., Guérin, R., Kwong, K.-W., Sofia, R.: Always acyclic distributed path

computation. IEEE/ACM Trans. on Networking 18(1), 307–319 (2010)
15. Rosen, E.C.: The updating protocol of arpanet’s new routing algorithm. Computer

Networks 4, 11–19 (1980)
16. Zhao, C., Liu, Y., Liu, K.: A more efficient diffusing update algorithm for loop-free

routing. In: 5th International Conference on Wireless Communications, Networking
and Mobile Computing (WiCom 2009), pp. 1–4. IEEE Press (2009)

http://www.caida.org/data/active/ipv4_routed_24_topology_dataset.xml
http://www.omnetpp.org

Experimental Analysis

of Rumor Spreading in Social Networks

Benjamin Doerr1, Mahmoud Fouz2, and Tobias Friedrich3

1 Max-Planck-Institut für Informatik, Saarbrücken, Germany
2 Rocket Internet, Dubai, U.A.E.

3 Friedrich-Schiller-Universität Jena, Germany

Abstract Randomized rumor spreading was recently shown to be a very
efficient mechanism to spread information in preferential attachment net-
works. Most interesting from the algorithm design point of view was the
observation that the asymptotic run-time drops when memory is used to
avoid re-contacting neighbors within a small number of rounds.

In this experimental investigation, we confirm that a small amount of
memory indeed reduces the run-time of the protocol even for small network
sizes. We observe that one memory cell per node suffices to reduce the run-
time significantly; more memory helps comparably little. Aside from ex-
tremely sparse graphs, preferential attachment graphs perform faster than
all other graph classes examined. This holds independent of the amount of
memory, but preferential attachment graphs benefit the most from the use
of memory. We also analyze the influence of the network density and the
size of the memory. For the asynchronous version of the rumor spreading
protocol, we observe that the theoretically predicted asymptotic advan-
tage of preferential attachment graphs is smaller than expected. There are
other topologies which benefit even more from asynchrony.

We complement our findings on artificial network models by the corre-
sponding experiments on crawls of popular online social networks, where
again we observe extremely rapid information dissemination and a siz-
able benefit from using memory and asynchrony.

1 Introduction

Randomized rumor spreading is a class of simple randomized distributed algo-
rithms, all building on the paradigm that nodes of a network contact random
neighbors to exchange information. Despite being very simple protocols, they
proved to be very efficient both in theoretical investigations [14, 15, 23, 26–32, 36]
and in practical applications [19, 33].

In a recent work [22], the authors analyzed the performance of the classical
phone call model of Karp et al. [32] on networks following the preferential attach-
ment model suggested by Barabási and Albert [1] to model real-world networks.
The model assumes that new vertices attach to already-present vertices with a
probability proportional to their degree. The problem of rumor spreading on these
networks was first considered by Chierichetti, Lattanzi, and Panconesi [16] who
showed that O(log2 n) rounds suffice with high probability. In [22], an asymptot-
ically tight rumor spreading time of Θ(log n) was proven, which is the same order

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 159–173, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

160 B. Doerr, M. Fouz, and T. Friedrich

of magnitude as for many other network topologies including complete networks,
hypercubes and many classical random graph classes. Surprisingly, this run-time
drops to the again tight order of Θ(log n/ log logn) when the protocol is modified
so that contacting the same neighbor twice in a row is avoided. This observation is
important from the viewpoint of algorithm design, since such a mechanism is very
simple to implement. However, so far such fine-tuning has rarely led to provably
better algorithms.

The aim of this work is to use an experimental investigation in order to (a)
better understand the performance of randomized rumor spreading protocols
on preferential attachment networks; in the long run, this might help in the
design of efficient communication networks; and (b) to better understand the
advantage of equipping nodes with a small amount of memory, which is used
to avoid contacting a constant number of previous contactees; this is interesting
from the viewpoint of algorithm design.

In summary, our main findings are the following. Generally, rumor spreading is
very fast in preferential attachment networks, significantly faster than in random-
attachment networks and hypercubes (which are much denser), and faster than
in complete networks (unless the density is very small). There is a clearly visible
advantage of keeping track of the most-recently-contacted neighbor (using a one-
item memory) in preferential attachment networks, particularly if the density is
small. There is less to be gained from memory on random attachment networks
and almost no gain in complete networks and hypercubes. Additional memory
is of some benefit, but not very much.

For communication in social networks in particular, it makes sense to consider
an asynchronous version of the rumor spreading protocol with nodes acting at
exponentially distributed times (with expectation one). For random graphs with
a given expected degree distribution that follows a power law with exponent in
(2, 3), Fountoulakis et al. [29] showed very recently that the push-pull protocol
becomes much faster in the asynchronous setting. A recent theoretical analy-
sis [23] proves a reduced time of O(

√
logn) in preferential attachment graphs

and argues that random-attachment graphs, complete graphs and hypercubes
keep their Θ(log n) times. Our experiments show that the asynchronous model
is faster on all graph classes, but a clearly greater advantage for preferential
attachment graphs is not visible.

We conducted similar experiments on crawls of the Twitter and Orkut online
social networks. Interestingly, we observe an even faster information dissemina-
tion than in preferential attachment graphs of corresponding size and density.
These experiments also confirm that tracking one neighbor (one-item memory)
cell leads to a significant improvement, whereas using additional memory to
track more neighbors does not produce significant gains.

Rumor Spreading Protocols

When talking about rumor spreading, in this paper we generally refer to the
random phone call model introduced by Karp et al. [32]. This is a push-pull pro-
tocol, meaning that information is exchanged between initiator and recipient of

Experimental Analysis of Rumor Spreading in Social Networks 161

a call in both directions. A push-protocol with only the caller sending informa-
tion to the recipient has also been widely discussed in the literature [27, 30], in
particular, for the application of making replicated databases consistent [19, 33].
As shown in [16], however, the push protocol has very poor performance in pref-
erential attachment networks.

The random phone call model is a synchronized protocol. In each round, each
node of the network calls a random neighbor and both exchange information with
each other. If one of the communication partners was informed at the beginning
of the round, then both will be at the end of the round. An asynchronous analog
of the protocol is discussed in Section 5.

It is interesting to enhance the random phone call model by excluding recently-
contacted neighbors. When allowing a memory of size k, each node v chooses
his next communication partner uniformly at random from all his neighbors
except the previous min{k, deg(v)− 1} contactees. Note that nodes with degree
d(v) ≤ k+1 act as in the quasirandom model of Doerr, Friedrich, and Sauerwald
[20] with randomly chosen lists.

Network Models

We are mainly interested in the preferential attachment (PA) model of Barabási
and Albert [1]. The density of the resulting graph is controlled by a single pa-
rameter m. The model iteratively adds new vertices, which are connected to
m already present vertices with a probability proportional to their degree. See
Bollobás, Riordan, Spencer, and Tusnády [8, 9] for a precise description of this
random graph model. It can be easily seen that for m = 1 the graph is dis-
connected with high probability. We therefore focus on m ≥ 2. Under this as-
sumption, the diameter is Θ(log(n)/ log logn) with high probability [8]. Besides
various other typical properties of social networks[3, 6, 7, 18, 28], it also has
been shown that the degree distribution follows a power law [9].

In addition to the PA model, we shall also include random-attachment net-
works in our investigation. In this network model, also known as the m-out
model [5], each node chooses m other nodes as neighbors uniformly at random;
finally, this neighbor relation is made symmetric and multiple edges are removed.
Consequently, we obtain a random graph with average degree close to 2m and
minimum degree at least m. These graphs form a good point of comparison
with preferential attachment graphs with density parameter m, where nodes
also choose m random neighbors, but according to the preferential attachment
paradigm.

Related Work

For many network topologies, the random phone call model very quickly dis-
tributes a piece of information initially only present at one node to all other
nodes. In addition, due to its randomized nature, this process is highly robust
against transmission failure. Karp et al. [32] show that in complete networks
(any node can talk to any other node), (1+o(1)) log3(n) rounds suffice to spread

162 B. Doerr, M. Fouz, and T. Friedrich

a rumor in the whole network. Similarly, Elsässer [25] proved a bound of Θ(log n)
rounds for Erdős-Rényi random graphs Gn,p with p ≥ polylog(n)/n. For hyper-
cubes, a Θ(logn) bound follows from the O(log n) bound of Feige et al. [27]
for the push protocol together with the trivial lower bound stemming from the
logarithmic diameter of the hypercube.

In a recent paper [22], the authors proved that the random phone call protocol
spreads a rumor to all vertices of a preferential attachment graph in Θ(log n)
rounds as well. This improves over the previous O(log2 n) bound by Chierichetti
et al. [16], but falls short of showing that these graphs, which are often used to
model social networks, support rumor spreading better than classical network
topologies. This is achieved in some sense in [22]. If we slightly alter the protocol
such that a node chooses its communication partner uniformly at random from
all neighbors excluding the one contacted in the previous round, then the rumor
spreading time reduces to O(log n/ log logn), which is a tight bound because it
is the diameter of these graphs [8].

Note that excluding previous contactees has almost no effect on classical net-
work topologies. By checking the proofs of the results cited above, we see that also
when excluding a constant number of previous contactees, the Θ(log n) bound
remains valid for complete graphs, hypercubes and random graphs. The quasi-
random protocol of Doerr et al. [20] is a way of excluding all previous contactees.
It has been investigated only in the pushmodel, where againmany knownΘ(log n)
run time bounds have been verified. An experimental investigation [21] revealed
that the quasirandom protocol is faster than the independent one, minimally for
complete networks, but noticeably for sparser ones like random graphs and hyper-
cubes. Unfortunately, our current results cannot be compared to these, because
the latter are based only on push protocols. Baumann et al. [2] observed that the
behavior of the quasirandom protocol changes significantly if the nodes known
which of their neighbors already received the rumor.

2 Fast Broadcasting in Preferential Attachment Graphs,
Influence of Graph Density

The result of [22] shows that rumor spreading in the random phone call
model with memory size at least one has an asymptotically faster run-time of
Θ(log n/ log logn) in preferential attachment graphs, in contrast to the Θ(log n)
time observed (i) for the no-memory version on preferential attachment graphs
and (ii) regardless of memory on most classical graphs like complete graphs, hy-
percubes, and random attachment graphs. Since in [22] only asymptotic results
were proven, it is not clear if the proven differences are apparent for reasonable
graph sizes. This is the focus of the current section of this paper. We have ex-
amined the average time needed to inform all vertices, starting from a random
vertex, for different graphs.

In Figure 1, we show the broadcast times observed for complete graphs,
hypercubes, and preferential and random attachment graphs with density pa-
rameters m = 2 and m = 10, with one-item memory. We observe that rumor

Experimental Analysis of Rumor Spreading in Social Networks 163

102 103 104 105 106 107
0

5

10

15

20

25

30
ti
m
e
st
ep

s

(a) density parameter m = 2.

102 103 104 105 106 107
0

5

10

15

20

25

30

(b) density parameter m = 10.

Fig. 1. Comparison of synchronous rumor spreading with one-item memory on
preferential attachment graph (), random-attachment graph (), complete
graph (), and hypercube (). The two charts show different density parameters
of the preferential and random-attachment graph. The results for complete graphs and
hypercubes are equivalent in both charts; they are given for comparison. The x-axis
corresponds to the number of vertices n = 25 . . . 223. The y-axis corresponds to the
run-time to inform all vertices, averaged over 10,000 runs.
For m = 10 the preferential attachment graph performs faster than all other graph
classes. For not too large (n ≤ 223) and very sparse case (m = 2) considered, the
complete graph is even faster than the preferential attachment graph.

spreading is quite fast in preferential attachment graphs (), faster than in
hypercubes () and random-attachment graphs () for both density pa-
rameters m = 2 and m = 10, and even faster than in complete graphs ()
for m = 10. Hence only the very sparse preferential attachment graphs with
m = 2 are outperformed by complete graphs for n ≤ 107. As for n ≥ 104 the two
last-mentioned charts constantly get closer, we expect that for sufficiently large
graphs, information spreading is also faster on sparse preferential attachment
graphs than on complete graphs.

We also observed structurally different behavior of the information spreading
process on the different graphs. To be precise, let us consider graphs with n = 106

vertices andm = 2, averaged over 10,000 runs. Then on average 57% of the nodes
of a random attachment graph are informed with a pull operation (and 43% via
push). On the other hand, in preferential attachment graphs 73% of the nodes
are informed by a pull operation. Moreover, on average such a pull operation
transfers the rumor from a high degree node (with degree 66 on average) to a
node with low degree (with degree 3 on average). This matches the structure
used in the proofs of [16, 22, 29].

The path by which a piece of information is spread in a preferential attachment
graph seems to differ from the typical paths in a random attachment graph. We
measured the number of hops a piece of information needed to inform a node
and compared this to its graph distance. In general, it is preferable to have a
good correlation between the two measures [34]. The graph distance from the
source gives a lower bound for the number of hops needed to inform a node. We

164 B. Doerr, M. Fouz, and T. Friedrich

call the difference between the number of hops needed and the graph distance
the delay. If the delay is small, the information is spread on nearly-shortest
paths. On random attachment graphs we observed that vertices which are less
than six steps away from the source have a delay of less than one on average.
On preferential attachment graphs, nodes with distance between two and six
from the source have on average a delay of four. This shows that on preferential
attachment graphs the information is not spread via shortest paths, but via
detours. This again has been used in the theoretical analyses of [16, 22, 29].

3 The Effect of Short-Term Memory

Perhaps the most surprising finding of [22] is that keeping track of a certain small
number of recently-contacted neighbors, and avoiding selecting any of these when
randomly choosing the next communication partner, significantly reduces the time
needed to inform all nodes of preferential attachment networks. More precisely, it
was shown that for the classical random phone call model, this time is Θ(log n).
If the communication partners are chosen uniformly at random from all neighbors
except the one called in the previous round (one-item memory), then this time
decreases to Θ(log n/ log logn). Using additional memory to track more than one
recent contactee, however, does not yield times better than Θ(log n/ log logn).

In this section, we experimentally investigate this phenomenon. Figure 2 shows
the average time needed to inform all nodes. We first discuss the results on
preferential attachment graphs with m = 2 shown in Figure 2 (a). As expected,
we observe a significant improvement between no exclusion (marked with)
and exclusion of one neighbor (marked with –). In fact, for all graph sizes, one-
item memory leads to nodes becoming informed between 14% and 21% faster
than no memory. Observing the curves for different graph sizes also suggests
that we have a Θ(log n) broadcast time in the no-memory case and an o(log n)
time with memory of any non-zero size. We do observe additional but very small
improvements if we increase the memory to a size larger than the run-time, that
is, when avoiding all previous contactees (marked with). For the graph sizes
considered, the improvement of unbounded memory compared to memory of only
one item is around 2%. The advantage of memory for preferential attachment
graphs gets smaller for larger m, as shown in Figure 2 (c).

The results on random-attachment graphs are similar, just generally slower.
Figure 2 (b) shows that the difference for m = 2 between no memory and one-
item memory is between 10% and 13%, while the additional improvement of
unbounded memory is again around 2%. Theoretical consideration suggests that
these gains can be at most by constant factors1, and our experiments show that
this can be at most a small constant.
1 It is known that these graphs have a diameter of Θ(log n), so this is a natural lower
bound. On the other hand, with high probability each pair of vertices is connected by
a path such that the sum of the degrees of the vertices on the path is at mostO(log n).
Consequently, with probability 1 − o(n−1), O(log n) rounds suffice to transmit a
rumor along such a path. This yields an upper bound of O(log n) for the broadcast
time on random attachment graphs.

Experimental Analysis of Rumor Spreading in Social Networks 165

Fig. 2. Comparison of synchronous rumor spreading without memory (marked with),
one-item memory (marked with –), and unbounded memory (marked with) on dif-
ferent graphs. The x-axis corresponds to the number of vertices n = 25 . . . 223. The
y-axis corresponds to the run-time to inform all vertices, averaged over 10,000 runs.
The benefit of remembering more than one neighbor is very limited for all graphs. The
benefit of one-item memory compared to no memory is the largest for the sparse pref-
erential and random-attachment graphs. The complete graph and hypercube benefit
very little from additional memory.

102 103 104 105 106 107
0

5

10

15

20

25

30

ti
m

e
st

ep
s

(a) pref. attachment (m = 2)

102 103 104 105 106 107
0

5

10

15

20

25

30

(b) random-attachment (m = 2)

102 103 104 105 106 107
0

5

10

15

20

25

30

ti
m

e
st

ep
s

(c) pref. attachment (m = 10)

102 103 104 105 106 107
0

5

10

15

20

25

30

(d) random-attachment (m = 10)

102 103 104 105 106 107
0

5

10

15

20

25

30

ti
m

e
st

ep
s

(e) complete graph

102 103 104 105 106 107
0

5

10

15

20

25

30

(f) hypercube

166 B. Doerr, M. Fouz, and T. Friedrich

Table 1. Comparison of the average time needed to inform a certain fraction of the
vertices on the Orkut network depending on the amount of memory. For each combi-
nation, the average and standard deviation of 100,000 runs is given. With regard to
the time needed to inform all vertices, we observe a large difference between excluding
none and excluding the one most recently contacted. If only a 90% or 99% fraction
should be informed, the gap is significantly smaller.

90% informed 99% informed 100% informed

memory=0 15.74±0.99 16.87±1.00 23.13±2.28

memory=1 15.51±0.98 16.60±1.00 20.97±1.59
memory=2 15.47±0.98 16.55±0.99 20.31±1.30

memory=3 15.45±0.98 16.54±0.99 20.18±1.22

memory=25 15.45±0.97 16.54±0.99 20.11±1.13

In contrast, for other network topologies we see little advantage from using
memory. For complete graphs, we observe in Figure 2 (e) barely any advan-
tage even with unbounded memory. The difference between no memory and
unbounded memory is less than 1% for complete graphs of all sizes. Because of
the large vertex degrees, little benefit was expected; however, this is a notable
difference from the results of using a pure push protocol without pull. Here, [21]
observed at least a small advantage for the quasirandom protocol, which, when
used with random lists, is equivalent to random choices with excluded previous
contactees. The results of Figure 2 (f) for hypercubes show a similarly small im-
pact of memory. For graphs with more than a few thousand nodes, the difference
between no memory and unbounded memory is smaller than 2%.

The benefit of a small amount of memory can also be observed on real-world
graphs. We examined the time needed to spread a rumor on a crawl of the
Orkut network (for details on the network see Section 4). Table 1 shows a large
difference between no memory and one-item memory for the time needed to
inform all vertices. It is clearly visible that (a) more memory is of very little
benefit and (b) this difference vanishes when considering the time needed to
inform only a fraction of the vertices.

In summary, we also observe in experiments that a small amount of memory
helps a lot for preferential and random attachment graphs, but much less for
classical network topologies like complete graphs and hypercubes.

4 Real-World Social Networks

Most previous statistics were based on mathematically-defined graph models. To
support our claim that news spreads very fast on social networks in general, we
have also simulated the rumor spreading process on crawls of the Twitter and
Orkut social networks.

Twitter is a social networking site which allows users to send and read short
messages (so-called “tweets”) of up to 140 characters. It is currently one of the

Experimental Analysis of Rumor Spreading in Social Networks 167

0 5 10 15

101

103

105

107

time steps

av
er
a
g
e
n
u
m
b
er

o
f
in
fo
rm

ed
n
o
d
es

(a) Orkut network

0 5 10 15 20

101

103

105

107

time steps

(b) Twitter network

Fig. 3. Comparison of synchronous rumor spreading with one-item memory on two
real networks () with preferential attachment graph (), random-attachment
graph (), and complete graph () of same size and density (where applicable).
The Orkut network in (a) has n = 3, 072, 441 vertices and density parameter m = 38,
the Twitter network in (b) has n = 51, 217, 936 vertices and density parameter m = 32.
The Orkut network behaves very similarly to the corresponding preferential attachment
graph. The Twitter network is even faster than the corresponding preferential attach-
ment graph. The complete and random-attachment graphs are significantly slower.

top ten most visited sites on the Web2. We performed our experiments on a snap-
shot of the Twitter network that was crawled in September 2009 by Cha, Had-
dadi, Benevenuto, and Gummadi [13], available from [4]. It consists of 51,217,936
nodes and 1,963,263,821 directed edges. By making all edges undirected and con-
sidering the largest connected component, we obtained a connected graph with
51,161,011 nodes and 1,613,927,450 undirected edges. The preprocessing step
of making all edges undirected might change the network structure, but the
resulting network is still a typical social power law network.

Orkut is a social networking site operated by Google Inc. It is one of the top ten
most visited websites in India and Brazil2. We used the data crawled in October
and November 2006 by Mislove, Marcon, Gummadi, Druschel, and Bhattacharjee
[35], which can be downloaded from [4]. The crawled graph contains 3,072,441
nodes and 117,185,083 edges. The edges are undirected, since Orkut requires
consent from both users before a link between the two is created. At the time of
the crawl, new users had to be invited by an existing user; therefore, the graph
consists of a single component. The data covers roughly 11% of the total user
population. The technical reason for this is that Orkut limits the rate at which
a single IP address can download information. As a result, it took more than a
month to crawl even this currently available part of the graph.

We chose these online social networks because of the available network data
and because we feel that their structure might be similar to that of other
real-world social networks. We are aware of the fact that interactions in Twitter

2 See “Top 500 Sites on the web” at www.alexa.com.

www.alexa.com

168 B. Doerr, M. Fouz, and T. Friedrich

and Orkut are more complex than in our simple randomized rumor spreading
model.

We ran the protocol with one-item memory on these real-world graphs and,
for comparison, on preferential attachment, random-attachment and complete
graphs with size and density as close as possible to the corresponding values of
the real-world graph, that is, m = 32 for Twitter network and m = 38 for the
Orkut network. The numbers shown in Figure 3 are averages of 500 runs3 for
the Twitter network and 100,000 runs for the Orkut network.

Figure 3 shows that news spreads much faster in the real-world networks ()
and the preferential attachment graphs () than in the complete () and
random-attachment graphs (). Interestingly, rumor spreading in the Orkut
network and the comparable preferential attachment graph proceeds very simi-
larly, whereas the Twitter network leads to much faster rumor propagation.

5 Asynchronous Rumor Spreading

So far, we have considered only the synchronized model where all nodes take
action simultaneously at discrete time steps. Depending on the circumstances,
this assumption may not be plausible. In fact, the assumption of a common
centralized time clock contradicts the idea of a distributed self-organized broad-
casting protocol [10, 21]. Boyd et al. [10] proposed an asynchronous time model
with a continuous time line. There, each node has its own clock that ticks at the
increments of a rate 1 Poisson process independent from all other clocks, which
implies that the time between two ticks is exponentially distributed with pa-
rameter 1. In the asynchronous rumor spreading protocol, every node contacts a
neighbor whenever its own clock ticks, and both exchange their information. Un-
til last year, rumor spreading in the asynchronous model has received much less
attention. Very recently, the authors have studied asynchronous rumor spread-
ing theoretically on preferential attachment graphs [23], while Fountoulakis et al.
[29] studied it on Chung-Lu random graphs [17] with a given expected degree
distribution. Note that Chung-Lu graphs are quite different from preferential
attachment graphs, e.g., their average diameter is Θ(log logn) [17], whereas it is
Θ(log n/ log logn) [24] for preferential attachment graphs.

It is not surprising that asynchronous rumor spreading can be slow to inform
all vertices. Note that it takes Θ(log n) time until every node has performed at
least one action. For this reason, in Figure 4 we consider times needed to inform
99% of the nodes. Note, however, that the times needed to inform 100% were
also lower for the asynchronous model compared to the synchronous one. The
charts clearly show a substantial speedup. Interestingly, for n = 223, the speedup
for preferential () and random-attachment graphs () is slightly smaller

3 The reason for the relatively small number of runs is that the Twitter network has
more than one billion edges and we needed more than 50 GB of main memory to
process it. A single simulation of the process required a run-time of several hours on a
Hewlett Packard DL980 G7 server with eight eight-core Intel Xeon X7560 processors
and 2048 GB of main memory.

Experimental Analysis of Rumor Spreading in Social Networks 169

Fig. 4. Comparison of the average number of time steps needed to inform 99% of the
vertices with synchronous (marked with) and asynchronous (marked with) rumor
spreading without memory on different graphs. The x-axis corresponds to the number
of vertices n = 25 . . . 223. The y-axis corresponds to the run-time to inform 99% of the
vertices, averaged over 10,000 runs.
The asynchronous protocol spreads information faster than the synchronous protocol
on all graphs. The difference is of the same order of magnitude for all graphs.

102 103 104 105 106 107
0

5

10

15

20

25

30

ti
m

e
st

ep
s

(a) pref. attachment (m = 2)

102 103 104 105 106 107
0

5

10

15

20

25

30

(b) random-attachment (m = 2)

102 103 104 105 106 107
0

5

10

15

20

25

30

ti
m

e
st

ep
s

(c) pref. attachment (m = 10)

102 103 104 105 106 107
0

5

10

15

20

25

30

(d) random-attachment (m = 10)

102 103 104 105 106 107
0

5

10

15

20

25

30

ti
m

e
st

ep
s

(e) complete graph

102 103 104 105 106 107
0

5

10

15

20

25

30

(f) hypercube

170 B. Doerr, M. Fouz, and T. Friedrich

(a) Orkut network (b) Twitter network

Fig. 5. Comparison of synchronous () and asynchronous () rumor spreading
without memory on two real social networks. The x-axis corresponds to the time steps
(in the synchronous setting) or the time (in the asynchronous setting). The y-axis
corresponds to the number of informed vertices after this time, averaged over 1000
runs for the Orkut network and 50 runs for the Twitter network.
In both cases, the asynchronous counterparts spread the rumor significantly faster than
the synchronous models.

(48-50% for m = 2 and 58-59% for m = 10) than for complete graphs () and
hypercubes (), which are 59% and 82%, respectively.

These empirical observations for moderately sized graphs are surprising given
the theoretical findings on the expected asymptotic behavior. For the prefer-
ential graph, it has been shown that the time to inform n − o(n) vertices
without memory decreases from Θ(log n) for the synchronous model without
memory to O(

√
logn) for the corresponding asynchronous model [23]. On the

other hand, it has been argued that random-attachment graphs, complete graphs
and hypercubes keep their Θ(log n) times, while our experiments show that the
asynchronous model is faster on all graph classes. An asymptotic advantage for
preferential attachment graphs is not apparent. We expect that the theoretically
proven asymptotic behavior can be observed only for very large graphs. For the
real-world social networks Orkut and Twitter, Figure 5 shows that, especially at
the beginning, the asynchronous protocol () performs much faster than its
synchronous counterpart (). (For a comparison between the logarithmically
scaled y-axis of Figure 5 (a) and the second row of Table 1, note that after 15
time steps the synchronous protocol only informed 84% of the nodes and the
asynchronous protocol informed 99.99%.) This matches well with the theoretical
finding that asynchrony speeds up rumor spreading on different models of social
networks [23, 29].

0 5 10 15

101

103

105

107

time steps

av
er

ag
e

nu
m

be
r

of
in

fo
rm

ed
no

de
s

0 5 10 15 20

101

103

105

107

time steps

Experimental Analysis of Rumor Spreading in Social Networks 171

6 Discussion

We have empirically studied several classical rumor spreading protocols on dif-
ferent artificial and real-world networks. As theoretically predicted, we observed
that in preferential attachment networks rumors spread significantly faster than
in all other examined network models. This confirms that the structure of social
networks apparently allows spreading news very efficiently. This is remarkable
as social networks evolve in a random and decentralized manner and are not
designed with this purpose in mind.

The experiments also gave a much more detailed picture than possible purely
theoretically. It has been demonstrated that in order to design a fast rumor-
propagation algorithm on social networks, modeled by preferential attachment
graphs, one needs small memory that helps to decide which node to contact
next. This again seems to be specific to such networks as memory helps other
network topologies much less. We also observed that a surprisingly small amount
of memory is sufficient.

While theoretical results for models of social networks predicted a large speed-
up when allowing asynchronous communication, we observed that other network
topologies can benefit even more. The difference between synchronous and asyn-
chronous propagation is very apparent for the two real-world networks Orkut and
Twitter. We also observed that the speed of information spreading is very similar
in the Orkut network and a preferential attachment graph of comparable density.
Future work should include other rumor spreading protocols (e.g. [2, 11, 12]),
more artificial graphs (e.g. [17]), and preferably even larger real-world networks
like Facebook, which has close to one billion nodes.

References

[1] Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

[2] Baumann, H., Fraigniaud, P., Harutyunyan, H.A., de Verclos, R.: The Worst Case
Behavior of Randomized Gossip. In: Agrawal, M., Cooper, S.B., Li, A. (eds.)
TAMC 2012. LNCS, vol. 7287, pp. 330–345. Springer, Heidelberg (2012)

[3] Berger, N., Borgs, C., Chayes, J.T., Saberi, A.: On the spread of viruses on the
Internet. In: 16th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
301–310 (2005)

[4] Bhattacharjee, B., Druschel, P., Gummadi, K., et al.: Online social
networks research at the Max Planck Institute for Software Systems,
http://socialnetworks.mpi-sws.org

[5] Bohman, T., Frieze, A.M.: Hamilton cycles in 3-out. Random Structures & Algo-
rithms 35, 393–417 (2009)

[6] Bollobás, B., Riordan, O.: Robustness and vulnerability of scale-free random
graphs. Internet Mathematics 1, 1–35 (2003)

[7] Bollobás, B., Riordan, O.: Coupling scale-free and classical random graphs. Inter-
net Mathematics 1, 215–225 (2003b)

http://socialnetworks.mpi-sws.org

172 B. Doerr, M. Fouz, and T. Friedrich

[8] Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combina-
torica 24, 5–34 (2004)

[9] Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a
scale-free random graph process. Random Structures & Algorithms 18, 279–290
(2001)

[10] Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms.
IEEE Transactions on Information Theory 52, 2508–2530 (2006)

[11] Censor-Hillel, K., Shachnai, H.: Fast information spreading in graphs with large
weak conductance. In: 22nd ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 440–448 (2011)

[12] Censor-Hillel, K., Haeupler, B., Kelner, J.A., Maymounkov, P.: Global computa-
tion in a poorly connected world: Fast rumor spreading with no dependence on
conductance. In: 44th ACM Symposium on Theory of Computing (STOC), pp.
961–970 (2012)

[13] Cha, M., Haddadi, H., Benevenuto, F., Gummadi, P.K.: Measuring user influence
in Twitter: The million follower fallacy. In: 4th International AAAI Conference on
Weblogs and Social Media, ICWSM (2010)

[14] Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumour spreading and graph con-
ductance. In: 21st ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
1657–1663 (2010)

[15] Chierichetti, F., Lattanzi, S., Panconesi, A.: Almost tight bounds for rumour
spreading with conductance. In: 42nd ACM Symposium on Theory of Computing
(STOC), pp. 399–408 (2010)

[16] Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumor spreading in social networks.
Theoretical Computer Science 412, 2602–2610 (2011)

[17] Chung, F.R.K., Lu, L.: The average distance in a random graph with given ex-
pected degrees. Internet Mathematics 1, 91–113 (2003)

[18] Cooper, C., Frieze, A.M.: The cover time of the preferential attachment graph.
Journal of Combinatorial Theory, Series B 97, 269–290 (2007)

[19] Demers, A.J., Greene, D.H., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis,
H.E., Swinehart, D.C., Terry, D.B.: Epidemic algorithms for replicated database
maintenance. Operating Systems Review 22, 8–32 (1988)

[20] Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading. In: 19th
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 773–781 (2008)

[21] Doerr, B., Friedrich, T., Künnemann, M., Sauerwald, T.: Quasirandom rumor
spreading: An experimental analysis. In: 10th Workshop on Algorithm Engineering
and Experiments (ALENEX), pp. 145–153 (2009)

[22] Doerr, B., Fouz, M., Friedrich, T.: Social networks spread rumors in sublogarithmic
time. In: 43rd ACM Symposium on Theory of Computing (STOC), pp. 21–30
(2011)

[23] Doerr, B., Fouz, M., Friedrich, T.: Asynchronous Rumor Spreading in Preferen-
tial Attachment Graphs. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS,
vol. 7357, pp. 307–315. Springer, Heidelberg (2012)

[24] Dommers, S., van der Hofstad, R., Hooghiemstray, G.: Diameters in preferential
attachment models. J. of Statistical Physics 139, 72–107 (2010)

[25] Elsässer, R.: On the communication complexity of randomized broadcasting in
random-like graphs. In: 18th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA), pp. 148–157 (2006)

[26] Elsässer, R., Sauerwald, T.: On the power of memory in randomized broadcasting.
In: 19th ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 218–227
(2008)

Experimental Analysis of Rumor Spreading in Social Networks 173

[27] Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks.
Rand. Struct. & Algo. 1, 447–460 (1990)

[28] Flaxman, A.D., Frieze, A.M., Vera, J.: Adversarial deletion in a scale-free random
graph process. Comb., Probab. & Comput. 16, 261–270 (2007)

[29] Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor spreading in
social networks. In: 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA),
pp. 1642–1660 (2012)

[30] Frieze, A.M., Grimmett, G.R.: The shortest-path problem for graphs with random
arc-lengths. Discrete Applied Mathematics 10, 57–77 (1985)

[31] Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conduc-
tance. In: 28th International Symposium on Theoretical Aspects of Computer
Science (STACS), pp. 57–68 (2011)

[32] Karp, R., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spread-
ing. In: 41st IEEE Symposium on Foundations of Computer Science (FOCS), pp.
565–574 (2000)

[33] Kempe, D., Dobra, A., Gehrke, J.: Gossip-based computation of aggregate infor-
mation. In: 44th IEEE Symposium on Foundations of Computer Science (FOCS),
pp. 482–491 (2003)

[34] Kempe, D., Kleinberg, J.M., Demers, A.J.: Spatial gossip and resource location
protocols. J. ACM 51(6), 943–967 (2004)

[35] Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Mea-
surement and analysis of online social networks. In: 7th ACM SIGCOMM Con-
ference on Internet Measurement (IMC), pp. 29–42 (2007)

[36] Pittel, B.: On spreading a rumor. SIAM Journal on Applied Mathematics 47,
213–223 (1987)

A Randomised Approximation Algorithm

for the Partial Vertex Cover Problem
in Hypergraphs

Mourad El Ouali1, Helena Fohlin2, and Anand Srivastav1

1 Department of Computer Science, University of Kiel. Germany
{meo,asr}@informatik.uni-kiel.de

2 Department of Clinical and Experimental Medicine, Linköping University, Sweden
Helena.Fohlin@lio.se

Abstract. In this paper we present an approximation algorithm for
the k-partial vertex cover problem in hypergraphs. Let H = (V, E) be
a hypergraph with set of vertices V, |V | = n and set of (hyper-)edges
|E|, |E| = m. The k-partial vertex cover problem in hypergraphs is the
problem of finding a minimum cardinality subset of vertices in which at
least k hyperedges are incident. It is a generalisation of the fundamental
(partial) vertex cover problem in graphs and the hitting set problem in
hypergraphs. Let l, l ≥ 2 be the maximum size of an edge, Δ be the
maximum vertex degree and D be maximum edge degree. For a con-
stant l, l ≥ 2 a non-approximabilty result is known: an approximation
ratio better than l cannot be achieved in polynomial-time under the
unique games conjecture (Khot and Rageev 2003, 2008). On the other
hand, with the primal-dual method (Gandhi, Khuller, Srinivasan 2001)
and the local-ratio method (Bar-Yehuda 2001), the l-approximation ratio
can be proved. Thus approximations below the l-ratio for large classes
of hypergraphs, for example those with constant D or Δ are interest-
ing. In case of graphs (l = 2) such results are known. In this paper we
break the l-approximation barrier for hypergraph classes with constant
D resp. Δ for the partial vertex cover problem in hypergraphs. We pro-
pose a randomised algorithm of hybrid type which combines LP-based
randomised rounding and greedy repairing. For hypergraphs with arbi-
trary l, l ≥ 3, and constant D the algorithm achieves an approximation
ratio of l(1−Ω(1/(D+1))), and this can be improved to l(1−Ω(1/Δ)) if
Δ is constant and k ≥ m/4. For the class of l-uniform hypergraphs with
both l and Δ being constants and l ≤ 4Δ, we get a further improvement
to a ratio of l

(
1− l−1

4Δ

)
. The analysis relies on concentration inequalities

and combinatorial arguments.

