

Lecture Notes in Computer Science 7673
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Lam Thu Bui Yew Soon Ong
Nguyen Xuan Hoai Hisao Ishibuchi
Ponnuthurai Nagaratnam Suganthan (Eds.)

Simulated Evolution
and Learning
9th International Conference, SEAL 2012
Hanoi, Vietnam, December 16-19, 2012
Proceedings

13

Volume Editors

Lam Thu Bui
Le Quy Don Technical University, Faculty of Information Technology
100 Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam
E-mail: lam.bui07@gmail.com

Yew Soon Ong
Nanyang Technological University, School of Computer Engineering
Block N4, 2b-39, Nanyang Avenue, Singapore 639798, Singapore
E-mail: asysong@ntu.edu.sg

Nguyen Xuan Hoai
Hanoi University, HANU IT Research and Development Center
9th Km Nguyen Trai Road, Hanoi, Vietnam
E-mail: nxhoai@hanu.edu.vn

Hisao Ishibuchi
Osaka Prefecture University, Graduate School of Engineering
1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
E-mail: hisaoi@cs.osakafu-u.ac.jp

Ponnuthurai Nagaratnam Suganthan
Nanyang Technological University, School of Electrical and Electronic Engineering
Block S2, B2a-21, Nanyang Avenue, Singapore 639798, Singapore
E-mail: epnsugan@ntu.edu.sg

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-34858-7 e-ISBN 978-3-642-34859-4
DOI 10.1007/978-3-642-34859-4
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012951174

CR Subject Classification (1998): F.1.1, I.2.6, I.6, G.1.6, H.3, D.2.2, J.3-4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers that were carefully selected for publication in
these proceedings and presented at the 9th Simulated Evolution and Learning
(SEAL2012) Conference held during December 16–19, 2012, at the Le Quy Don
Technical University (LQDTU), Vietnam. SEAL has been an international fo-
rum for researchers discussing issues related to evolutionary optimization and
machine learning. This biennial event started in Seoul, South Korea, in 1996
and was thereafter held in Canberra, Australia, in 1998, Nagoya, Japan, in 2000,
Singapore, in 2002, Busan, South Korea, in 2004, Hefei, China, in 2006 and
Melbourne, Australia, in 2008, and Kanpur, India, in 2010.

SEAL 2012 continued to maintain its high technical quality with a rigorous
reviewing process of an international Program Committee. This year, SEAL 2012
received 91 paper submissions from 20 countries. After a rigorous peer-review
process with three reviews per paper, 50 papers were accepted for presentation
at the conference. The papers cover a wide range of topics in simulated evolution
and learning. The accepted papers have been classified into the following main
categories: (a) theoretical developments, (b) evolutionary algorithms, (c) swarm
intelligence, (d) data mining, (e) learning methodologies, and (f) real-world
applications.

The conference featured five distinguished keynote speakers. Hussein Ab-
bass’s talk on “Computational Red Teaming: Can Evolution and Learning Aug-
ment Human Behaviour?” focused on computational red teaming (CRT), a field
that attempts to create a form of artificial intelligence (AI) whereby intelligence
is measured as the ability of a computer environment to challenge humans. Kay
Chen Tan’s talk on “Advances in Evolutionary Multi-objective Optimization”
showcased the incorporation of probabilistic graphical approaches in evolution-
ary mechanism that may enhance the iterative search process when interrela-
tionships of the archived data have been learned, modeled, and used in the
reproduction for multi-objective optimization.

Hisao Ishibuchi’s talk on “Fuzzy Genetics-Based Machine Learning” discussed
the use of genetic-based machine learing for single and multi-objective fuzzy rule-
based classifier design. Yew Soon Ong’s talk on “Towards a Unified Evolutionary
and Memetic Search Model” presented a balance between generality (exploration
through stochastic variation) and problem specificity (exploitation through life-
time learning). Kok Lay Teo’s talk on “Optimal Discrete-Valued Control Com-
putation: An Exact Penalty Function Approach” considered an optimal control
problem in which the control takes values from a discrete set.

VI Preface

SEAL 2012 could not have been held successfully without the contributions
and support of many people. We would like to express our sincere thanks to all
members of the conference committees, authors, participants, the local organiz-
ing teams, and the sponsors. We are grateful the LQDTU for supporting our
cause and encouraging us to organize the conference at LQDTU.

September 2012 Lam Thu Bui
Yew Soon Ong

Nguyen Xuan Hoai
Hisao Ishibuchi
P.N. Suganthan

Organization

Honorary Chair The Long Pham

General Chair Lam Thu Bui

Local Chair Long Thanh Ngo

Competition Chair Kai Quin

Program Chairs

Yew Soon Ong
Nguyen Xuan Hoai

Thanh Tinh Dao
Bao Son Pham

Technical Co-chairs

Hisao Ishibuchi
P.N. Suganthan

Kay Chen Tan
Juergen Branke

Steering Committee

Takeshi Furuhashi
Jong-Hwan Kim
Lipo Wang
Xin Yao

Mengjie Zhang
Bob McKay
Xiaodong Li
Kalyanmoy Deb

Publicity Chairs

Sung-Bae Cho
Jing Liu
Meng Hiot Lim

Program Committee

Tapabrata Ray
Rong Qu
Adam Ghandar
Bo Liu
Uday Chakraborty
Martin Holena

Kai Qin
Pramod Singh
Andre de Carvalho
Yusuke Nojima
Gurunathan Saravana Kumar
Meinolf Sellmann

VIII Organization

Luis Paquete
Guenther Raidl
Pavel Kromer
Hussein Abbass
Jose A. Lozano
Jing Liu
Martin Pelikan
Nugroho Fredivianus
Shuming Wang
Oliver Schuetze
Amiram Moshaiov
Jun Zhang
Lothar Thiele
Sung-Bae Cho
Carlos M. Fonseca
Varun Aggarwal
Jason Teo
Christian Grimme
Khoi Le
Hartmut Schmeck
Antonio Gaspar-Cunha
Rafal Drezewski
Marc Schoenauer
Swagatam Das
Frédéric Lardeux
Yaochu Jin
Huey-Ming Lee
Mengjie Zhang
Joanna Kolodziej
Quang Uy Nguyen
Hiroyuki Sato
Ashutosh Tiwari
Gustavo Recio
Zhun Fan
Lam Thu Bui
Andries Engelbrecht
Efrén Mezura-Montes
Jin-Kao Hao
Robert Lygoe
Quang Huy Nguyen
El-Ghazali Talbi
Madan Dabbeeru
Kalyan Veeramachaneni
Gary Yen

Patrick Siarry
Rolf Drechsler
Helio Barbosa
Lino Costa
Akira Namatame
Laetitia Jourdan
Kalyanmoy Deb
Thomas Philip Runarsson
Christopher Turner
Hirosato Seki
Zexuan Zhu
Long Thanh Ngo
Xin Yao
Tru Cao
Matthieu Basseur
Huynh Thi Thanh Binh
Xiaodong Li
Sanaz Mostaghim
Jesper Hattel
Quang Anh Tran
Dario Landa-Silva
Luis Martí
Marzuki Khalid
Hiroaki Ishii
Jonathan Chan
Daryl Essam
Jaeseok Choi
Martin Middendorf
Henrik Saxen
Julian Molina
Maoguo Gong
Sushil Louis
Lily Rachmawati
Vineet Khare
Anna Kononova
Dimo Brockhoff
Kyriakos Giannakoglou
Piotr Wozniak
Ling Wang
Kay Chen Tan
Yifeng Zeng
C.P. Lim
Mario Koeppen

Table of Contents

Evolutionary Algorithms

The Influence of the Number of Initial Feasible Solutions on the
Performance of an Evolutionary Optimization Algorithm 1

Saber M. Elsayed, Ruhul A. Sarker, and Daryl L. Essam

Concurrent Differential Evolution Based on Generational Model
for Multi-core CPUs . 12

Kiyoharu Tagawa

Figure of Merit Based Fitness Functions in Genetic Programming
for Edge Detection . 22

Wenlong Fu, Mark Johnston, and Mengjie Zhang

An Evolutionary Algorithm for the Over-constrained Airport Baggage
Sorting Station Assignment Problem . 32

Amadeo Ascó, Jason A.D. Atkin, and Edmund K. Burke

A Non-parametric Statistical Dominance Operator for Noisy
Multiobjective Optimization . 42

Dung H. Phan and Junichi Suzuki

The Emergence of New Genes in EcoSim and Its Effect on Fitness 52
Marwa Khater, Elham Salehi, and Robin Gras

Mass-Dispersed Gravitational Search Algorithm for Gene Regulatory
Network Model Parameter Identification . 62

Mohsen Davarynejad, Zary Forghany, and Jan van den Berg

A Density Based Approach to the Access Point Layout Smart
Distribution Grid Design Optimization Problem . 73

Bin Zhang, Kamran Shafi, and Hussein A. Abbass

Multi-modal Valley-Adaptive Memetic Algorithm for Efficient
Discovery of First-Order Saddle Points . 83

Mostafa Ellabaan, Xianshun Chen, and Nguyen Quang Huy

Ensemble Fuzzy Rule-Based Classifier Design by Parallel Distributed
Fuzzy GBML Algorithms . 93

Hisao Ishibuchi, Masakazu Yamane, and Yusuke Nojima

HEMH2: An Improved Hybrid Evolutionary Metaheuristics
for 0/1 Multiobjective Knapsack Problems . 104

Ahmed Kafafy, Ahmed Bounekkar, and Stéphane Bonnevay

X Table of Contents

Theoretical Developments

Guided Reproduction in Differential Evolution . 117
Prashant Singh Rana, Harish Sharma, Mahua Bhattacharya, and
Anupam Shukla

A Study of Breakout Local Search for the Minimum Sum Coloring
Problem . 128

Una Benlic and Jin-Kao Hao

XCS with Adaptive Action Mapping . 138
Masaya Nakata, Pier Luca Lanzi, and Keiki Takadama

DEAL: A Direction-Guided Evolutionary Algorithm 148
Cuong C. Vu, Lam Thu Bui, and Hussein A. Abbass

Introduction of a Mutation Specific Fast Non-dominated Sorting GA
Evolved for Biochemical Optimizations . 158

Susanne Rosenthal, Nail El-Sourani, and Markus Borschbach

Using Hybrid Dependency Identification with a Memetic Algorithm
for Large Scale Optimization Problems . 168

Eman Sayed, Daryl Essam, and Ruhul A. Sarker

Application of Cooperative Convolution Optimization for 13C Metabolic
Flux Analysis: Simulation of Isotopic Labeling Patterns Based on
Tandem Mass Spectrometry Measurements . 178

Rohitash Chandra, Mengjie Zhang, and Lifeng Peng

Swarm Intelligence

An Efficient Two-Phase Ant Colony Optimization Algorithm for the
Closest String Problem . 188

Hoang Xuan Huan, Dong Do Duc, and Nguyen Manh Ha

Evolution of Intrinsic Motives in Multi-agent Simulations 198
Kamran Shafi, Kathryn E. Merrick, and Essam Debie

A Hybrid Particle Swarm Optimization Approach to Bernoulli Mixture
Models . 208

Faezeh Frouzesh, Yuichi Hirose, Shirley Pledger, and Mahdi Setayesh

An Agent-Based Model for Simulation of Traffic Network Status 218
Manh Hung Nguyen, Tuong Vinh Ho, Manh Son Nguyen,
Thi Hoai Phuong Phan, Thi Ha Phan, and Van Anh Trinh

Self-Adaptive Particle Swarm Optimization . 228
Adiel Ismail and Andries P. Engelbrecht

Table of Contents XI

Evaporation Mechanisms for Particle Swarm Optimization 238
Juan Rada-Vilela, Mengjie Zhang, and Winston Seah

The Performance and Sensitivity of the Parameters Setting on the
Best-so-far ABC . 248

Anan Banharnsakun, Booncharoen Sirinaovakul, and
Tiranee Achalakul

FAME, Soft Flock Formation Control for Collective Behavior Studies
and Rapid Games Development . 258

Choon Sing Ho, Yew-Soon Ong, Xianshun Chen, and Ah-Hwee Tan

Data Mining

Incremental Spatial Clustering in Data Mining Using Genetic Algorithm
and R-Tree . 270

Nam Nguyen Vinh and Bac Le

Personalized Email Recommender System Based on User Actions 280
Quang Minh Ha, Quang Anh Tran, and Thu Trang Luyen

Developing Attention Focus Metrics for Autonomous Hypothesis
Generation in Data Mining . 290

Bing Wang, Kathryn E. Merrick, and Hussein A. Abbass

Emergent Self Organizing Maps for Text Cluster Visualization by
Incorporating Ontology Based Descriptors . 300

Kusum Kumari Bharti and Pramod Kumar Singh

Online Handwriting Recognition Using Multi Convolution Neural
Networks . 310

Dũng Viê. t Pha. m

A Genetic Programming Approach to Hyper-Heuristic Feature
Selection . 320

Rachel Hunt, Kourosh Neshatian, and Mengjie Zhang

A New Approach to Vision-Based Fire Detection Using Statistical
Features and Bayes Classifier . 331

Ha Dai Duong and Dao Thanh Tinh

Learning Methodologies

Automatic Discovery of Optimisation Search Heuristics for Two
Dimensional Strip Packing Using Genetic Programming 341

Su Nguyen, Mengjie Zhang, Mark Johnston, and Kay Chen Tan

XII Table of Contents

Solving Graph Coloring Problem by Fuzzy Clustering-Based Genetic
Algorithm . 351

Young-Seol Lee and Sung-Bae Cho

Efficient Neuroevolution for a Quadruped Robot . 361
Xu Shengbo, Hirotaka Moriguchi, and Shinichi Honiden

Learning and Generating Folk Melodies Using MPF-Inspired
Hierarchical Self-Organising Maps . 371

Edwin Hui-Hean Law and Somnuk Phon-Amnuaisuk

Multi Objective Learning Classifier Systems Based Hyperheuristics
for Modularised Fleet Mix Problem . 381

Kamran Shafi, Axel Bender, and Hussein A. Abbass

Where Should We Stop? An Investigation on Early Stopping for GP
Learning . 391

Thi Hien Nguyen, Xuan Hoai Nguyen, Bob McKay, and
Quang Uy Nguyen

From Subjective to Objective Metrics for Evolutionary Story Narration
Using Event Permutations . 400

Kun Wang, Vinh Bui, Eleni Petraki, and Hussein A. Abbass

GPU Accelerated Genetic Clustering . 410
Pavel Krömer, Jan Platoš, and Václav Snášel

Memetic Input Variable Selection in Neuro-Genetic Prediction
System . 420

Jacek Mańdziuk and Marcin Jaruszewicz

Learning Rule for TSK Fuzzy Logic Systems Using Interval Type-2
Fuzzy Subtractive Clustering . 430

Binh Huy Pham, Hai Trung Ha, and Long Thanh Ngo

Real-World Applications
Constrained Layout Optimization in Satellite Cabin Using a Multiagent
Genetic Algorithm . 440

Jing Liu

A Multi-Objective Approach for Master’s Thesis Committees
Scheduling Using DMEA . 450

Lam Thu Bui and Viet Hoang

Coupler-Curve Synthesis of a Planar Four-Bar Mechanism Using
NSGA-II . 460

Jaideep Badduri, Rangaprasad Arun Srivatsan,
Gurunathan Saravana Kumar, and Sandipan Bandyopadhyay

Table of Contents XIII

A Simulation Model for Optimise the Fire Evacuation Configuration in
the Metro Supermarket of Hanoi . 470

Manh Hung Nguyen, Tuong Vinh Ho, and Jean-Daniel Zucker

Interactive GA Flock Brush for Non-Photorealistic Rendering 480
Hsueh En Huang, Meng Hiot Lim, Xianshun Chen, and
Choon Sing Ho

Generating Diverse Behaviors of Evolutionary Robots with Speciation
for Theory of Mind . 491

Si-Hyuk Yi and Sung-Bae Cho

Improving Gender Recognition Using Genetic Algorithms 501
Abbas Roayaie Ardakany and Sushil J. Louis

Author Index . 511

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 1–11, 2012.
© Springer-Verlag Berlin Heidelberg 2012

The Influence of the Number
of Initial Feasible Solutions on the Performance

of an Evolutionary Optimization Algorithm

Saber M. Elsayed, Ruhul A. Sarker, and Daryl L. Essam

School of Engineering and Information Technology,
University of New South Wales at Australian Defence Force Academy,

Canberra 2600, Australia
{s.elsayed,r.sarker,d.essam}@adfa.edu.au

Abstract. Constrained optimization is a well-known research topic in the evolu-
tionary computation field. In these problems, the selected solution must be feas-
ible. In evolutionary constrained optimization, the search space is usually much
bigger than the feasible space of the problem. There is a general view that the
presence or absence of any feasible individuals in the initial population substan-
tially influences the performance of the algorithm. Therefore, the aim of this re-
search is to analyze the effect of the number of feasible individuals, in the initial
population, on the algorithm’s performance. For experimentation, we solve a
good number of well-known bench-mark problems using a Differential Evolu-
tion algorithm. The results show that the algorithm performs slightly better, for
the test problems solved, when the initial population contains about 5% feasible
individuals.

Keywords: Constrained optimization, differential evolution, feasible
individual.

1 Introduction

Constrained optimization is an important research area as there is a huge number of
real-world decision processes that require the solution of Constrained Optimization
Problems (COPs). Evolutionary Algorithms (EAs), such as Differential Evolution
(DE) [1, 2], and Genetic Algorithms (GA) [3, 4], have a long history of successfully
solving COPs.

In any EAs, the initial step is to generate a population of individuals randomly,
which will then be evolved in the later generations. As the search space is always
bigger than the feasible space, the initial population may contain many infeasible
individuals. The number of feasible individuals can even be zero when the feasible
space is tiny in comparison to the search space. It is the general view that the presence
or absence of the feasible individuals, in the initial population, affects the perfor-
mance of EAs. The presence of any feasible individuals can bias the entire search
process towards feasibility. Note that for any optimal solution the feasibility condition

2 S.M. Elsayed, R.A. Sarker, and D.L. Essam

must be satisfied. Therefore, many researchers attempted to use heuristics methods,
such as Sequential Quadratic Programming (SQP) [5], with the hope of quickly find-
ing feasible individuals during the evolution process.

In this paper, we attempt to analyze the effect of the number of feasible individu-
als, in the initial population, on the performance of a DE algorithm. This analysis will
help to judge both whether the initial population should include feasible individuals
when there is none and also whether to increase the number when there are very few.
These findings should attract further research on the topic.

To the best of our knowledge, no such research has appeared in the literature.
However, there are some research papers that recognize the importance of feasibility
or feasible individuals during the evolution process. Singh et al. [6] proposed a GA
that preserves the infeasible solutions that are closer to the constraint boundaries. This
is because when these infeasible solutions are combined with the feasible solutions,
they produce solutions either on or closer to the constraint boundary. Although this
process accelerates the rate of convergence, it cannot be done unless the feasible solu-
tions are present. They proposed to use only 5% of the promising infeasible individu-
als in their algorithm. With a similar recombination approach, Mezura-Montes et
al.[7] proposed to keep some of the infeasible points if they are better than their
parent with a predefined probability. As of the authors, this approach aimed at main-
taining a reasonable diversity of the population. Other studies have also analyzed
information exploitation from the feasible and infeasible solutions, such as [8-10]. In
another study that can be related to the existing research, Barkat-Ullah et al. [11]
proposed a Search Space Reduction Technique (SSRT) as an initial step of GA. SSRT
directed the selected infeasible agents in the initial population to move towards the
feasible space. The algorithm showed good performance when it was tested on a
number of test problems and a real world case problem. The algorithm has also been
successfully extended and used in another study [12].

The organization of this paper is as follows: the next section provides a brief re-
view of DE. Section 3 and 4 discusses the design of experiments and the results, re-
spectively. Finally, the conclusions are presented in section 4.

2 Differential Evolution

In this section, an introduction to DE with a review of its operators is presented. In
DE, an initial population is generated, and for each parent vector from the current
population (target vector), a mutant vector (donor vector) is obtained. Finally, an
offspring is formed by combining the donor with the target vector. A comparison is
then made between each parent and its offspring, with the better being copied to the
next generation [2]. DE usually converges fast, incorporates a relatively simple and
self-adapting mutation, and the same settings can be used for many different problems
[2]. It performs well when the feasible patches are parallel to the axes [13]. However,
DE prematurely converges when dealing with a multimodal fitness function because it
loses its diversity [14, 15].

 The Influence of the Number of Initial Feasible Solutions 3

2.1 Mutation

This operation enables DE to explore the search space and maintain diversity. The
simplest form of this operation is that a mutant vector is generated by multiplying an
amplification factor, , by the difference between two random vectors and the result
is added to a third random vector (DE/rand/1) [1, 2], as:

, , , , (1)

where r , r , r are random numbers (1,2, ..., PS), r r r z , x a decision
vector, PS the population size, F a positive control parameter for scaling the DV and t
the current generation.

2.2 Crossover

The DE family of algorithms usually depends on two crossover schemes, exponential
and binomial, which are briefly discussed below.

In an exponential crossover, firstly, an integer, l, is randomly chosen within the
range [1, D] and acts as a starting point in the target vector from where the crossover
or exchange of components with the donor vector starts. Another integer, L, is also
chosen from the interval [1, D] and denotes the number of components that the donor
vector actually contributes to the target. After the generation of l and L, the trial vec-
tor is obtained, as:

, , , , ‹ › , ‹ 1› , … , ‹ 1›, , 1, (2)

where 1,2, … , , and the angular brackets, ‹ › , denote a modulo function with a
modulus of D, and a starting index of .

The binomial crossover is performed on each of the variables whenever a ran-
domly picked number (between 0 and 1) is less than or equal to a crossover rate, Cr.
In this case, the number of parameters inherited from the donor has a (nearly) binomi-
al distribution, as:

, , , , , (3)

where 0,1 , and 1,2, … , is a randomly chosen index which en-
sures , receives at least one component from , .

3 Design of Experiments

In this section, we discuss the designs of experiments, test problems and our parame-
ters settings.

We run experiments with different percentages of feasible individuals in the initial
population, while solving a set of well-known COPs. The percentages of feasible and
infeasible individuals considered are as follows.

4 S.M. Elsayed, R.A. Sarker, and D.L. Essam

1. 100% infeasible individuals in the initial population.
2. 99% infeasible individuals and 1% feasible individuals.
3. 95% infeasible individuals and 5% feasible individuals.
4. 90% infeasible individuals and 10% feasible individuals.
5. 85% infeasible individuals and 15% feasible individuals.
6. 80% infeasible individuals and 20% feasible individuals.

For simplicity, these experiments are named as DE (0%), DE (1%), DE (5%), DE
(10%), DE (15%) and DE (20%). For these experiments, we maintain a pool of 100
infeasible and 20 feasible individuals for each test problem. These individuals were
generated randomly only once. For each experiment listed above, we choose the re-
quired number of individuals randomly from the respective pools.

The DE algorithm, used in this study, uses a binomial crossover and a simple muta-
tion strategy, as follows:

, , , , ,, , (4)

where is a random integer number within the range [10%, 50%] of PS, Cr is set at
0.95 and PS at100 individuals. These settings are based on [16].

In this research, for experimentation, we have used a set of 22 small scale problems
and 2 large scale optimization problems, as discussed below.

Small scale problems: Eighteen test problems are used from [17]. Each problem
had 25 independent runs, with the stopping criterion for each being 240k fitness func-
tion evaluations (FFEs). It should be mentioned here that g02, g12, g19 and g04 are
not considered in this study as their feasible regions are large and hence there is no
need to analyze them, while g20 and g22 are not considered as they are difficult or
because no feasible solution was found as of the literature [17]. The detailed results
are shown in Table 1.

Large scale problems: Two problems are from [13]. They are numbered as C09 and
C14 in that paper. C09 contains one equality constraint, while C14 contains three in-
equality separable constraints, and all the constraints are multi-modal and shifted. It is
worth while to mention here that D is set to 150 variables, instead of 10 and 30 as in
[13], the shifting matrix (SHI) is five times that in [13] and FFEs is set to one million.

In selecting and ranking the individuals, the following rules are chosen [18]: i)
when compared two feasible solutions, the fittest one (according to the fitness func-
tion) is better; ii) a feasible solution is always better than an infeasible one; and iii)
when compared two infeasible solutions, the one having the smaller sum of constraint
violation is preferred. The equality constraints are transformed to inequalities in the
following form, where is a small value (0.0001 . | | 0, 1, … , (5)

All the algorithms are run on a PC with a 3.0 GHz Core 2 Duo processor, 3.5GB
RAM and Windows XP. All experiments are coded using Matlab 7.8.0 (R2009a)

 The Influence of the Number of Initial Feasible Solutions 5

4 Analysis and Discussions

In this section, all the results are discussed and analyzed using different
measurements.

4.1 Small Scale Problems

Firstly, as shown in Table 1, DE is able to obtain the optimal solutions for all experi-
ments. Based on the average results, DE (0%) is able to obtain the best average results
for 16 test problems, DE (1%) 16, DE (5%) 17, DE (10%) 16, DE (15%) 17 and DE
(20%) 16 test problems, respectively.

Considering the statistical test, we have chosen a non- parametric test, known as
the Wilcoxon Signed Rank Test [19]. Based on the test results, there is no significant
difference between all variants. Therefore, it is worthy to use other comparison crite-
ria, such as computational time, the average fitness evaluations, and the convergence
pattern, as will be seen below.

Thus, the average computational time consumed by each DE to obtain the optimal
solutions with an error of 0.0001, i.e., a stopping criterion of 0.0001 , where is the best-known solution, is calculated, and a comparison
summary is presented in Table 2. Based on the results, DE (5%) is the best.

Similarly, the average number of FFEs consumed by each DE variant to obtain the
optimal solutions with an error of 0.0001 are calculated and presented in Table 3. The
results show that DE (5%) is the best.

An example of the convergence plot is also presented in Fig. 1. This figure shows
that DE (5%) performs best.

The diversity in a population can play an important role in an algorithm’s success.
So we have calculated the diversity for each DE variant. To do this, the diversity
measure is calculated as follows:

1. At generation t, the average diversity (of a point (to the centre (, i.e. , ∑ /) of all points in the current population is calculated, as
follows:

∑ / 1, 2, … , 25 (6)

2. The total diversity () is then calculated, as follows:

where / is the maximum number of generations.

∑ ∑ /25 (7)

6 S.M. Elsayed, R.A. Sarker, and D.L. Essam

Table 1. Fitness function values obtained by DE for all experiments for small scale problems

Prob. DE (0%) DE (1%) DE (5%) DE (10%) DE (15%) DE (20%)
g01 Best -15.0000 -15.0000 -15.0000 -15.0000 -15.0000 -15.0000

Avg. -15.0000 -15.0000 -15.0000 -15.0000 -15.0000 -15.0000
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

g03 Best -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 -1.0005
Avg. -1.0005 -1.0005 -1.0005 -1.0005 -1.0005 -1.0005
STD 6.80E-16 6.80E-16 6.80E-16 6.80E-16 6.80E-16 6.80E-16

g04 Best -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539
Avg. -30665.539 -30665.539 -30665.539 -30665.539 -30665.539 -30665.539
STD 7.43E-12 7.43E-12 7.43E-12 7.43E-12 7.43E-12 7.43E-12

g05 Best 5126.4967 5126.4967 5126.4967 5126.4967 5126.4967 5126.4967
Avg. 5126.4967 5126.4967 5126.4967 5126.4967 5126.4967 5126.4967
STD 1.86E-12 1.86E-12 1.86E-12 1.86E-12 1.86E-12 1.86E-12

g06 Best -6961.8139 -6961.8139 -6961.8139 -6961.8139 -6961.8139 -6961.8139
Avg. -6961.8139 -6961.8139 -6961.8139 -6961.8139 -6961.8139 -6961.8139
STD 9.28E-13 9.28E-13 9.28E-13 9.28E-13 9.28E-13 9.28E-13

g07 Best 24.3062 24.3062 24.3062 24.3062 24.3062 24.3062
Avg. 24.3062 24.3062 24.3062 24.3062 24.3062 24.3062
STD 7.25E-15 7.25E-15 7.25E-15 7.25E-15 7.25E-15 7.25E-15

g08 Best -0.0958 -0.0958 -0.0958 -0.0958 -0.0958 -0.0958
Avg. -0.0958 -0.0958 -0.0958 -0.0958 -0.0958 -0.0958
STD 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

g09 Best 680.6301 680.6301 680.6301 680.6301 680.6301 680.6301
Avg. 680.6301 680.6301 680.6301 680.6301 680.6301 680.6301
STD 4.64E-13 4.64E-13 4.64E-13 4.64E-13 4.64E-13 4.64E-13

g10 Best 7049.2480 7049.2480 7049.2480 7049.2480 7049.2480 7049.2480
Avg. 7049.2480 7049.2480 7049.2480 7049.2480 7049.2480 7049.2480
STD 1.86E-12 1.86E-12 1.86E-12 1.86E-12 1.86E-12 1.86E-12

g11 Best 0.7499 0.7499 0.7499 0.7499 0.7499 0.7499
Avg. 0.7499 0.7499 0.7499 0.7499 0.7499 0.7499
STD 1.13E-16 1.13E-16 1.13E-16 1.13E-16 1.13E-16 1.13E-16

g13 Best 0.0539 0.0539 0.0539 0.0539 0.0539 0.0539
Avg. 0.0539 0.0539 0.0539 0.0539 0.0539 0.0539
STD 7.08E-18 7.08E-18 7.08E-18 7.08E-18 7.08E-18 7.08E-18

g14 Best -47.7649 -47.7649 -47.7649 -47.7649 -47.7649 -47.7649
Avg. -47.7649 -47.7649 -47.7649 -47.7649 -47.7649 -47.7649
STD 1.01E-13 1.01E-13 1.01E-13 1.01E-13 1.01E-13 1.01E-13

g15 Best 961.7150 961.7150 961.7150 961.7150 961.7150 961.7150
Avg. 961.7150 961.7150 961.7150 961.7150 961.7150 961.7150
STD 4.64E-13 4.64E-13 4.64E-13 4.64E-13 4.64E-13 4.64E-13

g16 Best -1.9052 -1.9052 -1.9052 -1.9052 -1.9052 -1.9052
Avg. -1.9052 -1.9052 -1.9052 -1.9052 -1.9052 -1.9052
STD 4.53E-16 4.53E-16 4.53E-16 4.53E-16 4.53E-16 4.53E-16

g17 Best 8853.5397 8853.5397 8853.5397 8853.5397 8853.5397 8853.5397
Avg. 8910.5535 8904.3062 8904.5640 8910.6791 8901.3180 8909.9798
STD 3.28E+01 3.56E+01 3.58E+01 3.28E+01 3.66E+01 3.24E+01

g18 Best
Avg.
STD

-0.8660 -0.8660 -0.8660 -0.8660 -0.8660 -0.8660
-0.8660 -0.8660 -0.8660 -0.8660 -0.8660 -0.8660

2.27E-16 2.27E-16 2.27E-16 2.27E-16 2.27E-16 2.27E-16

 The Influence of the Number of Initial Feasible Solutions 7

Table 1 (Continued)

g21 Best 193.7245 193.7245 193.7245 193.7245 193.7245 193.7245
Avg. 230.3984 235.6376 225.1593 240.8767 240.8767 240.8767
STD 6.00E+01 6.24E+01 5.71E+01 6.42E+01 6.42E+01 6.42E+01

g23 Best -400.0551 -400.0551 -400.0551 -400.0551 -400.0551 -400.0551
Avg. -400.0551 -400.0551 -400.0551 -400.0551 -400.0551 -400.0551
STD 1.29E-09 4.91E-13 2.36E-13 1.74E-13 1.74E-13 8.55E-13

Table 2. Average computational time of DE for all experiments

Average time
in seconds

DE (0%) DE (1%) DE (5%) DE (10%) DE (15%) DE (20%)
4.30E+00 4.23E+00 4.16E+00 4.24E+00 4.20E+00 4.26E+00

Table 3. Average FFEs of DE to convere to the optimal solutions for all experiments

Average
FFEs

DE (0%) DE (1%) DE (5%) DE (10%) DE (15%) DE (20%)
7.9611E+04 7.8825E+04 7.7704E+04 7.8956E+04 7.8406E+04 7.9417E+04

Fig. 1. A convergence plot of DE with all experiments for g23

Based on this measurement, a summary of comparison among all the variants is
presented in Table 4. The results show that DE (5%) is the best. It is interesting to
mention here that the average diversity increases until it reaches the peak of 7.8753 at
DE (5%), and then deteriorates. However, if we analyze the average diversity for
each problem, we find that DE (1%) is the best for the problem with separable in-
equality constraints (g01), DE (5%) is the best for those problems with polynomial in-
equality constraints (g04, g08 and g10), DE (10%) is the best for those problems with
highly equality constraints (g03, g17, g21 and g23), DE (15%) is the best for those
problems with polynomial objective function, DE (20%) is the best for those prob-
lems with separable equality constraints, and DE (1%) is the best for problems with
exponential objective functions.

8 S.M. Elsayed, R.A. Sarker, and D.L. Essam

Table 4. Diversity results of DE for all experiments

DV

DE (0%) DE (1%) DE (5%) DE (10%) DE (15%) DE (20%)
15307.043 16274.956 18847.536 18670.962 17279.807 16480.546

An example of the change in average diversity of all DE variants during only one

run is presented in Fig. 2.

4.2 Large Scale Problems

The detailed results for C09 and C14, with 150 decision variables are shown in
Table 5. These two problems are analyzed based on the quality of solutions (the lower
fitness function value means better performance) and the average diversity measure
(the higher diversity value means better performance).

Based on the obtained results, DE (20%) is able to obtain the best solution for C09,
while DE (15%) is the best for C14. Considering the average results, DE (5%), and
DE (15%) perform best for C09 and C14, respectively. It is worth mentioning here
that, in C09, the average results are improving from DE (0%) to DE (5%) then gradu-
ally deteriorate. However, in C14, the average results are improving from DE (0%) to
DE (15%) then deteriorate. This means that the continuous increase of the number of
feasible solutions in the initial population does not always guarantee better results.

Table 5. Fitness function values obtained for all experiments for large scale problems

Prob. DE (0%) DE (1%) DE (5%) DE (10%) DE (15%) DE (20%)
C09 Best 3.6266E+06 2.7529E+03 1.4912E+06 6.5547E+04 1.2466E+05 4.3854E+02

Avg. 3.4826E+09 1.1244E+09 5.5863E+08 6.8502E+09 6.4068E+09 8.1105E+08
STD 1.1364E+10 2.7745E+09 7.4714E+08 3.1984E+10 2.3996E+10 1.4867E+09

C14 Best 9.6977E+01 2.3629E+02 1.2516E+02 1.7483E+01 8.9648E+01 1.4760E+02
Avg. 4.8658E+06 8.4327E+06 6.6195E+06 6.1549E+06 1.4814E+06 2.2320E+06
STD 7.1572E+06 1.4013E+07 1.3849E+07 1.2792E+07 4.3153E+06 6.0215E+06

The average diversity of both problems has been calculated and is presented in
Table 6. From this table, it is clear that DE (5%) is the best for C09, while DE (1%) is
the best for C14.

Table 6. Average diversity results of DE for large scale problems

DV

DE (0%) DE (1%) DE (5%) DE (10%) DE (15%) DE (20%)

C09 107.538 118.465 133.081 104.632 121.569 109.442
C14 0.188 0.233 0.128 0.159 0.152 0.182

Because no DE variant was able to obtain the optimal solutions, we have not pro-
vided the analysis of the average number of feasible solutions and average computa-
tional time.

 The Influence of the Number of Initial Feasible Solutions 9

Fig. 2. Diversity values for one run

5 Conclusions

DE algorithms have shown superior performance to other EAs in solving COPs.
However, starting with some initial feasible points could play a pivotal role in its
performance and reduce the computational time required to obtain the optimal solu-
tions. In this research, an analysis of the effect of the number of feasible points, with-
in the initial population, on the performance of DE was provided. Using well-known
bench-mark problems, the results were analyzed based on the quality of solutions,
computational time, fitness evaluations and diversity measurements. The results
showed that starting with 5% feasible points could lead to better performance, and
hence researchers could reduce the amount of effort of using repairing techniques for
more than this ratio of the initial infeasible solutions.

10 S.M. Elsayed, R.A. Sarker, and D.L. Essam

References

[1] Elsayed, S.M., Sarker, R.A., Essam, D.L.: Multi-operator based evolutionary algorithms
for solving constrained optimization Problems. Computers and Operations Research 38,
1877–1896 (2011)

[2] Price, K.V., Storn, R.M., Lampinen, J.A.: Differential evolution: a practical approach to
global optimization. Springer, Berlin (2005)

[3] Elsayed, S.M., Sarker, R.A., Essam, D.L.: GA with a new multi-parent crossover for con-
strained optimization. In: IEEE Congress on Evolutionary Computation, pp. 857–864
(2011)

[4] Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addi-
son-Wesley, MA (1989)

[5] Powell, M.: A fast algorithm for nonlinearly constrained optimization calculations. In:
Watson, G. (ed.) Numerical Analysis, pp. 144–157. Springer, Heidelberg (1978)

[6] Singh, H.K., Ray, T., Smith, W.: Performance of infeasibility empowered memetic algo-
rithm for CEC 2010 constrained optimization problems. In: IEEE Congress on Evolutio-
nary Computation, pp. 1–8 (2010)

[7] Mezura-Montes, E., Velázquez-Reyes, J., Coello, C.A.C.: Promising infeasibility and
multiple offspring incorporated to differential evolution for constrained optimization. In:
The 2005 Conference on Genetic and Evolutionary Computation, pp. 225–232. ACM,
Washington DC (2005)

[8] Mezura-Montes, E., Coello, C.A.C.: A simple multimembered evolution strategy to solve
constrained optimization problems. IEEE Transactions on Evolutionary Computation 9,
1–17 (2005)

[9] Vieira, D.A.G., Adriano, R.L.S., Vasconcelos, J.A., Krahenbuhl, L.: Treating constraints
as objectives in multiobjective optimization problems using niched Pareto genetic algo-
rithm. IEEE Transactions on Magnetics 40, 1188–1191 (2004)

[10] Ray, T., Singh, H.K., Isaacs, A., Smith, W.: Infeasibility Driven Evolutionary Algorithm
for Constrained Optimization. In: Mezura-Montes, E. (ed.) Constraint-Handling in Evolu-
tionary Optimization. SCI, vol. 198, pp. 145–165. Springer, Heidelberg (2009)

[11] Barkat-Ullah, A.S.S.M., Sarker, R., Cornforth, D.: Search space reduction technique for
constrained optimization with tiny feasible space. In: The 10th Annual Conference on
Genetic and Evolutionary Computation, Atlanta, GA, USA, pp. 881–888 (2008)

[12] Barkat-Ullah, A.S.S.M., Elfeky, E.Z., Cornforth, D., Essam, D.L., Sarker, R.: Improved
evolutionary algorithms for solving constrained optimization problems with tiny feasible
space. In: IEEE International Conference on Systems, Man and Cybernetics, pp.
1426–1433 (2008)

[13] Mallipeddi, R., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC
2010 competition and special session on single objective constrained real-parameter opti-
mization. Technical Report, Nangyang Technological University, Singapore (2010)

[14] Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm. In: 6th Int.
Mendel Conference on Soft Computing, Brno, Czech Republic, pp. 76–83 (2000)

[15] Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, particle
swarm optimization, and evolutionary algorithms on numerical benchmark problems. In:
IEEE Congress on Evolutionary Computation, pp. 980–1987 (2004)

[16] Elsayed, S.M., Sarker, R.A., Ray, T.: Parameters Adaptation in Differential Evolution. In:
IEEE Congress on Evolutionary Computation (accepted, 2012)

 The Influence of the Number of Initial Feasible Solutions 11

[17] Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P.N., Coello,
C.A.C., Deb, K.: Problem Definitions and Evaluation Criteria for the CEC 2006 Special
Session on Constrained Real-Parameter Optimization. Technical Report, Nanyang Tech-
nological University, Singapore (2005)

[18] Deb, K.: An Efficient Constraint Handling Method for Genetic Algorithms. Computer
Methods in Applied Mechanics and Engineering 186, 311–338 (2000)

[19] Corder, G.W., Foreman, D.I.: Nonparametric Statistics for Non-Statisticians: A Step-by-
Step Approach. John Wiley, Hoboken (2009)

Concurrent Differential Evolution

Based on Generational Model
for Multi-core CPUs

Kiyoharu Tagawa

School of Science and Engineering,
Kinki University, Higashi-Osaka 577-8502, Japan

tagawa@info.kindai.ac.jp

Abstract. In order to utilize multi-core CPUs more effectively, a new
Concurrent Differential Evolution (CDE) is proposed. Then the proposed
CDE (CDE/G) is compared with a conventional CDE (CDE/S). CDE/S
uses only one population because it is based on the steady-state model.
Therefore, CDE/S requires a time-consuming mutual exclusion or “lock”
for every read-write access to the population. On the other hand, CDE/G
is based on the generational model. By using a secondary population in
addition to a primary one, CDE/G does not require any lock on the
population and therefore is faster. Through the numerical experiment
and the statistical test, it is demonstrated that CDE/G is superior to
CDE/S in not only the run-time but also the quality of solutions.

Keywords: concurrent program, parallel processing, multi-core CPU,
evolutionary algorithm, differential evolution, statistical test.

1 Introduction

Differential Evolution (DE) [1,2] can be regarded as a kind of Evolutionary Al-
gorithm (EA). Because EAs maintain a lot of tentative solutions of the optimiza-
tion problem manipulated competitively in the population, EAs have a parallel
and distributed nature intrinsically. Therefore, many parallelization techniques
have been contrived for various EAs [3,4]. These parallelization techniques of
EAs can be introduced easily into DE. Actually, the parallel implementations
of DE variants using networked computers and clustered computers have been
reported [5,6,7]. Besides, Graphics Processing Units (GPUs) designed to accel-
erate graphics applications with several hundreds of simplified cores have been
also used to run a parallelized DE program consisting of hundreds of threads [8].

Recently, multi-core CPUs, which have more than one processor (core), have
been introduced widely into personal computers. In order to utilize the addi-
tional cores to execute costly application programs, concurrent implementations
of them have been paid attention to [9]. Even though the number of available
cores is not so large, the concurrent program executed on a multi-core CPU may
be the most simple and easy way to realize a parallelized DE. Consequently,
a concurrent program of DE, which is called Concurrent Differential Evolution

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 12–21, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Concurrent Differential Evolution 13

(CDE), has been proposed [10]. More specifically, the conventional CDE is a
parallelized version of a neoteric DE based on the steady-state model.

The procedure of EAs for updating the individuals in the population is called
“generation alternation model”. Many EAs usually employ either of two types of
generation alternation models [11]. The first one is called “generational model”,
while the second one is called “steady-state model”. The original DE [1] is based
on the generational model and holds two population: primary one and secondary
one. After generating all individuals of the secondary population from those of
the primary population, the primary one is replaced by the secondary one at
a time. Alternative DE based on the steady-state model, which is sometimes
called Sequential DE (SDE), has been also reported [12,13]. SDE holds only one
population. Thereby, each individual in the population is updated one by one.
Comparing with the generational model, the steady-state model seems to be
suitable for parallelizing the procedures of EAs [14]. That is because the steady-
state model does not require to synchronize the manipulations of all individuals
in the population for replacing them by newborn individuals at a time.

The conventional CDE based on the steady-state model is called CDE/S in
this paper. In our previous paper [10], it was shown that the run-time of CDE/S
was reduced as the number of threads increased. However, CDE/S requires a
time-consuming mutual execution or “lock” for every read-write access to the
population. Besides, the quality of solutions obtained by CDE/S tends to fluc-
tuate with the number of threads and the kind of optimization problem [15].

In this paper, a new CDE based on the generational model is proposed. The
new CDE is called CDE/G. CDE/G is a lock free implementation of CDE.
CDE/G accesses to the primary and secondary population without any lock and
therefore faster. Instead of the mutual exclusion between threads, CDE/G uses
a synchronized mechanism for multiple threads. Both CDE/G and CDE/S are
coded by “Java”, which is a popular language supporting the multi-threading
program [16]. Through the numerical experiment and the statistical test con-
ducted on a commodity multi-core CPU, it is demonstrated that CDE/G is
superior to CDE/S in not only the run-time but also the quality of solutions.

The remainder of this paper is organized as follows. Section 2 gives a brief
explanation of DE and SDE. Section 3 describes the procedures of CDE/S and
CDE/G. Through the numerical experiment and the statistical test, CDE/G is
compared with CDE/S in Section 4. Finally, Section 5 concludes the paper.

2 Differential Evolution

2.1 Representation

The real-parameter optimization problem is formulated as[
minimize f(x) = f(x1, · · · , xj , · · · , xD),

subject to xj ≤ xj ≤ xj , j = 1, · · · , D.
(1)

The solution of the optimization problem is a D-dimensional real-parameter
vector x ∈ �D that minimizes the objective function value f(x) ∈ �. DE holds

14 K. Tagawa

Np tentative solutions of the optimization problem, which are called individuals,
in the population P . The i-th individual xi ∈ P is represented as follows:

xi = (x1,i, · · · , xj,i, · · · , xD,i) (2)

where, xj ≤ xj,i ≤ xj , j = 1, · · · , D; i = 1, · · · , Np.

2.2 Strategy of DE

In order to generate a new individual of the population P , DE uses a unique
reproduction procedure called the strategy. Even though various strategies have
been proposed for DE [1,2,12], a basic one named “DE/rand/1/exp” [2] is de-
scribed and used in this paper. First of all, a parental individual xi ∈ P called
“the target vector” is chosen from P in turn. Besides, three different individuals,
say xi1, xi2 and xi3 ∈ P (i �= i1 �= i2 �= i3), are selected randomly from P .
Furthermore, two integers r1 and r2 are selected stochastically from [1, D]. From
the four parents, namely xi, xi1, xi2 and xi3, a new candidate for the individual
u = (u1, · · · , uj , · · · , uD) called “the trial vector” is generated as

uj =

⎧⎪⎨⎪⎩
xj,i1 + F (xj,i2 − xj,i3) for j = r1%D + 1, (r1 + 1)%D + 1,

(r1 + 2)%D + 1, · · · , (r1 + r2)%D + 1;

xj,i for all other j ∈ [1, D].

(3)

where, the scale factor F ∈ (0, 1+] is a user-defined control parameter.

2.3 Generation Alternation Model

The original DE proposed by Storn and Price [1] is based on the generational
model and has two population: the primary one P and the secondary one Q. The
trial vector u is generated by using the individuals in P . Then the trial vector
u is compared with its corresponding target vector xi ∈ P . If f(u) ≤ f(xi)
holds then u is selected to zi ∈ Q. Otherwise, xi is selected to zi ∈ Q. After
generating all zi ∈ Q (i = 1, · · · , Np), P is replaced by Q at a time.

The neoteric DE or SDE [12] is based on the steady-state model and has only
one population P . As well as DE, the trial vector u is generated by using the
individuals in P and compared with its corresponding target vector xi ∈ P .
However, if f(u) ≤ f(xi) holds then xi ∈ P is replaced by u immediately.

3 Concurrent Differential Evolution

3.1 Concurrent Program

A concurrent program consists of multiple processes or threads. Therefore, if
the concurrent program is executed on a multi-core CPU that has M (M ≥ 2)
cores, M threads run in parallel at the maximum. However, not the concurrent
program but the scheduler of Operating System (OS) decides how and when one

Concurrent Differential Evolution 15

of the threads is assign to core. Each thread has its own private working memory
and no thread can access other threads’ working memories. Besides, there is a
common memory shared between all threads. For accessing the common memory,
we assume Concurrent Read and Exclusive Write (CREW) [9] in which multiple
threads may read the same memory location at the same time and one thread
may write to a given memory location at any time. Of course, more than one
thread can’t read and write the same memory location at the same time.

3.2 Main Thread of CDE

CDE/S and CDE/G consist of a main thread and Nt (Nt ≥ 1) worker threads.
The population P exists in the common memory, which is shared between all
threads. Because CDE/G is based on the generational model, CDE/G uses the
secondary one Q in addition to the primary one P . However, the main threads
of CDE/S and CDE/G can be written in the same way. Except the detail of the
worker thread denoted by Worker(n), the main thread of CDE is provided as

1: Randomly generate Np individuals xi ∈ P (i = 1, · · · , Np).
2: Evoke Worker(n) (n = 1, · · · , Nt) in parallel.
3: Wait until every Worker(n) (n = 1, · · · , Nt) is completed.
4: Output the best xb ∈ P with the minimum f(xb) and terminate.

CDE is based on a programming model known as “MapReduce” [9]. The pro-
gramming model consists of two phases, “Map-phase” and “Reduce-phase”. In
the main thread of CDE, Step 2 corresponds to “Map-phase”, while Step 4
corresponds to “Reduce-phase”. All Worker(n) threads are evoked all together
and executed concurrently in Step 2. Each Worker(n) gets the parents from P .
Then Worker(n) generates the trial vector u from them and evaluates the value
of objective function f(u) by using its private working memory. The results of
all Worker(n) threads’ efforts are consolidated in Step 4. The proposed CDE/G
differs from the conventional CDE/S in the procedure of Worker(n).

3.3 Worker Thread of CDE/S

The population P is divided into Nt sub-populations P n called “chunks” such
as P = P 1 ∪ · · · ∪ P n ∪ · · · ∪ PNt . More specifically, the individual xi ∈ P
with i%Nt = n is assigned to P n+1. Then CDE/S allocates each chunk P n to
Worker(n) statically. Worker(n) can read any individuals xi ∈ P , but it may
overwrite only the individuals xi ∈ P n. In other words, updating xi ∈ P n is
permitted only to Worker(n). The procedure of Worker(n) is described as

1: For each individual xi ∈ P n, evaluate the value of f(xi).
2: Set the generation as g = 0.
3: For each xi ∈ P n, i.e., the target vector, do from Step 3.1 to Step 3.3.
3. 1 Randomly select xi1, xi2 and xi3 ∈ P (i �= i1 �= i2 �= i3).
3. 2 Generate the trial vector u by (3). Evaluate the value of f(u).

16 K. Tagawa

3. 3 If f(u) ≤ f(xi) holds then let xi = u and f(xi) = f(u).
4: If g < Gm then set g = g + 1 and return to Step 3, otherwise complete.

In the procedure of CDE/S, most of the threads are just reading the individuals
in the population P . Overwriting the target vector xi ∈ P n seldom occurs.
It is not necessary to exclusively lock access to xi ∈ P n while reading because
multiple read operations can be done in parallel unless there is a write operation.
Therefore, “read-write lock” [16] is employed for realizing the above CREW. In
the implementation of CDE/S, Nt pairs of read-write locks are used to access
xi ∈ P n (n = 1, · · · , Nt). Because a unique Worker(n) may read and write the
value of f(xi) (xi ∈ P n ⊆ P), any lock is not necessary to access f(xi).

3.4 Worker Thread of CDE/G

As well as the primary population P , the secondary one Q is also divided into
Nt chunks Qn (n = 1, · · · , Nt). CDE/G allocates each pair of chunks, P n and
Qn, to Worker(n) statically. Worker(n) can read any individuals xi ∈ P , but
it may overwrite only xi ∈ P n and zi ∈ Qn. Worker(n) generates Qn from P
and replaces P n by Qn. The procedure of Worker(n) is described as

1: For each individual xi ∈ P n, evaluate the value of f(xi).
2: Set the generation as g = 0.
3: For each xi ∈ P n, i.e., the target vector, do from Step 3.1 to Step 3.3.
3. 1 Randomly select xi1, xi2 and xi3 ∈ P (i �= i1 �= i2 �= i3).
3. 2 Generate the trial vector u by (3). Evaluate the value of f(u).
3. 3 If f(u) ≤ f(xi) holds then let zi = u (zi ∈ Qn) and f(xi) = f(u),

otherwise let zi = xi (zi ∈ Qn and xi ∈ P n).
4: Wait until all the Worker(n) (n = 1 · · · , Nt) threads arrive.
5: Replace P n by Qn such as xi = zi (xi ∈ P n and zi ∈ Qn).
6: Wait until all the Worker(n) (n = 1 · · · , Nt) threads arrive.
7: If g < Gm then set g = g + 1 and return to Step 3, otherwise complete.

CDE/G does not require the mutual exclusion or “lock”. However, CDE/G re-
quires to synchronize all the Worker(n) threads in each generation because we
can’t expect that the scheduler of OS executes all the threads in parallel. In the
implementation of CDE/G, “cyclic-barrier” [16] is used to start and stop all the
Worker(n) threads at Steps 4 and 6 in the above procedure of CDE/G.

4 Experiment

4.1 Setup of Experiment

DE, SDE, CDE/S and CDE/G were coded by the Java language and executed on
a multi-core CPU (CPU: Intel� CoreTMi7@3.33[GHz]; OS: Microsoft Windows
XP). The multi-core CPU has four cores each of which manipulates two threads
at the same time. Therefore, eight threads run in parallel at the maximum.

The following six test functions were employed as the objective function f(x)
in (1). All benchmark problems have D = 50 dimensional real-parameters. The
best objective function values are known as fp(x) = 0 (p = 1, · · · , 6).

Concurrent Differential Evolution 17

• Sphere function (unimodal function):

f1(x) =

D∑
j=1

x2
j

• Salomon function (multimodal function):

f2(x) = − cos

⎛⎝2 π

√√√√ D∑
j=1

x2
j

⎞⎠+ 0.1

√√√√ D∑
j=1

x2
j + 1

• Rosenbrock function (multimodal function):

f3(x) =

D−1∑
j=1

(100 (x2
j − xj+1)

2 + (1 − xj)
2)

• Rastrigin function (multimodal function):

f4(x) =

D∑
j=1

(x2
j − 10 cos(2 π xj) + 10)

• Ackley function (multimodal function):

f5(x) = − 20 exp

⎛⎝−0.2

√√√√ 1

D

D∑
j=1

x2
j

⎞⎠− exp

⎛⎝ 1

D

D∑
j=1

cos(2 π xj)

⎞⎠+20+e

• Griewank function (multimodal function):

f6(x) =
1

4000

D∑
j=1

x2
j −

D∏
j=1

cos

(
xj√
j

)
+ 1

The same control parameter values were used for DE, SDE, CDE/S and CDE/G.
A desirable population size was recommended as Np = 5D = 250 in the liter-
ature [1]. However, in order to assess the overhead time spent for the mutual
exclusion between threads, we used smaller (Np = 100) and bigger (Np = 500)
population sizes. Furthermore, the total number of the objective function eval-
uation was fixed to 2 × 105 in all cases. Thereby, all the methods were applied
respectively to each of the six benchmark problems 100 times.

4.2 Result of Experiment

Figure 1 compares CDE/S (solid line) and CDE/G (broken line) in the run-time
[sec] averaged over 100 independent runs, where the horizontal axis denotes the
number of worker threads. The solid horizon and the broken horizon denote

18 K. Tagawa

 0

 0.2

 0.4

 0.6

 0.8

 1 2 3 4 5 6 7 8 9 10 11 12

Sphere function: f1 (Np = 100)

 0

 0.2

 0.4

 0.6

 0.8

 1 2 3 4 5 6 7 8 9 10 11 12

Sphere function: f1 (Np = 500)

 0

 0.2

 0.4

 0.6

 0.8

 1 2 3 4 5 6 7 8 9 10 11 12

Salomon function: f2 (Np = 100)

 0

 0.2

 0.4

 0.6

 0.8

 1 2 3 4 5 6 7 8 9 10 11 12

Salomon function: f2 (Np = 500)

 0

 0.2

 0.4

 0.6

 0.8

 1 2 3 4 5 6 7 8 9 10 11 12

Rosenbrock function: f3 (Np = 100)

 0

 0.2

 0.4

 0.6

 0.8

 1 2 3 4 5 6 7 8 9 10 11 12

Rosenbrock function: f3 (Np = 500)

 0
 0.2
 0.4
 0.6
 0.8
 1.0
 1.2
 1.4

 1 2 3 4 5 6 7 8 9 10 11 12

Rastrigin function: f4 (Np = 100)

 0
 0.2
 0.4
 0.6
 0.8
 1.0
 1.2
 1.4

 1 2 3 4 5 6 7 8 9 10 11 12

Rastrigin function: f4 (Np = 500)

 0
 0.2
 0.4
 0.6
 0.8
 1.0
 1.2
 1.4

 1 2 3 4 5 6 7 8 9 10 11 12

Ackley function: f5 (Np = 100)

 0
 0.2
 0.4
 0.6
 0.8
 1.0
 1.2
 1.4

 1 2 3 4 5 6 7 8 9 10 11 12

Ackley function: f5 (Np = 500)

 0
 0.2
 0.4
 0.6
 0.8
 1.0
 1.2
 1.4

 1 2 3 4 5 6 7 8 9 10 11 12

Griewank function: f6 (Np = 100)

 0
 0.2
 0.4
 0.6
 0.8
 1.0
 1.2
 1.4

 1 2 3 4 5 6 7 8 9 10 11 12

Griewank function: f6 (Np = 500)

Fig. 1. Run-times of CDE/S (solid line) and CDE/G (broken line)

Concurrent Differential Evolution 19

Table 1. Best objective function value found with Np = 100

(a) Wilcoxon test between SDE and CDE/S

fp SDE
CDE/S with Nt workers

1 2 4 6 8 10 12

f1

1.03E-12 1.03E-12 1.04E-12 9.79E-13 9.32E-12 1.29E-12 9.84E-13 2.80E-12
(2.87E-13) (2.87E-13) (3.32E-13) (3.45E-13) (3.25E-12) (4.07E-13) (2.80E-13) (9.46E-13)

— — — — ∗∗ ∗∗ — ∗∗

f2

7.24E-1 7.24E-1 7.14E-1 7.13E-1 7.19E-1 7.14E-1 7.11E-1 7.06E-1
(4.96E-2) (4.96E-2) (4.90E-2) (4.31E-2) (4.98E-2) (4.77E-2) (4.70E-2) (4.92E-2)

— — — — — ∗ ∗ ∗∗

f3

3.64E+1 3.64E+1 3.64E+1 3.64E+1 3.69E+1 3.63E+1 3.64E+1 3.65E+1
(8.42E-1) (8.42E-1) (8.55E-1) (8.84E-1) (7.69E-1) (9.59E-1) (8.39E-1) (8.56E-1)

— — — — ∗∗ — — —

f4

3.42E+1 3.42E+1 3.40E+1 3.41E+1 3.20E+1 3.28E+1 3.39E+1 3.24E+1
(3.09) (3.09) (3.04) (3.25) (2.95) (3.16) (3.23) (3.44)
— — — — ∗∗ ∗∗ — ∗∗

f5

2.34E-7 2.34E-7 2.32E-7 2.22E-7 8.02E-7 2.68E-7 2.37E-7 3.94E-7
(3.42E-8) (3.42E-8) (3.56E-8) (3.32E-8) (1.26E-7) (4.12E-8) (3.66E-8) (6.66E-8)

— — — ∗ ∗∗ ∗∗ — ∗∗

f6

3.47E-12 3.47E-12 2.93E-12 1.77E-11 2.09E-11 3.33E-12 2.95E-12 9.32E-12
(6.30E-12) (6.30E-12) (3.06E-12) (1.38E-10) (1.52E-11) (2.40E-12) (3.14E-12) (9.61E-12)

— — — — ∗∗ ∗∗ — ∗∗

(b) Wilcoxon test between DE and CDE/G

fp DE
CDE/G with Nt workers

1 2 4 6 8 10 12

f1

2.59E-12 2.59E-12 2.55E-12 2.60E-12 2.61E-12 2.57E-12 2.55E-12 2.60E-12
(7.99E-13) (7.99E-13) (7.18E-13) (6.81E-13) (7.64E-13) (7.31E-13) (7.81E-13) (7.58E-13)

— — — — — — — —

f2

7.14E-1 7.14E-1 7.20E-1 7.19E-1 7.19E-1 7.15E-1 7.35E-1 7.24E-1
(4.71E-2) (4.71E-2) (4.84E-2) (5.08E-2) (4.76E-2) (5.11E-2) (5.05E-2) (4.65E-2)

— — — — — — ∗ —

f3

3.74E+1 3.74E+1 3.75E+1 3.74E+1 3.74E+1 3.75E+1 3.74E+1 3.74E+1
(8.82E-1) (8.82E-1) (8.11E-1) (8.40E-1) (8.73E-1) (8.24E-1) (8.35E-1) (8.01E-1)

— — — — — — — —

f4

3.43E+1 3.43E+1 3.47E+1 3.48E+1 3.45E+1 3.44E+1 3.51E+1 3.49E+1
(3.60) (3.60) (3.51) (3.05) (3.56) (3.17) (3.08) (2.69)
— — — — — — — —

f5

3.70E-7 3.70E-7 3.72E-7 3.68E-7 3.62E-7 3.87E-7 3.74E-7 3.76E-7
(5.46E-8) (5.46E-8) (5.00E-8) (5.43E-8) (5.78E-8) (6.33E-8) (5.34E-8) (5.07E-8)

— — — — — — — —

f6

6.66E-12 6.66E-12 6.51E-12 8.51E-12 8.25E-12 7.13E-12 8.14E-12 6.84E-12
(5.93E-12) (5.93E-12) (8.21E-12) (1.32E-11) (1.09E-11) (1.06E-11) (2.38E-11) (6.19E-12)

— — — — — — — —

the run-times of SDE and DE respectively for reference. SDE is always faster
than DE. The run-times of both CDE/S and CDE/G decrease as the number
of worker threads increases. However, CDE/G is obviously faster than CDE/S
in almost all cases. That is because CDE/G doesn’t require the time-consuming
mutual exclusion. From the run-time of CDE with Nt = 1, we can estimate the
overhead time spent by a worker thread. The worker thread of CDE/S spends
a large time for the read-write access to xi ∈ P . By the way, we can observe
the significant decrease of the run-times of CDE/S and CDE/G in the expensive
functions, namely f4, f5 and f6, defined by a lot of trigonometric functions.

Table 1 shows the average of the best objective function values found by DE,
SDE, CDE/S and CDE/G with Np = 100, where the standard deviation of
them also appears in parentheses. Similarly, Table 2 shows the best objective
function values found by the above methods with Np = 500. From Table 1 and
Table 2, the best objective function values found by CDE, i.e., the quality of

20 K. Tagawa

Table 2. Best objective function value found with Np = 500

(a) Wilcoxon test between SDE and CDE/S

fp SDE
CDE/S with Nt workers

1 2 4 6 8 10 12

f1

4.63E+1 4.63E+1 4.54E+1 4.31E+1 4.52E+1 4.24E+1 4.16E+1 4.10E+1
(4.34) (4.34) (4.37) (4.68) (4.38) (4.48) (3.81) (4.35)
— — ∗ ∗∗ ∗ ∗∗ ∗∗ ∗∗

f2

5.20 5.20 5.18 5.17 5.05 5.12 5.17 5.11
(2.30E-1) (2.30E-1) (2.13E-1) (2.33E-1) (1.86E-1) (2.13E-1) (2.18E-1) (1.96E-1)

— — — — ∗∗ ∗∗ — ∗∗

f3

2.95E+3 2.95E+3 3.00E+3 2.84E+3 2.71E+3 2.75E+3 2.71E+3 2.66E+3
(4.30E+2) (4.30E+2) (4.01E+2) (3.69E+2) (3.89E+2) (4.31E+2) (4.43E+2) (4.15E+2)

— — — — ∗∗ ∗∗ ∗∗ ∗∗

f4

1.96E+2 1.96E+2 1.98E+2 1.96E+2 1.94E+2 1.96E+2 1.98E+2 1.96E+2
(1.08E+1) (1.08E+1) (9.78) (1.05E+1) (1.00E+1) (1.13E+1) (9.84) (9.39)

— — — — — — — —

f5

3.07 3.07 3.08 3.07 3.07 3.04 2.99 2.99
(8.22E-2) (8.22E-2) (8.36E-2) (9.04E-2) (9.99E-2) (1.05E-1) (9.57E-2) (8.77E-2)

— — — — — — ∗∗ ∗∗

f6

1.41 1.41 1.41 1.40 1.44 1.39 1.37 1.37
(3.91E-2) (3.91E-2) (4.32E-2) (3.88E-2) (4.35E-2) (3.82E-2) (4.03E-2) (3.84E-2)

— — — ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

(b) Wilcoxon test between DE and CDE/G

fp DE
CDE/G with Nt workers

1 2 4 6 8 10 12

f1

5.39E+1 5.39E+1 5.47E+1 5.38E+1 5.56E+1 5.40E+1 5.36E+1 5.45E+1
(5.77) (5.77) (5.20) (5.99) (5.20) (5.08) (5.30) (4.68)
— — — — ∗ — — —

f2

5.20 5.20 5.24 5.25 5.26 5.25 5.23 5.23
(2.28E-1) (2.28E-1) (2.66E-1) (2.07E-1) (2.37E-1) (1.93E-1) (2.13E-1) (2.11E-1)

— — — — — — — —

f3

3.41E+3 3.41E+3 3.43E+3 3.49E+3 3.50E+3 3.52E+3 3.53E+3 3.56E+3
(4.61E+2) (4.61E+2) (4.83E+2) (4.37E+2) (4.85E+2) (5.14E+2) (5.17E+2) (4.51E+2)

— — — — — — — ∗

f4

1.97E+2 1.97E+2 1.98E+2 1.97E+2 1.97E+2 1.98E+2 1.96E+2 1.97E+2
(1.01E+1) (1.01E+1) (9.22) (1.01E+1) (9.15) (9.54) (9.13) (9.15)

— — — — — — — —

f5

3.19 3.19 3.19 3.20 3.20 3.18 3.20 3.19
(9.35E-2) (9.35E-2) (9.38E-2) (7.70E-2) (9.79E-2) (9.80E-2) (8.88E-2) (8.08E-2)

— — — — — — — —

f6

1.48 1.48 1.49 1.48 1.50 1.48 1.48 1.49
(5.19E-2) (5.19E-2) (4.68E-2) (5.39E-2) (4.68E-2) (4.57E-2) (4.77E-2) (4.21E-2)

— — — — ∗ — — —

solutions, seem to change slightly with the number of worker threads. Therefore,
the quality of solutions was analyzed statistically by using Wilcoxon test [17].
The null hypothesis was that there was no significant difference between two
objective function values found by SDE (DE) and CDE/S (CDE/G).

The results of Wilcoxon test are also summarized in Table 1 and Table 2. The
symbols “∗” and “∗∗” mean that the null hypothesis may be rejected with the
risk less than 0.05 and 0.01 respectively. The quality of solutions obtained by
CDE/S is likely to change with the number of threads and the kind of benchmark
problem. The quality of solutions gets still worse in case of Np = 500.

5 Conclusion

In this paper, a lock free implementation of CDE, i.e., CDE/G, was proposed
and compared with the conventional CDE/S that needed the mutual exclusion

Concurrent Differential Evolution 21

between threads. Through the numerical experiment and the statistical test con-
ducted on a multi-core CPU, it could be confirmed that CDE/G was superior
to CDE/S with respect to the run-time and the quality of solutions.

In our future work, we would like to apply CDE/G to practical applications
because CDE/G is more effective in the optimization of expensive functions.

References

1. Storn, R.M., Price, K.V.: Differential evolution - a simple and efficient heuristic for
global optimization over continuous space. Journal of Global Optimization 11(4),
341–359 (1997)

2. Das, S., Suganthan, P.N.: Differential evolution - a survey of the state-of-the art.
IEEE Trans. on Evolutionary Computation 15(1), 4–31 (2011)

3. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Aca-
demic Publishers (2001)

4. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans. on
Evolutionary Computation 5(6), 443–462 (2002)

5. Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Parallel differ-
ential evolution. In: Proc. of IEEE Congress on Evolutionary Computation, pp.
2023–2029 (2004)

6. Zhou, C.: Fast parallelization of differential evolution algorithm using MapReduce.
In: Proc. of Genetic and Evolutionary Computation Conference, pp. 1113–1114
(2010)

7. Dorronsoro, B., Bouvry, P.: Improving classical and decentralized differential evo-
lution with new mutation operator and population topologies. IEEE Trans. on
Evolutionary Computation 1(15), 67–98 (2011)

8. de Veronses, L., Krohling, R.: Differential evolution algorithm on the GPU with C-
CUDA. In: Proc. of IEEE Congress on Evolutionary Computation, pp. 1–7 (2010)

9. Breshears, C.: The Art of Concurrency - A Thread Monkey’s Guide to Writing
Parallel Applications. O’Reilly (2009)

10. Tagawa, K., Ishimizu, T.: Concurrent differential evolution based on MapReduce.
International Journal of Computers 4(4), 161–168 (2010)

11. Syswerda, G.: A study of reproduction in generational and steady-state genetic al-
gorithms. In: Foundations of Genetic Algorithms 2, pp. 94–101. Morgan Kaufmann
Publisher (1991)

12. Feoktistov, V.: Differential Evolution in Search Solutions. Springer (2006)
13. Tagawa, K., Ishimizu, T.: A comparative study of distance dependent survival

selection for sequential DE. In: Proc. of IEEE International Conference on System,
Man, and Cybernetics, pp. 3493–3500 (2010)

14. Davison, B.D., Rasheed, K.: Effect of global parallelism on a steady state GA. In:
Proc. of Genetic and Evolutionary Computation Conference Workshops, Evolu-
tionary Computation and Parallel Processing Workshop, pp. 167–170 (1999)

15. Tagawa, K.: A statistical study of concurrent differential evolution on multi-core
CPUs. In: Proc. of Italian Workshop on Artificial Life and Evolutionary Compu-
tation, pp. 1–12 (2012)

16. Göetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., Lea, D.: Java Concur-
rency in Practice. Addison-Wesley (2006)

17. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures,
5th edn. CRC Press (2011)

Figure of Merit Based Fitness Functions

in Genetic Programming for Edge Detection

Wenlong Fu1, Mark Johnston1, and Mengjie Zhang2

1 School of Mathematics, Statistics and Operations Research
2 School of Engineering and Computer Science,

Victoria University of Wellington, PO Box 600, Wellington, New Zealand

Abstract. The figure of merit (FOM) is popular for testing an edge
detector’s performance, but there are very few reports using FOM as an
evaluation method in Genetic Programming (GP). In this study, FOM is
investigated as a fitness function in GP for edge detection. Since FOM has
some drawbacks from type II errors, new fitness functions are developed
based on FOM in order to address these weaknesses. Experimental results
show that FOM can be used to evolve GP edge detectors that perform
better than the Sobel detector, and the new fitness functions clearly
improve the ability of GP edge detectors to find edge points and give a
single response on edges, compared with the fitness function using FOM.

Keywords: Genetic Programming, Edge Detection, Figure of Merit.

1 Introduction

Edges characterise object boundaries in a simple way and are therefore useful
for boundary detection, image segmentation, image registration, and object de-
tection [16]. Without using the specific knowledge of edges, methods based on
Machine Learning often use features extracted from fixed neighbourhoods [14]
or variant neighbourhoods [5] to classify each pixel. A numerical measure of the
discrepancy of the outputs from an edge detector learned by a Machine Learn-
ing algorithm and the desired outputs of the training images is very important
for determining the detector’s performance, such as the detection accuracy (the
ability to find edge points correctly) and the localisation (the distance from
a predicted edge point to the true edge point). The F -measure has previously
been used to evaluate the performance of learned edge detectors [14,5]. However,
there are only a few reports using the figure of merit (FOM) [19] in the learning
(training) stage.

Genetic Programming (GP) has been applied to edge detection since at least
1996 [9,18]. A fitness function which evaluates a detector in training, is usually
based on the accuracy of predictions [21,5] when edge detection is considered as a
binary classification problem. Generally, the computational load of a GP system
is heavy, and the fitness function in the system should be as computationally
inexpensive as possible. When a pixel predicted as an edge point is required to
be very close to the true edge point, the computational cost for the matching

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 22–31, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

FOM Based Fitness Functions in GP for Edge Detection 23

operations will be obviously increased. The matching operation (one to one) aims
at assigning predicted edge points to desired edge points as much as possible.

Although FOM has not been previously used as a fitness function in GP, it is
worth investigating because FOM allows a tolerance of distance from predicted
edge points to true edge points and its computational cost is much lower than
the F -measure method, including matching the detected edge points to ground
truth. FOM fails to measure type II errors (false negatives) when there is overlap
in the matching between many predicted edge points and a few true edge points
[1]. Whether this weakness makes GP perform poorly when evolving low-level
GP edge detectors for natural images is not clear and needs to be investigated. If
a tolerance distance for a predicted edge point to a true edge point is considered
in the training stage, only information from the predicted pixel (true edge point
or not) is not enough, and to match predicted edge points to true edge points,
a true edge map of the whole individual image should be used for the matching
operation. Therefore, the training data needs to include whole individual images.
However, the traditional sampling techniques are based on local pixels and the
target is only related to the predicted pixel without an allowed distance to the
true edge point. When whole individual images are used as terminal in GP,
the training data is based on individual images, so FOM can easily be used to
evaluate detection performance.

1.1 Goals

The overall goals of this paper are to investigate FOM and its variants as fitness
functions in GP for evolving low-level edge detectors using an entire image as
input. Here, a low-level edge detector is based on raw pixels, and it is constructed
by a GP system via automatically searching pixels. We will use an existing FOM
variant as a fitness function in GP to check the detection performance. In order
to address the drawbacks from FOM, we will develop a new FOM variant as a
new fitness function. Specifically, we investigate the following objectives.

• Whether FOM as a fitness function in a GP system can be used to evolve
good low-level edge detectors, compared with the Sobel detector [7].

• Whether fitness functions based on the FOM variants considering type II
errors can improve the detection performance, compared with FOM.

• What properties exist in detected images from the evolved detectors using
the fitness functions based on FOM.

1.2 Organisation

In the remainder of the paper, Section 2 briefly describes the background on the
evaluation methods based on FOM in edge detection. Section 3 introduces an
existing FOM variant as a fitness function and develops a new fitness function
after modifying FOM. After the experimental design is presented in Section 4,
Section 5 discusses the experimental results. Section 6 gives conclusions and
future work directions.

24 W. Fu, M. Johnston, and M. Zhang

(a) both sides (c) one side

Fig. 1. The same FOM value with different detection results

2 Background

2.1 FOM

Edge detection is a subjective task and there is no standard description for the
edges in an image. It is hard to evaluate the performance of edge detectors
because there are no unique solutions for edge maps in most natural images.
Canny [3] suggested three important general principles for evaluation of edge
detectors: good detection, good localisation and single response. Good detection
means that a detector should have low probability of failing to detect an edge
or incorrectly marking a background pixel as an edge point. Good localisation
means that a detected edge point should be as close as possible to the true edge
point. Single response requires only marking one side at boundaries.

Evaluation based on statistics (e.g. detection accuracy) is useful for binary
classification problems, but it is a poor measure of “reconstruction fidelity” in
edge detection [1]. In addition, finding an optimal matching between predictions
and ground truth has complexity O(NI log(NI)) [14], where NI is the total num-
ber of pixels. Localisation is another performance criterion in edge detection.
Pratt [19] proposed FOM to evaluate localisation. The standard FOM is defined
by equation (1), where d1(i) is the distance of one predicted edge point i to the
nearest true edge point, NP is the number of the predicted edge points, NT is
the number of the true edge points, and α is a positive weight factor for distance
d1(i). In this paper, FOM indicates the standard FOM. In general, α is small
and is set to 1

9 based on the overlap of a 3×3 window. The value of FOM ranges
from 0 to 1; higher values indicate predictions with better quality detection.

FOM =
1

max{NT , NP }
NP∑
i=1

1

1 + αd21(i)
(1)

Compared with FOM, F -measure needs to optimise the match between detected
edge points and the true edge points when a tolerance distance from a predicted
edge point to a true edge point is allowed [14]. FOM evaluates edge detectors in
termsofbothdetectionaccuracyand localisation, but there are somedrawbacks [1].
For instance, Figure 1 shows two different detected edge maps with the same FOM
value. However the detection in Figure 1 (a) has overlap in one true line andmisses
the top line. It is found that FOMmay not reflect some type II errors.

FOM Based Fitness Functions in GP for Edge Detection 25

2.2 Related Work for Edge Detection Using GP

The existing work in edge detection using GP mainly focuses on low-level edge
detection. Harris and Buxton [9] designed approximate response detectors in
one-dimensional signals by GP, but it is based on the theoretical analysis of the
ideal edge detector and the corresponding properties. Poli [18] suggested using
similarly four macros for searching a pixel’s neighbours in image processing using
GP, and Ebner [4] used four shift functions and other functions to approximate
the Canny detector. The Sobel detector is approximated by hardware design [10]
with the relationship between a pixel and its neighbourhood as terminals. Bolis
et al [2] simulate an artificial ant to search edges in an image. Zhang and Rockett
[21] evolved a 13×13 window filter for comparison with the Canny edge detector.
A 4 × 4 window is employed to evolve digital transfer functions (combination
of bit operators or gates) for edge detection by GP [8]. Our previous work [6,5]
used GP for edge detection based on ground truth without using windows. Also,
Wang and Tan [20] used linear GP to find binary image edges, inspired by
morphological operators, erosion and dilation, as terminals for binary images.
For detecting boundaries, some image operators were employed to combine high-
level detectors evolved by GP with a trained logistic regression classifier [13].
However, the evaluation in all these methods for a GP edge detector does not
consider the offset for the detection results of training images.

3 Method

This section describes a method for using GP to evolve detectors and fitness
functions based on FOM. Different from a training dataset based on individual
pixels, the training dataset in this paper is based on individual images, and an
entire image as input is used to evolve edge detectors.

3.1 Sets of Terminals and Functions

The GP system in [5] has successfully evolved edge detectors based on shifting
functions rather than using a fixed window. It is suitable for evaluating detect-
ing results with a limited offset. In this paper, the investigation is about using
fitness functions based on FOM, so we adopt the terminal set and the function
set from [5] to evolve low-level edge detectors. The terminal set contains the
whole image x and random constants rnd in the range of [−10, 10]. The function
set is {+,−,×,÷, shiftn,m, abs, sqrt, square}, where function shiftn,m shifts n
columns and m rows; positive n (m) means to shift right (down), and negative
means to shift left (up).

3.2 Fitness Functions Based on FOM

Since the potential drawbacks in FOM do not usually occur, FOM is employed as
a fitness function (see (1)) to check whether it is suitable for evolving reasonable
detectors for natural images.

26 W. Fu, M. Johnston, and M. Zhang

In order to improve the sensitivity to type II errors, modification of FOM
focuses on the matching direction. An existing FOM variant only uses distances
from ground truth to predicted edges, and includes a factor about false (un-
matched) edge points [17]. This FOM variant was only used to test artificial
images in [17], but we directly use it as a new fitness function (Fnn) in the GP
system to test natural images. Fnn is defined in (2), where NFM is the number
of false edge points, β is a factor for the response on the false edge points, and
d2(i) for the nearest distance from a true edge point i to a predicted edge point.
Note that the matching directions in d1 and d2 are different. In [17], it was sug-
gested that β be set to 1. Here α is also used for d2 because of the overlap.
In Fnn, α and β are used to balance type I errors and type II errors, but the
relationship between α and β is not clear. The second factor in Fnn is sensitive
to β: when β is large, the detection results mainly focus on recall (the number
of true positives).

Fnn =

(
1

NT

NT∑
i=1

1

1 + αd22(i)

)(
1

1 + βNFM

NT

)
(2)

We propose a new FOM variant inspired by the Hausdorff distance [12], taking
into account both distances between the ground truth and the predicted edges
(d1(i) and d2(i)). In order to fairly balance the measurement between type I
errors and type II errors, Fb is designed based on the balance between d1(i)
and d2(i). Function Fb is defined by (3), where, NT

⋃
P is the number of points

that are either predicted as edge points or true edge points. Since recall is the
number of true positives divided by the total number of true edge points and
precision is the number of true positives divided by the total number of predicted
edge points, recall can be considered as the measure from the ground truth
to predicted edge maps, and precision for the reverse direction. Function Fb

considers both directions and merges them together, rather than using a weight
to balance the result from d1(i) and the result from d2(i). Compared with the
suggestion on modifying FOM in [1], Fb only considers the edge points (the true
edge points and predicted edge points) rather than all pixels of images, which
means that the computational cost for Fb is lower than the metric based on all
pixels in an image because the number of (true and predicted) edge points in
one image is usually much lower than the total number of pixels in the image.

Fb =
1

NT
⋃

P

NT
⋃

P∑
i=1

1

(1 + αd21(i))(1 + αd22(i))
(3)

4 Experimental Design

We use the training images from the Berkeley Segmentation Dataset (BSD) [14].
The BSD consists of natural images (of size 481× 321 pixels) with ground truth
provided. The images in the BSD come from different places and have different
contents. In order to evaluate the detection results from these training images,

FOM Based Fitness Functions in GP for Edge Detection 27

(a) 207056 (b) 23080 (c) 105019 (d) 105053 (e) 113044 (f) 216053

Fig. 2. Training images from BSD dataset and the ground truth

(a) 3096 (b) 37073 (c) 42049 (d) 62096 (e) 101087

(f) 106024 (g) 253055 (h) 296059 (i) 299086 (j) 361010

Fig. 3. Test images from BSD dataset

the ground truth are combined from five to seven observations as gray-level
images. Since there are redundancies existing in the training data (containing
200 images) and the computational cost is high for GP, we only select six images
with rich edge contents as the training dataset for checking the new fitness
function performances. Fig. 2 shows the training images and the ground truth.

To reduce the computation time, we randomly sample five different subimages
of size 41 × 41 from each image as training subimages, and use one subimage
as input. Ten additional images (Fig. 3) from the BSD test set are used as the
test dataset. There is no post-processing during the training and test stages,
following [15].

The parameter values for the different fitness functions are: α (in FOM, Fnn,
Fb)

1
9 ; β (in Fnn) 1. The parameter values for the GP system are: population

size 500; maximum generations 200; maximum depth (of a GP detector) 10; and
probabilities for (single point) mutation 0.35, (subtree exchange) crossover 0.60
and elitism (replication) 0.05. The GP experiment is repeated for 30 independent
runs. 30 different random seeds are used to generate the same initial population
when different fitness functions are used.

5 Results and Discussion

5.1 Overall Results

Table 1 gives the means and standard deviations of the detection results (FOM)
from the three fitness functions (FOM, Fb and Fnn) for the ten test images.

28 W. Fu, M. Johnston, and M. Zhang

Table 1. Means ± Standard Deviations of FOM for the Ten Test Images from the
Fitness Functions FOM, Fb and Fnn

Image FOM Fnn Fb Sobel

3096 0.588 ± 0.102 0.710 ± 0.069 0.733 ± 0.068 0.740
37073 0.693 ± 0.079 0.734 ± 0.051 0.761 ± 0.073 0.436
42049 0.678 ± 0.094 0.754 ± 0.052 0.797 ± 0.048 0.646
62096 0.369 ± 0.075 0.563 ± 0.127 0.453 ± 0.094 0.402
101087 0.648 ± 0.061 0.730 ± 0.035 0.765 ± 0.042 0.444
106024 0.416 ± 0.070 0.424 ± 0.048 0.471 ± 0.045 0.307
253055 0.488 ± 0.078 0.551 ± 0.048 0.589 ± 0.050 0.402
296059 0.517 ± 0.114 0.660 ± 0.054 0.636 ± 0.085 0.536
299086 0.535 ± 0.083 0.601 ± 0.049 0.649 ± 0.066 0.426
361010 0.454 ± 0.057 0.677 ± 0.049 0.631 ± 0.084 0.437

Table 2. Comparisons Among the Fitness Functions FOM, Fb and Fnn

Image (FOM,Fnn) (FOM,Fb) (Fnn,Fb) (FOM,Sobel) (Fnn,Sobel) (Fb,Sobel)

3096 ↓ ↓ − ↓ − −
37073 − ↓ − ↑ ↑ ↑
42049 ↓ ↓ ↓ − ↑ ↑
62096 ↓ ↓ ↑ − ↑ −
101087 − ↓ ↓ ↑ ↑ ↑
106024 − ↓ ↓ ↑ ↑ ↑
253055 ↓ ↓ ↓ ↑ ↑ ↑
296059 ↓ ↓ − − ↑ ↑
299086 ↓ ↓ ↓ ↑ ↑ ↑
361010 ↓ ↓ ↑ − ↑ ↑

The reason for only using the standard FOM to evaluate test performance is
to check whether the GP edge detectors’ performance evolved by Fb and Fnn

can be improved, compared with the fitness function directly using FOM. For
comparison, the maximum FOM values from the Sobel detector based on 20
different threshold levels are given. Table 2 shows the comparisons between the
detection results from these fitness functions using multiple one-sample or paired
t -tests with overall significance level 0.05 and p-values adjusted by the Holm’s
method [11] over all comparisons. Here, “↑” indicates the first function is signif-
icantly better than the second function, “↓” being significantly worse and “−”
being not significantly different.

Compared with the Sobel detector, the three fitness functions all have better
detection results for most images; only for image 3096, the results from FOM
are significantly worse than the result from the Sobel detector. The detected
ten image results from Fnn are significantly better than the results from the
Sobel detector, except for image 3096. The edge detectors from Fb have eight
images with significantly better detection than the Sobel detector. Therefore, we
conclude that the fitness functions based on FOM can be used to evolve good
low-level edge detectors.

FOM Based Fitness Functions in GP for Edge Detection 29

Compared with the standard FOM, its variants Fnn and Fb are significantly
better. Firstly, Fnn has seven images with significantly better detection than
FOM, and all results from Fb are significantly better than the results from FOM.
From Table 1, the improvement for the detected results from Fb is around 0.10 for
each image, compared with the results from FOM. Secondly, Fnn only contains
images 62096 and 361010 with significantly better detection than Fb based on
Table 2. However, half of the ten images are significantly better detected by
the edge detectors using Fb than the edge detectors from Fnn. Therefore, Fb is
significantly better than Fnn in most cases.

5.2 Detected Images

Fig. 4 shows the detected images by the best detectors from the three fitness
functions and the Sobel detector. To investigate the detection features from
these fitness functions, the best detection results from four typical images are
presented in Fig. 4. First of all, the results from FOM are similar to the results
from the Sobel detector, namely double responses for most edges. However, the
results from Fb and Fnn only have a single response for most edges, e.g., the
edge of the sail in image 62096. Secondly, the results from Fb have high recall,
e.g., finding the top boundary of the sail in image 62096 and the double lines in
the right middle boundary in image 296059. Lastly, the influence from noise and
textures on the results from Fnn are heavier than the results from Fb, e.g., the
background of image 106024.

In summary, compared with the Sobel detector, the detectors evolved by the
fitness functions based on FOM (FOM, Fnn and Fb) have high recall but bring
low precision for the predicted texture edges, and the detectors from the fitness
functions Fb and Fnn have a single response for the boundaries.

5.3 Discussion

From the comparisons of the three fitness functions and the detected images, the
fitness functions based on FOM are useful to evolve good detectors in the GP
system. Although FOM has some disadvantages, the evolved edge detectors from
the standard FOM can perform detection well on natural images (see Table 1
and Fig. 4). For natural images, the detection results from most detectors usually
contain type I errors and type II errors (see all detected images in Fig. 4) so that
the standard FOM does not fail to evaluate detection performance. However,
FOM is not sensitive to type II errors, which leads the detectors from FOM to
miss some true edge points.

For the FOM variants, Fb and Fnn introduce a measure of type II errors so
that there is a balance for the abilities of detecting edge points and correctly
predicting edge points. However, Fnn has the problem of type I errors when
the recall is high; but this is not the case in Fb. This is why noise strongly
affects the detected images. For the high recall and thin edge lines in Fb and
Fnn, a potential reason is that the matching direction from the ground truth to
predictions is considered in both fitness functions.

30 W. Fu, M. Johnston, and M. Zhang

3
7
0
7
3

6
2
0
9
6

1
0
6
0
2
4

2
9
6
0
5
9

(a) (b) Ground Truth (c) FOM (d) Fnn (e) Fb (f) Sobel

Fig. 4. Detected images by the best detectors from FOM, Fnn, Fb and the Sobel
detector

6 Conclusions

The goals of this paper were to investigate FOM and its FOM variants as fit-
ness functions for evolving GP edge detectors. Based on experimental results on
natural images, FOM can be successfully used to evolve low-level edge detectors
which are better than the Sobel detector. The detectors evolved by FOM vari-
ants (as fitness functions) can detect more true edge points, and most detected
edges are thinner than the results from the standard FOM and the Sobel detec-
tor. The proposed FOM variant (Fb) is better than the standard FOM and one
of its existing variants (Fnn) to detect edges based on the experiment results.
The edge detectors from the FOM variants give single response on boundaries
but are affected by noise and some textures.

Our future work will further investigate fitness functions based on FOM so that
the evolved edge detectors have the ability to suppress noise and some textures.
Different image datasets will be used to test evolved edge detectors’ performance.

References

1. Baddeley, J.A.: An error metric for binary images. In: Proceedings of the Interna-
tional Workshop on Robust Computer Vision, pp. 59–78 (1992)

2. Bolis, E., Zerbi, C., Collet, P., Louchet, J., Lutton, E.: A GP Artificial Ant for
Image Processing: Preliminary Experiments with EASEA. In: Miller, J., Tomassini,
M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001.
LNCS, vol. 2038, pp. 246–255. Springer, Heidelberg (2001)

3. Canny, J.: A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986)

FOM Based Fitness Functions in GP for Edge Detection 31

4. Ebner, M.: On the edge detectors for robot vision using genetic programming. In:
Proceedings of Horst-Michael Groβ, Workshop SOAVE 1997 - Selbstorganisation
von Adaptivem Verhalten, pp. 127–134 (1997)

5. Fu, W., Johnston, M., Zhang, M.: Genetic programming for edge detection: a global
approach. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp.
254–261 (2011)

6. Fu, W., Johnston, M., Zhang, M.: Genetic programming for edge detection based
on accuracy of each training image. In: Proceedings of the 24th Australasian Joint
Conference on Artificial Intelligence, pp. 301–310 (2011)

7. Ganesan, L., Bhattacharyya, P.: Edge detection in untextured and textured images:
a common computational framework. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics 27(5), 823–834 (1997)

8. Golonek, T., Grzechca, D., Rutkowski, J.: Application of genetic programming to
edge detector design. In: Proceedings of the International Symposium on Circuits
and Systems, pp. 4683–4686 (2006)

9. Harris, C., Buxton, B.: Evolving edge detectors with genetic programming.
In: Proceedings of the First Annual Conference on Genetic Programming, pp.
309–314 (1996)

10. Hollingworth, G.S., Smith, S.L., Tyrrell, A.M.: Design of highly parallel edge detec-
tion nodes using evolutionary techniques. In: Proceedings of the Seventh Euromicro
Workshop on Parallel and Distributed Processing, pp. 35–42 (1999)

11. Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian
Journal of Statistics 6(2), 65–70 (1979)

12. Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the
Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 15(9), 850–863 (1993)

13. Kadar, I., Ben-Shahar, O., Sipper, M.: Evolution of a local boundary detector for
natural images via genetic programming and texture cues. In: Proceedings of the
11th Annual Conference on Genetic and Evolutionary Computation, pp. 1887–1888
(2009)

14. Martin, D., Fowlkes, C., Malik, J.: Learning to detect natural image boundaries
using local brightness, color, and texture cues. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 26(5), 530–549 (2004)

15. Moreno, R., Puig, D., Julia, C., Garcia, M.A.: A new methodology for evaluation
of edge detectors. In: Proceedings of the 16th IEEE International Conference on
Image Processing (ICIP), pp. 2157–2160 (2009)

16. Papari, G., Petkov, N.: Edge and line oriented contour detection: state of the art.
Image and Vision Computing 29, 79–103 (2011)

17. Pinho, A.J., Almeida, L.B.: Edge detection filters based on artificial neural net-
works. In: Proceedings of the 8th International Conference on Image Analysis and
Processing, pp. 159–164 (1995)

18. Poli, R.: Genetic programming for image analysis. In: Proceedings of the First
Annual Conference on Genetic Programming, pp. 363–368 (1996)

19. Pratt, W.K.: Digital Image Processing: PIKS Inside, 3rd edn. Wiley (2001)
20. Wang, J., Tan, Y.: A novel genetic programming based morphological image anal-

ysis algorithm. In: Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation, pp. 979–980 (2010)

21. Zhang, Y., Rockett, P.I.: Evolving optimal feature extraction using multi-objective
genetic programming: a methodology and preliminary study on edge detection. In:
Proceedings of the 2005 Conference on Genetic and Evolutionary Computation,
pp. 795–802 (2005)

An Evolutionary Algorithm

for the Over-constrained Airport Baggage
Sorting Station Assignment Problem

Amadeo Ascó1, Jason A.D. Atkin1, and Edmund K. Burke2

1 School of Computer Science, University of Nottingham
a.asco@cs.nott.ac.uk, Jason.Atkin@nottingham.ac.uk

2 University of Stirling
e.k.burke@stir.ac.uk

Abstract. Airport baggage sorting stations are the places at which the
baggage for each flight accumulates for loading into containers or directly
onto the aircraft. In this paper the multi-objective and multi-constraint
problem of assigning Baggage Sorting Stations in an Airport is defined
and an Evolutionary Algorithm is presented, which uses a number of dif-
ferent operators to find good solutions to the problem. The contributions
of these different operators are studied, giving insights into how the appro-
priate choice may depend upon the specifics of the problem at the time.

1 Introduction

Passengers at an airport proceed to the check-in desks assigned to their flight
where they leave their baggage to be processed. The baggage enters the baggage
system at this point, where it is processed and delivered to baggage sorting sta-
tions (BSSs). There it is temporarily stored before being sorted and transported
by carts to the aircraft.

This paper considers the task of assigning baggage sorting stations to flights at
an airport, which will already have been allocated to stands along piers around
the terminals. The aim is to maximise the number of flights which are assigned to
sorting stations, using the sorting stations which are most conveniently situated
for the stands when possible, while ensuring that the gaps between sorting station
usage are at least as large as a specified buffer time, to cope with real world
perturbations and uncertainties.

Research into a similar problem was previously performed by [1], who de-
scribed the problem and applied the activity selection algorithm. In [2], we stud-
ied the quality of solutions which could be obtained from a variety of constructive
algorithms. Different algorithms were found to prefer different objectives and a
selection of these constructed solutions has been used for initial solutions of the
evolutionary algorithm which is described in this paper.

The Airport Baggage Sorting Station Assignment Problem (ABSSP) has many
similarities to the Airport Gate Assignment Problem (AGAP), which has had
considerable study in the past. The basic gate assignment problem is a quadratic

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 32–41, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

EA for the Airport Baggage Sorting Station Assignment Problem 33

assignment problem, shown in [3] to be NP-hard. The approach presented in [4]
used a Genetic Algorithm (GA) for the AGAP with uniform crossover. The
method described in [5] applied a GA, using an elitist selection method, with an
additional mechanism composed of mutation operators to repair the infeasible
solutions which resulted from applying the crossover operator.

We initially applied CPLEX and Gurobi to the Integer Linear Programming
(ILP) representation of the ABSSP, both with and without an initial solution
chosen as the fittest of the constructed solutions presented in [2]. Both systems
were allowed a maximum runtime of 24 hours. Although CPLEX ran out of
memory (using over 84GB of disk space) after 16hrs on a 2.4GHz Windows 7,
64bit machine with 4GB RAM. The Results were inadequate, so we developed
the evolutionary algorithm which is described in this paper. This has turned out
to perform much better, even with a much shorter search time.

2 The Airport Baggage Sorting Station Problem

Aircraft are usually parked at their allocated stand, around an airport terminal.
Two example layouts which are considered in this paper are shown in Figure
1, showing aircraft parked around the piers of a terminal, and illustrating the
position of baggage sorting stations at the bases of the piers. The aim of this work
is to allocate each flight to a sorting station. In general, it is better to allocate a
flight to a sorting station on the same pier, but it is not usually important which
of the sorting stations in that group the flight is allocated to. Furthermore, a
minimum gap should be ensured between flights.

Let i ∈ {0, . . . , N} denote a sorting station where sorting station 0 represents
a dummy sorting station to which flights are assigned, if they cannot be assigned
to a real sorting station. Let j ∈ {1, . . . ,M} denote a flight. Let Tj denote the
required service time for flight j (1 hour for short haul and 1 1

3 hours for long
haul) and let Bj denote the desired buffer time for flight j - the time for which its
sorting station should be idle prior to this flight being serviced. Bj is assumed to
be 15 minutes for short haul and 30 minutes for long haul flights. Let ej denote
the end service time for flight j and let tj denote the target starting service

(a) 3 piers and 48 stands. (b) 4 piers and 46 stands.

Fig. 1. Topologies

34 A. Ascó, J.A.D. Atkin, and E.K. Burke

time for flight j (tj = ej − Tj − Bj). Let yij be a decision variable defined to
be 1 if flight j is assigned to sorting station i, and 0 otherwise. The aim is to
find yij values such that the objective function (4) is maximised, subject to the
constraints expressed by (1), (2) and (3).

N∑
i=0

yij = 1 ∀j ∈ {1, . . . ,M} (1)

yij + yil ≤ 1 ∀i ∈ {1, . . . , N}, j �= l, tl +Bl < ej ≤ el (2)

Equation (1) states that each flight can be assigned either to exactly one real
sorting station or to the dummy sorting station. Inequality (2) states that flights
cannot be assigned to the same real sorting station if their service times overlap.

If the service periods of two flights are closer together than the buffer time
of the second flight, then they can still be allocated to the same sorting station,
but the buffer time will have to be reduced. The required reduction in buffer
time for flight l is denoted rl and can be calculated using (3), where 0 ≤ rl ≤
Bl ∀ l ∈ {1, . . . ,M}.

rl ≥ (yij + yil − 1) · (ej − tl) ∀i ∈ {1, . . . , N} (3)

Although this is inherently a multi-objective problem, the importance of ensuring
maximal assignment of flights to sorting stations (top priority) and the relative
importance of keeping reasonable buffer times (second priority) allows these
objectives to be combined into a single compound objective (4) with weights
W1, W2 and W3 chosen to implement these priorities.

max

⎛⎝W1 ·
N∑
i=1

M∑
j=1

yij −W2 ·
M∑
j=1

rj −W3 ·
N∑
i=1

⎛⎝Cj ·
M∑
j=1

yij · dij
⎞⎠⎞⎠ (4)

The first element in (4) aims to maximise the assignment of flights to sorting
stations, the second aims to minimise the reduction in buffer times and the third
aims to minimise some distance cost associated with the assignments, where Cj

is a factor related to the amount of baggage for flight j (assumed to be 1 in
all cases for this paper) and dij is a measure of the distance or cost incurred
from assigning sorting station i to flight j. This aims to ensure that flights are
allocated to appropriate sorting stations.

3 Algorithm

In this paper we describe an Evolutionary Algorithm which we have developed for
solving the Airport Baggage Sorting Station Assignment Problem (ABSSAP).
Our algorithm uses a number of custom problem-specific operators and we have
categorised them as either mutation operators, if they modify a single existing
solution, or crossover operators, if they combine multiple solutions. We describe
the algorithm, selection methods and operators in this section.

EA for the Airport Baggage Sorting Station Assignment Problem 35

3.1 Steady State Evolutionary Algorithm

A steady state GA does not replace all the parent solutions by their children as in
generational GAs. In our Steady State Evolutionary Algorithm (SSEA) the next
population is obtained by applying the population selector (Sp) to the current
population. One of the operators is applied to the required number of individuals
which are chosen by applying the member selector (Sm) to the population. This
selection and modification is called an iteration and is repeated L times for each
population. The newly obtained individuals are then added to the population
which will then constitute the new current population and a population selector
is used to determine which population members to keep. This is repeated until
the termination condition is reached, as shown in Algorithm 1.

Algorithm 1. Steady State Evolutionary Algorithm

input : Initial population P0

input : Number of iterations in a generation L ∈ ZZ+, L > 0
input : Operators; O1 : p1, O2 : p2, · · · and OR : pR where

0 < pk ≤ 1 ∀ k ∈ (1, · · · , R) and
∑R

k=1 pk = 1
input : Population selector, Sp

input : Population member(s) selector, Sm

1 begin
2 P ← P0; // initialise population

3 repeat
4 P ← Sp(P); // get the current population for this generation

5 Pt ← ∅; // empty temporary population

6 i ← 0; // initialise the generation

7 repeat
8 Select randomly an operator, Ok; // roulette wheel selector

9 Q ← Sm(P,Ok); // select population member(s)

10 Q ← Ok(Q); // generate new solution(s)

11 Pt ← Pt ∪Q; // add new solution(s)

12 i ← i+ 1;

13 until i = L or Termination Condition;
14 P ← P ∪ Pt; // add new solutions to the current population

15 until Termination Condition;
16 return P ;

17 end

3.2 Population Selectors

The population selector (Sp) has the responsibility of selecting the solutions
within the current population that will form part in the next generation. A
comprehensive analysis of selection schemes used in Evolutionary Algorithms
can be found in [6]. We present below an overview of the population selection
algorithms used.

36 A. Ascó, J.A.D. Atkin, and E.K. Burke

Elitist Sampling (ES): Select the fittest μ population members from the cur-
rent population.

Stochastic Universal Modified Sampling (SUMS): Stochastic Universal
Sampling was introduced by [7]. SUMS was used since the order of magnitude of
the fitness values are much larger than the differences between the fitness values,
so it was not appropriate to use Stochastic Universal Sampling. The population
members are mapped by sections, as in Roulette Tournament Selection, [pi−1, pi)

with p0 = 0 for pi =
∑i

j=1 fj−F∑
λ
j=1 fj−F

where F = fλ−(fλ−1 − fλ), fj corresponds to the

fitness of solution j and λ is the current population size. μ individuals are selected
by obtaining an initial random number (rnd) within [0, 1

μ) and subsequent ones

spread 1
μ from the previous one. Solution i is selected once per each pi−1 ≤

rnd+ j−1
μ < pi∀j ∈ {1, . . . , μ}.

Remainder Stochastic Sampling (RSS): This method was also investigated
due to its diversity retention properties (see [8]), but provided worse results, so
we have not discussed the results in this paper.

3.3 Member Selectors

The member selectors (Sm) distribute the chances that the individuals have to
take part in the production of new offsprings in a generation. The roulette wheel
selection method was used as the member selector on this paper.

3.4 Operators

Whenever a time has to be determined (for instance for a start or end of a time
range) a uniform random variable is used so that any time within the time range
of the flights under consideration has an equal probability of being chosen.

Mutation. Guided mutation operators are introduced here which are based
upon local search operators which guarantee to generate feasible solutions.

Dummy Single Exchange Mutation Operator (DSEMO). This operator is equiv-
alent to the ‘Apron Exchange Move’ used by [9] and [10]. A solution is selected
from the population by the member selector (Sm) then a new solution is built by
moving a flight from the ‘dummy’ sorting station to a randomly selected sorting
station, potentially moving another flight back onto the ‘dummy’ sorting station
if it can no longer fit in. This operator may increase the number of assignments
if the operation does not move a flight back onto the ‘dummy’ sorting station.
It requires some flights to be unassigned in the parent solution.

Multi Exchange Mutation Operators. A time period is randomly selected, trs to
tre. All assignments for which the base service times are entirely within the time
period are then moved to the next sorting station in the set, as shown in Figure 2,

EA for the Airport Baggage Sorting Station Assignment Problem 37

Fig. 2. Multi Exchange Mutation Operator

as long as they will fit. These operators generalise the ‘Interval Exchange Move’
which was presented by [10], and cannot increase the number of assignments.
Two variants have been developed:

1. Multi Exchange with Fixed Number of Resources (MEFNRn): The number of
sorting stations to exchange flights between is fixed at n, where 2 ≤ n ≤ N .

2. Multi Exchange with Random Number of Resources (MERNRn): The number
of sorting stations to exchange flights between is randomly chosen each time,
between 2 and n, where 2 ≤ n ≤ N .

Multi Exchange By Pier Mutation Operators. These operators are a specialised
case of the Multi Exchange Mutation Operators, where the sorting station selec-
tion element ensures that no two consecutive sorting stations in the set are on
the same pier. The idea is to improve the distance objective by encouraging the
movement of assignments between piers. Again, this operator cannot increase
the number of assignments. As for the Multi Exchange Mutation Operators, two
variants have been created: Multi Exchange By Pier with Fixed Number of Re-
sources (MEBPFNRn) and with Random Number of Resources (MEBPRNRn).

Range Multi Exchange Mutation Operators. These are the same as the Multi Ex-
change Mutation Operators. However they add an additional feasibility recovery
step when flights cannot be moved. Such flights are added to the set of flights
which will be considered for assignment to the next sorting station, potentially
reducing this number. Again, this operator cannot increase the number of as-
signments. As for the Multi Exchange Mutation Operators, two variants have
been created: Multi Exchange with Fixed Number of Resources (RMEFNRn) and
with Random Number of Resources (RMERNRn).

Crossover (reproduction). The crossover operators involve the generation
of new solutions from multiple parents. Each parent will be chosen using the
Population Member Selector (Sm) and multiple child solutions will be generated.

2-Point Crossover (C2P): Two points in time are randomly selected to generate
a time window. A child solution is created from each parent by re-assigning all
flights within the time window to the sorting station they were assigned to in

38 A. Ascó, J.A.D. Atkin, and E.K. Burke

the other parent. Although the flight timings are identical across all solutions,
flights in the swapped region may overlap flights which are not swapped for some
sorting stations. Such overlapping flights in the swapped region are re-assigned
to other sorting stations, if possible, or assigned to the dummy sorting station
otherwise.

1-Point Crossover (C1P): This is a specific case of the above 2-Point Crossover,
where the window extends to the end time of the solution.

4 Results

Since it would be unrealistic to assume that baggage from a flight at a stand in
one terminal is serviced by a baggage sorting station in another terminal (e.g.
passengers usually go through security and board flights from the same terminal
at which their baggage was checked in), this paper is centred on a single terminal.

For this paper, we assumed that all flights require only one sorting station.
Two datasets, provided by NATS (formerly National Air Traffic Services) were
used, from 16th December 2009 (194 flights) and from 1st March 2010 (163
flights) for Heathrow terminal 1. All the experiments were executed for 800,000
iterations. The same random number generator was used throughout.

The Steady State Evolutionary Algorithm (SSEA) which was used in these
experiments had L = 1 and a population size of 30. The value of W1 was de-
termined by running initial experiments with our Evolutionary Algorithm (EA)
using different values, from 15 to 100, for the data set of 16th December 2009,
3-pier topology, a fixed W2 of 0.008 and W3 of 1. A value of W1 = 90 appeared
to give an appropriate balance between the objectives and was adopted. The
SSEAs were run with just one of the presented operators at a time, to show
their individual behaviour in the considered landscapes. A distance of 1unit is
assumed between sides of the same pier, 2units to move between piers and a
distance of zero is assumed for those assignments that are as close as possible.

The Lower Maximum Assignment Point (LMAP) is the minimum number
of sorting stations needed to assign all flights without buffer times. The Upper
Maximum Assignment Point (UMAP) is the minimum number of sorting stations
needed to assign all flights without reducing the service time. The LMAP and
UMAP points will be observed to be useful when interpreting the results.

4.1 Experiments

Figure 3(a) shows the percentage improvement in average fitness of the results
for the Multi Exchange with Fixed Number of Resources (MEFNRn) operator,
n ∈ {2, 3, 4, 9, 10}, with the population selectors Elitist (ES) and Stochastic
Universal Modified Sampling (SUMS), applied to different numbers of baggage
sorting stations (BSSs) with respect to the best initial solution (f best

Ini , 0%) and
the Upper Bound obtained by CPLEX (fUB , 100%). The achieved improvements
range from 25% to over 55%, depending on the number of BSSs. It should be

EA for the Airport Baggage Sorting Station Assignment Problem 39

(a) 4-pier and 46 stands. (b) 3-pier and 48 stands.

Fig. 3. Improvement on average fitness for 194 flights, MEFNRn, n ∈ {2, 3, 4, 9, 10}

noted that 100% improvement corresponds to solutions which reach the upper
bound for their specific case, whereas 0% corresponds to no improvement over
the best initial (constructed) solution.

When the number of sorting stations is lower than the Lower Maximum As-
signment Point (LMAP), it is impossible to fully assign all of the flights. Since
the initial solutions already provide at least one solution which is guaranteed
to achieve the maximum number of assignments for the given number of bag-
gage sorting stations ([2]), the EA can only improve upon this by improving the
‘distance’ and ‘reduction in service’ objectives. For example, it may be possible
to swap out flights in order to lower the reduction in service time. The results
show that the largest benefits in this region are due to the ability to swap which
flights are assigned, however, in practice it is unlikely for an airport to operate
in this mode - where some flights cannot actually be serviced.

In contrast, full assignment canbe achievedbetween theLMAPandUpperMax-
imumAssignment Point (UMAP), but only by reducing the service times. As long
as there are solutions with unassigned flights, it may be advantageous to use the
operators which use the dummy sorting station. These operators do not contribute
once all solutions have full assignment, and should no longer be used.

Finally, after the UMAP full assignment can be achieved without reduction in
service time so the only objective that contributes to the fitness is the distance.
The fitness is still improved by the EA but by a much smaller amount since the
weights and the values of this objective are much lower than in the others.

All of the operators always improve upon the initial solutions by at least 10% ex-
cept for the crossover and DSEMO operators (Figure 4(a)). Crossover alone could
not alwaysfind improvements over the constructed initial solutions, since crossover
operators are dependent upon the quality of the building blocks which are already
present in the population. If the current solutions do not containmanyuseful differ-
ences, then the crossover will not be able to improve the solution. Similarly initial
solutions of lower fitness may contain better building blocks from the point of view
of the crossover operator, but may be removed too early in the search.

When N < LMAP , DSEMO provided better solutions in most cases than all
of the crossover operators which are considered in this paper, irrespective of the
selection method used, but the solutions are of lower fitness than those obtained
by the other considered mutation operators.

40 A. Ascó, J.A.D. Atkin, and E.K. Burke

(a) C1P, C2P and DSEMO. (b) RMEFNRn, n ∈ {2, 3, 4, 9, 10}.
Fig. 4. Improvement on average fitness for 4-pier and 194 flights

For N ≥ LMAP the solutions obtained by DSEMO are generally no better
than the initial solution and the main reason for this is that the highly fit so-
lutions in this area will already have all of their flights assigned. However, not
all individuals in the population will have maximal assignments, so in some of
the instances, where the operator is applied to a lower fitness solution, doing so
can reach better areas of the search space and achieve a better fitness. Thus,
the use of DSEMO may help the algorithm to reach different parts of the search
space when the initial population is composed of more diverse solutions. These
results imply that it may be wise to adjust the use of DSEMO dynamically to
accommodate to the changing structure of the population.

With the Multi Exchange with Fixed Number of Resources (MEFNRn), the re-
sults observed for the different population selectors do not differ much on average
for different values of n. This is not the case with the Range Multi Exchange with
Fixed Number of Resources (RMEFNRn), where the obtained solutions deterio-
rate as n increases, so n = 2 and n = 3 provided the best solutions, as shown in
Figure 4(b). When considering the execution speed of using these operators, lower
values of n are also faster, as is also true for MEFNRn and MEBPFNRn.

Figures 3(a) and 4(b) show that SUMS provides better average results than
an elitist strategy, which could be considered to be a consequence of SUMS
preserving the diversity better than the ES.

In general the results did not differ across airport topologies (i.e. 3 or 4 pier mod-
els) or days (i.e. number of flights), however there were some minor differences.
For example, in the 3-pier topology, with 194 flights, shown in Figure 3(b), Eli-
tist selection performed better than SUMS for 17 sorting stations and 15 sorting
stations (163 flights). We believe that this is because the constructive algorithms
perform well on these problems, so that the initial population contains solutions
which are much better, and the diversity which SUMS introduces is not beneficial
for the search. This behaviour is not present in the 4-pier topology, for either of the
datasets for the range of sorting stations studied, shown in Figure 3(a).

5 Conclusions

The aim of this research was to gain more general insights into the appropriate
operator choices, especially since some operators (such as crossover) are slower

EA for the Airport Baggage Sorting Station Assignment Problem 41

than others to apply, and the appropriate operator percentages may differ de-
pending upon the situation.

The Dummy Single Exchange Mutation Operator (DSEMO) extends the
search to other areas of the search space which may help to improve the solu-
tions, but it is only useful when there are unassigned flights, eg. for N < LMAP.
Whereas for N ≥ LMAP, the DSEMO should only be used when the selected
solution from the population has unassigned flights, most commonly nearer the
start of the search.

Given the diverse ways in which the studied operators work it is expected that
their combination will further improve the solutions. Furthermore, the combina-
tion of different operators together with an adaptive method of selecting opera-
tors seems to be the most promising approach for future work.

In further research we plan to shed some light upon the effects of changing
the value of L, both statically and dynamically, as well as to consider statically
and dynamically changing the proportions of usage of different operators.

Acknowledgments. We are grateful to NATS Ltd and to EPSRC for providing
the funding for this project, and especially to John Greenwood (NATS) for his
continuous support.

References

1. Abdelghany, A., Abdelghany, K., Narasimhan, R.: Scheduling baggage-handling
facilities in congested airports. Journal of Air Transport Management 12(2), 76–81
(2006)

2. Ascó, A., Atkin, J.A.D., Burke, E.K.: The airport baggage sorting station alloca-
tion problem. In: Proceedings of the 5th Multidisciplinary International Scheduling
Conference, MISTA 2011, Phoenix, Arizona, USA (August 2011)

3. Obata, T.: The quadratic assignment problem: Evaluation of exact and heuristic
algorithms. Technical report, Rensselaer Polytechnic Institute, Troy, New York
(1979)

4. Hu, X., Di Paolo, E.: An efficient genetic algorithm with uniform crossover for the
multi-objective airport gate assignment problem. In: IEEE Congress on Evolution-
ary Computation, CEC 2007, pp. 55–62 (September 2007)

5. Bolat, A.: Models and a genetic algorithm for static aircraft-gate assignment prob-
lem. The Journal of the Operational Research Society 52, 1107–1120 (2001)

6. Blickle, T., Thiele, L.: A comparison of selection schemes used in evolutionary
algorithms. Evolutionary Computation 4(4), 361–394 (1996)

7. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Pro-
ceedings of the Second International Conference on Genetic Algorithms on Ge-
netic algorithms and Their Application, pp. 14–21. L. Erlbaum Associates Inc.,
Hillsdale (1987)

8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

9. Ding, H., Lim, A., Rodrigues, B., Zhu, Y.: Aircraft and gate scheduling optimiza-
tion at airports. Hawaii International Conference on System Sciences 3, 1530–1605
(2004)

10. Ding, H., Rodrigues, A.L., Zhu, Y.: The over-constrained airport gate assignment
problem. Computers and Operations Research 32(7), 1867–1880 (2005)

A Non-parametric Statistical Dominance

Operator for Noisy Multiobjective Optimization

Dung H. Phan and Junichi Suzuki

Deptartment of Computer Science, University of Massachusetts, Boston, USA
{phdung,jxs}@cs.umb.edu

Abstract. This paper describes and evaluates a new noise-aware dom-
inance operator for evolutionary algorithms to solve the multiobjective
optimization problems (MOPs) that contain noise in their objective func-
tions. This operator is designed with the Mann-Whitney U -test, which
is a non-parametric (i.e., distribution-free) statistical significance test. It
takes objective value samples of given two individuals, performs a U -test
on the two sample sets and determines which individual is statistically
superior. Experimental results show that it operates reliably in noisy
MOPs and outperforms existing noise-aware dominance operators par-
ticularly when many outliers exist under asymmetric noise distributions.

Keywords: Evolutionary multiobjective optimization algorithms, noisy
optimization, uncertainties in objective functions.

1 Introduction

This paper focuses on noisy multiobjective optimization problems (MOPs):

min F (x) = [f1(x) + ε1, · · · , fm(x) + εm]T ∈ O
subject to x = [x1, x2, · · · , xn]

T ∈ S

}
(1)

S denotes the decision variable space. x ∈ S is a solution candidate that consists
of n decision variables. It is called an individual in evolutionary multiobjective
optimization algorithms (EMOAs). F : Rn → Rm consists of m real-value objec-
tive functions, which produce the objective values of x in the objective space O.
In MOPs, objective functions often conflict with each other. Thus, there rarely
exists a single solution that is optimum with respect to all objectives. As a result,
EMOAs often seek the optimal trade-off solutions, or Pareto-optimal solutions,
by balancing the trade-offs among conflicting objectives. A notion of Pareto dom-
inance plays an important role to seek Pareto optimality in EMOAs. An individ-
ual x ∈ S is said to dominate another individual y ∈ S (denoted by x � y) iif the
both of the following two conditions are hold: (1) fi(x) ≤ fi(y) ∀ i = 1, · · · ,m
and (2) fi(x) < fi(y) ∃ i = 1, · · · ,m.

In Eq. 1, εi is a random variable that represents noise in the i-th objective
function. Given noise, each objective function can yield different objective values
for the same individual from time to time. Noise in objective functions often
interferes with a dominance operator, which determines dominance relationships

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 42–51, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Non-parametric Statistical Dominance for Noisy Optimization 43

among individuals. For example, a dominance operator may mistakenly judge
that an inferior individual dominates an superior one. Defects in a dominance
operator significantly degrade the performance to solve MOPs [2, 11].

In order to address this issue, this paper proposes a new noise-aware domi-
nance relationship, called U-dominance, which extends the classical Pareto dom-
inance. It is designed with the Mann-Whitney U -test (U -test in short), which
is a non-parametric (i.e., distribution free) statistical significance test [12]. The
U -dominance operator takes objective value samples of given two individuals,
performs a U -test on the two sample sets to examine whether it is statistically
confident enough to judge a dominance relationship between the two individu-
als, and determines which individual is statistically superior/inferior. This pa-
per evaluates the U -dominance operator by integrating it with NSGA-II [4],
a well-known EMOA. Experimental results demonstrate that the U -dominance
operator reliably performs dominance ranking operation in noisy MOPs and
outperforms existing noise-aware dominance operators particularly when many
outliers exist under asymmetric noise distributions.

2 Related Work

There exist various existing work to handle uncertainties in objective functions
by modifying the classical Pareto dominance operator [2, 11]. Most of them as-
sume particular noise distributions in advance; for example, normal distribu-
tions [1, 8–10, 13], uniform distributions [14] and Poisson distributions [6, 17].
Given a noise distribution, existing noise-aware dominance operators collect ob-
jective value samples from each individual [6, 8, 9, 14, 17], or each cluster of in-
dividuals [1], in order to determine dominance relationships among individuals.
Those existing operators are susceptible to noisy MOPs in which noise follows
unknown distributions. In contrast, the U -dominance operator assumes no noise
distributions in advance because, in general, it is hard to predict and model them
in many (particularly, real-world) MOPs. Instead of estimating each individual’s
objective values based on a given noise distribution, the U -dominance opera-
tor estimates the impacts of noise on objective value samples and determines
whether it is statistically confident enough to compare individuals.

Voß et al. [16] and Boonma et al. [3,18] study similar dominance operators to
the U -dominance operator in that they assume no noise distributions in objective
value samples of each individual and statistically examine the impacts of noise on
those samples. Voß et al. propose an operator that considers an uncertainty zone
around the median of samples on a per-objective basis. A dominance decision is
made between two individuals only when their uncertainty zones do not overlap
in all objectives. The uncertainty zone can be the inter-quartile range (IQR) of
samples or the bounding box based on the upper and lower quartiles (BBQ) of
samples. Unlike the U -dominance operator, this operator is susceptible to high
noise strength and asymmetric heavy-tailed noise distributions. Boonma et al.
propose an operator that classifies objective value samples with a support vector
machine, which can be computationally expensive. In contrast, the U -dominance
operator is designed lightweight; it requires no classification and learning.

44 D.H. Phan and J. Suzuki

Algorithm 1. The U -Dominance Operator: uDominance(A, B, α)
Input: A and B, Objective value samples of individuals a and b, respectively
Input: α, The confidence level used in a U-test
Output: Dominance relationship between a and b
1: pA, pB = 1
2: for each (the i-th) objective do
3: Perform a U-test on A and B in the i-th objective.
4: if A is superior than B with the confidence level α in the i-th objective then
5: pA = 1 ∗ pA
6: pB = 0
7: else if B is superior than A with the confidence level α in the i-th objective then
8: pA = 0
9: pB = 1 ∗ pB
10: end if
11: end for
12: if pA = 1 and pB = 0 then
13: return 1 /*** a U-dominates b. ***/
14: else if pA = 0 and pB = 1 then
15: return −1 /*** b U-dominates a. ***/
16: else
17: return 0 /*** a and b are non-U-dominated. ***/
18: end if

3 The U -Dominance Operator

U -dominance is a new noise-aware dominance that is designed with the Mann-
Whitney U -test (U -test in short), which is a non-parametric (i.e., distribution-
free) statistical significance test [12]. An individual a is said to U -dominate an
individual b (denoted by a �U b) with the confidence level α iif:

– In all objectives, b is not superior than a using a U -test with the confidence
level of α.

– In at least one objective, a is superior than b using a U -test with the confi-
dence level of α.

The U -dominance operator takes objective value samples of given two individ-
uals, estimates the impacts of noise on the samples through a U -test, examines
whether it is statistically confident enough to judge a dominance relationship
between the two individuals, and determines which individual is statistically
superior/inferior (Algorithm 1).

Given two sets of objective value samples, A and B, which are collected from
two individuals a and b, a U -test is performed on A and B in each objective
(Algorithm 1). First, A and B are combined into a set S = A∪ B. The samples
in S are sorted in ascending order based on their objective values in an objective
in question. Then, each sample obtains its rank, which represents the sample’s
position in S. The rank of one is given to the first sample in S (i.e., the best
sample that has the minimum objective value). If multiple samples tie, they
receive the same rank, which is equal to the mean of their positions in S. For
example, if the first two samples tie in S, they receive the rank of 1.5 (1+2

2).
Once ranks are assigned to samples, the rank-sum values, RA and RB, are

computed for A and B, respectively. (RA sums up the ranks for the samples
in A.) For a large sample size (> 10), the sampling distributions of RA and RB

A Non-parametric Statistical Dominance for Noisy Optimization 45

are approximately normal [12]. Therefore, the standardized value of a rank-sum
is a standard normal deviate whose significance can be tested under the standard
normal distribution. The standardized value of RA is given as follows.

zRA =
RA − μRA

σRA
(2)

μRA and σRA denote the mean and standard deviation of RA, respectively.

μRA =
|A| × (|A|+ |B|+ 1)

2
(3)

σRA =

√
|A| × |B| × (|A|+ |B|+ 1)

12
(4)

With the confidence level of α, the U -test determines that A and B are not
drawn from the same distribution if F (zRA) ≤ (1− α) or F (zRA) ≥ α. (F (z) is
the cumulative distribution function of the standard normal distribution.) This
means that A and B are significantly different with the confidence level of α.
The U -test concludes that a is superior than b with respect to an objective in
question if F (zRA) ≤ (1− α) and that b is superior than a if F (zRA) ≥ α.

This paper integrates the U -dominance operator with NSGA-II [4], a well-
known EMOA. It is integrated with a binary tournament operator and a dom-
inance ranking operators in NSGA-II. NSGA-II uses binary tournament in its
parent selection process, which selects a parent individual to be used in crossover,
and uses dominance ranking in its environmental selection process, which selects
the next-generation population from the union of the current population and its
offspring [4]. Fig. 1 shows how to perform binary tournament with with the U -
dominance operator. In Lines 1 and 2, two individuals a and b are randomly
drawn from the population P . Then, in Lines 3 and 4, their objective value sam-
ples are obtained to invoke the U -dominance operator at Line 5. Based on the
U -dominance relationship between a and b, one of them is returned as a parent
individual (Lines 6 to 16).

Fig. 2 shows how to rank individuals with the U -dominance operator. From
Line 1 to 12, U -dominance relationships are determined among N individuals in
the population P . The U -dominance operator is invoked in Line 5. Unlike the
classical Pareto dominance, U -dominance relationships are not transitive. When
a �U b and b �U c, a �U c is not guaranteed. When objective functions contain
high-level noise, c might even U -dominate a. If a loop exists in U -dominance
relationships (e.g., a �U b, b �U c and c �U a), the U -dominance operator
deletes the U -dominance relationships among a, b and c, and concludes that
they are non-U -dominated with each other (Line 13 to 15 in Algorithm 2).

4 Experimental Evaluation

This section evaluates the U -dominance operator by integrating it with NSGA-
II. This variant of NSGA-II is called NSGA-II-U in this paper. It is compared
with the following five other variants of NSGA-II.

46 D.H. Phan and J. Suzuki

Input: P, The population of N individuals
Output: A parent individual to be used in

crossover
1: a = randomSelection(P)
2: b = randomSelection(P)
3: A = samplesOf(a)
4: B = samplesOf(b)
5: r = uDominance(A, B, α)
6: if r = 1 then
7: return a
8: else if r = −1 then
9: return b
10: else
11: if random() > 0.5 then
12: return a
13: else
14: return b
15: end if

16: end if

Fig. 1. Binary Tournament

Input: P, The population of N individuals
Output: F , Ranked and sorted N individuals
1: for each p ∈ P do
2: for each q ∈ P do
3: P = samplesOf(p)
4: Q = samplesOf(q)
5: r = uDominance(P, Q, α)
6: if r = 1 then
7: Sp = Sp ∪ {p}
8: else if r = −1 then
9: np = np + 1
10: end if
11: end for
12: end for
13: for each p ∈ P do
14: clearDominanceRelationLoop(p)
15: end for
16: for each p ∈ P do
17: if np = 0 then
18: F1=F1 ∪ {p}
19: end if
20: end for
21: i = 1
22: while Fi �= ∅ do
23: H = ∅

24: for each p ∈ Fi do
25: for each q ∈ Sp do
26: nq = nq − 1
27: if nq = 0 then
28: H = H ∪ {q}
29: end if
30: end for
31: end for
32: i = i + 1
33: Fi=H
34: end while

35: return F

Fig. 2. U -dominance Ranking

– NSGA-II: The original NSGA-II. It takes only one sample and uses its ob-
jective values in the default Pareto dominance operator. It never considers
noise in its dominance operator.

– NSGA-II-Median: takes multiple samples, obtains median values in different
objectives and use them in NSGA-II’s default dominance operator.

– NSGA-II-Mean: takes multiple samples, obtains mean values in different
objectives and use them in NSGA-II’s default dominance operator.

– NSGA-II-N: replaces NSGA-II’s default dominance operator with a noise-
aware dominance operator proposed in [8]. This noise-aware operator as-
sumes Gaussian noise in objective functions in advance (c.f. Section 2).

– NSGA-II-IQR: replaces NSGA-II’s default dominance operator with a noise-
aware dominance operator proposed in [16] (c.f. Section 2).

All NSGA-II variants are evaluated with ZDT and DTLZ family problems (10
problems in total) [5,19]. Experiments were configured as shown in Table 1 and
conducted with jMetal [7]. The total number of generations in each experiment
is 200 in ZDT problems, 500 in DTLZ3 and 250 in the other DTLZ problems.
Every experimental result is obtained from 20 independent experiments.

A Non-parametric Statistical Dominance for Noisy Optimization 47

Table 1. Experimental Configurations

Parameter Value Parameter Value

Confidence level α 0.55 Population size N 100
of samples per individual 20 Crossover rate 0.9
γ (Eq. 8) 3 Mutation rate 1/(# of decision variables)
Noise strength β (Eq. 6–9) 0.1 or 0.5 Total # of generations 200, 250 or 500

This paper uses the hypervolume ratio (HVR) metric to compare NSGA-II
variants and evaluate the U -dominance operator. HVR is calculated as the ratio
of the hypervolume (HV) of non-dominated individuals (D) to the hypervolume
of Pareto-optimal solutions (P ∗) [15].

HV R(D) =
HV (D)

HV (P ∗)
(5)

HV measures the union of the volumes that non-dominated individuals domi-
nate. Thus, HVR quantifies the optimality and diversity of non-dominated in-
dividuals D. A higher HVR indicates that non-dominated individuals are closer
to the Pareto-optimal front and more diverse in the objective space.

In order to turn ZDT and DTLZ family problems to be noisy problems, this
paper defines four kinds of additive noise in objective functions (c.f. Eq. 1).

– Gaussian noise: This noise distribution is characterized with a symmetric
shape and a very limited number of outliners.

εi = βN (0, 1) (6)

N (0, 1) is the standard normal (or Gaussian) distribution.
– Cauchy noise: This noise distribution is used to generate more outliers

than the Gaussian distribution does.

εi = β
N (0, 1)

N (0, 1) + e
(7)

e is set to be a very small value in order to prevent division by zero.
– Chi-squared noise: This distribution is asymmetric and heavy-tailed in

contrast to Gaussian and Cauchy distributions. It contains outliers.

εi = β

γ∑
i=1

Ni(0, 1)
2 (8)

– Log-normal noise: This distribution is characterized with an asymmetric
and heavy-tailed shape and outliers.

εi = β × exp(N (0, 1)) (9)

4.1 Experimental Results

Tables 2 to 5 show the average HVR values that six EMOAs yield at the last
generation in 10 different test problems with different noise distributions. In each

48 D.H. Phan and J. Suzuki

table, a number in parentheses indicates a standard deviation among different
experiments. A bold number indicates the best result among six algorithms on
a per-row basis. A double star (**) or a single star (*) is placed for an average
HVR result when the result is significantly different from NSGA-II-U’s result
based on a single-tail t-test. A double star is placed with the confidence level of
99% while a single star is placed with the confidence level of 95%.

Table 2 shows the experimental results under Gaussian noise. NSGA-II-U
clearly outperforms NSGA-II, NSGAII-Median and NSGA-II-IQR in all prob-
lems except ZDT2. NSGA-II-Mean and NSGA-II-N are more competitive against
NSGA-II-U because noise follows a normal distribution and the distribution is
symmetric. NSGA-II-U significantly outperforms NSGA-II-Mean and NSGA-II-
N in DTLZ1 and DTLZ3 with the confidence level of 99% while the three EMOAs
perform similarly in the other problems.

Table 3 shows the results under Cauchy noise. NSGA-II-U clearly outper-
forms NSGA-II, NSGA-II-Mean, NSGA-II-N and NSGA-II-IQR. In contrast to
Table 2, NSGA-II-Median outperforms NSGA-II-Mean because Cauchy noise
contains a lot of outliers. NSGA-II-U significantly outperforms NSGA-II-Median
in DTLZ1 and DTLZ3 with the confidence level of 99% while NSGA-II-Median
yields similar or better performance than NSGA-II-U in the other problems.

Under chi-squared noise (Table 4) and lognormal noise (Table 5), NSGA-II-
U significantly outperforms five other EMOAs in almost all problems except
ZDT2. In ZDT2, NSGA-II-Median performs better than NSGA-II-U when noise
strength is 0.5. However, there is no significant difference between the two al-
gorithms when noise strength is 0.1. Tables 4 and 5 demonstrate that the U -
dominance operator reliably operates when many outliers exist in objective value
samples under asymmetric noise distributions.

Table 2. HVR Results under Gaussian Noise

β NSGA-II NSGA-II-MedianNSGA-II-Mean NSGA-II-N NSGA-II-IQR NSGA-II-U

ZDT1
0.1 0.732(0.050)** 0.922(0.007)** 0.931(0.007) 0.923(0.006)** 0(0)** 0.932(0.006)
0.5 0.004(0.015)** 0.604(0.066)** 0.690(0.045) 0.652(0.050) 0(0)** 0.684(0.056)

ZDT2
0.1 0.086(0.177) 0.716(0.264)** 0.813(0.150)** 0.347(0.404) 0(0)** 0.256(0.386)
0.5 0(0) 0.010(0.044) 0.024(0.059) 0(0) 0(0) 0(0)

ZDT3
0.1 0.814(0.045)** 0.948(0.006) 0.951(0.018) 0.945(0.022) 0.003(0.004)**0.952(0.006)
0.5 0.066(0.066)** 0.679(0.108) 0.757(0.081) 0.731(0.077) 0(0)** 0.716(0.087)

ZDT4
0.1 0.764(0.139)** 0.908(0.105) 0.938(0.016) 0.839(0.134)* 0(0)** 0.917(0.053)
0.5 0.004(0.019)** 0.558(0.197)* 0.679(0.163) 0.672(0.191) 0(0)** 0.685(0.181)

ZDT6
0.1 0.233(0.077)** 0.698(0.028)** 0.721(0.031) 0.691(0.033)** 0(0)** 0.732(0.023)
0.5 0(0)** 0.067(0.055)* 0.181(0.094)* 0.071(0.054)* 0(0)** 0.112(0.073)

DTLZ1
0.1 0.022(0.056)** 0.397(0.390)** 0.477(0.369)** 0.546(0.353)** 0(0)** 0.895(0.010)
0.5 0(0)** 0(0)** 0.007(0.032)** 0.014(0.055)** 0(0)** 0.519(0.138)

DTLZ2
0.1 0.319(0.101) 0.756(0.0141) 0.775(0.011) 0.736(0.020) 0(0)** 0.780(0.014)
0.5 0(0) 0.006(0.015) 0.070(0.091)** 0.204(0.132)** 0(0) 0.002(0.008)

DTLZ3
0.1 0.015(0.069)** 0.007(0.024)** 0.059(0.178)** 0(0)** 0(0)** 0.725(0.151)
0.5 0(0)** 0.002(0.011)** 0.009(0.030)** 0(0)** 0(0)** 0.417(0.151)

DTLZ4
0.1 0.469(0.122)** 0.801(0.131) 0.862(0.010) 0.810(0.091) 0(0)** 0.819(0.134)
0.5 0.046(0.058)** 0.354(0.106) 0.407(0.093) 0.474(0.088)** 0(0)** 0.373(0.137)

DTLZ7
0.1 0.234(0.050)** 0.733(0.037)** 0.764(0.032) 0.728(0.035)** 0(0)** 0.770(0.030)
0.5 0(0)** 0.153(0.063)** 0.229(0.059)** 0.182(0.059)** 0(0)** 0.069(0.084)

A Non-parametric Statistical Dominance for Noisy Optimization 49

Table 3. HVR Results under Cauchy Noise

β NSGA-II NSGA-II-MedianNSGA-II-Mean NSGA-II-N NSGA-II-IQR NSGA-II-U

ZDT1
0.1 0.682(0.054)** 0.924(0.005)** 0.700(0.040)** 0.719(0.039)** 0.0(0.001)** 0.917(0.009)
0.5 0.160(0.086)** 0.727(0.031)** 0.174(0.068)** 0.195(0.085)** 0(0)** 0.676(0.043)

ZDT2
0.1 0.307(0.197) 0.819(0.193)** 0.214(0.228)* 0.039(0.122)** 0(0)** 0.459(0.426)
0.5 0(0) 0.300(0.255)** 0(0) 0(0) 0(0)** 0.015(0.069)

ZDT3
0.1 0.675(0.054)** 0.936(0.009)* 0.647(0.062)** 0.629(0.060)**0.007(0.017)** 0.929(0.007)
0.5 0.041(0.025)** 0.672(0.045)** 0.042(0.030)** 0.035(0.038)** 0(0)** 0.569(0.094)

ZDT4
0.1 0.686(0.134)** 0.931(0.012) 0.670(0.152)** 0.658(0.199)** 0(0)** 0.907(0.061)
0.5 0.245(0.188)** 0.645(0.146)** 0.226(0.158)** 0.230(0.203)** 0(0)** 0.777(0.091)

ZDT6
0.1 0.311(0.058)** 0.740(0.027) 0.308(0.070)** 0.349(0.046)** 0(0)** 0.736(0.025)
0.5 0.001(0.005)** 0.406(0.048)** 0.002(0.006)** 0(0)** 0(0)** 0.300(0.068)

DTLZ1
0.1 0(0)** 0.444(0.358)** 0(0)** 0.364(0.156)** 0(0)** 0.873(0.019)
0.5 0.011(0.050)** 0.102(0.174)** 0(0)** 0.048(0.114)** 0(0)** 0.492(0.120)

DTLZ2
0.1 0.026(0.049)** 0.780(0.012) 0.007(0.021)** 0.019(0.039)** 0(0)** 0.773(0.009)
0.5 0.000(0.001) 0.346(0.074)** 0.003(0.011) 0.010(0.025) 0(0)** 0.014(0.031)

DTLZ3
0.1 0(0)** 0.027(0.110)** 0(0)** 0.006(0.027)** 0(0)** 0.714(0.056)
0.5 0(0)** 0.004(0.020)** 0(0)** 0(0)** 0(0)** 0.008(0.038)

DTLZ4
0.1 0.370(0.097)** 0.825(0.135) 0.370(0.117)** 0.297(0.101)** 0(0)** 0.795(0.161)
0.5 0.087(0.060)** 0.496(0.162) 0.092(0.075)** 0.014(0.030)** 0(0)** 0.416(0.134)

DTLZ7
0.1 0.490(0.068)** 0.830(0.019) 0.500(0.050)** 0.552(0.037)** 0(0)** 0.820(0.016)
0.5 0.129(0.033)** 0.636(0.034) 0.123(0.056)** 0.037(0.045)** 0(0)** 0.612(0.044)

Table 4. HVR Results under Chi-squared Noise

β NSGA-II NSGA-II-MedianNSGA-II-Mean NSGA-II-N NSGA-II-IQR NSGA-II-U

ZDT1
0.1 0.689(0.045)** 0.893(0.009)** 0.898(0.012)** 0.897(0.009)**0.001(0.002)**0.922(0.010)
0.5 0.173(0.059)** 0.532(0.066)** 0.587(0.053)** 0.615(0.061)** 0(0)** 0.713(0.037)

ZDT2
0.1 0.46(0.169) 0.727(0.256) 0.733(0.258) 0.279(0.374) 0(0)** 0.603(0.370)
0.5 0(0) 0.208(0.085)** 0.120(0.149) 0(0) 0(0) 0.027(0.087)

ZDT3
0.1 0.675(0.059)** 0.915(0.010)** 0.920(0.008)** 0.914(0.009)**0.002(0.003)**0.930(0.005)
0.5 0.071(0.091) 0.490(0.081) 0.521(0.085) 0.550(0.081) 0(0)** 0.556(0.066)

ZDT4
0.1 0.610(0.204)** 0.891(0.086) 0.884(0.081) 0.866(0.056)** 0(0)** 0.926(0.027)
0.5 0.218(0.150)** 0.685(0.115) 0.569(0.205) 0.623(0.154) 0(0)** 0.732(0.156)

ZDT6
0.1 0.333(0.070)** 0.687(0.032)** 0.684(0.033)** 0.657(0.047)** 0(0)** 0.740(0.022)
0.5 0(0)** 0.239(0.060)** 0.228(0.098)** 0.205(0.063)** 0(0)** 0.337(0.066)

DTLZ1
0.1 0(0)** 0.541(0.292)** 0.452(0.390)** 0.265(0.230)** 0(0)** 0.878(0.013)
0.5 0(0)** 0(0)** 0.014(0.047)** 0.009(0.019)** 0(0)** 0.513(0.134)

DTLZ2
0.1 0.451(0.058)** 0.745(0.015)** 0.749(0.011)** 0.736(0.013)** 0(0)** 0.787(0.004)
0.5 0.007(0.024) 0.002(0.004) 0.012(0.020) 0.026(0.024) 0(0)** 0.007(0.013)

DTLZ3
0.1 0(0)** 0(0)** 0(0)** 0(0)** 0(0)** 0.742(0.063)
0.5 0(0)** 0(0)** 0(0)** 0(0)** 0(0)** 0.011(0.041)

DTLZ4
0.1 0.578(0.094)** 0.789(0.129) 0.840(0.012)** 0.827(0.014)** 0(0)** 0.873(0.011)
0.5 0.120(0.093)** 0.285(0.099)** 0.323(0.091)** 0.326(0.079)** 0(0)** 0.491(0.100)

DTLZ7
0.1 0.658(0.036)** 0.798(0.013)** 0.787(0.018)** 0.782(0.026)** 0(0)** 0.828(0.008)
0.5 0.138(0.042)** 0.535(0.051)** 0.553(0.053)* 0.558(0.045)* 0(0)** 0.607(0.037)

50 D.H. Phan and J. Suzuki

Table 5. HVR Results under Log-normal Noise

β NSGA-II NSGA-II-MedianNSGA-II-Mean NSGA-II-N NSGA-II-IQR NSGA-II-U

ZDT1
0.1 0.822(0.019)** 0.937(0.007)** 0.917(0.006)** 0.917(0.009)** 0.048(0.04)** 0.951(0.005)
0.5 0.323(0.103)** 0.791(0.036)** 0.667(0.052)** 0.683(0.057)** 0.0(0.0)** 0.857(0.013)

ZDT2
0.1 0.689(0.164) 0.882(0.011) 0.776(0.195) 0.428(0.394)** 0.0(0.0)** 0.753(0.321)
0.5 0.046(0.074)** 0.561(0.196)** 0.278(0.206) 0.043(0.134)** 0.0(0.0)** 0.311(0.353)

ZDT3
0.1 0.873(0.019)** 0.949(0.008) 0.934(0.007)** 0.931(0.008)**0.086(0.056)**0.954(0.016)
0.5 0.27(0.118)** 0.806(0.032)** 0.626(0.068)** 0.63(0.094)** 0.0(0.0)** 0.874(0.014)

ZDT4
0.1 0.739(0.145)** 0.905(0.069)* 0.898(0.067)* 0.86(0.096)** 0.0(0.0)** 0.940(0.016)
0.5 0.178(0.15)** 0.808(0.089) 0.673(0.199)* 0.596(0.194)** 0.0(0.0)** 0.816(0.130)

ZDT6
0.1 0.531(0.052)** 0.784(0.029)** 0.709(0.024)** 0.694(0.026)** 0.0(0.0)** 0.808(0.020)
0.5 0.062(0.034)** 0.471(0.059)** 0.301(0.075)** 0.315(0.062)** 0.0(0.0)** 0.589(0.032)

DTLZ1
0.1 0.036(0.158)** 0.561(0.334)** 0.426(0.373)** 0.556(0.265)** 0.0(0.0)** 0.906(0.013)
0.5 0.0(0.0)** 0.146(0.223)** 0.063(0.129)** 0.429(0.167)** 0.0(0.0)** 0.795(0.027)

DTLZ2
0.1 0.675(0.016)** 0.779(0.014)** 0.781(0.007)** 0.747(0.013)** 0.0(0.0)** 0.792(0.011)
0.5 0.004(0.012)** 0.589(0.045)** 0.27(0.101)** 0.313(0.112)** 0.0(0.0)** 0.676(0.024)

DTLZ3
0.1 0.0(0.0)** 0.0(0.0)** 0.0(0.0)** 0.0(0.0)** 0.0(0.0)** 0.763(0.035)
0.5 0.0(0.0)** 0.008(0.036)** 0.0(0.0)** 0.0(0.0)** 0.0(0.0)** 0.547(0.107)

DTLZ4
0.1 0.657(0.178)** 0.844(0.094) 0.802(0.161) 0.71(0.192) 0.0(0.0)** 0.816(0.156)
0.5 0.255(0.094)** 0.653(0.138) 0.516(0.089)** 0.509(0.109)** 0.0(0.0)** 0.703(0.206)

DTLZ7
0.1 0.763(0.014)** 0.840(0.012) 0.83(0.015) 0.799(0.024)**0.001(0.003)**0.840(0.030)
0.5 0.341(0.065)** 0.690(0.030)** 0.631(0.033)** 0.62(0.034)** 0.0(0.0)** 0.742(0.028)

5 Conclusions

This paper proposes and evaluates a new noise-aware dominance operator, called
the U -dominance operator, which never assumes noise distributions in advance
by leveraging the Mann-Whitney U -test. Experimental results show that it op-
erates reliably in noisy MOPs and outperforms existing noise-aware dominance
operators particularly when many outliers exist in objective value samples under
asymmetric noise distributions.