Keywords: Combinatorial optimization, approximation algorithms, hy-
pergarphs, vertex cover, probabilistic methods.

1 Introduction

A hypergraph H = (V, E) consists of a set V , say |V | = n, and a set E of
subsets of V , |E| = m. We call the elements of V vertices and the elements of E

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 174–187, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Randomised Approximation Algorithm 175

(hyper-)edges. The k-partial vertex cover in hypergraphs can be stated as follows.
A set X ⊆ V is called a k-partial vertex cover for H if at least k edges of H are
incident in X . The (unweighted) k-partial vertex cover problem for hypergraphs
is to find a k-vertex cover of minimum cardinality. If k is equal to the number
of hyperedges, we have the well-known hitting set problem (or vertex cover
problem) in hypergraphs. For graphs it is the classical vertex cover problem in
combinatorial optimization, whose approximation complexity has been studied
for nearly 4 decades.

Among the motivations to study hypergraphs are not only the natural ques-
tion of generalising graph theory to hypergraphs (C. Berge [4]), but also relevant
applications in areas where hypergraphs are most natural, e.g. data structures
in computational geometry like ε-nets [20], which are a kind of hitting sets, or
discrepancy theory [19].

Previous Works. Consider a minimisation problem. For ρ ≥ 1 we say that a
(polynomial-time) algorithm achieves an ρ-approximation or an approximation
ratio of ρ, if it computes for all instances a solution of value at most ρOpt, where
Opt is the value of an optimal solution to the problem.

For the k-partial vertex cover problem in graphs, it has been an open question
for which graphs the 2-approximation can be improved. For graphs with maxi-
mum vertex degree at mostΔ, Gandhi, Khuller and Srinivasan [10] gave the first
algorithm with approximation ratio smaller than 2. Improvements have been ob-
tained by Halperin and Srinivasan [12]. For hypergraphs, the hitting set and the
set cover problem have been investgated intensively in the context of polynomial
time approximations [5, 6, 11, 13, 16, 17] and complexity of non-approximability
[1, 7, 18, 23]. For the hitting set problem in l-uniform hypergraphs with constant
l, an approximation with a ratio better than l cannot be achieved in polyno-
mial time under the unique games conjecture (UGC) [15]. Since the hitting set
problem in hypergraphs is a special case of the k-vertex cover problem in hyper-
graphs with k = m, this hardness of approximation holds also for the k-vertex
cover problem in hypergraphs. On the other hand, for the k-partial vertex cover
problem in hypergraphs with edge size at most l (l not necessarily constant),
Bar-Yehuda [3] gave an algorithm based on the local-ratio method with approx-
imation guarantee is l. Later Gandhi, Khuller and Srinivasan [10] achieved the
same ratio, using a primal/dual approach. Thus polynomial-time approximations
below the l-ratio for significant classes of hypergraphs are complexity-theoretic
and algorithmically interesting and would extend the approximation theory for
the k-partial vertex cover problem from graphs to hypergraphs.

Our Contribution. In this paper we present a randomised algorithm for the
partial vertex cover problem in hypergraphs which achieves approximation ra-
tios below l for hypergraphs with constant D or constant Δ. First we consider
hypergraphs with edge size at most l, l ≥ 3, not necessarily constant: in case
that the maximum edge degree is at most a constant D an approximation ra-
tio of l(1 − Ω(1/(D + 1))) can be proved. In case that the vertex degree is at
most a constant Δ, we can show an improved ratio of l(1 − Ω(1/Δ)), provided
that k ≥ m/4. As we are interested in hypergraphs, and graphs have already

176 M. El Ouali, H. Fohlin, and A. Srivastav

been considered in previous work, the (technical) restriction l ≥ 3 is of less con-
cern. However, we believe that an optimization of constants in this paper may
cover graphs as well. Finally, with a different analysis we show for l-uniform
hypergraphs , l ≥ 2, with constant Δ, l and l ≤ 4Δ, the further improved ap-
proximation ratio of l

(
1− l−1

4Δ

)
. As Δ can be assumed to be at least 2, the result

automatically covers all l-uniform hypergraphs with 2 ≤ l ≤ 8 and constant Δ.

Outline of the Paper. The paper is organised as follows: In Section 2 we
give definitions and probabilistic tools. In Section 3 we present our randomised
algorithm for the k-partial vertex cover for hypergraphs and state estimations
of expectations and variance. In Section 4 resp. 5 we analyse the approximation
ratio for hypergraphs with constant D resp. Δ. In Section 6 we analyse the
algorithm for l-uniform hypergraphs where l and Δ are constants.

2 Preliminaries and Definitions

Graph-theoretical Notions. Let H = (V, E) be a hypergraph, with V and E its set
of vertices and edges. For v ∈ V we define d(v) = |{E ∈ E ; v ∈ E}| and Δ =
maxv∈V {d(v)}. Here d(v) is the vertex-degree of v and Δ is the maximum vertex
degree of H. For a edge E ∈ E , let deg(E) be the (edge-) degree of E and D
the maximum edge degree of H, i. e. deg(E) = |{F ∈ E ;E ∩ F �= Ø}| and
D = maxE∈E deg(E). Further for a set X ⊆ V we denote by Γ (X) := {E ∈
E ; X ∩ E �= ∅} the set of edges incident to the set X . Let l ∈ N be given
constant, we call H l-uniform resp. l-bounded , if |E| = l resp. |E| ≤ l for all
E ∈ E . It is convenient to order the vertices and hyperedges, V = {v1, . . . , vn}
and E = {E1, . . . , Em}, and to identify vertices and edges with their indices.

Concentration Inequalities. For the one-sided deviation the following Chebychev-
Cantelli inequality will be frequently used:

Theorem 1 ([2]). Let X be a non-negative random variable with finite mean
E(X) and variance Var(X). Then for any a > 0 we have

Pr(X ≥ E(X) + a) ≤ Var(X)

Var(X) + a2
·

A further useful concentration result is the independent bounded differences
inequality theorem:

Theorem 2 (see [21]). Let X = (X1, X2, ..., Xn) be a family of independent
random variables with Xk taking values in a set Ak for each k. Suppose that
the real-valued function f defined on Πn

k=1Ak satisfies |f(x)− f(x′)| ≤ ck if the
vector x and x′ differ only in the k-th coordinate. Let E(X) be the expected value
of the random variable f(X). Then for any t > 0 it holds

Pr(f(X) ≤ E(f(X))− t) ≤ exp

(
−2t2∑n
k=1 c

2
k

)
.

The following estimate on the variance of a sum of dependent random variables
can be proved as in Alon, Spencer.

A Randomised Approximation Algorithm 177

Lemma 1 (see [2]). Let X be the sum of finitely many 0/1 random variables,
i.e. X =

∑n
i=1 Xi, and let pi = E(Xi) for all i = 1, . . . , n. For a pair i, j ∈

{1, . . . , n} we write i ∼ j, if Xi and Xj are dependent. Let Γ be the set of all
unordered dependent pairs i, j and γ =

∑
{i,j}∈Γ E(XiXj), then it holds

Var(X) ≤ E(X) + 2γ.

3 Randomised Algorithm for Partial k-Vertex Cover

The input is a l-bounded hypergraph H, l ≥ 2. At the moment we do not
assume D or Δ to be constants. An integer linear programming formulation of
the k-partial vertex cover in H is the following:

(ILP−k−VC) min

n∑
j=1

xj

n∑
j=1

xj ≥ zi for all i ∈ [m] := {1, . . . ,m}

m∑
i=1

zi ≥ k

xj , zi ∈ {0, 1} for all i ∈ [m], j ∈ [n].

Its linear programming relaxation, denoted by LP-k-VC, is given by relaxing the
integrality constraints to Xj , Zi ∈ [0, 1] ∀i ∈ [m], j ∈ [n]. Let Opt resp. Opt∗ be
the value of optimal solution to ILP-k-VC resp. LP-k-VC. Let x∗ and z∗ be an
optimal solution of LP-k-VC. Let ε ∈ [0, 1], we set λ := l(1− ε), S1 := {j ∈ [n] |
x∗
j = 1}, S≥ := {j ∈ [n] | 1 �= x∗

j ≥ 1
λ} and S≤ := {j ∈ [n] | 0 �= x∗

j < 1
λ}.

Algorithm 1. VC-H
Input : A hypergraph H = (V, E) and an integer k
Output: A partial vertex cover C
1. Initialise C := ∅.
2. Solve the LP relaxation of ILP-k-VC
3. Take all vertices of S1 and S≥ into the cover C. Set V := V \ S1 and
E := E \ Γ (S1).

4. (Randomised Rounding) For all vertices j ∈ S≤ include the vertex j in the cover
C, independently for all such j with probability x∗

jλ.
5. (Repairing) Repair the cover C (if necessary) as follows:

a) If |{E ∈ E | E ∩ C 	= ∅}| ≥ k, then return C.
b) If |{E ∈ E | E ∩ C 	= ∅}| < k, then pick at most k − |C| additional vertices

from arbitrary not covered edges in the cover.
6. Return the cover C.

178 M. El Ouali, H. Fohlin, and A. Srivastav

The algorithm VC-H extends the randomised algorithm of Gandhi, Khuller
and Srinivasan [10] from graphs to hypergraphs. While the extension is quite
natural, the analysis needs efforts beyond [10], for example variance computa-
tion for dependent sums of random variables, stronger concentration inequalities
adapted to situations for bounded edge resp. vertex degree (section 4 and 5) or
a novel approach for the estimation of the expectation of the objective function
including the greedy repairing step (section 6).

Computation of Expection and Variance
Let X1, ..., Xn be {0, 1}-random variables defined as follows:

Xj =

{
1 if the vertex vj was picked into the cover after the rounding step

0 otherwise.

Note that the X1, ..., Xn are independent. For all i ∈ [m] we define the {0, 1}-
random variables Zi as follows

Zi =

{
1 if the the hyperedgeEi is covered after the rounding step

0 otherwise.

Then Y :=
∑n

j=1 Xj is the cardinality of the cover after the randomised rounding

step in the algorithm and W =
∑m

j=1 Zj is the number of covered hyperedges
after this step.

For the expected size of the cover we have the following upper bound:

E(|C|) ≤ E(Y) + E(max{k −W, 0}) (1)

For the computation of the expectation of W we need the following lemma that
gives the exact solution of a constrained optimization problem (See Lemma 2.2
[22]).

Lemma 2. For all n ∈ N, λ > 0 and x1, · · · , xn, z ∈ [0, 1] with
∑n

i=1 xi ≥ z
and λxi < 1 for all i ∈ N, we have

∏n
i=1(1 − λxi) ≤ (1 − λ z

n)
n, and this bound

is the tight maximum.

For the analysis of the algorithm we need also the following lemma

Lemma 3. Let D and Δ be as above, not assumed to be constants and let ε > 0.

(i) (1− (1 − ε)x)2 ≤ 1− x(1 − ε2) For all x ∈ [0, 1].

(ii) E(W) ≥ (1− ε2)k.

(iii) Var(W) ≤ (D + 1)E(W).

(iv) Opt∗ ≤ E(Y) ≤ λOpt∗.
(v) Opt∗ ≥ k

Δ ≥ k
D+1 .

(vi) Let H = (V, E) be a uniform hypergraph with edge size l. Then∑
v∈V

d(v) = l|E|

A Randomised Approximation Algorithm 179

Proof. (i). By straightforward calculations.

(ii)Let i ∈ [m] and |Ei| = r. If there is a j ∈ Ei with λxj ≥ 1 then Pr(Zi = 0) =
0, else we have

P (Zi = 0) =
∏
j∈Ei

(1− λx∗
j) ≤

Lem 2

(
1− λzi

r

)r
≤
(
1− λz∗i

l

)r
≤ (1− (1− ε)z∗i)

2 ≤
Lem 3 (i)

1− z∗i (1 − ε2)

and we get

E(W) =
m∑
i=1

Pr(Zi = 1) =
m∑
i=1

(1 − Pr(Zi = 0))

≥
m∑
i=1

(1− (1− z∗i (1− ε2)) = (1− ε2)

m∑
i=1

z∗i︸ ︷︷ ︸
≥k

≥ (1 − ε2)k.

(iii) Let Γ and γ like in Lemma 1. Furthermore for every Ei, Ej ∈ E , Zi, Zj

are dependent iff the hyperedges Ei and Ej have non-empty intersection. Thus,
for a fixed Ei, there are at the most D random variables Zj depending on Zi.
Furthermore it holds for every Ei, Ej ∈ E :

E(ZiZj) = Pr(Zi = 1 ∧ Zj = 1) ≤ min{Pr(Zi = 1),Pr(Zj = 1)} ≤ Pr(Zi=1)+Pr(Zj=1)

2
.

Moreover

γ =
∑

{Ei,Ej}∈Γ

E(ZiZj) ≤
∑

{Ei,Ej}∈Γ

Pr(Zi = 1) + Pr(Zj = 1)

2

≤
m∑
i=1

D

2
Pr(Zi = 1) =

D

2

m∑
i=1

Pr(Zi = 1) =
D

2
E(W)

so with Lemma 1 Var(W) ≤ E(W) + 2E(ZiZj) ≤ (D + 1)E(W).

(iv) By using the LP relaxation and the definition of the sets S1, S≥ and S≤,
and since λ ≥ 1, we get

Opt∗ ≤ |S1|+ |S≥|+ λOpt∗(S≤)︸ ︷︷ ︸
=E(|C|)

≤ |S1|︸︷︷︸
=Opt∗(S1)

+ |S≥|︸︷︷︸
≤λOpt∗(S≥)

+λOpt∗(S≤) ≤ λOpt∗.

(v)Let d(vj) the degree of the vertex vj . With the ILP constraints we have
k ≤
∑m

i=1 z
∗
i ≤
∑m

i=1

∑
j∈Ei

x∗
j =
∑n

j=1 d(vj)x
∗
j ≤ Δ ·Opt∗ ≤ (D + 1) ·Opt∗

(vi) Let H = (V, E) be a hypergraph and rj the size of the hyperedge Ej for
j ∈ [m]. Then

∑
v∈V d(v) =

∑
Ej∈E rj and since H is uniform with edge size l,

the assertion holds. �

180 M. El Ouali, H. Fohlin, and A. Srivastav

4 Analysis for Bounded Edge Degree

In this section we consider hypergraphs with arbitrary l ∈ N, l ≥ 3 (l is not
necessarily assumed to be a constant), but with bounded edge degree (so D is
constant).

Theorem 3. Let H be a hypergraph with edge size at most l, l ∈ N, l ≥ 3, and
bounded edge degree D. The algorithm k-VC returns a k-partial vertex cover C
such that

|C| ≤ l

(
1−Ω

(
1

D + 1

))
Opt with probability at least

3

5
.

Proof : First we choose

ε :=
Opt∗(1 + β)

k
for β =

1

3(D + 1)
. (2)

We can assume that

ε ≤ 1 + β

l − η
, where η =

l

6(D + 1)
, (3)

because otherwise it follows from the definition of ε in (2) that Opt∗ ≥ k
l−η ,

hence l(1− η
l)Opt∗ ≥ k. Since a partial cover of size k can be trivially found by

picking k arbitrary hyperedges and taking one vertex from each of them pairwise
distinct, we can get a l(1− η

l)-approximation —i.e. a ratio strictly smaller than
l— in this case.

Since l ≥ 3 and D ≥ 1, it is straightforward to check that (3) implies ε ≤ 1
2 ,

so λ = l(1− ε) ≥ l
2 > 1.

Claim 1.

Pr
(
W ≤ k(1− ε2)− 2

√
k(D + 1)

)
≤ 1

5

Proof of Claim 1. First we consider the function:

f : R>D+1 → R, f(x) = x− 2
√
(D + 1)x.

Since f ′(x) = 1 −
√

D+1
x > 0, f is monotonely increasing. For k < 4(D + 1), it

holds:

k(1− ε2)− 2
√
k(D + 1) ≤ k − 2

√
k(D + 1)︸ ︷︷ ︸

=f(k)

< f(4(D + 1)) = 0,

and because W ≥ 0 also Pr
(
W ≤ k(1− ε2)− 2

√
k(D + 1)

)
= 0.

Let now k ≥ 4(D + 1). We set μ := E(W). Then, as ε ≤ 1
2

k(1− ε2) ≥ 4(D + 1)(1− ε2) > 4(D + 1)(1− 1

4
) = 3(D + 1) > D + 1,

A Randomised Approximation Algorithm 181

so by Lemma 3(ii) f(k(1− ε2)) ≤ f(μ). Furthermore,

Pr
(
W ≤ k(1− ε2)− 2

√
k(D + 1)

)
≤ Pr

(
W ≤ k(1− ε2)− 2

√
k(1− ε2)(D + 1)

)
≤ Pr

(
W ≤ μ− 2

√
(D + 1)μ

)

≤
Th1

1

1 + 4μ(D+1)
Var(W)

≤
Lem3(iii)

1

1 + 4μ(D+1)
μ(D+1)

=
1

5
.

This concludes the proof of Claim 1.

Claim 2. For β = 1
3(D+1) it holds Pr (Y ≥ l ·Opt∗(1− ε)(1 + β)) < 1

5 .

Proof of Claim 2. W.l.o.g. we may assume for a constant α > 16 that

k ≥ α(D + 1)5. (4)

Otherwise, if k < α(D+1)5, we would be able to solve the problem in polynomial
time: since Opt∗ ≤ k, our assumption of D being a constant allows to find the
optimal solution by enumerating all subsets of V of size at most k in polynomial
time. Furthermore we have:

Since the resulting random variables X1, ..., Xn after the rounding step are in-
dependent, the Chernoff bound shows that

Pr (Y ≥ l(1− ε)(1 + β)Opt∗) ≤
Lem3(iv)

Pr (Y ≥ E(Y)(1 + β)) ≤ exp

(
−β2

E(Y)

3

)
.

On the other hand we have

E(Y)β2

3
≥

Lem3(iv)

Opt∗

27(D + 1)2
≥

Lem3(v)

k

27(D + 1)3
.

Since k ≥ α(D + 1)5 and α ≥ 16 we finally get:

Pr (Y ≥ l(1− ε)(1 + β)Opt∗) ≤ exp

(
−16(D+ 1)2

27

)
≤ exp

(
−64

27

)
<

1

5
.

This concludes the proof of Claim 2.

By Claim 1 and 2 we get with probability at least 1 − (15 + 1
5) = 3

5 an upper
bound for the final cover:

|C| ≤ l(1− ε)(1 + β)Opt∗ + kε2︸ ︷︷ ︸
(∗)

+2
√
k(D + 1)︸ ︷︷ ︸
(∗∗)

.

It holds

(∗) = l

(
(1 + β)(1− ε) +

Opt∗(1 + β)2

lk

)
Opt∗

≤
Lem3(v)

l(1 + β)

(
1− (l − 1)(1 + β)

l(D + 1)

)
Opt∗ = l

(
1 + β − (l − 1)(1 + β)2

l(D + 1)

)
Opt∗.

182 M. El Ouali, H. Fohlin, and A. Srivastav

On the other hand we can easily check, using l ≥ 3, that (l−1)(1+β)2

l(D+1) −β ≥ 1
3(D+1) ,

therefore

l(1− ε)(1 + β)Opt∗ + kε2 ≤ l

(
1− 1

3(D + 1)

)
Opt∗.

Next, by Lemma 3 (v) and inequality (4) we have: Opt∗ ≥ k
D+1 ≥ α(D + 1)4

and thus get:

2
√
k(D + 1) = 2

√
k

D + 1
(D + 1) ≤

Lem3(v)
2
√
Opt∗(D + 1)

≤
Ineq (4) and Lem3(v)

2Opt∗
1√

α(D + 1)
.

Finally, the sum of (∗) and (∗∗) is

(∗) + (∗∗) ≤
α≥16 and l≥3

l

(
1− 1

6(D + 1)

)
Opt∗.

The randomised algorithm returns with probability at least 3
5 a cover C of car-

dinality at most l
(
1−Ω

(
1

(D+1)

))
Opt∗. �

5 Analysis for Constant Vertex Degree

In this section we consider hypergraphs with edge size at most l, l ∈ N, l ≥ 3
(l is not necessarily assumed to be a constant), but with bounded vertex degree
(so Δ is constant).

Theorem 4. Let H be a hypergraph with edge size at most l, l ∈ N, l ≥ 3, and
bounded vertex degree Δ. For k ≥ m

4 the algorithm k-VC returns a k-partial
vertex cover C such that

|C| ≤ l

(
1−Ω

(
1

Δ

))
Opt with probability at least

3

5
.

This is an improvement over the last section, at least for k ≥ m/4, as always
Δ ≤ D.

Proof. First we assume that H is a uniform hypergraph with edge size l. As
mentioned above, l is not necessarily assumed to be a constant. Let us choose

ε :=
Opt∗(1 + β1)

k
for β1 =

1

3Δ
. (5)

We can assume that

ε ≤ 1 + β1

l − η
, where η =

l

6Δ
. (6)

The rest of the proof is similar to the proof of Theorem 3, except Claim 1. We
replace Claim 1 in the proof of Theorem 3 by the following claim:

A Randomised Approximation Algorithm 183

Claim 4.

Pr
(
W ≤ k(1− ε2)− 2

√
klΔ
)
≤ 1

5
.

Proof of Claim 4. Let f be the function defined as follows:

f : {0, 1}n −→ N f(X1, ..., Xn) =

m∑
j=1

Zj .

Then f is component-wise Lipschitz bounded:

|f(X1, .., Xk, .., Xn)− f(X1, .., X
′
k, .., Xn)| ≤ d(vk).

Since the X1, ..., Xn are chosen independently at random, by Theorem 2 we get
for any t ≥ 0

Pr(f(X)− E(f(X)) ≤ −t) ≤ exp

(
−2t2∑

v∈V d(v)2

)
. (7)

We choose t = 2
√
Δlk. Since H is uniform with size edge l, by Lemma 3 (ii) we

have

Pr
(
f(X) ≤ k(1− ε2)− 2

√
klΔ
)
= Pr
(
W ≤ k(1 − ε2)− 2

√
klΔ
)

≤
Lem3 (ii)

Pr
(
W ≤ E(W)− 2

√
klΔ
)

≤
Ineq (7)

exp
−8lΔk∑
v∈V d(v)2

<
k≥m

4

1

5
.

This concludes the proof of Claim 4.

Claim 5. For β1 = 1
3Δ it holds Pr (Y ≥ l ·Opt∗(1− ε)(1 + β1)) <

1
5 .

Proof of Claim 5. W.l.o.g. we may assume for an constant α > 16 that
k ≥ αΔ5, than the Claim 5 holds on the same maner as Claim 2.
Hence by Claim 4 and 5 we get an upper bound for the final cover with proba-
bility at least 1− (15 + 1

5) ≥
3
5 :

|C| ≤ l(1− ε)(1 + β1)Opt∗ + kε2︸ ︷︷ ︸
(∗)

+2
√
klΔ︸ ︷︷ ︸

(∗∗)
.

As in proof of theorem 3 it holds

(∗) ≤ l

(
1− 1

3Δ

)
Opt∗ and (∗∗) ≤ 2lOpt∗

1√
lαΔ

.

Hence

(∗) + (∗∗) ≤ lOpt∗
(
1− 1

3Δ

)
+ lOpt∗

2√
lαΔ

≤
α≥16 and l≥3

l

(
1− 2−

√
3

6Δ

)
Opt∗.

184 M. El Ouali, H. Fohlin, and A. Srivastav

The randomised algorithm returns with probability at least 3
5 a cover C with

cardinality at most l
(
1−Ω

(
1
Δ

))
Opt∗.

The algorithm VC-H can be extended to hypergraphs with edge size at most
l, by adding l − |E| dummy vertices to every edge E. It is obvious that the
new hypergraph is uniform with edge size l and the other assumptions being
unchanged, thus Theorem 4 holds. �

6 Analysis for Constant l and Δ

Instead bounding the error probability of the randomised rounding step and the
repairing step separately as above, in this section we consider the expected size
of the cover including repairing, and then use concentration inequalities, a more
elegant and efficient way of dealing with coupled random variables. This will lead
to the better approximation ratio l

(
1− l−1

4Δ

)
Opt. This ratio requires l ≤ 4Δ.

As Δ is assumed to be constant, l is constant as well. That is the reason why
(at the moment) we cannot transfer this approach to the more general setting
in section 4 and 5, where l is not necessarily constant.

Now, for the moment, if not specified otherwise, we consider l-uniform hyper-
graphs with bounded vertex degree.

For a set S ⊂ {1, ..., n} let Opt∗(S) :=
∑

j∈S x∗
j . By (1) it holds

E(|C|) ≤ Opt∗(S1) + λ (Opt∗(S≥) + Opt∗(S≤)) + kε2

= Opt∗(S1) + l(1− ε)(Opt∗(S≥) + Opt∗(S≤)) + kε2
(8)

We consider the function

f : [0, 1] → R, ε &→ Opt∗(S1) + l(1− ε)(Opt∗ (S≥) + Opt∗(S≤) + kε2.

f attains its minimum for

ε =
l(Opt∗ (S≥) + Opt∗(S≤))

2k
. (9)

Moreover we can assume that
l(Opt∗(S≥)+Opt∗(S≤))

2k ∈ [0, 1]. Otherwise, if
l(Opt∗(S≥)+Opt∗(S≤))

2k > 1 then l
2Opt∗ ≥ l

2 ((Opt∗(S≥) + Opt∗(S≤)) > k. Since
any k-partial vertex cover of cardinality k can be found trivially, this approxi-
mates the optimum within a factor of l

2 < l.
Let Sf := S≥ ∪ S≤\{j ∈ [n]|x∗

j = 0}. Plugging in ε from (9) into (8), we get

E(|C|) ≤ Opt∗(S1) + l

(
1− lOpt∗(Sf)

4k

)
Opt∗(Sf). (10)

We observe here that the LP-based sparsening of the instance becomes relevant.
For the variance of the cover we have,

Lemma 4. Let X1, . . . , Xn be the 0/1-random variables returned by algorithm
VC-H. Then we have Var(|C|) ≤ lΔE(|C|).

A Randomised Approximation Algorithm 185

Proof. The proof is along the lines of the proof of Lemma 3 (iii). �

Let H̃ = (Ṽ , Ẽ) be the sub-hypergraph ofH constructed in step 3 of the algorithm
VC-H with |Ṽ | = ñ and |Ẽ | = m̃. We denote by l̃ and Δ̃ the maximum size of
all edges and the maximum vertex degree in H̃. We consider the LP relaxation
of the ILP formulation of the partial vertex cover problem in H̃ for a covering
factor k̃ := k − |Γ (S1)| which we denote by LP(H̃). By Opt∗(H̃) we denote the
value of the optimal solution of LP(H̃). The optimal LP solution for H is Opt∗.
Then the following holds.

Lemma 5. Opt∗(H̃) = Opt∗ − |S1| and E(|C|) ≤ |S1|+ E(|C̃|).

Lemma 6. Let H be a l-uniform hypergraph. Then it holds

E(|C|) ≤ l

(
1− l

4Δ

)
Opt∗. (11)

Proof. As there are no 1’s in the solution (x̃1, . . . , x̃ñ), there is no tight LP(H̃)-
variable, using (8) we get (8)

E(|C̃|) ≤ l̃

(
1− l̃Opt∗(H̃)

4k̃

)
Opt∗(H̃) ≤

Lem3(iii)
l̃

(
1− l̃

4Δ̃

)
Opt∗(H̃).

By Lemma 5 and since λ ≥ 1 we have E(|C|)l̃
(
1− l̃

4Δ̃

)
Opt∗, and because H is

uniform and Δ ≥ Δ̃ we conclude that E(|C|) ≤ l
(
1− l

4Δ

)
Opt∗. �

Lemma 6 and Lemma 4 imply the following theorem using the Chebyshev-
Cantelli inequality and standard calculations.

Theorem 5. Let l, Δ be constants and let H be an l-uniform hypergraph with
bounded vertex degree Δ. We further assume that l ≤ 4Δ. Then the algorithm
VC-H returns a k-partial vertex cover C such that

|C| ≤ l

(
1− l − 1

4Δ

)
Opt∗ with probability at least

3

4
.

Proof. W.l.o.g. we may assume that k ≥ 16Δ5. Otherwise, we can solve the
problem by enumeration. We have

Pr

(
|C| ≥ l

(
1− l − 1

4Δ

)
Opt∗

)
≤

Th6
Pr

(
|C| ≥ E(|C|) + lOpt∗

4Δ

)
≤ 1

1 +

(
lOpt∗
4Δ

)2

Var(|C|)

.

Furthermore for k ≥ 16Δ5 we get,(
lOpt∗
4Δ

)2
Var(|C|) ≥

Lem4

(
l

(Opt∗)2

16Δ3E(|C|)

)
≥

E(|C|)≤lOpt∗

Opt∗

16Δ3
≥

Lem3(iii)

Δk

16Δ5
≥ Δ.

Therefore we get Pr
(
|C| ≥ l

(
1− l−1

4Δ

)
Opt∗
)
≤ 1

1+Δ ≤
Δ≥3

1
4 . �

186 M. El Ouali, H. Fohlin, and A. Srivastav

Remark 1. Note that Theorem 5 automatically covers all uniform hypergraphs
with constant Δ and 2 ≤ l ≤ 8 as we can (trivially) assume Δ ≥ 2. This result
is thus a natural generalisation of known approximations below l for graphs to
hypergraphs, whenever the (hyper-)graph vertex degree is a constant.

In the same manner as in section 5, Theorem 5 can be extended to l-bounded
hypergraphs with constant l.

7 Further Work

It would be interesting to give a better approximation for hypergraphs with
other kind of sparseness conditions. Another challenge is the derandomisation
of this and other hybrid algorithms combining randomised rounding and greedy
heuristics.