References

1. Babbar, M., Lakshmikantha, A., Goldberg, D.: A modified NSGA-II to solve noisy
multiobjective problems. In: Proc. ACM Genet. Evol. Computat. Conf. (2003)

2. Bianchi, L., Dorigo, M., Gambardella, L., Gutjahr, W.J.: A survey on metaheuris-
tics for stochastic combinatorial optimization. Nat. Comput. 8(2) (2009)

3. Boonma, P., Suzuki, J.: A confidence-based dominance operator in evolutionary
algorithms for noisy multiobjective optimization problems. In: Proc. IEEE Int’l
Conference on Tools with Artificial Intelligence (2009)

4. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated
Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. In: Deb,
K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao,
X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolu-
tionary multiobjective optimization. In: Abraham, A., Jain, R., Goldberg, R. (eds.)
Evolutionary Multiobjective Optimization. Springer (2005)

6. Delibrasis, K., Undrill, P., Cameron, G.: Genetic algorithm implementation of stack
filter design for image restoration. In: Proc. Vis., Image, Sign. Proc. (1996)

A Non-parametric Statistical Dominance for Noisy Optimization 51

7. Durillo, J., Nebro, A., Alba, E.: The jMetal framework for multi-objective opti-
mization: Design and architecture. In: Proc. IEEE Congress on Evol. Computat.
(2010)

8. Eskandari, H., Geiger, C., Bird, R.: Handling uncertainty in evolutionary multiob-
jective optimization: SPGA. In: Proc. IEEE Congress Evol. Computat. (2007)

9. Goh, C.K., Tan, K.C.: Noise handling in evolutionary multi-objective optimization.
In: Proc. of IEEE Congress on Evolutionary Computation (2006)

10. Hughes, E.: Evolutionary multi-objective ranking with uncertainty and noise. In:
Proc. Int’l Conf. on Evolutionary Multi-Criterion Optimization (2001)

11. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey.
IEEE Trans. Evol. Computat. 9(3) (2005)

12. Mann, H., Whitney, D.: On a test of whether one of two random variables is
stochastically larger than the other. Annals of Math. Stat. 18(1) (1947)

13. Park, T., Ryu, K.: Accumulative sampling for noisy evolutionary multi-objective
optimization. In: Proc. of ACM Genetic and Evol. Computat. Conference (2011)

14. Teich, J.: Pareto-front exploration with uncertain objectives. In: Proc. of Int’l Conf.
on Evol. Multi-Criterion Optimization (2001)

15. Veldhuizen, D.A.V., Lamont, G.B.: Multiobjective evolutionary algorithm test
suites. In: Proc. ACM Symposium on Applied Computing (1999)

16. Voß, T., Trautmann, H., Igel, C.: New Uncertainty Handling Strategies in Multi-
objective Evolutionary Optimization. In: Schaefer, R., Cotta, C., Ko�lodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 260–269. Springer, Heidelberg
(2010)

17. Wormington, M., Panaccione, C., Matney, K.M., Bowen, D.K.: Characterization
of structures from x-ray scattering data using genetic algorithms. Phil. Trans. R.
Soc. Lond. A 357(1761) (1999)

18. Zhu, B., Suzuki, J., Boonma, P.: Solving the probabilistic traveling salesperson
problem with profits (pTSPP) with a noise-aware evolutionary multiobjective op-
timization algorithm. In: Proc. IEEE Congress on Evol. Computat. (2011)

19. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algo-
rithms: Empirical results. Evol. Computat. 8(2) (2000)

The Emergence of New Genes

in EcoSim and Its Effect on Fitness

Marwa Khater, Elham Salehi, and Robin Gras

School of Computer Science, University of Windsor
ON, Canada

{khater,salehie,rgras}@uwindsor.ca

Abstract. The emergence of complex adaptive traits and behaviors in
artificial life systems requires long term evolution with continuous emer-
gence governed by natural selection. We model organism’s genomes in
an individual-based evolutionary ecosystem simulation (EcoSim), with
fuzzy cognitive maps (FCM) representing their behavioral traits. Our
system allows for the emergence of new traits and disappearing of others,
throughout a course of evolution. We show how EcoSim models evolu-
tion through the behavioral model of its individuals governed by natural
selection. We validate our model by examining the effect, the emergence
of new genes, has on individual’s fitness. Machine learning tools showed
great interest lately in modern biology, evolutionary genetics and bioin-
formatics domains. We use Random Forest classifier, which has been
widely used lately due to its power of dealing with large number of at-
tributes with high efficiency, to predict fitness value knowing only the
values of new genes. Furthermore discovering meaningful rules behind
the fitness prediction encouraged us to use a pre processing step of fea-
ture selection. The selected features were then used to deduce important
rules using the JRip learner algorithm.

Keywords: artificial life modeling, individual-based modeling,
evolution, fitness.

1 Introduction

Charles Darwin’s theory of adaptation through natural selection came to be
widely seen as the primary explanation of the process of evolution and forms
the basis of modern evolutionary theory. Darwin’s principle of natural selec-
tion relies on a number of propositions. The individuals in a population are not
identical but vary in certain traits. This variation, at least partly, is heritable.
Individuals vary in the number and the quality of their descendants which de-
pends critically on the interactions of the individual’s trait and its environment.
Populations with these characteristics, over generations, become more adapted
to their environment. The key to adaptation by natural selection is the effect of
a multitude of small but cumulative changes. But while the heritable variation
causing these changes might be random, most of those that are preserved do not

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 52–61, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Emergence of New Genes in EcoSim and Its Effect on Fitness 53

damage the fitness of the individuals. These variations have turned out to be
somehow beneficial to the reproductive success of their carrier. From the genetic
perspective, mutations and natural selection, through the course of evolution
enforce the emergence of new traits and disappearing of others.

Darwinian evolution governed by natural selection is modeled in EcoSim, an
evolutionary predator - prey ecosystem simulation. In this paper the evolutionary
machinery in EcoSim was studied by examining the emergence of new genes and
their effect on fitness. Random Forest (RF) [2] was used to build a classifier that
was able to predict the values of fitness based on the values of new developed
genes. This is considered to be a validation step to ensure the validity of the
behavior model and its ability to cope with changes in the environment. A feature
selection step is then presented along with rule learning using JRip learner [4].
These rules allow us to discover the most important features that increase fitness,
and help us to understand the semantics of the behavior model. The rest of the
paper is organized as follows: A brief description of our model is presented in
Section 2. Section 3 depicts the details of emergence of new genes. Building a
Random Forest classifier for inference is illustrated in Section 4. Furthermore,
the JRip rule learner along with the two feature selection steps are presented in
Section 5, followed by a summed up conclusion in Section 6.

2 EcoSim

In order to investigate several open theoretical ecology questions we have de-
signed the individual-based evolving predator-prey ecosystem simulation plat-
form EcoSim [5] [6] 1. Our objective is to study how individual and local events
can affect high level mechanisms such as community formation, speciation or
evolution. EcoSim uses a fuzzy cognitive map (FCM) as a behavior model [7]
which allows a combination of compactness with a very low computational re-
quirement while having the capacity to represent complex high level notions.
The complex adaptive agents (or individuals) of this simulation are either prey
or predators which act in a dynamic 2D environment of 1000 x 1000 cells. Each
cell may contain several individuals and some amount of food from which in-
dividuals gain energy. Each individual possesses several physical characteristics
including age, minimum age for breeding, speed, vision distance, levels of en-
ergy, and the amount of energy transmitted to the offspring. Preys consume
grass, whereas predators predate on prey individuals. Grass distribution is dy-
namic, as it diffuses throughout the world and disappears when consumed by
prey. An individual consumes some energy each time it performs an action such
as evasion, search for food, eating or breeding. Each individual performs one
action during a time step based on its perception of the environment.

FCM [5] is used to model the individual’s behavior and to compute the next
action to be performed. The individual’s FCM is analogous to a genome and
therefore can be subjected to evolution. Each agent possesses a unique proper
FCM, and the system can still manage several hundreds of thousands of such

1 http://sites.google.com/site/ecosimgroup/research/ecosystem-simulation

http://sites.google.com/site/ecosimgroup/research/ecosystem-simulation

54 M. Khater, E. Salehi, and R. Gras

agents simultaneously into the world with reasonable computational require-
ments. A typical run lasts dozens of thousands of time steps during which more
than a billion agents are born and several thousands of species are generated,
allowing evolutionary process to take place and new behaviors to emerge in a
constantly changing environment. The simulation operationalizes each ’species’
as a set of individuals sharing similar genomes [8]. Every member of a species
has a genome that is within a threshold genetic distance away from the average
species genome - an average of the FCMs of all the species’ members. For compu-
tational consideration, species are also associated with a ’genome’ representing
the average genome of all their population of individuals. As species evolve due
to birth and death of their individuals, the changes they go through are mapped
to their FCMs. The genomic distance between individuals, the average species
genome. and genetic distance threshold are used to decide on the creation of a
new species. Formally a FCM is a graph which contains a set of nodes C, each
node Ci being a concept, and a set of edges I, each edge Iij representing the
influence of the concept Ci on the concept Cj see Figure 1. We use a FCM to
model an agent’s behavior (i.e. the structure of the graph) and to compute the
next action of the agent (i.e. dynamic of the map). In each FCM, three kinds of
concepts are defined: sensitive (such as distance to foe or food, amount of en-
ergy, etc), internal (fear, hunger, curiosity, satisfaction, etc) and motor (evasion,
socialization, exploration, breeding, etc). The genome has a maximum of 390

Fig. 1. The initial map of a prey. Blue edges represent positive influence and red
edges negative influence of one concept on another. The width of the edge represents
the strength of the influence.

The Emergence of New Genes in EcoSim and Its Effect on Fitness 55

sites, where each site corresponds to a possible edge between two concepts of
the FCM. A breeding event occurs when two individuals in the same cell choose
the reproduction action at the same time step, when their genome dissimilarity
is below a threshold (i.e. half of the threshold for speciation) and when they
have enough energy to reproduce. During this breeding event the FCMs of the
two parents are combined and transmitted to their offspring with the possible
addition of some random mutations. The behavioral model of each individual is
therefore unique.

3 Emergence of New Genes

The FCM of each individual plays the role of its genome and has a maximum
size of 390 sites. Every site is a real number which measures the level of influence
from one concept to another. Initially all prey and predator individuals are given
the same value for their genomes respectively see Figure 1. This initial map has
125 existing edges between concepts. These values were carefully chosen and
tested. Furthermore, a new offspring carries a combination of its parent’s two
genomes, along with some possible mutations. Step after step as more individuals
are created changes in the FCM occur due to the formation of new edges (with
probability of 0.001), removal of existing edges (with probability of 0.0005) and
changes in the weights associate to existing edges (with probability of 0.005).
New genes may emerge from among the 265 possible new edges. Furthermore,
we calculate the average fitness for every species as the average fitness of its
individuals. We define fitness of an individual as the age of death of the individual
plus the sum of the age of death of its direct offspring. Accordingly, the fitness
value mirrors the individual’s capability to survive longer and produce high
number of strong adaptive offspring.

The values of the genome determine how the organism behaves in its current
environment. Thus, this information determines the capability of the organism
to survive, reproduce and transmit its genome. The environment changes from
one place to another and from a time step to another. Furthermore, as we model
a predator-prey system, we have co-evolution; the strategies (behavior) of each
individual (predator/prey) are continuously changing as they try to adapt to the
other kind. In a constantly changing environmnet individuals must continuously
learn. This fact drives the individulas evolve survival strategies that helps them
adapt to their changing environmnet. Prey individuals die due to several reasons:
reaching maximum age, lack of energy or being eaten by predators. We do not
force natural selection by limiting the number of existing species or fixing pop-
ulation size, but rather selection acts through the behavioral model. Individual
that are not able to gain energy from food, reproduce and escape from predators
will be eliminated by the evolutionary process. Thus, fitness levels are not fixed
and do not always increase; rather, they vary over time. The evolutionary pro-
cess of EcoSim governs the emergence of new genes and disappearing of others.
By the process of natural selection only the fittest will be able to survive, and
therefore the emergence of new genes is not random but adaptive,adding to the
intelligence and complexity of the individuals.

56 M. Khater, E. Salehi, and R. Gras

4 Building a Random Forest Classifier for Inference

Recent work in computational biology has shown an increased use of Random
Forest[2], owing to its unique advantages in dealing with small sample size, high-
dimensional feature space, and complex data structures [1][3]. Random forests
have higher prediction accuracy as compared to individual classification trees
because the ensemble adjusts for the instability of individual trees induced by
small changes in the learning sample, which would otherwise impair the predic-
tion accuracy in test samples. A new gene is a gene that had the value of zero in
the initial FCM map of prey, and then mutates to and preserves a non-zero value
later on in the simulation. The genes that were initially zero and then changed
are monitored and extracted. We calculate the average FCM for every existing
species in every time step in the simulation. From 390 possible genes there are
125 initial genes and 265 possible new genes, which can appear gradually. Each of
these 265 new genes represents an attribute in the classifier, making the feature
space a high dimensional feature space. Each instance of the learning process
consists of the set of 265 average gene values in a given species at a given time
step. We have 4 different runs of the simulation, each having around 20000 time
steps. We neglect the first couple of thousand of time steps in our calculations
to overcome any misleading results due to the initial similarity between individ-
ual genomes. Consequently, all genes would have obtained non-zero values. We
extract randomly around 150000 instances from every run, to build 4 classifiers,
one for each run. The class variable to predict at a given time step is the average
fitness value of the species 50 time steps later. The effect of these new genes
on the individual fitness is not immediate so used a 50 time steps shift to give
time for the values of new genes to affect the fitness. We have three classes for
the average fitness; LOW which represent values less than 85. HIGH, which is
between 85 and 110, and very high VHIGH, for values higher than 110. Table1
presents the percentage of instances for every class in 4 different runs of the
simulation.

The Random Forest classifier implemented in the weka environment [10] was
used. Instances for every run are split into two sets: train and test. Using 10
fold cross validation and 10 classification trees, 94.7% average train accuracy
of 4 runs with a standard deviation (std) of 0.33 and 95% test accuracy with
std of 0.3 was found. Although there are many factors affecting the fitness, it

Table 1. Percentage of low fitness (LOW), high fitness (HIGH), and very high fitness
(VHIGH) prey instances for 4 different runs

Run Percentage Percentage Percentage
LOW HIGH VHIGH

Run 1 53% 36% 10%

Run 2 45% 39.5% 15.5%

Run 3 41% 42% 17%

Run 4 40% 46% 14%

The Emergence of New Genes in EcoSim and Its Effect on Fitness 57

was still predicted with high accuracy knowing only the values of the newly
developed genes. This high accuracy supports our assumption that the values
of the new evolved genes could affect the well being of the individuals. We also
tested the generality of our finding by training the classifier on one data set
from one run and testing it on a data set from another run of the simulation.
Although the classifier was able to learn some general rules for prediction in
different runs, the average accuracy of 43.5% with std of 1.2 was not very high.
One reason is that the simulation varies, from one run to another and each run
has unique conditions in which survival strategies of the individuals vary. This
leads to different behaviors, and thus different values of the genes that affect
the fitness. These values did not evolve randomly, but were preserved by the
evolutionary process thereby adding a higher level of complexity and intelligence
to the individuals. It is worth noting that this increase in complexity adds an
extra cost for the individual as any new gene added to this individual increase the
amount of energy the individual needs to consume at any time step. Therefore,
in order for new genes to be beneficial in terms of fitness, the benefit in term of
advantageous behavior should be higher than the cost in energy. This supports
the validity of our behavior model and demonstrates how evolutionary processes
lead to adaptation and intelligence. This finding also emphasizes the role of
natural selection in our simulation. Genomes that participate in the well being
of its carrier host persist and survive.

5 Rule Learning Using JRip

We are interested in a better understanding of the semantics behind the evo-
lution of the new genes. Which genes have a stronger influence on fitness and
with which values? In order to study this phenomenon we extracted rules from
the learned model predicting the fitness. The interpretability of a random forest
is not as straightforward as that of an individual classification tree, where the
influence of a predictor variable directly corresponds to its position in the tree.
The model generated by the Random Forest can be challenging to interpret. To
by-pass this limitation we use the JRip rule learner [4] to extract more seman-
tics from the prediction model. JRip implements a propositional rule learner,
Repeated Incremental Pruning to Produce Error Reduction (RIPPER), which
is an optimized version of IREP. JRip learn rules that are easy to understand
and provide informative feedback about the problem. In order to improve the
model performance and gain a deeper insight into the underlying processes af-
fecting the results, we used a feature selection step. This pre-processing step
highlights the most important genes affecting the fitness and eases the process
of rule interpretation in addition to minimizing the number of rules. We use two
different feature selection methods, CfsSubsetEval [11] using Best First searcher,
and CMSS-EDA [12] and present both their results.

The first feature selection method used CfsSubsetEval evaluates the worth of a
subset of features by considering the individual predictive ability of each feature
along with the degree of redundancy between them. BestFirst searches the space

58 M. Khater, E. Salehi, and R. Gras

of feature subsets with a greedy hill-climber augmented with a backtracking fa-
cility. This was implemented under weka environment. The other method, which
was previously presented by Salehi E, is a wrapper feature selection methods
[13] [14] based on an estimation of distribution algorithm (EDA) called CMSS-
EDA [12]. Since CMSS-EDA does not consider a small fix upper bound on the
number of variables on which each variable depends, the most relevant variables
using this approach were found even when there were many dependencies be-
tween them. Each subset of variables is encoded as a bit-string and the subset
of variables which maximizes the AUC (Area Under ROC Curve) obtained by a
Bayesian network classifier was found.

Table 2. Accuracy percentages for training and testing with JRip after CMSS-EDA
and CfsSubsetEval feature selection, for 4 runs of the simulation

CMSS-EDA CfsSubsetEval

Train Test Selected No. Train Test Selected No.
Acc. Acc. Features Rules Acc. Acc. Features Rules

Run 1 69.5% 70.9% 41 78 69.3% 70.5% 28 53

Run 2 72.2% 74.4% 35 119 73% 74.7% 41 101

Run 3 71.3% 71.5% 63 109 70.3% 71.6% 41 113

Run 4 73.7% 76.8% 47 62 73.8% 74.3% 38 55

First, samples from the data set were used to extract features using both
techniques. Then only these features were used with JRip rule extractor using
separate training and testing sets with 10 fold cross validation. Different fea-
tures have been selected from different runs of the simulation. This is due to
the complexity of the behavior model. Survival techniques vary based on the
different circumstances of each run and environment dynamics. Although the
two feature selection techniques selected different features, their prediction ac-
curacy using JRip was very similar. This shows the strong dependencies among
the genes and how they collaborate with each other to adapt to their dynamic
environment. Also some genes might have redundant information which could
be replaced with some other set of genes. Table2 shows results of JRip rule
learner along with the number of rules it produces for each different run of the
simulation for both CMSS-EDA and CfsSubsetEval respectively. Different IF
THEN rules are learned from JRip to predict the three fitness classes. We were
mainly interested in the rules that predict the very high fitness class, VHIGH
because understanding the conditions that increase the individual’s species fit-
ness is highly informative about the simulation properties. The number of rules,
that predict VHIGH ranges from 2 to 25, in all runs using both feature selection
methods. It should be noted that each gene can have a real positive value(for a
new edge from one concept that positively influence another) or a real negative
value (for a new edge from one concept that negatively influence another). Due
to space limitations we present rules with highest ranking and highest weight
of instances per rule. Rules are in the form of ”IF edges emerge between the

The Emergence of New Genes in EcoSim and Its Effect on Fitness 59

following concepts THEN the average fitness of the species will be very high
after 50 time steps”.

– IF Satisfaction decreases sedentary, AND escape decreases socialize, AND
search for partner decreases nuisance, AND food local low increases fear,
AND satisfaction increases satisfaction, THEN fitness is VHIGH.

Explanation for the previous rule is as follows. Satisfaction is an internal concept
which is initially decreased by a low local (same cell as the individual) food level,
or by a low energy level of the individual, or by a predator being detected in a
close range (see Figure 1 for the initial prey map). A new edge corresponding
to ’satisfaction decreasing sedentary’ has evolved. The desire to escape lowers
the desire to socialize because preference should be given to escaping from a
close by predator. Searching for a partner decreases the nuisance, and having a
low local food levels increases the internal concept of fear. ’Satisfaction increases
satisfaction’ is an internal loop which gives persistence to the sensation of satis-
faction. The combination of these new emerging genes within population tends
to increase the population’s fitness.

– IF curiosity decreases sedentary, AND friend close decreases exploration,
AND energy high decreases exploration, AND food far increases reproduc-
tion, AND energy high increases wait, AND explore decreases explore, THEN
fitness is VHIGH.

Curiosity and sedentary are both internal concepts. Initially curiosity increases
exploration which encourages the individual to move. Sedentary, in the initial
prey map, decreases exploration. A new edge was developed between these two
internal concepts, meaning that curiosity decreases sedentary, which enforce the
initial semantic. Having friends close-by decreases the desire to explore and to
move because having close-by friends encourages the individual to search for a
partner. Having a high level of energy decreases exploration because it might be
better to reproduce and search for a partner. Having no close-by food, increases
the will to reproduce instead of wasting energy by searching for distant food.
Having high levels of energy increases the wait action is less obvious to interpret,
but can mean that the individual has no need to move. Finally, exploration
decreases the internal desire for further exploration, is also an internal loop
that reduce the persistence of exploration, which is mostly a random movement.
These factors also increase the fitness.

– IF no local partner decreases fear, AND food local high increases wait, AND
food far increases exploration, AND friend close increases eat, AND partner
local yes decreases search partner, AND reproduce decreases socialize, THEN
fitness is VHIGH.

Fear is an internal concept that initially decreases all motion actions except
escape and explore. A negative edge has been established between the perception
of having no local partner and fear. If high levels of local food have been found,
waiting is increased. If the food is far the need to explore increases as well.

60 M. Khater, E. Salehi, and R. Gras

Having close-by friends increases the desire to eat and gain more energy. Local
close by partners detected decreases the need of searching for partners. The
desire of reproduction lowers also the socialization concept. The combination of
the emergence of these factors also increases the fitness.

– IF no local partner decreases fear, AND predator close increases escape,
AND socialize decreases reproduce, AND predator far increases eat, THEN
fitness is VHIGH.

Initially detecting close-by predators increases the internal concept of fear and an
increased level of fear also increases the desire of escaping. A new edge emerged
which directly encourages escape action if predators are detected without using
internal concept. The need to socialize decreases the need to reproduce, which
means that when there are no local partners (need to socialize), there is no in-
terest to try to breed. Also a meaningful edge between increasing the eat action
if predators are far was developed all leading to increasing fitness. The logical
soundness of most of the produced rules shows both high semantics in the initial
behavioral model of prey individuals, and the self organizing capability of our
system. Some rules seems less obvious to interpret, but as the global model is a
highly complex non-linear system with feedback loops, some modifications can
have effects on other parts of the system and are therefore difficult to understand.
The behavior model (genome) was able to evolve without any external interfer-
ence besides the natural selection forces. These rules emphasize the importance
of certain new genes and the strong dependencies found among them. The logical
correctness of some of these rules is also a major interesting discovery.

6 Conclusion

The correlation between the fitness of a population and the emergence of new
behaviors was studied. We analyzed the emergence of new genes which affect
the behavioral model of the agents, through the evolutionary process in EcoSim.
The value of these new genes served as attributes for fitness prediction using
Random Forest classifier implemented in weka. The high accuracy obtained from
the Random Forest classifier shows the capacity of our behavior model to capture
relevant information from its environment giving to the successful individual’s
ability to survive and to adapt to its dynamic environment. In a second step,
rule learning technique was applied to extract semantics information from the
prediction model. This enabled better understanding of the logical rules in the
new evolved behavioral models that led to an increase in fitness. The JRip rule
learner was used after a pre-processing feature selection step. The soundness
of the rules obtained is very encouraging as they help us to understand what
kind of new behaviors can be useful in such dynamic and competitive ecosystem.
The next step of our study will be to correlate, with the help of biologists, the
semantic rules we obtained with data coming from real natural ecosystems. As
this simulation allows very long runs, it will be possible to study the dynamics
of co-evolution by analyzing successive changes in the behavioral models during
periods of prey adaptation to predators and vise versa.

The Emergence of New Genes in EcoSim and Its Effect on Fitness 61

Acknowledgements. This work is supported by the NSERC grant ORGPIN
341854, the CRC grant 950-2-3617 and the CFI grant 203617 and is made pos-
sible by the facilities of the Shared Hierarchical Academic Research Computing
Network (SHARCNET:www.sharcnet.ca).

References

1. Cutler, D.R., Edwards Jr., T.C., Beard, K.H., Cutler, A., Hess, K., Gibson, J.,
Lawler, J.: Random forests for classification in ecology. Ecology 88, 2783–2792
(2007)

2. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)
3. Diaz-Uriarte, R., de Andres, S.A.: Gene selection and classification of microarray

data using random forest. BMC Bioinformatics 7(1), 3 (2006)
4. Cohen, W.: Fast effective rule induction. In: 12th International Conference on

Machine Learning, pp. 115–123 (1995)
5. Gras, R., Devaurs, D., Wozniak, A., Aspinall, A.: An individual-based evolving

predator-prey ecosystem simulation using fuzzy cognitive map as behavior model.
Artificial Life 15(4), 423–463 (2009)

6. Gras, R., Golestani, A., Hosseini, M., Khater, M., Farahani, Y.M., Mashayekhi, M.,
Ibne, S.M., Sajadi, A., Salehi, E., Scott, R.: Ecosim: an individual-based platform
for studying evolution. In: European Conference on Artificial Life, pp. 284–286
(2011)

7. Kosko, B.: Fuzzy cognitive maps. Int. Jornal of Man-Machine Studies, 65–75 (1986)
8. Aspinall, A., Gras, R.: K-Means Clustering as a Speciation Mechanism within

an Individual-Based Evolving Predator-Prey Ecosystem Simulation. In: An, A.,
Lingras, P., Petty, S., Huang, R. (eds.) AMT 2010. LNCS, vol. 6335, pp. 318–329.
Springer, Heidelberg (2010)

9. Qi, Y., Bar-Joseph, Z., Klein-Seetharman, J.: Evaluation of different biological data
and computational classification methods for use in protein interaction predection.
Proteins 63(3), 490–500 (2006)

10. Witten, I., Frank, E.: Data Mining- Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann, USA (2000)

11. Hall, M.A.: Correlation-based Feature Subset Selection for Machine Learning. PhD
thesis, University of Waikato, Hamilton, New Zealand (1998)

12. Salehi, E., Gras, R.: Efficient eda for large optimization problem via constraining
the search space of models. In: GECCO 2011, pp. 73–74. ACM (2011)

13. Yang, Q., Salehi, E., Gras, R.: Using Feature Selection Approaches to Find the
Dependent Features. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS (LNAI), vol. 6113, pp. 487–494.
Springer, Heidelberg (2010)

14. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioin-
formatics. Bioinformatics 23(19), 2507–2517 (2007)

Mass-Dispersed Gravitational Search Algorithm

for Gene Regulatory Network Model
Parameter Identification

Mohsen Davarynejad1, Zary Forghany2, and Jan van den Berg1

1 Faculty of Technology, Policy and Management,
Delft University of Technology, The Netherlands
{m.davarynejad,j.vandenberg}@tudelft.nl

2 Department of Molecular Cell Biology,
Leiden University Medical Center (LUMC), The Netherlands

z.forghany@lumc.nl

Abstract. The interaction mechanisms at the molecular level that gov-
ern essential processes inside the cell are conventionally modeled by
nonlinear dynamic systems of coupled differential equations. Our im-
plementation adopts an S-system to capture the dynamics of the gene
regulatory network (GRN) of interest. To identify a solution to inverse
problem of GRN parameter identification the gravitational search algo-
rithm (GSA) is adopted here. Contributions made in the present paper
are twofold. Firstly the bias of GSA toward the center of the search
space is reported. Secondly motivated by observed center-seeking (CS)
bias of GSA, mass-dispersed gravitational search algorithm (mdGSA) is
proposed here. Simulation results on a set of well-studied mathematical
benchmark problems and two gene regulatory networks confirms that
the proposed mdGSA is superior to the standard GSA, mainly duo to
its reduced CS bias.

Keywords: Gravitational search algorithm, Center-seeking bias, Mass-
dispersed gravitational search algorithm, Gene regulatory network model
identification.

1 Introduction

Many diseases are the result of polygenic and pleiotropic effects controlled by
multiple genes. Genome-wide interaction analysis (GWIA), by providing insight
into the biological and biochemical pathways of disease is a natural evolution of
single locus study.

The level of activation and inhibition of genes are governed by factors within
a cellular environment and outside of the cell. The activation and inhibition re-
lationship between genes are integrated by gene regulatory networks (GRNs),
forming an organizational level in the cell with complex dynamics [4]. Mathe-
matical modeling of GRNs provides a powerful tool not only to better under-
stand such a complex system but also to develop new hypotheses on underlying

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 62–72, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Mass-Dispersed GSA for GRN Model Parameter Identification 63

mechanisms. Model parameter identification is a challenging optimization prob-
lem [21] with the objective function representing data misfit in a given norm. In
this study, S-systems [22], a set of non-linear differential equations of a special
form belonging to the power-law formalism are adopted as model. To estimate
the model parameters and to capture the dynamics in gene expression data,
Tominaga et al. [22] used standard evolutionary algorithms (EAs). Evolutionary
computation is becoming a popular approach for solving S-system parameter
identification [3, 10, 11, 15], mainly due to the multimodality and strong non-
linear parameter-dependencies in the problem.

To the best of our knowledge, this is the first attempt to adopt the gravita-
tional search algorithm (GSA) for S-system parameter optimization for GRN.
This study provides a conceptual analysis of the search behavior of the GSA.
The analysis suggests a center-seeking (CS) bias in the search process of the GSA
confirmed by a setting up a test similar to one proposed by Angeline [1] on a set
of several widely used numerical benchmark problems with various optimization
characteristics. To partially dilute the search bias of GSA, a solution inspired
from the Simulated Big Bounce [6] algorithm is proposed.

The remainder of this paper is organized as follows. A short introduction to
GRNs and to S-systems is provided in Section 2. The population based model for
S-system parameter identification is presented in Section 3. A brief tour of GSA
followed by a conceptual analysis of its CS behavior are presented in Section 3.1.
Motivated by the observed CS bias of the standard GSA, Section 3.2 presents the
mdGSA, a solution borrowed from the Simulated big bounce (SBB) algorithm [6].
The experimental setup adopted to check the CS bias of GSA and mdGSA
and their suitability for gene network parameter identification are presented in
Section 4. The final section draws conclusions and considers implications for
future research.

2 Gene Regulatory Networks

GRNs in the cell are a complex dynamic network of interactions between the
products of genes (mRNAs) and the proteins they produce, some of which in
return act as regulators of the expression of other genes (or even their own gene)
in the production of mRNA. While low cost methods to monitor gene expres-
sion through microarrays exist, we still know little about the complex interac-
tions of these cellular components. Usually, sets of ordinary differential equations
(ODEs) are used as mathematical models for these systems [23,24], however they
suffer from many assumptions critical to the equations themselves. S-system ap-
proaches, on the other hand, use time-independent variables to model these pro-
cesses. Assuming the concentration of N proteins, mRNAs, or small molecules at
time t is given by yt1, y

t
2, . . . , y

t
i , . . . , y

t
N , S-systems model the temporal evolution

of the ith component at time t by power-law functions of the form (1).

dyti
dt

= αi

⎛⎝ N∏
j=1

y
gij
j

⎞⎠− βi

⎛⎝ N∏
j=1

y
hij

j

⎞⎠ , (1)

64 M. Davarynejad, Z. Forghany, and J. van den Berg

where N represents the number of genes involved in the GRN. The first term
represents all factors that promote the expression of component i, yi, whereas the
second term represents all factors that inhibit its expression. In a biochemical
engineering context, the non-negative parameters αi , βi are called rate con-
stants, and real-valued exponents gij (G matrix, [G]) and hij (H matrix, [H])
are, respectively, referred to as kinetic order for synthesis and kinetic order for
degradation.

x = {α, β, [G], [H]} are the parameters that define the S-system. The total
number of parameters in the S-system is 2N(N + 1), meaning the number of
parameters increases quadratically and can quickly become very large. The pa-
rameter estimation task is to determine model parameters such that the dynamic
profiles fit the observation.

3 Population Based S-Systems Model Parameter
Identification

Let us define the search space as the following:

E =

D⊗
d=1

[Ld
x,U

d
x], (2)

with the objective of locating x∗ ∈ E, where f(x∗) is the extremum of a function
f(x) : IRD → IR and where Ld

x and Ud
x are respectively the lower and upper

bound of the search domain at dimension d.
To guide the population in the search space, some measure of discrimination

is needed. The most commonly used quality assessment criterion is the mean
quadratic discrepancy between the observed expression pattern yti and the model
output ŷti [16].

f =

N∑
i=1

T∑
t=1

(
ŷti − yti

yti

)2

, (3)

where T is the number of time points.
Having chosen an appropriate fitness function, the next section outlines the

GSA.

3.1 A Brief Tour of the Gravitational Search Algorithm

Gravitational search algorithm (GSA) [18] is a relatively new technique that has
been empirically shown to perform well on many function optimization prob-
lems [2,8,9,12–14,17,19,20]. GSA inspires from the evolution of complex struc-
tures in the universe. In its original version, GSA scatters particles in a feasible
region of the search space where they interact with each other under Newtons
gravitational force and move in the search area seeking optimal design variable.
GSA shares features with several other competing schemes. Just like many of

Mass-Dispersed GSA for GRN Model Parameter Identification 65

them, GSA has a way of sharing information between solutions. In contrast to
EAs where solutions die at the end of each generation, in GSA, solutions sur-
vive through the course of the optimization process. This provides a substantial
source of information for the population when searching the global optimum.

In GSA, just like many other population based optimization techniques, to
guide the population in the search space E, some measure of discrimination is
needed, referred here to as a fitness of each candidate solution xi. Each candidate
solution is a particle with a mass Mi inversely proportional to its fitness f(xi).
A good solution is analogous to a particle with high mass and a poor solution
represents a particle with a small mass. A particle with high mass resist change
more than those with low mass and tend to have higher impact on other par-
ticles, thereby sharing their features with low quality solutions. The attractive
gravitational force governs the movement of the particles in the search space.
The search begins by an attractive force with a strength and direction as a func-
tion of the mass of particle itself, mass of other particles and its relative distance
to the other particles. The force is applied to static particles of one under which
their position in next time step changes and they gain a velocity. The quantity
of the resultant force is determined by Newtons gravitational law. A solution
with a higher mass exerts a stronger force compared to that of small mass. The
kinetic energy stored in particles is a form of memory giving them the possibility
to steer their movement under the influence of their memory and external forces.
The sum of the force field and the particle’s kinetic energy induced from its ve-
locity and mass is the total force acting on them and together with its current
position xi(t) determines its next position xi(t+ 1) in the search space.

GSA’s basic steps in pseudo-code are shown in Algorithm (1). In original
GSA [18], the mass of particles considering its quality is assignment as follows:

Mi =
mi∑S
j=1 mj

, i = 1, 2, . . . , S (4)

Algorithm 1. Pseudo code of gravitational search algorithm (GSA)

Input: Search space E, fitness function f , S, G0, α
1: Initialize particle’s location, x = (x1, . . . ,xS)

T

2: while t < MaxIteration do
3: Fitness calculation
4: Update Mi, ∀i = 1, . . . , S � According to (4) and (5)
5: Update G � According to (8)
6: Update attractive force F d

i , ∀i = 1, . . . , S
7: Update vi, ∀i = 1, . . . , S � According to (9)
8: Update xi, ∀i = 1, . . . , S � According to (10)
9: t++ � t is the number of iterations
10: end while
Output: x∗ and f(x∗)

66 M. Davarynejad, Z. Forghany, and J. van den Berg

where

mi =
f(xi)−minj∈{1,...,S} f(xj)

maxj∈{1,...,S} f(xj)−minj∈{1,...,S} f(xj)
, (5)

and S is the number of particles. The resultant gravitational force acting on
particle i in direction d is determined using Equation (6).

F d
i =

∑
j∈Kbest

rjF
d
ij , (6)

where Kbest is a set of k particles with the highest mass, rj ∼ U(0, 1) and F d
ij

is gravitational force exerted by particle j on particle i. To provide a better
exploration in the early iterations, |Kbest| is set at S in the beginning; however
the exploration must be decreased gradually. Therefore choosing a decremented
function for |Kbest| increases the exploitation of the algorithm when the number
of iterations rises.

The force exerted by particle j acting on particle i is defined as:

F d
ij = G

Mi ×Mj

Rij + ε

(
xd
j − xd

i

)
(7)

where Rij is Euclidian distance between particles i and j. and G, the gravita-
tional constant initialized at G0 is determined using Equation (8) as

G = G0e
−α t

T (8)

where α is algorithmic tuning parameter.
The equations of motion of every particle is described using (9) and (10) as

vi(t+ 1) = R× vi(t) +
Fi

Mi
.Δt, (9)

xi(t+ 1) = xi(t) + vi(t+ 1).Δt, (10)

where Δt = 1, R ∼ U(0, 1) is an array of size D corresponding to each element
in vector vi.

To overcome limitations observed in performance of GSA, the next Section
presents a modification of mass assignment procedure of standard GSA.

3.2 mdGSA, a Mass-Dispersed GSA

The CS bias of the standard GSA is a serious barrier to its use as an optimization
tool when recognizing the fact that usually no real-world optimization problem
has its optimal solution at exact center of the search space. A more intense dis-
crimination of solutions may be a partial solution to this problem. Inspired from
the Simulated big bounce algorithm [6], a Mass bounded to the range of [LM , UM]
is assigned to every particle considering the fitness of each particle. g, the func-
tion that maps the fitness to the Mass g : IR → IR, f(xi) �→ g (f (xi)) , ∀xi ∈ x
can be any monotonically nondecreasing (and possibly time varying) function in

Mass-Dispersed GSA for GRN Model Parameter Identification 67

principle with real values defined on a the set of fitness of particle xi whose value
is non-negative for f(xi). We take g as a linear time-invariant strictly increasing
function as following [6]:

Mi = g (f (xi)) = LM + (UM − LM)

f(xi)− max
j∈{1,...,S}

f(xj)

min
j∈{1,...,S}

f(xj)− max
j∈{1,...,S}

f(xj)
. (11)

4 Experimental Setup and Results

When comparing the effectiveness of different optimization methods, a stan-
dard performance measure is the objective value a certain algorithm can reach
within a certain predefined number of function evaluations. This is based on
the assumption that the dominating factor in measuring computational effort is
fitness evaluation, which is usually valid for complex optimization tasks of inter-
est for real-world problems [5, 7]. This, in the experiments, is modeled as if the
maximum computational resource budget available to devote a task is limited.
This is equivalent as if the maximum time budget for which the best solution
has to be delivered is limited.

4.1 Parameter Settings

In all the experiments adopted in this study, the population size is set at 50.
The total number of fitness evaluation for mathematical optimization problems
is set at 100,000 and for GRN model parameter estimation is set at 200,000.
The used GSA parameters presented in [18] is as follows: G0 is set at 100, α is
set at 20, Kbest is set at number of particles, S, and is linearly decreased to 1
at the last iteration. For the mdGSA the common setting are the same as GSA
settings and the upper and lower bound of mass are set at 1, .01 respectively.

As the studied optimization techniques are stochastic in nature, for a given
function of a given dimension 30 independent runs where executed for each
experimental setup with average best-of-run and standard deviation of results
being reported along with the results of Wilcoxon Rank Sum test for statistical
test of significance.

4.2 Standard Optimization Problems

To asses the performance of the GSA, a set of four standard optimization prob-
lems, each with distinguishing characteristics posing different difficulties to the
optimization algorithm, were selected. The problems selected are benchmark
when comparing different optimization algorithms and are taken from prior stud-
ies [1]. This set of optimization problems, in their original from, are crafted to
have the optima at or near the center of search space.

Some population-based optimization techniques suffer from a notable search
bias. They tend to perform best when the optimum is located at or very near to

68 M. Davarynejad, Z. Forghany, and J. van den Berg

Table 1. Test problems. Adopted from [1]

Function Search Space-1 (SS-1) Search Space-2 (SS-2)

Sphere (F1) [-80,100]D [-20,100]D

Rosenbrock (F2) [-480,600]D [-120, 600] D

Rastrigin (F3) [-40, 50]D [-10,50]D

Griewank (F4) [-4.0,5.0] D [-1.0,5.0] D

the center of the search space. When developing a new optimization algorithm
this makes the comparison unreliable. So in this study, to move the optimal
solutions from the center, the search space is cut out from one side, 10% of the
whole search space in the case of search space-1 (SS-1) and 40% in the case of
search space-2 (SS-2). The test beds and their associated search spaces are listed
in Table 1.

Table 2 compares the GSA and mass-dispersed GSA (mdGSA) algorithms on
the set of four adopted mathematical benchmark problems under two different
search space and when the dimension D is set at 50. Against all expectations,
the performance of the GSA is found to deteriorate as a result of shrinking the
search space. That may be explained by search bias. As result of shrinking the
search space, the optimal solution moves from the center of the search space.
When an algorithm has a center-seeking bias, this move of the location of the
optimal solution deteriorates its performance.

In GSA, a change in number of particles changes the mass assigned to them
as a result of increase in the denumerator of Equation (4). This increase in de-
numerator smoothes out the difference between the mass of particles, making
them relatively equally the same in exerting attractive force and equally resis-
tant to change in their position as a result of applied gravitational force. The
swarm may be considered as one object with uniform mass distribution. Under
the Newtonian gravitational force this brings the particles closer to the center
resulting in an increase in density of swarm. As a result, they accelerate faster
towards the center. This may explain the observed center-seeking behavior of
standard GSA on a set of standard optimization problems.

To measure center-seeking bias (CSB) of an algorithm, one needs a benchmark
and a criteria. A benchmark is when the search space is shrunk by SL% of the
original search space, and the criteria is deterioration of the fitness value when
the search space is shrunk by SU%. Considering the case of GSA on F4 test
function as an example, a measure for CSB is CSBSL,SU (GSA,F4) = (411.27−
7.42)/(SU − SL) = 13.46, when the SL and SU are set at 10 and 40 receptively.
A preferred algorithm is one with smallest CSB, among other criterions.

The observed search bias of GSA was indeed a motivation to borrow the mass
assignment mechanism of the Simulated big bounce (SBB) algorithm [6] and
propose the mdGSA to partially resolve the search bias. In all the four test
beds, the CSB10,40 of mdGSA is lower than that of GSA (Table 2).

Mass-Dispersed GSA for GRN Model Parameter Identification 69

Table 2. Statistical results of 30 runs obtained by GSA and mdGSA. Mean: Mean of
the Best Values, StdDev: Standard Deviation of the Best Values, CSB40

10: center-seeking
bias when SL and SU are set at 10 and 40 respectively.

GSA mdGSA
Function

SS-1 SS-2
CSB10,40

SS-1 SS-2
CSB10,40

Mean 4.41E-17 4.23E-17 5.35E-11 5.37E-11
Sphere

StdDev (1.21E-17) (9.59E-18)
∼ 0

(4.70E-12) (3.85E-12)
∼ 0

Mean 27.79 110.83 36.31 100.62
Rastrigin

StdDev (5.43) (12.57)
2.76

(7.68) (11.23)
2.14

Mean 70.53 208.69 44.45 76.18
Rosenbrock

StdDev (39.39) (134.71)
4.60

(0.257) (66.65)
1.06

Mean 7.42 411.27 8.21E-4 1.31E-3
Griewank

StdDev (2.28) (17.81)
13.46

(3.13E-3) 4.25E-3
1.63E-5

4.3 GRN Model Parameter Identification

To assess the performance of the methodologies studied here, two gene regulatory
networks, NET1 and NET2, each consist of a network of two genes generated
by the parameters given in Table 3 were adopted.

The gene expression levels of the networks are plotted in Figure 1 each consist
of 50 time course of expression level per gene. The search space for αi and βi is
limited to [20, 0.0] and for gij and hij to [−4.0, 4.0].

The fitness transitions for different methodologies for NET1 and NET2 are
plotted in a logarithmic scale in Figure 2. The Figures are average of 30 inde-
pendent runs. In both NET1 and NET2, both the GSA and mdGSA start with
a sharp fitness decrease in the beginning. GSA becomes almost stagnate after a
short number of fitness evaluation. The mdGSA in both cases had much better
progression compared to the GSA.

Preliminary analysis showed that neither the GSA nor the mdGSA pro-
duced normally distributed results under all settings. Consequently the GSA
and mdGSA was compared using the nonparametric Wilcoxon Rank Sum test
to determine which one finds the lowest fitness values. The test, in contrast to
t-test is solely based on the order in which the observations from the two samples

Table 3. S-System Parameters for Network Model NET1 and NET2 adopted for model
validation [22]

GRN i αi βi gi1 gi2 hi1 gi2

1 3 3 0 2.5 -1 0
NET1

2 3 3 -2.5 0 0 2

1 3 3 0 -2.5 .1 0
NET2

2 3 3 2.5 0 0 .1

70 M. Davarynejad, Z. Forghany, and J. van den Berg

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
on

ce
nt

ra
tio

n

Time

Gene 1
Gene 2

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
on

ce
nt

ra
tio

n

Time

Gene 1
Gene 2

Fig. 1. Target time dynamics of first and second gene networks, NET1 and NET2

0 500 1000 1500 2000 2500 3000 3500 4000
10

0

10
1

Number of iteration

F
itn

es
s

(a)

GSA
mdGSA

0 500 1000 1500 2000 2500 3000 3500 4000
10

0

10
1

Number of iteration

F
itn

es
s

(b)

GSA
mdGSA

Fig. 2. Performance comparison of the GSA and mdGSA. (a) on NET1, (b) on NET2.

Table 4. A Wilcoxon Rank Sum test of the fitness of last generation for NET1 and
NET2 (30 runs) obtained by GSA and mdGSA. Mean: Mean of the Best Values, Std-
Dev: Standard Deviation of the Best Values.

Simulation results
GRN Mean StdDev p-Value

GSA 3.60 0.37 2.14E-5
NET1

mdGSA 2.39 1.30 -

GSA 4.32 1.61 3.32E-6
NET2

mdGSA 2.43 0.87 -

Mass-Dispersed GSA for GRN Model Parameter Identification 71

fall. As presented in Table 4, the results of the proposed mdGSA are better than
that of GSA when the standard cut-off for considering a p-value for a statistically
significant difference is set at p < 0.05.

5 Conclusions and Future Work

In this paper, the GSA and its variant proposed in this paper, mdGSA, are
employed for estimating genetic networks using S-system formalism. The perfor-
mance of the mdGSA method, which enhances the global searching capability
of GSA and alleviates its center-seeking bias, was verified using four standard
benchmark problems and two networks. The experiments showed that the pro-
posed method is capable to identify model parameters.

The center-seeking bias is a serious barrier to any optimization algorithm when
recognizing the fact that no real-world optimization problem has its optimal
solution at exact center of the search space. As part of our future work, we are
interested in in-depth understanding the observed CS bias of the GSA.

Finally, we wish to apply the GSA and its variants algorithms to actual bio-
logical gene network and to conduct a comprehensive comparison against other
popular population-based optimization algorithms.

References

1. Angeline, P.J.: Using selection to improve particle swarm optimization. In: Inter-
national Conference on Evolutionary Computation, pp. 84–89 (1998)

2. Chatterjee, A., Mahanti, G.K., Pathak, N.N.: Comparative performance of gravi-
tational search algorithm and modified particle swarm optimization algorithm for
synthesis of thinned scanned concentric ring array antenna. Progress In Electro-
magnetics Research B 25, 331–348 (2010)

3. Chowdhury, A.R., Chetty, M.: An improved method to infer gene regulatory net-
work using s-system. In: Congress of Evolutionary Computation (CEC 2011), pp.
1012–1019 (2011)

4. Crombach, A., Hogeweg, P.: Evolution of evolvability in gene regulatory networks.
PLoS Computational Biology 4(7), e1000112 (2008)

5. Davarynejad, M., Ahn, C.W., Vrancken, J.L.M., van den Berg, J., Coello Coello,
C.A.: Evolutionary hidden information detection by granulation-based fitness ap-
proximation. Applied Soft Computing 10(3), 719–729 (2010)

6. Davarynejad, M., van den Berg, J.: Simulated big bounce: a continuous space global
optimizer. Technical report, Faculty of technology policy and management, Delft
University of Technology, The Netherlands (2012)

7. Davarynejad, M., Vrancken, J., van den Berg, J., Coello Coello, C.A.: A Fitness
Granulation Approach for Large-Scale Structural Design Optimization. In: Chiong,
R., Weise, T., Michalewicz, Z. (eds.) Variants of Evolutionary Algorithms for Real-
World Applications, vol. 87, pp. 245–280. Springer, Heidelberg (2012)

8. Duman, S., Güvenç, U., Sönmez, Y., Yörükeren, N.: Optimal power flow using grav-
itational search algorithm. Energy Conversion and Management 59, 86–95 (2012)

9. Duman, S., Güvenç, U., Yörükeren, N.: Gravitational search algorithm for eco-
nomic dispatch with valve-point effects. International Review of Electrical Engi-
neering (IREE) 5(6), 2890–2895 (2010)

72 M. Davarynejad, Z. Forghany, and J. van den Berg

10. Forghany, Z., Davarynejad, M., Snaar-Jagalska, B.E.: Gene regulatory network
model identification using artificial bee colony and swarm intelligence. In: IEEE
Conference on Evolutionary Computation (CEC 2012), pp. 949–954 (2012)

11. Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., Tomita, M.: Dynamic model-
ing of genetic networks using genetic algorithm and s-system. Bioinformatics 19(5),
643–650 (2003)

12. Li, C., Zhou, J.: Parameters identification of hydraulic turbine governing system
using improved gravitational search algorithm. Energy Conversion and Manage-
ment 52(1), 374–381 (2011)

13. Li, C., Zhou, J., Xiao, J., Xiao, H.: Parameters identification of chaotic system by
chaotic gravitational search algorithm. Chaos, Solitons & Fractals 45(4), 539–547
(2012)

14. Lopez-Molina, C., Bustince, H., Fernandez, J., Couto, P., De Baets, B.: A gravi-
tational approach to edge detection based on triangular norms. Pattern Recogni-
tion 43(11), 3730–3741 (2010)

15. Nakayama, T., Seno, S., Takenaka, Y., Matsuda, H.: Inference of s-system models
of gene regulatory networks using immune algorithm. Journal of Bioinformatics
and Computational Biology 9, 75–86 (2011)

16. Noman, N., Iba, H.: Inference of gene regulatory networks using s-system and dif-
ferential evolution. In: Genetic and Evolutionary Computation Conference, Wash-
ington, DC, pp. 439–446 (2005)

17. Precup, R.-E., David, R.-C., Petriu, E.M., Preitl, S., Paul, A.S.: Gravitational
Search Algorithm-Based Tuning of Fuzzy Control Systems with a Reduced Para-
metric Sensitivity. In: Gaspar-Cunha, A., Takahashi, R., Schaefer, G., Costa, L.
(eds.) Soft Computing in Industrial Applications. AISC, vol. 96, pp. 141–150.
Springer, Heidelberg (2011)

18. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: Gsa: a gravitational search algo-
rithm. Information Sciences 179(13), 2232–2248 (2009)

19. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: Filter modeling using gravitational
search algorithm. Engineering Applications of Artificial Intelligence 24(1), 117–122
(2011)

20. Shaw, B., Mukherjee, V., Ghoshal, S.P.: A novel opposition-based gravitational
search algorithm for combined economic and emission dispatch problems of power
systems. International Journal of Electrical Power & Energy Systems 35(1), 21–33
(2012)

21. Sun, J., Garibaldi, J.M., Hodgman, C.: Parameter estimation using metaheuristics
in systems biology: A comprehensive review. IEEE/ACM Transactions on Compu-
tational Biology and Bioinformatics 9(1), 185–202 (2012)

22. Tominaga, D., Okamoto, M., Maki, Y., Watanabe, S., Eguchi, Y.: Nonlinear nu-
merical optimization technique based on a genetic algorithm for inverse problems:
Towards the inference of genetic networks. In: German Conference on Bioinformat-
ics Computer Science and Biology, pp. 127–140 (1999)

23. Tsai, K.Y., Wang, F.S.: Evolutionary optimization with data collocation for reverse
engineering of biological networks. Bioinformatics 21(7), 1180 (2005)

24. Vilela, M., Chou, I.C., Vinga, S., Vasconcelos, A.T., Voit, E.O., Almeida, J.S.:
Parameter optimization in s-system models. BMC Systems Biology 16(2), 35 (2008)

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 73–82, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Density Based Approach to the Access Point Layout
Smart Distribution Grid Design Optimization Problem

Bin Zhang, Kamran Shafi, and Hussein A. Abbass

School of Engineering and Information Technology,
University of New South Wales,

Canberra, Australia
Bin.Zhang@student.adfa.edu.au, {k.shafi,h.abbass}@adfa.edu.au

Abstract. Advanced metering infrastructure (AMI) is an integral part of the
smart grid. It plays a significant role in control and management for utilities.
Along with its pervasiveness, effective AMI network design has drawn more at-
tention. To some extent, the reliability and robustness of the whole system is
partially pre-determined by the whole smart distribution network design. Loca-
tion arrangement for Access Points (APs) is an important aspect of the smart
distribution grid structure which influences the system performance greatly be-
cause an optimized network by itself is effective to reduce cost and deal with
emergencies or threats such as a breakdown hazard. This paper is dedicated to
employ multi-objective optimization formulations to analyze and solve this
network design problem in the smart distribution grid.

Keywords: Smart Grid, Neighborhood Area Network, Layout Optimization,
Multi-Objective Optimization, Genetic Algorithm.

1 Introduction

The utility industry is undergoing revolutionary changes towards the concept of
“smart grid” or “intelligent grid”. This next-generation electricity grid is required to
offer full visibility and pervasive control over its various assets and services [1]. In
order to achieve this, the information and communication technology is merged into
existing power system, which has already resulted in many innovations in the power
generation, transmission, sub-transmission and distribution systems.

For this monitoring and control purpose, current methods for sensing, metering,
and measurements at different levels of the power grid need to be upgraded [2]. In the
smart distribution grid design, the concept of advanced metering infrastructure (AMI)
has been investigated and various approaches have been proposed to support finer-
grained demand-side management. For example, ANSI C12.22 and associated stan-
dards in North America have enabled a new generation of smart meters which utilize
various wireless technologies for communication and networking. Typically, AMI is
supposed to provide such capabilities for the smart grid [3]:

74 B. Zhang, K. Shafi, and H.A. Abbass

• Two-way communication, which means both the utilities’ data collection process
from metering points and the reverse process for these smart metering points to
respond to the instructions from utilities in order to realize automatic service
connection.

• Real time monitoring, which requires fine-grained collection of meter data with
time stamping to support real time demand estimation and scheduling.

• Self-organization, which means that smart meters can be registered to the distribu-
tion network automatically.

• Self-healing, which means the distribution grid can reconfigure itself due to a fail-
ure in communications.

• Integration with utility billing system, outage management system and other
applications.

In this paper, we will investigate the concept of smart metering in smart power distri-
bution grid and the problem of distribution grid access point (AP) layout. The next
sections of this paper are organized as follows: Section 2 explains the smart metering
concept and analyzes the distribution network design. An optimization problem is
converged regarding to the multi-objective access point layout in section 3. The pre-
liminary experiment result is presented in section 4. Objective functions are revised in
section 5. This paper concludes in section 6.

2 Background

2.1 Smart Metering in Power Distribution

Meter Reading System (MRS) enables utilities to read the consumption records,
alarms and status from residential meters remotely. Traditionally, this task is taken
manually by technicians visiting customers’ premises. MRS evolves as various net-
work technologies [4, 5] develops to allow meter reading automation.

However, the next-generation smart distribution grid puts forward higher requirements
for meter reading. A smart grid will deploy and utilize advanced digital meters at all
customer service locations [6]. These meters provide two-way communication. On the
one hand, they record and measure waveforms, voltage, current, active power, reactive
power, and allow time-of-use and real-time rate scheme and management. On the other
hand, they also allow the utilities to take corrective actions like connecting or disconnect-
ing services remotely based on the information collected by these smart meters.

These smart meters are not used alone. They can be integrated with various sen-
sors, actuators and appliances within the customer’s premises to form a home area
network (HAN) using the low-power and advanced wireless network technologies
such as ZigBee (IEEE 802.15.4) [7]. Based on this, several adjacent HANs constitute
a neighborhood area network (NAN) sharing an access point of the distribution grid to
communicate with the utility’s operational center. An access point receives periodic
input from each NAN within its reception range in the neighborhood and then relays
or uploads the centralized information to the power utility using long-haul communi-
cation technologies such as Ethernet, GPRS/CDMA [8]. The access point is usually a

 Access Point Layout Smart Distribution Grid Design Optimization Problem 75

Micro Controller Unit (MCU) that provides a secure interface and conversion be-
tween two dissimilar network such as ZigBee and GPRS as well as data processing
and storage capabilities. There are already some commercial products available in the
market from manufacturers such as Freescale and Silver Spring Networks, under the
name like data concentrator/collector, grid router and so on. A typical route for a
smart meter to communicate with utility is shown in Figure 1.

Fig. 1. Smart Distribution Grid Communication

Although the access points are small components compared to the whole smart
grid, they are critical equipments and their performance affects the intelligence of the
grid significantly. If an access point of the distribution network was out of control, it
would result in a loss of reception of the whole neighborhood area network. Hence,
the reliability and robustness of access points and their layout are key factors for an
accurate information collection in distribution grid, which supports the correct and
efficient decision making of utilities. This puts forward several requests when we
deploy access points in the grid such as the need to reduce the number of AP devices
used while maintain redundancy at a reasonable level. These requests will be elabo-
rated when we formulate the objective functions in the proposed model.

2.2 Multi-Objective Optimization and NSGA-II

Optimization refers to the selection of a best element from some set of available can-
didate solutions. Optimization problems are common but of significant importance in
the Engineering world and in various real situations including the smart distribution
grid design that we are attempting to analyze. Although the existence of more
than one objective in an optimization problem adds complexity, multi-objective

76 B. Zhang, K. Shafi, and H.A. Abbass

optimization, which requires us to optimize simultaneously and systematically a col-
lection of objective functions under certain constraints [9], is nothing but practicality
because they are internal and natural demand of real problems. Further, in some cases,
we also have to face nonlinear problems with their special demands and peculiar dif-
ficulties because we are surrounded and deeply involved in a world with nonlinear
events [10].

Evolutionary computation, especially genetic algorithms is an optimization heuris-
tic [11]. Although it can’t promise perfection, evolution can always return more out-
standing solutions to particular problems by a process involving iterative generation
of solutions. It is quite natural, therefore, to apply evolutionary computation to solve
difficult multi-objective optimization problems. Especially when dealing with nonli-
near programming, classic methods like gradient descent, deterministic hill climbing,
and purely random search (with no heredity) becomes unsatisfactory.

Mathematically, a multi-objective problem gives rise to a set of Pareto-optimal solu-
tions [12]. Over the past few decades, in order to maintain a diverse set of solutions and
move towards the true Pareto optimal set in one single simulation run, traditional genet-
ic algorithms are customized to accommodate multi-objective problems [13] and a
number of multi-objective evolutionary algorithms have been proposed or improved
[14-17]. Among them, NSGA-II has become a popular approach. First, it has compara-
tively low computational complexity of non-dominated sorting which helps speed up
the running time of such evolutionary algorithm. Second, it incorporates elitism to get
better performance through keeping good solutions. Third, instead of assigning a shar-
ing parameter in its older version, it adopts crowding distance to preserve diversity.

Based on the above considerations, we employ NSGA-II to analyze this multi-
objective optimization problem. NSGA-II is able to find Pareto-optimum access point
layout topologies efficiently.

3 Methods

3.1 Problem Formulation and Simulation

Taking both convenience and generalizability into consideration, we assume that the
area to be optimized is normalized as a square of dimensionless size 1×1 in which a
large number of HANs exist. These HANs are required to communicate with the utili-
ty network through certain access points. The HAN distribution is like a dot matrix.
Since the distribution grid covers urban, suburban and rural areas, we assume whether
a HAN exist or not at a specific position is determined by a predefined global density
probability according to a uniform distribution.

There are n AP devices in the environment that are responsible for collecting re-
lated information within a specific distance which means that its control area is spher-
ical. Here, we assume that all AP devices are identical and their control radiuses vary
from 0.05 to 0.15 because sometimes repeaters will be introduced. We need to deter-
mine the location of AP devices to optimize a set of objectives for the whole distribu-
tion network. Let the number of AP devices n varies from 0 to 100. The decision
variables (DV) of this problem will be

 Access Point Layout Smart Distribution Grid Design Optimization Problem 77

],,,,...,,,,,...,,,,[1001001001001111 fryxfryxfryx iiii

in which ix and iy means the horizontal and vertical coordinates. ir stands for the
perception radius of AP devices. if is a binary flag indicating if this AP device is
used or not. So the number of access points in a solution is an integer in the interval
[0, 100].

As mentioned earlier, there are several objectives that require us to optimize when
we deploy access points in a smart distribution grid.

• From the perspective of the whole distribution grid, since its enormous size, the
number of access point devices required to cover the whole service area should
be minimized.

• From the perspective of HANs, first, the number of HANs without AP connec-
tion should be minimized. Second, we encourage more HANs to be in the recep-
tion ranges of at least two access points to create a certain level of redundancy.
The concept of redundancy is important for a robust distribution network design.
In the case that an access point device is not able to work properly, the area it
covered can be transferred or partly transferred to another access point(s).

Naturally, two objective functions extracted are as follows (both for minimization):

nf =1

T

C

T

C

N

N

N

N
f 10

2
>= −=

Here, n means the number of access points;

1>CN means the number of HANs covered by more than 1 AP;

0=CN means the number of HANs not covered by any AP;

TN means the total number of HANs.

3.2 Experimental Design

As mentioned earlier, we adopt NSGA-II to analyze this layout optimization problem.
The necessary parameter setting for NSGA-II is shown in Table 1.

Table 1. Information for NSGA-II

Chromosome Binary Coded
Population Size 100
Number of Generations 1000
Selection Method Tournament Selection
Crossover Method Uniform Crossover
Crossover Probability 0.8
Mutation Probability 0.01
Random Number Generation Knuth’s Random Number Generator [18]

78 B. Zhang, K. Shafi, and H.A. Abbass

4 Preliminary Experiment Result

NSGA-II came up with two different Pareto Fronts regarding two different HAN
density probabilities, 0.2 and 0.8, as shown in Figure 2. We changed the sign of the
second objective values in the figures for ease of visualization of the Pareto set.

Fig. 2. Pareto Fronts and Components

Possible best layouts suggested by the genetic algorithm are shown in Figure 3.
They are the trade-offs between the two objectives. The red stars are the location of
HANs determined by the density probability, and are fixed once generated.

Fig. 3. Layouts Based on Different Density Probabilities

From the Pareto Front and layout examples, we find that these two objectives
didn’t perform well regarding two aspects that require further improvement. At first,
reducing the rate of HANs without any AP connection should come first compared to
redundancy. Full coverage is preferred when we compare two layout solutions. This
means when we attempt to balance coverage and redundancy, if the number of APs is
possible, we should emphasize coverage rather than redundancy until the coverage
rate is reasonably high. Second, when evaluating the redundancy, we don’t expect the
coverage area of an AP is nested in a bigger one. That means the set of HANs covered
by one AP is a subset of HANs covered by another AP. These aspects propel us to
revise the objective functions to include and reflect such consideration.

 Access Point Layout Smart Distribution Grid Design Optimization Problem 79

5 Evolution of Objectives

5.1 Coverage First and Redundancy Reevaluation

As mentioned earlier, the coverage should have more weight than redundancy for the
evaluation of the second objective. And we should remove the exaggerated part from
previous redundancy evaluation. Hence, the new objectives are extracted as follows:

nf =1

)(20 10

3
T

N

T

C

T

C

N

N

N

N

N

N
f −−×= >=

NN means the number of HANs of those APs that are nested in other APs;

20 is the weight factor preceding the rate of uncovered HANs.
One issue here is why we don’t treat the full coverage as a constraint. In fact, we left

out the coverage component in the objective function deliberately. The algorithm can
come up with a dynamic balance between objective components. This helps to create a
certain level of flexibility and adaptation in the proposed solutions to the user. On one
hand, once we have enough devices, full coverage will always be the preference of evo-
lution because of penalty assigned to under coverage. On the other hand, even if the AP
devices are inadequate, the optimization will also deploy them in some areas where the
local house density is high and they are in urgent need. It is a point of practicality.

The experiment is carried out under the same evolutionary settings. Pareto Fronts
and layout examples of density probabilities 0.2 and 0.8 are shown in Figure 4, 5.

 Fig. 4. Pareto Fronts and Components (5000 Generations)

Fig. 5. Layouts Based on Different Density Probabilities

80 B. Zhang, K. Shafi, and H.A. Abbass

From the experiment’s results, we find that the rate of uncovered HANs reduces
faster than the first experiment and the redundancy becomes more accurate although it
is comparatively smaller. We also find that, however, these two objectives didn’t
reflect requirements from the perspectives of APs. When we deploy APs, it is not
economical to have AP covering low density of HANs. This raises the need to ensure
that the AP will cover as many HANs as possible and reduce the reception radius.
This also helps reduce the number of “empty” APs.

5.2 Add Density Evaluation from the Perspective of AP

Maximizing the HAN density in the perception range of each AP helps make our
solution more efficient. First, this requires full utilization of an AP’s covering ability.
Second, this helps in distributing the coverage load more evenly among APs. Third,
smaller reception radius implies low energy consumption for APs. The updated objec-
tive functions we designed are as follows:

nf =1

)(max

1

)(20

1

110
4

i

i

ni

n

i i

i

T

N

T

C

T

C

Area

AP
Area

AP

n

N

N

N

N

N

N
f

≤≤

=>=

−−−×=

iAP means the number of HANs covered by a particular AP;

iArea means the area of a particular AP;

Based on the same previous experimental design but with the new objective func-
tions, the Pareto Fronts and layout examples are shown in Figure 6, 7.

Fig. 6. Pareto Fronts and Components (10000 Generations)

From the result, we can see that the HAN density shows an overall descending trend
as the number of AP devices grows. This is reasonable when only one AP existed with
the maximum value of 1. The algorithm came up with maximum values of HAN density
over the process of evolution, not among solutions in the same population.

Probably, there are still objectives required to be taken into account when we at-
tempt to design a smart distribution grid. However, up to now, the objective functions
we devised are effective regarding our network design goals. Each AP has a fair pro-
portion of load based on the environment, the coverage is more promised and the
redundancy is satisfying. Of course, not all these objectives can be achieved, multi-
objective optimization is nothing but compromising.

 Access Point Layout Smart Distribution Grid Design Optimization Problem 81

Fig. 7. Layouts Based on Different Density Probabilities

6 Conclusion

Many research works have been done to handle the layout problem in network design.
Objective functions are required to be designed case by case. However, reviewing the
methodology used can be extraordinarily rewarding. Among the various methods
used, Genetic Algorithm is regarded as an effective tool helping to provide analysis
and solutions. At the same time, the evolution of objective functions in this paper also
reflects a cognitive process of how to deal with a comparatively complex engineering
problem. It shows potential application of computational intelligence for educational
purpose to educate and support engineers during the design process of the objective
functions.

For future work, one side is to keep analyzing the smart distribution grid design to
cover more issues in this area, such as cascading failure. On the other side, we will
explore the utilization of computational intelligence techniques as a decision making
mechanism for the purpose of educational and training system design.

References

1. Farhangi, H.: The path of the smart grid. IEEE Power and Energy Magazine 8(1), 18–28
(2010)

2. Momoh, J.: Smart Grid: Fundamentals of Design and Analysis. John Wiley & Sons (2012)
3. Hart, D.G.: Using AMI to realize the Smart Grid. In: IEEE Power and Energy Society

General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century
(2008)

4. Oksa, P., et al.: Considerations of Using Power Line Communication in the AMR System.
In: 2006 IEEE International Symposium on Power Line Communications and Its Applica-
tions (2006)

5. Chih-Hung, W., Shun-Chien, C., Yu-Wei, H.: Design of a wireless ARM-based automatic
meter reading and control system. In: IEEE Power Engineering Society General Meeting
(2004)

82 B. Zhang, K. Shafi, and H.A. Abbass

6. Brown, R.E.: Impact of Smart Grid on distribution system design. In: IEEE Power and
Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the
21st Century (2008)

7. Bennett, C., Highfill, D.: Networking AMI Smart Meters. In: IEEE Energy 2030 Confe-
rence (2008)

8. McDaniel, P., McLaughlin, S.: Security and Privacy Challenges in the Smart Grid. IEEE
Security & Privacy 7(3), 75–77 (2009)

9. Marler, R.T., Arora, J.S.: Survey of multi-objective optimization methods for engineering.
Structural and Multidisciplinary Optimization 26(6), 369–395 (2004)

10. Saaty, T.L., Bram, J.: Nonlinear mathematics. Dover (1964)
11. Mayr, E.: Toward a new philosophy of biology: observations of an evolutionist. Belknap

Press of Harvard University Press (1988)
12. Deb, K., et al.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE

Transactions on Evolutionary Computation 6(2), 182–197 (2002)
13. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algo-

rithms: A tutorial. Reliability Engineering & System Safety 91(9), 992–1007 (2002)
14. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms, vol. 518. John Wi-

ley & Sons, Inc. (2001)
15. Fonseca, C.M., Fleming, P.H.: Genetic Algorithms for multiobjective optimization: For-

mulation, Discussion and Generalization. In: The Fifth International Conference on Genet-
ic Algorithms, San Mateo, CA (1993)

16. Srinivas, N., Deb, K.: Multiobjective function Optimization using nondominated sorting
genetic algorithms. IEEE Transactions on Evolutionary Computation 2(3), 221–248 (1995)

17. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A
Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.)
PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

18. Knuth, D.E.: Art of Computer Programming, 3rd edn. Seminumerical Algorithms. Addi-
son-Wesley Professional (1997)

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 83–92, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Multi-modal Valley-Adaptive Memetic Algorithm
for Efficient Discovery of First-Order Saddle Points

Mostafa Ellabaan, Xianshun Chen, and Nguyen Quang Huy

Center of Computational Intelligence,
School of Computer Engineering,

Nanyang Technological University
{Mostafa.mhashim,seineriver}@gmail.com,

XSCHEN@ntu.edu.sg

Abstract. First-order saddle point represents an important landmark on the
problem landscape. This point lies along the minimum energy path connecting
two minima, more specifically at the point with maximum energy on the path.
Unlike minima or maxima, to identify first-order saddle points require both
maximization and minimization tasks. Finding such points is extremely diffi-
cult. In this paper, we present a real-coded memetic algorithm for locating
first-order saddle points. The proposed algorithm leverage the advantage of val-
ley-adaptive clearing scheme in maintaining multiple solutions and Schlegel al-
gorithm in achieving fast and precise convergence. Empirical results shown that
the proposed algorithms achieve more than 90% with converge speed of more
than 100 fold when comparing to its evolutionary compeers.

Keywords: Multi-Modal optimization, memetic algorithm, Saddle points.

1 Introduction

First-order saddle points represent important landmarks in the problem landscape,
with many applications in science and engineering. In engineering, saddle points have
several applications, including the identification of x-junction in the images captured
by robotic visual sensors and the construction of roadmaps in visual models to esti-
mate human pose captured from monocular images [1]. In science, saddle points or
transition structures play a key role in the chemical reaction rate theory [2, 3], espe-
cially for estimating the reaction rate of chemical reactions and processes. Due to
their fleeting nature, transition structures are almost impossible to be isolated experi-
mentally. Therefore, search for such structures computationally is unavoidable and
remains a great challenge [4].

To identify first-order saddle points, a plethora of optimization methods have been
proposed in the last decades. They can be classified as conventional and stochastic
methods [4]. Conventional methods, on one hand, make use of domain specification
information such gradient and/or hessian in the search process [5-10]. However, like
most conventional numerical methods, it requires good initial guesses to locate the
first-order saddle points. Due to the use of prior information, conventional methods

84 M. Ellabaan, X. Chen, and Q.H. Nguyen

are well-established to converge efficiently to a first-order saddle points, given an
appropriate initial guess.

In stochastic search methods, on the other hand, a population of individuals is
usually used to explore the search space [11]. To date, few stochastic methods have
been proposed for locating of transition states, making it a fertile area for further re-
search investigations. Examples methods include Chaudhury simulated annealing
method [12] and Bungay et al. [11] as well as Chaudhury et al. GA [13]. Most sto-
chastic methods proposed for finding transition states are plagued with many prob-
lems, including the lack of sufficient precision, slow convergence speed, as well as,
the inability to maintain multiple saddle points in the search.

In this paper, we extend the effort proposed earlier by the authors in [4] to identify
multiple saddle points both efficiently and precisely, utilizing the recent advances in
computational intelligence, the memetic computing paradigm [14-17]. The proposed
algorithm tidily integrates the valley-adaptive clearing scheme with an efficient local
searcher, the Schlegel method. The proposed methodology has been compared to our
earlier work and the state-of-the-art methods, showing advantage performance in terms
of precision, number of uncovered saddle points as well as the convergence speed.

The paper is organized as follows: Section 2 provides a brief definition of the non-
linear programming problem of first-order saddle points. The proposed method is
presented in section 3 while Section 4 presents benchmark problems. Section 5 re-
ports the results obtained from our computational study. Brief conclusion and future
work are then stated in Section 6.

2 Problem Statement

A first-order saddle point is defined as a stationary point with a vanished gradient and
only one negative eigenvalue in the hessian matrix [5]. These points can be mathe-
matically expressed as:

T | б б 0 & γ , 0 & (1)

where , is the dimensional size, , T is the set that includes all
possible first-order saddle points which lies below a fitness threshold- , and γ , is
the only negative eigenvalue of the hessian matrix , respectively. ‘&’ denotes a
logical AND operator.

3 Multi-modal Valley-Adaptive Clearing Memetic Algorithm

In this section, a real-coded multi-modal valley-adaptive clearing memetic algorithm
for locating first-order saddle points (see Fig. 1) is introduced. In this algorithm, a
population of individuals is first randomly generated. Once population individuals are
initialized, they undergo the evolutionary process. To comply with the principle of the
natural selection in the evolutionary theory, the population individuals are evaluated
to define their fitness on solving the problem, using (Eq. 2).

 Multi-modal Valley-Adaptive Memetic Algorithm 85

|g| 1 (2)

where denotes the energy threshold below which the saddle point of interest
lies. donates the energy at current configuration , | | is the gradient norm at

, n is the number of negative eigenvalues, is chosen small to prevent division by
zero error. First-order saddle points lie at the optima of the fitness function
where the gradient norm vanishes and = 1.

Fig. 1. A memetic algorithm for locating first-order saddle points

Individuals are subsequently selected to undergo the evolutionary process of cros-
sover and mutation. Individual then undergo the valley-adaptive clearing where indi-
viduals are segregated into valley groups shall they share a common valley. A valley
group then undergoes a valley replacement phase if it has a member satisfying first-
order saddle point criteria in Eqn. (1). In such a case, the individuals are replaced into
different basins of attraction in the effort toward discovery of new first-order saddle
points. Otherwise, the valley group undergoes a valley clearing phase, where the best
members (valley elites) are allowed to survive while others are relocated in order to
explore the nearby first-order saddle points in the search space. Valley elites are thus
allowed to undergo a life-time procedure. In this study, we consider Schlegel method
as a life-time procedure for finding first-order saddle points. The same process repeats
until a maximum number of generations or other stopping criteria have been satisfied.

86 M. Ellabaan, X. Chen, and Q.H. Nguyen

4 Benchmark Problems

To visualize the first-order saddle points and test the performance of the proposed
algorithm, four commonly used benchmark problems (see Fig. 2) are considered here.
These problems are scalable, giving the flexibility to increase or decrease the domain
ranges and the number of decision variables of interest. Their landscapes, also, con-
tain a significant number of critical points including maxima, minima and saddle
points. These test problems are detailed in what follows:

Problem 1: Sines function
Sines function defined in (Eq. 3) has a multi-modal landscape with approximately 84
first-order saddle points1 within the range of [-10, 10]. , 1 sin sin 0.1e (3)

where , 10, 10

Problem 2: Multi-function
Multi-function defined in (Eq. 4) represents a challenging 2D test function for saddle
point algorithms. Its fitness landscape involves 144 saddle points within [-2, 2]. f , 1 sin 4π y sin 4 π π (4)

where , 2, 2

Problem 3: Rastrigin function
Rastrigin function defined in (Eq. 5) represents another problem with a highly multi-
modal landscape. Its landscape contains one global optima lying at (0, 0) and 223
first-order saddle points within [-5, 5].

10 10 2 (5)

where 5, 5

Problem 4: Schwefel Function
Schwefel function defined in (Eq. 6) denotes one of the other widely used test func-
tion in global optimization. It is composed of a large number of valleys and peaks.
The distances between the global and local optima are also significant large, causing
many search algorithms to be trapped at local optima. The 2D landscape in the range
specified in (Eq. 6) contains about 66 first-order saddle point.

sin | | (6)

where 350,350

1 The number of 1st

 order saddle points is approximated by means of visualization.

 Multi-modal Valley-Adaptive Memetic Algorithm 87

Fig. 2. 2D landscapes with some first-order saddle points highlighted by white dots

5 Experimental Study

In this section, we study the efficacy of the proposed memetic algorithm (MMA) for
locating first-order saddle points and pit it against several existing state-of-the-art
first-order saddle point optimization methods, including the stochastic multi-start
local search(SMLS) [18] as representative of single-ended methods, while Chaudhury
GA (ChGA) [13] and Bungay GA (BGA) [11] as representatives of the genetic algo-
rithm. The sequential niching memetic algorithm (SNMA) [19] , AVAC [4, 20] and
Mahalanobis with self-adaptive-niche radius CMA-ES (M-S-CMA-ES)[21], as repre-
sentatives of recent advances in niching and memetic algorithms , are also considered
for comparison in the present study. Brief descriptions of the algorithms considered
are given in Table 1.

All methods work as baselines for comparison on the first-order saddle points op-
timization problem on a set benchmark problems in section 4, using a comprehensive
set of performance measures that are described in Table 2. The experimental settings
and numerical results obtained are reported. In particular, the algorithmic parameter
settings used in the present study are listed in Table 3. Algorithms with local searcher
or life time learning procedures are allowed to run with population size of 100 for a
maximum of 1000 generations while all algorithms are allowed to run for a maximum
of 106 gradient evaluations.

88 M. Ellabaan, X. Chen, and Q.H. Nguyen

Table 1. Descriptions of the state-of-the-art algorithms considered

Category Algorithm Description
Single Ended
Methods

Stochastic Multi-start Local
Search (SMLS)

A typical stochastic multi-start solver with the
Schlegel algorithm considered for locating
first-order saddle points.

Genetic
Algorithm

Bungay Genetic Algorithm
(BGA [11])

A binary-coded GA proposed by Bungay to
find the transition states of some chemical
reactions such as HNC isomerization.

Chaudhurry Genetic Algorithm
(ChGA [13])

A real-coded genetic algorithm proposed to
find the transition states on Lennard Jones
clusters.

Recent
Advances in
Niching
and/or
Memetic
Algorithms

Sequential Niching Memetic
Algorithm (SNMA) [18]

An advanced niching technique that extends
the effort of Beasley et al. [19] on sequential
niching technique to locate multiple optimal
using a local search to improve solution
precision. SNMA incorporates a gradient-
based local search process, a derating function
and the basic clearing technique.

M-S-CMA-ES, Mahalanobis
Self-adaptive niche radii CMA-
ES [21]

An advanced niching method which extend
CMA-ES with adaptive niche radius strategy
coupled with Mahalanobis distance for solving
complex, non-isotropic high-dimensionality
multi-modal optimization problems.

Table 2. Descriptions of the performance measures considered

Performance Measure Description
Percentage of uncovered first-
order saddle points

The ratio of the uncovered first-order saddle points and number
of first-order saddle points that the problem possesses.

Precision of first-order saddle
points

Precision of first-order saddle points in computing in term of
tenth logarithmic of gradient norm (log10(||g||)

Convergence Speed The number of gradient evaluation incurred to attain the first
encountered solution or first-order saddle point

Table 3. Algorithmic parameters settings

This section is organized in the following manner. Section 5.1 represent results on
the percentages and precision accuracy of uncovered first-order saddle points
while Section 5.2 detail the convergence speed of different algorithms on different
landscapes.

5.1 Percentages and Precision Accuracy of Uncovered First-Order Saddle
Points

The percentage of uncovered first-order saddle points is considered as a crucial per-
formance measure for studying the efficacy of any optimization algorithms. Here,
several algorithms are investigated in the experimental study on discovery of multiple
first-order saddle points where a maximum computational budget of million gradient

 Multi-modal Valley-Adaptive Memetic Algorithm 89

calls is considered. During the search, all discovered first-order saddle points are arc-
hived. The experimental results are summarized in Fig. 3. As observed from the fig-
ure, the traditional stochastic multi-start local search locates higher percentages of
first-order saddle points than traditional genetic algorithms of BGA and CGA- The
percentages roughly maintained for accuracy up to -10. Multi-modal evolutionary
algorithms attain several folds more than the stochastic multi-local search. However,
one with increasing accuracies, the number of saddle points significantly decreases to
approach zero which sometimes exponentially, as the accuracies go below -5. On
contrary, the multi-modal memetic algorithms attain the highest percentage of the
uncovered first-order saddle points which is maintained across higher accuracies as
witnessed from the standard deviation of the first-order saddle points uncovered under
different accuracies and landscapes on Table 4. MMA was observed to maintain the
largest percentage of uncovered saddle points with more than 90% across different
landscapes.

Table 4. Standard deviation of uncovered first-order saddle points using different algorithms
with varying gradient precision accuracy, on all benchmark test problems

SMLS BGA CGA M-S-CMA-ES AVAC SNMA MMA
Sine function 0 3.12 1.43 13.6 44.611 2.59 1.96
Multi-function 1.198 3.25 1.436 22.9 44.611 2.45 0.506
Rastrigin Function 1.187 3.25 1.436 9.66 42.6 0.5 1.96
Schwefel function 0.72 3.25 1.43 17.03 44.61 0.51 1.96
Average 0.77625 3.2175 1.433 15.7975 44.108 1.5125 1.5965

5.2 Convergence Speed

Convergence speed is another important performance measure that shows how fast a
given method can converge to a solution. The number of gradient calls is considered
as the convergence speed indicator. The fewer the number of the gradient calls, the
more efficient is the algorithm.

Here, the number of gradient call is reported as the computational budget incurred
by the method upon uncovering a single first-order saddle point with the gradient
precision accuracy threshold of 10-1. Experimental results tabulated in Table 5 show
that canonical GA always outperform the recent multi-modal niching EA in the con-
vergence speed. Imbalance between search space exploration and exploitation de-
creases the efficiency of the recent multi-modal niching EA of converging as fast as
canonical EA. Such imbalance has been resolved in the multi-modal memetic evolu-
tionary algorithm such SNMA and MMA. Among multi-modal memetic algorithm,
the proposed MMA attains more than 10 folds convergence speed when compared to
its multi-modal memetic compeer, the SNMA. The number of folds increases even
more when compared to others methodologies. For example, the improvement rate,
when compared to AVAC arrives, on the multi-function landscape, to 100 times.
Clearly, the multi-modal memetic algorithm proposed incurred significantly small
number of gradient calls as compared to conventional stochastic search method-the
SMLS, the canonical GA and the recent advances in multimodal niching and memetic
algorithms for the gradient precision criterion considered.

90 M. Ellabaan, X. Chen, and Q.H. Nguyen

Fig. 3. Percentages of uncovered first-order saddle points using different algorithms with vary-
ing gradient precisions, on all benchmark test problems

Table 5. Number of gradient calls incurred by the algorithms considered on different
landscapes

 Sines Function Multi-Function
Rastrigin Func-
tion

Schwefel Func-
tion

SMLS SMLS -Schlegel 1,187 1,313 1,207 1,086

Canonical
EA

BGA 3,758 2,750 3,294 4,532
CGA 4,246 3,147 3,972 5, 241

Recent Multi-Modal
Niching EA

M-S-CMA-ES 7,598 5,479 6,654 15,470
AVAC 4,598 4,010 4,427 6,470

Multi-Modal Memetic
EA

SNMA 950 780 1,265 1,725
MMA 70 90 60 250

 Multi-modal Valley-Adaptive Memetic Algorithm 91

6 Conclusion

In this paper, a novel multi-modal memetic algorithm for finding first-order saddle
points has been proposed. Some important aspects for implementing the algorithm
were discussed. Unlike canonical EAs that merely consider stochastic search opera-
tors, memetic algorithms consider, in addition to the stochastic search operators, an
individual learning stage that refines the prospective solutions. In the proposed
algorithm, we considered, in addition to the Schlegel algorithm – the local search
algorithm, valley-adaptive clearing scheme to maintain multiple first-order saddle
points. Experimental studies on benchmark problems show the efficacy of the pro-
posed method in terms of solution quality and convergence speed as compared to
other counterparts. The multi-modal valley-adaptive clearing memetic algorithm
maintains more than 90% of saddle points in several synthetic landscapes with gra-
dient precision lower than 10-10.

The proposed framework has been applied for several biochemical systems [22]
such as water clusters [23] and small molecules [24]. Next, we are planning to extend
the proposed algorithm to locate first-order saddle points in complex biochemical
systems, considering domain knowledge, incorporation of machine learning, symbi-
osis of local searcher [25], multi-scale search strategies [26] and advanced high per-
formance computing paradigms.

References

[1] Lim, K.K., Ong, Y.S., Lim, M.H., Chen, X., Agarwal, A.: Hybrid ant colony algorithms
for path planning in sparse graphs. Soft Computing-A Fusion of Foundations, Methodolo-
gies and Applications 12(10), 981–994 (2008)

[2] Toda, M.: Transition State Theory Revisited. Wiley-Interscience, City (2002)
[3] Jones, D., Sleeman, B.: Differential equations and mathematical biology. CRC Press

(2003)
[4] Ellabaan, M.M.H., Ong, Y.S., Lim, M.H., Kuo, J.-L.: Finding Multiple First Order Saddle

Points Using a Valley Adaptive Clearing Genetic Algorithm. In: Proceedings of the IEEE
International Symposium on Computational Intelligence in Robotics and Automation
(CIRA 2009), Daejeon, Korea (2009)

[5] Trygubenko, S., Wales, D.: A Doubly Nudged Elastic Band Method for Finding Transi-
tion States. Chem. Phy. 120(5), 2082–2094 (2004)

[6] Reddy, C.K., Chiang, H.D.: Stability boundary based method for finding saddle points on
potential energy surfaces. J. Comput. Biol. 13(3), 745–766 (2006)

[7] Goodrow, A., Bell, A.T., Head-Gordon, M.: Transition state-finding strategies for use
with the growing string method. Journal of Chemical Physics 130, 24 (2009)

[8] del Campo, J.M., Koster, A.M.: A hierarchical transition state search algorithm. Journal of
Chemical Physics 129(2), 12 (2008)

[9] Henkelman, G., Jonsson, H.: A dimer method for finding saddle points on high dimen-
sional potential surfaces using only first derivatives. Chem. Phy. 15(111), 7010–7022
(1999)

92 M. Ellabaan, X. Chen, and Q.H. Nguyen

[10] Olsen, R.A., Kroes, G.J., Henkelman, G., Arnaldsson, A., Jonsson, H.: Comparison of
methods for finding saddle points without knowledge of the final states. Journal of Chem-
ical Physics 121(20), 9776–9792 (2004)

[11] Bungay, S.D., Poirier, R.A., Charron, R.J.: Optimization of transition state structures us-
ing genetic algorithms. J. Math. Chem. 28(4), 389–401 (2000)

[12] Chaudhury, P., Bhattacharyya, S.P.: A simulated annealing based technique for locating
first-order saddle points on multidimensional surfaces and constructing reaction paths:
several model studies. Theochem-J. Mol. Struct. 429, 175–186 (1998)

[13] Chaudhury, P., Bhattacharyya, S.P., Quapp, W.: A genetic algorithm based technique for
locating first-order saddle point using a gradient dominated recipe. Chem. Phys. 253(2-3),
295–303 (2000)

[14] Nguyen, Q.H., Ong, Y.S., Lim, M.H.: A Probabilistic Memetic Framework. IEEE Trans-
actions on Evolutionary Computation 13(3), 604–623 (2009)

[15] Chen, X., Ong, Y.S., Lim, M.-H., Tan, K.C.: A Multi-Facet Survey on Memetic Compu-
tation. IEEE Transactions on Evolutionary Computation 15(5), 591–607 (2011)

[16] Ong, Y.S., Lim, M., Chen, X.: Memetic Computation:Past, Present & Future Research
Frontier. IEEE Computational Intelligence Magazine 5(2), 24–31 (2010)

[17] Lim, M.-H., Gustafson, S., Krasnogor, N., Ong, Y.-S.: Editorial to the first issue. Memetic
Computing 1(1), 1–2 (2009)

[18] Kok, S., Sandrock, C.: Locating and Characterizing the Stationary Points of the Extended
Rosenbrock Function. Evolutionary Computation 17(3), 437–453 (2009)

[19] Vitela, J.E., Castaños, O.: A real-coded niching memetic algorithm for continuous multi-
modal function optimization. In: IEEE Congress on Evolutionary Computation (2008)

[20] Ellabaan, M.M.H., Ong, Y.S.: Valley-Adaptive Clearing Scheme for Multimodal Optimi-
zation Evolutionary Search. In: The 9th International Conference on Intelligent Systems
Design and Applications (ISDA 2009), Pisa, Italy (2009)

[21] Shir, O.M., Emmerich, M., Bäck, T.: Adaptive niche radii and niche shapes approaches
for niching with the CMA-ES. Evolutionary Computation 18(1), 97–126 (2010)

[22] Ellabaan, M.M.H., Ong, Y.S.: Experiences on memetic computation for locating transi-
tion states in biochemical applications. In: Proceedings of the GECCO, Philadelphia,
Pennsylvania, USA (2012)

[23] Ellabaan, M., Ong, Y.S., Nguyen, Q.C., Kuo, J.-L.: Evolutionary Discovery of Transition
States in Water Clusters. Journal of Theoretical and Computational Chemistry 11(5)
(2012)

[24] Ellabaan, M.M., Handoko, S.D., Ong, Y.S., Kwoh, C.K., Bahnassy, S.A., Elassawy,
F.M., Man, H.Y.: A tree-structured covalent-bond-driven molecular memetic algorithm
for optimization of ring-deficient molecules. Computers & Amp; Mathematics with
Applications

[25] Le, M.N., Ong, Y.S., Jin, Y., Sendhoff, B.: A Unified Framework for Symbiosis of Evolu-
tionary Mechanisms with Application to Water Clusters Potential Model Design. IEEE
Computational Intelligence Magazine 7(1), 20–35 (2012)

[26] Nguyen, Q.C., Ong, Y.S., Soh, H., Kuo, J.-L.: Multiscale Approach to Explore the Poten-
tial Energy Surface of Water Clusters (H2O)n n ≤ 8. The Journal of Physical Chemistry
A 112(28), 6257–6261 (2008)

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 93–103, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Ensemble Fuzzy Rule-Based Classifier Design
by Parallel Distributed Fuzzy GBML Algorithms

Hisao Ishibuchi, Masakazu Yamane, and Yusuke Nojima

Department of Computer Science and Intelligent Systems, Graduate School of Engineering,
Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

{hisaoi,nojima}@cs.osakafu-u.ac.jp,
masakazu.yamane@ci.cs.osakafu-u.ac.jp

Abstract. We have already proposed an island model for parallel distributed
implementation of fuzzy genetics-based machine learning (GBML) algorithms.
As in many other island models, a population of individuals is divided into
multiple subpopulations. Each subpopulation is assigned to a different island.
The main characteristic feature of our model is that training patterns are also
divided into multiple training data subsets. Each subset is assigned to a different
island. The assigned subset is used to train the subpopulation in each island.
The assignment of the training data subsets is periodically rotated over the
islands (e.g., every 100 generations). A migration operation is also periodically
used. Our original intention in the use of such an island model was to decrease
the computation time of fuzzy GBML algorithms. In this paper, we propose an
idea of using our island model for ensemble classifier design. An ensemble
classifier is constructed by choosing the best classifier in each island. Since the
subpopulation at each island is evolved using a different training data subset, a
different classifier may be obtained from each island to construct an ensemble
classifier. This suggests a potential ability of our island model as an ensemble
classifier design tool. However, the diversity of the obtained classifiers from
multiple islands seems to be decreased by frequent training data subset rotation
and frequent migration. In this paper, we examine the effects of training data
subset rotation and migration on the performance of designed ensemble
classifiers through computational experiments.

Keywords: Genetics-based machine learning (GBML), genetic fuzzy systems,
fuzzy rule-based classifiers, parallel evolutionary algorithms, island model.

1 Introduction

Since the early 1990s [1]-[4], evolutionary algorithms have been frequently used for
fuzzy system design. Such a hybrid approach is referred to as a genetic fuzzy system
(GFS [5]-[8]). This is because genetic algorithms have been mainly used for fuzzy
system design. Multi-objective evolutionary algorithms have also been used for fuzzy
system design [9]-[12]. Such a multi-objective hybrid approach is often referred to as
a multi-objective genetic fuzzy system (MoGFS).

Applications of evolutionary algorithms to machine learning are called genetics-
based machine learning (GBML). Many GBML algorithms have been proposed for

94 H. Ishibuchi, M. Yamane, and Y. Nojima

rule-based classifier design [13]-[16]. Fuzzy GBML is GBML for fuzzy rule-based
classifier design [17]-[20], which can be viewed as a special class of GFS.

GBML algorithms are often categorized into three classes: Pittsburgh, Michigan
and iterative rule learning (IRL) approaches [16]. In Pittsburgh approach, an entire
rule-based classifier is coded as an individual. As a result, a population of individuals
is a set of rule-based classifiers. Since the fitness of each individual is directly related
to the performance of the corresponding rule-based classifier, Pittsburgh approach can
directly maximize the performance of rule-based classifiers through the search for
individuals with high fitness values. In Michigan approach, a single rule is coded as
an individual. A population of individuals is handled as a rule-based classifier. Thus
Michigan approach indirectly maximizes the performance of rule-based classifiers
through the search for good rules with high fitness values. In IRL approach, a single
rule is coded as an individual as in Michigan approach. A single rule is obtained from
a single run of a GBML algorithm in IRL approach. Thus multiple runs are needed to
design a rule-based classifier. Since IRL approach searches for a single best rule in
each run, classifier optimization is indirectly and sequentially performed.

In order to drastically decrease the computation time of fuzzy GBML algorithms in
Pittsburgh approach, we proposed an idea of parallel distributed implementation [21]-
[24] using an island model. As in other island models, a population of individuals is
divided into multiple subpopulations. Our island model also divides training patterns
into multiple training data subsets. In each island of our island model, a subpopulation
is evolved using a training data subset. Let NCPU is the number of available processors
for parallel computation. Since both the population size and the training data size are
decreased to 1/NCPU of their original size in each island, the speedup by our island
model is the order of 1/(NCPU)2. This is the main advantage of our island model over
other parallel implementation methods with the speedup of the order of 1/NCPU.

In this paper, we propose an idea of using our island model for fuzzy rule-based
ensemble classifier design. In our former studies [21]-[24], only a single best fuzzy
rule-based classifier was selected from all individuals at the final generation. With no
increase in computation load, we can choose a single best fuzzy rule-based classifier
from each island to construct an ensemble classifier. Since a different training data
subset is used in each island, a different classifier is likely to be obtained from each
island. We examine the usefulness of our idea through computational experiments.

This paper is organized as follows. First we briefly explain fuzzy rule-based
classifiers and fuzzy GBML algorithms in Section 2. In Section 3, we explain our
island model for parallel distributed implementation of fuzzy GBML algorithms.
Then we report experimental results in Section 4 where a single best classifier and an
ensemble classifier are compared with each other. This comparison is performed
under various specifications of two important parameters in our island model. One is
a training data subset rotation interval. This parameter controls the frequency of the
rotation of training data subsets over islands. The other is a migration interval. This
parameter controls the frequency of the migration of individuals (i.e., the migration of
fuzzy rule-based classifiers) over subpopulations. Frequent rotation and/or frequent
migration may decrease the diversity of classifiers in different subpopulations, which
may lead to the deterioration in the performance of designed ensemble classifiers. The

 Ensemble Fuzzy Rule-Based Classifier Design 95

effects of rotation and migration are examined through computational experiments in
Section 4. Finally we conclude this paper in Section 5.

2 Fuzzy Rule-Based Classifiers and Fuzzy GBML Algorithms

In this paper, we used the same parallel distributed fuzzy GBML algorithm as in our
former study [24]. Our fuzzy GBML algorithm has a framework of Pittsburgh
approach (i.e., an individual is a set of fuzzy rules). Michigan approach is used as a
kind of local search for each individual. Our fuzzy GBML algorithm can be viewed as
a hybrid algorithm for fuzzy rule-based classifier design (see [17] for details).

Let us assume that we have an n-dimensional pattern classification problem with m
training patterns xp = (xp1 , ..., xpn), p =1, 2, ..., m. We use fuzzy rules of the following
type for our classification problem:

Rule Rq : If x1 is Aq1 and ... and xn is Aqn then Class Cq with CFq , (1)

where Rq shows the qth fuzzy rule, Aqi is an antecedent fuzzy set (i =1, 2, ..., n), Cq is
a class label, and CFq is a rule weight.

Let S be a fuzzy rule-based classifier for our classification problem. The fuzzy
rule-based classifier S is a set of fuzzy rules of the type in (1). When a pattern xp is to
be classified by S, a single winner rule is chosen for xp from S. The selection of the
winner rule for xp is based on the compatibility grade of each fuzzy rule Rq with xp
and the rule weight CFq . More specifically, first the product of the compatibility
grade and the rule weight is calculated for each fuzzy rule in S as a winner rule
selection criterion. Then the fuzzy rule with the maximum product is chosen as the
winner rule for xp, which is assigned to the consequent class of the winner rule.

Since our study on fuzzy rule-based classifiers in the early 1990s [25], the single
winner-based fuzzy reasoning method has been frequently used in fuzzy rule-based
classifiers together with fuzzy rules of the type in (1). For other types of fuzzy
reasoning methods and fuzzy rules for classification problems, see [26], [27].

Our fuzzy GBML algorithm is used to find the best fuzzy rule-based classifier S
with respect to the following fitness function (This fitness function is minimized):

fitness(S) = w1 f1(S) + w2 f2(S) + w3 f3(S), (2)

where w1 , w2 and w3 are non-negative weights, and f1(S), f2(S) and f3(S) are the
following measures to evaluate the fuzzy rule-based classifier S:

 f1(S): The error rate of S on training patterns in percentage,
 f2(S): The number of fuzzy rules in S,
 f3(S): The total rule length over fuzzy rules in S.

The total rule length is the total number of antecedent conditions of fuzzy rules in S.
In the fitness function in (2), f1(S) is an accuracy measure of S while f2(S) and f3(S) are
complexity measures of S. These three measures are combined into a single fitness

96 H. Ishibuchi, M. Yamane, and Y. Nojima

function in (2). It is possible to use these measures as separate objectives in multi-
objective fuzzy GBML algorithms [10]. In this paper, we use the weighted sum
fitness function as in our former study [24].

In our fuzzy GBML algorithm, a fuzzy rule-based classifier (i.e., a set of fuzzy
rules) is coded as an integer string. More specifically, antecedent fuzzy sets of fuzzy
rules in a fuzzy rule-based classifier are represented by an integer string. The string
length is not fixed (i.e., variable string length) because the number of fuzzy rules in
fuzzy rule-based classifiers is not pre-specified. The consequent class and the rule
weight of each fuzzy rule are not coded. This is because they can be easily determined
in a heuristic manner from compatible training patterns with each fuzzy rule (e.g., the
consequent class is the majority class among the compatible training patterns [28]).

3 Island Model for Parallel Distributed Implementation

Island models [29]-[34] have been frequently used for the speedup of evolutionary
algorithms through parallel implementation. We also use an island model for parallel
distributed implementation of our fuzzy GBML algorithms. As in other island models,
a population of individuals (i.e., rule sets) is divided into multiple subpopulations.
Each subpopulation is viewed as an island. The number of subpopulations is the same
as the number of processors for parallel computation. A single processor is assigned
to each subpopulation (i.e., each island). We use a simple migration operation to
periodically send a copy of the best rule set in each island to the next one. We assume
a ring structure of islands when the migration operation is executed (i.e., when a copy
of the best rule set is sent to the next island). The worst rule set in each island is
removed just before migration in order to maintain the subpopulation size unchanged.
The number of generations between consecutive executions of migration is referred to
as a “migration interval”. This is an important parameter in our island model.

The main characteristic of our island model is that training patterns are divided into
training data subsets. The number of training data subsets is the same as the number
of subpopulations (i.e., the number of islands). A different training data subset is
assigned to each island. The assigned training data subsets are periodically rotated
over the islands with a ring structure. That is, the training data subset assigned to each
island is periodically moved to the next island. The number of generations between
consecutive executions of rotation is referred to as a “rotation interval”. This is also
an important parameter in our island model. Our island model is illustrated in Fig. 1
where training data and a population of rule sets are divided into seven subsets.

An interesting setting in our island model is that the training data subset rotation is
performed in the opposite direction to the migration (see Fig. 1). That is, the training
data subset at the ith island is moved to the (i + 1)th island while a copy of the best
rule set in the ith island is sent to the (i − 1)th island. This is because the migration
severely counteracts positive effects of the training data subset rotation when they are
performed in the same direction at the same generation. In this case, a copy of the best
rule set is sent to the next island together with the training data subset. For details of
negative effects of such a synchronized migration and rotation, see [24].

 Ensemble Fuzzy Rule-Based Classifier Design 97

CPU

Training data rotation

Training data

Po
pu

la
ti

on

CPU CPU CPU CPU CPU CPU

Rule set migration

Fig. 1. Our island model for parallel distributed implementation [23]

4 Experimental Results

In our computational experiments, we applied our fuzzy GBML algorithm to the
satimage data set in the KEEL project database [35]. The satimage data set has 6,435
patterns from six classes. Each pattern has 36 attributes. Since the satimage data set
has many attributes (i.e., 36 attributes), we applied our fuzzy GBML algorithm to this
data set using a large computation load: 50,000 generations of a population with 210
rule sets. Our computational experiments were performed on a workstation with two
Xeon 2.93 GHz quad processors (i.e., eight CPU cores in total). Among the eight
CPUs of the workstation, seven CPUs were used for parallel computation. This means
that a population of 210 rule sets was divided into seven subpopulations of size 30 in
our island model for parallel distributed implementation.

In our computational experiments, the following three variants of our fuzzy GBML
algorithm were compared:

1. Standard non-parallel non-distributed model for single classifier design [17]
2. Our island model for single classifier design [23]
3. Our island model for ensemble classifier design

The standard non-parallel non-distributed algorithm was executed on a single CPU of
the workstation while seven CPUs were used in the two variants of parallel distributed
implementation. We used the ten-fold cross-validation procedure (i.e., 10CV) in our
computational experiments. The 10CV was iterated three times to calculate the
average test data accuracy as well as the average training data accuracy of designed
classifiers by each of the above-mentioned three variants (i.e., 3 × 10CV was used for
performance evaluation in this paper).

In the first two variants for single classifier design, the best rule set with respect to
the fitness function in (2) for all training patterns was chosen from the final
population. In the last variant for ensemble classifier design, the best rule set with
respect to the fitness function in (2) for the assigned training data subset was chosen
from each subpopulation. The selected seven rule sets were used as seven fuzzy

98 H. Ishibuchi, M. Yamane, and Y. Nojima

rule-based classifiers in an ensemble classifier. Pattern classification was performed
in the designed ensemble classifier using a simple majority voting scheme as follows:
First a pattern was classified by each of the seven fuzzy rule-based classifiers.
According to the classification result, each classifier voted for a single class. The final
classification result by the ensemble classifier was the class with the maximum vote.
When multiple classes had the same maximum vote, one of those classes was
randomly chosen.

From the non-parallel non-distributed algorithm, we obtained the following results:

 Average classification rate on training data: 86.31%,
 Average classification rate on test data: 84.46%,
 Average computation time: 658.89 minutes (10.98 hours) for a single run.

In Fig. 2, we summarize experimental results by our island model on training data.
The vertical axis of each plot (i.e., the height of each bar) is the average classification
rate on training data. The two axes of the base of each plot show the rotation interval
and the migration interval. As shown in Fig. 2, we examined 8 × 8 combinations of the
following specifications in our computational experiments:

 Rotation interval: 10, 20, 50, 100, 200, 500, 1000, None,
 Migration interval: 10, 20, 50, 100, 200, 500, 1000, None.

In these specifications, “None” means that we did not use the rotation and/or the
migration. For example, when the rotation interval was 10 and the migration interval
was “None” (i.e., the bottom-right bar in each plot of Fig. 2), only the training data
subset rotation was performed every 10 generations.

From the comparison between the two plots in Fig. 2, we can see that better results
with higher training data accuracy were obtained by ensemble classifiers in a wide
range of parameter specifications in Fig. 2 (b). For example, average classification
rates higher than 88% were always obtained in Fig. 2 (b) from the five specifications
of the rotation interval: 50, 100, 200, 500 and 1000 (i.e., 5 × 8 combinations).
However, such a good result was not obtained in Fig. 2 (a) when the rotation interval
was specified as 500 or 1000. When the rotation interval was 1000, the fuzzy GBML
algorithm was executed in each island for 1000 generations using the assigned
training data subset. In this case, it is likely that each subpopulation was over-fitted to
the assigned training data subset during 1000 generations. As a result, any classifiers
are not likely to have high accuracy for the entire training data as shown in Fig. 2 (a).

Whereas good results were not obtained from over-fitted classifiers in the case of
the rotation interval of 1000 in Fig. 2 (a), they can be good components (i.e., good
base classifiers) of an ensemble classifier. This is because classifiers in different
islands are likely to be over-fitted to different training data subsets. That is, a set of
classifiers from different islands is likely to have high diversity. High diversity of
base classifiers is essential in the design of high-performance ensemble classifiers.
Actually, ensemble classifiers with high accuracy were obtained in Fig. 2 (b) by
choosing the locally best classifier with respect to the assigned training data subset
from each island when the rotation interval was large (e.g., 500 and 1000).

 Ensemble Fuzzy Rule-Based Classifier Design 99

90

86

87

88

89

85
10

1000

1000

500
200

100
50

20

None 5002001005020

None

10

90

86

87

88

89

85
10

1000

1000

500
200

100
50

20

None 5002001005020

None

10

 (a) Accuracy of single best classifiers. (b) Accuracy of ensemble classifiers.

Fig. 2. Experimental results of our island model on training data

It should be noted that almost all average classification rates in Fig. 2 (a) are higher
than the result 86.31% by the non-parallel non-distributed algorithm (except for the
eight combinations with no rotation in Fig. 2 (a)). This observation suggests that the
rotation of training data subsets has a positive effect on the search ability of the fuzzy
GBML algorithm to find good classifiers. At each island, the training data subset
rotation can be viewed as a periodical change of the environment. Such a periodical
change seems to help the fuzzy GBML algorithm to escape from local optima. When
we did not use the rotation, good results were not obtained in Fig. 2 (a).

In Fig. 2, good results were not obtained from the rotation interval of 10, either. It
seems that too frequent changes of the environment had a negative effect on the
search ability of the fuzzy GBML algorithm. In this case, the use of ensemble
classifiers did not work well. This may be because similar classifiers were obtained
from different islands due to the frequent rotation of the assigned training data
subsets.

In Fig. 3, we summarize experimental results by our island model on test data. We
can obtain almost the same observations from Fig. 3 as those from Fig. 2. That is,
better results were obtained from ensemble classifiers in Fig. 3 (b) in a wide range of
parameter specifications than single best classifiers in Fig. 3 (a). Especially when the
rotation interval was large (e.g., 500 or 1000), good results were obtained from
ensemble classifiers whereas the test data accuracy of single classifiers was not high.

Except for the case with no rotation, almost all classification rates in Fig. 3 are
higher than 84.46% by the non-parallel non-distributed algorithm. This observation
supports a positive effect of the training data subset rotation on the test data accuracy
of obtained fuzzy rule-based classifiers and their ensemble classifiers.

When we used the non-parallel non-distributed algorithm, the average computation
time for a single run of our fuzzy GBML algorithm was 658.89 minutes (10.98
hours). The average computation time was drastically decreased by the use of our

100 H. Ishibuchi, M. Yamane, and Y. Nojima

89

84
85
86
87

83

88

10

1000

1000

500
200

100
50

20

None 5002001005020

None

10

89

84
85
86
87

83

88

10

1000

1000

500
200

100
50

20

None 5002001005020

None

10

 (a) Accuracy of single best classifiers. (b) Accuracy of ensemble classifiers.

Fig. 3. Experimental results of our island model on test data

island model with seven CPUs for parallel computation. We summarize the average
computation time of our island model in Fig. 4 where the height of each bar shows the
average computation time. The average computation time was decreased from about
11 hours of the non-parallel non-distributed algorithm to about 20 minutes (about
1/33 of 11 hours) by the use of our island model. In our island model, the size of the
assigned subpopulation to each CPU is 1/7 of the population size. Moreover, the size
of the assigned training data subset to each CPU is 1/7 of the training data size. As a
result, the computation time of our island model can be potentially decreased up to the
order of 1/49 from the case of the non-parallel non-distributed algorithm.

30

15

20

25

10
10

1000

1000

500
200

100
50

20

None 5002001005020

None

10

Fig. 4. Average computation time of our island model

 Ensemble Fuzzy Rule-Based Classifier Design 101

It should be noted that there is no difference in the computation time of our island
model between single best classifier design and ensemble classifier design. Both a
single best classifier and an ensemble classifier are obtained from a single run of our
island model. The difference between these two approaches is only the selection of
classifiers from the final population after the execution of our island model.

5 Conclusions

In this paper, we proposed an idea of using an island model for ensemble classifier
design. In our island model, a population of classifiers was divided into multiple
subpopulations as in other island models. Training patterns were also divided into
multiple training data subsets. A different training data subset was assigned to each
island (i.e., each subpopulation). The assigned training data subsets were periodically
rotated over the islands. After the execution of our island model, the locally best
classifier was selected from each island. Through computational experiments, we
demonstrated that good ensemble classifiers with high accuracy were obtained from a
wide range of parameter specifications of migration and rotation intervals.

If the generalization ability maximization is the main goal in classifier design, the
use of our island model for ensemble classifier design seems to be a good choice.
However, if the interpretability of classifiers is also important, ensemble approaches
are not recommended. This is because a set of classifiers is usually less interpretable
than a single classifier. In this case, we may need a multi-objective approach to find a
good accuracy-interpretability tradeoff. Parallel distributed implementation of multi-
objective fuzzy GBML algorithms is an interesting future research issue.

Our island model is a general framework for parallel distributed implementation of
Pittsburgh-style GBML algorithms. Implementation and performance evaluation of
our island model on other GBML algorithms is an interesting future research issue.

References

1. Thrift, P.: Fuzzy Logic Synthesis with Genetic Algorithms. In: Proc. of 4th International
Conference on Genetic Algorithms, pp. 509–513 (1991)

2. Karr, C.L.: Design of an Adaptive Fuzzy Logic Controller using a Genetic Algorithm. In:
Proc. of 4th International Conference on Genetic Algorithms, pp. 450–457 (1991)

3. Karr, C.L., Gentry, E.J.: Fuzzy Control of pH using Genetic Algorithms. IEEE Trans. on
Fuzzy Systems 1, 46–53 (1993)

4. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H.: Selecting Fuzzy If-Then Rules for
Classification Problems using Genetic Algorithms. IEEE Trans. on Fuzzy Systems 3,
260–270 (1995)

5. Cordón, O., Gomide, F., Herrera, F., Hoffmann, F., Magdalena, L.: Ten Years of Genetic
Fuzzy Systems: Current Framework and New Trends. Fuzzy Sets and Systems 141, 5–31
(2004)

6. Herrera, F.: Genetic Fuzzy Systems: Status, Critical Considerations and Future Directions.
International Journal of Computational Intelligence Research 1, 59–67 (2005)

102 H. Ishibuchi, M. Yamane, and Y. Nojima

7. Herrera, F.: Genetic Fuzzy Systems: Taxonomy, Current Research Trends and Prospects.
Evolutionary Intelligence 1, 27–46 (2008)

8. Cordón, O.: A Historical Review of Evolutionary Learning Methods for Mamdani-Type
Fuzzy Rule-Based Systems: Designing Interpretable Genetic Fuzzy Systems. International
J. of Approximate Reasoning 52, 894–913 (2011)

9. Ishibuchi, H., Murata, T., Turksen, I.B.: Single-Objective and Two-Objective Genetic
Algorithms for Selecting Linguistic Rules for Pattern Classification Problems. Fuzzy Sets
and Systems 89, 135–150 (1997)

10. Ishibuchi, H., Nakashima, T., Murata, T.: Three-Objective Genetics-Based Machine
Learning for Linguistic Rule Extraction. Information Sciences 136, 109–133 (2001)

11. Ishibuchi, H.: Multiobjective Genetic Fuzzy Systems: Review and Future Research
Directions. In: Proc. of 2007 IEEE International Conference on Fuzzy Systems, pp.
913–918 (2007)

12. Fazzolari, M., Alcalá, R., Nojima, Y., Ishibuchi, H., Herrera, F.: A Review of the
Application of Multi-Objective Genetic Fuzzy Systems: Current Status and Further
Directions. IEEE Trans. on Fuzzy Systems (to appear)

13. Freitas, A.A.: Data Mining and Knowledge Discovery with Evolutionary Algorithms.
Springer (2002)

14. Bull, L., Bernado-Mansilla, E., Holmes, J.: Learning Classifier Systems in Data Mining.
Springer (2008)

15. García, S., Fernández, A., Luengo, J., Herrera, F.: A Study of Statistical Techniques and
Performance Measures for Genetics-Based Machine Learning: Accuracy and
Interpretability. Soft Computing 13, 959–977 (2009)

16. Fernández, A., García, S., Luengo, J., Bernadó-Mansilla, E., Herrera, F.: Genetics-Based
Machine Learning for Rule Induction: State of the Art, Taxonomy, and Comparative
Study. IEEE Trans. on Evolutionary Computation 14, 913–941 (2010)

17. Ishibuchi, H., Yamamoto, T., Nakashima, T.: Hybridization of Fuzzy GBML Approaches
for Pattern Classification Problems. IEEE Trans. on Systems, Man, and Cybernetics - Part
B 35, 359–365 (2005)

18. Ishibuchi, H., Nojima, Y.: Analysis of Interpretability-Accuracy Tradeoff by
Multiobjective Fuzzy Genetics-Based Machine Learning. International J. of Approximate
Reasoning 44, 4–31 (2007)

19. Abadeh, M.S., Habibi, J., Lucas, C.: Intrusion Detection using a Fuzzy Genetics-Based
Learning Algorithm. Journal of Network and Computer Applications 30, 414–428 (2007)

20. Orriols-Puig, A., Casillas, J., Bernadó-Mansilla, E.: Genetic-Based Machine Learning
Systems are Competitive for Pattern Recognition. Evolutionary Intelligence 1, 209–232
(2008)

21. Nojima, Y., Ishibuchi, H., Kuwajima, I.: Parallel Distributed Genetic Fuzzy Rule
Selection. Soft Computing 13, 511–519 (2009)

22. Nojima, Y., Mihara, S., Ishibuchi, H.: Parallel Distributed Implementation of Genetics-
Based Machine Learning for Fuzzy Classifier Design. In: Deb, K., Bhattacharya, A.,
Chakraborti, N., Chakroborty, P., Das, S., Dutta, J., Gupta, S.K., Jain, A., Aggarwal, V.,
Branke, J., Louis, S.J., Tan, K.C. (eds.) SEAL 2010. LNCS, vol. 6457, pp. 309–318.
Springer, Heidelberg (2010)

23. Ishibuchi, H., Mihara, S., Nojima, Y.: Training Data Subdivision and Periodical Rotation
in Hybrid Fuzzy Genetics-Based Machine Learning. In: Proc. of 10th International
Conference on Machine Learning and Applications, pp. 229–234 (2011)

 Ensemble Fuzzy Rule-Based Classifier Design 103

24. Ishibuchi, H., Mihara, S., Nojima, Y.: Parallel Distributed Hybrid Fuzzy GBML Models
with Rule Set Migration and Training Data Rotation. IEEE Trans. on Fuzzy Systems (to
appear)

25. Ishibuchi, H., Nozaki, K., Tanaka, H.: Distributed Representation of Fuzzy Rules and Its
Application to Pattern Classification. Fuzzy Sets and Systems 52, 21–32 (1992)

26. Cordón, O., del Jesus, M.J., Herrera, F.: A Proposal on Reasoning Methods in Fuzzy Rule-
Based Classification Systems. International J. of Approximate Reasoning 20, 21–45 (1999)

27. Ishibuchi, H., Nakashima, T., Morisawa, T.: Voting in Fuzzy Rule-Based Systems for
Pattern Classification Problems. Fuzzy Sets and Systems 103, 223–238 (1999)

28. Ishibuchi, H., Yamamoto, T.: Rule Weight Specification in Fuzzy Rule-Based
Classification Systems. IEEE Trans. on Fuzzy Systems 13, 428–435 (2005)

29. Alba, E., Tomassini, M.: Parallelism and Evolutionary Algorithms. IEEE Trans. on
Evolutionary Computation 6, 443–462 (2002)

30. Nedjah, N., Alba, E., de Macedo Mourelle, L.: Parallel Evolutionary Computations.
Springer, Berlin (2006)

31. Ruciński, M., Izzo, D., Biscani, F.: On the Impact of the Migration Topology on the Island
Model. Parallel Computing 36, 555–571 (2010)

32. Araujo, L., Merelo, J.: Diversity through Multiculturality: Assessing Migrant Choice
Policies in an Island Model. IEEE Trans. on Evolutionary Computation 15, 456–469
(2011)

33. Luque, G., Alba, E.: Parallel Genetic Algorithms: Theory and Real World Applications.
Springer, Berlin (2011)

34. Candan, C., Goëffon, A., Lardeux, F., Saubion, F.: A Dynamic Island Model for Adaptive
Operator Selection. In: Proc. of 2012 Genetic and Evolutionary Computation Conference,
Philadelphia, pp. 1253–1260 (2012)

35. KEEL dataset repository, http://keel.es/

HEMH2: An Improved Hybrid Evolutionary

Metaheuristics for 0/1 Multiobjective Knapsack
Problems

Ahmed Kafafy, Ahmed Bounekkar, and Stéphane Bonnevay

Laboratoire ERIC - Université Claude Bernard Lyon 1,
Ecole Polytechnique Universitaire, 15 Boulevard Latarjet,

69622 Villeurbanne cedex, France
ahmedkafafy80@gmail.com, {bounekkar,stephane.bonnevay}@univ-lyon1.fr

Abstract. Hybrid evolutionary metaheuristics tend to enhance search
capabilities, by improving intensification and diversification, through in-
corporating different cooperative metaheuristics. In this paper, an im-
proved version of the Hybrid Evolutionary Metaheuristics (HEMH) [7] is
presented. Unlike HEMH, HEMH2 uses simple inverse greedy algorithm
to construct its initial population. Then, the search efforts are directed
to improve these solutions by exploring the search space using binary dif-
ferential evolution. After a certain number of evaluations, path relinking
is applied on high quality solutions to investigate the non-visited regions
in the search space. During evaluations, the dynamic-sized neighborhood
structure is adopted to shrink/extend the mating/updating range. Fur-
thermore, the Pareto adaptive epsilon concept is used to control the
archiving process with preserving the extreme solutions. HEMH2 is veri-
fied against its predecessor HEMH and the MOEA/D [13], using a set of
MOKSP instances from the literature. The experimental results indicate
that the HEMH2 is highly competitive and can achieve better results.

Keywords: Hybrid Metaheuristics, Adaptive Binary Differential Evo-
lution, Path Relinking, 0/1 Multiobjective Knapsack Problems.

1 Introduction

Multiobjective combinatorial optimization problems (MOCOP) are often char-
acterized by their large size and the presence of multiple and conflicting ob-
jectives. The basic task in multiobjective optimization is to identify the set of
Pareto optimal solutions or even a good approximation to Pareto front (PF).
Despite the progress in solving MOCOP exactly, the large size often means that
metaheuristics are required for their solution in a reasonable time.

Solving multiobjective optimization problems (MOOP) using evolutionary al-
gorithms (MOEAs) has been investigated by many authors [3,13,15,16]. Pareto
dominance based MOEAs such as SPEA [15], NSGAII [3] and SPEA2 [16] have
been dominantly used in the recent studies. Based on many traditional math-
ematical programming methods for approximating PF [10], the approximation

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 104–116, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

HEMH2: An Improved MEMH for 0/1 Multiobjective Knapsack Problems 105

of PF can be decomposed into a set of single objective subproblems. This idea
is adopted in MOGLS [5] and MOEA/D [13]. Many of the search algorithms
attempt to obtain the best from a set of different metaheuristics that perform to-
gether, complement each other and augment their exploration capabilities. They
are commonly called hybrid metaheuristics. Search algorithms must balance be-
tween sometimes-conflicting two goals, intensification and diversification [1]. The
design of hybrid metaheuristics can give the ability to control this balance [9].

This paper tends to improve the hybrid evolutionary metaheuristics (HEMH)
proposed in [7] through developing a new version called HEMH2 with two vari-
ants HEMHde and HEMHpr. The motivations of this work are to overcome the
limitations from which the performance of HEMH suffers. In HEMH2, an adap-
tive binary differential evolution is used as a reproduction operator rather than
classical crossover. Also, path relinking is applied on high quality solutions gener-
ated after a certain number of evaluations. Moreover, all improvement proposals
and their effects on the search process will be discussed in details. The rest of
the paper is organized as follows: section 2 presents some of the basic concepts
and definitions. HEMH framework is reviewed in section 3. Section 4 explains
the adaptive binary differential evolution. Path relinking strategy is discussed
in section 5. The proposed HEMH2 and its variants are presented in section 6.
Additionally, the experimental design and results are involved in sections 7 and 8
respectively. Finally, the conclusions and future works are involved in section 9.

2 Basic Concepts and Definitions

Without loss of generality, the MOOP can be formulated as:

Maximize F (x) = (f1(x), f2(x), · · · , fm(x))
Subject to : x ∈ Ω

(1)

where F (x) is the m-dimensional objective vector, fi(x) is the ith objective to
be maximized, x = (x1, · · · , xn)

T is the n-dimensional decision vector, Ω is the
feasible decision space. In the case x ∈ Z, the MOOP is called MOCOP.

Definition 1. A solution x dominates y (noted as: x � y) if: fi(x) ≥ fi(y)∀i ∈
{1, · · · ,m} and fi(x) > fi(y) for at least one i.

Definition 2. A solution x is said to ε-dominate a solution y for some ε > 0 (
noted as: x �ε y) if and only if: fi(x) ≥ (1 + ε)fi(y), ∀i ∈ {1, · · · ,m}.

Definition 3. A solution x is called efficient (Pareto-optimal) if: � y ∈ Ω : y � x

Definition 4. The Pareto optimal set (P ∗) is the set of all efficient solutions:

P ∗ = {x ∈ Ω | � y ∈ Ω , y � x}

Definition 5. The Pareto front (PF) is the image of P ∗ in the objective space:

PF = {F (x) = (f1(x), · · · , fm(x)) : x ∈ P ∗}

106 A. Kafafy, A. Bounekkar, and S. Bonnevay

Definition 6. Given a reference point r∗ and a weight vector Λ = [λ1, · · · , λm]
such that λi ≥ 0, ∀i ∈ {1, · · · ,m} , the weighted sum (Fws) and the weighted
Tchebycheff (FTc) scalarizing functions corresponding to (1) can be defined as:

Fws(x, Λ) =
∑m

i=1 λifi(x) (2)

FTc(x, r∗, Λ) = Max1≤i≤m {λi(r
∗
i − fi(x))} (3)

Definition 7. Given a set of m knapsacks and a set of n items, the 0/1 Multi-
objective Knapsack Problem (MOKSP) can be written as:

Max : fi(x) =
∑n

j=1 cijxj , ∀i ∈ {1, · · · ,m}
s.t. :

∑n
j=1 wijxj ≤ Wi, ∀i ∈ {1, · · · ,m}

x = (x1, · · · , xn)
T ∈ {0, 1}n

(4)

where, cij ≥ 0 is the profit of the jth item in the ith knapsack,wij ≥ 0 is the
weight of the jth item in the ith knapsack, and Wi is the capacity of the ith

knapsack. When xj=1, it means that the jth item is put in all knapsacks.
The MOKSP is NP-hard and can model a variety of applications.

3 HEMH, an Overview

InHEMH,a combinationofdifferent cooperativemetaheuristics is provided tohan-
dle 0/1MOKSP. The MOEA/D framework [13] is adopted to carry out the combi-
nation. The weighted sum defined in (2) is considered to decompose the MOKSP
in (4) into a set ofN single objective subproblems, based on a set ofN evenly dis-
tributed weight vectors {Λ1, · · · , ΛN}. HEMH attempts to simultaneously opti-
mize these subproblems. The HEMH framework consists of the following:

– A population P of N individuals, P = {x1, · · · , xN}, where xi represents
the current solution of the ith subproblem.

– A set of N evenly distributed weight vectors {Λ1, · · · , ΛN}, correspond to
the N subproblems. Each Λ = [λ1, · · · , λm] has m components correspond to
m-objectives, such that:

∑m
i=1 λi = 1, ∀λi ∈ {0/H, · · · , H/H}, and H ∈ Z+.

– A neighborhood Bi for each subproblem i ∈ {1, · · · , N}, which includes all
subproblems with the T closest weight vectors {Λi1, · · · , ΛiT } to Λi.

– An archive to collect all efficient solutions explored over the search process.

The HEMH consists of two basic phases, initialization and main loop. In the
initialization phase, an initial population of high quality solutions is constructed
by applying DMGRASP on each subproblem. Then, the search efforts are con-
centrated on the promising regions to explore new efficient solutions. In the main
loop phase, for each subproblem i, the mating/updating range Mi is chosen to
be either the neighborhood Bi or the whole population P . Then, two individuals
are randomly selected from Mi for reproduction. Single point crossover and mu-
tation or greedy randomize path relinking is applied on the selected individuals
to generate a new offspring, which is used to update Mi and the archive. This
process is repeated until a certain number of evaluations. We refer to [7] for more
details. The limitations that affect the HEMH performance are briefed as:

HEMH2: An Improved MEMH for 0/1 Multiobjective Knapsack Problems 107

– Despite using DMGRASP achieves high quality initial solutions, it consumes
more time and evaluations especially with large populations. Thus, the sec-
ond phase will not have enough chance to improve the search process.

– Collecting all efficient solutions causes waste in time and storage space es-
pecially in many objective cases. So, archiving process should be controlled.

– For each subproblem i, the mating/updating range Mi is either the fixed
(static) size neighborhood Bi or the whole population P . This may cause
less execution of path relinking, or consume more time.

– Reproduction is made only by single point crossover and mutation or greedy
randomized path relinking.

– Path relinking adopts single bit flipping per move and also uses local search
to improve the generated solution. This causes more time consumption.

From the above, this paper presents an improved version of HEMH called HEMH2
with two variants HEMHde and HEMHpr, which have the ability to overcome
those limitations and can achieve an enhanced performance.

4 Adaptive Binary Differential Evolution

Differential evolution (DE) is a simple and efficient evolutionary algorithm to solve
optimization problems mainly in continuous search domains [2, 11]. DE’s success
relies on the differential mutation, that employs difference vectors built with pairs
of candidate solutions in the search domain. Each difference vector is scaled and
added to another candidate solution, producing the so-calledmutant vector. Then,
DE recombines the mutant vector with the parent solution to generate a new off-
spring. The offspring replaces the parent only if it has an equal or better fitness.
DE has some control parameters as the mutation factor F , that used to scale the
difference vectors, and the crossover rateCR. In this paper, an adaptive binaryDE
strategy is introduced to improve the exploration capabilities of HEMH instead of
classical crossover and mutation. This strategy is described in Alg. 1. Given a pop-
ulation P of N individuals, where each individual represented by a n-component
0/1 vector. The main idea is to select at random three distinct individuals xa, xb

and xc from P for each target individual xi ∈ P , ∀i ∈ {1, · · · , N}. The mutant
individual vi is produced by applying binary differential mutation on the selected
individuals according to (5). First, the difference vector is calculated by apply-
ing logical XOR on the two parent differential individuals xb and xc. Then, vi

is determined by applying logical OR on the parent based individual xa and the
difference vector previously obtained. Finally, the new generated offspring ui is
produced by applying crossover according to (6).

vi = xa + (xb ⊕ xc) (5)

ui
j =

{
vij if rnd(j) ≤ CR, or j ∈ e, ∀j = 1, · · · , n.
xi
j otherwise, ∀j = 1, · · · , n. (6)

where rnd(j) ∈ [0, 1] is a random number generated for the jth component, n is
the individual length, e is a random sequence selected from the range {1, · · · , n}

108 A. Kafafy, A. Bounekkar, and S. Bonnevay

to insure that at least one component of ui is contributed by vi and CR ∈ [0, 1]
denotes crossover rate. Here, CR is adapted periodically to avoid the premature
convergence based on (7) proposed in [14].

CR = CR0 · e(−a.(G/Gmax)) (7)

where G and Gmax are the current and the maximum evolutionary generations,
CR0 is the initial crossover rate. a is a constant.

Algorithm 1. ABDEvol(x, xa, xb, xc, CR0, a)

Inputs:
x: Current solution

xa, xb, xc: Parents individuals
CR0 ∈ [0, 1]: Crossover rate
a: Plus constant

1: Begin:

2: CR ← CR0 · e(−a.(G/Gmax)); � Adapt CR

3: for all j ∈ {1, · · · , n} do: � For all items

4: vj = xa
j + (xb

j ⊕ xc
j); � Binary Diff. Mutation

5: uj ←
{
vj if rnd(j) ≤ CR ∨ j ∈ e,

xj otherwise.

6: end for
7: return u;
8: End

Algorithm 2. InverseGreedy(x, Λ)

Inputs:
x: Initial Solution
Λ = [λ1, · · · , λm]: Search direction

1: Begin: CL ← ∅;
2: for all j ∈ {1, · · · , n} do: xj ← 1; � Put all

3: while ∃j|j /∈ CL ∧Minn
j=1

(∑m
i=1 λicij∑m
i=1

wij

)
do:

4: CL ← Append(j);
5: end while
6: while x violates any constraint in (4) do:
7: j ←ExtractTheFirst(CL);
8: x ←RemoveItem(x, j);
9: end while
10: return x;
11: End

5 Path Relinking

Path relinking generates new solutions by exploring trajectories that connect
high quality solutions. Starting from the starting solution xs, path relinking
builds a path in the neighborhood space that leads toward the guiding solution
xt. The relinking procedure has a better chance to investigate in more details the
neighborhood of the most promising solutions if relinking starts from the best of
xs and xt [12]. In this paper, a path relinking with two bits per move [8] is used
as an intensification strategy, integrated with the adaptive binary DE. It will be
invoked on the higher generations to guarantee applying the relinking process
on high quality solutions. Alg. 3 describes the proposed procedure. Firstly, the
best of xs and xt is chosen to start with. Then, the best fitness z∗ and the best
solution x∗ are initialized. The candidate lists CL and CLcmp are constructed.
The procedure builds the path that connects xs with xt gradually by creating
intermediate points through flipping two bits/move. Initially, the intermediate x
is set to xs. Then, the Hamming distance Δ(x, xt) is calculated. The next move
is carried out by flipping two of unmatched �1, �2 to be matched. If both CL and
CLcmp are not empty, then the first elements of CL and CLcmp are extracted
to be �1 and �2 respectively. Else, if one of them is empty, then, the first and
the second elements of the non-empty one will be extracted to be �1 and �2

respectively. The new intermediate x is obtained by flipping the two items x	1

and x	2 . If x is infeasible, then x is repaired to get y that updates both x∗ and
z∗. This process is repeated until there is only two unmatched items between
the current x and the guiding xt.

HEMH2: An Improved MEMH for 0/1 Multiobjective Knapsack Problems 109

Algorithm 3. PathRelinking(xs, xt, Λ)

Inputs:

xs, xt: Starting and Guiding solutions
Λ = [λ1, · · · , λm]: weight vector of the current subproblem

1: Begin:
2: x∗ ←GetTheBestOf(xs, xt, Λ);
3: if x∗ �= xs then: Swap(xs, xt);
4: z∗ ← Fws(x∗, Λ);CL&CLcmp ← ∅;

5: while ∃j|j /∈ CL ∧ xs
j �= xt

j ∧ xs
j = 0 ∧

Maxn
j=1

(∑m
i=1 λicij/

∑m
i=1 wij

)
do:

6: CL ← Append(j);
7: end while
8: while ∃j|j /∈ CLcmp ∧ xs

j �= xt
j ∧ xs

j = 1 ∧
Minn

j=1

(∑m
i=1 λicij/

∑m
i=1 wij

)
do:

9: CLcmp ← Append(j);
10: end while
11: x ← xs;
12: Δ(x, xt) ← |{j ∈ {1, · · · , n} : xj �= xt

j}|;
13: while Δ(x, xt) ≥ 2 do: � Relinking loop

14: if |CL| �= 0 ∧ |CLcmp| �= 0 then:

15: 	1 ← ExtractTheFirst(CL)

16: 	2 ← ExtractTheFirst(CLcmp)
17: else if |CL| > 1 then:

18: 	1 ← ExtractTheFirst(CL)

19: 	2 ← ExtractTheFirst(CL)
20: else:
21: 	1 ← ExtractTheFirst(CLcmp)

22: 	2 ← ExtractTheFirst(CLcmp)
23: end if
24: x ← FilppBits(x, 	1, 	2);
25: y ←Repair(x, Λ)
26: if (Fws(y, Λ) > z∗) then:
27: x∗ ← y; z∗ ← Fws(y, Λ);
28: end if
29: Δ(x, xt) ← |{j ∈ {1, · · · , n} : xj �= xt

j}|;
30: end while
31: return x∗;
32: End

Algorithm 4. HEMH2(N, T, t, ε, γ, CR0, a)

Inputs:
N: Population size or no. of subproblems
T,: Min. neighborhood size
t: Max. replaced solutions
ε: Min. hamming distance
γ: Controls Path-relinking execution
CR0 ∈ [0, 1], a: Crossover rate, Plus constant

1: Begin:
2: Wv ← {Λ1, · · · , ΛN}; � Set of N weight vectors

3: for i ← 1 to N do: � Construct Neighborhoods

4: Bi ← [i1, · · · , iN]; � where Λi1, · · · , ΛiN are

5: end for � increasingly sorted by ED to Λi

6: Arch ← ∅; � Empty archive

7: Evl ← 0;
8: for i ← 1 to N do: � Initialization phase

9: xi ←InverseGreedy(xi, Λi);

10: P ←AddSubProblem(xi, Λi);

11: Extremes ←Update(xi);Update(Evl);
12: end for
13: while (Evl < Mevls) do: � Main Loop

14: for i ← 1 to N do: � for each subproblem i

15: xa, xb, xc ← Selection(Bi, i);
16: � Where: xi �= xa �= xb �= xc

17: xj, xk ← RandSelection(xa, xb, xc);

18: D ← Δ(xj , xk); � Hamming distance

19: E ← γ × Mevls; � min. eval for PR

20: if (D ≥ ε ∧ Eval ≥ E) then:

21: y ←PathRelinking(xj,xk,Λi);
22: else:
23: u ←ABDEvol(xi, xa, xb, xc, CR0, a);

24: y ←Repair(u, Λi)
25: end if
26: P ←UpdateSolutions(y, t, Bi);
27: Arch ← UpdateArchive

paε(y);
28: Extremes ←Update(y);Update(Evl);
29: end for
30: end while
31: Arch ← AddExtremes(Extremes);
32: return Arch;
33: End

6 The Proposed HEMH2

Motivated by the results achieved in [8], some proposals are adopted to im-
prove HEMH performance and to overcome the limitations discussed. The main
differences between HEMH2 and its predecessor are briefly presented as follows:

– Initial population is created using the simple inverse greedy algorithm (Alg.2)
for each search direction rather than DMGRASP. The quality of the obtained
initial solutions will be affected, but this will give a better chance to the
second phase to improve and enhance the search process.

– Instead of collecting all efficient solutions, the Pareto-adaptive epsilon domi-
nance (paε-dominance) [4] is adopted to control the quality and the quantity
of the efficient solutions collected in the archive.

– Dynamic neighborhood size that permit to shrink/extend the neighborhood
for each subproblem is considered. Consequently, the parent solutions of a
subproblem are always selected from its neighborhood. This can overcome
the limitations of the binary differential mutation.

110 A. Kafafy, A. Bounekkar, and S. Bonnevay

– The adaptive binary DE is used as a reproduction operator instead of
crossover and mutation beside the path relinking.

– Path relinking is applied only after a certain number of evaluations as a post
optimization strategy. This action guarantees the existence of high quality
solutions. Moreover, path relinking flips two bits at each relinking step.

– In HEMH2, local search is avoided either after path relinking or after inverse
greedy construction as proposed in HEMH.

Now, the reasons behind the above proposals are explained. Firstly, there is no
doubt that generating the initial population using DMGRASP can achieve bet-
ter quality solutions, but it forces us to use small populations. In some cases,
local search highly consumes more time and evaluations to investigate a small
specified region in the search space. Consequently, the main loop phase has a
small chance to improve the search process. To overcome this limitation, the
inverse greedy construction is proposed. From the empirical results, the inverse
greedy obtains solutions as close as possible to the boundary regions than simple
greedy construction. Secondly, using paε-dominance will control the size of the
archive, especially in many objective cases. Consequently, saving more resources
of time and storage space with persevering the quality of the collected solu-
tions. Thirdly, the poor performance of the binary differential mutation occurs
when treating differential individuals with large Hamming distance. Selecting
parents from the whole population can encourage this scenario. In HEMH2, par-
ents of each subproblem are always selected from its neighborhood which has
a dynamic size, this guarantees obtaining individuals with suitable Hamming
distances. Fourthly, the adaptive binary DE empirically has the ability to ex-
plore the search space better than classical crossover and mutation. Thus, the
performance of HEMH will be improved by adopting adaptive binary DE for
reproduction rather than crossover. Finally, the proposed path relinking applies
two bits flipping/move, that minimizes the whole relinking time. Also, avoiding
local search saves both time and evaluations.

In Alg. 4, the HEMH2 procedure is introduced. Firstly, a set of N evenly
distributed weight vectors is created. Then, the neighborhood structure is con-
structed for each subproblem i by assigning all subproblems sorted increasingly
by the Euclidean distance between their weight vectors and the current weight
vector Λi. After that, an initial population P is created by applying the inverse
greedy (Alg.2) for each search direction. Now, the main loop is executed until
achieving the maximum evaluations Mevls (line 13). For each subproblem i,
Selection routine is invoked to determine the current size of the neighborhood
Bi such that: |Bi| = T + r, where T and r represent the number of different
and repeated solutions in Bi respectively. This means, the Selection routine
extends Bi size to guarantee the existence of at least T different solutions and
randomly selects three of them xa, xb and xc for reproduction. Two of the three
selected parents xj , xk are chosen randomly. Then, path relinking is used only if
the Hamming distance Δ(xj , xk) is greater than a certain value ε and the num-
ber of evaluations Eval exceeds a certain ratio γ of the maximum evaluations
Mevls allowed to guarantee applying path relinking on high quality solutions.

HEMH2: An Improved MEMH for 0/1 Multiobjective Knapsack Problems 111

Else, the adaptive binary DE is applied to generate a new offspring y. The new
generated offspring y is evaluated and used to update the neighborhood (Bi)
according to the parameter t, which controls the number of replaced solutions.
The Archive is also updated by y according to paε-dominance [4]. Finally, the
Extreme solutions are added to the archive which is returned as an output.

In order to study the effects of both adaptive binary DE and path relink-
ing operators distinctly, two additional algorithms variants called HEMHde and
HEMHpr are considered. Both of them have the same procedure as HEMH2
explained in Alg. 4 except that HEMHde only adopts adaptive binary DE for
reproduction. Whereas, HEMHpr replaces the adaptive binary DE in HEMH2
procedure by crossover and mutation.

7 Experimental Design

In this paper, both MOEA/D and HEMH are involved to verify our proposals.
The comparative study for different algorithms is carried out on a set of test
instances from the literature [15] listed in Table 1. All experiments are performed
on a PC with Intel Core i5-2400 CPU, 3.10 GHz and 4.0 GB of RAM.

7.1 Parameter Settings

Here, the different parameters used for each algorithmare discussed. ForMOEA/D
and our proposals HEMHde, HEMHpr and HEMH2, the parameterH which con-

trols the population sizeN by the relation (N = CH+m−1
m−1) is determined for each

instance in Table 1 according to the complexity. The initial population used in
MOEA/D is randomly generated such that each member x = (x1, · · · , xn)

T ∈
{0, 1}T , where xi = 1 with probability equal to 0.5. For HEMH, the parameter H́

that controls the population size Ń is also considered. HEMH uses the parameters
α=0.1 and β=0.5. The maximum number of evaluations (Mevls) is used as a stop-
ping criterion for each algorithm. For fair comparison, the same archiving strategy
based on paε-dominance [4] are applied to each algorithm to get the final approxi-
mation set. The paε-dominance uses the archive size (As) listed in Table 1. HEMH
applies the path relinking proposed here. Single-point crossover and standard mu-
tation are considered. Mutation was performed for each item independently with
probability (1/n). The other control parameters are listed in Table 2. Finally, the
statistical analysis is applied on 30 independent runs for each instance.

Table 1. Set of knapsack instances

Inst. m n N(H) Ń(H́) As Mevls
KS252 2 250 150(149) 75(74) 150 75000
KS502 2 500 200(199) 100(99) 200 100000
KS752 2 750 250(249) 125(124) 250 125000
KS253 3 250 300(23) 153(16) 200 100000
KS503 3 500 300(23) 153(16) 250 125000
KS753 3 750 300(23) 153(16) 300 150000
KS254 4 250 364(11) 165(8) 250 125000
KS504 4 500 364(11) 165(8) 300 150000
KS754 4 750 364(11) 165(8) 350 175000

Table 2. Set of common parameters

Parameters
HEMH

- -de -pr -2
Neighborhood size: T 10 10 10 10
Max. replaced sols: t 2 2 2 2
Parents selection: δ 0.9 - - -
Min. support: σ {1} - - -
Ratio controls PR: γ - - 0.8 0.8
Min. Ham. Distance: ε 10 - 10 10
Crossover rate: CR0 - 0.4 - 0.4
Plus constant: a - 2 - 2

112 A. Kafafy, A. Bounekkar, and S. Bonnevay

7.2 Assessment Metrics

Let A,B ⊂ �m be two approximations to PF , P ∗, r∗ ⊂ �m be a reference set
and a reference point respectively. The following metrics can be expressed as:

1. The Set Coverage. (IC) [15] is used to compare two approximation sets.
The function IC maps the ordered pair (A,B) to the interval [0, 1] as:

IC(A,B) = |{u|u ∈ B, ∃v|v ∈ A : v � u}| /|B| (8)

where IC(A,B) is the percentage of the solutions in B that are dominated by
at least one solution from A. IC(B,A) is not necessarily equal to 1-IC(A,B).
If IC(A,B) is large and IC(B,A) is small, then A is better than B in a sense.

2. The Hypervolume. (IH) [15] for a set A is defined as:

IH(A) = L(∪u∈A {y|u � y � r∗}) (9)

where L is the Lebesgue measure of a set. IH(A) describes the size of the
objective space that is dominated by A and dominates r∗. We use the refer-
enced indicator such that: IRH(A) = IH(P ∗)− IH(A) and r∗ is the origin.

3. The Generational. (IGD) and Inverted Generational Distance (IIGD) of a
set A are defined as:

IGD(A,P ∗) = 1
|A|
∑

u∈A{minv∈P∗d(u, v)}
IIGD(A,P ∗) = 1

|P∗|
∑

u∈P∗{minv∈Ad(u, v)} (10)

where d(u, v) is the Euclidean distance between u,v in �m. The IGD(A,P ∗)
measures the average distance from A to the nearest solution in P ∗ that
reflects the closeness of A to P ∗. In contrast, the IIGD(A,P ∗) measures the
average distance from P ∗ to the nearest solution in A that reflects the spread
of A to a certain degree.

4. R-indicator. (IR3) [6] uses a set of utility functions u, which can be any
scalar function. both of weighted sum and weighted Tchebycheff functions
with a sufficiently large set of evenly distributed normalized weight vectors
(Λ) are used. IR3 can be evaluated as follows:

IR3(A,P
∗) =

∑
λ∈Λ [u∗(λ, P ∗)− u∗(λ,A)] /u∗(λ, P ∗)

|Λ| (11)

where u∗(λ,A)=maxz∈Au(λ, z), u(λ, z) =−(max1≤j≤mλj |z∗j−zj|+ρ
∑m

j=1 |z∗j−
zj |), ρ is a small positive integer, and for each weight vector λ ∈ Λ, λ =
[λ1, · · · , λm] such that λi ∈ [0, 1] and

∑m
i=1 λi = 1.

Here, the reference set P ∗ for each instance is formed by gathering all efficient
solutions found by all algorithms in all runs. Also, all approximation sets are
normalized in the range [1,2].

HEMH2: An Improved MEMH for 0/1 Multiobjective Knapsack Problems 113

IC(*,HEMHde) IC(HEMHde, ∗) IC(*,HEMHpr) IC(HEMHpr,*) IC(*,HEMH2) IC(HEMH2,*)

M
O
E
A
/
D

H
E
M

H

Fig. 1. Results of IC indicator

8 Experimental Results

Here, the different simulation results are shown in details. Firstly, Fig.1 depicts
the results of IC metric. It contains a chart (with scale 0 at the bottom and 1
at the top) for the ordered pairs depicted. Each chart consists of nine box plots
representing the distribution of IC values. Each box plot (from left to right)
represents an instance in Table 1 (from top to down) respectively. It is clear
from the results in Fig.1 that all proposals HEMH2, HEMHde and HEMHpr

outperform the original MOEA/D in all test instances. Whereas, Both HEMH2
and HEMHde outperform HEMH for all test instances. Also, HEMHpr slightly
performs better than HEMH in most test instances.

Table 3. Average Referenced Hypervolume (IRH)

Inst.
Algorithms

MOEA/D HEMH HEMHde HEMHpr HEMH2
KP252 4.66E-02 1.02E-02 6.07E-03 9.33E-03 6.08E-03
KP502 5.67E-02 1.55E-02 5.57E-03 1.16E-02 5.56E-03
KP752 4.73E-02 1.64E-02 3.84E-03 7.34E-03 3.94E-03
KP253 2.24E-01 1.21E-01 8.85E-02 1.09E-01 8.77E-02
KP503 2.76E-01 1.16E-01 7.39E-02 9.01E-02 7.39E-02
KP753 2.89E-01 8.85E-02 6.48E-02 7.63E-02 6.39E-02
KP254 8.56E-01 5.55E-01 4.26E-01 4.90E-01 4.27E-01
KP504 1.07E+00 4.53E-01 3.96E-01 4.10E-01 3.84E-01
KP754 1.23E+00 3.93E-01 3.54E-01 3.64E-01 3.41E-01

0.0E+00

5.0E-01

1.0E+00

1.5E+00

Fig. 2. Average Results

Table 4. Average Generational Distance (IGD)

Inst.
Algorithms

MOEA/D HEMH HEMHde HEMHpr HEMH2
KP252 1.50E-03 5.17E-04 3.40E-04 5.74E-04 3.37E-04
KP502 1.53E-03 4.41E-04 1.44E-04 3.12E-04 1.54E-04
KP752 1.33E-03 4.77E-04 7.52E-05 1.91E-04 7.81E-05
KP253 1.98E-03 6.83E-04 3.92E-04 6.82E-04 3.88E-04
KP503 2.25E-03 4.95E-04 2.76E-04 4.25E-04 2.70E-04
KP753 2.16E-03 3.63E-04 2.17E-04 2.77E-04 2.07E-04
KP254 2.52E-03 1.14E-03 6.07E-04 9.13E-04 6.14E-04
KP504 3.45E-03 6.63E-04 4.08E-04 5.14E-04 3.62E-04
KP754 3.79E-03 4.91E-04 2.88E-04 3.56E-04 2.53E-04

0.0E+00

1.0E-03

2.0E-03

3.0E-03

4.0E-03

Fig. 3. Average Results

114 A. Kafafy, A. Bounekkar, and S. Bonnevay

Table 5. Average Inv. Generational Dist. (IIGD)

Inst.
Algorithms

MOEA/D HEMH HEMHde HEMHpr HEMH2
KP252 9.32E-04 4.83E-04 3.49E-04 4.51E-04 3.50E-04
KP502 7.31E-04 2.72E-04 1.31E-04 2.10E-04 1.32E-04
KP752 5.41E-04 2.43E-04 7.89E-05 1.14E-04 7.95E-05
KP253 6.31E-04 4.48E-04 3.83E-04 4.41E-04 3.84E-04
KP503 5.28E-04 3.33E-04 2.58E-04 2.99E-04 2.60E-04
KP753 4.55E-04 2.46E-04 1.93E-04 2.24E-04 1.95E-04
KP254 6.75E-04 5.69E-04 4.88E-04 5.33E-04 4.91E-04
KP504 5.95E-04 4.04E-04 3.46E-04 3.67E-04 3.46E-04
KP754 5.46E-04 3.28E-04 2.71E-04 2.85E-04 2.70E-04

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

Fig. 4. Average Results

Table 6. Average R3 indicator (IR3)

Inst.
Algorithms

MOEA/D HEMH HEMHde HEMHpr HEMH2
KP252 6.05E-03 1.88E-03 1.29E-03 2.32E-03 1.30E-03
KP502 7.30E-03 2.06E-03 6.89E-04 1.62E-03 7.12E-04
KP752 6.88E-03 2.47E-03 5.46E-04 1.21E-03 5.54E-04
KP253 1.11E-02 5.62E-03 4.49E-03 5.24E-03 4.48E-03
KP503 1.34E-02 5.16E-03 3.83E-03 4.60E-03 3.78E-03
KP753 1.42E-02 4.25E-03 3.38E-03 3.92E-03 3.32E-03
KP254 1.61E-02 9.70E-03 7.86E-03 8.84E-03 7.84E-03
KP504 2.02E-02 7.91E-03 7.18E-03 7.40E-03 7.06E-03
KP754 2.39E-02 7.02E-03 6.02E-03 6.26E-03 5.82E-03

0.0E+00

5.0E-03

1.0E-02

1.5E-02

2.0E-02

2.5E-02

Fig. 5. Average Results

In Tables 3, 4, 5 and 6, the average values of the indicators IRH , IGD, IIGD

and IR3 are listed respectively. Additionally, Figures 2, 3, 4 and 5 visualize
theses values in the same order. Each of those tables contains the average values
achieved over 30 independent runs for each test instance for each algorithm.
Based on those results, it is clear that the proposals HEMH2, HEMHde and
HEMHpr outperform the original MOEA/D and HEMH. Sience they have the
minimum average values. Moreover, the proposed HEMH2 and HEMHde has the
superiority for all test instances, followed by HEMHpr, which confirm the results
of IC metric.

In some cases, it is observed that HEMHde achieves better results than HEMH2
and HEMHpr, depending on adaptive binary DE, which reflects that the adap-
tive binary DE capabilities in exploring the search space is more effective than
path relinking and classical crossover and mutation.

9 Conclusion

In this paper, an improved hybrid evolutionary metaheuristics HEMH2 and two
other variants called HEMHde and HEMHpr were proposed to enhance HEMH
performance. The HEMH2 adopts the inverse greedy procedure in its initializa-
tion phase. Both adaptive binary DE and path relinking operators are used. The
HEMHde only uses adaptive binary DE. Whereas, HEMHpr uses crossover and
mutation beside path relinking. The proposals were compared with the original
MOEA/D and HEMH using a set of MOKSP instances from the literature. A set

HEMH2: An Improved MEMH for 0/1 Multiobjective Knapsack Problems 115

of quality indicators was also used to assess the performance. The experimental
results indicate the superiority of all proposals over the original MOEA/D and
HEMH based on the assessment indicators used in this study. According to the
results, we can deduce that the adaptive binary DE included in both HEMH2
and HEMHde has better exploration capabilities which overcome the local search
capabilities contained in the original HEMH. Therefore both of HEMH2 and
HEMHde outperform HEMH. In some cases, HEMHde can achieve highly com-
petitive results compared with HEMH2 based on the adaptive binary DE which
can achieve better performance than path relinking. In the future work, the tun-
ing parameters of HEMH2 and its variants will be investigated. Moreover, other
metaheuristics will be studied to improve the performance of HEMH2 and to
handle other types of combinatorial optimization problems.

References

1. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Computing Surveys (CSUR) 35(3), 268–308 (2003)

2. Chakraborty, U.K. (ed.): Advances in Differential Evolution. SCI, vol. 143.
Springer, Berlin (2008)

3. Deb, K., Pratab, A., Agrawal, S., Meyarivan, T.: A fast and elitist multiobjec-
tive genetic algorithm: NSGAII. IEEE Trans. on Evolutionary Computation 6(2),
182–197 (2002)

4. Hernández-Dı́az, A.G., Santana-Quintero, L.V., Coello, C.A., Luque, J.M.: Pareto-
adaptive epsilon-dominance. Evolutionary Computation 15(4), 493–517 (2007)

5. Jaszkiewicz, A.: On the performance of multiple-objective genetic local search on
the 0/1 knapsack problem - A comparative experiment. IEEE Transactions on
Evolutionary Computation 6(4), 402–412 (2002)

6. Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: IEEE
International Conference in E-Commerce Technology, vol. 1, pp. 711–716 (2002)

7. Kafafy, A., Bounekkar, A., Bonnevay, S.: A hybrid evolutionary metaheuristics
(HEMH) applied on 0/1 multiobjective knapsack problems. In: GECCO 2011, pp.
497–504 (2011)

8. Kafafy, A., Bounekkar, A., Bonnevay, S.: Hybrid metaheuristics based on MOEA/D
for 0/1 multiobjective knapsack problems: A comparative study. In: IEEE World
Congress on Computational Intelligence (WCCI 2012), Brisbane, June 10-15, pp.
3616–3623 (2012)

9. Lozanoa, M., Garćıa-Mart́ınez, C.: Hybrid metaheuristics with evolutionary algo-
rithms specializing in intensification and diversification: Overview and progress
report. Computers and Operations Research 37(3), 481–497 (2010)

10. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)
11. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Ap-

proach to Global Optimization, 1st edn. Natural Computing Series. Springer (2005)
12. Ribeiro, C., Uchoa, E., Werneck, R.F.: A hybrid GRASP with perturbations for the

Steiner problem in graphs. Informs Journal on Computing 14(3), 228–246 (2002)
13. Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on

Decomposition. IEEE Trans. on Evolutionary Computation 11(6), 712–731 (2007)

116 A. Kafafy, A. Bounekkar, and S. Bonnevay

14. Zhang, M., Zhao, S., Wang, X.: Multi-objective evolutionary algorithm based on
adaptive discrete Differential Evolution. In: IEEE Congress on Evolutionary Com-
putation (CEC 2009), pp. 614–621 (2009)

15. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case
study and the strength Pareto evolutionary algorithm. IEEE Transaction on Evo-
lutionary Computation 3, 257–271 (1999)

16. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evo-
lutionary Algorithm for Multiobjective Optimization. In: Proceedings of Evolution-
ary Methods for Design, Optimization and Control with Application to Industrial
Problems (EUROGEN 2001), Athena, Greece, pp. 95–100 (2001)

Guided Reproduction in Differential Evolution

Prashant Singh Rana, Harish Sharma, Mahua Bhattacharya,
and Anupam Shukla

ABV-Indian Institute of Information Technology and Management,
Gwalior, MP, India

{psrana,harish.sharma0107}@gmail.com
http://www.iiitm.ac.in

Abstract. Differential Evolution (DE) is a vector population based and
stochastic search optimization algorithm. DE converges faster, finds the
global minimum independent to initial parameters, and uses few control
parameters. DE is being trapped in local optima due to its greedy up-
dating approach and inherent differential property. In order to maintain
the proper balance between exploration and exploitation in the popula-
tion a novel strategy named Guided Reproduction in Differential Evo-
lution(GRDE) algorithm is proposed. In GRDE, two new phases are
introduced into classical DE; first phase enhance the diversity while sec-
ond phase exploits the search space without increasing the function eval-
uation. With the help of experiments over 20 well known benchmark
problems 3 real world optimization problems; it has been shown that
GRDE outperform as compared with classical DE.

Keywords: Differential Evolution, Reproduction, Evolutionary Algo-
rithm, Meta-heuristics.

1 Introduction

Differential Evolution(DE) was proposed by Rainer Storn and Ken Price in 1995.
DE is a very popular evolutionary algorithm (EA) and exhibits good results in
a wide variety of problems from diverse fields [12]. Like other EAs, DE uses
mutation, crossover, and selection operators at each generation to move its pop-
ulation towards the global optimum. The DE performance mainly depends on
two components, one is its trial vector generation strategy (i.e. mutation and
crossover operators), and the other is its control parameters (i.e. population size
NP, scaling factor F, and crossover rate CR). When we use DE to solve opti-
mization problems, we first determine the trial vector and then tune the control
parameters by a trial-and-error procedure.

Researchers are continuously working to improve the performance of DE. Some
of the recently developed versions of DE with appropriate applications can be
found in [1]. Experiments over several numerical benchmarks [15] show that DE
performs better than the genetic algorithm (GA) [6] and particle swarm optimiza-
tion (PSO) [7]. DE has successfully been applied to various areas of science and

� Corresponding author.

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 117–127, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.iiitm.ac.in

118 P. Singh Rana et al.

technology, such as chemical engineering [9], signal processing [2], mechanical en-
gineering design [14], machine intelligence, and pattern recognition [11].

DE also outperforms in multi-model and constrained problems. These results
indicate that DE has the advantage of fast convergence and low computational
consumption of function evaluations. Though DE performs well in many fields, its
fast convergence property usually leads the optimization process to be trapped by
a local optimum [8, 10, 13]. This disadvantage comes from the two aspects of DE:
greedy updating method and intrinsic differential property. The greedy updating
strategy and differential operation result a premature convergence in DE [8,
10]. To overcome the aforementioned drawback and to find a trade-off between
exploration and exploitation capability of DE, a new strategy is proposed named
Guided Reproduction in Differential Evolution (GRDE).

Rest of the paper is organized as follows: Section 2 describes brief overview of
classical Differential Evolution algorithm. Section 3 describe the detail working
of GRDE. In section 4 the proposed strategy is tested over benchmark and real
world optimization problems and statistical tests are carried out. Finally, in
section 5 paper is concluded.

2 Classical Differential Evolution Algorithm

In DE, initially the population is generated randomly with uniform distribution
followed by mutation, crossover and selection operation to generate a new pop-
ulation. The generation of trial vector is a crucial step in DE process. The two
operators mutation and crossover are used to generate the trial vectors. The
selection operator is used to select the best trial vector for the next generation.
DE operators are explained briefly in following subsections.

Mutation: A trial vector is generated by the DE mutation operator for each
individual of the current population. For generating the trial vector, a target
vector is mutated with a weighted differential. An offspring is produced in the
crossover operation using the newly generated trial vector. If G is the index for
generation counter, the mutation operator for generating a trial vector ui(G)
from the parent vector xi(G) is defined as follows:

• Select a target vector, xi1(G), from the population, such that i �= i1.
• Again, randomly select two individuals, xi2 and xi3, from the population
such that i �= i1 �= i2 �= i3.

• Then the target vector is mutated for calculating the trial vector as follows:

ui(G) = xi1(G) + F ×
Variation Component︷ ︸︸ ︷
(xi2(G)− xi3(G))︸ ︷︷ ︸
Step size

(1)

where F ∈ (0, 1) is the mutation scale factor which is used in controlling the
amplification of the differential variation [5].

GRDE 119

Crossover: Offspring x′
i(G) is generated using the crossover of parent vector,

xi(G) and the trial vector, ui(G) as follows:

x′
ij(G) =

{
uij(G), if j ∈ J

xij(G), otherwise.
(2)

J is the set of crossover points or the points that will go under perturbation,
xij(G) is the jth element of the vector xi(G).

Selection: There are two functions of the selection operator, first it select the
individual for the mutation operation to generate the trial vector and second, it
selects the best between the parent and the offspring based on their fitness value
for the next generation. If the fitness of the offspring is better than the parent
than it replaces the parent else parent remain in the population.

xi(G+ 1) =

{
x′
i(G), if f(x′

i(G)) > f(xi(G)).

xi(G), otherwise.
(3)

This ensures that the population’s average fitness does not deteriorate. The
pseudo code for classical DE strategy is described in Algorithm 1 [5], where F
is the scale factor, CR is the crossover rate and P is the population vector.

Algorithm 1. Classical Differential Evolution

Initialize the control parameters;
Initialize the population;
while stopping condition(s) not true do

for each individual xi(G) ∈ P (G) do
(i) Evaluate the fitness, f(xi(G));
(ii) Create the trial vector, ui(G) by applying the mutation operator;
(iii) Create an offspring, x′

i(G), by applying the crossover operator;
if f(x′

i(G)) is better than f(xi(G)) then
Add x′

i(G) to P (G+ 1);
else

Add xi(G) to P (G+ 1);
end if

end for
end while
Return the individual with the best fitness as the solution;

3 GRDE: Guided Reproduction in Differential Evaluation

To overcome the drawbacks of classical DE, the two new phases are introduced
that maintain the proper balance between exploration and exploitation and
maintain the diversity in the population. The Figure 1 describes the methodol-
ogy of GRDE. During experiments, it is observed that classical DE solves the

120 P. Singh Rana et al.

START

Randomly initialize the POP

Classical DE

Is termination
criteria met

Replace WORST 30% POP with
random selected from BEST 50%

POP

500 Iterations

Classical DE

50 Iterations

Is termination
criteria met

Replace WORST 10% POP
randomly

Classical DE

50 Iterations

yes

no

no

yes
STOP

STOP

Phase 2

Phase 3

Phase 1

Fig. 1. Guided Reproduction in DE

most of the benchmark problems very quickly or unable to solve. GRDE trying
to utilize the fast solving capability of DE. In the proposed strategy two new
phases are introduced namely phase 2 and phase 3.

In the phase 1, the classical DE is executed for finding the required result
of the given problem. Therefore phase 1 is executed for 500 iterations that ex-
plore and exploit the search space. If the required results are not obtained in the
phase 1 then it enters into the phase 2. Both Phase 2 and Phase 3 are run for 50
iterations and consider as learning period. In Phase 2, worst 30% population is
replaced by using the best 50% population. Every dimension of new individual
is selected from randomly selected individuals corresponding dimensions from
the best 50%population. This strategy is considered as guided reproduction of
the population. The new individuals are reproduced using the best population,
therefore the new population exploits the search space around the best popula-
tions. Further, as shown in Figure 1, the DE algorithm is executed for next 50
iterations and checked that the objective is achieved or not.

GRDE 121

Phase 3 maintains the exploration in which the worst 10% population is re-
placed by randomly initialized population in the search space. This phase is used
to maintain the diversity in the population and to get-ride of stagnation prob-
lem. After it, the DE algorithm is again executed for further 50 iteration and
checked the objective value. The phase 1 and 2 is repeatedly executed till the
termination criteria is not satisfied, therefore it is expected that these two phases
maintain the balance between exploration and exploitation, without increasing
the function evaluation. The percentage of population selected for reproduction
and randomly initialization are adopted based on the empirical study. There
may be other strategies also for selection of the percentage of population for
regeneration and randomly initialization.

The pseudo-code of the proposed strategy is described in algorithm 2. The
phase 2 and phase 3 are explained in Algorithms 3 and 4 respectively.

Algorithm 2. GRDE: Guided Reproduction in Differential Evaluation

Phase 1: Randomly initialize the Population.
Step 1: Run Classical DE for 500 iterations, STOP if termination criteria met.

Phase 2: For exploitation.
Step 2: Replace WORST 30% populations (dimension wise) by randomly

selected individual from BEST 50% Population.
Step 3: Run Classical DE for 50 iterations, STOP if termination criteria met.

Phase 3: For adding diversity in Population for exploration.
Step 4: Replace WORST 10% Population randomly.
Step 5: Run Classical DE for 50 iterations, STOP if termination criteria met.
Step 6: Repeat STEP 2 to STEP 6 until termination criteria met.

END

Algorithm 3. GRDE: Phase 2

STEP1: Select BEST 50% individuals from current population;
STEP2: Generate 30% new Population as follows:

N=(Population Size / 100) * 30
for every i in [1,2,.....N]:
for every j in [1,2,.....DIM]:
select an individual r from BEST 50% population;
xij = xrj

STEP3: Replace newly generated Population with WORST 30% population.

Algorithm 4. GRDE: Phase 3

STEP1: Generate 10% new random population as follows:
M=(Population Size / 100) * 10
for every i in [1,2,.....M]:
for every j in [1,2,.....DIM]:
xij = rand(LB[i][j], UB[i][j])

STEP2: Replace newly generated Population with WORST 10% population.

122 P. Singh Rana et al.

4 Experiment Results and Discussion

In this section, DE and GRDE are compared in terms of performance, reliability
and accuracy. To test DE and GRDE over benchmark and real world problems
following experimental setting is adopted:

• The crossover probability CR=0.9,
• The scale factor which controls the implication of the differential variation
F=0.5; [12],

• Population size NP=100,
• The stopping criteria is either maximum number of function evaluation which
is set to be 3 × 105 is reached or the required error is achieved. Respective
acceptable error for each test problem is mentioned in Table 1,

• The number of simulations =100,

The algorithms (DE and GRDE) tested over 20 (f1 − f20) benchmark problems
mentioned in Table 1.

Table 1. Test problems

Objective Function Search Optimum D Acceptable

Space Value Error

f1=
∑D

i=1 i.(xi)
4 [-5.12, 5.12] 0 30 1.0E-05

f2=1 + 1
4000

∑D
i=1 x

2
i −

∏D
i=1 cos(

xi√
i
) [-600, 600] 0 30 1.0E-05

f3=
∑D

i=1(100(xi+1 − x2
i)

2 + (xi − 1)2) [-30, 30] 0 30 1.0E-02

f4=10D +
∑D

i=1[x
2
i − 10 cos(2πxi)] [-5.12, 5.12] 0 30 1.0E-05

f5=−20 + e+ exp(− 0.2
D

√∑D
i=1 xi

3) [-1, 1] 0 30 1.0E-05

−exp(1
D

∑D
i=1 cos (2π.xi)xi)

f6=−∑D
i=1 sin xi(sin(

i.xi
2

π
)20) [0, π] -9.66015 10 1.0E-05

f7=1− cos(2π
√∑D

i=1 x
2
i) + 0.1(

√∑D
i=1 x

2
i) [-100, 100] 0 30 1.0E-01

f8=−∑D−1
i=1

(
exp

(
−(x2

i+x2
i+1+0.5xixi+1)

8

)
× I

)
[-5, 5] -D+1 10 1.0E-05

where, I = cos
(
4
√

x2
i + x2

i+1 + 0.5xixi+1

)
f9=a(x2 − bx2

1 + cx1 − d)2 + e(1− f) cosx1 + e x1=[-5, 10], 1
8Π

2 1.0E-05

where, a = 1, b = 5.1
4Π2 , c =

5
Π
, d = 6, e = 10 x2=[0, 15]

f10=
∑11

i=1[ai − x1(b
2
i+bix2)

b2
i
+bix3+x4

]2 [-5, 5] 0.000307486 4 1.0E-05

f11=
∑D

i=1 z
2
i + fbias, [-100, 100] 450 10 1.0E-05

where, z = (x− o), x = [x1, ...xD], o = [o1, ...oD]

f12=
∑D

i=1(z
2
i − 10 cos(2πzi) + 10) [-5, 5] -330 10 1.0E-02

where, z = (x− o), x = [x1, ...xD], o = [o1, ...oD]

f13=
∑D

i=1(
∑i

j=1 zj)
2 [-100, 100] -450 10 1.0E-05

where, z = (x− o), x = [x1, ...xD], o = [o1, ...oD]

f14=
∑D

i=1

z2i
4000

−∏D
i=1 cos(

zi√
i
) + 1 [-600, 600] -180 10 1.0E-05

where, z = (x− o), x = [x1, ...xD], o = [o1, ...oD]

f15=−20 exp(−0.2
√

1
D

∑D
i=1 z

2
i)− exp(1

D

∑D
i=1 cos(2πzi)) + 20 + e [-32, 32] -140 10 1.0E-05

where, z = (x− o), x = (x1, ...xD), o = (o1, ...oD)

f16=
∑D−1

i=1 (100(z2i − zi+1)
2 + (zi − 1)2) [-100, 100] 390 10 1.0E-01

where, z = (x− o+ 1), x = [x1,xD], o = [o1, ...oD]

f17= (1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2))· [-2, 2] 3 2 1.0E-14

(30 + (2x1 − 3x2)
2(18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2))

f18=(1− 8x1 + 7x2
1 − 7/3x3

1 + 1/4x4
1)x

2
2 exp(−x2) x1=[0, 5] -2.3458 2 1.0E-06

x2=[0, 6]

GRDE 123

Table 1. (continued)

Objective Function Search Optimum D Acceptable

Space Value Error

f19=−[A
∏n

i=1 sin(xi − z) +
∏n

i=1 sin(B(xi − z))] [0, 180] -3.5 10 1.0E-02

where,A = 2.5, B = 5, z = 30

f20=
∑D

i=1 (5ix
2
i) [-5.12, 5.12] 0 30 1.0E-15

Pressure vessel confinement method [16] x1=[1.1, 12.5]

f21=0.6224x1x3x4 + 1.7781x2x
2
3 + 3.1661x2

1x4 + 19.84x2
1x3 x2=[0.6, 12.5] 0 6 1.0E-05

x3=[0, 240]

x4=[0, 240]

Lennard jones [3]

f22:pi = (xi, yi, zi)}; i = 1, ...D, [-2, 2] -9.103852 3 1.0E-03

VD(p) =
∑D−1

i=1

∑D
j=i+1(r

−12
ij − 2.r−6

ij)

Parameter Estimation for Frequency-Modulated [3](FM)

f23=
∑100

t=0(y(t)− y◦(t))2 [-6.4,6.35] 0 6 1.0E-05

To test the robustness of the proposed strategy, it is tested over 3 real world
optimization problems (f21 − f23) namely Pressure vessel confinement method
[16], Lennard Jones [3] and Parameter Estimation [3] for Frequency-Modulated
(FM) mentioned in Table 1. Numerical results are given in Table 2. In Table
2, standard deviation (SD), mean error (ME), average function evaluations
(AFE) and success rate (SR) are reported. Table 2 shows that most of the time
inclusion of guided reproduction in DE improves the reliability, efficiency and
accuracy. Performance index statistical analysis has been carried out for results
of classical DE and GRDE.

In order to compare the consolidated performance of DE with GRDE, the
value of a performance index PI [4] is computed. This index gives a weighted
importance to the success rate, the mean error as well as the average num-
ber of function evaluations. Assume that k1, k2 and k3 (k1 + k2 + k3 = 1 and
k1, k2, k3 ≤ 1) are the weights assigned to success rate, average number of func-
tion evaluations and mean error respectively. The resultant cases are as follows:

1. k1 = W,k2 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

2. k2 = W,k1 = k3 = 1−W
2 , 0 ≤ W ≤ 1;

3. k3 = W,k1 = k2 = 1−W
2 , 0 ≤ W ≤ 1;

Table 2. Comparison of the results of test problems

Test DE GRDE

Problems SD ME AFE SR SD ME AFE SR

f1 7.76E − 07 3.88E − 07 53456 100 1.02E − 06 5.10E − 07 53054.8 100

f2 0.00158259 7.91E − 04 85200 96 0.000979905 4.90E − 04 77827.7 99

f3 0.132631827 6.63E − 02 295093 33 0.625728863 3.13E − 01 294896.9 33

124 P. Singh Rana et al.

Table 2. (continued)

Test DE GRDE

Problems SD ME AFE SR SD ME AFE SR

f4 22.65206375 1.13E + 01 300000 0 5.206093525 2.60E + 00 300030 0

f5 4.59E − 07 2.30E − 07 102831 100 5.99E − 07 2.99E − 07 101005.2 100

f6 0.020436685 1.02E − 02 235895 56 0.019530448 9.77E − 03 180142.9 66

f7 0.034188442 1.71E − 02 299219 4 0.037919187 1.90E − 02 296240.7 6

f8 0.414863257 2.07E − 01 234605 68 0.320114802 1.60E − 02 220626.4 72

f9 7.20E − 06 4.03E − 06 62779 80 6.04E − 06 3.55E − 06 36185.3 89

f10 0.000333271 1.67E − 04 55535 84 0.000272671 1.36E − 04 38104 90

f11 1.36E − 06 6.80E − 07 18838 100 1.59E − 06 7.95E − 07 18743 100

f12 15.35514103 7.68E + 00 300000 0 11.77034447 5.89E + 00 300030 0

f13 5869.778866 2.93E + 03 300000 0 3987.106069 1.99E + 03 300030 0

f14 0.009648219 4.82E − 03 225114 68 0.003092198 1.55E − 03 166697.6 90

f15 9.40E − 07 4.71E − 07 28596 100 7.98E − 07 3.99E − 07 28467 100

f16 0.006709735 3.35E − 03 44458 100 0.006066271 3.03E − 03 44998.9 100

f17 4.78E − 14 2.28E − 14 158867 48 4.81E − 14 2.28E − 14 153012 50

f18 2.51E − 06 1.21E − 06 285081 5 3.83E − 06 1.88E − 06 261214.1 13

f19 0.158572269 7.93E − 02 300000 0 0.214693134 1.07E − 01 292254.8 23

f20 8.25E − 17 4.13E − 17 141010 100 1.03E − 16 5.15E − 17 138050.9 100

f21 3.69E − 05 1.68E − 05 150990 53 3.50E − 05 1.62E − 05 114412.2 66

f22 0.576294693 2.88E − 01 275671 61 0.625329126 3.13E − 01 274588.7 61

f23 4.991971307 2.50E − 00 104837 79 4.646551167 2.32E − 00 98862.7 81

The graphs corresponding to each of the cases (1), (2) and (3) are shown
in Figure 2(a), 2(b), and 2(c) respectively. In these figures the horizontal axis
represents the weight W and the vertical axis represents the performance index
PI. In case (1), average number of function evaluations and the mean error are
given equal weights. PIs of DE and GRDE are superimposed in the Figure 2(a)
for comparison of the performance. It is observed that for GRDE, the value of
PI is more than the classical DE. In case (2), equal weights are assigned to the
success rate and average function evaluations and in case (3), equal weights are
assigned to the success rate and the mean error. It is clear from Figure 2(b)and
Figure 2(c) that the algorithms perform same as in case (1). Therefore, it is
concluded that the GRDE is better than classical DE.

DE and GRDE are also compared through SR, ME and AFE. First SR is
compared for both the algorithms and if it is not possible to distinguish the algo-
rithms based on SR then comparison is made on the basis of ME. AFE is used

GRDE 125

for comparison if it is not possible on the basis of SR and ME both. On the basis
of this comparison, results of Table 2 is analyzed and Table 3 is constructed. In
Table 3, ’+’ indicates that the goodness of GRDE and ’-’ indicate that there is no
significant improvement of GRDE over classical DE. It is observed from Table 3
that the GRDE outperforms for 15 problems compared to the classical DE.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (k1)

P
er

fo
rm

ac
e

In
d

ex

DE
GRDE

(a)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight(k2)
P

er
fo

rm
an

ce
 In

d
ex

DE
GRDE

(b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weight (k3)

P
er

fo
rm

an
ce

 In
d

ex

DE
GRDE

(c)

Fig. 2. Performance index; (a) for case (1), (b) for case (2) and (c) for case (3)

Table 3. Results of the comparison

Test Problem GRDE Test Problem GRDE

f1 - f13 +

f2 + f14 +

f3 - f15 -

f4 + f16 -

f5 - f17 +

f6 + f18 +

f7 + f19 +

f8 + f20 -

f9 + f21 +

f10 + f22 -

f11 - f23 +

f12 +

126 P. Singh Rana et al.

5 Conclusion

In this paper, premature phenomenon of conventional differential evolution algo-
rithm is analyzed and illustrated with numerical results. A novel Guided Repro-
duction in Differential Evolution (GRDE) strategy is proposed to improve the
global search ability of DE. With the aid of guided reproduction method, GRDE
is able to achieve the balance between exploration and exploitation. Numerical
results of 20 well known bench mark problems and 3 real world problems prove
that the GRDE outperforms the DE in most of the cases.

Future directions of the research: The proposed strategy is an example only
and there may be various strategies for guided reproduction of the population.
Therefore, one required to find a best one strategy which is the best enough to
explores and exploits the search space.

References

[1] Chakraborty, U.K.: Advances in differential evolution. Springer (2008)
[2] Das, S., Konar, A.: Two-dimensional iir filter design with modern search heuristics:

A comparative study. International Journal of Computational Intelligence and
Applications 6(3), 329–355 (2006)

[3] Das, S., Suganthan, P.N.: Problem definitions and evaluation criteria for CEC 2011
competition on testing evolutionary algorithms on real world optimization prob-
lems. Department of Electronics and Telecom-munication Engineering. Technical
Report (2011)

[4] Thakur, M., Deep, K.: A new crossover operator for real coded genetic algorithms.
Applied Mathematics and Computation 188(1), 895–911 (2007)

[5] Engelbrecht, A.P.: Computational intelligence: an introduction. Wiley (2007)
[6] Holland, J.H.: Adaptation in natural and artificial systems, vol. (53). University

of Michigan Press (1975)
[7] Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE

International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)
[8] Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm.

In: Proceedings of MENDEL, pp. 76–83. Citeseer (2000)
[9] Liu, P.K., Wang, F.S.: Inverse problems of biological systems using multi-objective

optimization. Journal of the Chinese Institute of Chemical Engineers 39(5),
399–406 (2008)

[10] Mezura-Montes, E., Velázquez-Reyes, J., Coello Coello, C.A.: A comparative study
of differential evolution variants for global optimization. In: Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation, pp. 485–492. ACM
(2006)

[11] Omran, M.G.H., Engelbrecht, A.P., Salman, A.: Differential evolution methods for
unsupervised image classification. In: The 2005 IEEE Congress on Evolutionary
Computation, vol. 2, pp. 966–973. IEEE (2005)

[12] Price, K.V.: Differential evolution: a fast and simple numerical optimizer. In: 1996
Biennial Conference of the North American Fuzzy Information Processing Society,
NAFIPS, pp. 524–527. IEEE (1996)

GRDE 127

[13] Price, K.V., Storn, R.M., Lampinen, J.A.: Differential evolution: a practical ap-
proach to global optimization. Springer (2005)

[14] Rogalsky, T., Kocabiyik, S., Derksen, R.W.: Differential evolution in aerodynamic
optimization. Canadian Aeronautics and Space Journal 46(4), 183–190 (2000)

[15] Vesterstrom, J., Thomsen, R.: A comparative study of differential evolution, par-
ticle swarm optimization, and evolutionary algorithms on numerical benchmark
problems. In: Congress on Evolutionary Computation, CEC 2004, vol. 2, pp. 1980–
1987. IEEE (2004)

[16] Wang, X., Gao, X.Z., Ovaska, S.J.: A simulated annealing-based immune opti-
mization method. In: Proceedings of the International and Interdisciplinary Con-
ference on Adaptive Knowledge Representation and Reasoning, Porvoo, Finland,
pp. 41–47 (2008)

A Study of Breakout Local Search

for the Minimum Sum Coloring Problem

Una Benlic and Jin-Kao Hao

LERIA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers Cedex 01, France
{benlic,hao}@info.univ-angers.fr

Abstract. Given an undirected graph G = (V,E), the minimum sum
coloring problem (MSCP) is to find a legal assignment of colors (rep-
resented by natural numbers) to each vertex of G such that the total
sum of the colors assigned to the vertices is minimized. In this paper, we
present Breakout Local Search (BLS) for MSCP which combines some
essential features of several well-established metaheuristics. BLS explores
the search space by a joint use of local search and adaptive perturbation
strategies. Tested on 27 commonly used benchmark instances, our algo-
rithm shows competitive performance with respect to recently proposed
heuristics and is able to find new record-breaking results for 4 instances.

Keywords: minimum sum coloring, adaptive perturbation strategy,
heuristic, combinatorial optimization.

1 Introduction

Let G = (V,E) be an undirected graph with vertex set V and edge set E,
a legal k-coloring of G is a mapping C : V → {1, ..., k} such that ∀{v, u} ∈
E,C(v) �= C(u), i.e., no two adjacent vertices are assigned the same color label.
A legal k-coloring C can also be represented as a partition of vertex set V into
k mutually disjoint independent sets (also called color classes) {S1, ..., Sk} such
that

⋃
i Si = V and v ∈ Si if C(v) = i (v receives color label i). The well-

known NP-hard graph coloring problem (GCP) is to determine a legal k-coloring
with the minimum value k. A related problem to the GCP is the minimum
sum coloring problem (MSCP) which consists in finding a legal coloring C =
{S1, ..., Sk} such that the following total sum of color labels is minimized:

Sum(C) =

k∑
i=1

i · |Si| (1)

where |S1| ≥ ... ≥ |Sk| and |Si| is the size of Si (i.e., number of vertices in Si).
The MSCP is known to be NP-hard with several practical applications in-

cluding VLSI design, scheduling, and distributed resource allocation (see [12] for
a list of references). Over the past two decades, it has been studied mainly from
a theoretical point of view. Only recently, several heuristics have been proposed
for the practical solving of the general MSCP [3,4,6,9,10,13].

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 128–137, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Breakout Local Search for the MSCP 129

In this work, we introduce the Breakout Local Search (BLS) for the MSCP.
BLS follows the basic scheme of iterated local search [11] and combines features
from other well-known methods including tabu search [5] and simulated anneal-
ing [8]. The basic idea of BLS is to use descent-based local search to discover
local optima and employ adaptive perturbations to continually move from one
attractor to another in the search space. Based on the information on the state
of search, the perturbation strategy of BLS introduces a varying degree of di-
versification by dynamically determining the number of moves for perturbation
and by adaptively selecting between several types of dedicated moves.

We evaluate the performance of BLS on 27 benchmark graphs which are
commonly used in the literature to test MSCP algorithms. Despite its simplicity,
BLS shows competitive results with respect to the most recent MSCP heuristics.

2 Breakout Local Search (BLS) for the MSCP

2.1 General BLS Procedure

Recall that a local optimum with respect to a given neighborhood N is a so-
lution s∗ such that ∀s ∈ N(s∗), f(s∗) ≤ f(s), where f is the objective func-
tion to be minimized. A basin of attraction of a local optimum l is the set
Bl of solutions that lead the local search to the given local optimum l, i.e.,
Bl = {s ∈ S|LocalSearch(s) = l}. Since a local optimum l acts as an attractor
with respect to the solutions Bl, the terms attractor and local optimum will be
used interchangeably throughout this work.

Basically, our Breakout Local Search (BLS) approach moves from one basin
of attraction formed by a local optimum to another basin by applying a smaller
or larger number of perturbation moves whose type (e.g., random or directed
moves) is determined adaptively. BLS starts from an initial solution C0 and
applies to it local search (descent) to reach a local optimum or an attractor C.
Each iteration of the local search algorithm scans the whole neighborhood and
selects the best improving neighboring solution to replace the current solution. If
no improving neighbor exists, local optimality is reached. At this point, BLS tries
to escape from the basin of attraction of the current local optimum and move
into a neighboring basin of attraction. For this purpose, BLS applies a number
of dedicated moves to the current optimum C (we say that C is perturbed).
Each time an attractor is perturbed, the perturbed solution is used as the new
starting point for the next round of the local search procedure.

If the search returns to the last attractor C, BLS perturbs C more strongly by
increasing the number of moves to be applied for perturbation. After visiting a
certain number of local optima without improving the best solution found so far,
BLS applies a significantly stronger perturbation in order to drive definitively
the search toward a new and more distant region in the search space.

The success of the described method depends crucially on two factors. First,
it is important to determine the number L of perturbation moves (also called
“jump magnitude”) to be applied to change or perturb the solution. Second,

130 U. Benlic and J.-K. Hao

it is equally important to consider the type of perturbation moves to be ap-
plied. While conventional perturbations are often based on random moves, more
focused perturbations using dedicated information could be more effective. The
degree of diversification, introduced by a perturbation mechanism, depends both
on the jump magnitude and the type of moves used for perturbation. A weak
diversification induces a high probability for the local search procedure to cycle
between two or more locally optimal solutions, leading to search stagnation. On
the other hand, a too strong diversification will have the same effect as a random
restart, which usually results in a low probability of finding better solutions in
the following local search phases.

Algorithm 1. Breakout Local Search
Require: Initial jump magnitude L0, jump magnitude Ls for strongest perturbation, max. number

T of non-improving attractors visited before strong perturb.
Ensure: A solution Cbest.
1: GenerateInitialSolution(C)
2: Cbest ← C /* Cbest records the best solution found so far */
3: Cp ← C /* Cp records the last local optimum */
4: ω ← 0 /* Set counter for consecutive non-improving local optima */
5: while stopping condition not reached do
6: if Solution C is not legal then
7: C ← LocalSearch2(C)
8: end if
9: C ← LocalSearch1(C)
10: if (Sum(C) < Sum(Cbest)) and (C is a legal solution) then
11: Cbest ← C; /* Update the best solution found so far */
12: ω ← 0 /* Reset the counter of consecutive non-improving local optima */
13: else
14: ω ← ω + 1
15: end if
16: /* Determine the perturbation strength L to be applied to C */
17: if ω > T then
18: /* Search is stagnating, strongest perturbation required */
19: L ← Ls

20: else if C = Cp then
21: /* Search returned to previous local optimum, increment perturb. strength */
22: L ← L+ 1
23: else
24: /* Search escaped from previous local optimum, reinitialize perturb. strength */
25: L ← L0

26: end if
27: /* Perturb the current local optimum C with L perturbation moves */
28: Cp ← C
29: C ← Perturbation(C, L)
30: end while

Algorithm 1 presents the general BLS algorithm for the MSCP, whose ingre-
dients are detailed in the following sections. BLS starts from an initial random
solution C which may be a conflicting coloring (line 1). To reach a legal coloring,
BLS employs two different local search procedures (lines 6-9, see next section),
based on different move operators and evaluation functions. Once a local opti-
mum is reached, the jump magnitude L is determined depending on whether
the search escaped or returned to the previous local optimum, and whether the
search is stagnating in a non-promising region (lines 17-26). BLS then applies L

Breakout Local Search for the MSCP 131

perturbation moves to C in order to get a new starting point for the local search
procedures (line 29).

2.2 Neighborhood Relations and Evaluation Functions

As previously explained, a solution to sum coloring with k colors can be rep-
resented as a k-partition C = {S1, S2, ..., Sk} of vertices into k disjoint subsets
S1, ..., Sk, where each subset Si, i ∈ {1, ..., k} is associated with a unique integer
i (i.e., color). The objective of MSCP is to find a coloring C that minimizes
the total sum of colors assigned to vertices, while its implicit constraint requires
that any two adjacent vertices {u, v} ∈ E belong to different subsets. If this
constraint is violated, we say the coloring is illegal with conflicting vertices.

A common move for minimum sum coloring and graph coloring problems is
the exchange move (v, j), which consists in moving a vertex (element) v ∈ V from
its current subset Si to another subset Sj (i.e., changing the color of v from i
to j). The proposed BLS algorithm distinguishes two types of move exchange
operators. The first type of move operators only considers exchange moves that
do not violate the implicit problem constraint. For the second type of move
operators, the implicit constraint is not strictly imposed in order to permit more
freedom during the search. These two move operators are used in BLS under
specific conditions as explained below.

If the solution C is a legal coloring, BLS applies to C a local search procedure
(call it LocalSearch1) which consists in identifying the exchange move that
decreases the most the objective value of Eq. (1) such that the new coloring
remains legal. This process is repeated until reaching a local optimum.

If the solution C is an illegal coloring (i.e., with conflicting vertices), before
applying LocalSearch1, BLS first applies another local search procedure (call it
LocalSearch2) which evaluates all the moves (i.e., ∀v ∈ V , and ∀j ∈ {1, ..., k}
and C(v) �= j) by considering both the variation Δconf (v, j) in the number
of conflicts and the variation Δsc(v, j) in the sum of colors when exchanging
the color of vertex v to j. Both Δconf (v, j) and Δsc(v, j) are negative for an
improving move. Each move is then evaluated with the following relation:

Δf(v, j) = Δconf (v, j) ∗ γ(v, j), where (2)

γ(v, j) =

{
abs(Δsc(v, j)) + k + 1 if Δsc(v, j) < 0
k −Δsc(v, j) + 1 otherwise

(3)

LocalSearch2 performs at each step an exchange move with the smallestΔf , and
stops after reaching a solution with no conflicting vertices (i.e., when Δf = 0).
The evaluation function from Eq. 2 ensures that a conflicting vertex is eventu-
ally assigned a color k + 1 in case the conflict cannot be resolved by changing
the color of v to a color less than or equal to k. However, a local optimum at-
tained with LocalSearch2 is not necessarily a local optimum with respect to
LocalSearch1. After reaching a local optimum with LocalSearch2, BLS thus

132 U. Benlic and J.-K. Hao

applies LocalSearch1 to this local optimum which may improve the solution in
terms of the objective value of Eq. (1).

Upon reaching a feasible locally optimal solution, BLS triggers its perturba-
tion mechanism as described in the following section.

2.3 Adaptive Perturbation Mechanism

General Idea. The perturbation mechanism plays a crucial role within BLS
since the descent-based local search alone cannot escape from a local optimum.
BLS thus tries to move to the another basin of attraction by applying perturba-
tions of different intensities depending on the search state. The idea of BLS is to
first explore neighboring attractors. Therefore, after the local search phase, BLS
performs most of the time a weak perturbation (by applying a small number L of
moves) that is hopefully just strong enough to escape the current basin of attrac-
tion and to fall under the influence of a neighboring local optimum. If the jump
was not sufficient to escape the current attractor, the perturbation strength L is
incremented and the perturbation is applied again to the current attractor (lines
20–23 of Alg. 1). Otherwise, the number of perturbation moves L is reset to its de-
fault value, i.e., L = L0. After visiting consecutively T legal local optima without
any improvement of the best solution found, BLS sets the number of perturbation
moves L to a significantly larger value L = L0. (see lines 17–19 of Alg. 1). In addi-
tion to the number of perturbation moves, we also determine which type of moves
are to be applied. Instead of making random jumps all the time, BLS alternates
between several types of dedicated perturbation moves, depending on the desired
amount of diversification (i.e., the state of search).

The Perturbation Strategies. The proposed BLS algorithm employs two
directed perturbation strategies (Dp1 and Dp2), a recency-based perturbation
(RBp) and a random perturbation (Rp).

Directed perturbations are based on the idea of tabu list from tabu search
[5]. These perturbations use a selection rule that favors the moves that minimize
solution degradation, under the constraint that the moves are not prohibited by
the tabu list. Move prohibition is determined in the following way. Each time
vertex v is moved from subset Si to Sj , it is forbidden to move v back to Si

for the next tt iterations (tt takes a random value from a given range). The
information for move prohibition is maintained in a matrix H where the element
Hv,j is the iteration number when vertex v was last moved to subset Sj . The
tabu status of a move is neglected only if the move leads to a new solution better
than the best solution found so far. The directed perturbations rely thus both on
history information and the quality of the moves to be applied for perturbation.

The first directed perturbation Dp1 consists in making a legal non-tabu move
which reduces the most the objective value, under constraint that the move does
not violate an additional problem constraint. The second directed perturbation
Dp2 consists in performing a non-tabu exchange move (v, j) of the smallest
Δf(v, j), ∀v ∈ V , and ∀j ∈ {1, ..., k} and C(v) �= j (see Eq. 2), such that the
number of vertices in Sj is greater than or equal to the number of vertices in
the current subset of v.

Breakout Local Search for the MSCP 133

The recency-based perturbation RBp consists in making the least recent legal
exchange move (v, j) (i.e., a move that would not violate an additional con-
straint) provided that the subset Sj is not empty.

The move with random perturbation Rp consists first in selecting randomly
two non-empty subsets Si and Sj, such that |Si| ≤ |Sj |. A vertex v is then
randomly chosen from Si and moved to its new subset Sj .

Since moves with perturbations Dp2 and Rp always lead to an illegal solution,
we consider them to be stronger than perturbations Dp1 and RBp.

Our BLS approach takes turns probabilistically between a weaker perturba-
tion (Dp1 or RBp) and a stronger perturbation (Dp2 or Rp) depending on the
search state, i.e., the current number of consecutive non-improving legal attrac-
tors visited ω. The idea is to apply weaker perturbation with a higher probability
as the search progresses toward improved new solutions (when ω is small). With
the increase of ω, the probability of using a stronger perturbation increases for
the purpose of an important diversification.

Additionally, it has been observed from an experimental analysis that it is
useful to guarantee a minimum of applications of a weaker perturbation. There-
fore, we constraint the probability P of applying perturbations Dp1 or RBp to
take values no smaller than a threshold P0:

P =

{
e−ω/T if e−ω/T > P0

P0 otherwise
(4)

where T is the maximum number of legal non-improving local optima visited
before carrying out a stronger perturbation.

Given the probability P of applying perturbation Dp1 or RBp over Dp2 or
Rp, the probability of applying perturbation Dp1 over RBp is P · Q1 and P ·
(1 −Q1) respectively, while the probability of applying Dp2 over Rp is defined
by (1−P) ·Q2 and (1−P) · (1−Q2) respectively. Q1 and Q2 are two coefficients
that take a value from [0, 1].

2.4 Experimental Results

Experimental Protocol. Our BLS algorithm is programmed in C++, and
compiled with GNU gcc on a Xeon E5440 with 2.83 GHz and 2 GB. Two sets
of benchmark graphs from the literature which are commonly used to test sum
coloring algorithms are considered in the experiments. The first set is composed
of 11 DIMACS1 (DSJC125.1 to DSJC1000.5) instances. The second benchmark
set is composed of 16 graphs from the COLOR02 competition website2. For all
the instances, we run our BLS algorithm 20 times, with the maximum time
limit set to 2 hours. However, BLS often attains its best result long before
this limit. The parameter settings used to obtain the reported results are the
following: initial jump magnitude L0 = 0.1 ∗ |V |, jump magnitude during strong
perturbation Ls = 0.25∗|V |, maximum number of non-improving legal attractors

1 ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/
2 http://mat.gsia.cmu.edu/COLOR02/

ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/
http://mat.gsia.cmu.edu/COLOR02/

134 U. Benlic and J.-K. Hao

visited before strong perturbation T = 100, smallest probability for applying
weaker perturbation P0 and probability coefficients Q1 and Q2 are set to 0.5.

We compare the performance of BLS with six recent algorithms from the
literature. The comparison is solely based on the quality criterion according to
Eq. (1) since information like the computing time are not always available for
the reference approaches.

Table 1. Computational results of BLS on DIMACS and COLOR02 instances

Name Sum* Sum Avg(Std) t(min) Name Sum* Sum Avg(Std) t(min)
DSJC125.1 326 326 326.9 (0.6) 18.3 jean 217 217 217.0 (0.0) 0.1
DSJC125.5 1015 1012 1012.9 (0.3) 51.0 queen5.5 75 75 75.0 (0.0) 0.0
DSJC125.9 2511 2503 2503.0 (0.0) 1.1 queen6.6 138 138 138.0 (0.0) 0.0
DSJC250.1 977 973 982.5 (3.4) 111.7 queen7.7 196 196 196.0 (0.0) 0.0
DSJC250.5 3246 3219 3248.5 (14.5) 104.1 queen8.8 291 291 291.0 (0.0) 0.8
DSJC250.9 8286 8290 8316 (13.2) 41.6 games120 443 443 443.0 (0.0) 0.5
DSJC500.1 2850 2882 2942.9 (19.6) 112.4 miles250 325 327 328.8 (0.9) 31.1
DSJC500.5 10910 11187 11326.3 (75.3) 118.8 miles500 709 710 713.3 (1.2) 86.3
DSJC500.9 29912 30097 30259.2 (63.3) 37.1 myciel3 21 21 21 (0.0) 0.0
DSJC1000.1 9003 9520 9630.1 (65.7) 112.9 myciel4 45 45 45.0 (0.0) 0.0
DSJC1000.5 37598 40661 41002.6 (169.3) 113 myciel5 93 93 93.0 (0.0) 1.3
anna 276 276 276.0 (0.0) 14.8 myciel6 189 189 196.6 (4.3) 20.0
david 237 237 237.0 (0.0) 2.5 myciel7 381 381 393.8 (8.4) 38.3
huck 243 243 243.0 (0.0) 0.3

Computational Results and Comparisons. Table 1 presents computational
results of our BLS algorithm on the sets of 27 DIMACS and COLOR02 instances.
Column Sum* shows the best-known results for these instances taken from ref-
erences [6,13]. Column Sum indicates the best result obtained with BLS after
20 independent runs. Columns Avg(Std) and t(min) provide respectively the av-
erage and standard deviation values over 20 executions and the average CPU
time in minutes required by BLS to reach its best result. From Table 1, we ob-
serve that for the DIMACS instance, BLS improved the best-known result for
four instances, but failed to reach the best reported result for six other (larger)
instances. The results for instances of COLOR02 benchmark indicate that BLS
attained the best-known result for 14 instances, and was unable to reach the
current best result for two instances. The average computing times required by
BLS to attain its best reported results from column Sum range from less then a
minute up to 120 minutes for the largest instances.

To further evaluate the performance of BLS, we show a comparison with the
following approaches from the literature: a very recent heuristic EXSCOL [13]; a
hybrid local search (HLS) [4]; a greedy algorithm (MRLF) based on the popular
RLF graph coloring heuristic [10]; a parallel genetic algorithm (PGA) [9]; a tabu
search algorithm (TS) [3]; and a recent local search combining ideas of variable
neighborhood search and iterated local search (MDSLS) [6]. EXSCOL [13] is the
current best-performing approach in the literature and is particularly effective
on large graphs. It is based on an iterative extraction of large independent sets,
where each independent set defines a color class. Moreover, EXSCOL is highly
effective in terms of computing time. On the same computing platform as that we
used to test BLS, it requires from 1 minute up to 30 minutes for large graphs (e.g.,
DIMACS1000.X) to reach the reported results. The time limit used by MDSLS

Breakout Local Search for the MSCP 135

[6] is 1 hour on a computer similar to ours. For other reference approaches
[3,4,9,10], details on testing conditions are not available.

Tables 2 and 3 report respectively the comparative results with these reference
algorithms on the tested DIMACS and COLOR02 instances. From the results of
Table 2, we observe that our BLS algorithm outperforms, for each of the tested
DIMACS instance, the reference algorithms MRLF [10], TS [3], and MDSLS [6]
(except on DSJC125.1 where BLS and MDSLS report the same result). However,
compared to the highly effective EXSCOL algorithm [13], BLS shows a worse
performance on large DIMACS instances, but is able to report a better result
than EXSCOL for 4 DIMACS instances up to 250 vertices. Notice that two
reference algorithms HLS and PGA do not report results for these instances.

For the COLOR02 instances, we observe in Table 3 that BLS shows a com-
parable performance to the recent MDSLS algorithm [6] and a slightly better
performance than EXSCOL [13]. Moreover, the best result obtained with BLS
is in each case either better or as good as that reported by HLS [4], MRLF [10]
and PGA [9]. For TS, no results are reported on these instances in [3].

From the given comparison on both sets of benchmarks, we can conclude
that our BLS algorithm for the MSCP is very competitive with the state of art
approaches from the literature.

Table 2. Comparative results between our BLS algorithm and four reference ap-
proaches on the set of DIMACS instances

Name Sum* BLS EXSCOL [13] MRLF [10] TS [3] MDSLS [6]
DSJC125.1 326 326 326 352 344 326
DSJC125.5 1015 1012 1017 1141 1103 1015
DSJC125.9 2511 2503 2512 2653 2631 2511
DSJC250.1 977 973 985 1068 1046 977
DSJC250.5 3246 3219 3246 3658 3779 3281
DSJC250.9 8286 8290 8286 8942 9198 8412
DSJC500.1 2850 2882 2850 3229 3205 2951
DSJC500.5 10910 11187 10910 12717 – 11717
DSJC500.9 29912 30097 29912 32703 – 30872
DSJC1000.1 9003 9520 9003 10276 – 10123
DSJC1000.5 37598 40661 37598 45408 – 43614

Table 3. Comparative results between our BLS algorithm and five reference approaches
on the set of COLOR02 instances

Name Sum* BLS EXSCOL [13] HLS [4] MRLF [10] PGA [9] MDSLS [6]
anna 276 276 283 – 277 281 276
david 237 237 237 – 241 243 237
huck 243 243 243 243 244 243 243
jean 217 217 217 – 217 218 217
queen5.5 75 75 75 – 75 75 75
queen6.6 138 138 150 138 138 138 138
queen7.7 196 196 196 – 196 196 196
queen8.8 291 291 291 – 303 302 291
games120 443 443 443 446 446 460 443
miles250 325 327 328 343 334 347 325
miles500 709 710 709 755 715 762 712
myciel3 21 21 21 21 21 21 21
myciel4 45 45 45 45 45 45 45
myciel5 93 93 93 93 93 93 93
myciel6 189 189 189 189 189 189 189
myciel7 381 381 381 381 381 382 381

136 U. Benlic and J.-K. Hao

3 Discussions

One observes that among the different ingredients of the BLS algorithm (see
Alg. 1), only the neighborhood relations, evaluation functions and perturbation
moves (see sections 2.2 and 2.3) are specific to the MSCP. In fact, BLS is a
generic search framework which inherits and combines features from iterated
local search [11], tabu search [5] and simulated annealing [8]. We briefly discuss
the similarities and differences between our BLS approach and these methods.

Following the general framework of ILS, BLS uses local search to discover lo-
cal optima and perturbation to diversify the search. However, BLS distinguishes
itself from most ILS algorithms by the combination of multiple perturbation
strategies of different intensities, triggered according to the search status. In
particular, a distinction of BLS is in the way a perturbation type is selected. As
explained in Section 2.3, BLS applies a perturbation of weaker diversification
with a higher probability P as the search progresses toward improved new local
optima. This probability is progressively decreased as the number of consecu-
tively visited non-improving local optima ω increases. The idea of an adaptive
change of probability P is inspired by the popular acceptance criterion used in
simulated annealing, which ensures that neighboring solutions (even those of bad
quality) are accepted with higher probability when the temperature is high, and
with lower probability as the temperature decreases.

In order to direct the search toward more promising regions of the search
space, BLS employs directed perturbation strategies based on the notion of tabu
list from tabu search. However, unlike tabu search, BLS does not consider the
tabu list during its local search phases. As such, BLS and tabu search may ex-
plore quite different trajectories during their respective search, leading to differ-
ent local optima. In fact, we believe that diversification during the descent-based
improving phase is unnecessary. The compromise between search exploration and
exploitation is critical only once a local optimum is reached. Other studies sup-
porting this idea can be found in [1,7].

To validate the generality of BLS, in addition to the MSCP presented in this
paper, we have applied BLS to solve several other classical combinatorial opti-
mization problems (quadratic assignment, maximum clique [2], and maximum
cut) and observed very competitive performances on benchmark instances.

4 Conclusion

In this paper, we have presented the Break Local Search algorithm for solving the
minimum sum coloring problem. The computational evaluation of the proposed
algorithm on two sets of 27 DIMACS and COLOR02 benchmark instances has
revealed that BLS is able to improve the best-known results for 4 DIMACS
instances and attain the best-known results for 15 instances while failing to
reach the best ones for 8 instances. These results are competitive compared with
most of the state of art approaches for the MSCP.

Breakout Local Search for the MSCP 137

Acknowledgment. We are grateful to the referees for their comments and
questions which helped us to improve the paper. The work is partially supported
by the Pays de la Loire Region (France) within the RaDaPop (2009-2013) and
LigeRO (2010-2013) projects.

References

1. Battiti, R., Protasi, M.: Reactive search, a history-based heuristic for max-sat.
ACM Journal of Experimental Algorithmics 2 (1996)

2. Benlic, U., Hao, J.K.: Breakout local search for maximum clique problems. Oper-
ations Research 40(1), 192–206 (2013)

3. Bouziri, H., Jouini, M.: A tabu search approach for the sum coloring problem.
Electronic Notes in Discrete Mathematics 36, 915–922 (2010)

4. Douiri, S.M., Elbernoussi, S.: New algorithm for the sum coloring problem. Inter-
national Journal of Contemporary Mathematical Sciences 6, 453–463 (2011)

5. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)
6. Helmar, A., Chiarandini, M.: A local search heuristic for chromatic sum. In: MIC

2011, pp. 161–170 (2011)
7. Kelly, J.P., Laguna, M., Glover, F.: A study of diversification strategies for

the quadratic assignment problem. Computers and Operations Research 21(8),
885–893 (1994)

8. Kirkpatrick, S., Gelett, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220, 621–630 (1983)

9. Kokosiński, Z., Kwarciany, K.: On Sum Coloring of Graphs with Parallel Genetic
Algorithms. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.)
ICANNGA 2007, Part I. LNCS, vol. 4431, pp. 211–219. Springer, Heidelberg (2007)

10. Li, Y., Lucet, C., Moukrim, A., Sghiouer, K.: Greedy algorithms for minimum sum
coloring algorithm. In: Proceedings of LT 2009 (2009)

11. Lourenco, H.R., Martin, O., Stützle, T.: Iterated local search. Handbook of Meta-
heuristics. Springer, Heidelberg (2003)

12. Malafiejski, M.: Sum coloring of graphs. In: Kubale, M. (ed.) AMS Graph Colorings,
pp. 55–65 (2004)

13. Wu, Q., Hao, J.K.: An effective heuristic algorithm for sum coloring of graphs.
Computers & Operations Research 39(7), 1593–1600 (2012)

XCS with Adaptive Action Mapping

Masaya Nakata1, Pier Luca Lanzi2, and Keiki Takadama1

1 Department of Informatics
The University of Electro-Communications, Tokyo, Japan

2 Dipartimento di Elettronica e Informazione
Politecnico di Milano, Milano, Italy

Abstract. The XCS classifier system evolves solutions that represent
complete mappings from state-action pairs to expected returns therefore,
in every possible situation, XCS can predict the value of all the available
actions. Such complete mapping is sometimes considered redundant as
most of the applications (like for instance, classification), usually focus
only on the best action. In this paper, we introduce an extension of XCS
with an adaptive (state-action) mapping mechanism (or XCSAM) that
evolves solutions focused actions with the largest returns. While UCS
evolves solutions focused on the best available action but can only solve
supervised classification problems, our system can solve both supervised
and multi-step problems and, in addition, it can adapt the size of the
mapping to the problems: Initially, XCSAM starts building a complete
mapping and then it slowly tries to focus on the best actions available. If
the problem admits only one optimal action in each niche, XCSAM tends
to focus on such an action as the evolution proceeds. If more actions with
the same return are available, XCSAM tends to evolve a mapping that
includes all of them. We applied XCSAM both to supervised problems
(the Boolean multiplexer) and to multi-step maze-like problems. Our
experimental results show that XCSAM can reach optimal performance
but requires smaller populations than XCS as it evolves solutions focused
on the best actions available for each subproblem.

1 Introduction

The XCS classifier system is a method of genetics-based machine learning [7]
that combines robust reinforcement learning techniques [11] with evolutionary
computation [6] to solve both classification and reinforcement learning problems.
In particular, XCS evolves solutions that represent accurate and complete map-
pings from state-action pairs to expected returns so that the system can predict
the value of all the available actions in every possible situation. The evolution
of a complete mapping ensures that XCS can always evolve optimal, maximally
accurate, maximally general solution to a given problem [8]. However, a com-
plete mapping is sometimes considered redundant as most applications (e.g.,
classification) focus only on the best action (the best classification). To avoid
a complete mapping, Bernado et al. [1] introduced UCS, an extension of XCS
that can only solve classification (one-step) problems, and it is trained using

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 138–147, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

XCS with Adaptive Action Mapping 139

supervised learning instead of reinforcement learning as XCS. While UCS has
been very successful in data mining, its approach cannot generalized to broader
machine learning applications.

In this paper, we introduce an extension of XCS, dubbed XCS with Adaptive
Action Mapping (or XCSAM), that provides a trade-off between XCS and UCS
with respect to the evolved state-action mapping. Like XCS, our system can solve
both reinforcement learning (multi-step) problems and classification (one-step)
problems. Similarly to UCS, our system does not evolve a complete mapping
but focuses on the best actions while the learning proceeds. XCSAM adaptively
learns only the actions leading to the highest returns. To achieve this, XCSAM
extends the original XCS by (i) including a mechanism to adaptively identify
the actions that are likely to be included in a best action mapping and by (ii)
including a mechanism to get rid of redundant actions while still exploring the
space of viable optimal solutions. The results we present show that XCSAM can
evolve optimal solutions with much smaller populations than XCS. The analysis
of our adaptation mechanism suggests that XCSAM can evolve mappings that
covers only the best actions in every possible situation like UCS.

2 The XCS Classifier System

The XCS classifier system maintains a population of rules (the classifiers) which
represents the solution to a reinforcement learning problem [10]. Classifiers con-
sist of a condition, an action, and four main parameters [12,5]: (i) the prediction
p, which estimates the relative payoff that the system expects when the classifier
is used; (ii) the prediction error ε, which estimates the error of the prediction p;
(iii) the fitness F , which estimates the accuracy of the payoff prediction given by
p; and (iv) the numerosity num, which indicates how many copies of classifiers
with the same condition and the same action are present in the population.

At time t, XCS builds a match set [M] containing the classifiers in the popu-
lation [P] whose condition matches the current sensory input st; if [M] does not
contain all the feasible actions covering takes place and creates a set of classifiers
that matches st and cover all the missing actons. This process ensures that XCS
can evolve a complete mapping so that in any state it can predict the effect of
every possible action in terms of expected returns.1

For each possible action a in [M], XCS computes the system prediction P (st, a)
which estimates the payoff that the XCS expects if action a is performed in st.
The system prediction P (st, a) is computed as the fitness weighted average of
the predictions of classifiers in [M] which advocate action a:

P (st, a) =
∑

clk∈[M](a)

pk × Fk∑
cli∈[M](a) Fi

(1)

1 In the algorithmic description [5], covering is activated when match set contains less
than θnma actions; however, θnma is always set to the number of available actions
so that the match covers all the actions.

140 M. Nakata, P.L. Lanzi, and K. Takadama

where, [M](a) represents the subset of classifiers of [M] with action a, pk iden-
tifies the prediction of classifier clk, and Fk identifies the fitness of classifier clk.
Then, XCS selects an action to perform; the classifiers in [M] which advocate
the selected action form the current action set [A]. The selected action at is per-
formed, and a scalar reward rt+1 is returned to XCS together with a new input
st+1. When the reward rt+1 is received, the estimated payoff P (t) is computed
as follows:

P (t) = rt+1 + γ max
a∈[M]

P (st+1, a) (2)

where γ is the discount factor [11]. Next, the parameters of the classifiers in [A]
are updated in the following order [5]: prediction, prediction error, and finally
fitness. Prediction p is updated with learning rate β (0 ≤ β ≤ 1):

pk ← pk + β(P (t)− pk) (3)

Then, the prediction error ε and classifier fitness are updated as usual [13,5]. On
regular basis (dependent on parameter θga), the genetic algorithm is applied to
classifiers in [A]. It selects two classifiers, copies them, with probability χ per-
forms crossover on the copies, and with probability μ it mutates each allele. The
resulting offspring classifiers are inserted into the population and two classifiers
are deleted to keep the population size constant.

3 XCS with Adaptive Action Mapping

The XCS classifier system [12] (as well as all the other models derived from
it), evolves solutions that represent accurate and complete mappings from state-
action pairs to expected returns; accordingly, XCS can predict in every possible
situation the expected payoff of all the actions available. The maintenance of
a complete mapping ensures that XCS can evolve optimal solutions since all
the possible state-action pairs can be explored in every possible situations, as
required by reinforcement learning theory [11]. On the other hand, the complete
mapping increases the population size required to evolve an optimal solution and
results in final populations containing information about actions never used in
practice: in fact, in most of the applications, at the end only the best actions are
applied. To avoid a complete mapping, Bernado et al. [1] introduced UCS, an
extension of XCS that can only solve classification (one-step) problems, trained
using supervised learning instead of reinforcement learning as XCS.

The system we propose, XCSAM or XCS with Adaptive Action Mapping,
provides a trade-off between XCS and UCS. Like XCS, our system can solve
both reinforcement learning (multi-step) and supervised classification (one-step)
problems; similar to UCS, XCSAM does not evolve a complete mapping but
tries to focus only on the best actions while learning how to solve the problem.
In practice, XCSAM adaptively learns only the actions leading to the highest
returns and, for this purpose, it extends the original XCS by (i) including a
mechanism to adaptively identify the redundant actions from those that should
be included in a best action mapping and by (ii) getting rid of redundant actions
while still exploring the space of viable optimal solutions.

XCS with Adaptive Action Mapping 141

3.1 Identifying the Actions for the Best Mapping

In a typical reinforcement learning problem involving delayed rewards, the ex-
pected future reward at the current state maxP (st, a) (Equation 2), tends to be
higher than the expected future reward at the previous state maxP (st−1, a) (be-
cause of the discount factor γ). Accordingly, since the action corresponding to a
higher reward also corresponds to a shorter state sequence, the best actions will
tend to have a value of maxP (st, a) larger than maxP (st−1, a). More precisely,
maxP (st−1, a) converges to γmaxP (st, a) at the next state, while maxP (st, a)
converges to the maxP (st−1, a)/γ. Thus, in XCS the prediction of the accurate
classifiers in [A]−1 tend to converge to γmaxP (st, a). For this reason, in XCS
we can identify the actions that are likely to be part of the best mapping by
comparing maxP (st, a) against ζ ×maxP (st−1, a)/γ (where ζ is a learning rate
added to guarantee convergence). If maxP (st, a) is greater than the threshold
ζ×maxP (st−1, a)/γ, then a is a good candidate for the best mapping and should
be maintained.

3.2 Identifying Classifiers for Best Action Mappings

After having identified good action candidates for the best mapping, we need
to adaptively identify classifiers that may be good candidate for the final best
action mapping. Accordingly, we add a parameter eam to classifiers, or effect
of adaptive mapping, that for classifier cli is updated according to Equation
4, where nma represents the number of available actions. The value of eam
converges to 1, if the classifier is a good candidate for the final best action
mapping, otherwise, eam converges to nma. Therefore, classifiers with an eam
close to one are good candidates to represent the final best action mapping while
classifiers with an eam close to nma are less likely to be maintained as they are
probably advocating actions with lower expected return.

eami ←
{
eami + β(1− eami) if maxP (st, a) ≥ ζ ×maxP (st−1, a)/γ

eami + β(nma − eami) otherwise.
(4)

3.3 Focusing Evolution on the Best Actions

To focus evolution on the best actions, XCSAM acts on the covering operator
to prevent the generation of classifiers that are not likely to be included in
the final solution. In particular, XCSAM tunes the activation threshold of the
genetic algorithm θnma based on the actions’ predicted reward and the eam
parameters. Initially, θnma is set to the number of feasible actions (the same
value used in XCS). When [M] is generated (Section 2), XCSAM computes the
prediction array before the covering is applied (whereas XCS computes it only
after covering). Then, XCSAM computes the current θnma as the average eam of
the classifiers in [M] weighted for the expected future return maxP (st, a). If the
number of different actions in [M] is smaller than the computed θnma, covering
is called and the prediction array is computed again. If solving a single-step

142 M. Nakata, P.L. Lanzi, and K. Takadama

problem, XCSAM computes the selection array S(a) that associate a selection
probability to each action as follows:

S(aj) =

∑
clk∈[M]|aj

pk × Fk∑
clk∈[M] Fk

(5)

After action selection is performed, XCSAM generates both the action set [A]
(as XCS) and also the not action set [Ā] consisting of the classifiers in [M]
not advocating the selected action. When the executed action is considered a
candidate best action, the parents in GA are selected from [A] to promote the
evolution of classifiers that are likely to be in the final best action mapping
while the deleted classifiers are selected from [Ā] to get rid of classifiers that
are not likely to be part of the final solution. Otherwise, if there is not enough
information about the executed action, or [Ā] is empty, XCSAM applies deletion
in [P] as in XCS. When the executed action is not identified as a candidate
best action, the parents are selected from [Ā] to explore the solution space even
further and deletion is applied to the population as in XCS. It is important
to note that, in single-step problems the selection S(a) is only used to select
which action to apply and all the other XCSAM mechanisms work the same
independently from the type of problem considered.

4 Experimental Results

We tested XCSAM by applying it both to single-step problems (the Boolean
multiplexer [12]) and to multi-step problems (the woods environments [12]). In
particular, we compared the performance of XCSAM to XCSTS [4] using the
same experimental settings used in previous papers.

4.1 Design of Experiments

Each experiment consists of a number of problems that the system must solve.
Each problem is either a learning problem or a test problem. During learning
problems, the system selects actions randomly from those represented in the
match set. During test problems, the system always selects the action with high-
est expected return and no update is performed. When the system performs the
correct action (either it returns the correct class for a classification problem or it
reaches the goal for a multi-step problem), it receives a 1000 reward, 0 otherwise.
The genetic algorithm is enabled only during learning problems, and it is turned
off during test problems. The covering operator is always enabled, but operates
only if needed. Learning problems and test problems alternate. The performance
is reported as the moving average over the last 5000 tests in single step problems
and as the moving average over the last 50 steps in multi-step problems. All the
reported plots are averages over 10 experiments.

XCS with Adaptive Action Mapping 143

4.2 Boolean Multiplexer

The Boolean multiplexer function of size k is defined over a binary string of k+2k

bits; the first k bits represent and address pointing to the rest of 2k bits. For
example, the 6-multiplexer function (k = 2), applied to 110001 returns 1, when
it is applied to 110110 returns 0. In the experiments, we applied the standard
parameter settings for XCS [3]: ε0 = 10, μ = 0.04, P# = 0.65, Pexplr =1.0, χ =
0.8, β = 0.2, α = 0.1, δ = 0.1, ν = 5, θGA = 25, θdel = 20, θsub = 20, τ = 0.4,
tournament selection is applied, GA subsumption and AS subsumption are also
applied; for XCSAM, we applied the same parameters of XCSTS and in addition
we set ζ = 0.99.

Figure 1 compares the performance of XCSAM and XCS on 20-multiplexer
problems withN = 600, 1000 and 2000. As it can be noticed, with 2000 classifiers,
XCSAM reaches optimality a little bit faster than the standard XCS; when the
population size is decreased to 1000 classifiers, XCSAM clearly learns much
faster than XCS, in fact after 100000 experiments XCS still did not reach full
optimality. When the population size is decreased even further down to 600
classifiers, we note than XCSAM reaches a near-optimal performance around
250000 problems whereas XCS performance is significantly degraded remaining
around the 70% after 300000.

Figure 2 compares the performance of XCSAM and XCS on the more difficult
37-multiplexer when 5000 (Figure 2a) and 3000 (Figure 2b) classifiers are used.
All the parameters are set as in the standard experiments while for XCSAM
we set ζ = 0.99. As can be noticed, with the standard settings [3], XCSAM
learns faster than XCS and both systems reach optimality. When the popula-
tion size is almost halved down to 3000 classifiers, the performance of XCS is
significantly degraded and after one million examples, its performance is still
below 60%.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 50 100

P
er

fo
rm

an
ce

Iterations (1000s)

XCSTS N=2000
1000

XCSAM N=2000
1000

a) N = 2000 and 1000

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 50 100 150 200 250 300

P
er

fo
rm

an
ce

Iterations (1000s)

XCSTS N=600
XCSAM N=600

b) N =600

Fig. 1. XCSAM and XCSTS applied to the 20-multiplexer problem with 2000, 1000,
and 600 classifiers

144 M. Nakata, P.L. Lanzi, and K. Takadama

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 250 500 750 1000

P
er

fo
rm

an
ce

Iterations (1000s)

XCSTS N=5000
XCSAM N=5000

a) N = 5000

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 250 500 750 1000

P
er

fo
rm

an
ce

Iterations (1000s)

XCSTS N=3000
XCSAM N=3000

b) N =3000

Fig. 2. XCSAM and XCSTS applied to the 37-multiplexer problem with 5000 and 3000
classifiers

T T T T T T T T T
T F T
T T T T T
T T T
T T T T
T T T T T
T T T
T T T
T T T T T T T T T

T

Fig. 3. The Maze6 environment

4.3 Multi-step Problems

We performed a second set of experiments to compare the performance of XCS
with gradient descent [2] and our XCSAM on the woods environments a typical
multi-step problems introduced by Wilson [12]. These are grid-like mazes in
which each cell can be either empty, can contain an obstacle (represented with a
“T” symbol), or food (represented by a “F” symbol). The system always occupies
an empty position and perceives the eight surrounding cells. In each experiment,
the system is randomly placed in one of the empty positions and has to reach
a food position while avoiding obstacles. When it reaches a food position, the
system receives a reward of 1000 and zero otherwise. Figure 3 shows the Maze6

environment, firstly introduced in [9].
We compared XCS and XCSAM using Maze6 and the standard configuration

used in [2]: ε0 = 1, μ = 0.01, P# = 0.3, Pexplr =1.0, χ = 0.8, β = 0.2, α = 0.1,
δ = 0.1, γ = 0.7, ν = 5, θGA = 100, θdel = 20, θsub = 20, Tournament selection,
GA Subsumption and ASsubsumption = 0 are turned off. Gradient descent is
always on; the XCSAM parameter is zeta = 0.99 performance is computed as
the moving average number of steps to a goal position over the last 50 problems.
All experimental result are averaged over 20 experiments.

Figure 4 compares the performance of XCSAM and XCS when population
size is 3000 (Figure 4a) and 1000 (Figure 4b) classifiers. With a large population

XCS with Adaptive Action Mapping 145

both XCSAM and XCS reach optimal performance (i.e., 5.19 steps) whereas,
when the population is decreased to 1000 classifiers, XCSAM can still reach
a near-optimal performance whereas XCS (event with gradient) cannot reach
stable performance. These results confirm the previous findings showing that
XCSAM can reach optimal performance with much smaller populations.

 0

 5

 10

 15

 20

0 1000 2000 3000 4000 5000

S
te

p
to

 fo
od

iterations

XCSG
XCSAM

optimum

a) N = 3000

 0

 10

 20

 30

 40

 50

0 1000 2000 3000 4000 5000
S

te
p

to
 fo

od

Iterations

 XCSG N=1000
 XCSAM N=1000

optimum

b) N = 1000

Fig. 4. XCSAM and XCS applied to Maze6 with a population of (a) 3000 classifiers
and (b) 1000 classifiers

4.4 Evolution of the Best Action Mapping

The previous results demonstrates that, by adaptively focusing on the best action
mapping, XCSAM can learn optimal policies with smaller populations. We now
analyse the adaptation toward the best mapping. Figure 5 shows the average eam
of the classifiers contributing maxP (st, a) in the 37-multiplexer problem and in
Maze6. As can be noted, in the 37-multiplexer, XCSAM starts from an almost
complete mapping (in fact the average eam is around 1.5) then, as evolution
proceeds, XCSAM can successfully identify the best actions and thus the average
eam converges to a value near 1, that is, the final solution basically covers only
the best action. A similar result is also shown for Maze6 (Figure 5b) where the

 0

 0.5

 1

 1.5

 2

0 250 500 750 1000

A
ve

ra
ge

 o
f e

ffe
ct

iv
en

es
s

of
 a

da
pt

iv
e

ac
tio

ns

Iterations (1000s)

XCSAM N=5000
3000

a) 37-multiplexer problem

 0

 1

 2

 3

 4

 5

 6

 7

 8

0 1000 2000 3000 4000 5000

A
ve

ra
ge

 o
f e

ffe
ct

iv
en

es
s

of
 a

da
pt

iv
e

ac
tio

ns

iterations

XCSAM N=3000
1000

b) Maze problem

Fig. 5. Average eam in (a) 37-multiplexer and (b) Maze6

146 M. Nakata, P.L. Lanzi, and K. Takadama

average eam starts from a value around 5 and rapidly converges to a value
near 1.5 thus showing that XCSAM can correctly distinguish the best actions
adaptively during learning. In fact, Maze6 has 16 cells each one with two best
actions, 1 cell with three best actions, 19 cells with only one best action which
amounts to 36 empty cells. Therefore the average of number of best action in
each cells is equal to 1.5 (=(2 × 16 + 3 + 1 × 19)/36). The results in Figure 5b
thus show that XCSAM can correctly identify the best actions even in problems
in which states can have more than one best actions.

5 Conclusion

We introduced XCSAM, an extension of XCS that adapts the state-action map-
ping to focus on the best action in every possible subproblem. We applied the
proposed system both to classification (single-step) problems (the 20-multiplexer
and the 37-multiplexer) and to a reinforcement (multi-step) problem (Maze6).
Our results show that XCSAM can evolve optimal solutions with much smaller
populations than XCS. The analysis of the adaptation mechanism suggests that
XCSAM can evolve mappings that covers only the best actions in every possible
situation.

References

1. Bernadó-Mansilla, E., Garrell, J.M.: Accuracy-based learning classifier systems:
Models, analysis and applications to classification tasks. Evolutionary Computa-
tion 11, 209–238 (2003)

2. Butz, M.V., Goldberg, D.E., Lanzi, P.L.: Gradient Descent Methods in Learning
Classifier Systems: Improving XCS Performance in Multistep Problems. Evolution-
ary Computation 9(5), 452–473 (2005)

3. Butz, M.V., Kovacs, T., Lanzi, P.L., Wilson, S.W.: Toward a Theory of Generaliza-
tion and Learning in XCS. IEEE Transactions on Evolutionary Computation 8(1),
28–46 (2004)

4. Butz, M.V., Sastry, K., Goldberg, D.E.: Tournament Selection: Stable Fitness Pres-
sure in XCS. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly,
U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Das-
gupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J.,
Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1857–1869. Springer,
Heidelberg (2003)

5. Butz, M.V., Wilson, S.W.: An algorithmic description of xcs. Journal of Soft Com-
puting 6(3-4), 144–153 (2002)

6. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison Wesley (1989)

7. Holland, J.H.: Escaping Brittleness: The Possibilities of General Purpose Learning
Algorithms Applied to Parallel Rule-based system. Machine Learning 2, 593–623
(1986)

8. Kovacs, T.: Evolving optimal populations with XCS classifier systems. Techni-
cal Report CSR-96-17 and CSRP-96-17, School of Computer Science, University
of Birmingham, Birmingham, U.K. (1996), Available from the technical report
archive, ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1996/CSRP-96-17.ps.gz

ftp://ftp.cs.bham.ac.uk/pub/tech-reports/1996/CSRP-96-17.ps.gz

XCS with Adaptive Action Mapping 147

9. Lanzi, P.L.: An Analysis of Generalization in the XCS Classifier System. Evolu-
tionary Computation Journal 7(2), 125–149 (1999)

10. Lanzi, P.L.: Learning classifier systems from a reinforcement learning perspective.
Soft Computing - A Fusion of Foundations, Methodologies and Applications 6(3),
162–170 (2002)

11. Sutton, R.S., Barto, A.G.: Reinforcement Learning – An Introduction. MIT Press
(1998)

12. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computa-
tion 3(2), 149–175 (1995)

13. Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Computa-
tion 3(2), 149–175 (1995), http://prediction-dynamics.com/

http://prediction-dynamics.com/

DEAL: A Direction-Guided Evolutionary

Algorithm

Cuong C. Vu1, Lam Thu Bui1, and Hussein A. Abbass2

1 Le Quy Don Technical University, Vietnam
{cuongvcc,lam.bui07}@gmail.com

2 University of New South Wales, Australia
h.abbass@adfa.edu.au

Abstract. In this paper, we propose a real-valued evolutionary algo-
rithm being guided by directional information. We derive direction of
improvement from a set of elite solutions, which is always maintained
overtime. A population of solutions is evolved over time under the guid-
ance of those directions. At each iteration, there are two types of direc-
tions that are being generated: (1) convergence direction between an elite
solution (stored in an external set) and a second-ranked solution from
the current population, and (2) spreading direction between two elite
solutions in the external set. These directions are then used to perturb
the current population to get an offspring population. The combination
of the offsprings and the elite solutions is used to generate a new set
of elite solutions as well as a new population. A case study has been
carried out on a set of difficult problems investigating the performance
and behaviour of our newly proposed algorithm. We also validated its
performance with 12 other well-known algorithms in the field. The pro-
posed algorithm showed a good performance in comparison with these
algorithms.

Keywords: direction of improvement, evolutionary algorithms.

1 Introduction

Evolutionary algorithms (EAs) have been popular tools for approximating solu-
tions of optimization problems. For real-parameter EAs such as real-parameter
GA, differential evolution (DE), evolutionary strategies (ES) and evolutionary
programming (EP), a real-valued representation of genes is used. In the litera-
ture of evolutionary computation, the use of elitism has been the most popular
one. For it, usually a number of good solutions, the elite set, is (either implicitly
or explicitly) maintained over time. Our motivation is that this set can con-
tribute information to the evolutionary process much more than just storing
some solutions to the next generation.

Our proposal is as follows: we can derive from the elite set some directions of
improvement and use these directions to guide the evolutionary process. Note
that when designing an optimization algorithm, it is desirable to find a good

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 148–157, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

DEAL: A Direction-Guided Evolutionary Algorithm 149

direction that guides the search process; the steepest gradient descent method is
the most typical example of getting advantage from a good direction to guide
the search. However, in general, defining a good direction is not a trivial task,
especially in the case of non-linear or black-box functions. For evolutionary com-
putation, the use of directions has been shown quite promising. An example is
the case of Differential Evolution (DE), which uses the direction between two
randomly-selected parents to guide the newly-generated offsprings [17]; DE has
been very effective in solving continuous optimization problems.

There are several ways to maintain the elite set (in short, ETS). In this pro-
posal, we select a number of best solutions for ETS. Our main design will focus
on how to use and refine ETS. Its size is set as half of the main population.
ETS is used not only to contribute solutions to the next generation, but also to
generate directions for offspring production. At each generation, a pool of off-
springs (having the same size as the main population) is produced. This is done
via a perturbation process in which randomly-selected parents (from the main
population) are perturbed by directions of improvement. There are two types
of directions presented in this work: (1) convergence direction that is defined as
the direction between an elite solution from ETS and a second-ranked solution
from the main population and (2) spreading direction between two elite solutions
in ETS. This pool of offsprings is combined with ETS in order to generate the
new content of ETS and the next generation. The combined population is then
sorted and copied to ETS as well as the main population. To validate the newly
proposed algorithm, we carried out a case study on 6 benchmark problems with
high modality. The results from these problems showed that our algorithm per-
formed quite well. Further, we also obtained the results from 12 other well-known
algorithms. The results indicated that our algorithm was very competitive with
these algorithms.

The paper is organized in seven sections. Section 2 is dedicated to background
literature and followed by the methodology section. A number of test problems
are presented, solved and studied in Section 4 to demonstrate the concept, and
the paper concludes in Section 5.

2 Background

Evolutionary Algorithms (EAs) have been well recognized as a major class of
heuristic techniques in computational optimization and machine learning. They
have been applied widely in many aspects of human life from social and en-
gineering problems to security and military domains. In principle, an EA is a
process that imitates evolution in Nature. It works with a population of solu-
tions in searching for the problem’s optima where the population undergoes an
evolutionary process of many cycles using nature-mimicking crossover, mutation
and/or selection operators. After each cycle, a new population is formed and is
called a generation. With this population-based computational approach, EAs
offer a potential paradigm for solving global optimization problems [9,1,15,16,10].
Originally, there were four classes of EAs; including Genetic Algorithms (GAs),

150 C.C. Vu, L.T. Bui, and H.A. Abbass

Evolutionary Strategies (ES), Evolutionary Programming (EP), and Genetic
Programming (GP). To date, there are several paradigms that have emerged
as alternatives for the conventional EAs, such as Particle Swarm Optimization
(PSO) [12], Ant Colony Optimization (ACO) [7], Differential Evolution (DE)
[17], Estimation of Distribution Algorithms (EDA) [14], and Artificial Immune
Systems (AIS) [3]. For them, mutation and crossover operators might be replaced
by some specific operator inspired by a different phenomenon in nature.

Real-parameter evolutionary algorithms can be classified into different streams.
In general, the difference between these streams is in the way to employ and im-
plement the evolutionary operators. The first stream is the real parameter GA
that has the same framework as the binary-coded GA with a focus on crossover.
As an example, Deb et al [5] introduced a version of the real parameter GA using
the SBX crossover operator that simulates the binary crossover operator. A rea-
sonable overview of real parameter GA can be found in [4]. Meanwhile, ES [18]
and EP [8,20] concentrate more on the mutation operator. The child is generated
by disturbing a selected solution with Gaussian or Cauchy distributed random
deviations. After this phase, all solutions have to undergo a selection process.

In the case of simple DE, it uses one main parent and two supportive parents
[19,2] for generating a child. Basically, the main parent is disturbed by adding
a step length multiplied by the difference between the two supportive parents.
The resultant solution is called the trial/protoype solution. The prototype is
then crossed-over with another pre-selected solution to generate a child. Elitism
is implemented implicitly in the way that the child is inserted into the population
if it outperforms the pre-selected solution. By using difference vectors, DE takes
into account direction information. In some cases, good directions will be gener-
ated and DE will generate good solutions. In other cases, bad directions will be
generated which will deteriorate the solution quality. This poses a question on
whether or not we can systematically maintain good directions?

Several other real-valued versions can be listed here such as covariance ma-
trix adaptation evolution strategy (CMAES) [11] being implemented with an
adaptive covariance matrix to model a second-order approximation of the objec-
tive function, and generalized generation gap model with generic parent-centric
recombination operator (G3PCX) [6] using elite-preservation and the parent-
centric recombination operator. Recently, real-coded version of chemical reaction
optimization emerges as a new paradigm for real-valued optimization [13].

3 Methodology

3.1 Overview

It has been demonstrated that elitism is useful for an EA. However, the issue is
how to use it effectively? Therefore, we will focus our work on this issue when
designing a new EA; especially we will address: (1) Interaction between an ETS
and the main population and (2) updating the ETS.

Our methodology proposes to maintain an ETS during the optimization pro-
cess. This ETS will contribute to the evolutionary process not only the elitist

DEAL: A Direction-Guided Evolutionary Algorithm 151

solutions, but also the directional information (which we call as direction of
improvement). A direction of improvement is considered as a useful piece of in-
formation during optimization process. Our proposal is that at every generation,
the main population will be perturbed by these directions in order to produce
offsprings. Theses offsprings are then combined with the current ETS to form a
temporary population, called “the combined population”. This combined popu-
lation is used subsequently to fill in the new version of ETS. Based on this merit,
we call our algorithm as Direction-guided Evolutionary ALgorithm or DEAL.

3.2 Directional Information

We propose to use two types of directional information: convergence and
spreading.

– Convergence direction: It is defined as the direction from a solution to a
better one. We consider it as the direction between second-ranked solution
and an elite one. If elite solutions are maintained globally, it is considered
as the global direction of convergence. If a solution is guided following this
direction, it will find a better area.

– Spreading direction: It is defined as the direction between two peers. In
this context, it is the direction between two elite solutions. If solutions are
perturbed along these directions, a better spreading within the population
will be obtained.

3.3 General Structure

A step-wise structure of the proposed algorithm is given as follows:

– Step 1: Initialize the main population P with size N
– Step 2: Evaluate the population P
– Step 3: Copy elite solutions to ETS (that has the half size of population P)
– Step 4: Report the elite solutions in ETS
– Step 5: Generate a mixed population M with size of N , and set index = 0
– Loop {

• Copy P (index) to M(index)
• Select a random parent Pr

• Generate a convergence direction d1 from a randomly-selected low-rank
solution in the population P to a randomly-selected solution from ETS.

• Generate a spreading direction d2 between two randomly selected solu-
tions in ETS.

• Generate two offspring solutions S1 and S2 by perturbing the parent
solution using two newly generated directions.
∗ For each dimension i

· If U(0, 1) < pc then S1(i) = Pr(i) + σ1 ∗ d1(i)
· Else S1(i) = Pr(i)
· If U(0, 1) < pc then S2(i) = Pr(i) + σ2 ∗ d2(i)

152 C.C. Vu, L.T. Bui, and H.A. Abbass

· Else S2(i) = Pr(i)
∗ End for

Where U(0, 1) is the random function returning values between 0 and 1,
pc is crossover rate, σ1 = U(0, 1); σ2= a small constant (i.e 0.5).

• Evaluate S1

• S1 is better than M(index) then replace M(index) by S1

• Mutate S2 with a predefined rate pm
• Evaluate S2

• S2 is better than M(index+ 1) then replace M(index+ 1) by S2

index = index+ 2
– } Until (the mixed population is full)
– Step 6: Combine the mixed population M with ETS to form a combined

population C (or M+A → C)
– Step 7: Sort C using fitness values
– Step 8: Determine the new members of ETS by copying first N/2 elite

solutions from the combined population C)
– Step 9: Determine the new population P by copying solutions from M)
– Step 10: Go to Step 4 if stopping criteria is not satisfied

Note that ETS can be maintained implicitly (without an explicit data structure).
The current main population can be classified into two parts: the first half is the
elite solutions copied from the combined population C and this part is actually
ETS and the second half is the lower ranked (or second-ranked) solutions. σ is
the step length for perturbation. For σ1, our finding is that the best strategy is
σ1 = U(0, 1) and σ2 is 0.5 (that basically reduces half of the vector’s magnitude).
The step 5 is the main element in this structure. It shows that for the offsprings,
half of them are created for convergence purpose (exploitation) while the other
half to make it more diverse (exploration).

The main computational cost comes from the task of filling ETS. Filling solu-
tions requires sorting the combined population C. In general, a sorted procedure
requires complexity of O(NlogN). So, the overall complexity of the algorithm is
O(NlogN).

4 A Case Study

4.1 Testing Problems

We considered to test a set of 6 popular continuous test problems with high-
dimensionality and high modality [13]. The only reason for us to select these
problems is that these problems illustrate the highest difficulty facing optimiza-
tion algorithms: multi-modality. They are reported in Table 1.

4.2 Experimental Setup

We selected other well-known algorithms for validating ours with settings used
by authors in [13]: Real-coded version of Chemical Reaction Optimization (RC-
CRO), Genetic Algorithm (GA), Fast evolutionary programming(FEP), Classi-
cal evolutionary programming (CEP), Fast evolutionary strategy (FES), Con-
ventional evolutionary strategy (CES), Particle Swarm Optimization (PSO),

DEAL: A Direction-Guided Evolutionary Algorithm 153

Table 1. Lists of test problems used for experiments in this paper

ID n Description Name Range fmin

F1 30 f(x) = −∑n
i=1(xisin(

√|xi|)) Generalized Schwefel’s [−500, 500] -12569.5
problem

F2 30 f(x) =
∑n

i=1(x
2
i − 10cos(2PIxi) + 10) Generalized Rastrigin’s [−5.12, 5.12] 0

problem

F3 30 f(x) = −20 exp(−0.2
√

1
n

∑n
i=1(x

2
i)) Ackley’s [−32, 32] 0

− exp(1
n

∑n
i=1(cos(2PIxi)) + 20 + e problem

F4 30 f(x) = 1
4000

∑n
i=1(x

2
i)−

∏n
i cos(xi√

i
) + 1 Generalized Griewank’s [−600, 600] 0

problem

F5 30 f(x) = PI
n
{10sin2(PIy1) +

∑n−1
i=1 (yi − 1)2 Generalized [−50, 50] 0

[1 + 10sin2(PIyi+1)] + (yn − 1)2}
+
∑n

i=1 u(xi, 10, 100, 4) Penalized
yi = 1 + 1

4
(xi + 1) problem

u(xi, a, k,m) =

⎧⎨
⎩

k(xi − a)m, xi > a
0, otherwise.
k(−xi − a)m, xi < −a

F6 30 f(x) = 0.1{sin2(3PIx1) +
∑n−1

i=1 (xi − 1)2[1+ Generalized [−50, 50] 0
sin2(3PIxi+1)] + (xn − 1)2[1 + sin2(2PIxn)]} Penalized
+
∑n

i=1 u(xi, 5, 100, 4) problem

Group search optimizer (GSO), Real-coded biogeography-based optimization
(RCBBO), Differential evolution (DE), Covariance matrix adaptation evolution
strategy (CMAES), and Generalized generation gap model with generic parent-
centric recombination operator (G3PCX).

The experiments for our algorithm are carried out on all 6 test problems and
with the following parameters: The population size was also 100 solutions, the
number of evaluations are 150000, 250000, 150000, 150000, 150000, and 150000
for all problems respectively, the mutation rate was kept at the same small rate of
0.01, and the crossover rate was 0.9. Further, there were 100 runs with different
random seeds for testing each problem.

4.3 Results and Discussion

Behavior Analysis: To analyze the behavior of DEAL, we first tested it on
a spherical problem, the easiest problem: f(x) =

∑n
i=1 x

2
i , with n = 30, x ∈

[−100, 100] (the optimal point is at the origin and we call it as the zero point). We
recorded the objective value of the best solution found over time. After 150000
evaluations, DEAL obtained a near-zero average objective value (in different 100
runs) of 1.558E-12 (standard deviation is 6.158E-12).

From Figure 1, it is obvious that DEAL stably converged towards the optimal
solution among all 100 runs. After 250 generations, solutions found by DEAL’s
100 runs were almost close to the optimal point (the left graph). The right graph
is magnified by logarithmic transformation and shows the constant convergence
towards the zero point. In the decision space, all the points have xi values being
around the zero point with radius of 10e-8.

Another look at can be seen at Figure 2 where we displayed the behavior
of DEAL on a multi-modal problem: the Akley problem (F3). The difficulty

154 C.C. Vu, L.T. Bui, and H.A. Abbass

5 10 15 20 25
0

1

2

3

4

5

6

7

8
x 10

4

generations(x10)

f

20 40 60 80 100 120 140
10

−20

10
−15

10
−10

10
−5

10
0

10
5

generations(x10)

f

Fig. 1. Visualization of the best solution for the spherical problem found by DEAL in
all 100 runs. Left graph: the convergence curve during the first 250 generations. Right
graph: the convergence curve with log-transformation during all 1500 generations.

of multi-modality clearly made DEAL longer to converge. In contrast the case
of the spherical problem, at generation 25rd (where DEAL converged for the
spherical problem), DEAL stilled far from the optimal point. In all 100 runs, it
converged almost at generation 500rd. After that the optimization still refining
its best solution until the end (see the right logarithmic-transformed graph)

5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

Generations (x10)

f

20 40 60 80 100 120 140
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Generations (x10)

f

Fig. 2. Visualization of the best solution for Akley problem found by DEAL in all 100
runs. Left graph: the convergence curve during the first 500 generations. Right graph:
the convergence curve with log-transformation during all 1500 generations.

Comparison with Others: In comparison with other approaches, we recorded
the best objective value obtained by approaches for all problems in Table 1 and
then calculated the mean and standard deviation. They are reported in Table 2
together with results obtained from [13]. From the table we can see that there is
no clear winer among all 13 approaches. However, it indicates that 8 approaches
(GA, FEP, CEP, FES, CES, PSO, RCBBO, and G3PCX)were inferior in all 6

DEAL: A Direction-Guided Evolutionary Algorithm 155

test problems. The remaining 5 algorithms are seemed better in which each had
at leat the result on one problem with 1st rank. Within this set of approaches,
DEAL and DE emerged with more competitive results. While DEAL has two
problems ranked No1 (the most case), DE has 1 problem ranked 1st and 3
problems ranked 2rd. The interesting note here is that both DEAL and DE
used direction explicitly: while DE used direction between two randomly-selected
parents, DEAL used direction of improvement.

Table 2. Obtained results for all test problems (Mean, Standard deviation and rank)

F1 F2 F3 F4 F5 F6
DEAL Mean -1.085E+04 3.482E-15 3.097E-07 1.305E-02 3.619E-07 1.099E-04

Std 3.996E+02 5.888E-15 8.720E-07 1.721E-02 1.268E-06 1.099E-03
Rank 9 1 1 5 3 5

RCCRO1 Mean -1.257E+04 9.077E-04 1.944E-03 1.117E-02 2.074E-02 7.048E-07
Std 2.317E-02 2.876E-04 4.190E-04 1.622E-02 5.485E-02 5.901E-07
Rank 2 3 5 3 7 1

GA Mean -1.257E+04 6.509E-01 8.678E-01 1.004E+00 4.372E-02 1.681E-01
Std 2.109E+00 3.594E-01 2.805E-01 6.755E-02 5.058E-02 7.068E-02
Rank 2 7 9 3 10 10

FEP Mean -1.255E+04 4.600E-02 1.800E-02 1.600E-02 9.200E-06 1.600E-04
Std 5.260E+01 1.200E-02 2.100E-02 2.200E-02 6.140E-05 7.300E-05
Rank 8 5 7 6 4 6

CEP Mean -7.917E+03 8.900E+01 9.200E+00 8.600E-02 1.760E+00 1.400E+00
Std 6.345E+02 2.310E+01 2.800E+00 1.200E-01 2.400E+00 3.700E+00
Rank 11 12 12 9 12 12

FES Mean -1.256E+04 1.600E-01 1.200E-02 3.700E-02 2.800E-02 4.700E-05
Std 3.253E+01 3.300E-01 1.800E-03 5.000E-02 8.100E-11 1.500E-05
Rank 7 6 6 8 8 4

CES Mean -7.550E+03 7.082E+01 9.070E+00 3.800E-01 1.180E+00 1.390E+00
Std 6.314E+02 2.149E+01 2.840E+00 7.700E-01 1.870E+00 3.330E+00
Rank 12 11 11 11 11 11

PSO Mean -9.660E+03 2.079E+01 1.340E-03 2.323E-01 3.950E-02 5.052E-02
Std 4.638E+02 5.940E+00 4.239E-02 4.434E-01 9.142E-02 5.691E-01
Rank 10 9 4 10 9 9

GSO Mean -1.257E+04 1.018E+00 2.655E-05 3.079E-02 2.765E-11 4.695E-05
Std 2.214E-02 9.509E-01 3.082E-05 3.087E-02 9.167E-11 7.001E-04
Rank 2 8 2 7 1 3

RCBBO Mean -1.257E+04 2.620E-02 2.510E-02 4.820E-01 3.280E-05 3.720E-04
Std 2.200E-05 9.760E-03 5.510E-03 8.490E-02 3.330E-05 4.630E-04
Rank 2 4 8 12 5 7

DE Mean -1.257E+04 7.261E-05 7.136E-04 9.054E-05 1.886E-07 9.519E-07
Std 2.333E-05 3.376E-05 6.194E-05 3.402E-05 4.266E-08 2.021E-07
Rank 2 2 3 1 2 2

CMAES Mean -9.873E+07 4.950E+01 4.607E+00 7.395E-04 5.167E-03 1.639E-03
Std 8.547E+08 1.229E+01 8.725E+00 2.389E-03 7.338E-03 4.196E-03
Rank 1 10 10 2 6 8

G3PCX Mean -2.577E+03 1.740E+02 1.352E+01 1.127E-02 4.593E+00 2.349E+01
Std 4.126E+02 3.199E+01 4.815E+00 1.310E-02 5.984E+00 2.072E+01
Rank 13 13 13 4 13 13

Effect of the Step length: In this section, we will discuss the effect of the
step length σ on the performance of our proposed approach. We call the above
version of DEAL is as Option 1 where σ1 = U(0, 1) and σ2 = 0.5. We tested 3
other options as follows:

- Option 2: σ1 = 1 and σ2 = 0.5
- Option 3: σ1 = U(0, 1) and σ2 = U(0, 0.5)
- Option 4: σ1 = 1 and σ2 = U(0, 0.5)

156 C.C. Vu, L.T. Bui, and H.A. Abbass

Table 3. Obtained results for all test problems from all options of DEAL

F1 F2 F3 F4 F5 F6
Option1 Mean -1.085E+04 3.482E-15 3.097E-07 1.305E-02 3.619E-07 1.099E-04

Std 3.996E+02 5.888E-15 8.720E-07 1.721E-02 1.268E-06 1.099E-03
Option2 Mean -1.064E+04 8.419E-05 3.977E-05 1.546E-02 1.063E-03 6.594E-04

Std 3.479E+02 5.599E-04 3.433E-04 1.737E-02 1.037E-02 2.622E-03
Option3 Mean -1.097E+04 1.785E-14 4.213E-06 1.350E-02 6.433E-06 8.790E-04

Std 3.028E+02 1.594E-14 4.641E-06 1.423E-02 3.494E-05 2.996E-03
Option4 Mean -1.064E+04 8.419E-05 3.977E-05 1.546E-02 1.063E-03 6.594E-04

Std 3.479E+02 5.599E-04 3.433E-04 1.737E-02 1.037E-02 2.622E-03

We can observe from Table 3 that there were no large change in the results
obtained by all options, except the slightly better results of Option 1. This
indicates that the use of either random or fixed value of σ does not significantly
effect on the performance of DEAL.

5 Conclusion

In this paper, we introduced a novel technique for employing directions of im-
provement for EAs; we call it a direction-guided evolutionary algorithm. With
this new algorithm, a population of solutions is evolved over time under guid-
ance of directions of improvement. At each generation, there are two types of
directions are generated: (1) convergence direction between an elite solution and
a solution from the current population, and (2) spreading direction between two
elite solutions in ETS. These directions are then used to perturb the current
population to get a temporary population of offsprings. The combination (com-
bined population) of this offspring population and the current ETS is used to
generate the next content of ETS and the main population.

A case study has been carried out to investigate the performance and be-
haviour of our newly proposed algorithm. We also validated its performance
with 12 other well-known algorithms in the field. Our algorithms showed a good
performance in comparison with these algorithms.

Acknowledgement. The authors gratefully acknowledge the financial support
from the Vietnam Institute for Advanced Study in Mathematics (VIASM) and
the University of New South Wales at Australian Defence Force Academy.

References

1. Back, T.: Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York (1996)

2. Corne, D., Dorigo, M., Glover, F.: New Ideas in Optimization. McGraw Hill, Cam-
bridge (1999)

3. Dasgupta, D.: Artificial Immune Systems and Their Applications. Springer, Berlin
(1998)

4. Deb, K.: Multiobjective Optimization using Evolutionary Algorithms. John Wiley
and Son Ltd., New York (2001)

DEAL: A Direction-Guided Evolutionary Algorithm 157

5. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space.
Complex Systems 9, 115–148 (1995)

6. Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm
for real-parameter optimization. Evolutionary Computation 4, 371–395 (2002)

7. Dorigo, M., Stutzle, T.: Ant Colony Optimization. MIT Press, USA (2004)
8. Fogel, L.J., Angeline, P.J., Fogel, D.B.: An evolutionary programming approach to

self-adaptation in finite state machines. In: McDonnell, J.R., Reynolds, R.G., Fogel,
D.B. (eds.) Proc. of Fourth Annual Conference on Evolutionary Programming, pp.
355–365. MIT Press, Cambridge (1995)

9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

10. Goldberg, D.E.: The design of innovation: lessons from and for competent genetic
algorithms. Kluwer Academic Publishers, Massachusetts (2002)

11. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9, 159–195 (2001)

12. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

13. Albert, Y.S., Lam, V.O.K.: Li, and James J.Q. Yu. Real-coded chemical reaction
optimization. IEEE Transactions on Evolutionary Computation (accepted for pub-
lication, 2012)

14. Larraanaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool
for Evolutionary Computation. Kluwer Academic Publishers, Norwell (2002)

15. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs,
3rd edn. Springer, London (1996)

16. Mitchell, T.: Machine Learning. McGraw Hill, Singapore (1997)
17. Price, K., Storn, R., Lampinen, J.: Differential Evolution - A Practical Approach

to Global Optimization. Springer, Berlin (2005)
18. Rudolph, G.: Evolution strategy. In: Handbook of Evolutionary Computation. Ox-

ford University Press (1997)
19. Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme

for global optimization over continuous spaces. Technical report tr-95-012. Techni-
cal report, ICSI (1995)

20. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Transac-
tions on Evolutionary Computation 3(2), 82–102 (1999)

Introduction of a Mutation Specific Fast
Non-dominated Sorting GA Evolved

for Biochemical Optimizations

Susanne Rosenthal, Nail El-Sourani, and Markus Borschbach

University of Applied Sciences, FHDW
Faculty of Computer Science, Chair of Optimized Systems,

Hauptstr. 2, D-51465 Bergisch Gladbach, Germany
{Susanne.Rosenthal,Markus.Borschbach}@fhdw.de

Abstract. In many physiochemical and biological phenomena,
molecules have to comply with multiple optimized biophysical feature
constraints. Mathematical modeling of these biochemical problems con-
sequently results in multi-objective optimization. This study presents a
special fast non-dominated sorting genetic algorithm (GA) incorporat-
ing different types of mutation (referred to as MSNSGA-II) for resolving
multiple diverse requirements for molecule bioactivity with an early con-
vergence in a comparable low number of generations. Hence, MSNSGA-II
is based on a character codification and its performance is benchmarked
via a specific three-dimensional optimization problem. Three objective
functions are provided by the BioJava library: Needleman Wunsch al-
gorithm, hydrophilicity and molecular weight. The performance of our
proposed algorithm is tested using several mutation operators: A deter-
ministic dynamic, a self-adaptive, a dynamic adaptive and two further
mutation schemes with mutation rates based on the Gaussian distribu-
tion. Furthermore, we expose the comparison of MSNSGA-II with the
classic NSGA-II in performance.

Keywords: multi-objective biochemical optimization, characater-
encoded GA, mutation variants, aggregateselection.

1 Introduction

Especially pharmaceutical research comprises multiple diverse requirements for
molecule bioactivity which needs to be optimized simultaneously. The process of
resolving the resulting objective functions is termed multi-objective (m.-o.) opti-
mization. Unfortunately, these objective functions usually range from competing
to contradictory: An optimal solution with respect to one condition often yields in-
acceptable results with respect to the other conditions. In most cases an overall op-
timum for all conditions is non-existent. In the last 20 years, a variety of m.-o. GAs
has been developed for these kinds of optimization problems and are widely used
tools nowadays, proving themselves as effective and robust solving methods. The
performance of this optimization process is characterized by three components: re-
combination, mutation and selection. Thus, a m.-o. GA can be configured in many

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 158–167, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Multi-objective GA for Biochemical Optimizations 159

ways. However, different configurations expose strong effects on the quality of the
solutions. The most important component of a GA is the crossover operator [31].
The main goal of this operator is to exploit parts of good solutions with regard to
the different conditions to generate new non-dominated solutions in unexplored
parts of the Pareto front. Mutation generally improves diversity of the solution set,
but it may also neglect the important (because responsible) parts of a good solu-
tion. In classic GA implementations the mutation rate is usually constant, small
and it depends on the length of the individuals [8], [34], [35]. The suitable choice
of components and component-specific parameters in a m.-o. GA is a challenging
task, mostly defined by empirical analysis. Various works have been published,
proposing guidelines and recommendations for a quantity of m.-o. optimization
problems (recent works [20],[16]). In this work, we present a m.-o. GA based on
NSGA-II in its procedure, but it optionally includes for the first time (to the best
of our knowledge) three known mutation methods and two further ones based on
the Gaussian distribution as well as a newly introduced selection function termed
’Aggregate Selection’. This GA is especially evolved for optimization of molecu-
lar features by customizing NSGA-II in the components encoding, selection and
mutation. Corresponding to the principle of a most intuitive encoding for an opti-
mized GA performance, a character-string encoding is implemented Furthermore,
the the different mutation variants in MSNSGA-II are compared to each other in
performance. Three objective functions have been selected from the BioJava li-
brary to classify these performance. Additionally, the performance of MNSGA-II
for this optimization problem has been compared to the one of NSGA-II.

2 Review of m.-o. GAs

The classic GA has been invented by the inspiration to imitate the evolution pro-
cess of living things (Holland [1]). Goldberg [15] proved that the GA is able to
successfully apply to a real engineering problem. A solution of the optimization
problem is termed individual and is assumed to be a binary string. The collec-
tions of individuals is termed population and the start population is normally
randomly initialized. Rosenberg first discerned the capability of the traditional
GA to solve m.-o. optimization problems in the 1960’s. The aim of m.-o. optimiza-
tion problems is to find a set of adequate good solutions that suit the predefined
conditions sufficiently. In the m.-o. sense, a good solution is a n-dimensional
vector which is non-dominated by any other solution, meaning that at least one
vector component is superior. The Pareto front is formed by solution vectors
which are non-dominated by other solutions of the search area. The main goal
of the m.-o. optimization process is to yield solutions, which approximate the
Pareto front as well as possible. The single-objective GA can be modified to
simultaneously search the solution space for non-dominated solutions. The first
m.-o. GA was introduced by Schaffer [2], termed vector evaluated GA (VEGA),
followed by the m.-o. genetic algorithm (MOGA) [10]. Commonly used GAs for
m.-o. optimization are the Non-dominated Sorting GA (NSGA) [3] and the Fast
Non-dominated Sorting GA (NSGA-II) [4]. Zitzler and Thiele proposed an elitist
evolutionary algorithm termed Strength Pareto Evolutionary Algorithm (SPEA)

160 S. Rosenthal, N. El-Sourani, and M. Borschbach

([28], [27]). Ten years later Zitzler, Laumann and Thiele proposed a variant of
SPEA termed SPEA2 [29]. These two variants differ in fitness assignment and
a tournament operator. State-of-the-art m.-o. GAs are IBEA [11] and SEAMO2
which reveal remarkable performance. In the field of m.-o. problems with highly
correlated objectives, MOEA/D achieved remarkable results [30]. The paper of
Konak et. al. [5] provides a comparative overview of the well-known m.-o. GAs. A
lot of research has been published analyzing and benchmarking the performance
of various m.-o. GAs: In [13], the hybrid adaptive method MO-SHERPA [14] is
tested on the standard benchmark problem ZDT functions compared to NSGA
and NSGA-II. MO-SHERPA dramatically outperforms these two GAs. Another
related works are [27], [30] and [26]. Related works, using single-objective GA to
optimize biological activity and other molecular targets, report that the config-
uration of an unusual low number of generations (partly under ten) is sufficient
[32], [33]. This fact is termed early convergence in this paper. Unfortunately,
there is not sufficient literature available for application of m.-o. GAs in the
simultaneously optimization area of molecular features [23], [24], [25].

3 Introduction of MSNSGA-II

As MSNSGA-II has especially been evolved for application in molecular biology,
the individuals are encoded as character-strings instead of the GA-typical bi-
nary encoding. The character-string encoding symbolizes the 20 canonical amino
acids. This has two advantages: It suits the proposed optimization problem in
a natural way and avoids a possible drawback of the binary encoding - unfavor-
able breakpoints. Hence, individuals are implemented as 20-character strings. As
MSNSGA-II corresponds to NSGA-II in its procedure, a brief description is given
in the following. Furthermore, only the components of MSNSGA-II differing to
the ones of NSGA-II are described below.

NSGA-II. The fast elitist m.-o. GA was first introduced by Deb et. al. [4]. It
finds many solutions well-spread across the Pareto optimal front in a low num-
ber of computation operations (O(mN2), where m is the number of objectives
and N the population size). NSGA-II incorporates an elite operator to preserve
and utilize previously found good solutions in the subsequent generations, the
non-dominated sorting concept [3], [15] and the crowded tournament selection
operator to preserve the diversity of non-dominated solutions up to a large num-
ber of generations in order to obtain a good distribution of solutions over the
Pareto front. This mechanism provides that solutions in the same non-dominated
front are selected by their crowding distance, a measure of solution density in the
immediate environment. A solution in a less crowded area, hence a larger crowd-
ing distance is prioritized by the selection operator. The crowding distance is a
critical component and encouraging research work has been done to improve the
performance of m.-o. GAs by variations of the crowding distance scheme[17]. A
practical problem customized best application practice has not been established
yet and is subject to ongoing research [19].

Multi-objective GA for Biochemical Optimizations 161

Fitness Calculation. As mentioned above, three functions of the BioJava li-
brary are selected as objective functions. The encoding of the individuals as
character strings enables the use of Needleman Wunsch algorithm (NMW) [7],
Molecular Weight (MW) and hydrophilicity (hydro) [6] as the three objective
functions. The fitness values of a string sequence of the length l for MW and
hydro are calculated from the amino acids (ai) for i = 1, ..., l [6]: Molecular
weight is computed as the sum of mass of each amino acid plus a water molecule:∑l

i=1 mass(ai) + 17.0073(OH) + 1.0079(H). (According to the periodic system
of elements: Oxygen (O), hydrogen (H)) Hydrophilicity: 1

l · (
∑l

i=1 hydro(ai)).
The NMW algorithm performs a global sequence alignment of two sequences by
an iterative matrix method of calculation. More precisely, NMW as an objective
function in MSNSGA-II is a measure in order to represent similarity of an indi-
vidual to a pre-defined reference individual. For a closer understanding see [7].
The source codes of these three objective functions are available at [6].

Recombination Operator. The n-point recombination described in [37] is
used. Three parent are selected and the number n of recombination points is
determined on the basis of a Gaussian distribution. Hence, the parameters of the
recombination are the actuarial expectation ρ = 2 (the most frequent number for
n) and the standard deviation σ = 2.5. Only positive values n ≥ 0 are permitted:
In the cases of negative values, the random generator is restarted.

Mutation Operators. Five different types of mutation operators are compared
with regard to the performance of the GA for this m.-o. problem. Non-fixed
mutation types are categorized in three classes: deterministic dynamic, dynamic
adaptive and dynamic self-adaptive. A promising mutation operator of each class
is selected as well as two alternatives, mutation rates which depend on the Gaus-
sian distribution.
Bäck and Schütz introduced the following deterministic dynamic mutation oper-
ator [8]. The mutation rates are calculated by the function with a = 2

pBS = (a +
l − 2
T − 1

t)−1, (1)

whereas T is the total number of generations the GA is run for, l is the length
of the individual and t the actual number of generation. The basic idea of this
operator is that higher mutation rates in early generations lead to a good ex-
ploration and the lower rates in later generations provide a good exploitation of
the local fitness landscape. The mutation rate is bounded by (0; 1

2]. As the GA
includes both components, mutation and recombination, the function of Bäck
and Schütz has been adapted to a lower initial mutation rate: a = 4 in (1). The
mutation rate here is bounded by (0; 1

4]. Both functions will be compared with
regard to the solution-quality.
Thierens introduced the dynamic adaptive mutation scheme [9]. The goal is to
try three different mutation rates on the current individual. The comparison of
the fitness values of the three offspring gives a rough hint, whether the current
mutation rate should be increased or decreased. The modification of the current
mutation rate is carried out proportionally by multiplying or dividing the cur-

162 S. Rosenthal, N. El-Sourani, and M. Borschbach

rent rate with the constant learning factor α. During the evaluation, a factor ω
called exploration factor is used. Usually ω > α > 1 to avoid oscillations of the
mutation rates. Formally M(x, pm) −→ (x∗, p∗m) which means, that the individ-
ual x with mutation rate pm generates the offspring x∗ with the new mutation
rate p∗m. The mutation scheme of Thierens:

1. Mutate the current individual (x, pm):
M(x, pm/ω) −→ (x1, pm/α)
M(x, pm) −→ (x2, pm)
M(x, pm · ω) −→ (x3, pm · α)

2. Select the fittest individual of
{(x, pm), (x1, pm/α), (x2, pm), (x3, α · pm)}

Appropriate values are α = 1.1 and ω = 1.5. The start mutation rate is se-
lected as p0 = 0.2. The self-adaptive mutation scheme for binary strings was
also proposed by Bäck and Schütz [8]. Self-adaption gives no direct feedback to
the quality of the mutation rate. The goal of this operator is that individuals
with good parameters receive an evolutionary advantage. The mutation rate is
calculated by the function:

pm(t + 1) = (1 +
1 − pm(t)

pm(t)
· e−γN(0,1))−1, (2)

where N(0, 1) is a normal distributed random number and the learning rate γ
controls the adaption steps of the mutation rate. A traditional choice for the
learning rate is γ = 0.22. The start population rate is also selected as p0 = 0.2.
Two further mutation operators, referred as Random and AAweighted in the
following are based on the Gaussian distribution, similar to the recombination:
The number of mutations of each individual is chosen randomly, according to the
Gaussian distribution. The difference between these two operators is the selection
of the characters. In AAweighted, each of these 20 characters (canonical amino
acids) has its specific frequency to be mutated to (according to their natural in-
cidence). So the selection here is implemented as Stochastic-Universal-Sampling.
In Random - mutation, each character has the same mutation-probability to be
inserted. In MSNSGA-II the choice of the Gaussian interval length σ and the
actuarial expectation ρ for both mutation variants is set to: σ = 5 and ρ = 0.2

Selection Operator. Taking the standard NSGA-II proposed selection method
as base the individual diversity rapidly declined in early consecutive test-runs.
This induced the need of careful examination and tweaking of the selection func-
tion to preserve a high individual diversity in potential parent selection to not
undermine the important aspect of solution space broadness in GA optimization.
The specialty in this GA application is posed by the low number of overall gener-
ations to be calculated as well as an overall low number of individuals generated
(due to manual fitness evaluation) while still aiming for high quality solutions.
Common for peptide design approaches the fitness-value imposed weakness of
single individuals is not representative of their sub-qualities that can be induced
to later generation individuals via recombination. Thus, one main goal of the
aggregateselection-operator is to just very slightly steer in the "right" direction
regarding the solution space. Suppose μ individuals are to be selected:

Multi-objective GA for Biochemical Optimizations 163

1. select x (= tournament size) random individuals from population
2. Pareto-rank the tournament individuals

(a) 0.5 probability
(b) preselect front 0
(c) randomly chose one to put into selection pool

or opposite

(a) 0.5 probability
(b) SUS by front size to preselect in-

dividuals frome some front
(c) randomly chose one to put into

selection pool

3. if (selection pool size = μ) then done else back to 1.

This pseudo-code demonstrates the workings of the standard aggregateselection-
operator. However, during development the need to prioritize one of the multi-
objective optimization goals emerged. To achieve this while allowing current,
supposedly bad individuals to survive, the procedures above were changed each
at (c); instead of randomly accepting one individual from the preselection-pool to
the selection pool, the individual with the better fitness regarding the prioritized
objective is chosen to be put into the selection pool. This selection method is
a product of extensive analysis and different μ, λ sizes are subject to ongoing
work. The principle selection workflow was derived from earlier work, developed
for solving the Rubik’s Cube’s discrete optimization problem [38].

4 Experiments

This section provides the series of experiments comparing on the one hand dif-
ferent mutation settings for MSNSGA-II and on the other hand a benchmarking
with NSGA-II. The remaining parameter settings are the same:

Start mutation rate: p0 = 0.2 except for the adapted dynamic mutation scheme
of Bäck and Schütz; the parameters of recombination: ρ = 2, σ = 2.5. The start
population has a size of 100 randomly initialized individuals of 20 characters.

The three objective functions used for these experiments present a real-life prob-
lem: Simultaneously optimization - in this case minimization - of Needleman Wun-
sch, representing a sequence alignment and two molecular features, molecular
weight and hydrophilicity. The main goal of these experiments is to exhibit the
early convergence of MSNSGA-II in a special m.-o. biophysical application. Each
configuration of MSNSGA-II is run 30 times until the 18-th generation. Due to the
high costs of determining fitness values in practice, the evolution process is limited
to only a small number of generations and thereby realizes an early convergence.
The objective function values reflect the distance of the individuals’ objective func-
tion values to the one of a non-varying reference individual.

M.-o. optimization has two different aims: The convergence of the population
to the Pareto optimal front and the diversity of the solution set. Therefore, as
a measure of density the Spacing-metric of Deb [4] is used. This metric states a
measure for uniform distribution of the population in the feasible region:

SD =
∑n

i=0 |di − d̄|
n

(3)

whereas n denotes the number of individuals of the generation and d̄ is the
average distance of all individuals. The S-metric or hypervolume, first proposed
by Zitzler [36] is utilized for measuring the convergence. The S-metric measures
the size of the objective space spanned by a set of non-dominated solutions

164 S. Rosenthal, N. El-Sourani, and M. Borschbach

Fig. 1. Performance of MSNSGA-II
with mutation variant Bäck& Schütz

Fig. 2. Performance of MSNSGA-II
with mutation variant Random

Fig. 3. Performance of MSNSGA-II
with mutation variant AAweighted

Fig. 4. Performance of MSNSGA-II
with self-adaptive mutation, γ = 0.35

Fig. 5. Performance of MSNSGA-II
with Thierens constant gain mutation

Fig. 6. Performance of character-
encoded NSGA-II

Multi-objective GA for Biochemical Optimizations 165

and a pre-defined reference point. As empirical results, the Spacing-metric and
the hypervolume with reference point 0 is determined of each generation. The
average metric values over 30 runs for each configuration are depicted in figure
1 to 6. The metric values are scaled.

Apparently, MSNSGA-II is able to obtain a good solution set within the 18
generations, especially with the dynamic deterministic mutation scheme of Bäck
and Schütz (Fig. 1). MSNSGA-II with the self-adaptive mutation scheme of Bäck
and Schütz (Fig. 4) achieves better convergence results at the cost of diversity.
Different values for the control parameter γ in the self-adaptive scheme were
tested, the best performance was achieved with γ = 0.35. The configuration with
the mutation Random (Fig. 2) features oscillating behavior although converging.
The similar mutation AAweighted (each character has its specific frequency to
be mutated) decreases this oscillating behavior (Fig. 3). The mutation scheme
of Thierens (Fig. 5) yields the worst performance in the sense of m.-o.. By way
of comparison, the results of the character-encoded NSGA-II run are depicted in
Fig. 6: In all trials NSGA-II exhibit no convergence within the 18 generations.

The comparison of the metric values over all MSNSGA-II runs discloses the
following hypothesis: The runs with almost constant metric values below or equal
4.5 realize the most effective convergence. Constant high metric values above 5.0
result in oscillating convergence behavior.

5 Conclusion

This paper presents a special m.-o. GA based on NSGA-II in its procedure, but it
is especially adapted to optimize diverse molecular features. Hence, MSNSGA-II
is character-encoded and the peculiar achievement is effected by the interaction
of a newly introduced selection function and different types of mutation variants.
MSNSGA-II was applied on a synthetic three-dimensional optimization problem.
Running MSNSGA-II with the different mutation settings on these three objective
functions from theBioJava library reveal on the one hand that a good solution set in
m.-o. sense is achieved within 18 generations. On the other hand, all configurations
of MSNSGA-II featured convergence behavior, though some exhibit oscillating be-
havior. The comparison of the experimental results disclose throughout good con-
vergence behavior of MSNSGA-II with the mutation variants of Bäck and Schütz.
A few insights could be gain with regard to the metric values defined byDeb: Steady
good convergence behavior can be expected with constant metric values through-
out all generations. As this approach seems interesting for biochemical research, a
closer look is necessary to gain deep inside understanding of the convergence veloc-
ity. After this empirical study, theoretical analysis of the different configurations
is planned. Other fields of research are the state-of-the-art GAs IBEA, SEAMO2
and MOEA/D promising remarkable results. But it is an open issue if these GAs
adequately perform like MSNSGA-II by adapting their encoding respectively their
other components.Additional researchwill concentrate on improving themutation
and recombination of MSNSGA-II. Furthermore,we have to focus on to the critical
component crowding distance and we will analyze the convergence performance of
possible alternatives via optimization of crowding-distance behavior.

166 S. Rosenthal, N. El-Sourani, and M. Borschbach

References

1. Holland, J.H.: Adaption in natural and artificial systems, pp. 287–299. University
of Michigan Press, Ann Arbor (1975)

2. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algo-
rithms. In: Proceeding of the International Conference on the Genetic Algorithm
and Their Applications (1985)

3. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in
genetic algorithms. J. Evol. Comput. 2(3), 221–248 (1994)

4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

5. Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic al-
gorithms: A tutorial. Reliability Engineering & System Safety 91, 992–1007 (2006)

6. BioJava: CookBook, release 3.0, http://www.biojava.org/wiki/BioJava
7. Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for

similarities in the amino acid sequence of two proteins. Journal of Molecular Biol-
ogy 48(3), 443–453 (1970)

8. Bäck, T., Schütz, M.: Intelligent mutation rate control in canonical genetic algo-
rithm. In: Proc. of the International Symposium on Methodology for Intelligent
Systems, pp. 158–167 (1996)

9. Thierens, D.: Adaptive mutation rate control scheme in genetic algorithm. In: Pro-
ceedings of the 2002 IEEE World Congress on Computational Intelligence: Congress
on Evolutionary Computation, pp. 980–985 (2002)

10. Fonseca, C.M., Fleming, P.J.: Multiobjective genetic algorithm. In: IEE Col-
loquium on Genetic Algorithms for Control Systems Engineering (Digest No.
1993/130), London, May 28, pp. 6/1–6/5 (1993)

11. Zitzler, E., Künzli, S.: Indicator-Based Selection in Multiobjective Search. In: Yao,
X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A.,
Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242,
pp. 832–842. Springer, Heidelberg (2004)

12. Mumford-Valenzuela, C.L.: A Simple Approach to Evolutionary Multi-Objective
Optimization. In: Evolutionary Computation Based Multi-Criteria Optimization:
Theoretical Advances and Applications. Springer (2004)

13. Chase, N., Rademacher, M.: A benchmark of multi-objective optimization methods.
Red chedar Technology, BMK-3021 Rev. 06.09

14. HEEDS of ProSIM, http://www.pro-sim.com/heeds.html
15. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-

ing, p. 432. Addison-Wesley, Reading (1989)
16. Kötzinger, T., Sudholt, D.: How crossover helps in Pseudo-Boolean Optimiza-

tion. In: Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO, pp. 989–996 (2011)

17. Li, M., Zheng, J., Wu, J.: Improving NSGA-II Algorithm Based on Minimum
Spanning Tree. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass,
H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.)
SEAL 2008. LNCS, vol. 5361, pp. 170–179. Springer, Heidelberg (2008)

18. Liu, H., Gu, F.: A improved NSGA-II algorithm based on sub-regional search. In:
IEEE Congress on Evolutionary Computation, pp. 1906–1911 (2011)

19. Luo, B., Zheng, J.: Dynamic crowding distance? A new diversity maintenance strat-
egy for MOEA’s. In: Fourth International Conference on Natural Computation,
ICNC, vol. 1, pp. 580–585 (2008)

http://www.biojava.org/wiki/BioJava
http://www.pro-sim.com/heeds.html

Multi-objective GA for Biochemical Optimizations 167

20. Sato, H., Aquire, H.: Improved S-CDAS using Crossover Controlling the Number
of Crossed Genes for Many-Objective Optimization. In: Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO, pp. 753–760 (2011)

21. Takahashi, R., Vansconcelos, J.A.: A multiobjective methodology for evaluating
genetic operators. IEEE Transactions on Magnetics 39(3), 1321–1324 (2003)

22. Van Veldhuizen, D.A., Lamont, G.: Evolutionary computation and convergence to
a Pareto front. Stanford University, Califoria, CiteSeerX, pp. 221–228 (1998)

23. Suzuki, H., Sawai, H.: Chemical genetic Algorithms - Coevolution between Codes
and Code translation. Artificial Life VIII, pp. 164–172. MIT Press (2002)

24. Ekins, S., Honeycutt, J.D.: Evolving molecules using multi-objective optimization:
applying to ADME/Tox. Grug Discovery Today 15(11/12), 451–460 (2010)

25. Yamamichi, S., Kurata, H.: Optimization of a Large-Scale Dynamic Model of the
Cell Cycle Network using Multi-Objective Genetic Algorithm. Genome Informat-
ics 16 (2005)

26. Grosan, C., Dumitrescu, D.: A Comparison of Multi-Objective Evolutionary Algo-
rithms. Acta Universitatis Apulensis (2010)

27. Zitzler, E., Deb, K., Thiele, L.: Comparison of multi-Objective Evolutionary Algo-
rithms: Empirical Results. Evolutionary Computation 8(2), 173–195 (2000)

28. Zitzler, E., Thiele, L.: An evolutionary algorithm for multiobjective optimization:
The strength Pareto approach. Technical report 43, Computer engineering and
Networks Laboratory (TIK), Swiss Federal Institute of Technology, ETH (1999)

29. Zitzler, E., Laumann, M., Thiele, L.: Improving the Strength Pareto Evolutionary
Algorithm. Technical report 103, Computer Engineering and Networks Laboratory
(TIK), Swiss Federal Institute of Technology (ETH), Zurich (2001)

30. Ishibuchi, H., Hitotsuyanagi, Y., Ohyanagi, H., Nojima, Y.: Effects of the Exis-
tence of Highly Correlated Objectives on the Behavior of MOEA/D. In: Takahashi,
R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp.
166–181. Springer, Heidelberg (2011)

31. Deb, K., Agrawal, S.: Understanding interactions among genetic algorithm param-
eters. Foundations of Genetic Algorithms 5, 265–286 (1999)

32. Singh, J., Ator, M.A., Jaeger, E.P.: Application of genetic Algorithms to Combi-
natorial Synthesis: A Computational Approach to Lead Identification and Lead
Optimization. J. Am. Chem. Soc. 118, 1669–1676 (1996)

33. Weber, L., Wallaum, S., Broger, C.: Optimizing biological activity of combina-
tional compound libraries by a genetic algorithm. Optimierung der biologischen
Aktivität von kombinatorischen Verbindungsbibliotheken durch einen genetischen
Algorithmus. Angew. Chem. 107, 2452–2454 (1995) (in German)

34. Zarges, C.: Rigorous Runtime Analysis of Inversely Fitness Proportional Mutation
Rates. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN
X. LNCS, vol. 5199, pp. 112–122. Springer, Heidelberg (2008)

35. Nijssen, S., Bäck, T.: An analysis of the behaviour of simplified evolutionary algo-
rithms on trap functions. IEEE Trans. on Evol. Comp. 7(1), 11–22 (2003)

36. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms
- A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel,
H.-P. (eds.) PPSN V. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

37. Borschbach, M.: Neural Classification of Biological Properties and Genetic Oper-
ators Configuration Issues. Trans. on Information Science 12(2), 324–329 (2005)
ISSN 1790-0832

38. El-Sourani, N., Borschbach, M.: Design and Comparison of two Evolutionary Ap-
proaches for Solving the Rubik’s Cube. In: Schaefer, R., Cotta, C., Kołodziej, J.,
Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 442–451. Springer, Heidelberg
(2010)

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 168–177, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Using Hybrid Dependency Identification with a Memetic
Algorithm for Large Scale Optimization Problems

Eman Sayed, Daryl Essam, and Ruhul A. Sarker

School of Engineering and Information Technology at Australian Defence Force Academy,
UNSW, Canberra, Australia

e.hasan@student.adfa.edu.au,
{d.essam,r.sarker}@adfa.edu.au

Abstract. Decomposing a large scale problem into smaller subproblems is one
of the approaches used to overcome the usual performance deterioration that
occurs in EA because of the large dimensionality. To achieve a good perfor-
mance with a decomposition approach, the dependent variables need to be
grouped into the same subproblem. In this paper, the Hybrid Dependency Iden-
tification with Memetic Algorithm (HDIMA) model is proposed for large scale
optimization problems. The Dependency Identification (DI) technique identifies
the variables that must be grouped together to form the subproblems. These
subproblems are then evolved using a Memetic Algorithm (MA). Before the
end of the evolution process, the subproblems are then aggregated and
optimized as a complete large scale problem. A newly designed test suite of
problems has been used to evaluate the performance of HDIMA over different
dimensions. The evaluation shows that HDIMA is competitive to other models
in the literature in terms of both consuming less computational resources and
better performance.

Keywords: Large Scale Problems Optimization, Evolutionary Algorithms,
Memetic Algorithms, Problem Decomposition, Dependency Identification.

1 Introduction

Solving large scale optimization problems has become a challenging area, due to both
the increased need for high quality decision making for large scale optimization prob-
lems in real life; and also the need to optimize the available computing resources.
Recently developed optimization algorithms use Evolutionary Algorithms (EAs) to
solve large scale optimization problems. However, the performance of EAs eventually
deteriorates with the increased dimensionality of optimization problems [1]. There are
two solutions to overcome this dimensionality problem; applying a decomposition
approach, and using a hybridized approach. The first attempt for applying the decom-
position approach is the Cooperative Coevolution (CC) approach that breaks the large
scale problem into smaller subproblems [2]. The CC approach loses its efficiency
with nonseparable optimization problems [2]. If one variable is optimized in one
subproblem and it depends on other variables which are optimized in different

 Using Hybrid Dependency Identification with a Memetic Algorithm 169

subproblems, the overall performance will deteriorate [2]. These variables are known
as interdependent variables. To improve the performance of the CC, the separation of
these interdependent variables need to be minimized. This demands a new technique
that would detect the best arrangement of variables by minimizing the separation of
the interdependent variables. The recently developed grouping approaches cannot
provide a complete grouping for the interdependent variables which should be opti-
mized in one subproblems [2]. This motivates the development of an optimization
model that hybridizes the CC approach and the complete large problem optimization
approach. To overcome the dimensionality drawback of EA when solving large scale
optimization problems, it has been hybridizing with Local Search (LS) technique [3].
LS is one of these techniques that can be hybridized with EAs to enhance its perfor-
mance. The hybridizations of EA and LS are called Memetic Algorithms (MA).

A newly developed model, Hybridized Dependency Identification with Memetic
Algorithm (HDIMA), is proposed in this paper and its performance is investigated
over different large scale dimensions. HDIMA hybridizes the decomposition and the
aggregation approaches. In the proposed models, the large scale problem is decom-
posed into subproblems and is then optimized for two thirds of the evolution process,
and then the subproblems are aggregated into one problem for the final third. HDIMA
performance is evaluated on a recently designed test suite of 12 unconstrained large
scale optimization problems. A copy of this test suite can be downloaded from the
author’s page1. The results are analyzed against other models in the literature and
show the competitive performance of HDIMA over the 1000 dimension scenarios and
the saving of computational resources for the 4000 dimension set, but unfortunately
this saving decreased the performance on the larger dimension.

Section 2 of this paper is a literature review of grouping techniques. Section 3 dis-
cusses the proposed model. The Experiment and results are presented in sections 4
and 5. Finally, the conclusion and future work is in section 6.

2 Literature Review

The first attempt for problem decomposition is the Cooperative Coevolution (CC)
approach [2]. Problem decomposition helps to enhance the performance of the opti-
mization algorithms by decomposing the large scale problems into small subprob-
lems. The initial strategies that were developed for CC are the one-dimension based
strategy, and the splitting-in-half strategy [4]. The one-dimension based strategy de-
composed a N dimension large scale problem into N subproblems. The second ap-

proach produces two subproblems of size (which are large scale subproblems if N

is very large). The common decomposition approach is to decompose the large scale
problem into predefined subproblems. The subproblem size of 100 has been found to
be convenient for both the separable and the nonseparable problems [5]. Besides the
problem size, the performance of the optimization model depends also on identifying

1 https://docs.google.com/file/d/
0B7q30xCpYVy3R1dkNkxzdHhMUWM/edit?pli=1

170 E. Sayed, D. Essam, and R.A. Sarker

the variables dependency. If the dependent variables are grouped into different sub-
problems, the performance of the optimization algorithm will decrease. These va-
riables are referred to in this paper as interdependent variables. This motivates the
development of decomposition techniques that consider grouping the dependent va-
riables into subproblems to minimize the interdependent variables.

One of the recently developed decomposition techniques is Random Grouping
(RG) [5], where variables are grouped randomly into smaller subproblems. RG has
achieved good performance in the literature [1, 5], but it does not have a systematic
way to group the variables or detecting their dependencies. The grouping technique of
correlation based Adaptive Variable Partitioning [6] was developed afterwards. This
technique doesn’t detect the nonlinear dependencies amongst the variables and also
uses large computational resources. Following that technique, the Delta Grouping
technique [7] was developed. For it, the variables are grouped according to the magni-
tude of change that happens through one generation during the evolution of the sub-
problems. Although this technique seems to be reasonable, it is less efficient when the
large scale problem has more than one nonseparable group [7]. A recently developed
grouping technique is the Variable Interactive Learning (VIL) [8] technique. In that,
the large scale optimization problem is decomposed into one-dimension subproblems
and the current and previous populations are tested after optimizing each subproblem.
After that, the subproblems which have changed and affected each other are merged.
One problem with this, is that starting with one-dimension based decomposition is not
suitable for large scale problems. Moreover, VIL consumes up to 60% of the available
computational resources [8]. The most recently developed technique is the Dependen-
cy Identification (DI) [9] which groups the variables in an arrangement that minimiz-
es the interdependent variables. DI uses approximately 1.16% of the total evaluations
and follows a systematic way to group the variables. However it can’t group all the
dependent variable in one subproblem if they exceed the allowed subproblem size.
These drawbacks in the grouping techniques in the literature and the requirement to
minimize the interdependent variables, motivates the need for hybridizing the decom-
position and the aggregation approaches into one model. Furthermore, increasing the
subproblems size will decrease the interdependent variables.

3 Proposed Model

The three main stages of HDIMA are dependency identification and decomposition;
subproblems optimization and information exchange; and subproblems aggregation
and optimization. This model can decrease the computational resources that need to
be used for dependency identification and information exchange. The detailed pseudo
code of the HDIMA is shown in Fig. 1.

3.1 Dependency Identification (DI) and Problem Decomposition

The first stage of HDIMA applies the DI technique [9] for two thirds of the evolution
process which in this paper is two thirds of the Fitness Evaluations (FE). The DI

 Using Hybrid Dependency Identification with a Memetic Algorithm 171

technique is inspired from the definitions of problem separability in the literature [8,
10]. A fully separable problem [10] is one that can be written in the form of linear com-
binations of subproblems of individual variables, where ∑ . A par-
tially separable problem is defined in [6] as ∑ , 1, ,

, where is the total number of variables of the large scale optimization problem,
, which is decomposed into m equal size subproblems. Each subproblem has

dependent variables and no variable is represented in more than one subproblem.
From these definitions it is obvious that the best grouping to decompose a large

scale optimization problem into subproblems is one that minimizes the number of
interdependent variables, where interdependent variables are variables that have more
than one instance in two or more subproblems. The DI technique finds the arrange-
ment of variables that produces the least square difference () between
and ∑ , 1, , as defined in equation (1). This is done by running a
simple randomized search. is multiplied by the total of the two solutions of
all the variables, , 1, , 0 , and all the variables , 1, , 0. The variables are arranged and decomposed into
subproblems, where each subproblem consists of variables. Also ∑ is

the total of , and , for all the subproblems. To do this, the

variables of one subproblem are set to , and the rest of the () variables are
set to the other value , and vice versa. Lastly, and while recalling that the technique
aims to minimise : ∑ , 1, (1)

 , 1, , , 1,
3.2 Subproblem Optimization and Information Exchange

The subproblems from the previous stage are optimized at this stage using MA. MA is
more reliable than EA [11] and it is capable of searching noisy search spaces effi-
ciently [12]. MA uses Genetic Algorithms (GA) [13] and self-directed LS. The cros-
sover operator in GA is the Simulated Binary Crossover (SBX) [14], and the mutation
operator is an adaptive nonuniform mutation [15]. The self-directed LS guides the
search to the most promising solution area. It uses variant search steps, ′, based on
the improvement of the search process as in equation (2). The advantage of using a
self-directed local search is that of decreasing the greediness of LS so as to avoid
premature convergence [16]. / / (2)

Although the DI can find a good arrangement for the subproblems, there is always a
probability of having interdependent variables. For example, one subproblem may
have an instance of the interdependent variable that is optimized in another subprob-
lem. The values of the variables will thus differ from their initial values during the
optimization. An Information Exchange Mechanism (IEM) is used to maintain the

172 E. Sayed, D. Essam, and R.A. Sarker

representation of only one instance for each interdependent variable during the opti-
mization process. The IEM is activated after optimizing each subproblem to update
the value of the interdependent variables that were optimized in that subproblem.

Fig. 1. Pseudo code of DIMA

3.3 Subproblems Aggregation and Optimization

At the last stage of HDIMA, the subproblems are aggregated and optimized using MA
as one large scale problem for the final third of the evolution process, and the IEM is
deactivated. Subproblems aggregation can overcome the drawback of the grouping
techniques which is imposed by the subproblem size limitation. Thus optimizing a
complete large scale problem without decomposition is a compromise between the
performance, and saving the resources that would have been used for DI and IEM.

4 Experiments

The performance of HDIMA is evaluated on large scale problems to investigate the
compromise between slightly lower performance and the ability to save computational
resources. Two experiments are carried out on 2 different dimensions, of 1000 and
4000, and HDIMA is compared to DIMA, RGMA, and MA. DIMA is similar to
HDIMA but without the aggregation stage. RGMA uses the decomposition technique
RG which achieved good performance in the literature [1, 5]. The MA model does not
follow the CC decomposition approach. The objectives of the experiments are to inves-
tigate how the hybridization of the decomposition and aggregation approaches can de-
crease the computational resources; and how that decrease may affect the performance
when the dimension is increased. These two experiments are conducted on a new test
suite of 12 unconstrained large scale optimization problems that are based on the basic 6
problems of CEC2008 [17]. This test suite is published on the author’s page. This test

, … , , … , , … , , , … , , … , , … ,

1. Initialize population NP for N variables.

2. Create initial sequential arrangement S for the N variables

3. Initially decompose the variables into subproblems of s_size
4.for (swp < 10) randomly swap two variables , in S to get S

5. calculate _ as in equation (1)

6. update to the arrangement that achieved minimum _

7. follow to decompose the variables into subproblems

8. for 1 to do

4.5.1 Optimise the subproblems

4.5.2 Information Exchange Mechanism

9. If FE< 2*max_FE/3 go to step 4

10. Aggregate the subproblems into one N_size problem

11. for (FE< max_FE) optimize the N_size problem

 Using Hybrid Dependency Identification with a Memetic Algorithm 173

suite covers different degrees of separability and overlapping among the variables to
represent real life problems where the variables are rarely independent. The experiments
have been conducted using the same parameter settings as in the literature[7-8], with
population size 50, subproblem size (s_size) =100, =2 as used by most re-
searchers for SBX [18], maximum number of FEs (max_FE) = 3E+6, 1 and 2. The results are taken over 25 independent runs for each problem.

5 Results and Analysis

The results of the experiments with 1000 and 4000 dimensions are represented in
Table 1 and Table 2 with 3 fraction points. The best value is formatted in bold to dis-
tinguish it from other similar approximated results. For D=1000, HDIMA outper-
formed DIMA in 2 nonseparable problems, 1 overlapping nonseparable, 1 overlap
ping partially nonseparable F6, and 3 overlapping spliced partially nonseparable prob-
lems. HDIMA has higher performance than DIMA at 9 problems in terms of standard
deviation. HDIMA achieved less performance than that of RGMA for only the over-
lapping nonseparable problem, F3, but it was also competitive for the other 11 prob-
lems. HDIMA was better at 7 problems in terms of the mean value and 8 problems
based on the standard deviation value in comparison to MA. HDIMA achieved better
performance than MA at F1, F2, F4, and the overlapping partially nonseparable prob-
lems F6, F7, F8, and the overlapping spliced partially nonseparable problems, F12.