References

[1] Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-
restrictions. ACM Trans. Algorithms (ACM) 2, 153–177 (2006)

[2] Alon, N., Spencer, J.: The probabilistic method, 2nd edn. Wiley Interscience
(2000)

[3] Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover
problem. Journal of Algorithms 39(2), 137–144 (2001)

[4] Berge, C.: Hypergraphs- combinatorics of finite sets. North Holland Mathematical
Library (1989)

[5] Chvátal, V.: A greedy heuristic for the set covering problem. Math. Oper.
Res. 4(3), 233–235 (1979)

[6] Duh, R., Fürer, M.: Approximating k-set cover by semi-local optimization. In: Pro-
ceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC
1997), pp. 256–264 (May 1997)

[7] Feige, U.: A treshold of lnn for approximating set cover. Journal of the ACM 45(4),
634–652 (1998)

[8] Feige, U., Langberg, M.: Approximation algorithms for maximization problems
arising in graph partitioning. Journal of Algorithms 41(2), 174–201 (2001)

[9] Frieze, A., Jerrum, M.: Improved approximation algorithms for max k-cut and
max bisection. Algorithmica 18, 67–81 (1997)

[10] Gandhi, R., Khuller, S., Srinivasan, A.: Approximation Algorithms for Partial
Covering Problems. J. Algorithms 53(1), 55–84 (2004)

[11] Halperin, E.: Improved approximation algorithms for the vertex cover problem
in graphs and hypergraphs. In: ACM-SIAM Symposium on Discrete Algorithms,
vol. 11, pp. 329–337 (2000)

[12] Halperin, E., Srinivasan, A.: Improved Approximation Algorithms for the Partial
Vertex Cover Problem. In: Jansen, K., Leonardi, S., Vazirani, V.V. (eds.) AP-
PROX 2002. LNCS, vol. 2462, pp. 161–174. Springer, Heidelberg (2002)

[13] Hochbaum, D.S.: Approximation algorithms for the set covering and vertex cover
problems. SIAM J. Computation 11(3), 555–556 (1982)

[14] Jäger, G., Srivastav, A.: Improved approximation algorithms for maximum graph
partitioning problems. Journal of Combinatorial Optimization 10(2), 133–167
(2005)

A Randomised Approximation Algorithm 187

[15] Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-
epsilon. J. Comput. Syst. Sci. 74(3), 335–349 (2008)

[16] Krivelevich, J.: Approximate set covering in uniform hypergraphs. J. Algo-
rithms 25(1), 118–143 (1997)

[17] Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete
Math. 13, 383–390 (1975)

[18] Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. J. Assoc. Comput. Mach. 41, 960–981 (1994)

[19] Matousek, J.: Geometric Discrepancy. Algorithms and Combinatorics, vol. 18.
Springer, Heidelberg (2010)

[20] Matousek, J., Wagner, U.: New Constructions of Weak epsilon-Nets. Discrete &
Computational Geometry 32(2), 195–206 (2004)

[21] McDiarmid, C.: On the method of bounded differences. Surveys in Combinatorics,
Norwich, pp. 148–188. Cambridge Univ. Press, Cambridge (1989)

[22] Peleg, D., Schechtman, G., Wool, A.: Randomized approximation of bounded mul-
ticovering problems. Algorithmica 18(1), 44–66 (1997)

[23] Raz, R., Safra, S.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In: Proc. 29th ACM Symp.
on Theory of Computing, pp. 475–484 (1997)

Simulation-Based Analysis of Topology Control

Algorithms for Wireless Ad Hoc Networks

Fabian Fuchs, Markus Völker, and Dorothea Wagner

Institute of Theoretical Informatics
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{fabian.fuchs,markus.voelker,dorothea.wagner}@kit.edu

Abstract. Topology control aims at optimizing throughput and energy
consumption of wireless networks by adjusting transmission powers or by
restricting the communication to a well-chosen subset of communication
links. Over the years, a variety of topology control algorithms have been
proposed. However, many of these algorithms have been mainly studied
from a theoretical point of view. On the other hand, existing simulation-
based studies often only compare few approaches based on rather simple
simulations, e.g., abstracting from communication protocols.

In this paper, we present a thorough study of a variety of topology
control algorithms based on the methodology of algorithm engineering.
To analyze achievable performance improvements for communication ac-
cording to the IEEE 802.11g standard we use the ns-3 network simulator.
In addition to analyzing the communication throughput, we also study
the effects of topology control on the energy demand in the network.
Based on our simulation results, we then identify properties of the com-
puted topologies that are essential for the achieved improvements. The
gained insights are finally used to motivate an extension of the well-
known XTC algorithm, which enables significant performance improve-
ments in the considered application scenario.

Keywords: topology control, algorithms, wireless communication, wire-
less ad hoc network, network simulator, ns-3, IEEE 802.11g, energy con-
sumption, throughput.

1 Introduction

As the amount of data that is sent through wireless ad hoc networks increases,
network structures that can serve this increased demand are needed. However,
as energy is a limited resource in most ad hoc networks, this must be done while
also achieving low energy consumption. The goal of topology control is to in-
crease the network throughput, for example by reducing interference between
concurrent transmissions, while simultaneously decreasing the energy consump-
tion. To achieve this goal, nodes can adjust their transmission powers and restrict
communication to a subset of their neighbors.

Although many different strategies have been proposed how the communi-
cation links that are used in the network topology should be selected, there is

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 188–202, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Simulation-Based Analysis of Topology Control Algorithms for WAHNs 189

still no real consensus about what distinguishes good topologies from bad ones.
A minimum requirement of almost all approaches is that the computed topol-
ogy should be connected. Additionally, most algorithms try to compute rather
sparse topologies. This strategy is motivated by the assumption that interference
is minimized if every node has only few neighbors in the communication graph.
However, so far there exists no real indication whether this strategy is really
advantageous under realistic circumstances.

To verify the aforementioned assumption and to identify general properties
of good communication topologies, we present in this work a broad compar-
ison of various topology control algorithms. While existing simulation studies
usually use rather simple simulations to compare two or three approaches with
each other, in this work we use the powerful ns-3 network simulator [1] to ana-
lyze a broad variety of topology control algorithms with respect to their effect
on network throughput and energy demand. We chose to use the ns-3 network
simulator, which is a standard tool in the networking community, as it already
implements a variety of standard communication protocols. This allows us to
identify and study additional effects of topology control in connection with com-
munication according to the IEEE 802.11g standard that are usually not modeled
in simple self-implemented simulations.

We then try to interpret performance differences between the considered al-
gorithms based on fundamental properties of the computed topologies, e.g., the
average number of intermediate nodes that are necessary to enable communica-
tion between distant nodes. Based on the gained insights, we propose a simple
extension of the well-known XTC algorithm. This extension simply consists in
adding all links that exceed a certain link quality to the original XTC topology.
According to our simulation results, this simple modification already results in
significant performance improvements in comparison to the standard XTC ap-
proach. The modified algorithm, XTCRLS, outperforms all other approaches in
our simulations. At the same time, it preserves the advantages of XTC, i.e., it
produces a connected topology based solely on local information about received
signal strengths.

The rest of this paper is structured as follows: In Section 2 we define the
topology control problem and introduce some basic terminology. Related work is
discussed in Section 3. The topology control algorithms that are analyzed in this
work are then introduced in some more detail in Section 4. The simulation setup
is described in Section 5 and in Section 6 the simulation results are presented.
Section 7 concludes this work.

2 Problem Definition and Terminology

Networks can naturally be modeled as graphs by mapping network nodes to
graph nodes and possible communication links l = (u, v) between two nodes u
and v to edges between the corresponding nodes in the graph. Using this nota-
tion, the problem of topology control can be seen as a selection of edges such
that some desired properties are achieved. For a graph G = (V,E), a subgraph

190 F. Fuchs, M. Völker, and D. Wagner

G′ = (V,E′) with E′ ⊆ E must be computed such that efficient communica-
tion, high throughput, maximal network lifetime or similar criteria are achieved.
Depending on the considered application, the desired properties may differ and
hence several different quality criteria are commonly considered. Typical exam-
ples for such quality criteria are connectivity, symmetry, stretch factors, sparse-
ness, throughput, and planarity [2].

The length of a link l = (u, v) denotes the Euclidean distance duv between
nodes u and v. If node u sends a signal to node v with transmission power
Puv, the strength of the signal usually decreases on the way from u to v with
increasing distance to u. Additionally, obstacles and interference effects result
in additional signal attenuation. All these effects are subsumed in the link gain
γuv, which defines how much the signal decreases on its way from u to v. If node
u sends with transmission power Puv, the signal is received by v with power
γuv Puv.

In wireless networks, the maximum transmission power that a node can use
is usually limited. In consequence, nodes can only communicate directly within
a certain communication radius. In order to allow communication between more
distant nodes, multi-hop communication has to be used in which additional
nodes relay the messages. If a message is routed on a path (n1, n2, . . . , nk) from
node n1 to node nk, each direct communication between two consecutive nodes
along the path is called a hop. Given a communication graph G, the hop-distance
between two nodes u and v is defined as the number of edges of a shortest path
from u to v in G.

3 Related Work

Topology control has been a very vivid research area in the past years. The
topology control problem has been considered isolated as well as combined with
other aspects of wireless communication such as scheduling, clustering or routing.
For both directions, a wide variety of algorithms has been proposed. In this work,
we focus on pure topology control algorithms, as this enables us to analyze the
effects of topology control apart from other influences.

Early approaches to the topology control problem were often graph-based
and featured well-known graph-theoretic algorithms. Examples are a local vari-
ant of the minimum spanning tree (LMST) [3], the Gabriel graph (GG) [2], or
the Relative Neighborhood graph (RNG) [2]. The cone-based topology control
(CBTC) method [4] and the Yao graph (YG) [5] are other approaches that are
based on angular separations between nodes and signal strengths of communi-
cation links. In the COMPOW protocol [6], all nodes try to find a minimal but
common transmission power while preserving network connectivity. The XTC
algorithm [7] computes a topology that is similar to the RNG; however, it is
capable of achieving this without knowledge about node positions but based on
signal strengths. More recently, kTC [8] and Inclusive Directed RNG (IDRNG)
[9] have been proposed as improvements on XTC and the Directed RNG topol-
ogy control algorithms. Another approach is k-Neigh, which locally selects up

Simulation-Based Analysis of Topology Control Algorithms for WAHNs 191

to k neighbors for each node [10]. Surveys that give a more extensive overview
on existing topology control algorithms can be found in [11,12]. In Section 4, we
will give a more detailed description of those topology control algorithms that
are studied in this paper.

Most topology control algorithms have been mainly analyzed on a theoretical
basis, e.g., by proving upper bounds on node degrees or proving certain span-
ner properties. Experimental and simulation-based comparisons are only seldom
given. In the rest of this section, we will give an overview on the major real-world
and simulation-based studies.

In [13], Jeong et al. studied the throughput and the energy consumption of
several variants of the k-Neigh protocol using Mica2dot nodes. They showed that
dynamic determination of the transmission power can increase the throughput
and decrease the energy consumption in comparison to fixed transmission pow-
ers. In [14], Duràn et al. apply topology control algorithms such as the Gabriel
graph, Relative Neighborhood graph, Yao graph and the Delaunay triangulation
to multi-hop cellular networks. Based on data from a real-world network, they
found that topology control can help to achieve significantly higher signal-to-
interference-plus-noise ratios (SINR). In their experiments, the RNG algorithm
achieved the best link quality.

In [15], Xu et al. use the ns-2 network simulator to study a newly proposed
topology control algorithm in comparison to the original network without topol-
ogy control. In [16], Gao et al. propose the MaxSR topology and compare the
throughput of the proposed topology with LMST, CBTC, and the original topol-
ogy. The energy consumption of the LMST and the R&M protocol has been
considered in [17]. The authors found that if each node sends only one packet to
a sink node then the LMST topology achieves the lowest energy consumption.

The work that is most similar to our work is [18], where Blough et al. use the
GTNetS simulator, a network simulator similar to ns-3, to study the through-
put that can be achieved with topology control in IEEE 802.11 networks. They
consider a minimal spanning tree topology, two variants of the k-Neigh algo-
rithm, CBTC, a common power topology and a max-power topology. Blough
et al. conclude from their simulations that on the one hand the common power
topology does not increase the throughput and the minimum spanning tree even
decreases the throughput while on the other hand topology control algorithms
such as k-Neigh and CBTC can improve the throughput significantly.

4 Examined Algorithms

As there exists a large variety of topology control algorithms (many of which are
very similar), it is not possible to study all of them in detail. For this reason,
we chose for our simulations a set of well-known algorithms that cover most of
the different approaches towards topology control. In the following, we give a
brief overview and short descriptions of the algorithms and topologies that are
covered in our simulation study.

192 F. Fuchs, M. Völker, and D. Wagner

The first topology that we consider is the topology one gets when every sender
uses the maximum transmission power and when all possible communication
links are used. We call this topology All-Links-Graph (ALG). Of course, all
other topologies are a subset of the ALG topology. In XTC [7], a link between
two nodes is used if there is no third node within reach that has equal or higher
signal strength to both of the nodes. The kTC [8] algorithm searches triangles
in the one-hop neighborhood of a node and discards the longest edge of such
triangles if this edge is k times longer than the shortest edge in the triangle.
This is similar to the approach in XTC. However, XTC discards each longest
edge within such a triangle. The kTC algorithm is more robust towards errors in
the perception of the received signal strength due to the parameter k and a local
consensus on the signal strength. The parameter k is chosen as 1.41 ≤

√
2, so

that kTC is still a subset of the Gabriel graph and the distinction towards XTC
is maximal. In the Inclusive Directed RNG (IDRNG) [9], communication links
are selected in two steps: First the DRNG algorithm is executed, which discards
communication links that do not have an empty relative neighborhood. Then
each node determines the transmission power it has to use in order to reach all
neighbors and adds all neighbors that can be reached using this transmission
power to the topology. The Localized Euclidean MST (LMST) [3] is based on a
local computation of Prim’s algorithm in order to compute a minimum spanning
tree. Each node computes the minimum spanning tree in its one-hop neighbor-
hood and selects the communication links that are used in this tree. In the
Gabriel Graph (GG), a communication link from node u to node v is discarded
if the circle with diameter dist(u, v) that has u and v on its boundary is not
empty. The area that must be empty is smaller than the relative neighborhood
considered in some of the previous algorithms. The Yao Graph (YG) [5] divides
the surroundings of each node in c = 6 cones of equal angle and adds a communi-
cation link to the nearest neighbor in each cone. If there are two or more nearest
neighbors, one neighbor is chosen arbitrarily. Bi-directionality of the constructed
topology is ensured by forcing uni-directional edges to be bi-directional. The k-
Neighborhood Protocol (k-Neigh) [10] computes a topology consisting of the k
nearest neighbors of each node. k-Neigh does not necessarily yield a connected
topology for lower values of k. We use k = 8, which should easily suffice to ensure
connectivity [10]. Uni-directional edges are discarded from the topology.

4.1 XTCRLS

The algorithms discussed so far all aim at rather sparse topologies. To validate
whether it is really advantageous to exclude many links from the communica-
tion, we also implemented a strategy that only excludes very weak links and
keeps all links for which the received signal strength exceeds some threshold.
In our simulations, the resulting topologies usually resulted in very good net-
work performance. However, this approach has one major drawback: Depending
on the considered network, it sometimes is necessary to use certain very weak
links in order to guarantee connectivity of the communication topology. Thus,
it sometimes happened that the computed topologies were not connected.

Simulation-Based Analysis of Topology Control Algorithms for WAHNs 193

To deal with this problem efficiently, we propose the following extension of
XTC: First, the XTC algorithm is used to create a sparse topology that is
guaranteed to be connected. Afterwards, each node additionally adds all those
communication links whose signal strengths exceed a given threshold. We ex-
perimentally determined -86 dBm to be a good value for the threshold and use
this value in our simulations. In the following, we will refer to the described
extension of XTC as XTCRLS , where the RLS reminds of the restricted link
strength. Note that similar to XTC, the XTCRLS topology can be easily com-
puted in a distributed fashion based solely on local information about received
signal strengths.

5 Simulation Setup

For our simulations we used version 3.13 of the network simulator ns-3 [1], which
is designed for network related research and implements a wide variety of com-
munication standards and protocols. In each simulation run, 60 nodes that are
equipped with a wireless communication device according to the IEEE 802.11g
standard are distributed randomly in a square-shaped deployment area. To ad-
just the node density, we vary the base lengths of the deployment area between
100m and 600m. Among the 60 nodes, 18 source-target pairs are randomly se-
lected and each source node must transmit 5MB of data to the corresponding
target node. Note that due to the multi-hop communication this accumulates to
up to 900MB of data that must be transmitted across the network, depending
on the average number of hops that are necessary for communication between
distant nodes (see Section 6.1).

For the communication, we use end-to-end TCP connections in a CSMA/CA1-
based network using the Open Link State Routing (OLSR) protocol. As ns-3 does
not offer a standard framework to support topology control mechanisms, e.g., by
restricting communication to a given subset of communication links, we adjusted
the OLSR routing protocol such that it only uses the links that are selected by
the considered topology control algorithm.

To model signal decay in our simulations, we use the standard log-distance
path loss model as implemented in ns-3. According to the log-distance model,
the path loss L in dB is given as

L = L0 + 10 · α · log10
(

d

d0

)
,

where L0 is the reference path loss at distance d0, α is the path loss exponent,
and d is the distance between sender and receiver. In our simulations we use
L0 = 46.6777, d0 = 1, and α = 3, which correspond to an average free space
environment with some obstacles.

In each simulation run we measure the time needed to finish all transmissions
and the energy that is consumed during the transmissions, as well as the time the

1 Carrier Sense Multiple Access with Collision Avoidance; implements collision avoid-
ance in IEEE 802.11 wireless networks.

194 F. Fuchs, M. Völker, and D. Wagner

network devices spent in the TX, RX, IDLE and CCA BUSY2 states to allow
the subsequent application of different energy models to our simulation results.
Additionally we analyze basic properties of the computed topologies such as
average node degrees, average sender-receiver distances, and the average number
of hops that are necessary to allow communication between the source and target
nodes. Our plots depict median values based on 50 independent simulation runs.
The time limit of the simulations was set to 5000 seconds.

Energy Model. While properties such as the achieved throughput or the av-
erage number of hops are rather unambiguous, the consumed energy strongly
depends on assumptions about the used communication hardware. Choosing an
energy model that applies for a wide variety of available wireless network devices
is a difficult task. We decided to adjust the energy consumption in our simula-
tions to the energy consumption of the Roving Networks RN-174, which has a
relatively low energy demand. Table 1 states some of the relevant specifications
as stated in the corresponding data sheet.

Table 1. Energy consumption of an RN-174, measured at 3.3V DC [20]. The trans-
mission and the reception states are abbreviated by TX and RX.

State Idle RX TX (dBm)

0 2 4 6 8 10 12

Current (mA) 40 40 135 150 190 200 210 225 240

As we need the energy consumption for a wider range of transmission powers,
we use a linear least squares fit to interpolate the current that is drawn from the
battery for arbitrary transmission powers. This gives

TxCurrent(TxPower) =

{
8.66 · TxPower + 140.89 if TxPower ≥ −10,

54.28 else,

where TxPower is the transmission power in dBm and the function returns the
current in mA. We consider the network to be active even after all transmissions
are finished. Hence, we subtract the idle power consumption from the power
consumption of the other states (i.e., computationally eliminate the idle power
consumption). Note that due to this only transmission time and transmission
power affect the energy consumption. We will see in Section 6 that this does not
change the results of our analysis as the energy consumption calculated according
to this measure still correlates to the time needed to finish the transmissions.

2 We assume, according to [19], that CCA BUSY requires the same amount of energy
as the IDLE state.

Simulation-Based Analysis of Topology Control Algorithms for WAHNs 195

6 Experiments

6.1 Basic Topology Properties

Although the main focus of our simulations lies on the effects of different topolo-
gies on the throughput and the energy consumption in wireless networks, we
first want to briefly examine some basic properties of the computed topologies.
This will allow us later to gain a deeper understanding of why certain topologies
perform better than others.

First we take a look at the average node degree of the computed topolo-
gies, which is depicted in Figure 1(a). Apparently, all algorithms but ALG and
XTCRLS produce topologies with very low node degrees. Additionally, for those
algorithms the average node degree is almost independent of the node density.
In contrast, for high node densities ALG and XTCRLS have rather high average
node degrees. For example, for the deployment area of 100m × 100m almost
all nodes can communicate directly in the ALG topology. Not surprisingly, for
networks with low node density the average node degree of XTCRLS approaches
the one of XTC.

100 200 300 400 500 600
Square base length (m)

0
5

10
15
20
25
30
35
40
45
50
55
60

A
vg

.N
od

e
D

eg
re

e

(a) Avg. Node Degree

100 200 300 400 500 600
Square base length (m)

0
10
20
30
40
50
60
70
80
90
100
110
120

A
vg

.L
in

k
L

en
gt

h
(m

)

(b) Avg. Link Length

100 200 300 400 500 600
Square base length (m)

0

2

4

6

8

10

12
A

vg
.N

um
be

r
of

H
op

s

(c) Avg. Number of Hops

ALG XTC YG6 GG KNeigh kTC LMST IDRNG XTCRLS

Fig. 1. Basic properties of the computed topologies in dependence of the deployment
area

Concerning the average link length, i.e., the average distance between pairs
of nodes that are allowed to communicate directly with each other, for high
node densities ALG and XTCRLS result in a higher average link length than
the other approaches (cf. Figure 1(b)). However, while the average link length
of ALG increases up to more than 100m for large deployment areas, the average
link length of XTCRLS only approaches the one of XTC and is thus lower than
the link lengths of most other approaches. The reason for this of course is that
XTCRLS only adds links with relatively high link gain, which means that links
that exceed about 50m are only chosen if they are also chosen by XTC.

Figure 1(c) depicts the average number of hops that are necessary to enable
communication between the randomly selected source-target pairs. For most of

196 F. Fuchs, M. Völker, and D. Wagner

the topologies the number of hops is almost independent of the node density,
whereas in the ALG and XTCRLS topologies the average number of hops starts
close to one and rises with decreasing node density. In the following, we will
see that both the required time to complete all transmissions and the consumed
energy are strongly correlated with the average number of required hops. This
can be explained by the fact that each message has to be sent once for each hop.
Thus, the overall number of packets that are transmitted within the network
also depends on the average number of hops per source-target pair.

6.2 Topology Control with Uniform Transmission Powers

In this section we study the influence of topology control when all senders use
the maximum available transmission power. In this setting, performance im-
provements can only be achieved by avoiding weak links and by keeping the
interference in the network low. As we saw in Section 6.1, most of the considered
topology control algorithms try to achieve this by using only few links with very
high link gain.

Communication Throughput. First we examine the time that is needed to
finish all transmissions, which is shown in Figure 2(a). We observe that ALG,
the original topology without topology control, is only competitive for the de-
ployment area of 100 × 100 meters. Once the nodes are deployed on an area

100 200 300 400 500 600
Square base length (m)

200

400

600

800

1000

1200

1400

1600

1800

2000

T
im

e
(s

)

(a) Required Time

100 200 300 400 500 600
Square base length (m)

0

2

4

6

8

10

12

14

16

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

(b) Consumed Energy

ALG

XTC

YG6

GG

KNeigh

kTC

LMST

IDRNG

XTCRLS

Fig. 2. Influence of topology control on the required time to finish all transmissions
and on the consumed energy

of 200 × 200 meters or larger, almost all other topologies can finish faster, i.e.,
achieve higher throughput. This presents a strong motivation for the use of
topology control.

The ALG topology works well for small deployment areas as in the result-
ing networks most source-target pairs can communicate directly (mostly with

Simulation-Based Analysis of Topology Control Algorithms for WAHNs 197

a reasonable data rate). Since the ALG topology does not discard weak links,
for larger deployment areas the OLSR routing algorithm selects more links that
achieve a relatively low signal strength and hence can only communicate with
low data rate and maybe even with a high packet error rate. The very poor per-
formance of LMST can be explained in terms of bottlenecks that emerge when
all communication is limited to a tree-like backbone. Surprisingly, for larger de-
ployment areas the throughput of LMST actually improves. The reason is that
the local approximation to a minimum spanning tree on average is worse and
hence uses more edges on large deployment areas.

All other topologies show a similar tendency that the throughput slowly de-
creases with increasing deployment area. According to Figure 1(c), for most
topologies this can not be explained in terms of a higher number of hops be-
tween source nodes and target nodes. Instead, this tendency is most likely caused
by the fact that the average link length increases for larger deployment areas
(cf. Fig. 1(b)). A higher link length also means a lower link gain, which in IEEE
802.11g networks finally causes that the achievable data rate over the link is
lower.

By comparing Fig. 1(c) with Fig. 2(a), one can see that especially for small
deployment areas the time that is needed to complete all transmissions is cor-
related to the average number of communication hops. Those topologies that
require more hops usually also require more time to finish all transmissions.
With increasing deployment area, however, this effect decreases as the data rate
that can be achieved over the links becomes increasingly important. For net-
works that use a fixed data rate, the average number of hops of the topology is
expected to be even more relevant for the throughput performance.

Note that our simulation results contradict the usual assumption that sparser
topologies increase the throughput in the network or lower the energy consump-
tion. Especially when comparing XTC with XTCRLS, it clearly seems to pay off
to include additional links as long as they provide sufficiently high link gain.
However, a comparison of XTCRLS with ALG also reveals that it really helps to
avoid links with low link gain.

Energy Consumption. Regarding the energy consumption, which is shown in
Fig. 2(b), we observe that for deployment areas above 200m × 200m all con-
sidered topologies are more energy-efficient than the original ALG topology. At
the first moment this might seem a little surprising. We did not adjust transmis-
sion powers, which implies that transmissions over long distances use the same
transmission power as short-range transmissions. However, in the considered
IEEE 802.11g communication protocol another factor that often is not consid-
ered comes into play: For transmissions over short distances the link gain is
usually higher, which means that a higher data rate is used. This implies that
short-range transmissions are finished faster and the wireless network devices
spend less time in the energy-consuming TX state.

The rapid increase in energy consumption of the ALG topology for larger
deployment areas can thus easily be explained by the use of long-range commu-
nication links that only allow for very low data rates. Interestingly, although the

198 F. Fuchs, M. Völker, and D. Wagner

LMST topology uses only very short links, it results in the highest energy con-
sumption of all topologies for dense networks. This observation can be explained
by the high number of hops that are on average necessary to transfer data from
one node to another (cf. Fig. 1(c)). Concerning XTCRLS, it not only produces
the topology that allows for the highest throughput in the considered scenario,
but it also results in the lowest energy consumption for most of the considered
node densities.

6.3 Topology Control in Combination with Power Control

In addition to restricting the communication to a well-chosen subset of all pos-
sible links, it is also sometimes proposed that the network performance can be
additionally improved by reducing the transmission power that is used for com-
munication between nodes that are located close together. In this section, we
examine the influence of such an additional optimization.

Communication Throughput. As transmission power reduction can help to
reduce interference effects between concurrent transmissions, it seems reasonable
to assume that throughput improvements are possible if short-range transmis-
sions use lower transmission powers. However, existing studies on this topic came
to different conclusions: In [13], the authors stated that for k-Neigh on Mica2dot
nodes transmission power reduction does not increase the throughput perfor-
mance but at most achieves similar throughput. In contrast, the authors of [18]
showed with simulations using the GTNetS simulator that an additional trans-
mission power reduction can produce significant throughput improvements for
various topology control algorithms.

To further study this topic, we conducted similar experiments as before (i.e.,
multi-hop communication between 18 random source-target pairs in a network
of 60 nodes) but reduced the transmission powers for transmissions over short
distances. Again, the time that passes until all transmissions are finished is ana-
lyzed. We consider three different reduction thresholds: the transmission power
of each node is reduced such that the communication partner with the lowest
received signal strength can receive the signal with −80dBm, −85 dBm and
−90dBm, respectively. If the received signal strength of a communication link
is already lower than this threshold, the transmission power is not reduced. The
times needed to finish all transmissions are depicted for the three considered
thresholds in Figure 3.

We observe that the reduction of transmission powers such that the received
signal strengths do not exceed −85 dBm or −90 dBm actually results in lower
throughput. This is due to the data rate management in IEEE 802.11 wireless
communication, which determines the used bitrate based on the measured signal-
to-interference-plus-noise ratio (SINR). The higher the SINR, the higher the pos-
sible data rate. Thus, especially links with high link gain are negatively affected
by the transmission power reduction. However, if the transmission powers are
only reduced so far that the received signal strengths still equal −80 dBm, most

Simulation-Based Analysis of Topology Control Algorithms for WAHNs 199

100 200 300 400 500 600
Square base length (m)

200

400

600

800

1000

1200

1400

1600

1800

2000

T
im

e
(s

)

(a) Reduction to -80 dBm

100 200 300 400 500 600
Square base length (m)

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

(b) Reduction to -85 dBm

100 200 300 400 500 600
Square base length (m)

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

(c) Reduction to -90 dBm

ALG XTC YG6 GG KNeigh kTC LMST IDRNG XTCRLS

Fig. 3. Time needed to finish the transmissions for different reductions of the trans-
mission power. Note the different scales of the y-axis.

topologies show small throughput improvements (cf. Fig. 2(a) and Fig. 3(a)).
The largest improvements are achieved for the LMST topology in networks with
high node density.

Energy Consumption. Especially when the power consumption of a wireless
device increases with increasing transmission power, as it is assumed in this
work, it seems natural that using lower transmission powers also decreases the
energy consumption. It was shown, for example, in [13] that a reduction of the
transmission powers yields a lower energy consumption for Mica2dot nodes. In
our simulations, however, we found that this can not be stated in such a general
way. Again we consider the three power control strategies that reduce the trans-
mission powers until the received signal strength equals −80dBm, −85 dBm, or
−90dBm. The average energy consumptions per node for the three considered
setups are depicted in Figure 4. The energy consumption per node using topol-
ogy control without transmission power reduction, which is shown in Figure 2(b),
is very similar to the energy consumption after a reduction to received signal
strengths of -80dBm, depicted in Figure 4(a). Only for very dense instances
some sparse topologies such as the LMST, XTC, kTC, IDRNG and the Gabriel
graph achieve a small improvement in the energy demand. This is probably due
to the significant reduction of the transmission power they achieve.

For the scenarios where the transmission powers are reduced until the received
signal strengths equal -85 dBm or -90dBm, however, the consumed energy in-
creases significantly for most topologies. Again, this can be explained with an
adaption of the data rate to the measured SINR. As the data rate is reduced, the
wireless devices require more time to transmit each single packet, which leads
to a higher energy consumption.

200 F. Fuchs, M. Völker, and D. Wagner

100 200 300 400 500 600
Square base length (m)

0

2

4

6

8

10

12

14

16
E

ne
rg

y
C

on
su

m
pt

io
n

(J
)

(a) Reduction to -80 dBm

100 200 300 400 500 600
Square base length (m)

0

2

4

6

8

10

12

14

16

(b) Reduction to -85 dBm

100 200 300 400 500 600
Square base length (m)

0

2

4

6

8

10

12

14

16

(c) Reduction to -90 dBm

ALG XTC YG6 GG KNeigh kTC LMST IDRNG XTCRLS

Fig. 4. Energy consumption for transmissions using topology control with transmis-
sion power reduction. The transmission powers are reduced until the received signal
strengths correspond to the stated values.

6.4 Performance Comparison

To conclude this section, we present a brief comparison of the different topologies
based on the achieved throughput and the energy consumption. Since the relative
order of the topologies is similar for topology control with and without additional
power control, we will focus on the results without power control, which are
depicted in Figure 2.

For small deployment areas the ranking according to the throughput is strong-
ly related to the average number of hops for communication between distant
nodes, where XTCRLS and ALG perform best, followed by the Yao graph, k-
Neigh, the Gabriel graph, IDRNG, kTC, XTC, and finally LMST. We can
see that all topologies except ALG and LMST achieve somewhat comparable
throughput. For larger deployment areas the performance of ALG decreases
rapidly while XTCRLS still achieves the highest throughput, followed by IDRNG,
XTC, kTC, the Gabriel graph, k-Neigh and LMST, which are all relatively close
together. The lowest throughput is achieved by the Yao graph and ALG.

Regarding the energy consumption, most topologies achieve a similar perfor-
mance. The ALG topology has the highest energy demand for most instances
since links with weak signal strength are not discarded. Those links usually
achieve a poor performance considering both the throughput and the energy
efficiency. The LMST is worse than the other topologies (except partially ALG)
for relatively dense instances, while the Yao graph and k-Neigh consume more
energy than the other topologies for sparse instances. The proposed extension of
XTC, XTCRLS, achieves the best results for almost all instances. However, it is
closely followed by most other topologies: IDRNG, Gabriel graph, kTC, XTC, k-
Neigh, Yao graph and LMST. Only for the deployment area of 200×200 meters,
k-Neigh achieves an energy consumption lower than that of XTCRLS.

Simulation-Based Analysis of Topology Control Algorithms for WAHNs 201

7 Conclusion

In this paper, we studied throughput and energy consumption of a variety of
topology control algorithms. Especially in networks with rather low node den-
sity, all algorithms were able to improve the network throughput and the energy
demand considerably. Our broad comparison made it then possible to relate the
achieved performance improvements to basic properties of the computed topolo-
gies. Contrary to what is usually assumed, producing sparse topologies turned
out to be not beneficial. In topologies with low average node degree usually more
hops were necessary to allow communication between distant nodes. As each ad-
ditional hop also means that the packets have to be relayed an additional time,
sparse networks resulted in lower throughput and higher energy consumption.

Concerning power control, we showed that—contrary to what one might
expect—reducing transmission powers does not necessarily result in power sav-
ings. The reason is that standard communication protocols usually adjust the
data rate according to the measured SINR. Thus, lower transmission powers
can result in longer transmissions and consequently in higher energy consump-
tion. This effect is currently ignored in most studies of scheduling and routing
protocols, even in those that particularly focus on energy consumption.

Motivated by the observation that denser topologies often allow for better
performance and lower energy consumption, we proposed XTCRLS, an exten-
sion of XTC that achieves connectivity by computing the XTC topology and
that afterwards simply adds all links which provide a sufficiently high received
signal strength. In our simulations, the XTCRLS algorithm outperformed all
other approaches regarding both data throughput and energy efficiency.

Acknowledgments. This work was supported by the German Research Foun-
dation (DFG) within the Research Training Group GRK 1194 ”Self-organizing
Sensor-Actuator Networks”.

References

1. Network Simulator: ns-3 (2011), http://www.nsnam.org
2. Buchin, K., Buchin, M.: Topology Control. In: Wagner, D., Wattenhofer, R. (eds.)