Table 1. Models on D=1000

 F1 F2 F3 F4 F5 F6

HDIMA
Best 4.910E+02 4.925E+02 9.927E+02 5.878E+02 5.451E+02 5.449E+02
Mean 1.799E+04 1.324E+04 1.214E+03 1.017E+04 5.400E+03 7.846E+03
Std 9.383E+03 1.086E+04 2.257E+02 6.184E+03 4.808E+03 4.675E+03

DIMA
Best 4.912E+02 4.934E+02 9.925E+02 5.887E+02 5.449E+02 5.449E+02
Mean 2.039E+04 1.110E+05 1.073E+03 4.670E+04 2.367E+03 9.639E+03
Std 5.950E+04 1.305E+05 1.649E+02 6.208E+04 4.150E+03 2.961E+04

RGMA
Best 4.929E+02 5.015E+02 9.923E+02 5.913E+02 5.454E+02 5.453E+02
Mean 2.331E+05 2.398E+05 1.272E+03 9.088E+04 1.162E+05 9.515E+04
Std 1.652E+05 1.492E+05 3.781E+02 7.987E+04 7.469E+04 7.284E+04

MA
Best 4.912E+02 4.935E+02 9.923E+02 5.881E+02 5.453E+02 5.451E+02
Mean 1.527E+04 1.990E+04 1.344E+03 1.013E+04 7.826E+03 7.380E+03
Std 1.193E+04 9.876E+03 3.542E+02 6.131E+03 4.246E+03 5.386E+03

 F7 F8 F9 F10 F11 F12

HDIMA
Best 5.450E+02 5.466E+02 5.298E+02 5.237E+02 5.234E+02 5.244E+02
Mean 5.886E+03 7.189E+03 7.251E+03 6.825E+03 5.269E+03 6.583E+03
Std 4.894E+03 4.708E+03 3.137E+03 3.640E+03 4.357E+03 3.881E+03

DIMA
Best 5.449E+02 5.465E+02 5.295E+02 5.251E+02 5.251E+02 5.249E+02
Mean 8.698E+03 3.272E+04 2.356E+04 1.341E+04 3.791E+04 3.318E+04
Std 2.423E+04 5.319E+04 3.621E+04 2.821E+04 4.199E+04 3.658E+04

RGMA
Best 5.499E+02 5.468E+02 5.324E+02 5.266E+02 5.286E+02 5.268E+02
Mean 9.529E+04 8.527E+04 7.158E+04 5.718E+04 6.765E+04 6.821E+04
Std 7.052E+04 6.917E+04 4.428E+04 3.827E+04 4.076E+04 5.080E+04

MA
Best 5.451E+02 5.467E+02 5.292E+02 5.227E+02 5.231E+02 5.254E+02
Mean 8.911E+03 8.415E+03 5.868E+03 7.741E+03 6.344E+03 7.380E+03
Std 3.940E+03 4.632E+03 4.151E+03 3.782E+03 4.495E+03 3.526E+03

174 E. Sayed, D. Essam, and R.A. Sarker

Table 2. Optimization models on D=4000

 F1 F2 F3 F4 F5 F6

HDIMA
Best 1.977E+03 1.979E+03 3.978E+03 2.377E+03 2.182E+03 2.192E+03
Mean 3.440E+07 3.962E+07 2.363E+06 3.050E+07 2.674E+07 2.697E+07
Std 1.906E+07 1.583E+07 1.301E+06 1.328E+07 7.648E+06 9.812E+06

DIMA
Best 1.977E+03 1.979E+03 3.978E+03 2.377E+03 2.182E+03 2.182E+03
Mean 1.978E+03 1.979E+03 3.978E+03 2.378E+03 2.182E+03 2.182E+03
Std 3.583E-01 4.949E-01 2.070E-01 7.868E-01 2.481E-01 4.543E-01

RGMA
Best 1.978E+03 1.979E+03 3.978E+03 2.378E+03 2.182E+03 2.182E+03
Mean 8.069E+06 4.726E+06 4.740E+03 6.517E+06 3.278E+06 1.358E+05
Std 2.083E+07 1.410E+07 3.317E+03 1.613E+07 1.082E+07 3.623E+05

MA
Best 1.979E+03 2.781E+07 3.981E+03 2.378E+03 2.186E+03 9.173E+03
Mean 4.195E+07 4.580E+07 3.490E+06 3.617E+07 2.705E+07 3.447E+07
Std 2.645E+07 1.419E+07 2.563E+06 1.625E+07 1.476E+07 1.387E+07

 F7 F8 F9 F10 F11 F12

HDIMA
Best 2.182E+03 2.183E+03 2.139E+03 2.125E+03 2.126E+03 2.127E+03
Mean 2.409E+07 2.392E+07 2.240E+07 2.508E+07 2.461E+07 2.309E+07
Std 8.394E+06 1.188E+07 9.299E+06 7.693E+06 1.009E+07 8.251E+06

DIMA
Best 2.182E+03 2.183E+03 2.138E+03 2.126E+03 2.126E+03 2.128E+03
Mean 2.182E+03 2.183E+03 2.160E+03 2.127E+03 2.128E+03 2.129E+03
Std 8.649E-02 5.491E-02 9.571E+01 1.291E+00 2.260E+00 1.228E+00

RGMA
Best 2.182E+03 2.184E+03 2.139E+03 2.126E+03 2.127E+03 2.128E+03
Mean 1.049E+07 8.562E+06 2.710E+06 3.074E+06 8.115E+06 2.389E+06
Std 2.073E+07 1.957E+07 8.774E+06 8.928E+06 1.532E+07 7.896E+06

MA
Best 2.183E+03 2.192E+03 2.138E+03 2.151E+03 2.162E+03 1.316E+07
Mean 3.199E+07 3.011E+07 2.828E+07 2.381E+07 2.809E+07 3.003E+07
Std 1.119E+07 1.083E+07 1.119E+07 1.026E+07 1.280E+07 1.080E+07

For the second experiment of D=4000, HDIMA was better than DIMA and RGMA

at 4 problems and 11 problems in terms of the mean value, and was not competitive to
them at any problem in terms of the standard deviation value. HDIMA performed
better than MA in 11 problems and 10 problems in terms of the mean value and the
standard deviation value consecutively. The hybridization of the decomposition and
the aggregation approaches in HDIMA decrease the percentage of evaluations ()
to 0.1072% instead of 0.1604% at DIMA and 60% at VIL [8]. This is calculated
from _ FEMA , where 2 , 2 . , . , .

, s_size 2 , _ 3E+6, s_size={100,D} for in
and respectively, the LS iteration L=10 and D/100.

Wilcoxcon nonparametric test has been conducted at the significance level of 5%.
The “+” means that the first algorithm “a” is significantly better than the second algo-
rithm “b”; “-” means algorithm “a” is significantly worse than “b”; and “ ” means
that there is no significant difference. The analysis of Table 3 shows that HDIMA is
significantly better than DIMA and RGMA over dimension of 1000, but worse for the
4000 dimension. There was no significant difference between HDIMA and MA at
dimension of 1000, but HDIMA was significantly better for D=4000. DIMA and
RGMA are significantly worse than MA at D=1000. This reveals the ability of
HDIMA to benefit from the decomposition approach while the other two compared
models failed to compete with the MA model over D=1000.

 Using Hybrid Dependency Identification with a Memetic Algorithm 175

Table 3. Wilcoxcon Nonparametric test

b

DIMA RGMA MA DIMA RGMA MA

a 1D 4D
HDIMA + + - - +
DIMA + - + +
RGMA - +

The convergence of the 12 problems has been observed for the four models over
the 2 different dimensions (1000 and 4000). A graph for one problem from each cate-
gory of the test suite problems is included for dimensions 1000 and 4000 (Figures 2 to
5). For F1 over D=1000, HDIMA converges quickly at the beginning and is the best at
the end, while RGMA used all of the allowed FE without reaching that level of solu-
tion. MA performed well over D=4000 at the beginning only, and HDIMA was the
second best after DIMA. Although F4 is a very complex problem (overlapping spliced
nonseparable) and MA is expected to work well, HDIMA was the best over the di-
mension of 1000 after 1E+6 FEs until the end, and was able to compete with MA
starting from 10E+4 FEs over the dimension of 4000. This emphasises the impact of
DI on enhancing the performance and achieving a reasonable solution at less than a
third of the FEs that the other two models require. F8 is the relaxed version of F4 as it
is an overlapping partially nonseparable problem. The convergence of F8 on the 2
dimensions shows that MA suffers from a slow convergence and HDIMA was better
and continued to be better. The overall performance of all the models that follow the
decomposition approach is better than MA. Moreover DIMA and HDIMA was the
best among the all. HDIMA achieved the best convergence for F12, followed by
DIMA, then RGMA, while MA was away by 1E+7. The convergence of RGMA is
slow at the beginning for most of the problem over the 2 dimensions and the conver-
gence of MA is weaker over the larger dimensions. This shows the need for the de-
composition approach with better identification than that given by random approach.

Fig. 2. F1 convergence for 1000 D and 4000 D

Fig. 3. F4 convergence for 1000 D and 4000 D

176 E. Sayed, D. Essam, and R.A. Sarker

Fig. 4. F8 convergence for 1000 D and 4000 D

Fig. 5. F12 convergence for 1000 D and 4000 D

6 Conclusion and Future Work

Hybridizing the aggregation approach with the decomposition approach in HDIMA
made it competitive to two of the latest developed models DIMA, RGMA on dimen-
sion of 1000 and made it even competitive to MA for the 4000 dimension. HDIMA
achieved better performance than DIMA and, RGMA over dimension 1000 for almost
all the overlapping spliced partially nonseparable problems. Another advantage of
HDIMA is that of reaching a reasonable solution three times earlier than the other
algorithms in the literature when solving large scale problems of complex structure.
The recognizable contribution of HDIMA is reducing the computational resources to
0.1072% and 0.1092% for 1000 and 4000 dimensions. This achievement makes
HDIMA a recommended optimization model when the computational resources are
limited. This calls for future experiments and analysis to investigate the hybridization
of DI with other EAs on larger dimensions to merge the advantages of DI and the
refining abilities of other EAs. Applying HDIMA in a parallel computing environ-
ment is another interesting experiment in which HDIMA could achieve further im-
provement.

References

1. Omidvar, M., Li, X., Yang, Z., Yao, X.: Cooperative co-evolution for large scale optimiza-
tion through more frequent random grouping (2010)

2. Potter, M., Jong, K.D.: A Cooperative Coevolutionary Approach to Function Optimization.
In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN III. LNCS, vol. 866. Springer,
Heidelberg (1994)

3. Goldberg, D., Voessner, S.: Optimizing global-local search hybrids. In: Proceedings of the
Genetic and Evolutionary Computation Conference, San Mateo, California, pp. 220–228
(1999)

 Using Hybrid Dependency Identification with a Memetic Algorithm 177

4. Potter, M., Jone, K.D.: Cooperative Coevolution: An Architecture for Evolving Coadapted
Subcomponents. Evolutionary Computation 8, 1–29 (2000)

5. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coe-
volution. Information Sciences 178, 2986–2999 (2008)

6. Ray, T., Yao, X.: A Cooperative Coevolutionary Algorithm with Correlation Based Adap-
tive Variable Partitioning. In: IEEE Congress on Evolutionary Computation, pp. 983–989
(2009)

7. Omidvar, M., Li, X., Yao, X.: Cooperative Co-evolution with Delta Grouping for Large
Scale Non-separable Function Optimization. In: 2010 IEEE World Congress on Computa-
tional Intelligence, Barcelona, Spain, pp. 18–23 (2010)

8. Chen, W., Weise, T., Yang, Z., Tang, K.: Large-Scale Global Optimization Using Cooper-
ative Coevolution with Variable Interaction Learning. In: Schaefer, R., Cotta, C.,
Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 300–309. Springer,
Heidelberg (2010)

9. Sayed, E., Essam, D., Sarker, R.: Dependency Identification Technique for Large Scale
Optimization Problems. In: Proceedings of the 2012 IEEE Congress on Evolutionary
Computation, Brisbane, Australia, pp. 1442–1449 (2012)

10. Mosk-Aoyama, D., Shah, D.: Fast Distributed Algorithms for Computing Separable Func-
tions. IEEE Transactions on Information Theory 54, 2997–3007 (2008)

11. Merz, P.: Memetic Algorithms for Combinational Optimization Problems: Fitness Land-
scapes and Effective Search Strategies. PhD, Gesamthochschule Siegen, University of Sie-
gen, Germany (2000)

12. Molina, D., Lozano, M., García-Martínez, C., Herrera, F.: Memetic Algorithms for Conti-
nuous Optimisation Based on Local Search Chains. Evolutionary Computation 18, 27–63
(2010)

13. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addi-
son-Wesley Longman Publishing Co., Inc. (1989)

14. Deb, K., Agrawal, R.: Simulated Binary Crossover for Continuous Search Space. Complex
Systems 9, 115–148 (1995)

15. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer,
New York (1992)

16. Molina, D., Lozano, M., Sánchez, A., Herrera, F.: Memetic algorithms based on local
search chains for large scale continuous optimisation problems: MA-SW-Chains. In: Soft
Computing - A Fusion of Foundations, Methodologies and Applications, pp. 1–20 (2010)

17. Tang, K., Yao, X., Suganthan, P.N., MacNish, C., Chen, Y.-P., Chen, C.-M., Yang, A.Z.:
Benchmark Functions for the CEC 2008 Special Session and Competition on Large Scale
Global Optimization. University of Science and Technology of China (USTC), School of
Computer Science and Technology, Nature Inspired Computation and Applications Labor-
atory, NICAL, Héféi, Ānhū, China (2007)

18. Talbi, E.: Metaheuristics: from design to implementation, pp. 124–127. John Wiley &
Sons, Hoboken (2009)

Application of Cooperative Convolution Optimization
for 13C Metabolic Flux Analysis:

Simulation of Isotopic Labeling Patterns
Based on Tandem Mass Spectrometry Measurements

Rohitash Chandra1,3, Mengjie Zhang1, and Lifeng Peng2

1 School of Engineering and Computer Science
2 School of Biological Sciences

Victoria University of Wellington, P.O. Box 600, Wellington, 6140, New Zealand
3 Department of Computer Science and Information Technology,

University of Fiji, Saweni Campus, Lautoka, Fiji
c.rohitash@gmail.com, mengjie.zhang@ecs.vuw.ac.nz,

lifeng.peng@vuw.ac.nz

Abstract. Metabolic fluxes are the key determinants of cellular metabolism.
They are estimated from stable isotope labeling experiments and provide the in-
formative parameters in evaluating cell physiology and causes of disease.
Metabolic flux analysis involves in solving a system of non-linear isotopomer
balance equations by simulating the isotopic labeling distributions of metabo-
lites measured by tandem mass spectrometry, which is essentially an optimiza-
tion problem. In this work, we introduce the cooperative coevolution optimization
method for solving the set of non-linear equations that decomposes a large prob-
lem into a set of subcomponents. We demonstrate that cooperative coevolution
can be used for solving the given metabolic flux model. While the proposed ap-
proach makes good progress on the use of evolutionary computation techniques
for this problem, there exist a number of disadvantages that need to be addressed
in the future to meet the expectation of the biologists.

Keywords: Metabolic flux analysis, metabolic pathways, cooperative coevolu-
tion, evolutionary algorithms.

1 Introduction

13C Metabolic flux analysis (MFA) deals with a mathematical model that describes the
relationship between the relative abundances of metabolites and isotopomers of metabo-
lites with metabolic fluxes for a given metabolic network, expressed as a system of
metabolite and isotopomer mass balance equations [1,2,3]. This system is usually over-
determined for solving metabolic fluxes, and in essence, involves a large-scale non-
linear parameter fitting to minimize the difference between experimentally measured
and computationally simulated isotopic labelling patterns.

Metabolic fluxes, i.e., the reaction rates in the metabolic pathways in a biological
system, are key determinants of cell physiology and informative parameters in evaluat-
ing cellular mechanisms and causes of diseases and identifying possible genetic targets

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 178–187, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Cooperative Convolution Optimization for 13C Metabolic Flux Analysis 179

for optimization of a particular phenotype [1,2]. Metabolic flux analysis involves in (1)
introducing isotope tracers (e.g., 13C) into a cell culture and allowing the system to
reach at metabolic steady state, (2) measuring the relative abundances of the isotopic
isomers, i.e. distinct labelling patterns (isotopomers) of intracellular metabolites in the
metabolic pathways, and (3) computationally simulating these measurements to estimate
metabolic fluxes [3]. Recent advance in mass spectrometry (MS) technology, tandem MS
(MS/MS), provides the opportunity for MFA towards resolving detailed fluxes for com-
plex metabolic network. Jeffrey et al.[4] demonstrated that tandem MS was able to yield
detailed positional labelling information of isotopomers of metabolites through measur-
ing the mass distributions of their daughter fragments with superior sensitivity and the
MS/MS data can be computed allowing estimation of fluxes with better precision [5].

In the past, genetic algorithms have been used for solving metabolic pathways in
conjunction with some numerical methods such as the gradient based Newton’s method
[6,7]. Genetic algorithms provide a means to optimize the model without the need of in-
formation on the derivatives of the equations. Zhang and Yao [8] used a hybrid genetic
algorithm where sequential simplex technique was used as a local search method to
simulate the flux distribution of central metabolism of Saccharomyces cerevisiae. How-
ever, these methods are limited to resolving large and complex biological networks due
to heavy computational burden.

Cooperative coevolution (CC) is an evolutionary computation optimisation method
that decomposes a problem into subcomponents and solves them independently in or-
der to collectively solve the problem. The subcomponents are implemented as sub-
populations that are evolved separately and the cooperation only takes place at fitness
evaluation for the respective individuals in each subpopulation. CC has shown promising
results in general function optimisation problems [9,10]. We have used CC for training
feed forward and recurrent neural networks [11,12,13,14]. More relevantly, CC has been
used for flux balance analysis (FBA), which is different from 13C MFA in the present
work as FBA employs no 13C label and thus contains no isotopomer balance equations
in the mathematical model, for maximum ATP production for Bacillus subtilis in the past
[15]. The advantage of CC over standard genetic algorithms is that they provide a mecha-
nism for evolving parts of the problem in isolation, i.e., a large problem can be effectively
broken down into smaller problems using cooperative coevolution, and different forms
of constraint handling and fitness approximation can be assigned to the respective sub-
populations. It is, therefore, promising that CC can be used to resolve large and complex
biological networks to provide detailed insights into biological systems.

This work applies cooperative coevolution for 13C MFA for simulating the isotopic
labeling patterns of the metabolites in an example metabolic network selected from
literature [5]. The problem is expressed as a system of non-linear equations, which is
an over-determined system and solved by optimization using the algorithm developed
in this paper. The goal is to achieve the least errors of the isotopomer balance equations
and simulate the isotopic labelling patterns of the metabolites.

The rest of the paper is organised as follows. Section 2 presents the background of
13C MFA. Section 3 gives details of the proposed approach where CC is used for MFA.
Section 4 presents the results and section 5 concludes the work with a discussion on
future work.

180 R. Chandra, M. Zhang, and L. Peng

2 Mathematical Models for 13C MFA

2.1 Metabolic Model

We used an example metabolic model as described by Choi and Antoniewicz [5] to sim-
ulate the isotopic labeling patterns of the metabolites that are expressed in the format of
MS/MS measurement data through linear grouping isotopomers of the same number of
labels in a metabolite pool. The model consists of gluconeogenesis, TCA cycle and gly-
oxylate shunt as shown in Figure 1. The biochemical reactions and the atom transitions
for these reactions involved in the model are taken from [5]. In this network, [13C]ASP
and AcCoA are the two substrates and Gluc and CO2.ext are the two products; the seven
intermediary intracellular metabolites (Cit, AKG, Suc, Fum, OAC, Glyox and CO2)
were assumed to be at the metabolic and isotopic steady state. The labelled substrate
[13C]ASP contained 25% [1,2-13C] ASP, 25% [4-13C] ASP, 25% [2,3,4-13C] ASP and
25% unlabelled ASP. The assumed fluxes for the network are shown in Figure 1.

Fig. 1. Metabolic network model [5]. Abbreviations of metabolites: Asp, aspartate; OAC, ox-
aloacetate; AcCoA, acetyl coenzyme A; Cit, citrate; AKG, alpha-ketoglutarate; Fum, fumarate;
Suc, succinate; Glyox, glyoxylate. Assumed fluxes (arbitrary units): v1 = 100, v2 = 220, v3 =
150, v4 = 70, v5 = 100, v6 = 140, v7 = 40, v8 = 30, v9 = 30, v10 = 60, v11 = 90, v12 =
140.

2.2 Mathematical Description of the Model

By assuming the isotopic steady state, a set of isotope isomer (isotopomer) balance
equations for the intracellular metabolites can also be formulated. The isotopomer bal-
ance equations were constructed based on the method by Schmidt et al [16]. First, the
atom mapping matrices (AMMs) were created to describe the carbon transitions in the
reactions according to the protocol by Zupke and Stephanopoulos [17], followed by the
construction of isotopomer mapping matrices (IMMs) derived from AMMs using the
algorithm by Schmidt et al [16]. The IMMs describe the transformation of isotopomers
of the reactant into the product. An IMM is constructed for each pair of reactant and

Cooperative Convolution Optimization for 13C Metabolic Flux Analysis 181

product molecules in the reaction. For example, IMMOAC>Cit is the transformation
matrix that describes how the isotopomers of reactant OAC are transformed into the
isotopomers of the product Cit, which are matrices filled with the value of “1” at the ap-
propriate positions where the transitions of isotopomer from the reactant to the product
occur and all the remaining elements are tilled with “0”. We have created the AMM and
IMM databases for the given metabolic model. Isotopomer distribution vectors (IDVs)
collect the fractional abundances of all isotopomers of the metabolites. For a metabolite
with n carbons, the IDV has 2n elements.

By using IMMs and IDVs, the isotopomer balance equations can be formulated in
which the sum of incoming isotopomer fluxes is equal to the sum of isotopomer fluxes
out of the metabolite pool. The following equations are used to express the network
model shown in Figure 1.

OAC : v6

(
1

2
IMMFum(abcd)>OAC +

1

2
IMMFum(dcba)>OAC

)
.IDVFum

+ v9(IMMAcCoA>OAC.IDVAcCoA)⊗ (IMMGlyox>OAC.IDVGlyox)

+ (IMMASP>OAC.IDVASP)− (v1 + v7 + v11)IDVOAC = 0 (1)

Cit : v1(IMMAcCoA>Cit.IDVAcCoA)⊗ (IMMOAC>Cit.IDVOAC)

+ v3(IMMAKG>Cit.IDVAKG)⊗ (IMMCO2>Cit.IDVCO2)

− (v2 + v8)IDVCit = 0 (2)

AKG : v2(IMMCit>AKG.IDVCit)− (v3 + v4)IDVAKG = 0 (3)

Suc : v4

(
1

2
IMMAKG>Suc(bcde) +

1

2
IMMAKG>Suc(edbc)

)
.IDVAKG

+ v8

(
1

2
IMMCit>Suc(cdef) +

1

2
IMMCit>Suc(fedc)

)
.IDVCit

− (v5)IDVSuc = 0 (4)

Fum : v5

(
1

4
IMMSuc(abcd)>Suc(abcd) +

1

4
IMMSuc(abcd)>Suc(dcba)

)
.IDVSuc

+ v5

(
1

4
IMMSuc(dcba)>Suc(abcd) +

1

4
IMMSuc(dcba)>Suc(dcba)

)
.IDVSuc

+ v7

(
1

2
IMMOAC>Fum(abcd) +

1

2
IMMOAC>Suc(dcba)

)
.IDVOAC

− V6.IDVFum = 0 (5)

Glyox : v8(IMMCit>Glyox.IDVCit)− v9.IDVGlyox = 0 (6)

CO2 : v2(IMMCit>CO2).IDVCit

+ v4

(
1

2
IMMAKG>Suc(bcde) +

1

2
IMMAKG>Suc(edcb)

)
.IDVAKG

− (v3 + v12)IDVCO2 = 0 (7)

where, ⊗ is the column-wise multiplication of the vectors. Equations 1- 7 describe the
relationship between the metabolic fluxes and isotopomer distributions of the metabo-
lites in the network that can be solved by simulation computationally.

182 R. Chandra, M. Zhang, and L. Peng

2.3 Correlation between Isotopomer Distributions (IDVs) and Tandem MS
Measurements

Tandem mass spectrometer measures the mass distribution of isotopomers of the metabo-
lites (called mass distribution vector, MDV) and the mass distribution of the fragments
of particular precursor isotopomers (called fragment mass distribution vector FMDV).
The MDV and FMDV can be calculated from the IDV based on the theory established
in [5]. Taking the four-carbon metabolite OAC in the metabolic model Figure 1 as an
example, the correlation between the IDV and FMDV is expressed in Figure 2. We have
created the software that automatically computes the FMDVs for all possible fragments
of a molecule with any given number of carbons, which is available online [18].

Fig. 2. Correlation between the IDV and FMDV

3 Cooperative Coevolution for Solving the Metabolic Flux Model

3.1 Conversion to an Optimisation Problem

The metabolic flux model is expressed as a system of non-linear equations given in
Section 2.2. Given fixed values for the IMMs, the set of IDVs and fluxes need to be
found in order to solve the equations. To use cooperative coevolution for optimisation,
the problem of solving a system of non-linear equations has to be converted into an
optimisation problem. This is done by defining a fitness function that will constitute
of errors that need to be minimised in order to solve the equations. This problem also
has constraints as all the elements of the IDVs should be within the range of [0,1] that
should sum up to 1.

The fitness of a solution is calculated using Equation 8.

GF =

√√√√ k∑
i=0

fi (8)

where

fi =

∑n
j=0 X

2
ij

n
(9)

where, Xi is the vector that is obtained after simplifying the left hand side of Equations
1 - 7. fi represents each of the equations from Equations 1 - 7, n is the size of Xi and k
is the number of equations.

Cooperative Convolution Optimization for 13C Metabolic Flux Analysis 183

3.2 Optimisation Using Cooperative Coevolution

The entire framework consists of the set of non-linear equations that rely on the IMMs
generated from the AMMs for each of the metabolites. Figure 3 shows the flowchart of
the framework that employs cooperative coevolution for the simulation of the IDVs and
FMDV.

1) Decompose the problem into k subcomponents. All IDVs have different sub-populations.
2) Initialise and cooperatively evaluate each sub-population (SP)
while until termination do

for each SP do
for n Generations do

Cooperatively evaluate selected individuals in SP
Evolve using genetic operators

end for
end for

end while

Algorithm 1. Cooperative Coevolution for Metabolic Flux Analysis

The general framework for metabolic flux analysis using cooperative coevolution is
given in Algorithm 1. The algorithm begins by initialising and cooperatively evaluat-
ing each of individuals of the respective sub-populations. After the initialisation and
evaluation phase, the evolution proceeds. All the sub-populations (SP) are evolved in
a round-robin fashion for the depth of n generations. A cycle is complete when all
the sub-populations have been evolved. The algorithm terminates until the maximum
number of function evaluations are reached.

Figure 3 shows how the original problem is decomposed into sub-populations for the
specific problem described in Section 2.2.

Fig. 3. Problem decomposition in cooperative coevolution for metabolic flux analysis. Note that
the values for the IDV of OAC will be transformed into FMDV for comparison when given with
different sets of fluxes.

184 R. Chandra, M. Zhang, and L. Peng

3.3 Sub-populations of Cooperative Coevolution

The G3-PCX (generalised generation gap with parent centric crossover operator) algo-
rithm is used in the sub-populations of cooperative coevolution [19].

The details of the G3-PCX are given as follows. The generalised generation gap
differs from a standard genetic algorithm in terms of selection and the creation of new
individuals. In G3-PCX, the whole population is randomly initialised and evaluated
similarly to the standard genetic algorithm. The difference lies in the optimisation phase
where a small sub-population is chosen. At each generation, n best fit and m random
individuals are chosen from the main population to make up a sub-population. The sub-
population is evaluated at each generation and the evaluated individuals are added to
the main population. In this way, over time, the individuals of the main populations are
evaluated.

The best individual in the population is retained at each generation. The parent-
centric crossover operator is used in creating an offspring based on orthogonal distance
between the parents [19]. The parents are made of female and male components. The
offspring is created in the neighbourhood of the female parent. The male parent defines
the range of the neighbourhood. The neighbourhood is the distance of the search space
from the female parent which is used to create the offspring. The genes of the offspring
extract values from intervals associated in the neighbourhood of the female and the
male using a probability distribution. The range of this probability distribution depends
on the distances among the genes of the male and the female parent. The parent-centric
crossover operator assigns a larger probability to create an offspring near the female
than anywhere else in the search space.

4 Simulation and Analysis

In this section, the cooperative coevolution optimization algorithm is used to solve the
system of non-linear equations given in Section 2.2. The G3-PCX algorithm [19] is
employed in the sub-populations of cooperative coevolution. The G3-PCX algorithm
employs a mating pool size of 2 offspring and a family size of 2 parents for all cases.
This set-up has been taken from [19] and also used in previous work [11]. The sub-
populations are seeded in the range of [0, 1] for the IDVs in all the experiments. Each
of the 9 IDVs contain the following number of variables; Fum = 16, AcCoA = 4, OAC
= 16, Cit= 64, Glyox = 4, AKG = 32, CO˙2 = 2, Suc= 16, and ASP = 16. Note that the
IDV for ASP will not be optimized as it is fixed. The sub-populations for the IDVs are
constrained to have solutions between the range of [0,1]. This is done by monitoring
the new solutions in the respective sub-populations. If the values in the new solution are
less than 0, a small real random number is added to 0. If the values in the new solution
greater than 1, than a small real random number is subtracted from 1. We will apply
cooperative coevolution to find all the IDVs, and the simulated TMDV for OAC given
a set of predefined fluxes. The tandem MS is simulated in this stage as there are no real
measurements available for the given network model. The training is terminated when
the maximum number of function evaluations is reached.

Cooperative Convolution Optimization for 13C Metabolic Flux Analysis 185

4.1 Simulation of IDVs from Given Predefined Flux Values

In this section, the flux is given and the cooperative coevolution algorithm finds all the
IDVs and then calculate the FMDV for OAC. A total of 8 sub-populations were used in
order to represent each IDV. Each run is initialised with different real random numbers
for the search to begin. After the end of the optimisation process, the values for the IDV
of OAC will be transformed into FMDV for comparison when given with different sets
of fluxes. This reflects on the sensitivity of the model and optimisation algorithm.

Table 1 shows the results for 30 independent experimental runs showing the mean
and 95% confidence interval. The results evaluate the optimal population size for the
problem for the duration of 1000 000 fitness function evaluations. The population size
of 1500 gives the best performance in terms of the least error that shows that the equa-
tion system has been solved.

Table 1. Results show the global fitness given different population size

Problem Population Size Global Fitness

FMDV (OAC1234 > OAC34) 500 6.253e-03±2.856e-04
1000 5.85e-03 ± 2.50e-04
1500 5.56e-03 ± 2.36e-04

Table 2 shows the results of the simulated FMDV for OAC for two sets of fluxes (two
cases) which test the sensitivity of the cooperative coevolution optimisation method.
Case 1 employs the set of fluxes shown in the caption of Figure 1 and Case 2 employs
the same set except for two different flux values, i.e. v6 = 200 and v7 = 100. The
difference in these two cases and the fitness is given. Note that the results have been
rounded off to four decimal places. The differences between the two cases show that
the cooperative coevolution optimisation method has been able to balance the metabolic
flux equations to a small error and the model has been sensitive to respond to different
sets of fluxes.

Table 2. Simulated Results

Case 1 Case 2 Difference
FMDV M0>m0 11.3397 12.0894 -0.7497
OAC1234 > OAC34 M1>m0 16.6009 15.1822 1.4187

M1>m1 04.7857 05.7403 0.9547
M2>m0 10.0141 10.7398 0.7257
M2>m1 17.6064 17.4824 0.0124
M2>m2 15.7889 13.5307 2.2582
M3>m1 11.3982 09.6425 1.7556
M3>m2 09.4825 10.5090 1.0264
M4>m2 02.9836 05.0835 2.0999

Fitness 5.8456e-3 6.8728e-2

186 R. Chandra, M. Zhang, and L. Peng

4.2 Further Discussions

The results have shown that cooperative coevolution can be used for metabolic flux
analysis. However, there are a number of aspects that need to be noticed. Firstly, due to
the stochastic nature of evolutionary computation, the proposed method produces mul-
tiple solutions for the same problem at different experiment runs. In many situations,
this is good as many problems (particularly the multi-modal problems) could have mul-
tiple (sub)optima and all of them can meet the requirements of the problem. However,
some problems might only have one optimal point and it is important to obtain that
point. For metabolic flux analysis problems on this point, there are different views —
while some think this problem has a single optimal solution, some others think multiple
(sub)optimal solutions exist. The current literature does not have solid evidence for or
against either of them. This needs to be investigated in the future.

Secondly, it is no doubt that many biological scientists would prefer a single solution
to be achieved in different simulation runs, at least similar results can be obtained from
different runs. For example, the results obtained from this paper are different from those
from [5], and from the biological point of view it would be desire to have the same
results as (or close to) Choi’s results from the simulations. We believe that it is possible
to achieve this, but this needs to be further investigated in the future.

Thirdly, this work so far has not provided the evidence to support the hypothesis
that MS/MS is more sensitive in terms of the changes of fluxes than MS, which is the
on-going work.

Finally, the approach of simulating the set(s) of unknown fluxes and IDVs simulta-
neously has not been extensively explored using evolutionary computation methods. In
the literature, the IDVs have mostly been optimised using numerical methods such as
the Gauss-Siedel method. In future, we will use the cooperative coevolution method for
finding unknown fluxes.

5 Conclusions and Future Work

This work applied cooperative coevolution based optimization to metabolic flux anal-
ysis. The sub-populations in cooperative coevolution were assigned to all the different
IDVs that were simultaneously evolved. The results suggest that cooperative coevo-
lution can be used solve the system of non-linear equations and that the approach is
sensitive when given different values for the set of flux due to the stochastic nature of
evolutionary computation.

While this approach was successful as preliminary work and it opened the door of
applying evolutionary optimisation methods to this domain, it does have a number of
disadvantages compared with the traditional methods. For example, this method pro-
duces multiple (sub) solutions for the same problem, while many biological scientists
would prefer a single solution. In addition, this work so far does not provide evidence to
show such problems are single-modal or multi-modal optimisation ones. We have not
been able to provide definite interpretations on why this approach provides different
solutions from the literature [5]. These issues will need to be investigated in the future.

Cooperative Convolution Optimization for 13C Metabolic Flux Analysis 187

In addition, the method will also be used to approximate the measured data for the
FMDV, constraints will be assigned to the respective sub-populations, and the set(s) of
fluxes also need to be found. We will also compare this approach to other evolutionary
computation algorithms (such as [15]) for this problem in the future.

References

1. Bailey, J.: Toward a science of metabolic engineering. Science 252(5013), 1668–1675 (1991)
2. Nielsen, J.: It is all about metabolic fluxes. J. Bacteriol. 185(24), 7031–7035 (2003)
3. Sauer, U.: Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2, 62

(2006)
4. Jeffrey, F.M., Roach, J.S., Storey, C.J., Sherry, A.D., Malloy, C.R.: 13C isotopomer analysis

of glutamate by tandem mass spectrometry. Anal. Biochem. 300(2), 192–205 (2002)
5. Choi, J., Antoniewicz, M.R.: Tandem mass spectrometry: A novel approach for metabolic

flux analysis. Metab. Eng. 13(2), 225–233 (2011)
6. Peng, L., Arauzo-Bravo, M.J., Shimizu, K.: Metabolic flux analysis for a ppc mutant Es-

cherichia coli based on 13C-labelling experiments together with enzyme activity assays and
intracellular metabolite measurements. FEMS Microbiol. Lett. 235(1), 17–23 (2004)

7. Zhao, J., Shimizu, K.: Metabolic flux analysis of escherichia coli k12 grown on 13c-labeled
acetate and glucose using gc-ms and powerful flux calculation method. Journal of Biotech-
nology 101(2), 101–117 (2003)

8. Zhang, H., Yao, S.: Simulation of flux distribution in central metabolism of saccharomyces
cerevisiae by hybridized genetic algorithm. Chinese Journal of Chemical Engineering 15(2),
150–156 (2007)

9. Potter, M.A., Jong, K.A.D.: A Cooperative Coevolutionary Approach to Function Optimiza-
tion. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN III. LNCS, vol. 866, pp.
249–257. Springer, Heidelberg (1994)

10. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevo-
lution. Inf. Sci. 178(15), 2985–2999 (2008)

11. Chandra, R., Frean, M., Zhang, M.: An Encoding Scheme for Cooperative Coevolutionary
Feedforward Neural Networks. In: Li, J. (ed.) AI 2010. LNCS, vol. 6464, pp. 253–262.
Springer, Heidelberg (2010)

12. Chandra, R., Frean, M., Zhang, M.: On the issue of separability for problem decomposition
in cooperative neuro-evolution. Neurocomputing 87, 33–40 (2012)

13. Chandra, R., Frean, M., Zhang, M., Omlin, C.W.: Encoding subcomponents in cooperative
co-evolutionary recurrent neural networks. Neurocomputing 74(17), 3223–3234 (2011)

14. Chandra, R., Zhang, M.: Cooperative coevolution of elman recurrent neural networks for
chaotic time series prediction. Neurocomputing 86(0), 116–123 (2012)

15. Supudomchok, S., Chaiyaratana, N., Phalakomkule, C.: Co-operative co-evolutionary ap-
proach for flux balance in bacillus subtilis. In: IEEE Congress on Evolutionary Computation,
pp. 1226–1231. IEEE (2008)

16. Schmidt, K., Carlsen, M., Nielsen, J., Villadsen, J.: Modeling isotopomer distributions in
biochemical networks using isotopomer mapping matrices. Biotechnology and Bioengineer-
ing 55(6), 831–840 (1997)

17. Zupke, C., Stephanopoulos, G.: Modeling of isotope distributions and intracellular fluxes in
metabolic networks using atom mapping matrices. Biotechnology Progress 10(5), 489–498
(1994)

18. Online Tandem MS Software (May 2012),
http://softwarefoundationfiji.org/research/bioinfor/tandem/

19. Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm for real-
parameter optimization. Evol. Comput. 10(4), 371–395 (2002)

http://softwarefoundationfiji.org/research/bioinfor/tandem/

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 188–197, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Efficient Two-Phase Ant Colony Optimization
Algorithm for the Closest String Problem

Hoang Xuan Huan1, Dong Do Duc1, and Nguyen Manh Ha2

1,2 University of Engineering and Technology, VNU, Hanoi, Vietnam
{huanhx,dongdoduc}@vnu.edu.vn,

manhhacz@gmail.com

Abstract. Given a finite set of strings of length , the task of finding a
string that minimizes the Hamming distance from to , has wide applica-
tions. This paper presents a two-phase Ant Colony Optimization (ACO) algo-
rithm for the problem. The first phase uses the Smooth Max-Min (SMMAS)
rule to update pheromone trails. The second phase is a memetic algorithm that
uses ACO method to generate a population of solutions in each iteration, and a
local search technique on the two best solutions. The efficiency of our
algorithm has been evaluated by comparing to the Ant-CSP algorithm.

Keywords: Memetic algorithm, Ant Colony Optimization, Closest String
Problem, Local Search, Pheromone update rule.

1 Introduction

Given a finite set of strings of the same length, the task of Closest String Problem
(CSP) is to find a string t so that the Hamming distance , is minimal. This
problem plays an important role in coding theory [12,13] and Genetics [16,17]. There-
fore, it has been studied extensively [1,2,5,6,13-19,21], and it has been proved [12,17]
to be NP-hard. Besides heuristics methods to quickly find good enough solutions
[6,14,15], several approximate algorithms [13,17-19] had been developed for CSP.
Recently, Faro and Papalando [11] proposed an ACO algorithm called Ant-CSP. The
experiment showed that Ant-CSP is not only much better in quality of the solutions,
but also in the runtime comparing to two state-of-the-art algorithms: genetic and si-
mulated annealing algorithm [11]. However, Ant-CSP’s construction graph is too
simple, it applied neither heuristic information nor local search.

For NP-hard problems, there are two methods that are used widely: local search, and
population-based search. Moscato [20] had proposed a framework to combine these two
methods called memetic algorithm to significantly improve quality of solutions.

This paper presents a two-phase algorithm named ACOM-CSP which combines two
algorithms: ACO and Memetic. The first phase is the ACO phase with the SMMAS
pheromone update rule. The second phase is a memetic phase. In each loop of this
phase, ACO method is applied to generate a population of solutions, then local search
technique is applied on only two best solutions in one loop. If only the
algorithm in the first phase is used, the algorithm is called ACO-CSP. The experiment
had showed that our new algorithms are better than Ant-CSP algorithm both in terms of

 An Efficient Two-Phase Ant Colony Optimization Algorithm 189

quality of solutions and runtime. Although the runtime of ACOM-CSP is slightly higher
than ACO-CSP of the same number of loops, ACOM-CSP is more stable. When the
two algorithms run in same runtime, ACOM-CSP produces solutions of better quality.

The rest of this paper is organized as follows. Section 2 defines the CSP and
presents related works: ACO method, memetic framework. Our new algorithm is
introduced in section 3. Section 4 describes the experiment comparing our algorithm
to Ant-CSP. Conclusions are presented in the last section.

2 Closest String Problem and Related Works

2.1 Closest String Problem

Considering a finite set of strings, over an alphabet ∑, each string of length ,
Hamming distance is defined as follows:

Definition 1. (Hamming Distance)
i) For any two strings … and … , the distance , is the number of mismatches between and .

ii) For each finite set of strings of length , the distance from one string
of length to set is the maximal distance from string to each string in .

 , , : (1)

For example: Consider a string = “AAAA” and a set ={ = “AAAB”, =
“AAAA”, = “AABB”}, it can be seen that: , 1; , 0; , 2; so , 2.

Definition 2. (The closest string of one set of string) Given a finite set of strings,
each string of length , a string is called the closest string of if:

 , , : (2)

For each given set , the task of CSP is to find a closest string of . In other words,
it is to find a string that optimizes the objective function , . The problem had
been proved to be NP-hard [12,17].

Ant Colony Optimization and Ant-CSP Algorithm. ACO method had been pro-
posed by Dorigo [9] to solve the Traveling Salesman problem. Until now, it had been
developed into many variations and is widely used for solving hard combinatorial
optimization problems (see [10]). In these algorithms, the under-examined problem is
transformed into the path finding problem on a construction graph , , Ω, , , where is a set of vertices (with a set of start vertices), is a set
of edges, Ω is a set of constraints for determining the next vertex and specifying ac-
ceptable solutions, is a vector that denotes heuristic information on vertices or
edges, is pheromone trail vector on vertices or edges (initial value is) that
represents reinforcement learning information for solution finding. Each acceptable
solution is a path with bounded length. It starts from one vertex in , then expands
by a random walk procedure based on heuristic information and pheromone trail.
These paths must satisfy the constraints Ω. ACO algorithm uses artificial ants.

190 H.X. Huan, D.D. Dong, and H. Nguyen Manh

In each loop, each ant uses the random walk procedure to construct solution. Then,
those solutions are evaluated and used for updating the pheromone trails as rein-
forcement learning information that helps ant colony constructs solutions in the next
loops. This procedure is specified in Figure 1.

 Procedure of ACO algorithms;
 Begin
 Initialize; // initialize pheromone trail matrix and u ants
 Repeat
 Construct solutions; // each ant constructs its own solution
 Update trail;
 Until End condition;
End;

Fig. 1. Specification of an ACO algorithm

There are 3 factors that affect the performance of ACO algorithm: 1) construction
graph, 2) heuristic information, 3) pheromone update rule. Among them, pheromone
update rule is the universal factor and often used to name the algorithm.

Faro and Papalando [11] proposed an elite-ant system called Ant-CSP algorithm.
The simulation results had shown that this algorithm outperformed two state-of-the-
art algorithms in both terms of quality of solutions and runtime. However, this algo-
rithm still has some disadvantages. It did not use heuristic information and its phero-
mone update rule is not the best one (see [10]).

2.2 Memetic Framework

There are two methods that are widely applied in approximating solutions for NP-hard
problems: Local search and population-based search. ACO method and genetic algo-
rithms (GA) belong to the latter. To combine these two methods, Moscato [20] had
proposed memetic framework. Nowadays, the use of this idea is called memetic com-
puting [3,4]. A simple memetic procedure is specified in Figure 2.

Procedure Memetic algorithm
Begin
 Initialization: initialize the first population;
 While stop conditions not satisfied do
 Evaluate individuals in population;
 Evolve the population by given algorithms;
 Choose a subset to evolve by local search;
 For each individual in do
 Local search;
 End for;
 Choose the best individual;
 End while;
 Choose the solution;
End;

Fig. 2. Specification of a simple memetic algorithm

 An Efficient Two-Phase Ant Colony Optimization Algorithm 191

3 ACOM-CSP Algorithm

In this section we first introduce the ACO-CSP procedure which runs in the first
phase. When only the first phase is used to solve CSP, it is also named ACO-CSP
algorithm.

3.1 ACO-CSP

The framework of ACO-CSP has been delineated in Figure 1. Following are the de-
tails of the construction graph, the solution finding procedure and the pheromone
update rule:

Construction Graph. Consider a set of strings , … , of length ,
where … , {alphabet ∑}. Denote the set ∑: by .
Then the construction graph contains columns and the column is composed of
vertices in . is a set of edges that connect two adjacent columns. Heuristic in-
formation ŋ for vertex , at column , row is:

ŋ = number of string that has coincides with the label of the vertex ,

(3)
With the given parameter and , pheromone trails on all vertices ,

are initialized to
.|∑| .

Random Walk Procedure to Find Solution. One ant constructs its own solution by
moving from the first column to the last. Ant chooses a vertex on the first column
with the probability equal to the normalized product of heuristic information and phe-
romone trail, then expand as follows. Supposing ant is at vertex , it chooses
vertex as the next position of string with probability:

ŋ∑ ŋ , (4)

 is a positive constant value, 0 means heuristic information is not used.

Pheromone Update Rule. When all ants found their own solution, pheromone trail
will be updated by SMMAS rule, which had been proposed in [7]. This rule had been
also applied effectively in [8] for haplotype inference problem.

 1 ∆ , (5)

 where: ∆ , (6)

Typically, to improve quality of the solutions, local search is used (see[10]) with two
strategies: 1) use local search for only the best solution, 2) use local search for all

192 H.X. Huan, D.D. Dong, and H. Nguyen Manh

solutions that had been found. If the first strategy is used, the best solution is usually
repeated, but if the second strategy is used, runtime increases considerably. In
ACOM-CSP, memetic framework implements local search for the two best solutions
in the second phase.

3.2 Memetic-CSP Algorithm

The second phase of ACOM-CSP implements memetic algorithm following the speci-
fication in Figure 3 with 2. We use ACO algorithm to build a population in each
loop. Then, the two best solutions from all of the solutions, which had been found
until that time, are chosen to form the set on which we apply the local search
procedure to improve the result before updating pheromone trail. The framework of
this algorithm has been specified in Figure 2.

Local Search Technique. Local search technique is implemented as follows. For a
solution … , the local search procedure is implemented sequentially from
to . When position is considered, it will be replaced by the remaining characters
in set until a better solution is found. The new solution replaces solution to be
the best solution at that time, and the local search procedure ends.

With ACO-CSP and Memetic-CSP procedures mentioned above, ACOM-CSP al-
gorithm uses ACO-CSP in the first 60% loops and Memetic-CSP in the 40% remain-
ing loops.

4 Experimental Results

ACOM-CSP and ACO-CSP are compared to Ant-CSP algorithm both in terms of
quality of solutions and runtime by experiments:

1) Run algorithms with a predefined number of loops to compare the effect
and runtime.

2) With increasing runtime, all of three algorithms are run on the same dataset
to track the convergence of the obtained objective function.

3) Comparing the stability of ACO-CSP and ACOM-CSP by running each al-
gorithm 10 times on the same dataset.

The Ant-CSP, what was used in our paper, is the one that we had re-implemented
followed the psuedo-code and specification of Ant-CSP in [11]. The experimental
result had showed that the result of our re-implemented Ant-CSP was equivalent to
the result of the original Ant-CSP in [11]. The experiments are performed on a com-
puter with: CPU C2D 3.0 GHz, 2GB of RAM, running Windows XP. The sets of
input data are randomly generated by Faro and Papalandro’s program [11] with al-
phabet ∑ = {A, C, G, T}. Set contains strings with = 10│20 30│40│50 and
length of the strings is = 100│200│… │1000. The number of loops in Ant-CSP is
set to 1500 (as in the Faro and Papalando’s paper). We run each of the three algo-
rithms 20 times and compare the average results. The parameters had been set as
follows:

 An Efficient Two-Phase Ant Colony Optimization Algorithm 193

• The number of ants in each loop is 10.
• 0.06; 1 (0.03 for Ant-CSP (as in [11])

• |∑|; ; |∑|

The difference between pheromone bounds is thus set proportionally to the number of
graph nodes.

4.1 Comparing Effect and Runtime with a Predefined Number of Loops

Ant-CSP’s number of the loops is 1500 as Faro et al had set in [11]. Our proposed
algorithms’ number of the loops is set to 600. Since the experiments show that our
algorithms converge very quickly, we do not need more loops. When the number of
the loops increases, quality of result only increases insignificantly comparing to run-
time. The first phase of ACOM-CSP runs in the first 360 loops. The experimental
results are presented in 5 below tables, the best result is displayed in bold.

Table 1. Results for input set of 10 strings of length

 = 10 Ant-CSP ACO-CSP ACOM-CSP
Length , Runtime , Runtime , Runtime
100 65.45 453.8 59.65 380.2 58 417.1
200 132.8 1012.6 120.95 787.4 118 869.7
300 196.05 1656.7 178.25 1217.3 175 1333.4
400 263.2 2396.6 235.25 1709.4 230 1835.8
500 330.95 3119.5 293.35 2191.7 290 2346.2
600 399.3 4064.3 354.35 2723.7 351.7 2925.3
700 465.2 4793.9 417.65 3320.7 406.1 3547.0
800 538.7 5823.9 473.05 3862.5 470.45 4105.1
900 603.05 6909.4 526.8 4451.6 523.2 4771.3
1000 673.05 7975.5 587.3 4945.5 582 5431.9

Table 2. Results for input set of 20 strings of length

 = 20 Ant-CSP ACO-CSP ACOM-CSP
Length , Runtime , Runtime , Runtime
100 70.8 626.1 66.25 453.7 66 736.5
200 139.2 1335.6 128 929.4 128 1500.3
300 209.4 2149.9 194.8 1444.4 191.5 2296.4
400 279.9 2804.4 262.35 2008.3 256.05 3137.8
500 348.8 3960.0 325.3 543.8 319.1 3989.4
600 417.1 4851.2 385.05 3143.7 379.7 4997.2
700 491 5916.7 453.15 3767.6 447.45 5927.0
800 559.25 7104.4 512.05 4463.4 507.9 6823.3
900 635.45 8253.8 582 5096.5 573.55 7817.4
1000 706.05 9593.6 641.15 5711.2 636.7 8814.2

194 H.X. Huan, D.D. Dong, and H. Nguyen Manh

Table 3. Results for input set of 30 strings of length

 = 30 Ant-CSP ACO-CSP ACOM-CSP

Length , Runtime , Runtime , Runtime

100 73.25 790.0 70 520.7 67.75 652.9
200 143.25 1648.0 134 1071.8 134 1306.5
300 214.15 2661.7 203 1653.8 200 2002.8
400 285.9 3679.7 273.4 2258.1 266.65 2717.7
500 355.2 4728.9 335.85 2907.1 328.9 3383.0
600 429.3 5921.4 398.4 3536.0 397.95 4055.1
700 501.95 7153.7 463.45 4228.3 463 4667.9
800 573.3 8522.5 531.5 4872.7 528.15 5420.7
900 646.6 9906.7 600.75 5766.2 596.35 6260.8
1000 717.6 11341.4 662.55 6474.5 658.1 6859.1

Table 4. Results for input set of 40 strings of length

 = 40 Ant-CSP ACO-CSP ACOM-CSP

Length , Runtime , Runtime , Runtime
100 74.1 961.3 70.85 591.3 70 748.7
200 145.35 1993.6 139.1 1209.0 138.75 1521.4
300 217.05 3116.6 207.8 1835.3 204.1 2324.8
400 288.45 4310.6 274.95 2518.3 270.85 3160.6
500 360.55 5609.9 346.05 3211.2 344 4006.2
600 432.2 6962.3 409.95 3959.3 404.55 4900.1
700 507.25 8374.9 476.85 4710.2 474.05 5801.1
800 589.15 9910.0 543.15 5490.6 539.45 6770.3
900 652.75 11555.5 609.1 6282.1 606.7 7726.1
1000 727.55 13090.0 675 7096.8 672.9 8745.0

Table 5. Results for input set of 50 strings of length

 = 50 Ant-CSP ACO-CSP ACOM-CSP

Length , Runtime , Runtime , Runtime

100 75.1 1126.4 72 653.5 72 854.9
200 146.8 2338.5 141.2 1337.2 139.4 1737.8
300 219.65 3641.5 212.8 2050.0 209 2642.1
400 292.35 5006.7 279.5 2758.9 276.25 3605.7
500 364.5 6465.0 345.6 3552.8 344 4543.3
600 437.8 7997.9 414.5 4327.7 411.5 5542.1
700 509.25 9669.4 483.35 5153.2 479.65 6564.5
800 583.65 11321.8 550.65 5979.0 545.05 7618.0
900 657.1 13429.1 621.3 6881.9 617.1 8697.3
1000 730.75 14928.0 686.95 7895.9 685.2 9778.8

 An Efficient Two-Phase Ant Colony Optimization Algorithm 195

Comment. The experimental results show that:

1) Both ACO-CSP and ACOM-CSP give result considerably better than Ant-
CSP. Moreover, their runtime is less than Ant-CSP.

2) When the number of strings increases, the difference in the quality of the
solutions of the two algorithms ACO-CSP and ACOM-CSP is negligible. However,
according to section 4.3, when using memetic technique, quality of solution is more
stable and it takes not much more runtime.

4.2 Comparing Three Algorithms in the Same Runtime

We run three algorithms on the set of 30 strings, each string of length 1000, with
runtime from 1000ms to 8000ms to examine the convergence. The result is presented
in Figure 3.

Fig. 3. Examining the convergence of three algorithms

Comment: It can be seen that ACO-CSP and ACOM-CSP converge more quickly
than Ant-CSP. From 6500ms (corresponding to 600 loops), quality of solutions re-
mains steadily. That is the reason why the number of loops had been set to 600 to
optimize both quality of the solution and runtime.

4.3 Comparing the Stability of ACO-CSP and ACOM-CSP

To comparing the stability of solution quality when runtime increases, we run the two
algorithms 10 times on a set of 30 strings, each string of length 1000. The experimen-
tal results are presented in Figure 4.

650

670

690

710

730

750

1000 2000 3000 4000 5000 6000 7000 8000

Ant-CSP

ACO-CSP
ACOM-CSP

sc
or

e

runtime

196 H.X. Huan, D.D. Dong, and H. Nguyen Manh

Fig. 4. Comparing the stability of ACO-CSP and ACOM-CSP

5 Conclusion

Applying Ant Colony Optimization to solve the CSP had been first proposed in the
Ant-CSP in [11]. The algorithm yields better results than GA and simulated annealing
algorithm do. However, it applied neither heuristic information nor local search
technique.

We presented in this paper ACOM-CSP, a two-phase algorithm combining ACO
technique and memetic algorithm for CSP. ACO-CSP algorithm in the first phase
which uses heuristic information and effective pheromone update rule produces better
solution quality comparing to Ant-CSP. Using memetic framework in the second
phase helps improve the results, and significantly improve the stability of ACO-CSP
algorithm.

The experiments show that our new algorithms have outstanding efficiency com-
paring to Ant-CSP both in terms of solution quality and runtime. Although ACOM-
CSP’s runtime is slightly higher than ACO-CSP’s, the results of ACOM-CSP are
better and more stable. When two algorithms run in the same runtime, ACOM-CSP
produces better solution quality.

Our algorithms can be applied for the similar problems in genetics and encryption.

Acknowledgements. This work was supported by the Vietnam National Foundation
for Science and Technology Development (NAFOSTED).

References

1. Boucher, C., Ma, B.: Closest String with Outliers. BMC Bioinformatics 12(suppl. 1), S55
(2011)

2. Boucher, C., Landau, G.M., Levy, A., Pritchard, D., Weimann, O.: On Approximating
String Selection Problems with Outliers. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012.
LNCS, vol. 7354, pp. 427–438. Springer, Heidelberg (2012)

650
652
654
656
658
660
662
664
666

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

ACO-CSP

ACOM-CSP

times run

sc
or

e

 An Efficient Two-Phase Ant Colony Optimization Algorithm 197

3. Chen, X.S., Ong, Y.S., Lim, M.H.: Research Frontier: Memetic Computation - Past,
Present & Future. IEEE Computational Intelligence Magazine 5(2), 24–36 (2010)

4. Chen, X.S., Ong, Y.S., Lim, M.H., Tan, K.C.: A Multi-Facet Survey on Memetic Compu-
tation. IEEE Transactions on Evolutionary Computation 15(5), 591–607 (2011)

5. Chen, Z.Z., Ma, B., Wang, L.: A three-string approach to the closest string problem. J.
Comput. Syst. Sci. 78(1), 164–178 (2012)

6. Chen, Z.Z., Wang, L.: Fast Exact Algorithms for the Closest String and Substring Prob-
lems with Applicationto the Planted (L. d)-Motif Model. IEEE/ACM Transaction on Com-
putational Biology and Bioinformatics 8(5), 1400–1410 (2011)

7. Do Duc, D., Dinh, H.Q., Hoang Xuan, H.: On the Pheromone Update Rules of Ant Colony
Optimization Approaches for the Job Shop Scheduling Problem. In: Bui, T.D., Ho, T.V.,
Ha, Q.T. (eds.) PRIMA 2008. LNCS (LNAI), vol. 5357, pp. 153–160. Springer,
Heidelberg (2008)

8. Do Duc, D., Hoang Xuan, H.: ACOHAP: A novel Ant Colony Optimization algorithm for
haplotype inference problem. In: Proc. of the Third International Conference on Know-
ledge and Systems Engineering (KSE 2011), pp. 128–134 (2011)

9. Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: An autocatalytic optimizing
process. Technical Report 91-016 Revised, Dipartimento di Elettronica, Politecnico di Mi-
lano, Milano, Italy (1991)

10. Dorigo, M., Stutzle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004)
11. Faro, S., Pappalardo, E.: Ant-CSP: An Ant Colony Optimization Algorithm for the Closest

String Problem. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B.
(eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 370–381. Springer, Heidelberg (2010)

12. Frances, M., Litman, A.: On covering problems of codes. Theory of Computing Sys-
tems 30(2), 113–119 (1997)

13. Gasieniec, L., Jansson, J., Lingas, A.: Effcient approximation algorithms for the Hamming
center problem. In: Proc. of the 10th Annual ACM-SIAM Symposium on Discrete Algo-
rithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, pp.
905–906 (1999)

14. Gramm, J., Niedermeier, R., Rossmanith, P.: Exact solutions for Closest String and related
problems. In: Proc. of the 12th International Symposium on Algorithms and Computation,
pp. 441–453. Springer, London (2001)

15. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for closest string
and related problems. Algorithmica, 25–42 (2003)

16. Hertz, G.Z., Hartzell, G.W., Stormo, G.D.: Identication of consensus patterns in unaligned
DNA sequences known to be functionally related. Bioinformatics 6(2), 81–92 (1990)

17. Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing String Selection Prob-
lems. Information and Computation 185, 41–55 (2003)

18. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. Journal of the
ACM 49(2), 157–171 (2002)

19. Ma, B., Sun, X.: More Efficient Algorithms for Closest String and Substring Problems.
SIAM J. Comput. 39(4), 1432–1443 (2009)

20. Moscato, P.: On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts:
Towards Memetic Algorithms. Tech. Rep.Caltech Concurrent Computation Program, Re-
port. 826, California Institute of Technology, Pasadena, California, USA (1989)

21. Dinu, L.P., Popa, A.: On the Closest String via Rank Distance. In: Kärkkäinen, J., Stoye, J.
(eds.) CPM 2012. LNCS, vol. 7354, pp. 413–426. Springer, Heidelberg (2012)

Evolution of Intrinsic Motives

in Multi-agent Simulations

Kamran Shafi, Kathryn E. Merrick, and Essam Debie

School of Engineering and Information Technology, University of New South Wales,
Australian Defence Force Academy, Canberra, Australia

{k.shafi,k.merrick,e.debie}@adfa.edu.au

Abstract. In humans, intrinsic motives help us to identify, prioritize,
select and adapt the goals we will pursue. A variety of computational
models of intrinsic motives have been developed for artificial agents in-
cluding curiosity, achievement, affiliation and power motivation. Previous
research has focused on using models of intrinsic motivation in individ-
ual agents, such as developmental robots or virtual agents. However, in
humans, intrinsic motives evolve over time in response to personal and
social factors. This paper presents evolutionary models of intrinsically
motivated agents. The models are evaluated in multi-agent simulations
of agents playing iterated prisoner’s dilemma games.

Keywords: Intrinsic motivation, achievement, affiliation, power,
cognitive agents, evolutionary game theory.

1 Introduction

Computational models of motivation are processes that artificial agents can use
to identify, prioritize, select and adapt the goals they will pursue. A variety of
computational models of intrinsic motives have been developed including curios-
ity [1,2], achievement [3], affiliation and power [4] motivation. Previous research
has focused on using models of intrinsic motivation in individual agents, such as
developmental robots [5] or virtual agents [2]. However, human motives evolve
over time in response to both personal and social factors [6]. To create accu-
rate simulations of motivation in artificial agents that take these factors into
account, this paper presents evolutionary models of intrinsically motivated ar-
tificial agents. Section 2 reviews background literature regarding an existing
approach to modelling motive profiles of achievement, affiliation and power mo-
tivation in artificial agents. Section 3 presents our new evolutionary agent models
based on these profiles. In Section 4 the models are evaluated in multi-agent sim-
ulations of agents playing a well-known two-player game: the iterated prisoner’s
dilemma. Conclusions and future work are presented in Section 5.

2 Background

A range of models of intrinsic motives have been developed [7,8,5,1,2]. However
the focus of much of this work has been on the role of motivation for controlling

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 198–207, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Evolution of Intrinsic Motives in Multi-agent Simulations 199

the behavioural responses of an individual agent, or an agent interacting with
a small number of other agents. In contrast, this paper explores evolutionary
models of intrinsically motivated agents. Specifically, this paper combines ex-
isting models of achievement, affiliation and power motivation with a genetic
algorithm so that the resulting agents can evolve their motive profiles during
interactions with other motivated agents in a society of agents. The remainder
of this section is organised as follows. Section 2.1 introduces the computational
motive profiles that form the basis of the evolutionary motivated agents in this
paper. Section 2.2 introduces the social game used as the experimental setting
for this work.

2.1 Computational Motive Profiles

This paper focuses on intrinsic motives for achievement, affiliation and power
motivation. Merrick and Shafi [4] developed computational models of these mo-
tives with respect to the incentive Is for succeeding at a goal. In their model,
resultant motivational tendency for a goal Tres is defined as the sum of sigmoid
functions for achievement, affiliation and power motivation:

Tres = Tach + Taff + Tpow (1)

where

Tach =
Sach

1 + eρ
+
ach(M

+
ach−(1−Is))

− Sach

1 + eρ
−
ach(M

−
ach−(1−Is))

Taff =
Saff

1 + eρ
+
aff (Is−M+

aff)
− Saff

1 + eρ
−
aff (Is−M−

aff)

Tpow =
Spow

1 + eρ
+
pow(M+

pow−Is)
− Spow

1 + eρ
−
pow(M−

pow−Is)

Parameters of the model and their meaning and ranges are summarized in
Table 1.

2.2 Prisoner’s Dilemma

The Prisoner’s Dilemma (PD) game [9,10] is a two-by-two mixed-motive game.
Players choose an action from a list of two possible actions {C, D} between a
number of actions. Once all players have chosen an action, a resulting payoff
to each player is determined by taking into account the actions of all players.
Player 1 is assigned a payoff value V1 and Player 2 is assigned a payoff value V2.
The best payoff is only obtained if players act differently. This can be thought
of as players acting with different (mixed) motives because the situation (game)
itself is identical for all players. V1 and V2 can have values of T , R, P or S where
T > R > P > S. The value R is the reward if both players choose C. In other
words, R is the reward for a (C,C) outcome. T represents the temptation to
defect (choose action D) from the (C,C) outcome. P is the punishment if both
players defect (joint D choices leading to a (D, D) outcome). Finally, S is the
sucker’s payoff for choosing C when the other player chooses D

200 K. Shafi, K.E. Merrick, and E. Debie

Table 1. Parameters of achievement, affiliation and power motivation and their value
ranges [4]

Param Description Range

Is Incentive (value) for success [0, 1]

M+
pow Turning point of approach component for power (–∞,M−

pow)

M−
pow Turning point of avoidance component for power (M+

pow, ∞)

M+
aff Turning point of approach component for affiliation (M−

aff , ∞)

M−
aff Turning point of avoidance component for affiliation (–∞,M+

aff)

M+
ach Turning point of approach component for achievement (–∞, ∞)

M−
ach Turning point of avoidance component for achievement (–∞, ∞)

ρ−pow Gradient of avoidance of power [0, ∞)

ρ+pow Gradient of approach to power [0, ∞)

ρ+aff Gradient of approach to affiliation [0, ∞)

ρ−aff Gradient of avoidance of affiliation [0, ∞)

ρ−ach Gradient of avoidance of achievement [0, ∞)

ρ+ach Gradient of approach of achievement [0, ∞)

Spow Relative strength of power motive [0, ∞)

Saff Relative strength of affiliation motive [0, ∞)

Sach Relative strength of achievement motive [0, ∞)

3 Evolutionary Game Theoretic Model for Motivated
Agents

The evolutionary game-theoretic model presented in this work consists of a pop-
ulation of N heterogeneous motivated agents, denoted as p1, p2, . . . , pn, . . . ,
pN . The agents interact through pair-wise multi-period games and evolve their
motive profiles over time. The agents can be created by either randomly sam-
pling from the entire range of a mixed motive profile (see Eq 1 and Table 1)
that includes the three computational models of motivation (i.e., achievement,
affiliation and power motivations) or according to a specific profile type. The
former agent modelling approach can be considered as more generic as it allows
evolving agents in the entire motivation profile without distinction. In this pa-
per, only the latter approach is used to create agents; since it allows studying the
evolution of agents in an explicit competing environment between agents with
different profiles. We refer to this model as restricted agent model as opposed to
the generic agent model.

During each interaction agents choose actions (cooperate or defect) based on
their motivational tendencies. Motivational tendencies are computed according
to Equation 1 based on agents’ current motive profiles and a vector of incentives
for each possible combination of actions (for a two-player binary decision game

Evolution of Intrinsic Motives in Multi-agent Simulations 201

this corresponds to four incentive values). In this paper, the incentives directly
correspond to the values given in the game’s payoff matrix and no feedback from
the game outcomes is applied to update incentives over time. In other words
incentives remain constant throughout all encounters. We refer to this model
as a static incentive model ; noticing that a more sophisticated incentive update
rule may also be applied, but not discussed in this paper. As a result, agent pn
is assigned a payoff value from the payoff table based on the combination of the
two players’ choices as follow:

vdn =

⎧⎪⎪⎨
⎪⎪⎩

P If both players choose to defect
T If player pn chooses to defect supposing other player will cooperate
S If player pn chooses to cooperate supposing other player will defect
R If both players choose to cooperate

⎫⎪⎪⎬
⎪⎪⎭

In this paper two models of restricted static incentive motivated agents are
presented. In the first model (referred as Model 1) we will show experimentally
that motivated agents can solve stable strategy games like the PD game. In the
second model (referred as Model 2) we will study how well the motivated agents
can adapt their behaviour to produce a more cooperative model. The objective of
this model is to more closely simulate human behaviour where individuals with
different motives behave differently but are still able to survive in a population.
In the subsections below we provide a detailed description of these models.

3.1 Agent Representation

The same agent representation is used in both models. Each agent is represented
by a single chromosome which encodes the parameters of the computational
motivation model given in Equation 1. Formally, each agent can be represented
using a string representation as following:

pn =

⎧⎪⎪⎨⎪⎪⎩
Sach (n) , p

+
ach (n) , p

−
ach (n) ,M

+
ach (n) ,M

+
ach (n) ,

Saff (n) , p
+
aff (n) , p

−
aff (n) ,M

+
aff (n) ,M

−
aff (n) ,

Spow (n) , p+pow (n) , p−pow (n) ,M+
pow (n) ,M−

pow (n) ,
Fn, typen

⎫⎪⎪⎬⎪⎪⎭
The population is initialised by sampling agents from distinct motivational pro-
files that are created by controlling the parameters in Equation 1. Specifically,
the agents with mixed motivations are created by fixing the strength parameters
and choosing the other main parameters within given ranges that make sense
according to a target profile definition. For instance, a power motive profile can
be created as seen in Figure 1 by choosing Sach = 1, Saff = 1, Spow = 2 and
sampling other parameters from given ranges. In this paper we experiment with
agents sampled from three distinct profiles. Table 2 below summarises the pa-
rameter ranges chosen to create these profiles. These parameters distribute the
three motivation peaks (2 small and one high) roughly evenly over the range
0-1 of incentives. It is important to note that these parameter ranges only make

202 K. Shafi, K.E. Merrick, and E. Debie

sense if the payoff values of the specific PD game are also distributed evenly over
the full range 0-1.

Fig. 1. An example of a motive profile for a power-motivated agent: Spow= 2, Sach=
1, Saff= 1, M+

ach= 0.4, M−
ach= 0.6, M+

aff= 0.3,M−
aff= 0.1, M+

pow= 0.7, M−
pow= 0.9,

ρ+ach = ρ−ach = ρ+ach = ρ−ach = ρ+pow = ρ−pow= 20

3.2 Evolutionary Dynamics

The evolutionary process consists of a fixed number of generations G in the
range {1, 2, ..., g, ..., G}. In each generation g each agent pn plays a fixed rounds
D, in the range {1, 2, ..., d, ..., D}, of a PD game with every other agent in the
population without discrimination. In each round d of the game, agent pn de-
terministically chooses an action an using a decision function that maximizes its
motivational tendency (see the discussion above for the computation of motiva-
tional tendencies).

After all agents have been evaluated through their respective games, a new
generation of agents is created using selection, reproduction and mutation oper-
ators. In Model 1, new agents are created by iteratively selecting parents without
replacement from the entire population proportionate to their fitness. In each
iteration, a new offspring is created by simply copying the selected parent’s genes
to its chromosome. The child then undergoes mutation during which each gene of
the child’s chromosome is allowed to change its value within the ranges given in
Table 2 with a given probability μ. The newly created child is then inserted into
the population and the process is repeated until the population size is reached.

InModel 2, the children are created similarly except that the selection operator
is modified to select parents within each profile. This is done by selecting three
parents in every iteration, one from each of the three motivational profiles still
proportional to their fitness, and producing three children through copying their
genes from their respective parents. This niching procedure ensures reproduction
opportunities is provided to the agents of all profiles. In addition, contrary to the

Evolution of Intrinsic Motives in Multi-agent Simulations 203

limited mutation applied in the first model where each approach and avoidance
parameter has a specific range, agent’s approach and avoidance in this model are
allowed to change their values within the whole range [0, 1.2]. Therefore, agents
have the ability to change strategies from generation to the other.

3.3 Fitness Functions

In a generation g, fitness for an agent pn is updated after it finishes playing N−1
games with all other players in the population. Fitness in Model 1 is computed
using the relation in Equation 2.

F g
n =

accV g
n

D (N − 1)
(2)

where accV g
n refers to pn’s accumulated payoff over all encounters and as given

by Equation 3.

accV g
n =

D(N−1)∑
d=1

vdn (3)

Fitness in Model 2 is computed proportional to the degree of commitment each
agent has to the strategy motivated by its initial motive profile. Under this
model, when agent pn finishes N − 1 games with all other players its fitness F g

n

is updated as follows:

F g
n =

{
NumCg

n

D(N−1) If initial agent strategy is cooperation.
NumDg

n

D(N−1)
If initial agent strategy is defection.

(4)

where NumCg
n (NumDg

n) is the number of cooperation (defection) decisions
that agent pgn made in generation g.

4 Experimental Setup

This section presents two experiments with different variations of our evolution-
ary intrinsically motivated agents. The agents interact in a social game setting
defined by the iterative PD game. The impact of motivation in human deci-
sion making has previously been studied in this setting [11]. Results identify
the existence of individuals with different dominant motive profiles of achieve-
ment, affiliation or power motivation. Individuals with different motive profiles
act differently, and do not always conform to the predicted ESS of defection.
The aim of this section is thus to investigate whether we can develop artificial
motive profiles that support the survival of agents with different dominant mo-
tives (achievement, affiliation or power) within an evolving society. Based on the
two fitness functions (see Section 3.3), we have two distinct experimental setups
using restricted agent representation as described earlier:

204 K. Shafi, K.E. Merrick, and E. Debie

Table 2. Parameter settings used for restricted agent model

Parameters Achievers Affiliator Power Seekers

Sach 2 1 1

M+
ach 0.1-0.3 0.1-0.3 0.1-0.3

M−
ach 0.4-0.6 0.4-0.6 0.4-0.6

p+ach 20-100 20-100 20-100

p−ach 20-100 20-100 20-100

Saff 1 2 1

M+
aff 0.3-0.45 0.3-0.45 0.3-0.45

M−
aff 0.05-0.2 0.05-0.2 0.05-0.2

p+ach 20-100 20-100 20-100

p−ach 20-100 20-100 20-100

Spow 1 1 2

M+
pow 0.8-0.95 0.8-0.95 0.8-0.95

M−
pow 1.05-1.2 1.05-1.2 1.05-1.2

p+ach 20-100 20-100 20-100

p−ach 20-100 20-100 20-100

1. Model 1: Restricted agent model setup with fitness proportional to the av-
erage payoff overall encounters,

2. Model 2: Restricted agent model setup with fitness proportional to the degree
of commitment of an agent to its original strategy

The normalised payoff matrix used for the experiments is as follows: T = 1,
R = 0.75, P = 0.5, S = 0.25. Here the payoffs are chosen such that they are
spread evenly to avoid any skewness that may result in biasing agent decisions
other than their motivation. For all experiments, the population size is kept
constant at 100 agents. The mutation rate is also kept constant at 0.025. For
each experiment we vary the number of rounds from 1 to 10 and report the
results accordingly.

4.1 Model 1: Experimental Results and Analysis

According to the payoff structure of the PD game, defection is considered the
initial strategy for power-motivated agents, affiliation-motivated agents tend to
cooperate most of the time, and achievement-motivated agents exhibit a mixture
of cooperating and defecting strategies. It is also worth noting that defection in
a PD game is evolutionary stable strategy (ESS)[12], thus those agents adopt-
ing such strategy can survive in a population of agents with different strate-
gies. Reflecting these facts on our model, Figure 2(a) shows the evolution of
agents with different motives in an explicit competing environment. As can be
seen, all agents which choose to cooperate have died out of the population very
quickly (before generation 20). This is represented by affiliators and the pro-
portion of achievers whose initial strategy is cooperation. Figure 2(b) shows the

Evolution of Intrinsic Motives in Multi-agent Simulations 205

proportion of co-operators of each type of agents. As is shown in the figure,
the power-motivated agents never cooperates which allow them to have higher
chance of reproduction while the proportion of co-operators of both affiliation
and achievement-motivated agents declined rapidly before the 20th generation.
In Figure 2(c), where R, S, T and P refer to Reward for mutual cooperation,
Sucker’s payoff, Temptation to defect and Penalty to mutual defection, it is
shown that the average population payoff is 0.5 which confirms the results by
showing that all agents in the population turn to defection strategy.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

P
ro

po
rt

io
n

of
 A

ge
nt

 T
yp

es
 in

 P
op

ul
at

io
n

Achievers
Affiliators
PowerSeekers

(a) The average proportion of three
types of agents in the population.

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

P
ro

fil
e−

W
is

e
P

ro
po

rt
io

n
of

 C
oo

pe
ra

to
rs

Achievers
Affiliators
PowerSeekers
Overall

(b) The average normalized propor-
tion of cooperators in each profile.

20 40 60 80 100

S

P

R

T

Generations

A
ve

ra
ge

 P
ay

of
f

(c) The average fitness of the pop-
ulation over 100 generations.

Fig. 2. Statistics for motivated agents Model 1. The population is initialized uniform
randomly with the three agent types.

4.2 Model 2: Experimental Results and Analysis

While the first model favours defecting agents over cooperating ones (in this case
power seekers and a proportion of achievers) by allowing them to evolve more
frequently, the second model is built in a neutral way such that agents are not
evaluated based on the direct payoff they gain. However, agents are evaluated
based on their commitment to the strategy defined by their initial motive profile.
For example, agents whose initial strategy is defection (cooperation) and they
keep defecting (cooperating) throughout the games with other agents get higher

206 K. Shafi, K.E. Merrick, and E. Debie

fitness. As is shown in Figure 3(a), all agents with different motives could survive
throughout the simulation with approximately the same probability. Figure 3(b)
shows the proportion of cooperating agents from each type where the higher pro-
portion of cooperation is due to the survival of affiliation and achievement-based
agents. Now, there does not exist any stable strategy in such a neutral environ-
ment but a mix of strategies can be found which leads to an average population
payoff swings between 0.5 and 0.75 as is shown in Figure 3(c) where R,S, T and
P refer to Reward to mutual cooperation, Sucker’s payoff, Temptation to defect
and Penalty to mutual defection.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

P
ro

po
rt

io
n

of
 A

ge
nt

 T
yp

es
 in

 P
op

ul
at

io
n

Achievers
Affiliators
PowerSeekers

(a) The average proportion of three
types of agents in the population.

20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

P
ro

fil
e−

W
is

e
P

ro
po

rt
io

n
of

 C
oo

pe
ra

to
rs

Achievers
Affiliators
PowerSeekers
Overall

(b) The average normalized propor-
tion of cooperators in each profile.

20 40 60 80 100

S

P

R

T

Generations

A
ve

ra
ge

 P
ay

of
f

(c) The average payoff of the pop-
ulation over 100 generations.

Fig. 3. Statistics for motivated agents Model 2. The population is initialized uniform
randomly with the three agent types.

5 Conclusion and Future Work

In this paper we presented two evolutionary models of intrinsically motivated
agents. The first one was able to successfully solve stable strategy games while
in the second model we presented a simulation of more realistic human motive
interaction as reported in psychology literature where the agents strive to survive
by adapting behaviour. In the experiments conducted in this paper we have used
a “static incentive” model. However, in future work we will extend our study on
different models where the incentives evolve over time.

Evolution of Intrinsic Motives in Multi-agent Simulations 207

Acknowledgments. This work was supported by a UNSW@ADFA Early Ca-
reer Researcher Grant: UNSWA SIR30 Z6300 0000 00 PS23595.

References

1. Saunders, R.: Curious Design Agents and Artificial Creativity: A Synthetic Ap-
proach to the Study of Creative Behaviour. PhD thesis, Department of Architec-
tural and Design Science, Faculty of Architecture, University of Sydney (2002)

2. Merrick, K., Maher, M.L.: Motivated reinforcement learning: curious characters for
multiuser games. Springer, Berlin (2009)

3. Merrick, K.: A computational model of achievement motivation for artificial agents.
In: Autonomous Agents and Multi-Agent Systems (AAMAS 2011), Taiwan, pp.
1067–1068 (2011)

4. Merrick, K., Shafi, K.: Achievement, affiliation and power: motive profiles for arti-
ficial agents. Adaptive Behavior 9(1), 40–62 (2011)

5. Oudeyer, P.Y., Kaplan, F., Hafner, V.V.: Intrinsic motivation systems for au-
tonomous mental development. IEEE Transactions on Evolutionary Computa-
tion 11(2), 265–286 (2007)

6. Heckhausen, J., Heckhausen, H.: Motivation and action. Cambridge University
Press (2008)

7. Baldassarre, G.: What are intrinsic motivations? a biological perspective. In: 2011
IEEE International Conference on Development and Learning (ICDL), vol. 2, pp.
1–8 (August 2011)

8. Oudeyer, P.Y., Kaplan, F.: What is intrinsic motivation? a typology of computa-
tional approaches. Frontiers in Neurorobotics 1(6) (2007) (online, open–access)

9. Rapoport, A., Chammah, A.: Prisoner’s dilemma: A study in conflict and cooper-
ation, vol. 165. Univ. of Michigan Press (1965)

10. Poundstone, W.: Prisoner’s Dilemma. Doubleday, New York (1992)
11. Terhune, K.W.: Motives, situation, and interpersonal conflict within prisoner’s

dilemma. Journal of Personality and Social Psychology 8(3, pt. 2), 1–24 (1968)
12. Nowak, M., Sasaki, A., Taylor, C., Fudenberg, D.: Emergence of cooperation and

evolutionary stability in finite populations. Nature 428(6983), 646–650 (2004)

A Hybrid Particle Swarm Optimization

Approach to Bernoulli Mixture Models

Faezeh Frouzesh, Yuichi Hirose, Shirley Pledger, and Mahdi Setayesh

School of Mathematics, Statistics and Operations Research,
Victoria University of Wellington, New Zealand

{Faezeh.Frouzesh,Yuichi.Hirose,Shirley.Pledger}@msor.vuw.ac.nz,
Mahdi.Setayesh@ecs.vuw.ac.nz

http://www.vuw.ac.nz

Abstract. The use of mixture models in statistical analysis is increas-
ing for dataset with heterogeneity and/or redundancy in the data. They
are likelihood based models, and maximum likelihood estimates of pa-
rameters are attained by the use of the expectation maximization (EM)
algorithm. Multi-modality of the likelihood surface means that the EM
algorithm is highly dependent on starting points and poorly chosen ini-
tial points for the optimization may lead to only a local maximum, not a
global maximum. The aim of this paper is to introduce a hybrid method
of Particle Swarm Optimization (PSO) as a global optimization approach
and the EM algorithm as a local search to overcome this problem and
then it will be compared with different methods of choosing starting
points in the EM algorithm.

Keywords: Maximum likelihood (ML), Expectation maximization (EM)
algorithm, Clustering techniques, particle swarm optimization (PSO).

1 Introduction

Finite mixture models provide a natural representation for great flexibility in
fitting models for continuous or discrete outcomes that are observed from pop-
ulations including a finite number of homogeneous subpopulations [14]. The
mixture models also provide a convenient formal setting for model-based clus-
tering. There are a lot of applications of finite mixture models in the social and
behavioral sciences, biological, physical and environmental sciences, engineering,
finance, medicine and psychiatry among many other fields [8]. The most impor-
tant advantage of mixture models is that the model can have quite a complex
distribution through choosing its components to have an accurate local area in
order to fit the best distribution to the model. As a result, finite mixture models
can be used in situations where a single parametric family is unable to provide
an adequate model for local variations in the observed data [8].

Finding estimation of parameters in finite mixture models is of practical im-
portance in pattern recognition and other related fields. These parameters are
estimated by maximizing the likelihood. The EM algorithm is a standard ap-
proach to finding maximum likelihood in a variety of problems where there is

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 208–217, 2012.
� Springer-Verlag Berlin Heidelberg 2012

http://www.vuw.ac.nz

A Hybrid Particle Swarm Optimization Approach 209

incomplete information or missing data. This algorithm was proposed by Demp-
ster et al. in 1977 [9]. Beside all the advantages of the EM algorithm, such as
its simplicity, monotonic convergence and its natural statistical interpretation,
it has some general drawbacks which have been noted in the literature [14]. The
EM algorithm is an iterative hill-climbing method whose performance is highly
dependent on its initial points, especially in the multivariate context because of
the multi-modality of the likelihood function. Therefore, its sensitivity to the
initial points and trapping in local optima are the main disadvantages of the
EM algorithm.

For the first time, Laird [12] proposed a method based on a grid search for
choosing the initial values in 1978. Woodward et al. [19] used an ad-hoc quasi-
clustering technique to obtain starting values for the EM algorithm. Bithell [7]
suggested an initial classification of the data by maximizing the within sum of
squares criterion. Seidel et al. [18] used a Random starts method in the EM algo-
rithm for finite exponential mixtures. Their research showed that starting with
several random initial values was preferable in order to ensure that the global
maximum is obtained. In 2006, Nasser Sara [15] used the K-mean algorithm to
initialise the EM algorithm and the results were promising. In 2009, Bessadok
et al. [6] suggested an initiative method via variable neighbourhood search to
overcome the problem of choosing starting points in the EM algorithm which
often gets trapped at local maxima. To the authors’ knowledge, the K-mean
algorithm is the only clustering technique whose centroids have been used as
starting points in the EM algorithm.

In this paper, we aim to present a novel method to overcome the problem
of choosing initial point in the EM algorithm. Particle Swarm Optimisation
(PSO) is a meta-heuristic method that has successfully been used to solve global
optimisation problem. The ease of implementation, fewer operations, limited
memory for each particle and high speed of convergence are the main advantages
of PSO in comparison with other heuristic methods, such as genetic algorithms
[2]. PSO has been used for the optimisation of parameters in Gaussian mixture
models [4][17]. But it has never been used for optimisation in Bernoulli mixture
models up to now. The main goals of this paper are as follows:

– investigate the performance of the use of different most well-known clustering
techniques to choose the initial points for the EM algorithm in Bernoulli
mixture models for binary datasets;

– develop a new PSO-based algorithm as a global search method combined
with the EM algorithm as a local search method in order to more likely to
cover all the potential solutions;

– develop a new fitness function for the Hybrid PSO-based algorithm along
with a simple encoding scheme;

– compare the performance of the new proposed method to the EM algorithm
which is initialised by different clustering methods in terms of the goodness
of fitted statistical models.

210 F. Frouzesh et al.

2 Background

2.1 Data and Notations

The datasets used in this paper consist of an n × p matrix Y of binary data.
Each row corresponds to a subject and each column corresponds to one variable.
The value of each element yij is 1 if there is “success”on a Bernoulli trial with
parameter θij , and 0 if there is failure. In ecological presence/absence data, the
rows may represent n species while the columns are p quadrants or samples. It
is desirable to know if the rows can be grouped (clustered) into two or more
relatively homogeneous groups. The subjects are more similar (in their pattern
of occurrence) within groups and dissimilar between different clusters. We list
notations used in this paper:

L=Likelihood
l= log likelihood
lc = log likelihood under complete knowledge

θrj =Bernoulli parameter for yij , i = 1, ...n, j = 1, ...p
zir = Indicator of row i being in row-group r

πr =A priori membership probabilities (r = 1, ...R, 0<πr<1,
∑R

r=1 πr = 1)
πir =A posteriori probability row i from row-group r

2.2 EM Algorithm for Finite Mixture Models

For a given dataset and any statistical model, the most commonly used method
to estimate the parameters of the model is Maximum Likelihood (ML) method.
Therefore, we need to construct the likelihood which is the probability of ob-
serving the data set. The EM algorithm as a standard method is often used to
estimate the parameters of the model in two steps: the expectation step (E-step)
and the maximisation step (M-step). The E-step calculates the estimation of the
log-likelihood evaluated using the current estimate for the latent variables. For
a discrete distribution, the likelihood is the product of the probabilities for the
individual data points. Hence, the overall likelihood is:

L(θ, π|y) =
n∏

i=1

[R∑
r=1

πr

p∏
j=1

θ
yij

rj (1− θrj)
1−yij

]
(1)

and the log likelihood is:

l(θ, π|y) =
n∑

i=1

log

[R∑
r

πr

p∏
j=1

θ
yij

rj (1 − θrj)
1−yij

]
. (2)

With consideration of the missing information as an n × R group membership
matrix, Z, where zir = 1 if case i is in group r otherwise 0. Then, the likelihood
under complete knowledge is:

lc(θ, π|y, z) =
n∑

i=1

R∑
r=1

zir

p∑
j=1

[
yij log(θrj) (3)

+(1− yij) log(1 − θrj)

]
+

n∑
i=1

R∑
r=1

zir log πr

A Hybrid Particle Swarm Optimization Approach 211

After estimating the missing data in the E-step, the M-step can use the complete
data to find the optimal parameters. The partial derivative with respect to θrj
is found, and equated to zero, give us an exact mathematical solution,[

∂lc
∂θrj

]
=

n∑
i=1

zir

[
yij
θrj

− 1− yij
1− θrj

]
= 0, ∀r, ∀j (4)

Therefore, θ̂rj =
∑

i ziryij∑
i zir

.

Also, under complete data, the maximum likelihood estimates of π1 and π2

are simply π̂r =
∑

i zir
n , i.e., the proportion of the n cases in group r. There are

other calculation in the E-step, where we use current parameter estimates, θ̂rj
and π̂r to find the expected value of zir. For row i the posterior probability of
being in group r is,

ẑir =
πr

∏p
j=1 θ

yij

rj (1− θrj)
1−yij∑R

r=1 πr

∏p
j=1 θ

yij

rj (1− θrj)
1−yij

. (5)

2.3 Particle Swarm Optimisation

PSO is originally attributed to Eberhart and Kennedy in 1995 [11]. It is a pop-
ulation based stochastic optimisation technique which iteratively optimises can-
didate solutions (which are called particles) regarding to their fitnesses. We can
move these particles through multi-dimensional search space according to a sim-
ple mathematical formula over the particle’s position and velocity. Each particle
moves based on its personal best position and the position of its best neighbour.
Moving the swarm of particles toward the best solutions will be expected. The po-
sition of ith particle is represented as the vectorXi(t) = (xi1(t), xi2(t), ..., xin(t))
in an n-dimensional search space at time t. The position of the particle is changed
based on its own experience (particle and memory influence) and that of its
neighbours (swarm influence). A particle’s position, Xi(t) is updated at each
iteration of PSO by adding its velocity at time t represented by V i(t):

Xi(t+ 1) = Xi(t) + Vi(t+ 1). (6)

The velocity is changed according to three components: current motion influence,
particle memory influence, and swarm influence:

Vi,j(t+1) = wVi,j(t) +C1r1(Xpbesti,j −Xi,j(t)) +C2r2(Xleader,j −Xi,j(t)) (7)

where w denotes the inertia weight to control the impact of the previous velocity;
C1 and C2 are the self and swarm confidence learning factors which control how
far a particle will go in a single iteration. In the other word, they represent the
attraction of a particle toward its best previous position and the best particle of
the population; r1 and r2 are uniform random variables between 0 and 1; Xpbest

denotes the personal best position of ith particle so far and Xleader represents
the position of a particle to guide and lead other particles toward better regions
of the search space.

212 F. Frouzesh et al.

3 PSO for Optimisation of Parameters of Bernoulli
Mixture Model

Since the parameters of the Bernoulli mixture model (BMM) are in Euclidean
space, we expect that PSO as a global optimisation method in continuous search
spaces would be a good candidate to optimise these parameters. In this section,
we first introduce the fitness function used in our PSO algorithm and then
describe the particle encoding representing the parameters of BMM.

3.1 Fitness Function for PSO

We first merge two steps of the EM algorithm in order to develop a proper fitness
function to be optimised by PSO. In order to get a proper fitness function, we
first substitute the posterior probability ẑir (see Equation 5) in the equation of
likelihood under complete knowledge (see Equation 3) as follows:

lc(θ, π|y, z) =
n∑

i=1

R∑
r=1

ẑir

p∑
j=1

[
yij log(θrj) (8)

+(1− yij) log(1 − θrj)

]
+

n∑
i=1

R∑
r=1

ẑir log πr

where ẑir is given by Equation 5. Since the parameter values which optimise
the likelihood under complete knowledge (Equation 3) are the same as the pa-
rameters which optimise the log likelihood in Equation 2, the maximum log
likelihood is computed through substitution of these parameters in Equation 2.
As described earlier, the parameter π in the complete likelihood should satisfy
the constraint

∑R
r=1 πr = 1. Hence, it is necessary to use a Lagrange multi-

plier [5] to satisfy this constraint. So, let Q = lc + λ(
∑R

r=1 πr − 1). The partial
derivatives of Q with respect to πr is found and equated to zero as follows:

∂Q

∂πr
=

∂lc
∂πr

+ λ =

n∑
i=1

zir
1

πr
+ λ = 0. (9)

Based on the constraint, the following equation is obtained:

1 =
∑
r

πr =
∑
r

(−
∑n

i=1 zir
λ

) = −
∑

i

∑
r zir

λ
= −

∑
i 1

λ
=

−n

λ
. (10)

Therefore, the function Q which should be optimised by PSO is as follows,

Q = lc − n(

R∑
r=1

πr − 1) (11)

A Hybrid Particle Swarm Optimization Approach 213

3.2 Particle Encoding

Since PSO needs a particle encoding to represent the parameters which should
be optimized, we develop a very simple encoding to represent all required
parameters in the likelihood for Bernoulli mixture models. The parameters
are θ = (θ11, θ12, ..., θrp) and π = (π1, ..., πr) so that 0<θ11, θ12, ..., θrp<1
and 0<π1, ..., πr<1. We should have a vector of parameters like ψ =
(θ11, θ12, ..., θrp, π1, ..., πr) represented by each particle.

3.3 PSO with EM Algorithm

Since the EM algorithm is a well-known approach as a local search, finding a
hybrid method which can lead to a global search is worthwhile. Hence, PSO as
global search is a good candidate method to mix with the EM algorithm. The
Hybrid PSO and EM algorithm can be represented as the follows:

Algorithm 1. Hybrid PSO algorithm as a heuristic method to overcome the
drawbacks of the EM algorithm

1: Initialize the position and velocity of particle
2: repeat
3: for all particle P in population do
4: Calculate fitness value of P
5: Update its personal best if fitness value is better than best fitness

value pbest, and set current position as pbest
6: end for
7: for all particle P in population do
8: Find local best particle from neighbourhood
9: Compute particle velocity (equation 7)
10: Update particle position (equation 6)
11: Initialize EM algorithm with the position of current particle
12: Improve the position of current particle through applying EM algorithm
13: end for
14: until stopping criterion

4 Experiment Design

To assess the starting points for the EM algorithm that are found by the Ran-
dom starts, K-means and Split off method, and compare the performance the
proposed method, we consider 3 challenging datasets. The first one is from [13]
which is the presence/absence measure of the 25 most abundant plant species
(n = 25) on 17 plots (p = 17) from a grazed meadow in Steneryd Nature Reserve
in Sweden. The second data come from the R package “bipartite”which can be
download from [10]. It is a plant-pollinator network from Memmott (1999). The
rows are insect species (n = 79) and the columns are plant species (p = 25). A
one is recorded if that insect species was recorded pollinating the flowers of that
plant species. It started as a count data matrix (i.e. the number of times that
type of insect was seen pollinating that type of flower), but this is the binary

214 F. Frouzesh et al.

version. The third one is from the book [16] which is nine rodent species (p = 9)
in 28 urban canyons (n = 28) in Southern California. These are challenging and
substantial binary datasets which are representative of a range of matrix sizes.

Akaike information criterion (AIC, [1]) is an information-theoretic criterion
for model selection based on the statistical likelihood function. In fact, it provides
a method for comparison among models. In the case of several candidate models
for a given dataset, they are ranked according to their AIC, and the model with
the minimum AIC is the best model for fitting. The value of AIC represents
the amount of lost information in the case of choosing a model to estimate the
true model. The best model for fitting is the model which loses the minimum
amount of information and has the least AIC. AIC is computed as:

AIC = 2K − 2 log(L) (12)

whereK indicates the number of parameters in the model and L is the maximized
likelihood of a fitted statistical model [3]. AICc is the second-order correction
of AIC for small sample size n with respect to K which is calculated as the
following:

AICc = −2 log(L) + 2K(n/(n−K − 1)). (13)

In this paper, we use AIC and AICc as a measure of the goodness of fitted model
and compare different methods for finding initial points for EM algorithm based
on the values of AIC and AICc.

5 Results and Discussion

We first applied Random starts, K-means, Split off and Hybrid PSO in dataset
1, 2 and 3. Since these methods are indeterministic, we run these algorithms 30
times for each dataset when we have three to six row clusters and then calculate
95% confidence interval for the maximum likelihood, AIC and AICc for each
dataset. Biologists are often interested to have three to six row groups. Hence,
we compare the hybrid PSO with K-means, random starts and divisive methods
when we have three to six clusters. Tables 1, 2 and 3 demonstrate maximum like-
lihood, P-value based on student’s t-test to compare the maximum log likelihood
resulting from the proposed method with other methods, the number of param-
eters in the Bernouli mixture models, AIC, AICc and the number of clusters
(column R) for datasets 1, 2 and 3. We arranged a student’s t-test to compare
the performance of the proposed method with other methods. As can be seen
in Table 1, the maximum likelihood (ML), AIC and AICc for the model with
three, four and five row clusters, which are found by the Hybrid PSO method, are
statistically better than those values found by the EM algorithm utilising other
methods for initialising starting points. For the model with six row clusters, our
experiments show that the model found by our proposed method is statistically
equivalent with the models found by other methods for dataset one.

The results for dataset 2 can be seen in Table 2. In this dataset, the comparison
of ML, AIC and AICc for the models with three, four and five row clusters

A Hybrid Particle Swarm Optimization Approach 215

Table 1. Comparison of Hybrid PSO method with the traditional methods when we
have three to six row clusters in dataset 1

Method Max.ll P-value npar AIC AICc R

Random starts -182.20 ± 0.00 2.24E-63 53 470.41 ± 0.00 486.46 ± 0.00 3
K-means -182.66 ± 0.00 1.25E-67 53 471.32 ± 0.00 487.38 ± 0.00 3
Split off -193.14 ± 10.83 0.03 53 492.28 ± 43.33 508.34 ± 43.33 3

Hybrid PSO -181.06 ± 0.00 � 53 468.12 ± 0.01 484.18 ± 0.01 3

Random starts -160.65 ± 0.07 3.1E-10 71 463.31 ± 0.29 493.17 ± 0.29 4
K-means -162.21 ± 0.00 � 71 466.43 ± 0.00 496.29 ± 0.00 4
Split off -178.94 ± 10.14 0.0011 71 499.89 ± 40.56 529.75 ± 40.57 4

Hybrid PSO -160.30 ± 0.00 � 71 462.60 ± 0.00 492.46 ± 0.00 4

Random starts -146.17 ± 0.10 7.1E-06 89 470.34 ± 0.42 519.38 ± 0.42 5
K-means -145.90 ± 0.00 1.35E-06 89 469.81 ± 0.03 518.85 ± 0.03 5
Split off -167.96 ± 9.26 6.27E-05 89 513.93 ± 37.06 562.97 ± 37.06 5

Hybrid PSO -145.87 ± 0.00 � 89 469.75 ± 0.00 518.79 ± 0.00 5

Random starts -133.49 ± 0.27 0.90 107 480.09 ± 1.09 555.49 ± 1.09 6
K-means -133.02 ± 0.11 0.91 107 480.04 ± 0.46 554.55 ± 0.46 6
Split off -158.98 ± 8.56 0.19 107 531.96 ± 34.25 606.46 ± 34.25 6

Hybrid PSO -130.93 ± 40.15 � 107 472.00 ± 642.28 544.87 ± 943.06 6

Table 2. Comparison of Hybrid PSO method with the traditional methods when we
have three to six row clusters in dataset 2

Method Max.ll P-value npar AIC AICc R

Random starts -578.67 ± 2.26 3.16E-13 77 1311.35 ± 9.07 1317.85 ± 9.07 3
K-means -582.42 ± 0.10 5.12E-50 77 1318.84 ± 59.94 1325.34 ± 59.94 3
Split off -586.08 ± 0.00 1.1E-56 77 1326.15 ± 0.00 1332.65 ± 0.00 3

Hybrid PSO -564.21 ± 0.10 � 77 1282.42 ± 0.42 1288.92 ± 0.42 3

Random starts -564.02 ± 0.45 6E-09 103 1282.04 ± 1.81 1288.54 ± 1.81 4
K-means -545.84 ± 3.05 0.9739 103 1279.67 ± 12.21 1309.35 ± 12.21 4
Split off -572.86 ± 0.00 7.35E-13 103 1351.72 ± 0.00 1363.40 ± 0.00 4

Hybrid PSO -545.75 ± 4.39 � 103 1245.50 ± 17.57 1309.18 ± 17.57 4

Random starts -564.28 ± 0.21 4.55E-13 129 1386.56 ± 0.85 1289.06 ± 0.85 5
K-means -528.56 ± 4.03 0.3818 129 1315.12 ± 16.14 1333.59 ± 16.14 5
Split off -557.15 ± 0.00 5.3E-11 129 1372.30 ± 0.00 1390.77 ± 0.00 5

Hybrid PSO -525.21 ± 6.20 � 129 1308.42 ± 24.82 1326.89 ± 24.82 5

Random starts -505.77 ± 0.12 0.9462 155 1321.54 ± 0.49 1289.30 ± 0.49 6
K-means -505.77 ± 2.80 0.9482 155 1321.53 ± 11.18 1348.48 ± 11.18 6
Split off -542.40 ± 0.00 6.59E-08 155 1394.81 ± 0.00 1421.75 ± 0.00 6

Hybrid PSO -505.42 ±10.09 � 155 1320.84 ± 38.40 1347.49 ± 44.18 6

found by the different methods show that the performance of hybrid method is
better than the old methods. Although, for six row clusters, the performance
of the Hybrid PSO method is better than Split off method, its performance is
equivalent with Random starts and K-means.

Table 3 shows the results for dataset 3. In this dataset, for three row clusters,
the performance of the Hybrid method is better than Random starts and Split

216 F. Frouzesh et al.

Table 3. Comparison of Hybrid PSO method with the traditional methods when we
have three to six row clusters in dataset 3

Method Max.ll P-value npar AIC AICc R

Random starts -87.8420 ± 0.00 � 29 233.6840 ± 0.00 242.1000 ± 0.00 3
K-means -85.0119 ± 0.08 0.9983 29 228.0230 ± 0.35 236.4390 ± 0.35 3
Split off -87.4620 ± 0.00 � 29 232.9230 ± 0.00 241.3400 ± 0.00 3

Hybrid PSO -84.9210 ± 0.00 � 29 227.8410 ± 0.00 236.2570 ± 0.00 3

Random starts -78.5822 ± 0.19 0.7039 39 235.1637 ± 4.81 250.7087 ± 4.81 4
K-means -79.5077 ± 0.52 0.0010 39 237.0149 ± 2.10 252.5599 ± 2.10 4
Split off -82.9460 ± 0.00 � 39 243.8930 ± 0.00 2259.4380± 0.00 4

Hybrid PSO -78.5450 ± 0.00 � 39 235.0890 ± 0.00 250.6340 ± 0.00 4

Random starts -74.9245 ± 0.06 0.3981 49 247.8491 ± 0.24 273.2227 ± 0.02 5
K-means -74.9465 ± 1.17 0.4084 49 247.8933 ± 4.71 273.2663 ± 4.71 5
Split off -79.0220 ± 0.00 0.012 49 256.0440 ± 0.00 281.4170 ± 0.00 5

Hybrid PSO -72.9772 ± 4.45 � 49 243.9555 ± 1.76 269.3285 ± 1.76 5

Random starts -71.2060 ± 4.77 0.9185 59 260.4122 ± 1.40 298.7371 ± 0.07 6
K-means -71.3434 ± 0.01 0.1231 59 260.6861 ± 0.06 299.0111 ± 0.06 6
Split off -74.7390 ± 0.00 1.21E-28 59 267.4790 ± 0.00 305.8030 ± 0.00 6

Hybrid PSO -71.4571 ± 0.14 � 59 260.2467 ± 2.01 298.1400 ± 8.02 6

off methods, however it is equivalent to the K-means method. The model found
by Hybrid PSO in dataset 3 with four row clusters, has a better ML, AIC and
AICc than K-means and Split off methods and this model is approximately
equivalent to Random starts. The performance of Random starts and K-means
in dataset 3 with five and six row clusters, are the same as proposed method,
but proposed method works better than Split off method.

6 Conclusion

This paper presented a new Hybrid PSO algorithm with a new fitness function
and a new encoding scheme for Bernoulli mixture models which makes the EM al-
gorithm independent of the initial points. Different methods (Random starts, K-
means, Split off andHybrid PSOmethods) for choosing the best starting points for
the EM algorithm were evaluated and a new heuristic algorithm which combines
PSO and the EM algorithm was introduced. Since the EM algorithm is applied as
a local search and its result is highly dependent on initial points, a Hybrid PSO
approach could improve the EM algorithm to be independent of initial points. The
results showed that in most cases, the performance of the Hybrid PSO is statisti-
cally better than the other methods and in a few cases, it is equivalent to the other
methods. Our result showed that the proposedmethod performs better than other
methods in 23 cases out of 36 and in the remaining cases as well as other methods.
However the computation time for hybrid PSO is more than the other traditional
methods. Since PSO has been used as a clustering method in literature, as a future
work, the performance of using PSO as a clustering method can be investigated
to choose the initialization points in EM algorithm.

A Hybrid Particle Swarm Optimization Approach 217

References

1. Akaike, H.: Information theory as an extension of the maximum likelihood princi-
ple. Academiai Kiado (1973)

2. AlRashidi, M.R., El-Hawary, M.E.: A survey of particle swarm optimization appli-
cations in electric power systems. Transaction on Evolutionary Computation 13(4),
913–918 (2009)

3. Anderson, D.: Model Based Inference in the Life Sciences. Springer (2008)
4. Ari, C., Aksoy, S.: Maximum likelihood estimation of Gaussian mixture models

using particle swarm optimization. In: Proceedings of International Conference on
Pattern Recognition (ICPR), pp. 746–749 (2010)

5. Bertsekas, D.P., Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scien-
tific (1999)

6. Bessadok, A., Hansen, P., Rebai, A.: EM algorithm and variable neighborhood
search for fitting finite mixture model parameters. In: Proceedings of International
Conference on Computer Science and Information Technology, pp. 725–733 (2009)

7. Bithell, J.F.: Computer-assisted analysis of mixtures and applications. meta-
analysis, disease mapping and others. Statistics in Medicine 20(19), 2990–2991
(2001)

8. Deb, P.: Finite mixture models. Summer north American stata users’ group, Stata
Users Group (2008)

9. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society 39(1), 1–38
(1977)

10. Dormann, C.F., Gruber, B., Frund, J.: Introducing the bipartite package: Analysing
ecological networks. R News 8(2), 8–11 (2008)

11. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In:
Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, pp. 39–43 (1995)

12. Laird, N.: Nonparametric maximum likelihood estimation of a mixing distribution.
Journal of the American Statistical Association 73(364), 805–811 (1978)

13. Manly, B.F.: Multivariate Statistical Methods: a Primer. Boca Raton (2005)
14. Mclachlan, G., Peel, D.: Finite Mixture Models, 1st edn. Wiley Series in Probability

and Statistics. Wiley-Interscience (2000)
15. Sara, V.G.N., Rawan, A.: A modified fuzzy K-means clustering using expectation

maximization. In: Proceedings of IEEE World Congress on Computational Intelli-
gence (2006)

16. Quinn, G.P., Keough, M.J.: Experimental Design and Data Analysis for Biologists.
Cambridge University Press (2002)

17. Saeidi, R., Mohammadi, H., Ganchev, T., Rodman, R.: Particle swarm optimiza-
tion for sorted adapted Gaussian mixture models. IEEE Transactions on Audio,
Speech, and Language Processing 17(2), 344–353 (2009)

18. Seidel, W., Mosler, K., Alker, M.: A cautionary note on likelihood ratio tests in
mixture models. Annals of the Institute of Statistical Mathematics 52(3), 481–487
(2000)

19. Woodward, W.A., Parr, W.C., Schucany, W.R., Lindsey, H.: A comparison of mini-
mum distance and maximum likelihood estimation of a mixture proportion. Journal
of the American Statistical Association 79(387), 590–598 (1984)

An Agent-Based Model for Simulation
of Traffic Network Status

Manh Hung Nguyen1,2, Tuong Vinh Ho1, Manh Son Nguyen1,
Thi Hoai Phuong Phan1, Thi Ha Phan1, and Van Anh Trinh1

1 Posts and Telecommunication Institute of Technology (PTIT), Hanoi, Vietnam
2 IRD, UMI 209 UMMISCO,

Institut de la Francophonie pour l’Informatique (IFI), Hanoi, Vietnam
{nmhufng,manhsoncntt,phuonghhs,hathiphan,vanh22}@yahoo.com,

ho.tuong.vinh@auf.org

Abstract. Recently, almost proposed simulation models for traffic simulation is
in one of two main categories: either micro simulation based on agent model, or
macro simulation based on flow modelling. Inspire of many advantages of agent-
based approach in small scale simulation, it is no longer suitable for large scale
simulation because of the huge amount of processing and calculations. In order
to avoid this limitation, this paper introduces an agent-based model for a large
scale: instead of visualise the circulation of all individual transports, we visualise
only the status of traffic network and the simulation of circulation is considered
as a background process. This model is applied to the traffic network of Hanoi to
analyse the hot or bottle neck points on the transportation network of the city.

Keywords: Multi-Agents System, Simulation model, Traffic network, Intelli-
gent transportation network.

1 Introduction

Recently, there have been many researches interested in the field of transportation net-
work simulation. Therefore, there have been many models and tools proposed. Most of
them are agent-based models. In which, intelligent agent and multiagent system seem
to be suitable for simulate transportation network at the micro level. Each transport is
thus modelled as an intelligent agent. It could observe other transports and obstacles to
change its own speed as well as direction to go to its destination as fast as possible. The
transportation network therefore could be modelled as a multiagent system whose each
agent has a personnel goal (its destination to go) and they have to coordinate and/or
interact together in order to prevent accidents from happening.

There are many models proposed in this tendency. For instance, MATSim develop-
ment team [3] is developing a framework and platform for a transportation network
simulation, called MATSim. MATSim provides a toolbox to implement large-scale
agent-based transport simulations. The toolbox consists of several modules which can
be combined or used stand-alone: toolbox for demand-modeling, agent-based mobility-
simulation (traffic flow simulation), re-planning, a controller to iteratively run simu-
lations as well as methods to analyze the output generated by the modules. SUMO

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 218–227, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Agent-Based Model for Simulation of Traffic Network Status 219

(Simulation of Urban MObility) [2,8] is a highly portable, microscopic road traffic sim-
ulation package designed to handle large road networks. It is mainly developed by em-
ployees of the Institute of Transportation Systems at the German Aerospace Center.
SUMO allows to simulate how a given traffic demand which consists of single vehicles
moves through a given road network. The simulation allows to address a large set of
traffic management topics. It is purely microscopic: each vehicle is modelled explicitly,
has an own route, and moves individually through the network. Al-Dmour [1] developed
TarffSim, a Multiagent Traffic Simulation for micro-simulation and macro-simulation
of traffic. Gokulan and Srinivasan [5] have been implemented two different types of
multi-agent architectures on a simulated complex urban traffic network in Singapore
for adaptive intelligent signal control. Piorkowski et al. [11] are developing TraNS, an
open-source simulation environment, as a necessary tool for proper evaluation of newly
developed protocols for Vehicular Ad Hoc Networks (VANETs). Mengistu et al. [10]
provided a framework for development and execution of parallel applications such as
multi-agent based simulation (MABS) in large scale. Lotzmann [9] presented an agent-
based traffic simulation approach which sees agents as individual traffic participants
moving in an artificial environment.

In spite of many advantages in modelling of individual’s behaviors in circulation of
agent-based models, they have a limitation in the number of agents in a simulation,
especially in a large scale as a transportation network. Although there are some models
which are able to simulate with a big number of transports, they are not easy to apply
to the traffic situation and the circulation culture of Vietnamese. In Vietnam, most of
transports are motorbikes. Their drivers do not always respect the circulation laws: they
could go to anywhere as long as there is enough place in ahead to go. Moreover, most
of streets in Vietnam have no lanes and no one respect the rule of following only one
lane on a street.

Our objective thus is to develop a simulation model and tool typically for the traffic
situation and the circulation culture of Vietnamese. The model is also based on multia-
gent system. However, in order to get over the limitation of scale in agent-based models,
we do not visualise all the agents in their instant circulations. We show only the instant
status of streets to see the level of congestion in streets as well as the global status of
the traffic network. All calculation of activities and attributes such as speed, travel path,
time, plans of individual agent and the level of congestion on streets, etc. are done in
background processes of the model.

This paper is organised as follows: Section 2 presents our agent-based model for
simulation of traffic network status. Section 3 presents a case study in which we apply
the proposed model to simulate the traffic network status of Hanoi. Finally, section 4
discusses the presented work and draws some perspectives for future work.

2 Propose Model

Our model is depicted in the Fig.1. The main ideas is to separate the visual level and
the calculation level. This makes our model more flexible: its easy to change the input
data to display. The input data thus could be either those from simulation, or those from
realistic on the instant traffic network which are captured from on site cameras, if it

220 M.H. Nguyen et al.

is possible. Moreover, this separation also limits the effect of processing speed on the
visualisation: we could simulate with a huge number of agents with a bit slow speed, but
the results are then display as those of fast speed because the display is now independent
from the calculation. This model has six main steps as the followings:

Fig. 1. Steps and processing data in the model

Step 1: Load GIS files.
This step loads the GIS (Geographic Information System) files to create the roads

network. The use of GIS files enables us to work with the realistic data from the real
transportation network. For each road, the GIS data contains:

– id: road identification.
– name: road name.
– direction: one way or dual ways
– permitted vehicles: kinds of vehicle can circulate on the road
– capacity: the width or through put of road
– lanes: number of lanes

Step 2: Initiate agent’s position.
The second step initiates the agent’s position. The position of agents is determined

by a zone. Thus the number of agent in a specific zone z is determined as following:

n(z) = α ∗ d(z) ∗ s(z)

S
∗N (1)

An Agent-Based Model for Simulation of Traffic Network Status 221

where α is the simulation ratio regarding the real size of population; d(z) is the density
of population in the zone z; s(z) is the surface of the zone z; S is the overall surface of
simulation zone (entry city); N is the total population of the simulation city.
Step 3: Generate agent’s plans.

This step generate plans for each individual agent. A plan contains followings
information:

– start time: the start time to circulate
– department: the start position of the circulation. A position is represented by its real

(longitude (x), latitude (y)).
– destination: the destination(s) to get to of the individual
– max speed: the maximal speed for the individual. This must not be higher than the

maximal permitted speed by law.
– type of vehicle: this attribute is reserved to determine the size of vehicle on the

road.

The plans are generated based on the population distribution, the structure of jobs in
society, and the distribution of offices, commercial centres, schools, hospitals, etc... in
the city. An individual could have many plans with different destinations and time. For
instance, a student takes his motorbike to get to his university at 7am, then back home
at 12pm. At 2pm he outs again with his motor to go to commercial centre to shop with
a friend, and then both of them go to the friend’s house at 5pm, and then he backs home
at 7pm.
Step 4: Simulation.

Each individual is represented by an agent with its daily plans. At any moment, we
can detect the position of agent on the road by considering two factors:

– Its circulation path: this is either statically determined by the Dijkstra’s algorithm
(Dijkstra [4]), or dynamically found by the improved star increment algorithm
(Huang et al. [6], an improvement from Koenig et al. [7]).

– Its speed: the real speed of agent is determined by following rules:

• Accelerate: when there is neither obstacle nor red light in front of it and its
speed is not maximal yet.

• No change: when there is some obstacles in front of it such that it could not get
over, or its speed already maximal.

• Slow down: when there are many obstacles in front of it and they are decrease
their speed too.

Step 5: Analyse road’s status.
The actual status of road is determined by the comparison between the current

through put of road and the road’s capacity, this rate is calculated in percentage:

– Blocked road: the rate is > 95%

– Very slow road: the rate is between 85% and under 95%
– Slow road: the rate is between 75% and under 85%
– Normal road: the rate is under 75%

222 M.H. Nguyen et al.

Another metric for this analysis is the average speed of transports on the road. For
instance, the road is blocked if this speed is less than 1km/h; very slow if the speed is
between 1km/h and 5km/h; slow if the speed is between 5km/h and 10km/h; normal
if the speed is higher than 10km/h.
Step 6: Display road’s status.

The displayed color of road (intersection) depends on the circulation status of the
road (intersection resp.):

– Red: the road (intersection) is blocked
– Orange: the road almost full, the vehicles movement is very slow
– Yellow: the road contains many transports, the movement is slow
– Gray: the road has a normal traffic, the movement is normal

3 A Case Study: Simulation of Hanoi Traffic Network Status

3.1 Simulation Setup

Initiation of Agents Population. The initial position of agents is created with the same
rate of realistic population distribution of Hanoi, by districts (Table 11). For instance,
if we take the simulation rate is 1 : 100, there will be about 23000 agents live in the 9
central districts. Therefore, the will be about 2200 agents live in Ha Dong district, and
2500 other agents live in Thanh Xuan district.

The destination of agents is determined based on its jobs and family situation. For
instance, a student will go to his university. An officer may go directly to his office or
pass over his or her son’s school.

The data about the distribution of offices, hospitals, schools, universities, tourist sites,
commercial centres, manufactures, etc. is stocked in a GIS file (Figure 2). This enables
us to capture the realistic position of an individual’s destination, and then the real travel
distance for each agent on its plans.

Table 1. Population distribution by central districts

District Number of quarters Surface (km2) Population (1000 people)
Ba Dinh 14 9.22 235.7
Cau Giay 8 12.04 237.0
Dong Da 21 9.96 379.2
Ha Dong 17 47.91 217.7
Hai Ba Trung 20 9.60 325.6
Hoan Kiem 18 5.29 156.6
Hoang Mai 14 41.04 329.0
Tay Ho 8 24 139.2
Thanh Xuan 11 9.11 252.0

1 Statistical numbers collected from multi sources in 2009.

An Agent-Based Model for Simulation of Traffic Network Status 223

Fig. 2. Distribution of offices, hospitals, schools, tourist sites, etc. of Hanoi

<agent id=‘‘agentId’’ />
<plan startTime = ‘‘06:30:00’’ maxSpeed=‘‘30km/h’’ vehicle=‘‘car’’>

<department x=‘‘105.7870’’ y=‘‘20.9780’’/>
<destination x=‘‘105.8449’’ y=‘‘21.0069’’/>

</plan>
<plan startTime = ‘‘07:00:00’’ maxSpeed=‘‘30km/h’’ vehicle=‘‘car’’>

<department x=‘‘105.8449’’ y=‘‘21.0069’’/>
<destination x=‘‘105.8550’’ y=‘‘21.0280’’/>

<plan startTime = ‘‘16:30:00’’ maxSpeed=‘‘30km/h’’ vehicle=‘‘car’’>
<department x=‘‘105.8550’’ y=‘‘21.0280’’/>
<destination x=‘‘105.8449’’ y=‘‘21.0069’’/>

</plan>
<plan startTime = ‘‘17:00:00’’ maxSpeed=‘‘30km/h’’ vehicle=‘‘car’’>

<department x=‘‘105.8449’’ y=‘‘21.0069’’/>
<destination x=‘‘105.7870’’ y=‘‘20.9780’’/>

</plan>
</agent>

Fig. 3. Representation of an individual’s plans in XML format

224 M.H. Nguyen et al.

Construction of Agents’ Plans
An agent’s plan is created based on many information about the agent: its home posi-
tion, its jobs will determine an office or a school. This will then determine the time and
destination to move. For instance, a woman officer lives in Thanh Xuan district. She
takes her car to take her son to school before 7am at Kim Lien quarter. Then, she goes
to her office in Ba Trieu street before 8am. At the end of day, she leaves her office at
4h30pm and then, gets to her son’s school to take him at 5pm and then, the mother and
son back home together (Figure.3).

Once all agents’ plans are planned for each day, we launch the simulation for the day
and calculate the intensity of transportation on each street as the proposed model.

3.2 Results

Displaying Level. The results of traffic network status are presented in the Figure 4.
At 6am, there is no red or orange street, there are only some streets in yellow because
it is not a rush hour yet. At 7:20am, it is really a rush hour: there are at least 5 streets
in red, many in orange and yellow. Meanwhile, the number of streets in red at 6pm is
lower than those at 7:20am but it is still higher than those at 12pm.

These visual representations of traffic network status enable us to track and to com-
pare the overall status of traffic network at many daily moments. These also show
whether a moment is a rush hour or not.

In order to represent more detail on the traffic network, our tool also enables to see in
detail on any point on the network by clicking on it, there will be a small window with
the detail information appears. For instance, as depicted in the Figure 5, when we click
on the crossroads of st. Ton That Tung and st. Truong Chinh at the moment of 7:20am.
There is a window appears to show some more detail instant information: the instant
throughput of st. Truong Chinh is about 95.5% (this street is in red), while those of st.
Ton That Tung is about 92.3% (this street is in orange). Moreover, other information
about the involving streets is also displayed: name of the street, type of street (one way
or not), etc.

Analysis Level. As data is tracked and save in a .xls file form, it is easy to analyse
in any strategy or direction. For instance, we could compare the traffic status in a day
between any two streets as depicted in the Figure 6.a for the st. Tran Duy Hung and
the st. Pham Ngoc Thach. Therefore, there in no difference between their throughput in
low traffic hours. Inversely, in rush hours, the level of congestion on the st. Pham Ngoc
Thach is generally higher than those on the st. Tran Duy Hung, especially in 7-8am and
5-7pm.

Another analysis we could take is to do on overall network, in particular, the statistic
on the levels of street congestion (Figure 6.b). In this analysis, we count the number of
streets in the same level of congestion and compare them together. The results indicate
that the most rush hours are 7-8am and 5-6pm. Other time, there is not many street in
congestion.

An Agent-Based Model for Simulation of Traffic Network Status 225

(a) 6:00 A.M (b) 7:20 A.M

(c) 12:00 P.M (d) 06:00 P.M

Fig. 4. Traffic status in different daily moments

226 M.H. Nguyen et al.

Fig. 5. Detail view on a point

(a) Comparing the throughput between streets

(b) Statistic on levels of street congestion

Fig. 6. Some analysing instances

An Agent-Based Model for Simulation of Traffic Network Status 227

4 Conclusion

This paper proposed an agent-based model for simulation the traffic network status.
The model is then applied to simulate the traffic network status of Hanoi. This model
enables to show the instant traffic network status at any daily moment. This also helps
us to analyse the statistic on some particular street as well as those of all streets in the
network. Another advantage of this model is that it could simulate the traffic network
status for any city as long as we have data about the real traffic network, the population
distribution, and the jobs/age distribution of the city.

Testing some real scenarios in the traffic network to find out the best scenario, sim-
ulating to optimise some routing strategies, or evaluate some new propose policies on
the urban circulation are our works in the near future.

References

1. Al-Dmour, N.A.: TarffSim: Multiagent traffic simulation. European Journal of Scientific Re-
search 53(4), 570–575 (2011)

2. Behrisch, M., Bieker, L., Erdmann, J., Krajzewicz, D.: SUMO - simulation of urban mobility:
An overview. In: The Third International Conference on Advances in System Simulation,
SIMUL 2011, Barcelona, Spain, pp. 63–68 (October 2011)

3. MATSim development team (ed.). MATSIM-T: Aims,approach and implementation. Tech-
nical report, IVT, ETH Zürich, Zürich (2007)

4. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathe-
matik 1, 269–271 (1959)

5. Gokulan, B.P., Srinivasan, D.: Multi-agent system in urban traffic signal control. IEEE Comp.
Int. Mag. 5(4), 43–51 (2010)

6. Huang, B., Wu, Q., Zhan, F.B.: A shortest path algorithm with novel heuristics for dynamic
transportation networks. International Journal of Geographical Information Science 21(6),
625–644 (2007)

7. Koenig, S., Likhachev, M., Furcy, D.: Lifelong planning a*. Artif. Intell. 155(1-2), 93–146
(2004)

8. Krajzewicz, D.: Traffic Simulation with SUMO – Simulation of Urban Mobility Fundamen-
tals of Traffic Simulation. International Series in Operations Research & Management Sci-
ence, vol. 145, ch. 7, pp. 269–293. Springer, New York (2010)

9. Lotzmann, U.: TRASS: A Multi-Purpose Agent-Based Simulation Framework for Complex
Traffic Simulation Applications, pp. 79–107 (2009)

10. Mengistu, D., Tröger, P., Lundberg, L., Davidsson, P.: Scalability in distributed multi-agent
based simulations: The jade case. In: Proceedings of the 2008 Second International Confer-
ence on Future Generation Communication and Networking Symposia, FGCNS 2008, vol. 5,
pp. 93–99. IEEE Computer Society, Washington, DC (2008)

11. Piórkowski, M., Raya, M., Lezama Lugo, A., Papadimitratos, P., Grossglauser, M., Hubaux,
J.-P.: TraNS: realistic joint traffic and network simulator for VANETs. Sigmobile Mob. Com-
put. Commun. Rev. 12(1), 31–33 (2008)

Self-Adaptive Particle Swarm Optimization

Adiel Ismail1,2 and Andries P. Engelbrecht2

1 Department of Computer Science, University of the Western Cape, South Africa
aismail@uwc.ac.za

2 Department of Computer Science, University of Pretoria, South Africa
engel@cs.up.ac.za

Abstract. Particle swarm optimization (PSO) has been used to solve
a wide variety of optimization problems. The basic PSO algorithm con-
tains a number of control parameters, including the inertia weight, w,
and the acceleration coefficients, c1 and c2. The PSO, as an optimiza-
tion algorithm, is ideally suited to optimize its own parameters. This
paper proposes that the control parameters of PSO be optimized in a
secondary swarm where each position vector component of each particle
contains a prospective PSO control parameter (i.e. w, c1 and c2) of the
main swarm. This approach relieves the user from specifying appropri-
ate parameters when using PSO. Application of the self-adaptive particle
swarm optimizer (SAPSO) to 12 well known test functions shows that
SAPSO managed to reach pre-specified values quicker than an adaptive
PSO using fitness rank to update the inertia weight.

1 Introduction

PSO is a population based stochastic optimization algorithm which was origi-
nally developed by Kennedy and Eberhart [3] to model the social behavior of
birds. PSO has increased in popularity amongst researchers and practitioners be-
cause of its simplicity and the fact that the derivative of the objective function
is not required [7].

Although the PSO is easy to implement, the success of PSO largely depends
on selecting appropriate values for its control parameters such as the inertia
weight, w, and acceleration coefficients, c1 and c2. Parameter values which are
incorrectly initialized may lead to suboptimal solutions, stagnation of the algo-
rithm, premature convergence, slower convergence, or even divergent behaviour
of the swarm [2].

Optimal control parameters are also problem dependent. A set of optimal
parameters may produce good results on some problems, but poorer results on
others.

In the basic PSO each particle is equipped with the same set of control pa-
rameters that are constant or static for the entire duration of the PSO process.
Numerous empirical studies have determined good static values for the PSO pa-
rameters [1], [10]. Determining optimal static control parameters for the PSO
is time consuming and often impractical. Preferably, a different set of control

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 228–237, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Self-Adaptive Particle Swarm Optimization 229

parameters should be used at different stages of the PSO search to accurately
mirror the dynamic process of PSO.

Parameter values that vary during the execution of PSO were subsequently
introduced by Shi and Eberhart [10]. Numerous empirical studies have reported
good values for control parameters that vary during the search and which lead
to improved performance of the PSO [4] and [9].

A few studies focused on optimizing the control parameters alongside the
optimization of the decision variables [5],[8].

The PSO is well suited to optimize difficult non-linear problems where little
or no domain knowledge is available [7]. Hence, the PSO, apart for optimizing
the objective function, could also be used to optimize the control parameters.

This paper proposes the self-adaptive PSO (SAPSO), which selects a param-
eter based on a probability model proposed by Wang et al [12]. Two swarms are
maintained, one comprising candidate solutions to the objective function, while
the second swarm contains particles with candidate control parameters embed-
ded in the components of its position vectors. During the search process, a set of
control parameters is selected for each particle in the main swarm from the sec-
ondary swarm using Wang et al’s approach. The SAPSO algorithm self-adapts
the PSO control parameters.

The rest of the paper is organized as follows: Section 2 provides an overview
of PSO. The probability model for selecting a strategy used by Wang et al’s
self-adaptive learning based particle swarm optimization (SLPSO) is presented
in section 3. The SAPSO is presented in section 4. The experiments and their
results are presented and discussed in section 5. The paper is concluded in
section 6.

2 Particle Swarm Optimization

The population or swarm, in PSO terminology, consists of a number of particles,
each a potential solution to the problem. Each particle has a position and a
velocity that are manipulated over time. The PSO searches for an optimum
solution by drawing each particle stochastically toward its personal best position
found so far and toward the best position of its neighbourhood [3]. The position
and velocity of the ith particle are denoted as xi and vi, respectively. The
best position visited by the ith particle is represented as xpbesti, and the best
position in the entire swarm is referred to as xGbest. The velocity and position
of each particle in the swarm are respectively adjusted according to the following
two equations,

vdi (t+ 1) = w · vdi (t) + c1 · rd1(t) · (xpbestdi (t)− xd
i (t))

+ c2 · rd2(t) · (xGbestd(t)− xd
i (t)) (1)

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1) (2)

where d = 1, 2, ..., D, i = 1, 2, ..., N ; N is the size of the swarm; D is the di-
mension of the solution vector and search space, w is the inertia weight that

230 A. Ismail and A.P. Engelbrecht

determines the influence of the previous velocity on the current velocity, with
0 ≤ w < 1; c1 and c2 are positive constants called the acceleration coefficients;
r1 and r2 are two vectors containing random numbers, each random number
uniformly distributed in (0, 1); and t indicates the iteration number.

3 Adaptive Learning Particle Swarm Optimization

To select the most appropriate strategy from a set of four velocity/position
update strategies Wang et al’s self-adaptive learning based particle swarm opti-
mization (SLPSO) uses a probability model which self-adapts based on the past
performance of a strategy. Not knowing which strategy to use initially, each strat-
egy is assigned an equal probability which allows it an equal chance of being se-
lected to update a particle’s velocity. The basic idea is to increase the probability
if a strategy leads to an improvement in performance. To achieve the latter NS1

decreasing weights, all totalling 1 are created, i.e. wi =
log(NS1−i+1)

log(1)+log(2)+...+log(NS1)
,

i = 1, 2, ..., NS1 where S1 denotes the swarm and NS1 the number of particles in
swarm S1. The selection pressure of an approach based on this formula is much
lower than one based on linearly increased weights (i.e. wi =

i
1+2+...+NS1). Each

update strategy is assigned a variable that accumulates weights associated with
the particle which selected the update strategy. The particles are sorted in de-
creasing fitness and a weight is assigned to each particle with the largest weight
assigned to the particle with the best fitness and the smallest weight assigned
to the least fit particle in iteration t. Each particle’s weight is then added to
the accumulator associated with the update strategy which was most recently
selected by the particle under consideration. For more detail about SLPSO refer
to [12].

4 Self-Adaptive Particle Swarm Optimization

The approach outlined in section 3 is incorporated in SAPSO with its two PSO
swarms, S1 and S2, where swarm S1 contains candidate solutions of the objective
function which is optimized, while swarm S2 contains 3-dimensional particles
with PSO control parameters, w, c1 and c2 embedded in the 1st, 2nd and 3rd
position vector component, respectively. Swarm S2 contains parameter particles
which are prospective candidates for updating swarm S1. To select the most
appropriate set of parameters from swarm S2, Wang et al’s probability model
of selecting an appropriate strategy as described in section 3 is used. The self-
adaptive PSO (SAPSO) algorithm appears in Algorithm 1.

The equations in lines 34 and 38 of Algorithm 1 are used to update the
probabilities of a parameter particle, where α is the learning coefficient which
controls the updating proportion.

Essentially, each parameter particle in S2 is assigned a probability; initially,
equally set to 1/NS2. An accumulator of probabilities is assigned to each param-
eter particle. During each iteration the particles in S1 are sorted in descending

Self-Adaptive Particle Swarm Optimization 231

fitness. A weight, wi, is calculated as proposed by Wang et al and assigned to
a particle based on its fitness rank. For each particle i in S1, a weight, wi, is
then added to the accumulator of the parameter particle which was used most
recently to update particle i. The better the resulting fitness of a particle in S1,
the larger the increase in probability of the corresponding parameter particle in
S2. During each iteration a parameter particle in S2 is selected for each particle
in swarm S1 using roulette wheel selection.

In the problem coined by Van den Bergh and Engelbrecht [11] as ‘Two steps
forward, one step back’, a particle with improved fitness replaces a particle
with poorer fitness where some vector components of the latter particle are
closer to the solution vector’s components compared to the vector components
of the improved particle, effectively resulting in the particle to move away from
the optimal position with respect to these vector components. The procedure
GbestUpdate() in line 14 of the SAPSO algorithm prevents the ‘Two steps
forward, one step back’ problem by inserting each vector component of each
particle’s xpbest sequentially in xGbest and subsequently evaluating it. Any
substituted vector component of xpbest that leads to an improvement in Gbest
is retained in xGbest.

Swarm S2 is updated as follows. First calculate the fitness of each particle in
swarm S2 as described below. Next, update the personal best of each particle
and the global best of swarm S2. The personal best values and global best is
subsequently used to update the velocity and position of particles in swarm S2.
The fitness of parameter particle j in swarm S2 is calculated as follows. First,
temporarily update the velocity and position of all particles in swarm S1 using
the set of values for w, c1 and c2 extracted from particle j in swarm S2. The
particle in swarm S1 whose current position yields the lowest function value, is
returned as the fitness of parameter particle j. Note, the temporary velocities
and positions of all particles in swarm S1 are discarded once the fitness has been
calculated for a parameter particle.

5 Experiments and Results

The optimization test functions used in this paper and its parameters are de-
scribed in this section.

5.1 Experimental Procedure

The principle goal of this paper is to investigate the performance of the proposed
SAPSO which self-adapts the control parameters of the PSO. Performance is
based on (a) the average best value reached by the swarm over 30 simulations
and (b) the number of iterations required to reach an acceptable function value
as specified in Table 1 within a maximum of 2×105 iterations. The performance
of the SAPSO was compared with the adaptive PSO (APSO) of Panigrahi et al
[6]. In APSO the inertia weight is updated using a particle’s fitness rank, Ranki,

as wi = wmin + (wmax−wmin)×Ranki

NS . For all the experiments, the main swarm

232 A. Ismail and A.P. Engelbrecht

S1 and swarm S2 consisted of 20 particles. All experiments were executed for
2 × 105 function evaluations, bearing in mind that 20 function evaluations are
required per iteration by the APSO. Additional function evaluations are required
by SAPSO during execution of the GbestUpdate() routine. All experiments were
repeated 30 times. The velocity and the position of particles in swarm S2 were
updated every 40th iteration. For APSO, parameters wmin, wmax, c1 and c2
were initialized to 0.4, 0.9, 2 and 2, respectively. The optimization functions are
defined in Table 1. The parameters for the test functions used in the experiments
are reflected in Table 1. The domain refers to the space in which the optimum
will be searched for while the threshold refers to an acceptable function value to
be reached within the maximum specified number of iterations.

Algorithm 1. The SAPSO algorithm

1: Initialize swarm S1 to random positions and set velocities to zero.
2: Initialize swarm S2 to random positions in ranges [0,1], [0,2] and [0,2]

for dimensions 1,2 and 3, resp. of each particle, set velocities to zero.
3: Initialize parameter selection probabilities to equal values,

i.e. probPARMi = 1
NS2

, i = 1, 2, ..., NS2, where NS2 denotes swarm size

4: Initialize SAPSO parameters,

i.e. the learning rate, α = 1
6

and Generations = 10.

5: Initialize weights associated with particles,

wi =
log(NS1−i+1)

log(1)+log(2)+...+log(NS1)
, i = 1, 2, ..., NS1, NS1 = swarm size

6: Set iteration counter, t = 0.
7: while stopping criteria is not satisfied do
8: for each particle i in S1 do
9: Select a parameter particle, k, using roulette wheel selection
10: based on its probability and store k in array particleSelected[i] = k

extract w, c1 and c2 and update posn. and vel. of particle i in S1.

11: if f(xS1
i

) < f(xpbestS1
i

) then

12: xpbestS1
i

= xS1
i

13: pbestS1
i

= f(xS1
i

)

14: Perform GbestUpdate() for particle GbestS1.
15: end if
16: if f(xS1

i
) < f(xGbestS1) then

17: Gbest = f(xS1
i

)

18: xGbest = xS1
i

19: endif
20: end for
21: Sort the particles in ascending fitness
22 for each particle i in S1 do
23: Retrieve parameter particle j (indexed by particleSelected[i])

that produced fiti
24: Add weight i to the j’s accumulator, i.e. Sj = Sj + wi
25: end for
26: if t % (4 × Generations) == 0
27: Update swarm S2
28: for each parameter particle j in S2 do

29: probPARMi = 1
NS2

, i.e. initialize probability of parmi

30: Sj = 0

31: end for
32: else if (t % Generations) == 0
33: for each parameter particle j in S2 do

34: probPARM
′
j

= (1 − α) · probPARMj + α · Sj
Generations

35: Sj = 0

36: end for
37: for each parameter particle j in S2 do

38: probPARMj =
probPARM

′
j

probPARM
′
1
+probPARM

′
2
+...+probPARM

′
NS2

39: end for
40: end if
41: t = t + 1
42. end while

Self-Adaptive Particle Swarm Optimization 233

Table 1. Definitions and parameters of test functions

Function Domain Thres- Name
(where D = 30) hold

f1(x) =
∑D

2
i=1

100(x2i − x2
2i−1

)2 + (1 − x2i−1)2 [-10, 10]D 100 Rosenbrock

f2(x) =
∑D

i=1
(
∑i

j=1
xj)

2 [-100, 100]D 100 Quadric

f3(x) = −20 · exp(−0.2 ·
√

1
D

∑
n
i=1

x2
i
) − exp(1

n

∑
D
i=1

cos(2πxi)) [−32, 32]D 0.01 Ackley

f4(x) =
∑D

i=1
(x2

i
− 10 cos(2πxi) + 10) [−5.12, 5.12]D 50 Rastrigin

f5(x) =
∑

i=1
(|xi + 0.5|)2 [−100, 100]D 0.0 Step

f6(x) =
∑D

i=1
x2
i

[−100, 100]D 0.01 Sphere

f7(x) = −
∑

D
i=1

xi sin(|xi|
1
2) [−500, 500]D −1000 Schwefel

f8(x) =
∑D

i=1
(y2

i
− 10 cos(2πyi) + 10) and yi =

{
xi if |xi| < 1

2
round(2xi)

2
if |xi| ≥ 1

2

[−5.12, 5.12]D 50 Non-

continuous
Rastrigin

f9(x) =
∑D

i=1
|xi| +

∏D
i=1

|xi| [−10, 10]D 0.01 Schwefel’s

P2.22

f10(x) =
∑D

i=1
i · xi + random[0, 1) [−1.28, 1.28]D 0.01 Quadric

Noise

f11(x) = 1
4000

∑
D
i=1

x2
i

−
∏

D
i=1

cos(
xi√
i
) + 1 [−600, 600]D 0.01 Griewank

f12(x) = π
D

(10 sin2(π · yi) +
∑D−1

i=1
(yi − 1)2 · (1 + 10 sin2(π · yi+1)) [−50, 50]D 0.01 Generalized

+(yD − 1)2) +
∑D

i=1
u(x, 10, 100, 4) Penalized

where yi = 1 + 1
4
(xi + 1), function

u(x, a, k, m) =

{
k(xi − a)m, if xi > a
0, if −a ≤ xi ≤ a
k(−xi − a)m,if xi < −a

All the global minima are zero, excepting the Schwefel f7 function, which has a global

minimum fmin = −12569.5.

5.2 Experimental Results

Table 2 contains the results for the APSO and the SAPSO where the threshold
as reflected in Table 1 was a terminating condition subject to 2 × 105 as the
maximum number of iterations allowed. Columns below header ‘Success rate’
indicate the percentage of simulations out of 30 that managed to reach the
threshold. The average number of iterations required to reach the thresholds
are also reflected in Table 2. Results indicate that SAPSO required far fewer
iterations to reach the pre-specified values than APSO in 11 of the 12 functions.
SAPSO could not reach the threshold of the f10 function in any one of the 30
simulations.

The global best values over 30 simulations are tabulated in Table 4 for both
APSO and SAPSO for each of the 12 test functions. SAPSO achieved better
average global best values than APSO on all functions except for function f10.
SAPSO showed marginal improvement in fitness over APSO in the case of the
Griewank function (f11).

The logarithm of the average global best value over 30 simulations for the
various test functions for both APSO and SAPSO are plotted in subfigures (a)
to (l) of figures 1 and 2. Plots in figures 1 and 2 indicate that SAPSO converged
quicker to an optimum than the APSO for 11 of the 12 test functions. APSO
converged prematurely in the case of functions f1, f4 and f12, while SAPSO
continued to reach superior solutions.

234 A. Ismail and A.P. Engelbrecht

Table 2. Success rate in reaching
threshold in 30 simulations for the
APSO and SAPSO

Success rate Average number of
function evaluations
to reach threshold

Function APSO SAPSO APSO SAPSO

f1 100% 100% 21517 3396

f2 100% 100% 62384 19380

f3 93% 100% 79229 6336

f4 63% 100% 54391 664

f5 0% 100% − 42879

f6 100% 100% 16179 5297

f7 67% 93% 73969 1324

f8 100% 100% 40641 576

f9 100% 100% 18585 6586

f10 50% 0% 150060 −
f11 47% 17% 16527 7420

f12 73% 100% 40424 2543

Table 3. Results of Mann-Whitney U-
Test

Func- Approach N Mean U Z Better
tion Rank Approach?

f1 APSO 30 45 15 −6.431
SAPSO 30 16 885 SAPSO

f2 APSO 30 45.5 0 −6.652
SAPSO 30 15.5 900 SAPSO

f3 APSO 30 37.1 252 −2.927
SAPSO 30 23.9 648 SAPSO

f4 APSO 30 45.5 0 −6.652
SAPSO 30 15.5 900 SAPSO

f5 APSO 30 45.5 0 −6.652
SAPSO 30 15.5 900 SAPSO

f6 APSO 30 45.5 0 −6.652
SAPSO 30 15.5 900 SAPSO

f7 APSO 30 39.9 168.5 −4.161
SAPSO 30 21.1 731.5 SAPSO

f8 APSO 30 37.1 251.5 −2.934
SAPSO 30 23.9 648.5 SAPSO

f9 APSO 30 45.5 0 −6.652
SAPSO 30 15.5 900 SAPSO

f10 APSO 30 15.5 900 −6.652
SAPSO 30 45.5 0 APSO

f11 APSO 30 35.9 288 −2.395
SAPSO 30 25.1 612 SAPSO

f12 APSO 30 45.5 0 −6.652
SAPSO 30 15.5 900 SAPSO

Table 4. Average global best of 30 simulations for the APSO and SAPSO

Function APSO SAPSO

f1 4.15E + 01 ± 3.14E + 01 1.14E + 00 ± 3.11E + 00

f2 1.42E − 02 ± 5.89E − 02 3.02E − 07 ± 1.65E − 06

f3 1.15E − 05 ± 6.21E − 05 1.28E − 14 ± 1.14E − 14

f4 4.48E + 01 ± 1.46E + 01 2.35E + 00 ± 1.42E + 00

f5 7.34E − 29 ± 3.30E − 28 0.00E + 00 ± 0.00E + 00

f6 2.77E − 60 ± 1.49E − 59 5.44E − 137 ± 2.98E − 136

f7 −1.03E + 04 ± 4.67E + 02 −1.08E + 04 ± 4.33E + 02

f8 1.18E + 01 ± 1.09E + 01 4.03E + 00 ± 1.85E + 00

f9 3.82E − 30 ± 1.56E − 29 6.86E − 73 ± 3.76E − 72

f10 1.13E − 02 ± 4.33E − 03 8.82E − 02 ± 5.01E − 02

f11 5.64E − 02 ± 4.36E − 02 3.17E − 02 ± 3.93E − 02

f12 6.91E − 02 ± 1.31E − 01 1.57E − 32 ± 5.57E − 48

Results of the Mann-Whitney U-Test appear in Table 3. The SAPSO algo-
rithm performed significantly better than APSO on 11 of the 12 test functions.
SAPSO also performed better than APSO on the Griewank function (f11) de-
spite the small difference in the average of the final global best values over 30
simulations as reflected in Table 4. In this case SAPSO had more simulations
with lower global best values than APSO, while its average global best is fairly
similar to that of APSO.

Figure 2 reflects the average values of the inertia weight, w, and acceleration
coefficients, c1 and c2, at each iteration of PSO for all 30 simulations. For all
functions a rather low average inertia weight is maintained throughout the opti-
mization process. For all the functions the value of c2 is greater than c1; a trend
usually exhibited by unimodal functions. The average inertia weight of all parti-
cles was quite low, oscillating between 0.2 and 0.5 in most of the test functions,
while the values of the acceleration coefficients generally varied between 0.9 to
1.4. In the case of multimodal functions one would have expected a larger value
for c1 than c2 during the initial stages of optimization. This trend is not de-
picted in any of the graphs. Parameter plots for functions f3, f4, f5, f6, f8, f9, f11

Self-Adaptive Particle Swarm Optimization 235

and f12 exhibit similar trends; an initial large value for w which reduces quickly
while c1 and c2 are initially equivalent with c2 increasing quickly as PSO pro-
gresses while c1 decreased quickly. The acceleration coefficients of functions f1,
f2, f7 and f10 show large adjustments of c1 and c2 compared to the remaining
functions. For all other cases the acceleration coefficients appear to converge
within 25% of the total number of function evaluations, which may lead to stag-
nation and subsequent poor performance of the SAPSO. This can be prevented
by ensuring that the parameter particles in swarm 2 are re-initialized as soon
as stagnation is detected. The rather low inertia weight also indicates that the
acceleration coefficients were mainly tasked with exploring the search space.

It must be noted that the PSO solves a D-dimensional problem while the
SAPSO solves a D+3 dimensional problem. The search space of SAPSO is thus
larger than the search space of the APSO. The results reported in this paper
are quite good bearing in mind that the same number of function evaluations
are used for both search spaces. A fairer comparison between the two algorithms
would have been to exclude the function evaluations which are required to cal-
culate the fitness of a parameter particle.

 1

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 0 50000 100000 150000 200000

av
er

ag
e

gl
ob

al
 b

es
t o

f 3
0

si
m

ul
at

io
ns

 (
lo

g)

function evaluations

Global best

SAPSO
APSO

 1e-008

 1e-006

 0.0001

 0.01

 1

 100

 10000

 1e+006

 0 50000 100000 150000 200000

av
er

ag
e

gl
ob

al
 b

es
t o

f 3
0

si
m

ul
at

io
ns

 (
lo

g)

function evaluations

Global best

SAPSO
APSO

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

 1

 100

 0 50000 100000 150000 200000

av
er

ag
e

gl
ob

al
 b

es
t o

f 3
0

si
m

ul
at

io
ns

 (
lo

g)

function evaluations

Global best

SAPSO
APSO

(a) f1 (Rosenbrock) (b) f2 (Quadric) (c) f3 (Ackley)

 1

 10

 100

 1000

 0 50000 100000 150000 200000

av
er

ag
e

gl
ob

al
 b

es
t o

f 3
0

si
m

ul
at

io
ns

 (
lo

g)

function evaluations

Global best

SAPSO
APSO

 1e-035

 1e-030

 1e-025

 1e-020

 1e-015

 1e-010

 1e-005

 1

 100000

 0 50000 100000 150000 200000

av
er

ag
e

gl
ob

al
 b

es
t o

f 3
0

si
m

ul
at

io
ns

 (
lo

g)

function evaluations

Global best

SAPSO
APSO

 1e-140

 1e-120

 1e-100

 1e-080

 1e-060

 1e-040

 1e-020

 1

 1e+020

 0 50000 100000 150000 200000

av
er

ag
e

gl
ob

al
 b

es
t o

f 3
0

si
m

ul
at

io
ns

 (
lo

g)

function evaluations

Global best

SAPSO
APSO

(d) f4 (Rastrigin) (e) f5 (Step) (f) f6 (Sphere)

-11000

-10000

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

 0 50000 100000 150000 200000

av
er

ag
e

gl
ob

al
 b

es
t o

f 3
0

si
m

ul
at

io
ns

function evaluations

Global best

SAPSO
APSO

 1

 10

 100

 1000

 0 50000 100000 150000 200000

av
er

ag
e

gl
ob

al
 b

es
t o

f 3
0

si
m

ul
at

io
ns

 (
lo

g)

function evaluations

Global best

SAPSO
APSO

 1e-080

 1e-070

 1e-060

 1e-050

 1e-040

 1e-030

 1e-020

 1e-010

 1

 1e+010

 1e+020

 0 50000 100000 150000 200000

av
er

ag
e

gl
ob

al
 b

es
t o

f 3
0

si
m

ul
at

io
ns

 (
lo

g)

function evaluations

Global best

SAPSO
APSO

(g) f7 (Schwefel) (h) f8 (Non-cont. Rastrigin) (i) f9 (Schwefels P2.22)

Fig. 1. Plots of average gbest for functions f1 to f9

236 A. Ismail and A.P. Engelbrecht

 0.01

 0.1

 1

 10

 100

 1000

 0 50000 100000 150000 200000

av
er

ag
e

gl
ob

al
 b

es
t o

f 3
0

si
m

ul
at

io
ns

 (
lo

g)

function evaluations

Global best

SAPSO
APSO

 0.01

 0.1

 1

 10

 100

 1000

 0 50000 100000 150000 200000

av
er

ag
e

gl
ob

al
 b

es
t o

f 3
0

si
m

ul
at

io
ns

 (
lo

g)

function evaluations

Global best

SAPSO
APSO

 1e-035

 1e-030

 1e-025

 1e-020

 1e-015

 1e-010

 1e-005

 1

 100000

 1e+010

 0 50000 100000 150000 200000

av
er

ag
e

gl
ob

al
 b

es
t o

f 3
0

si
m

ul
at

io
ns

 (
lo

g)

function evaluations

Global best

SAPSO
APSO

(j) f10 (Quadric noise) (k) f11 (Griewank) (l) f12 (Gen.penalized)

Fig. 2. Plots of average gbest for functions f10 to f12

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50000 100000 150000 200000

av
er

ag
e

va
lu

e
of

 3
0

si
m

ul
at

io
ns

 (
lo

g)

function evaluations

PSO Parameters

w
c1
c2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50000 100000 150000 200000

av
er

ag
e

va
lu

e
of

 3
0

si
m

ul
at

io
ns

 (
lo

g)

function evaluations

PSO Parameters

w
c1
c2

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50000 100000 150000 200000

av
er

ag
e

va
lu

e
of

 3
0

si
m

ul
at

io
ns

function evaluations

PSO Parameters

w
c1
c2

(a) f1 (Rosenbrock) (b) f2 (Quadric) (c) f3 (Ackley)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 50000 100000 150000 200000

av
er

ag
e

va
lu

e
of

 3
0

si
m

ul
at

io
ns

function evaluations

PSO Parameters

w
c1
c2

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50000 100000 150000 200000

av
er

ag
e

va
lu

e
of

 3
0

si
m

ul
at

io
ns

function evaluations

PSO Parameters

w
c1
c2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50000 100000 150000 200000

av
er

ag
e

va
lu

e
of

 3
0

si
m

ul
at

io
ns

function evaluations

PSO Parameters

w
c1
c2

(d) f4 (Rastrigin) (e) f5 (Step) (f) f6 (Sphere)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 50000 100000 150000 200000

av
er

ag
e

va
lu

e
of

 3
0

si
m

ul
at

io
ns

function evaluations

PSO Parameters

w
c1
c2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 50000 100000 150000 200000

av
er

ag
e

va
lu

e
of

 3
0

si
m

ul
at

io
ns

 (
lo

g)

function evaluations

PSO Parameters

w
c1
c2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 50000 100000 150000 200000

av
er

ag
e

va
lu

e
of

 3
0

si
m

ul
at

io
ns

function evaluations

PSO Parameters

w
c1
c2

(g) f7 (Schwefel) (h) f8 (Non-cont. Rastrigin) (i) f9 (Schwefels P2.22)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 50000 100000 150000 200000

av
er

ag
e

va
lu

e
of

 3
0

si
m

ul
at

io
ns

 (
lo

g)

function evaluations

PSO Parameters

w
c1
c2

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50000 100000 150000 200000

av
er

ag
e

va
lu

e
of

 3
0

si
m

ul
at

io
ns

function evaluations

PSO Parameters

w
c1
c2

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50000 100000 150000 200000

av
er

ag
e

va
lu

e
of

 3
0

si
m

ul
at

io
ns

function evaluations

PSO Parameters

w
c1
c2

(j) f10 (Quadric noise) (k) f11 (Griewank) (l) f12 (Gen.penalized)

Fig. 3. Plots of average parameter values for functions f1 to f12

Self-Adaptive Particle Swarm Optimization 237

6 Conclusion

Determining optimal static control parameters for the PSO is not an easy task
and determining it exhaustively is time consuming and often impracticable. This
paper presented the self-adapting PSO (SAPSO) that automatically adapts the
inertia weight and the acceleration coefficients of the PSO, while simultaneously
optimizing the objective function in the main swarm. Each particle in the main
swarm is equipped with its own set of control parameters which are selected
from the secondary swarm using a probability model proposed by Wang et al
[12]. SAPSO succeeded in reaching pre-specified function values much faster than
the APSO in 11 of the 12 test functions.

References

1. Carlisle, A., Dozier, G.: An off-the shelf PSO. In: Proceedings of the Workshop on
Particle Swarm Optimization, Indianapolis, USA (2001)

2. Clerc, M., Kennedy, J.: The Particle Swarm-Explosion, Stability, and Convergence
in a Multidimensional Complex Space. IEEE Transactions on Evolutionary Com-
putation 6(1), 58–73 (2002)

3. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: IEEE International
Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

4. Malik, R.F., Abdul Rahman, T., Mohd. Hashim, S.Z., Ngah, R.: New Particle
Swarm Optimizer with Sigmoid Increasing Inertia Weight. International Journal
of Computer Science and Security 1(2), 43 (2007)

5. Meissner, M., Schmuker, M., Schneider, G.: Optimized Particle Swarm Optimiza-
tion (OPSO) and its application to artificial neural network training. BMC Bioin-
formatics 7, 125 (2006)

6. Panigrahi, B.K., Pandi, V.R., Das, S.: Adaptive particle swarm optimization ap-
proach for static and dynamic economic load dispatch. International Journal of
Energy Conversion and Management 49, 1407–1415 (2008)

7. Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization prob-
lems through Particle Swarm Optimization. Natural Computing 1(2-3) (2002)

8. Parsopoulos, K.E., Vrahatis, M.N.: Parameter selection and adaptation in Unified
Particle Swarm Optimization. Mathematical and Computer Modelling 46, 198–213
(2007)

9. Ratnaweera, A., Watson, H.C., Halgamuge, S.K.: Particle Swarm Optimiser with
Time Varying Acceleration Coefficients. In: International Conference on Soft Com-
puting and Intelligent Systems, pp. 240–255 (2002)

10. Shi, Y., Eberhart, R.C.: Parameter selection in particle swarm optimization. In:
Evolutionary Programming VII: Proceedings of the Seventh Annual Conference on
Evolutionary Programming, New York, pp. 591–600 (1998)

11. Van den Bergh, F., Engelbrecht, A.P.: A Cooperative Approach to Particle Swarm
Optimization. IEEE Transactions on Evolutionary Computation 8(3) (June 2004)

12. Wang, Y., Li, B., Weise, T., Wang, J., Yuan, B., Tian, Q.: Self-adaptive learning
based particle swarm optimization. Information Sciences 181, 4515–4538 (2011)

Evaporation Mechanisms

for Particle Swarm Optimization

Juan Rada-Vilela, Mengjie Zhang, and Winston Seah

School of Computer Science and Engineering
Victoria University of Wellington

PO Box 600, Wellington New Zealand
{juan.rada-vilela,mengjie.zhang,winston.seah}@ecs.vuw.ac.nz

Abstract. This paper presents a novel approach to dealing with sam-
ple noise in Particle Swarm Optimization (PSO) by introducing a het-
erogeneous swarm whose particles have different evaporation factors. So
far, previous works have considered only homogeneous swarms in which
the evaporation factor is the same across particles. However, choosing a
proper factor largely depends on the severity of noise in the optimization
problem. If the level of noise cannot be determined a priori, arbitrarily
choosing the evaporation factor can lead to rather poor results. This
paper shows that heterogeneous swarms are generally better than homo-
geneous ones in low to medium levels of noise, and also in its absence.

1 Introduction

The benefits of incorporating an evaporation mechanism into Particle Swarm
Optimization (PSO) deal with sample noise in optimization problems has been
explored in previous articles [1,2,3]. Clearly, the advantages of such a mechanism
are its cheap computational cost, its simple integration into particles, and its
ability to mitigate the effect of sample noise.

Thus far, most articles in the topic have experimented with homogeneous
swarms, that is, swarms in which all particles have the same evaporation factor.
However, the results from [1] clearly show that the proper amount of evaporation
depends on the severity of noise in the environment. Specifically, low evaporation
factors are favorable for low levels of noise while high evaporation factors are
better suited for high levels of noise. This is just fine when the severity of noise
can be determined a priori, but when such is not the case, arbitrarily choosing
an evaporation factor can deteriorate significantly the performance of the PSO
algorithm. Thus, facing this scenario, we want to investigate the performance of
a heterogeneous swarm in which particles have different evaporation factors in
order to mitigate the disruptive effect of sample noise regardless its severity.

The overall objective of this paper is to determine whether heterogeneous
swarms yield better results than homogeneous ones on large-scale optimization
problems with sample noise. The PSO variant chosen for this study is the Ran-
dom Asynchronous PSO (RA-PSO) [4] since it has shown to outperform other
PSO variants specially when dealing with different levels of noise [1]. Specifically,
we will focus on:

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 238–247, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Evaporation Mechanisms for Particle Swarm Optimization 239

1. Comparing the performance of a heterogeneous swarm against homogeneous
ones on large-scale optimization problems under different levels of multi-
plicative sample noise from a Gaussian distribution.

2. Performing statistical significance tests to identify the best-performing swarm.
3. Analyzing the difference in performance between the swarms.

The rest of this paper is structured as follows. Section 2 presents the fundamen-
tals of PSO and RA-PSO along with sample noise in optimization and evapora-
tion mechanisms to deal with it. Section 3 describes the experimental design to
achieve the objectives proposed. Section 4 presents the results with discussions.
Finally, Sections 5 and 6 present our conclusions and suggestions for further
research.

2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was invented by Eberhart and Kennedy
in 1995 [5] with inspiration on social models (e.g. bird flocking, fish schooling)
and swarming theory. It is a population-based algorithm in which its individuals
(known as particles) encode potential solutions to n-dimensional optimization
problems. These particles explore the search space through cooperation with
other particles by communicating the best solutions found so far and moving
towards them.

Each particle has a position vector x(t) that encodes a potential solution to
the problem, and a velocity vector v(t) that balances the trade-off between ex-
ploration and exploitation of the search: high velocities lead to large changes
in the positions (exploration), while low velocities produce small changes (ex-
ploitation). Equations 1 and 2 determine the change in position and velocity
(respectively) for particle i in dimension j at iteration t+ 1:

xij(t+ 1) = xij(t) + vij(t+ 1) (1)

vij(t+ 1) = wvij(t) + c1r1(t)[yij(t)− xij(t)] + c2r2(t)[ŷij(t)− xij(t)] (2)

where w is the inertia of the particle [6], c1 and c2 are positive acceleration
coefficients that weigh the importance of their own and external experience, r1(t)
and r2(t) are random values sampled from independent uniform distributions,
yij(t) and ŷij(t) are the best positions found by particle i and its neighborhood
(respectively) in dimension j.

The communication between particles is based on passing messages within
their neighborhoods informing about their positions and respective quality. Ev-
ery time a particle receives a message with a better position than that of pre-
viously received messages, the position will be stored as its external best. Also,
whenever a particle finds a better position, it will be stored as its own best
position and communicated to its neighbors.

The neighborhoods are defined by the topology of the swarm which establishes
all the communication links between the particles. Even when several topologies
have been proposed in the literature, the one relevant to this paper is the star
topology which makes the swarm fully connected.

240 J. Rada-Vilela, M. Zhang, and W. Seah

2.1 Random Asynchronous PSO

The RA-PSO algorithm was proposed in [4] to model paralellism in PSO such
that results are reproducible. This variant uses asynchronous communications
which allows particles to consider the latest findings by the swarm before updat-
ing their positions. Moreover, particles are randomly selected to perform their
operations (evaluate, communicate, and update). Thus, particles might be obso-
lete for not being selected at all across some iterations and others might even be
selected more than once within the same iteration. These characteristics provide
fast convergence due to asynchronous communications and particles being se-
lected more than once in an iteration. More importantly, once obsolete particles
are selected to operate, their new findings will provide diversity to the swarm
given that these will likely be distant to those from more active particles. This
variant is described in Algorithm 1.

while not stopping condition do
for i ← 1 to |S| do

Particle p ← random(S);
p.evaluate();
p.communicate();
p.update();

end

end

Algorithm 1. Random Asynchronous PSO (RA-PSO)

2.2 Noise in Optimization

There are three types of dynamic optimization problems [7]: Type I where the
shape of the search space changes but not the location of the optimum, Type II
where only the location of the optimum changes, and Type III where the shape
of the search space changes as well as the location of the optimum. For example,
consider the search space given by f(x, t) = x2 at time t, then the different types
of dynamic optimization problems are:

– Type I: if f(x, t+1) = x4, then the shape changes but the global minimum
remains at x = 0.

– Type II: if f(x, t+ 1) = x2 + 10, then the shape remains the same, but the
location of the global optimum is shifted by 10 units.

– Type III: if f(x, t + 1) = x4 + 10, then the shape changes as well as the
location of the global minimum.

According to this classification, multiplicative sample noise belongs to type III
environments because it is modeled as f(x, t) = f(x)(1+N(0, σ)) where N(0, σ)
is a random value (in this case) sampled from a Gaussian distribution of mean
zero and standard deviation σ. Notice that the severity of noise depends on the
standard deviation σ, where higher values produce a more dispersed distribution
which directly translates into a more severe sample noise.

Evaporation Mechanisms for Particle Swarm Optimization 241

2.3 Evaporation in PSO

The idea of having evaporation mechanisms in Swarm Intelligence was first pro-
posed for Ant Colony Optimization to encourage the exploration of new solutions
in the search space [8]. This idea was later exploited for PSO as a mechanism
to encourage particles to track optimal solutions in dynamic optimization prob-
lems [2,3].

The evaporation in particles makes them progressively worsen the objective
value of the best position found by themselves and their neighbors. Thus, as
iterations pass and no better positions have been found, particles lower their
expectations and hence are able to accept positions with even worse objective
values than their once personal and neighborhood bests. Consequently, particles
become tolerant to noise to a certain extent. The multiplicative evaporation
mechanism for minimization problems is defined in Equation 3

f∗
i (yi(t)) =

{
f(yi(t)), if f(yi(t)) < f∗

i (yi(t− 1)),

f∗
i (yi(t− 1))× (1 + ρ), otherwise

(3)

where yi(t) and f∗
i (yi(t)) are the best (personal or neighborhood) position of

particle i found until iteration t and its respective objective value, and ρ ∈ (0, 1)
is a constant multiplicative amount which determine the evaporation rate of
the objective function values of their best positions. Thus, for minimization
problems, the higher the evaporation factor, the faster the particles vanish the
objective value of their best positions.

2.4 Related Work

The evaporation mechanism in PSO was introduced by Cui et al. [3] for track-
ing optimal solutions in dynamic optimization problems. Their experimentation
was performed on a spherical function with different levels of additive noise sam-
pled from a Gaussian distribution, and from their results they claim that the
evaporation allows the swarms to quickly converge and track optimal solutions.

Fernandez-Marquez and Arcos [2] presented a subtractive evaporation mech-
anism and contrasted it with the multiplicative approach proposed by Cui et
al. [3]. They incorporated both models into a variant of PSO named multi-
Quantum Swarm Optimization, and experimented on the Moving Peaks Bench-
mark function. They concluded that there is no significant difference between
the results using either of the evaporation models.

Rada-Vilela et al. [1] compared the performance of both RA-PSO and PSO
using homogeneous swarms and different evaporation factors on large-scale op-
timization functions under different levels of multiplicative noise sampled from
a Gaussian distribution. Their results showed that, while the evaporation mech-
anism effectively mitigates the disruptive effects of noise, higher evaporation
factors are needed to produce better results as the severity of noise increases.
They concluded that RA-PSO is significantly better than PSO, more tolerant to
noise, and better suited for the evaporation mechanism.

242 J. Rada-Vilela, M. Zhang, and W. Seah

3 Experimental Design

3.1 Benchmarks

The benchmark functions chosen to assess the performance of the swarms are
those from the CEC’2010 Special Session and Competition on Large-Scale Global
Optimization [9]. The challenges of these functions to optimization techniques
are its large-scale nature and the different degrees of separability. It comprises
20 minimization functions which separability ranges from separable to fully non-
separable, and their objective function values are within a positive range with a
global minimum at f(x) = 0. Five sets of functions are defined in this suite as:

– [F01−03] separable, where each dimension can be independently optimized
from the others (Set A);

– [F19−20] fully non-separable, where any two dimensions cannot be optimized
independently (Set B);

– [F04−08] partially separable with only a single group of m dimensions that
is non-separable (Set C);

– [F09−13] partially separable with d
2m groups of m dimensions that are non-

separable (Set D); and
– [F14−18] partially separable with d

m groups of m dimensions that are non-
separable (Set E),

where the parameters d and m refer to the number of dimensions and the size of
the groups (respectively). The default values of these parameters are d = 1 000
and m = 50, which are also the ones used in this paper. For further details about
these functions, please refer to [9].

3.2 Experimental Setup

We are interested in measuring the performance of a heterogeneous swarm whose
particles have different evaporation factors equally distributed between ρ =
{0.01, 0.05, 0.1, 0.25, 0.5}. These factors were arbitrarily chosen to balance the
trade-off between exploitation and exploration by having from low to high evap-
oration factors. Its performance is assessed upon the set of large-scale optimiza-
tion benchmarks previously described, each including sample noise from Gaus-
sian distributions and respective standard deviations σ = {0.0, 0.11, 0.22, 0.33},
forcing the totality of the samples to lie within 3σ by resampling if needed. Thus,
for σ = 0.33, it is ensured that noise will be at most 1.0 ± 0.99. Furthermore,
its performance is compared with that of two homogeneous swarms with low
and high evaporation factors (ρ = 0.1 and ρ = 0.5, respectively) in order to
determine which approach is better on noisy optimization problems.

The swarms are made up by 50 particles with 1 000 dimensions each. The
communication is defined by the star topology, and the acceleration and inertia
coefficients are chosen according to the guidelines presented in [10]. In general,
we use a simple configuration just to focus on the effects of evaporation and
noise between the swarms. The parameters used are presented in Table 1.

Evaporation Mechanisms for Particle Swarm Optimization 243

Table 1. Parameter values

Parameter Value

Independent runs 50× 300 iterations
Number of particles 50 in R1000 with star topology

Acceleration Static with c1 = c2 = 1.49618
Inertia Static with w = 0.729844

Maximum velocity 0.25 · |xmax − xmin|
Velocity clamping hyperbolic tangent

Standard deviation of noise σ = {0.00, 0.11, 0.22, 0.33}
Heterogeneous evaporation ρb = {0.01, 0.05, 0.1, 0.25, 0.5}
Homogeneous evaporation ρa = 0.1, ρc = 0.5

Experiments are performed as follows. For each σ, a set of three swarms
(one heterogeneous and two homogeneous) perform 50 independent runs of 300
iterations on each benchmark function. In each run, the three swarms have the
exact same initial conditions. That is, a) particles are distributed exactly the
same in the search space; b) the seeds for the pseudo-random number generators
r1 and r2 are different between particles, but the set of seeds is the same across
swarms; c) the seed for the pseudo-random number generator that selects the
next particle is the same across swarms; and d) particles have different seeds for
the Gaussian noise generators, but the set of seeds are the same across swarms.
Once all the iterations have been performed, the objective value of the best
personal position of each particle is computed without noise, and the one with
the best solution in the swarm is recorded. Thus, after 50 independent runs, the
objective values of the 50 best solutions found are recorded and used for analysis.

In this way, the results from the swarms can be directly compared on a one-
to-one basis according to the same level of noise in each independent run. More
importantly, the statistical significance tests on the results can be performed us-
ing paired samples, which provides a greater confidence than using unpaired ones.
The statistical significance of the results is assessed by the pairwise Wilcoxon
rank sum test with Bonferroni correction at a significance level of α = 0.05. This
test is preferred because it does not assume the normality of the samples and it
has shown to be helpful in analyzing the behavior of meta-heuristics [11].

4 Results and Discussions

The results from the experimentation are presented in Figure 1, and the results
from the statistical significance tests on the differences in performance between
the swarms are presented in Figure 2. These results show that the heterogeneous
swarm (b) is significantly better than the homogeneous swarms (ac) in most of
the cases. On the one hand, it can be seen that swarm (b) never produces worse
results than swarm (a) regardless of the level of noise. Moreover, it produces
significantly better results at least in 40% of the cases, while similar results
in the remaining ones. On the other hand, swarm (b) produces significantly
better results than swarm (c) in low levels of noise (σ = {0.00, 0.11}), but its

244 J. Rada-Vilela, M. Zhang, and W. Seah

Sets A and B Set C Set D Set E
F01 F04 F09 F14

a a a ab b b bc c c c5.
0e

+1
0

2.
0e

+1
1

σ=0.00 σ=0.11 σ=0.22 σ=0.33

a a a ab b b bc c c c5.
0e

+1
3

2.
5e

+1
4

σ=0.00 σ=0.11 σ=0.22 σ=0.33

a a a ab b b bc c c c5.
0e

+1
0

2.
0e

+1
1

σ=0.00 σ=0.11 σ=0.22 σ=0.33

a a a ab b b bc c c c5.
0e

+1
0

2.
0e

+1
1

σ=0.00 σ=0.11 σ=0.22 σ=0.33

F02 F05 F10 F15

a a a ab b b bc c c c16
50

0
18

00
0

19
50

0

σ=0.00 σ=0.11 σ=0.22 σ=0.33

a a a ab b b bc c c c

4e
+0

8
6e

+0
8

8e
+0

8 σ=0.00 σ=0.11 σ=0.22 σ=0.33

a a a ab b b bc c c c
16

50
0

18
00

0

σ=0.00 σ=0.11 σ=0.22 σ=0.33

a a a ab b b bc c c c16
50

0
18

00
0

19
50

0 σ=0.00 σ=0.11 σ=0.22 σ=0.33

F03 F06 F11 F16

a a a ab b b bc c c c21
.0

0
21

.1
5

21
.3

0 σ=0.00 σ=0.11 σ=0.22 σ=0.33

a a a ab b b bc c c c1.
5e

+0
7

1.
9e

+0
7

σ=0.00 σ=0.11 σ=0.22 σ=0.33

a a a ab b b bc c c c

22
6

23
0

23
4

σ=0.00 σ=0.11 σ=0.22 σ=0.33

a a a ab b b bc c c c

41
4

41
8

42
2

42
6

σ=0.00 σ=0.11 σ=0.22 σ=0.33

F19 F07 F12 F17

a a a ab b b bc c c c2.
0e

+0
7

4.
0e

+0
7

σ=0.00 σ=0.11 σ=0.22 σ=0.33

a a a ab b b bc c c c2.
0e

+1
0

8.
0e

+1
0

σ=0.00 σ=0.11 σ=0.22 σ=0.33

a a a ab b b bc c c c.0
e+

06
9.

0e
+0

6

σ=0.00 σ=0.11 σ=0.22 σ=0.33

a a a ab b b bc c c c1.
0e

+0
7

2.
5e

+0
7

σ=0.00 σ=0.11 σ=0.22 σ=0.33

F20 F08 F13 F18

a a a ab b b bc c c c1.
0e

+1
2

2.
5e

+1
2

σ=0.00 σ=0.11 σ=0.22 σ=0.33

a a a ab b b bc c c c0e
+0

0
4e

+1
4

σ=0.00 σ=0.11 σ=0.22 σ=0.33

a a a ab b b bc c c c2.
0e

+1
1

1.
0e

+1
2

σ=0.00 σ=0.11 σ=0.22 σ=0.33

a a a ab b b bc c c c

1.
0e

+1
2

2.
5e

+1
2

σ=0.00 σ=0.11 σ=0.22 σ=0.33

Fig. 1. The results are grouped by benchmark function and shown as boxplots repre-
senting the distribution of the objective function values of the best solutions found on
each benchmark function. Notice that each subfigure is divided into sections according
to the severity of noise, which is identified across the top axis in terms of the standard
deviation σ. The bottom axis indicates the swarm to which the results belong: (a)
homogeneous swarm ρ = 0.1, (b) heterogeneous swarm ρ = {0.01, 0.05, 0.1, 0.25, 0.5},
and (c) homogeneous swarm ρ = 0.5; while the vertical axis shows the objective func-
tion values. Also, for better visualization, the boxplots in gray indicate that the results
have been scaled using the following factors: [F06, σ = 0.00] : ȧ = ḃ = ċ = 1.7 and
[F07, σ = 0.00] : ȧ = ḃ = ċ = 1.04.

Evaporation Mechanisms for Particle Swarm Optimization 245

F01 ab bc ca
00 + - +
11 + - +
22 + - =
33 + + -

F02 ab bc ca
00 + - =
11 = = +
22 = + -
33 = + -

F03 ab bc ca
00 = = =
11 = = =
22 = + -
33 = + -

A : Separable functions

F19 ab bc ca
00 + - +
11 + - +
22 = - =
33 = = -

F20 ab bc ca
00 + - +
11 = - +
22 = + -
33 = + -

B : Non-separable functions

F04 ab bc ca
00 = - +
11 = - +
22 = - +
33 = + =

F05 ab bc ca
00 = - +
11 = - +
22 = = =
33 + + -

F06 ab bc ca
00 + - +
11 = = =
22 = = =
33 = + =

F07 ab bc ca
00 + - +
11 + - +
22 = - +
33 = + -

F08 ab bc ca
00 = - +
11 = - +
22 = - =
33 + - =

C : Single-group of 50 non-separable functions

F09 ab bc ca
00 + - +
11 + - +
22 + - -
33 + + -

F10 ab bc ca
00 + - =
11 = = +
22 = + -
33 + + -

F11 ab bc ca
00 = = =
11 = = =
22 = + -
33 = + -

F12 ab bc ca
00 = - +
11 = - +
22 + = =
33 + = -

F13 ab bc ca
00 + - +
11 + - +
22 + - =
33 = + -

D : 10 groups of 50 non-separable functions

F14 ab bc ca
00 + - +
11 + - +
22 + - =
33 = + -

F15 ab bc ca
00 + - =
11 = = +
22 = + -
33 = + -

F16 ab bc ca
00 = = =
11 = = =
22 = = -
33 = + -

F17 ab bc ca
00 + - +
11 + - +
22 + - =
33 + + -

F18 ab bc ca
00 + - +
11 = - +
22 = + -
33 = + -

E : 20 groups of 50 non-separable functions

Summary

b
a c

− = + − = +

00 13 7 0 17 3 0

11 7 13 0 13 7 0

22 6 14 0 9 4 7

33 7 13 0 1 2 17

Total: 33 47 0 40 16 24

a
c

− = +

00 14 6 0

11 16 4 0

22 2 9 9

33 0 3 17

Total: 32 22 27

Fig. 2. This figure presents the results from the statistical significance tests from
comparing the differences in performance between the swarms. Each row represents a
different level of noise, the columns represent the comparison of one swarm with respect
to another, and the cells in the respective intersections contain the statistical signif-
icance between the two swarms under the same level of noise. Since the benchmarks
are minimization problems, the symbols ‘-’ and ‘+’ indicate that the performance of
a swarm is significantly better or worse (respectively) than that of another, and ‘=’
indicates that their performance is similar. Moreover, a summary of these results is
also presented to compare the global performance of the heterogeneous swarm (b) with
respect to its counterparts (ac) as well as that between the homogeneous swarms. Thus,
the summary provides a guideline in terms of the overall performance of the swarms
according to the level of noise.

246 J. Rada-Vilela, M. Zhang, and W. Seah

performance detriments as noise becomes more severe. Nonetheless, swarm (b)
still manages to produce better results in the majority of the cases except for
when the level of noise is high (σ = 0.33).

The advantage of heterogeneous swarms is that the balance between explo-
ration and exploitation is distributed across particles. That is, particles with low
evaporation are able to provide exploitation since the best positions are consid-
ered for more iterations until a better one is found. Conversely, particles with
high evaporation provide exploration since just in a few iterations the quality of
their best solutions is diminished by more than half and any other solution can
be potentially considered as their bests. Thus, such a diversity in evaporation
factors allows the swarm to cope well and adapt faster in the presence of low
to medium levels of noise. However, when the objective values are subject to
high levels of noise, particles with low to medium evaporation factors will retain
them for longer causing the swarm to be driven towards deceptive areas for more
iterations.

Comparing the homogeneous swarms (ac), the performance was favorable for
swarm (a) in low levels of noise (σ = {0.00, 0.11}) but progressively detrimented
as the levels of noise became higher (σ = {0.22, 0.33}). In the presence of medium
to high levels of noise, the swarm with higher evaporation factors (c) significantly
outperformed that with lower evaporation (a). Such a performance coincides
with the findings in [1], and is expected given that low evaporation when noise
is high provides exploitation of solutions whose objetive value is far from the real
one, whereas high evaporation when noise is low provides too much exploration
without exploiting much the best solutions found.

5 Conclusions

The evaporation mechanism in PSO further controls the trade-off between explo-
ration and exploitation. On the one hand, particles with low evaporation factors
favor exploitation as their best (personal and neighborhood) positions are re-
tained for more iterations. On the other hand, particles with high evaporation
factors favor exploration since their best positions are replaced with new ones in
just a few iterations. Thus, the former particles are better suited when noise is
low since exploitation is more accurate, whereas the latter ones are better when
noise is high since severely affected solutions are discarded faster.

This paper has presented a novel approach to implementing the evaporation
mechanism into PSO by assigning different evaporation factors to the particles
in the swarm. Such a heterogeneous swarm is able to outperform homogeneous
ones in the presence of low to medium levels of noise without requiring to adjust
the evaporation factors to match the severity of noise. Contrarily, in homoge-
neous swarms, their performance depends on selecting the appropriate level of
evaporation according to the level of noise, thus requiring some knowledge about
the severity of noise in advance. Therefore, if noise is known a priori to be high,
a homogeneous swarm with high evaporation factors is better suited. Otherwise,
the performance of the heterogeneous swarm is generally better.

Evaporation Mechanisms for Particle Swarm Optimization 247

6 Future Work

This research can be further extended by:

– Experimenting with higher evaporation factors in the heterogeneous swarm
in order to improve its performance in the presence of high levels of noise.

– Assessing the performance in dynamic problems such as the Moving Peaks
Benchmarks [12] or the Generalized Dynamic Benchmark Generator [13].

– Compare the performance of heterogeneous swarms against homogeneous
ones with dynamic evaporation mechanisms.

References

1. Rada-Vilela, J., Zhang, M., Seah, W.: A performance study on the effects of noise
and evaporation in particle swarm optimization. In: IEEE Congress on Evolution-
ary Computation, pp. 873–880 (2012)

2. Fernandez-Marquez, J.L., Arcos, J.L.: An evaporation mechanism for dynamic and
noisy multimodal optimization. In: Genetic and Evolutionary Computation Con-
ference, pp. 17–24 (2009)

3. Cui, X., Hardin, C.T., Ragade, R.K., Potok, T.E., Elmaghraby, A.S.: Tracking
non-stationary optimal solution by particle swarm optimizer. In: 6th International
Conference on Software Engineering, Artificial Intelligence, Networking and Par-
allel/Distributed Computing, pp. 133–138 (2005)

4. Rada-Vilela, J., Zhang, M., Seah, W.: Random Asynchronous PSO. In: 5th In-
ternational Conference on Automation, Robotics and Applications, pp. 220–225
(2011)

5. Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE International
Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

6. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: IEEE World
Congress on Computational Intelligence, pp. 69–73 (1998)

7. Eberhart, R., Shi, Y.: Tracking and optimizing dynamic systems with particle
swarms. In: IEEE Congress on Evolutionary Computation, vol. 1, pp. 94–100 (2001)

8. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
9. Tang, K., Li, X., Suganthan, P.N., Yang, Z., Weise, T.: Benchmark Functions for

the CEC 2010 Special Session and Competition on Large-Scale Global Optimiza-
tion. Technical report, Nature Inspired Computation and Applications Laboratory,
USTC, China (2009)

10. van den Bergh, F.: An analysis of particle swarm optimizers. PhD thesis, University
of Pretoria, South Africa (2002)

11. Garćıa, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study
on the CEC’2005 Special Session on Real Parameter Optimization. Journal of
Heuristics 15(6), 617–644 (2009)

12. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization
problems. In: IEEE Congress on Evolutionary Computation, vol. 3, pp. 1875–1882
(1999)

13. Li, C., Yang, S.: A Generalized Approach to Construct Benchmark Problems for
Dynamic Optimization. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V.,
Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi,
Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 391–400. Springer, Heidelberg (2008)

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 248–257, 2012.
© Springer-Verlag Berlin Heidelberg 2012

The Performance and Sensitivity of the Parameters
Setting on the Best-so-far ABC

Anan Banharnsakun, Booncharoen Sirinaovakul, and Tiranee Achalakul

Department of Computer Engineering
King Mongkut’s University of Technology Thonburi

Bangkok, Thailand
ananb@ieee.org, boon@kmutt.ac.th, tiranee@cpe.kmutt.ac.th

Abstract. Artificial Bee Colony (ABC) is a metaheuristic technique in which a
colony of artificial bees cooperates in finding good solutions in optimal search
space. The algorithm is one of the Swarm Intelligence algorithms explored in
recent literature. However, ABC can sometimes be a slow technique to
converge. In order to improve its performance the modified version of ABC
called Best-so-far ABC were proposed. The results demonstrated that the Best-
so-far ABC can produce higher quality solutions with faster convergence than
either the original ABC or the current state-of-the-art ABC-based algorithm. In
this work, we aim to extend the performance analysis of the Best-so-far ABC
algorithm by investigating the effect of each proposed modification to the
overall performance as well as to present the sensitivity of the parameters
setting on the algorithm.

Keywords: Best-so-far Artificial Bee Colony (Best-so-far ABC), Swarm
Intelligence, Numerical Optimization, Sensitivity of the Parameters Setting.

1 Introduction

An optimization problem is a problem of finding the best solution from all feasible solu-
tions. Most of such optimization problems are considered NP-hard; it is strongly be-
lieved that they cannot be solved to optimality within polynomial computation time.
Therefore, In order to solve these problems, previous research tends to employ an ap-
proximation that finds a near-optimal solution in a reasonable amount of time rather
than a method that is guaranteed to find the optimal solution in an exponential time.

Generally, to achieve the expected optimization results, a design of the optimiza-
tion model should be considered on two search strategies including exploration and
exploitation. Exploration and exploitation are the important mechanisms in a robust
search process. While exploration process is related on the independent search for an
optimal solution, exploitation uses existing knowledge to bias the search.

In recent years, many algorithms mimicking the food foraging behavior of swarms
of honey bees have been developed to balance both exploration and exploitation
processes. Examples in these algorithms are the Marriage in Honey Bees Optimiza-
tion (MBO) [1], the Bee Algorithm (BA) [2], the Bee Colony Optimization [3], the

 The Performance and Sensitivity of the Parameters Setting on the Best-so-far ABC 249

Virtual Bee Algorithm (VBA) [4], the Elite Bee Method [5], the Artificial Bee Colony
(ABC) [6], and the Bee Swarm Optimization (BSO) [7,8]. These variant of algorithms
show the effectiveness for solving many science and engineering problem domains
[9-11].

Artificial bee colony (ABC) is the one which has been most widely studied on and
applied to solve the real world problems [11]. Although the activities of exploitation
and exploration are well balanced and help to mitigate both stagnation and premature
convergence in the ordinary ABC algorithm, the convergence speed is still an issue in
some situations.

To enhance the exploitation and exploration processes, The Best-so-far ABC has
been proposed by Banharnsakun et al. [12]. The experimental results have demon-
strated that the Best-so-far ABC is able to produce higher quality solutions with faster
convergence than the original ABC and other state-of-the-art heuristic-based algo-
rithms [12,13].

In this work, we aim to present the performance analysis of the Best-so-far ABC
algorithm by investigating the effect of each modification to the overall performance
as well as to present the sensitivity of the parameters setting on the algorithm.

This paper is organized as follows: Section 2 presents a brief overview of the best-
so-far ABC Algorithm. Section 3 proposes the performance analysis on the Best-so-
far ABC Algorithm. Section 4 present the sensitivity of the parameters setting on the
Best-so-far ABC. Section 5 draws a conclusion.

2 The Ideas of the Best-so-far ABC Algorithm

To better understand the Best-so-far ABC, a brief description of three modifications
of the Best-so-far ABC including the Best-so-far ABC method (BSF), the Adjustable
Search Radius (ASR), and Objective-value-based Comparison Method (OBC) is
presented.

2.1 The Best-so-far Method (BSF)

In the original ABC algorithm [1], each onlooker bee selects a food source based on a
probability that varies according to the fitness function explored by a single employed
bee. Then the new candidate solutions are generated by updating the onlooker solu-
tions as shown in Eq. 1.

 (1)

In the Eq. 1, is a new feasible solution that is modified from its previous solution
value () based on a comparison with the randomly selected position from its neigh-
boring solution (). is a random number between [-1,1] which is used to adjust
the old solution to become a new solution in the next iteration. 1,2,3. . ,

 and 1,2,3. . , are randomly chosen indexes. The difference between
and is a difference of position in a particular dimension. However, changing only

250 A. Banharnsakun, B. Sirinaovakul, and T. Achalakul

one dimension of the solution in the original ABC results in a slow convergence
rate.

In the best-so-far method, all onlooker bees use existing information from all em-
ployed bees to make a decision on a new candidate food source. Thus, the onlookers
can compare information from all candidate sources and are able to select the best-so-
far position. The new method used to calculate a candidate food source is shown in
Eq. 2.

 Φ (2)

where = The new candidate food source for onlooker bee
position i dimension d, d=1,2,3,…D

 = The selected food source position i in a selected
dimension j

 Φ = A random number between -1 to 1
 = The fitness value of the best food source so far
 = The best so far food source in selected dimension j

2.2 The Adjustable Search Radius (ASR)

Although the best-so-far method can increase the local search ability compared to the
original ABC algorithm, the solution is easily entrapped in a local optimum. In order
to resolve this issue, the improvement on both exploitation and exploration based on a
global search ability of the scout bee has been introduced.

In the Best-so-far ABC, the scout bee will randomly generate a new food source by
using Eq. 3 whenever the solution stagnates in the local optimum.

 (3)

Where is a new feasible solution of a scout bee that is modified from the current
position of an abandoned food source () and is a random number between
[-1,1]. The value of and represent the maximum and minimum percen-
tage of the position adjustment for the scout bee. The value of and are
fixed to 1 and 0.2 respectively. These parameters were chosen by the experimenter.
With these selected values, the adjustment of scout bee’s position based on its current
position will linearly decrease from 100 percent to 20 percent in each experiment
round, i.e. a scout bee will utilize the exploration process in the early step and will
employ the exploitation process by using existing information of solution in the later
steps.

2.3 The Objective-Value-Based Comparison Method (OBC)

Basically, the comparison of the new solution and the old solution is done by the fit-
ness value. If the fitness of the new solution is better than the fitness of the old solu-
tion, we select the new one and ignore the old solution. The fitness value can be
obtained from the following Eq. 4.

 The Performance and Sensitivity of the Parameters Setting on the Best-so-far ABC 251

 11 if 01 | | if 0 (4)

Based on Eq. 4, we can see that when is larger than the zero but has a very

small value, e.g. 1E-20, the fitness value of equation is rounded up to be 1

(1E-20 is ignored). This will lead the fitness of all solutions to become equal to 1 in
the later iterations. In other words, there is no difference between the fitness values

that is equal to and . Thus, a new solution that gives a better fitness

value than the old solution will be ignored and the solution will stagnate at the old
solution. In order to solve this issue, the objective value of function is directly used to
compare and to select between the old solution and the new solution in each iteration.

3 The Performance Analysis on the Best-so-far ABC Algorithm

To investigate the performance on three methods of the Best-so-far ABC, numerical
benchmark functions as shown in Table 1 were used in this experiment.

Table 1. Numerical benchmark functions

Function
Name Function Ranges

Sphere 100 100

Griewank
14000 cos √ 1 600 600

Rastrigin 10 cos 2 10 5.12 5.12

Rosenbrock 100 1 30 30

Ackley 20 20 . ∑ ∑ 30 30

Schaffer 0.5 sin 0.51 0.001 100 100

The objective of the search process is to find the solutions that can produce the
minimum output value from these benchmark functions. The number of employed
and onlooker bees were set to 50. The value of limit and the maximum numbers of
iterations were set to 50 and 1000 respectively. Each of the experiments was repeated
20 times with different random seeds. All the experiments in this paper were run on
the same hardware (Intel Core 2 Quad with 2.4 GHz CPU and 4 GB memory).

252 A. Banharnsakun, B. Sirinaovakul, and T. Achalakul

3.1 The Effect of the Best-so-far Method

Fig. 1 illustrates the effect of our Best-so-far method (BSF) on convergence speed.
The plot shows that the solution obtained from ABC with Best-so-far method can
quickly converge to the best solution found so far (in each iteration). Onlooker bees
exploit the best-so-far solution provided by employed bees to bias their search
direction. Consequently, when the number of iterations is increased, the solution
quality of ABC with Best-so-far method is improved quickly.

Griewank Function

Fig. 1. Iterations to convergence for ABC and ABC with BSF

3.2 The Effect of the Adjustable Search Radius

The effect of adjustable search radius (ASR) is illustrated in Fig. 2. The result shows
that the exploitation process introduced to a scout bee can improve solution quality of
the ABC algorithm. The scout bee with adjustable search radius ability can also use
existing information to derive a better solution when compared to a scout bee in orig-
inal ABC that has only exploration ability.

3.3 The Effect of Objective-Value-Based Comparison Method

From Fig. 3, it can be seen that our objective-value-based comparison method (OBC)
can help ABC to avoid an issue of solution stagnation. In original ABC, the solution
can sometimes be hard to improve because the fitness values of the old and the new
solution are too similar. With the objective-value-based comparison method, the new
solution that gives the same fitness value but provides a better objective value will be
selected and thus improve the overall solution quality.

 The Performance and Sensitivity of the Parameters Setting on the Best-so-far ABC 253

Griewank Function

Fig. 2. Iterations to convergence for ABC and ABC with ASR

Griewank Function

Fig. 3. Iterations to convergence for ABC and ABC with OBC

The summary of mean and standard deviation of the output values of benchmark
functions obtained from these 3 modifications were recorded and shown in Table 2.

The results from these experiments illustrate that the Best-so-far method (BSF)
helps onlooker bees to bias their search direction to the best solution found so far in
each iteration of every test case. The improvement is thus obvious in most experi-
ments. On the other hand, the benefit of adjustable search radius (ASR) and objective-
based comparison method (OBC) can only be observed when the solution is stagnated
in a local optimum. Consequently, we can conclude that the Best-so-far method (BSF)
most affects the performance and solution quality of the algorithm.

254 A. Banharnsakun, B. Sirinaovakul, and T. Achalakul

Table 2. Mean and S.D. of ouput values from ABC with different modification methods

Fn D
ABC ABC with BSF ABC with ASR ABC with OBC

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

 30 3.32E-9 2.45E-9 2.33E-11 6.49E-11 4.04E-11 1.66E-10 2.76E-9 1.83E-9

 30 2.63E-6 1.10E-5 5.17E-19 6.00E-19 9.90E-9 2.03E-8 1.79E-8 3.77E-8

 30 0.04977 0.22247 3.55E-17 2.58E-17 1.39E-6 6.17E-7 0.00014 0.00053

 30 4.43710 3.20420 0.01698 0.01801 1.69539 1.36531 2.71635 1.93521

 30 8.28E-6 2.95E-6 0 0 6.89E-6 1.76E-6 6.11E-6 2.06E-6

 2 1.44E-5 3.92E-5 5.26E-17 3.91E-17 4.76E-17 3.26E-17 1.19E-6 1.76E-6

Fn, Function; D, dimension of problems

4 Sensitivity of the Parameters Setting on the Best-so-far ABC

In order to analyze the sensitivity of the parameters setting of Best-so-far ABC, we
also use the same methodology proposed by [14]. In this methodology, we experiment
with different population sizes and limit values. The population size refers to the
colony size. A limit value is a parameter used to control scout production frequency.
If a limit value is small, the scout production frequency is high.

4.1 Variation in Colony Sizes

In Table 3, the mean of the best function values with the colony sizes of 20, 40, and
100 are presented. The experimental results show the evidence that as the colony size
increases, the Best-so-far ABC algorithm produces better results. The reason for the
improvement is the fact that the diversity of the feasible solutions in the search space
is increased with the population size. However, the improvement is not observed in-
definitely (shown in Ackley function). In other words, there is a balanced point of
population size for each problem configuration and an increment beyond that point
can no longer improve the performance.

Table 3. The Mean of the best function values obtained with 1000 iterations using different
colony sizes

Fn D

Colony Size

20 (ne=no=10) 40 (ne=no=20) 100 (ne=no=50)

Mean S.D. Mean S.D. Mean S.D.

 50 1.28E-40 5.74E-40 1.17 E-90 4.24 E-90 3.69E-221 2.76E-220

 50 4.46E-25 1.99E-24 1.44E-120 6.40E-120 4.65E-275 3.54E-274

 50 1.53E-28 6.84E-28 3.67E-93 1.64E-92 8.65E-272 2.05E-271

 50 1.16514 2.24618 0.418848 1.07602 0.0757589 0.160013

 50 2.98E-7 1.33E-6 0 0 0 0

 2 2.00E-179 4.23E-178 0 0 0 0

Fn, Function; D, number of dimensions; ne , number of employed bees; no , number of onlooker bees

 The Performance and Sensitivity of the Parameters Setting on the Best-so-far ABC 255

4.2 Variation in Limit Values

The “limit” values of the scout production can be defined with two variables; ne is the
number of employed bees, and D is the number of problem dimension. We analyze
the effect of the scout production process on the performance of Best-so-far ABC
with different “limit” values: 0.1 x ne x D, 0.5 x ne x D, and 1.0 x ne x D. We also
investigate these limit values on different colony sizes (20 and 100).

Table 4. The Mean of the best function values obtained with using different limit sizes

Fn D

 Colony Size

20 (ne=no=10) 100 (ne=no=50)

Limit =

0.1xnexD

Limit =

0.5xnexD

Limit =

1.0xnexD

Limit =

0.1xnexD

Limit =

0.5xnexD

Limit =

1.0xnexD

 50 Mean 2.10E-217 1.19E-180 1.07E-57 0 0 0
 S.D 3.12E-216 2.47E-179 4.77E-57 0 0 0

 50 Mean 0 3.30E-266 1.66E-224 0 0 0
 S.D 0 4.26E-265 2.12E-223 0 0 0

 50 Mean 0 4.88E-121 2.43E-99 0 0 0

 S.D 0 2.18E-120 1.09E-98 0 0 0

 50 Mean 0.79444 0.01888 0.00048 5.32E-6 1.22 E-29 0

 S.D 1.68993 0.03532 0.00130 1.47E-5 5.46E-29 0

 50 Mean 0 0 0 0 0 0

 S.D 0 0 0 0 0 0

 2 Mean 0 0 0 0 0 0

 S.D 0 0 0 0 0 0

Fn, Function; D, number of dimensions; ne , number of employed bees; no , number of onlooker bees

Note that in this experiment, for all benchmark functions with exceptions of
Schaffer function, the Maximum Cycle Number (MCN) was 10000. For Schaffer, the
MCN was set to 2000.

Table 4 shows that the scout production limit affects the performance of Best-so-
far ABC for small colony sizes. The solution quality and convergence speed for all
benchmark functions except the Rosenbrock function (f4) are improved when the
scout production limit is high. However, the effect of the “limit” becomes much
smaller when a large colony size is used. In other words, higher production limit only
gives slightly better solutions in a case of a large colony size. It can be concluded that
the diversity of the feasible solutions is sufficiently provided by the large population
size. Thus, the diversity controlled by the scout production will give smaller effect to
the algorithm in this case.

5 Conclusions

In this paper, the performance analysis of the Best-so-far ABC algorithm by investi-
gating the effect of three modifications including best-so-far method (BSF), the

256 A. Banharnsakun, B. Sirinaovakul, and T. Achalakul

Adjustable Search Radius (ASR), and the objective-value-based comparison method
(OBC) to the overall performance and the sensitivity of the parameters setting on the
algorithm were proposed. The results show that the improvement by using the best-
so-far-method (BSF) is thus obvious in most experiments, while the benefit of adjust-
able search radius (ASR) and objective-based comparison method (OBC) can only be
observed when the solution is stagnated in a local optimum. The results also show that
two parameters including colony sizes and limit values have the effect on the perfor-
mance of the algorithm. Both values are used to control the diversity of the feasible
solutions in the search space. A balanced point of colony sizes and limit values for
each problem configuration will give the optimal result. In the future work, the use of
nonparametric tests based on a statistical analysis will be considered and the more test
cases will be addressed in order to give the confidence on the results provided.

Acknowledgements. This work is supported by the Thailand Research Fund and
King Mongkut’s University of Technology Thonburi through the Royal Golden Jubi-
lee Ph.D. Program under Grant No. PHD/0038/2552.

References

1. Abbass, H.A.: Marriage in honey-bee optimization (MBO): a haplometrosis polygynous
swarming approach. In: The Congress on Evolutionary Computation (CEC 2001), pp.
207–214 (2001)

2. Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The Bees Algo-
rithm, a Novel Tool for Complex Optimisation Problems. In: Proceedings of 2nd Interna-
tional Conference on Intelligent Production Machines and Systems (IPROMS 2006), pp.
454–459. Elsevier, Oxford (2006)

3. Teodorovíc, D., Dell’Orco, M.: Bee colony optimization - a cooperative learning approach
to complex transportation problems. In: Proceedings of the 10th Meeting of the EURO
Working Group on Transportation, pp. 51–60 (2005)

4. Yang, X.-S.: Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms. In:
Mira, J., Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3562, pp. 317–323. Springer,
Heidelberg (2005)

5. Sundareswaran, K., Sreedevi, V.T.: Development of Novel Optimization Procedure Based
on Honey Bee Foraging Behavior. In: Proceedings of IEEE International Conference on
Systems, Man and Cybernetics, pp. 1220–1225 (2008)

6. Karaboga, D.: An Idea Based on Honey Bee Swarm for Numerical Optimization. Technic-
al Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Depart-
ment, Turkey (2005)

7. Drias, H., Sadeg, S., Yahi, S.: Cooperative Bees Swarm for Solving the Maximum
Weighted Satisfiability Problem. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.)
IWANN 2005. LNCS, vol. 3512, pp. 318–325. Springer, Heidelberg (2005)

8. Akbari, R., Mohammadi, A., Ziarati, K.: A Novel Bee Swarm Optimization Algorithm for
Numerical Function Optimization. Communications in Nonlinear Science and Number
Simulation 15, 3142–3155 (2010)

9. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence. Artificial
Intelligence Review 31, 61–85 (2009)

 The Performance and Sensitivity of the Parameters Setting on the Best-so-far ABC 257

10. Ziarati, K., Akbari, R., Zeighami, V.: On the performance of bee algorithms for resource-
constrained project scheduling problem. Applied Soft Computing 11, 3720–3733 (2011)

11. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial
bee colony (ABC) algorithm and applications. Artificial Intelligence Review, doi:
10.1007/s10462-012-9328-0

12. Banharnsakun, A., Achalakul, T., Sirinaovakul, B.: The Best-so-far Selection in Artificial
Bee Colony Algorithm. Applied Soft Computing 11, 2888–2901 (2011)

13. Banharnsakun, A., Sirinaovakul, B., Achalakul, T.: Job Shop Scheduling with the Best-so-
far ABC. Engineering Applications of Artificial Intelligence 25, 583–593 (2012)

14. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm.
Applied Soft Computing 8, 687–697 (2008)

FAME, Soft Flock Formation Control

for Collective Behavior Studies
and Rapid Games Development

Choon Sing Ho, Yew-Soon Ong, Xianshun Chen, and Ah-Hwee Tan

School of Computer Engineering, Nanyang Technological University,
50 Nanyang Avenue, Singapore 639798

{csho,asysong,chen0469,asahtan}@ntu.edu.sg

Abstract. We present FAME, a comprehensive C# software library
package providing soft formation control for large flocks of agents. While
many existing available libraries provide means to create flocks of agent
equipped with simple steering behavior, none so far, to the best of our
knowledge, provides an easy and hassle free approach to control the for-
mation of the flock. Here, besides the basic flocking mechanisms, FAME
provides an extensive range of advanced features that gives enhanced
soft formation control over multiple flocks. These soft formation fea-
tures include defining flocks in any user-defined formation, automated
self-organizing agent within formation, manipulating formation shape at
real-time and bending the formation shape naturally along the curvature
of the path. FAME thus not only supports the research studies of col-
lective intelligence and behaviors, it is useful for rapid development of
digital games. Particularly, the development cost and time pertaining to
the creation of multi-agent group formation can be significantly reduced.

Keywords: soft formation, flock, behavioral animation, collective
behavior, games.

1 Introduction

Advancements in the field of digital games have evolved significantly in the recent
decades and becoming ever more complex in game content. In early generation
of digital games, due to the limitation of the computer systems, game contents
and mechanics are kept relatively simple. As computer systems are packed with
more memory and computational power, games development studios are trending
towards creating new generation of digital games with substantially rich digital
contents, while some bearing close resemblances to the real world. Citing the
recent popular Grand Thief Auto IV (GTA) digital game, for example, which
showcases an open world adventure game taking place in a fictional city with
over 2000 buildings that is designed based on modern day New York. Thus,
modeling of natural and social phenomena including human crowd behaviors
and the flocking behaviors within groups of animals is fundamental to instill the
traits of vibrancy and realism in the virtual city.

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 258–269, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

FAME, Soft Flock Formation Control for Collective Behavior Studies 259

While several libraries and source codes pertaining to flock behavioral mod-
eling are readily available on the web, it is noted that most provide only means
to achieve simple steering behavior. Although the steering mechanisms provide
a good underlying building block to achieve natural and realistic motion, these
libraries however, do not give high level control over the formation of the group.
In the real world, we can easily observe that some animals tend to flock together
in some shape or formation, for a common good – to survive. Hence, a software
library equipped with comprehensive set of tools to allow easy creation of group
behavioral animation with flexible controls over the formation shape of the flock
would be helpful for collective behavior studies and rapid development of digital
games. We envisioned that this formation constraint should be a soft one, s.t.:

1. Soft formation constraint : the agent should be able to temporarily deviate
from their formation when encountering anomalies, such as obstacles, steep
terrains, and other agents, and return to its formation when the path is clear.

2. Self-organizing agents : the agent should not be fixed to its assigned position
in the formation, but able to self-organize to fill up the formation quickly and
naturally.

3. Real-time formation control : the formation should be able to change or molded
according to users preference during runtime.

4. Flexible flock formation: when the group is navigating in the environment,
the formation should bend naturally along with the curvature of the path.

In this paper, we present Flocking Animation Modeling Environment denoted in
short as FAME, a soft flock formation library which provides extensive controls
over the flock formation. One significant advantage is that development cost and
time pertaining to creation of group behavioral animations can be significantly
reduced. In what follows, we will give an overview of some related work. Next
we will show an overview of the system architecture deployed in FAME as well
as some of the key implementation details. Subsequently, we present a successful
game implemented using FAME, followed by brief concluding statements.

2 Related Works

The study on collective intelligence and cooperative behaviours among agents is
an ongoing and interesting area of research [1,2]. A popular approach to simulate
large crowds of animated characters is through the use of behavioral models. A
behavioral model involves receiving stimuli from the environment and provides
an appropriate response [3]. In the literature, three core classes of behavioral
models can be identified to date to create group movement animation. They are
the particle system, the flocking system, and the behavioral system.

The particle system is a fast, physics based and computationally cheap ap-
proach to simulate the movement of large number of agents. Agents controlled
by the particle system approach respond to a global force that defines the direc-
tion of movement while avoiding collisions. Some studies based on the particle
system are listed as follows. Hughes introduces a continuum model which bears

260 C.S. Ho et al.

Terrain Manager

FAME Interface

Flock Formation Manager Agent Manager

Path Manager Obstacle Manager

Heightmap NURBS Path Obstacle

Agent Shape Constraint

Fig. 1. FAME system architecture

close similarities to classical fluid dynamics to study on the flow of a crowd of
pedestrians [4]. Chenney introduced “flow tiles” [5], a tiled based method that
defines the motion of crowd for each segment that makes up the entire map.

Flocking system, on the other hand, is composed of several simple heuristics
rules to simulate the natural and well-coordinated group movement behaviors
such as flock of birds, a school of fish and a horde of animals in the virtual
computer environment. First published by Craig Reynolds in 1987, Reynolds
demonstrated a “Boids” computer simulation system [6] which simulates flock
behavior using three simple rules, namely cohesion: to move towards the aver-
aged position of all nearby agents, alignment: to steer and move in the same
direction with nearby agents, and separation: to move away from nearby agent
that are too close in proximity to avoid collision. This simple computer simula-
tion has thereafter spin-off a vast array of useful real world applications including
artificial life simulation, crowd simulation, military simulation, robotics, movie
productions and computer games.

Behavioral system controls the agents using the rule based approach. As such,
agents using the behavioral system approach are often seen as being smarter
than the flocking system. An interesting research in this area is the simulation of
artificial fishes by Tu et al. [7]. The research group created a virtual marine world
simulation, and realistically emulated the appearance, movement and behaviour
of the fishes. The behavior of the fish is driven based on the states of the fish
and its intention.

Recent research interest in this field of study has been seeking for more effi-
cient ways to achieve more realistic rendering through improved rendering tech-
niques [8]; refining navigation algorithms to create more natural movement of
autonomous agents [9,10,11,12]; increasing the number of agents that the system
can handle in real time through the use of dedicated hardware, specifically the
GPUs [13,14,15]; and by reducing computational cost through optimization of
the data structure and efficient management of system resources [16,17].

With the maturing of work in the field, there is an increasing trend to develop
toolkits to speed up development process. Recently, Shawn et al. developed a set
of tools, library and test cases to ease development effort as well as to measure

FAME, Soft Flock Formation Control for Collective Behavior Studies 261

steering performance of individual agents [18,19]. Similarly, Erra et al. [14] de-
veloped BehaveRT, a GPU-based library to visualize large scales of autonomous
agents. However, to the best of our knowledge, none of these libraries focus on
formation control in groups of autonomous agents.

3 FAME API and Architecture

In this section, the system architecture of FAME is depicted in Figure 1 and
composes the following core modules: FAMEInterface, FlockFormationManager,
AgentManager, ObstacleManager, PathManager and TerrainManager.

FAMEInterface: This is the point of communication between the game ap-
plication and FAME. It facilitates the creation and removal of flock agents.
Upon initialization, FAME computes the new positions and orientations of each
the agent in the flock, for given frame rate of interest, which is a user-defined
parameter.

FlockFormationManager : The flock formation manager manages the creation
and removal of flock groups with the desired formations. Here in FAME, each
group of agents is bounded by a polygonal shape constraint. Each shape con-
straint is identified by a unique index upon creation and stored within a hash.
This is to facilitate fast retrieval of flock object when a query is performed.

AgentManager : The agent manager handles agents at the individual level.
Similar to the flock formation manager, the agent manager assigns a unique
index to each agent and is stored in a hash table upon creation to facilitate fast
retrieval of agent object upon query. Each agent is assigned to a flock group at
one time. Within each flock group, the agent has a uniquely assigned destination
location in the map, which accords to the desired formation defined.

ObstacleManager : The obstacle manager handles the list of obstacles in the
scene at real time. Obstacles in FAME can be defined using a circular object or
polygonal representation. Upon creation of the obstacles, the obstacle object is
stored using a grid data-structure so as to reduce the real time requirements in
computational effort when performing queries on them.

PathManager : The path manager handles the list of paths planned within
the game environment. In FAME, a path is defined by a set of control points
modeled using Non Uniform Rational B-Spline (NURBS).

TerrainManager : The terrain manager handles the terrain related properties
in a game, such as the terrain size and surface elevation data. These information
is used to the control movement of the agents, such as the maximum gradient
that the agent is allowed to climb, and to adjust the movement speed accordingly
when the agent travels uphill or downslope.

4 Soft Formation Features

In this section, we present several soft formation mechanisms provided in FAME
for simulating large groups of agent flocking in a natural and believable manner,
while maintaining the desired formation. These mechanisms provided includes:

262 C.S. Ho et al.

1)defining flock of irregular formation, 2)self-organized agent within formation,
3)formation shape morphing, 4)flexible formation path following and 5)seamless
space partitioning mechanism. Implementation details are as follows:

4.1 Defining Flock of Irregular Formation

FAME supports creation of flock formations that are formulated in the form of
soft polygonal shape constraints. Thus agents belonging to a particular group
shall stay within the defined polygon when possible. The shape constraint is pop-
ulated with agents by first performing a uniform sampling, to generate the same
number of sample points on the polygon. The sample points are then assigned
as destination position PDest to each members of the flock. After which, the
guiding steering force will attract the agents towards their individually assigned
position.

Some properties of this shape constraint include a set of control points defining
the shape of the flock, a list of sample points defining the agents’ position in the
formation, the flock centroid and orientation. This facilitates a fast and easy
transformation control (translation, rotation, scale) over the flock formation in
the virtual environment.

• Translation: The group can move around by redefining the flock centroid
position.

• Rotation: The group can reorientate to face a particular direction by rotating
the control points as well as the sample points.

• Scale: The group can expand or shrink the size of the formation by scaling
the control points as well as the sample points.

4.2 Self-organized Agents Within Formation

It is natural that while the agents are forming the formation, those who arrived
first should move inwards to fill up the front spaces while those whom arrive
later will fill up the rear. Here, FAME provides such feature to automatically
reorganize the agents in the formation during runtime. As the agents navigate
in the virtual environment, some might encounter anomalies, such as obstacles,
steep terrain and other agents of different flock groups. Thus, these agents would
have to make a detour and take a longer time to move back to the formation.
Other agents that manages to arrive at the formation first would move inwards,
allowing agents that arrive later to fill up the formation from the rear. Imple-
mentation detail is described as follows: Given an agent A and its randomly
picked neighbour agent B, let PA and PB be the initial position of agent A and
B, respectively, while PDest

A and PDest
B denote the final destinations of agent

A and B, respectively. First the following direction vectors to destination are
calculated,

vAA = PDest
A −PA (1)

vBB = PDest
B −PB (2)

FAME, Soft Flock Formation Control for Collective Behavior Studies 263

a) Calculate V AA and V BB b) Calculate V AB and V BA c) Swap if criterion is met

Fig. 2. Criterion for two agent to swap destination

Fig. 3. Examples of agent-destination mapping from the original positions(bottom) to
the destination positions in the new formation(top)

vAB = PDest
B −PA (3)

vBA = PDest
A −PB (4)

where vAA is the directional vector from agent A’s position to agent A’s desti-
nation while vBB is the directional vector from agent B’s position to agent B’s
destination. Similarly,vAB is the directional vector from agent A’s position to
agent B’s destination and vBA is the directional vector from agent B’s position
to agent A’s destination. The agents will thus swap their destination position if
the following criterion is met (see Figure 2).∣∣∣∣vAA

∣∣∣∣+ ∣∣∣∣vBB
∣∣∣∣ > ∣∣∣∣vAB

∣∣∣∣+ ∣∣∣∣vBA
∣∣∣∣ (5)

which can be computed faster by just comparing the square distance of each
vector, such that

vAA · vAA + vBB · vBB > vAB · vAB + vBA · vBA (6)

It is noteworthy that the above reorganization process does not need to be cal-
culated for every time frame as the agents position is highly unlikely to change
drastically. Rather it is sufficient to calculate periodically after every few sec-
onds to reduce the computational requirements. The algorithm leverage on the

264 C.S. Ho et al.

neighborhood calculation process when choosing a random neighboring agent to
swap their destinations, which is already an incurred computation cost needed to
compute the steering forces, and hence the additional computation cost incurred
is minimal.

4.3 Formation Shape Morphing

FAME allows user to change/morph the formation shape easily during runtime.
Shape morphing refers to the process where a given shape transforms into an-
other shape. In the context of shape constraint flocking, agents housed in a
shape formation constraint morph or transform into another formation shape,
while filling up the space inside the new formation strategically and naturally.
Here, we showcase two formation morphing scenarios: 1) morphing of formation
shape from a given initial formation shape to a new user-defined formation shape
of interest and 2) a shape deformation approach to changing of formation shape.

Morphing Approach. In the first scenario, we consider how the flock of agent
change its current formation to take up a new formation shape. First, a new
formation has to be defined. Next, a uniform sampling is performed on the new
formation to generate a set of n evenly distributed points inside the shape,
where n refers to the number of agents in the initial formation. These points
define the new position of that the agents should move to in order to fill up
the new formation shape. Finally, a one-to-one mapping process is performed to
assign every agent to its new destination position in the new formation shape.
The desired mapping should be such that the total Euclidean distance from each
agent’s current position to its new destination is small. This is to allow the agent
to form the new formation within the shortest possible time. The depictions of
the mappings result considered in FAME are depicted in Figure 3.

Shape Deformation Approach. The second scenario showcases how agents
adjust their positions within the formation when it undergoes some shape de-
formation. The method proposed in previous scenario works well in cases when
the formation only requires to undergo one shape deformation. However it is
computationally expensive when the changes to the formation shape is minor

Fig. 4. Formation Shape Constraint

FAME, Soft Flock Formation Control for Collective Behavior Studies 265

and continuous over time. Hence, this method is able to complement and make
up for the drawbacks in the previous method.

Here, FAME uses the mean-value coordinate to calculate the Barycentric
weight of each control point on the position of the agents inside a formation
of any arbiturary shape. When the initial shape formation constraint is created
and populated with n agents, the Barycentric coordinates is calculated for each
of the initial position P init = P0,P1...,Pn−1 such that

p =
∑
i

Bi(p)vi, s.t.
∑
i

Bi(p) = 1 (7)

where p ∈ P init is the coordinate of the i control points defining the formation
(see Figure 4). The mean value coordinate Bi(p) is calculated as follows,∑

i

Bi(p) =
wi∑k
j=1 wj

, and wi =
tan(αi−1/2) + tan(αi/2)

||vi − p|| (8)

where αi, 0 < αi < π is the angle formed in the triangle [p, vi, vi+1].

Fig. 5. Shape deformation approach to change formation from original formation (left)
to the new formation (right)

With the computed Barycentric coordinate, the new position of the agent
pnew can be easily determined when adjustments are made to the control points.
A screen-shot of the shape morphing result using the deformation approach is
depicted in Figure 5.

4.4 Flexible Formation Path following Mechanism

Path finding and navigation is one of the essential elements in digital games that
allows game agent to navigate around in a complex environment in a natural
and realistic manner. In addition, game environments are often non-static as such
moving obstacles are commonly present in the scene and could also be introduced
during runtime. Hence, it is natural for a flock of agents to be able to react and
steer away from obstacles encountered in the scene autonomously, while at the
same time the group formation shape should bend naturally along the path’s
curvature while negotiating the path. Here, FAME provides the functionality

266 C.S. Ho et al.

to define a path in the form of a NURBS. Each flock group can be tasked
to perform path following along the specified path and while doing so, FAME
automatically bends the shape constraint along the path’s curvature, resulting
in a more natural and realistic movement (see Figure 6).

Fig. 6. Flexible formation - Ability to bend the formation along the path’s curvature

Implementation details can be found in our previous work on Autonomous
Multi-agents in Flexible Flock Formation [12].

4.5 Seamless Space Partitioning of Agent Object

FAME provides a seamless approach to partitioning the game environment, re-
quiring no explicit efforts from the user or game developer, to support creation
of a larger number of agents running in real time. One well known pitfall of the
classical flock model is that each agent’s steering decision is made based on the
positions of the neighboring agent that lies within its visible radius. A brute
force neighborhood query process would require the distance between every pair
of agents to be computed, which would incur a computation complexity ofO(n2).
Such an approach does not scale well with large number of agents.

The underlying mechanism utilizes a quad tree data structure to subdivide
the entire map into multiple quadrants. After game agents are populated, FAME
performs a recursive search to place the agent in the respective leaf node of the
quad tree and updates the node whenever the agent travels across quadrants.
This speeds up the neighborhood query process as agents lying in quadrants that
does not intersects in the region of interest are rapidly eliminated. This divide
and conquer approach brings about a reduction of computational complexity
from O(n2) to O(n logn).

5 FAME in Successful Commercial Game Launch

FAME library package was used successfully in collaboration Singapore-MIT
Gambit Game Lab in the development of a commercial game, Dark Dot. Dark
Dot is an action shooter games released on the Apple iPad platform, where the
player controls a group of minions known as Darklets in a quest to defeat the
enemy (see Figure 7). Here in Dark Dot, the advanced flock formation mechanics
provided by FAME is used to control the locomotion of the Darklets.

Shortly after it was released in Oct 2011, Dark Dot became the top action
game in 48 countries and clinched the number one position for several months

FAME, Soft Flock Formation Control for Collective Behavior Studies 267

v

Fig. 7. Dark Dot created by Singapore-MIT Gambit Game Lab (Screenshots taken
from Dark Dot official website)

in the iTunes apps store. It received notable comments from the press, citing
Dark Dot as “not only fun and creative and lovely to look at, but it’s got some
stunningly original game-play mechanics.”

Interested reader can visit the the Dark Dot official website for more in-
formation about the game: http://gambit.mit.edu/loadgame/darkdot.php.
Similarly, more information about FAME can found in the following website:
http://c2inet.sce.ntu.edu.sg/FAME/

6 Conclusion

In this paper, we have described FAME, a comprehensive C# library designed
for easy creations of soft flock formation controls. In this soft formation control,
the agents are able to temporary deviate from their formation when encountering
anomalies and return to its formation when the path is clear, as well as being able
to self-organize within the formation to reduce the overall time required to fill
up the formation. Similarly, the formation is able to change or molded according
to users preference during runtime and is able to bend naturally along with
the curvature while negotiating the path. FAME also provides a seamless way
to partition the scene so that the overall computation requirement is reduced.
Using FAME technologies, an iPad game – Dark Dot, was launched on Apple
iTunes app store and became the top action game in 48 countries. As future work,
we hope to leverage from the emerging field of memetic computing technologies
[20,21] towards more intelligent behaviors, decision making, social interaction
and cultural evolution among virtual agents in games. Also, we shall consider
the use of delicated hardwares [22] for real-time performance when intensive AI
technologies are deployed.

Acknowledgment. We would like to thank Singapore-MIT GAMBIT Game
Lab for the funding and support provided for this project.

http://gambit.mit.edu/loadgame/darkdot.php
http://c2inet.sce.ntu.edu.sg/FAME/

268 C.S. Ho et al.

References

1. Winfield, A., Erbas, M.: On embodied memetic evolution and the emergence of
behavioural traditions in robots. Memetic Computing 3, 261–270 (2011)

2. Satizábal, H., Upegui, A., Perez-Uribe, A., Rétornaz, P., Mondada, F.: A social
approach for target localization: simulation and implementation in the marxbot
robot. Memetic Computing 3, 245–259 (2011)

3. Durupinar, F.: From audience to mobs: crowd simulation with psychological fac-
tors. Ph.D. dissertation, Bilkent University (2010)

4. Hughes, R.: The flow of human crowds. Annual Review of Fluid Mechanics 35,
169–182 (2003)

5. Chenney, S.: Flow tiles. In: Symposium on Computer Animation. SCA (2004)
6. Reynolds, C.W.: Flocks, herds and schools: A distributed behavioral model. In:

Computer Graphics and Interactive Techniques. SIGGRAPH (1987)
7. Tu, X., Terzopoulos, D.: Artificial fishes: physics, locomotion, perception, behavior.

In: Computer Graphics and Interactive Techniques. SIGGRAPH (1994)
8. Aubel, A., Boulic, R., Thalmann, D.: Real-time display of virtual humans: levels

of details and impostors. IEEE Transactions on Circuits and Systems for Video
Technology 10(2), 207–217, Comput. Graphics Lab., Swiss Fed. Inst. of Technol.,
Lausanne, Switzerland

9. van den Berg, J., Lin, M.C., Manocha, D.: Reciprocal velocity obstacles for real-
time multi-agent navigation. In: IEEE International Conference on Robotics and
Automation, pp. 1928–1935 (2008)

10. Sean, C., Jamie, S., Dinesh, M.: Way portals: Efficient multi-agent naviation with
line-segment goals. In: Proc. ACM SIGGRAPH Symp. Interactive 3D Graphics
and Games - I3D (2012)

11. Lin, M.C., Sud, A., Van den Berg, J., Gayle, R., Curtis, S., Yeh, H., Guy, S.,
Andersen, E., Patil, S., Sewall, J., Manocha, D.: Real-Time Path Planning and
Navigation for Multi-agent and Crowd Simulations. In: Egges, A., Kamphuis, A.,
Overmars, M. (eds.) MIG 2008. LNCS, vol. 5277, pp. 23–32. Springer, Heidelberg
(2008)

12. Ho, C.S., Nguyen, Q.H., Ong, Y.-S., Chen, X.: Autonomous Multi-agents in Flex-
ible Flock Formation. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG
2010. LNCS, vol. 6459, pp. 375–385. Springer, Heidelberg (2010)

13. Erra, U., De Chiara, R., Scarano, V., Tatafiore, M.: Massive Simulation using GPU
of a distributed behavioral model of a flock with obstacle avoidance. In: Vision,
Modeling and Visualization, VMV (2004)

14. Erra, U., Frola, B., Scarano, V.: BehaveRT: A GPU-Based Library for Autonomous
Characters. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS,
vol. 6459, pp. 194–205. Springer, Heidelberg (2010)

15. Silva, A.R.D., Lages, W.S., Chaimowicz, L.: Boids that see: Using self-occlusion
for simulating large groups on gpus. Comput. Entertain. 7, 51:1–51:20 (2010)

16. Reynolds, C.: Interaction with groups of autonomous characters. In: Game Devel-
opers Conference, pp. 449–460 (2000)

17. Passos, E.B., Joselli, M., Zamith, M., Clua, E.W.G., Montenegro, A., Conci, A.,
Feijo, B.: A bidimensional data structure and spatial optimization for supermassive
crowd simulation on gpu. Comput. Entertain. 7, 60:1–60:15 (2010)

18. Singh, S., Naik, M., Kapadia, M., Faloutsos, P., Reinman, G.: Watch Out! A Frame-
work for Evaluating Steering Behaviors. In: Egges, A., Kamphuis, A., Overmars,
M. (eds.) MIG 2008. LNCS, vol. 5277, pp. 200–209. Springer, Heidelberg (2008)

FAME, Soft Flock Formation Control for Collective Behavior Studies 269

19. Singh, S., Kapadia, M., Faloutsos, P., Reinman, G.: An Open Framework for De-
veloping, Evaluating, and Sharing Steering Algorithms. In: Egges, A., Geraerts, R.,
Overmars, M. (eds.) MIG 2009. LNCS, vol. 5884, pp. 158–169. Springer, Heidelberg
(2009)

20. Chen, X., Ong, Y.-S., Lim, M.-H., Tan, K.C.: A multi-facet survey on memetic
computation. IEEE Trans. Evolutionary Computation, 591–607 (2011)

21. Nguyen, Q.H., Ong, Y.S., Lim, M.H., Krasnogor, N.: Adaptive Cellular Memetic
Algorithms. Evolutionary Computation 17, 231–256 (2009)

22. Cao, Q., Lim, M.H., Li, J.H., Ong, Y.S., Ng, W.L.: A context switchable fuzzy
inference chip. IEEE Transactions on Fuzzy Systems 14(4), 552–567 (2006)

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 270–279, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Incremental Spatial Clustering in Data Mining
Using Genetic Algorithm and R-Tree

Nam Nguyen Vinh1 and Bac Le2

1 Vietnam Informatics and Mapping Corporation
nguyenvinhnam@vietbando.vn

2 Faculty of Information Technology – University of Science / National
University of Ho Chi Minh City, Vietnam

lhbac@fit.hcmus.edu.vn

Abstract. In this article, we present an algorithm based on genetic algorithm
(GA) and R-tree structure to solve a clustering task in spatial data mining. The
algorithm is applied to find a cluster for a new spatial object. Spatial objects
that represent for each cluster computed dynamically and quickly according to a
clustering object in the clustering process. This improves the speed and
accuracy of the algorithm. The experimental results show that our algorithm
yields the same result as any other algorithm and is accommodated to the
clustering task in spatial data warehouses.

Keywords: Spatial data mining, Clustering, Genetic Algorithm.

1 Introduction

Due to advanced data collection techniques such as remote sensing, census data
acquiring, weather and climate monitoring etc. contemporary geographical datasets
contain an enormous amount of data of various types and attributes. Analyzing this
data is challenging for traditional data analysis methods which are mainly based on
extensive statistical operations. Since classical data mining methods enable us to
detect valuable information from extensive relational databases, spatial data mining
(SDM) can be an appropriate technique for detecting possible interesting patterns in
geographical datasets. SDM is a knowledge discovery process of extracting implicit
interesting knowledge, spatial relations, or other patterns not explicitly stored in
databases [13, 14].

Clustering is one of the tasks of spatial data mining. It is a typical unsupervised
learning technique for grouping similar data points. A clustering algorithm assigns a
large number of data points to a smaller number of groups such that data points in the
same group share the same properties while, in different groups, they are dissimilar.
Clustering has many applications, including part family formation for group
technology, image segmentation, information retrieval, web pages grouping, market
segmentation, and scientific and engineering analysis [3].

Genetic algorithms belong to a class of directed search methods that are be used for
both solving optimization problems and modeling the core of evolutionary systems.

 Incremental Spatial Clustering in Data Mining Using Genetic Algorithm and R-Tree 271

They use a heuristic rather than analytical approach, and thus their solutions are not
always exact and their ability to find a solution often depends on a proper and
sometimes fragile specification of the problem representation and the parameters that
drive the genetic algorithm [1]. There have been proposals and approaches for the
application of genetic algorithms for the clustering problems. These algorithms often
encode chromosomes based on one or more cluster centers. The centers were chosen
at random or determined by K-mean when initializing population [3, 6, 7, 8, 9].
Number of clusters is one of the input parameters, and a method used to determine
these cluster centers affect to accuracy and speed of these algorithms.

In this paper, we propose an efficient incremental spatial clustering algorithm,
which determines arbitrary shaped clusters. The algorithm based on Genetic
Algorithms and R-tree structure. The proposed algorithm can work on very large
database and yield the same result as any other algorithm.

2 Preliminaries

2.1 Spatial Clustering

Spatial clustering groups spatial objects such that objects in the same group are
similar and objects in different groups are unlike each other. This generates a small
set of implicit classes that describe the data. Clustering can be based on combinations
of non-spatial attributes, spatial attributes (e.g., shape), and proximity of the objects
or events in space, time, and space–time.

In general, the major clustering methods can be classified into the following
categories [2]:

 Partitioning methods: Given a database of n objects or data tuples, a
partitioning method constructs k (n) partitions of the data, where each
partition represents a cluster. That is, it classifies the data into k groups, which
together satisfy the following requirements: (1) each group must contain at
least one object, and (2) each object must belong to exactly one group.
Representative algorithms include k-means, k-medoids, CLARANS, and the
EM algorithm.

 Hierarchical methods: A hierarchical method creates a hierarchical
decomposition of a given set of data objects. Representative algorithms
include BIRCH and Chameleon.

 Density-based methods: Most partitioning methods cluster objects based on
the distance between objects. Their general idea is to continue growing a given
cluster as long as the density (the number of objects or data points) in the
“neighborhood” exceeds a threshold. Representative algorithms include
DBSCAN, OPTICS, and DENCLUE.

 Grid-based methods: Grid-based methods quantize the object space into a
finite number of cells that form a grid structure. Representative algorithms
include STING, WaveCluster, and CLIQUE.

272 N.V. Nguyen and B. Le

2.2 Genetic Algorithm

Genetic Algorithms (GAs) was invented by John Holland and developed this idea in
his book “Adaptation in natural and artificial systems” in the year 1975. Holland
proposed GA as a heuristic method based on “Survival of the fittest”. GA was
discovered as a useful tool for search and optimization problems.

The basic genetic algorithm is as follows [4]:

a. [Start] Genetic random population of n chromosomes (suitable solutions for
the problem)

b. [Fitness] Evaluate the fitness f(x) of each chromosome x in the population
c. [New population] Create a new population by repeating following steps until

the New population is complete

- [Selection] Select two parent chromosomes from a population according
to their fitness (the better fitness, the bigger chance to get selected).

- [Crossover] With a crossover probability, cross over the parents to form
new offspring. If no crossover was performed, offspring is the exact copy
of parents.

- [Mutation] With a mutation probability, mutate new offspring at each
position in chromosome

- [Accepting] Place new offspring in the new population.
d. [Replace] Use new generated population for a further sum of the algorithm.
e. [Test] If the end condition is satisfied, stop, and return the best solution in

current population.
f. [Loop] Go to step b for fitness evaluation.

2.3 R-tree

An R-tree is a height-balanced tree similar to a B-tree with index records in its leaf
nodes containing pointers to data objects. Nodes correspond to disk pages if the index
is the disk-resident, and the structure is designed so that a spatial search requires
visiting only a small number of nodes. The index is completely dynamic: inserts
and deletes can be inter-mixed with searches, and no periodic reorganization is
required [5].

3 Algorithm

Our clustering method is density-based. In our experiments, Euclidian distance has
been applied. The proposed algorithm for clustering objects in the 2D plane is
depicted as following:

Input: A set of spatial objects and the configure
Output: A set of clusters

 _ , ,

 Incremental Spatial Clustering in Data Mining Using Genetic Algorithm and R-Tree 273

Where, is a set of clustering objects. is a configuration for the algorithm that
includes a threshold for clustering and algorithm settings for GA – The GA operators
selection, crossover, crossover probability, mutation and mutation probability. The
function _ finds a cluster in or create a new cluster for object . We
implement the algorithm by defining the steps of a genetic algorithm.

3.1 Encoding

A chromosome represents a cluster, and is encoded as shown in Fig. 1.

Fig. 1. Encoding a cluster

Valid_Flag indicates whether this cluster is valid. A cluster is valid if it contains at
least one spatial object. is a numeric value indicating cluster identity.

 contains objects that belong to this cluster. The R-tree structure is used to
store these objects in to accelerate computing the fitness. is a subset
of that represents this cluster, and is determined after applying the fitness
function defined in section 3.2. The number of objects in changes
correspondingly to the position of a clustering object. An example demonstrating this
encoding way shown in Fig. 2.

Fig. 2. An example of the cluster encoding

3.2 Fitness Function

The fitness function is applied for each valid cluster in . It takes the R-tree structure
of a cluster to find spatial objects to represent this cluster and to store them in the

 part. The fitness function acts in the following way:

 Find candidates represent the cluster
We compute the minimum bounding rectangle for clustering object
and expand this with threshold through the following expressions:

ClusterId SObjects Reps Valid_Flag

Reps

C
1
 R-Tree1 p

1
 1

C
3
 R-Tree

3
 p

4
 p

7
 1

C
2
 R-Tree

2
 1

C
1

C
2

C
3

p
1
 p

7

p
4

p
New

gR

274 N.V. Nguyen and B. Le

.

This is used to search in the field of each cluster. The
selected objects are the searching result. As shown in Fig. 2, is a
representative object for cluster and and for cluster . Cluster
has none.

Fig. 3. Query spatial objects by R-tree

 Returned value
The searching result determines the returned value of this function. The result
returned by the function is 1 if the number of the representative objects ,
otherwise ∞.

Clusters having fitness value ∞ can not be applied genetic operators to accelerate
algorithm performance.

3.3 Crossover

The algorithm randomly selects a position in the part of each parent cluster to
test merging condition. If expression (1) below is satisfied, two parent clusters are
merged into one single cluster. , && , (1)

 is the Euclidian distance between two spatial objects. and
are two objects in of clusters and respectively. The example in Fig. 4
indicates the merging case (clusters and are going to be merged).

3.4 Mutation

This operator is used to insert clustering object into a mutated cluster if the
following condition (2) is satisfied: , (2)

 Incremental Spatial Clustering in Data Mining Using Genetic Algorithm and R-Tree 275

Fig. 4. Merging two clusters

3.5 Algorithm Cluster_GA _ , ,

[1]

 , ,
 ∞
 .

 , ,
 , ,

[2]

 .

 . . _

 1

 2

gR

276 N.V. Nguyen and B. Le

4 Experiments

The experiments were done on a 2.40 GHz Intel® Core™ i5 machine with 2GB main
memory. The program was compiled by the Visual Studio C++ 2010 compiler using
level 3 optimization.

To evaluate our system, we use Shape datasets available from [12]. These are
relatively small but quite diverse in shape, so they are suitable for checking the
correctness of the algorithm for different distributions. Their shapes are shown in
Fig. 5. The clustering performance of the proposed algorithm is demonstrated on two
different datasets. Dataset HitPosition_10631 includes 10.631 points and clus100000
has 100.000 points. These datasets are illustrated in Fig. 6a, b.

(a) Aggregation (b) Flame (c) Pathbased

(d) R15 (e) Spiral

(f) Compound

Fig. 5. Shape Datasets

Clustering radius is dynamically computed for each dataset by expression (3)
below. With Shape datasets, we adjusted the parameter by multiplying with a
coefficient corresponding to each dataset to obtain desired results. These coefficients
are listed in Table 1. The parameters settings for GA are shown in Table 2. min , / 30 (3)

With visualizing clustering results, we can easily check the algorithm’s correctness on
the Shape datasets. These results are shown in Fig. 7. It can be seen that the proposed
algorithm could discover clusters of arbitrary shape.

 Incremental Spatial Clustering in Data Mining Using Genetic Algorithm and R-Tree 277

(a) Dataset HitPosition_10631 (b) Dataset clus100000

Fig. 6. Datasets for testing the scalability of our algorithm

Table 1. Adjusting coefficients for parameters

Dataset Adjusting coefficient
Aggregation 2.00
Flame 3.00
Pathbased 2.05
R15 1.50
Spiral 1.50
Compound 2.50

Table 2. The parameters settings for GA

Settings Type Value
Population size 250
Selection Elitist
Crossover One point
Mutation Uniform
Crossover Probability 0.6
Mutation Probability 0.01
Maximum Generations 50

(a) Aggregation (b) Flame (c) Pathbased

Fig. 7. Clustering results of the Shape datasets

278 N.V. Nguyen and B. Le

(d) R15 (e) Spiral

(f) Compound

Fig. 7. (Continued)

We used sweep-line algorithm [10] to verify the accuracy of our algorithm on

larger datasets because it is easy to implement and gives more accurate results. The
sweep-line algorithm with the same parameter of our algorithm found 36 clusters
for HitPosition_10631and 17 clusters for clus100000. Our clustering results are
shown in Fig. 8a, b and Table 3. It can be seen that the proposed algorithm could
yield the same result as any other algorithm.

Fig. 8a. HitPosition_10631 clustered Fig. 8b. Clus100000 clustered

Table 3. The result of the experiment

No.
HitPosition_10631 Clus100000

Clusters Time (ms) Clusters Time (ms)
1 36 343 17 15.865
2 36 328 17 15.865
3 36 343 17 15.538
4 36 343 17 15.928
5 36 327 17 15.600
6 36 358 17 15.568
7 36 327 17 15.600
8 36 328 17 15.538
9 36 328 17 15.881

10 36 328 17 15.600

 Incremental Spatial Clustering in Data Mining Using Genetic Algorithm and R-Tree 279

R-tree structure is built based on the smallest rectangles that contain geometry
objects without regard to their type. Moreover, the distance between two objects can
be determined by the mathematical formula. Therefore, our algorithm can be
applied for clustering different kinds of objects such as points, lines and polygons.

5 Conclusions

This paper introduces a new spatial clustering algorithm based on GA and R-tree
structure. The proposed algorithm can detect clusters of arbitrary shape and yield the
same result as any other algorithms. Furthermore, our algorithm can be applied to
cluster any spatial object type, such as point, line and polygon. Spatial databases
generally support the R-tree structure, so the algorithm is highly applicable.

References

1. Data Mining – Know It All. Morgan Kaufmann Publishers (2009)
2. Geographic Data Mining and Knowledge Discovery, 2nd edn. CRC Press (2009)
3. Pham, D.T., Afify, A.A.: Clustering techniques and their applications in engineering.

Submitted to Proceedings of the Institution of Mechanical Engineers, Part C: Journal of
Mechanical Engineering Science (2006)

4. Introduction to Genetic Algorithms. Springer (2008)
5. Guttman, A.: R-tree: A dynamic index structure for spatial searching. In: Proceedings of

the 1984 ACM SIGMOD International Conference on Management of Data, vol. 14(2)
(June 1984)

6. Lu, Y., Lu, S., Fotouhi, F., Deng, Y., Brown, S.: FGKA: A Fast Genetic K-Means
Clustering Algorithm. In: ACM Symposium on Applied Computing (2004)

7. Lu, Y., Lu, S., Fotouhi, F., Deng, Y., Brown, S.: Incremental Genetic K-Means Algorithm
and its Application in Gene Expression Data Analysis. BMC Bioinformatics (2004)

8. Ding, Q., Gasvoda, J.: A Genetic Algorithm for Clustering on Image Data. International
Journal of Information and Mathematical Sciences (2005)

9. Al-Shboul, B., Myaeng, S.-H.: Initializing K-Means using Genetic Algorithms. World
Academy of Science, Engineering and Technology (2009)

10. Zălik, K.R., Zălik, B.: A sweep-line algorithm for spatial clustering. Journal of Advances
in Engineering Software 40(6) (2009)

11. Lin, H.-J., Yang, F.-W., Kao, Y.-T.: An Efficient GA-based Clustering Technique.
Tamkang Journal of Science and Engineering 8(2), 113–122 (2005)

12. http://cs.joensuu.fi/sipu/datasets/
13. Koperski, K., Adhikary, J., Han, J.: Knowledge discovery in spatial databases: Progress

and Challenges. In: Proceedings of the SIGMID Workshop on Research Issue in Data
Mining and Knowledge Discovery, Technical report 96-08. University of British
Columbia, Vancouver, Canada (1996)

14. Koperski, K., Han, J.: Discovery of Spatial Association Rules in Geographic Information
Databases. In: Proc. 4th Int. Symp. on Large Spatial Databases, pp. 47–66. Springer,
Berlin (1995)

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 280–289, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Personalized Email Recommender System
Based on User Actions

Quang Minh Ha, Quang Anh Tran, and Thu Trang Luyen

Faculty of Information Technology
Hanoi University
Hanoi, Vietnam

{minhhq_fit,anhtq,tranglt_fit}@hanu.edu.vn

Abstract. Email is one of the most successful computer applications in the In-
ternet, and email-spam is also the biggest problem for users, preventing them to
quickly process the important emails in a shortest time. In this paper, we pro-
pose an email recommender system using user actions and statistical methods.
Instead of a two-class classification with Spam and Ham, we treat the problem
as a multi-class classification in which each class is a recommendation action
from user to an email. The most common actions are: reply, read and delete. An
experiment is also conducted to test the framework, using Naïve Bayesian clas-
sifier and different threshold to evaluate the relations between number of fea-
tures and the performance. The experiment shows a promising result with good
prediction accuracy.

Keywords: email filtering, text classifications, naïve bayesian classifier.

1 Introduction

Email is one of the most successful computer applications in the Internet with mil-
lions of user world-wide [1]. It is a primary interface for one’s workplace [2], sup-
porting the daily communications, exchanging information asynchronously. With the
increasingly usability of email, the number of unsolicited bulk email, generally re-
ferred as email-spam [3] is also increased. Spam emails prevent users from quickly
process wanted emails and reduce the usability effectiveness.

Many approaches have been proposed to address and solve this problem [4,5,6,7].
They can be grouped into two main categories: (1) based on email content, (2) based
on email header. The first approach has higher prediction accuracy but low perfor-
mance and depends on different languages. The second approach has higher perfor-
mance but also higher error rate. In the first category, SpamAssassin and Bayesian
Classification are the two main methods that are commonly used to filter spam
emails.

The Bayes Classification was introduced by Paul Graham in 1998 [8]. Using Baye-
sian Classification, he filters email as Spam or Ham by evaluating the keywords’
scores in the email content. This method depends mostly on the quality of the training

 Personalized Email Recommender System Based on User Actions 281

dataset (collection of spam and ham emails). Another research of Androutsopoulos
also addressed this method [9]. Following this method, contents of training emails
will be extracted into tokens and store in a database. Then the Bayes theorem is used
to evaluate the value of each token by taking the following criteria’s:

─ The frequency of the token that appears in the collection of SPAM emails
─ The frequency of the token that appears in the collection of HAM emails
─ The number of SPAM emails in the training dataset
─ The number of HAM emails in the training dataset

When an email is coming, its content is also extracted into tokens and their scores in
the database are used computed to have the probability of that email occurring in
SPAM and HAM dataset. Based on the resulted probability, we can filter the email as
SPAM or HAM. The pros and cons of this method are described below:

─ Pros:
• It is a simple probabilistic model in classification problem.
• Can be easily adapt with the changes of SPAM email contents by extract new

features from them and update to the database.
• Easy to be personalized by user preferences

─ Cons:
• The filter has low performance with the new unknown emails. In order to im-

prove this performance, it has to take time to learn as many features and SPAM
emails as possible.

Besides Bayes, other text classification methods are also used to filter email-spam
such as Neural Network, Support Vector Machine (SVM) [10-11]…

In overall, the two-class text classification methods can effectively filters spam
emails as SPAM or HAM. It reduces the number of email sending to users. However,
non-spam emails also have different level of prioritization. For example, emails that
require users to reply are more important than need-to-read-only emails such as news
feed emails, allowed advertisements or coupons, mailing list discussions… These not-
important emails also reduce the time to process email quickly and correctly. Hence,
it is author belief that an email filtering using multi-class classification will effective-
ly help user to prioritize and process emails faster.

In addition, there is some other approaches share the same idea with this paper
such as Microsoft SNARF, which sort emails based on Social Network and Relation-
ship Finder [17]. Google, on the other hand, rely on more richful statistical data to
sort user emails based on Content, Social, Thread and Label features [18].

In this paper, we propose a new framework of email recommender system using
user actions and statistical methods. Instead of labeling emails as SPAM or HAM, we
label emails with the personalized importance ranking based on user actions prefe-
rences. The possible number of user’s actions may vary but mainly falls into the fol-
lowing general categories: (1) reply, (2) read, (3) delete or mark as spam. By using
this approach, we can not only filter spam, but also suggest the action for users
and prioritize emails by different actions based on user preferences. This method

282 Q.M. Ha, Q.A. Tran, and T.T. Luyen

remarkably improves the time to process new emails. Summarizing, the major contri-
butions of this paper are:

─ We propose a new framework of email recommender system to filter emails by
learning the user actions and classify emails based on these actions.

─ We adapt the Naïve Bayesian Classifier and add a small modification during the
feature selection process to improve the performance

─ We prove that the new framework has low error rate and high performance

This paper is organized as follows: Section 2 introduces the preliminaries of Text
classification problem, its algorithm and the selected algorithm in this paper which is
Naïve Bayesian Classifier algorithm. A description of the dataset is also included.
Section 3 discusses the proposed framework for filtering emails and suggests user
actions, a method for high performance and good feature extraction is also described.
Section 4 presents the experiment results and discussions. Section 5 gives the conclu-
sion and discusses the future work of this research.

2 Preliminaries

2.1 Naïve Bayesian Classifier

Naïve Bayesian Classifier is a statistical text classification approach used to solve the
problem of classifying documents. It is a particularly simple and effective classifica-
tion method [14]. In details, each class in documents will have a score and the best
class in Naïve Bayes is the most likely or maximum a posterior class CMAP:

 CMAP =
1

arg max (|)
d

c C kk n
P t c∈ ≤ ≤∏ (1)

As can be seen, the conditional probabilities are multiplied with each other leading to
the problem of floating underflow [13]. Hence, it is better to change the computation
from multiplication of probabilities to sum of logarithm of probabilities because
log(xy) = log(x) + log(y). Then the highest log probability still is the class of choice.

Therefore, the actual computation of Naïve Bayesian Classifier is:

 CMAP =

1

arg max [log () log (|)]
d

c C k
k n

P c P t c∈
≤ ≤

+ (2)

where CMAP is the class of maximum a posterior probability, P(c) is the prior probabil-
ity of the document in class c, P(tk | c) is the probability showing how much evidence
of a token tk contributes to the class c to be the correct class.

2.2 Dataset

In this paper, a personal mailbox was used to conduct the experiments. We use a blank
mailbox and subscribe to many mailing lists, arranging into two main categories: (1)

 Personalized Email Recommender System Based on User Actions 283

security discussions, (2) chemistry discussions. The mailing lists are available at
http://www.securityfocus.com (for security emails) and https://listserv.indiana.edu/cgi-
bin/wa-iub.exe?A0=CHMINF-L (for chemistry emails).

The emails then were being fetched via IMAP into a MySQL Database to store the
information about sender, receiver, subject and body. Then we start to train the emails
to mark them as one of the three classes: reply = 0, read = 1, delete or spam = 2. This
training activity is based on the following criteria’s:

─ Emails about web application security and security basics are being replied
─ Other emails in security focus mailing lists are being read
─ Emails from chemistry discussions are being deleted

In total, there are 950 emails in the dataset and the number of email in each class is
245, 480, 225 respectively for reply, read and delete. As can be seen, the number of
emails in class 1 (read) is 2 times larger than other two classes. This based on the
actual use of common email users which often have many read mails but not many
reply and delete ones.

After having the trained emails with specific actions, we run the feature selection
program to extract tokens and select the best features.

3 Theoretical Framework

3.1 Descriptions of the Framework

The framework of our email recommender system is described in Figure 1. The
process can be summarized as follows:

─ When an email is received, a tokens extraction process will start to extract all the
possible tokens in the email subject and body and produces a vector for each email

─ The vector then being used as the input for the Classifier to classify the email ac-
tion (or class) using the existing features in the database. The Classifier may vary
and depends on the selection of the researcher. Statistical classification algorithms
such as Naïve Bayes, Neural networks, Support vector machines (SVM), Decision
trees, Hidden Markov model can all be used as the Classifier in this framework.

─ After the Classifier finishes its job, it will filter the emails into appropriate catego-
ries of actions (for example: reply, read or delete)

─ During the filtering process, user preferences are taken into account. For example:
if user thinks the classifier filters a wrong email, he or she would correct the fil-
tered result by changing the class. This action would help to re-train the email con-
tent by running a feature extraction which will be described in the section 3.4 of
this paper.

3.2 Classifier

In general, this Classifier can be any statistical classification algorithms, including
Naïve Bayes, Neural Networks, Decision Trees, Support Vector Machines… In this

284 Q.M. Ha, Q.A. Tran, and T.T. Luyen

Fig. 1. Email recommender system based on user actions preferences

paper, we use Naïve Bayes because of its simplicity. Therefore, we can test the
framework quickly.

Using Naïve Bayesian Classifier, given the scores of features in the Database, we
can calculate the score of each incoming email in different classes. Then the maxi-
mum score is the target class. The algorithm can be displayed as follow:

Procedure classifyNaiveBayesWord
 output: the class v that email is classified into
 input:
 words = a collection of tokens from a input email content
 global:
 vocabulary = Get all extracted tokens in the training dataset
 positions = number of time words found in vocabulary
 examples = number of training dataset
 docs_count = number of emails in each class in the training dataset
 result = list of result
V = list of classes
 for each class v in V:
 p_v = docs_count[of class v] / examples
 vnb = log(p_v)
 for each i in positions:
 vnb += log(score of term i in class v in the features database)
 if (vnb != p_v):
 result Insert vnb of class v to result
 sorted_results = sort results from max to min
 if no element in sorted result:
 return 2 {spam}
 return class v

 Personalized Email Recommender System Based on User Actions 285

3.3 Tokens Extraction

There are many tokenizing methods available such as N-Grams (for character and for
word), Word tokenizing [16]. However, to keep the performance of this process – as
email content may contains many tokens, we use a simple regular expression to ex-
tracts words and some special characters. The regular expression is described below:

'[\w@\-]+'

Where […] means group of matching patterns, \w means match every words, @
means match the @ letter, \- means match the – letter, + means many times.
As the result, we can extract 205061 tokens from 950 emails in the training dataset.

3.4 Feature Extraction

Figure 2 shows the diagram of feature selection process. The components of the dia-
gram are described as follows:

─ Training emails: the database containing email content, including from, to, subject,
body with a specific action label.

─ Combine subject and body into string: we combine the subject and body of each
email into a string, separate with a blank space

─ Get tokens: given the string of subject and body, we use the regular expression
above to extract tokens and produce a vector

─ Get thresholds: each class (or action) has a threshold to ensure the large differenc-
es between score of each token.

─ Choose tokens: we evaluate tokens’ scores using m-estimate of probability [12].

 P[tk | vj] =
1

| |
kn

n Vocabulary

+
+

Where:
n is the total number of tokens in all training emails which belongs to class vj, nk is

the number of times token tk found in n tokens, and |Vocabulary| is the total number
of tokens in the training emails.

Each token has a list of scores in different classes, calculated using the above m-
estimate of probability. The token will be selected as a feature if and only if it satisfies
the following condition:

 S1 – S2 > S1 * T1 (3)

where: S1 and S2 is the maximum and second maximum score of a token, T1 is the
threshold of the class which has the maximum score S1.

This constraint helps to ensure the appropriate distance between the score of se-
lected class and other scores.

286 Q.M. Ha, Q.A. Tran, and T.T. Luyen

Fig. 2. Feature selection

4 Experiments

4.1 Experiment Settings

There are three common actions of user relate to an email: [0] = Reply, [1] = Read
and [2] = Delete or mark as spam. In this paper, we will conduct the experiment to
classify emails into three above classes using Naïve Bayesian Classifier. By trying
different thresholds set, we will have different set of tokens to evaluate the perfor-
mance based on number of features selected. The experiment settings are shown in
the Table 1:

Table 1. Experiment settings

Settings Value Justifications
Number of classes 3 classes Three most common user ac-

tions to an email
Number of tokens from
training emails

205061 tokens N/A

Thresholds
[Reply, Read, Delete]

Set 1: 0.5, 0.5, 0.5 Base thresholds
Set 2: 0.75, 0.75, 0.75 High thresholds
Set 3: 0.8, 0.8, 0.8 Very high thresholds
Set 4:0.65, 0.6, 0.75 Different threshold elements

 Personalized Email Recommender System Based on User Actions 287

4.2 Naïve Bayesian Classifier Performance

With each threshold set, we will calculate the following parameters: the time to train
all data, features selected, average time to classify an email and prediction accuracy of
each class. Table 2 shows the experiment results:

Table 2. Naive Bayesian Classifier performance with different threshold set

 Set 1 Set 2 Set 3 Set 4
Training time(s) 8977 3053 2332 4405

Features selected 7895 1880 1226 3016

Avg. running time 13.5 4.3 3.65 5.9

Prediction accu-
racy:[0]

[1]
[2]

Overall

91.84%
73.54%
98.22%
87.88%

79.59%
69.58%
97.78%
82.31%

56.73%
76.67%
97.78%
77.06%

85.31%
97.78%
75.21%
86.1%

Avg. rate 83.3%

As can be seen, the larger number of features, the better prediction accuracy we

have. There is also a fact that the prediction accuracy of class 1 which is the action
“Read” always below 80% that is because there are many similarities between
emails mark as reply and read. They are both emails about security and IT bugs. The
average prediction accuracy keeps at 83 to 87%. Furthermore, we can also notice the
relation between number of features, average classifying time and prediction accura-
cy. These relations are shown in Figure 3:

Fig. 3. Relation between number of features, prediction accuracy and classifying time

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

0 2000 4000 6000 8000 10000

Sc
al

e

Number of features

Correct rate

Classify Time

288 Q.M. Ha, Q.A. Tran, and T.T. Luyen

As can be seen from Figure 3, there’s a big change in the running time when the
number of features are more than about 3000 features. It increases from 6 to nearly 14
seconds (more than 2 times). Hence, the number of features should not be too high.

Figure 3 also shows that the ideal number of features should be in the range of
2500 to 4000 features. Above this range, the average prediction accuracys only
increase 2%.

4.3 Discussions

Table 2 shows that the Set 1 with Thresholds is 0.5, 0.5, and 0.5 have the best predic-
tion accuracy at 87.88% in average. This average rate is not as high as a two-class
classifier [15]. However, when looking at the prediction accuracy where it can filters
email as “Reply” and “Delete / Spam” are remarkably high at 91.84% and 98.22%
respectively. The lowest result comes from the class of “Read” emails. There are two
reasons for this lower-than-expected result. Firstly, the number of “Read” emails in
the training dataset is two times larger than the number of reply and delete emails.
Secondly, “Read” and “Reply” emails share the same topic which is IT Security.
Hence, many emails from “Read” class contain the features which belong to “Reply”
class.

5 Conclusion

In this paper, we have proposed a personalized email recommender system frame-
work to redefine the way we filter emails based on content using statistical classifica-
tion methods. Instead of treating email filtering as a two-class classification problem
(spam and ham), we treat it as a multi-class classification problem, each class
represents an action of user to an email. Using Naïve Bayesian Classifier as the sam-
ple classifier, the experiment shows a promising result with good prediction accuracy.
In the future work, we will continue to optimize the feature selection algorithms to get
better features in shorter times. Also, we will change the Classifier to some other
statistical classification methods such as support vector machine, neural networks to
evaluate the performance between different methods.

References

1. Steve, W.: Email overload: exploring personal information management of email. In: CHI
1996 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems:
Common Ground, vol. 96(1), pp. 276–283 (1996)

2. Nicholas, K.: Automated email activity management: an unsupervised learning approach.
In: IUI 2005 Proceedings of the 10th International Conference on Intelligent User Interfac-
es, vol. 5(1), pp. 67–74 (2005)

3. Anirban, D.: Enhanced email spam filtering through combining similarity graphs. In:
WSDM 2011 Proceedings of the Fourth ACM International Conference on Web Search
and Data Mining, vol. 11(1), pp. 785–794 (2011)

 Personalized Email Recommender System Based on User Actions 289

4. Khurum, N.J.: Automatic Personalized Spam Filtering through Significant Word Model-
ing. In: ICTAI 2007 Proceedings of the 19th IEEE International Conference on Tools with
Artificial Intelligence, vol. 2(1), pp. 291–298 (2007)

5. Yiming, Y.: Personalized Email Prioritization Based on Content and Social Network
Analysis. IEEE Intelligent Systems 25(4), 12–18 (2010)

6. Paul-Alexandru, C., Jörg, D., Wolfgang, N.: MailRank: using ranking for spam detection.
In: CIKM 2005 Proceedings of the 14th ACM International Conference on Information
and Knowledge Management, vol. 5(1), pp. 373–380 (2005)

7. Mingjun, L., Wanlei, Z.: Spam Filtering based on Preference Ranking. In: CIT 2005 Pro-
ceedings of the The Fifth International Conference on Computer and Information Technol-
ogy, vol. 5(1), pp. 223–227 (2005)

8. Graham, P.: A plan for spam. Web Document (2002),
http://www.paulgraham.com/spam.html

9. Androutsopoulos, I., Koutsias, J., Chandrinos, K.V., Paliouras, G., Spyropoulos, C.D.: An
evaluation of Naive Bayesian anti-Spam filtering. In: Proceedings of the Workshop on
Machine Learning in the New Information Age, 11th European Conference on Machine
Learning, Barcelona, Spain, pp. 9–17 (2000)

10. Drucker, H., Wu, D., Vapnik, V.: Support Vector Machines for spam categorization. IEEE
Transaction on Neural Networks 10(5), 1048–1054 (1999)

11. Ozgur, L., Gungor, T., Gurgen, F.: Adaptive anti-spam filtering for agglutinative languag-
es: a special case for Turkish. Pattern Recognition Letters 25, 1819–1831 (2004)

12. Mitchell, T.: Bayesian Learning. In: Tom, M. (ed.) Machine Learning, p. 179. McGraw-
hill, USA (1997)

13. Manning, C.D.: Naive Bayes text classification (2008),
http://nlp.stanford.edu/IR-book/html/htmledition/
naive-bayes-text-classification-1.html (last accessed April 10, 2012)

14. Manning, C.D.: Text classification and Naive Bayes (2008),
http://nlp.stanford.edu/IR-book/html/htmledition/
text-classification-and-naive-bayes-1.html
(last accessed April 13, 2012)

15. Ion, A.: An experimental comparison of naive Bayesian and keyword-based anti-spam fil-
tering with personal e-mail messages. In: SIGIR 2000 Proceedings of the 23rd Annual In-
ternational ACM SIGIR Conference on Research and Development in Information Re-
trieval, vol. (1), pp. 160–167 (2000)

16. Manu, K.: Building Search Applications: Lucene, LingPipe, and Gate, p. 22. Mustru Pub-
lising, US (2008)

17. Carman, N.: The Social Network and Relationship Finder: Social Sorting for Email Triage.
In: Conference on Email and Anti-Spam, p. 149 (2005)

18. Douglas, A.: The Learning Behind Gmail Priority Inbox (2010),
http://research.google.com/pubs/archive/36955.pdf (last accessed
June 12, 2012)

Developing Attention Focus Metrics

for Autonomous Hypothesis Generation
in Data Mining

Bing Wang, Kathryn E. Merrick, and Hussein A. Abbass

School of Engineering and Information Technology,
University of New South Wales, Canberra, Australia

Abstract. When facing a data mining task, human experts tend to be
responsible for proposing the hypotheses that lead to the discovery of in-
teresting patterns. Recently, there is interest in automating the hypoth-
esis generation process to reduce the load on the human expert during
data mining. However, if we want an artificial agent to undertake this
new role, we also need new metrics to measure the success of the hypoth-
esis generation mechanism. This paper explores the design of metrics for
evaluating hypothesis generation algorithms in terms of differences in the
way they focus attention in the data mining search-space. We demon-
strate our new metrics applied to three stochastic search based prototype
hypothesis generation algorithms. Results show that some differences in
attention focus can be identified using our metrics. Directions for further
work in attention focus metrics and hypothesis generation algorithms are
discussed.

Keywords: Hypothesis generation, data mining, evolutionary
computation.

1 Introduction

In data mining tasks, human experts are in general responsible for the high level
analysis of hypothesis generation. For example, deciding the representation to
describe discoverable patterns, the criteria by which a particular pattern can be
considered as validly identified, and which specific search method to use. After all
these options for data mining are selected, the problem becomes an optimization
problem, the result of which can be automatically found by different, well studied
algorithms with well understood evaluation metrics, e.g. accuracy based on least
square error.

When facing a data mining task, human experts tend to propose hypotheses
that can discover potential interesting patterns. However, this interestingness is
usually biased by the expert’s domain knowledge and attention. In this paper,
we investigate the automation of the hypothesis generation process by using
evolutionary computation (EC) algorithms, which could potentially compensate
the bias brought by human experts and speed up the knowledge discovery in
databases(KDD) [1] process. In general, the main motivation for using EC to

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 290–299, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Developing Attention Focus Metrics for Autonomous Hypothesis Generation 291

execute this high level analysis of hypothesis generation is that the algorithms
in EC family have flexible representation forms to cast data mining task compo-
nents; few assumptions about problem domain are made by EC algorithms and
they perform global search which could overcome the bias brought by human
experts. In addition, if we want an artificial agent to undertake more roles in
this process, we also need metrics to measure the success of the hypothesis gen-
eration mechanism, specially the attention focus of the hypothesis generation
agent on different aspects of potential hypothesis. This paper explores design
of metrics for evaluating attention focus in hypothesis generation, we also ap-
ply our new metrics to three prototype hypothesis generation algorithms. The
rest of the paper is organised as follows: Background is discussed in Section 2.
The proposed search attention metrics are introduced in Section 3, followed by
stochastic search based hypothesis generation paradigm with applications on a
data mining task in Section 4. Experiments are then presented in Section 5 and
conclusions are drawn in Section 6.

2 Background

2.1 Hypothesis Generation

Autonomous hypothesis generation has been widely studied in different fields un-
der different scenarios. Resilient robot described in [2] can recover from damage
autonomously by continuously self modelling. The four-legged machine continu-
ously infers its own structure by synthesizing multiple completing candidates of
self-model hypotheses. The most accurate hypothesis is then used to generate an
alternative new gait from a damaged situation. In functional genomics, King et
al. [3] proposed an inductive logic programming method to automatically gen-
erate hypotheses about yeast metabolism pathway, which significantly reduces
human invention in circles of scientific experiments. Within medical domain,
Moss et al. [4] reported an ontology-driven tool which can detect anomalous
patient responses to treatment and further suggest hypothesis to explain the
anomaly. What these studies have in common is that they investigated method-
ologies to extend artificial intelligence techniques to higher level analysis which
traditionally done by human experts. The proposed stochastic search based hy-
pothesis generation paradigm in this study investigates similar concept in data
mining methods of KDD process.

2.2 Attention Focus

Attention focus describes the behaviour that artificial agent selects a subset
of sensor data and/or a subset of internal structure it considers while acting
and learning. These forms of focus of attention are termed as perceptual selec-
tivity and cognitive selectivity [5]. An agent can employ different methods for
attention focus. Incorporating attention focus in agent design enables the au-
tonomous generation of complex and creative learning behaviours of an agent.

292 B. Wang, K.E. Merrick, and H.A. Abbass

Foner et al [5], proposed to use perceptual selectivity and cognitive selectivity to
constraint the agent to perceiving certain subset of sensor data and its internal
structure involved in responding. This method reduces the complexity of unsu-
pervised learning without harming correctness. Unlike the predefined constraints
on attention focus, Oudeyer and Kaplan [6] presented an Intelligent Adaptive
Curiosity (IAC) mechanism to enable a robot to autonomously interact with
certain subjects in which it maximizes its learning process. This permits au-
tonomous mental development without requiring supervision. Graziano et al. [7]
suggested using compression progress to achieve similar autonomous exploration
behaviour. In our study, we intend to design hypothesis generation agents that
can help overcome the bias introduced in human experts’ data analysis work,
that is, the agent does not only focus attention on certain type of hypotheses, the
agent should shift attention for generating different types of hypotheses to ex-
tract as much knowledge as possible from data sets. In the following section, we
first explore the design of evaluation metrics for the characterisation of attention
focus shift in hypothesis generation.

3 Characterising Attention Focus in Hypothesis
Generation

This section presents a particular interest of current work, which is the vari-
ance of behaviour of different search based hypothesis generation algorithms.
We propose two attention focus metrics to analysis the behaviours of prototype
stochastic search base hypothesis generation algorithms.

3.1 Complexity of Hypothesis Generation

One aspect of analysing hypothesis generation methods is the complexity of
generated hypotheses. In the KDD process, easily interpretable patterns and
patterns of simple forms are preferred as interesting. However, insights into the
constituent components of given data set may also be gained by more sophisti-
cated hypotheses, which also possess usefulness property. Therefore, we propose
complexity as an attention focus metric for hypothesis generation. In this paper,
we define complexity as average number of independent variables for each de-
pendent variable in functions found. The definition of this specific data mining
task for prototype hypothesis generation agent will be introduced in the next
section. The metric of complexity can also be generalised to other forms for more
complex data mining tasks.

Cxi =

∑Nxi

k=1 Jk
Nxi

(1)

where Cxi represents the complexity of variable xi as a dependent variable. Nxi

is the number of functions found with xi being dependent variable. Jk is the
number of independent variable in the kth function among those functions with
xi being dependent variable. This metric measures the attention focus of different
prototype agents on the span of variables included in hypotheses generated.

Developing Attention Focus Metrics for Autonomous Hypothesis Generation 293

3.2 Perceptual Selectivity in Hypothesis Generation

Perceptual selectivity as a form of attention focus was first proposed in unsuper-
vised learning for the purpose of reducing computational complexity. Hypothesis
generation in data mining methods requires incorporation of different compo-
nents, e.g. representation, evaluation, variables and so on. Each component also
has multiple candidates for the generation process. These components constitute
the perceptual environments for a hypothesis generation agent. Perceptual selec-
tivity therefore well suits to the characterisation of the autonomous hypothesis
generation process. We thus use this technique to characterise the agent’s chang-
ing attentions. Specially in the prototype agents we define perceptual selectivity
as frequency of independent variables.

F(xj ,xi) =
N(xj ,xi)

Nxi

(2)

where F(xj ,xi) is the frequence of xj as an independent variable appearing in
functions found where xi acts as dependent variable, i �= j. N(xj ,xi) represents
the number of found unique functions where xi and xj both exist, while Nxi

is the number of found unique functions where xi is dependent variable. This
index could reveal whether different agents focus attention on different subset of
independent variables in their perceptual environment.

4 Prototype Hypothesis Generation Algorithm
for Multiple Linear Function Mining Task

This section introduces the proposed prototype stochastic search based hypoth-
esis generation, its implementation on a simplified data mining task and the
representation form of potential hypothesis for the defined data mining task.

4.1 Stochastic Search Based Hypothesis Generation

Searching techniques are traditionally used for optimization problems. In this
study, we apply the stochastic search paradigm to autonomous hypothesis gen-
eration. The generation process is then realised by searching for the optimum
combinations of hypothesis components that can reveal interesting patterns from
given data set. This stochastic search based hypothesis generation relies on EC.
EC makes few assumption about problem domain; its flexible chromosome en-
coding scheme makes it possible to represent different hypothesis components;
its global search ability has the potential to overcome the bias in human experts’
analysis.

In this paper, we use this stochastic search paradigm on a simplified data
mining task with minimum components for hypothesis generation as a starting
point, but it still captures the main concepts in our study. The data mining
task is defined as follows: We assume a data set with V instances of vector

294 B. Wang, K.E. Merrick, and H.A. Abbass

X = (x1, x2, ..., xn),where n is the dimensionality of X . Suppose there may be
K possible models of the form:

xp = fk(xq(1), xq(2), ..., xq(j), ..., xq(J)) (3)

hidden in the data set, where {xp}
⋂{xq(1), xq(2), ..., xq(j), ..., xq(J)} = φ, {xp} ∪

{xq(1), xq(2), ..., xq(j), ..., xq(J)} ∈ X , J + 1 ≤ n, k ∈ {1, ...,K}. The knowledge
discovery goal in this problem is set to discover linear functions from given
data set. Therefore, fk are all linear functions. The constituent components
of a hypothesis for the above problem definition are that, which subset of the
variables has linear relation and within this subset of variables, which variable
acts as a dependent variable (DV). The detailed representation of hypothesis is
given in next section.

4.2 Representation of Hypothesis

The binary chromosome coding example for the constituent components of po-
tential hypothesis is shown in Table 1. Suppose the length of vector X is n = 8,
The value 1 in one chromosome represents that the corresponding variable in
vector X acts as dependent variable (DV) in a hypothesis, while 0 represents
independent variable (IV). Such representation can include multiple hypotheses
in one chromosome. The identification of hidden linear function is determined by
the correlation of multiple determination (R2) of each hypothesis tested again
given data. If R2 derived from multiple linear regression is greater than a prede-
fined threshold, then preliminary hidden knowledge is identified. The hypothesis
is then rechecked to eliminate redundant independent variables. Objective func-
tion for each chromosome is defined as the averageR2 of the hypotheses included
in one chromosome. We selected three EC algorithms to implement the hypoth-
esis generation agent, at the same time to investigate whether the proposed
attention focus metrics could capture attention shifting in the three hypothe-
sis generation agents. The selected algorithms are genetic algorithm (GA) [8],
population based incremental learning (PBIL) [9] and differential evolution al-
gorithm (DE) [10][11]. Our current data mining task is a first attempt to test the
prototype hypothesis generation algorithm, therefore we keep this implementa-
tion task simple. Although DE, as a continuous optimization method, could not
be directly based on discrete representation as the above settings, in the future
study, with the complexity of data mining tasks increases, we will potentially
need to extend the binary representation to other forms. Therefore, here, we still
include DE into the experiments.

5 Experiments and Discussion

The proposed methods and metrics are applied to data set downloaded from
UC Irvine machine learning repository (UCI) and locally generated artificial
testing data set. The four data set from UCI are: (1) breast cancer Wisconsin

Developing Attention Focus Metrics for Autonomous Hypothesis Generation 295

Table 1. Chromosome Coding for Hypothesis Generation

Chromosome Corresponding Hypotheses

11100000 x1 = f(x4, x5, x6, x7, x8)
x2 = f(x4, x5, x6, x7, x8)
x3 = f(x4, x5, x6, x7, x8)

10001100 x1 = f(x2, x3, x4, x7, x8)
x5 = f(x2, x3, x4, x7, x8)
x6 = f(x2, x3, x4, x7, x8)

(prognostic) data set, (2) breast cancer Winsconsin (diagnostic) data set, (3)
wine data set, (4) housing data set. Those instances that have missing values
are deleted from original data set. Summary of experiment data set is in Table
2. Note that, the original data mining tasks of these data set are not important
in this paper, we used these data set as we have no prior knowledge about these
data set, the task is defined in section 4.1. Parameters used in experiments are
summarised in Table 3. If the hypothesis is tested on input data and returns a
R2 value greater than 0.9, this hypothesis is a valid. Each hypothesis generation
agent has 30 runs on the each data set.

As described in Section 4.1, the knowledge discovery goal in the defined data
mining task is to discover unique linear functions from given data. Unique func-
tions are unique separations of dependent variable and independent variables,
at the same time, the R2 of this function should be greater than 0.9 to be
valid when testing against input data set. In addition, those functions having
R2 greater than 0.9 are re-checked to eliminate variables that do not contribute
to the linear relation. For example, if x1 is a function of x2, x3, and x4 with R2

greater than 0.9, if R2 is still greater than 0.9 after the removal of x2, x2 is not
included in the real linear function.

The average number of unique hidden linear functions found by each method
is shown in Table 4 along with the standard deviations. For the first two data
set, the best performance occurred when we used DE as the underlying search
mechanism; while the PBIL found the least number of unique functions. The
outcome suggests that DE keeps better diversity in its evolution than the other
two methods do. DE ensures that in its evolution, child is not an exact copy of
parents by selecting a random variable in chromosome and force it to crossover
regardless of the crossover probability. Whereas, PBIL attempts to create a prob-
ability vector which can be considered as a prototype for those individuals having
high fitness value, therefore it does not perform as well as other two methods in
keeping diversity. GA achieves slightly better performance over the data set 3,
but the differences are not statistically significant. As for data set 4 and 5, no
difference among three agent is revealed in the results; this could attribute to
that there is no hidden linear function in the search space (data set 4) and all
hidden functions in search space have been identified (data set 5).

296 B. Wang, K.E. Merrick, and H.A. Abbass

Table 2. Data Set Summary

Data No. Attributes No. Instances

1 34 194
2 31 569
3 14 198
4 14 506
5 8 60

Table 3. Experiment Parameters

Parameters GA PBIL DE

Population size 100 100 100
Generation size 100 100 100
Crossover rate 0.7 0.7 0.7
Mutation shift n/a 0.02 n/a
Mutation rate 0.02 n/a n/a
R2 0.9 0.9 0.9

Table 4. Average Number of Unique Linear Functions over 30 Runs

Data GA PBIL DE

1 6667.5 ± 531.7 3658.9 ± 280.3 10350.0 ± 200.2
2 10036.0 ± 560.9 6361.9 ± 443.2 15223.0 ± 224.1
3 0.9 ± 0.31 1.0 ± 0.0 0.7 ± 0.45
4 0.0 ± 0.0 0 ± 0.0 0.0 ± 0.0
5 7.0 ± 0.0 7 ± 0.0 7.0 ± 0.0

We applied the two proposed metrics on these three hypothesis generation
agents. For the complexity attention focus metric, we only present experiment
results visualizations on data set 1 in Figure 1 due to the space limitation of this
paper. Attention focus analysis is executed along the dimension of generations,
we calculated the average number of independent variables for each dependent
variable in functions found accumulated over generations. Although there are
general trends of agents focusing attention increasingly on complex hypotheses
across the plots, variations of attention focus of different agents can still be spot-
ted. We can see, from Figure 1, that PBIL agent in general focus attention on
more complex hypotheses than the other two agents. In addition, the attention
of PBIL agent on complexity stops to change after about 40 generations of evolu-
tion. That is, around 40 generations, the probability vector of PBIL agent reaches

Developing Attention Focus Metrics for Autonomous Hypothesis Generation 297

(a) Complexity analysis of
DV x2

(b) Complexity analysis of
DV x4

(c) Complexity analysis of
DV x5

(d) Complexity analysis of
DV x17

(e) Complexity analysis of
DV x22

(f) Complexity analysis of
DV x24

Fig. 1. Average complexity of dependent variable along generations

a stable stage, fixed mutation rate does not have much effect on deviating the
probability vector from generating similar populations. Although the behaviours
of GA agent and DE agent are similar in terms of attention on complexity, the
complexity metric is able to reveal the differences of level of attention focus on
complexity at different stage. For instances, in Figure 1 (b), after around 50 gen-
eration, DE agent and GA agent have similar level of attention on complexity
measured value 6.5; But in the early generations, we can notice from the plot
that DE agent shows more interest on complex hypotheses than GA agent does.

Figure 2 plots the perceptual selectivity metric analysis results of three agents
using data set 2 considering DV x16. This analysis is also executed along gen-
eration dimension. We calculated the frequency of different IVs of DV x16 in
functions found accumulated over generations. The result shows much more vari-
ations than those in Figure 1. In Figure 2 (a), IV x5 does not draw attention
of PBIL agent throughout all generations, while the GA agent focuses on this
variable in the initial few generations, DE agent considers it in late generations.
In contrast, in Figure 2 (b), PBIL agent uses IV x6 more frequently to generate
hypotheses than GA and DE agent do. In Figure 2 (c) IV x7 is most interest-
ing to GA agent. IV x8 gradually draws attentions of both GA agent and DE
agent,shown in Figure 2 (d). The feature that three agents put different level of
attention on the same IV through generations can also be observed from Fig-
ure 2 (e) and (f). The variations of frequency values suggest that PBIL agent,
DE agent and GA agent have different perceptual selectivity when generating
hypotheses in each time step. Similar to Figure 1, we notice here, the PBIL agent
shows stable attention on certain IVs after about 40 generations. This again sug-

298 B. Wang, K.E. Merrick, and H.A. Abbass

(a) Frequency of IV x5,
with DV x16, in each Gen-
eration

(b) Frequency of IV x6,
with DV x16, in each Gen-
eration

(c) Frequency of IV x7,
with DV x16, in each Gen-
eration

(d) Frequency of IV x8,
with DV x16, in each Gen-
eration

(e) Frequency of IV x9,
with DV x16, in each Gen-
eration

(f) Frequency of IV x10,
with DV x16, in each Gen-
eration

Fig. 2. Average frequency of independent variables along generation

gests that PBIL agent in current implementation doesn’t keep diversity as well
as other two agents.

Applying the proposed attention focus metrics to the prototype hypothe-
sis generation agents does capture variations in the performances of different
agents. These variations of attention attribute to the stochastic nature of un-
derlying EC algorithms, however, further work is required to represent more
complex hypotheses including more hypothesis components for the metrics to
characterise. This and the other direction for future work is considered in next
section.

6 Conclusion

This paper has proposed two attention focus metrics for the behaviour analysis
of autonomous data mining hypothesis generation agents, and we applied these
metrics to three prototype hypothesis generation algorithms. The experimental
results suggest that the proposed metrics can capture variations of attention
focus of different hypothesis generation algorithms. This study is our first step in
developing attention focus metrics for autonomous hypothesis generation agents.
Future work will proceed in two directions. The metrics for attention focus will
be further extended to characterise more aspects of the search behaviours of
autonomous hypothesis generation agents. In addition, hypothesis generation
mechanisms will be refined to generate more complex hypotheses.

Developing Attention Focus Metrics for Autonomous Hypothesis Generation 299

References

1. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge
Discovery in Databases. AI Magazine 17, 37–54 (1996)

2. Bongard, J., Zykov, V., Lipson, H.: Resilient Machines Through Continuous Self-
Modelling. Science 314, 1118–1121 (2006)

3. King, R.D., Whelan, K.E., et al.: Functional Genomic Hypothesis Generation and
Experimentation by a Robot Scientist. Nature 427, 247–251 (2004)

4. Moss, L., Sleeman, D., et al.: Ontology-driven Hypothesis Generation to ex-
plain Anomalous Patient Responses to Treatment. Knowledge-Based Systems 23,
309–315 (2010)

5. Foner, L.N., Maes, P.: Paying Attention to What’s Important: Using Focus Atten-
tion to Improve Unsurpervised Learning. In: Proceedings of The Third Interna-
tional Conference on the Simulation of Adaptive Behaviour, pp. 1–20 (1994)

6. Oudeyer, P.Y., Kaplan, F., Hafner, V.V.: Intrinsic Motivation Systems for Au-
tonomous Mental Development. IEEE Transactions on Evolutionary Computa-
tion 11, 265–286 (2007)

7. Graziano, V., Glasmachers, T., et al.: Artificial Curiosity for Autonomous Space
Exploration. Acta Futura, 1–16 (2011)

8. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley (1989)

9. Baluja, S.: Population-Based Incremental Learning: A Method for Integrating Ge-
netic Search based Function Optimization and Competitive Learning. Studies in
Fuzziness and Soft Computing 170, 105–129 (1994)

10. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Ap-
proach to Global Optimazation. Springer (2005)

11. Abbass, H.A.: The Self-Adaptive Pareto Differential Evolution Algorithm. In: Pro-
ceedings of the 2002 Congress on Evolutionary Computation, pp. 831–836 (2002)

Emergent Self Organizing Maps

for Text Cluster Visualization
by Incorporating Ontology Based Descriptors

Kusum Kumari Bharti and Pramod Kumar Singh

Computational Intelligence and Data Mining Research Lab
ABV-Indian Institute of Information Technology and Management Gwalior

Morena Link Road, Gwalior, India
kkusum.bharti@gmail.com, pksingh@iiitm.ac.in

Abstract. Despite various advantages of traditional feature vector
model for document representation, the well-known inherent deficiency in
this model is “sovereign term assumption”. This deficiency makes it im-
possible to identify syntactically different but semantically related terms.
In this paper, we demonstrate the use of semantic similarity measure for
quantifying the relationship between related terms. Identifying such re-
lationships help in reducing the difference between related documents. In
this work, we use only noun terms for enriching the representation model.
The natural visualization of clusters is investigated in this study using
Emergent Self Organizing Map (ESOM). Experimental results show that
incorporation of semantic relationship enhances the accuracy of cluster-
ing results.

Keywords: Emergent Self-Organized Map (ESOM), feature vector
model, semantic similarity measure.

1 Introduction

Text clustering is a more precise subsection of unsupervised learning (also re-
ferred as clustering). It is also known as document clustering. It is the process
of automatically grouping related documents based upon document’s intrinsic
characteristics. It finds its application in real-life applications in various areas,
e.g., news aggregation, information retrieval, search engine, topological hierarchy
creation.

In current scenario, most documents follow non-linear data structure, i.e., doc-
uments deal with large number of diverse areas. For example, “Feature selection
algorithm based on particle swarm optimization to improve the performance of
document clustering” deals with three different disciplines “Feature selection”,
“particle swarm optimization” and “document clustering”. Classical corpuse like
the well known 20 Newsgroups1 and Reuters-215782 dataset deal with a large

1 http://people.csail.mit.edu/jrennie/20Newsgroups/
2 http://www.daviddlewis.com/resources/testcollections/reuters21578/

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 300–309, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://people.csail.mit.edu/jrennie/20Newsgroups/
http://www.daviddlewis.com/resources/testcollections/reuters21578/

Emergent Self Organizing Maps for Text Cluster Visualization 301

number of diverse topics making the vocabulary very large. In this paper, we
use Reuters-21578 dataset for our experimentation.

Vector Space Model (VSM) is a traditional method for representation of docu-
ments, where rows correspond to documents and columns corresponds to unique
terms/descriptors, or vice versa. Many variations of VSM have been proposed in
literature [1]. They differ in what they consider as terms or features. Traditional
VSM model uses Bag-of-Words (BOW) representation. The main drawback of
this representation is destruction of semantic relations between words. For ex-
ample, stable phrases such as “Bill Gates” or “White House” are represented in
the BOW as separated words so their actual meaning is lost. Given a BOW of
a document in which words “White” and “House” occur, one can suggest that
the document is somewhat related to color of a house, but not about official
residence and principal workplace of the president of the United States. How-
ever, given a document representation that contains a phrase “White House”,
the reader will hardly make a mistake about the topic of discussion [16].

Traditional VSM model performs strict term based comparison in order to
identify related terms and ignores semantic relationship between syntactically
different but semantically related terms. For example, “sports” in one document
and “athletics” in another document does not contribute to the similarity mea-
sure among these two documents. In dealing with inter-disciplinary structure
of documents, identifying complex semantic along with reducing dimensions of
VSM is striking and open research problem in the area of document clustering.

Self Organizing Map (SOM) [3] is an effective tool for projecting high dimen-
sional non-linear data set onto 1 or 2 dimensional display. Thus, SOM helps in
efficiently visualizing inherent non-linear relationships among documents. The
most significant benefit of this procedure is that it reduces computational load
considerably and also makes it possible to cluster large dataset. These properties
make it unique, especially, for dimensionality reduction. These striking features
of SOM have provoked researchers to use SOM for text clustering and visual-
ization (e.g., [2]). In ESOM [4] the cluster boundaries are “indistinct”, i.e., the
degree of separation between regions of the map (clusters) are depicted by “gra-
dients”. This obviates the need to assign inter-disciplinary documents to more
than one cluster. In this paper, we use ESOM for creating clusters of documents
and use Wu & plamer [7] semantic similarity measure for identifying complex
semantic of terms.

Rest of the paper is organized as follows. Section 2 provides an overview of
the relevant literature to understand and present our study. In section 3, we
describe our proposed document representation methodology based on frequent
legitimated terms and semantically enrich reweighting scheme. Section 4 dis-
cusses the experiments and results. Finally, we conclude in section 5 with a hint
for possible future research in this direction.

2 Literature Review

There are three main approaches to incorporate terms into the document repre-
sentation: the first applies unigram only for document representation, the second

302 K.K. Bharti and P.K. Singh

includes bigram only excluding unigrams from the representation and the third
includes incorporation of bigrams together with unigrams.

Traditionally documents are represented in a form of VSM, which uses BOW
concept. In this representation model, every dimension corresponds to a single
term. It sometime causes destruction of actual context of term usage. To weed
out this problem, in early 90’s Bag of Phrases was proposed as a competitive
representation. Since then, dozens of articles have been published on this topic
and some of them report significant improvement in text categorization, e.g.,
[15]. However, this improvement has been obtained only on rarely used datasets
[16]. From experimental results it turn out that BOW representation is powerful
enough and probably the results cannot be improved by replacing the BOW
representation but only by extending it. In this paper, we use unigrams and
unigrams incorporated with bigrams for document representation.

Next issue with traditional representation model is independent term assump-
tion. This model cannot present semantic well as all the features are considered
independent from each other. However, many terms which are syntactically dif-
ferent may be semantically related. For example, “dog” and “canine” have the
same meaning, but in traditional representation model they will be treated as
two independent dimensions. To identify this complex semantic one of the ini-
tial paper based on the concept of background knowledge has been proposed by
Hotho et al. [14]. In this, the authors introduced a concept of using WordNet3 for
identifying semantic relationship between related terms. For identifying this rela-
tionship, they used synonymy and hypernymy relationships. Their experimental
results show that incorporation of background knowledge improves the accuracy
of clustering results. Later, continuing this concept Zheng et al. [12] used hyper-
nymy, hyponymy, holonymy and meronymy relationships for identifying related
terms. Recently, some authors, e.g., [11], [6], [13] analyzed that identification of
semantic similarity between different terms are not self sufficient for reflecting
the actual similarity between related documents. For example, documents con-
taining “car” and “automobile” are more similar than “student” and “person”.
Therefore, more weight should be assigned to car and automobile than student
and person. For incorporating this information Jing et al. [11], Fodeh et al. [6]
and Sridevi et al. [13] embed the semantic relationship information directly in
the weights of the corresponding words. They incorporated this information by
re-adjusting the weight value through similarity measure. Jing et al. [11] devised
a new similarity measure and Fodeh et al. [6] and Sridevi et al. [13] used existing
path based Wu & Plamer semantic similarity measure for quantifying the simi-
larity. In this paper, we extend the term weighting scheme presented by Sridevi
et al. [13] to a weighted term weighting scheme. We assign 75% weightage to
TF-IDF and 25% weightage to Wu & Plamer semantic similarity measure.

The partitional clustering algorithm are most widely used algorithm in the
literature, e.g., [5], [10] for document clustering. The main problem with these
clustering methods is that accuracy of the result depends on the number of
clusters. It is possible that similar documents may get clustered in different

3 http://wordnet.princeton.edu/

http://wordnet.princeton.edu/

Emergent Self Organizing Maps for Text Cluster Visualization 303

clusters if the number of clusters are too large and different documents may get
clustered in the same cluster if number of clusters are too small. In this article, we
use ESOM clustering, which automatically clusters related documents without
explicitly defining the number of clusters and it is also able to create macro
clusters at higher level and the micro clusters at lower level revealing great deal
of structure.

3 Proposed Methodology

In this section, we present a detailed description of our proposed methodology.
Usually, large percentage of a document contains uninformative terms. These
terms unnecessary increase the number of dimensions in the representational
model and reduce the accuracy. Therefore, documents must be preprocessed in
order to remove these non-descriptive terms. The preprocessing steps include
stopwords removal, stemming, and noun extraction. Stop words4 are common
words, e.g., a, an, the, who, be, which are necessarily required to be removed as
they carry no weightage for clustering but make a substantial part of document.
Stemming5 converts the morphological/derivationally related words into single
root form. Finally, we tokenize documents into unigrams (i.e., single terms)and
bigrams (i.e., a pair of consecutive terms).

3.1 Unigram and Unigram-Bigram Generation

Unigram Generation: After tokenizing the documents into single terms, we
apply frequency based constraint in order to select frequent single terms. Single
terms, which appear in more than 4 and less than 200 documents have been
considered as extremely infrequent and extremely frequent terms will not help in
discriminating the documents. Rather they unnecessary increase the dimension
of representation model. It generated 1959 frequent single terms [9] (hereinafter,
referred as Uni).

Unigram-Bigram Generation: Here, we consider both unigrams and bi-
grams. The generation of single terms is same as above, however, we consider a
pair of consecutive terms that appear in more than 2 documents. It generated
2993 frequent unigram-bigram [9] (hereinafter, referred as Uni Bgrm).

Next we use the WordNet ontology to extract legitimate terms.

3.2 Legitimate Terms Extraction

WordNet3 is a large semantic lexical database for the English language created
and maintained by Princeton University by Professor George A. Miller since

4 http://www.fromzerotoseo.com/stopwords-remove/
5 http://www.comp.lancs.ac.uk/computing/research/stemming/general/

porter.htm

http://www.fromzerotoseo.com/stopwords-remove/
http://www.comp.lancs.ac.uk/computing/research/stemming/ general/porter.htm
http://www.comp.lancs.ac.uk/computing/research/stemming/ general/porter.htm

304 K.K. Bharti and P.K. Singh

1985. We consider a term as noun if its entry is present in the WordNet as noun.
In this way, we extract noun terms without any overhead of parsing sentences in
given sets of document. Unigrams and Bigrams both are given as input to the
WordNet ontology to extract noun terms.

Legitimate Unigram Generation: After selecting legitimate terms, next,
we extract frequent legitimate term for removing rarely occurring terms. For
selecting frequent legitimate term we use the same concept as we used for the
unigram generation. It resulted in 968 legitimate frequent unigrams (hereinafter,
referred as UniS).

Legitimate Unigrams-Bigrams Generation: Here, we consider both le-
gitimated unigrams and bigrams. For selecting frequent legitimate unigrams-
bigrams, we use the same concept as mentioned in the unigram-bigram gen-
eration phase. It resulted in 1240 frequent legitimate unigram-bigram terms
(hereinafter, referred as UniS BgrmS).

Next step is term weighting. It is one of the most important step of text
clustering algorithm. It is used to show the significance of terms with respect
to the documents. Numerous terms weighting schemes have been proposed over
the years. TF-IDF and its variant are commonly used for term weighting. The
term weighting scheme used in our work is presented next. Weight vector for
Uni and Uni Bgrm are calculated using Equ. 1 and weight vector for UniS and
UniS BgrmS are calculated using Equ. 2.

3.3 Term Weighting

The vectors representing the documents are constructed based on the frequency
of occurrence of the legitimate terms with respect to the documents. The raw
frequencies are transformed to a variant of the usual TF-IDF measure.

tf idf(i, d) = (
√
[wfid]) ln(

N

dfi
) if wfid ≥ 1; 0 otherwise (1)

where tf idf(i,d) is the IDF of ı(th) word in the j(th) document, fid is the word
frequency (i.e., frequency of the the ı(th) word in j(th) document), N is the total
number of documents in the corpus and dfi is the document frequency of ı(th)

word (i.e., the number of documents in the corpus that include the ı(th) word).
The (

√
[wfid]) is introduced in place of the log transform term of word frequen-

cies (1 + ln(wfid) in the usual TF-IDF expression to reduce the “dampening”
effect of the log function on the word frequencies.

The term reweighing scheme based on semantic measure is calculated based
on Wu & Plamer and as given in Equ 2.

wiN = 0.75 × tf idfi × 0.25 ×
[m∑

t=1,Simwu&pl(wiN ,wjN)≥α

Simwu&pl(wiN , wjN)× wjN

]

(2)

Emergent Self Organizing Maps for Text Cluster Visualization 305

where m is the total number of features, wi stands for term i and α is the
minimum similarity threshold value.