Algorithms for Sensor and Ad Hoc Networks. LNCS, vol. 4621, pp. 81–98. Springer,
Heidelberg (2007)

3. Li, N., Hou, J.C., Sha, L.: Design and analysis of an MST-based topology control
algorithm. IEEE Transactions on Wireless Communications 4, 1195–1206 (2005)

4. Wattenhofer, R., Li, L., Bahl, P., Wang, Y.: Distributed Topology Control for
Power Efficient Operation in Multihop Wireless Ad Hoc Networks. In: Proceedings
of the 20th Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM 2001), pp. 1388–1397 (2001)

5. Yao, A.C.C.: On Constructing Minimum Spanning Trees in k-Dimensional Spaces
and Related Problems. SIAM Journal on Computing 11, 721–736 (1982)

http://www.nsnam.org

202 F. Fuchs, M. Völker, and D. Wagner

6. Narayanaswamy, S., Kawadia, V., Sreenivas, R.S., Kumar, P.R.: Power Control
in Ad-Hoc Networks: Theory, Architecture, Algorithm and Implementation of the
COMPOW Protocol. In: Proceedings of European Wireless 2002. Next Generation
Wireless Networks: Technologies, Protocols, Services and Applications, pp. 156–162
(2002)

7. Wattenhofer, R., Zollinger, A.: XTC: A Practical Topology Control Algorithm
for Ad-Hoc Networks. In: Proceedings of the 18th International Parallel and Dis-
tributed Processing Symposium - Workshop 12 (IPDPS 2004), p. 216a (2004)

8. Schweizer, I., Wagner, M., Bradler, D., Mühlhäuser, M., Strufe, T.: kTC - Robust
and Adaptive Wireless Ad-hoc Topology Control. In: Proceedings of the IEEE
International Conference on Computer Communication Networks, ICCCN 2012
(2012)

9. Chu, X., Sethu, H.: A New Power-Aware Distributed Topology Control Algorithm
for Wireless Ad Hoc Networks. In: Proceedings of the IEEE Global Telecommuni-
cations Conference, GLOBECOM 2011 (2011)

10. Blough, D.M., Leoncini, M., Resta, G., Santi, P.: The K-Neigh Protocol for Sym-
metric Topology Control in Ad Hoc Networks. In: Proceedings of the 4th ACM
International Symposium on Mobile Ad Hoc Networking and Computing (Mobi-
Hoc 2003), pp. 141–152. ACM, New York (2003)

11. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Computer
Networks 52, 2292–2330 (2008)

12. Li, N., Hou, J.C.: Localized Topology Control Algorithms for Heterogeneous Wire-
less Networks. IEEE/ACM Transactions on Networking 13, 1313–1324 (2005)

13. Jeong, J., Culler, D., Oh, J.H.: Empirical Analysis of Transmission Power Control
Algorithms for Wireless Sensor Networks. In: Proceedings of the 4th International
Conference on Networked Sensing Systems (INSS 2007), pp. 27–32 (2007)

14. Duran, A., Toril, M., Ruiz, F., Solera, M., Navarro, R.: Analysis of Topology Con-
trol Algorithms in Multi-hop Cellular Networks. In: Proceedings of the 5th In-
ternational Conference on Broadband and Biomedical Communications (IB2Com
2010), pp. 1–6 (2010)

15. Xu, L., Bo, H., Haixia, L., Mingqiang, Y., Mei, S., Wei, G.: Research and Analysis
of Topology Control in ns-2 for Ad-hoc Wireless Network. In: Proceedings of the
International Conference on Complex, Intelligent and Software Intensive Systems
(CISIS 2008), pp. 461–465 (2008)

16. Gao, Y., Hou, J.C., Nguyen, H.: Topology Control for Maintaining Network Con-
nectivity and Maximizing Network Capacity under the Physical Model. In: Pro-
ceedings of the 27th Annual Joint Conference of the IEEE Computer and Commu-
nications Societies (INFOCOM 2008), pp. 1013–1021 (2008)

17. Niewiadomska-Szynkiewicz, E., Kwaniewski, P., Windyga, I.: Comparative Study
of Wireless Sensor Networks Energy-Efficient Topologies and Power Save Protocols.
Journal of Telecommunications and Information Technology 3, 68–75 (2009)

18. Blough, D.M., Harvesf, C., Resta, G., Riley, G., Santi, P.: A Simulation-Based
Study on the Throughput Capacity of Topology Control in CSMA/CA Networks.
In: Proceedings of the 4th IEEE International Conference on Pervasive Computing
and Communications, pp. 400–404 (2006)

19. Wu, H., Nabar, S., Poovendran, R.: An Energy Framework for the Network Simu-
lator 3 (ns-3). In: Proceedings of the 4th International ICST Conference on Simu-
lation Tools and Techniques (SIMUTools 2011), pp. 222–230 (2011)

20. Roving Networks: RN-174 data sheet (2012),
http://www.rovingnetworks.com/resources/download/14/RN_174

http://www.rovingnetworks.com/resources/download/14/RN_174

Cache-Oblivious Dictionaries and Multimaps
with Negligible Failure Probability

Michael T. Goodrich1, Daniel S. Hirschberg1,
Michael Mitzenmacher2, and Justin Thaler2

1 Dept. of Computer Science, University of California, Irvine
2 School of Engineering and Applied Sciences, Harvard University

Abstract. A dictionary (or map) is a key-value store that requires all keys be
unique, and a multimap is a key-value store that allows for multiple values to be
associated with the same key. We design hashing-based indexing schemes for dic-
tionaries and multimaps that achieve worst-case optimal performance for lookups
and updates, with minimal space overhead and sub-polynomial probability that
the data structure will require a rehash operation. Our dictionary structure is de-
signed for the Random Access Machine (RAM) model, while our multimap im-
plementation is designed for the cache-oblivious external memory (I/O) model.
The failure probabilities for our structures are sub-polynomial, which can be use-
ful in cryptographic or data-intensive applications.

1 Introduction
A dictionary (or map) is a key-value store that requires all keys be unique, and a mul-
timap [3] is a key-value store that allows for multiple values to be associated with the
same key. Key-value associations are used in many applications, and hash-based dictio-
nary schemes are well-studied in the literature (e.g., see [12]). Multimaps [3] are less
studied, although a multimap can be viewed as a dynamic inverted file or inverted in-
dex (e.g., see Knuth [21]). Given a collection, Γ , of documents, an inverted file is an
indexing strategy that allows one to list, for any word w, all the documents in Γ where
w appears. Multimaps also provide a natural representation framework for adjacency
lists of graphs, with nodes being keys and adjacent edges being values associated with
a key. For other applications, please see Angelino et al. [3].

Such structures are ubiquitous in the “inner-loop” computations involved in various
algorithmic applications. Thus, we are interested in implementations of these abstract
data types (ADTs) that are based on hashing and use a near-optimal amount of storage
– ideally (1+ ε)n words of storage, where n is the number of items in the dictionary or
multimap and ε > 0 is some small constant. In addition, because such solutions are used
in real-time applications, we are interested in implementations that are de-amortized,
meaning that they have asymptotically optimal worst-case lookup and update complex-
ities, but may have small probabilities of overflowing their memory spaces.

Crucially, we additionally focus on two further design goals. The first is that we
aim for our data structures to succeed with overwhelming probability, i.e. probability
1 − 1/nω(1), rather than merely with high probability, i.e. probability 1 − 1/ poly(n),
achieved by most previous constructions. While our aim of achieving structures that
provide worst-case constant time operations with overwhelming probability instead of
with high probability may seem like a subtle improvement, there are many applications

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 203–218, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

204 M.T. Goodrich et al.

where it is essential. In particular, it is common in cryptographic applications to aim
for negligible failure probabilities. For example, cuckoo structures with negligible fail-
ure probabilities have recently found applications in oblivious RAM simulations [17].
Moreover, a significant motivation for de-amortized cuckoo hashing is to prevent timing
attacks and clocked adversaries from compromising a system [4]. An inverse polyno-
mial failure probability may render a structure unsuitable for these applications.

In addition, guarantees that hold with overwhelming probability allow us to handle
super-polynomially long sequences of updates, as long as the total number of items
resident in the dictionary is bounded by n at all times. This is useful in long-running or
data-intensive applications. It is also crucial for applications in which it is not possible
to anticipate certain parameters, such as the length of the sequence of operations to be
handled, at the time the data structure is deployed.

Our final design goal is relevant for our solutions that operate in the external-memory
(I/O) model. Specifically, we would like our external-memory solutions to be cache-
oblivious [15], meaning that they should achieve their performance bounds without be-
ing tuned for the parameters of the memory hierarchy, like the size, B, of disk blocks, or
the size, M , of internal memory. The advantage of cache-oblivious solutions is that one
such algorithm can comfortably scale across all levels of the memory hierarchy and can
also be a better match for modern compilers that perform predictive memory fetches.

Previous Related Work. Since the introduction of the cache-oblivious framework by
Frigo et al. [15], several cache-oblivious algorithms have subsequently been presented,
including cache-oblivious B-trees [6], cache-oblivious binary search trees [8], and cache-
oblivious sorting [9]. Pagh et al. [27] describe a scheme for cache-oblivious hashing,
which is based on linear probing and achieves O(1) expected-time performance for
lookups and updates, but it does not achieve constant time bounds for any of these
operations in the worst case.

As mentioned above, the multimap abstract data type is related to the inverted file
and inverted index structures, which are well-known in text indexing applications (e.g.,
see Knuth [21]) and are also used in search engines (e.g., see Zobel and Moffat [32]).
Cutting and Pedersen [13] describe an inverted file implementation that uses B-trees
for the indexing structure and supports insertions, but doesn’t support deletions effi-
ciently. More recently, Luk and Lam [24] describe an internal-memory inverted file
implementation based on hash tables with chaining, but their method also does not sup-
port fast item removals. Lester et al. [22, 23] and Büttcher et al. [11] describe external-
memory inverted file implementations that support item insertions only. Büttcher and
Clarke [10] consider trade-offs for allowing for both item insertions and removals, and
Guo et al. [18] give a solution for performing such operations by using a B-tree variant.
Finally, Angelino et al. [3] describe an efficient external-memory data structure for the
multimap abstract data type, but like the above-mentioned work on inverted files, their
method is not cache-oblivious.

Much prior work on de-amortized dictionaries use variants of cuckoo hash tables,
which were presented by Pagh and Rodler [26] and studied by a variety of other re-
searchers. In their basic form, these structures use a freedom to place each key-value
pair in one of two hash tables to achieve worst-case constant-time lookups and removals
and amortized constant-time insertions with high probability. Kirsch, Mitzenmacher,

Cache-Oblivious Dictionaries and Multimaps with Negligible Failure Probability 205

and Wieder [20] introduced the notion of a stash for cuckoo hashing, which allows
the failure probability to be reduced to O(1/nα), for any constant α > 0, by us-
ing a constant-sized adjunct memory to store items that wouldn’t otherwise be able
to be placed. The failure probability of this solution is still inverse-polynomial, and
insertions take O(1) amortized time rather than worst-case time. Kirsch and Mitzen-
macher [19] and Arbitman et al. [4] study a method for de-amortizing cuckoo hashing,
which achieves constant-time lookups, insertions, and deletions with high probability,
and uses space (2 + ε)n for any constant ε > 0 (as is standard in cuckoo hashing). In a
subsequent paper, Arbitman et al. [5] study a hashing method that achieves worst-case
constant-time lookups, insertions, and removals with high probability while maintain-
ing loads very close to 1. They accomplish this by using a two-level hashing scheme,
where the first level uses a simple bin-based hash table, and the second uses the de-
amortized cuckoo hashing scheme of [4]. Our dictionary construction uses their first
level, but replaces their second level with a different structure based on the Q-heaps of
Fredman and Willard [14].

A lower bound of Andersson, Bro Miltersen, Riis, and Thorup is also relevant [1].

They prove that even for static dictionaries, query time Θ
(√

logn/ log logn
)

is nec-

essary and sufficient on AC0 RAMs, a restriction of the RAM model in which the only
operations permitted in unit time are those computable by polynomial-sized constant-
depth circuits. This applies even if npolylog(n) space is permitted for the dictionary.
We clarify that the lower bound only applies for substantially super-polynomial sized
universes (though stronger lower bounds are known for RAMs whose instruction set
is restricted further [30]). Our algorithms do not contradict the Andersson et al. result
because we work in the standard RAM model rather than the AC0 RAM model (we
remark that, like much prior work on dictionary data structures, the only place we use
non-AC0 operations is in the evaluation of sufficiently random hash functions).

An earlier version of this paper [16] with similar goals presented a more intricate two-
level dictionary data structure, where both levels were implemented as de-amortized
cuckoo hash tables. The present paper substantially simplifies the earlier dictionary
structure, while achieving a smaller failure probability.

Contributions. Our contributions are two-fold. Our first contribution is a dictionary
structure achieving worst-case optimal lookup and update complexities with sub-
polynomial failure probability, while incurring minimal space overhead. Specifically,
our structure requires (1 + ε)n space for an arbitrary constant ε > 0. The lookup and
update complexities of our structure are given in Table 1.

To the best of our knowledge, ours is the first structure suitable for the Random
Access Machine (RAM) model that achieves all of these goals assuming random hash
functions that can be evaluated in constant time. We also discuss several solutions that
work with hash functions that are realizable (although impractical) in the standard RAM
model, while achieving slightly sub-optimal lookup and update complexities. These
solutions partially address an open question raised by Arbitman et al. [5].

Our second contribution is to develop a multimap implementation suitable for the
external-memory (I/O) model. Prior work [3] achieved a solution in this model with
worst-case optimal update and lookup complexity, but their solution was cache-aware,
requiring knowledge of the size, B, of disk blocks.

206 M.T. Goodrich et al.

Table 1. Performance bounds for our dictionary and multimap implementations, which all hold
in the worst-case with overwhelming probability, assuming truly random hash functions. These
bounds are asymptotically optimal. We use B to denote the block size, k to denote an arbitrary
key, v to denote an arbitrary value, and nk to denote the number of items with key equal to k.

Method Dictionary I/O Performance Multimap I/O Performance

add(k, v) O(1) O(1)

containsKey(k) O(1) O(1)

containsItem(k, v) O(1) O(1)

remove(k, v) O(1) O(1)

get(k)/getAll(k) O(1) O(1 + nk/B)

removeAll(k) – O(1)

2 Dictionary Data Structure

Our dynamic dictionary data structure is designed for the standard RAM model. The
instruction set available will be arithmetic, bitwise logical, and comparison operations
on b = Ω(log n) bit words.

Recall that a collection H of functions h : U → V is k-wise independent if for
any distinct x1, . . . , xk ∈ U and for any y1, . . . , yk ∈ V it holds that Pr[h(x1) =
y1 ∧ · · · ∧ h(xk) = yk] = 1/|V |k. Throughout this section, we assume the existence of
an nα-wise independent family of hash functions (for some constant α > 0) mapping
the universe U to the set {0, . . . , n − 1}, that can be evaluated in constant time using
o(n) space. We present results on the validity of this assumption in Section 3.

We mention that, with the exception of hash function evaluation, all of the pieces in
our construction can be made to run in the AC0 RAM model [2].

Our dictionary data structure combines two pieces. First, we modify a dictionary
construction due to Willard to achieve a data structure with optimal worst-case update
times and failure probability just 1/npolylog(n). However, the resulting data structure
uses O(n) space, rather than (1+ε)n space. As our second step, we combine the result
of Step 1 with the first level of the two-level hashing scheme of Arbitman et al. [5], to
bring the space usage down to (1 + ε)n words for any constant ε > 0.

2.1 The First Piece

Willard [31] describes a simple dictionary data structure using O(n polylog(n)) words
of memory that supports worst-case constant time lookups and updates with failure
probability 1/npolylog(n). The primary contribution of this subsection is to give a variant
of his structure that achieves the same guarantees using O(n) words of space.

Willard’s construction is based on a variant of Fredman and Willard’s Q-heap. Us-
ing O(n) space and preprocessing time, the Q-heap supports constant-time insertions,
deletions, member, and predecessor queries into sets of size O(log1/5 n)). By using

Cache-Oblivious Dictionaries and Multimaps with Negligible Failure Probability 207

a Q∗-heap [31], which is essentially a B-tree whose internal nodes are implemented
as Q-heaps, one can in fact achieve worst-case constant time insertions, deletions, and
lookups for sets of size O(logc n) for an arbitrary constant c > 0 [31, Lemma 2].

With the Q∗-heap functionality in hand, Willard proposes the following simple dic-
tionary structure with failure probability 1/nlogk(n) for any constant k > 0. Let h be
a hash function chosen at random from hash family H . Consider a hash table with n
buckets, each implemented as a Q∗-heap with capacity logk+2(n). As long as no bucket
overflows its capacity, this hash table ensures that a bucket can be searched in O(1)
time, and that inserts and deletions can be processed in O(1) time. Moreover, as long
as the hash family H is logk+2(n)-wise independent, the probability that any particular
bucket overflows is at most 1/nlogk+1(n). A union bound then implies that no bucket
overflows with probability at least 1− 1/nlogk(n).

As mentioned above, a major downside of Willard’s construction is that it uses
O(n polylog(n)) space. We now show a modification that brings the space usage down
to O(n) machine words.

Instead of using an array of n buckets, use an array of n/ logk(n) buckets for some
constant k > 1. Implement each bucket with a Q∗-heap of capacity 6 logk(n). Assum-
ing truly random hash functions, a suitable Chernoff bound [25, Theorem 4.4, Part 3]
implies that the probability any individual bucket overflows is at most 1/26 log

k(n). By
a union bound, no bucket overflows with probability at least 1− 1/25 log

k(n).
Notice each “bad event” (namely a bucket overflowing) in the above analysis in-

volves the hash values of a set S of at most 6 logk(n) items, and as long as H is a
6 logk(n)-wise independent hash family, the values of h on S are fully independent.
Thus, the same analysis applies as long as H is a 6 logk(n)-wise independent hash
family. Notice our modified construction requires O(n) words of memory.

Lemma 1. Let k > 1 be any constant. Assume there exists a logk(n)-wise independent
hash family H such that each h ∈ H can be evaluated in constant time using o(n)
words of memory. Then there exists a dynamic dictionary scheme A using O(n) words
of memory that supports insertions, deletions, and membership queries in O(1) worst-
case time, with failure probability 1/n5 logk−1(n).

2.2 The Second Piece

Arbitman et al. [5] present a novel two-level hashing scheme, which they call Backyard
Cuckoo Hashing. The first level of their scheme usesm = (1+ε/2)n/d “bins” of size d,
where d is a suitably chosen constant that depends on ε. In the simplest version of their
scheme, lookups, insertions, and deletions into each bin can trivially be implemented
in constant time (which depends on ε), because each bin has constant size. However,
a constant fraction of items inserted into the first level may “overflow”, and must be
handled separately by the second level of their scheme, which they instantiate as a de-
amortized cuckoo hash table.

We briefly remark that Arbitman et al. [5] also present a more involved scheme
based on de-amortized perfect hashing that works for slightly subconstant values of ε;
this variant can also be adapted to our setting, but we omit these details for brevity.

208 M.T. Goodrich et al.

Our intention is to use the first level of their scheme to absorb all but a small fraction
of the items in our table. We use the dictionary data structure described in Section 2.1
to handle the overflowing items. Details follow.

Inspection of the proof of [5, Lemma 3.2] shows that their scheme achieves the
following guarantee.

Lemma 2. Let α be any constant 0 < α < 1. Assume there exists an nα-wise inde-
pendent hash family H such that each h ∈ H can be evaluated in constant time using
o(n) words of memory. Then for any constant ε > 0, there exists a data structure using
space (1+ ε/2)n satisfying the following guarantees. For some β > 0, with probability
1 − 2−nβ

, all but εn/16 items are successfully inserted into the data structure. More-
over, insertions (both successful and unsuccessful) and deletions take worst-case O(1)
time, and membership queries succeed in O(1) time for any item successfully placed in
the data structure.

Thus, with probability 1 − 2−nβ

, during any sequence of n insertions, at most t :=
εn/16 items overflow from the primary structure, and we can place these items in the
data structure A described in Section 2.1.

The remaining issue is that, in order to guarantee that the second level never contains
more than εn/16 items, we must move an item from the second level to the first level
whenever an item is deleted from the first level. This issue is also encountered by Ar-
bitman et al., who suggest multiple ways to address it. One solution is to associate with
each first-level bin a doubly-linked list pointing to all overflowing items from the bin
(the doubly-linked lists in total require at most c′εn/16 space for some universal con-
stant c′). This way, whenever an item is deleted from a first-level bin, we can replace it
in constant time with one of the items that previously overflowed from the bin.

We thereby ensure that for any sequence of poly(n) insertions and deletions such
that at most n items are actually stored in the data structure at any point in time, with
probability 1 − 2−nβ

the second level never contains more than εn/16 items. Con-
ditioned on this event, Lemma 1 implies that for any constant k > 1, the scheme A
successfully supports worst-case constant time insertions, deletions, and lookups with
probability 1 − 1/n5 logk−1(n) using space cεn/16 for some universal constant c > 0.
Thus, our combined data structure supports worst-case constant time operations with
failure probability 1/n5 logk−1(n) + 2−nβ

< 1/nlogk−1(n).
Setting ε = 16ε′/(8 + c+ c′), the two levels of our data structure use (1 + ε/2)n+

(c+c′)εn/16 = (1+ε′)n words of memory in total. Combined with the above analysis,
we obtain the following theorem.
Theorem 1. Let α be any constant 0 < α < 1. Assume there exists an nα-wise inde-
pendent hash family H such that each h ∈ H can be evaluated in constant time using
space o(n). For any constants ε′ > 0 and k > 1, there exists a data structure using
(1+ ε′)n words of memory and supports insertions, deletions, and membership queries
in worst-case O(1) time with probability 1− 1/nlogk−1(n).

3 Hash Families

The results of the previous section require an nα-wise independent hash family H such
that each h ∈ H can be evaluated in constant time using space o(n). We feel this

Cache-Oblivious Dictionaries and Multimaps with Negligible Failure Probability 209

assumption is supported in practice, for instance, by the fact that one of the most widely-
used hash functions, SHA-1, can be implemented in O(1) time even in the AC0 RAM
model. The aim of this section is to provide a careful treatment of the theoretical foun-
dations of this assumption.

Siegel’s Hash Functions. Although there are no known constructions of nα-wise inde-
pendent hash functions achieving the above desiderata, Siegel achieved a close (albeit
impractical) approximation in an influential paper [29]. Assume for the moment that the
universe size |U | is at most nr for some constant r > 0, and that the desired range of
the hash function is V , where |V | is a power of two. Siegel’s construction makes use of
a bipartite graph G with constant left-degree d. The left vertex set of G corresponds to
the universe U ; and the right vertex set is {0, . . . , nβ} for some 0 < β < 1. Each right
vertex y is assigned a random value M [y] ∈ V at initialization, and the hash value of
element x ∈ U is defined as h(x) =

⊕
(x,y)∈E(G)M [y], where

⊕
denotes the bitwise

XOR operation (if |V | is not a power of two, we can replace
⊕

with any commutative
group operation). Using a peeling argument, Siegel proves that as long as G has suit-
able vertex expansion, then the resulting hash family is nα-wise independent for some
0 < α < 1.

Naively, storing the adjacency information of G would require space Ω(|U |) =
Ω(nr), which is unacceptably large. To avoid this, Siegel uses a tensoring operation
to turn a small expander graph (which can be stored explicitly) into larger expander.
This approach increases the left degree and hence the evaluation time, but it remains
constant as long as the universe size |U | is polynomial in n.

From our usage standpoint, there are two potential sources of “failure” in Siegel’s
construction. The first is that there are currently no known explicit constructions of
unbalanced vertex expanders that are sufficient to guarantee nα-wise independence of
Siegel’s hash family. As a result, Siegel’s hash family must either be non-uniform, with
a suitable expander hardwired into the hashing algorithm, or the graph G must be gen-
erated at random. Siegel shows that for any constant c > 0, a suitable random graph
will satisfy the requisite expansion properties with probability 1− 1/nc.

The second source of failure comes into play if the universe size is super-polynomial
in n. In this case, the universe should first be “mapped down” to a set U ′ of size nr by
a hash function h′ from an almost-universal hash family H ′, before applying Siegel’s
construction to U ′. For any set T ⊆ U of size nr, the resulting hash function will be
fully independent on T , conditioned on the event that no elements in T collide under
h′, i.e., conditioned on the event that for all distinct elements w, x ∈ T , h′(x) �= h′(w).
Unfortunately, any two elements in T will collide under h′ with probability 1/nr.

In our applications, we cannot tolerate inverse-polynomial failure probabilities, and
so neither source of failure is acceptable. Addressing these sources of failure was posed
as an open question by Arbitman et al. [5]. In what follows, we give partial remedies to
these sources of failure.

Obtaining Expanders. For polynomial-sized universes, Siegel’s construction does yield
non-uniform families of nα-wise independent hash functions with O(1) evaluation time
and o(n) space usage, by hardwiring in a suitable expander. However, if one requires
a uniform algorithm, Siegel chooses the graph at random, generating a hash family H

210 M.T. Goodrich et al.

that is nα-wise independent only with probability 1 − 1/nc (this is the probability that
a randomly generated graph will satisfy the requisite expansion properties).

The most natural approach to eliminate this failure probability is to obtain explicit
constructions of suitable expanders. Sadly, we do not resolve this question here: it re-
mains an intriguing open question. Instead, we specify partial solutions to the problem.

Our first solution relies on the following observation: the probability a random graph
G fails to satisfy the requisite expansion condition is dominated by the probability that
small sets of vertices fail to satisfy the condition. Thus, one can obtain sub-polynomial
failure probability by randomly generating a graph and exhaustively checking the vertex
expansion of all sufficiently small sets. If a non-expanding set is found, the graph is
rejected and a new graph is generated. This requires quasi-polynomial pre-processing
time, but this may be acceptable in certain applications as the expensive phase need not
happen online.

Theorem 2. Assume the universe U has size nr for some constant r > 0. Then for
some α, for every pair of constants k, r′ > 0, there is a set V of size nr′ and a uniform
algorithm A outputting a collection H of functions h : U → V achieving the following
guarantees.

1. With probability 1− 1/nlogk(n) over the internal coin tosses of A, H is an nα-wise
independent family of hash functions.

2. A runs in nΘ(logk+1(n)) time.
3. Any function h ∈ H can be represented with o(n) bits and evaluated in O(1) time.

We omit the proof because of space constraints; it can be found in the full version of
the paper on the arXiv.

For polynomial-sized universes, we can instantiate the hash functions required in
Section 2 using the algorithm of Theorem 2. This introduces an additional additive
1/nlogk(n) failure probability into our dictionary structure, which does not affect our
results. We remark that the algorithm of Theorem 2 is implementable in the AC0 RAM
model, not just in the standard RAM model.

For polynomial-sized universes, a second partial solution is to avoid expensive pre-
processing phase at the expense of slightly super-constant evaluation runtime. A first
approach is to achieve this by simply increasing the degree of the randomly generated
graph to d(n), where d is some very slow-growing function of n. This reduces the
probability that the graph fails to satisfy the requisite expansion properties to 1

nΩ(d(n)) .
A problem with this approach is that the tensoring operation used by Siegel to blow up
a small expander into a larger one will cause the larger graph to have degree ω(d(n)).

A superior approach is described next.

Arbitrary Universe Sizes. We give a partial solution for achieving sub-polynomial
failure probabilities with arbitrary universe sizes.

Theorem 3. There exists some α, such that for every pair of constants r, r′ > 0, and
any function k(n) = ω(1), there is a set V of size nr′ and a uniform algorithm A
outputting a collection H of functions h : U → V achieving the following guarantees.

1. A runs in polynomial time.

Cache-Oblivious Dictionaries and Multimaps with Negligible Failure Probability 211

2. Any function h ∈ H can be represented with o(n) bits and evaluated in time
Θ(k(n)).

3. For any set T ⊆ U of size nr, it holds that with probability 1 − 1/nk(n) over the
internal coin tosses ofA, the distribution (h(x1), . . . , h(xnα)) is uniform over V nα

for any distinct x1, . . . , xnα ∈ T .

Proof. Recall that in this setting Siegel gives a uniform algorithm A′ generating a fam-
ily of hash functions H such that, with high probability over the internal coin tosses of
A′, for any set T ⊆ U of size nr, H is fully independent on all subsets of T of size at
most nα. The algorithm A′ works by first mapping the universe U down into a smaller
universe U ′ of size nr by a hash function h′ from an universal hash family H ′, and
then applying Siegel’s expander-based hash function to U ′ using a randomly-generated
expander G. As long as h′ is one-to-one on T and G is an (n, ε, d, nα)-weak expander
(see the proof of Theorem 2), then the hash family H is fully independent on all subsets
S of T of size at most nα. However, both the universe-reduction step and the expander
generation step introduce inverse-polynomial probabilities that the hash family H will
not be fully independent on all such subsets S of T .

The idea to reduce the failure probability is to evaluate k(n) independent instances
of Siegel’s hash function and XOR the results together (if |V | is not a power of two, we
replace XOR with any commutative group operation). For any set S at size at most nα,
as long as at least one of the k individual hash functions is fully independent on S, the
result will be fully independent on S.

Formally, let H1, . . . , Hk(n) be hash families generated by k(n) independent runs
of Siegel’s algorithm A′. We define our final hash family H to be {h : h(x) =⊕k(n)

i=1 hi(x),
(
h1, . . . , hk(n)

)
∈ H1 × · · · × Hk(n)}. Thus, a random element of h

corresponds to randomly picking a hash function hi from each hash family Hi, and
XORing the results together.

Let T ⊆ U be any set of size nr. An easy calculation shows that with probability
1 − nΩ(k(n)), the universe-reduction step is one-to-one on T for at least k(n)/2 runs
of A′. For each such run of A′, with probability 1 − 1/nc, the expander-generation
step successfully produces a graph with the requisite expansion properties for Hi to be
nα-wise independent on the “mapped down” universe U ′.

Thus, with probability at least 1 − nΩ(k(n)), it holds that for at least one run i of
A′, the hash family Hi is fully independent on all subsets of T of size at most nα.
That is, for any set T ⊆ U of size nr, with probability 1− 1/nΩ(k(n)), the distribution
(hi(x1), . . . , hi(xnα)) is uniform over V nα

for any distinct x1, . . . , xnα ∈ T . This is
easily seen to imply that our final hash family H satisfies the same property for any
distinct x1, . . . , xnα ∈ T . ��
Theorem 3 can be used to obtain sub-polynomial failure probabilities for super-
polynomially long sequences of data structure updates, as long as at most n items re-
side in the data structure at a time. Theorem 3 is applied on a step-by-step basis, where
the set T at each step corresponds to the n items extant in the structure. For example,
setting k(n) = Θ(log logn), we conclude that the data structure operation at any par-
ticular step can be performed in O(log logn) time with probability 1/nlog logn. If there
are n(1/2) log log n steps, then all steps succeed in O(1) worst-case time with probability
1− 1/nΩ(log logn).

212 M.T. Goodrich et al.

4 Cache-Oblivious Multimaps

In this section, we describe our cache-oblivious implementation of the multimap ADT.
To illustrate the issues that arise in the construction, we first give a simple implemen-
tation for a RAM, and then give an improved (cache-oblivious) construction for the
external memory model. Specifically, we describe an amortized cache-oblivious solu-
tion and then we describe how to de-amortize this solution.

In the implementation for the RAM model, we maintain two dictionary data struc-
tures, as described in Section 2. The first table enables fast containsItem(k, v) opera-
tions; this table stores all the (k, v) pairs using each entire key-value pair as the key,
and the value associated with (k, v) is a pointer to v’s entry in a linked list L(k) con-
taining all values associated with k in the multimap. The second table ensures fast
containsKey(k), getAll(k), and removeAll(k) operations: this table stores all the unique
keys k, as well as a pointer to the head of L(k).

Operations in the RAM Implementation

1. containsKey(k): We perform a lookup for k in Table 2.
2. containsItem(k, v): We perform a lookup for (k, v) in Table 1.
3. add(k, v): We add (k, v) to Table 1 using the insertion procedure of Section 2. We

perform a lookup for k in Table 2, and if k is not found we add k to Table 2. We
then insert v as the head of the linked list corresponding to Table 2.

4. remove(k, v): We remove (k, v) from Table 1, and remove v from the linked list
L(k); if v was the head of L(k), we also perform a lookup for k in Table 2 and
update the pointer for k to point to the new head of L(k) (if L(k) is now empty, we
remove k from Table 2.)

5. getAll(k): We perform a lookup for k in Table 2 and return the pointer to the head
of L(k).

6. removeAll(k): We lookup k in Table 2, and follow the pointer to L(k). We walk
through the linked list L(k), and for each entry (k, v) of Lk, we remove (k, v) from
Table 1. We also remove k from Table 2.

With the exception of the removeAll(k) operation, all operations above are performed in
O(1) time in the worst case with overwhelming probability by the results of Section 2.
The removeAll(k) operation takes O(1) amortized time with overwhelming probability,
because each time we remove a pair (k, v) from Table 1, we can charge the operation to
the corresponding insertion of the pair (k, v). We will explain how to de-amortize the
removeAll(k) operation in Section 4.2

Two major issues arise in the above construction. First, the space-usage remains
O(n) only if we assume the existence of a garbage-collector for leaked memory, as
well as a memory allocation mechanism, both of which must run in O(1) time in the
worst case. Without the memory allocation mechanism, inserting v into L(k) cannot be
done in O(1) time, and without the garbage collector for leaked memory, space cannot
be reused after remove and removeAll operations. Second, in order to extract the actual
values from a getAll(k) operation, one must actually traverse the list L(k). Since L(k)
may be spread all over memory, this suffers from poor locality.

We now present our cache-oblivious multimap implementation. Our implementation
avoids the need for garbage collection, and circumvents the poor locality of the above

Cache-Oblivious Dictionaries and Multimaps with Negligible Failure Probability 213

getAll operation. We do require a cache-oblivious mechanism to allocate and deallocate
power-of-two sized memory blocks with constant-factor space and I/O overhead; this
assumption is justified by the results of Brodal et al. [7], who design a system for
allocating and deallocating memory using constant time in the worst case, and sub-
linear (indeed sub-polynomial, i.e. o(nδ) for any δ > 0) auxiliary storage.

Amortized Cache-Oblivious Multimaps. As in the RAM implementation, we keep
two dictionary data structures. In Table 1, we store all the (k, v) pairs using each entire
key-value pair as the key. With each such pair, we store a count, which identifies an
ordinal number for this value v associated with this key, k, starting from 0. For example,
if the keys were (4, Alice), (4, Bob), and (4, Eve), then (4, Alice) might be pair 0, (4,
Bob) pair 1, and (4, Eve) pair 2, all for the key, 4.

In Table 2, we store all the unique keys. For each key, k, we store a pointer to the
array,Ak, that stores all the key-value pairs having key k, stored in order by their ordinal
values from Table 1. With the record for a key k, we also store nk, the number of pairs
having the key k, i.e., the number of key-value pairs in Ak. We assume that each Ak is
maintained as an array that supports amortized O(1)-time element access and addition,
while maintaining its size to be O(nk).

Operations

1. containsKey(k): We perform a lookup for k in Table 2.
2. containsItem(k, v): We perform a lookup for (k, v) in Table 1.
3. add(k, v): After ensuring that (k, v) is not already in the multimap by looking it up

in Table 1, we look up k in Table 2, and add (k, v) at index nk of the arrayAk, if k is
present in this table. If there is no key k in Table 2, then we allocate an array, Ak , of
initial constant size. Then we add (k, v) to Ak[0] and add key k to Table 2. In either
case, we then add (k, v) to Table 1, giving it ordinal nk, and increment the value of
nk associated with k in Table 2. This operation may additionally require the growth
of Ak by a factor of two, which would then necessitate copying all elements to the
new array location and updating the pointer for k in Table 2.

4. remove(k, v): We look up (k, v) in Table 1 and get its ordinal count, i. Then we
remove (k, v) from Table 1, and we look up k in Table 2, to learn the value of nk and
get a pointer to Ak. If nk > 1, we swap (k′, v′) = Ak[nk − 1] and (k, v) = Ak[i],
and then remove the last element of Ak. We update the ordinal value of (k′, v′)
in Table 1 to now be i. We then decrement the value of nk associated with k in
Table 2. If this results in nk = 0, we remove k from Table 2. This operation may
additionally require the shrinkage of the array Ak by a factor of 2, so as to maintain
the O(n) space bound.

5. getAll(k): We look up k in Table 2, and then list the contents of the nk elements
stored at the array Ak indexed from this record.

6. removeAll(k): For all entries (k, v) of Ak, we remove (k, v) from Table 1. We also
remove k from Table 2 and deallocate the space used for Ak.

In terms of I/O performance, containsKey(k) and containsItem(k, v) clearly require
O(1) I/Os in the worst case. getAll(k) operations use O(1 + nk/B) I/Os in the worst
case, because scanning an array of size nk uses O(�nk/B�) I/Os, even though we
don’t know the value of B. removeAll(k) utilizes O(nk) I/Os in the worst-case with

214 M.T. Goodrich et al.

overwhelming probability, but these can be charged to the insertions of the nk values
associated with k, for O(1) amortized I/O cost. add(k, v) and remove(k, v) operations
also require O(1) amortized I/Os with overwhelming probability; the bound is amor-
tized because there is a chance this operation will require a growth or shrinkage of the
array Ak , which may require moving all (k, v) values associated with k and updating
the corresponding pointers in Table 1.

In the next sections, we explain how to deamortize add(k, v), remove(k, v), and
removeAll(k) operations.

4.1 De-amortizing Add(k, v) and Remove(k, v) Operations

To de-amortize the array operations, we use a rebuilding technique, which is standard
in de-amortization methods (e.g., see [28]).

We consider the operations needed for insertions to an array; the methods for dele-
tions are similar. The main idea is that we allocate arrays whose sizes are powers of 2.
Whenever an array, Ak, becomes half full, we allocate an array, A′

k, of double the size
and start copying elements Ak in A′

k. In particular, we maintain a crossover index, iAk
,

which indicates the place in Ak up to which we have copied its contents into A′
k . Each

time we wish to access Ak during this build phase, we copy two elements of Ak into
A′

k, picking up at position iAk
, and updating the two corresponding pointers in Table 1.

Then we perform the access of Ak, as would otherwise, except that if we wish access
an index i < iAk

, then we actually perform this access in A′
k. When we are done build-

ing A′
k , we deallocate the memory used for array Ak. Since we copy two elements of

Ak for every access, we are certain to complete the building of A′
k prior to our need-

ing to allocate a new, even larger array, even if all these accesses are insertions. Thus,
each access of our array will now complete in worst-case O(1) time with overwhelm-
ing probability. It immediately follows that add(k, v) and remove(k, v) operations run
in O(1) worst-case time.

4.2 De-amortizing removeAll(k) Operations

We describe two solutions for de-amortizing the removeAll(k) operation. The first is
conceptually simpler but induces a constant-factor increase in memory usage; the sec-
ond avoids using more memory than the de-amortized scheme above.

At a high level, in order to ensure removeAll(k, v) runs in worst-case O(1) time,
we simply remove k from Table 2 and deallocate the space used for the array Ak.
We do not update the corresponding pointers of (k, v) pairs in Table 1 however; this
leaves “spurious” pointers in Table 1, which we define to be (k, v) pairs satisfying the
property that removeAll(k) has been called after the most recent insertion of (k, v). We
need to explain how to modify all the other operations to deal with the presence of these
spurious pointers.

First Solution. Our first solution is to maintain a global clock t, which is initialized to
zero and is incremented after every operation. Assuming there are poly(n) total opera-
tions, the global time t can always be stored using O(1) words of memory. Whenever
we insert a key k into Table 2, or a key-value pair (k, v) into Table 1, we store with it

Cache-Oblivious Dictionaries and Multimaps with Negligible Failure Probability 215

the value t at the time of insertion. These timestamps increase the space usage of Tables
1 and 2 by a constant factor.

Whenever an operation invokes a lookup of a key-value (k, v) pair in Table 1 and
finds that it is present, we have to check whether (k, v) is spurious. We do this by
looking up key k in Table 2. If k is not found, then we know (k, v) is spurious, and
we remove (k, v) from Table 1 and proceed as if (k, v) was not found in Table 1. If k
is found in Table 2, we compare the timestamp t associated with k in Table 2 to the
timestamp t′ associated with (k, v) in Table 1. (k, v) is spurious if and only if t′ < t; in
the former case we remove (k, v) from Table 1 and proceed as if (k, v) was not found
in Table 1; in the latter case we proceed as if (k, v) was found in Table 1.

The final issue we must deal with is ensuring that the presence of spurious key-value
pairs does not cause the dictionary structure used to implement Table 1 to fail or to
overflow its (1 + ε)n space bound. Recall that our dictionary structure consists of two
levels, where the first level is implemented as an array of constant-sized “bins”, and the
second level is implemented as an array of Q∗-heaps, where each Q∗-heap can store
logk+2(n) items. Whenever we go to insert a (k, v) pair into this data structure, we
first check whether any items in its first-level bin are spurious, and delete any spurious
items from the first-level bin – this can be done in O(1) time because the first-level bin
has constant size. If there is room in the first-level bin after deleting spurious items, we
insert the (k, v) pair into the bin and return. This ensures that spurious items residing
in the first layer of our dictionary structure never affect the capacity of the structure. If
we fail to insert the item (k, v) into the first layer of our structure, we attempt to place
it into the second level of the data structure.

Dealing with spurious items in the second layer of our structure is more complicated:
because a Q∗-heap may contain logk+2(n) many items, we do not have time to iterate
through all the items in the Q∗-heap to which (k, v) is assigned and check if any of the
items are spurious. Instead, we increase the capacity of each Q∗-heap from logk+2(n)
items to 2 logk+2(n) items. We also maintain with each Q∗-heap Q a doubly-linked list
L(Q) containing all items in Q; in addition we maintain for each item in Q a pointer to
its entry in L(Q). These pointers into L(Q) are used so that, when an item is deleted
fromQ, we can also remove its entry fromL(Q) in constant time. Doubling the capacity
of all the Q∗-heaps, as well as maintaining the lists L(Q) and the pointers into L(Q)
causes the space usage of the second layer of our dictionary structure to increase by a
constant factor, which can be absorbed into the parameter ε.

Recall that in the absence of spurious items, with all but sub-polynomial probability,
no Q∗-heap should ever contain more than logk+2(n) items. So when a Q∗-heap Q
surpasses logk+2(n) items, we know (with all but sub-polynomial probability) that this
is due to the presence of spurious items. At this point, every time an item is inserted into
Q, we take two items from the front of the doubly-linked list L(Q) and check if they
are spurious. Each time we find a spurious item, we delete it from Q and from the list
L(Q); otherwise we move the item to the end of the list L(Q). This ensures that there
are never more than logk+2(n) spurious items in any Q∗-heap at any one time, so with
all but sub-polynomial probability, no Q∗-heap will overflow its 2 logk+2(n) capacity.

Second Solution. Our second solution differs from our first only in the manner in which
we check whether a (k, v) pair is spurious. Specifically, we can avoid the use of times-

216 M.T. Goodrich et al.

tamps. As before, whenever an operation invokes a lookup of a key-value (k, v) pair
in Table 1 and finds that it is present, we have to check whether (k, v) is spurious. To
accomplish this, we first lookup key k in Table 2. If k is not found, then we know (k, v)
is spurious, and we remove (k, v) from Table 1 and proceed as if (k, v) was not found
in Table 1. If k is found in Table 1, then we need to determine whether or not (k, v) is
actually a member of the array Ak.

To determine this, let i be the count associated with pair (k, v) in Table 1. Recall i is
supposed to represent (k, v)’s position in the arrayAk if (k, v) is not spurious. We check
if i < nk (recall nk is stored with k in Table 2 and gives the number of pairs having the
key k); if not we know (k, v) is spurious. If i < nk, we check whether Ak[i] = v. This
equality holds if and only if (k, v) is not spurious. Finally, it is straightforward to modify
this solution to work in the case where we are in the process of moving items from an
old array Ak to a new array A′

k as in the description of the de-amortized add(k, v) and
remove(k, v) operations.

All time bounds in Table 1 follow.

5 Conclusion

In this paper, we have studied dictionary and multimap algorithms that support worst-
case constant-time operations with sub-polynomial failure probability. Such structures
should prove useful in cryptographic applications, as well as in long-running applica-
tions or those in which the duration of deployment is not known in advance. Our mul-
timap solution is suitable for the cache-oblivious I/O model, and is to the best of our
knowledge the first dynamic multimap achieving asymptotically optimal performance
using linear space in this model.

Several interesting questions remain for future work. Are there (mildly) explicit con-
structions of unbalanced bipartite expanders sufficient to implement Siegel’s hash fam-
ily? Combined with our results, for polynomial sized universes this would yield an
algorithm in the AC0 RAM model for maintaining a dynamic dictionary with sub-
polynomial failure probability, (1 + ε)n space, polynomial preprocessing time, and
worst-case constant time operations. More ambitiously, we ask whether dictionaries
supporting worst-case constant time operations with sub-polynomial failure probabili-
ties can be achieved in the standard RAM model with quasipolynomial sized universes?

Acknowledgments. We are grateful to Jon Ullman and Mikkel Thorup for enlightening
discussions. This research was supported in part by the U.S. National Science Founda-
tion, under grants 0713046, 0830403, and 0847968, and by an Office of Naval Research:
Multidisciplinary University Research Initiative (MURI) Award, number N00014-08-
1-1015. Justin Thaler is supported in part by the Department of Defense (DoD) through
the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program,
and an NSF Graduate Research Fellowship. Michael Mitzenmacher was supported
in part by the U.S. National Science Foundation, under grants 0964473, 0915922,
0721491, and 1011840.

Cache-Oblivious Dictionaries and Multimaps with Negligible Failure Probability 217

References

1. Andersson, A., Miltersen, P.B., Riis, S., Thorup, M.: Static Dictionaries on AC0 RAMs:
Query Time Θ(

√
log n/ log log n) is Necessary and Sufficient. In: Proc. of FOCS, pp. 441–

450 (1996)
2. Andersson, A., Miltersen, P.B., Thorup, M.: Fusion trees can be implemented with AC0

instructions only. Theoretical Computer Science 215(1-2), 337–344 (1999)
3. Angelino, E., Goodrich, M.T., Mitzenmacher, M., Thaler, J.: External-Memory Multimaps.

In: Asano, T., Nakano, S.-i., Okamoto, Y., Watanabe, O. (eds.) ISAAC 2011. LNCS,
vol. 7074, pp. 384–394. Springer, Heidelberg (2011)

4. Arbitman, Y., Naor, M., Segev, G.: De-amortized Cuckoo Hashing: Provable Worst-Case
Performance and Experimental Results. In: Albers, S., Marchetti-Spaccamela, A., Matias,
Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 107–118.
Springer, Heidelberg (2009)

5. Arbitman, Y., Naor, M., Segev, G.: Backyard cuckoo hashing: Constant worst-case operations
with a succinct representation. In: Proc. of FOCS, pp. 787–796 (2010)

6. Bender, M.A., Demaine, E.D., Farach-Colton, M.: Cache-oblivious b-trees. In: Proc. of
FOCS, pp. 399–409 (2000)

7. Brodal, G.S., Demaine, E.D., Munro, I.: Fast allocation and deallocation with an improved
buddy system. Acta Inf. 41, 273–291 (2005)

8. Brodal, G.S., Fagerberg, R., Jacob, R.: Cache oblivious search trees via binary trees of small
height. In: Proc. of SODA, pp. 39–48 (2002)

9. Brodal, G.S., Fagerberg, R., Vinther, K.: Engineering a cache-oblivious sorting algorithm. J.
Exp. Algorithmics 12, 2.2:1–2.2:23 (2008)

10. Büttcher, S., Clarke, C.L.A.: Indexing time vs. query time: trade-offs in dynamic information
retrieval systems. In: Proc. of CIKM, pp. 317–318 (2005)

11. Büttcher, S., Clarke, C.L.A., Lushman, B.: Hybrid index maintenance for growing text col-
lections. In: Proc. of SIGIR, pp. 356–363 (2006)

12. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn.
MIT Press, Cambridge (2001)

13. Cutting, D., Pedersen, J.: Optimization for dynamic inverted index maintenance. In: Proc. of
SIGIR, pp. 405–411 (1990)

14. Fredman, M.L., Willard, D.E.: Surpassing the information theoretic bound with fusion trees.
J. Comput. System Sci. 47, 424–436 (1993)

15. Frigo, M., Leiserson, C.E., Prokop, H., Ramachandran, S.: Cache-oblivious algorithms. In:
Proc. of FOCS, pp. 285–298 (1999)

16. Goodrich, M.T., Hirschberg, D.S., Mitzenmacher, M., Thaler, J.: Fully de-amortized cuckoo
hashing for cache-oblivious dictionaries and multimaps. CoRR, abs/1107.4378 (2011)

17. Goodrich, M.T., Mitzenmacher, M.: Privacy-Preserving Access of Outsourced Data via
Oblivious RAM Simulation. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part
II. LNCS, vol. 6756, pp. 576–587. Springer, Heidelberg (2011)

18. Guo, R., Cheng, X., Xu, H., Wang, B.: Efficient on-line index maintenance for dynamic text
collections by using dynamic balancing tree. In: Proc. of CIKM, pp. 751–760 (2007)

19. Kirsch, A., Mitzenmacher, M.: Using a queue to de-amortize cuckoo hashing in hardware.
In: Proc. of 45th Allerton Conference, pp. 751–758 (2007)

20. Kirsch, A., Mitzenmacher, M., Wieder, U.: More robust hashing: cuckoo hashing with a
stash. SIAM J. Comput. 39, 1543–1561 (2009)

21. Knuth, D.E.: Sorting and Searching. The Art of Computer Programming, vol. 3. Addison-
Wesley, Reading (1973)

218 M.T. Goodrich et al.

22. Lester, N., Moffat, A., Zobel, J.: Efficient online index construction for text databases. ACM
Trans. Database Syst. 33, 19:1–19:33 (2008)

23. Lester, N., Zobel, J., Williams, H.: Efficient online index maintenance for contiguous inverted
lists. Inf. Processing & Management 42(4), 916–933 (2006)

24. Luk, R.W., Lam, W.: Efficient in-memory extensible inverted file. Information Sys-
tems 32(5), 733–754 (2007)

25. Mitzenmacher, M., Upfal, E.: Probability and computing - randomized algorithms and prob-
abilistic analysis. Cambridge University Press (2005)

26. Pagh, R., Rodler, F.: Cuckoo hashing. Journal of Algorithms 52, 122–144 (2004)
27. Pagh, R., Wei, Z., Yi, K., Zhang, Q.: Cache-oblivious hashing. In: Proc. of PODS, pp. 297–

304 (2010)
28. Rao Kosaraju, S., Pop, M.: De-amortization of Algorithms. In: Hsu, W.-L., Kao, M.-Y. (eds.)

COCOON 1998. LNCS, vol. 1449, pp. 4–14. Springer, Heidelberg (1998)
29. Siegel, A.: On universal classes of extremely random constant-time hash functions. SIAM J.

Comput. 33(3), 505–543 (2004)

30. Thorup, M.: On AC0 implementations of fusion trees and atomic heaps. In: Proc. of SODA,
pp. 699–707 (2003)

31. Willard, D.E.: Examining computational geometry, van emde boas trees, and hashing from
the perspective of the fusion tree. SIAM J. Comput. 29, 1030–1049 (1999)

32. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comput. Surv. 38 (July
2006)

An Efficient Generator

for Clustered Dynamic Random Networks�

Robert Görke, Roland Kluge, Andrea Schumm,
Christian Staudt, and Dorothea Wagner

Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Germany

Abstract. A planted partition graph is an Erdős-Rényi type random
graph, where, based on a given partition of the vertex set, vertices in
the same part are linked with a higher probability than vertices in dif-
ferent parts. Graphs of this type are frequently used to evaluate graph
clustering algorithms, i.e., algorithms that seek to partition the vertex
set of a graph into densely connected clusters. We propose a self-evident
modification of this model to generate sequences of random graphs that
are obtained by atomic updates, i.e., the deletion or insertion of an edge
or vertex. The random process follows a dynamically changing ground-
truth clustering that can be used to evaluate dynamic graph clustering
algorithms. We give a theoretical justification of our model and show
how the corresponding random process can be implemented efficiently.

1 Introduction

The broad variety of network structures we encounter in many fields of science
and everyday life can mostly be modelled as graphs, where entities are mapped
to vertices and the observed relationships to edges. It is not so clear how to
subdivide the vertices of these graphs into clusters. In fact, no single answer to
this question exists but a broad variety of approaches has been proposed in the
past [1,2]. What all these measures agree on, is that clusters are characterized as
densely connected subgraphs by some means or other. Frequently, the networks
under consideration evolve over time, as vertices and links between them may
appear or disappear. This can be either caused by random fluctuations or the
split or merge of communities.

Even though real-world dynamic clustered instances with a reference cluster-
ing exist – that is, we know the clustering of the data in advance – there are
several reasons why we are interested in generating artificial test data: First,
we would like to produce graphs with a set of predefined properties such as
the distribution of vertex degrees or size of the clusters, enabling us to examine
the behavior of dynamic clustering algorithms under almost arbitrary circum-
stances. Second, real-world instances are not numerous and, most often, subject
to confidentiality agreements.

� This work was partially supported by the DFG under grant WA 654/19-1 and WA
654/15-1.

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 219–233, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

220 R. Görke et al.

Numerous results on random graphs exist [3]. One of the oldest and most
fundamental models is the one introduced by Gilbert [4], in which each possible
edge is present with uniform probability. This model can be altered in a straight-
forward way to incorporate a planted partition, i.e., a partition of the vertex set
such that vertices in the same part are connected with a higher probability than
vertices in different parts [5,6,7]. These graphs are frequently used to evaluate
static graph clustering algorithms [1]; the big advantage of this approach is that
the clustering obtained by an algorithm can be compared to the planted partition
or ground-truth clustering used by the generator, which yields a possibility to
assess clusterings independently of any particular quality measure. Well-known
examples of random graphs based on this concept are the GN benchmark intro-
duced by Girvan and Newman [8] and the relaxed cavemen graphs [9].

Prominent and fundamental models of social networks include small world
networks [10] and the Barabási-Albert model [11]. The latter can be seen as a
dynamic model for graph growth according to a preferential attachment process.
Numerous variations thereof exist, most of which are targeted in capturing more
accurately properties observed in real world social networks [12,13]. These mod-
els typically only simulate network growth and do not incorporate a known refer-
ence clustering. An exception is the model of Bagrow [14], where, starting from
a graph generated according to Barabási-Albert, edges are randomly rewired
to incorporate a given planted partition. The well-known LFR benchmark in-
troduced by Lancichinetti and Fortunato is generated in a similar way [15].
While these approaches combine a reference partitioning with a more realistic
degree distribution, the inherently dynamic process is lost. Other modifications
of the planted partition model include the generalization to weighted [16] and
bipartite [17] graphs, as well as hierarchical [18] and overlapping [19] reference
clusterings. Aldecoa and Maŕın [20] propose to interpolate between two graphs
with a strong clustering structure by rewiring edges at random. This process
does not keep track of an explicit reference clustering over time, however, the
assumption is that intermediate clusterings should have low distance to both
the initial and the resulting clustering. Brandes and Mader [21] use as data for
their experiments exponential-family random graphs [22] as basis and stochastic
actor-oriented models [23] to describe the evolution between two networks. Both
steps rely on properties of real-world dynamic networks that are given as input.

Other models for dynamic graphs based on random evolution according to
a given Markov chain include edge-Markovian Dynamic Graphs [24,25]. This
model does not incorporate a reference clustering but uses two fixed parameters
p and q that represent the edge birth-rate and edge death rate of each possible
edge. In contrast to the model we consider, an arbitrary number of edge deletions
and insertion can take place in each time step.

Our Contribution. In this work, we augment the planted partition model
by allowing dynamic events ; edge and vertex events add or delete an edge or
vertex, whereas cluster events split or merge clusters. More formally, we gen-
erate a time series of random graphs G0, . . . , Gn, where Gt emerges from Gt−1

via atomic updates, i.e., the insertion or deletion of an edge or vertex. Over the

An Efficient Generator for Clustered Dynamic Random Networks 221

whole generation process, the generator keeps track of a (dynamic) ground truth
clustering. The probability of atomic events is chosen in a way that adheres to
this clustering, without losing randomness. Graph growth/shrinkage and cluster
dynamics can be simulated, steered by input parameters. Together with the ben-
efit of the reference clustering, this can be used to thoroughly evaluate dynamic
graph clustering algorithms, i.e., algorithms that incrementally update the cal-
culated clustering as new node/edge events occur. A preliminary version of our
generator is documented in our technical report [26] and the dissertation of one
of the authors [27], and has been used in [28]. The new generator documented
here differs fundamentally in the data structures used, which allows for faster
practical and worst case running time, as well as linear space complexity. As
the random model and parameters used are taken from the old generator, their
description closely adheres to the technical report. Additional illustrations and
proofs can be found in the full version of this paper [29]. Our generator is free
for use and can be downloaded as Java software from our project page1.

Notation. Let G = (V,E) be an undirected, unweighted, and simple graph,
i.e., G is loopless and has no parallel edges2. If not otherwise stated, n and m
will always denote the cardinality of the sets V and E, respectively. The degree
deg v of a vertex v is the number of its adjacent vertices. The set of all possible
undirected edges in G is denoted with

(
V
2

)
. For a given graph G its complement

graph G is defined as G = (V = V,E =
(
V
2

)
\ E). The pairs of vertices in E

are called non-edges of G and m := |E|. A clustering C = {C1, . . . , Ck} is a
partition of V where each of the Ci is non-empty. If not defined otherwise, the
variable k will always refer to the number of clusters in C. C(v) denotes the
cluster in C that contains vertex v. For a cluster C the graph G(C) = (C,E(C))
is the vertex induced subgraph of C, where E(C) are called intracluster edges
of C. We identify a cluster C with the set of vertices it constitutes and with
its vertex-induced subgraph of G. m(C) is the number of edges in G(C) and

m(C) =
∣∣∣(V (C)

2

)
\ E(C)

∣∣∣ is the number of intracluster non-edges of C. Edges

having endpoints in two distinct clusters are called intercluster edges ; the number
of intercluster edges will be denoted with minter.

A Markov chain is a pair M = (S, P), where S is a finite set of states and P
a row stochastic matrix containing transition probabilities between the states.
C ⊆ S is closed if for all i ∈ C and j ∈ S \ C the transition probability from
i to j is 0. M is irreducible, if there is no proper closed subset of S. We call a
distribution vector w stationary if w is a left eigenvector of P .

2 Static Model

Gilbert’s model on the generation of random graphs with uniform edge proba-
bility [4] can be easily modified to incorporate a planted partition [6,7]. The idea

1 http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/dyngen
2 Throughout this work, we will only consider graphs with this property.

http://i11www.iti.uni-karlsruhe.de/en/projects/spp1307/dyngen

222 R. Görke et al.

behind this random model, which we will call G(n, pin, pout), is that vertices in
the same cluster should be linked with high probability pin, whereas intercluster
edges should be present with a lower probability pout, i.e., we always assume
pin > pout.

The parameter n denotes the number of vertices. Edges are added randomly
according to the following process. The generation is based on a fixed ground
truth clustering C = {C1, . . . , Ck} of the vertices. We chose to set pout to a single
value, whereas pin is a list of length k: pin =

(
pin(C1), . . . , pin(Ck)

)
. For two

vertices u and v the probability for edge e = {u, v} to exist in a graph created
with G(n, pin, pout) is called edge probability p(e) = p(u, v), where

p(u, v) =

{
pin(Ci) u, v ∈ Ci

pout otherwise

The probability of a graph G according to this model is thus

p(G) =
∏
e∈E

p(e) ·
∏
e∈E

(1 − p(e))

Our dynamic generator is strongly based on this concept, and the first graph in
the generated sequence is a G(n, pin, pout) graph. The number of clusters as well
as a list of intracluster probabilities and the uniform intercluster probability pout
are input parameters. Cluster sizes can either be set manually or determined
automatically by the generator. In the latter case, we choose the cluster of a
vertex uniformly at random which entails a binomial distribution of the cluster
sizes with mean n

k .
Furthermore we introduce a coefficient β which skews the binomial distribu-

tion as follows (β = 1 in the unskewed case): Each cluster Ci is assigned to a
subinterval

[
i−1
k , i

k

)
of [0, 1). When searching for a cluster to add a new vertex

to, we draw an integer i ∈ [0, k − 1]. Now, we add the vertex to the cluster

which is assigned to the surrounding interval of
(
i
k

)β
. Examples for cluster size

distributions with different values of β can be found in our technical report [26].

3 Edge Dynamics

Neglecting cluster dynamics for the moment, we describe the random process
we use for edge dynamics, along with some theoretical properties of the random
sequence generated. We further give details on how this process is implemented
in our generator, together with worst case guarantees on running times.

3.1 Associated Markov Chain and Distribution

At first glance, we would like to have a random process that triggers an edge
operation, i.e., insertion or deletion, in each time step such that the relative
frequency of a graph G in this sequence follows its probability p(G) in the

An Efficient Generator for Clustered Dynamic Random Networks 223

G(n, pin, pout) model. Unfortunately, such a random process does not have to
exist in general: Consider for example the simple case that we have two vertices
and the probability of the edge between these equals 0.1. Under these assump-
tions, the probability of the empty (complete) graph on two vertices equals 0.9
(0.1), respectively. On the other hand, there is only one possible edge operation
in each state. Hence, each random sequence alternates between the states, which
can never lead to the assumed probabilities.

There is however a simple random process that follows prescribed edge proba-
bilities if we allow for repeated occurrences of a graph in the sequence. This pro-
cess chooses in each step a pair of vertices u and v uniformly at random, deletes
the edge {u, v} if it exists and (re)inserts it with probability p(u, v). There is a
natural correspondence between this procedure and a Markov chain M ′ whose
states represent all possible (labeled) graphs on n vertices. It is not hard to see
that G(n, pin, pout) is the unique stationary distribution of this chain. Thus, if
we choose our initial state according to this distribution, the expected relative
frequency of a graph generated by this Markov chain follows G(n, pin, pout).

However, in the context of evaluating dynamic algorithms, we are typically
interested in sequences of graphs such that consecutive graphs follow from each
other by atomic changes. We therefore slightly modify M ′ such that each time
step that does not change the graph is discarded and call the resulting Markov
chainM . Let PE :=

∑
e∈E

(
1−p(e)

)
and PE :=

∑
e∈E p(e). Then, the probability

pdel(u, v) that one step of M deletes an existing edge {u, v} is

pdel(u, v) =

(
n
2

)
·
(
1− p(u, v)

)∑
e∈E

[(
n
2

)
·
(
1− p(e)

)]
+
∑

e∈E

[(
n
2

)
· p(e)
] = 1− p(u, v)

PE + PE

and the probability pins(u, v) of inserting a non-existing edge is

pins(u, v) =

(
n
2

)
· p(u, v)∑

e∈E

[(
n
2

)
·
(
1− p(e)

)]
+
∑

e∈E

[(
n
2

)
· p(e)
] = p(u, v)

PE + PE

.

Intuitively, we expect the relative frequency of unlikely states in the sequence
generated by M to be slightly larger than in the sequence generated by M ′ and
vice versa, as they are less often discarded. The following theorem, a proof of
which can be found in [29], makes this intuition precise.

Theorem 1. If we choose the initial graph G0 according to G(n, pin, pout), the
expected relative frequency of a graph G = (V,E) in a sequence R generated by
M is

p(G) ·
[∑

e∈E

(
1− p(e)

)
+
∑

e∈E p(e)

2 ·
∑

e∈(V2) p(e)
(
1− p(e)

)
]

Until now, we have assumed that the initial graph is a G(n, pin, pout) graph and
that the following time steps are obtained by mere edge dynamics. As motivated
in the introduction, our generator also incorporates vertex and cluster dynam-
ics, which we will introduce later on. The latter two types of dynamics disturb
the probability distribution in a way that is difficult to analyze. However, as

224 R. Görke et al.

it is always possible to reach any graph from any other graph in a finite num-
ber of steps with a positive probability, M is irreducible. The expected relative
frequency in Theorem 1 is therefore the only stationary distribution of M and
we can expect the relative frequency of graphs to get close to this distribution
after a sufficiently large number of edge operations following vertex or cluster
events [30].

3.2 Data Structures and Implementation

After a brief description of how vertex pairs can be enumerated continuously, we
introduce the dynamic data structures our generator builds upon. In the second
part, we show how these data structures can be used to efficiently implement
edge dynamics.

Enumerating Vertex Pairs. To simplify the process of drawing random edges,
we will use a bijection between pairs of vertices and integers between 0 and

(|V |
2

)
proposed by Batagelj and Brandes [31] to enumerate potential edges. Figure 1
intuitively illustrates this bijection by using the adjacency matrix of the graph.
As we only consider undirected graphs, potential edges correspond to the entries
below the diagonal. These entries can be enumerated by traversing this sub
matrix likewise. For given vertices u and v, the index e(u, v) can be obtained by

n−1

0

0 n−1

0
1 2

. . .

1
2

3 4 5

Fig. 1. Indexing scheme

e(u, v) =

u−1∑
k=0

k + v =
1

2
(u − 1)u+ v

Vice versa, given the edge index e(u, v), the
corresponding vertices u and v can be found
as follows:

u = 1 +

⌊
−1

2
+

√
1

4
+ 2 · e(u, v)

⌋

v = e(u, v)− 1

2
u(u− 1)

Random Binary Selection Tree. In order to choose the next edge to be
added or deleted, we need a data structure that allows us to efficiently draw an
element from a weighted set O = {o1, . . . , on} such that the probability to choose
a certain element is proportional to its weight. Given such a data structure, a
näıve generator could simply store each potential edge {u, v} with weight p(u, v)
and each non-edge with weight 1− p(u, v) and iteratively draw edges to add or
delete. Later on, we will show that one entry for each cluster rather than for
each edge is sufficient.

A simple solution for such a data structure is an array A storing prefix sums
of the weights, i.e., A[k] =

∑k−1
i=1 w(oi), 1 ≤ k ≤ n+ 1. Let W be the sum of all

An Efficient Generator for Clustered Dynamic Random Networks 225

weights. Then we can draw a uniformly distributed random number x in [0,W)
and use binary search to find the index k such that A[k] ≤ x < A[k+1]. It is easy
to see that this process selects each element ok with probability w(ok)/W . For
static sets this approach works well, however, we will need to update weights
frequently, and to add and delete elements occasionally. Updating the prefix
sums has linear worst-case complexity, which we would like to avoid.

We therefore use a complete binary tree to store the elements. We define each
vertex of this tree to be a tuple qi = (oi, wi, li, ri), where oi is an element, wi

is its associated weight w(oi), li is the sum of the weights in the left subtree
and ri is the sum of weights in its right subtree. The weight lm and rm of a
leaf qm are simply 0. Contrary to the prefix sum array, inserting and deleting
elements as well as weight updates can be done in logarithmic time. To keep
the tree balanced, new elements are inserted as leaves with minimum distance
to the root and deleted elements are replaced by a leaf element with maximum
distance to the root. Afterwards, weight changes have to be propagated on the
path(s) to the root.

The procedure for the selection of an element starts at the root s by drawing a
random number x from the interval [0, ls+ws+rs). Now there are three possible
ranges for x: if ls ≤ x < ls +ws, the element is returned; if x < ls, the carryover
x is sent to the left subtree; and if ls +ws ≤ x, the carryover x−ws − ls is sent
to the right subtree. The procedure continues recursively from there until an
element is returned after at most O(log n) steps. The correctness of the selection
process can be seen by constructing an array with prefix sums of the weights
such that elements in the array are ordered according to an inorder traversal
of the tree. Selecting an element in the tree is equivalent to a binary search in
this array. An example for a random binary selection tree and the corresponding
array can be found in the full version [29].