Simwu&Pl(wi, wj) =
2×N

N1 +N2
(3)

Where tf idfi stands for the concept term i and wi stands for concept term
weighted reweighting, N is depth of Least Common Superconcept (LCS) from
root, N1 is the depth of wi and N2 is the depth of wj .

4 Experimental Setup

The experiments are conducted on Retures-21578 dataset using Databionic Esom
tool6 on a system with core i5 processor and 2 GB RAM in Windows 7 environ-
ment. We use two performance measures, trustworthiness and preservation, to
judge the performance of our proposed model.

Trustworthiness of the Visualization. Trustworthiness [8] determines,
whether two visually similar documents are really similar. Here, N is the to-
tal number of data points, Uk(xi) is the set of those data points that are in the
neighborhood of point xi in the visualization display but not in the original data
space, and r(xi, xj) is the rank of the data point xj in the ordering according to
distance from xi in the original data space. Trustworthiness of the visualization,
T (k), is defined by Equ. 4

T (k) = 1− 2

(Nk(2N − 3k − 1))

N∑
i=1

∑
xj∈Uk(xi)

[(
(r(xi, xj)− k)

)]
(4)

Preservation of the Original Neighbourhoods. Preservation [8] deter-
mines whether two really similar documents are visually similar also. Here, N is
the total number of data points, r̂(xi, xj) is the rank of the data point xj in the
ordering according to distance from xi in the visualization display, and Vk(xi)
is the set of those data points that are in the neighborhood of the data point xi

in the original space but not in the visualization. Preservation P (k), is defined
by Equ. 5

P (k) = 1− 2

(Nk(2N − 3k − 1))

N∑
i=1

∑
xj∈Vk(xi)

[(
(r̂(xi, xj)− k)

)]
(5)

Where k is the sets of nearest neighbour of observed datapoint.

6 http://databionic-esom.sourceforge.net/

http://databionic-esom.sourceforge.net/

306 K.K. Bharti and P.K. Singh

4.1 Results and Discussion

For demonstrating the effectiveness of proposed model, we train the ESOM with
UniS, Uni, UniS BgrmS and Uni Bgrm one by one and then perform their com-
parative analysis.

First we train the ESOM with four different feature vector models, i.e., Uni,
UniS, Uni Bgrm, and UniS BgrmS. Summarization of all four feature vector
models are given in Table. 1.

Table 1. Summarization of Feature Vector Models

Model Name Term WordNet Frequency Constraint T ermWeighting

Uni Single
Term

No More than 4 and less
than 200 documents

Equation 1

UniS Single
Term

Yes More than 4 and less
than 200 documents

Equation 2

Uni Bgrm Single and
Bigram
Terms

No More than 4 and less
than 200 documents for
single term, more than
2 documents for bigram
term

Equation 1

UniS BgrmS Single and
Bigram
Terms

Yes More than 4 and less
than 200 documents for
single term, more than
2 documents for bigram
term

Equation 2

After training the ESOM with these feature vector models one by one, we
compute the trustworthiness and preservation of the models based on varying
number of neighbourhoods, k. Here, k varies from 10 to 60.

Fig. 1. Performance comparison on the basis of Trustworthiness

From Fig. 1, we observe that UniS and UniS BgrmS have higher trustwor-
thiness than Uni and Uni Bgrm based representation respectively. This im-

Emergent Self Organizing Maps for Text Cluster Visualization 307

provement confirms that identification of semantic relationship between different
terms help in reducing the difference between related documents.

Fig. 2. Performance comparison on the basis of Preservation

From Fig. 2, we observe that the incorporation of semantic relationship not
only improves the trustworthiness of model but also helps in improving the
preservation of the map. We achieve these improvements because we identify
syntactically different but semantically related terms thus, successfully reduces
the difference between related documents. In other words, it increases the chance
to place similar documents at same place.

Fig. 3. Performance comparison on the basis of training time

Fig. 3 shows that our proposed approach not only improves the accuracy of
the ESOM map but also reduces the ESOM training time. A possible reason for
reduced computation time is the number of features in case of legitimate terms
(i.e., UniS and UniS BgrmS) is considerably less than frequent terms (i.e., Uni
and Uni Bgrm).

5 Conclusion and Future Work

In this paper, we present new documents representation method that incorpo-
rate semantic relationship information in representing text document. Instead of

308 K.K. Bharti and P.K. Singh

accumulating additional concepts to the traditional term based representation
model, we readjusted the term weight according to the Wu & Plamer semantic
similarity measure. Instead of using all terms for document representation, we
used noun terms only. The experimental results show that the new weighted term
weighting scheme is more effective and efficient in improving the performance of
ESOM than traditional term weighting scheme (i.e., variant of TF-IDF).

Though we have used Wu & Plamer semantic similarity measure to enrich the
representation model, other similarity measures may also be used. We use fre-
quency based constraints to identify the descriptive terms, though other methods
are also available in the literature, e.g., mutual information, chi-square, docu-
ment frequency and term variance. In addition, we can use other media like
Wikipedia to identify the semantic similarity between different terms.

References

1. Kalogeratos, A., Likas, A.: Text document clustering using global term context
vectors. In: Knowledge Information System, vol. 31, no. 3, pp. 1-20 (2012)

2. Yen, G.G., Wu, Z.: A Self-Organizing Map Based Approach for Document Clus-
tering and Visualization. In: International Joint Conference on Neural Networks,
pp. 3279–3286 (2006)

3. Kohonen, T.: Self Organizing Maps, 3rd edn. Springer, Berlin (2001)
4. Ultsch, A., Moerchen, F.: ESOM-Maps: Tools for clustering, visualization, and

classification with Emergent SOM. Technical Report No. 46, Dept. of Mathematics
and Computer Science, University of Marburg (2005)

5. Thangamani, M., Thangaraj, P.: Ontology Based Fuzzy Document Clustering
Scheme. In: Modern Applied Science, pp. 148–156 (2010)

6. Fodeh, S., Punch, B., Tan, P.N.: On ontology-driven doucment clusteirng using
core semantic features. Know Inf. Syst. 28(20), 395–421 (2011)

7. Wu, Z., Plamer, M.: Verb Semantics And Lexical Selection. In: Proceeding of
the 32nd Annual Meeting of the Association for Computational Linguistics, pp.
133–138 (1994)

8. Kaski, S., Oja, J.N.M., Venna, J., Toronen, P., Castren, E.: Trustworthiness and
metrics in visualizing similarity of gene expression. BMC Bioinformatics 4(48),
48–61 (2003)

9. Singh, P.K., Machavolu, M., Bharti, K., Suda, R.: Analysis of Text Cluster Vi-
sualization in Emergent Self Organizing Maps Using Unigrams and Its Variations
after Introducing Bigrams. In: Deep, K., Nagar, A., Pant, M., Bansal, J.C. (eds.)
Proceedings of the International Conference on SocProS 2011. AISC, vol. 131, pp.
967–978. Springer, Heidelberg (2012)

10. Hu, G., Zhou, S.: Towards effective document clustering: A constrained K-means
based approach. Information Processing & Management 44(4), 1397–1409 (2008)

11. Jing, L., Ng, M., Huang, J.: Knowledge-based vector space model for text cluster-
ing. Knowledge and Information Systems 25(1), 37–55 (2009)

12. Zheng, H.T., Kang, B., Kim, H.: Exploiting noun phrases and semantic relation-
ships for text document clustering. Information Science 179(13), 2249–2262 (2009)

Emergent Self Organizing Maps for Text Cluster Visualization 309

13. Sridevi, U., Nagaveni, N.: Semantically enhanced document clustering based on
pso algorithm. European Journal of Scientific Research 57(3), 485–493 (2011)

14. Hotho, A., Staab, S., Stumme, G.: Ontologies improve text document clustering.
In: 3rd IEEE International Conference on Data Mining, pp. 541–544 (2003)

15. Mladeni, C., Grobelnik, M.: Word sequences as features in text-learning. In: Pro-
ceedings of the Seventh Electrotechnical and Computer Science Conference, pp.
145–148 (1998)

16. Bekkerman, R., Allan, J.: Using Bigrams in Text Categorization. Technical Report
IR-408 (2004)

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 310–319, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Online Handwriting Recognition
Using Multi Convolution Neural Networks

Dũng Việt Phạm

Computer Network Centre, Vietnam Maritime University, 484 Lach Tray st.,
Ngo Quyen dist., Hai Phong city, Vietnam

dungpv@vimaru.edu.vn

Abstract. This paper presents a library written by C# language for the online
handwriting recognition system using UNIPEN-online handwritten training set.
The recognition engine based on convolution neural networks and yields
recognition rates to 99% to MNIST training set, 97% to UNIPEN’s digit
training set (1a), 89% to a collection of 44022 capital letters and digits (1a,1b)
and 89% to lower case letters (1c). These networks are combined to create a
larger system which can recognize 62 English characters and digits. A proposed
handwriting segmentation algorithm is carried out which can extract sentences,
words and characters from handwritten text. The characters then are given as
the input to the network.

Keywords: artificial intelligent, convolution, neural network, UNIPEN, pattern
recognition.

1 Introduction

Originated in late 1950's, Artificial neural networks (ANN) did not gain much
popularity until 1980s when a computer boom era. Today, ANNs are mostly used for
solution of complex real world problems. This paper provides brief information of
one very specific neural network (a convolutional neural network) built for one very
specific purpose (to recognize handwritten digits and letters). The author also created
a library for the neural network written by C# language which has shown the best
performance on handwriting recognition task (MNIST and UNIPEN) using two
essential techniques: elastic distortion that vastly expanded the size of the training set
and convolution neural network. By using a network prototype in the library, the
recognition system can create, load multi different neural networks on runtime.
Furthermore, the system can combine several component networks to recognize a
larger pattern dataset.

2 Convolution Neural Network (CNN)

The ability of multi-layer neural networks trained with gradient descent to learn
complex, high-dimentional, non-linear mappings from large collections of examples

 Online Handwriting

make them obvious candida
pattern recognition, a hand
from input and eliminates
standard, fully-connected m
categorizes the resulting fe
problems which should in
network solves this shortco
pattern recognition task.

Fig. 1. A Typi

The CNNs is a special
CNNs are trained by back
architecture. The convoluti
some degree of shift, scale
weights (or weight replica
designed especially to rec
minimum of pre-processing
are in a single integrated
described comprehensively
[1],[3].

The typical convolution
shown in figure. 1. It consi
and receives the gray-lev
intensities are normalized b
feature maps each having 2
The values of the feature
respective kernel and apply
the feature map are constrai
values. Because of the bord
input layer.

Each convolution layer
dimension of the respective
sub-sampling maps of the h
16 convolution maps of siz
5x5. The functions are imp
The S4 layer’s feature map

Recognition Using Multi Convolution Neural Networks

ates for image recognition tasks. In the traditional mode
d-designed feature extractor gathers relevant informat
 irrelevant variabilities. A trainer classifier (normally

multi-layer neural network can be used as a classifier) t
eature vectors into classes. However, it could have so
fluent to the recognition results. The convolution neu

oming of traditional one to achieve the best performance

ical Convolutional Neural Network (LeNET 5)[1]

form of multi-layer neural network. Like other networ
k propagation algorithms. The difference is inside th
ional network combines three architectural ideas to ens
e, and distortion invariance: local receptive field, sha

ation) spatial or temporal sub-sampling. They have b
cognize patterns directly from digital images with
g operations. The preprocessing and classification modu
d scheme. The architecture details of CNN have b
y in articles of Dr. Yahn LeCun and Dr. Patrice Sim

nal neural network for handwritten digit recognition
sts a set of several layers. The input layer is of size 32 x

vel image containing the digit to recognize. The pi
between −1 and +1. The first hidden layer C1 consists
25 weights, constituting a 5x5 trainable kernel, and a b

map are computed by convolving the input layer w
ying an activation function to get the results. All values
ined to share the same trainable kernel or the same weig

der effects, the feature maps’ size is 28x28, smaller than

is followed by a sub-sampling layer which reduces
e convolution layer’s feature maps by factor two. Hence
hidden layer S2 are of size 14x14. Similarly, layer C3
ze 10x10 and layer S4 has 16 sub-sampling maps of s

plemented exactly as same as the layer C1 and S2 perfo
s are of size 5x5 which is too small for a third convolut

311

el of
tion
y, a
then
ome
ural
e on

rks,
heir
sure
ared
been

the
ules

been
mard

n is
x32
ixel
six

bias.
with
s of
ghts
 the

the
the
has
size

orm.
tion

312 D.V. Phạm

layer. The C1 to S4 layers o
extractor. Then, a trainable
fully connected layers (a un

Fig. 2. An input image follow
sub-sampling map

Dr. Partrice Simard in
Networks Applied to Visua
CNN for handwritten dig
sampling processes in to a
higher resolution, and the
coarser resolution by sub-sa
kernel is chosen be centered
information (3 would be to
redundant computation (7
Padding the input (making
border) does not improve p
of two, and a trainable kern
map size from n to (n-3)/2
size 28x28, the nearest v
convolution is 29x29. Afte
small for a third layer of co
be viewed as a trainable fe
feature extractor, in the form

Back Propagation
Back propagation is the

layer, which starts with the
the first layer is reached. S
network library because
“Stochastic diagonal Leve
LeCun in his article "Efficie

of this neural network can be viewed as a trainable feat
classifier is added to the feature extractor, in the form o

niversal classifier).

wed by a feature map performing a 5 × 5 convolution and a 2

n his article "Best Practices for Convolutional Neu
al Document Analysis," [3] presented a different mode
git recognition which integrated convolution and s
single layer. This model extracts simple feature maps

en converts them into more complex feature maps a
ampling a layer by a factor two. The width of the traina
d on a unit (odd size), to have sufficient overlap to not l
oo small with only one unit overlap), but yet to not h
would be too large, with 5 units or over 70% overla

g it larger so that there are feature units centered on
erformance significantly. With no padding, a sub-sampl
nel of size 5x5, each convolution layer reduces the feat
2. Since the initial MNIST input using in this model is
value which generates an integer size after 2 layers
er 2 layers of convolution, the feature of size 5x5 is
onvolution. The first two layers of this neural network
eature extractor. Then, a trainable classifier is added to
m of 2 fully connected layers (a universal classifier).

e process that updates the change in the weights for e
e last layer and moves backwards through the layers u
Standard back propagation does not need to be used in

of slow convergence. Instead, the technique cal
enberg-Marquardt method”, which was proposed by
ent BackProp” [2], has been applied.

ture
of 3

× 2

ural
el of
sub-
at a
at a
able
lose

have
ap).
the

ling
ture
s of
s of
too
can
the

each
until

the
lled
Dr.

 Online Handwriting Recognition Using Multi Convolution Neural Networks 313

Fig. 3. A convolution network based on Dr. Partrice Simard’s model

3 The UNIPEN Trainset

In a large collaborative effort, a wide number of research institutes and industry have
generated the UNIPEN standard and database [5]. Originally hosted by NIST, the data
was divided into two distributions, dubbed the training set (train_r01_v07 set) and
devset. Since 1999, the International UNIPEN Foundation (iUF) hosts the data, with
the goal to safeguard the distribution of the training set and to promote the use of
online handwriting in research and applications.

Due to UNIPEN training set is collection of particular datasets from different
research institutes, these datasets are decomposed using some specific procedure. In
order to be able to compare my system’s recognition results to published researches,
the UNIPEN training set is used as training input to my recognizer. However, my
approach is a little bit different; some general points in the structure of these datasets
have been found to create a procedure which can decompose all datasets in the
training set correctly in most cases.

The UNIPEN format is described in [5],[6],[15]. The format of a UNIPEN data file
has KEYWORDS which are divided to several groups like: Mandatory declarations,
Data documentation, Alphabet, Lexicon, Data layout, Unit system, Pen trajectory¸
Data annotations. In order to get the information and categorize these keywords, a
collection of classes based on the above groups have been created which can help the
system to get and categorize all necessary information from data file.

4 Image Pre-processing and Segmentation

Segmentation is an important step to pattern recognition system. Normally, projection
techniques are applied to separate lines, words, and characters in a text image.
However, it will be difficult if characters are organized in confusion. Therefore, a new
algorithm has been developed to solve this issue.

314 D.V. Phạm

Fig. 4. New algorith

Fig. 5

The figure 5 presents a
character. Getting character
the character. The boundar

hm for getting isolated character’s rectangle boundary.

. Steps of isolated character segmentation

sample of applying the above algorithm to a hand writ
r’s rectangle boundary is started from the first left pixe
ry is expanded step by step from left to right, from top

tten
el of
p to

 Online Handwriting

bottom until the boundary c
to get the character’s bound

By changing horizontal
characters but also words or

Fig. 6. Samples of w

Using this technique tog
help the system to recogniz

5 Recognition Sys

The recognition results of
collection such as digit, ca
want to create a larger neu
digit and English letters (
Finding an optimized and
network by large input pat
network is slower and esp
bigger bad written char
Furthermore, assuming we
accurately English charact
character outsize its output
have expansion capacity. T
classifier is very difficult an

The proposed solution
network we can use multi s
these own output sets. Besi
have an additional unknow
pattern is not recognized as
unknown character (Figure

Recognition Using Multi Convolution Neural Networks

can wrap the character. A similar algorithm can be appl
dary from the topmost pixel.

and vertical steps, the system can get not only isola
r sentences without changing algorithm.

word segmentation and isolated character segmentation

gether with other well-known segmentation methods
e characters better in complex text images.

stem Using Multi Neural Networks

the convolution network are really high to small patte
apital letters or lower case letters etc. However, when
ural network which can recognize a bigger collection l
(62 characters) for example, the problems begin app

large enough network becomes more difficult, train
tterns takes much longer time. Convergent speech of

pecially, the accuracy rate is significant decrease beca
racters, many similar and confusable characters
e can create a good enough network which can recogn
ters but it certainly cannot recognize properly a spe
ts set (a Russian or Chinese character) because it does

Therefore, creating a unique network for very large patte
nd may be impossible.
to the above problems is instead of using a unique
smaller networks which have very high recognition rate
ide the official output sets (digit, letters…) these netwo

wn output (unknown character). It means that if the in
s a character of official outputs it will be understand as
3).

315

lied

ated

can

erns
we

like
ear.

ning
the

ause
etc.
nize
cial
not

erns

big
e to
orks
nput
s an

316 D.V. Phạm

Fig. 7. A handwri

For a large pattern collec
characters which can make
such as: O, 0 and o; 9, 4,g
By using an additional sp
significant increate recogni
networks. These outputs (ex
spellchecker/voting modul
characters, internal dictiona
accurated recognized charac

This solution overcomes
includes a several small n
recognition results. Traini
network. Especially, the ne
the requirement we can loa
the system to recognize ne
small networks have reusab

6 Recognition Res

In order to evaluate the l
experiments the library on
UNIPEN. The results can
97% to UNIPEN digits, 89%
UNIPEN lower case letters

iting recognition system using multi neural networks

ction like handwritten characters, there are so many sim
e not only machine but also human confuse in some ca
,q etc. These characters can make networks misrecogn

pellchecker/voting module at the output, the system
tion rate. The input pattern is recognized by all compon
xcept unknown outputs) then will be set as the inputs of
le. The module will bases on previous recogni
ary and other factors to decide which one will be the m
cter.
s almost limits of the traditional model. The new syst

networks which are simple for optimizing to get the b
ing these small networks takes less time than a h
ew model is really flexible and expandable. Depending
ad one or more networks; we can also add new network
ew patterns without change or rebuilt the model. All th
ble capacity to another multi neural networks system.

sults

library to a handwritten recognition system, the aut
n two different handwritten training sets are MNIST

reach to 99% accuracy rate to MNIST training set [1
% to UNIPEN digits and capital letters (1a,1b) and 89%
(1c)[13].

milar
ases
nize.

can
nent
f the
ized

most

tem
best

huge
g on
ks to
hese

thor
and
10],

% to

 Online Handwriting Recognition Using Multi Convolution Neural Networks 317

Fig. 8. Network training interface using UNIPEN trainset (experiment in 1c)

The figure 8 is the network training interface of the demo program. The training
can reach to 89% accuracy after 48 epochs to lower case letters set 1c (the first
training time is 30 epochs, the second time is 18 epochs). After the first 30 epochs, the
etaTrainingRate was too small which influenced to network training performance. So
the network was trained again in second time with bigger initial etaTrainingRate =
0.00045.

Fig. 9. Statistics of network training’ parameters after 62 epochs

Figure 9 is network training’s parameters statistics of the digits and capital letters
recognition network (36 outputs network). By using Stochastic diagonal Levenberg-
Marquardt method in back propagation process, the convergent speech of network
becomes much faster than standard back propagation. After 65 epochs the accuracy
rate of the network can reach to 89%.

In order to recognize a larger character set such as English characters (62
characters), a recognition system based on the model presented in figure 5 has been
created. This system is a combination of three high recognition rate neural networks:
digit (97%), capital letters (89%) and low case letters (89%). The system has proved
its efficient recognition capacity by using an additional spell checker module.

318 D.V. Phạm

Fig. 10. Mouse drawing characters recognition using multi networks [13]

All the library, demo program, source code and training results can be downloaded
at [13].

7 Conclusion

The paper presented a method of handwriting recognition using artificial convolution
neural network. By the combination of convolution neural network, elastic distortion
technique and Stochastic diagonal Levenberg-Marquardt method, the experimental
neural networks can reach to positive results. Furthermore, the proposed model using
multi component neural networks also presented an ability of creating efficient and
flexible recognition systems to large pattern sets such as English characters set etc. By
using a spell checker and voting module at the output, the proposed system can
choose the most accurated characters from high recognition rate component networks.
Hence, it can get the better recognition results to a traditional one.

References

1. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-Based Learning Applied to
Document Recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

2. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Orr, G.B., Müller,
K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 9–50. Springer,
Heidelberg (1998)

3. Simard, P.Y., Steinkraus, D., Platt, J.: Best Practices for Convolutional Neural Networks
Applied to Visual Document Analysis. In: International Conference on Document Analysis
and Recognition (ICDAR), pp. 958–962. IEEE Computer Society, Los Alamitos (2003)

4. Lauer, F., Suen, C.Y., Bloch, G.: A Trainable Feature Extractor for Handwritten Digit
Recognition. Elsevier Science (February 2006)

 Online Handwriting Recognition Using Multi Convolution Neural Networks 319

5. Guyon, I., Schomaker, L., Plamondon, R., Liberman, R., Janet, S.: Unipen project of on-
line data exchange and recognizer benchmarks. In: Proceedings of the 12th International
Conference on Pattern Recognition, ICPR 1994, Jerusalem, Israel, pp. 29–33. IAPRIEEE
(October 1994)

6. Vuurpijl, L., Niels, R., van Erp Nijmegen, M.: Verifying the UNIPEN devset
7. Parizeau, M., Lemieux, A., Gagné, C.: Character Recognition Experiments using Unipen

Data. In: Parizeau, et al. (eds.) Proc. of ICDAR 2001, Seatle, September 10-13 (2001)
8. List of publications by Dr. Yann LeCun,

http://yann.lecun.com/exdb/publis/index.html
9. O’Neill, M.: Neural Network for Recognition of Handwritten Digits,

http://www.codeproject.com/Articles/16650/
Neural-Network-for-Recognition-of-Handwritten-Digi

10. Dung, P.V.: Neural Network for Recognition of Handwritten Digits in C#,
http://www.codeproject.com/Articles/143059/
Neural-Network-for-Recognition-of-Handwritten-Digi

11. Dung, P.V.: Library for online handwriting recognition system using UNIPEN database,
http://www.codeproject.com/Articles/363596/
Library-for-online-handwriting-recognition-system

12. Dung, P.V.: UPV – UNIPEN online handwriting recognition database viewer control,
http://www.codeproject.com/Articles/346244/
UPV-UNIPEN-online-handwriting-recognition-database

13. Dung, P.V.: Large pattern recognition system using multi neural networks,
http://www.codeproject.com/Articles/376798/
Large-pattern-recognition-system-using-multi-neura

14. Modified NIST ("MNIST") database (11,594 KB total),
http://yann.lecun.com/exdb/mnist/index.html

15. The UNIPEN Project, http://unipen.nici.kun.nl/

A Genetic Programming Approach

to Hyper-Heuristic Feature Selection

Rachel Hunt1, Kourosh Neshatian3, and Mengjie Zhang2

1 School of Mathematics, Statistics and Operations Research
2 School of Engineering and Computer Science

Victoria University of Wellington, PO Box 600, Wellington, New Zealand
3 Department of Computer Science and Software Engineering

University of Canterbury, Private Bag 4800, Christchurch, New Zealand
huntrach1@myvuw.ac.nz, kourosh.neshatian@canterbury.ac.nz,

mengjie.zhang@vuw.ac.nz

Abstract. Feature selection is the task of finding a subset of original fea-
tures which is as small as possible yet still sufficiently describes the target
concepts. Feature selection has been approached through both heuris-
tic and meta-heuristic approaches. Hyper-heuristics are search meth-
ods for choosing or generating heuristics or components of heuristics, to
solve a range of optimisation problems. This paper proposes a genetic-
programming-based hyper-heuristic approach to feature selection. The
proposed method evolves new heuristics using some basic components
(building blocks). The evolved heuristics act as new search algorithms
that can search the space of subsets of features. The classification per-
formance (accuracy) of classifiers are improved by using small subsets of
features found by evolved heuristics.

1 Introduction

Feature manipulation is a useful and often necessary process of altering the
input space of a machine learning task in order to improve the learning quality
and performance [1]. In many cases, some features of objects in a dataset are
unnecessary and lead to performance deterioration; the sheer number of available
features means that the time taken to find solutions is longer than is desired, or
costly feature extraction means using more features incurs a greater cost.

A feature is a function which maps an object to one of its properties. In
classification each example in a given dataset has values for a number of features
which are used to determine which class the example belongs to.

Feature selection (FS) is the task of finding a subset of the original features
which is as small as possible and yet still sufficiently describes the target concepts
[2]. Unnecessary or redundant features are eliminated, reducing the dimension-
ality, hopefully improving the learning performance, and making the outcome
(model) obtained easier to interpret by humans. FS is a combinatorial optimi-
sation problem [3] as it concerns finding a subset from a finite set of features
subject to certain constraints and objectives [4].

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 320–330, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Evolving Feature Selection Heuristics Using GP 321

Combinatorial problems have been approached with heuristics, meta-
heuristics and hyper-heuristics. Heuristics are problem specific techniques which
search for high-quality solutions that do not guarantee optimality [5]. Example
heuristics for FS are RELIEF [2], FOCUS [6], sequential forward selection [7],
greedy hill climbing heuristics [8], and linear forward search [9].

Meta-heuristics are problem independent (provided the right encoding) strate-
gies which “guide” the search process in order to find optimal, or near-optimal
solutions [4]. Meta-heuristic techniques which have been used for FS include evo-
lutionary algorithms such as genetic algorithms [10], particle swarm optimisation
[11], genetic programming (GP) [1], and local search methods.

Hyper-heuristics (HH) can be thought of as heuristics to choose heuristics
as they search a space of heuristics instead of searching the space of solutions
directly [12]. More formally HH are search methods for choosing or generating
heuristics or components of heuristics, to solve a range of optimisation problems
with the aim of increasing the level of generality (robustness) of search methods
[3]. In this paper we are interested in hyper-heuristics.

There is very limited work using HH for FS. To our awareness there is none
using GP. Abdullah et al. [13] developed an online constructive HH approach
using rough sets for attribute reduction. A roulette wheel selection mechanism
was used to choose the most appropriate of four low level heuristics, which con-
structs the solution. Rough sets are used to evaluate dependency value through
solving the attribute reduction problem. Results show that this approach pro-
duces good quality solutions in comparison to other meta-heuristic approaches
and, on some datasets, outperforms other approaches.

The goal of this work is to use GP to evolve heuristics for feature selection.
We are not looking for just any specific features or specific subsets of features,
but expect the evolved heuristics to find good solutions (subsets of features)
which are smaller than the set of all features and improve the performance on
classification problems.

The remainder of this paper is organised as follows. Section 2 describes the
background relating to this paper. Section 3 describes the new hyper-heuristic
approach used for feature selection tasks. Section 4 describes the experiment
design and Section 5 discusses the results. Section 6 concludes the paper.

2 Background

This section presents a summary of existing work in both feature selection and
the use of hyper-heuristics.

2.1 Feature Selection

There are wrapper and filter based approaches to feature selection. Wrapper
approaches use a learning algorithm when exploring the search space. Candi-
date solution evaluations are costly, as each requires a classifier to be trained
and tested. The filter approach does not use any learner’s feedback to evaluate

322 R. Hunt, K. Neshatian, and M. Zhang

a solution (they are independent of the learning algorithm). Other heuristics
which are more computationally efficient are used. Filter approaches are compu-
tationally less expensive and more general than the wrapper approaches [11], but
accuracy (effectiveness) results are often not as good as the wrapper approaches.
In this work we will use a wrapper approach.

Sequential Forward Selection (SFS) uses a simple hill climbing search proposed
by Whitney [7]. The search is initialised with the empty subset. At each step all
the possible single feature additions are evaluated, and the feature which gives
the best score (classification accuracy of the wrapper) is permanently added
to the feature subset. SFS [7] works up towards a pre-determined subset size,
however SFS has since been used so it will terminate when there is no single
feature whose addition will increase the current best score [9].

Sequential Backward Selection (SBS) proposed by Marill and Green [14] also
uses a simple hill climbing search. The search is initialised with the entire set
of features. At each step the feature whose removal leads to the best score is
permanently removed from the feature subset. SBS terminates when there is no
feature whose removal will increase the current best score.

Linear forward search [9] uses a user-specified constant, k, to limit the num-
ber of features considered for forward selection. One method ranked features and
then considered only the best k in forward selection. A second method consid-
ered only the next k best features at each stage of forward selection. Results
showed that LFS was faster, found smaller subsets and increased the accuracy
in comparison to standard forward selection on several datasets.

Xue et al. [11] proposed two wrapper-based FS approaches: single feature
ranking, and binary particle swarm optimisation based feature subset ranking.
Results showed that the two proposed methods could achieve better results (clas-
sification accuracy and number of features) than linear forward selection and
greedy stepwise backward selection. A limitation of this approach is the rela-
tively long evolutionary training time, thus it may not be suitable for online
applications.

Neshatian et al. [15] proposed a GP-based ranking system, which ranks indi-
vidual features on the strength of the relationships between the original features
and the target class. A scoring system ranks the features based on the frequency
of feature occurrence in good models. Results showed that the rankings provided
by this system showed strong connections to the actual importance of features.
A GP-based system for measuring the relevance of subsets of features to tar-
get concepts in binary classification tasks was proposed by Neshatian et al [16].
Results showed that this system can detect relevant feature subsets and can
outperform other ranking methods in difficult situations.

2.2 GP Based Hyper-Heuristics

Hyper-heuristics have the “goal of automating the design and adaption of heuris-
tic methods in order to solve hard computation search problems” [17]. Burke et
al. [3] explored the suitability of GP as a HH. The advantages that GP offers
include variable length encoding, and that the GP output can be an executable

Evolving Feature Selection Heuristics Using GP 323

data structure. Humans can also easily identify the problem domain, search
space, and terminal and function sets. The disadvantages include that each GP
run gives a different best-of-run heuristic, so multiple GP runs are needed to
establish what quality of heuristics the approach can produce, and the large
number of parameter values which must be selected. Problem domains such
as timetabling, vehicle routing, job scheduling, cutting and packing, have been
identified as having great potential for use of a HH approach [12].

Fukunaga [18] proposed the Composite heuristic Learning Algorithm for SAT
Search (CLASS). CLASS is a GP system that automatically discovers satis-
fiability testing (SAT) local search heuristics. A special purpose composition
operator, based on existing SAT heuristics, was used to create new individuals.
The heuristics evolved were shown to be competitive with well-known SAT local
search algorithms.

Burke et al. [19] proposed a GP system which automated the heuristic gen-
eration process, and produced human-competitive heuristics for the online bin
packing problem. The GP system evolved a control program that rates the suit-
ability of each bin for the next piece, using the attributes of the pieces to be
packed and the bins.

Nguyen et al. [20] investigate a GP based HH approach which evolves adap-
tive mechanisms (GPAM). GP chooses from a set of low level heuristics and
constructs an adaptive mechanism, which is evolved simultaneously with the
problem solution. Results showed that GPAM was a robust HH method, pro-
viding good quality solutions that performed competitively with existing HH on
the MAX-SAT, bin packing and flow-shop scheduling problem domains.

3 Genetic Programming Hyper-Heuristic Method
for Feature Selection

This section describes the new approach to FS. We are looking for heuristics
(algorithms) and need a representation for them. A heuristic is an executable
program, as are genetic programs. Hence we use GP individuals to represent
heuristics. The heuristic operates in the search space of the problem. In this
work the problem domain is FS, and we need a representation for the search
space of all possible feature subsets. We first introduce the representation of the
FS search space, then the representation of the heuristic, before describing the
heuristic components.

3.1 Representation: Feature Selection Search Space

A common representation of a FS solution is to use a string of zeros and ones
with length n, where a zero or one at the i-th position specifies the absence or
presence of the i-th feature in the solution. This representation is common in
genetic algorithms for FS [21,22], but can be improved by mapping the string to
a graph of subsets of features in which adjacent nodes are obtained by inclusion
or exclusion of a feature from the existing node (subset). One such graph is

324 R. Hunt, K. Neshatian, and M. Zhang

depicted in Figure 1. The graph can give more topological information to a FS
algorithm [23]. The size of the search space of a FS problem grows exponentially
with respect to the number of features in any given classification task. With n
features in a classification task, the search space includes 2n points, one for each
candidate subset (solution).

Fig. 1. Search space of the feature subsets in the form of a graph where each node
represents a feature subset with a string of zeros and ones showing the absence and
presence of the corresponding original features

The left-most node, [00 . . . 00] is the empty set, from which we can move to
any feature subset with cardinality one. If we consider moving from a subset
with cardinality k to a subset with either one more or one less feature than the
current subset there are n possible moves. There are k possible moves to a subset
of cardinality k − 1, and n− k possible moves to a subset of cardinality k + 1.

3.2 Representation: Heuristic Search Space

The aim is to evolve heuristic programs that perform FS by searching the space
of subsets of features. The idea is that sophisticated heuristics can be composed
by putting some smaller primitive building blocks (primitive heuristics) together
and organising them in an appropriate manner. We use GP for this purpose. A
GP individual is represented by a tree which performs basic heuristic steps on a
given initial subset of features. The heuristic search space is therefore the space
of all possible trees.

Figure 2 shows an example GP tree. All non-terminal nodes (parent nodes)
are of type ‘Op’ which means they execute their child nodes from left to right.
The terminals nodes are primitive heuristics. The tree in Figure 2 contains two
abstract primitive heuristics, Move1 and Move2. These ‘move’ functions change
the current selected subset to another one by moving on the graph. The prim-
itive heuristics are the means of moving around the search space (the space of
subsets of features). In the next subsection we introduce two concrete instances
of primitive heuristics that are used in our proposed system.

Evolving Feature Selection Heuristics Using GP 325

Op

Op Move1

Move1 Move2

Fig. 2. An example GP individual representing a heuristic

3.3 Primitive Functions

From two existing heuristic approaches (SFS and SBS) we have extracted two
primitive operators (basic heuristics):

– Greedy Left (GL): We define a move left to be the removal of one feature.
GL evaluates all possible left moves (i.e. all subsets with one fewer feature
than the current subset) and moves to the subset which allows the greatest
increase (or smallest decrease) in fitness in comparison to the current subset.

– Greedy Right (GR): We define a move right to be the addition of one
feature. GR evaluates all possible right moves (i.e. all subsets with one more
feature than the current subset) and moves to the subset which allows the
greatest increase (or smallest decrease) in fitness in comparison to the current
subset.

GL and GR are basic heuristics that will be used to explore the graph of subsets
of features. The operators move from a given subset to a subset with either one
more or one fewer features. They are used as the terminal set for our GP system.

The terminals are linked by the operator op which acts as a place holder in
the GP tree and simply passes the current feature subset and associated fitness
value to its child nodes and then on to its parent node.

3.4 Fitness Function

The proposed GP system searches the space of possible heuristics (i.e. GP is
the hyper-heuristic). In this work each GP program is a search algorithm which
searches the space of possible subsets of features in order to find a good quality
subset (i.e. GP programs are heuristics). Finally for each final subset selected
by a GP program there is a search for a classifier model based on this subset.

The goodness of a GP individual is judged based on the goodness of the
final subset it finds by traversing the terminals of the tree from left to right
(starting from some initial subset). The goodness of a subset is judged based on
the performance of a given classifier using that subset, i.e., the goodness of the
subset is evaluated using a wrapper approach [24]: the selected subset is passed to
an external classifier, J48, which constructs a model and returns the classification
accuracy of the model. The goodness of the final subset found by a GP individual
is then used as the fitness of the program. As evaluating all subsets visited is
computationally expensive, we store visited subsets and their fitness value in
a map (i.e. cache fitness values). J48 was used in the training (evolutionary)

326 R. Hunt, K. Neshatian, and M. Zhang

process for evaluating the evolving the heuristics (subsets of features) as this is
a wrapper method.

4 Experiment Design

In this section we provide implementation details of the proposed system.

4.1 Datasets

We selected three datasets from the UCI Machine Learning Repository [25]. Each
dataset is a binary classification task and we split 66%/34% into training and
testing sets. Table 1 presents a summary of the details of the datasets.

Table 1. Properties of datasets used in experiments.

Dataset # Features # Instances # Classes

Ionosphere 34 351 2 (Good/Bad)
WBC Original 9 683 2 (Malignant/Benign)
Pima Diabetes 8 768 2 (Diabetes/Not)

Ionosphere: each data instance represents radar returns that either show evi-
dence of structure (“Good”) or no structure (“Bad”) in the ionosphere.

Wisconsin Breast Cancer Original (WBC): each data instance represents a
breast tumor that is either malignant or benign.

Pima Indian Diabetes: each data instance represents a female of Pima Indian
heritage over the age of 21 that either shows or does not show signs of diabetes.

4.2 Parameters

We used a tree-based GP approach, and the ECJ V20 [26] package. The evo-
lutionary parameters were chosen according to values reported in the literature
[27,20]. A population of 100 programs was used; the initial population was gen-
erated using the ramped half-and-half method, and evolved for 50 generations.
Minimum tree depth 2, maximum tree depth 6, crossover rate 90%, mutation
rate 5%, reproduction rate 5%, and tournament selection with tournament size
of 7. We used the J48 decision tree classifier in the Weka software package [28].

The terminal set consists of the two elementary operators greedy-left an greedy-
right and the function set consists of the operator op which are described in
Section 3.

We initialise all GP individuals with subset [1, 0, 1, 0, 1...].

Evolving Feature Selection Heuristics Using GP 327

5 Results

There were 40 independent GP runs performed with each dataset and the same
40 random seeds were used for each dataset. At the end of each of the 40 GP
runs, the best GP program (heuristic) is used to select a subset of features. We
take this subset of features and project the test set through. This gives a test
set with a reduced number of features, which is passed to J48 classifier inducer
(learner). The performance of the classifier on the test set is obtained by 10-
fold cross validation. We take the classification accuracy on the test set as the
measure of the performance of the heuristic.

Table 2. Classification results on test set using subsets selected by evolved heuristics,
including average training times and the number of explored subsets

Full Test Set Selected Subset # Subset Evolutionary
Accuracy(%) Size Accuracy(%) Avg. size Evaluations training time(s)

Ionosphere 92.50 34 96.52±0.53 7.83 82703 3160
WBC 96.05 9 96.51±0.00 5.15 267 6.81
Pima Diabetes 71.26 8 74.31±0.12 1.98 120 4.60

Table 2 shows the average performance over 40 GP runs on each of the three
datasets. For example, for the Ionosphere dataset, the classification accuracy on
the test set without FS is 92.50%. In comparison the mean classification accuracy
on the test set with feature selection performed by the generated heuristics is
96.52%±0.53, an increase by 4.02%. The mean size of the selected subset is 7.83
out of the 34 features. It is of interest to note that from 40 GP runs only 12
distinct feature subsets were evolved. 14 features were not selected in any of these
subsets. This indicates that the evolved heuristics (best individuals) somewhat
agree with each other on the goodness of features.

On the WBC dataset the improvement in classification accuracy obtained by
using the proposed approach was the smallest, increasing from 96.05% to 96.51
± 0.00. However, the average number of features has been reduced from 9 to
5.15. Only two distinct feature subsets were evolved in the 40 independent runs.

On the Pima Diabetes dataset the mean classification accuracy was 74.31 ±
0.12, an improvement over the accuracy of 71.26% obtained using all eight fea-
tures. Five distinct feature subsets were evolved. The average number of selected
features were reduced from 8 to 1.98.

In all cases the standard deviation of classification accuracy is small, which
indicates a reasonably consistent performance across the 40 GP runs, and in no
GP run for any dataset was the full set of features selected.

Table 2 also shows the average training times and the number of explored sub-
sets. For example for the Ionosphere dataset, 82703 subsets (out of more than
16 billion subsets) were examined during the evolution process. The mean evo-
lutionary training time was 3160 seconds. As expected with most FS algorithms,

328 R. Hunt, K. Neshatian, and M. Zhang

the number of explored subsets and the training (evolution) time is proportional
to the size of the problem (in terms of the number of features).

In this work our approach was to evolve heuristics, so a direct comparison to
existing feature selection heuristics is not entirely relevant. However to give an
indication of the comparison, LFS and greedy stepwise (with backward selection)
in Weka [28] selected a subset of size nine which gave classification accuracy
of 96.67% on Ionosphere, the subset of size nine with accuracy 96.05% on the
WBC dataset, and for the Pima Diabetes dataset a subset of size four which gave
classification accuracy of 73.18% on the test set. This suggests that the proposed
GPHH approach can automatically evolve multiple heuristics (FS algorithms)
that perform better or at least as well as long-established FS algorithms.

5.1 Example Heuristic

Figure 3 shows a GP tree (program) created during evolution for FS on the Iono-
sphere dataset. Starting with a given subset of features the program is executed
by first generate an inorder traversal of the tree and then executing the resulting
sequence (ignoring the ‘op’ operators). Thus for the program in Figure 3, the
search in the space of subsets of features starts with GL,GL,GL,GL,Gl,GL,
GR,GL . . . and ends with . . . , GR,GL.

The box at the bottom of Figure 3 shows the output of the tree. That is,
the tree selects the subset {X3, X5, X8, X9, X10, X11, X27}. Training and testing
a decision tree classifier using only these seven selected features using 10-fold
cross-validation, yields an average performance (accuracy) of 96.67%, which is
much better 92.50% achieved using all the 34 features.

6 Conclusions

The goal was to use GP to evolve heuristics that are able to find solutions,
subsets of features, that are smaller than the full set of features and give better

Op

Op Op

Op Op Op Op

Op Op Op Op Op Op Op Op

GL GL Op Op GL GL GR GR GL GL GR GL GR GL GR GL

Op Op Op Op

GL GL GL GL GR GL GL GL

0010100111100000000000000010000000

Fig. 3. A GP tree (heuristic) evolved on Ionosphere dataset (top) and the output
generated from example input with this tree (bottom). The output cannot be generated
from the tree alone, but must be given an initial feature subset.

Evolving Feature Selection Heuristics Using GP 329

classification performance. The goal was successfully achieved by using a tree-
based representation for heuristics, introducing new primitive operators (Greedy
Left and Greedy Right) to move in the graph of subsets of features, and using GP
to search the space possible heuristics (trees). The results show that the proposed
approach for feature selection (FS) successfully evolves heuristics which are able
to select a smaller subset of features which give a higher classification accuracy
than the full feature set.

This paper represents the first work of using GP to evolve heuristics (com-
puter algorithms) for FS and it opens the door of using GP to evolve search
algorithms for FS. While showing promise, this paper only tested this idea on
three datasets. For future work, we will apply this approach to more datasets
with a larger number of features (say, with over 300 features) to reveal whether
this approach can be treated as a general approach to producing promising search
algorithms for FS. We will also investigate new program representations and fit-
ness functions to evolve new feature selection algorithms and compare them with
more established algorithms in the literature. It would also be interesting to in-
vestigate new ways of initialising the individual chromosomes to reveal whether
the performance of the evolved heuristics will be significantly affected.

References

1. Neshatian, K.: Feature Manipulation with Genetic Programming. PhD thesis, Vic-
toria University of Wellington, New Zealand (2010)

2. Kira, K., Rendell, L.A.: The feature selection problem: Traditional methods and a
new algorithm. In: Swartout, W.R. (ed.) pp. 129–134. AAAI, AAAI Press / The
MIT Press (1992)

3. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.: Explor-
ing Hyper-heuristic Methodologies with Genetic Programming. In: Computational
Intelligence: Collaboration, Fusion and Emergence, pp. 177–201. Springer (2009)

4. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and
conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

5. Burke, E., Kendall, G.: Introduction. In: Search Methodologies: Introductory Tu-
torials in Optimization and Decision Support Techniques, pp. 5–18. Springer,
Heidelberg (2003)

6. Almuallim, H., Dietterich, T.G.: Learning with many irrelevant features. In: Pro-
ceedings of the Ninth National Conference on Artificial Intelligence, pp. 547–552.
AAAI Press (1991)

7. Whitney, A.W.: A direct method of nonparametric measurement selection. IEEE
Trans. Comput. 20(9), 1100–1103 (1971)

8. Caruana, R., Freitag, D.: Greedy attribute selection. In: Proceedings of the
Eleventh International Conference on Machine Learning, pp. 28–36. Morgan Kauf-
mann (1994)

9. Gutlein, M., Frank, E., Hall, M., Karwath, A.: Large-scale attribute selection using
wrappers. In: IEEE CIDM, pp. 332–339 (2009)

10. Vafaie, H., De Jong, K.A.: Genetic algorithms as a tool for feature selection in
machine learning. In: ICTAI, pp. 200–203 (1992)

11. Xue, B., Zhang, M., Browne, W.N.: Single feature ranking and binary particle
swarm optimisation based feature subset ranking for feature selection. In: Pro-
ceedings of the 35th Australasian Computer Science Conference, pp. 27–36 (2012)

330 R. Hunt, K. Neshatian, and M. Zhang

12. Ross, P.: Hyper-heuristics. In: Search Methodologies: Introductory Tutorials in
Optimization and Decision Support Techniques, pp. 529–556. Springer (2003)

13. Abdullah, S., Sabar, N.R., Nazri, M.Z.A., Turabieh, H., McCollum, B.: A con-
structive hyper-heuristics for rough set attribute reduction. In: IEEE ISDA, pp.
1032–1035 (2010)

14. Marill, T., Green, D.: On the effectiveness of receptors in recognition systems.
IEEE Transactions on Information Theory 9(1), 11–17 (1963)

15. Neshatian, K., Zhang, M., Andreae, P.: Genetic Programming for Feature Ranking
in Classification Problems. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski,
V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke,
J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 544–554. Springer, Heidelberg
(2008)

16. Neshatian, K., Zhang, M.: Genetic Programming for Feature Subset Ranking in
Binary Classification Problems. In: Vanneschi, L., Gustafson, S., Moraglio, A., De
Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS, vol. 5481, pp. 121–132. Springer,
Heidelberg (2009)

17. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.R.: A
classification of hyper-heuristics approaches. In: Gendreau, M., Potvin, J.Y. (eds.)
Handbook of Metaheuristics, pp. 449–468. Springer (2010)

18. Fukunaga, A.S.: Automated discovery of local search heuristics for satisfiability
testing. Evol. Comput. 16(1), 31–61 (2008)

19. Burke, E.K., Hyde, M.R., Kendall, G., Woodward, J.: Automatic heuristic gener-
ation with genetic programming: evolving a jack-of-all-trades or a master of one.
In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Com-
putation, GECCO 2007, pp. 1559–1565. ACM, New York (2007)

20. Nguyen, S., Zhang, M., Johnston, M.: A genetic programming based hyper-heuristic
approach for combinatorial optimisation. In: Proceedings of the 13th Annual Con-
ference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1299–1306.
ACM, New York (2011)

21. Smith, M.G., Bull, L.: Genetic programming with a genetic algorithm for fea-
ture construction and selection. Genetic Programming and Evolvable Machines 6,
265–281 (2005); Published online: August 17, 2005

22. Oh, I.S., Lee, J.S., Moon, B.R.: Hybrid genetic algorithms for feature selec-
tion. IEEE Transactions on Pattern Analysis and Machine Intellignece, 1424–1437
(2004)

23. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy.
Journal of Machine Learning Research 5, 1205–1224 (2004)

24. Kohavi, R., John, G.: Wrappers for feature subset selection. Artificial Intelli-
gence 97, 273–324 (1997)

25. Frank, A., Asuncion, A.: UCI Machine Learning Repository (2010)
26. Luke, S.: ECJ 20 – A Java-based evolutionary computation research system
27. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming – An

Introduction; On the Automatic Evolution of Computer Programs and its Appli-
cations. Morgan Kaufmann, San Francisco (1998)

28. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18 (2009)

A New Approach to Vision-Based Fire Detection

Using Statistical Features and Bayes Classifier

Ha Dai Duong and Dao Thanh Tinh

Faculty of Information Technology, Le Quy Don Technical University,
100 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam

duonghadai@yahoo.com, tinhdt@mta.edu.vn

http://fit.lqdtu.edu.vn/default.aspx

Abstract. Computer vision - based fire detection has recently attracted
a great deal of attention from the research community. In this paper,
the authors propose and analyse a new approach for identifying fire in
videos. In this approach, we propose a combined algorithm for detecting
the fire in videos based on the changes of the statistical features in the
fire regions between different frames. The statistical features consist of
the average of the red, green and blue channel, the coarseness and the
skewness of the red channel distribution. These features are evaluated,
and then classified by Bayes classifier, and the final result is defined
as fire-alarm rate for each frame. Experimental results demonstrate the
effectiveness and robustness of the proposed method.

Keywords: Fire detection, Pattern recognition, Bayes classification.

1 Introduction

Two main applications of vision-based fire detection are: (1) monitoring fires and
burn disasters from surveillance systems [1], and (2) automated retrieval of events
in newscast videos [2]. These applications play an important role in modern
society. Recently, there have been a number of efficient methods proposed for
vision-based fire detection in [1]-[6].

In [1], Chao-Ching Ho analysed the spectral, spatial and temporal character-
istics of the flame and smoke regions in the image sequences. Then, the contin-
uously adaptive mean shift vision tracking algorithm was employed to provide
feedback of the flame and smoke real-time position at a high frame rate. P. V. K.
Borges and E. Izquierdo, in [2], analysed the frame-to-frame changes of specific
low-level features such as color, area size, surface coarseness, boundary rough-
ness, and skewness within estimated fire regions to describe potential fire regions
and used Bayes classifier to indicate a frame contains fire or not. In [3], Celik
T. et al. developed two models, one for fire detection and the other for smoke
detection. For fire detection, the concepts from fuzzy logic were used to make
the classification fire and fire-like coloured objects. For smoke detection, a statis-
tical analysis was carried out using the idea that the smoke shows grayish colour
with different illumination. In [4], the authors also used a probabilistic metric

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 331–340, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://fit.lqdtu.edu.vn/default.aspx

332 H.D. Duong and D.T. Tinh

to threshold potential fire pixels. This was achieved by multiplying the prob-
abilities of each individual color channel being fire. Habiboglu et al. proposed
a video-based fire detection method, in [6], which used color, spatial and tem-
poral information by dividing the video into spatio-temporal blocks and used
covariance-based features extracted from these blocks to detect fire. However,
when the flickering behaviour of flames cannot be visible in video, the method
might perform poorly.

The majority of the vision-based fire detection methods employ some type
of hybrid model combining color, geometry and motion features. In general,
fire detection systems first use some key features as a precondition to generate
seed areas for candidate fire regions, then use the other features to determine
the existence of fire in candidate fire regions. In most existing approaches, the
color information and their derived descriptors like area size, surface coarseness,
boundary roughness and skewness were mainly used for classification features
[2]. However, using the color channels are not reliable enough to perform classi-
fication. Similarly, the classifying tasks based on the features derived from the
color information can not perform properly.

In contrast to some works, we propose a new approach to solve the problem
of fire detection by determining motion region, then this region is used to es-
tablish a vector of fire features. Bayes classifier uses the vector to indicate the
motion region is contained fire or not. The number of detected fire regions in a
frame is used to compute fire-alarm rate of the frame. The rest of this paper is
organized as follows: Section 2 analyses some significations of fire in a region,
these significations are motion (Section 2.1), color (Section 2.2), red channel dis-
tribution skewness (Section 2.3) and surface coarseness (Section 2.4); Section 3
presents a fire detection algorithm, it includes a brief review of Bayes classifier
(Section 3.1) and a description of algorithm (Section 3.2); Section 4 presents
some experimental results, followed by a relevant conclusion in Section 5.

2 Statistical Features of Fire Regions

Intuitively, fire has some unique visual signatures such as color, geometry, and
motion. Some proposed methods use these characteristics as interdependent pa-
rameters, for example, area size, boundary roughness, coarseness, skewness in
[2] depended on definition of color. In this proposal, the authors evaluate these
visual signatures of fire as independent features. A potential fire region is deter-
mined as a motion region. The statistical features in potential fire region include
color, skewness of red channel histogram, and surface coarseness.

2.1 Motion

In order to detect possible changes, which may be caused by fire, this proposal
estimates the change of regions by regions. Formally, we assume Ft1 is frame at
t1, and Ft2 is frame at t2 = t1 +Δt. The motion of fire leads to the changes of
intensity in some pixels between Ft1 and Ft2. This work determines the difference
between Ft1 and Ft2 as follow:

An New Approach to Vision-Based Fire Detection 333

1. Divide Ft1 and Ft2 into N ×M grid, where N is number of rows and M is
number of columns, Fig. 1 is an example;

2. Compute the correlation coefficient between a region on the grid of Ft1 and
corresponding region on the grid of Ft2;

3. Decide the region on Ft2 is a motion region if the correlation coefficient is
less than or equal to a pre-defined threshold T .

Fig. 1. Ft1 and Ft2 are divided into N ×M grid

Let W , H be the width and height of Ft1 and Ft2, divide Ft1 and Ft2 into
N×M grid, where N is number of rows and M is number of columns. Then each
region of the grid has size of DW = W/M in width and DH = H/N in height.
Denote Akl, Bkl as regions at k-th row and l-th column (k = 1, 2, .., N, l =
1, 2, ..,M) on the grids of Ft1 and Ft2 respectively. The correlation coefficient
between Akl and Bkl is defined as

CCkl =

∑DH

i=1

∑DW

j=1 Akl(i, j)×Bkl(i, j)√∑DH

i=1

∑DW

j=1 Akl(i, j)2 ×
√∑DH

i=1

∑DW

j=1 Bkl(i, j)2
. (1)

The region Bkl on Ft2 is considered as motion region if:

CCkl ≤ T (2)

where T is a decision threshold. Each region satisfied Eq. (2) is a potential region
for next step.

2.2 Color

As other works in the field of fire detection, this paper concerns only on the color
of flames belongs to the red-yellow range, which are the most common type of
flames seen in the nature. Other types of flames, such as blue liquefied petroleum
gas flames, are not considered in this paper. For the type of flames considered,
most papers presented in the fire detection literature assumed that for a given
fire pixel, the value of red channel is greater than the green channel, and the
value of the green channel is greater than the value of blue channel. However,
laboratory experiments show that above assumption ignores some pixel in fire

334 H.D. Duong and D.T. Tinh

Fig. 2. Histogram and average value of red, green, and blue channels in a fire region

blobs, then any features extracted from potential fire blobs may be unreliable.
To overcome that difficulty, this proposal considers the average value of each
channel in a region instead of themselves. For example in Fig. 2, average value
of red is greater than the average value of green and the average value of green
greater than average value of blue channel.

The average value of red, green, and blue channels in a fire region are com-
puted as

f̄R =
1

DH ×DW

DH∑
i=1

DW∑
j=1

BR
kl(i, j), (3)

f̄G =
1

DH ×DW

DH∑
i=1

DW∑
j=1

BG
kl(i, j), (4)

and

f̄B =
1

DH ×DW

DH∑
i=1

DW∑
j=1

BB
kl(i, j), (5)

where BR
kl(i, j), B

G
kl(i, j), and BB

kl(i, j) are the red, green, and blue channels
representation of Bkl(i, j), respectively. This proposal use f̄R, f̄G, and f̄B as
three features of a potential region for classification in Section 3.

2.3 Skewness

Denote pR(v) as normalized histogram of red channel in a region, v is a intensity,
then pR(v) gives the estimate of the probability of occurrence of intensity v. In
this case, the third moment of pR(v) measures its symmetry with respect to the
mean, it is also called the skewness (see [7], [8]). The skewness is zero when the

An New Approach to Vision-Based Fire Detection 335

distribution is symmetric, positive if the distribution shape is more spread to
the right and negative if it is more spread to the left, as illustrated in Fig. 3.
This causes the skewness of red channel distribution to have a negative value.
For this reason, the skewness is used as an useful feature to identify fire regions.

Fig. 3. Illustration of negative, positive skew and red channel histogram of a fire region

Denote sR as the skewness of the red channel distribution of candidate region
Bkl, it is defined as

sR =
1

DH×DW

∑DH

i=1

∑DW

j=1(B
R
kl(i, j)− f̄R)

3

σ3
fR

(6)

where σfR is the standard deviation of pR(v). This proposal uses sR as one
feature of a candidate region for classification in Section 3.

2.4 Coarseness

This proposal considers the spatial color variation in each potential region to
distinguish between fire region and fire-like coloured region. Unlike other false-
alarm regions, for example a region of red t-shirt in Fig. 4, fire regions have
a significant amount of variability in the pixel values. The variance is a well-
known metric (see [7], [8]) to indicate the amount of coarseness or the spatial
color variation in the pixel values. Hence, this work uses the variance of the
region as a feature to eliminate non-fire region from a candidate region.

Denote c as the coarseness of candidate region Bkl, it is defined as

c =
1

DH×DW

∑DH

i=1

∑DW

j=1(Bkl(i, j)− f̄R)
2

σ2
fR

(7)

In this proposal, c is fifth feature of a candidate region for classification.

336 H.D. Duong and D.T. Tinh

Fig. 4. Spatial variation in fire and in a fire-like coloured object

3 Fire Detection Algorithm

3.1 Bayes Classifier

Bayesian decision theory is a fundamental statistical approach to the problem of
pattern recognition. It makes the assumption that the decision problem is posed
in probabilistic terms. For each candidate region, five independent features as
aforementioned are evaluated and constructed a vector x as

x =

⎡⎢⎢⎢⎢⎣
f̄R
f̄G
f̄B
sR
c

⎤⎥⎥⎥⎥⎦ , (8)

and this proposal uses x to indicate candidate region contained fire or not by
applying Bayes classifier.

Without the lost of generality, assume that we have Ω different classes. Using
the Bayes inference, we can represent

P (ωi | x) = p(x | ωi)P (ωi)

p(x)
, (9)

where ωi is i-th class, i = 1..Ω. One of the most useful and widely used ways to
represent pattern classifier is by use of the discriminant functions

gi(x) = ln p(x | ωi) + lnP (ωi). (10)

The classifier is said to assign a feature vector x to class ωi if gi(x) > gj(x) for
all j �= i. If the densities p(x | ωi) are multivariate normal - Eq. (10) will take
the form

gi(x) = −1

2
(x− μi)

TC−1
i (x− μi)− K

2
ln 2π − 1

2
ln |Ci|+ lnP (ωi) (11)

An New Approach to Vision-Based Fire Detection 337

For the case when the covariance matrices Ci are different for each category, the
resulting discriminant functions will be inherently quadratic

gi(x) = xTWix+ wT
i x+ ωi0 (12)

where

Wi = −1

2
C−1

i , (13)

wi = C−1
i μi, (14)

and

ωi0 = −1

2
μT
i C

−1
i μi − 1

2
ln |Ci|+ lnP (ωi), (15)

where μi is the mean vector, Ci is the covariance matrix of class i.
Let ω1 represents the fire class and ω2 represents the non-fire class. For two-

category case a single discrimination function is used

g(x) ≡ g1(x)− g2(x), (16)

and the following decision rule is used: Decide ω1 if g(x) > 0; otherwise decide
ω2.

In order to classify the class fire from the class non-fire, the Bayes classifier
needs to estimate the mean and the variance of each class. Therefore, it requires
a statistical training, based on observed values, to determine a decision function
that separates the classes, this task is presented in experimental section.

3.2 Algorithm

Different from most existing fire detection algorithms in which they return two-
state fire alarm containing fire or not for a input frame (or video). This paper
proposes a new algorithm that give a fire-alarm rate (FiAR) in range [0− 1] for
each frame. The fire-alarm rate is defined as

FiAR =

{
n/Θ, if n < Θ

1, Otherwise
(17)

where n is number of region contained fire in current frame, Θ is a decision
threshold, it is found out by practising. For input frame f , our proposed algo-
rithm does following steps:

1. Determine all motion region;
2. For each motion region Bkl:

(a) Evaluate vector of features x as presented in (8);
(b) Indicate Bkl is contained fire or not by using (16).

3. Calculate the fire-alarm rate by using (17);
4. Show the FiAR as output of algorithm.

A block diagram of the algorithm is given in Fig. 5.

338 H.D. Duong and D.T. Tinh

Fig. 5. Block diagram of proposed algorithm

4 Experiments

To evaluate the proposed approach, we collected 18 videos and used the data sets
available from the site http://signal.ee.bilkent.edu.tr/VisiFire which consists of
10 fire videos and 8 non-fire videos. The video resolution is 320 × 240 and the
frame rate varies from 15 Hz to 30 Hz.

For training data, we extracted 8645 fire regions and 11170 non-fire regions
from 9 test videos, the region is divided in size of 8 × 6. Then a vector of
features x is established for each region. These vectors of fire and non-fire class
are applied for training phase to get classifier decision function (16).

4.1 Experiment 1

Assume that, when number of fire pixels is equal or greater than n/4, where n is
number of pixels in frame f , then the accurate fire-alarm rate, denote FiARA,
is 1. Approximately, the accurate fire-alarm rate can be defined as

FiARA =

{
m/Φ, if m < Φ

1, Otherwise
(18)

where m is number of fire regions indicated manually in current frame, and
Φ = (H ×W)/4.

An New Approach to Vision-Based Fire Detection 339

Fig. 6. Samples for fire-alarm rate comparing

Fig. 7. Comparison of fire-alarm rate

This experiment shows the result of comparing between FiAR defined by (17)
and FiARA defined by (18), and 8 frames in Fig. 6 are used.

The results of comparing is showed in Fig.7. In this, 7/8 frames have same
fire-alarm rate. In the case of fame f5, in spite of having large accurate fire-alarm
rate, the proposed fire-alarm rate is small. The cause of this situation is number
of detected motion region in a large fire is small.

4.2 Experiment 2

This experiment uses assumption that, frame f contains fire if FiAR > 0, to
compare with three others: Method 1 [4], Method 2 [1] and Method 3 [2]. Data
for this experiment includes 10 fire videos and 8 non-fire videos. The video
resolution is 320 × 240 and the frame rate varies from 15 Hz to 30 Hz. There
are approximately 11,676 frames. Table 1 shows the performance comparison
of the proposed method and others. The proposed method outperforms other
algorithms in terms of consistently increasing accuracy of fire detection and
decreasing error rate.

5 Conclusions

In this paper, a new approach to vision-based fire detection is presented. By
using fire characteristics in a region as a vector of statistical features, this work

340 H.D. Duong and D.T. Tinh

Table 1. Performance comparison of the proposed method and other methods

Method False-Positive False-Negative

Proposed Method 0.160% 0.025%

Method 1 0.270% 0.260%

Method 2 0.680% 0.028%

Method 3 0.290% 12.360%

employed Bayes classifier for the vector to distinguish fire or non-fire region. Then
a fire detection algorithm and a fire-alarm rate are presented. The experiments
show that the fire-alarm rate can be used as a meaningful alarm. Moreover, the
proposed method provided the output which can reach the most accurate in
false-positive and false-negative. In spite of not comparing about the complexity
and time consuming of our algorithm with others, it is easy to recognize this
algorithm is an efficient approach for video-based fire detection.

Acknowledgments. This work was funded by the Vietnam National Foun-
dation for Science and Technology Development (NAFOSTED), Grant No 102.-
012010.12. and the Reseach Fund RFit@LQDTU, Faculty of Information
Technology, Le Quy Don Technical University.

References

1. Ho, C.-C.: Machine vision-based real-time early flame and smoke detection. Meas.
Sci. Technol. 20(4), 045502, 13 p (2009)

2. Borges, P.V.K., Izquierdo, E.: A probabilistic approach for vision-based fire detec-
tion in videos. IEEE Trans. Circuits Syst. Video Technol. 20(5), 721–731 (2010)

3. Celik, T., Ozkaramanl, H., Demirel, H.: Fire and smoke detection without sensors:
image processing - based approach. In: Proc. 15th European Signal Processing Conf.,
pp. 1794–1798 (2007)

4. Ko, B.C., Cheong, K., Nam, J.: Fire detection based on vision sensor and support
vector machines. Fire Safety J. 44(3), 322–329 (2009)

5. Duong, H.D., Tinh, D.T.: A Novel Computational Approach for Fire Detection. In:
Proc. of KSE 2010 The Second International Conference on Knowledge and Systems
Engineering, Hanoi, Vietname, pp. 9–13 (2010)

6. Habiboglu, Y.H., Günay, O., Çetin, A.E.: Covariance matrix-based fire and flame
detection method in video. Machine Vision and Applications, doi: 10.1007/s00138-
011-0369-1

7. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Reading
(1992)

8. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Academic, New York (2006)
9. Fire detection sample video clips, http://signal.ee.bilkent.edu.tr/VisiFire

http://signal.ee.bilkent.edu.tr/VisiFire

Automatic Discovery of Optimisation Search

Heuristics for Two Dimensional Strip Packing
Using Genetic Programming

Su Nguyen1, Mengjie Zhang1, Mark Johnston1, and Kay Chen Tan2

1 Victoria University of Wellington, Wellington, New Zealand
2 National University of Singapore, Singapore

{su.nguyen,mengjie.zhang}@ecs.vuw.ac.nz, mark.johnston@msor.vuw.ac.nz
eletankc@nus.edu.sg

Abstract. This paper presents a genetic programming based hyper-
heuristic (GPHH) for automatic discovery of optimisation heuristics for
the two dimensional strip packing problem (2D-SPP). The novelty of this
method is to integrate both the construction and improvement procedure
into a heuristic which can be evolved by genetic programming (GP). The
experimental results show that the evolved heuristics are very competi-
tive and sometimes better than the popular state-of-the-art optimisation
search heuristics for 2D-SPP. Moreover, the evolved heuristics can search
for good packing solutions in a much more efficient way compared to the
other search methods.

Keywords: genetic programming, bin packing, heuristics.

1 Introduction

Cutting stock problems are optimisation problems with many applications in in-
dustry. The goal is to minimise waste when cutting stock sheets of material into
smaller pieces. This paper considers the two dimensional rectangular strip pack-
ing problem (2D-SPP) which arises in many industries such as furniture, clothing
and glass production. For these problems, a given set of rectangular pieces must
be arranged onto a large rectangular sheet with a fixed width and a height to be
minimised. Lodi et al. [20] present a good overview of two dimensional packing
problems. They classified 2D-SPP based on whether rotation of rectangular pieces
or guillotine cut is applied. In this paper, we focus on the 2D-SPP in which pieces
are not allowed to rotate and guillotine cut is not required [20,21].

Some exact optimisation methods such as linear programming [15] and tree
search [13,16] have been proposed to solve 2D-SPP. Since this problem is known
to be NP-hard [20,21], the exact methods can only be used to solve small problem
instances. For that reason, heuristic methods are needed to deal with larger
problems instances. The focus of the proposed heuristic methods is the placement
policy and the order in which the pieces will be packed. Baker et al. [4] proposed
the bottom-left-fill (BLF) heuristic which tries to place the pieces as low as

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 341–350, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

342 S. Nguyen et al.

possible and as far to the left as possible. Chazelle [12] proposed a more efficient
implementation of this heuristic and presented an optimal method to determine
the ordered list of positions where a piece can be placed. Belov et al. [5] modified
BLF to Bottom-left-right (BLR) used in their iterative heuristics. They also
proposed a Substitution (SubKP) approach that fills every most bottom-left
free hole in a greedy one-dimensional way (only considering the piece’s width)
by solving a one-dimensional knapsack problem. Another popular construction
heuristic for 2D-SPP is best-fit (BF) proposed by Burke et al. [7]. This heuristic
keeps track of, and updates, all available slots in the stock sheet after each piece
is placed. It handles each placement by choosing the lowest slot and filling it with
the piece with the largest width that can fit into that slot. If no piece can fit into
the slot, the slot will be merged with its lowest neighbour to make a wider slot
and the slot structure will be updated. This heuristic was shown to be better than
previously published heuristics. It was also enhanced by simulated annealing
(BF+SA) [10] to deal with the limitation of BF at the end of the packing. More
recently, Burke et al. [11] proposed a genetic programming based hyper-heuristic
(GPHH) method [8] to learn construction heuristics for 2D- SPP. The evolved
heuristics were shown to be very promising when they were compared with BF [7]
and some meta-heuristic methods. They also provided some interesting insights
on the generality of the evolved heuristics. However, the evolved heuristics still
cannot achieve results competitive with those obtained by the state-of-the-art
optimisation methods.

The limitation of construction heuristics is that they cannot always guarantee
a good solution. For that reason, they are often hybridised with other meta-
heuristic methods. Jakobs [18] applied a genetic algorithm (GA) to find a good
ordering of pieces which will be packed by a simple bottom left (BL) heuristic.
Some GA methods [3,17] were also proposed based on this idea with differ-
ent packing heuristics. Hopper and Turton [17] presented experimental results
from different meta-heuristic methods with BLF and BL [18] as the construction
heuristic. The combinations of meta-heuristic methods and BLF [5] are shown
to give better performance. Alvarez-Valdes et al. [2] proposed reactive GRASP
(R-GRASP), a state-of-the-art heuristic for 2D-SPP. This method was able to
outperform other meta-heuristic methods and it is still one of the best methods
now. The problem with this method is that its performance depends on many
parameters [11]. Belov et al. [5] proposed the SVC(SubKP) which iteratively
changes the profits of pieces to be used in the SubKP construction heuristic.
This method is very competitive as compared to R-GRASP [2] when tested on
a large number of instances. Burke et al. [9] presented a simple but effective
squeaky wheel optimisation (SWO) method for 2D-SPP. The key idea of SWO
is to iteratively construct a solution by taking into account the elements of the
problem that result in bad results in previous iterations. When dealing with 2D-
SPP, Burke et al. [9] iteratively constructed a solution and penalised the pieces
that exceed the lower bound when placed in the stock sheet. Their method used
a variant of BF [7] as the construction heuristic where the pieces with the highest
accumulative penalty will be placed in the slot first instead of the fittest piece.

Automatic Discovery of Optimisation Search Heuristics 343

The results showed that SWO was competitive and sometimes better than other
complex algorithms such as BF+SA, R-GRASP, and SVC(SubKP). More re-
cently, Aggoun et al. [1] also reported on an constraint programming method to
deal with practical constraints in industrial packing problems.

In this paper, we propose a GPHH method to evolve effective and efficient
heuristics for 2D-SPP. This work is motivated by the recent advances in com-
puting power that allows us to automatically discover new heuristic methods for
hard optimisation problems. The previous studies showed that effective methods
for solving 2D-SPP require a good construction heuristic and iterative procedure
to search for a good ordering of pieces. Burke et al. [11] was a great effort to han-
dle the first requirement. Meanwhile, the second requirement is still needed to
be fulfilled manually. This paper aims to develop a GPHH method that can sat-
isfy these two requirements simultaneously. We will focus on the following three
research objectives: (1) developing a new GPHH method to evolve heuristics
for 2D-SPP, (2) comparing the results obtained by the evolved heuristics with
other state-of-the-art methods, and (3) analysing the behaviour of the evolved
heuristics.

The rest of this paper is organised as follows. Section 2 will describe the
proposed GPHH method. Section 3 provides the experimental results, the com-
parisons between the evolved heuristics with the existing methods, and some
insights into the evolved heuristics. Conclusions are given in Section 4.

2 The New Method

The biggest challenge when evolving a search heuristic for 2D-SPP is how to
handle the construction heuristic and iterative search procedure in such a way
that they can be easily be evolved by the proposed GPHH. A few methods have
been proposed in the GPHH literature for evolving local search heuristics [14,6].
Although the evolved local search heuristics were shown to be very effective, these
studies mainly focus on the improvement phases. In this section, we propose a
simple approach to integrating both construction and improvement heuristics to
be evolved by our GPHH.

2.1 Representation of Search Heuristics

The construction part of our search heuristics is similar to that in [11]. The
heuristics evolved by their GPHH [11] is a mathematical function to determine
the piece, its orientation and the slot to place it based on some features of the
pieces and the current slot structure. In each placement step, the heuristic will
calculate the score for each combination of piece, orientation, allocation, and
slot, and the combination with the highest score will be applied for the next
placement (orientation, allocation, and slot is fixed in our evolved heuristics to
reduce the computational effort of the proposed GPHH). Since these evolved
heuristics consider many pieces of information when deciding where to put a
piece, they can provide better results compared to BF [7]. However, these evolved
heuristics cannot estimate the impact of each placement decision on the final
solution, which makes them less competitive compared to complex optimisation

344 S. Nguyen et al.

Table 1. Terminal and Function sets

Function +, −, ∗, protected division %, min, max, abs, and If

pW the width of the piece
pH the height of the piece
pA the area of the piece
sH the height of the slot
sWL the difference between slot and piece width
shW the width of the sheet
shH the lower bound for optimal height of the sheet multiplied by 1.5
ephemeral random constant

pP the average penalty of the pieces
ppX the X-coordinate where the piece is placed in the previous solution
ppY the Y-coordinate where the piece is placed in the previous solution

search methods. To handle this problem, our evolved heuristics will also include
the statistics from previous packing solutions, which allow the evolved heuristics
to iteratively correct the mistakes made in previous placement decisions.

The complete function set and the terminal set used to learn the search heuris-
tics are given in Table 1. In the function set, we include min, max, abs, and If

to allow GP to evolve sophisticated heuristics. The lower part of the table shows
all the terminals. The first eight terminals are the same as the ones used in [11]
and are self explainable. The last three terminals provide the information about
previous packing solutions. While ppX and ppY give the location where the piece
is placed in the previous packing solution, pP measures the average penalty of
the piece from all previous packing solutions, which indicates the difficulty of
placing the piece without increasing the height of the sheet. The way a penalty
is calculated here is the same as used in [9], which penalises the piece an amount
equal to its height if its top corners exceed the lower bound (simply calculated
by dividing the total area of all pieces by the width of the sheet).

+

-

ppY sH

+

pP pW

. . .3

3

5

2 3

2

4

1

pP = 2.0
ppY = 0.0

10

sH = 4.0

sH = 1.0

Lowest slot : sH = 0.0

pP = 2.5
ppY = 0.0

pP = 0.0
ppY = 0.0

pP = 2.0
ppY = 1.0

Score = 5.0 Score = 4.5 Score = 3.0 Score = 4.0

Fig. 1. Illustration of an evolved heuristic

Automatic Discovery of Optimisation Search Heuristics 345

An illustration of how an evolved heuristic is used is shown in Fig. 1. In the
figure, two pieces have been placed onto the sheet and we need to figure out
which piece should be placed next. Similar to the BF heuristic, the lowest slot
will be considered and we check whether there is any piece that can fit into
this slot. If the slot is too narrow for any piece, it will be raised to merge with
the lowest neighbour slot (refer to [7,9] for a more detailed description of BF).
Otherwise, the evolved heuristic (i.e. pP+ pW+ ppY− sH) will calculate the score
for each unpacked piece that can fit into the lowest slot and the piece with the
highest score will be placed next. In this example, the first piece has the highest
score since it has the highest sum of its width, penalty and previous placement
position in the vertical axis (the height of the lowest slot in this case is zero
and does not influence the scores of pieces). In our heuristic, we will place the
selected piece next to the tallest neighbouring [7] piece in the sheet, which is
the piece on the right in Fig. 1. This heuristic will be applied until all pieces
are placed onto the sheet. When the complete packing solution is obtained, ppX,
ppY (initially zero) and pP (initially one) are updated. The evolved heuristic will
iteratively generate new packing solution based on the new updated values of
ppX, ppY and pP. This iterative procedure is similar to that used in SWO [9].
However, the new placement decisions depend on the evolved heuristic instead
of depending only on the penalties of the pieces.

2.2 Fitness Function

To measure the quality of an evolved heuristic, it is applied to solve a set of
instances I = {I1, ..., IT } in the training set and the resulting objective values
hmax (the height of the highest rectangle piece in the packing solution) from all
instances are recorded. Since the objective values obtained by a heuristic H for
each instance are very different, we will measure the quality of a packing solution
by the relative deviation of its objective value from its lower bound as shown in
equation (1).

dev(H, In) =
Obj(H, In)− LB(In)

LB(In)
(1)

In this equation, Obj(H, In) is the minimum hmax obtained by applying H to
instance In, and LB(In) is the lower bound for instance In. The fitness of H on
the training set is calculated by equation (2).

devaverage(H) =

∑
In∈I

dev(H, In)

|I| (2)

2.3 The New GPHH Algorithm

Algorithm 1 shows how GP can be used to evolve search heuristics for 2D-SPP.
A number of instances will be selected to train the evolved heuristics. In each
generation, all heuristics in the population are evaluated by applying them to
solve each training instance. For an instance, an evolved heuristic iteratively
generates packing solutions as discussed in section 2.1 until the maximum num-
ber of iterations (maxIteration) is reached. The parameters for the algorithm

346 S. Nguyen et al.

are shown in Table 2. The initial GP population is created using the ramped-
half-and-half method [19]. Tournament selection of size 7 is used to select an
individual for the genetic operators. When solving each instance, the evolved
heuristic will be applied with maxIteration of 100 or we stop when hmax is
equal to the lower bound. Our training set is selected from the classes N1–N8
including randomly generated instances with known optimal solutions [11]. In
order to obtain heuristics with good generality, we will use 10 instances from the
classes N4, N5, and N6 with 40, 50 and 60 pieces respectively which are shown
to provide good results in [11]. There are 10× 3 = 30 instances in total used to
train the search heuristics.

Algorithm 1. GPHH to evolve search heuristics for 2D-SPP

load training instances I ← {I1, I2, . . . , IT }
randomly initialise the population P ← {H1,H2, . . . ,Hpopsize}
H∗ ← null, fitness(H∗) = +∞ and generation ← 0
while generation ≤ maxGeneration do

foreach Hi ∈ P do
foreach Ik ∈ I do

iteration ← 0
obj∗ = +∞
while iteration ≤ maxIteration do

hmax ← use Hi to construct a packing solution for Ik
if hmax < obj∗ then

obj∗ ← hmax

end
if hmax = LB(Ik) then

break
end
update ppX, ppY and pP

iteration ← iteration+ 1
end
Obj(Hi, Ik) ← obj∗

end
evaluate fitness(Hi, Ik) by using equation (2)
if fitness(Hi) < fitness(H∗) then

H∗ ← Hi

fitness(H∗) ← fitness(Hi)
end

end
P ← apply reproduction, crossover, mutation to P
generation ← generation+ 1

end
return H∗

Table 2. Parameters of the proposed GPHH

Population Size 1000 Crossover rate 90% Mutation rate 5%
Reproduction rate 5% Generations 50 Max-depth 8

Automatic Discovery of Optimisation Search Heuristics 347

3 Results

Thirty independent runs of the proposed GPHH are performed and the search
heuristic resulting from each run is recorded. These evolved heuristics are tested
on a set of popular benchmark instances in the 2D-SPP literature [7,17,22]. The
performance of the evolved heuristics are reported in Table 3 and compared to
those of BF [7], BF+SA [10], GA+BLF and SA+BLF [17] (only the best result
from these two algorithms is shown and referred to as MH in Table 3), R-GRASP
[2], and SWO [9]. The results of BF+SA, R-GRASP and SWO are obtained from
60 second runs (for each instance) [11]. The average and the best results for each
instance obtained by the 30 evolved heuristics with maxIteration = 100 are
shown in the columns Evolved. The Best Evolved columns show the results from
60 second runs (coded in Java and run on Intel Core i5-2400 3.10 GHz CPUs,
single thread) of the evolved heuristic H∗

30 with the smallest fitness among 30
evolved heuristics.

The first and second columns in Table 3 show the names of the 2D-SPP in-
stances and their corresponding optimal hmax. The next three columns show the
hmax obtained by BF, BF+SA, and MH. Two columns of R-GRASP present the
average and the best hmax obtained by this method in 10 independent runs. For
SWO and H∗

30, hmax, Iterbest, and tbest respectively indicate the best objective
value, the number of iterations (number of generated packing solution) and the
time (in seconds) to obtain those values. It is noted that the evolved heuristics
can outperform BF, BF+SA and MH in most instances. The evolved heuris-
tics also show very competitive results as compared to R-GRASP and SWO.
The results of the evolved heuristics are very close to the results obtained by
R-GRASP and SWO and sometimes better (the bold values in Table 3 indi-
cates that H∗

30 provides results better than those obtained by other methods).
Given that the evolved heuristics only runs for 100 iterations during the training
phase, these results show that they are not only efficient but also very effective.
When we allow the best evolved heuristic H∗

30 to run longer, the obtained results
are very interesting. For N1–N13 instances, H∗

30 totally outperforms R-GRASP
and SWO. It is also able to find the optimal solutions for N4 and N13, which
cannot be found by R-GRASP and SWO. For c1p1–c7p3 and the nice and path
instances, H∗

30 is still very competitive compared to R-GRASP and SWO and
sometimes better than the best results obtained by these two algorithms.

Regarding the computation time, H∗
30 is very efficient. Since we only allow

the the evolved heuristics to run for 100 iterations during the training/evolving
phase, this restricted computation budget force the evolved heuristics to be more
effective through their search. In most cases, H∗

30 can find the best solutions in
much fewer iterations compared to SWO. This observation shows that the incor-
poration of the construction heuristic and the iterative procedure in the evolved
heuristics can help guide the search more effectively; and therefore can reduce
the computational effort. Moreover, similar to SWO, the evolved heuristics are
also deterministic and only require one run compared to stochastic approaches
such as BF+SA, R-GRASP or MH, which require multiple runs to obtain the
best result.

348 S. Nguyen et al.

Table 3. Performance of evolved heuristic on the zero waste instances

Inst. Opt. BF BF MH R − GRASP SWO (60s) Evolved Best Evolved (60s)
name +SA mean best hmax Iterbest tbest mean best hmax Iterbest tbest

N1 40 45 40 40 40 40 40 2 < 0.1 40 40 40 1 < 0.01
N2 50 53 50 51 50 51 50 2888 0.5 50.9 50 50 159 0.08
N3 50 52 51 52 51 51 50 1259185 41.9 51.1 51 50 6639 0.23
N4 80 83 82 83 81 81 81 16 < 0.1 81.6 81 80 12447 0.48
N5 100 105 103 106 102 102 101 558000 41.8 103.1 102 101 15811 0.86
N6 100 103 102 103 101 101 101 4065 0.8 101.6 101 101 353 0.03
N7 100 107 104 106 101 101 101 55 0.2 101.3 101 101 102 0.01
N8 80 84 82 85 81 81 81 52446 8.3 82 81 81 635 0.08
N9 150 152 152 155 151 151 151 14819 3.6 151.6 151 151 107 0.02

N10 150 152 152 154 151 151 151 329 0.9 151.6 151 151 70 0.04
N11 150 152 153 155 151 151 151 81 0.7 151.1 151 151 9 0.01
N12 300 306 306 312 303.2 303 304 128 0.9 302.3 301 302 26 0.09
N13 960 964 964 − 963 963 966 65 9.0 961.9 961 960 170 20.48
c1p1 20 21 20 20 20 20 20 26 < 0.1 20.1 20 20 42 0.02
c1p2 20 22 20 21 20 20 21 11 0.01 21 20 20 41 0.02
c1p3 20 24 20 20 20 20 20 2 < 0.1 20 20 20 5 < 0.01
c2p1 15 16 16 16 15 15 16 12 < 0.1 15.8 15 16 1 < 0.01
c2p2 15 16 16 16 15 15 15 1312 5.0 15.9 15 16 2 < 0.01
c2p3 15 16 16 16 15 15 15 17 < 0.1 15.2 15 15 1 < 0.01
c3p1 30 32 31 32 30 30 30 6360 0.7 31.1 31 31 26 < 0.01
c3p2 30 34 31 32 31 31 31 22 < 0.1 31.4 31 31 60 < 0.01
c3p3 30 33 31 32 30 30 30 7168 0.6 31 30 31 13 < 0.01
c4p1 60 63 61 64 61 61 61 2360 0.4 61.9 61 61 709 0.04
c4p2 60 62 61 63 61 61 61 774 0.5 62.2 61 61 450 0.02
c4p3 60 62 61 62 61 61 61 290 0.6 61.3 61 61 74 < 0.01
c5p1 90 93 91 94 91 91 91 13 < 0.1 91.5 91 91 65 0.01
c5p2 90 92 91 95 91 91 91 1922 0.9 91.9 91 91 417 0.04
c5p3 90 93 92 95 91 91 91 8594 1.4 91.7 91 91 147 0.02
c6p1 120 123 122 127 121.9 121 122 137 0.5 122.2 122 121 1101 0.18
c6p2 120 122 121 126 121.9 121 121 2114 1.4 122.6 121 121 1340 0.20
c6p3 120 124 122 126 121.9 121 122 544 0.7 122.2 121 121 1052 0.17
c7p1 240 247 244 255 244 244 243 22142 15.2 244.1 243 242 3934 2.26
c7p2 240 244 244 251 242.9 242 242 2352 2.3 243.5 242 241 51508 26.02
c7p3 240 245 245 254 243 243 243 1632 1.8 244 243 242 1659 0.88

Nice1 100 107.4 104 108.2 103.9 103.7 103.7 388299 12.3 106.8 101.4 101.4 136 0.09
Nice2 100 108.5 104.4 112 104.7 104.6 104.9 253034 21.7 107.6 106 103.9 282775 17.72
Nice3 100 107 105 113 104.5 104 104.6 51117 14.1 106 104.6 103.8 18036 3.66
Nice4 100 105.3 104.7 113.2 103.8 103.6 103.8 50353 48.3 104.9 103.6 102.8 2077 1.38
Nice5 100 103.5 103.5 111.9 102.4 102.2 103.3 9607 49.2 103.7 102.2 102.1 2553 9.66
Nice6 100 103.7 103.8 − 102.3 102.2 102.9 857 19.9 103.1 101.8 101.7 672 10.14
Path1 100 110.1 103.1 106.7 104.2 104.2 106.9 4106 0.8 109.1 106.8 106.9 15897 0.26
Path2 100 113.8 103.4 107 101.9 101.8 101.7 727801 58.4 103 101.8 102.5 7302 0.32
Path3 100 107.3 103 109 102.7 102.6 102.9 19687 6.6 104.9 103.6 104.5 699 0.10
Path4 100 104.1 103.4 108.8 102.3 102 102 31767 30.7 103.8 102.6 103.1 1902 0.98
Path5 100 103.7 103.5 111.1 103.2 103.1 103.2 4829 24.6 104.5 103.4 103.4 567 1.97
Path6 100 102.8 102.9 − 102.7 102.5 102.8 2904 59.8 104 102.6 102.5 694 8.39

To better understand the evolved heuristic, in Fig. 2(b) we have plotted the
values of hmax obtained through the search of the evolved heuristic H∗

30 against
those obtained by SWO. In the two benchmark instances N4 and N13, although
their hmax values at the few first iterations are quite similar, there are a lot more
disturbances in the search of SWO compared to H∗

30. It is noted that H∗
30 also

has disturbances in its search but the frequency as well as the magnitudes of
these disturbances are much smaller than those of SWO. This feature allows
H∗

30 to balance between its exploration and exploitation abilities, which makes
it more effective and more efficient than SWO.

Automatic Discovery of Optimisation Search Heuristics 349

0 50 100 150 200 250 300 350 400 450 500
80

90

100

110

120

130

140

Iteration

h m
ax

SWO
Best Evolved

(a) Instance N4

0 50 100 150 200 250 300 350 400
960

970

980

990

1000

1010

1020

Iteration

h m
ax

SWO
Best Evolved

(b) Instance N13

Fig. 2. Behaviours of SWO and the best evolved heuristic H∗
30

4 Conclusions

This paper proposed a novel GPHH method for evolving optimisation search
heuristics for 2D-SPP. The key idea of this method is the representation of the
evolved heuristics in GP which helps the evolved heuristics to handle both the
construction and the iterative search procedure simultaneously. The experimen-
tal results showed that the evolved heuristics can efficiently solve 2D-SPP and
the results obtained by the evolved heuristics are very competitive with, and
sometimes better than the state-of-the-art search methods for 2D-SPP. In sev-
eral instances, the evolved heuristics can also find optimal or near optimal results
that cannot be found by other methods. This is the first time that evolved heuris-
tics automatically generated by a GPHH can compete with the state-of-the-art
methods for 2D-SPP. In future studies, we will perform an extensive analysis
of the evolved heuristics to understand better how they can solve the 2D-SPP
and how to enhance their performance. Also, we will extend this work to deal
with other hard combinatorial optimisation problems, e.g., three dimensional bin
packing, job scheduling, and time-tabling.

References

1. Aggoun, A., Beldiceanu, N., Carlsson, M., Fages, F.: Integrating rule-based mod-
elling and constraint programming for solving industrial packing problems. ERCIM
News 2010(81) (2010)

2. Alvarez-Valdes, R., Parreño, F., Tamarit, J.M.: Reactive GRASP for the strip-
packing problem. Computers and Operations Research 35(4), 1065–1083 (2008)

350 S. Nguyen et al.

3. Babu, A.R., Babu, N.R.: Effective nesting of rectangular parts in multiple rect-
angular sheets using genetic and heuristic algorithms. International Journal of
Production Research 37(7), 1625–1643 (1999)

4. Baker, B.S., Coffman, E.G., Rivest, R.L.: Orthogonal packings in two dimensions.
SIAM Journal on Computing 9, 846–855 (1980)

5. Belov, G., Scheithauer, G., Mukhacheva, E.A.: One-dimensional heuristics adapted
for two-dimensional rectangular strip packing. Journal of the Operational Research
Society 59, 823–832 (2007)

6. Burke, E.K., Hyde, M.R., Kendall, G.: Grammatical evolution of local search
heuristics. IEEE Transactions on Evolutionary Computation (2011) (to appear)

7. Burke, E.K., Kendall, G., Whitwell, G.: A new placement heuristic for the orthog-
onal stock-cutting problem. Operations Research 52(4), 655–671 (2004)

8. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.: Hyper-
heuristics: A survey of the state of the art. Tech. Rep. Computer Science Technical
Report No. NOTTCS-TR-SUB-0906241418-2747, School of Computer Science and
Information Technology, University of Nottingham (2010)

9. Burke, E.K., Hyde, M.R., Kendall, G.: A squeaky wheel optimisation methodol-
ogy for two-dimensional strip packing. Computers and Operations Research 38(7),
1035–1044 (2011)

10. Burke, E.K., Kendall, G., Whitwell, G.: A simulated annealing enhancement of the
best-fit heuristic for the orthogonal stock-cutting problem. INFORMS Journal on
Computing 21(3), 505–516 (2009)

11. Burke, E., Hyde, M., Kendall, G., Woodward, J.: A genetic programming hyper-
heuristic approach for evolving 2-d strip packing heuristics. IEEE Transactions on
Evolutionary Computation 14, 942–958 (2010)

12. Chazelle, B.: The bottom-left bin-packing heuristic: An efficient implementation.
IEEE Transactions on Computers 32(8), 697–707 (1983)

13. Christofides, N., Whitlock, C.: An algorithm for two-dimensional cutting problems.
Operations Research 25(1), 30–44 (1977)

14. Fukunaga, A.: Automated discovery of local search heuristics for satisfiability test-
ing. Evolutionary Computation 16, 21–61 (2008)

15. Gilmore, P.C., Gomory, R.E.: A linear programming approach to the cutting-stock
problem. Operations Research 9(6), 849–859 (1961)

16. Hifi, M., Zissimopoulos, V.: A recursive exact algorithm for weighted two-
dimensional cutting. European Journal of Operational Research 91(3), 553–564
(1996)

17. Hopper, E., Turton, B.: An empirical investigation of meta-heuristic and heuris-
tic algorithms for a 2d packing problem. European Journal of Operational Re-
search 128(1), 34–57 (2001)

18. Jakobs, S.: On genetic algorithms for the packing of polygons. European Journal
of Operational Research 88(1), 165–181 (1996)

19. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press (1992)

20. Lodi, A., Martello, S., Vigo, D.: Heuristic and metaheuristic approaches for a class
of two-dimensional bin packing problems. INFORMS Journal on Computing 11(4),
345–357 (1999)

21. Lodi, A., Martello, S., Vigo, D.: Recent advances on two-dimensional bin packing
problems. Discrete Applied Mathematics 123, 379–396 (2002)

22. Mumford-Valenzuela, C.L., Vick, J., Wang, P.Y.: Heuristics for large strip pack-
ing problems with guillotine patterns: an empirical study. In: Resende, M.G.C.,
de Sousa, J.P., Viana, A. (eds.) Proceedings of the Metaheuristics International
Conference (MIC 2001), pp. 501–522 (2001)

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 351–360, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Solving Graph Coloring Problem
by Fuzzy Clustering-Based Genetic Algorithm

Young-Seol Lee and Sung-Bae Cho

Dept. of Computer Science, Yonsei University, Seoul 120-749, Korea
tiras@sclab.yonsei.ac.kr, sbcho@cs.yonsei.ac.kr

Abstract. The graph coloring problem is one of famous combinatorial
optimization problems. Some researchers attempted to solve combinatorial
optimization problem with evolutionary algorithm, which can find near optimal
solution based on the evolution mechanism of the nature. However, it
sometimes requires too much cost to evaluate fitness of a large number of
individuals in the population when applying the GA to the real world problems.
This paper attempts to solve graph coloring problem using a fuzzy clustering
based evolutionary approach to reduce the cost of the evaluation. In order to
show the feasibility of the method, some experiments with other alternative
methods are conducted.

Keywords: cluster based GA, graph coloring, fuzzy clustering.

1 Introduction

The graph coloring problem is one of the most famous NP-hard problems. The
problem requires assignment of colors to each vertex in a given graph with a
constraint that two colors assigned to two adjacent vertices must be different. The key
point of the problem is to find a minimal number of colors for the color assignment.
Some practical applications for optimal resource assignment are related to graph
coloring problem. Because of the NP-completeness of the coloring problem, many
heuristic methods [1, 2, 3] have been developed.

Genetic algorithm is one of the best solutions to solve the graph coloring problem,
and it was often used to find optimal solution for many problems such as traveling
salesman problem [4], the quadratic assignment problem [5] and the bin-packing
problem [6] and have shown competitive performance. However, genetic algorithm
requires large population size and much cost to evaluate the population to discover
optimal solution. In some cases with expensive evaluation cost such as game AI, robot
AI and interactive GA, it is difficult to evaluate a large population in practical time.
Some researchers have developed a method to estimate fitness values of the whole
population by evaluating the part of population [7]. The main point here is to select the
part of population and reduce evaluation cost for the graph coloring problem.

In this paper, we present a fuzzy clustering-based genetic algorithm to reduce the
cost of coloring problem. It evaluates only the part of individuals and estimates fitness

352 Y.-S. Lee and S.-B. Cho

values of similar individuals with fuzzy integrals. This algorithm allows us to reduce
fitness evaluation cost, while maintaining the performance.

2 Background

2.1 Graph Coloring

Graph coloring is an optimization problem to determine a minimum number (the
chromatic number) of color classes C1, C2, ..., Ck in an undirected graph G which has

two components such as nodes V= {v1, ..., vn}, and edges E ={eij | ∃ an edge between

vi and vj}. The constraint is that vi and vj are not in the same color class for each edge
eij � E [8].

Suppose that c(vi) be the color (represented by a positive integer) assigned to the
node vi, a proper coloring satisfies the constraint:

� �eij � E, c(vi) � c(vj) (1)

In many cases, a random graph, which includes randomly generated edges between
nodes with given density d � [0,1], is used to evaluate the performance of an algo-
rithm to solve graph coloring. It is difficult to color optimally random graphs having
more than 100 nodes [9]. In this paper, we also use random graphs for performance
test.

2.2 Clustering Algorithms

Clustering algorithm is to group similar data items automatically [10] without any
prior knowledge. These groups are named as clusters. Cluster analysis has been ap-
plied in many fields such as image analysis and data mining [11, 12]. There are three
general categories of clustering techniques: hierarchical clustering, partitional cluster-
ing, and overlapping clustering.

Hierarchical clustering algorithm constructs hierarchical structures within clusters.
There are two different approaches for hierarchical clustering such as bottom-up ap-
proach and top-down approach. Bottom-up approach starts with n clusters, and re-
peats to merge similar clusters. Top-down approach divides one cluster with all data
items into some clusters [10, 13]. There are several hierarchical clustering algorithms
such as single-linkage algorithm, complete-linkage algorithm, average-linkage algo-
rithm, and Ward's method.

Partitional clustering usually generates clusters that partition the data into similar
groups. The goal of the algorithms is to assign data items that are close together into a
cluster. In many partitional algorithms, the number of clusters is determined in ad-
vance. K-means clsutering and hard c-means (HCM) clustering are good examples of
partitional clustering [10, 13].

Overlapping clustering is similar to partitional clustering except for no discrete
clusters. In overlapping clustering, each cluster can be overlapped with others and an

 Solving Graph Coloring Problem by Fuzzy Clustering-Based Genetic Algorithm 353

item can belong to more than one cluster. Fuzzy c-means (FCM) algorithm and b-
clump algorithm are included in this category [14, 15].

2.3 Related Works

There are many researchers to develop heuristic methods for a graph coloring prob-
lem. Omari et al. developed new heuristic graph coloring algorithms based on known
heuristic algorithms which are the Largest Degree Ordering (LDO) and Saturation
Degree Ordering (SDO) [1]. Hertz et al. used tabu search to solve the coloring prob-
lem [3]. It avoided cycling and local minima using tabu list of forbidden movements.
Similarly, Chams et al. applied a simulated annealing algorithm to the graph coloring
problem in [16]. Brelaz proposed heuristic methods to color the vertices of a graph
which rely on the comparison of the degrees and structure of a graph [2]. Lotfi et al.
developed a heuristic based graph coloring algorithm with little computational effort
to deal with large scale scheduling problems [17]. Johnson et al. applied a simulated
annealing to solve graph coloring problem [9]. Klotz et al. developed a heuristic algo-
rithm using backtracking [18].

Some researchers have studied to find solutions using evolutionary algorithms. Po-
rumbel et al. presented a hybrid evolutionary algorithm (named as Evocol) for the
graph coloring [19]. Eiben et al. used adaptive evolutionary algorithm that periodical-
ly changes the fitness function during evolution [20]. Fleurent et al. proposed a hybrid
algorithm combining genetic algorithm and tabu search [7]. It improved random mu-
tation by tabu search and developed a new crossover operator based on conflicting
nodes (adjacent nodes having the same color). The hybrid algorithm has shown good
results on the benchmark tests. However, it takes too much computing times to obtain
the results for some large instances. Costa et al. compared sequential algorithm and
evolutionary algorithm and presented a hybrid algorithm called EDM with two differ-
ent approaches [21].

3 Proposed Method

The whole algorithm repeats some operations for evolution process. It firstly gene-
rates initial population and applies clustering technique to the population before eval-
uation of them. Only one individual in each cluster is evaluated to estimate fitness to
reduce the cost [22]. The individual is decided by the centroid in the cluster. Fitness
values of all the population are calculated from the membership of each cluster. The
above process is iterated until optimal solution is found or the number of iteration
exceeds the fixed number. The algorithm is applied to other domains [23, 24]. It is
similar to general evolutionary approach except for clustering as shown in Fig. 1.

3.1 Encoding and Fitness Function

There are some encoding schemes such as order-based encoding and string-based
encoding as reported in [7]. The string-based encoding is used because it usually

354 Y.-S. Lee and S.-B. Cho

Fig. 1. Fuzzy clustering based evaluation

generates smoother change of fitness than order-based encoding. In the encoding
scheme, an individual s for a graph G=(V, E) with n nodes and k the number of avail-
able colors is denoted by s=<c(v1), c(v2), ..., c(vn)> which corresponds to an assign-
ment of the k colors to the nodes of the graph. Fig. 2 shows an example of string-
based encoding, where vi denotes the ith node in the graph and 1, 2 and 3 represent
first, second, and third colors, respectively. |S|, which is the size of the search space S,
is kn and it can become very large if the graph has more than 100 nodes.

Fig. 2. An example of string-based gene encoding with 3 colors

For each individual s, the fitness f(s) can be calculated with the number of violated
color constraints as shown in (2).

 =

==
∈ elsewhere 0

)()(if 1
),(where),()(

),(

ji
ji

Evv
ji

vcvc
vvcvvcsf

ji

(2)

where vi and vj are the ith and the jth nodes in a given graph and c(vi) and c(vj)
represent the colors of the ith and the jth nodes, respectively. The algorithm aims to
reduce f(s) until f(s)=0 for the fixed k to solve a k-coloring problem. 1 point crossover
is used and a color of nodes in gene code is changed by mutation.

 Solving Graph Coloring Problem by Fuzzy Clustering-Based Genetic Algorithm 355

3.2 Fitness Estimation Using Fuzzy c-means Clustering

In order to reduce evaluation cost, we separate individuals into several groups and
evaluate only one individual in each group. A fuzzy clustering algorithm is used to
separate the individuals instead of a hard clustering algorithm. The fuzzy clustering
approach is more likely to overcome the local minimum than hard clustering approach
because it makes soft boundaries among clusters through the use of fuzzy member-
ship values [11].

The fuzzy c-means algorithm is the most widely-used fuzzy clustering algorithm
proposed by Bezdeck [25]. It provides fuzzy membership values which mean how
much each individual belongs to a specific cluster. The fuzzy membership has a value
between 0 and 1. If the value is closer to 0, it indicates a weaker association to the
corresponding cluster. On the contrary, the value closer to 1 indicates a stronger asso-
ciation to the cluster. It is based on minimization of the objective function in (3).

= =

∞≤≤−=
N

i

C

j
ji

m
ijm mcxuJ

1 1

2 1 ,|||| (3)

where m is any real number greater than 1, uij is the degree of membership of xi in the
cluster j, xi is the ith of d-dimensional measured data, cj is the d-dimension center of
the cluster and ||*|| is any norm expressing the similarity between any measured data
and the center. In this case, ||xi-cj|| means the distance between centroid cj of the jth
cluster and an individual xi. It is calculated as shown in (4).

j
l
ji

l
i

l
j

l
il

j
l
i

N

l

l
j

l
iji

clcxlx

ccxc
cxccxccx

 of nodeth : , of nodeth :

elsewhere 0

)()(if 1
),(where),(||||

1

 =

==−
=

 (4)

Fig. 3. An example of distance between an individual xi and a cluster j

Fig. 3 shows an example of the calculation of the distance which is based on the com-
parison of colors of nodes between cj and xi.

Fuzzy partitioning is carried out through an iterative optimization of the objective
function shown previously, with the update of membership uij and the cluster centers
cj by (5).

356 Y.-S. Lee and S.-B. Cho

 =

=

=

−

⋅
=

−
−

=
N

i

m
ij

i

N

i

m
ij

ij
C

k

m

ki

ji

ij

u

xu

c

cx

cx
u

1

1

1

1

2
 ,

||||

||||

1
 (5)

The iteration stops when maxij{|uij
(k+1)-uij

(k)|}<ε, where ε is a termination criterion be-
tween 0 and 1, whereas k denotes the iteration step. This procedure converges to a
local minimum or a saddle point of Jm.

The fitness values of all individuals are estimated from the fitness of the part of the
individuals and the similarity between the individuals using fuzzy integrals [13],
which are the integrals of a real function with respect to a fuzzy measure.

Let X={x1, x2, ..., xn} be a set of individuals in the population and C={c1, c2, ..., cc}
is a set of clusters, and the fitness values of the cluster centers F={f1, f2, ..., fc}. The
fitness values of an individual xi can be estimated based on mki that means the degree
of membership value of the ith individual to the kth cluster center. mki represents the
membership of a cluster as a value between 0 and 1. Because the number of clusters is
discrete, the fuzzy integral of k can be calculated by the sum of the values. The esti-
mated fitness value of ei is as the following equation:

=

×=
c

k
kkii fme

1

 (6)

4 Experimental Results

4.1 Experimental Settings

A randomly generated graph is used to perform experiments. It is illustrated with a
matrix which includes cells with 1 or 0 as shown in Fig. 4. ‘1’ in the matrix means
that the pair of nodes is connected and 0 means not connected. The graph in the expe-
riments has 150 nodes and the edges between two nodes are randomly generated with
a fixed probability with 0.05.

Table 1 summarizes the parameters of genetic algorithms in the experiments. To
compare the performance with alternative methods, various methods summarized in
Table 2 are applied to coloring problem in a given random graph. Fuzzy c-means is
different from other clustering methods due to including fuzziness of the membership
[24].

4.2 Experimental Results

Fig. 5 and 6 show the comparison of fitness changes of an experiment with number of
color k = 5. In these figures, x axis represents the number of generations and y axis

 Solving Graph Coloring Problem by Fuzzy Clustering-Based Genetic Algorithm 357

Fig. 4. An example of a randomly generated graph for graph coloring

Table 1. Experimental Environment

Environment Value Environment Value

Length of chromosome 150 Fuzziness parameter 1.2

Crossover rate 0.9 Number of clusters 10

Mutation rate 0.005 Number of colors 5 ≤ n ≤ 50

Max generation 300

Table 2. Methods in experiments

Methods Description
FCM Fuzzy c-means clustering based GA with population size 100 and cluster size 10
STD Standard GA with population size 100
KMS K-means clustering based GA with population size 100 and cluster size 10
SMP Standard GA with population size 10

HCM Hard c-means clustering based GA with population size 100 and cluster size 10

SLK Single-linkage clustering based GA with population size 100

ALK Average-linkage clustering based GA with population size 100

CLK Complete-linkage clustering based GA with population size 100

denotes the number of conflicts. Each line illustrates a method to solve graph color-
ing problem.

As expected, standard genetic algorithm (STD) finds the minimum number of col-
ors among various methods. However, it takes so much evaluation time to discover
the solution. It requires almost ten times more evaluation than other methods. The
proposed method (FCM) shows the second minimum colors and the second minimum
time. Standard genetic algorithm with small population is not suitable to solve this
problem because it cannot yield competitive solutions. Hard clustering techniques
such as hard c-means clustering (HCM) and k-means clustering (KMS) can generate

358 Y.-S. Lee and S.-B. Cho

their solution for short evaluation time, but they show worse performance than FCM.
The proposed method is a reasonable and competitive solution in some problems
which require too much evaluation cost. Table 3 summarizes minimum number of
conflicts and average time for three runs.

Fig. 5. Maximum fitness change with color k=5

Fig. 6. Average fitness change with color k=5

 Solving Graph Coloring Problem by Fuzzy Clustering-Based Genetic Algorithm 359

Table 3. Summary of experiments

 Minimum
colors

Avg. time
Diff. time
with STD

Avg.
conflicts

Diff. conflicts
with STD

FCM 24 230.53 1516.91 19.73 10.09

STD 16 1747.44 0 9.64 0

KMS 27 180.76 1566.68 31.16 21.52

SMP �50 245.67 1501.77 40.13 30.49

HCM 28 242.85 1504.59 29.16 19.52

SLK 24 258.20 1489.24 23.69 14.05

ALK 27 256.57 1490.87 25.47 15.83

CLK 28 244.97 1502.47 26.67 17.03

5 Concluding Remarks

This paper proposed an efficient genetic algorithm to solve graph coloring problem in
short time. The method decreases the evaluation cost by reducing the number of eval-
uation using fuzzy clustering technique. It generates some clusters from all individu-
als, and evaluates only one individual in each cluster. The fitness of the other
individuals is indirectly estimated by the evaluated fitness and membership value. The
proposed method shows competitive performance to standard genetic algorithm and
the alternative methods.

There are some problems to be solved on the proposed method. The performance
of the method is still lower in comparison with the standard genetic algorithm. We
have to raise the performance to a similar level of standard genetic algorithm. A novel
fuzzy integral including heuristics will become an important issue to be considered as
a future work. Also, we will compare other methods like Porumbel, Galinier and
Chiarandini's works and confirm a statistical validation of the comparison.

Acknowledgments. This research was supported by the KCC(Korea Communications
Commission), Korea, under the R&D program supervised by the KCA(Korea Com-
munications Agency) (KCA-2012-12-911-04-005).

References

1. Omari, H.A., Sabri, K.E.: New graph coloring algorithms. J. Mathematics and Statis-
tics 2(4), 439–441 (2006)

2. Brelaz, D.: New methods to color vertices of a graph. Communcations of ACM 22, 251–
256 (1979)

3. Hertz, A., De Werra, D.: Using tabu search techniques for graph coloring. Computing 39,
345–351 (1987)

4. Freisleben, B., Merez, P.: New Genetic Local Search Operators for the Traveling Salesman
Problem. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN
1996. LNCS, vol. 1141, pp. 890–899. Springer, Heidelberg (1996)

360 Y.-S. Lee and S.-B. Cho

5. Merez, P., Freisleben, B.: A genetic local search approach to the quadratic assignment
problem. In: 7th International Conference on Genetic Algorithms, pp. 465–472 (1997)

6. Falkenauer, E.: A hybrid grouping genetic algorithm for bin-packing. J. Heuristics 2(1), 5–
30 (1996)

7. Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. Annals of
Operations Research 63, 437–463 (1995)

8. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization - Algorithms and Complex-
ity. Prentice Hall (1982)

9. Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated an-
nealing: an experimental evaluation: part ii, graph coloring and number partitioning. Oper-
ations Research 39(3), 378–406 (1991)

10. Gose, E., Johnsonbaugh, R., Jost, S.: Pattern Recognition and Image Analysis. Prentice
Hall (1996)

11. Anderberg, M.R.: Cluster Analysis for Applications. Academic Press (1973)
12. Fukunaka, K.: Introduction to Statistical Pattern Analysis. Academic Press (1990)
13. Haritigan, J.A.: Clustering Algorithms. John Wiley & Sons (1975)
14. Hoppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. John Wiley &

Sons (1999)
15. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. of Pattern Anal-

ysis and Machine Intelligence, PAMI-13(8), 841-847 (1991)
16. Chams, M., Hertz, A., De Werra, D.: Some experiments with simulated annealing for co-

loring graphs. European Journal of Operational Research 32, 260–266 (1987)
17. Lotfi, V., Sarin, S.: A graph coloring algorithm for large scale scheduling problems. Com-

puters & Operations Research 13(1), 27–32 (1986)
18. Klotz, W.: Graph coloring algorithms. IEICE Trans. Information and Systems 5, 1–9

(2002)
19. Porumbel, D.C., Hao, J.-K., Kuntz, P.: Diversity Control and Multi-Parent Recombination

for Evolutionary Graph Coloring Algorithms. In: Cotta, C., Cowling, P. (eds.) EvoCOP
2009. LNCS, vol. 5482, pp. 121–132. Springer, Heidelberg (2009)

20. Eiben, A.E., Van Der Hauw, J.K., Van Hemer, J.I.: Graph coloring with adaptive evolutio-
nary algorithms. J. of Heuristics 4(1), 25–46 (1998)

21. Costa, D., Hertz, A., Dubuis, O.: Embedding a sequential procedure within an evolutionary
algorithms for coloring problems in graphs. J. of Heuristics 1(1), 105–128 (1995)

22. Jin, Y., Sendhoff, B.: Reducing Fitness Evaluations Using Clustering Techniques and
Neural Network Ensembles. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS, vol. 3102,
pp. 688–699. Springer, Heidelberg (2004)

23. Kim, H.-S., Cho, S.-B.: An efficient genetic algorithms with less fitness evaluation by
clustering. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 887–894.
IEEE (2001)

24. Yoo, S.-H., Cho, S.-B.: Partially Evaluated Genetic Algorithm Based on Fuzzy c-Means
Algorithm. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bulli-
naria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN VIII. LNCS,
vol. 3242, pp. 440–449. Springer, Heidelberg (2004)

25. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum
Press (1981)

26. Chen, X.S., Ong, Y.S., Lim, M.H., Tan, K.C.: A Multi-Facet Survey on Memetic Compu-
tation. IEEE Transactions on Evolutionary Computation 15(5), 591–607 (2011)

27. Ong, Y.S., Lim, M.H., Chen, X.S.: Research Frontier: Memetic Computation - Past,
Present & Future. IEEE Computational Intelligence Magazine 5(2), 24–36 (2010)

Efficient Neuroevolution for a Quadruped Robot

Xu Shengbo, Hirotaka Moriguchi, and Shinichi Honiden

Department of Computer Science
The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
{s-jyo,hmori,honiden}@nii.ac.jp

Abstract. In this research, we investigate whether CoSyNE and CMA-
NeuroES algorithms can efficiently optimize neural policy of a quadruped
robot. Both of these algorithms are proven to optimize connection
weights efficiently on Pole Balancing benchmark. Due to their good re-
sults on that benchmark, they are expected to be efficient on other con-
trol problems like gait generation. In this research we experimentally
show that CMA-NeuroES have higher scalability to optimize Artificial
Neural Networks for generating gaits of quadruped robots in comparison
with CoSyNE. The results can be helpful for researchers and practition-
ers to choose the optimal Neuroevolution algorithm for generating gaits.

Keywords: neural network, neuroevolution, CoSyNE, CMA-ES,
Simplex, evolution, CMA-NeuroES.

1 Introduction

Various research studies have been done on generating gaits of quadruped robots
with Artificial Neural Networks (ANNs) [1–3], especially optimizing neural pol-
icy (controller) of legged robots using Neuroevolution (NE) algorithms has been
proven effective [1, 2]. These NE algorithms evolve connection weights and net-
work architecture via evolutionary algorithms [4, 5].

However, it requires a large amount of trial-and-error to optimize networks
with Neuroevolution algorithms. Since one episode takes a few tens of seconds,
repeating trial-and-error on physical robots is a daunting task for human. There-
fore, methods to evolve neural policies efficiently (i.e. with smaller number of
episodes) are desirable.

In comparative research studies, two NE algorithms, CoSyNE and CMA-
NeuroES are proven to optimize connection weights of ANN efficiently on the
Pole Balancing (PB) benchmark [6, 7]. In PB benchmark NE algorithms are re-
quired to optimize ANNs so that they can stabilize a single or multiple poles on
a wheeled cart by applying external force to the cart. The performance of an
algorithm is measured by the number of episodes it takes to achieve the task.
The PB benchmark abstracts a general unstable control problem and has been
used for over 30 years [6]. Algorithms that worked well on it have been expected

� Shinichi Honiden is also affiliated to National Institute of Informatics, Japan.

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 361–370, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

362 X. Shengbo, H. Moriguchi, and S. Honiden

to be efficient on other control problems as well, although more complicated
problems like Octpus and Helicoptor have recently been proposed as benchmark
problems.

In this research, we investigate whether CoSyNE and CMA-NeuroES can
efficiently optimize ANNs for generating gaits of quadruped robots. In other
words the objective of this paper is to investigate the scalability of CoSyNE and
CMA-NeuroES. To date, no research study has applied these two algorithms to
generate gaits. Therefore our contribution will help researchers and practitioners
to choose the right NE algorithm to use for generating gaits.

The quadruped robot we used was simulated in Bullet Physics simula-
tor1(Fig.1). NE algorithms are required to optimize connection weights of a
fixed topology network in order to maximize the walking speed of quadrupeds.
Since optimization of connection weights can be achieved by function optimiza-
tion of real valued function, any off-the-shelf function optimization algorithm
can be applied. For comparison, we applied Nelder-Mead Simplex algorithm [8]
and Random Search as baselines. We compared CMA-NeuroES with CoSyNE
in terms of efficiency in the results until 200 episodes and ability in the results
until 10,000 episodes. From these two comparisons, we conclude whether there
is scalability for optimizing a practical ANNs for generating gaits using these
two algorithms, or not.

Experimental results show that CMA-NeuroES generates fast-walking gaits
efficiently. On the other hand, CoSyNE does not scale for this practical problem.
Furthermore, we discuss why scalability differs in both cases.

Fig. 1. The quadruped modeled within Bullet Physics

1 It is physical simulator which has noise. http://bulletphysics.org/wordpress/

http://bulletphysics.org/wordpress/

Efficient Neuroevolution for a Quadruped Robot 363

2 Related Work

Many research studies have been conducted on automatically generating gaits
of quadruped robots with EC [1–3,9].

Hornby et al. [9] proposed to parameterize the gait such as the swing time
for each leg. They optimized such gait parameters of AIBO, a commercial robot
developed by Sony, by means of EC. In [1–3], researchers used ANNs as policies
of quadruped robots and evolved them using NE algorithms. In both lines of
research studies, it was proven that gaits generated with EC outperformed the
ones designed by human hands.

Although, Yosinski et al. [1] and Clune et al. [2] proposed to use Hyper-
NEAT [10] to generate gaits, we do not compare them on this work. This is be-
cause HyperNEAT is designed to represent and evolve large-scale ANNs [10] and
not to evolve ANNs efficiently. We rather focus on CMA-NeuroES and CoSyNE
that are proven to be efficient for benchmark tasks in this research.

3 Algorithms

In this section, we describe the four compared algorithms. All algorithms try to
optimize connection weights of ANNs. We assume that the network topology is
fixed.

3.1 CMA-NeuroES [7, 11]

CMA-NeuroES is an NE algorithm based on covariance matrix adaptation evo-
lution strategy (CMA-ES), a reputedly efficient function optimization algorithm.
The search via CMA-ES is mutation-based [11]. Search points are updated with
the following mutation:

xk+1
l = mk + σkzkl , (1)

where k is the generation number and xk
l is an individual in the k-th generation.

zkl ∼ N(0,Ck) is a random vector generated with multivariate normal distribu-

tion parameterized with zero mean, and covariance matrix Ck. σk is the scale
of distribution, and mk is the weighted average of top-ranked individuals. As
the individuals evolve, the covariance matrix C and step-size parameter σ are
adapted to maximize the likelihood of repeating previous successful steps. You
may refer to [7] for more detailed explanation of CMA-NeuroES.

CMA-NeuroES is known to outperform other evolutionary algorithms such as
CoSyNE in the PB benchmark [7].

In the experiment, all parameters other than σinit are set according to [11]. As
for initial value of step-size parameter σinit = σ0, we tested two values σinit = 1
and σinit = 5.

364 X. Shengbo, H. Moriguchi, and S. Honiden

3.2 CoSyNE [6]

In CoSyNE, each individual (x1, · · · ,xm) consists of a set of connection weights
that parameterize a predefined ANN with fixed topology. Fig.2 shows the exam-
ple of individual representation.

Fig. 2. Example of individual represen-
tation in CoSyNE. Each subpopulation
P1, · · · , P6 on the left corresponds to a
weight of individual ANN on the right.
Each x1, · · · ,xm consists of 6 weights,
which configure the entire network.

Fig. 3. Example of the probabilistic per-
mutation. Each column on the left cor-
responds to xi in Fig.2. Cells in a col-
umn are marked based on Eq.(2). Then,
marked cells are swapped randomly as de-
scribed in the figure. Right side of the di-
agram shows the result of permutation.

Population in CoSyNE is evolved through mutation, reproduction, crossover,
and selection. In the reproduction, the top quarter of the population is selected
in terms of fitness to reproduce new individuals, and the new ones replace the
bottom quarter of the population. The biggest difference between CoSyNE and
other evolutionary algorithms is permutation. The permutation is realized as
follows : First, the weights are marked randomly based on inequality

rand() ≤ prob(xij), (2)

where rand() is a random number drawn from uniform distribution of [0,1].
Previous research suggested that prob(xij) should be defined as:

prob(xij) = 1− n

√
f(xij)− fmin

i

fmax
i − fmin

i

(3)

or

prob(xij) = 1. (4)

Then marked weights are swapped as shown in Fig.3.
However, when n is large in Eq.(3), the second term gets closer to 1 regardless

of f(xij). In such case, permutation hardly occurs. In this paper, we use Eq.(3)

Efficient Neuroevolution for a Quadruped Robot 365

where n is equal to 2. The idea behind using Eq.(3) is that the individuals
with high fitness have less chance of being permuted, and vice versa [6]. Since
our preliminary experiments showed that by using Eq.(3), the results indicate
better performance in comparison to by using Eq.(4), this work reports results
obtained with Eq.(3).

The initial population is randomly generated from uniform distributions of
[−10, 10]. In addition, we also tested two normal distribution N (0, 1) andN (0, 5)
as in CMA-NeuroES to start from the same initial distribution.

We ran CoSyNE with 50 individuals in a population. For more detailed ex-
planations of CoSyNE, you may refer to the previous publication by Gomez et
al [6].

3.3 Nelder-Mead Simplex (NMS) [8]

The Nelder-Mead Simplex (NMS) is one of the most prominent algorithms used
in function optimization. It is known to perform well on various function opti-
mization problems. For detailed explanations of NMS, you may refer [8].

In this paper, we tested three initial distributions: uniform distribution of
[−10, 10], normal distribution N (0, 1), and N (0, 5) as used in CoSyNE.

3.4 Random Search (RS)

Random Search (RS) sets each weight as a random number in the beginning of
each episode. We evaluated RS with the following three distributions:

1. Uniform distribution of [−10, 10] (UR[−10, 10])
2. Normal distribution of N (0, 1) (RN(0, 1))
3. Normal distribution of N (0, 5) (RN(0, 5))

to generate random numbers.

4 Experimental Setup

In this section, we explain the specifications of the simulated quadruped robot
and the artificial neural network.

4.1 Quadruped Robot

The quadruped robot we used in this experiment is depicted in Fig.1.
Detailed geometry is illustrated in Fig.4. Main body of the robot is a rect-

angular box with a 25 cm × 10 cm base and of 6 cm height. The legs are also
rectangular boxes with a 2 cm × 3 cm base and of 10 cm height. Each part is
built from a material having density of 1 g/cm3.

Each joint is equipped with a motor and angular spring. The maximum joint
torques are set to 1 (kg · m) and the elasticity of springs are set to 6 (kg /
radian).

366 X. Shengbo, H. Moriguchi, and S. Honiden

Fig. 4. Projection of the quadruped robot
taken from a side. The legs are con-
strained by springs.

L_H_Angle_Velocity

hidden1

hidden2

hidden3

hidden4

L_H_TorqueStrength

L_F_TorqueStrength

R_H_TorqueStrength

R_F_TorqueStrength

L_F_Angle_Velocity

R_H_Angle_Velocity

R_F_Angle_Velocity

L_H_Angle

L_F_Angle

R_H_Angle

R_F_Angle

Fig. 5. Predefined structure of the neu-
ral network, which is used as the con-
troller of the quadruped robot. The al-
phabet ”L” means ”Left” and the ”R”
means ”Right”. And the next alphabet
”F” means ”Front” leg and ”H” means
”Hind” leg.

4.2 Neural Network

The architecture of the neural network used to control the quadruped robot is
shown in Fig.5. Each network is fully connected feed-forward network that has
four hidden nodes. In total, the network has 48 connections, whose weights are
to be optimized.

An ANN takes the angle and angular velocity of four legs as input signals and
outputs the joint torques for four joint motors.

We use the following activation function on hidden and output nodes:

hidden =
1

1 + exp−x
(5)

torque =
2

1 + exp−x
− 1 (6)

According to Eq.6, torque output is constrained within [-1:1].

4.3 Evaluation

In the beginning of each episode, the quadruped erects at the origin. The robot
is allowed to move for 5 seconds. We defined the fitness of the robot as its travel
distance from the origin in straight forward direction. If the robot walks back-
ward, negative fitness can be assigned. Since there is no concept of population
and generation in NMS and RS, we evaluated each algorithm in terms of the
number of episodes. We ran each algorithm for 50 runs and continued to run
each algorithm for 10,000 episodes.

Efficient Neuroevolution for a Quadruped Robot 367

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 1 10 100 1000 10000

A
ve

ra
ge

 F
itn

es
s

(B
od

y
Le

ng
th

s)

Episodes

each algorithm with the best initial distribution

CMA-NeuroES σ=5
CoSyNE UR[-10,10]

RS UR[-10,10]
NMS UR[-10,10]

Fig. 6. The learning curves of compared
algorithms initialized with the best dis-
tribution. The best fitness so far is
recorded at each episode. The average of
50 runs over 10,000 episodes is shown.
X-axis is log-scaled.

Table 1. Comparison of mean and SD
of fitness at 10,000 episodes

mean SD

CMA-NeuroES 20.42 2.12

CoSyNE 12.22 3.31

NMS 10.620 3.89

RS 12.26 1.58

5 Results and Discussion

Fig.6 compares all four algorithms with the best performing random distribution
or the step-size parameter. The results show their average learning curves over
10,000 episodes. Mean and standard deviation (SD) of walking speed at 10,000
episodes are listed in the Table 1. In order to compare the performance difference
in the early stage, Fig.7 illustrates their learning curves until 200 episodes.

From Fig.6 and Fig.7, we can see that CMA-NeuroES consistently outper-
formed all other algorithms. Performance difference were statistically signifi-
cant (p < 0.05) after 54, 36, 43 episodes over CoSyNE, NMS, and RS, respec-
tively. Although NMS was inferior to CoSyNE and RS at 10,000 episodes, it
performed better than them at the earlier stage (from 76 to 5746 episodes over
CoSyNE and from 73 to 2949 over RS). In spite of the success of CoSyNE on PB
benchmark, it performed poorly in quadruped gait control in terms of achieved
walking speed.

In Section 5.1, we discuss the reason that caused the performance difference
between CMA-NeuroES and CoSyNE. And in Section 5.2, we also discuss the
robustness of CMA-NeuroES against the bad initial distribution.

5.1 The Reason of Performance Difference between CoSyNE
and CMA-NeuroES

CoSyNE was not competitive against CMA-NeuroES, although it was on PB
benchmark.

In CoSyNE, individuals with high fitness have less chance of being permuted
and top quarter of population was used to produce offspring in each generation.
These operations were considered to result in efficient optimization on PB bench-
mark. In terms of this characteristic, we regarded individuals used to produce

368 X. Shengbo, H. Moriguchi, and S. Honiden

 0

 2

 4

 6

 8

 10

 12

 20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 F
itn

es
s

(B
od

y
Le

ng
th

s)

Episodes

Until 200 iterations

CMA-NeuroES σ=5
CoSyNE UR[-10,10]

RS UR[-10,10]
NMS UR[-10,10]

Fig. 7. Comparison of learning curves at the early stage. This figure is zooming from
the figure 6 without the log scale on X-axis. In order to emphasize the early stage, the
curves are drawn over 200 episodes. Each curve is average of 50 runs.

offsprings as elite individuals. From the viewpoint of these elite individuals, we
discussed the reason why the performance of CoSyNE was worse than of the
CMA-NeuroES.

In each generation, we calculate the mean fitness of the elite individuals for
50 runs. Elite individuals in CoSyNE correspond to top 25% population, and
in CMA-NeuroES top 50% of the population [6, 7]. Then, we calculated the
mean and the standard deviation (SD) of these 50 mean fitnesses in each gener-
ation. The calculated mean and SD of the fitness were plotted at every genera-
tion, which corresponds to 50 episodes in CoSyNE and to 15 episodes in CMA-
NeuroES, respectively. In addition, we showed the results until 500 episodes only
in order to compare them clearly.

In Fig.8, while the mean fitness of CMA-NeuroES increased as the genera-
tion, bit CoSyNE has got 0 fitness in all generations. This results shows, that
CoSyNE failed to preserve the elite individuals to the next generation. Due to
this observation, the poor performance of CoSyNE appears to be caused by its
failure in terms of elite preservation.

5.2 Robustness of CMA-NeuroES against the Bad Initial
Distribution

In the experiment, CMA-NeuroES outperformed all other compared algorithms.
As for gait optimization on physical robots, NE algorithms should find suf-

ficiently good gaits even with a small number of episodes. Fig.7 shows that it
outperforms other algorithms with statically significant difference (p < 0.05) at
the early stage.

Furthermore, in Fig.9 we compared all four algorithms with the worst per-
forming random distribution and step-size parameter, which is RN(0,1) for all
cases. CMA-NeuroES was shown to perform well even with badly tuned step-size

Efficient Neuroevolution for a Quadruped Robot 369

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0 100 200 300 400 500

F
itn

es
s

(B
od

y
Le

ng
th

s)

Episodes

Mean, standard deviation in each generation

CMA-NeuroES
CoSyNE

Fig. 8. The mean fitness and standard
deviation of averaged elite individuals in
each generation for 50 runs. We plot them
every 50 episodes in CoSyNE and every 15
episodes in CMA-NeuroES respectively.

 0.01

 0.1

 1

 10

 1 10 100 1000 10000

A
ve

ra
ge

 F
itn

es
s

(B
od

y
Le

ng
th

s)

Episodes

each algorithm initialized with RN(0,1)

CMA-NeuroES σ=1
CoSyNE RN(0,1)

RS RN(0,1)
NMS RN(0,1)

Fig. 9. The learning curves of four algo-
rithms initialized with RN[0,1]

parameters (Fig.9) in comparison with CoSyNE. Since the appropriate parame-
ters are not known in advance, such robustness against ill parameters is desirable
characteristic of NE algorithms.

Fig.8 shows that elite individuals are successfully preserved, leading to achieve
continuous fitness improvements. We consider that mutation-based evolution
strategy could successfully allow elite preservation, while CoSyNE did not.

All these results combined, we consider that CMA-NeuroES is a promising
approach to generating gaits of physical quadruped robots efficiently.

6 Conclusion and Future Work

In this research, we investigated two Neuroevolution algorithms, CMA-NeuroES
and CoSyNE, on generating gaits of quadruped robots. We compared the walking
speed of the quadruped robot gaits generated with each algorithm. In addition,
we compared two NE algorithms with the Nelder-Mead Simplex and Random
Search.

Experimental results show that CMA-NeuroES outperforms other algorithms.
According to these results, we conclude the outstanding performance of CMA-
NeuroES scales from PB benchmark to more practical problems, such as gener-
ating the gaits of quadruped.

Its performance was still higher than other compared algorithms even with
ill-tuned strategy parameters. Moreover, it performed well in the early stage of
optimization. These results indicate that CMA-NeuroES a promising method
for the gait generation of real physical quadruped robots, in which appropriate
initial parameter is unknown and small number of episodes can be repeated.

On the other hand, CoSyNE, which was proven competitive against CMA-
NeuroES on Pole Balancing benchmark, did not perform comparably on
quadruped gait generation. We discussed that CoSyNE has less scalability than

370 X. Shengbo, H. Moriguchi, and S. Honiden

CMA-NeuroES would be due to failure in preserving elite individuals. According
to this, we conclude that CoSyNE would not be suitable for a practical problem,
in which a limited number of episodes can be executed. We conclude that CMA-
NeuroES performs well in generating locomotion behavior of quadruped robots
whereas CoSyNE is not scalable to the practical problem in this research.

In the near future, we will compare these two algorithms with other Neu-
roevolution algorithms like HyperNEAT. In addition, we plan to conduct the
same experiment in a real-world setting to test the scalability of our conclusion.

Accknowledgement. We are deeply grateful to Sajid Hashmi and Yuki Inoue
whose support and comments were invaluable to complete this research paper.

References

1. Yosinski, J., Clune, J., Hidalgo, D., Nguyen, S., Zagal, J., Lipson, H.: Evolving
robot gaits in hardware: the hyperneat generative encoding vs. parameter opti-
mization. In: Proceedings of the 20th European Conference on Artificial Life, Paris,
France, vol. 8-12, pp. 890–897. MIT Press (2011)

2. Clune, J., Beckmann, B.E., Ofria, C., Pennock, R.T.: Evolving coordinated
quadruped gaits with the HyperNEAT generative encoding. In: IEEE Congress
on Evolutionary Computation, CEC 2009, pp. 2764–2771. IEEE (2009)

3. Valsalam, V., Miikkulainen, R.: Modular neuroevolution for multilegged locomo-
tion. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary
Computation, pp. 265–272. ACM (2008)

4. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–
1447 (1999)

5. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learn-
ing. Evolutionary Intelligence 1(1), 47–62 (2008)

6. Gomez, F., Schmidhuber, J., Miikkulainen, R.: Accelerated neural evolution
through cooperatively coevolved synapses. The Journal of Machine Learning Re-
search 9, 937–965 (2008)

7. Heidrich-Meisner, V., Igel, C.: Neuroevolution strategies for episodic reinforce-
ment learning. Journal of Algorithms in Cognition, Informatics and Logic-
Algorithms 64(4), 152–168 (2009)

8. Nelder, J., Mead, R.: A simplex method for function minimization. The Computer
Journal 7(4), 308 (1965)

9. Hornby, G., Takamura, S., Yamamoto, T., Fujita, M.: Autonomous evolution of
dynamic gaits with two quadruped robots. IEEE Transactions on Robotics 21(3),
402–410 (2005)

10. Gauci, J., Stanley, K.: Generating large-scale neural networks through discovering
geometric regularities. In: Proceedings of the 9th Annual Conference on Genetic
and Evolutionary Computation, pp. 997–1004. ACM (2007)

11. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2), 159–195 (2001)

Learning and Generating Folk Melodies

Using MPF-Inspired Hierarchical
Self-Organising Maps

Edwin Hui-Hean Law1 and Somnuk Phon-Amnuaisuk1,2

1 Music Informatics Research Group
2 Faculty of Creative Industries, Universiti Tunku Abdul Rahman,

Petaling Jaya Campus, Selangor Darul Ehsan, Malaysia
elhh82@gmail.com, somnuk@utar.edu.my

Abstract. One of the elements in human music creativity results from
certain features in the brain that allows it to make predictions of events
based on information learnt from past music experiences. Inspired by the
Memory Prediction Framework (MPF) theory, we propose a method to
learn and generate new melodies based on the MPF concept. We first
show how an MPF-inspired Hierarchical Self Organizing Map (MPF-
HSOM) is used to capture these important features of the brain in the
perspective of MPF. This MPF-HSOM is then trained with a selection
of melodies taken from a corpus of folk melodies. We then show that by
using a prediction algorithm, we are able to generate new melodies based
on the trained MPF-HSOM of old melodies. The system proposed here is
an abstraction of the features of the brain according to MPF. The results
indicate that the system is able to learn and to produce novel melodies
of reasonable quality.

Keywords: Hierarchical Self-Organising Map, Learning Folk Melodies,
Folk Melody Generation, Memory Predictive Framework.

1 Background

Advances in neuroscience reveal many interesting facts about our brain and its
functions. The columnar organization of the cerebral cortex was first charac-
terised by Mountcastle in the 1950s, who, later on in 1978, proposed that the
cortical column acted as the unit of computation [11]. Inspired by Mountcas-
tle’s work, Hawkins further investigated the concepts of cortical computation
units and proposed the Memory Prediction Framework (MPF) [4]. The MPF at-
tempts to theorise how the brain functions based on neurological observations.
The central idea of the MPF is that the neocortex is a massive memory store.
The neocortex processes sensory input which will be used to reinforce previ-
ously learned patterns or to form a new learned pattern in neocortical memory.
Hawkins suggested four important features of neocortical memory: (i) patterns
are stored in sequences ; (ii) patterns are recalled auto-associatively; (iii) patterns
are stored in invariant form, and (iv) patterns are stored in a hierarchy.

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 371–380, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

372 E.H.-H. Law and S. Phon-Amnuaisuk

Inspired by the four important attributes highlighted by MPF [4], this work
investigates the generation of folk melodies using Hierarchical Self-Organising
Maps (HSOM). The HSOM is used as it is both an auto-associative memory
and a hierarchical memory store. Sequential strorage is implemented through
the representation scheme used with the HSOM. A higher layer of HSOM is
trained using the patterns of the immediate lower layer, while a higher layer can
be seen as abstracting information from the lower layers. The cluster in a higher
layer is associated with many clusters in the lower layer and this allows us to
emulate features such as sequential memory, associated memory and hierarchical
abstraction.

In this research, we do not seek to prove or disprove the memory Prediction
Framework, but we will attempt to apply these ideas to emulate the learning
and generating of folk melodies using HSOM. The rest of the materials in the
paper are organized into the following sections: Section 2: Learning Folk Melodies
using MPF-HSOM; Section 3: Experimental Design & Results; and Section 4:
Conclusion.

2 Learning Folk Melodies Using MPF-HSOM

Kohonen’s map model performs non-linear mapping. It is natural to apply SOM
for clustering task [9]. However, it is not natural to apply SOM to sequential time
series data. Time series data is common in problems where temporal information
also characterises the data. Researchers have approached this temporal issue
from different perspectives. Some examples found in the literature are Sliding
window [6]; SardNet [5]; Temporal Organising Map (TOM) [14]; Recurrent SOM
[8] and Hierarchical SOM [3]. In music domain, hierarchical structured SOM was
used to analyse folk melodies based on symbolic events e.g., note events [10], [13];
to classify melodic sequences extracted from Bach’s Fuge1 [1]. SOM was used to
capture a Tune-Map of popular melodies in [12].

There is no best approach in handling information storage and retrieval in
SOMs and researchers usually extend their models further to handle different
characteristics required in their applications. Because of the nature of work that
our HSOM is required to do, the representation scheme used must be bidirec-
tional. This means that not only must the scheme selected be representative of
the original input data, but we must also be able to convert the represented data
back into its original format. This is a departure from the usual representation
schemes used in SOMs where statistical or other analysis is performed on the
input data to produce multiple values that capture the characteristics of the
data. In those processes, it is usually not required to revert to the original data.

2.1 Knowledge Representation

In our system, a melody is represented as a pair of vectors each representing the
pitch p and duration d of a melody. Each melody is then broken up into elements

1 This study investigates Fuge in G minor of the Well-Tempered Clavier (vol. I) by
J.S. Bach

Learning and Generating Folk Melodies 373

Fig. 1. The melody representation used in the melody generation experiment. Only
two bars is shown here.

that represent a fixed duration in time. In the melody prediction experiment, 8
bars of 2/4 time melodies are used for each vector and each element represents
a semi-quaver beat. Therefore, each 8-bar melody is represented as 64 elements
of pitch and duration respectively. The pitch values pil (from song i with length
l) are obtained from the position of the pitch based on its distance to the tonal
center of the scale (e.g., C Major, C minor, etc.) These values are calculated
based on Chew’s spiral array indices [2] which was a 1-D approximation provided
by Chew in her 2-D Spiral Array model. The tonal center of the Spiral Array
Indices was denoted by a value of 0 while pitches that were increasingly further
away from it would go further away from 0 (both positive and negative). In
our work, we have chosen to shift the tonal center to 5.0 so as to eliminate the
negative values, and the pitch values will range from 0 to 11. In the case of rests,
the pitch values prior to the rest are repeated for the duration of the rest. The
duration values d ∈ {0, 1, 2} are one of the three values which represent the note
onset (d = 2), note being held (d = 1) and a rest (d = 0). Hence, a melody line
Mi can be represented as:

Mi = [pi;di] (1)

where pi = [pi1, pi2, ..., pil] and di = [di1, di2, ..., dil] respectively. Figure 1 shows
an example of how the melody line is encoded in vectors of pitch and duration
as described above.

2.2 MPF Inspired Hierarchical Self-Organising Maps (MPF-HSOM)

The Self-Organising Map (SOM) [7] is an unsupervised neural network com-
monly implemented as a two-dimensional array of neurons i.e., a 2D map. Each
node i in the map is connected to an input vector x ∈ Rn through a weight vec-
tor mi ∈ Rn. Each node learns to associate its weight vector with input training
vectors. The learning is competitive and it is a winner takes all paradigm. The
learning process can be summarised in two steps. Firstly, a winning neuron c is
the best matching unit (BMU) mc, which is defined as:

‖x(t)−mc(t)‖ ≤ ‖x(t)−mi(t)‖ for all i. (2)

374 E.H.-H. Law and S. Phon-Amnuaisuk

After the best marching unit is chosen, it and its neighborhood nodes are updated
using the following update rule:

mi(t+ 1) = mi(t) + η(t)hc,i(t)(x(t) −mi(t)), (3)

where η is the learning rate and hc,i(t) is the neighborhood function for smooth-
ing neighboring neurons of the winner.

Fig. 2. Three-level HSOM: 8×8 inputs are captured at each of the bottom SOMs (the
input layer). This produces 2×2×8 outputs, which are then captured by the middle
SOM (the join layer). The top SOM (the melody layer) captures the 2×4 output of the
middle SOM, and produces a single 2-element output.

In this implementation, the MPF-HSOM has three levels (see Figure 2), the
Input (bar) layer2, the Join (2-bar) layer and the Melody (8-bar) layer. The
Input layer consists of two SOMs, the pitch input SOM and the duration input
SOM, each responsible for capturing the pitch and duration input vectors re-
spectively. The nodes of the input SOMs have a vector length of eight, so the
original eight bar melody input vectors which are 64 elements long have to be
broken up into eight equal length fragments of eight elements (representing one
bar) each. When one melody is trained, eight BMUs will be activated on each of
the input layer SOMs, thus producing 32 elements (i.e., 16 (x, y) coordinates of
the BMUs chosen, 8 on the pitch input SOM and 8 on the duration input SOM)
which will be used as input for the Join Layer.

The Join Layer is thus named becaused it joins the output of the pitch and
duration SOMs into one SOM. Each node of the Join SOM also has a vector
length of eight and each node accepts as input, the output of eight elements of
the output of the input layers below. Similar to how the input for the Input layer
are broken up into eight fragments, the input to the Join layer is also broken
up into four equal-length fragments. These four inputs to the Join layer will
activate four BMUs of the Join Layer and produce eight output corresponding
to the eight (x, y) coordinates of the eight BMUs.

In the Melody layer, which sits at the top of this MPF-HSOM, each node has
eight vector elements and one input, taken from the output of the Join Layer,

2 The bar is the musical structure, a musical sentence commonly expresses in 2-4 bars.

Learning and Generating Folk Melodies 375

will activate one BMU in the melody layer. No further manipulation of the Join
Layer output is required as it’s length is exactly the same as the vector length of
the Melody Layer SOM. With this, one input melody which has been originally
broken up into eight fragments will activate one node as the information is
propagated up to the top of this three level MPF-HSOM hierarchy.

Finally, one more important thing to note is that the temporal relationship
between the notes of our melody sequence is preserved even after propagating
to the MPF-HSOM as the left to right ordering of the input is preserved from
the Input Layer all the way up to the Melody Layer.

Training MPF-HSOM. The bottom level of each hierarchical SOM will be
used to capture the input vectors while the SOMs at the higher levels of the
hierarchy will store the output or connections to the bottom levels. In terms of
training, the process is relatively similar to the training of a normal SOM.

The MPF-HSOM is trained one level at a time, beginning from the ones at
the bottom of the hierarchy. As each SOM completes its training, its output are
propagated to the SOM at the next level. The bottom level SOM is trained as a
normal SOM while the higher level SOMs will be trained with the output of the
SOM directly below it. An output, which consists of the X and Y coordinates
of the BMU is produced for each vector that is trained onto the bottom SOM.

2.3 Predicting Missing Data Elements Using MPF-HSOM

The main feature of the MPF-HSOM design is that it allows us to form predic-
tions of missing data elements in a data vector. This prediction is performed by
traversing the different levels of the MPF-HSOM. Each level provides a different
level of contextual information, with local information available at the lowest
level and global information available at the top. At the start of the prediction,
a partial BMU is obtained for an input string with missing elements. The partial
BMU formulae is as follows:

‖x′(t)−w′
bmu(t)‖ ≤ ‖x′(t)−w′

i(t)‖ (4)

x′ andw′ denote the input and weight vectors with missing elements. When mak-
ing the BMU calculation, the partial BMU ignores the elements at the missing
positions, and obtains a BMU which is the best estimate based on the available
information. This partial BMU output is then propagated upwards on the hi-
erarchy to obtain another prediction. If all elements are missing and no output
(prediction) can be produced at the level below, then a partial BMU is also ob-
tained at the current level. This upwards propagation is repeated until the top
SOM produces its prediction. The process is then unwound to find the nodes
at the bottom SOMs which are associated with the BMU of the top SOM. The
values contained in these nodes are the predictions obtained for the incomplete
vectors that have been used.

376 E.H.-H. Law and S. Phon-Amnuaisuk

3 Experimental Design and Results

In this section, we discuss the experiment that was performed to generate new
melodies by using the predictive abilities of the MPF-HSOM. Firstly, a pool of
melodies were selected and trained onto the MPF-HSOM. These trained melodies
served as the memory store in which the predictions would be based on. Once
trained, the prediction process was performed by removing a significant por-
tion of the elements from the original input. These input melodies with missing
elements were then fed into the MPF-HSOM, and the MPF-HSOM would try
to make predictions based on what information was available. However due to
the large number of missing elements, the predictions produced would not be
the same but dependent on the original context. With this, new melodies were
generated.