Virtual Fisher Yates Shuffle. As edges between pairs of vertices in the same
cluster are equiprobable, using a binary tree to store all intracluster vertex pairs
is quite inefficient. Instead, we use a modified Fisher-Yates shuffle [32] for this
task. A Fisher-Yates shuffle is a simple method to uniformly sample without
replacement from a given set of n elements. The elements are stored in an array
of size n with indices from 0 to n − 1 and the border index i of the shuffle is
initially set to 0. In each step, a random number r between i and n−1 is drawn,
the corresponding element at index r is marked as selected and swapped with
the element at index i. Then, the border index i is increased by 1. It is easy
to see that each element can only be chosen once and the probability to choose
each subset of size k is the same.

A drawback of this approach is that we have to enumerate and store each
element explicitly. For elements that can be easily enumerated it is more efficient
to store an implicit representation of this array one of which is the virtual Fisher-
Yates shuffle introduced by Batagelj and Brandes [31].

Let i be the number of elements drawn so far, L be the set of indices smaller
than i that have not yet been drawn and H the set of indices at least i that
have been drawn. In our view, the indices in L and H are “exceptions from the

226 R. Görke et al.

Table 1. Illustrative figures for select. Index r ∈ {i, . . . , n− 1} is drawn uniformly at
random.

Initial state Final state

Case 1 i r i r

Case 2 i rj i rj

Case 3 i rs i rs

Case 4 i rjs i rjs

rule that small indices are selected and large indices unselected”. The crucial
observation is that the cardinality of L and H is equal. Hence, we can define a
bijection from H to L and store it in a map replace. Similarly to the original
Fisher-Yates shuffle, we can now iteratively draw a random number r between i
and n−1. If replace(r) =⊥, i.e., if there is no entry for r in the map, index r has
not yet been selected and we select the corresponding element. If replace(r) = s,
we choose index s instead. This process guarantees that we draw in each step
an unselected element with uniform probability.

After we have selected the element, we have to update the map such that it
is still guaranteed that each element in L is assigned to a corresponding element
in H . Depending on the previous state of the shuffle, we have to consider the
four cases shown in Table 1. Entries of the form replace(x) = y are depicted
as arrows from x to y and the thick line marks the border between elements
with index less than i and larger i. It is easy to see that in each case a constant
number of lookup, delete and insert operations in replace suffices. If we assume
that the data structure we use for the map replace is a binary search tree,
these operations take logarithmic time. Hence, the time complexity of choosing
the next element is in O(log n).

Unlike the generation of static random graphs, we also need to delete edges
over time. To this end, we have to modify the virtual Fisher-Yates shuffle slightly
to deselect already selected numbers, i.e., putting them once again in the set
of selectable elements. This can be done by making the pointers bidirectional,
i.e., for each entry of the form replace(j) = i, we add a corresponding entry
replace(i) = j. Deselection now works analogously to selection: First, we draw
a random number r in the interval [0, i−1]. If there is no entry for r in replace,
r is a currently selected index. In this case, we undo the selection by setting
replace(i− 1) = r and vice versa and move the border one index to the left. If
r is an unselected element, we undo the selection of replace(r) instead. Special
care has to be taken if the element at index i − 1 is also unselected, i.e., if
replace(i − 1) �=⊥. Figure 2 depicts all possible cases and the corresponding

An Efficient Generator for Clustered Dynamic Random Networks 227

Table 2. Illustrative figures for deselect. Index r ∈ {0, . . . , i − 1} is drawn uniformly
at random.

Initial state Final state

Case 1 i−1r i−1r

Case 2 i−1r j i−1r j

Case 3 i−1r s i−1r s

Case 4 i−1r j s i−1r j s

updates of the map. Deselection is therefore just as efficient as selection. For
each selected element, we have to store at most two entries in the map, hence
the space requirement is linear in the number i of currently selected elements.

Overview of Selection Procedure. In this section we explain how we use
a combination between a random binary selection tree and virtual Fisher-Yates
shuffles to efficiently implement edge dynamics according to the random model
described in Section 3.1. For the sake of simplicity, we first assume that we
only want to draw intracluster edges, i.e., pout = 0. In this case, the following
procedure can be used.

Each cluster has an associated shuffle that stores all intracluster edges in the
cluster. This shuffle is used to uniformly select edges in the cluster to delete or to
insert. To be able to use the enumeration scheme described above, each vertex v
receives two ids, a global id that unambiguously identifies the vertex during the
whole generation process and a local id in the range [0, |C(v)| − 1]. The local id
is used to enumerate intracluster edges in the individual shuffles.

On top of that, we store two randomized binary selection trees Γins and Γdel

that each contain one entry for every cluster. The weight of each cluster C in Γins

corresponds to the sum of the probability weight of edge insertions within the
cluster,m(C)·pin(C). Similarly, its weight in Γdel is defined asm(C)·

(
1−pin(C)

)
.

The overall process of selecting the next edge operation is now divided into three
steps:

1. As introduced in Section 3.1, let PE =
∑

{u,v}∈E

(
1 − p(u, v)

)
and PE =∑

{u,v}/∈E p(u, v). With probability PE/(PE + PE) we decide to delete and

with probability PE/(PE + PE) to insert an edge.
2. For edge deletions, we choose a cluster C in Γdel according to the stored

weights. Similarly, we choose a cluster in Γins if we have decided to insert an
edge.

3. Depending on the choice in the first step, we insert or delete an edge in the
virtual Fisher-Yates shuffle associated with C.

228 R. Görke et al.

Finally, the weight of C in Γins and Γdel has to be updated. A proof that this
process inserts or deletes an edge with probabilities according to the random
process described in Section 3.1 can be found in the full version [29]. It remains
to describe how this procedure can be altered to be able to deal with intercluster
edges.

Dealing with Intercluster Edges. In principle, it would be possible to handle
intercluster edges analogously and just introduce a virtual Fisher-Yates shuffle
containing all pairs of vertices in different clusters. As all these vertices exist
with the same probability, this would be perfectly feasible. The problem with this
approach is that it is not easy to consistently enumerate intercluster vertex pairs,
as, due to vertex and cluster dynamics, the number of vertices in each cluster
changes. For this reason, we introduce a shuffle for a pseudocluster containing all
vertices in the graph. This pseudocluster gets an entry in Γins with weightm·pout.
As the pseudocluster contains all vertices, the associated shuffle also contains
intracluster vertex pairs. Hence, it is possible to draw intracluster edges either
in the shuffle of the corresponding cluster or in the shuffle of the pseudocluster,
which overestimates the probability of choosing such edges. To correct this, we
exploit our assumption that pin(C) > pout for each cluster C and decrease the
weight associated with C in Γins to m(C) · (pin(C) − pout) ≥ 0.

For edge deletions, this trick cannot be used as 1 − pout is larger than 1 −
pin(C). This is why we introduce an additional array storing the global id of
all intercluster edges and draw a random edge in this array in case we decide
to delete an intercluster edge. The respective edge is then both deleted in the
array and in the shuffle of the pseudocluster. This procedure guarantees that we
do not erroneously delete intracluster edges by choosing from the pseudocluster,
which is why the weight of the true clusters in Γdel remains unchanged. The
weight of the pseudocluster in Γdel corresponds to minter(1−pout). Whenever an
intracluster edge is inserted or deleted, either in the pseudocluster or in its own
cluster, the corresponding entry in the other shuffle has to be updated.

Time and Space Requirement. Deciding whether to insert or delete an
edge is done in constant time. For both operations, choosing the cluster in the
respective cluster tree takes time O(log k), where k denotes the current num-
ber of clusters. Similarly, selection or deselection in the corresponding virtual
Fisher-Yates shuffle takes time logarithmic in the size of the shuffle. Hence, the
expected time complexity for both operations is in O(log n). As the total size
of the shuffles is asymptotically upper bounded by the number of edges of the
current graph, it is easy to verify that the total space requirement is linear in
the graph size. Vertex dynamics are steered by a parameter pχ that specifies
the probability that instead of an edge operation, we delete or insert a vertex.
If a vertex operation is to be performed, another parameter pν determines the
probability that this operation is a vertex insertion. Choosing pν to be smaller
or larger than 0.5 gives the opportunity to simulate graph growth or shrink-
age. For deletion, a vertex is chosen uniformly at random and all incident edges
are deleted. To adhere to the initial cluster size distribution, new vertices are

An Efficient Generator for Clustered Dynamic Random Networks 229

assigned to clusters according to expected cluster sizes, similar to the generation
of the initial clustering. To dampen the effect of additional edge deletions in the
course of vertex deletions and to stay closer to the G(n, pin, pout) model, new
vertices are immediately connected to other vertices according to the prescribed
edge probabilities. Näıvely, this takes O(n) time, however, it is possible to use
the geometric method introduced by Fan et al. [33] and used by Batagelj and
Brandes [31] to reduce the running time to O(deg v), where deg v is the resulting
degree of the new vertex v.

︷ ︸︸ ︷ ︷ ︸︸ ︷
u

vf
u

Fig. 2. Update if vertex with local
id u is deleted

It remains to explain what has to be done to
update the data structures. Updating the af-
fected entry in the cluster trees takes O(log k)
time. If a new vertex is inserted or deleted, the
index space of the shuffle of its cluster and of
the pseudocluster has to be adapted. For in-
sertion, it suffices to assign the highest vertex
id in the cluster to the new vertex and increase
the index space of the shuffle accordingly. If a
vertex is deleted, we have to guarantee that
the index space is still continuous. We do this
by relabeling the vertex vf with the previously
largest local id in the shuffle of the deleted ver-
tex u by the id of u. The same procedure has
to be performed for the vertex wf with the largest local id in the pseudocluster.
Figure 2 illustrates this case.

For the relabeling step, we first delete all edges incident to vf or wf in the
shuffle and then reinsert them using the new edge ids. Hence, the overall expected
time complexity of the deletion of vertex v is O

(
(deg v+deg vf +degwf) · logn

)
,

whereas for vertex insertion we get O
(
deg v · logn

)
.

Cluster Dynamics. Cluster dynamics is independent of vertex and edge dy-
namics in the sense that in each time step, additionally to the vertex or edge
operation performed, a cluster operation can take place. The probability of a
cluster operation is determined by the input parameter pω and the probability
that this cluster operation merges two clusters is determined by the parameter
pμ. With probability 1 − pμ, one of the clusters is split by assigning each of its
vertices to one of the new clusters with uniform probability.

To calculate new values for pin, an obvious possibility is to just use the old
value(s). For a cluster split, this means that the new clusters inherit pin from
the old cluster, whereas for a cluster merge, the new cluster is assigned the
average of the intracluster edge probabilities of the participating clusters. This
process leads to increasingly uniform pin values over the course of time. For
this reason, depending on a user parameter, new pin values are generated ran-
domly according to a Gaussian distribution estimated from the initially given
list of intracluster probabilities. A more detailed description can be found in our
technical report [26].

230 R. Görke et al.

One of the main motivations for using G(n, pin, pout) graphs for the evalua-
tion of clustering algorithms is the knowledge of a ground truth clustering the
result of the algorithm can be compared to. However, for cluster dynamics, it
can easily be imagined that immediately after a split or merge operation, the
clustering algorithm has no chance to detect the current ground truth cluster-
ing, as the change is not yet reflected in the edge structure. For this reason, the
generator keeps track of an additional reference clustering that follows the cur-
rent ground-truth clustering with some delay, roughly speaking, as soon as the
involved subgraph becomes similar enough to the ground truth’s expectation.
A detailed description of the behavior of the reference clustering can be found
in our technical report [26]. To prevent the interleaving of concurrent cluster
events, as long as the change in the ground-truth is not propagated to the ref-
erence clustering, the participating clusters are not available for further cluster
operations. If, for this reason, in some time step a cluster event is triggered but
no available clusters are found, the cluster event does not take place.

To keep the data structures up to date, we delete the involved old shuffle(s)
and create one or two new shuffles from scratch, depending on the kind of cluster
operation. Furthermore, the additional array associated with the pseudocluster
that stores all intercluster edges has to be updated. The reason for this is that
for a split operation, new intercluster edges between the two parts arise, whereas
cluster merges turn some intercluster edges into intracluster edges. If pointers
are used to link the occurrences of an edge in different data structures, all these
operations take O

(
(n(C) + m(C)) · logn

)
time, where C is either the cluster

that is about to be split or the new cluster after a merge. Removing the old
cluster(s) and inserting the new cluster(s) in the cluster trees takes logarithmic
time. Hence, this does not increase the (asymptotic) running time.

4 Experiments

We give a brief impression of the absolute running times of different sample
configurations. All values are averaged over 15 runs and do not include the time
to write the graph to hard disc. The first experiments in Figure 3a evaluate the
running times for one million steps of the generator, while only the intracluster
density varies. The planted partition contains 15 clusters and the cluster size dis-
tribution is unskewed (β = 1). The number of vertices as well as the intercluster
edge probability pout = 0.1 are constant. As the number of edges is in Θ(n2), the
time to generate the initial graph sometimes dominates the time needed for edge
dynamics and is therefore not included in the plot. Similarly, as the expected
degree of each vertex is in Θ(n), we didn’t include vertex and cluster dynamics
and set the corresponding probabilities to 0. As expected, the running time is al-
most independent of pin. The low running times for the experiments with pin = 1
can be explained by the fact that intracluster edges are never deleted or inserted
and all dynamics involve intercluster vertex pairs. To obtain logarithmic worst
case running time for edge operations, the map replace used for the virtual
Fisher-Yates shuffles can be stored in a binary search tree. For comparison, we

An Efficient Generator for Clustered Dynamic Random Networks 231

● ● ●

●

0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

30
35

p_in

tim
e[

s]

●

n=10k, treemap
n=1k, treemap
n=10k, hashmap
n=1k, hashmap

(a) Edge dynamics, constant number of
vertices, variable pin

●

●
●

●

●

●
●

●
●

●
●

●

0 20000 40000 60000 80000

0
5

10
15

20
25

number of nodes

tim
e[

s]

● di=10,dx=5,treemap
di=10,dx=5,hashmap
di=3,dx=1,treemap
di=3,dx=1,hashmap

(b) Full dynamics, constant expected in-
tracluster (intercluster) degree di (dx),
variable n

Fig. 3. Running times for some sample configurations

repeated the experiments with hash maps instead of these trees. It can be seen
that for graphs of high density, hash maps yield better practical running times3.

Figure 3b illustrates the running time for less artificial parameter settings.
Here, the number of clusters equals

√
n and the size distribution is skewed (β =

0.5). The probability of a vertex event instead of an edge event is set to 0.1
and in half of the cases a vertex is added (deleted). The probability of a cluster
event is 0.01 and in half of the cases a cluster is split (two clusters are merged).
The expected vertex degree is constant, which yields very sparse graphs. To give
a more realistic impression of the total running time, we included the time to
generate the initial graph, followed by 100000 updates. As above, the running
times obtained by using hash maps are better than for the tree based variant.

In summary, the experiments show that hash maps yield better practical per-
formance and that dynamics can be added to the planted partition model without
causing much overhead.

Implementation Notes. We conducted all experiments on a Dual-Core AMD
Opteron(tm) Processor clocked at 2.6 GHz, using Java version 1.6.0 22. The
machine has 32GB of RAM and 2 × 1 MB of L2 cache. The implementation
uses no external libraries. As hash map, we used java.util.HashMap, whereas
the tree-based implementation uses java.util.TreeMap, which is based on a
red-black tree.

5 Conclusion and Outlook

We proposed a dynamic generalization of the planted partition model that can
be used to evaluate dynamic graph clustering algorithms, with the additional

3 Note that entries in the hash map are not distributed evenly over all possible indices,
which is why we don’t have expected constant time for all parameter settings.

232 R. Görke et al.

benefit of a known reference clustering. Furthermore, we described how large
dynamic random graphs according to this model can be efficiently generated and
showed the practicability of this approach on selected example configurations.
In order to make this model more realistic, modifications similar to the static
model are conceivable. Possible changes in the random model include vertex
movements, less uniform degree distribution, higher clustering coefficient as well
as the generalization to hierarchical reference clusterings.

References

1. Fortunato, S.: Community detection in graphs. Physics Reports 486(3-5), 75–174
(2010)

2. Schaeffer, S.E.: Graph Clustering. Computer Science Review 1(1), 27–64 (2007)
3. Bollobás, B.: Random Graphs. Cambridge University Press (2001)
4. Gilbert, H.: Random Graphs. The Annals of Mathematical Statistics 30(4), 1141–

1144 (1959)
5. Condon, A., Karp, R.M.: Algorithms for Graph Partitioning on the Planted Par-

tition Model. Randoms Structures and Algorithms 18(2), 116–140 (2001)
6. Brandes, U., Gaertler, M., Wagner, D.: Experiments on Graph Clustering Algo-

rithms. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 568–
579. Springer, Heidelberg (2003)

7. Gaertler, M., Görke, R., Wagner, D.: Significance-Driven Graph Clustering. In:
Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508, pp. 11–26. Springer,
Heidelberg (2007)

8. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proceedings of the National Academy of Science of the United States of
America 99(12), 7821–7826 (2002)

9. Watts, D.J.: Small worlds: The dynamics of networks between order and random-
ness. Princeton University Press (1999)

10. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Na-
ture 393(6684), 440–442 (1998)

11. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

12. Leskovec, J., Kleinberg, J.M., Faloutsos, C.: Graphs Over Time: Densification
Laws, Shrinking Diameters and Possible Explanations. In: Proceedings of the 11th
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, pp. 177–187. ACM Press (2005)

13. Vázquez, A.: Growing network with local rules: Preferential attachment, clustering
hierarchy, and degree correlations. Physical Review E 67, 056104 (2003)

14. Bagrow, J.: Evaluating local community methods in networks. Journal of Sta-
tistical Mechanics: Theory and Experiment, P05001 (2008), doi:10.1088/1742-
5468/2008/05/P05001

15. Lancichinetti, A., Fortunato, S.: Benchmarks for testing community detection al-
gorithms on directed and weighted graphs with overlapping communities. Physical
Review E 80(1), 016118 (2009)

16. Fan, Y., Li, M., Zhang, P., Wu, J., Di, Z.: Accuracy and precision of methods for
community identification in weighted networks. Physica A 377(1), 363–372 (2007)

17. Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Module identification in bipartite
and directed networks. Physical Review E 76, 036102 (2007)

An Efficient Generator for Clustered Dynamic Random Networks 233

18. Zhou, H.: Network landscape from a Brownian particle’s perspective. Physical Re-
view E 67, 041908 (2003)

19. Sawardecker, E.N., Sales-Pardo, M., Amaral, L.A.N.: Detection of node group
membership in networks with group overlap. The European Physical Journal B 67,
277–284 (2009)

20. Aldecoa, R., Maŕın, I.: Closed benchmarks for network community structure char-
acterization. Physical Review E 85, 026109 (2012)

21. Brandes, U., Mader, M.: A Quantitative Comparison of Stress-Minimization Ap-
proaches for Offline Dynamic Graph Drawing. In: van Kreveld, M., Speckmann, B.
(eds.) GD 2011. LNCS, vol. 7034, pp. 99–110. Springer, Heidelberg (2011)

22. Robins, G., Pattison, P., Kalish, Y., Lusher, D.: An introduction to exponential
random graph (p*) models for social networks. Social Networks 29(2), 173–191
(2007)

23. Snijders, T.A.: The Statistical Evaluation of Social Network Dynamics. Sociological
Methodology 31(1), 361–395 (2001)

24. Clementi, A.E.F., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time
in edge-Markovian dynamic graphs. SIAM Journal on Discrete Mathematics 24(4),
1694–1712 (2010)

25. Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic
graphs. In: Proceedings of the 28th ACM Symposium on Principles of Distributed
Computing, pp. 260–269. ACM Press (2009)

26. Görke, R., Staudt, C.: A Generator for Dynamic Clustered Random Graphs. Tech-
nical report, Informatik, Uni Karlsruhe, TR 2009-7 (2009)

27. Görke, R.: An Algorithmic Walk from Static to Dynamic Graph Clustering. PhD
thesis, Fakultät für Informatik (February 2010)

28. Görke, R., Maillard, P., Staudt, C., Wagner, D.: Modularity-Driven Clustering of
Dynamic Graphs. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 436–448.
Springer, Heidelberg (2010)

29. Görke, R., Kluge, R., Schumm, A., Staudt, C., Wagner, D.: An Efficient Generator
for Clustered Dynamic Random Networks. Technical report, Karlsruhe Reports in
Informatics 2012, 17 (2012)

30. Behrends, E.: Introduction to Markov Chains With Special Emphasis on Rapid
Mixing. Friedrick Vieweg & Son (October 2002)

31. Batagelj, V., Brandes, U.: Efficient Generation of Large Random Networks. Phys-
ical Review E 036113 (2005)

32. Fisher, R.A., Yates, F.: Statistical Tables for Biological, Agricultural and Medical
Research. Oliver and Boyd, London (1948)

33. Fan, C.T., Muller, M.E., Rezucha, I.: Development of Sampling Plans by Using
Sequential (Item by Item) Selection Techniques and Digital-Computers. Journal of
the American Statistical Association 57(298), 387–402 (1962)

Slow Down and Sleep for Profit

in Online Deadline Scheduling�

Peter Kling, Andreas Cord-Landwehr, and Frederik Mallmann-Trenn

Heinz Nixdorf Institute and Computer Science Department, University of Paderborn
{andreas.cord-landwehr,peter.kling}@uni-paderborn.de,

xarph@mail.uni-paderborn.de

Abstract. We present and study a new model for energy-aware and
profit-oriented scheduling on a single processor. The processor features
dynamic speed scaling as well as suspension to a sleep mode. Jobs arrive
over time, are preemptable, and have different sizes, values, and deadlines.
On the arrival of a new job, the scheduler may either accept or reject
the job. Accepted jobs need a certain energy investment to be finished in
time, while rejected jobs cause costs equal to their values. Here, power
consumption at speed s is given by P (s) = sα + β and the energy in-
vestment is power integrated over time. Additionally, the scheduler may
decide to suspend the processor to a sleep mode in which no energy is
consumed, though awaking entails fixed transition costs γ. The objective
is to minimize the total value of rejected jobs plus the total energy.

Our model combines aspects from advanced energy conservation tech-
niques (namely speed scaling and sleep states) and profit-oriented
scheduling models. We show that rejection-oblivious schedulers (whose
rejection decisions are not based on former decisions) have – in contrast
to the model without sleep states – an unbounded competitive ratio
w.r.t. the processor parameters α and β. It turns out that the worst-
case performance of such schedulers depends linearly on the jobs’ value
densities (the ratio between a job’s value and its work). We give an al-
gorithm whose competitiveness nearly matches this lower bound. If the
maximum value density is not too large, the competitiveness becomes
αα + 2eα. Also, we show that it suffices to restrict the value density of
low-value jobs only. Using a technique from [13] we transfer our results
to processors with a fixed maximum speed.

1 Introduction

Over the last decade, energy usage of data centers and computers in general
has become a major concern. There are various reasons for this development:
the ubiquity of technical systems, the rise of mobile computing, as well as a
growing ecological awareness. Also from an economical viewpoint, energy usage
can no longer be ignored. Energy costs for both the actual computation and the

� This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Center “On-The-Fly Computing” (SFB 901) and
by the Graduate School on Applied Network Science (GSANS).

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 234–247, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Slow Down and Sleep for Profit in Online Deadline Scheduling 235

cooling have become the decisive cost factor in today’s data centers (see, e.g.,
Barroso and Hölzle [10]). In combination with improvements on the technical
level, algorithmic research has great potential to reduce energy consumption.
Albers [2] gives a good insight on the role of algorithms to fully exploit the energy-
saving mechanisms of modern systems. Two of the most prominent techniques
for power saving are dynamic speed scaling and power-down. The former allows
a system to save energy by adapting the processor’s speed to the current system
load, while the latter can be used to transition into a sleep mode to conserve
energy. There is an extensive body of literature on both techniques (see below).
From an algorithmic viewpoint, the most challenging aspect in the design of
scheduling strategies is to handle the lack of knowledge about the future: should
we use a high speed to free resources in anticipation of new jobs or enter sleep
mode in the hope that no new jobs arrive in the near future?

Given that profitability is a driving force for most modern systems and that
energy consumption has gained such a high significance, it seems natural to take
this relation explicitly into account. Pruhs and Stein [17] consider a scheduling
model that does so by introducing job values. Their scheduler controls energy
usage via speed scaling and is allowed to reject jobs if their values seem too low
compared to their foreseeable energy requirements. The objective is to maximize
the profit, which is modeled as the total value of finished jobs minus the invested
energy. Our work is based on a result by Chan et al. [13]. We enhance their model
by combining speed scaling and power-downmechanisms for energy management,
which not only introduces non-trivial difficulties to overcome in the analysis, but
proves to be inherently more complex compared to the original model insofar
that classical algorithms can become arbitrarily bad.

History and Related Work. There is much literature concerning energy-
aware scheduling strategies both in practical and theoretical contexts. A recent
survey by Albers [1] gives a good and compact overview on the state of the
art in the dynamic speed scaling setting, also in combination with power-down
mechanisms. In the following, we focus on theoretical results concerning schedul-
ing on a single processor for jobs with deadlines. Theoretical work in this area
has been initiated by Yao et al. [18]. They considered scheduling of jobs having
different sizes and deadlines on a single variable-speed processor. When running
at speed s, its power consumption is P (s) = sα for some constant α ≥ 2. Yao
et al. derived a polynomial time optimal offline algorithm as well as two online
algorithms known as optimal available (OA) and average rate (AVR). Up to
now, OA remains one of the most important algorithms in this area, as it is
used as a basic building block by many strategies (including the strategy we
present in this paper). Using an elegant amortized potential function argument,
Bansal et al. [7] were able to show that OA’s competitive factor is exactly αα.
Moreover, the authors stated a new algorithm, named BKP, which achieves a
competitive ratio of essentially 2eα+1. This improves upon OA for large α. The
best known lower bound for deterministic algorithms is eα−1/α due to Bansal et
al. [5]. They also presented an algorithm (qOA) that is particularly well-suited

236 P. Kling, A. Cord-Landwehr, and F. Mallmann-Trenn

for low powers of α. An interesting and realistic model extension is the restriction
of the maximum processor speed. In such a setting, a scheduler may not always be
able to finish all jobs by their deadlines. Chan et al. [12] were the first to consider
the combination of classical speed scaling with such a maximum speed. They
gave an algorithm that is αα + α24α-competitive on energy and 14-competitive
on throughput. Bansal et al. [6] improved this to a 4-competitive algorithm
concerning the throughput while maintaining a constant competitive ratio with
respect to the energy. Note that no algorithm – even if ignoring the energy
consumption – can be better than 4-competitive for throughput (see [11]).

Power-down mechanisms were studied by Baptiste [8]. He considered a fixed-
speed processor needing a certain amount of energy to stay awake, but which
may switch into a sleep state to save energy. Returning from sleep needs energy
γ. For jobs of unit size, he gave a polynomial time optimal offline algorithm,
which was later extended to jobs of arbitrary size [9]. The first work to combine
both dynamic speed scaling and sleep states in the classical YAO-model is due
to Irani et al. [16]. They achieved a 2-approximation for arbitrary convex power
functions. For the online setting and power function P (s) = sα+β a competitive
factor of 4α−1αα+2α−1+2 was reached. Han et al. [15] improved upon this in two
respects: they lowered the competitive factor to αα+2 and transferred the result
to scenarios limiting the maximum speed. Only recently, Albers and Antoniadis
[3] proved that the optimization problem is NP-hard and gave lower bounds for
several algorithm classes. Moreover, they improved the approximation factor for
general convex power functions to 4/3. The papers most closely related to ours are
due to Pruhs and Stein [17] and Chan et al. [13]. Both considered the dynamic
speed scaling model of Yao et al. However, they extended the idea of energy-
minimal schedules to a profit-oriented objective. In the simplest case, jobs have
values (or priorities) and the scheduler is no longer required to finish all jobs.
Instead, it can decide to reject jobs whose values do not justify the foreseeable
energy investment necessary to complete them. The objective is to maximize
profit [17] or, similarly, minimize the loss [13]. As argued by the authors, the
latter model has the benefit of being a direct generalization of the classical
model of Yao et al. [18]. For maximizing the profit, Pruhs and Stein [17] showed
that, in order to achieve a bounded competitive factor, resource augmentation
is necessary and gave a scalable online algorithm. For minimizing the loss, Chan
et al. [13] gave a αα + 2eα-competitive algorithm and transferred the result to
the case of a bounded maximum speed.

Our Contribution. We present the first model that not only takes into account
two of the most prominent energy conservation techniques (namely, speed scaling
and power-down) but couples the energy minimization objective with the idea of
profitability. It combines aspects from both [16] and [13]. From [16] we inherit one
of the most realistic processor models considered in this area: A single variable-
speed processor with power function P (s) = sα+β and a sleep state. Thus, even
at speed zero the system is charged a certain amount β of energy, but it can
suspend to sleep such that no energy is consumed. Waking up causes transition
cost of γ. The job model stems from [13]: Jobs arrive in an online fashion, are

Slow Down and Sleep for Profit in Online Deadline Scheduling 237

preemptable, and have a deadline, size, and value. The scheduler can reject jobs
(e.g., if their values do not justify the presumed energy investment). Its objective
is to minimize the total energy investment plus the total value of rejected jobs.

A major insight of ours is that the maximum value density δmax (i.e., the ratio
between a job’s value and its work) is a parameter that is inherently connected to
the necessary and sufficient competitive ratio achievable for our online scheduling
problem. We present an online algorithm that combines ideas from [13] and [15]
and analyze its competitive ratio with respect to δmax. This yields an upper
bound of αα + 2eα + δmax

scr
P (scr)

.1 If the value density of low-valued jobs is

not too large or job values are at least γ, the competitive ratio becomes αα +
2eα. Moreover, we show that one cannot do much better: any rejection-oblivious
strategy has a competitive ratio of at least δmax

scr
P (scr)

. Here, rejection-oblivious

means that rejection decisions are based on the current system state and job
properties only. This lower bound is in stark contrast to the setting without
sleep states, where a rejection-oblivious O(1)-competitive algorithm exists [13].
Using the definition of a job’s penalty ratio (due to Chan et al. [13]), we extend
our results to processors with a bounded maximum speed.

2 Model and Preliminaries

We are given a speed-scalable processor that can be set to any speed s ∈ [0,∞).
When running at speed s its power consumption is Pα,β(s) = sα + β with α ≥ 2
and β ≥ 0. If s(t) denotes the processor speed at time t, the total power consump-
tion is

∫∞
0

Pα,β(s(t)) dt. We can suspend the processor into a sleep state to save
energy. In this state, it cannot process any jobs and has a power consumption of
zero. Though entering the sleep state is for free, waking up needs a fixed transi-
tion energy γ ≥ 0. Over time, n jobs J = {1, 2, . . . , n} are released. Each job j
appears at its release time rj and has a deadline dj , a (non-negative) value vj ,
and requires a certain amount wj of work. The processor can process at most one
job at a time. Preemption is allowed, i.e., jobs may be paused at any time and
continued later on. If I denotes the period of time (not necessarily an interval)
when j is scheduled, the amount of work processed is

∫
I
s(t) dt. A job is finished

if
∫
I s(t) dt ≥ wj . Jobs not finished until their deadline cause a cost equal to

their value. We call such jobs rejected. A schedule S specifies for any time t the
processor’s state (asleep or awake), the currently processed job (if the processor
is awake), and sets the speed s(t). W.l.o.g. we assume s(t) = 0 when no job is
being processed. Initially, the processor is assumed to be asleep. Whenever it is
neither sleeping nor working we say it is idle. A schedule’s cost is the invested
energy (for awaking from sleep, idling, and working on jobs) plus the loss due to
rejected jobs. Let m denote the number of sleep intervals, l the total length of
idle intervals, and Iwork the collection of all working intervals (i.e., times when
s(t) > 0). Then, the schedule’s sleeping energy is ES

sleep := (m − 1)γ, its idling

1 The expression scr
P (scr)

depends only on α and β, see Section 2.

238 P. Kling, A. Cord-Landwehr, and F. Mallmann-Trenn

speed

po
we

r

critical speed profitable speed
 (of some job)

(a) Our algorithm tries to use job
speeds that essentially stay in the
shaded interval.

transition energytransition energy

po
we

r working energy
idling energy

γ γ

β

time

(b) A sample schedule and the involved en-
ergy types.

Fig. 1.

energy is ES
idle := lβ, and its working energy is ES

work :=
∫
Iwork

Pα,β(s(t)) dt. We

use V S
rej to denote the total value of rejected jobs. Now, the cost of schedule S is

cost(S) := ES
sleep + ES

idle + ES
work + V S

rej. (1)

We seek online strategies yielding a provably good schedule. More formally, we
measure the quality of online strategies by their competitive factor: For an online
algorithm A and a problem instance I let A(I) denote the resulting schedule
and O(I) an optimal schedule for I. Then, A is said to be c-competitive if

supI
cost(A(I))
cost(O(I)) ≤ c.

We define the system energy ES
sys of a schedule to be the energy needed to hold

the system awake (whilst idling and working). That is, if S is awake for a total of
x time units, ES

sys = xβ. Note that ES
sys ≤ ES

idle+ES
work. The critical speed of the

power function is defined as scr := argmins≥0
Pα,β(s)/s (cf. also [15, 16]). If job j

is processed at constant speed s its energy usage is wj ·Pα,β(s)/s. Thus, assuming
that j is the only job in the system and ignoring its deadline, scr is the energy-
optimal speed to process j. One can easily check that sαcr =

β
α−1 . Given a job j,

let δj := vj/wj denote the job’s value density. Following [13] and [17], we define
the profitable speed sj,p of job j to be the maximum speed for which its processing
may be profitable. More formally, sj,p := max {s ≥ 0 | wj · Pα,0(s)/s ≤ vj}. Note
that the definition is with respect to Pα,0, i.e., it ignores the system energy. The
profitable speed can be more explicitly characterized by sα−1

j,p = δj . It is easy to
see that a schedule that processes j at average speed faster than sj,p cannot be
optimal: rejecting j and idling during the former execution phase would be more
profitable. See Figure 1 for an illustration of these notions.

Optimal Available and Structural Properties. One of the first online al-
gorithms for dynamic speed scaling was Optimal Available (OA) due to [18]. As
it is an essential building block not only of our but many algorithms for speed
scaling, we give a short recap on its idea (see [7] for a thorough discussion and
analysis). At any time, OA computes the optimal offline schedule assuming that

Slow Down and Sleep for Profit in Online Deadline Scheduling 239

no further jobs arrive. This optimal offline schedule is computed as follows: Let
the density of an interval I be defined as w(I)/|I|. Here, w(I) denotes the total
work of jobs j with [rj , dj) ⊆ I and |I| the length of I. Now, whenever a job ar-
rives OA computes so-called critical intervals by iteratively choosing an interval
of maximum density. Jobs are then scheduled at a speed equal to the density of
the corresponding critical interval using the earliest deadline first policy. Let us
summarize several structural facts known about the OA schedule.

Fact 1. Let S and S′ denote the OA schedules just before and after j’s arrival.
We use S(j) and S′(j) to denote j’s speed in the corresponding schedule.

(a) The speed function of S (and S′) is a non-increasing staircase function.
(b) The minimal speed of S′ during [rj , dj) is at least S′(j).
(c) Let I be an arbitrary period of time during [rj , dj) (not necessarily an inter-

val). Moreover, let W denote the total amount of work scheduled by S and
W ′ the one scheduled by S′ during I. Then the inequality W ≤ W ′ ≤ W+wj

holds.
(d) The speed of any j′ �= j can only increase due to j’s arrival: S′(j′) ≥ S(j′).

3 Lower Bound for Rejection-Oblivious Algorithms

This section considers a class of simple, deterministic online algorithms that
we call rejection-oblivious. When a job arrives, a rejection-oblivious algorithm
decides whether to accept or reject the job. This decision is based solely on the
processor’s current state (sleeping, idling, working), its current workload, and
the job’s properties. Especially it does not take former decisions into account.
An example for such an algorithm is PS(c) in [13]. For a suitable parameter
c, it is αα + 2eα-competitive in a model without sleep state. In this section we
show that in our model (i.e., with a sleep state) no rejection-oblivious algorithm
can be competitive. More exactly, the competitiveness of any such algorithm
can become arbitrarily large. We identify the jobs’ value density as a crucial
parameter for the competitiveness of these algorithms.

Theorem 1. The competitiveness of any rejection-oblivious algorithm A is un-
bounded. More exactly, for any A there is a problem instance I with competitive
factor ≥ δmax

scr
Pα,β(scr)

. Here, δmax is the maximum value density of jobs from I.

Proof. For A to be competitive, there must be some x ∈ R such that, while A
is asleep, all jobs of value at most x are rejected (independent of their work and
deadlines). Otherwise, we can define a sequence of n identical jobs 1, 2, . . . , n
of arbitrary small value ε. W.l.o.g., we release them such that A goes to sleep
during [dj−1, rj) (otherwise A consumes an infinite amount of energy). Thus,
A’s cost is at least nγ. If instead considering schedule S that rejects all jobs, we
have cost(S) = nε. For ε → 0 we see that A’s competitive ratio is unbounded.

So, let x ∈ R be such that A rejects any job of value at most x whilst asleep.
Consider n jobs of identical value x and work w. For each job, the deadline is

240 P. Kling, A. Cord-Landwehr, and F. Mallmann-Trenn

set such that w = scr(dj − rj). The jobs are released in immediate succession,
i.e., rj = dj−1. Algorithm A rejects all jobs, incurring cost nx. Let S denote the
schedule that accepts all jobs and processes them at speed scr. The cost of S is

given by cost(S) = γ + nw
Pα,β(scr)

scr
. Thus, A’s competitive ratio is at least

nx

γ + nw
Pα,β(scr)

scr

= δmax
1

γ
nw +

Pα,β(scr)
scr

n→∞−→ δmax
scr

Pα,β(scr)
. ��

4 Algorithm and Analysis

In the following, we use A to refer to both our algorithm and the schedule it pro-
duces; which is meant should be clear from the context. As most algorithms in
this area (see, e.g., [4, 5, 13, 15, 16]), A relies heavily on the good structural prop-
erties of OA and its wide applicability to variants of the original energy-oriented
scheduling model of Yao et al. [18]. It essentially consists of two components,
the rejection policy and the scheduling policy. The rejection policy decides which
jobs to accept or reject, while the scheduling policy ensures that all accepted
jobs are finished until their deadline. Our rejection policy is an extension of the
one used by the algorithm PS in [13]. It ensures that we process only jobs that
have a reasonable high value (value > planned energy investment) and that we
do not awake from sleep for very cheap jobs. The scheduling policy controls the
speed, the job assignment, and the current mode of the processor. It is a straight-
forward adaption of the algorithm used in [15]. However, its analysis proves to
be more involved because we have to take into account its interaction with the
rejection policy and that the job sets scheduled by the optimal algorithm and A
may be quite different.

The following description assumes a continuous recomputation of the current
OA schedule. A pseudocode version of the algorithm can be found in the full
version of the paper [14]. It is straightforward to implement A such that the
planned schedule is recomputed only when new jobs arrive.

Scheduling Policy. All accepted jobs are scheduled according to the earliest dead-
line first rule. At any time, the processor speed is computed based on the OA
schedule. Use OAt to denote the schedule produced by OA if given the remaining
(accepted) work at time t and the power function Pα,0. Let ρt denote the speed
planned by OAt at time t. A puts the processor either in working, idling, or sleep-
ing mode. During working mode the processor speed is set to max(ρt, scr) until
there is no more remaining work. Then, speed is set to zero and the processor
starts idling. When idling or sleeping, we switch to the working mode only when
ρt becomes larger than scr. When the amount of energy spent in the current idle
interval equals the transition energy γ (i.e., after time γ/Pα,β(0)) the processor is
suspended to sleep.

Rejection Policy. Let c1 and c2 be parameters to be determined later. Consider
the arrival of a new job j at time rj . Reject it immediately if δj < sα−1

cr /αcα−1
2 .

Slow Down and Sleep for Profit in Online Deadline Scheduling 241

Otherwise, define the current idle cost x ∈ [0, γ] depending on the processor’s
state as follows: (i) zero if it is working, (ii) the length of the current idle interval
times β if it is idle, and (iii) γ if it is asleep. If vj < c1x, the job is rejected.
Otherwise, compute the job’s speed sOA which would be assigned by OArj if it
were accepted. Reject the job if sOA > c2sj,p, accept otherwise.

4.1 Bounding the Different Portions of the Cost

In the following, let O denote an optimal schedule. Remember that cost(A) =
EA

sleep + EA
idle + EA

work + V A
rej. We bound each of the three terms EA

sleep + EA
idle,

EA
work, and V A

rej separately in Lemma 1, Lemma 2, and Lemma 3, respectively.
Eventually, Section 4.2 combines these bounds and yields our main result: a
nearly tight competitive factor depending on the maximum value density of the
problem instance.

Lemma 1 (Sleep and Idle Energy). EA
sleep+EA

idle ≤ 6EO
sleep+2EO

sys+
4
c1
V O
rej

Proof. Let us first consider EA
idle. Partition the set of idle intervals under schedule

A into three disjoint subsets I1, I2, and I3 as follows:

– I1 contains idle intervals not intersecting any sleep interval of O. By defini-
tion, the total length of idle intervals from I1 is bounded by the time O is
awake. Thus, the total cost of I1 is at most EO

sys.
– For each sleep interval I of O, I2 contains any idle interval X that is not the

the last idle interval having a nonempty intersection with I and that is com-
pletely contained within I (note that the former requirement is redundant if
the last intersecting idle interval is not completely contained in I). Consider
any X ∈ I2 intersecting I and let j denote the first job processed by A after
X . It is easy to see that we must have [rj , dj) ⊆ I. Thus, O has rejected j.
But since A accepted j, we must have vj ≥ c1 |X |β. This implies that the
total cost of I2 cannot exceed V O

rej/c1.
– I3 contains all remaining idle intervals. By definition, the first sleep interval

of O can intersect at most one such idle interval, while the remaining sleep
intervals ofO can be intersected by at most two such idle intervals. Thus, ifm
denotes the number of sleep intervals under schedule O, we get |I3| ≤ 2m−1.
Our sleeping strategy ensures that the cost of each single idle interval is at
most γ. Using this and the definition of sleeping energy, the total cost of I3
is upper bounded by (2m− 1)γ = 2EO

sleep + γ.

Together, we get EA
idle ≤ EO

sys + V O
rej/c1 + 2EO

sleep + γ. Moreover, without loss

of generality we can bound γ by V O
rej/c1 + EO

sleep: if not both A and O reject
all incoming jobs (in which case A would be optimal), O will either accept at
least one job and thus wake up (γ ≤ EO

sleep) or reject the first job A accepts

(γ ≤ V O
rej/c1). This yields EA

idle ≤ EO
sys + 2V O

rej/c1 + 3EO
sleep. For EA

sleep, note that
any but the first of A’s sleep intervals is preceded by an idle interval of length
γ/Pα,β(0). Each such idle interval has cost γ, so we get EA

sleep ≤ EA
idle. The lemma’s

statement follows by combining the bounds for EA
idle and EA

sleep. ��

242 P. Kling, A. Cord-Landwehr, and F. Mallmann-Trenn

Lemma 2 (Working Energy). EA
work ≤ ααEO

work + cα−1
2 α2V O

rej

The proof of Lemma 2 is based on the standard amortized local competitiveness
argument, first used by Bansal et al. [7]. Although technically quite similar to the
typical argumentation, our proof must carefully consider the more complicated
rejection policy (compared to [13]), while simultaneously handle the different
processor states. For space reasons, the details concerning the necessary adap-
tions reside in the full version of the paper [14]. However, for completeness’ sake,
we outline the basic construction and the general proof idea.

Given a schedule S, let ES
work(t) denote the working energy spent until time t

and V S
rej(t) the discarded value until time t. We show that at any time t ∈ R≥0

the amortized energy inequality

EA
work(t) + Φ(t) ≤ ααEO

work(t) + cα−1
2 α2V O

rej(t) (2)

holds. Here, Φ is a potential function to be defined in a suitable way. It is
constructed such that the following conditions hold:

(i) Boundary Condition: At the beginning and end we have Φ(t) = 0.
(ii) Running Condition: At any time t when no job arrives we have

dEA
work(t)

dt
+

dΦ(t)

dt
≤ αα dE

O
work(t)

dt
+ cα−1

2 α2
dV O

rej(t)

dt
. (3)

(iii) Arrival Condition: At any time t when a job arrives we have

ΔEA
work(t) +ΔΦ(t) ≤ ααΔEO

work(t) + cα−1
2 α2ΔV O

rej(t). (4)

The Δ-terms denote the corresponding change caused by the job arrival.

Once these are proven, amortized energy inequality follows by induction: It ob-
viously holds for t = 0, and Conditions (ii) and (iii) ensure that it is never
violated. Applying Condition (i) yields Lemma 2. The crucial part is to define a
suitable potential function Φ. Our analysis combines aspects from both [13] and
[15]. Different rejection decisions of our algorithm A and the optimal algorithm
O require us to handle possibly different job sets in the analysis, while the sleep
management calls for a careful handling of the processor’s current state.

Construction of Φ. Consider an arbitrary time t ∈ R≥0. Let wA
t (t1, t2) denote

the remaining work at time t accepted by schedule A with deadline in (t1, t2]. We

call the expression wA
t (t1,t2)
t2−t1

the density of the interval (t1, t2]. Next, we define
critical intervals (τi−1, τi]. For this purpose, set τ0 := t and define τi iteratively

to be the maximum time that maximizes the density ρi := wA
t (τi−1,τi)
τi−τi−1

of the

interval (τi−1, τi]. We end at the first index l with ρl ≤ scr and set τl = ∞ and
ρl = scr. Note that ρ1 > ρ2 > . . . > ρl = scr. Now, for a schedule S let wS

t (i)
denote the remaining work at time t with deadline in the i-th critical interval
(τi−1, τi] accepted by schedule S. The potential function is defined as Φ(t) :=

α
∑l

i=1 ρ
α−1
i

(
wA

t (i)− αwO
t (i)
)
. It quantifies how far A is ahead or behind in

Slow Down and Sleep for Profit in Online Deadline Scheduling 243

terms of energy. The densities ρi essentially correspond to OA’s speed levels,
but are adjusted to A’s usage of OA. Note that whenever A is in working mode
its speed equals ρ1 ≥ scr.

It remains to prove the boundary, running, and arrival conditions. The bound-
ary condition is trivially true as both A and O have no remaining work at the
beginning and end. Details concerning the running and arrival conditions can be
found in the full version of the paper [14].

Bounding the Rejected Value. In the following we bound the total value V A
rej

of jobs rejected by A. The general idea is similar to the one by Chan et al. [13].
However, in contrast to the simpler model without sleep states, we must handle
small-valued jobs of high density explicitly (cf. Section 3). Moreover, the sleeping
policy introduces an additional difficulty: our algorithm does not preserve all
structural properties of an OA schedule (cf. Fact 1). This prohibits a direct
mapping between the energy consumption of algorithmA and of the intermediate
OA schedules during a fixed time interval, as used in the corresponding proof
in [13]. Indeed, the actual energy used by A during a fixed time interval may
decrease compared to the energy planned by the intermediate OA schedule, as
A may decide to raise the speed to scr at certain points in the schedule. Thus, to
bound the value of a job rejected by A but processed by the optimal algorithm
for a relatively long time, we have to consider the energy usage for the workload
OA planned for that time (instead of the actual energy usage for the workload
A processed during that time, which might be quite different).

Lemma 3 (Rejected Value). Let δmax be the maximum value density of jobs
of value less than c1γ and consider an arbitrary parameter b ≥ 1/c2. Then, A’s
rejected value is at most

V A
rej ≤ max

(
δmax

scr
Pα,β(scr)

, bα−1

)
EO

work +
bα−1

(c2b− 1)α
EA

work + V O
rej.

Proof. Partition the jobs rejected by A into two disjoint subsets J1 (jobs rejected
by both A and O) and J2 (jobs rejected by A only). The total value of jobs in
J1 is at most V O

rej. Thus, it suffices to show that the total value of J2 is bounded
by

max
(
δmax

scr
Pα,β(scr)

, bα−1
)
EO

work +
bα−1

(c2b−1)αE
A
work.

To this end, let j ∈ J2. Remember that, because of the convexity of the power
function, O can be assumed to process j at a constant speed sO. Otherwise pro-
cessing j at its average speed could only improve the schedule. Let us distinguish
three cases, depending on the reason for which A rejected j:

Case 1: j got rejected because of δj <
sα−1
cr

αcα−1
2

.

Let EO
work(j) denote the working energy invested by O into job j. Using the

rejection condition we can compute

EO
work(j) =

Pα,β(sO)
sO

wj ≥ Pα,β(scr)
scr

wj ≥ sα−1
cr wj > αcα−1

2 vj .

Together with b ≥ 1/c2 we get vj < bα−1EO
work(j).

244 P. Kling, A. Cord-Landwehr, and F. Mallmann-Trenn

Case 2: j got rejected because of vj < c1x
As in the algorithm description, let x ∈ [0, γ] denote the current idle cost at
time rj . Since j’s value is less than c1x ≤ c1γ, we have δj ≤ δmax. We get

EO
work(j) =

Pα,β(sO)
sO

wj =
Pα,β(sO)

sO

vj
δj

≥ Pα,β(scr)
scr

vj
δmax

,

which eventually yields vj ≤ δmax
scr

Pα,β(scr)
EO

work(j).

Case 3: j got rejected because of sOA > c2sj,p
Here, sOA denotes the speed OArj would assign to j if it were accepted. We
use OA

rj
− to refer to the OA schedule at time rj without j. Let bj := sj,p/sO.

We bound vj in different ways, depending on bj. If bj is small (i.e., bj ≤ b)
we use

EO
work(j) ≥

Pα,0(sO)
sO

wj =
Pα,0(sj,p/bj)

sj,p/bj

wj =
sα−1
j,p

bα−1
j

wj =
vj

bα−1
j

.

That is, we have vj ≤ bα−1
j EO

work(j). Otherwise, if bj is relatively large, vj
is bounded by EA

work. Let I denote the period of time when O processes j
at constant speed sO and let W denote the work processed by OA

rj
− during

this time. Since I ⊆ [rj , dj), Fact 1((b)) implies that OArj ’s speed during I
is at least sOA > c2sj,p. Thus, the total amount of work processed by OArj

during I is larger than c2sj,p |I|. But then, by applying Fact 1((c)), we see
that W must be larger than c2sj,p |I| − wj . Now, W is a subset of the work
processed by A. Moreover, Fact 1((d)) and the definition of algorithm A
ensure that the speeds used for this work in schedule A cannot be smaller
than the ones used in OA

rj
− . Especially, the average speed s∅ used for this

work in schedule A is at least W/|I| (the average speed used by OA
rj
− for

this work). Let EA
work(W) denote the energy invested by schedule A into the

work W . Then, by exploiting the convexity of the power function, we get

EA
work(W) ≥ Pα,β(s∅)

s∅
W ≥ Pα,0(s∅)

s∅
W = s∅

α−1W ≥ Wα−1

|I|α−1W = |I| Wα

|I|α

> |I| (c2sj,p − sO)
α =

wj

sO
sαO(c2bj − 1)α =

(c2bj−1)α

bα−1
j

vj .

That is, we have vj <
bα−1
j

(c2bj−1)αE
A
work(W). Now, let us specify how to choose

from these two bounds:
– If bj ≤ b, we apply the first bound: vj = bα−1

j EO
work(j) ≤ bα−1EO

work(j).
– Otherwise we have bj > b ≥ 1/c2. Note that for x > 1/c the function

f(x) = xα−1

(cx−1)α decreases. Thus, we get vj <
bα−1

(c2b−1)αE
A
work(W).

By combining these cases we get

vj ≤ max
(
δmax

scr
Pα,β(scr)

, bα−1
)
EO

work(j) +
bα−1

(c2b−1)αE
A
work(W).

Note that both energies referred to, EO
work(j) as well as E

A
work(W), are mutually

different for different jobs j. Thus, we can combine these inequalities for all jobs
j ∈ J2 to get the desired result. ��

Slow Down and Sleep for Profit in Online Deadline Scheduling 245

4.2 Putting It All Together

The following theorem combines the results of Lemma 1, Lemma 2, and Lemma 3.
Its proof can be found in the full version of the paper [14].

Theorem 2. Let α ≥ 2 and let δmax be the maximum value density of jobs of
value less than c1γ. Moreover, define η := max

(
δmax

scr
Pα,β(scr)

, bα−1
)
and μ :=

bα−1

(c2b−1)α for a parameter b ≥ 1/c2. Then, A’s competitive factor is at most

max
(
cα−1
2 α2, αα

)
(1 + μ) + max (2 + η, 1 + 4/c1) .

By a careful choice of parameters we get a constant competitive ratio if restricting
the value density of small-valued jobs accordingly. So, let α ≥ 2 and set c2 =

α
α−2
α−1 , b = α+1

c2
, and c1 = 4

1+bα−1 ≤ 1. With Theorem 2 this yields

Corollary 1. Algorithm A is αα + 2eα+ δmax
scr

Pα,β(scr)
-competitive.

Corollary 2. Algorithm A is αα +2eα-competitive if we restrict it to instances

of maximum value density δmax := bα−1 Pα,β(scr)
scr

. This competitive factor still
holds if the restriction is only applied to jobs of value less than 4

1+bα−1 γ.

Corollary 3. If only considering instances for which the job values are at least
8

2+3αγ ≤ γ, A’s competitive factor is at most αα + 2eα.

Note that the bound from Corollary 1 is nearly tight with respect to δmax and
the lower bound from Theorem 1.

5 The Speed-Bounded Case

As stated earlier, our model can be considered as a generalization of [13]. It
adds sleep states, leading to several structural difficulties which we solved in the
previous section. A further, natural generalization to the model is to cap the
speed at some maximum speed T . Algorithms based on OA often lend them-
selves to such bounded speed models. In many cases, a canonical adaptation –
possibly mixed with a more involved job selection rule – leads to an algorithm
for the speed bounded case with similar properties (see, e.g., [6, 12, 13, 15]). A
notable property of the profit-oriented scheduling model of [13] is that limiting
the maximum speed leads to a non-constant competitive factor. Instead, it be-
comes highly dependent on a job’s penalty ratio defined as Γj := sj,p/T . They
derive a lower bound of Ω

(
max(eα−1/α, Γα−2+1/α)

)
where Γ = maxΓj . Since our

model generalizes their model, this bound transfers immediately to our setting
(for the case β = γ = 0). On the positive side we can adapt our algorithm, sim-
ilar to [13], by additionally rejecting a job if its speed planned by OA is larger
than T (cf. rejection condition in algorithm description, Section 4). Our main
theorem from Section 4 becomes

246 P. Kling, A. Cord-Landwehr, and F. Mallmann-Trenn

Theorem 3. Let α ≥ 2 and let δmax be the maximum value density of jobs of
value less than c1γ. Moreover, define η := max

(
δmax

scr
Pα,β(scr)

, Γα−1bα−1
)
and

μ := Γα−1 bα−1

(b−1)α for b ≥ 1. Then, A’s competitive factor is at most

αα (1 + μ) + max (2 + η, 1 + 4/c1) .

Proof (sketch). Note that the results from Lemmas 1 and 2 remain valid without
any changes, as an additional rejection rule does not influence the correspond-
ing proofs. The only lemma affected by the changed algorithm is Lemma 3.
In its proof, we have to consider an additional rejection case, namely that
job j got rejected because of sOA > T = 1

Γj
sj,p. This can be handled com-

pletely analogously to Case 3 in the proof, using the factor 1
Γj

instead of c2.

We get the bounds vj ≤ bα−1
j EO

work(j) and vj < bα−1
j /(bj/Γj − 1)αEA

work(W). If

bj ≤ Γjb this yields vj ≤ Γα−1
j bα−1EO

work(j). Otherwise, if bj > Γjb, we have

vj < Γα−1
j

bα−1

(b−1)αE
A
work(W). The remaining argumentation is the same as in the

proof of Theorem 2. ��

For b = α + 1 and the interesting case Γ > 1 we get a competitive factor of
αα(1 + 2Γα−1) + δmax

scr
Pα,β(scr)

. For job values of at most γ it is αα(1 + 2Γα−1).

6 Conclusion and Outlook

We examined a new model that combines modern energy conservation techniques
with profitability. Our results show an inherent connection between the neces-
sary and sufficient competitive ratio of rejection-oblivious algorithms and the
maximum value density. A natural question is how far this connection applies to
other, more involved algorithm classes. Can we find better strategies if allowed
to reject jobs even after we invested some energy, or if taking former rejection
decisions into account? Such more involved rejection policies have proven useful
in other models [15, 17], and we conjecture that they would do so in our setting.
Other interesting directions include models for multiple processors as well as
general power functions. Pruhs and Stein [17] modeled job values and deadlines
in a more general way, which seems especially interesting for our profit-oriented
model.

References

[1] Albers, S.: Algorithms for Dynamic Speed Scaling. In: Proc. of the 28th Inter-
national Symp. On Theoretical Aspects of Computer Science (STACS), Schloss
Dagstuhl, pp. 1–11 (2011)

[2] Albers, S.: Energy-Effcient Algorithms. Comm. of the ACM 53(5), 86–96 (2010)
[3] Albers, S., Antoniadis, A.: Race to Idle: New Algorithms for Speed Scaling with

a Sleep State. In: Proceedings of the 23rd Symposium on Discrete Algorithms,
SODA (2012)

Slow Down and Sleep for Profit in Online Deadline Scheduling 247

[4] Albers, S., Antoniadis, A., Greiner, G.: On Multi-Processor Speed Scaling with
Migration. In: Proceedings of the 23rd ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), pp. 279–288. ACM (2011)

[5] Bansal, N., Chan, H.-L., Pruhs, K., Katz, D.: Improved Bounds for Speed Scaling
in Devices Obeying the Cube-Root Rule. In: Albers, S., Marchetti-Spaccamela,
A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS,
vol. 5555, pp. 144–155. Springer, Heidelberg (2009)

[6] Bansal, N., Chan, H.-L., Lam, T.-W., Lee, L.-K.: Scheduling for Speed Bounded
Processors. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125,
pp. 409–420. Springer, Heidelberg (2008)

[7] Bansal, N., Kimbrel, T., Pruhs, K.: Speed Scaling to Manage Energy and Tem-
perature. Journal of the ACM 54(1), 1–39 (2007)

[8] Baptiste, P.: Scheduling Unit Tasks to Minimize the Number of Idle Periods: A
Polynomial Time Algorithm for Online Dynamic Power Management. In: Proceed-
ings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm (SODA),
pp. 364–367. ACM (2006)

[9] Baptiste, P., Chrobak, M., Dürr, C.: Polynomial Time Algorithms for Minimum
Energy Scheduling. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 136–150. Springer, Heidelberg (2007)

[10] Barroso, L.A., Hölzle, U.: The Case for Energy-Proportional Computing. Com-
puter 40(12), 33–37 (2007)

[11] Baruah, S., Koren, G., Mishra, B., Raghunathan, A., Rosier, L., Shasha, D.: On-
line Scheduling in the Presence of Overload. In: Proc. of the 32nd Symp. on
Foundations of Computer Science (FOCS), pp. 100–110 (1991)

[12] Chan, H.-L., Chan, W.-T., Lam, T.-W., Lee, L.-K., Mak, K.-S., Wong, P.W.H.:
Energy Efficient Online Deadline Scheduling. In: Proceedings ofthe 18th Sympo-
sium on Discrete Algorithms (SODA), pp. 795–804. SIAM (2007)

[13] Chan, H.-L., Lam, T.-W., Li, R.: Tradeoff between Energy and Throughput for
Online Deadline Scheduling. In: Jansen, K., Solis-Oba, R. (eds.) WAOA 2010.
LNCS, vol. 6534, pp. 59–70. Springer, Heidelberg (2011)

[14] Cord-Landwehr, A., Kling, P., Mallmann-Trenn, F.: Slow Down & Sleep for Profit
in Online Deadline Scheduling. arXiv:1209.2848 [cs.DS] (2012)

[15] Han, X., Lam, T.-W., Lee, L.-K., To, I.K.K., Wong, P.W.H.: Deadline Scheduling
and Power Management for Speed Bounded Processors. Theoretical Computer
Science 411(42), 3587–3600 (2010)

[16] Irani, S., Shukla, S., Gupta, R.: Algorithms for Power Savings. ACM Transactions
on Algorithm 3(4) (2007)

[17] Pruhs, K., Stein, C.: How to Schedule When You Have to Buy Your Energy.
In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX 2010, LNCS,
vol. 6302, pp. 352–365. Springer, Heidelberg (2010)

[18] Yao, F.F., Demers, A.J., Shenker, S.: A Scheduling Model for Reduced CPU En-
ergy. In: Proceedings of the 36th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 374–382 (1995)

FIFO Queueing Policies

for Packets with Heterogeneous Processing

Kirill Kogan1, Alejandro López-Ortiz1, Sergey I. Nikolenko2,3,�,
Alexander V. Sirotkin4,3,�, and Denis Tugaryov3,�

1 School of Computer Science, University of Waterloo
{kkogan,alopez-o}@uwaterloo.ca

2 Steklov Mathematical Institute, nab. r. Fontanka, 27, St. Petersburg, Russia
sergey@logic.pdmi.ras.ru

3 St. Petersburg Academic University, ul. Khlopina, 8, korp. 3, St. Petersburg, Russia
4 St. Petersburg Institute for Informatics and Automation of the RAS,

14 Line VO, 39, St. Petersburg, Russia
avs@iias.spb.su

Abstract. We consider the problem of managing a bounded size First-
In-First-Out (FIFO) queue buffer, where each incoming unit-sized packet
requires several rounds of processing before it can be transmitted out.
Our objective is to maximize the total number of successfully transmitted
packets. We consider both push-out (when the policy is permitted to
drop already admitted packets) and non-push-out cases. In particular,
we provide analytical guarantees for the throughput performance of our
algorithms. We further conduct a comprehensive simulation study which
experimentally validates the predicted theoretical behaviour.

Keywords: scheduling, buffer management, first-in-first-out queueing,
switches, online algorithms, competitive analysis.

1 Introduction

This work is mostly motivated by buffer management problems within Net-
work Processors (NPs) in a packet-switched network. Such NPs are responsible
for complex packet processing tasks in modern high-speed routers, including,
to name just a few, forwarding, classification, protocol conversion, and intru-
sion detection. Common NPs usually rely on multi-core architectures, where
multiple cores perform various processing tasks required by the arriving traffic.
Such architectures may be based on a pipeline of cores [34], a pool of identical
cores [4, 9, 10], or a hybrid pool pipeline [12]. In response to operator demands,
packet processing needs are becoming more heterogeneous, as NPs need to cope

� Work of S.I. Nikolenko, A.V. Sirotkin, and D. Tugaryov was supported by the Rus-
sian Fund for Basic Research grant 12-01-00450-a, the Russian Presidential Grant
Programme for Young Ph.D.’s, grant no. MK-6628.2012.1, for Leading Scientific
Schools, grant no. NSh-3229.2012.1, and RFBR grants 11-01-12135-ofi-m-2011 and
11-01-00760-a.

G. Even and D. Rawitz (Eds.): MedAlg 2012, LNCS 7659, pp. 248–260, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

FIFO Queueing Policies with Heterogeneous Processing 249

with more complex tasks such as advanced VPN services, hierarchical classifica-
tion for QoS, and many others. Unlike general purpose processors, modern NPs
employ run-to-completion processing. Recent results in data path provisioning
provide a possibility to have prior information about future required processing
(for instance, this is possible in one of the modes of the OpenFlow protocol [24]).
In this work, we consider a model that captures the characteristics of this archi-
tecture. The main concern in this setting is to maximize the throughput attain-
able by the NP, measured by the total number of packets successfully processed
by the system.

In what follows, we adopt the terminology used to describe buffer management
problems. We focus our attention on a general model where we are required to
manage admission control and scheduling modules of a single bounded size queue
that process packets in First-In-First-Out order. In this model, arriving traffic
consists of unit-sized packets, and each packet has a processing requirement (in
processor cycles). A packet is successfully transmitted once the scheduling module
has scheduled the packet for processing for at least its required number of cycles.
If a packet is dropped upon arrival or pushed out from the queue after being
admitted due to admission control policy considerations (if push-out is allowed),
then the packet is lost without gain to the algorithm’s throughput.

1.1 Our Contributions

In this paper, we consider the problem of managing a FIFO queue buffer of
size B, where each incoming unit-sized packet requires at most k rounds of
processing before it can be transmitted out. Our objective is to maximize the
total number of successfully transmitted packets. For online settings, we propose
algorithms with provable performance guarantees. We consider both push-out
(when the algorithm can drop a packet from the queue) and non-push-out cases.
We show that the competitive ratio obtained by our algorithms depends on the
maximum number of processing cycles required by a packet. However, none of our
algorithms needs to know the maximum number of processing cycles in advance.
We discuss the non-push-out case in Section 2 and show that the on-line greedy
algorithm NPO is k-competitive, and that this bound is tight. For the push-out
case, we consider a simple greedy algorithm PO that in the case of congestion
pushes out the first packet with maximal required processing and the Lazy-
Push-Out (LPO) algorithm. LPO works similar to PO in push-out decisions but
changes the processing part: LPO does not transmit packets if there still exist
packets in the queue with more than one required processing cycle (i.e., LPO
waits until all packets have one cycle left and then sends them all out one by one).
Intuitively, it seems that PO should outperform LPO since PO tends to empty
its buffer faster but we demonstrate that these algorithms are not comparable
in the worst case. Although we provide a lower bound of PO, the main result of
this paper deals with the competitiveness of LPO. In particular, we demonstrate

that LPO is at most
(
ln k + 3 + o(B)

B

)
-competitive. In addition, we demonstrate

several lower bounds on the competitiveness of both PO and LPO for different

250 K. Kogan et al.

values of B and k. These results are presented in Section 3. The competitiveness
result of LPO is interesting in itself but since “lazy” algorithms provide a well-
defined accounting infrastructure we hope that a similar approach can be applied
to other systems in similar settings. From an implementation point of view we
can define a new on-line algorithm that will emulate the behaviour of LPO and
will not delay the transmission of processed packets. In Section 4 we conduct a
comprehensive simulation study to experimentally verify the performance of the
proposed algorithms.

Due to space constraints, virtually no proofs appear in this paper; they can
be found in the accompanying preprint [19].

1.2 Related Work

Keslassy et al. [14] were the first to consider buffer management and scheduling
in the context of network processors with heterogeneous processing requirements
for the arriving traffic. They study both SRPT (shortest remaining processing
time) and FIFO (first-in-first-out) schedulers with recycles, in both push-out and
non-push-out buffer management cases, where a packet is recycled after process-
ing according to the priority policy (FIFO or SRPT). They showed competitive
algorithms and worst-case lower bounds for such settings. Although they con-
sidered a different architecture (FIFO with recycles) than the one we consider in
this paper, they provided only a lower bound for the push-out FIFO case, and
it remains unknown if it can be attained.

Kogan et al. [20] considered priority-based buffer management and schedul-
ing in both push-out and non-push-out settings for heterogeneous packet sizes.
Specifically, they consider two priority queueing schemes: (i) Shortest Remaining
Processing Time first (SRPT) and (ii) Longest Packet first (LP). They present
competitive buffer management algorithms for these schemes and provide lower
bounds on the performance of algorithms for such priority queues.