Fig. 3. Examples of training melodies from the Shanxi corpus of the Essen Folk Song
Collection

3.1 Training data

The training melodies were obtained from the Shanxi corpus of the Essen Folk
Song Collection in the Kern Scores Library3. The Shanxi folk tunes are charac-
terised by their two four-bar phrase. The first four-bar is the call and the second
four-bar answers the call. The melodies from the Shanxi corpus were parsed and
filtered to fit within the limitations of the MPF-HSOM system. A total of 178
melodies of 8 bars each were obtained. Each of these melodies were then trans-
posed to a single key (C-Major) and edited to remove irregularities because the
representation scheme was not able to represent some triplets and some dotted
notes. We modified the triplets into a combination of three notes with one full

3 Kern Scores Virtual Music Library, http://kern.ccarh.org

Learning and Generating Folk Melodies 377

duration note and two halves duration notes, while the pitches remained as the
same three pitches in the triplet. For the dotted notes, the dot was simply re-
moved when the half duration was too small to be represented. Since most of
melodies used had a 2/4 time signature, for the sake of uniformity most melodies
that contained 2/2 or 4/4 time signatures were converted into the 2/4 time sig-
nature by increasing or reducing the note durations respectively. Melodies that
had time signatures like 3/4, 3/8 were simply removed from the training data
set. Finally, melodies of unsuitable length were also cropped, repeated or broken
into a few melodies so that each melody had exactly eight bars.

3.2 Melody Prediction

The operation of the melody generation system was broken up into two phases,
the training phase and the prediction phase. In the training phase, melodies
which had been converted into the appropriate vectors were trained onto the
successive layers of the MPF-HSOM. The most bottom layer(s) accepted the
converted melody vectors that corresponded to a single bar length fragment of
the melody as input while each successive layer received as input, the coordinates
of the Best Matching Units of the layers below it. With this, each SOM node in
the bottom layer corresponded to just one bar of the melody, while each SOM
node at the top layer would correspond to an entire melody line.

In the prediction phase, one incomplete melody line (with some vector ele-
ments removed from it) was fed as an input to the bottom SOM. A best matching
unit was found on the top layer SOM for this incomplete fragment. Because of
errors introduced by the missing data elements, the BMU units found in each of
the layers would not likely fall on the exact BMU that had been selected during
training, but rather onto the neighbouring nodes of the BMU which were most
likely to resemble the melody before the elements were removed. After the BMU
on the top layer was found, its contents (the coordinates of nodes in the SOM
below it) would be extracted and this process would be repeated until nodes in
the bottom most layer were selected. Finally these bottom SOM nodes would
contain the vector elements that would be used to produce one predicted melody.

3.3 Discussion

The entire melody generation system presented here, from representation to
training to prediction makes use of all the salient points of the Memory Pre-
diction Framework and is therefore a good example of an experimental demon-
station of the ideas presented in the MPF. The melody representation scheme
used here ensures that the hierarchical memory system (the MPF-HSOM) stores
the captured information sequentially. The left to right temporal ordering of
the notes in the melody are preserved when conversion into our representation
scheme is performed. This is an important characteristic of our chosen represen-
tation scheme as it also ensures the reversibility of the representation scheme,
wherein melodies that exist in our representation can be used to recreate actual
replayable melodies without any loss of information in the reversal process. Both

378 E.H.-H. Law and S. Phon-Amnuaisuk

Fig. 4. Examples of Melody Generated using MPF-HSOM: (i) sample output obtained
using only duration values; (ii) Sample output obtained using only the first bar values;
and (iii) Sample output obtained using 32 randomly selected pitch & duration values.

these properties are a significant departure from many of the works in the music
domain in which melodies are processed into a lossy representation which usually
consists of various statistical measures of the original music.

For the training process, the MPF-HSOM incorporates two more key points
of the MPF which for hierarchical organization and representational invariance.
Both these points are seen in the design of the MPF-HSOM memory system:
firstly, where the input data is stored in terms of a three level hierarchy; and
secondly, as the data is propagated upwards in the hierarchy, the higher levels
contain increasingly higher level of data abstraction which allows for represen-
tational invariance.

Finally, the prediction algorithm used in the actual melody generation portion
of the experimental system is heavily reliant on the auto associative ability of the
MPF-HSOM (predicting the elements that have been deliberately removed from
an input vector). Unlike single layer SOMs where only information contained in
the original SOM is used in making the auto-associative predictions, the MPF-
HSOM refines the results of its prediction through the bidirectional traversal
of the hierarchies. Each prediction is propagated upwards on the MPF-HSOM
hierarchy so as to obtain a greater contextual reference for the prediction being
made and the prediction is only made after the higher level SOM predictions are
propagated downward into the original input level.

Learning and Generating Folk Melodies 379

4 Conclusion

The MPF-HSOM system detailed in this paper is successful when used to learn
and generate melodies. However various improvements can still be made to im-
prove the quality and depth of the generated melodies. If the melodies were to
be subjected to a Turing test using a subject with little or no musical training,
many of the melodies generated would be able pass such a test. We also would
like to highlight the fact that this system is very versatile as it is not tuned to
any particular type of music. If used with a different corpus of music, one would
be able to achieve comparable results as long as the melodies chosen are adjusted
to fit within the constraints of the MPF-HSOM and the representation scheme
used.

In conclusion, the design of this sytem has managed to capture all the critical
dimensions of the Memory prediction framework. The dimensions of hierarchical
memory is inherently captured in the design of the system through the use of the
Hierarchical SOM while the melody representation scheme used here captures
the information and stores it Sequentially in the MPF-HSOM. The prediction
algorithm used here heavily incorporates the auto-associative dimension and also
relies on the ability to perform bi-directional traversal of the hierarchy to produce
results. Finally to a lesser extent, representational invariance is also achieved in
the MPF-HSOM hierarchy where information becomes more abstract as it moves
up the MPF-HSOM hierarchy. Therefore the system detailed here is an example
of how the framework can be used as a reference to implement the MPF to solve
other similar problems in different domains.

Acknowledgements. We wish to thank anonymous reviewers for their con-
structive comments and suggestions.

References

1. Carpinteiro, O.A.S.: A hierarchical self-organising map model for sequence recog-
nition. Pattern Analysis & Applications (3), 279–287 (2000)

2. Chew, E., Chen, Y.: Realtime pitch spelling using the spiral array. Computer Music
Journal 29(3), 61–76 (2005)

3. Dittenbach, M., Merkl, D., Rauber, A.: The Growing Hierarchical Self-Organizing
Map. In: Proceedings of the International Joint Conference on Neural Networks
(IJCNN 2000), Como, Italy, pp. VI-15–VI-19. IEEE (2000)

4. Hawkins, J., Blakeslee, S.: On Intelligence. Henry Holt, New York (2004)
5. James, D.L., Miikkulainen, R.: SARDNET: a self-organising feature map for se-

quences. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) Proceedings of the
Advances in Neural Information Processing Systems, vol. 7. Morgan Kaufmann
(1995)

6. Kangas, J.: On the analysis of pattern sequences by self-organising maps. PhD
thesis, Laboratory of Computer and Information Science, Helsinki University of
Technology, Rakentajanaukio 2C, SF-02150, Finland (1994)

7. Kohonen, T.: Self-organising Maps, 2nd edn. Springer, Berlin (1997)

380 E.H.-H. Law and S. Phon-Amnuaisuk

8. Koskela, T., Varsta, M., Heikkonen, J., Kaski, K.: Recurrent SOM with local linear
models in time series prediction. In: Proceedings of the 6th European Symposium
on Artificial Neural Networks, pp. 167–172 (1998)

9. Lampinen, J., Oja, E.: Clustering properties of hierarchical self-organizing maps.
Journal of Mathematical Imaging and Vision 2, 261–272 (1992)

10. Law, E.H.H., Phon-Amnuaisuk, S.: Towards Music Fitness Evaluation with the
Hierarchical SOM. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A.,
Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack,
J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.)
EvoWorkshops 2008. LNCS, vol. 4974, pp. 443–452. Springer, Heidelberg (2008)

11. Mountcastle, V.B.: Organizing principle for cerebral function: The unit model and
the distributed system. In: Eldelman, G.M., Mountcastle, V.B. (eds.) The Mindful
Brain. MIT Press (1978)

12. Skovenborg, E., Arnspang, J.: Extraction of Structural Patterns in Popular
Melodies. In: Wiil, U.K. (ed.) CMMR 2003. LNCS, vol. 2771, pp. 98–113. Springer,
Heidelberg (2004)

13. Toivianen, P., Eerola, T.: A method for comparative analysis of folk music based
on musical feature extraction and neural networks. In: Proceedings of the Seventh
International Symposium on Systematic and Comparative Musicology; the Third
International Conference on Cognitive Musicology, Jyväskylä, Finland, pp. 41–45
(2001)

14. Wiemer, J.: The Time-Organized Map algorithm: Extending the self-organizing
map to spatiotemporal signals. Neural Computation 15, 1143–1171 (2003)

Multi Objective Learning Classifier Systems

Based Hyperheuristics for Modularised Fleet
Mix Problem

Kamran Shafi, Axel Bender, and Hussein A. Abbass

School of Engineering & Information Technology
University of New South Wales,

Canberra, Australia
{k.shafi,hussein.abbass}@adfa.edu.au,

axel.bender@defence.gov.au

http://seit.unsw.adfa.edu.au/index.php

Abstract. This paper presents an offline multi-objective hyperheuristic
for the Modularised Fleet Mix Problem (MFMP) using Learning Clas-
sifier Systems (LCS). The LCS based hyperheuristic is built from mul-
ti-objective low-level heuristics that are derived from an existing MFMP
solver. While the low-level heuristics use multi-objective evolutionary
algorithms to search non-dominated solutions, the LCS based hyper-
heuristic applies the non-dominance concept at the primitive heuristic
level. Two LCS, namely the eXtended Classifier System (XCS) and the
sUpervised Classifier System (UCS) are augmented by multi-objective
reward and accuracy functions, respectively. The results show that UCS
performs better than XCS: the hyperheuristic learned by the UCS is able
to select low-level heuristics which create MFMP solutions that, in terms
of a distance-based convergence metric, are closer to the derived global
Pareto curves on a large set of MFMP test scenarios than the solutions
created by heuristics that are selected by the XCS hyperheuristic.

Keywords: fleet optimisation, hyperheuristic, learning classifier sys-
tem, multi-objective optimisation.

1 Introduction

Determining Fleet Size and Mix (FSM) is an important medium to long term
decision problem in logistics that involves estimating the optimal composition
of a transportation fleet’s future demands. In this paper we focus our attention
on an FSM variant in the land-based defence logistic domain, referred to as
MFMP. In the MFMP, heterogeneous fleets of modularised, military vehicles
are constructed such that a range of anticipated future missions can be fulfilled
in a cost-effective and efficient manner [2]. Several features make the MFMP
stand out from the standard FSM problem including domain-specific constraints

� Axel Bender is with the Defence Science and Technology Organisation, Australia.

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 381–390, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://seit.unsw.adfa.edu.au/index.php

382 K. Shafi, A. Bender, and H.A. Abbass

relating, for instance, to material handling and access to roads in the logistics
network, and a set of unique objectives such as the fleet’s ability to sustain a
diverse range of operations.

In a previous study [7] Shafi et al. used XCS, a leading learning classifier
system, to learn patterns in the MFMP scenarios and relate them to the best
performing heuristics using its simple if-then rules base. It used a multi-objective
reward function to deal with multiple non-dominated actions available for any
particular scenario or its matching conditions. However, the set of low-level
heuristics used in [7] was essentially single objective in nature as each heuristic
in the set provided a single best solution based on a given criterion. This can
become a serious limitation for a problem like MFMP, where the tradeoff be-
tween objectives might change over time [1]. In the current work we relax this
assumption by introducing a set of low-level heuristics which take multiple ob-
jectives into consideration and produce a set of non-dominated solutions instead
of a single best solution. An LCS based hyper-heuristic is then used to search
this multi-objective heuristic space and choose best performing heuristics for
specific MFMP problem instances. We first extend XCS to handle this new re-
quirement and refer to this system as XCSHH. We also apply UCS, a supervised
classifier system, and develop a UCS based offline multi-objective hyperheuristic
(UCSHH) using a multi-objective accuracy function.

The rest of this paper is organised as follows: Section 2 sets the context of
the paper by providing background information including a formal description
of MFMP. The methodology to use two LCS as hyperheuristics for MFMP is
detailed in Section 3. The application of the two LCS based hyperheuristics to the
MFMP and their effectiveness is demonstrated in Section 4 through experiments
and the analysis of their results. The paper is concluded in Section 5.

2 Background

2.1 Modularised Fleet Mix Problem (MFMP)

MFMP involves selecting trucks, trailer and module assets under given con-
straints to provide the best fleet mix outcomes that fulfil several efficiency and
effectiveness criteria [2]. Given:

– Tw
di mobility tasks, where w is the time window in which a task needs to be

fulfilled, d is the duration of the task and i is a unique task ID,
– V k vehicles, where k represents the vehicle type which includes the combi-

nation of modules that the base vehicle can carry,
– M r modules, where r represents the module type including the set of mate-

rials that can go with each module,
– Ck the cost of a vehicle of type k and
– Cr the cost of a module of type r,

LCS Based Hyperheuristics for MFMP 383

the problem is to identify a mixture of vehicles and modules to fulfil the tasks
such that the total fleet acquisition cost is minimised,

min

(∑
k

CkV k +
∑
r

CrM r

)
,

and the mixture is balanced:

min

∑
k(V

k − V)2

|k| .

The problem may involve optimisation of more objectives if other dimensions,
such as vehicle routing, are considered. For instance, the optimisation heuristics
used in this study also try to minimise the total time required to complete all
tasks in an MFMP scenario (min

∑
k T

w
di).

2.2 Existing Fleet Optimisation System

The fleet optimisation system that meets the complex MFMP requirements con-
sists of two main components [2]. The scenario generation component models
complex future operational scenarios. It also performs sensitivity analysis by pa-
rameterising the scenario space and generating a large number of scenarios to
be evaluated by the second component, the heuristic based solver. This solver
evolves pseudo-optimal solutions to the problem instances created by the sce-
nario generation module. Since the low-level heuristics that form the basis of our
proposed hyperheuristics are derived from the solver, we discuss it in greater de-
tail below.

2.3 Hyperheuristics

Hyperheuristics in search and optimisation [4][6] are recent techniques that au-
tomate the development of optimisation heuristics. Instead of searching in a
solution space their distinctive characteristic is that they search in a heuristic
space.

2.4 Learning Classifier Systems

LCS are genetic based machine learning systems that evolve a population of
classifiers. Each classifier consists of a rule, which includes a condition (essen-
tially a conjunction of predicates) and an action or the predicted class, and a
set of parameters that keep different statistics about the classifiers. Stewart Wil-
son’s XCS [9] is considered the current state-of-the art LCS. XCS incorporates
temporal-difference learning in its framework and thus has obvious application to
reinforcement learning problems. UCS [3] is an LCS derived from XCS. UCS, in
contrast to XCS, is specifically designed for supervised learning tasks and bene-
fits directly from known labels during training instead of receiving an immediate
or delayed reward as in the case of XCS.

384 K. Shafi, A. Bender, and H.A. Abbass

3 LCS Based Hyperheuristic for MFMP

The LCS based hyperheuristic applied to MFMP consists of a set of rules each of
which can match the characteristics of one or more MFMP instances. Each rule
advocates a single low-level heuristic that should be used when it gets activated.
The approach can be categorised as offline selective. This is because the set of
rules are learnt offline in a training phase and are used to select multi-objective
low-level heuristics to be applied to the future MFMP instances. Notice, however,
that the hyperheuristic is not static and has the ability to adapt to changes in
the problem space due to the online and incremental learning nature of LCS.

The hyperheuristic for MFMP is built around two representative LCS; XCS
and UCS. In both systems, the training (explore) and test (exploit) phases are
executed as usual except the parameter update and action selection mechanisms
are modified in both systems to suit the requirements of multi-objective heuristic
selection. Furthermore, to avoid modifications to different system operators, data
input is supplied in the closest match to the standard format. Thus, an input
here corresponds to a feature vector representation of an MFMP instance and
a set of ranks that are obtained by evaluating each low-level heuristic in the
MFMP solver and then using a convergence metric to score the heuristics (see
Section 4.1 for details on the generation of training and test data).

3.1 XCS Based Hyperheuristic (XCSHH) for MFMP

During exploration XCSHH builds a matchset [M] as usual. Upon receiving
an input the whole population is scanned and the classifiers whose conditions
match the incoming scenario features form the matchset. An action is then chosen
uniform-randomly and an actionset [A] is formed of all classifiers in [M] that
advocate the selected action. A reward is received for the selected action and
the parameters of the classifiers participating in [A] are updated accordingly.

The reward function is explicitly designed to consider multiple objectives. For
every input scenario (aka MFMP instance), each low-level heuristic produces
a set of non-dominated solutions. The heuristics are ranked relative to their
solutions’ convergence distance from a global non-dominated set obtained over
the whole solution pool. A reward R is computed for each classifier in [M] based
on the rank of its predicted action (i.e., the solicited low-level heuristic) using

R =

{
P − Pr

M−1 | r ∈ [0,M − 1],M ∈ [2, N]

P | M = 1.
. (1)

Here P represents a constant payoff, r is the rank of the predicted action for
a scenario (0 representing the highest rank), M is the total number of fronts
realised by all heuristics in that scenario and N is the total number of heuristics.

The rest of the parameters are updated as usual for each classifier in order.
A conventional GA is then applied to the population of classifiers in [A]. The
offspring are added to the population if they are not subsumed by their par-
ents. The maximum population size is fixed and a weighted, fitness proportional
deletion operator removes excess classifiers from the population.

LCS Based Hyperheuristics for MFMP 385

The above procedure is repeated for the whole data set over a given number
of training cycles. In the test mode, XCSHH is to predict a heuristic that will
perform best in a given test scenario using the hyperheuristic built during train-
ing. A fitness weighted system prediction is computed for all matching classifiers
for every test scenario and the heuristic with best prediction is chosen.

3.2 UCS Based Hyperheuristic (UCSHH) for MFMP

UCSHH operates in a similar manner to XCSHH. However, instead of a ran-
dom exploration, it explicitly uses the correct label of the input and updates
accuracy of all classifiers participating in a matchset as the ratio of correctly
classified instances to total matched instances. Accuracy and accuracy based
fitness are the main parameters in UCS. In single-objective classification prob-
lems, the accuracy update mechanism relies on a binary answer to each input.
However, in multi-objective optimisation, there is no right and wrong: in ev-
ery scenario each low-level heuristic produces solutions which can be mapped
to a multi-dimensional objective space. Hence, in the MFMP hyperheuristics
construction through UCSHH a modified accuracy function is used to update
classifier accuracy during the training phase:

An(i+1) =
1

i+1

(
Sn(i) +

{
1− r

M−1 | r∈[0,M−1],M∈[2,N]

1 | M=1.

)
. (2)

Here, Sn(i) refers to the accumulated score of the nth classifier in [M] after the ith

appearance in [M]. Unlike in XCSHH, in UCSHH classifier parameters, including
accuracy, are updated in the matchset. However a correctset [C] (equivalent to
the actionset in XCS) is formed using the correct label of the input. In the MFMP
application, [C] contains all classifiers predicting any of the low-level heuristics
whose solutions fall into the non-dominated set for the current MFMP instance.
Finally, a GA is applied to [C] similar to XCSHH. The UCSHH gets trained
iteratively over the whole training dataset and the post-training ruleset acts as
the hyperheuristic for predicting low-level heuristics for future MFMP cases.

3.3 Low-Level MFMP Heuristics

The set of multi-objective low-level heuristics used by LCS based hyperheuristics
in this work is derived from the MFMP solver of [2]. The heuristics consist of
a set of sorting criteria that are specific to each of the solver’s four optimisa-
tion modules (see Figure 1). To find MFMP solutions during the evolutionary
search in [2] the sorting criteria are chosen at random and iteratively from each
module. However, in the work presented here the sets of sorting criteria are
fixed inputs into the solver and used to evaluate the solutions evolved by the
multi-objective GA. In other words, each low-level heuristic can be considered a

386 K. Shafi, A. Bender, and H.A. Abbass

Fig. 1. Graphical representation of low-level heuristics derivation. A low-level heuristic
Hx consists of a fixed sequence of heuristics selected from the heuristics pool of each
MFMP solver module. In the shown example: Hx = Hb3,Ht3,Hr2, Hp2.

composite of several domain specific heuristics (here: sorting criteria), as illus-
trated in Figure 1. The number of low-level heuristics can be very large due to the
combinatorics. For instance, for four sub-problems (modules) with ten heuris-
tics each 104 low-level heuristics can be constructed, which, considering that the
LCS has to match these to n-dimensional MFMP scenario feature vectors, means
that the size of the search space for a hyperheuristic is huge. In this paper we
therefore only use the Time-Tabling and Routing modules of the MFMP solver
to construct the low-level heuristics: six sorting criteria for Time-Tabling and
two for Routing (Table 1), leading to a total of 12 low-level heuristics. Notice,
that in [7] sorting on performance objectives was included when generating the
low-level heuristics, thus turning each low-level heuristic into a single-objective
optimisation heuristic. This resulted in each low-level heuristic producing one
unique solution for every problem instance only. In the current work, sorting on
performance objectives is not included; hence each low-level heuristic used in
the MFMP solver produces Pareto sets of MFMP solutions.

Table 1. Sorting criteria used to derive low-level heuristics from the MFMP solver. ↑
and ↓ correspond to respectively ascending and descending sorting.

Time Tabling Routing

Earliest start time (↑) Capacity (↑), Speed (↓)
Earliest start time (↓) Capacity (↓), Speed (↑)
Latest finish time (↓)
Completion priority (↑)
Weight to be delivered (↑)
Weight to be delivered (↓)

LCS Based Hyperheuristics for MFMP 387

4 Experimental Setup

This section details our experimental methodology used to evaluate the perfor-
mance of XCSHH and UCSHH for MFMP.

4.1 Data Sourcing

The input data used to train and test the hyperheuristics are generated using the
fleet optimisation system described in Section 3.3. The data essentially consist
of a set of MFMP scenarios and the sets of non-dominated solutions obtained by
each low-level heuristic in each of these scenarios. To suit the input representa-
tion of XCSHH and UCSHH, the scenario data are transformed to feature vectors
through a feature extraction module extension in the system. The performance
data is obtained by applying each of the 12 low-level heuristics in sequence to
every input scenario. The low-level heuristics optimise three objective values in-
cluding the total cost of the fleet, diversity of the fleet mix and the total time
taken by the fleet to complete all tasks in a scenario. Since the low-level heuris-
tics use multi-objective evaluation they provide a set of non-dominated solutions
to choose from and therefore there is no direct mechanism to rank heuristic
performance. Thus we use a normalised convergence metric as in [5]. For each
MFMP scenario, the convergence metric Cm for the mth low-level heuristic is
computed by measuring the distance between the set of non-dominated solutions
ρm obtained by this heuristic and an approximated global Pareto Front P . In
the traditional multi-objective optimisation studies where the nature of the test
functions are often known, the optimal Pareto front is generally used to grade
the performance of multiple multi-objective optimisation algorithms [5]. How-
ever, in our problem the optimal values of the objective functions are unknown.
Therefore a pseudo-optimal Pareto front is generated by first combining all sets
of non-dominated solutions obtained by the low-level heuristic suite into a single
solution pool. Then a non-dominated sort is performed over the whole solution
space to generate the approximated global Pareto front P .

The convergence metric for each heuristic is obtained by averaging the nor-
malised distances over the size of its corresponding ρ:

Cm =

∑|ρm|
i=1 dmi
|ρm| (3)

where dmi is computed as:

dmi =
|P |
min
j=1

√√√√ m∑
k=1

(
Om

k (i)−Ok(j)

Omax
k −Omin

k

)2

. (4)

Here Om
k (i) and Ok(j) are the function values of the kth objective achieved by

the ith solution in ρm and jth solution in P respectively; and Omax
k and Omin

k

correspond to the maximum and minimum objective values in P for the kth

objective.

388 K. Shafi, A. Bender, and H.A. Abbass

Finally, a relative grading is applied to rank all the heuristics according to C.
Given n features to characterise an MFMP scenario and l low-level heuristics,
the final input into XCSHH and UCSHH then takes the following feature vector
form, where ri is the rank given to the ith heuristic:

xt = f1, f2, · · · , fn, r1, r2...rl.
The final training and test datasets are built by sampling 1000 scenarios (MFMP
instances), obtaining their solutions by employing the modified MFMP solver,
and using 900 instances for training and another non-overlapping 100 instances
for the evaluation of the LCS based hyperheuristics.

4.2 Parameter Setting

We used our own implementation of XCS and UCS in C++ with modifications
to handle the particular input representation of the MFMP. We used the stan-
dard interval based representation to cover the numeric features.The parameters
common to XCS and UCS were set to the same value. The maximum popula-
tion size in XCS was set to twice the population size in UCS due to its complete
action map representation. The parameter settings were as follows:

α = 0.1, β = 0.2, δ = 0.1, υ = 10, χ = 0.8, μ = 0.04, m0 = 0.2, r0 = 0.4,
θGA = 50, θsub=20, θdel = 20, XCS population size=4000, UCS population
size=2000, ACC0 = 0.99, GASubsumption=YES, ASSubsumption=NO.

4.3 Experiments

In the experiments each system was trained using 100 iterations through the
training set. After every training iteration, system performance was recorded in
terms of an average score obtained by the system over all test MFMP scenarios.
For each test scenario the system receives a score S between 0 and 1 which
depends on the rank r of the predicted heuristic and the total number of unique
ranks R obtained in a scenario:

S =

{
1− r

R−1 for r ∈ [0, R− 1], R ∈ [2, N]

1 for R = 1.
(5)

The experiments were repeated for ten different seeds.
Table 2 shows different statistics relating to system performance achieved by

XCSHH and UCSHH. The average best scores are obtained by averaging (over
100 test scenarios) the ten best testing cycle scores corresponding to ten inde-
pendent runs of the experiments. A score of 1 means that, on average, the system
was able to choose a low-level heuristic that is closest to the derived global Pareto
front for every test scenario in each run of the experiment. The best scores are
reported because a system can record a better performance before reaching the
maximum number of training epochs. Since XCSHH and UCSHH are offline hy-
perheuristics, these best models can then be used to select the low-level heuristics

LCS Based Hyperheuristics for MFMP 389

in future problem instances. Similarly, the worst scores are averages of the ten
worst test runs. The learning iterations correspond to the average number of
training cycles after which the best scores were obtained. Finally, the average
population size correspond to the number of macros1 in the final rule sets after
the last training cycle, averaged over ten experimental runs. This measure gives
an indication of the systems’ generalisation capability. Generally, the greater the
difference between the macros and the maximum population size, the better the
generalisation ability.

Table 2. Performance measures achieved by the two systems over 100 test MFMP
instances and averaged over ten independent runs

Measure XCSHH UCSHH

Avg. Best Score (%) 94.25±0.008 99.78±0.003

Avg. Worst Score (%) 80.6±0.012 77.8±0.078

Learning Iterations 57.9±34.63 58±36.15

Avg. Population Size 3979.4±5.62 1758±11.47

Based on a paired t-test at more than 99% confidence interval, UCSHH sig-
nificantly outperforms XCSHH in terms of the best score. It achieves a score
of almost 100% with very small deviation, which means that, through training,
UCSHH almost always finds a model able to choose the best low-level heuristics.
The better performance of UCSHH is further supported by a much compacter
rule set than XCSHH. In a sense the poorer performance of XCSHH is expected
as its learning is based on a complete action map [3] and hence it subsequently
needs to work on a much larger search space. However, this is only one aspect of
hyperheuristic performance. In [7] it was shown that XCS can help incorporate
a decision maker’s bias through modified reward functions. From a hyperheuris-
tic perspective, such a control means that low-level heuristics can be selected
that perform at par in terms of convergence distances but contribute to diverse
areas of the global Pareto operating curve [1]. Furthermore, XCS can be easily
adapted to learn a best action map instead of a complete action map [8], which
can improve its ability to select the right heuristics for test problems. UCSHH,
on the other hand, is preferable over XCSHH in cases where a decision bias is
not available. Finally, it can be seen that both systems learn their best models in
about the same time (∼ 58 learning iterations), albeit with a very high variance.

5 Conclusions

The main contribution of this paper is a methodology that can be consid-
ered a generic approach to use LCS as a heuristic selection technique in a

1 XCS and UCS represent multiple copies of a rule in the population as a single rule,
called a macro classifier, with a numerosity parameter that keeps a record of the
number of copies.

390 K. Shafi, A. Bender, and H.A. Abbass

multi-objective optimisation problem where multiple low-level heuristics pro-
duce competitive locally non-dominated solutions across a number of problem
instances. The methodology was demonstrated using two representative Michi-
gan style LCS, XCS and UCS, that employ modified reward and accuracy func-
tions to guide their learning bias towards selecting Pareto optimal low-level
heuristics across multiple problem instances. A military fleet mix problem was
used as a test bench to study the performance of the two hyperheuristics. The
results show that UCS, due to its more direct representation, produces better
results than XCS in terms of selecting low-level heuristics which dominate the
other heuristics in the selection pool across a number of test problems.

The use of LCS based hyperheuristics has important implications for multi-
objective optimisation problems. The approach can be used for the identification
of problem characteristics that lead to specific performance bottlenecks when
searching for efficient and effective solutions in important problems. They can
also be used to adapt the learning bias according to decision maker preferences
towards different objectives.

References

1. Abbass, H., Bender, A.: The Pareto operating curve for risk minimization. Artificial
Life and Robotics 14(4), 449–452 (2009)

2. Baker, S., Bender, A., Abbass, H., Sarker, R.: A scenario-based evolutionary schedul-
ing approach for assessing future supply chain fleet capabilities. In: Dahal, K., Tan,
K., Cowling, P. (eds.) Evolutionary Scheduling. SCI, vol. 49, pp. 485–511. Springer,
Heidelberg (2007)

3. Bernadó-Mansilla, E., Garrell-Guiu, J.: Accuracy-based learning classifier systems:
models, analysis and applications to classification tasks. Evolutionary Computa-
tion 11(3), 209–238 (2003)

4. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-
heuristics: An emerging direction in modern search technology. In: Handbook of
Metaheuristics, pp. 457–474 (2003)

5. Khare, V.R., Yao, X., Deb, K.: Performance Scaling of Multi-objective Evolutionary
Algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.)
EMO 2003. LNCS, vol. 2632, pp. 376–390. Springer, Heidelberg (2003)

6. Ross, P.: Hyper-heuristics. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies,
pp. 529–556. Springer, US (2005)

7. Shafi, K., Bender, A., Abbass, H.: Fleet estimation for defence logistics using a multi-
objective learning classifier system. In: Proceedings of the 13th Annual Conference
on Genetic and Evolutionary Computation, pp. 1195–1202. ACM (2011)

8. Shafi, K., Kovacs, T., Abbass, H., Zhu, W.: Intrusion detection with evolutionary
learning classifier systems. Natural Computing 8(1), 3–27 (2009)

9. Wilson, S.: Classifier fitness based on accuracy. Evolutionary Computation 3(2),
149–175 (1995)

Where Should We Stop?
An Investigation on Early Stopping for GP Learning

Thi Hien Nguyen1, Xuan Hoai Nguyen2, Bob McKay3, and Quang Uy Nguyen1

1 Le Quy Don University, Vietnam
2 Hanoi University, Vietnam

3 Seoul National University, Korea

Abstract. We investigate the impact of early stopping on the speed and accuracy
of Genetic Programming (GP) learning from noisy data. Early stopping, using
a popular stopping criterion, maintains the generalisation capacity of GP while
significantly reducing its training time.

1 Introduction

Genetic Programming (GP) [1] describes a class of evolutionary algorithms that solve
problems by finding solutions of non-predefined complexity. GP has often been viewed
as a form of machine learning, as it aims to induce relations between input and output
data in the form of a functional expression or program. Among the successful real-
world applications, learning tasks have been common [2]. Early GP research seldom
attended to the generalisation capacity of GP. The focus was on how GP could fit the
data by finding an exact solution/relation While learning exact solutions may be impor-
tant in some discovery tasks, machine learning (ML) [3] has emphasised generalisation
over unseen data as the most important aspect. A learning machine should avoid over-
fitting the training data. Recently, GP generalisation has caught more attention, with
an increasing number of related publications [4, 5, 6, 7, 8, 9, 10, 11]. In particular, GP
overfitting has been repeatedly demonstrated: while the errors on the training data may
improve over the generations, it may deteriorate on unseen test data.

There are at least two ways to combat over-fitting for learning machines [12] – re-
ducing machine complexity (or regularisation) and early stopping. In the first approach,
based on Occam’s razor [3], the learning process avoids over-fitting by preferring sim-
ple hypotheses. In the second, a learner does not eliminate over-fitting but rather tries
detect it and stops training once it does so. Early stopping is widely used for learn-
ing processes because it is simple, easy to implement, and, in many cases, superior to
regularisation [13]. In GP, there have been a number of attempts to improve GP gen-
eralisation by regularisation, through including the complexity of an individual as part
of its fitness [14, 15, 16, 17, 6]. However, as reported in [18], reducing complexity of
individuals may not lead to better generalisation. To date, the only published work on
early stopping for GP has been two preliminary works, [19] and [20]. In [19]. Tuite et
al. adapted three stopping criteria adopted from [12] to Grammatical Evolution (GE).
These criteria helped GE to detect when to stop during training. However the experi-
ments only covered two simple problems, and no detail of the impact of early stopping

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 391–399, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

392 T.H. Nguyen et al.

was provided. In [20], we investigated the impact of early stopping on GP learning.
Some results suggested that early stopping could trade off generalisation error and run
time complexity, but the results were mixed. However we can now explain them as due
to ineffective stopping criteria; better criteria lead to better results.

In this paper, we re-investigate the impact of early stopping on GP learning based
on Prechelt’s stopping criterion [12]. In Section 2, we briefly review related work on
GP generalisation, and on the role of early stopping in learning machines. Section 3
introduces our implementation of early stopping. Sections 4 details the experimental
settings. The results are presented and discussed in Section 5. The paper concludes in
Section 6 by highlighting possible future work.

2 Background

2.1 Over-fitting and Generalisation in GP

Although achieving high generalisation capability is the main objective any learning
machine [3], it was neglected in the early work on GP. Before Kushchu published
his seminal paper on generalisation in GP [7], there was little in the literature deal-
ing with GP generalisation. In [21], Francone et al. proposed a system called Com-
piling GP (CGP) and compared its generalisation with that of other machine learning
techniques, demonstrating comparable results. Extending the use of the mutation oper-
ator was shown to improve generalisation. Zhang [14] proposed avoiding over-fitting
through Minimum Description Length (MDL) methods, providing an adaptive mecha-
nism for balancing between accuracy and complexity preferences. He obtained robust
results for tasks with noisy or incomplete data. Hooper et al. [15] argued that expres-
sion simplification may help GP to avoid over-fitting and obtain better generalisation.
In [22], Iba incorporated Bagging and Boosting into GP (BagGP and BoostGP), show-
ing improved generalisation in discovering trigonometric identities, chaotic time series
prediction, and 6 bit multiplexer.

Recently, generalisation in GP has gained more attention. In [9], Panait and Luke
investigated the impact of using six common sampling methods on the robustness of
GP solutions. None dominated on all problems, showing that the impact of sampling
method is problem domain dependent. Paris et al. [23] used GP as the core learning
algorithm in a boosting framework to trigger over-fitting on two problems, demon-
strating much better performance with boosting. Becker and Seshadri [16] compared
two techniques to evolve more comprehensible trading rules. One applied expert-level
knowledge of useful arithmetic operators for technical trading, while the other used a
complexity penalty in the fitness. The second evolved more comprehensible, better-
generalising rules. Mahler et al. [24] tried Tarpeian control on symbolic regression
problems and tested for generalisation accuracy, finding mixed results: the effects of
Tarpeian control are problem-dependent. In [6], Gagné et al. investigated two methods
to improve GP generalisation: the selection of the best-of-run individuals through three
separate data sets (training, validation, and test), and the application of parsimony pres-
sure. The validation set results showed somewhat improved stability than parsimony
pressure.

Where Should We Stop? An Investigation on Early Stopping for GP Learning 393

More recently, Costelloe and Ryan [4] investigated the role of generalisation in GP.
They showed that linear scaling [25] improves GP training performance, but not test
performance. They proposed combining Linear Scaling and the No Same Mate strategy
[26] for better performance. Vanneschi and Gustafson [11] improved GP generalisation
through a crossover based similarity measure. They keep a list of over-fitted individuals,
and eliminate individuals that are too similar (based on structural distance or a subtree
crossover metric) to individuals in that list. The method was tested on a real-life drug
discovery regression problem and showed improvements in GP generalisation. Nguyen
Quang Uy et al. [8] showed that semantic information could guide GP crossover to re-
ducing code bloat and improve generalisation on real-valued symbolic regression prob-
lems. In [27], Vanneschi at el. proposed a method to quantify/detect over-fitting during
GP learning.

2.2 Early Stopping for Learning Machines

The preceding work has focused on avoiding over-fitting to improve GP generalisa-
tion, generally through reducing individual complexity. This resembles the common
machine learning technique of regularisation. While regularisation often works in GP,
recent work has shown that reducing individual complexity does not guarantee better
generalisation in GP [18]. Over-fitting is sometimes inevitable. Machine learning also
uses another approach: is stopping training when over-fitting is detected [12]. Early
stopping has been widely used in neural networks (NN) because of its simplicity and
effectiveness. In [12], Prechelt considered three criteria for stopping training. The first
criterion stops as soon as the generalisation loss (on an independent validation set)
exceeds a predetermined threshold. The second criterion uses the quotient of generali-
sation loss and progress, while the third stops when generalisation error first increases
over s successive training strips. None of the criteria dominated the others in terms
of average generalisation performance. However ”slower” criteria, stopping later than
others, on average improve generalisation, but at the cost of greater training time [12].

In other word, early stopping embodies a trade-off between training time and gener-
alisation. In [28], Shafi and Abbass investigated the effects of early stopping in learning
classifier system (LCS); as with NN, they found that early stopping improves general-
isation. The preliminary work of Tuite et al. [19] i and of ourselves [20] in applying
early stopping to GP was described in the preceding section.

3 Methods

Our method is inspired by Prechelt’s work [12] on early stopping criteria for NNs and
that of Tuite et al. [19] on early stopping for GE. We use three data sets: training,
testing and validation. The validation set is used to estimate the generalisation error of
individuals during evolution. Our stopping criterion is the second from [12].1

1 We have investigated 5 different stopping criteria, but only report the best due to space limita-
tions. Tuite et al. [19] reported the third criterion from [12] as best-performing, but we found
the second (with a different parameter setting) better.

394 T.H. Nguyen et al.

To specify the stopping criterion, we first define generalisation loss during the evo-
lutionary process in equation 1:

GL(g) = 100.(
Eva(g)

Eopt(g)
− 1) (1)

where Eva(g) is the validation error of the best individual at generation g. Eopt(g) is
the lowest validation error up to generation g:

Eopt(g) = min
g′≤g

Eva(g
′) (2)

Sharp generalisation loss is an indication of ineffective learning. However, if the train-
ing error is still decreasing rapidly, generalisation loss might recover, since we assumed
that over-fitting only begins when the error decreases slows [12]. Training progress
is defined over a training strip of length k: a sequence of k successive generations
n + 1, .., n+ k with k|n. It measures by how much the average training error exceeds
the minimum training error within the strip:

Pk(t) = 1000.(

∑g
t′=g−k+1 Etr(g)

kming
t′=g−k+1 Etr(g)

− 1) (3)

where Etr(g) is the training error of the best individual at generation g. We use the
stopping criterion from [12] defined as:
PQα: stop after the first end-of-strip generation g satisfying GL(g)

Pk(t)
> α

(In this criterion, α is a tuning parameter, permitting small excursions in the validation
error.)

4 Experiments

We conducted experiments on fifteen regression problems, including both synthetic and
real-world data sets. The ten synthetic data sets are given in Table 1. These test functions
have been extensively used in the GP and Machine Learning literature.

Table 1. The Synthetic Test Functions

1 F1(x) = x4 + x3 + x2 + x
2 F2(x) = cos(3x)
3 F3(x) =

√
x

4 F4(x) = x1x2 + sin ((x1 − 1)(x2 − 1))

5 F5(x) = x4
1 − x3

1 +
x2
2
2 − x2

Friedman1 F6(x) = 10 sin (πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5

Friedman2 F7(x) =
√

x2
1 + (x2x3 − 1

x2x4
)2

Gabor F8(x) = π
2 e−2(x2

1+x2
2) cos[2π(x1 + x2)]

Multi F9(x) = 0.79 + 1.27x1x2 + 1.56x1x4 + 3.42x2x5 + 2.06x3x4x5

3-D Mexican Hat F10(x) =
sin(

√
x1
1+x2

2)√
x2
1+x2

2

Where Should We Stop? An Investigation on Early Stopping for GP Learning 395

Table 2. The real-world data sets

Data sets Abbreviation Features Size Source

Concrete Slump Test Slum 10 103 UCI
Concrete Compressive Strength Conc 9 1030 UCI
Pollen Poll 5 3848 StatLib
Chscase.census6 Cens 7 400 StatLib
No2 No2 8 500 StatLib

Table 3. Data Sets for Problems. For the synthetic problems, the notation [min, max] defines the
range from which the data points are sampled.

Problem Function Attribute Sample size Training size Validation size Test size
1 F1 x ∈ [−1, 1] 1500 750 375 375
2 F2 x ∈ [0, 2] 1200 600 300 300
1 F3 x ∈ [0, 4] 1200 600 300 300
4 F4 x1, x2 ∈ [−3, 3] 1000 500 250 250
5 F5 x1, x2 ∈ [−3, 3] 1000 500 250 250
6 F6 x1, x2, x3, x4, x5 ∈ [0, 1] 1000 500 250 250
7 F7 x1 ∈ [0, 100],

x2 ∈ [40π, 560π],
x3 ∈ [0, 1],
x4 ∈ [1, 11] 1000 500 250 250

8 F8 x1, x2 ∈ [0, 1] 1200 600 300 300
9 F9 x1, x2, x3, x4, x5 ∈ [0, 1] 1000 500 250 250
10 F10 x1, x2 ∈ [−4π, 4π] 1000 500 250 250
11 Slum 103 52 25 26
12 Conc 1030 515 257 258
13 Poll 3848 1924 962 962
14 Cens 400 200 100 100
15 No2 500 250 125 125

The five real-world data sets were chosen from the UCI machine learning reposi-
tory [29] and StatLib [30], and are shown in Table 2.

Table 3 shows the ranges from which the inputs for the synthetic problems were
drawn, together with (for all problems) the sizes of the data sets into which the training
instances were divided.

Since these experiments are about generalisation ability, we corrupted the output
of the synthetic test functions by adding Gaussian noise with σ = 0.01. The parameter
settings for the GP systems are given in Table 4. Standard GP is denoted by GPM, while

Table 4. Parameter settings for the GP systems

Population Size 500
Number of generations 150 (for GPM)
Tournament size 3
Crossover probability 0.9
Mutation probability 0.05
Initial Max depth 6
Max depth 15
Non-terminals +, -, *, / (protected)

, sin, cos, exp, log (protected)
Standardized fitness mean absolute error
Number of runs 50

396 T.H. Nguyen et al.

GPV is a variant which checks the stopping criterion at each generation, terminating if
it is satisfied. Otherwise GPM and GPV are identical, up to using the same random seed
in corresponding runs.

All runs were conducted on a Compaq Presario CQ3414L computer with Intel Core
i3-550 Processor (4M Cache, 3.20 GHz) running Ubuntu Linux operating system.

5 Results and Discussions

For each run, we recorded the generalisation error (GE – measured on the test data) of
the best individual of the run, the size of the best individual, the first generation where
the best individual of the run was discovered, and the last generation of the run (for
GPV). Table 5 presents the results, averaged over 100 runs (with standard deviations).
Three different values for α (7, 29, 51) were tested, resulting in three different versions

Table 5. Best Generalisation Errors, Run Times, and p-values and percentage differences, GP
with Stopping Criterion (various α) vs GP

Generalisation Error p-value of GE run time p-value of time

Functions PQ7 PQ29 PQ51 GP PQ7 PQ29 PQ51 PQ7 PQ29 PQ51 GP PQ7 PQ29 PQ51

F1 0.0097± 0.0085± 0.0090± 0.0097± 0.9509 0.2608 0.4975 348.9897± 377.8947± 376.5979± 528.9278± 0.0000 0.0000 0.0000

0.0080 0.0071 0.0077 0.0081 98.8% 88.4% 92.6% 208.3706 203.1782 201.5762 172.4390 66.6% 73.7% 72.5%

F2 0.0126± 0.0126± 0.0125± 0.0222± 0.0005 0.0004 0.0004 348.9897± 377.8947± 376.5979± 528.9278± 0.0000 0.0000 0.0000

0.0138 0.0137 0.0138 0.0223 59.0% 58.4% 58.3% 208.3706 203.1782 201.5762 172.4390 62.7% 66.3% 67.2%

F3 0.0050± 0.0050± 0.0050± 0.0056± 0.4741 0.3156 0.3113 236.0652± 259.8370± 262.2935± 461.9588± 0.0000 0.0000 0.0000

0.0044 0.0044 0.0044 0.0046 90.5% 87.1% 90.9% 156.7395 166.9716 166.6070 132.1351 52.1% 56.9% 59.2%

F4 0.5084± 0.5036± 0.5036± 0.4958± 0.0368 0.1222 0.1313 110.4432± 128.4778± 128.5000± 223.3333 0.0000 0.0020 0.0020

0.0430 0.0485 0.0485 0.0559 100.6% 103.0% 101.9% 162.9480 189.7861 189.5296 221.7522 52.5% 61.7% 60.7%

F5 1.2100± 1.1854± 1.1688± 1.2342± 0.7429 0.5000 0.3628 400.0000± 421.8750± 429.8105± 563.0632± 0.0000 0.0000 0.0000

0.5089 0.4907 0.4804 0.5073 99.8% 97.4% 97.1% 202.5774 202.9539 205.2737 166.2303 72.2% 75.6% 76.9%

F6 1.5875± 1.5708± 1.5381± 1.4677± 0.0000 0.0094 0.0541 836.1277± 896.7660± 947.1522± 1225.4896± 0.0000 0.0000 0.0000

0.2981 0.3036 0.2641 0.2317 107.7% 106.6% 103.8% 389.1948 417.8879 417.6109 242.9004 68.6% 73.0% 76.9%

F7 3.9381± 3.9689± 3.9311± 4.0648± 0.9580 0.7531 0.6594 549.4792± 601.7500± 625.3750± 797.1954± 0.0000 0.0000 0.0000

2.1808 2.1971 2.1762 1.9215 100% 96.8% 98.0% 322.8258 314.5690 325.4105 237.6541 68.9% 77.4% 81.1%

F8 0.1456± 0.1414± 0.1412± 0.1312± 0.0656 0.1841 0.1953 529.9000± 564.9300± 568.4600± 747.0100 ± 0.0000 0.0000 0.0000

0.0603 0.0589 0.0590 0.0483 110.9% 107.7% 107.6% 281.5569 271.7877 270.1209 169.6208 70.9% 75.6% 76.1%

F9 0.1595± 0.1581± 0.1581± 0.1619± 0.7081 0.5547 0.5547 519.7340± 541.4894± 539.2660± 712.4457± 0.0000 0.0000 0.0000

0.0470 0.0471 0.0471 0.0399 98.9% 98.4% 99.3% 283.8214 285.9565 285.0949 175.5821 74.7% 76.4% 77.1%

F10 0.0824± 0.0813± 0.0815± 0.0802± 0.0076 0.1773 0.1119 188.6186± 261.1667± 271.9896± 565.7113± 0.0000 0.0000 0.0000

0.0050 0.0057 0.0055 0.0054 102.7% 101.4% 102.4% 208.0677 238.6885 244.9955 212.6491 33.8% 46.6% 49.2%

Slum 5.9632± 5.7866± 5.7869± 5.5959± 0.1521 0.4462 0.4489 62.4396± 90.9111± 97.2584± 422.4045± 0.0000 0.0000 0.0000

1.8028 1.7203 1.7347 1.6211 105.6% 103.1% 102.8% 53.4050 79.0853 80.7470 187.8031 14.7% 21.8% 23.9%

Conc 7.8401± 6.9023± 6.9508± 6.8906± 0.0000 0.9353 0.6893 1036.8400± 1518.4045± 1541.4286± 1708.7677± 0.0000 0.0443 0.0735

1.9861± 0.9700± 1.0593± 1.0114 112.9% 100.4% 101.2% 777.4485 712.0448 708.1432 556.4130 60.8% 85.6% 87.4%

Poll 1.7451± 1.7426± 1.7403± 1.7206± 0.5995 0.6366 0.6747 1768.7000± 1995.0500± 2064.0700± 3113.6200± 0.0000 0.0000 0.0000

0.3320 0.3301 0.3338 0.3275 101.4% 101.3% 101.1% 1105.8256 1199.1555 1190.9865 1090.1410 56.8% 64.1% 66.3%

Cens 1.2417± 1.2469± 1.2501± 1.3475± 0.0000 0.0000 0.0000 87.0488± 138.2530± 156.6867± 427.2708± 0.0000 0.0000 0.0000

0.0509 0.0489 0.0490 0.2042 93.4% 96.0% 97.3% 87.8209 145.4627 167.0125 185.6668 20.8% 33.8% 38.2%

No2 0.4846± 0.4822± 0.4813± 0.4740± 0.0663 0.1457 0.1888 164.6364± 235.6566± 254.1100± 567.1600 ± 0.0000 0.0000 0.0000

0.0421 0.0406 0.0402 0.0387 102.2% 101.7% 101.6% 146.8023 194.6069 201.4310 225.5351 29.0% 41.6% 44.8%

Where Should We Stop? An Investigation on Early Stopping for GP Learning 397

of GPV (PQ7, PQ29, PQ51 in the table).2. We tested the significance of the differences
in generalisation error between GPM and GPV, using a two-tailed pairwise t-test with
confidence level 0.95 (α = 0.05). The p-values are shown.3 Our null and alternative
hypotheses were:

– H0 = ”the average GE of GPM and GPV are the same”.
– H1 = ”GPM and GPV have different average GE”.

In Table 5, if H0 is rejected the printed p-value is bolded (if GPV is better than GP) or
italicised and bolded (if GPV is worse than GPM). When α is small, early stopping can
degrade the generalisation capacity of GP. For α = 7 (column PQ7), four functions (F4,
F6, F10, Conc) show worse generalisation from GPV solutions than from GPM (H0 is
rejected). This reduces to one function for α = 29 (column PQ29) and none for α = 51
(i.e. H0 is accepted in most cases); on the contrary, in two cases for the latter, GPB has
strictly better generalisation. Table 5 also shows the percentage ratio between GE of
solutions found by each GPV system with that found by GP (averaged over all runs).
The average run time (with standard deviations) of each system is given in the right haft
of Table 5, with p-values for a two-tailed t-test with null and alternative hypotheses as
follows:

– H0 = ”the average run times of GPM and GPV are the same”.
– H1 = ”GPM and GPV have different average runtime”.

For all settings of alpha, GPV has significantly better run time than GPM, on all prob-
lems. As α increases, so does the relative runtime of GPV – but generally rather slowly.
Overall, the better overall performance of larger α values is probably worth the in-
creased runtime.

6 Conclusions

We have presented a study of the impact of early stopping on GP learning, focusing on
its learning efficiency (generalisation error and runtime complexity). The results from
10 synthetic regression and 5 real-world problems show that early stopping improves
GP learning efficiency by significantly reducing training time while retaining, or even
slightly improving, the quality of the solutions it learns. It also confirms the value of
Prechelt’s second stopping criterion [12] with different settings of parameter alpha than
were used by Prechelt. The results somewhat contradict those reported in [19], where
this stopping criterion is found to be less effective for GE. We conjecture that this results
from the the different settings of α, and that Tuite et al. might see better results from
the second criterion with increased values of α.

In future, we plan to test early stopping criteria on more problems, and to compare
with regularisation via Tarpeian Control [24] and similar methods. Since early stopping

2 [12] and [19] tested α values of 2.5, 5, and 7.5. For our problem domains, these values were
too small, and we recalibrated α for the best performance of GPV.

3 Values shown as 0.0000 were truncated from the actual value so as to fit the table on the page.

398 T.H. Nguyen et al.

uses only the validation and training errors of individuals, and does not interfere with
the fitness function or individual complexity metrics as does regularisation, the two
(regularisation and early stopping) could potentially be used in combination. Studying
such a combination is in our intermediate future plans.

Acknowledgments. The ICT at Seoul National University provided research facilities
for this study. This work was funded by The Vietnam National Foundation for Science
and Technology Development (NAFOSTED) under grant number 102.01-2011.08. The
first author would like to thank the R@FIT funding of school of Information Tech-
nology, Le Quy Don University for providing financial support for her to present this
paper.

References

[1] Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. The MIT Press, Cambridge (1992)

[2] Poli, R., McPhee, W.L.N.: A Field Guide to Genetic Programming (2008),
http://lulu.com

[3] Mitchell, T.M.: Machine Learning. McGraw Hill (1997)
[4] Costelloe, D., Ryan, C.: On Improving Generalisation in Genetic Programming. In: Van-

neschi, L., Gustafson, S., Moraglio, A., De Falco, I., Ebner, M. (eds.) EuroGP 2009. LNCS,
vol. 5481, pp. 61–72. Springer, Heidelberg (2009)

[5] Foreman, N., Evett, M.: Preventing overfitting in GP with canary functions. In: Proceedings
of the 2005 Conference on Genetic and Evolutionary Computation (GECCO 2005), pp.
1779–1780. ACM (2005)

[6] Gagné, C., Schoenauer, M., Parizeau, M., Tomassini, M.: Genetic Programming, Validation
Sets, and Parsimony Pressure. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt,
A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 109–120. Springer, Heidelberg (2006)

[7] Kushchu, I.: Genetic programming and evolutionary generalization. IEEE Transactions on
Evolutionary Computation 6, 431–442 (2002)

[8] Uy, N.Q., Hien, N.T., Hoai, N.X., O’Neill, M.: Improving the Generalisation Ability of
Genetic Programming with Semantic Similarity based Crossover. In: Esparcia-Alcázar, A.I.,
Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 184–
195. Springer, Heidelberg (2010)

[9] Panait, L., Luke, S.: Methods for Evolving Robust Programs. In: Cantú-Paz, E., Foster, J.A.,
Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Har-
man, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N.,
Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1740–1751. Springer,
Heidelberg (2003)

[10] Paris, G., Robilliard, D., Fonlupt, C.: Exploring Overfitting in Genetic Programming. In:
Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003. LNCS,
vol. 2936, pp. 267–277. Springer, Heidelberg (2004)

[11] Vanneschi, L., Gustafson, S.: Using crossover based similarity measure to improve genetic
programming generalization ability. In: Proceedings of the 11th Annual Conference on Ge-
netic and Evolutionary Computation (GECCO 2009), pp. 1139–1146. ACM (2009)

[12] Prechelt, L.: Early Stopping - But When? In: Orr, G.B., Müller, K.-R. (eds.) NIPS-WS 1996.
LNCS, vol. 1524, pp. 55–69. Springer, Heidelberg (1998)

http://lulu.com

Where Should We Stop? An Investigation on Early Stopping for GP Learning 399

[13] Finno, W., Hergert, F., Zimmermann, H.: Improving model selection by nonconvergent
methods. Neural Networks 6, 771–783 (1993)

[14] Zhang, B.T., Muhlenbein, H.: Balancing accuracy and parsimony in genetic programming.
Evolutionary Computation 3, 17–38 (1995)

[15] Hooper, D., Flann, N.: Improving the accuracy and robustness of genetic programming
through expression simplification. In: Proceedings of the First Annual Conference on Ge-
netic Programming 1996, vol. 428. MIT Press (1996)

[16] Becker, L., Seshadri, M.: Comprehensibility and overfitting avoidance in genetic program-
ming for technical trading rules. Technical report, Worcester Polytechnic Institute (2003)

[17] Liu, Y., Khoshgoftaar, T.: Reducing overfitting in genetic programming models for software
quality classification. In: Proceedings of the Eighth IEEE Symposium on International High
Assurance Systems Engineering, pp. 56–65 (2004)

[18] Silva, S., Vanneschi, L.: Operator equalisation, bloat and overfitting: a study on human oral
bioavailability prediction. In: Proceedings of the 11th Annual Conference on Genetic and
Evolutionary Computation (GECCO 2009), pp. 1115–1122 (2009)

[19] Tuite, C., Agapitos, A., O’Neill, M., Brabazon, A.: Early stopping criteria to counteract
overfitting in genetic programming. In: Proceedings of the 13th Annual Conference Com-
panion on Genetic and Evolutionary Computation, GECCO 2011, pp. 203–204. ACM, New
York (2011)

[20] Hien, N.T., Hoai, N.X., Uy, N.Q., McKay, R.: Where should we stop? - an investigation on
early stopping for gp learning. Technical Report TRSNUSC:2011:001, Strutural Complex-
ity Laboratory, Seoul National University, Seoul, Korea (February 2011)

[21] Francone, F., Nordin, P., Banzhaf, W.: Benchmarking the generalization capabilities of a
compiling genetic programming system using sparse data sets. In: Proceedings of the First
Annual Conference on Genetic Programming 1996, pp. 72–80. MIT Press (1996)

[22] Iba, H.: Bagging, boosting, and bloating in genetic programming. In: Proceedings of the
Genetic and Evolutionary Computation Conference, pp. 1053–1060. Morgan Kaufmann
(1999)

[23] Paris, G., Robilliard, D., Fonlupt, C.: Exploring Overfitting in Genetic Programming. In:
Liardet, P., Collet, P., Fonlupt, C., Lutton, E., Schoenauer, M. (eds.) EA 2003. LNCS,
vol. 2936, pp. 267–277. Springer, Heidelberg (2004)

[24] Mahler, S., Robilliard, D., Fonlupt, C.: Tarpeian Bloat Control and Generalization Accuracy.
In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP
2005. LNCS, vol. 3447, pp. 203–214. Springer, Heidelberg (2005)

[25] Keijzer, M.: Improving Symbolic Regression with Interval Arithmetic and Linear Scaling.
In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003.
LNCS, vol. 2610, pp. 70–82. Springer, Heidelberg (2003)

[26] Gustafson, S., Burke, E.K., Krasnogor, N.: On improving genetic programming for sym-
bolic regression. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation,
vol. 1, pp. 912–919. IEEE Press, Edinburgh (2005)

[27] Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional complexity
in genetic programming. In: Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation (GECCO 2010), pp. 877–884. ACM (2010)

[28] Shafi, K., Abbass, H.A., Zhu, W.: The Role of Early Stopping and Population Size in XCS
for Intrusion Detection. In: Wang, T.-D., Li, X., Chen, S.-H., Wang, X., Abbass, H.A.,
Iba, H., Chen, G.-L., Yao, X. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 50–57. Springer,
Heidelberg (2006)

[29] Blake, C., Keogh, E., Merz, C.J.: UCI machine learning repository (1998)
[30] Vlachos, P.: Statlib project repository (2000)

From Subjective to Objective Metrics

for Evolutionary Story Narration
Using Event Permutations

Kun Wang1, Vinh Bui1, Eleni Petraki2, and Hussein A. Abbass1

1 School of Engineering and IT, UNSW-Canberra, Australia
Kun.Wang@student.adfa.edu.au, vinhqb@gmail.com, H.Abbass@adfa.edu.au

2 Faculty of Arts and Design, University of Canberra, Australia
Eleni.Petraki@canberra.edu.au

Abstract. The use of evolutionary computation to automatically nar-
rate a story in a natural language, such as English, is a very daunting
task. Two main challenges are addressed in this paper. First, how to
represent a story in a form that is simple for evolution to work on? Sec-
ond, how to evaluate stories using proper objective metrics? We address
the first challenge by introducing a permutation-based linear represen-
tation that relies on capturing the events in a story in a genome, and on
transforming any sequence represented by this genome into a valid story
using a genotype-phenotype mapping. This mapping uses causal rela-
tionships in a story as constraints. The second challenge is addressed by
conducting human-based experiments to collect subjective measurements
of two categories of familiar and unfamiliar stories to the participants.
The data collected from this exercise are then correlated with objective
metrics that we designed to capture the quality of a story. Results reveal
interesting relationships that are discussed in details in the paper.

Keywords: automatic story narration, genotype-phenotype mapping.

1 Introduction

Three major automatic story generation approaches are observed in the liter-
ature: case-based reasoning [1–3], simulation-based [4–6] and grammar-based
approach [7, 8]. In the first approach, case-based reasoning is used as a prime
reasoning tool for retrieving and combining parts of the existing stories that can
match a given user query. In the simulation-based approach, a planning algo-
rithm is applied to let every character act according to the changing world state
to achieve their preassigned goals in this virtual story world so that stories can
be generated by simply recording the events and world states that happened dur-
ing the simulation. In the grammar-based approach, story generation becomes
a process of grammar derivation and evolution, in which a story grammar is
designed by representing the underlying story structure in formal grammar.

If a story can be represented as a genome, existing evolutionary algorithms
can be applied to evolve the generated stories. However, to make the story evolu-
tionary process work, an appropriate fitness function must be defined first. This

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 400–409, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Story Generation 401

raises one of the biggest challenges in automatic story generation—a compu-
tational story evaluation where quantitative story measures such as coherence,
novelty and interestingness are required.

Existing evolutionary-based story generation [7, 8] relies on a human-in-the-
loop story evaluation. However, interactive evolution makes it difficult to evalu-
ate a large number of stories. As a result, the ultimate solution to an automatic
story evaluation and evolution is still to define quantitative measures of a story.

The contributions of this paper are threefold: Firstly, we propose to narrate
stories with flashback from a story dependence network and represent the story
as a permutation problem that is capable of incorporating heterogeneous story
information into one genome. A flashback is a story played backward. It can be a
full flashback, where the whole story is played backward, or a partial flashback,
where a subset of events are played backward, with the rest of the events played
forward. Secondly, a genotype-phenotype mapping is proposed to ensure that
any genome can map to a valid story. Third, we present objective metrics for
evaluating the narration of a story then correlate these metrics with subjective
ones based on human evaluation. This will assist in the future in designing
quantitative story measures for automatic story evaluation and evolution.

The rest of the paper is organized as follows. In Section 2 a dependence net-
work that reflects the causal relationships between events in a story is extracted.
Subsequently, in Section 3, a permutation-based linear representation is intro-
duced to capture the events in a story in a genome. The data collected from
humans are correlated with objective metrics that we designed in Section 4 to
capture the quality of a story. The details of the experiment design and result
analysis are presented in Section 5. Finally, some concluding remarks are made
and future work is discussed in Section 6.

2 Story Dependence Network

In Oxford dictionary [10], event is defined as a “thing that happens, especially
something important”. This definition has been further enhanced by TimeML
guideline—an international cross-language ISO standard for annotating events
from text [11]. According to the TimeML guideline, an event is defined as “a
cover term for situations that happen, occur, hold, or take place” which “can
be punctual or last for a period of time” and also includes “those predicates
describing states or circumstances in which something obtains or holds true”.

However, the subtlety of the original TimeML event definition makes it dif-
ficult to give a computational and unambiguous event definition for our story
parsing use because some of the difference between an event and non-event are
so delicate that even humans fail to reach a consensus [12]. As a result, the event
definition applied in this paper is as follows: Event is a predicate that denotes
an action, state, or occurrence in a story, which is bound by a position in the
temporal dimension, possesses a spatial situation in the story world and has
participants as parameters.

402 K. Wang et al.

Compared to the TimeML event definition, we regard all predicates as events
and exclude those nouns that do not belong to any predicate such as “rain”. In-
stead, those nouns will be extracted as parameters of the events they are involved
in. We also group similar events, e.g. events that possess common parameters.

The dependence relation between two story building blocks (say two events)
can be identified from a counterfactual test [14] which has this form: “If A had not
happened in the circumstances of the story, then B would not have happened”.
The event-level dependence network is represented by a list of event strings (see
Figure 1 (a) for illustration) and a list of event relation objects (see Figure 1 (b)
for illustration). Every event relation object contains the information of a specific
event including its “ID” and “PARAMETERS”, and the “ID” information of all
its dependently related events. Besides, we also group similar events that possess
the same non-zero parameters and obtain a new dependence network.

 (a) event string list:
Long long ago, there was a village called CaveLand.
(1) was the fiercest dinosaur in CaveLand.
(1) was the ruler of CaveLand.
Every time (1) tried to be a big shot,
(1) always ruined it ((9) trying to be a big shot).
(1) hated (2).
(1) decided to punish (2) once and for all.
(1) set off.
One hour later, (1) arrived at (7)’s caves.
 ……

 (b) event_relation object list:
 event_relation(0,'0000',[],[1,2]).
 event_relation(1,'0001',[0],[20]).
 event_relation(2,'1000',[0],[3]).
 event_relation(3,'1000',[2],[4]).
 event_relation(4,'9100',[3],[5]).
 event_relation(5,'1200',[4],[6]).
 event_relation(6,'1200',[5],[7]).
 event_relation(7,'1000',[6],[8]).
 event_relation(8,'1700',[7],[9]).
 ……

 original story:
Long long ago, there was a village called CaveLand.
(Mogmog) was the fiercest dinosaur in CaveLand.
(Chief) was the ruler of CaveLand.
Every time (Chief) tried to be a big shot,
(Ook) always ruined it ((Chief) trying to be a big shot)!
(Chief) hated (Ook).
(Chief) decided to punish (Ook) once and for all.
(Chief) set off.
One hour later, (Chief) arrived at (Ook)’s caves.
 ……

Lily MogmogChief Ook

corresponding parameter organization:

(b)dependence
relation:

(a) event:

 event_relation(
ID

5, '1200', [4], [6])
PARAMETERS PARENTS KIDS

Fig. 1. An example of event-level story dependence network

3 Story Generation as Permutation Problem

We represent stories with flashback as a permutation; that is, finding an ap-
propriate permutation of the events and parameters in the story dependence
network so that diversified stories with different narration orders and parame-
ter arrangements from the original story can be generated. We first encode the
new story generated from the story dependence network into a genome. This
genome is a valid permutation (ie a permutation under predefined constraints)
of integers that represent heterogeneous story information including the order of
events, the parameter arrangement (such as characters) and the layer threshold
that serves as the meeting point of forward narration and flashback in the story
dependence network. We then generate different permutations in the genotype
to change the phenotype—the corresponding text-form story.

Story Generation 403

3.1 Encoding Narration into Genome

Technically, we can narrate the events in the story dependence network in a ran-
dom order. However, it will be difficult to control the coherence of the generated
stories and too much noise will exist in the generated stories for humans to give
a comparatively objective evaluation. In order to control the coherence in the
generated stories to some degree while generating different stories with flash-
back, the following constraints have been imposed—a story is told by combining
both a forward narration and flashback of the events in the story dependence
network.

The above-mentioned constraints can be realized in the following steps: Firstly,
randomly choose a layer in the story dependence network as a threshold layer.
Then all the events with a smaller layer value will appear in the generated story
in the sequence of forward narration, ie the events with a smaller layer will al-
ways occur before those with a bigger layer, while the events whose layer value is
bigger than the threshold layer will be narrated in a flashback way, ie the events
with a bigger layer will always occur before those with a smaller layer in the
generated story. Finally, the story will end at the events with the threshold layer
value which serve as the meeting point in the narration of the story dependence
network.

Under these constraints, the diversity of the generated stories can still be
maintained. For one thing, different layer thresholds will generate stories that
end at diversified points in the event-level dependence network. For another, the
combination of the alternation of forward events and flashback events can be
big, not to mention the options when parallel paths are encountered during the
narration of the events in the dependence network.

A new story with flashback generated from the story dependence network is
encoded into a genotype. The genotype incorporates heterogeneous story infor-
mation including the order of events, the parameter arrangement and the layer
threshold that serves as the meeting point of forward narration and flashback.

In this paper, the incorporation of heterogeneous story information in a geno-
type is achieved by assigning unique value ranges to different types of informa-
tion: suppose there are M events and N layers in the story dependence network,
and the overall number of different parameters in the story is P. Then in the geno-
type, genes whose values are between 0 and M-1 denotes events, genes with the
values between M and M+N-1 denotes layers and the threshold layer is the first
layer gene that occurs in the genotype which makes all the following layer genes
redundant, and genes with the values between M+N and M+N+P-1 denotes
parameters of the story and their occurrence order in the genotype determines
the parameter arrangement of the phenotype (ie the text-form story).

Then the genotype can be generated in two steps. First, we randomly gen-
erate a permutation of M+N+P integers from 0 to M+N+P-1 which may not
meet the permutation constraints mentioned above. Second, we transform the
permutation into a corresponding permutation that conforms to the constraints
elaborated above. During the transformation process, the dependence relation
information represented in the story dependence network’s event relation object

404 K. Wang et al.

list (ie the PARENTS and KIDS members) serves as the reference for constraints
and the obtained valid permutation is the generated genotype.

3.2 Obtaining Text-Form Story from Genotype-phenotype Mapping

Then the text-form story (ie the phenotype) can be obtained from a genotype-
phenotype mapping by scanning the genome from left to right to extract an
event list (ie a list of event genes) and a parameter list (ie a list of parameter
genes). See figure 2 (b), (c) for illustration.

We, then, extract the parameter arrangement from the parameter list. Fig-
ure 2 (c) illustrates this process where the extracted parameter list is mapped
into a parameter arrangement which may be a rearrangement of the parameter
reference (ie the parameter arrangement in the original story).

Finally, the text-form story can be obtained by enumerating the text repre-
sentation of each of the events one after another in the order of their positions
in the event list. The text representation of an event is obtained by replacing
the bracketed numbers in the “event string” (see Figure 1 for illustration) with
corresponding parameters in the parameter organization.

41404243(c) parameter list:

320 1
Lily MogmogChief Ook

1023

minus parameter reference

Chief OokMogmog Lilyparameter arrangement:

1819020 ... 1(b) event list:

33(a) threshold layer:

 lower bound

33-21(lower bound)=12

Fig. 2. Extracted story information from the genotype

Figure 3 illustrates the corresponding text-form story (ie the phenotype) of
the genotype. In this figure, the underlined text corresponds to the flashback part
of the story dependence network; the regular text corresponds to the forward
narration part while the forward narration and flashback meet at the event whose
layer equals to 12 which is denoted as bold face text. It is worth mentioning that
although the layer value of the last event “(Ook) was the fiercest dinosaur in
CaveLand” is 1, the layer value of its only KIDS node in the story dependence
network is 13, so it has an equivalent layer value ranging from 1 to 12, this means
that it can occur at the end of this story.

Story Generation 405

Everyone lived happily ever after except (Mogmog) .
Long long ago, there was a village called CaveLand.
(Ook) frightened ruler (Mogmog) away from CaveLand.
(Lily) felt very sorry for what she had done for (Ook) . So (Lily) saved (Ook) . (Ook) was very
grateful for (Lily) , they became friends.
(Lily) was happy to see (Ook) struggling in the quick sand.
Then baby (Ook) show up and cried.
But (Ook) fell into the quick sand.
(Lily) was frightened, so he ran as fast as he can. Until (Lily) ran to a quick sand. (Lily) swang over
the quick sand using a vine.
(Mogmog) was the ruler of CaveLand.
Every time (Mogmog) tried to be a big shot, (Lily) always ruined it! So (Mogmog) hated (Lily) . So
(Mogmog) decided to punish (Lily) once and for all.
So (Mogmog) set off.
One hour later, (Mogmog) arrived at (Lily) ’s caves. (Mogmog) yelled to (Lily) : “Alright you kids,
you are under arrest!!”
When sister (Chief) heard the commission, (Chief) pleaded with ruler (Mogmog) : “Please have
mercy for (Lily) !”.
(Mogmog) saw (Chief) . (Mogmog) thought him in love, so he asked (Chief) :”Will you marry
me?” (Chief) replied:”No way, you dumb head (Mogmog) !”
(Mogmog) was furious.
(Mogmog) then threatened :”Listen, (Chief) better marry me tomorrow, or I will throw (Lily) in jail!”
(Chief) was very sad.
(Lily) comforted (Chief) :”No worry, sister, we will think of an idea.”
(Lily) thought day and night but still got no idea. So (Lily) walked into the deep jungle to clear their
heads.
(Lily) met (Ook) .
(Ook) was the fierest dinosaur in CaveLand.

Fig. 3. The text-form story obtained from the genotype-phenotype mapping

4 Story Measures Selection

This section is concerned with the second challenge of this research: how to
evaluate stories using proper objective metrics. This challenge is addressed by
conducting human-based experiments to collect subjective story measurements
to the participants. The data collected from this exercise are then correlated
with objective features that we have designed to capture the quality of a story.

4.1 Subjective Story Measures

In this investigation, coherence, novelty and interestingness and the overall qual-
ity of a story have been selected as the subjective measures of human story
evaluation. The coherence of a story reflects “a global representation of story
meaning and connectedness, which is the temporal and causal structure of a
story” [15]. Coherence makes a story understandable to the reader [16].

Novelty reflects the unexpectedness and rule-breaking degree of a story. It
serves as a supplement to the coherence measure. An objective of automatic story
generation is to help discover stories or structures that exceed our imagination
so as to achieve some degree of creativity: a fundamental characteristic of human
intelligence and an inescapable challenge for any forms of AI.

Generating interesting stories is another general objective of storytelling. If we
may say the above two measures reflect a readers’s global impression of a story
after understanding is achieved, then interestingness may indicate the dynamics
of human’s appreciation of a story in the sense that “the increases in cognitive
interest were observed before full comprehension was achieved” [17].

406 K. Wang et al.

In the investigation, all the data of the above story measures are collected as
scores given by humans after reading each of the stories. Overall score serves as
a indicator of human’s overall evaluation of a story’s quality.

4.2 Objective Story Features

In this investigation, the definition of some quantitative story features are facil-
itated by our proposed story representation. The story features defined in this
paper are listed below:

– disOfFlashback means the distance of flashback feature of a generated
story, which is determined by the threshold layer in the genotype that has
been chosen as the meeting point of forward narration and flashback in the
story dependence network;

– consistEventOrders denotes the consistency of the event order of a gener-
ated story with the event order in the reference story, ie the original “Little
Red Riding Hood” or “CaveLand” story;

– consistPars denotes the consistency of the parameter arrangement with the
parameter arrangement in the reference story. It is noteworthy that in this
section, the term “participant” refers to the participant of the investigation
instead of that of an event in the story dependence network;

– consistParRoles denotes the consistency of the arrangement of parameters’
roles (ie characters and objects’ roles in the story) with those in the refer-
ence story. The parameter roles we have differentiated in this paper include
victims, villains, heros, and event triggers.

The reasons for choosing the previous quantitative story features are manifold.
First, different degrees of flashback and deviation from the smooth flow of depen-
dency in the story dependence network may have diversified effects on reader’s
understanding and evaluation of the story. Second, different ways of parameter
shuffling may change the reader’s mental picture of the story [9] thus manipu-
lating his or her understanding of the story to a certain degree. Third, shuffling
parameters while totally destroying their roles may have different effects com-
pared to shuffling parameters while maintaining their roles to some degree.

5 Experimental Study

In this section, we present the details of the experiment carried out to study the
correlation between objective story features and different subjective measures
of human story evaluation such as coherence, novelty and interestingness. This
correlation may help us to design quantitative story measures from quantitative
story features in the future so as to facilitate semiautomatic and even automatic
story evaluation and evolution, which is one of the biggest challenges in auto-
matic story generation field. Besides, this investigation may also provide insights
into human-in-the-loop evolution.

Story Generation 407

5.1 Experiment Design

Two existing children’s stories with different familiarity are selected for the in-
vestigation in order to draw common conclusions regardless of the effect of fa-
miliarity and also to uncover the effect of familiarity on human evaluation of a
story. The two stories include the classic “Little Red Riding Hood” story which
is probably familiar to most of the participants and a story referred to as “Cave-
Land” revised from a recent comic book “Ook and Gluk” which is supposed to
be unfamiliar to most of the participants.

For each of the two selected children’s stories, fifteen different versions with
different quantitative features are automatically generated. Eight participants
are involved in this experiment where every participant is given the same fifteen
versions of a story in a continuous time slot of a day which fluctuates between
half an hour to half past an hour depending on the evaluation difficulty of that
story and individual diversity in story understanding.

In order to reduce the impact of tiredness and context influence on the inves-
tigation result, for different participants, the reading order of the same fifteen
versions of a story has been shuffled randomly, so the cognitive state of different
participants when evaluating the same version of that story may vary.

After reading every version of a story, each participant is required to give
scores on story measures which include its “overall score”, “coherence”, “novelty”
and “interestingness”. Finally, the scores of 240 stories (ie 2 stories *15 versions
*8 participants) are collected and analyzed.

5.2 Results and Analysis

In this paper, the general correlations between different story features and mea-
sures are obtained. For each of the two stories, every participant’s individual
correlation coefficients between any combinations of story features and story
measures are calculated. For instance, for the story “Little Red Riding Hood”,
participant No.1’s correlation coefficient between “disOfFlashback” and “coher-
ence” is calculated using Pearson’s product-moment coefficient equation where
n is the number of different story versions he or she has read which equals to
15, and all the average is calculated across different story versions. Then the
average and standard deviation of all the individual’s correlation between any
story feature and measure is calculated to reflect the general correlation between
any story feature and measure across individuals.

Figure 4 shows the statistics of the correlation coefficients between each story
feature and measure across different individuals. The denotation used in this
table is explained as follows: “average correlation” denotes the average of the
correlation coefficients between a story feature and a story measure across in-
dividuals; “stdev correlation” denotes the standard deviation of the correlation
coefficients between a story feature and a story measure among different indi-
viduals.

A comparison between the two stories in terms of the average correlation coef-
ficient figures offers a number of interesting insights into the effect of familiarity
on human evaluation of a story:

408 K. Wang et al.

Fig. 4. Statistics of the correlation coefficients between each story feature and measure

On the one hand, familiarity with the story “Little Red Riding Hood”made the
average correlation coefficients between disOfFlashback or consistEventOrder and
all story measures smaller than those of the unfamiliar story “CaveLand”. This in-
dicates that flashback in a storyplays a comparatively less important role in human
evaluation of a story when they are familiar with that story.When reading a famil-
iar story, people can easily situate every event in the whole plot disregarding their
occurrence order in the story narration; while reading an unfamiliar story, people
will put more effort in understanding the whole context of the story. Flashback
destroys the flow of causality thus makes the story difficult to understand.

On the other hand, there is a notable gap between the two stories in terms
of the average correlation coefficients between each of the story measures and
two story features: consistPars (ie consistency with the parameters in the orig-
inal story) and consistParRoles (ie consistency with the parameter roles in the
original story). For the familiar story “Little Red Riding Hood”, a weak average
correlation, around 0.2 can be observed, while for the unfamiliar story “Cave-
land”, the corresponding figures are close to zero, which possibly indicates that
people prefer less change of parameters to the familiar stories than the unfamil-
iar ones. In another word, people prefer alignment of characters (and objects) to
the character (and object) stereotypes built in their mind while they are more
tolerant to the change of characters (and objects) to unfamiliar stories.

From the standard deviation of the correlation coefficients between each story
feature and story measure, it can be perceived that the effect of different story
features on story measures vary among individuals, which implies that people
hold diversified opinions on what makes a good story. This occurs even though,
the individual deviation does not change the overall trend of the correlation
between story features and measures. Moreover, for all the story features, it can
be observed that the biggest standard deviation of the correlation coefficients
is found in the novelty measure, which possibly indicates that people have the
most distinct understanding and appreciation of the novelty of a story.

6 Conclusion and Future Work

At this stage of our research in automatic evolutionary story generation, different
stories can be randomly generated by changing the narration order of a specific
story’s dependence network. Future work includes the implementation of the

Story Generation 409

story evolutionary process with an approximated human story evaluation model
as the fitness function. Moreover, the content of all the generated story narrations
is quite similar. Future work also includes generating stories that can further
change the content and underlying structure of the dependence network, that is,
generating stories by manipulating the plot.

References

1. Turner, S.R.: MINSTREL: A computer model of creativity and storytelling. Ph.d.
thesis, University of California at Los Angeles, Los Angeles, CA, USA (1992)

2. Dı́az-Agudo, B., Gervás, P., Peinado, F.: A Case Based Reasoning Approach to
Story Plot Generation. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004.
LNCS (LNAI), vol. 3155, pp. 142–156. Springer, Heidelberg (2004)

3. Pérez, R., Sharples, M.: Mexica: A computer model of a cognitive account of cre-
ative writing. Journal of Experimental & Theoretical Artificial Intelligence 13(2),
119–139 (2001)

4. Hsueh-Min, C., Von-Wun, S.: Planning-based narrative generation in simulated
game universes. IEEE Transactions on Computational Intelligence and AI in
Games 1(3), 200–213 (2009)

5. Cheong, Y., Young, R.: A computational model of narrative generation for sus-
pense. AAAI Press (2006)

6. Peinado, F.: Interactive digital storytelling: Automatic direction of virtual envi-
ronments. Upgrade. Monograph: Virtual Environments 7(2), 42–46 (2006)

7. Bui, V., Abbbass, H., Bender, A.: Evolving stories: Grammar evolution for au-
tomatic plot generation. In: 2010 IEEE Congress on Evolutionary Computation
(CEC), pp. 1–8. IEEE (2010)

8. Wang, K., Bui, V.Q., Abbass, H.A.: Evolving Stories: Tree Adjoining Grammar
Guided Genetic Programming for Complex Plot Generation. In: Deb, K., Bhat-
tacharya, A., Chakraborti, N., Chakroborty, P., Das, S., Dutta, J., Gupta, S.K.,
Jain, A., Aggarwal, V., Branke, J., Louis, S.J., Tan, K.C. (eds.) SEAL 2010. LNCS,
vol. 6457, pp. 135–145. Springer, Heidelberg (2010)

9. Herman, D.: The Cambridge companion to narrative. Cambridge University Press,
Cambridge (2007)

10. http://oxforddictionaries.com/: Oxford dictionaries online
11. Saurı, R., Goldberg, L., Verhagen, M., Pustejovsky, J.: Annotating events in english

timeml annotation guidelines (2009)
12. Puscasu, G., Mititelu, V.: Annotation of wordnet verbs with timeml event classes.

In: Proceedings of the Sixth International Language Resources and Evaluation
(LREC 2008), European Language Resources Association (2008)

13. Bal, M.: Narratology: Introduction to the theory of narrative. Univ. of Toronto
Pr., Toronto (1997)

14. Trabasso, T., Van den Broek, P., Suh, S.: Logical necessity and transitivity of
causal relations in stories. Discourse Processes 12(1), 1–25 (1989)

15. Karmiloff-Smith, A.: Language and cognitive processes from a developmental per-
spective. Language and Cognitive Processes 1(1), 61–85 (1985)

16. Young, R.M.: Computational creativity in narrative generation: Utility and nov-
elty based on models of story comprehension. In: 2008 AAAI Spring Symposium,
Stanford, CA, vol. SS-08-03, pp. 149–155 (2008)

17. Campion, N., Martins, D., Wilhelm, A.: Contradictions and predictions: Two
sources of uncertainty that raise the cognitive interest of readers. Discourse Pro-
cesses 46(4), 341–368 (2009)

http://oxforddictionaries.com/:

GPU Accelerated Genetic Clustering

Pavel Krömer1,2, Jan Platoš1,2, and Václav Snášel1,2

1 Department of Computer Science, VŠB-Technical University of Ostrava,
17.listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic

2 IT4Innovations, 17.listopadu 15/2172, 708 33 Ostrava-Poruba, Czech Republic
{pavel.kromer,jan.platos,vaclav.snasel}@vsb.cz

Abstract. Genetic and evolutionary algorithms have been used to find
clusters in data with success. Unfortunately, evolutionary clustering suf-
fers from the high computational costs when it comes to fitness function
evaluation. The GPU computing is a recent programming and devel-
opment paradigm introducing high performance parallel computing to
general audience. This study presents a design, implementation, and eval-
uation of a genetic algorithm for density based clustering for the nVidia
CUDA platform.

Keywords: genetic algorithms, clustering, GPU, CUDA, acceleration.

1 Introduction

The search for optimal partitioning of a set of objects is known to be an NP-
hard problem [1]. Most frequently used clustering algorithms such as the k-
means clustering or fuzzy c-means clustering minimize selected cost function in
order to find clusters in the data. Their disadvantage is that they require prior
knowledge about the data structure, most importantly setting the number of
clusters beforehand. Evolutionary algorithms have shown good ability to find
quality clusters in the past [1,2,3,12] but the high computational complexity
of the artificial evolution for clustering caused by repeated cluster formation
and clustering quality evaluation made them impractical for partitioning of real
world data sets.

This study presents design, implementation, and evaluation of a genetic algo-
rithm for clustering accelerated by the GPU using the nVidia CUDA platform.
It aims to exploit the massively parallel architecture of the GPU to speed up
cluster formation and cluster validity evaluation that are the most important
parts of fitness function evaluation. The study provides the comparison of two
variants of the algorithm on CPU and GPU: the first version uses a pre-computed
matrix with distances between points while the second version re-evaluates the
distances every time.

2 Evolutionary Clustering

Clustering represents a fundamental data analysis task of separation of objects
to meaningful clusters. It is a problem with many applications and a variety

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 410–419, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

GPU Accelerated Genetic Clustering 411

of algorithms. The most often used clustering algorithms include hierarchical
clustering, centroid (medoid) based clustering, and density based clustering [14].
In this study, we design, implement, and evaluate a simple genetic algorithm for
density-based clustering.

Density based clustering was chosen due to its ability to discover clusters with
arbitrary shapes. Informally, a density based cluster C is a set of points in the
problem space that are density connected, i.e. for each pair of points in C there
is a chain of points with distance between two consecutive points smaller than
a constant ε. A popular algorithm for density-based clustering is the DBSCAN
algorithm [14].

A parallel approach to density based clustering has been previously presented
in [5]. The authors have designed a parallel version of the DBSCAN in the envi-
ronment of a network of workstations. Their approach combined the hierarchical
clustering algorithmOPTICS for data partitioning andan extended version ofDB-
SCAN for clustering of partitions of the data set. The first GPU based approach
to density based clustering was presented in [4]. The CUDA-DClust and CUDA-
DClust* algorithms were tailored to fit the data parallel architecture of the GPUs
and resulted in a significant performance increase of the clustering process.

Various evolutionary algorithms (EAs) have been used to find meaningful clus-
ters in the data. The design of an evolutionary algorithm for clustering involves,
among others, the definition of candidate solution representation (chromosome
encoding) and the selection of fitness function.

2.1 Clustering Representation

Most often, three main types of clustering representation are used [12]. The bi-
nary encoding represents each clustering by a binary matrix with the dimensions
m × n where m represents maximum number of clusters and n the number of
objects in the data set. The ith row encodes the content of ith cluster: 0 at
jth position means that the jth object does not belong to the ith cluster and
1 means that the objects belongs to the cluster. Binary encoding requires very
large chromosomes and it is not used very often.

There are more variants of the integer encoding for clustering EAs [12]. The
label-based integer encoding assigns a cluster label (i.e. an integer cluster id)
to every object in the data set. The size of the chromosome equals to the size
of the data set which makes it rather impractical for even small data sets (e.g.
with several hundreds of objects). On the other hand, the label-based encoding
eliminates the need to form clusters during fitness evaluation. Another type of
the integer encoding uses the notion of medoids. The representation consists
of a sequence of medoids, i.e. objects that represent individual clusters in en-
coded partitioning [12]. the representation length is equivalent to the number
(or maximum number) of clusters in the data set.

The last widely used clustering representation is the real encoding that uses
real numbers to encode arbitrary points in the problem domain. The points pro-
vide a representation of clusters in the encoded partitioning. The chromosomes
can also encode additional parameters and control variables as shown e.g. in [6].

412 P. Krömer, J. Platoš, and V. Snášel

2.2 Clustering Evaluation

Proper cluster validity measures are important to evaluate and compare differ-
ent partitionings of data. Clustering validity measures can be divided into two
main categories [7,10,18]. The external clustering validity measures use external
information about the correctness of the clustering while the internal clustering
validity measures utilize exclusively the information contained in the data set.
Internal clustering validity measures aim to identify good data partitioning by
maximizing cohesion (objects in the cluster should be similar) and separation
(clusters should be well separated) [7]. Internal cluster validity measures are the
basis for unsupervised learning of partitions of data sets. In this study, we use
the well known Dunn index [9] defined by:

D = min
1≤i≤n

{
min

1≤j≤n,i�=j

{
d(i, j)

maxi≤k≤n d′(k)

}}
(1)

where d(i, j) is the distance between clusters i and j and d′(k) is the diameter of
cluster k. Different Dunn-like indexes use various definitions of d(i, j) and d′(k).
We have used the traditional d(i, j) representing the shortest distance between
any two objects in i and j and d′(k) expressing longest distance between any
two points in cluster k:

d(i, j) = min
a∈i,b∈j

{dist(a, b)}, d′(k) = max
a,b∈k

{dist(a, b)} (2)

dist(a, b) =
√
Σn

i=1(ai − bi)2 (3)

The disadvantages of Dunn-like indexes include the time complexity of its calcu-
lation and higher sensitivity to noise. The advantage of Dunn-like indexes is the
ability to validate partitions of arbitrary shapes. In this work we accelerate the
Dunn index computation on the GPU and present the performance evaluation and
results of a complete genetic algorithm for clustering implemented on CUDA.

3 Genetic Algorithm for Clustering on CUDA

Modern graphics hardware has gained an important role in the area of parallel
computing. Graphic cards have been used to power gaming and 3D graphics
applications, but recently, they have been used to accelerate general computa-
tions as well. The complex architecture of the GPUs is suitable for vector and
matrix algebra operations, which leads to the wide use of GPUs in the area of
scientific computing with applications in information retrieval, data mining, im-
age processing, data compression and so on. Nowadays, the developer does not
have to be an expert in graphics hardware because of the availability of various
Application Programming Interfaces (APIs) that help to implement parallel ap-
plications rapidly. Nevertheless, it is still crucial to follow the elementary rules
of data parallel programming to write efficient GPU code. The Compute Unified
Device Architecture (CUDA) is an GPGPU API developed by nVidia.

GPU Accelerated Genetic Clustering 413

The GPGPU programming has established a new platform for machine learn-
ing and evolutionary computation [8]. Majority of the evolutionary algorithms
including the genetic algorithms [20], the genetic programming [21,17], and the
differential evolution [22,23,16,15] were implemented on the GPU.

The nVidia CUDA-C language is an extension to the C programming language
that allows development of GPU routines called kernels. Each kernel defines a
sequence of instructions that are executed on the GPU by many threads at
the same time following the data parallel SIMD model. The threads can be
organized into so called thread groups (or thread blocks) that can benefit from
the GPU features including fast shared memory, atomic data manipulation, and
synchronization. The CUDA runtime takes care of the scheduling and execution
of the thread groups on available hardware. The set of thread groups requested
to execute a kernel is called in the CUDA terminology a grid. A kernel program
can use several types of memory: fast local and shared memory, large but slow
global memory, and fast read-only constant memory and texture memory.

3.1 The Design of GA for Clustering on CUDA

The genetic algorithm for clustering presented in this study uses real encoded
chromosomes with variable length as the representation of the set of clusters, a
parallel density-based clustering approach, and the Dunn index as cluster validity
measure. The choice of encoding was motivated by the intention to process large
data sets, i.e. the integer label-based encoding would not be practical due to
the size of the chromosomes and the medoid-based encoding would restrict the
choice of cluster representatives to objects that already exist in the collection.
The density based clustering was chosen because of its ability to form arbitrary
shaped clusters and the Dunn index was selected because it can evaluate the
validity of such arbitrary shaped (e.g. non-spherical) clusters. Euclidean distance
(3) was used to express the distance between objects in the data set.

The fitness function evaluation consists of three main steps: first, each clus-
ter representative encoded in the chromosome (hereafter referred to as pin) is
mapped to the closest object in the data set. The closest objects serve as seeds
for the formation of density-based clusters. Second, the clusters are formed, i.e.
all non-labeled objects that are density-reachable from already formed portions
of the clusters are iteratively included to the clusters. With all the clusters fully
expanded, the remaining points are gathered into a remainder cluster. Finally,
the quality of the clustering is evaluated using the Dunn index.

The crossover was in the GA for clustering implemented as mutual exchange
of parts of parent chromosomes. The mutation operator was implemented as a
random change in the value of a gene, or chromosome expansion allowing an
increase in the number of clusters represented by the chromosome. During the
expansion, a chromosome encoding n clusters grows by adding m ∈ [1, n] new
randomly generated points potentially representing new clusters.

In the GA for clustering, two pins can expand to the same density-based
cluster. This causes little problems in the sequential implementation when the

414 P. Krömer, J. Platoš, and V. Snášel

clusters are formed after each other. The redundant pins are simply removed
from the chromosome.

3.2 CUDA-C Kernels for Geneti Clustering

To accelerate the GA for clustering, we have implemented the key steps of the
fitness function evaluation as CUDA-C kernels that can be executed on nVidia
GPUs in parallel. The kernels were cudaPlacePins, cudaFormClusters, cudaDun-
nIndex, and auxiliary kernels for memory setup and cleanup. The kernels are
described in detail in the following sections.

cudaPlacePins. The cudaPlacePins kernel maps all pins encoded in the chro-
mosome to the closest object in the data set. It calculates the distance between
the pin and every object in the data set because the distance matrix D cannot
be used as the location of the pins changes during the evolution. The CUDA-C
parallel implementation launches a thread block for all pins in the chromosome
and uses each thread in the block to compute the distance between the pin and
no of objects/block dimension objects in the data set.

cudaFormClusters. The cudaFormClusters implements the formation of the
density-based clusters and it is the most complex and time consuming kernel in
the program. Each clusters is expanded using a stack breadth-first search (BFS)
in the data set. The expansion starts from the seed found in the previous step
and it iteratively appends to the cluster all objects that are directly density con-
nected to the cluster. The stack breadth-first search itself is inherently sequential
algorithm hard to implement in parallel. Despite that, GPU implementations of
BFS were recently presented by [11], and [19]. Current BFS implementations
on the GPUs, however, do expect a single BFS instance running at the same
time. To find clusters corresponding to each of the k pins in the chromosome,
we run k BFS instances in parallel. Similar approach was on the GPU recently
implemented by Bohm et al. [4]. The DClust algorithm was based on the idea of
chains of density-connected points forming the actual clusters. We a use similar
simplified method that aims to form the clusters by a data parallel BFS. Each
thread block forms a cluster starting in a pin and expands the cluster. Our imple-
mentation uses only a simple collision detection and avoids locking and atomic
operations to maximize the performance. In the case of a collision, i.e. when a
point is density reachable from more of the forming clusters, it is assigned to one
of the colliding clusters at random (due to race conditions). Such a situation is a
sign of poor clustering with some clusters too close to each other. The clustering
will be assigned a low fitness value and will not survive in the artificial evolution.

cudaDunnIndex. The last important kernel implements the Dunn index eval-
uation. It finds the minimum distance between any two clusters and maximum
distance between any two points in the same cluster at the same time by a single
scan of the distance matrix computing minimum d(i, j) and maximum d′(k) in
parallel. The kernel was implemented with minimum branching to optimize the
performance.

GPU Accelerated Genetic Clustering 415

4 Experimental Evaluation

We have evaluated the GA for density-based clustering on the GPU for both,
performance and correctness of the results. The experiments were conducted on a
server with 2 dual core AMD Opteron processors at 2.6 GHz and an nVidia Tesla
C2050 device with 448 cores at 1.15 GHz. To test the performance of the kernels,
we have generated a data set containing 100, 500, 1000, 5000, 10000, and 15000
points. The test data set was based on the data 3 2 data set that was used to
evaluate evolutionary clustering algorithms e.g. in [3]. The data set was extended
by generating random additional points within the shape of the original clusters.
We have measured the time needed to compute the Dunn index (i.e. execution
time of the kernel cudaDunnIndex) and to form clusters (i.e. execution time of
the kernel cudaFormClusters). The kernel cudaDunnIndex is not data bound and
it was executed with the maximum possible block size (1024 threads for compute
capability 2.0 on the C2050). The kernel cudaFormClusters was executed with
different number of threads per block because the performance of the kernel
is data bound. Two variants of fitness function were considered. The first one
utilized a precomputed N ×N distance matrix D defined by Dij = dist(i, j) to
avoid repeated computation of distances between the same points and the second
one computed the distances every time when they were needed. The latter variant
represents the situation in which the distances cannot be precomputed e.g. due
to memory limits.

The execution time of Dunn index computation and cluster formation on the
CPU and GPU is shown in fig. 1(a) and fig. 1(b) respectively. The block size for
cluster formation was set upon initial profiling of the kernel. Clearly, the Dunn
index evaluation on the GPU is faster than the sequential implementation. The
speedup obtained for particular test data sizes is shown in table 1. The improve-
ment in the Dunn index computation time ranges from 1.6 for the smallest data
set to 15.12 for the data set of the size 1000 with precomputed distances. When
evaluating the distances every time, the speedup ranged from 3.07 to 28.87 be-
cause the serial code was significantly slower than in the former case while the
parallel code performed similarly. The drop in GPU speedup for the three largest
data sets is due to increased number of accesses to the global memory where the
collision matrix was stored. The speedup in cluster formation achieved by the
GPU is also shown in table 1. The CPU was faster for smallest data sets when
using precomputed distances because it can benefit from CPU’s superior clock
speed, fast cache memories and so on. The GPU implementation was able to
speedup the cluster formation process for 1000 objects data set more than 1.76
times, for 5000 objects data set 3.43 times, for 10000 objects data set 5.08 times,
and for the largest data set more than 6 times. The speedup in cluster formation
was different when the distances were not precomputed. It was approximately
twice as large as in the former case for the data sets with 5000 and more objects
but it was smaller (e.g. the GPU code was slower) for the two smallest data sets.

The performance evaluation is rather illustrative because the performance
of the cluster formation process is data bound, i.e. the speedup factor will be

416 P. Krömer, J. Platoš, and V. Snášel

 0

 1000

 2000

 3000

 4000

 5000

 6000

 100 1000 5000 10000 15000

T
im

e
[m

s]

Data set size

CPU
GPU

CPU (precomputed)
GPU (precomputed)

(a) Dunn index computation time on the
CPU and on the GPU

 0

 1000

 2000

 3000

 4000

 5000

 6000

 100 1000 5000 10000 15000

T
im

e
[m

s]

Data set size

CPU
GPU

CPU (precomputed)
GPU (precomputed)

(b) Cluster formation time on the CPU
and on the GPU with block size 64

Fig. 1. Execution time of fitness evaluation steps

Table 1. Dunn index computation and cluster formation speedup on the GPU

Dataset Dunn index Cluster formation

size Precomputed Regular Precomputed Regular

100 1.59505 3.06729 0.254054 0.197507
500 11.7554 22.9229 0.365051 0.778277

1000 15.1233 28.8716 1.75798 1.59244
5000 6.267 12.223 3.42677 7.35243

10000 6.25585 12.0584 5.08202 10.0821
15000 3.18195 6.00526 6.08223 12.0933

different for different data sets. The performance of the cudaFormClusters kernel
was also affected by the intensive work with global memory because the data
structures needed to perform the stack BFS did not fit to the shared memory.

Next, we have tested the ability of the CPU based and the GPU based imple-
mentation of the GA for clustering to find good partitioning of different data sets
with irregular partitions and different density. We have downloaded the modi-
fied Chameleon data set collection 1 introduced in [13]. Most of the noise was
removed from each data set within the collection to test the ability of the GA for
clustering to find correct clusters. After the modifications, four data sets were
created. The data set rt4 with 4231 objects, rt5 with 4407 objects, rt7 with 5305,
and rt8 with 4877 objects. The GA for clustering was used to find clusters in the
data sets. The GA used a population of 100 candidate solutions, neighborhood
size ε equal to 10, crossover probability 0.8, and mutation probability 0.6 (the
parameters were set after an initial testing of the algorithm.). The artificial evo-
lution was executed for 200, 500, and 1000 generations with thread block sizes
90 and 256.

The GA was in most cases able to identify correct partitioning of the data
before reaching 500 generations. Both, the CPU and GPU implementations

1 http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/chameleon-data.tar.gz

http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/chameleon-data.tar.gz

GPU Accelerated Genetic Clustering 417

delivered correct results. The clusters found by the GA accelerated by the GPU
are shown in fig. 2(a), fig. 2(b), fig. 2(c), and fig. 2(d) respectively. The largest
clusters were identified and the remaining outlying points were gathered in the
remainder cluster. Let us note that the left circle inside the ellipse in the data
set rt7 is density connected to the ellipse. Also, the two triangles in the data
set rt8 are density connected and the upper left cluster and the sparse vertical
clusters in the rt8 are composed of more separated clusters with ε = 10.

 0

 50

 100

 150

 200

 250

 300

 350

 0 100 200 300 400 500 600

(a) Clusters in the rt4 data set.

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 0 100 200 300 400 500 600 700 800

(b) Clusters in the rt5 data set.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600 700

(c) Clusters in the rt7 data set.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700

(d) Clusters in the rt8 data set.

Fig. 2. Clusters discovered in Chameleon data sets

5 Conclusions

This work presents a design, initial implementation, and evaluation of a genetic
algorithm for clustering accelerated by the GPU. A simple density-based clus-
tering and the Dunn index were used as the GPU powered building blocks of a
genetic algorithm for clustering that were shown to outperform for some data
sets its CPU-based counterparts more than 28 times. This is an encouraging
result and further optimizations can lead to additional performance increase.

This work will continue in multiple directions. The cudaComputeDunn kernel
can be improved so that it will use shared memory for the collision matrix

418 P. Krömer, J. Platoš, and V. Snášel

whenever it fits into it and the texture memory will be considered in other cases
(the trade off between additional memory transfers and performance gain will
be investigated). Also, a more comprehensive implementation of the clustering
algorithm able to handle noise will be implemented on the GPU.

Acknowledgment. This work was supported by the European Regional
Development Fund in the IT4Innovations Centre of Excellence project
(CZ.1.05/1.1.00/02.0070) and by the Bio-Inspired Methods: research, develop-
ment and knowledge transfer project, reg. no. CZ.1.07/2.3.00/20.0073 funded
by Operational Programme Education for Competitiveness, co-financed by ESF
and state budget of the Czech Republic. It was also partially supported by SGS,
VŠB-Technical University of Ostrava, under the grant no. SP2012/58, and by
the Ministry of Industry and Trade of the Czech Republic, under the grant no.
FR-TI1/420.

References

1. Alves, V., Campello, R., Hruschka, E.: Towards a fast evolutionary algorithm for
clustering. In: Yen, G.G., Lucas, S.M., Fogel, G., Kendall, G., Salomon, R., Zhang,
B.T., Coello, C.A.C., Runarsson, T.P. (eds.) Proc. of the 2006 IEEE Congress
on Evolutionary Computation, July 16-21, pp. 1776–1783. IEEE Press, Vancouver
(2006)

2. Bandyopadhyay, S.: Genetic algorithms for clustering and fuzzy clustering. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(6), 524–531
(2011)

3. Bandyopadhyay, S., Maulik, U.: Genetic clustering for automatic evolution of clus-
ters and application to image classification. Pattern Rec. 35(6), 1197–1208 (2002)

4. Böhm, C., Noll, R., Plant, C., Wackersreuther, B.: Density-based clustering using
graphics processors. In: Proc. of the 18th ACM Conf. on Information and Knowl-
edge Management, CIKM 2009, pp. 661–670. ACM, New York (2009)

5. Brecheisen, S., Kriegel, H.-P., Pfeifle, M.: Parallel Density-Based Clustering of
Complex Objects. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD
2006. LNCS (LNAI), vol. 3918, pp. 179–188. Springer, Heidelberg (2006)

6. Das, S., Abraham, A., Konar, A.: Automatic Hard Clustering Using Improved Dif-
ferential Evolution Algorithm. In: Das, S., Abraham, A., Konar, A. (eds.) Meta-
heuristic Clustering. SCI, vol. 178, pp. 137–174. Springer, Heidelberg (2009)

7. Das, S., Abraham, A., Konar, A.: Metaheuristic Pattern Clustering – An Overview.
In: Das, S., Abraham, A., Konar, A. (eds.) Metaheuristic Clustering. SCI, vol. 178,
pp. 1–62. Springer, Heidelberg (2009)

8. Desell, T.J., Anderson, D.P., Magdon-Ismail, M., Newberg, H.J., Szymanski, B.K.,
Varela, C.A.: An analysis of massively distributed evolutionary algorithms. In:
IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)

9. Dunn, J.C.: Well separated clusters and optimal fuzzy-partitions. Journal of Cy-
bernetics 4, 95–104 (1974)

10. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques.
J. Intell. Inf. Syst. 17, 107–145 (2001)

GPU Accelerated Genetic Clustering 419

11. Harish, P., Narayanan, P.J.: Accelerating Large Graph Algorithms on the GPU
Using CUDA. In: Aluru, S., Parashar, M., Badrinath, R., Prasanna, V.K. (eds.)
HiPC 2007. LNCS, vol. 4873, pp. 197–208. Springer, Heidelberg (2007)

12. Hruschka, E.R., Campello, R.J.G.B., Freitas, A.A., De Carvalho, A.C.P.L.F.: A
survey of evolutionary algorithms for clustering. Trans. Sys. Man Cyber. Part C 39,
133–155 (2009)

13. Karypis, G., Han, E.H., Kumar, V.: Chameleon: hierarchical clustering using dy-
namic modeling. Computer 32(8), 68–75 (1999)

14. Kriegel, H.P., Kröger, P., Sander, J., Zimek, A.: Density-based clustering. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 1(3), 231–240
(2011)

15. Krömer, P., Platos, J., Snasel, V.: Differential evolution for the linear ordering prob-
lem implemented on cuda. In: Smith, A.E. (ed.) Proceedings of the 2011 IEEE
Congress on Evolutionary Computation, June 5-8. IEEE Computational Intelli-
gence Society, pp. 790–796. IEEE Press, New Orleans (2011)

16. Krömer, P., Snásel, V., Platos, J., Abraham, A.: Many-threaded implementation
of differential evolution for the cuda platform. In: Krasnogor, N., Lanzi, P.L. (eds.)
GECCO, pp. 1595–1602. ACM (2011)

17. Langdon, W.B., Banzhaf, W.: A SIMD Interpreter for Genetic Programming
on GPU Graphics Cards. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia
Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008.
LNCS, vol. 4971, pp. 73–85. Springer, Heidelberg (2008)

18. Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J.: Understanding of internal clustering
validation measures. In: 2010 IEEE 10th Int. Conf. on Data Mining (ICDM), pp.
911–916 (December 2010)

19. Luo, L., Wong, M., Hwu, W.M.: An effective gpu implementation of breadth-first
search. In: Proc. of the 47th Design Automation Conf., DAC 2010, pp. 52–55.
ACM, New York (2010)

20. Pospichal, P., Jaros, J., Schwarz, J.: Parallel Genetic Algorithm on the CUDA Ar-
chitecture. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-
Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yan-
nakakis, G.N. (eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 442–451.
Springer, Heidelberg (2010)

21. Robilliard, D., Marion, V., Fonlupt, C.: High performance genetic programming
on gpu. In: Proc. of the 2009 Workshop on Bio-inspired Algorithms for Distributed
Systems, BADS 2009, pp. 85–94. ACM, New York (2009)

22. de Veronese, L., Krohling, R.: Differential evolution algorithm on the gpu with c-
cuda. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–7 (July
2010)

23. Zhu, W., Li, Y.: Gpu-accelerated differential evolutionary markov chain monte
carlo method for multi-objective optimization over continuous space. In: Proceed-
ing of the 2nd Workshop on Bio-inspired Algorithms for Distributed Systems,
BADS 2010, pp. 1–8. ACM, New York (2010)

Memetic Input Variable Selection

in Neuro-Genetic Prediction System

Jacek Mańdziuk1 and Marcin Jaruszewicz2

1 Warsaw University of Technology, Faculty of Mathematics and Information Science,
Koszykowa 75, 00-662 Warsaw, Poland

mandziuk@mini.pw.edu.pl, http://www.mini.pw.edu.pl/~mandziuk/
2 Outbox Ltd., ul. Grójecka 5, 02-019 Warsaw, Poland

jaruszewicz@data.pl

Abstract. This paper describes a hybrid neuro-genetic system applied
to short-term prediction of a stock index. Prediction is made by an en-
semble of three simple neural networks, each of which processes data
selected by the evolutionary algorithm. The input data comes from the
three stock markets and additionally includes two exchange rates. Be-
sides the review of results, which have been published in detail elsewhere,
some aspects of the system which appeared to be vital for accomplishing
high efficiency are thoroughly examined and discussed. These include:
autonomous mechanism for extraction of technical analysis patterns,
memetic-type local improvement phase in the evolutionary process, and
incorporation of domain knowledge into memetic-evolutionary variable
pre-selection.

1 Introduction

The prediction system considered in this paper takes advantage of a synergy
between the computational power of neural networks and optimization capabil-
ities and flexibility of genetic algorithms (GAs). The latter is further enhanced
by the use of several memetic-type local optimizations. The system relies solely
on the data extracted with the use of Technical Analysis (TA). Its prediction
target is the next day’s closing price of the German Stock Exchange (GSE) index
DAX. Genetic algorithm chooses variables from a large pool of 370 candidates,
which includes mainly those related to the target market with some support
of the data coming from two other international markets: New York Stock Ex-
change (NYSE) and Tokyo Stock Exchange (TSE) with DJIA and NIKKEI 225
(NIKKEI) index, respectively. Finally, there are two exchange rates (�/�) and
(�/�) in the pool of available variables. The variables represent past raw index
values, transaction volumes, patterns of TA, moving averages and oscillators.
All these data is widely used by human brokers relying on TA (see [1] for an
introduction to stock market prediction).

The usefulness of input variables selected by the GA is verified by a quick
procedure involving approximate neural network training and testing. The input
set chosen by the GA is used for 5 trading days only and over the week-end a

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 420–429, 2012.
� Springer-Verlag Berlin Heidelberg 2012

http://www.mini.pw.edu.pl/~mandziuk/

Memetic Input Variable Selection in Neuro-Genetic Prediction System 421

new set is selected for the next trading week, and so on. This limited usage of the
chosen variables stems from high volatility of mutual correlations among input
(market) variables.

The system works autonomously with no need for human intervention. On
a general note, it can be observed that variables are selected with noticeable
sense. Characteristic, repeatable patterns of variables existing in consecutive
5-day prediction periods can be pointed out.

The underlying idea of the system and the main results have been published
in [2], and therefore will only be sketched here. The system features also a few
interesting modifications to “generic” neuro-evolutionary implementation, which
seem to be crucial for its overall high performance. These are:

1. extraction of graphical patterns used in TA,
2. existence of dead/alive chromosomes and the ways of dealing with this phe-

nomenon,
3. “memetic-like” incorporation of domain knowledge into the system and the

use of local improvement techniques.

The second issue has been analyzed in detail in [3]. In this paper the focus is on
points 1 and 3, which were only briefly mentioned in previous papers.

The rest of this paper is organized as follows: in the next section an overview
of the prediction system and the summary of results are presented. In section 3
the algorithm for autonomous extraction and assessment of patterns is presented
and section 4 introduces and discusses the memetic improvements to the base
neuro-evolutionary system design. The last section concludes the paper.

2 System Overview

The system starts off with pre-selection of the initial pool of data. Part of the
data are raw index values (opening, highest, lowest or closing) of the considered
stock markets in subsequent days. The other part includes various transforma-
tions of these basic indicators, e.g. the relative change of closing value over a
certain period of time (5, 10 or 20 trading days), or the averages of the opening
values over the last 5, 10 or 20 trading days, etc. The above aggregates provide
concise estimation of raw indicators and are known to be useful for financial
predictions. In particular, the moving averages are helpful in smoothing local
changes and looking for more general trends [4]. A similar reasoning was applied
to oscillators - the well known tools in TA. Based on the literature advice [1]
eight oscillators, together with the buy/sell signals they generate, were selected
for inclusion in the pool of available variables. These were MACD, Williams,
Two Averages, IMPET, RSI, ROC, SO and FSO.

All the above-mentioned variables are available for the GA, which is used as
a selection mechanism. Each chromosome represents a particular set (list) of
variables. Once the GA procedure is completed the best fitted chromosome is
extracted and variables it is coding are used for final neural network training.
These variables are presumed to represent a close-to-optimal selection for the
next week’s predictions (a 5-day trading window).

422 J. Mańdziuk and M. Jaruszewicz

The actual index prediction is performed by the feed-forward neural networks
with one hidden layer (of the size equal to the floor of the half of the input layer’s
size) andwith one output unit. For example, in the case of 11 input variables (input
units) the size of the hidden layer equals 5. This type of architecture was selected
based on some number of initial tests. In effect, the network’s structure used in the
GA operation phase or for subsequent final prediction is completely defined by the
number of inputs. The training procedure starts with random weights initializa-
tion. A standard back-propagation learning method with momentum is used.

As stated above the chromosome defines the list of variables for a neural net-
work training and prediction. Additionally each chromosome defines a concrete
network’s architecture (see above). For instance, if a chromosome codes the fol-
lowing four variables: the opening value of DJIA, the RSI oscillator, the average
change of DAX opening values in 10 days, and the last day’s �/� exchange
rate, then this chromosome defines a 4 − 2 − 1 network (4 input, 2 hidden and
1 output units). For each input neuron the value of the respective variable is
provided. Chromosome’s fitness is inverse-proportional to the error generated
by trained network. More precisely, for each chromosome several (in the current
implementation 3) neural networks with different initial weights, but the same
architecture are considered. The ultimate fitness value is calculated with respect
to the errors output by all these (3) networks.

GA employs two main operators: mutation and crossover. Mutation operator
brings random changes into chromosomes, hence extends exploration capabilities
of the system. Crossover operator mates two parent chromosomes in the process
of creating two new (hopefully better fitted) offspring chromosomes. Since it
relies on information coded by the parents is enhances the exploitation aspect of
the system. A combined crossover method used by the system depends on the
common part of the parent chromosomes and random selection of the remaining
variables. It is schematically presented in fig. 1. This type of crossover promotes
variables which are shared within the population. A rank method is used for
selection of the chromosomes for crossover operation (see [2] for details).

Fig. 1. Combined crossover scheme. Variables V1, V2, V3, V4 replacing A,B,C,D are
randomly selected from the remaining pool of variables (i.e. all except X and Y) on
condition that they are pairwise different, i.e. V2 �= V3, V3 �= V4 and V2 �= V4.

Memetic Input Variable Selection in Neuro-Genetic Prediction System 423

2.1 Summary of Results

The proposed model was compared with four other signal-based prediction mod-
els. Each of the models generates buy or sell signal whenever certain conditions
are fulfilled.
Model 1 - “buy and hold” strategy: all stocks are bought in the first day and sold
in the last one. These are the only two transactions performed by the system.
This model is used as a ”neutral” point of reference, since its relative profit
equals the relative change of index value in the testing period.
Model 2 - assumes that the next day’s direction of a change of an index value
will be the same as the last (today’s) direction.
Model 3 - signals are generated based on the next day’s predictions calculated
by our model.
Model 4 - signals are generated with the use of MACD oscillator [1], which is
commonly used in TA.
Model 5 - signals are generated using the actual knowledge of the future (next
day’s) values. The result of this omnipotent model defines an upper theoretical
bound for the prediction score for a one-day prediction horizon.

Each experiment was composed of twenty steps and in each of them some
number of neural networks were trained, validated and tested on 290, 5 and 5
samples, respectively. In subsequent steps the samples were shifted forward (in
time) by 5 records, i.e. validation samples become a tail of the training set and
test samples are used for validation. This way significant data overlap exists
between consecutive steps. 290 training samples represent the trading data of
one year, approximately.

Thanks to the above-described shifting of the training/testing data, in each
experiment there are 100 test samples which represent the period between April
7th, 2004 and August 26th, 2004. Each step starts with creation of a pool of
variables initially considered by the system. Afterward the GA finds the best
chromosome and then the neural networks coded by that chromosome are trained
and used for prediction for the next 5 trading days.

The system’s performance depends on the choice of some number of key param-
eters. In the current implementation they were chosen by hand based on the results
of initial simulations. The size of the population was set to 48 and the initial sizes
of the chromosomes were restricted to the range between 4 and 11. The number of
GA’s generations and the number of epochs used for training the nets (in order to
calculate fitness of the chromosomes) were equal to 500 and 200, respectively.

The results of one particular experiment are presented in Table 1. Please recall,
that the result of Model 1, by its definition, reflects the change of index value in
the testing period. Also note, that model 5 takes advantage of the future informa-
tion (unavailable in real situations) and its role is to define the highest possible
benchmark result. Our system visibly outperformed the remaining three models
(except for the prothetic one). The experiment was repeated 5 more times under
the same settings, except for the initial neural networks’ weights, and for the
same period of time. The results proved the upper-hand of our system in each
case. The average return of our model in these 6 experiments was equal to 5.44%.

424 J. Mańdziuk and M. Jaruszewicz

Table 1. Return of different tested models

Model Return [%] Model Return [%] Model Return [%]

Model 1 -5.46 Model 2 -7.54 Model 3 9.31

Model 4 -3.59 Model 5 39.56

3 Autonomous Extraction of Technical Analysis Patterns

One of the most interesting facets of the system is the mechanism for autonomous
extraction of patterns from the historical data. These charts represent formations
used in TA. Generally speaking, these patterns can be divided into two categories
depending on whether they indicate holding or changing of the current trend
of the predicted variable. Examples of some of the most common patterns are
presented in fig. 2. The pattern extraction algorithm comprises three major steps.

Fig. 2. Examples of popular patterns: Head and shoulders (left) - indication of changing
an increasing trend, and Triangle (right) - indication of holding a decreasing trend

First, for a given period of time all minima and maxima in the index (in general:
predicted variable) chart are identified. The number of extrema found this way
is usually too large for making reasonable classification of potential pattern.
Hence, in the second step all minima and maxima which are not “indicative
enough” are discarded. More precisely, all vertices for which the absolute value
of a difference between them and their closest preceding neighbor of the opposite
type is smaller than a predefined value ε are discarded. For example, for a given
vertex which represents the minimum, its value is confronted with the preceding
(latest) maximum. Finally, in the third step the formations are identified and
extracted based on the pre-defined templates. In this phase, two vertices are
considered approximately equal (x1 ≈ x2) if and only if they fulfill the following
condition:

| x1 − x2 | ≤ εeq (1)

and are considered different (x1 �= x2) if and only if

| x1 − x2 | > εdiff (2)

Memetic Input Variable Selection in Neuro-Genetic Prediction System 425

On the basis of definition (2) two inequality operators are defined:

x1 >′ x2 ⇐⇒ x1 > x2 and x1 �= x2 (3)

and
x1 <′ x2 ⇐⇒ x1 < x2 and x1 �= x2 (4)

Note, that depending on the choice of εeq and εdiff there may exist pairs of
vertices which are neither approximately equal nor different or those which are
at the same time approximately equal and different. In our experiments the
following choices concerning the above confidence coefficients were made:

ε = 0.01, εeq = 100, εdiff = 10 (5)

based on some preliminary simulations verifying their effectiveness.
The three-step scheme of pattern extraction is presented in figure 3. The set

of operators ≈, >′, <′ defined by equations (1), (3) and (4) is directly applied
to define particular formations. Each pattern template is defined based on five
consecutive extrema. For example, the one specifying the Head and shoulders
formation presented in fig. 2 is of the following form:

(S1 >′ D2)∧ (S3 >′ S1)∧ (D4 <′ S5)∧ (S3 >′ S5)∧ (S1 ≈ S5)∧ (D2 ≈ D4) (6)

where Di, Si, i = 1, . . . , 5 denote the i-th extremum (minimum or maximum,
respectively) and ∧ is a logical conjunction.

Fig. 3. A three-step pattern extraction procedure. D’s and S’s denote minima and
maxima, respectively.

426 J. Mańdziuk and M. Jaruszewicz

In our implementation 12 templates were defined for identifying 12 most popu-
lar patterns, namely: single/double/triple top/bottom (C), ascending/descending
triangle (H), two types of flag charts (H), and head and shoulders top/bottom
(C). The letters in parentheses denote indication of C - changing or H - holding
the trend by a given formation. In the period of 1995/01/30 - 2004/09/01 our
system extracted 1289 formations of the above types, which gives the average of
11.2 per month.

Once extracted, the charts form input variables available to the system in
the following way. Each prognosis of changing or holding the trend is assigned
a value of −1 and 1, respectively. For each day all indications stemming from
the extracted patterns (due to overlaps, there may be more than one pattern
valid for a given trading day) are summed up and the resulting value, after ap-
propriate normalization, is placed as the single input value (in the same way
as, for example, the DAX opening value or the RSI oscillator, etc.). Similarly
to the case of oscillators the impact of a given formation is valid for the con-
secutive 5 days after its identification. This way, the system is not biased by
pre-mature application of a given formation before its actual completion (which
is indispensable for a formation identification in our system).

3.1 The Relevance of the Formation-Based Data

The assessment of the proposed pattern extraction mechanism can be generally
made in two ways. On the one hand, one can perform comparative prediction
experiments with the extraction mechanism switched off. On the other hand,
one may take advantage of the statistical data related to the frequencies of
choosing various types of input variables by the system. For several reasons we
have adopted the latter approach. The main motivation was the possibility of
having a comprehensive view on the issue of what kind of variables seem to be
the most prominent, and whether the choices made by the system are in line
with human experience and intuition.

The percentage of variables of various types picked by our system is presented
in Table 2. From the table it is clear that the closing value of NYSE seems to
be much more important than the respective value of TSE. Moreover, both the
exchange rates are also over-represented compared to their frequency of occur-
rence in the traing/test data. The frequency of choosing the pattern-representing
variable was around 2.70% during the tests. This result places this data between
the currency exchange rates on the frequency scale (please note that since the
pattern-based data is represented by a single variable, its a priori probability of
occurrence is the same as those of the currency exchange rates).

Table 2. Percentage use of variables

Source of variable GSE NYSE TSE �/� �/�

Frequency of occurrence in results [%] 84.11 6.62 3.97 3.31 1.99

Availability for the algorithm [%] 94.60 1.35 1.35 1.35 1.35

Memetic Input Variable Selection in Neuro-Genetic Prediction System 427

4 Memetic-Like Improvements to the Prediction System

Richard Dawkins in his seminal book entitled “The selfish Gene” [5] refers to
memes as “basic units of cultural transmission via imitation”. Memes are there-
fore capable of transmitting information between society members (entities) also
within the same generation through direct interaction. This in-generation ability
to convey cultural heritage makes memetic computing an interesting comple-
mentary method to genetic/evolutionary algorithms. In terms of computational
models “meme has been typically perceived as individual learning procedures,
adaptive improvement procedures or local search operators that enhance the ca-
pability of population based search algorithms” [6]. Due to the space limitation
we are unable to delve more into memetic computing paradigm and its applica-
tions. The interested reader will find a comprehensive overview and a thorough
discussion on memetic computing in [7,8].

As we have mentioned in the Introduction the pure neuro-evolutionary sche-
mata of our system was enhanced by introducing several memetic-like improve-
ments, which - together with originally developed pattern extraction algorithm
- strongly contributed to the overall high efficiency of the system. The memetic
improvements are threefold and all of them concentrate on the input variable
selection process, which is vital for the system’s performance.

First of all, based on our experience and general knowledge on prediction (and
stock market prediction in particular) we arbitrarily forced the presence of the
closing DAX value of the previous day. This value has the highest correlation
with the predicted variable (next day’s closing value of DAX) and for obvious
reasons its presence in the prediction process is crucial.

The second improvement consists in application of a priori defined, local search
algorithm after completion of the main system’s procedure. More precisely, if we
denote by W the set of all variables available to the system, by C = {c1, . . . , ck}
the best chromosome found by the system, and by R = {r1, . . . , rm} the set of
all remaining variables, i.e. R = W − C, then the following k ·m chromosomes
Cj

i = {c1, . . . , ci−1, rj , ci+1, . . . , ck} are assessed by neural networks in exactly
the same way as the chromosomes generated during the experiment. The best-
fitted chromosome among {C} ∪ {Cj

i | i = 1, . . . , k; j = 1, . . . ,m} is chosen as
the final system’s output.

Approximately in 60% of the prediction steps the system benefited from the
above-described local improvement scheme. In the remaining cases the best chro-
mosome (the solution) was found during the main part od the system’s perfor-
mance and was not further improved in the local search phase.

It is worth to note, that all variables present in the chromosome including
the closing value of DAX (the forced variable) were exposed to the above pro-
cedure. However, there was not even a single case in which this specific variable
was exchanged with another one. Such an observation further justifies forcing
its presence in each chromosome. It is worth noting that except for the closing
value of DAX there are three other variables which were never exchanged in this
local improvement phase. These are three oscillators related to the GSE market:

428 J. Mańdziuk and M. Jaruszewicz

Stochastic, IMPET10 and IMPET20, where IMPETn denotes IMPET oscillator
based on n days.

The third memetic improvement is an adaptive, self-tuning procedure of miss-
ing variables selection in the crossover operation. Please recall that, as stated
in section 2, in the crossover operation used in our implementation, only the
common parts of the chromosomes are unconditionally promoted to the next
generation. The other variables (denoted V1, . . . , V4 in figure 1) are randomly
chosen from the pool of all the remaining variables. This selection, however,
is not uniform. For the sake of exploitation of knowledge already possessed by
the system concerning the potential usefulness of particular variables, they are
divided into the following three categories:

– Best Chromosomes Variables - this set is composed of all variables which
were present in the best chromosomes (in all iterations, one chromosome per
iteration) found in the current prediction step;

– Often Selected Variables - this set is composed of all variables which are
not best chromosome ones and whose frequency of occurrence in the current
generation (in all chromosomes) is above-average;

– Remaining Variables - this set is composed of all variables which do not
belong to any of the above two sets.

The probabilities of choosing a variable from a particular set were equal to 4
9 ,

1
3 , and

2
9 , respectively for best chromosomes, often selected, and the remaining

variables. The above categorization took place after some number of initial it-
erations when differences between the frequencies of choices became indicative.
During the initial phase the preferences for variable selections were uniform.

The memetic mechanism for crossover variable selection works very efficiently
and its inclusion in the purely neuro-genetic process leads to overall improve-
ment of the system. Certainly one needs to be careful with assigning selection
probabilities to the variable-sets. If the preference for the first one were too high
a harmful tendency for premature convergence might appear. The choice made
in our experiments works very well, especially when aligned with the procedure
of gradual elimination of “dead” (i.e. useless) chromosomes described in [3].

5 Conclusions

A neuro-genetic system applied to prediction of the DAX index closing value,
is presented and examined in this paper. Due to changing in time dependencies
between financial variables and indicators (raw market values, oscillators, moving
averages, etc.) and based on the underlying assumption that the usefulness of
any indicator is limited in time, our system relies on frequent GA-based input
data re-selection.

A standard GA procedure is enhanced by adding a new type of crossover
operator (figure 1), the autonomous procedure for extraction of relevant patterns
from the historical plot of DAX index and by introduction of several memetic
improvements.

Memetic Input Variable Selection in Neuro-Genetic Prediction System 429

The results are repeatable and encouraging. The choices of input variables
made by the GA are reasonable and explainable by the experts (brokers). Vari-
ables which are no longer useful for prediction are discarded from the current
input set. On the other hand some of them remain in the input set for a long
time proving their usefulness and importance. The system outperforms other
trading models used for comparison.

Both, pattern extraction algorithm and memetic enhancements play a vital
role in accomplishing high quality prediction. In particular the system benefits
from a one-step local search procedure after completion of the main neuro-genetic
algorithm. Categorization of variables into three types (best chromosomes, often
selected, other) and applying different probability of selection to each type of
them leads to deeper exploration of the most promising directions in the input
variables space.

References

1. Murphy, J.: Technical Analysis of the Financial Markets. New York Institiute of
Finance (1999)

2. Mańdziuk, J., Jaruszewicz, M.: Neuro-genetic system for stock index prediction.
Journal of Intelligent & Fuzzy Systems (2), 93–123 (2011)

3. Mańdziuk, J., Jaruszewicz, M.: “Dead” Chromosomes and Their Elimination in the
Neuro-Genetic Stock Index Prediction System. In: Leung, C.S., Lee, M., Chan, J.H.
(eds.) ICONIP 2009, Part II. LNCS, vol. 5864, pp. 601–610. Springer, Heidelberg
(2009)

4. Schwager, J.D.: Getting started in Technical Analysis. John Wiley & Sons (1999)
5. Dawkins, R.: The selfish gene. Oxford University Press, Oxford (1976)
6. Feng, L., Ong, Y.S., Tan, A.H., Chen, X.S.: Towards human-like social multi-agents

with memetic automaton. In: IEEE CEC, pp. 1092–1099 (2011)
7. Chen, X.S., Ong, Y.S., Lim, M.H., Tan, K.C.: A multi-facet survey on memetic com-

putation. IEEE Transactions on Evolutionary Computation 15(5), 591–607 (2011)
8. Ong, Y.S., Lim, M.H., Chen, X.S.: Research frontier: Memetic computation - past,

present & future. IEEE Computational Intelligence Magazine 5(2), 24–36 (2010)

Learning Rule for TSK Fuzzy Logic Systems

Using Interval Type-2 Fuzzy Subtractive
Clustering

Binh Huy Pham, Hai Trung Ha, and Long Thanh Ngo

Department of Information Systems, Faculty of Information Technology,
Le Quy Don Technical University, No 100, Hoang Quoc Viet, Hanoi, Vietnam

{huybinhhvhc,hatrunghai1982,ngotlong}@gmail.com

Abstract. The paper deals with an approach to model TSK fuzzy logic
systems (FLS), especially interval type-2 TSK FLS, using interval type-2
fuzzy subtractive clustering (IT2-SC). The IT2-SC algorithm is combined
with least square estimation (LSE) algorithms to pre-identify a type-1
FLS form from input/output data. Then, an interval type-2 TSK FLS can
be obtained by considering the membership functions of its existed type-1
counterpart as primary membership functions and assigning uncertainty
to cluster centroids, standard deviation of Gaussian membership func-
tions and consequence parameters. Results is shown in comparison with
the approach based on type-1 subtractive clustering algorithm.

Keywords: subtractive clustering, type-2 fuzzy sets, fuzzy logic system,
TSK model.

1 Introduction

TSK fuzzy logic systems (TSK FLSs) have widely been deployed in various real
applications especially in model-based control and model-based fault diagnosis.
TSK qualitative modelling, as known as TSK modelling, was proposed in an
effort to develop a systematic approach to generating fuzzy rules from a given
input-output data set [6,7]. When, the identification of a TSK FLS using clus-
tering involves formation of clusters in the data space and translation of these
clusters into TSK rules such that the model obtained is closer to the system to
be identified [4,5]. However, in most real data exists uncertainty and vagueness
which cannot be appropriately managed by type-1 fuzzy sets. Meanwhile, type-2
fuzzy sets allow us to obtain desirable results in designing and managing uncer-
tainty. Mendel et al [1,2,3] extended previous studies and established a complete
type-2 fuzzy logic theory with the handling of uncertainties. On the basis, type-2
TSK FLS was presented [16].

One of the important tasks to design a fuzzy system is how to determine the
number of rules (structure identification). There are two approaches to generate
initial fuzzy rules: manually and automatically. In the automatically approaches,
the basic idea is to estimate fuzzy rules through learning process from input-
output sample data. An automatic data-driven based method for generating

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 430–439, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Learning Rule for TSK Fuzzy Logic Systems 431

the initial fuzzy rules is Chius subtractive clustering algorithm (SC) [6]. When,
subtractive clustering algorithm is combined with least squares estimation al-
gorithm to design TSK FLSs [8]. Then, an interval type-2 TSK FLS can be
obtained by considering the membership functions of its existed type-1 coun-
terpart as primary membership functions and assigning uncertainty to cluster
centroids and consequence parameters [9]. In this way, clustering results of SC
decides the structure of fuzzy systems. Interval type-2 fuzzy subtractive cluster-
ing (IT2-FSC) [15] is extension of SC algorithms to handle uncertainty.

In subtractive clustering algorithms, setting subtractive clustering parameters
are very influential to the results of clustering. This paper deals with an approach
to model type-2 TSK FLS from input/output dataset. Interval type-2 fuzzy sub-
tractive clustering is used to determine the number of rules and to learn rule-base
from dataset. IT2-FSC is also combined with LSE algorithm to estimate parame-
ters for designing interval type-2 TSK FLS. Results on function approximation is
shown that the proposed approach to obtain accuracy and simple TSK models.

The remainder of this paper is organized as follows. In Section 2 introduces
briefly type-2 fuzzy sets, interval type-2 fuzzy subtractive clustering. In section
3, we discuss how to using interval type-2 fuzzy subtractive clustering algorithm
to design TSK FLS and extend interval type-2 TSK FLS from type-1 TSK FLS.
In section 4, we provide several experiments to show the validity of our proposed
method. Finally, section 5 gives the summaries and conclusions.

2 Interval Type-2 Fuzzy Logic Systems

2.1 Type-2 Fuzzy Sets

Atype-2 fuzzy set inX is denoted Ã, and itsmembershipgradeofx ∈ X isμÃ(x, u),
u ∈ Jx ⊆ [0, 1], which is a type-1 fuzzy set in [0, 1]. The elements of domain of
μÃ(x, u) are called primary memberships of x in Ã and memberships of primary

memberships in μÃ(x, u) are called secondary memberships of x in Ã.

Definition 1. A type − 2 fuzzy set, denoted Ã, is characterized by a type-2
membership function μÃ(x, u) where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), μÃ(x, u))|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (1)

in which 0 ≤ μÃ(x, u) ≤ 1.

At each value of x, say x = x′, the 2-D plane whose axes are u and μÃ(x
′, u) is

called a vertical slice of μÃ(x, u). A secondary membership function is a vertical
slice of μÃ(x, u). It is μÃ(x = x′, u) for x ∈ X and ∀u ∈ Jx′ ⊆ [0, 1], i.e.

μÃ(x = x′, u) =
∫
u∈Jx′

fx′(u)/u, Jx′ ⊆ [0, 1] (2)

in which 0 ≤ fx′(u) ≤ 1.

432 B.H. Pham, H.T. Ha, and L.T. Ngo

Type-2 fuzzy sets are called an interval type-2 fuzzy sets if the secondary
membership function fx′(u) = 1 ∀u ∈ Jx that are defined as follows:

Definition 2. An interval type-2 fuzzy set Ã is characterized by an interval
type-2 membership function μÃ(x, u) = 1 where x ∈ X and u ∈ Jx ⊆ [0, 1], i.e.,

Ã = {((x, u), 1)|∀x ∈ X, ∀u ∈ Jx ⊆ [0, 1]} (3)

Uncertainty of Ã, denoted FOU, is union of primary functions i.e. FOU(Ã) =⋃
x∈X Jx. Upper/lower bounds of membership function (UMF/LMF), denoted

μÃ(x) and μ
Ã
(x), of Ã are two type-1 membership function and bounds of FOU.

2.2 Type-1 TSK Fuzzy Logic Systems

A generalized type-1 TSK model is described by fuzzy IF-THEN rules which
represent input-output relations of a system. For a multi-input-single-output
(MISO) first order type-1 TSK model, its lth rule can be expressed as follows:

Rl : IF x1 is F l
1 AND x2 is F l

2 AND ... AND xn is F l
n THEN

wl = clo + cl1x1 + cl2x2 + ...+ clnxn (4)

in which xi(i = 1, ..., n) are linguistic variables, F l
i (i = 1, ..., n) are type-1 fuzzy

sets, wl is output from the lth IF-THEN rule, cli(i = 0, 1, ..., n) are consequent
parameters.

The output of a TSK FLS is computed as following steps:

- Calculating degree of firing of lth rule as:

f l = μl
1(x1) ∧ μl

2(x2) ∧ . . . ∧ μl
n(xn) (5)

where ∧ is a conjunction operator and a t-norm, can be minimum or product.
- Calculating the output from the lth IF-THEN rule of M rules FLS:

wl = clo + cl1x1 + cl2x2 + ...+ clnxn (6)

- Calculating the output of FLS by weighted averaging:

W =

∑k
i=1 f

iwi∑k
i=1 f

i
(7)

2.3 Interval Type-2 TSK Fuzzy Logic Systems

An interval type-2 TSK model includesM -rules, n-inputs, its lth fuzzy IF-THEN
rule can be expressed as bellow:

Rl : IF x1 is F̃ l
1 AND IF x2 is F̃ l

2 AND ... AND IF xk is F̃ l
k THEN

w̃l = C̃l
0 + C̃l

1x1 + C̃l
2x2 + ...+ C̃l

nxn (8)

Learning Rule for TSK Fuzzy Logic Systems 433

in which xi(i = 1, ..., n) are linguistic variables, wl is output from the lth IF-
THEN rule; C̃l

i(i = 0, 1, ..., n) type-1 fuzzy sets are consequent parameters and

C̃l
i = [c

l
i−sli, c

l
i+sli] with cli denotes the centroid of C̃l

i and sli denotes the spread

of C̃l
i ; F̃

l
1(i = 0, 1, ..., n) are interval type-2 fuzzy sets and μ̃l

i = [μl
i
,μl

i].
Interval type-2 TSK FLS is computed as the following steps:

- Degree of firing of lth rule f l = [f l, f
l
] with

f l = μl
1
(x1) ∧ μl

2
(x2) ∧ . . . ∧ μl

n
(xn)

f
l
= μl

1(x1) ∧ μl
2(x2) ∧ . . . ∧ μl

n(xn) (9)

- The output from the lth IF-THEN rule of M rules: w̃l = [w
l
L,w

l
R] with

wl
L =

n∑
j=1

cljxj + cl0 −
n∑

j=1

sljxj − sl0 (10)

wl
R =

n∑
j=1

cljxj + cl0 +

n∑
j=1

sljxj + sl0 (11)

- Calculating output of FLS by weighted averaging of individual rules contri-
butions:

wL =

∑k
j=1 f

j ∗ wj
L∑k

j=1 f
j

and wR =

∑k
j=1 f

j ∗ wj
R∑k

j=1 f
j

(12)

3 Rule Extraction for Interval Type-2 TSK FLS

The problem of identification of TSK model is divided into two sub-tasks: Learn-
ing the antecedent part of the model, which consists on the determination of cen-
troids and spreads of membership functions by using IT2-FSC; and Learning the
parameters of the linear subsystems of the consequent by using LSE algorithm.

3.1 Learning Rule Antecedents

Subtractive clustering estimated the potential of a data point as a cluster cen-
troid based on the density of surrounding data points, which is actually based on
the distance between the data point with the remaining data points. In addition,
we must set four parameters: accept ratio ε, reflect ratio ε, cluster radius ra and
squash factor η (or rb) [4,5]. The choice of parameters have greatly influences
to results of clustering. SC includes various types of uncertainty as distance
measure, initialization parameters... So we consider a fuzziness parameters that
control the distribution of data points into clusters by making the parameter m
in the density function to calculate the potential of a data point [15]. Membership
degree of a point in the kth cluster centroid is defined as following formula:

μik = e
− 4

r2a
(xi−xk)

2
m−1

(13)

where xk is the kth cluster centroid.

434 B.H. Pham, H.T. Ha, and L.T. Ngo

According to the formula (13), membership value of a data point in the kth

cluster centroid depends on the position of the kth cluster and the fuzziness pa-
rameter m. Thus, the fuzziness parameter m is the most uncertainty element in
the expanded subtractive clustering algorithm. Therefore, to design and manage
the uncertainty for fuzziness parameter m, pattern set to interval type-2 fuzzy
sets is extended using two fuzzifiers m1 and m2, which creates a footprint of un-
certainty (FOU) for the fuzziness parameter m. Then the degree of membership
of the kth cluster centroid is defined as the following formula:⎧⎪⎨⎪⎩μik = e

− 4
r2a

(xi−xk)
2

m1−1

μ
ik

= e
− 4

r2a
(xi−xk)

2
m2−1

(14)

Two density functions are computed the potential of each data point as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
P i =

n∑
j=1

e
− 4

r2a
(xj−xi)

2
m1−1

P i =
n∑

j=1

e
− 4

r2a
(xj−xi)

2
m

2
−1

(15)

The centroids are identified by the formula (15) and type-reduction for centroids
is done as bellows:

Pi =
P i ∗m1 + P i ∗m2

m1 +m2
(16)

When the kth cluster centroid is identified, the density of all data points is revised
by using the following formula:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P sub
i = P ∗

k

n∑
j=1

e
− 4

r2
b

d

2
m

1
−1

ij

P
sub

i = P ∗
k

n∑
j=1

e
− 4

r2
b

d

2
m2−1

ij

P sub
i =

P sub
i ∗m1+P

sub
i ∗m2

m1+m2

Pi = Pi − P sub
i

(17)

Because, each cluster centroid is representative of a characteristic behaviour
of the system, the resulting cluster centroids are used as parameters of the an-
tecedent parts defining the focal points of the rules of the model. Then clustering
results of IT2-SC decides the structure of fuzzy systems.

3.2 Learning Rule Consequent Using LSE Algorithm

The output of type-1 TSK model is determined by the formula (7).

Learning Rule for TSK Fuzzy Logic Systems 435

Suppose that:

δi =
f i∑k
i=1 f

i
(18)

When:

W =

k∑
i=1

δiwi (19)

For a given set of m input-output data points. The equations can be obtained
as:

W 1 =
∑k

i=1 δ
ici0 +

∑k
i=1 xiδ

ici1 ++
∑k

i=1 xiδ
icin

W 2 =
∑k

i=1 δ
ici0 +

∑k
i=1 xiδ

ici1 ++
∑k

i=1 xiδ
icin

...

Wm =
∑k

i=1 δ
ici0 +

∑k
i=1 xiδ

ici1 ++
∑k

i=1 xiδ
icin

(20)

The formula (20) can be taken a standard form: AP = W , where A is a constant
matrix (known), W is a matrix of the output and P is a matrix of parameters
to be estimated. We use least square estimation problem to determine P as:

P = (ATA)−1ATW (21)

3.3 Building for Interval Type-2 TSK FLS

An interval type-2 TSK FLS can be obtained by considering the membership
functions (MFs) of its existed type-1 counterpart as primary MFs and assign-
ing uncertainty to cluster centroids, standard deviation of Gaussian MF and
consequence parameters with membership functions of type-1 FLS is defined by

F l
j = N(xj , x

∗
l , σ) = exp [− 1

2
(
xj − x∗

l

σ
)2] (22)

in which σ = ra
2
√
2
.

By doing that, cluster centroids are expanded from a certain point to a fuzzy
number as follows:

x̃
∗
l = [x

∗
l (1 − a

l
), x∗l (1 + a

l
)] = [x∗l , x̄

∗
l] (23)

where al is the spread percentage of cluster centre x∗
l in Fig.1. Then, the upper

membership function, μl
j(xj), is defined by

μl
j(xj) =

⎧⎨⎩
N(xj , x

∗
l , σ), xj > x∗

l

1, x∗
l <= xj <= x∗

l

N(xj , x
∗
l , σ), xj < x∗

l

(24)

And the upper membership function, μl
j
(xj), is defined by

μl
j
(xj) =

{
N(xj , x

∗
l , σ), xj >=

x∗
l +x∗

l

2

N(xj , x
∗
l , σ), xj <

x∗
l +x∗

l

2

(25)

436 B.H. Pham, H.T. Ha, and L.T. Ngo

Fig. 1. Spread and centroid of Gaussian Type-2 FSs

Whereas, consequent parameters are obtained by expanding consequent param-
eters from its type-1 TSK model to fuzzy numbers by formula(26) where blj is

the spread percentage of fuzzy numbers c̃lj

c̃lj = clj(1± bkj) (26)

The TSK FLS modelling algorithm be proposed as below:

Step 1: Use our proposed IT2-SC algorithm combined with least squares
estimation algorithms to pre-identify a type-1 FLS form from in-
put/output data.

Step 2: Calculate root-mean-square-error (RMSE), if RMSE is bigger
than expected error limitation, go to Step 3. If not, go to Step 5,
which means the model is acceptable, no need to use type-2 TSK
model.

Step 3: Expand type-1 TSK model to type-2 TSK model:

- Spread cluster centroid to expanding premise membership func-
tions from type-1 fuzzy sets to type-2 fuzzy sets using formulas
(24) and (25)

- Spread the parameters of consequence to expanding parameters
of consequences from certain value to fuzzy numbers below for-
mula (26).

Step 4: Identify a type-2 TSK FLS

Step 5: Output the results of TSK FLS modelling.

The results of TSK FLS modeling algorithm are a type-1 or type-2 TSK FLS
model.

Learning Rule for TSK Fuzzy Logic Systems 437

4 Experimental Results

We consider the problem of type-1 TSK fuzzy model for approximating the
following non-linear function:

y = (x− 2.5)3 + x+ 1 (27)

where x ∈ [0, 4], we used equally spaced values to generate 1001 data points.
Here, we randomly selected 751 as training data and 250 as testing data. Table
1 describes four rules type-1 TSK model by using IT2-SC algorithm with initial-
ization parameters, respectively,ε = 0.5, ε = 0.15, ra = 0.5, η = 1.25 and two
fuzzifiers: m1 = 1.85 and m2 = 2.15.