The work of Keslassy et al. [14] and Kogan et al. [20], as well as our current
work, can be viewed as part of a larger research effort concentrated on studying
competitive algorithms with buffer management for bounded buffers (see, e.g.,
a recent survey by Goldwasser [13] which provides an excellent overview of this
field). This line of research, initiated in [18,22], has received tremendous attention
in the past decade.

Various models have been proposed and studied, including, among others,
QoS-oriented models where packets have weights [1,11,18,22] and models where
packets have dependencies [15,23]. A related field that has received much atten-
tion in recent years focuses on various switch architectures and aims at designing
competitive algorithms for such multi-queue scenarios; see, e.g., [3, 5, 6, 16, 17].
Some other works also provide experimental studies of these algorithms and
further validate their performance [2].

There is a long history of OS scheduling for multithreaded processors which
is relevant to our research. For instance, the SRPT algorithm has been studied
extensively in such systems, and it is well known to be optimal with respect
to the mean response [30]. Additional objectives, models, and algorithms have

FIFO Queueing Policies with Heterogeneous Processing 251

been studied extensively in this context [21,25,26]. For a comprehensive overview
of competitive online scheduling for server systems, see a survey by Pruhs [28].
When comparing this body of research with our proposed framework, one should
note that OS scheduling is mostly concerned with average response time, but
we focus on estimation of the throughput. Furthermore, OS scheduling does not
allow jobs to be dropped, which is an inherent aspect of our proposed model
since we have a limited-size buffer.

The model considered in our work is also closely related to job-shop scheduling
problems [8], most notably hybrid flow-shop scheduling [29] in scenarios where
machines have bounded buffers and cannot drop or push out tasks.

1.3 Model Description

We consider a buffer with bounded capacity B that handles the arrival of a se-
quence of unit-sized packets. Each arriving packet p is branded with the number
of required processing cycles r(p) ∈ {1, . . . , k}. This number is known for ev-
ery arriving packet; for a motivation of why such information may be available
see [33]. Although the value of k will play a fundamental role in our analysis,
we note that our algorithms need not know k in advance. In what follows, we
adopt the terminology used in [20]. The queue performs two main tasks, namely
buffer management, which handles admission control of newly arrived packets
and push-out of currently stored packets, and scheduling, which decides which
of the currently stored packets will be scheduled for processing. The scheduling
will be determined by the FIFO order employed by the queue. Our framework
assumes a multi-core environment, where we have C processors, and at most C
packets may be chosen for processing at any given time. In the remainder of this
paper we assume the system selects a single packet for processing at any given
time (i.e., C = 1) in the theorems; however, variable C will resurface in the sim-
ulations (Section 4). This simple setting suffices to show both the difficulties of
the model and our algorithmic scheme. We assume discrete slotted time, where
each time slot t consists of three phases:

(i) arrival: new packets arrive, and the buffer management unit performs ad-
mission control and, possibly, push-out;

(ii) assignment and processing: a single packet is selected for processing by the
scheduling module;

(iii) transmission: packets with zero required processing left are transmitted
and leave the queue.

If a packet is dropped prior to being transmitted (i.e., while it still has a pos-
itive number of required processing cycles), it is lost. Note that a packet may
be dropped either upon arrival or due to a push-out decision while it is stored
in the buffer. A packet contributes one unit to the objective function only upon
being successfully transmitted. The goal is to devise buffer management algo-
rithms that maximize the overall throughput, i.e., the overall number of packets
transmitted from the queue.

252 K. Kogan et al.

Fig. 1. Zoom in on a single time slot for a greedy push-out work-conserving algorithm

We define a greedy buffer management policy as a policy that accepts all
arrivals if there is available buffer space in the queue. A policy is work-conserving
if it always processes whenever it has admitted packets that require processing
in the queue. We say that an arriving packet p pushes out a packet q that has
already been accepted into the buffer iff q is dropped in order to free buffer
space for p, and p is admitted to the buffer instead in FIFO order. A buffer
management policy is called a push-out policy whenever it allows packets to
push out currently stored packets. Figure 1 shows a sample time slot in our
model (for greedy and push-out case). For an algorithm ALG and a time slot t,
we denote the set of packets stored in ALG’s buffer at time t by IBALG

t .
The number of processing cycles of a packet is key to our algorithms. For-

mally, for every time slot t and every packet p currently stored in the queue, its
number of residual processing cycles, denoted rt(p), is defined to be the number
of processing cycles it requires before it can be successfully transmitted.

Internet traffic is difficult to model and it does not seem to follow the tradi-
tional Poisson arrival model [27,32]. In this work we do not assume any specific
traffic distribution and rather analyze our switch policies against arbitrary traffic
using competitive analysis [7,31], which provides a uniform throughput guaran-
tee for all traffic patterns. An online algorithm A is said to be α-competitive (for
some α ≥ 1) if for any arrival sequence σ the number of packets successfully
transmitted by A is at least 1/α times the number of packets successfully trans-
mitted by an optimal solution (denoted OPT) obtained by an offline clairvoyant
algorithm. However, on the practical side we also provide simulations based on
a Markov modulated Poisson process.

1.4 Proposed Algorithms

In this work, we study both push-out and non-push-out algorithms. The Non-
Push-Out Algorithm (NPO) is a simple greedy work-conserving policy that ac-
cepts a packet if there is enough available buffer space. Already admitted packets

FIFO Queueing Policies with Heterogeneous Processing 253

Algorithm 1. NPO(p): Buffer Management Policy

1: if buffer occupancy is less than B then
2: accept p
3: else
4: drop p
5: end if

Algorithm 2. PO(p): Buffer Management Policy

1: if buffer occupancy is less than B then
2: accept p
3: else
4: let q be the first (from HOL) packet with maximal number of residual

processing
5: if rt(p) < rt(q) then
6: drop q and accept p according to FIFO order
7: end if
8: end if

are processed in First-In-First-Out order (head of line packet is always selected
for processing). If during arrivals NPO’s buffer is full then any arriving packet is
dropped even if it has less processing required than a packet already admitted
to NPO’s buffer (see Algorithm 1).

Next we introduce two push-out algorithms. The Push-Out Algorithm (PO)
is also greedy and work-conserving, but now, when an arriving packet p requires
less processing cycles than at least one packet in its buffer, PO pushes out the first
packet with the maximal number of processing cycles in its buffer and accepts
p according to FIFO order (see Algorithm 2). For processing, PO always selects
the first packet in the queue. The second algorithm is a new Lazy-Push-Out al-
gorithm LPO that mimics the behaviour of PO with two important differences:
(i) LPO does not transmit a head of line packet with a single processing cycle
if its buffer contains at least one packet with more than one residual processing
cycle, until the buffer contains only packets with a single residual processing
cycle; (ii) once all packets in LPO’s buffer (say there are m packets there) have
a single processing cycle remaining, LPO transmits them over the next m pro-
cessing cycles; observe that during this time, if an arriving packet p requires less
processing than the first packet q with maximal number of processing cycles in
LPO’s buffer, p pushes out q (similarly to PO).

Intuitively, LPO is a weakened version of PO since PO tends to empty its
buffer faster. Simulations also support this view (see Section 4). However, The-
orem 1 shows that LPO and PO are incomparable in the worst case (see the
proof in [19]).

254 K. Kogan et al.

Theorem 1. (1) There exists a sequence of inputs on which PO processes ≥ 3
2

times more packets than LPO. (2) There exists a sequence of inputs on which
LPO processes ≥ 5

4 times more packets than PO.

LPO is an online push-out algorithm that obeys the FIFO ordering model, so
its competitiveness is an interesting result by itself. But we believe this type of
algorithms to be a rather promising direction for further study since they provide
a well-defined accounting infrastructure that can be used for system analysis in
different settings. From an implementation point of view we can define a new
on-line algorithm that will emulate the behaviour of LPO but will not delay the
transmission of processed packets. Observe that such an algorithm is not greedy.
Although we will briefly discuss the competitiveness of an NPO policy and lower
bounds for PO, in what follows NPO and PO will be mostly used as a reference
for the simulation study.

2 Competitiveness of the Non-push-Out Policy

The following theorem provides a tight bound on the worst-case performance of
NPO; its proof is given in [19].

Theorem 2. (1) For a sufficiently long arrival sequence, the competitiveness of
NPO is at least k. (2) For a sufficiently long arrival sequence, the competitiveness
of NPO is at most k.

As demonstrated by the above results, the simplicity of non-push-out greedy
policies does have its price. In the following sections we explore the benefits of
introducing push-out policies and provide an analysis of their performance.

3 Competitiveness of Push-Out Policies

In this section, we show lower bounds on the competitive ratio of PO and LPO
algorithms and prove an upper bound for LPO.

3.1 Lower Bounds

In this part we consider lower bounds on the competitive ratio of PO and LPO
for different values of k and B. Proofs of Theorems 3 and 4 are given in [19]

Theorem 3. The competitive ratio of both LPO and PO is at least 2
(
1− 1

B

)
for k ≥ B. The competitive ratio for k < B is at least 2k

k+1 for PO and at least
2k−1

k for LPO.

For large k (of the order k ≈ Bn, n > 1), logarithmic lower bounds follow.

Theorem 4. The competitive ratio of PO (LPO) is at least �logB k�+1−O(1
B).

FIFO Queueing Policies with Heterogeneous Processing 255

3.2 Upper Bound on the Competitive Ratio of LPO

We already know that the performance of LPO and PO is incomparable in the
worst case (see Theorem 1), and it remains an interesting open problem to show
an upper bound on the competitive ratio of PO. In this section we provide the
first known upper bound of LPO. Specifically, we show the proof outline for the
following theorem (full proof can be found in [19]).

Theorem 5. LPO is at most
(
ln k + 3 + o(B)

B

)
-competitive.

Recall that LPO does not transmit any packet until all packets in the buffer
have exactly one processing cycle left. The definition of LPO allows for a well-
defined accounting infrastructure. In particular, it helps us define an iteration
during which we will count the number of packets transmitted by the optimal
algorithm and compare it to the contents of LPO’s buffer. The first iteration
begins with the first arrival. An iteration ends when all packets in the LPO
buffer have a single processing pass left. Each subsequent iteration starts after
the transmission of all LPO packets from the previous iteration.

We assume that OPT never pushes out packets and it is work-conserving;
without loss of generality, every optimal algorithm can be assumed to have these
properties since the input sequence is available for it a priori. Further, we enhance
OPT with two additional properties: (1) at the start of each iteration, OPT
flushes out all packets remaining in its buffer from the previous iteration (for
free, with extra gain to its throughput); (2) let t be the first time when LPO’s
buffer is congested during an iteration; OPT flushes out all packets that currently
reside in its buffer at time t−1 (again, for free, with extra gain to its throughput).
Clearly, the enhanced version of OPT is no worse than the optimal algorithm
since both properties provide additional advantages to OPT versus the original
optimal algorithm. In what follows, we will compare LPO with this enhanced
version of OPT for the purposes of an upper bound.

To avoid ambiguity for the reference time, t should be interpreted as the
arrival time of a single packet. If more than one packet arrive at the same time
slot, this notation is considered for every packet independently, in the sequence
in which they arrive (although they might share the same actual time slot).

Lemma 1. Consider an iteration I that begins at time t′ and ends at time t.
The following statements hold: (1) during I, the buffer occupancy of LPO is at
least the buffer occupancy of OPT; (2) between two subsequent iterations I and
I ′, OPT transmits at most |IBLPO

t | packets; (3) if during a time interval [t′, t′′],
t′ ≤ t′′ ≤ t, there is no congestion then during [t′, t′′] OPT transmits at most
|IBLPO

t′′ | packets.

We denote by Mt the maximal number of residual processing cycles among all
packets in LPO’s buffer at time t; by Wt, the total residual work for all packets
in LPO’s buffer at time t.

Lemma 2. For every packet accepted by OPT at time t and processed by OPT
during the interval [ts, te], t ≤ ts ≤ te, if |IBLPO

t−1 | = B then Wte ≤ Wt−1 −Mt.

256 K. Kogan et al.

Let t be the time of the first congestion during an iteration I that has ended
at time t′. Observe that by definition, at time t, OPT flushes out all packets
that were still in its buffer at time t − 1. We denote by f(B,W) the maximal
number of packets that OPT can process during [t, t′], where W = Wt−1. The
next lemma is crucial for the proof; it shows that OPT cannot have more than
logarithmic (in k) gain over LPO at any iteration.

Lemma 3. For every ε > 0, f(B,W) ≤ B−1
1−ε ln W

B + o(B ln W
B).

Proof (of Theorem 5). Consider an iteration I that begins at time t′ and ends
at time t.

1. LPO’s buffer is not congested during I. In this case, by Lemma 1(3) OPT
cannot transmit more than |IBLPO

t | packets during I.
2. During I, LPO’s buffer is first congested at time t′′, t′ ≤ t′′ ≤ t. If during

I OPT transmits less than B packets then we are done. By Lemma 1(3),
during [t′, t′′] OPT can transmit at most B packets. Moreover, at most B
packets are left in OPT buffer at time t′′ − 1. By Lemma 3, during [t′′, t]
LPO transmits at most (ln k + o(B)

B)B packets (because W ≤ kB), so the

total amount over a congested iteration is at most (ln k+2+ o(B)
B)B packets.

Therefore, during an iteration OPT transmits at most (ln k + 2 + o(1))|IBLPO
t |

packets. Moreover, by Lemma 1(2), between two subsequent iterations OPT can

transmit at most |IBLPO
t | additional packets. Thus, LPO is at most ln k+3+ o(B)

B -
competitive. ��

The bound shown in Theorem 5 is asymptotic. To cover small values of B, we
show a weaker bound (log2 k instead of ln k) on inputs where LPO never pushes
out packets that are currently being processed.

The following theorem shows an upper bound for this family of inputs; it also
provides motivation for a new algorithm that does not push out packets that
are currently being processed. This restriction is practical (if a packet is being
processed, perhaps this means that it has left the queue and gone on, e.g., to
CPU cache), and the analysis of such an algorithm is an interesting problem
that we leave open.

Theorem 6. For every B > 0 and k > 0, if LPO never pushes out pack-
ets that are currently being processed then LPO is at most

(
log2 k + 3 + B−1

B

)
-

competitive.

4 Simulation Study

In this section, we consider the proposed policies (both push-out and non-push-
out) for FIFO buffers and conduct a simulation study in order to further explore
and validate their performance. Namely, we compare the performance of NPO,
PO, and LPO in different settings. It was shown in [14] that a push-out algorithm

FIFO Queueing Policies with Heterogeneous Processing 257

that processes packets with less required processing first is optimal, so in what
follows we denote it by OPT∗. Clearly, OPT in the FIFO queueing model does
not outperform OPT∗.

Our traffic is generated from 100 independent sources, each generated by an
on-off Markov modulated Poisson process (MMPP) which we use to simulate
bursty traffic. The choice of parameters is governed by average arrival load,
which is determined by the product of the average packet arrival rate and the
average number of processing cycles required by packets. In our simulations, each
source has average packet rate of 1

21λon, where λon is the parameter governing
traffic generation while in the on state. Each source also has a fixed required
processing value for every emitted packet; these values are distributed evenly
across {1, . . . , k} (k being the maximum amount of processing required by any
packet)We conducted our simulations for 500, 000 time slots, and allowed various
parameters to vary in each set of simulations, in order to better understand the
effect each parameter has on system performance and verify our analytic results.

By performing simulations for the maximal number of required passes k in the
range [1, 40] and the underlying source intensity λon in the range [0.005, 0.25], we
evaluate the performance of our algorithms in settings ranging from underload
to extreme overload, validating their performance in various traffic scenarios.
Fig. 2 shows simulation results. The vertical axis always represents the ratio
between the algorithm’s performance and OPT∗ performance arrival sequence
(so the black line corresponding to OPT∗ is always horizontal at 1). Throughout
our simulation study, the standard deviation never exceeded 0.05 (deviation
bars are omitted for readability). For every choice of parameters, we conducted
500,000 rounds (time slots) of simulation, four sets of simulations in total.

Variable Intensity and Variable Maximum Number of Required Processing Cy-
cles. Both the first and second set of simulations amount to testing different
policies under gradually increasing processing requirements. The first and sec-
ond row of graphs on Fig. 2 show that OPT∗ keeps outperforming LPO and NPO
more and more as k grows; however, the difference in processing order between
OPT∗ and PO does not matter much. NPO results show that non-push-out
policies cope very badly with overload scenarios, as expected.

Variable Buffer Size. In this set of simulations we evaluated the performance
of our algorithms for variable values of B in the range [1, 40]. Throughout our
simulations we again assumed a single core (C = 1) and evaluated different
values of k. The third row on Fig. 2 presents our results. Unsurprisingly, the
performance of all algorithms significantly improves as the buffer size increases;
the difference between OPT∗ and two other push-out algorithms visibly reduces,
but, of course, it would take a huge buffer for NPO to catch up (one would need
to virtually remove the possibility of congestion).

Variable Number of Cores. In this set of simulations we evaluated the perfor-
mance of our algorithms for variable values of C in the range [1, 10]. The bottom
row of Fig. 2 presents our results; the performance of all algorithms, naturally,
improves drastically as the number of cores increases. There is an interesting
phenomenon here: push-out capability becomes less important since buffers are

258 K. Kogan et al.

OPT∗ PO LPO NPO

0 0.1 0.2
0.6

0.7

0.8

0.9

1

k = 5, B = 10, C = 1 λon

0 0.1 0.2

k = 10, B = 50, C = 1 λon

0 0.1 0.2

k = 10, B = 50, C = 2 λon

0 20 40

0.4

0.6

0.8

1

B = 10, λon = 0.1, C = 1 k

0 20 40

B = 10, λon = 0.2, C = 1 k

0 20 40

B = 50, λon = 0.2, C = 2 k

0 20 40
0.4

0.6

0.8

1

k = 3, λon = 0.2, C = 1 B

0 20 40

k = 5, λon = 0.2, C = 1 B

0 20 40

k = 10, λon = 0.2, C = 1 B

5 10

0.6

0.8

1

k = 5, B = 5, λon = 0.2 C

5 10

k = 10, B = 10, λon = 0.2 C

5 10

k = 25, B = 50, λon = 0.2 C

Fig. 2. Performance ratio of online algorithms versus optimal as a function of parame-
ters: row 1, of λon; row 2, of k; row 3, of B; row 4, of C. The y-axis on all graphs shows
the competitiveness vs. OPT∗.

FIFO Queueing Policies with Heterogeneous Processing 259

congested less often, but LPO keeps paying for its “laziness”; so as C grows,
eventually NPO outperforms LPO. The increase in the number of cores essen-
tially provides the network processor (NP) with a speedup proportional to the
number of cores (assuming the average arrival rate remains constant).

5 Conclusion

Increasingly heterogeneous needs of NP traffic processing pose novel design chal-
lenges for NP architects. In this paper, we provide performance guarantees for
NP buffer scheduling algorithms with FIFO queueing for packets with heteroge-
neous required processing. The objective is to maximize the number of transmit-
ted packets under various settings such as push-out and non-push-out buffers.
We validate our results by simulations. As future work, it will be interesting to
show an upper bound for the PO algorithm and try to close the gaps between
lower and upper bounds of the proposed on-line algorithms.

References

1. Aiello, W., Mansour, Y., Rajagopolan, S., Rosén, A.: Competitive queue policies
for differentiated services. Journal of Algorithms 55(2), 113–141 (2005)

2. Albers, S., Jacobs, T.: An experimental study of new and known online packet
buffering algorithms. Algorithmica 57(4), 725–746 (2010)

3. Albers, S., Schmidt, M.: On the performance of greedy algorithms in packet buffer-
ing. SIAM Journal on Computing 35(2), 278–304 (2005)

4. AMCC. nP7310 10 Gbps network processor, product brief (2010),
http://www.appliedmicro.com/MyAMCC/jsp/public/productDetail/

product detail.jsp?productID=nP7310

5. Azar, Y., Litichevskey, A.: Maximizing throughput in multi-queue switches. Algo-
rithmica 45(1), 69–90 (2006)

6. Azar, Y., Richter, Y.: An improved algorithm for CIOQ switches. ACM Transac-
tions on Algorithms 2(2), 282–295 (2006)

7. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

8. Brucker, P., Heitmann, S., Hurink, J., Nieberg, T.: Job-shop scheduling with lim-
ited capacity buffers. OR Spectrum 28(2), 151–176 (2006)

9. Cavium. OCTEON II CN68XX multi-core MIPS64 processors, product brief
(2010), http://www.caviumnetworks.com/OCTEON-II_CN68XX.html

10. Cisco. The cisco QuantumFlow processor, product brief (2010),
http://www.cisco.com/en/US/prod/collateral/routers/ps9343/

solution overview c22-448936.html

11. Englert, M., Westermann, M.: Lower and upper bounds on FIFO buffer manage-
ment in QoS switches. Algorithmica 53(4), 523–548 (2009)

12. EZChip. NP-4 network processor, product brief (2010),
http://www.ezchip.com/p_np4.htm

13. Goldwasser, M.: A survey of buffer management policies for packet switches.
SIGACT News 41(1), 100–128 (2010)

14. Keslassy, I., Kogan, K., Scalosub, G., Segal, M.: Providing performance guarantees
in multipass network processors. In: INFOCOM, pp. 3191–3199 (2011)

http://www.appliedmicro.com/MyAMCC/jsp/public/productDetail/product_detail.jsp?productID=nP7310
http://www.appliedmicro.com/MyAMCC/jsp/public/productDetail/product_detail.jsp?productID=nP7310
http://www.caviumnetworks.com/OCTEON-II_CN68XX.html
http://www.cisco.com/en/US/prod/collateral/routers/ps9343/solution_overview_c22-448936.html
http://www.cisco.com/en/US/prod/collateral/routers/ps9343/solution_overview_c22-448936.html
http://www.ezchip.com/p_np4.htm

260 K. Kogan et al.

15. Kesselman, A., Patt-Shamir, B., Scalosub, G.: Competitive buffer management
with packet dependencies. In: Proceedings of the 23rd IEEE International Parallel
and Distributed Processing Symposium, IPDPS (2009)

16. Kesselman, A., Kogan, K., Segal, M.: Improved Competitive Performance Bounds
for CIOQ Switches. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS,
vol. 5193, pp. 577–588. Springer, Heidelberg (2008)

17. Kesselman, A., Kogan, K., Segal, M.: Packet mode and QoS algorithms for buffered
crossbar switches with FIFO queuing. Distributed Computing 23(3), 163–175
(2010)

18. Kesselman, A., Lotker, Z., Mansour, Y., Patt-Shamir, B., Schieber, B., Sviridenko,
M.: Buffer overflow management in QoS switches. SIAM Journal on Comput-
ing 33(3), 563–583 (2004)

19. Kogan, K., López-Ortiz, A., Nikolenko, S.I., Sirotkin, A.V., Tugaryov,
D.: FIFO queueing policies for packets with heterogeneous processing.
arXiv:1204.5443 [cs.NI] (2012), http://arxiv.org/abs/1204.5443

20. Kogan, K., López-Ortiz, A., Scalosub, G., Segal, M.: Large profits or fast gains: A
dilemma in maximizing throughput with applications to network processors (2012),
http://arxiv.org/abs/1202.5755

21. Leonardi, S., Raz, D.: Approximating total flow time on parallel machines. In:
STOC, pp. 110–119 (1997)

22. Mansour, Y., Patt-Shamir, B., Lapid, O.: Optimal smoothing schedules for real-
time streams. Distributed Computing 17(1), 77–89 (2004)

23. Mansour, Y., Patt-Shamir, B., Rawitz, D.: Overflow management with multipart
packets. In: INFOCOM, pp. 2606–2614 (2011)

24. McKeown, N., Parulkar, G., Shenker, S., Anderson, T., Peterson, L., Turner,
J., Balakrishnan, H., Rexford, J.: OpenFlow switch specification (2011),
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf

25. Motwani, R., Phillips, S., Torng, E.: Non-clairvoyant scheduling. Theoretical Com-
puter Science 130(1), 17–47 (1994)

26. Muthu Muthukrishnan, S., Rajaraman, R., Shaheen, A., Gehrke, J.E.: Online
scheduling to minimize average stretch. SIAM Journal on Computing 34(2), 433–
452 (2005)

27. Paxson, V., Floyd, S.: Wide area traffic: the failure of poisson modeling.
IEEE/ACM Trans. Netw. 3(3), 226–244 (1995)

28. Pruhs, K.: Competitive online scheduling for server systems. SIGMETRICS Per-
formance Evaluation Review 34(4), 52–58 (2007)

29. Ruiz, R., Vázquez-Rodŕıgue, J.A.: The hybrid flow shop scheduling problem. Eu-
ropean Journal of Operational Research 205(1), 1–18 (2010)

30. Schrage, L.: A proof of the optimality of the shortest remaining processing time
discipline. Operations Research 16, 687–690 (1968)

31. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

32. Veres, A., Boda, M.: The chaotic nature of TCP congestion control. In: INFOCOM,
pp. 1715–1723 (2000)

33. Wolf, T., Pappu, P., Franklin, M.A.: Predictive scheduling of network processors.
Computer Networks 41(5), 601–621 (2003)

34. Xelerated. X11 family of network processors, product brief (2010),
http://www.xelerated.com/Uploads/Files/67.pdf

http://arxiv.org/abs/1204.5443
http://arxiv.org/abs/1202.5755
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://www.xelerated.com/Uploads/Files/67.pdf

Author Index

Amir, Amihood 1
Apostolico, Alberto 1

Ballard, Grey 13
Bansal, Nikhil 37
Baram, Guy 52
Barcelo, Neal 67, 82
Batz, Gernot Veit 93

Chechik, Shiri 108
Chopin, Morgan 120
Cole, Daniel 67
Cord-Landwehr, Andreas 234
Cunial, Fabio 134

D’Angelo, Gianlorenzo 148
D’Emidio, Mattia 148
Demmel, James 13
Doerr, Benjamin 159

Eisenberg, Estrella 1
El Ouali, Mourad 174

Fohlin, Helena 174
Fouz, Mahmoud 159
Friedrich, Tobias 159
Frigioni, Daniele 148
Fuchs, Fabian 188

Geisberger, Robert 93
Godfroy, Quentin 108
Goodrich, Michael T. 203
Görke, Robert 219
Gupta, Anupam 37

Hirschberg, Daniel S. 203
Holtz, Olga 13

Im, Sungjin 82

Kling, Peter 234
Kluge, Roland 219
Kogan, Kirill 248
Krishnaswamy, Ravishankar 37

Landau, Gad M. 1
Levy, Avivit 1
Lewenstein, Noa 1
Lipshitz, Benjamin 13
López-Ortiz, Alejandro 248
Luxen, Dennis 93

Mallmann-Trenn, Frederik 234
Mitzenmacher, Michael 203
Moseley, Benjamin 82

Nagarajan, Viswanath 37
Nichterlein, André 120
Niedermeier, Rolf 120
Nikolenko, Sergey I. 248
Nugent, Michael 67

Peleg, David 108
Pruhs, Kirk 37, 67, 82

Romano, Daniele 148

Sanders, Peter 93
Schumm, Andrea 219
Schwartz, Oded 13
Sirotkin, Alexander V. 248
Srivastav, Anand 174
Staudt, Christian 219
Stein, Cliff 37

Tamir, Tami 52
Thaler, Justin 203
Tugaryov, Denis 248

Völker, Markus 188

Wagner, Dorothea 188, 219
Weller, Mathias 120

Zhou, Miao 67
Zubkov, Roman 93

	Title
	Preface
	Organization
	Table of Contents
	Detecting Approximate Periodic Patterns
	Introduction
	Paper Contribution

	Preliminaries
	The REPP Intervals Algorithm
	The Algorithm
	The Correctness of the REPP Intervals Algorithm
	The Complexity of the REPP Intervals Algorithm
	Constructing the REPP
	The Construction of the -Active Maximal Intervals List L

	Conclusion and Open Problems
	References

	Graph Expansion Analysis for Communication Costs of Fast Rectangular Matrix Multiplication
	Introduction
	Expansion and Communication
	Fast Rectangular Matrix Multiplication
	Communication Model
	The Communication Costs of Rectangular Matrix Multiplication
	Paper Organization

	Preliminaries
	The Computational Graph
	Edge Expansion
	Matching Sequential Algorithm

	Communication Cost and Edge Expansion
	The Partition Argument
	Edge Expansion and Communication Cost

	Expansion Properties of Fast Rectangular Matrix Multiplication Algorithms
	The Computational Graph for "426830A mt,nt,pt"526930B =qt
	Stretching a Segment
	Disconnected Encoding or Decoding Graphs

	The Communication Costs of Some Rectangular Matrix Multiplication Algorithms
	Bini's Algorithm
	The Hopcroft-Kerr Algorithm

	Discussion and Open Problems
	Limitations of the Lower Bounds
	Parallel Case
	Blackbox Use of Fast Square Matrix Multiplication Algorithms

	References

	Multicast Routing for Energy Minimization Using Speed Scaling
	Introduction
	Notation and Background
	Online Algorithm for Homogeneous Setting
	The Algorithm
	Analysis

	Offline Algorithm for Homogeneous Setting
	Hardness of Approximation Results
	Hardness of s-t Directed Routing with Heterogeneous Functions
	APX-Hardness of Undirected s-t Routing with Heterogeneous Functions

	Open Problems
	References

	Reoptimization of the Minimum Total Flow-Time Scheduling Problem
	Introduction
	Problem Statement and Notation
	Related Work
	Our Results

	Optimal Modified Schedule Using Minimum Budget
	Arbitrary Costs and Modifications
	An Efficient Algorithm for Identical Migration Costs

	Rescheduling with a Limited Budget - Unit Migration Costs
	The Budget B Is a Constant
	Migrations Are Allowed Only to New Machines

	Conclusions and Future Work
	References

	Energy Efficient Caching for Phase-Change Memory
	Introduction
	Related Work
	Theoretical Development of the Asymmetric Landlord Algorithm
	Problem Model
	Asymmetric Landlord with Read-throughs and Write-throughs

	Experimental Methodology
	The Variable Aging Algorithm
	Methodology and Experimental Setup

	Evaluation Results
	References

	Shortest-Elapsed-Time-First on a Multiprocessor
	Introduction
	Basic Definitions

	SETF on a Homogeneous Multiprocessor
	WSETF on a Uniprocessor
	References

	Efficient Route Compression for Hybrid Route Planning
	Introduction
	Via Nodes and a Generic Frame Algorithm
	Dijkstra-Based Compression and a Generic Scheme
	Representing Paths Uniquely with CH
	Compression Based on CH
	Experiments
	Conclusions and Future Work
	References

	Multipath Spanners via Fault-Tolerant Spanners
	Introduction
	Preliminaries
	Edge Disjoint Multipath Spanners
	Vertex Disjoint Multipath Spanners
	References

	Constant Thresholds Can Make Target Set Selection Tractable
	Introduction
	Preliminaries and Parameter Identification
	Parameters Related to Sparse Structures
	Parameters Related to Dense Structures
	Conclusion
	References

	Faster Variance Computation for Patterns with Gaps
	Introduction and State of the Art
	Notation and Problem Definition
	Gapped Patterns
	Motifs
	Discussion and Extensions
	References

	Enhancing the Computation of Distributed Shortest Paths on Real Dynamic Networks
	Introduction
	Preliminaries
	Dynamic Scenarios
	The New Technique
	Experimental Analysis
	References

	Experimental Analysis of Rumor Spreading in Social Networks
	Introduction
	Fast Broadcasting in Preferential Attachment Graphs,Influence of Graph Density
	The Effect of Short-Term Memory
	Real-World Social Networks
	Asynchronous Rumor Spreading
	Discussion
	References

	A Randomised Approximation Algorithm for the Partial Vertex Cover Problem in Hypergraphs
	Introduction
	Preliminaries and Definitions
	Randomised Algorithm for Partial k-Vertex Cover
	Analysis for Bounded Edge Degree
	Analysis for Constant Vertex Degree
	Analysis for Constant l and
	Further Work
	References

	Simulation-Based Analysis of Topology Control Algorithms for Wireless Ad Hoc Networks
	Introduction
	Problem Definition and Terminology
	Related Work
	Examined Algorithms
	XTCRLS

	Simulation Setup
	Experiments
	Basic Topology Properties
	Topology Control with Uniform Transmission Powers
	Topology Control in Combination with Power Control
	Performance Comparison

	Conclusion
	References

	Cache-Oblivious Dictionaries and Multimaps with Negligible Failure Probability
	Introduction
	Dictionary Data Structure
	The First Piece
	The Second Piece

	Hash Families
	Cache-Oblivious Multimaps
	De-amortizing Add(k, v) and Remove(k, v) Operations
	De-amortizing removeAll(k) Operations

	Conclusion
	References

	An Efficient Generator for Clustered Dynamic Random Networks
	Introduction
	Static Model
	Edge Dynamics
	Associated Markov Chain and Distribution
	Data Structures and Implementation

	Experiments
	Conclusion and Outlook
	References

	Slow Down and Sleep for Profit in Online Deadline Scheduling
	Introduction
	Model and Preliminaries
	Lower Bound for Rejection-Oblivious Algorithms
	Algorithm and Analysis
	Bounding the Different Portions of the Cost
	Putting It All Together

	The Speed-Bounded Case
	Conclusion and Outlook
	References

	FIFO Queueing Policies for Packets with Heterogeneous Processing
	Introduction
	Our Contributions
	Related Work
	Model Description
	Proposed Algorithms

	Competitiveness of the Non-push-Out Policy
	Competitiveness of Push-Out Policies
	Lower Bounds
	Upper Bound on the Competitive Ratio of LPO

	Simulation Study
	Conclusion
	References

	Author Index