Table 1. Results of type-1 TSK model based on SC of Chiu and our proposed IT2-SC

Rules
If x then y = p1 ∗ x+ p0

TSK model based on SC of Chiu TSK model based on our proposed IT2-SC

1
If x = exp(− 1

2

(
x−2.464
0.70711

)2
)

then y = 4.57271x − 6.91789
If x = exp(− 1

2

(
x−2.42
0.70711

)2
)

then y = 6.4900x − 12.2933

2
If x = exp(− 1

2

(
x−0.9
0.70711

)2
)

then y = 12.3745x − 24.1487
If x = exp(− 1

2

(
x−0.824
0.70711

)2
)

then y = 25.3741x − 49.8226

3
If x = exp(− 1

2

(
x−3.724
0.70711

)2
)

then y = 7.48193x − 21.9791
If x = exp(− 1

2

(
x−3.728
0.70711

)2
)

then y = 8.04252x − 24.3523

4
If x = exp(− 1

2

(
x−0.188
0.70711

)2
)

then y = 28.9666x − 10.2412
If x = exp(− 1

2

(
x−0.148
0.70711

)2
)

then y = 42.1097x + 3.72731

In this case, the RMSE-training is 0.01534 and the RMSE-testing is 0.01511.
Type-1 SC algorithm is also used for identification a type-1 TSK model with
initialization parameters, respectively,ε = 0.5, ε = 0.15, ra = 0.5, η = 1.25.
Then, the RMSE-training is 0.02196 and the RMSE-testing is 0.02184. We can
see that TSK model generated by our proposed method has result accuracy
with smaller RMSE. In Fig. 2, both training data and testing data, TSK model
generated by our proposed method has result as quite same as real system.

We can change value of two fuzzifiers to obtain better type-1 TSK model.
In table 2, we see that type-1 TSK model based on our proposed IT2-SC with
values of two fuzzifiers, m1 = 1.85 and m2 = 2.15, has the best result. RMSE
on training data and RMSE on testing data is quite small. The figure 2 shows
plots of obtained TSK model on training and testing data.

We consider two rules type-1 TSK model by using IT2-SC algorithm with
two fuzzifiers: m1 = 1.3 and m2 = 2.7. The type-1 TSK model is described in
table 3. In this model, the RMSE on training data is 0.46258 and RMSE on test
data is 0.50296. Two rules of type-2 TSK model obtain from type-1 TSK model
by using above described spread of fuzzy numbers. The system gains RMSE of
training and testing data, respectively, are 0.84944 and 0.35684.

438 B.H. Pham, H.T. Ha, and L.T. Ngo

Table 2. Result of type-1 TSK model by different values of two fuzzifiers

m1 and m2 Number of rules RMSE training RMSE testing

1.95 and 2.05 4 0.02262 0.02113

1.9 and 2.1 4 0.01977 0.01811

1.85 and 2.15 4 0.01534 0.01511

1.8 and 2.2 3 0.3071 0.3031

1.7 and 2.3 3 0.3241 0.3204

1.6 and 2.4 2 0.4534 0.4531

1.5 and 2.5 2 0.42705 0.43769

1.4 and 2.6 2 0.42245 0.43887

1.3 and 2.7 2 0.4704 0.48038

1.2 and 2.8 1 2.1763 2.1285

Fig. 2. Result of TSK model; (a): On training data; (b): On testing data

Table 3. Type-1 TSK model and type-2 TSK model

Rules
If x then y = p1 ∗ x+ p0

type-1 TSK model type-2 TSK model

1
If x = exp(− 1

2

(
x−2.004
0.7064

)2
)

then y = 1.72375x − 1.48008
If x = exp(− 1

2

(
x−2.004∗(1−10%)

0.7064

)2

)

then y = 1.72375 ∗ (1− 20%)x − 1.48008 ∗ (1− 20%)

2
If x = exp(− 1

2

(
x

0.7064

)2
)

then y = 12.3839x − 13.9905
If x = exp(− 1

2

(
x

0.7064

)2
)

then y = 12.3839 ∗ (1− 20%)x − 13.9905 ∗ (1− 20%)

5 Conclusion

The paper presents a new approach to design TSK model. Here, we used an our
proposed IT2-SC combined with least squares estimation algorithm. The result
of experiments is shown the validity of our proposed method.

Learning Rule for TSK Fuzzy Logic Systems 439

For the future works, we will improve the computational performance by
speeding up the algorithm using GPU.

References

1. Mendel, J., John, R.: Type-2 fuzzy set made simple. IEEE Trans. on Fuzzy Sys-
tems 10(2), 117–127 (2002)

2. Karnik, N., Mendel, J.M.: Operations on Type-2 Fuzzy Sets, Fuzzy Sets and Sys-
tems, vol. 122, pp. 327–348 (2001)

3. Mendel, J.M., John, R.I., Liu, F.: Interval Type-2 Fuzzy Logic Systems Made
Simple. IEEE Trans. on Fuzzy Systems 14(6), 808–821 (2006)

4. Chiu, S.L.: Fuzzy Model Identification Based on Cluster Estimation. Journal on
Intelligent Fuzzy Systems 2, 267–278 (1994)

5. Chiu, S.L.: Extracting Fuzzy Rules from Data for Function Approximation and
Pattern Classification. In: Dubois, H., Prade, R., Yager, R. (eds.) Fuzzy Informa-
tion Engineering: A Guided Tour of Applications. John Wiley & Sons (1997)

6. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to
modeling and control. IEEE Trans. on Sys., Man, and Cyb. 15(1), 116–132 (1985)

7. Sugeno, M., Kang, G.: Structure identification of fuzzy model. Fuzzy Sets and
Systems 28(1), 15–33 (1988)

8. Ren, Q., Baron, L., Balazinski, M., Jemielniak, K.: Tool condition monitoring using
the TSK fuzzy approach based on subtractive clustering method. News Frontiers
in Applied Artificial Intelligence, pp. 52–61. Springer, Berlin (2008)

9. Ren, Q., Baron, L., Balazinski, M.: Type-2 Takagi-Sugeno-Kang fuzzy logic mod-
eling using subtractive clustering. In: Proceedings of the NAFIPS, pp. 1–6 (2006)

10. Ren, Q., Baron, L., Balazinski, M.: Uncertainty prediction for tool wear condition
using type-2 TSK fuzzy approach. In: Proceeding of the 2009 IEEE Int’ Conf. on
Systems, Man, and Cybernetics (IEEE-SMC 2009), pp. 666–671 (2009)

11. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to
modeling and control. IEEE Trans. on Sys., Man, and Cyb. 15(1), 116–132 (1985)

12. Zhang, W.B., Liu, W.J.: IFCM: Fuzzy Clustering for Rule Extraction of Interval
Type-2 Fuzzy Logic System. In: The 46th IEEE Conf. on Decs. & Control, pp.
5318–5322 (2007)

13. Demirli, K., Muthukumaran, P.: Higher Order Fuzzy System identification Using
Subtractive Clustering. J. of Intelligent and Fuzzy Systems 9, 129–158 (2000)

14. Demirli, K., Cheng, S.X., Muthukumaran, P.: Subtractive Clustering Based on
Modeling of Job Sequencing with Parametric Search. Fuzzy Sets and Systems 137,
235–270 (2003)

15. Ngo, L.T., Pham, B.H.: Approach to Image Segmentation Based on Interval Type-2
Fuzzy Subtractive Clustering. In: Horng, M.-F. (ed.) ACIIDS 2012, Part II. LNCS,
vol. 7197, pp. 1–10. Springer, Heidelberg (2012)

16. Liang, Q., Mendel, J.M.: An Introduction to Type-2 TSK Fuzzy Logic Systems.
In: IEEE International Conference on Fuzzy Systems, vol. 3, pp. 1534–1539 (1999)

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 440–449, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Constrained Layout Optimization in Satellite Cabin
Using a Multiagent Genetic Algorithm

Jing Liu

Key Lab of Intelligent Perception and Image Understanding of Ministry of Education of China
Xidian University, 710071, China

neouma@mail.xidian.edu.cn

Abstract. One application of constrained layout optimization problems
(CLOPs) is to lay out the instruments in satellite cabin (CLOPssc), which con-
cerns the two dimensional physical placement of a collection of objects within a
satellite cabin. CLOPssc are not only of significant theoretical interest, but also
of real practical significance in industrial applications. In this paper, we use a
multiagent genetic algorithm with a simple technique of handling constraints to
solve CLOPssc. In experiments, the performance of the new algorithm is com-
pared with existing algorithms on three benchmark problems with different
complexities. Experimental results show that the new algorithm has a better
global searching ability. Especially, it found a currently best solution for the
constrained layout problem with 40 objects.

1 Introduction

Layout optimization problems (LOPs) are a kind of NP-hard problems and its objec-
tive is to place some objects in a space or divide the space into many sub-spaces and
put each object in to one sub-space. Usually, the objects should not overlap with each
other and the left space should be minimized. According to the type of spaces, LOPs
can be divided into two-dimensional and three-dimensional layout. Some LOPs also
have constraints, namely constrained LOPs (CLOPs), which take into account inertia,
balance, stabilization, and vibration, etc. CLOPs are more difficult since their feasible
search space may be non-convex and non-continuous. One application of CLOPs is to
lay out the instruments in satellite cabin (CLOPssc), which concerns the two dimen-
sional physical placement of a collection of objects within a satellite cabin. CLOPssc
are not only of significant theoretical interest, but also of real practical significance in
industrial applications.

Many heuristic methods were used to solve CLOPs. Teng et al. [1] proposed the
method of model-changing iteration (MCI) and the method of main objects topo-
models (MOT). However, the performances of heuristic methods are hardly satisfac-
tory due to the complexity of CLOPs. Thus, intelligent computational methods are
widely used. Szykman and Cagan [2] used simulated annealing to solve constrained
three-dimensional component layout problems. Tang and Teng [3] proposed a mod-
ified genetic algorithm based on decimal coding and adaptive control of parameters.

Constrained Layout Optimization in Satellite Cabin Using a Multiagent Genetic Algorithm 441

Qian et al. [4] proposed a human-computer interactive genetic algorithm (HCIGA) by
making use of knowledge of human experts. Yu et al. [5] proposed a learning-based
genetic algorithm (LGA) by utilizing local analytic information of the functions. Li et
al. [6] proposed a particle swarm optimization with mutation operator (M-PSO). Xu et
al. [7] proposed a genetic algorithm with the order-based positioning technique.

Evolutionary algorithms (EAs), as a kind of stochastic global optimization methods
inspired by the biological mechanisms of evolution and heredity, have been widely
used for various practical problems, such as VLSI floorplanning [9], numerical opti-
mization [10], classification [11]. But it is realized from practice that EAs still have
weakness [12], and it is worth stepping back and exploring how to best learn from
nature and how to incorporate our existing knowledge in artificial intelligence into
EAs.

Thus, in our previous work, we combined EAs with multiagent systems to improve
EAs’ performance, and a series of algorithms have been proposed to solve different
practical problems, such as the multiagent GA (MAGA) proposed in [8] for global
numerical optimization, which showed excellent performance in complex multi-
modal functions with as high as 10 000 dimensions; the multiagent EA for constraint
satisfaction problems (MAEA-CSPs) proposed in [13]; the multiagent EA for combi-
natorial optimization problems (MAEA-CmOPs) proposed in [14]. All these algo-
rithms show the huge potential of combining multiagent systems with EAs in solving
hard challenging problems.

Therefore, in this paper, with the intrinsic properties of CLOPssc in mind, we com-
bine MAGA with a technique of handling constraints to solve this problem since the
original MAGA is used for global optimization only. In experiments, the performance
of the new algorithm is compared with existing algorithms on three benchmark prob-
lems with different complexities. Experimental results show that the new algorithm
has a better global searching ability. Especially, it found a currently best solution for
the constrained layout problem with 40 objects.

The rest of this paper is organized as follows: Section 2 introduces the definition of
CLOPssc, and Section 3 describes the multiagent genetic algorithm for CLOPssc. The
experimental study is given in Section 4. Finally, conclusions are presented in Section 5.

2 Definition of CLOPssc

In CLOPssc, there is a round clapboard which is vertical to the central axis of the ro-
tating satellite cabin. Then, we need to place the objects, such as various equipments,
on the clapboard optimally and satisfying the following conditions: (1) no object pro-
trudes out of the clapboard; (2) no overlapping between any two objects; (3) all ob-
jects should assemble around the center of the clapboard as much as possible; (4) the
static equilibrium error of the whole system should not exceed the predefined per-
missible value; (5) the dynamic equilibrium error of the whole system should not
exceed the predefined permissible value when the satellite rotates at angular speed ω.

442 J. Liu

For the sake of simplicity, we assume all n objects are cylinders with uniform
thickness and mass distribution and the radius of the clapboard is R. Suppose the Car-
tesian coordinate system coincides with symmetric axis of the clapboard, and Xi=(xi,
yi), ri, and mi are respectively the centroid, the radius, and the mass of the ith object.
Fig. 1 (a) shows the three dimensional case, while Fig. 1 (b) shows the two dimen-
sional case.

(a) (b)

Fig. 1. The view of the layout under the Carte-
sian coordinate system (a) 3-dimension; (b) 2-
dimension

Fig. 2. The model of the agent lattice. Each
circle represents an agent, the data in a
circle represents its position in the lattice,
and two agents can interact with each other
if and only if there is a line connecting
them.

Throughout this paper, we mainly study the problem of laying out objects on the 2-
dimensional clapboard. Thus, the basic problem is to find the position of each object
so that all objects can highly concentrate to the center of the clapboard while the con-
straints are satisfied. The mathematical model of this problem can be formalized as
follows.

() { } []

() () ()
() { }

() () ()

2 2

{1, 2, ..., }

2 2

1

2 2
2

2 2

3 1 1

min min max , , ,

s.t.

 , 0,

 0, 1, 2, ...,

 0

i i i i i
i n

i j i j i j i j

i i i i

n n
i i i i i i i J

F x y r x y R R

f r r x x y y i j

f x y r R i n

f m x m y δ

∈

= =

= + + ∈ −

= + − − + − ≤ ≠

= + + − ≤ ∈

= + − ≤

X

X X

X

X

 (1)

where X=(X1,X2,…,Xn) is the set of objects, and δJ is a predefined permissible value.

3 Multiagent Genetic Algorithm for CLOPssc

The previous MAGA [8] is proposed for solving global numerical optimization,
which can be formulated as solving the following objective function:

1min (), (, ... ,)nf x x= ∈x x (2)

Constrained Layout Optimization in Satellite Cabin Using a Multiagent Genetic Algorithm 443

Where n⊆ defines the search space which is an n-dimensional space bounded
by the parametric constraints i i ix x x≤ ≤ , i=1, 2, …, n. In MAGA, an agent

represents a candidate solution to the optimization problem, namely a real vector (x1,
x2, …, xn), and its energy equals the negative value of objective function. All agents
live in a latticelike environment with size of Lsize×Lsize and each agent is fixed on a
lattice-point. Since each agent can only sense its local environment, it can only inte-
ract with its neighbors. Therefore the agent lattice can be represented as one in Fig. 2.

Since the purpose of the agent is to increases its energy as much as possible, acute
competition among agents will be resulted, but this behaviors can only take place
between the agent and its neighbors. As a result, the agents with low energy are
cleaned out from the agent lattice so that there is more living space for the agents with
high energy. Certainly, cooperation behavior may be happen among agents. On the
other hand, the agents have intelligence, so they can use the domain knowledge to
increase their energies. Based on the viewpoint above, MAGA designs four evolutio-
nary operators for agents, neighborhood competition operator, neighborhood ortho-
gonal crossover operator, mutation operator and self-learning operator, to realize the
competition, cooperation, self-learning behaviors among agents. Algorithm 1 de-
scribes the MAGA briefly. Please see [8] for more details of MAGA.

Algorithm 1. Multiagent Genetic Algorithm
Lt represents the agent lattice in the tth generation, and Lt+1/3 and Lt+2/3 are the mid-
lattices between Lt and Lt+1. Bestt is the best agent among L0, L1, …, Lt, and CBestt is
the best agent in Lt. Pc and Pm are the probabilities to perform the neighborhood or-
thogonal crossover operator and the mutation operator.

Step 1: Initialize L0, update Best0, and t←0;
Step 2: Perform the neighborhood competition operator on each agent in Lt, obtaining
Lt+1/3;
Step 3: For each agent in Lt+1/3, if U(0, 1)<Pc, perform the neighborhood orthogonal
crossover operator on it, obtaining Lt+2/3;
Step 4: For each agent in Lt+2/3, if U(0, 1)<Pm, perform the mutation operator on it,
obtaining Lt+1;
Step 5: Find CBestt+1 in Lt+1, and then perform the self-learning operator on CBestt+1;
Step 6: If Energy(CBestt+1)>Energy(Bestt), then Bestt+1←CBestt+1; otherwise
Bestt+1←Bestt, CBestt+1←Bestt;
Step 7: If termination criteria are reached, output Bestt and stop; otherwise t←t+1, go
to Step 2.

To solve CLOPssc, we use the static penalty method to handle constraints so that
MAGA can solve problems with constraints. Let penalty coefficients λ1, λ2, λ3>0,
then penalty term is defined as follows:

() ()() ()() ()()
1

1 1 2 2 3 3
1 1 1 1

max 0, , max 0, max 0,
n n n n

i j i i
i j i i i

f f fψ λ λ λ
−

= = + = =

= + + X X X X X (3)

Thus, the CLOP is transformed into an unconstrained LOP,

444 J. Liu

() () ()F ψ= +X X X (4)

To simplify the computing, a polar coordinate system is adopted. That is to say, the
position of each object is represented as the polar coordinate of the center of the circle
(li, θi), li∈[0, (R-ri)], θi∈[-π, π], i=1, 2, …, n, where xi=licosθi, yi=lisinθi. Thus, the
constraint f2 can be removed, and the penalty function is changed to

() ()() ()()
1

1 1 3 3
1 1 1

max 0, , max 0,
n n n

i j i
i j i i

f fψ λ λ
−

= = + =

′ = + X X X X (5)

Where λ1 and λ3 are set to 1 and 0.1, respectively.
Therefore, (4) is transformed into (6),

() () ()F ψ′ ′= +X X X (6)

Accordingly, the agent used to solve CLOPssc is defined as follows.
Definition 1: An agent, a, represents an element in the search space of CLOPssc,
which is denoted as

() [] []1 1, , , , , 0, , , , 1n n i i il l l R r i nθ θ θ π π= ∈ − ∈ − ≤ ≤a (7)

Where n is the number of objects. Apparently, the number of dimension of the search
space is 2n. The value of its energy is equal to the reciprocal of the objective value,
namely () 1 ()Energy ′=a a .

4 Experiments

Three benchmark problems with different complexities are used to validate the per-
formance of our algorithm. The number of objects of the three problems is respective-
ly 5, 7, and 40. The parameter setting of MAGA is: Lsize=10, Po=0.2, Pc=0.1, Pm=0.1,
sLsize=3, sR=0.2, sPm=0.05, sGen=100. The maximum number of generations is 2000
to 5000 which depends on the problem size. All experiments were executed on a
2.4GHz Pentium IV PC with 1G RAM.

4.1 CLOP with 5 Objects [3]

In order to validate the performance of MAGA, a CLOP with known optima [3] is
used. In this problem, 5 objects need to be laid on a big circular container, of which
the radius R is 125mm. In the optimum layout, the radius of the out warp circle, the
static equilibrium error, and the interference are respectively 120.71(mm), 0(g⋅mm),
and 0(mm). The obtained positions of the 5 objects of the three algorithms (I-GA, M-
PSO, and MAGA), are given in Table 1.

Table 2 shows the comparison among the three algorithms. It can be seen that both
MAGA and M-PSO found the global optimum while I-GA not. The static equilibrium
error of MAGA is the smallest, that is, 0, while that of two other algorithms is larger
than 0.002. Moreover, in terms of the computational cost, we can see that MAGA is

Constrained Layout Optimization in Satellite Cabin Using a Multiagent Genetic Algorithm 445

better than two other algorithms, which only accounts for 59% and 26% of the com-
putational time of M-PSO and I-GA, respectively. The above results show that
MAGA has a strong global search ability and a faster convergence speed. Additional-
ly, Fig. 3 shows the geometric layout of the three algorithms.

Table 1. The performance of I-GA, M-PSO, and MAGA for the CLOP with 5 objects

No. r(mm) m(g)
I-GA M-PSO MAGA

x(mm) y(mm) x(mm) y(mm) x(mm) y(mm)

1 20.71 20.71 -0.5858 -1.058 0.000 0.000 0.000 0.000

2 50.00 50.00 65.979 26.179 0.000 70.711 -42.022 56.870

3 50.00 50.00 -26.252 68.061 70.711 0.000 42.022 -56.869

4 50.00 50.00 27.891 -66.894 0.000 -70.711 56.870 42.022

5 50.00 50.00 -66.685 -26.886 -70.711 0.000 -56.870 -42.022

4.2 CLOP with 7 Objects [4]

In this problem, the radius R is 50mm, and the number of objects is 7. The acceptable
value of the static equilibrium error is δJ=3.4(g⋅mm). The obtained positions of the 7
objects of the three algorithms (HCIGA, M-PSO, and MAGA), are given in Table 3.

Table 4 shows the comparison among the three algorithms. It can be seen that the
optimal radius of the out warp circle of MAGA is 31.960mm, which is less than those
of two other algorithms. The static equilibrium error of MAGA is optimal, namely
0(g⋅mm), while those of two other algorithm is larger than 0.018 (g⋅mm). Moreover,
in terms of the computational cost, we can see that MAGA is also better than two
other algorithms, which only accounts for 65% of the computational time of M-PSO
and HCIGA. Therefore, MAGA outperforms the two other algorithms. Additionally,
Fig. 4 shows the geometric layout of the three algorithms.

4.3 CLOP with 40 Objects [3]

In this problem, the radius R is 880mm, and the number of objects is 40. The accepta-
ble value of the static equilibrium error is δJ=20(g⋅mm). This problem is much more
complex than the above two problems since its dimension is 80. Moreover, because
the feasible solution space is non-convex and non-continuous, the algorithms can be
trapped in local optima easily. The obtained positions of the 40 objects of the two
algorithms (M-PSO and MAGA), are given in Table 5.

Table 6 shows the comparison among four algorithms. It can be seen that the op-
timal radius of the out warp circle of MAGA is 814.188mm, which is less than those
of three other algorithms (among which the best value is 843.940(mm)). The smallest
static equilibrium error of MAGA is 0.000362 (g⋅mm), while those of three other
algorithm is larger than 0.003 (g⋅mm). In terms of the computational cost, although
MAGA is worse than other algorithms, when the radius of the out warp circle is
870mm, the computation time is 1734s, which is nearly equal to those of HCIGA and
M-PSO; when the radius of the out wrap circle is 843mm, the computation time is

446 J. Liu

2892s, which is slightly larger than that of M-PSO. However, MAGA continues to
optimize instead of being trapped into local optima at this point. Therefore, MAGA
outperforms the two other algorithms. Additionally, Fig. 5 shows the geometric layout
of the MAGA and M-PSO.

Table 2. The Comparison among I-GA, M-PSO, and MAGA

Method
Radius of the

out warp
circle(mm)

Static equili-
brium error

(g⋅mm)

Interference
(mm)

Computational
time∗ (s)

I-GA 123.200 1.265000 0 648

M-PSO 120.711 0.002712 0 287

MAGA 120.711 0.000000 0 168
∗ All computational time is converted into the time of a PC with

166MHz.

Table 3. The performance of HCIGA, M-PSO, and MAGA for the CLOP with 7 objects

No r(mm) m(g)
HCIGA M-PSO MAGA

x(mm) y(mm) x(mm) y(mm) x(mm) y(mm)

1 10.0 100.00 -12.883 17.020 14.367 16.453 6.712 20.905

2 11.0 121.00 8.847 19.773 -18.521 -9.560 20.438 4.647

3 12.0 144.00 20.662 0.000 2.113 -19.730 11.199 -16.495

4 11.5 132.25 -8.379 -19.430 19.874 -4.340 -19.689 -5.072

5 9.5 90.25 -1.743 0.503 -19.271 11.241 0.113 1.972

6 8.5 72.25 12.368 -18.989 -3.940 22.157 -8.637 -21.807

7 10.5 110.25 -21.639 -1.799 -0.946 2.824 -13.962 16.243

(a) (b) (c)

Fig. 3. The geometric layouts found by (a) I-GA, (b)M-PSO, and (c) MAGA

Table 4. The Comparison among HCIGA, M-PSO, and MAGA

Method
Radius of the

out warp
circle(mm)

Static equili-
brium error

(g⋅mm)

Interference
(mm)

Computational
time (s)

HCIGA 32.662 0.0290 0 1002

M-PSO 31.985 0.0182 0 1002

MAGA 31.960 0.0000 0 649

Constrained Layout Optimization in Satellite Cabin Using a Multiagent Genetic Algorithm 447

 (a) (b) (c)

Fig. 4. The geometric layouts found by (a) HCIGA, (b)M-PSO, and (c) MAGA

 (a) (b) (c) (d)

Fig. 5. The geometric layouts found by (a) M-PSO, (b) MAGA (814.188mm), (c) MAGA
(825.931mm), and (d) MAGA (826.020mm)

Table 5. The performance of M-PSO and MAGA for the CLOP with 40 objects

No r(mm) m(g)
M-PSO MAGA

x(mm) y(mm) x(mm) y(mm)
1 106 11 192.971 0 -296.281 643.224
2 112 12 -69.924 0 -384.475 -36.032
3 98 9 13.034 -478.285 460.235 -52.531
4 105 11 -291.748 21.066 -220.800 -571.721
5 93 8 343.517 -351.055 316.366 357.864
6 103 10 -251.143 674.025 -373.038 439.310
7 82 6 495.268 -252.899 -54.825 132.954
8 93 8 -619.634 -421.032 -218.102 -157.624
9 117 13 725.062 0 -310.213 228.306
10 81 6 127.487 175.174 -192.522 399.134
11 89 7 358.251 -104.181 -197.725 39.030
12 92 8 694.612 -206.946 52.147 -4.667
13 109 11 -151.494 -350.475 -674.766 203.161
14 104 10 -486.096 278.028 -85.712 702.534
15 115 13 -406.944 -378.282 668.424 148.913
16 110 12 -531.396 27.583 -23.678 -702.737
17 114 12 -281.428 -570.129 -567.499 -168.692
18 89 7 535.186 -82.365 721.325 -51.489
19 82 6 349.187 -668.540 -42.881 299.404
20 120 14 494.958 -527.668 374.394 -564.721
21 108 11 -696.916 236.466 -436.950 -546.683
22 86 7 -43.153 196.294 385.347 -229.800
23 93 8 -143.066 -725.316 483.361 -381.701
24 100 10 -433.688 -159.158 -310.756 -372.110

448 J. Liu

Table 6. (Continued)

25 102 10 -741.858 0 -711.783 -4.580
26 106 11 292.820 431.997 -580.061 406.275
27 111 12 -540.511 495.023 597.482 -212.605
28 107 11 154.296 -671.681 -79.774 -404.371
29 109 11 -317.971 463.365 6.855 -201.208
30 91 8 41.295 -271.016 -23.607 507.575
31 111 12 103.622 538.523 203.392 -319.681
32 91 8 215.467 -213.844 265.323 665.016
33 101 10 540.248 306.466 -594.960 -387.716
34 91 8 58.125 341.687 242.692 -96.435
35 108 11 -235.120 227.217 230.711 131.626
36 114 12 510.413 520.918 435.577 548.212
37 118 13 -29.219 725.331 588.346 371.869
38 85 7 300.625 240.313 130.012 390.345
39 87 7 234.066 -494.031 425.499 148.33
40 98 9 411.043 119.080 116.725 -542.517

Table 7. The Comparison among HCIGA, I-GA, M-PSO, and MAGA.

Method Radius of the out
warp circle(mm)

Static equili-
brium error

(g⋅mm)

Interference
(mm)

Computational
time (s)

HCIGA 870.331 0.006000 0 1358
I-GA 874.830 11.39500 0 1656

M-PSO 843.940 0.003895 0 2523

MAGA
814.188 0.000362 0 4409
825.931 0.000626 0 4208
826.020 0.000484 0 4120

∗When the radius of out warp circle is 870mm, the computational time is 1734s, the
static equilibrium error is 0.000939(g⋅mm), and interference is 0; when the radius of
out wrap circle is 843mm, computation time is 2892s, the static equilibrium error is
0.000491(g⋅mm), and interference is 0.

5 Conclusions

Constrained Layout optimization problems are NP-hard problems. Due to the feasible
search space is non-convex and non-continuous, the optimization algorithm can be
trapped into local optima easily. Therefore, we combine the multiagent genetic algo-
rithm with a technique of handling constraints to solve them. In experiments, three
benchmark problems with different complexities are used to test the performance of
MAGA. The results show that MAGA outperforms other existing algorithms. Espe-
cially, MAGA obtains the best solution for the problem with 40 objects, namely ra-
dius of the out wrap circle is 814.188mm, while the best known one is 843.940mm;
static equilibrium error is 0.000362(g⋅mm), which is nearly an order of magnitude
smaller than the best known one, namely 0.003895(g⋅mm).

What should be noted is that MAGA obtains good performances in solving con-
strained layout problems by only incorporating a simple version of the static penalty
technique. It also illustrates that MAGA has a good potential to solve constrained
optimization problems. Therefore, improving the performance of MAGA by develop-
ing novel constraints handling techniques is our future work.

Constrained Layout Optimization in Satellite Cabin Using a Multiagent Genetic Algorithm 449

Acknowledgment. This work is partially supported by the Fundamental Research
Funds for the Central Universities and the National Natural Science Foundation of
China under Grants 61271301, 61103119 and 60970067.

References

1. Teng, H., et al.: Layout optimization for the dishes installed on a rotating table. Science in
China (Series A) 37(10), 1272–1280 (1994)

2. Szykman, S., Cagan, J.: Constrained three-dimensional component layout using simulated
annealing. Journal of Mechanical Design, Transactions of the ASME 119(1), 28–35 (1997)

3. Tang, F., Teng, H.: A modified genetic algorithm and its application to layout optimiza-
tion. Journal of Software 10(10), 1096–1102 (1999)

4. Qian, Z., Teng, H., Sun, Z.: Human-computer interactive genetic algorithm and its applica-
tion to constrained layout optimization. Chinese Journal of Computers 24(5), 553–559
(2001)

5. Yu, Y., Cha, J., Tang, X.: Learning based GA and application in packing. Chinese Journal
of Computers 24(12), 1242–1249 (2001)

6. Li, N., Liu, F., Sun, D.: A study on the particle swarm optimization with mutation operator
constrained layout optimization. Chinese Journal of Computers 27(7), 897–903 (2004)

7. Xu, Y., Xiao, R., Amos, M.: A novel genetic algorithm for the layout optimization prob-
lem. In: The Proceeding of IEEE Congress on Evolutionary Computation, Singapore, pp.
3938–3943 (September 2007)

8. Zhong, W., Liu, J., Xue, M., Jiao, L.: A multiagent genetic algorithm for global numerical
optimization. IEEE Trans. on System, Man, and Cybernetics—Part B 34(2), 1128–1141
(2004)

9. Liu, J., Zhong, W., Jiao, L., Li, X.: Moving block sequence and organizational evolutio-
nary algorithm for general floorplanning with arbitrarily shaped rectilinear blocks. IEEE
Trans. on Evolutionary Computation 12(5), 630–646 (2008)

10. Liu, J., Zhong, W., Jiao, L.: An organizational evolutionary algorithm for numerical opti-
mization. IEEE Trans. on Systems, Man, and Cybernetics, Part B 37(4), 1052–1064 (2007)

11. Jiao, L., Liu, J., Zhong, W.: An organizational coevolutionary algorithm for classification.
IEEE Trans. on Evolutionary Computation 10(1), 67–80 (2006)

12. Liu, J., Abbass, H.A., Green, D.G., Zhong, W.: Motif difficulty (MD): a novel predictive
measure of problem difficulty for evolutionary algorithms based on network motifs. Evo-
lutionary Computation Journal (MIT) 20(3), 321–347 (2012)

13. Liu, J., Zhong, W., Jiao, L.: A multiagent evolutionary algorithm for constraint satisfaction
problems. IEEE Trans. on Systems, Man, and Cybernetics, Part B 36(1), 54–73 (2006)

14. Liu, J., Zhong, W., Jiao, L.: A multiagent evolutionary algorithm for combinatorial opti-
mization problems. IEEE Trans. on Systems, Man, and Cybernetics, Part B 40(1), 229–240
(2010)

A Multi-Objective Approach for Master’s Thesis

Committees Scheduling Using DMEA

Lam T. Bui and Viet Hoang

Le Quy Don Technical University, Vietnam
lam.bui07@gmail.com, viethv76@yahoo.com

Abstract. In this paper, we propose a multi-objective approach for in-
vestigating the Multi-Objective Master’s Thesis Committees Scheduling
(MMTCS), a practical scheduling problem that arises from our univer-
sity. For this problem, We need to schedule for a large set of students,
each needs an oral defense in front of a committee, given that the time
slots, rooms and professors are limited. For it, we first try to derive a
mathematical formulation of the problems as a multi-objective problem
with a set of hard constraints. We used the satisfaction values of soft
constraints as objectives. We adjusted our previous published version of
multi-objective evolutionary algorithm to work with this combinatorial
problem. We conducted a case study to investigate the problem using our
newly multi-objective design. The results showed clearly the efficiency of
the multi-objective approach on this problem. The non-dominated solu-
tions showed trade-off between two objectives.

1 Introduction

Multi-objectivity exists in most of the real life problems. This makes it become
difficult to find a single solution that meet all objectives. Techniques dealing
with these problems often offer a wide range of good solutions trading off on
all objectives. Depending on the preference, the user can select the most suit-
able one among these trade-off solutions. Today, multi-objective techniques have
been the popular tools for decision support. In this paper, we consider a special
class of scheduling problems called Multi-objective Master’s Thesis Committees
Scheduling (MMTCS). This is a practical problem being handled at our uni-
versity. For this problem, staff are expected to prepare a committee for every
student so that they can conduct the oral defense of their theses. This requires
a set of 5 professors, a time slot and a room for each committee. The task is to
arrange the committees being optimized on two objectives: balance of the work-
load among professors and the waiting time for professors ,and satisfying a large
set of constraints such as a supervisor is not in his(or her) student’s committee,
or two committees sharing a professor cannot be in the same time slot.

In a sense, MMTCS is a timetabling problem with finding an appropriate
assignment of time slots and rooms to a set of committees. The difference from
timetabling is only at how we model constraints for it since each practical prob-
lem has its own constraints. In other sense, MMTCS can be considered as a kind

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 450–459, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Multi-Objective Approach for MTCS Using DMEA 451

of resource allocation problems since it requires allocating committees with a
number of different professors from a limited and predefined set of professors. The
problem is first analyzed and mathematically formulated as a multi-objective
scheduling problem with a number of hard constraints. We then design a suitable
multi-objective approach for investigating it. Our design is based on our previ-
ously published multi-objective evolutionary algorithm, called Direction-based
Multi-objective Evolutionary Algorithm [5]. Since MMTCS is a combinatorial
optimization problem, the adjustment is based on an integer representation. A
series of experimental studies are carried out to investigate the dynamics of the
problem. The results showed that our designed algorithm is able to find a diverse
set of feasible and non-dominated solutions for this problem.

The remainder of the paper is organized as follows: an overview of scheduling
and resource allocation is presented in Section 2. The problem context and for-
mulation are given in Section 3 The proposed framework is introduced in Section
4. Experimental studies are presented in Section 5. The last section is devoted
to the conclusion of the work and lessons learnt.

2 Scheduling and Resource Allocation

In this section, we summarize the main development of research on Schedul-
ing and resource allocation(SRA) [6], decision-making support process involving
assignment and allocation of limited resources to tasks (also known as jobs, op-
erations or activities) over time under certain constraints. It also needs to deal
with defining which tasks to be executed at a specific time [13]. We start with
the machine scheduling [4], a most original scheduling problem. A simple exam-
ple of shop models can be seen as n jobs with different requirements of CPU
time to be scheduled in a single(/or multi)-processor computer. The objective
of this problem is to minimize the processing time (called the makespan). The
machine scheduling problem is a specialized version of a broader problem called
project scheduling with multiple resources and tasks. And when there is a limit
of resources when scheduling and it is usually referred to as resource constraint
project scheduling problem - RCPS. In general, this is a NP-hard problem [3].

Further, there are more practical problems that can be transformed in the
form of a RCPS such as production sequencing, timetabling, and flight schedul-
ing. For timetabling, the most popular one is the university timetabling problems
where the focus is on how to find a good assignment of the time slots to courses
(with students pre-enrolled and lecturer pre-assigned) satisfying a set of con-
straints [7]. The constraints are different from university to university. Hence,
the solutions to university timetabling are often ad-hoc. The interested readers
are referred to [12,10,14] for more details.

Although scheduling/timetabling inherently possesses a feature of multi- ob-
jectivity, the literature is dominated by work considered only single objective

452 L.T. Bui and V. Hoang

[15,16]. A number of possible objectives for scheduling have been used such as
time, cost, resource balancing, robustness, etc. These objectives might conflict
with each other to different degrees. Perhaps, the the weighted-sum approach
[1] is the common one in dealing with multi-objective RCPS (also for machine
scheduling [11]). For this, objectives are summed according to a predefined vector
of weights. However, this approach systematically faces several issues, such as
objective scaling, and further it is not easy to address the matter of trade-off
analysis. Alternatively, Pareto-based approaches are used to obtained a set of
trade-off solutions in a single run [16,2]. In [9] Datta et al proposed a bi-objective
approach to deal with university timetabling problems using NSGA-II.

3 Master’s Thesis Committees Scheduling

3.1 Problem Context

In higher education systems like Vietnam’s, all master students must orally de-
fend their thesis in order to complete their study. A defense session is usually
conducted with a committee of 05 members including a chair, a committee sec-
retary, and other three members. Note that a student might have one or two
supervisors. This requires a large number of professors for the committees, es-
pecially when several committees are running in parallel. The task is to find an
appropriate assignment of professors for each committee as well as its time slot
and the defense room. In the ideal case, there is enough professors for every
committee. However, the resource of professors is always scare; also the time is
limited. This means a professor can attend several committees. The professors
can be internal or external.

From the description above, we can see that our newly defined problem (called
MMTCS) is a special class of the conventional university timetabling problem
(CUTP). The special features is that professors are required to be scheduled
for each committee and the student is fixed (only one); while for CUTP, each
class (equivalent a committee in MMTCS) will be predefined a number of stu-
dents and a lecturer before optimization process. Further, there will be a profes-
sor and student constraint for MMTCS , that usually not happens for CUTP.
Also, the requirements from Vietnam Ministry of Education and Training makes
MMTCS’s constraints become more special such as internal/external members
that not the case for CUTP.

Also, MMTCS can be considered as a version of RCPS where the tasks are
committees, rooms and professors are resources. However, the time for tasks in
MMTCS are equal in contrast with the usual style of RCPS where the task
durations are different. Further, MMTCS does not have precedent constraints
among tasks like RCPS; instead it has many additional constraints on resources,
which are strictly required by Vietnam Ministry of Education and Training.

3.2 Multi-Objective Master’s Thesis Committees Scheduling
Problem - MMTCS

The problem formulation is described as follows:

A Multi-Objective Approach for MTCS Using DMEA 453

– Inputs:

- A set C of committees (each committee is for a student), a set R of rooms,
a set T of time slots, a set P of professors,
- An array sp representing the relationship between a student and supervisors

sp[s, p] =

{
1, student s is supervised by professor p
0, otherwise.

(1)

- An array pc representing the potential role of professor as a chair of com-
mittees

pc[p] =

{
1, professor p can be a chair
0, otherwise.

(2)

- An array pi representing the status of a professor is internal or external to
the university

pi[p] =

⎧⎨⎩
1, professor p is an internal member

of the university
0, otherwise.

(3)

- An array pf representing the preferred time slots of a professor

pf [p, t] =

{
1, professor p is available at time slot t
0, otherwise.

(4)

– Variables:

• Decision variables xc,r,t,p.

xc,r,t,p =

⎧⎨⎩
1, committee c is scheduled at room r,

time slot t and with professor p;
0, otherwise.

(5)

• Auxiliary variables sht,p

sht,p =

⎧⎨⎩
1, professor p is located differently

between t and t+ 1,
0, otherwise.

(6)

• Auxiliary variables sct,p

sct,p =

⎧⎨⎩
0, professor p is scheduled

at both t and t+ 1,
1, otherwise.

(7)

– Hard Constraints:

HC1: A room is allocated to only one committee at a time slot and a professor
cannot be in more than one committee at a time∑

c∈C

xc,r,t,p ≤ 1, ∀r ∈ R, ∀t ∈ T, and∀p ∈ P (8)

454 L.T. Bui and V. Hoang

HC2: Each committee is scheduled once∑
t∈T,r∈R

xc,r,t,p = 1, ∀c ∈ C, and∀p ∈ P (9)

HC3: Committee members are different∑
p∈P

xc,r,t,p = 5, ∀c ∈ C, ∀t ∈ T, and∀r ∈ R (10)

HC4: A professor cannot be a member of his student’s committee∑
c∈C

∑
p∈P

xc,r,t,p × sp[c, p] = 0, ∀r ∈ R, and∀t ∈ T (11)

HC5: A committee must have a chair (selected persons)∑
p∈P

xc,r,t,p × pc[p] = 1, ∀c ∈ C, ∀r ∈ R, and∀t ∈ T (12)

HC6: At least an internal member∑
p∈P

xc,r,t,p × pi[p] ≥ 1, ∀c ∈ C, ∀r ∈ R, and∀t ∈ T (13)

HC7: At least 2 external members∑
p∈P

xc,r,t,p × pi[p] ≤ 3, ∀c ∈ C, ∀r ∈ R, and∀t ∈ T (14)

HC8: A professor can only serve at his preferred time slots∑
p∈P

∑
t∈T

[xc,r,t,p − pf [p, t]] = 0, ∀c ∈ C, and∀r ∈ R (15)

HC9: All rooms must be used. This is because they are all prepared.∑
t∈T

∑
c∈C

∑
p∈P

xc,r,t,p ≥ 1, ∀r ∈ R (16)

– Objectives:

• Minimization of variance of workload between professors - F1

F1 = varp∈P (
∑

r∈R,c∈C,t∈T

xc,r,t,p) (17)

with var(S) is the function calculating the variance between members
of set S

• Minimization of waiting-time for professors - F2

F2 = max
p∈P

(

|T |−1∑
t=1

sct,p) (18)

A Multi-Objective Approach for MTCS Using DMEA 455

4 Design of an Evolutionary Multi-Objective Scheduling
Algorithm

In this section, we describe our adjustment of DMEA for being suitable for
MMTCS. Note that DMEA used real-valued representation and for unconstrained
problems. Hence, we mainly focus on the solution representation and constraint
handling. All other operators of DMEA such as direction-based crossover muta-
tion and selection are kept unchanged. Representation is an important issue to
scheduling problems [8]. In our MMTCS problem, it is possible to apply either
binary or integer representation. For the earlier, a binary representation is used
for a direct mapping to a schedule (decision variables xc,r,t,p). For the later, we
can apply indirect mappings to xc,r,t,p. For it, sometimes we can automatically
eliminate constraints. That is why we choose this type of representation for our
algorithm.

A complete solution must contain information for both schedule of committees
and assignment of professors to committees. Therefore, our design of represen-
tation is as follows: S = (X1,1, X1,2, ..., X1,K , ..., XC,1, XC,2..., XC,K). The chro-
mosome is considered as an array with consecutive committees. Each committee
component Xi has 7 elements:

– Xi,1: The room number scheduled for Xi and ranges from 1 to |R|
– Xi,2: The slot number allocated to Xi and ranges from 1 to |T |
– Xi,3: The chair professor (ID) for Xi and this ID ranges from 1 to |P |
– Xi,4, Xi,5, Xi,6, Xi,7: Other members in Xi and these IDs range from 1 to

|P |

Note that with this type of representation, it always eliminates the hard con-
straint HC2: C components Xi means all committees are scheduled once.

For handling constraints of DMEA, we use the degree of hard constraints
violation as a measure for assessing solutions. A feasible solution is obviously
preferred than an infeasible one. For two feasible one, we use dominance relation;
while for two infeasible solutions, the one with less violation is better.

5 A Case Study

5.1 Test Scenarios and Settings

For demonstration of the concept, we installed a test scenario based on the
real data from the Faculty of Information Technology, Le Quy Don Technical
University. There are 4 rooms accommodating all 27 committees. All activities
take place within 2 days and each day has 6 time slots; this means we have
12 time slots totally. Since each committee requires 5 members, we need 20
professors at a time if we need 4 committees running in parallel. Total number
of professors are 30, so that it is likely that we can have 4 committees running
in parallel.

456 L.T. Bui and V. Hoang

From the problem description, we can see that the chromosome size is obvi-
ously 189. We used a population size of 200. The crossover and mutation rates
were 0.9 and 0.01 respectively. The evolution was terminated after 120,000 evalu-
ations. Each experiment was repeated for 10 times with different random seeds in
the hope of eliminating the stochastic behavior caused by the random generator.

5.2 Results and Discussion

Performance Analysis. The performance of DMEA for MMTCS is illustrated
by the obtained solutions, which are the non-dominated solutions after each run.
We will exam how they behaved in terms of constraint violation and how diverse
they were. First of all, in all 10 runs, DMEA found solutions without any hard-
constraint violation after about 600 generations (in particular: 1000, 200, ...).
Obviously, once DMEA found feasible solutions, the archive will be filled with
feasible non-dominated ones. Further, in all runs, DMEA found quite diverse
sets of non-dominated solutions as demonstrated in Figure 1 for some runs.
Obviously, this shows that we need to make a trade-off between two objectives;
a good solution in saving the free time of professors between their committees
(the second objective) might make it difficult to keep the workload balance.

0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

f1

f2

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3
0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

f1

f2

0.2 0.25 0.3 0.35 0.4 0.45

0.65

0.7

0.75

0.8

0.85

f1

f2

0.2 0.25 0.3 0.35
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

f1

f2

Fig. 1. Snapshots of the obtained non-dominated solutions

A further analysis on the the non-dominated sets in the decision space is
given here (see Figure 2). We took two non-dominated solutions: one with the
smallest first objective value (0.191) and the second with the smallest second
objective value (0.722). We observed a contrast between them. While the first
case (with the lowest objective value of the workload balance) obtained the
number of committees for each professor from 3 to 6, the second one had a much
wider range from 2 to 8 committees. On the other hand, considering the effect of
the second objective, we saw that The first solution had only 2 professors with
consecutive committees; meanwhile the second solution had 11 professors.

Dynamics. The behaviour analysis of the algorithms not only considers the end
state, but it is quite important to understand how they behave during the time
of evolution. For this, we recorded all hard-constraint violations over time and

A Multi-Objective Approach for MTCS Using DMEA 457

Fig. 2. Demonstration of non-dominated solutions in decision space: 30 professors
(rows) and 12 time-slots (columns). The left graph one represented a non-dominated
solution with the smallest first objective value (0.191) and the right one with a non-
dominated solution having the smallest second objective value (0.722).

reported in Figure 3. For each run, we sum up all hard constraint violation for
each solution and the results associated with the best solutions were reported. It
is obvious from Figure 3 that our method converged vary fast without being stuck
at any time. They are almost violation-free after 600 generations. Its performance
among runs was quite stable.

0 200 400 600 800 1000 1200
0

10

20

30

40

50

60

Generations

Co
ns

tra
int

 vi
ola

tio
n

Fig. 3. The total number of hard-constraint violations over time for all 10 runs

Another aspect of dynamics is the number of non-dominated solutions over
generations. We recorded it and visualized in Figure 4 for all 10 runs. It is
interesting that the number of non-dominated solutions increased quickly to the
maximum size (200) after 200 generations. However, it sharply dropped (even
to only one solution) before increased again towards the end. This behavior
can be explained by looking at the way DMEA handled the hard constraints.
It considered the constraint violation as the primary criterion when examining

458 L.T. Bui and V. Hoang

solutions. At the beginning, solutions were infeasible and they were compared
by the level they violate constraints. With this single value, normally only one
solution was the best. However, as DMEA progressed, it found more solutions
with the similar level of constraint violation that is reflected in the first half of
the figure. Soon it found a feasible solution, all infeasible will be dropped out of
the archive. That is why in the figure, the number of non-dominated solutions
dropped sharply after 400 generations.

a)
0 200 400 600 800 1000 1200

0

20

40

60

80

100

120

140

160

180

200

Generations

A
rc

h
iv

e
 s

iz
e

b)
0 200 400 600 800 1000 1200

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Generations

R
a

te
 o

f
fe

a
s
ib

le
 s

o
lu

ti
o

n
s

Fig. 4. a)Number of non-dominated solutions. b) The rate of feasible solutions.

Finally, we consider the rate of feasible solutions that DMEA found over time.
It clearly shows that our previous finding is appropriate. In the first about 400
generations, most of the runs did not find any infeasible solution. However, after
found one, DMEA quickly discover many over time.

6 Conclusion

In this paper, we proposed multi-objective approach to investigate the problem
of master thesis defending committee scheduling. For this problem, we need
to do both tasks: timetabling the committees and allocating professors to the
committees. An evolutionary-based method for problem solving was introduced.
We used an integer representation for the solution. A case study was carried
out on a test problem adapted from the real data at the Faculty of Information
Technology, the Le Quy Don Technical University, Vietnam. We also compared
it with a multistart random search algorithm. The obtained results showed that
our algorithm found feasible solutions and had a good convergence behavior.

Acknowledgments. We acknowledge the financial support from Vietnam’s
National Foundation for Science and Technology (Development Grant 102.01-
2010.12), the Vietnam Institute for Advanced Study in Mathematics (VIASM),
and the Research Fund RFIT of Faculty of Information Technology, Le Quy Don
Technical University.

A Multi-Objective Approach for MTCS Using DMEA 459

References

1. Abbasi, B., Shadrokh, S., Arkat, J.: Bi-objective resource-constrained project
scheduling with robustness and makespan criteria. Applied Math. and Comp. 180,
146–152 (2006)

2. Belfares, L., Klibi, W., Lo, N., Guitouni, A.: Multi-objective tabu search based
algorithm for progressive resource allocation. E. J. of Op. Res. 177, 1779–1799
(2007)

3. Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Scheduling subject to resource
constraints: Classification and complexity. Discrete Applied Math. 5, 11–24 (1983)

4. Brucker, P.: Scheduling algorithms. Springer (2007)
5. Bui, L.T., Liu, J., Bender, A., Barlow, M., Wesolkowski, S., Abbass, H.A.: Dmea: a

direction-based multiobjective evolutionary algorithm. Memetic Computing 3(4),
271–285 (2011)

6. Bui, L.T., Michalewicz, Z., Parkinson, E., Abello, M.B.: Adaptation in dynamic
environments: A case study in mission planning. IEEE Trans. Evolutionary Com-
putation 16(2), 190–209 (2012)

7. Carter, M.: Timetabling. In: Encyclopedia of Operations Research and Manage-
ment Science, pp. 833–836. Kluwer Academic Publishers (2001)

8. Corne, D., Ross, P., Fang, H.L.: Evolutionary timetabling: Practice, prospects and
work in progress. In: UK Planning and Scheduling SIG Workshop (1994)

9. Datta, D., Deb, K., Fonseca, C.M.: Solving class timetabling problem of iit kan-
pur using multi-objective evolutionary algorithm. Technical report, KanGAL, IIK
Kanpur India,Report No. 2006006 (2006)

10. Lewis, R.: A survey of metaheuristic-based techniques for university timetabling
problems. OR Spectrum 30(1), 167–190 (2008)

11. Nagar, A., Haddock, J., Heragu, S.: Multiple and bi-criteria scheduling: a literature
survey. European Journal of Operational Research 81, 88–104 (1995)

12. Petrovic, S., Burke, E.K.: University timetabling. Handbook of Scheduling Algo-
rithms, Models, and Performance Analysis 45, 1–23 (2004)

13. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, 2nd edn. Springer
(2001)

14. Ross, P., Hart, E., Corne, D.: Genetic algorithms and timetabling (2003)
15. Slowinski, R.: Multiobjective project scheduling under multiple-category resource

constraints. In: Advances in project Scheduling. Elsevier (1989)
16. Viana, A., de Sousa, J.P.: Using metaheuristics in multiobjective resource con-

strained project scheduling. European Journal of Operational Research 120, 359–
374 (2000)

Coupler-Curve Synthesis
of a Planar Four-Bar Mechanism Using NSGA-II

Jaideep Badduri, Rangaprasad Arun Srivatsan, Gurunathan Saravana Kumar,
and Sandipan Bandyopadhyay

Department of Engineering Design, Indian Institute of Technology Madras,
Chennai - 600036, India

{jaideep.badduri,rarunsrivatsan}@gmail.com,
{gsaravana,sandipan}@iitm.ac.in

http://www.ed.iitm.ac.in

Abstract. This paper applies a genetic algorithm-based optimisation procedure,
namely, NSGA-II, to the problem of synthesis of a four-bar mechanism. The in-
ternal parameters of NSGA-II are tuned using a Design of Experiments (DoE)
procedure to enhance the quality of the final results. Constraints are handled
through a penalty formulation. Further, a scaling function is introduced, which
transforms the penalty terms in a manner that leads to faster convergence of the
solutions. The theoretical developments are illustrated via applications to two
well-studied problems in the domain of coupler-curve synthesis. A comparison
of the results vis-a-vis existing ones shows that the proposed enhancements of the
basic scheme of NSGA-II deliver promising improvements in terms of accuracy,
and rate of convergence of the solutions.

Keywords: Coupler-curve Synthesis, Optimisation, Genetic Algorithms,
NSGA-II, Design of Experiments.

1 Introduction

Application of numerical optimisation techniques to the problem of synthesis of mecha-
nisms have gained in popularity in the last few decades. Several methods from the “soft-
computing” domain, such as Genetic Algorithms (GA), Differential Evolution (DE),
and their variants have been applied successfully to different problems in mechanism
synthesis, such as the synthesis of planar four-bar mechanisms for desired coupler
curves [1–4].

Probability-based optimisation methods, such as GA and DE, have several natural
advantages over the classical methods. These methods can handle non-smooth objec-
tives as well as constraints; they are global in nature; they use a population rather than
a single design point (or an individual in GA terminology), and hence generally ex-
plore the design space better, as well as obviate the need for “good” initial guesses
that are crucial for the success of the traditional gradient-based local search methods.
However, several inherent drawbacks of these algorithms are also well-known. For in-
stance, the convergence of these algorithms is typically much slower than the local
search methods. Attempts to improve the basic algorithms in these aspects have given

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 460–469, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.ed.iitm.ac.in

Coupler-Curve Synthesis of a Planar Four-Bar Mechanism Using NSGA-II 461

rise to problem-specific algorithm variants, such as the MUMSA [4], special ways of
choosing the initial population [3] etc. While these off-springs of the parent algorithms
do show improvements in the specific problems to which they are applied by the pro-
poser, these are typically not backed up by enough generic analysis to convince another
researcher to adopt them for a different set of problems. One key ingredient in the suc-
cess of any of these algorithms, or indeed, any probability-based method, is the proper
choice of the numerous control parameters embedded in the algorithms. There is a pos-
sibility that one algorithm out-performs another simply due to the better tuning of these
control parameters for some specific problems, rather than any generic superiority of
the winning algorithm over the latter.

This paper makes an attempt to investigate this interesting issue of generic superior-
ity of algorithms versus the efficacy of problem-specific tuning of parameters, as well
as the impact of refinements in the formulation of the problem itself. A very well-
studied problem is chosen as the test-case, namely, that of coupler-curve synthesis,
on which a significant number of recent reports are available [1–4]. A well-known
and popular GA-based optimiser, namely, the Non-dominated Sorting Genetic Algo-
rithm (NSGA-II)1 [5] is used in this work. The method requires the specification of
four probability parameters in addition to the population size and the number of gener-
ations. A systematic study of these parameters is done to arrive at their optimal values
for the chosen problems by means of the Design of Experiments (DoE) [6] formalism.
Constraint handling is done via a penalty formulation. A non-linear scaling is applied
to the values of the constraint function so that the order of magnitude of these values
maintain a desired relation with the order of magnitude of the objective function. This,
as expected, leads to faster convergence in the problems studied, showing that a better
handling of constraints may alleviate the slow convergence problem of NSGA-II to
some extent.

The rest of the paper is organised in the following manner: in Section 2, the objective
and the constraint functions for the optimisation problems are derived using a kinematic
model of the mechanism. The constraint handling scheme is described in Section 3. The
tuning of the control parameters of NSGA-II via a DoE procedure for a specific prob-
lem is described in Section 4. The results and conclusions are presented in Sections 5
and 6, respectively.

2 Kinematic Formulation of the Objectives and Constraints

The formulation of the coupler-curve synthesis problem is fairly standard (see, e.g., [4]),
as the problem has been studied extensively. Fig. 1 shows the schematic of the mecha-
nism under consideration. The coupler point pc is required to describe a desired curve
as the crank, i.e., link 1, runs through a specified interval. From Fig. 1, the coordinates
of pc in the XY -frame are found as:

x = O1x + l1 cos θ1 + xc cosφ2 − yc sinφ2 (1)

y = O1y + l1 sin θ1 + xc sinφ2 + yc cosφ2 (2)

1 Developed at the Kanpur Genetic Algorithms Laboratory, Indian Institute of Technology Kan-
pur, India; available online for free download at: http://www.iitk.ac.in/kangal/codes.shtml.

462 J. Badduri et al.

X c

Y c

(x
 ,

y
)

c
c

p c

φ3

(O1x ,O1y)O1

(O2x ,O2y)O2
l θ1

l
2φ

1

2

X

Y

l3

Fig. 1. A planar four-bar mechanism with rotary joints and actuator

where xc, yc are the coordinates of pc in the coupler frame, XcYc. Most often, it is
understood that the coupler curve, i.e., the locus of the point pc, cannot take any arbi-
trary shape 2. Therefore, typically, a number of target points are chosen to represent the
desired coupler curve, and the original problem is considered to be solved adequately
when the coupler curve generated by the synthesised mechanism passes through these
points, pdi(xdi, ydi), i = 1, . . . , n. Further, when the points are arrived at certain spec-
ified values of the crank angles θ1i, the problem is known as coupler curve synthesis
with coordination. This version of the problem would be studied in this work.

The structural error to be minimised is computed as the the sum of the squares of
the Euclidean distances (denoted by di) of the actual coupler points generated (denoted
by (xgi, ygi)) from the respective target points at the n specified crank locations:

E =

n∑
i=1

d2i =

n∑
i=1

(xgi − xdi)
2 + (ygi − ydi)

2 (3)

One key requirement of the synthesised mechanism is full-cycle mobility, i.e., link 1
should be a proper crank, that can rotate through 360◦ without the mechanism getting
locked at any configuration. This is possible when the link lengths satisfy the Grashof’s
conditions (see, e.g., [7]). However, full-cycle mobility also means that the mechanism
does not encounter singularities for any crank angle. From this perspective, an equiva-
lent set of conditions are derived following [8]:

g1
Δ
=

∣∣∣∣ l20 + l21 − (l2 + l3)
2

2l0l1

∣∣∣∣− 1 > 0 (4)

g2
Δ
=

∣∣∣∣ l20 + l21 − (l2 − l3)
2

2l0l1

∣∣∣∣− 1 > 0 (5)

g3
Δ
= l1 + l2 + l3 − l0 > 0 (6)

2 The coupler curve of a four-bar mechanism has a very specific algebraic structure – it is a tri-
circular sextic curve in x, y [7]. As such, it cannot have any segment of it matching common
geometric shapes, e.g., a straight-line segment or an arc of a circle exactly.

Coupler-Curve Synthesis of a Planar Four-Bar Mechanism Using NSGA-II 463

g4
Δ
= l0 + l2 + l3 − l1 > 0 (7)

g5
Δ
= l0 + l1 + l3 − l2 > 0 (8)

g6
Δ
= l0 + l1 + l2 − l3 > 0 (9)

Using this form of the full-cycle mobility condition instead of the standard form of
the Grashof’s condition (i.e., l + s < p + q, where s, l are the shortest and largest
link lengths respectively and p, q are the lengths of the other links) has the following
advantage: the violation of the constraints, as and when it happens, is easily quantifiable
via the numerical values of the functions gi, and thus give a physical sense of “distance”
from singularities, thanks to the continuous nature of these functions.

3 Development of the Constraint-Handling Scheme

A typical constrained optimisation problem has the form:

Minimise f(x)

subject to gi(x) ≥ 0, i = 1, 2, ..., n;

hj(x) = 0, j = 1, 2, ...,m;

with xk ∈ [ak, bk], k = 1, 2, ..., p,

where f(x) is the objective function, x = (x1, x2, x3, · · · , xp)
T is the vector of de-

sign variables, gi(x) and hj(x) are the inequality and equality constraints respectively,
and ak and bk are the upper and lower bounds on xk, respectively. The proposed ap-
proach uses a penalisation strategy in order to convert the constrained optimisation
problem to an unconstrained one. Each constraint is imposed through a corresponding
penalty term which is added to the objective function; the sum is then used to arrive
at the total fitness value required by NSGA-II to rank the individuals. Each penalty
term modifies the objective function in the region where it is violated. If the contribu-
tion from this term is too small in comparison to the original objective, then it may fail
to impose the constraint strictly. On the other hand, if the penalty term is too high in
value, the distortion of the original objective function may be so high as to introduce
spurious local optima [9]. The inherent drawback in this approach is the difficulty in
finding appropriate penalty functions and their numerical weights which offer the best
compromise for a given problem [10]. In partial solution to the above problem, we use
a transformation of the penalty function which confines its values to the interval [0,1],
irrespective of the form of the function. We then use a single weight, α, on the sum of
the penalty terms. The heuristics in the process is therefore reduced to the choice of a
single parameter α so as to match the order of the nominal penalty terms to that of the
unconstrained objective. The details of the scheme are described in the following.

The said transformation of the constraint functions has the following form (adopted
from [11]):

ψλ(t) =
t

λ+ t
, λ > 0. (10)

464 J. Badduri et al.

Obviously, ψλ(t) ∈ [0, 1] ∀t ∈ [0,∞], i.e., for any non-negative real value of t, the
function ψλ(t) is confined to the interval [0, 1]. Incorporating these details, the steps for
the evaluation of the unconstrained objective for any given individual having the design
variables x are as follows:

1. Compute the objective function value, f(x).

2. Compute the penalty term quantifying the extent of violation of the equality con-

straints by the sum of the squares of the scaled residuals: heq(x) =

m∑
j=1

ψλ(h
2
j(x)).

3. Compute the penalty term for the inequality constraints in a similar manner, iffthey

are violated: geq(x) =
n∑

i=1

P (gi(x)), where the function P (x) is defined as:

P (t) =

{
0 if t ≥ 0,

ψλ(t
2) if t < 0.

The function P (t) acts as a switch, adding the penalty term corresponding to a
constraint iffit is violated.

4. Compute the unconstrained objective F (x) as a sum of the penalty terms and the
original objective:

F (x) = f(x) + α(geq(x) + heq(x)) (11)

In Eq. (11), the positive scalar α is used to weigh the penalty terms appropriately
against the original objective.

It is expected that via proper tuning of the parameters, λ and α, the effect of constraints
can be imparted on the overall objective in a better manner. As shown in Section 5.2,
this scheme seems to favour faster convergence.

4 Tuning of NSGA-II Parameters Using DoE

NSGA-II is a generic optimiser based on the GA. As in any such probability-based
method, convergence of the solution to the optima is affected by several internal pa-
rameters, namely, the probability of crossover (pc), the probability of mutation (pm),
the distribution index for crossover (ηc) and the distribution index for mutation (ηm),
in addition to two common parameters: the population size (Npop) and the number of
generations (Ngen). The mutation which brings about variation in the population have
to be balanced with respect to cross-over, which preserves building blocks so as to
achieve good convergence in this method. The distribution index affects the spread of
the offspring solutions, generated by crossover or mutation, in the variable space. The
size of the initial population too serves to introduce some variation in the population.
Better results are expected with higher number of generations, albeit at the expense of
time and computational resources. However, too many generations may not justify the
computational cost, if the results have already converged in previous generations.

Coupler-Curve Synthesis of a Planar Four-Bar Mechanism Using NSGA-II 465

A systematic study using DoE is performed to select the optimal parameters so as
to obtain good convergence of NSGA-II for the problem of coupler-curve synthe-
sis. A sample problem, as described in Section 5, is used for this study. The param-
eters Npop and Ngen are held fixed at 200 and 1000 respectively, and the other four
parameters, i.e., pc, pm, ηc and ηm are systematically varied in appropriate ranges,
i.e., pc, pm ∈ [0, 1], ηc ∈ [0, 20], and ηm ∈ [0, 50]. In the present DoE, an iterative
scheme of two-level full-factorial experiments is done to search the parameter space.
The method is similar to the marching hypercube method for exhaustive search [12].
The method requires (24 + 1) points, of which (24) are the corner points of the 4-
dimensional hypercube centred on the remaining point. For each of these (24+1) com-
binations of parameters, NSGA-II is run for the chosen problem and the quality of the
result is analysed to identify the best combination. If at a given iteration a better param-
eter set is not found, the size of the hypercube is reduced and the search is conducted
on the set of (24+1) vertices of the new hypercube. The process continues until the hy-
percube shrinks to a pre-determined small size, which is chosen to be 10% of the range
values of the variables. In this case the initial set of parameter values for the method is
chosen as pc = 0.5, pm = 0.5, ηc = 10 and ηm = 25, i.e., the mid-range values of the
respective parameters, with an initial hypercube size of 40% of the range values (see
Table 3).

5 Results and Discussions

Two previously studied problems, namely, Case 3 and Case 4 reported in [4] are revis-
ited in this work, so as to compare the results obtained. The formulation of the primary
objective and the design variables are the same, and so are the bounds on these vari-
ables: l1, l2, l3 ∈ [0, 50] and xc, yc, O1x, O1y , O2x, O2y ∈ [−50, 50].

Problem 1: The problem statement is identical with Case 4 in [4]. The six target points
and the corresponding crank angles are given in Table 1. The structural error func-
tion, E, defined in Eq. (3) is used as the objective function, and full-cycle mobility con-
ditions formulated as inequalities (4-9) are used as constraints. Constraints are handled
in two different ways, i.e., with and without the transformations introduced in Section 3,
so as to bring out the impact of the transformations on the convergence of the solutions.
The results are compared with those reported in [3, 4].
Problem 2: This problem statement is identical with Case 3 in [4]. There is an ad-
ditional variable in this case: the initial position of the crank, θ(1)1 ∈ [0, 2π]. The 18

points are to be reached at 20◦ increments of the crank angle, i.e., θ(i)1 = θ
(i−1)
1 + π/9,

i = 2, . . . , 18. The target points are given in Table 2. This problem is studied in the
same manner as in Problem 1. The results compared with those reported in [1, 4, 13].

Table 1. Coupler points to be traced for prescribed angles in Problem 1

θ1di 30◦ 60◦ 90◦ 120◦ 150◦ 180◦

xdi 0 1.9098 6.9098 13.09 18.09 20
ydi 0 5.8779 9.5106 9.5106 5.8779 0

466 J. Badduri et al.

Table 2. Coupler points to be traced for prescribed angles in Problem 2

θ
(i)
1 θ

(1)
1 θ

(2)
1 θ

(3)
1 θ

(4)
1 θ

(5)
1 θ

(6)
1 θ

(7)
1 θ

(8)
1 θ

(9)
1 θ

(10)
1 θ

(11)
1 θ

(12)
1 θ

(13)
1 θ

(14)
1 θ

(15)
1 θ

(16)
1 θ

(17)
1 θ

(18)
1

xdi 0.5 0.4 0.3 0.2 0.1 0.05 0.02 0 0 0.03 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.6
ydi 1.1 1.1 1.1 1.0 0.9 0.75 0.6 0.5 0.4 0.3 0.25 0.2 0.3 0.4 0.5 0.7 0.9 1.0

5.1 Optimisation of NSGA-II Parameters Using DoE

Before arriving at the final solutions for the problems described above, optimal values
of the NSGA-II parameter set, [pc, pm, ηc, ηm], are determined based on Problem 1
following the method described in Section 4. The starting point for this search is [0.5,0.5,
10, 25], and the vertices of the hypercube in the first iteration defined by [0.5 ± 0.2,
0.5±0.2, 10±4, 25±10]. NSGA-II is used to solve Problem 1 using (24+1) distinct
parameter sets, and the corresponding results are tabulated in Table 3. All these cases
are run with the parameter values λ = 106 and α = 1014.

It can be seen that the parameter set #17: [0.3,0.3, 6, 15] results in the best solution.
The next iteration takes this as the centre point and defines a hypercube around this to

Table 3. First set of (24 + 1) experiments using NSGA-II on Problem 1

Parameters [pc, pm, ηc, ηm] E =
∑n

i=1 d
2
i (See Eq. (3)) max(di) (See Eq. (3))

1 [0.5,0.5,10,25] 1.26 0.69
2 [0.7,0.7,14,35] 2.08 0.77
3 [0.7,0.7,14,15] 1.83 0.84
4 [0.7,0.7,6,35] 3.41 0.83
5 [0.7,0.3,14,35] 2.36 1.14
6 [0.7,0.3,6,35] 5.08 1.34
7 [0.7,0.3,14,15] 1.23 0.72
8 [0.7,0.7,6,15] 2.28 0.73
8 [0.7,0.3,6,15] 139.72 6.26
10 [0.3,0.7,14,35] 9.14 1.71
11 [0.3,0.7,14,15] 9.79 1.74
12 [0.3,0.7,6,35] 26.63 2.72
13 [0.3,0.3,14,35] 19.41 2.72
14 [0.3,0.3,6,35] 23.73 2.34
15 [0.3,0.3,14,15] 4.31 1.31
16 [0.3,0.7,6,15] 2.09 0.82
17 [0.3,0.3,6,15] 0.89 0.53

Table 4. Optimised mechanism for Problem 1 with and without constraint transformation

l1 l2 l3 xc yc O1x O1y O2x O2y E

Constraint untransformed 8.92 25.40 42.65 45.53 -24.74 17.25 -50.00 43.35 -16.30 0.89
Constraint transformed 8.85 22.45 35.62 49.95 45.82 16.65 -48.42 -19.84 -25.53 0.80

Coupler-Curve Synthesis of a Planar Four-Bar Mechanism Using NSGA-II 467

100 150 200 250 300 350 400 450 500
1

2

3

4

5

6

7

Number of generations

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

Best objective(constraint untransformed)
Best objective(constraint transformed)
Average objective (constraint untransformed)
Average objective (constraint transformed)

(a) Problem 1

100 150 200 250 300 350 400 450 500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of generations

O
b

je
ct

iv
e

fu
n

ct
io

n
 v

al
u

e

Best objective(constraint untransformed)
Best objective(constraint transformed)
Average objective (constraint untransformed)
Average objective (constraint transformed)

(b) Problem 2

Fig. 2. Effect of constraint transformation on the convergence of NSGA-II

search for better parameters. However, the search converges to the parameter set #17
as it turns out to be better than the vertices of the new hypercube. The rest of this paper
uses the same set of parameters for solving Problems 1 and 2.

5.2 Improvement of Convergence of NSGA-II Due to Transformation of
Constraint Functions

The convergence of the average as well as the best objective values to the respective
optimum values for Problem 1,2 are shown in Fig. 2(a) and Fig. 2(b), respectively. It
can be seen that for both the problems constraint handling improves the convergence
rate of the best as well as average objective value. In particular, in Problem 1, the ac-
celeration in convergence due to the constraint modification is very much pronounced –
the required number of generations being practically halved in this case. The converged
results for Problem 1 are tabulated in Table 4 . The optimised mechanism obtained by
NSGA-IIwith constraint handling function shows better performance, i.e., lower value
of the structural error, E.

5.3 Comparison of Results

For Problem 1 the results are compared with those obtained by a problem-specific mod-
ification of GA (called MUMSA) in [4], and using DE in [3]. In order to ensure fair
comparison of the converged results with respect to the computational effort involved,
the number of function evaluations is kept the same as those reported in the correspond-
ing literature. Table 5 shows the optimised variable values, as well as two measures of
performance: the structural error E and the largest deviation at any point max(di). It is
evident that the results obtained in this work are better than those in [4], and far superior
to those in [3]. Table 6 presents the corresponding results for Problem 2, and as can be
seen they are comparable to those reported in [1, 4, 13].

468 J. Badduri et al.

Table 5. Comparison of the results for Problem 1

l1 l2 l3 xc yc O1x O1y O2x O2y E =
6∑

i=1

d2i max(di)

NSGA-II 8.85 22.45 35.62 49.95 5.82 16.65 -48.42 -19.84 -25.53 0.80 0.48

MUMSA [4] 1.35 1.35 49.99 11.38 4.44 10.19 -3.69 60.05 -7.06 1.21 0.52
DE [3] 5.00 5.91 50.00 18.81 0.00 14.37 -12.44 59.10 9.92 5.49 1.21

Table 6. Comparison of the results for Problem 2

l1 l2 l3 xc yc O1x O1y O2x O2y θ
(1)
1 (in rad) E =

18∑
i=1

d2
i max(di)

NSGA-II 0.46 5.47 7.57 2.61 1.20 1.03 3.42 4.02 -4.51 1.03 0.048 0.09
MUMSA [4] 0.30 3.91 0.85 -2.07 1.66 -1.31 2.81 -5.41 4.55 7.59 0.019 0.08

GA [13] 0.27 1.18 2.14 -0.83 -0.38 1.13 0.66 0.47 -1.10 6.91 0.064 0.11
GA [1] 0.24 4.83 2.06 0.77 1.85 1.78 -0.64 3.42 1.93 1.23 0.034 0.10

0 5 10 15 20
−10

−8

−6

−4

−2

0

2

4

6

8

10

X coordinate (mm)

Y
 c

o
o

rd
in

at
e

(m
m

)

Coupler curve(NSGA−II)
Coupler curve(DE[3])
Coupler curve(MUMSA[4])
Desired coupler points
Coupler points(MUMSA[4])
Coupler points(NSGA−II)
Coupler points(DE[3])

(a) Problem 1

0 0.1 0.2 0.3 0.4 0.5 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Plot for coupler curves

X coordinate (mm)

Y
 c

o
o

rd
in

at
e

(m
m

)

Coupler curve(NSGA−II)
Coupler curve(GA[15])
Coupler curve(MUMSA[4])
Desired coupler points

(b) Problem 2

Fig. 3. Comparison of coupler curves generated with existing ones

6 Conclusion

The paper introduces certain improvements in the application of a GA-based optimiser
to the problem of synthesising mechanisms. A new scheme for better handling the con-
straints through a transformation of the penalty terms is introduced. Internal control
parameters of the chosen optimiser, NSGA-II, are tuned for this type of problems by
means of a DoE procedure. Results obtained show promising improvements in terms
of the quality of solutions obtained, as well as the rate of convergence, even when the
scheme is applied to very well-studied problems in the field.

Coupler-Curve Synthesis of a Planar Four-Bar Mechanism Using NSGA-II 469

References

1. Cabrera, J., Simon, A., Prado, M.: Optimal synthesis of mechanisms with genetic algorithms.
Mechanism and Machine Theory 37(10), 1165–1177 (2002)

2. Laribi, M., Mlika, A., Romdhane, L., Zeghloul, S.: A combined genetic algorithm – fuzzy
logic method (GA – FL) in mechanisms synthesis. Mechanism and Machine Theory 39(7),
717–735 (2004)

3. Acharyya, S., Mandal, M.: Performance of EAs for four-bar linkage synthesis. Mechanism
and Machine Theory 44(9), 1784–1794 (2009)

4. Cabrera, J., Ortiz, A., Nadal, F., Castillo, J.: An evolutionary algorithm for path synthesis of
mechanisms. Mechanism and Machine Theory 46(2), 127–141 (2011)

5. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multi-objective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

6. Montgomery, D.C.: Design and Analysis of Experiments. John Wiley & Sons (2006)
7. Mallik, A., Ghosh, A., Dittrich, G.: Kinematic Analysis and Synthesis of Mechanisms. CRC

Press, Boca Raton (1994)
8. Ghosal, A.: Robotics: Fundamental Concepts and Analysis. Oxford University Press, New

Delhi (2006)
9. Sarker, R., Mohammadian, M., Yao, X., Runarsson, T., Yao, X.: Constrained evolutionary

optimization - the penalty function approach. In: Evolutionary Optimization. International
Series in Operations Research & Management Science, vol. 48, pp. 87–113. Springer US
(2003)

10. Deb, K.: An efficient constraint handling method for genetic algorithms. Computer Methods
in Applied Mechanics and Engineering 186(2-4), 311–338 (2000)

11. Rimon, E., Koditschek, D.E.: Exact robot navigation using artificial potential functions.
IEEE Transactions on Robotics and Automation 8, 501–518 (1992)

12. Lin, Y., Mistree, F., Allen, J.K., Tsui, K.-L., Chen, V.C.P.: A sequential exploratory experi-
mental design method: Development of appropriate empirical models in design, vol. 1, pp.
1021–1035 (2004)

13. Kunjur, A., Krishnamurty, S.: Genetic algorithms in mechanism synthesis. Journal of Ap-
plied Mechanisms and Robotics 4(2), 18–24 (1997)

A Simulation Model for Optimise the Fire Evacuation
Configuration in the Metro Supermarket of Hanoi

Manh Hung Nguyen1,2, Tuong Vinh Ho1, and Jean-Daniel Zucker1,3

1 IFI, Equipe MSI; IRD, UMI 209 UMMISCO,
Institut de la Francophonie pour l’Informatique, Hanoi, Vietnam

2 Posts and Telecommunication Institute of Technology (PTIT), Hanoi, Vietnam
3 UPMC Univ Paris 06, UMI 209, UMMISCO, F-75005, Paris, France

nmhufng@yahoo.com, ho.tuong.vinh@auf.org,
jean-daniel.zucker@ird.fr

Abstract. When constructing a new public building such as a supermarket, an
important question raises is how to optimise the fire evacuate configuration in
the building to reduce the lost when fire occurs. This paper presents a model and
implement it as a tool to optimise the evacuation configuration in a buildings,
in particular, the evacuation signs plan of the Metro supermarket of Hanoi. The
evacuation signs setup is a critical and several changes from the existing one
could, according to simulation, reduce casualties in case of fire emergency.

Keywords: Multiagent system, fire evacuation, agent behavior, optimisation,
simulation.

1 Introduction

Recently, there has been many researches in simulating of human behaviors in the fire
evacuation of buildings. For instance, the models of Lin et al. [5] presented an agent-
based simulation model developed for a 2-story office building. Kuligowski and col-
leagues [4] argued for the inclusion of a comprehensive behavioral conceptual model
in computer evacuation models.Wang et al. [8] proposed an approach using the ex-
tended hierarchical node-relation model (EHI-NRM) to represent a building’s internal
structure. In the work of Weifeng and Hai [9], a numerical model based on cellular au-
tomaton was proposed to simulate the human behavior termed “flow with the stream” in
emergency evacuation from a large smoke-filled compartment. Luo et al. [6] presented
their work on designing behavior model for virtual humans in a crowd simulation under
normal-life and emergency situations.

In our previous work [7], a model for fire evacuation simulation has been proposed
for optimise the evacuee behaviors during evacuation, in a realistic environment with
GIS data of the Metro supermarket of Hanoi. We now continue with this work to de-
velop a model and implement it as a tool to optimise the evacuation configuration in
a buildings, in particular, the evacuation signs plan, the position of shelves, and the
position of emergency exits of the Metro supermarket of Hanoi.

This paper is organised as follows: Section 2 presents the design of this simulation.
Section 3 presents the results of simulations on evacuation configurations to improve

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 470–479, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Simulation Model for Optimise the Fire Evacuation Configuration 471

the fire evacuation. Finally Section 4 presents a brief conclusion and a discussion about
future research.

2 Simulation Modelling

2.1 Agents

In this model, we model four kinds of entities: occupant, fire, alarm, evacuation signs
and environment.

Human agents. They have two main properties: (i) observable-zone: the space around
an agent that can be observed and perceived by the agent; and (ii) power: the health
of agent. This is initially based on its health, and then reduced due to the effect of
fire/smoke. The human agents have also some behaviors: (i) target-move: move to a
specific target; and (ii) perceive: observe other agents or objects in his observable-zone.
This includes hearing of fire alarm’s ring.

Fire agents. They have three main properties: (i) duration: its duration; (ii) propagation-
speed: the speed of propagation of the fire; and (iii) affected-zone: the space around a
fire which can affect people inside it. Their main behaviors: (i) kill: affect people in the
affected-zone until they died; and (ii) propagate: propagate to a new position with his
own propagation-speed.

Alarm agents. They have two main properties: (i) affected-zone: people in this zone can
hear this ringing; and (ii) detected-zone: this rings if there is fire or smoke appearing in
this zone. Their main behavior is ringing: it occurs when there is fire/smoke appearing
in its detected-zone. This affects people in affected-zone.

Sign agents. They have two main properties: (i) position: its position in the building;
and (ii) direction: it points out the direction to one of emergency exits.

2.2 Evacuee Movement Principle

The fire evacuation experts of Hanoi Fire Evacuation Association have suggested us
to respect the fire evacuation guidelines when the evacuee meets obstacles: the evacuee
should move along the border of the obstacle until the door (target) or there no more ob-
stacle in front of the evacuee. We take into account this principle of evacuee movement.
Note that most of existing simulation models did not respect these guidelines.

We use approach priority direction for agent evacuating. Therefore, agent chooses a
direction to move following the one with the highest priority. Other directions will then
be prioritised in relative with the highest priority direction. There are two movement
strategies: 4 directions or 8 directions (as depicted in Fig.1). We use the 8 directions
strategy in all simulations. The more the direction is near the highest priority direction,
the more the direction is high priority. At each step, the agent considers the highest
priority direction to move. If it is not possible, the agent will consider the next lower
priority direction, and so on. A candidate direction is not possible if only if: either it

472 M.H. Nguyen, T.V. Ho, and J.-D. Zucker

Fig. 1. The movement strategy based on 4 and 8 directions

Fig. 2. The movement principle to avoid obstacles

leads to an obstacle, or it leads to a position which is in the recent passed positions list
of the agent.

In order to avoid the infinite loop of agent movement in the case having obstacles on
the agent direction, we use a recent passed positions list which contains n last positions
of agent. Agent thus consider the next position to move which is not in its recent passed
positions list. We do not save all the passed positions of agent because of dynamic
environment: some kind of obstacles, such as fire, can dynamically change. There may
be a fire at the position x at the moment t1, but may be no more fire at x at the moment
t2 �= t1. So we limit the size of the list in order to give to agent some change to return
to the positions which it passed in long time. In our simulations, we use the size of the
list is 20 to balance the two objectives: avoid infinite loop and adapt to the dynamic
environment.

Agent determines its own recent movement tendency by consider m last positions
(m < n, n is the size of recent passed positions list). Therefore, the priority direction
is the arc from the m−latest position to the current position of agent. Fig.2 illustrates
the movement principle of an agent when there is an obstacle on its evacuation way. At
the time t = t0, the agent does not meet the obstacle yet, so it continues to move to its
target. Next step, t = t0 + 1, the agent meets the obstacle, it finds its recent movement
tendency which is still direct to target because the two latest positions are on the same
line (m = 2). But the 1st, 2nd and 3rd directions are impossible (in the obstacle, case
of 8 directions), so the 4th and 5th direction are possible. Assume that the agent turns
right. At the time t = t0 + 2, the priority direction is the arc from the position at t = t0

A Simulation Model for Optimise the Fire Evacuation Configuration 473

to the one at t = t0 + 2. In this direction, the first 4 priorities are not possible, the 5th

is possible (the blue arc), and so on. At the time t = t0 + 4, there no more obstacle in
front of agent, so its priority direction is the line direct to its target.

2.3 Evacuee Power Reduce Principle

The evacuee’s power is decreased in two cases. First, if the evacuee is in the fire or
near by the fire, his/her power is reduced. The closer the fire is near by him, the fast his
power is decreased. Assume that pti and pt+1

i are the powers of evacuee i at the time t
and t+ 1, we have:

pt+1
i =pti − α.

N t
i

Dt
i + 1

(1)

where α is the influence factor of fire; N t
i is the number of fires which have affected on

the evacuee i at time t; Dt
i is the average distance from evacuee i to the fire which have

affected on i. We add 1 in the denominator to avoid the case of division by zero.
Second, if the evacuee runs to escape, his/her power is reduced. The more he moves

(and the faster he moves), the more he loses his power. Assume that pti and pt+1
i are the

power of the evacuee i at the time t and t+ 1, we have:

pt+1
i =pti − β.V t

i .M
t
i (2)

where β is the influence factor of run (this is much more smaller than α); M t
i is the

number of other people who touches evacuee i at time t; V t
i is the speed of evacuee i.

2.4 Simulation Parameters

The random aspect in initial values of simulation parameters could influence on the re-
sults of simulation. By consequence, the results could not be comparable. For instance,
the difference of the start ring time of fire alarm causes the difference of number (and
rate) of survivals in a fire evacuation simulation.

In order to make the results comparable, and in order to avoid the effect of ran-
dom aspect in initial value of simulation parameters, we use the same values for input
parameters of all simulations: steps of simulations; number of people; initial power, ini-
tial distribution, speed and observable range of people; number, initial position and af-
fected zone of fire; start ring time of alarm. These values are estimated from the Europe
guideline on Fire safety engineering concerning evacuation from buildings (CFPA-E
No.19:2009 [2]), and from the Human factors: Life safety strategies Occupant evacu-
ation, behaviour and conditions (PD7974-6:2004 [3]). These parameters are presented
in Table.1.

2.5 Analysis and Evaluation Criteria

For each simulation scenario, we will run many times (100 times at least). At the output,
we need to calculate the following parameters:

474 M.H. Nguyen, T.V. Ho, and J.-D. Zucker

Table 1. Simulation parameters

Parameter Values
Number of simulation steps 300
Number of people 1000
Initial power 100(%)
Influence factor of fire (α) 0.05
Influence factor of run (β) 0.002
Number of fire 1

– percentage of survivals/death. A person is considered as dead when his/her power
is reduced to zero or if s/he is still blocked inside at the end of simulation.

– average time for a person to be escaped. It is the time duration from the moment
when s/he starts to evacuate until s/he escapes.

– average of percentage of remaining power of survivals. As the initial power of
people is randomised, so this parameter calculates the percentage of remain power
after escaped regarding the initial power.

An evacuation behavior is considered as better if: (1) the % survivals is higher (% of
death is lower); (2) the average time to escape is shorter; and (3) the average of %
remaining power of survivals is higher.

Fig. 3. The detail optimal loops in the simulations

A Simulation Model for Optimise the Fire Evacuation Configuration 475

2.6 Simulation Plan

Our simulation of fire evacuation is implemented in the simulation platform GAMA
[1]. The simulations will be taken step-by-step as depicted in Fig.3, from bottom to
up. The first optimisation is optimal behaviors loop, we will run simulations with three
behaviors of evacuee: following the own path, following the crowd, and following the
signs. This is done in the previous work (Nguyen et al. [7]) and the results indicated
that evacuees should follow the evacuation signs. This best behavior will be applied for
all next optimal simulations.

The second optimisation is optimal fire evacuation configuration of the supermarket.
This consists of three sub-optimisations: optimal signs loop (including signs direction
and signs configuration), optimal shelves configuration loop, and exits configuration
loop.

Our objective is to minimise the change of the current configuration of signs, shelves
and exits. So, our proposals are limited in changing the current situation of the super-
market.

3 Optimisation of Evacuation Configuration

3.1 Optimisation 1: Change of Signs Direction

Proposal of Change. In the simulations with the actual signs direction, we found that
there are too many of people who exit through Exit 2 and 3. This leads them blocked
there for long time before escaped.

We propose, in the first optimisation, to change the signs directions as following: the
new direction indicated on a sign is the one to the nearest exit of the supermarket.

(a) The original plan (b) The proposals of changes

Fig. 4. plan of the Metro supermarket of Hanoi

Results. The % of survivals (Fig.5.a) in case of changing the signs direction is signif-
icantly higher than in case of actual sign direction (M(change direction) = 95.96%,
M(real signs) = 94.30%, significant difference with p− value < 0.05).

Time to escape. The average time to escape (Fig.5.b) in case of changing the signs di-
rection is significantly shorter than in case of actual sign direction (M(change direct−

476 M.H. Nguyen, T.V. Ho, and J.-D. Zucker

ion) = 96.52, M(real signs) = 110.52, significant difference with p − value <
0.001).

Remaining power. The average of remaining power of survivals (Fig.5.c) in case of
changing the signs direction is significantly higher than in case of actual sign direction
(M(change direction) = 81.25%, M(real signs) = 78.00%, significant difference
with p− value < 0.001).

3.2 Optimisation 2: Change of Signs Position

Proposal of Change. There could be some limitations of current signs position of the
supermarket: the signs are putted on the middle of shelves. This limit the observed range
of the signs from evacuees.

We propose to change the signs position as following: (1) put the signs in a constant
distance, start with each top of shelves; and (2) add some more signs in the zone of
vegetables and foods (Fig.4.b, parts number 2).

Results. The % of survivals (Fig.5.a) in case of changing the signs configuration is
significantly higher than in the case changing the signs direction (M(change signs) =
98.11%, M(change direction) = 95.96%, significant difference with p − value <
0.001).

Time to escape. The average time to escape (Fig.5.b) in case of changing the signs
configuration is significantly shorter than in the case changing the signs direction
(M(c− hange signs) = 91.10, M(change direction) = 96.52, significant differ-
ence with p− value < 0.001).

Remaining power. The average of remaining power of survivals (Fig.5.c) in case
of changing the signs configuration is significantly higher than in the case changing
the signs direction (M(change signs) = 83.37%, M(change direction) = 81.25%,
significant difference with p− value < 0.001).

3.3 Improvement 3: Change of Shelves Configuration

Proposal of Change. In the simulations of optimisation 2, we discover that there exists
some group of people who are blocked in between the rightest shelves of the central
zone. They have some difficulties to escape to the right exits because of these shelves
configuration. While the leftest side of the zone is good evacuation thank to the low
squares configured there.

We propose to change the shelves configuration as following: on the right side of the
central zone, change the three last shelves to the low squares as those in the left side of
the zone (Fig.4.b, part number 3).

Results. The % of survivals (Fig.5.a) in case of changing the shelves con-
figuration is significantly higher than in the case changing the signs position
(M(change shelves) = 99.43%, M(change signs) = 98.11%, significant difference
with p− value < 0.001).

A Simulation Model for Optimise the Fire Evacuation Configuration 477

Time to escape. The average time to escape (Fig.5.b) in case of changing the shelves
configuration is significantly shorter than in the case changing the signs position (M(c−
hange shelves) = 86.49, M(change signs) = 91.10, significant difference with p−
value < 0.001).

Remaining power. The average of remaining power of survivals (Fig.5.c) in case
of changing the shelves configuration is significantly higher than in the case changing
the signs position (M(change shelves) = 85.01%, M(change signs) = 83.37%,
significant difference with p− value < 0.001).

3.4 Improvement 4: Change of Exits Configuration

Proposal of Change. For the last optimisation, we propose to change the exits con-
figuration as following: create one more emergency exit at the back of the supermarket
(Fig.4.b, part number 4). This is possible to do because at there is a private road behind
the supermarket which is reserved for supply chains.

Results. The % of survivals (Fig.5.a) in case of changing the exits configuration is sig-
nificantly higher than in the case changing the shelves configuration (M(change exits)
= 99.95%, M(change shelves) = 99.43%, significant difference with p − value <
0.001).

Time to escape. The average time to escape (Fig.5.b) in case of changing the exits
configuration is significantly shorter than in the case changing the shelves configura-
tion (M(change exits) = 75.42, M(change shelves) = 86.49, significant difference
with p− value < 0.001).

Remaining power. The average of remaining power of survivals (Fig.5.c) in case of
changing the exits configuration is significantly higher than in the case changing the
shelves configuration (M(change exits) = 87.00%, M(change shelves) = 85.01%,
significant difference with p− value < 0.001).

Table 2. Summary of evacuation configuration optimisation

Improvements Rate of
survivals
(%)

Time to
escape

Remain
power
(%)

Current signs 94.30 110.52 78.00
Change direction 95.96 96.52 81.25
Change signs 98.11 91.10 83.37
Change shelves 99.43 86.49 85.01
Change exits 99.95 75.42 87.00

Table 2 summaries the results of five solutions proposed for improvement and/or
optimization of evacuation plan. The results suggest that in case of a fire evacuation of
the Metro supermarket of Hanoi, the change should follow the following order: change
of exits configuration, change of shelves configuration, change of signs configuration,
and change of signs directions. And if all these changes were made, we will have a
much better evacuation plan for the Metro supermarket of Hanoi.

478 M.H. Nguyen, T.V. Ho, and J.-D. Zucker

(a) The % of survivals at the simulation step = 300

(b) Average time to escape

(c) Average remaining power of survivals after escaping

Fig. 5. Results of optimisation

A Simulation Model for Optimise the Fire Evacuation Configuration 479

4 Conclusion and Future Works

This paper presented simulations to minimise casualties by modifying the evacuation
plan of a realistic supermarket in Hanoi. Metro supermarket plan is represented in GIS
data. The simulations were used to study three cases: change in signs directions and
configurations, changes in shelves configuration, and change in exits configuration. The
simulation results suggest that these changes do improve significantly the current fire
evacuate configuration of the supermarket.

The problem of optimisation of items store configuration in order to better separate
people in crowd are some of our future research directions.

References

1. Amouroux, E., Chu, T.-Q., Boucher, A., Drogoul, A.: GAMA: An Environment for Imple-
menting and Running Spatially Explicit Multi-agent Simulations. In: Ghose, A., Governatori,
G., Sadananda, R. (eds.) PRIMA 2007. LNCS (LNAI), vol. 5044, pp. 359–371. Springer, Hei-
delberg (2009)

2. Europe Guideline. Fire safety engineering concerning evacuation from buildings. Technical
report, CFPA-E No.19:2009 (2009)

3. British Standards Institute. The application of fire safety engineering principles to fire safety
design of buildings. part 6: Human factors: Life safety strategies occupant evacuation, be-
haviour and conditions (sub-system 6). Technical report, PD7974-6:2004 (2004)

4. Kuligowski, E.D., Gwynne, S.M.V.: The need for behavioral theory in evacuation modeling.
In: Klingsch, W.W.F., Rogsch, C., Schadschneider, A., Schreckenberg, M. (eds.) Pedestrian
and Evacuation Dynamics 2008, pp. 721–732. Springer, Heidelberg (2010)

5. Lin, Y., Fedchenia, I., LaBarre, B., Tomastik, R.: Agent-based simulation of evacuation: An
office building case study. In: Klingsch, W.W.F., Rogsch, C., Schadschneider, A., Schrecken-
berg, M. (eds.) Pedestrian and Evacuation Dynamics 2008, pp. 347–357. Springer, Heidelberg
(2010)

6. Luo, L., Zhou, S., Cai, W., Low, M.Y.H., Tian, F., Wang, Y., Xiao, X., Chen, D.: Agent-based
human behavior modeling for crowd simulation. Comput. Animat. Virtual Worlds 19(3-4),
271–281 (2008)

7. Nguyen, M.H., Ho, T.-V., Nguyen, T.A.N., Zucker, J.-D.: Which behavior is best in a fire
evacuation: Simulation with the metro supermarket of hanoi. In: 2012 IEEE RIVF Interna-
tional Conference on Computing & Communication Technologies, Research, Innovation, and
Vision for the Future (RIVF), Ho Chi Minh City, Vietnam, 2012, February 27 - March 1, pp.
183–188. IEEE (2012)

8. Wang, Y., Zhang, L., Ma, J., Liu, L., Zhang, L., You, D.: Combining building and behavior
models for evacuation planning. IEEE Computer Graphics and Applications 31, 42–55 (2011)

9. Weifeng, Y., Hai, T.K.: A model for simulation of crowd behaviour in the evacuation from a
smoke-filled compartment. Physica A: Statistical Mechanics and its Applications (2011)

Interactive GA Flock Brush

for Non-Photorealistic Rendering

Hsueh En Huang, Meng Hiot Lim, Xianshun Chen, and Choon Sing Ho

Centre for Computational Intelligence
School of Computer Engineering,

Nanyang Technological University Singapore
50 Nanyang Avenue, Singapore 639798

{hehuang1,emhlim,chen0469,csho}@ntu.edu.sg

Abstract. Art styles are modes of expressing creative artistic ideas.
Non-photorealistic rendering is a process of projecting artistic expres-
sions in a digital representation. In this paper, we consider the use of
evolutionary computation techniques to explore the variability of artis-
tic styles through an evolutionary process. Our system, a union of bi-
ological swarms in the form of flocks and interactive genetic algorithm
(IGA), generates artistic styles to produce stylized digital photographs.
By varying a finite set of parameters, we transform photo-realistic scenes
to artistic imagery. Our most distinct styles bear close resemblance to
familiar traditional art styles like Impressionism and Pointillism.

Keywords: Artificial intelligence, Computer graphics, Evolutionary art,
Evolutionary computation, Non-photorealistic rendering, Flocking.

1 Introduction

Artistic expression has a rich history. Some examples of pioneering work include
Jubal in Genesis and the Altamira cave painting, see Fig. 1. A great number
of visual styles and artists followed. Egyptian, Greek, Roman and ancient East
Asian art flourished one after another, the Renaissance ensued. The Renaissance
gave birth to famous works such as the Sistine Chapel Ceiling (Fig. 1) and Mona
Lisa. Baroque and Romanticism triumphed in the 17th to 18th century. Realism,
Pointillism, Impressionism, Post-Impressionism dominated the 19th century fol-
lowed by Fauvism, Dada and Surrealism. Styles such as Pop art, Installation art,
Minimalism and Hyperrealism are contemporary forms that are still in-vogue [2].

Photography became an established art form in the 1900s and photo-realism
joined the ranks of well-known art styles. Finally, digital art forms burst onto the
scene. It differed from its predecessors. The widespread of information technology
since the mid-twentieth century created a transition from a “material-based value
system to a system in which immaterial information controls physical reality”
This has had profound effects on the paradigm of art [3].

Today, digital art co-exists with traditional art forms. In computer science
research, Non-Photorealistic Rendering (NPR) is an area where digital methods

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 480–490, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Interactive GA Flock Brush for Non-Photorealistic Rendering 481

Fig. 1. The Sistine Chapel Ceiling and a cave painting at Altamira, Spain [1]

are used in conjunction with traditional artistic notions to express and replicate
ideals of beauty, creativity and style. Artistic style is subjective and personal;
individuals harbor different views on which styles are most fascinating. The
work presented in this paper is about creating a platform for individuals to
express themselves and discover their preferred artistic styles. Our proposed
systemmodels a 2D brush with a flock of autonomous agents. We used interactive
genetic algorithm (IGA) as a means to evolve both flock and stroke parameters
in order to generate artistic depictions of digital photographs. The goals of our
research can be defined as follows:

1. To construct an interactive platform for individuals to experiment with artis-
tic expression.

2. To discover interesting visual art styles by evolving flock and stroke param-
eters.

3. To discuss how the control parameters affect the resultant style.

The rest of the paper is structured as follows. Firstly, a summary of related works
in NPR, Interactive Genetic Algorithm (IGA) and biological flock modelling is
provided. This section also discusses how flocks are used as a brush model. We
then describe the design of the flock brush system and how brush parameters
are encoded and evolved using Genetic Algorithm (GA). This is followed by a
discussion of the art styles generated. Finally, we conclude by summarizing our
work and suggest possibilities for future research.

2 Background

2.1 Non-Photorealistic Rendering

One goal of Non-Photorealistic Rendering (NPR) is to create artistic styles that
effectively communicate the “essence of the scene.” This idea of communication
through style is divergent from another major subject of study in computer
graphics - photorealistic rendering. It is this goal that makes this field unique [4].

To accomplish this goal, researchers have used various methods and achieved
a variety of results. Two broad approaches can be found in existing literature,
stroke-based [5–7] and filter based [8,9]. A stroke based approach defines a paint-
ing or sketch as a series of strokes. Each stroke can have different attributes such

482 H.E. Huang et al.

as length, color and angle. Different artistic styles can be generated by vary-
ing stroke attributes, essentially like tuning different parameters. Stroke based
methods were first used by Haeberli’s system which used strokes of different
color, length and orientation to create a painterly style [5]. Subsequent works
introduced elements to enhance the artistic look of the resultant image. Stroke
clipping using edge detection was introduced by Litwinowicz and Salisbury [6,7].
This ensured that a stroke would not extend beyond the outline of objects and
improves the overall definition of the resultant artwork. Curved strokes modeled
using B-splines were used by Hertzmann [10]. Besides these deterministic solu-
tions, evolutionary computing (EC) techniques have also been used to create
new NPR results.

2.2 Evolutionary Computing and NPR

Some existing work involving evolutionary computing and non-photorealistic
rendering include the use of genetic programming (GP) to generate animated
sketches [11], image stylization using a triangular brush and GP [12]. The input
images were approximated using triangles of various sizes and then the resultant
stylized images are combined into a video. Evolutionary search strategies can also
be used to find an optimal artistic rendering of a photograph [13]. Each output
from the system was scored using a fitness function and the optimal piece was
then selected as the best artistic rendering. A distributed agent approach in the
form of artificial ant colonies to generate different stylistic effects was employed
by Semet [14].

Recently, the use of a Flock Brush, a brush modeled using flocks, coupled with
edge following has also produced stylistic images from 2d digital photographs
[15]. As the flock moves across the canvas a trail of paint is left as residue. (Fig. 2)
depicts a painted stroke rendered by the Flock Brush. The system presented in
this paper is an exploration and experimentation in the same vein as these
previous works of synthesis between EC and NPR.

Fig. 2. A Single Stroke Rendered with the Flock Brush

2.3 Flock Modelling

Flock simulation was pioneered by Reynolds [16, 17]. Typically, agents in the
same flock interact based on steering forces. The four forces in Reynold’s model

Interactive GA Flock Brush for Non-Photorealistic Rendering 483

are separation, cohesion, alignment and seeking. These four steering forces are
used to control the movement of the flock. His model and its derivatives have
various usage and application. For example, Multi-agent systems use modified
versions of Reynold’s algorithm to improve the realism of flocking behaviour and
simulate co-operation between agents [18, 19].

2.4 Interactive Genetic Algorithms

Genetic algorithm (GA) was invent by John Holland in the 1970s [20]. The algo-
rithm is a nature-inspired, population based meta-heuristic. It is often used as
a optimization method for problems involving large search spaces. Traditionally,
GA uses a fitness function to evaluate the quality of a solution. Under the Inter-
active Genetic Algorithm framework (IGA), a form of Interactive Evolutionary
Computing (IEC), a “human in the loop” approach is used instead of a fitness
function. IEC has been applied to a broad range of problems in various fields
including, design [23] evolutionary music and storytelling [21,22]. Generative art
made by cross-breeding mathematical functions is another common application
of IEC [24–26].

3 Flock Paint with Interactive Genetic Algorithm

A Flock Brush is a digital brush modeled by a flock of agents [15]. It is possible
to create stylistic effects by varying stroke and flock parameters and then guiding
flock movement stochastically or deterministically with local gradient informa-
tion. There are many different possible parameter combinations that can be used
with the Flock Brush. Each combination has the potential to become a unique
art style. Therefore, it is apt to use IGA to locate distinct artistic styles that
can be produced with the Flock Brush. The remaining sections of this paper
will detail the design and development of a system that uses IGA and the Flock
Brush to explore and discover interesting artistic styles.

3.1 Flock Brush Parameters and Representation

The Interactive Genetic Algorithm Flock Brush System (IGA Flock Brush) uti-
lizes various parameters to represent artistic styles. A list of the parameters used
by the system can be found in Table. 1. The parameters are encoded as index-
value pairs. Each parameter is defined over a suitable range of values which
have been determined empirically. An illustration of the chromosomal encoding
scheme is as shown in Fig. 3. For certain parameters we adopt the use of discrete
intervals or bins to reduce the search space size and also to encourage distinct
variations among the resultant images. For example, stroke length has a possible
range of 10 pixels to 200 pixels. We divide the range into intervals of 10 pixels,
hence the range of values are discretized to 10,20,30,...100,110,...200.

484 H.E. Huang et al.

Fig. 3. Chromosome Encoding

3.2 System Modules

Our system consists of two main modules; the Flock Brush module and the
Genetic Algorithm (GA) module, see Fig. 4. The Flock Brush module is primar-
ily responsible for chromosome decoding, style rendering, display and capturing
user inputs. The GA module is used for population initialization and performing
the exploration of art style via the operations of crossover and mutation. Our
system uses one-point crossover and a uniform mutation operator. The termina-
tion condition is user dependent. Usually, termination occurs when the user has
found a satisfactory art style. Fitness of the resultant artwork is evaluated by
the users. In general, aesthetics is subjective, therefore allowing individual users
to assess the quality of the resultant images is not only viable but recommended.

Table 1. Flock Brush System Parameters

Name Range Description

Stroke Angle {Fixed Deg., Grad., Orientation} Orientation of the stroke

Color {RGB, B/W} Color source

Fade Rate [0...1] Paint fade rate

Brush Size [1,2...25] Radius of the brush

No. of Strokes [0,1,2...].10000 No. of strokes painted per image

Separation [0...1] Separation steering force

Alignment [0...1] Alignment steering force

Cohesion [0...1] Cohesion steering force

Seek [0...1] Seek steering force

Sample Radius [1,2...40] Size of sampling area for flock creation

Flock Size [1...12] No. of agents in the flock

Flock Energy [1,2...200] Total energy level of the flock

Separation Dist. [0,1...20] Min. distance between two agents

Cohesion Range [0,1,2...100] Distance required for agents to be in a flock

Mark Shape {Oval, Ring} Shape of paint mark

Interactive GA Flock Brush for Non-Photorealistic Rendering 485

Fig. 4. Flock Brush with IGA System Work Flow

Algorithm 1: IGA Flock Brush

--

program IGA Flock Brush

--

BEGIN

INITIALIZE a population of Flock Brush config. chromosomes

WHILE (user has not found satisfactory stylistic image)

DO

STYLIZE image with Flock Brush based on parameters

define by each chromosome

DISPLAY image and prompt user to rate fitness

REPRODUCE new population:

Place user’s most liked images in new population

Select chromosomes for CROSSOVER

Place offspring in the new population

Select chromosomes for MUTATION

Place offspring in the new population

END WHILE

END

4 Results and Discussion

Using genetic algorithm to evolve flock brush parameters has lead to a variety
of stylistic results. Some of these are depicted in Fig. 5 and Fig. 6. Each style

486 H.E. Huang et al.

is defined by a unique combination of the parametric values given in Table. 2.
The results demonstrate the plasticity of the flock based brush model. We have
also attempted to generalize the effects that a flock based brush model has on
the generated art styles.

1. A flock based brush model creates non-uniform strokes that improves overall
artistic realism.

2. Strokes made with the flock allows a certain degree of stochasticity for the
shape and position of paint marks. This makes the resulting styles appear
not completely random yet at the same time unpredictable.

3. Besides colour variations, changing the shape of the paint mark used by the
flock can also create different styles. For example, Mosaic and Sandy style.

The generalized effects aside, each distinct style also possess its own set of at-
tributes which are summarized as follow:

Impressionist: First, broad colored strokes are used followed by decreasing
flock sampling radius for each layer. A tight flock with high energy is used to
create a concentrated brush tip and longer strokes. The resultant image has a
feel of loose brush strokes and coarse detail.

Smudge Paint: Multiple layers of oval shaped dabs are place over the canvas.
The smudging effect is completed by the last layer of very short paint strokes
that simulates the action of smudging wet paint. A tight flock with high energy
is used.

Sketch: We use a grey-scale color source and a constant flock sampling radius
to simulate a pencil tip. The use of a tight flock ensures the paint is concentrated
at the tip. But varying the energy level used for each layer, the sketch is first
outline in long strokes and then fine-tuned using shorter strokes.

Sandy and Pointillism: Both of these styles are created by making dabs on
the canvas. Pointillism uses a tight flock while sandy uses flocks that are spread
out. Sandy uses a much smaller brush size so the resultant texture looks like it’s
made by spreading fine sand on the canvas.

Mosaic: Similar to Pointillism but the shape painted by each agent is a ring
and not oval. This gives the resultant image a tiled look so we name this style
”Mosaic”.

Rendering Using Multiple Layers: For some of the styles, we found that
using multiple images or layers, led to a more aesthetically pleasing result. Each
layer has its own parameter setting and the resultant image is a composite of the
individual layers In our implementation, we used a simple over-paint approach
when combining layers. Fig. 7 shows the the layered rendering process. The
parameter settings for each style is shown in Table 2.

Interactive GA Flock Brush for Non-Photorealistic Rendering 487

Table 2. Style Names and Key Parameter Values. For multi-layered styles, the value
used for each layer are enclosed in braces.

Style Name Impressionist Sketch Smudge Paint Mosaic Pointillism Sandy

Color RGB B/W RGB RGB RGB RGB

Brush Size 2 2 {2,4,8,12,4} {4,2} {6,6} {2,2,2}
Separation 0.20 0.20 0.20 0.20 0.20 0.20

Alignment 0.10 0.10 0.10 0.10 0.10 0.10

Cohesion 0.30 0.30 0.30 0.30 0.30 0.30

Seek 0.40 0.40 0.40 0.40 0.40 0.40

Sample Radius {10,8,4,2} {2,2,2,2} {2,2,2,8,8} {12,8} {2,2} {12,2,20}
Flock Size {10,4,2,2} {2,2,2,2} {2,2,2,4,4} {12,2} {2,2} {12,2,2}
Flock Energy {180,100,60,40} {100,50,30,10} {0,0,0,0,30} {0,0} {0,0} {0,0,0}
Separation Dist. 2 2 2 12 12 12

Cohesion Range 70 70 70 40 40 40

Mark Shape Oval Oval Oval Ring Oval Oval

.

Fig. 5. From Left: (a) Source (b) Impressionist (c) Smudge Paint (d) Sketch

Fig. 6. From Left: (a) Source (b) Sandy (c) Pointillism (d) Mosaic

488 H.E. Huang et al.

Fig. 7. Layers and Composite Images for the Impressionist Style

5 Conclusion and Future Work

In this paper, we present an IGA Flock Brush System; an interactive program
for evolving digital non-photorealistic art styles by means of genetic algorithms
(GA) and the Flock Brush [15]. The Flock Brush models a digital brush via
steering forces and shape formation. In our program, this brush model provides
a foundation for quantization of art styles. Through the use of this parameterized
model, encoded as bit strings, we isolated salient characteristics of certain art
styles. GA operators, crossover, mutation coupled with a “human in the loop”
fitness enabled the interactive exploration of the art style space. The experimen-
tal explorations uncovered art styles that resembled a variety of traditional art
styles. This work is yet another demonstration of the versatility of IGA and its
usefulness in creative applications. Our future works will focus on incorporating
additional parameters in to the model. We believe additional parameters will
allow a more complete solution to the problem of quantifying art styles. Possible
parameter candidates include the i) use of statistical distributions for the flock’s
initial position, ii) use of simple filters for image post-processing and iii) use of
bitmap textures to simulate different mediums.

The flock brush model has the potential to be used in other applications.
As the brush parameters are tunable, one could conveniently conceive that for
certain settings the brush becomes a viable tool in digital calligraphy.

Interactive GA Flock Brush for Non-Photorealistic Rendering 489

Although some existing parameters may need to be modified so the Flock Brush
can effectively simulate a calligraphy brush. Lastly, the configuration we used for
the parametrization of art styles can be thought of as a form of “building blocks”
or more specifically cultural memes [27,28]. With the emergence of the memetic
computing field [29–32], we foresee that meme inspired techniques would be very
relevant to enhancing our system and poses interesting opportunity for future
research.

Acknowledgments. The authors thank the staff of Centre for Computational
Intelligence (C2I) at Nanyang Technological University Singapore for their sup-
port as well as Dr. Yew-Soon Ong, Director of C2I for his technical advices
provided on the current work. Images used are taken from Kodak Lossless True
Color Image Suite [33].

References

1. Public Domain Photos and Images, http://public-domain-images.blogspot.com
2. Farthing, S.: Art: From Cave Painting to Street Art- 40,000 Years of Creativity.

Universe., New York (2010)
3. Grau, O.: MediaArtHistories. MIT Press, Cambridge (2007)
4. Gooch, B., Gooch, A.: Non-photorealistic rendering, AK Peters, MA (2001)
5. Haeberli, P.: Paint By Numbers: Abstract Image Representation. In: SIGGRAPH

1990 Conference Proceedings (1990)
6. Litwinowicz, P.: Processing images and video for an impressionist effect. In: Pro-

ceedings of SIGGRAPH 1997, pp. 407–414 (1997)
7. Salisbury, M.P., Anderson, S.E., Barzel, R., Salesin, D.H.: Interactive Pen-and-

Ink Illustration. In: ACM SIGGRAPH 1994 Conference Proceedings, pp. 101–108
(1994)

8. Wang, H.: A Non-Stroke Based Method to Generate Sketching Style from Original
Image Image and Signal Processing. In: Congress, CISP 2008 (2008)

9. Kyprianidis, J.E.: Image and video abstraction by multi-scale anisotropic Kuwa-
hara filtering. In: NPAR, pp. 55–64 (2011)

10. Hertzmann, A.: Painterly rendering with curved brush strokes of multiple sizes. In:
Proceedings of SIGGRAPH 1998, pp. 453–460 (1998)

11. Barile, P., Ciesielski, V., Trist, K.: Non-photorealistic Rendering Using Genetic
Programming. In: Li, X., Kirley, M., Zhang, M., Green, D., Ciesielski, V., Abbass,
H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C., Branke, J., Shi, Y. (eds.)
SEAL 2008. LNCS, vol. 5361, pp. 299–308. Springer, Heidelberg (2008)

12. Izadi, A., Ciesielski, V., Berry, M.: Evolutionary Non Photo–Realistic Animations
with Triangular Brushstrokes. In: Li, J. (ed.) AI 2010. LNCS (LNAI), vol. 6464,
pp. 283–292. Springer, Heidelberg (2010)

13. Collomosse, J.P.: Evolutionary Search for the Artistic Rendering of Photographs.
In: Romero, J., Machado, P. (eds.) The Art of Artificial Evolution, Natural Com-
puting Series, pp. 39–62. Springer, Heidelberg (2008)

14. Semet, Y., O’Reilly, U.-M., Durand, F.: An Interactive Artificial Ant Approach to
Non-photorealistic Rendering. In: Deb, K., Tari, Z. (eds.) GECCO 2004. LNCS,
vol. 3102, pp. 188–200. Springer, Heidelberg (2004)

http://public-domain-images.blogspot.com

490 H.E. Huang et al.

15. Huang, H.E., Ong, Y.S., Chen, X.: Flock Brush for Non-photorealistic Rendering.
In: IEEE Congress on Evolutionary Computation (2012)

16. Reynolds, C.W.: Flocks, Herds, and Schools: A Distributed Behavioral Model.
Computer Graphics 21(4), 25–34; SIGGRAPH 1987 Conference Proceedings (1987)

17. Reynolds, C.: Steering behaviors for autonomous characters. In: Game Developers
Conference, pp. 763–782 (1999)

18. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: Algorithms and theory.
IEEE Transactions on Automatic Control 51(3), 401–420 (2006)

19. Ho, C.S., Nguyen, Q.H., Ong, Y.-S., Chen, X.: Autonomous Multi-agents in Flex-
ible Flock Formation. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG
2010. LNCS, vol. 6459, pp. 375–385. Springer, Heidelberg (2010)

20. Holland, J.: Adaptation in natural and artificial systems. MIT Press, Cambridge
(1992)

21. Bui, V., Abbass, H.A., Bender, A.: Evolving stories: Grammar evolution for auto-
matic plot generation. In: IEEE Congress on Evolutionary Computation, pp. 1–8
(2010)

22. Horowitz, D.: Generating Rhythms with Genetic Algorithms. In: AAAI (1994)
23. Li, Y., Hu, C., Yao, X.: Innovative Batik Design with an Interactive Evolutionary

Art System. J. Comput. Sci. Technol. 24(6), 1035–1047 (2009)
24. Sims, K.: Artificial evolution for computer graphics. Computer Graphics, 319–328

(1991)
25. Unemi, T.: SBArt4 - Breeding abstract animations in realtime. In: IEEE Congress

on Evolutionary Computation, pp. 1–6 (2010)
26. Ross, B.J., Ralph, W., Zong, H.: Evolutionary Image Synthesis Using a Model of

Aesthetics. In: Proceedings of the 2006 IEEE Congress on Evolutionary Computa-
tion (2006)

27. Chen, X.S., Ong, Y.S., Lim, M.H., Tan, K.C.: A Multi-Facet Survey on Memetic
Computation. IEEE Transactions on Evolutionary Computation 15(5), 591–607
(2011)

28. Ong, Y.S., Chen, X.S., Lim, M.H.: Research Frontier: Memetic Computation -
Past, Present & Future. IEEE Computational Intelligence Magazine 5(2), 24–36
(2010)

29. Liang, F., Ong, Y.S., Tan, A.-H., Chen, X.S.: Towards Human-like Social Multi-
agents with Memetic Automaton. In: IEEE Congress on Evolutionary Computation
(June 2011)

30. Winfield, A., Erbas, M.: On embodied memetic evolution and the emergence of
behavioural traditions in robots. Memetic Computing 3, 261–270 (2011)

31. Satizbal, H., Upegui, A., Perez-Uribe, A., Rtornaz, P., Mondada, F.: A social ap-
proach for target localization: simulation and implementation in the marxbot robot.
Memetic Computing 3, 245–259 (2011)

32. Le, M.N., Ong, Y.S., Jin, Y., Sendhoff, B.: A Unified Framework for Symbiosis
of Evolutionary Mechanisms with Application to Water Clusters Potential Model
Design. IEEE Computational Intelligence Magazine 7(1), 20–35 (2012)

33. Kodak Lossless True Color Image Suite, http://r0k.us/graphics/kodak/

http://r0k.us/graphics/kodak/

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 491–500, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Generating Diverse Behaviors of Evolutionary Robots
with Speciation for Theory of Mind

Si-Hyuk Yi and Sung-Bae Cho

Dept. of Computer Science Yonsei University
50 Yonsei-ro, Seodaemoon-gu, Seoul 120-749, Korea

theshy@sclab.yonsei.ac.kr, sbcho@cs.yonsei.ac.kr

Abstract. Theory of Mind (ToM) is the ability to read another person’s mind.
To apply ToM in robots, robot should read the intention from target. However,
it is difficult to read target’s intention directly. Robot uses the sensors to meas-
ure distance from target because distance is the feature to read target’s inten-
tion. Neural network has been widely used to control the robot for generating a
diverse speciation. It has been less explored in behavior-based robotics. Specia-
tion usually relies on a distance measure that allows different from the robot to
target to be compared. In this paper, we proposed novel measure to generate di-
verse behaviors of a robot with speciation for ToM. It includes some distance
measure such as Euclidean distance, cosine distance, arctangent distance, and
edit distance. It generates diverse behaviors of the robot by neural network for
ToM. The proposed method has been experimented on a real e-puck robot plat-
form.

Keywords: Theory of mind, Evolutionary Robotics, Robot Controller, Specia-
tion, Distance Measure.

1 Introduction

A theory of mind (ToM) is the ability to understand other’s thoughts and feelings.
Primates and great apes have the ability to read behavior. For example, they can fig-
ure out behavior by reading gestures, intention movements, and facial expressions of
emotions [1]. In case of robot environment, they use the sensors such as infrared,
camera, and sound because they cannot directly read target’s intention. The distance
is the most widely used information for trajectory, direction, and strategy. In a prey-
predator model, if a predator reads the prey’s behavior strategy from trajectory, it can
easily hunt on discovered route. The robot needs a controller which can make the
proper behavior patterns because the method of measuring distance can generate di-
verse patterns. The distance, therefore, is a fundamental feature for robot.

Evolutionary Robotics (ER) is a promising methodology, intended for the auto-
nomous development of robots, in which their behaviors are obtained as a conse-
quence of the structural coupling between robot and environment [2]. That is, robots
get primarily inputted through the sensors as an environment, and then their behavior
is determined by evolution of neural networks. It is a method to generate a behavior
which interacts between robot and environment [3].

492 S.-H. Yi and S.-B. Cho

Speciation is incorporated to the evolution process in order to obtain a diverse set
of solutions using single algorithm. Although speciation is a kind of evolutionary
computation, it has been less explored in behavior-based robotics. Speciation usually
relies on a distance measure from own robot to target [4].

In this paper, we proposed novel measure to generate diverse behaviors of a robot.
Measure combines in Euclidean distance, cosine distance, arctangent distance, and
edit distance. The purpose of measure is to generate diverse behaviors of the robot by
neural network for ToM. The proposed method has been implemented on a real e-
puck robot platform.

Table 1. Approaches of distance measure

Author Distance measure method Year

S. Luke [8] Euclidean distance Genetic Programming 1996

L. Spector [9] Euclidean distance Genetic Programming 2005

L. Trujillo [10] Edit distance NEAT 2008

T.-S. Lee [11]
Euclidean distance,

Angle distance
Proposed algorithm 2010

2 Related Work

2.1 ToM Applications in Simulation

There are related works on ToM based application in simulated environments. Ka-
liouby et al. proposed a mind-reading machine that recognizes person’s discrete men-
tal states from video of the facial expression [5]. It is modeled on a Bayesian network.
Kondo et al. used the ToM in carrying a stick task for the cooperation of two comput-
er programs. They use the neural network for modeling [6]. Takano et al. applied
ToM to complex agent-based simulations for collision avoiding system [7]. These
works focus on modeling on simulated environment. In this paper, we implement on
the real robot platform for ToM.

2.2 Speciation with Distance Measure

Table 1 shows related works using other distance measure for robot. In speciation,
one of the best approaches is the Neuro-Evolution of Augmenting Topologies
(NEAT) method, a specialized GA that evolves a population of ANNs with variety
topologies [4]. Drchal et al. describe a simulation of autonomous robots controlled by
recurrent neural networks [12]. HyperNEAT algorithm is evolved through indirect

 Generating Diverse Behaviors of Evolutionary Robots 493

encoding. The robots utilize 180 degrees wide sensor array. Trujillo et al. employed
edit distance for behavior based speciation [10]. The environment is partitioned into a
graph and each node labeled string. The fitness value is calculated by the string track
of a robot. To use this value, controller adopts some features using fitness sharing
among the neural networks. It represents relatively more diverse speciation than
NEAT in reflecting trajectory. It is, however, difficult to measure similarity in the
trajectory from another behavioral space which cannot generate diverse patterns with-
out an obstacle.

Table 2. Specificity of each distance measure

Measurement Specificity

Euclidean distance Various movement pattern

Cosine distance Wide and length of route

Arctangent distance Wide and length of route

Edit distance Alternate location in same route

3 Proposed Method

Fig. 1 shows the overview of proposed method using the evolution algorithm. The
model generates the number of p with initialization in neural networks. And it gene-
rates changed each network by mutation operation. The robot finds a goal such as
light using each neural network. We apply to fitness sharing how exactly network gets
to the destination. It analyzes whole robot trajectory with location through sum of
some distance each time. The model conducts evolution based on the highest value
among the estimated fitness values.

3.1 Neural Network Controller

Controller designed by neural networks. Goal of neural network is to conquer the
light such as food, prey, fodder, and home. Neural networks are made up of 2-inputs
and 2-outputs. Inputs are IR sensor value that can know a relative distance and direc-
tion of light from a robot. Outputs are speed of wheels. The controller can determine
the robot’s direction and rate of movement using speed of each wheel. The fitness
estimation designed that how exactly networks to find light. We use the Euclidian
distance to measure from a destination of the robot last generation.

f i x x last y y last (1)

494 S.-H. Yi and S.-B. C

F

3.2 Behavior Based Fit

A speciation is a method to
fitness sharing which trans
this respect, the distance be
is a method to prevent loca
distance. f is fitness value of net
vided by the sum of sharing

sh , 1 ,0
where µ is the size of pop
ducted when the objects lo
tance from network i to j.

To generate a variety p
measure such as Euclidean
distance. Based on these m
the fitness sharing. As a re
these measures linearly, co
tic of each measure. d i, j C d i, j

Cho

Fig. 1. Overview of proposed method

tness Sharing

o maintain the diverse behavior. In this paper, we emp
forms fitness value for maintaining a diverse behavior
etween objects is more proper than other measurements
al optimized solution in dense individual who located n

twork i, and fitness sharing value f represents fitness
g function value in eq. (2).

∑ , / ,

pulation, σ is sharing radius. Fitness sharing is c
ocate within the sharing radius. d i, j represents the d

pattern of the robot, we apply the controller to dista
n distance, cosine distance, arctangent distance, and e

measures, we designed controller evolution speciation us
esult, we can find out the feature as Table 2. To comb
ntroller can generate a pattern that applied the characte

C d i, j C d i, j C d i, j

ploy
r. In
s. It
near

di-

(2)

(3)

con-
dis-

ance
edit
sing
bine
eris-

(4)

The eq. (4) which applies
are decided according to th
must consider as the most
ment pattern. Cosine distan
and length of diversified pa
goal when generation proce
cosine distance must be a lo
tory. So its weight has anyth
is like eq. (5).

3.3 Physical Distance

As the feature of the trajec
the physical distance differ
network. Because the patte
tance is long. , ∑
The Euclidean distance bet
mation of each distance abo
diverse trajectory, but not m

3.4 Angle Distance

When sharing fitness, we c
behavior has an influence w
method. Firstly, cosine dis
each step. ,

Fig. 2. Map is divided by

Generating Diverse Behaviors of Evolutionary Robots

four distance measure is as follows. C , C , C , and
he weight among each distance measure. Euclid dista
important factor due to generating the diversity of mo

nce and arctangent distance is used for changing the wi
attern. In case of the cosine distance, robot cannot find
eeds over the specific generation. For the reason, weigh
ow value. In case of edit distance can change whole traj
hing value. Therefore, the weight of each distance meas

,
ctory used by fitness sharing, there is a pattern because
rence. It can keep the diversity of the trajectory made
ern changes for finding the goal despite the physical d

∑ _
tween neural networks i and j can be calculated by su
out robot’s movement coordinates on step. It can make

make dramatically the width.

can use behavior of angle by features. Angle difference
width of the trajectory. It can be measured by two kinds
stance calculates cosine value at location of behavior

∑ 1_ ∑ 1 ·| |·| | _

s=D1 C1 C2 C3 B3 A3 A4

4×4 grid, and gives a letter. Colored parts are mapping route.

495

C
ance
ove-
idth
the

ht of
jec-
sure

(5)

e of
e by
dis-

 (6)

um-
the

e of
s of

r on

 (7)

496 S.-H. Yi and S.-B. C

Cosine value has from 0 to
degree. Then the angle loca
distance value of neural net
the angle difference of robo
gets the angle of distance
distance from the mobile ro

Arctangent value is whe
bot to goal can calculate lik

where is stepped when
defines , . In n
each , and (
such as eq. (9). ,
Arctangent value of neural
from a goal in n step. The
goal in n point by i network
points are located in angl
characteristic from goal.

F

Cho

1. The cosine value has the closer 1, angle has the close
ation of two points is closer than a previous point. Cos
twork i and j can be calculated by eq. (7). After calculat
ot location of each step and summing each value, contro
in the trajectory. Secondly, arctangent distance calcula

obot to a goal on each behavioral step.
ere time position is located in light. Thus distance from
ke eq. (8).

the robot move in, that is, means time. Location of li
step, location robot reaches by network and def, . Arctangent distance can calculate differe

∑ | // | _
network between i and j is an absolute value of differe
robot is moved by j network and arctangent value from

k. It means that the smaller this value size is, the closer t
e by goal. That is, features of angle values are sim

Fig. 3. Tracking system environment

er 0
sine
ting

oller
ates

m ro-

(8)

ight
fine

ence

 (9)

ence
m a
two

milar

 Generating Diverse Behaviors of Evolutionary Robots 497

Although features of angle don't generate variously a form of robot pattern, give
feature to change width and distance of a same trajectory. After cosine distance
evolves some generation, robot cannot find a goal because of using only angle value.
If it moves any close place at the starting point, distance based on the angle is
sensitively decided.

3.5 Edit Distance

To avoid the same movement route, by using the edit distance and measuring the
distance of networks, it can be the distance measure of fitness sharing.

The edit distance is an algorithm to edit given two strings by the minimum value
from original string to wanted string. In other words, edit distance of given two
strings is the operator number to transfer a letter to another letter.

Map of behavioral space is divided by plaid form, and give a specific letter by each
area called cell. When the robot passes the cell, controller adds the letter of this area
at letter string. An example of the process is shown in Fig 2. Map is divided by 4×4
grid, and gives a letter by each part. Other color parts are a route of the robot. Letter
string value, ‘s’, is determined by this method. The controller conducts neural net-
work evolution by fitness sharing of edit distance using this value.

Behavior route found no significant differences. However, we confirm that the
same pattern of route appears at different location.

4 Experiment

4.1 Experiments Settings

Experiment proceeds in real robot environment which is used an e-puck robot plat-
form. Size of the map defines 120cm in width and length. The Coordinate is calcu-
lated by 1cm and mark (x, y) form. The location of light is (100, 100) and starting
point of the robot set up (0, 0). The value of p, which means a number of neural net-
works, sets 20. And the parameters C1, C2, C3, and C4 are 10, 2, 1, and 0.5, respec-
tively. We tested features of each distance measure such as the maximum weight each
physical distance, angle distance and edit distance. And controller reflects all features
of each distance measure through various trajectories to generate. Details see
Table 3.

4.2 Tracking Environment

To track robot patterns, we use a motion capture system called “Optitrack”. The Opti-
track consists of multiple infrared cameras like Fig. 3. And the system detects the
markers like Fig. 4. The marker based system generally uses spherical retro-reflective
markers that can be identified by the cameras. In this experiment, the markers which
patched on the robot body are provided by the NaturalPoint Company. Markers are
placed on the robot body suit in a configuration that is defined by the software.

498 S.-H. Yi and S.-B. C

Fig. 4. Markers for detection
(right)

4.3 Result

Controller was evolved for
three types of patterns-right
pattern is shown in the Tab
which 1000 generations ge
simulation. The real robot e
called reality gap. The ligh
input in similar place. Cont
despite same location.

Ta

Spin

None Forward

S

58.33 16.67

37.5 25

Cho

on e-puck robot platform (left), marker based tracking softw

r 20 generations on the real e-puck platform. It represe
t, left, and straight like Fig. 5. An analysis of the genera
ble 3. We can see the different from in simulation res
enerated. In point of success, robot got more the goa
environment can vary the value of various external featu
ht has high uncertainty, which is not always same value
troller can generate other values from uncertain input va

able 3. Analysis of generated patterns

Direction Turning

Loop CW CCW Tight loose

Success : 60% (in simulation, 92.3)

25 67.67 33.33 58.33 41.67

Failure : 40% (in simulation, 0.7)

37.5 60 40 40 60

ware

ents
ated
ults

al in
ures
e as
alue

 (a)

Fig. 5. Result of typ

5 Conclusion

In this paper, we proposed
robot by using speciated ne
terns are important feature
robot behaves according to
robust behavior strategy. F
arctangent distance, and ed
tures. We applied Euclidian
arctangent distance and edi
propriate cosine distance fo
diverse trajectories to reflec
platform. We also can ge
turning.

In future work, we plan
environment such as movin

Acknowledgment. This res
Program for Brain Science
funded by the Ministry of E

Generating Diverse Behaviors of Evolutionary Robots

 (b) (c)

ical patterns (a) Go straight, (b) keep right, (c) keep left

a method to generate diverse behaviors of the evolution
eural network based on behavior. Generated behavior p
s to read target’s mind or intention based on ToM. If

o the proper pattern of target’s intention, can generate
Features of a robot are physical distance, cosine distan

dit distance. We set up standard distance based on this f
n distance to measure for diversity of the trajectory. N
it distance are used based on moving area. Finally, we
or trajectory range size. In the experiment, we confirm t
ct all characteristics of each distance measure in real ro
enerate the patterns' combination of spin, direction,

to extend the model to generate various patterns in ha
ng target or obstacle.

search was supported by the Original Technology Resea
through the National Research Foundation of Korea (NR

Education, Science and Technology (2010-0018948).

499

nary
pat-
the
the

nce,
fea-
ext,
ap-
that

obot
and

arsh

arch
RF)

500 S.-H. Yi and S.-B. Cho

References

1. Brune, M.: "Theory of Mind" in Schizophrenia: A review of the Literature. Schizophrenia
Bulletin 31(1), 21–42 (2005)

2. Zagal, J.C., del Solar, J.R.: Combining Simulation and Reality in Evolutionary Robotics. J.
of Intelligent Robotics and Systems (2007)

3. Nolfi, S., Floreano, D.: Evolutionary robotics: The biology, intelligence, and technology of
self-organizing machines. Bradfor Book (2004)

4. Trujillo, L., Olague, G., Lutton, E., Vega, F.F., Dozal, L., Clemente, E.: Speciation in be-
havioral space for evolutionary robotics. J. of Intelligent & Robotic Systems 64(3), 323–
351 (2011)

5. Kaliouby, R.E., Robinson, P.: Mind reading machines: Automated inference of cognitive
mental states from video. In: Int. Conf. on Systems, Man and Cybernetics, pp. 682–688
(2004)

6. Kondo, K., Nishikawa, I.: The role that the internal model of the others plays in coopera-
tive behavior. In: Proc. of Int. Workshop on Robot and Human Interactive Communica-
tion, pp. 265–270 (2003)

7. Takano, M., Arita, T.: Asymmetry between even and odd levels of recursion in a theory of
mind. In: Proc. of ALIFE X, pp. 405–411 (2006)

8. Luke, S., Spector, L.: Evolving teamwork and coordination with genetic programming. In:
Proc. of Conf. on Genetic Programming, pp. 150–156 (1996)

9. Spector, L., Klein, J., Feinstein, C.P.M.: Emergence of collective behavior in evolving
populations of flying agents. Genetic Programming and Evolvable Machines 6(1), 111–
125 (2005)

10. Trujillo, L., Olague, G., Lutton, E., Vega, F.F.: Behavior-based speciation for evolutionary
robotics. In: Proc. of Conf. on Genetic and Evolutionary Computation, pp. 297–298 (2008)

11. Lee, T.-S., Eoh, G.-H., Kim, J., Lee, B.-H.: Mobile robot navigation with reactive free
space estimation. In: Int. Conf. Intelligent Robots and Systems, pp. 1799–1804 (2010)

12. Drchal, J., Koutnik, J., Snorek, M.: HyperNEAT controlled robots learn how to drive on
roads in simulated environment. In: Proc. of Congress on Evolutionary Computation,
pp. 1097–1092 (2009)

L.T. Bui et al. (Eds.): SEAL 2012, LNCS 7673, pp. 501–510, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Improving Gender Recognition Using Genetic Algorithms

Abbas Roayaie Ardakany and Sushil J. Louis

Dept. of Computer Science and Engineering
University of Nevada, Reno

roayaei@yahoo.com, sushil@cse.unr.edu

Abstract. This paper attacks the problem of gender classification using genetic
algorithms. We use local binary patterns and principle component analysis to
extract a set of features from face images in the FERET database. The genetic
algorithm searches the space of feature subsets to find a set of features that
maximizes gender classification accuracy using a support vector machine clas-
sifier with hand tuned parameters. Starting with 142 features, the genetic algo-
rithm reduces the feature set size by approximately half resulting in 98.5% ac-
curacy with 100% reliability. This accuracy and reliability are better than when
using all 142 features.

Keywords: Feature Subset Selection, Genetic Algorithms, Gender recognition.

1 Introduction

The face is an important biometric feature for humans. Automatically recognizing and
analyzing faces is a challenging task in the object recognition research area. Success-
fully performing this task allows many applications in human computer interaction,
psychology, and security [1]. Prior research has shown that we can obtain information
on ethnicity, identity, age, gender, and expression from face images [2]. This paper
investigates a new approach to gender classification from face images.

Gender plays a significant role in our interactions in society and with computers
[3]. Gender classification is the binary classification problem of predicting whether a
given image contains a picture of a man or of a woman. Identifying gender from face
images has received much attention recently because of its applications in improving
search engine retrieval accuracy, demographic data collection, and human–computer
interfaces (adjusting the software behavior with respect to the user gender) [5]. More-
over, gender classification can be used as a preprocessing step for face recognition
since it may halve the number of face candidates, assuming we have equal numbers of
images of both genders, before the recognition. Such preprocessing can sometimes
double the speed of face recognition systems [1].

Like other image classification problems, we need to extract relevant features and
then apply our classifier. From the point of view of feature extraction, there are four
kinds of methods. First, we can simply use gray-scale or color pixel vectors as fea-
tures [6]. Second, subspace transformation theory presents us with approaches such
as Principal Component Analysis (PCA), Independent Component Analysis (ICA)

502 A.R. Ardakany and S.J. Louis

and Linear Discriminant Analysis (LDA) which transform images into a low-
dimensional space [7]. The disadvantage with these kinds of methods is that they are
sensitive to face orientation and cannot tolerate large variations [8]. Third, we can use
texture information like wrinkle and complexion [9]. Finally, we can extract local
facial features for classification such as the analysis of facial wrinkles and shapes [8].
This is done using a combination of facial feature detection with wavelet transforms
[10, 11].

From the view of classifier learning, many different methods have been tried. [12,
13] used a two-layer neural network where the first layer is responsible for feature
extraction and the second layer performs the classification. In [14] radial basis func-
tion (RBF) networks and inductive decision trees were employed. In [15] maximum-
likelihood classification is used for face detection and the superiority of nonlinear
SVMs over traditional linear pattern classifiers was proven. [16] utilizes Gaussian
process classifiers which are a kind of Bayesian kernel classifier. This method ob-
viates the problem of determining kernel parameters in SVMs. [17] tried to improve
generalization for gender classification using fuzzy SVMs. Another method which is
used for gender classification is Adaboost. [18] applied a threshold Adaboost classifi-
er for gender and ethnicity classification. Look up table (LUT) based Adaboost clas-
sifier is used in [19]. [20] used pixel comparison operators with Adaboost on low
resolution grayscale face images. [21, 1] combined face detection and gender classifi-
cation and carried out a comparison study for the state-of-the-art gender classification
methods. It has been shown that combining the outputs of different gender classifiers
can improve the classification rate [1].

In this paper we present a method which uses local binary pattern for feature ex-
traction and genetic algorithms for feature selection. We use a support vector machine
for classification. The next section provides some background on our feature extrac-
tors, genetic algorithm, and classifier system. Methodology and genetic algorithm
parameters are in section three. Results and conclusions are presented in the last
section.

2 Tools

2.1 Local Binary Pattern

Local binary pattern was first presented in [22]. This algorithm can be used for de-
scribing texture or shapes in digital images and we can extract information in a speci-
fied neighborhood of a point using this method. In this method, a binary descriptor
(LBP code) is used for describing a neighborhood. This code is obtained by compar-
ing the intensity value of a point (the central point of a window) with its neighboring
points. In an 8-bit neighborhood, if the intensity value of a pixel is greater or equal
than the central point value then "1" is assigned to the corresponding bit in an 8-bit
binary code which is representative of the neighborhood texture for the central point.
But if the intensity value is less than the central point value then "0" is assigned to the
corresponding bit (Figure 1). By applying this operator on an image we can compute
the histogram for new pixel values. This histogram is used as a feature vector.

 Improving Gender Recognition Using Genetic Algorithms 503

Fig. 1. A) Intensity values. B) LBP code

In this paper, we use uniform local binary pattern which is an extended version of
LBP. A local binary pattern is called uniform if it has two or less bit transitions from
zero to one or vice versa.

2.2 Genetic Algorithms

Genetic algorithms are search algorithms based on the mechanics of natural selection
and natural genetics. They efficiently exploit historical information to speculate on
new search points with expected improved performance [23]. The CHC is a non-
traditional GA which combines a conservative selection strategy (that always pre-
serves the best individuals found so far) with a highly disruptive recombination
(HUX) that produces offspring that are maximally different from their two parents.
We use CHC’s selection algorithm with Uniform Crossover (UX).

2.3 Principal Component Analysis

We also use Principal Component Analysis (PCA) to reduce the number of features
for our support vector machine classifier. PCA is a mathematical procedure that uses
an orthogonal transformation to convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated variables called principal com-
ponents. The number of principal components is less than or equal to the number of
original variables. This transformation is defined in such a way that the first principal
component has the largest possible variance (that is, accounts for as much of the va-
riability in the data as possible), and each succeeding component in turn has the high-
est variance possible under the constraint that it be orthogonal to (i.e., uncorrelated
with) the preceding components [24]. As a result, we can use PCA for dimensionality
reduction purposes without losing considerable amounts of information.

2.4 Support Vector Machine

A support vector machine (SVM) is a learning algorithm for pattern classification,
regression and density estimation [25, 26]. The idea behind SVMs is constructing the
optimal linear hyperplane between two classes so that the classification error is mini-

504 A.R. Ardakany and S.J. Louis

mized. So SVMs can be applied for our gender classification task. SVM compromises
between model complexity and generalization to achieve the best generalization (that
is to classify any face image correctly). We use openCV SVM which is based on
LIBSVM implementation of SVM with linear kernel and fixed parameter C=900.

2.5 Database

FERET [27] is a large-scale face database which currently contains 11,383 pose im-
ages of 994 individuals. FERET contains thousands of samples with 12 different pos-
es. In this work, we use frontal face images (fa) which includes 1364 images from 994
individuals. Table 1 shows the database in detail.

Table 1. Part of FERET database which has been used in this paper

Database
Original

size
Total num-

ber
Number of
Individuals

Female Male

FERET 512×768 1364 994 504 860

Fig. 2. Some samples from FERET database

2.6 Feature Extraction

Before we can extract features from face images we need to extract face coordinates
which, in this project, is carried out using the Viola Jones [28] face detection algo-
rithm (Figure 3).

Fig. 3. Viola Jones face detection result

 Improving Gender Recognition Using Genetic Algorithms 505

Then, for extracting features, we compute the LBP histogram for each face image
(Figure 4). This histogram contains information about the distribution of local pat-
terns in each image, such as edges, spots and flat areas.

Fig. 4. LBP output for a particular image

For efficient face representation, we need to also consider spatial information. For
this purpose, each face image is divided into K×K separate regions which are equal
size blocks. Then, the histogram is computed in each block separately. Finally, we put
these sub-regional histograms together to form a single feature histogram (Figure 5).

Fig. 5. (a) Original image (b) LBP encoded image (c) dividing each LBP image into K×K equal
blocks (d) computing histogram for each block separately (d) putting sub-regional histograms
together and create a single histogram

After feature extraction, we apply PCA to reduce the number of features from 1475
to 142 while preserving 98% of the information from our LBP feature extractor.

3 Encoding and Methodology

We use genetic algorithms to select features that maximized classification accuracy
for our SVM. In other words, after applying PCA, we use a GA to select the best
possible combination of features that can achieve the highest classification accuracy.

506 A.R. Ardakany and S.J. Louis

There are three main reasons that can justify applying feature selection on the out-
put of PCA in a classification problem. First, there is always some noise in our result-
ing feature set that can be resolved using a good feature selection algorithm. Second,
dimensionality can lead to faster classification. Third, non-linear feature interactions
may result in lower principal components having higher discriminatory power at the
particular classification task for the given classification algorithm.

We represent each individual chromosome as an array of ones and zeros. Each in-
dex corresponds to a feature. Having "1" at an index implies that we are selecting that
feature, a “0” means that we are not going to use that feature for classification. We
evaluate the selected features by training a system using our SVM classifier. We in-
vestigate two approaches that differ in how we initialize the GA’s population.

1. We run the system for ten different seeds with population size of 100. In each
run, each individual i in the population is initialized with a different probability
of having a “1” for each position in the chromosome. This probability is 100 for individual . Consequently, we start the GA with a population that

contains individuals with the number of features ranging from 1 to 142 (the orig-
inal number of features in dataset). We call this Multiple Initialization or "MI".

2. We run the system for ten different seeds, same population size (100), and proba-
bility 0.5. We call this Regular Initialization or "RI". The whole process of
training and testing is illustrated in Figure 6 and we present our results in the next
section.

Fig. 6. a) Original face image b) Detected face plus face normalization. c) LBP coded image d)
divided each image into k×k blocks e) histogram each block separately f) extracted feature
vectors for all images by putting together the histograms g) resulted dataset after applying PCA
h) a set of individuals (feature vector) after feature selection i) train SVM j) genetic algorithms.

4 Results and Discussion

For the MI approach the best result that we have obtained is 98.5% with 69 selected
features. Figure 7 shows performance plotted against number of iterations. The quali-
ty of the first approach which is the average of best individual over all runs is 98.5%.

 Improving Gender Recognition Using Genetic Algorithms 507

The reliability measure of our approach, defined as the percentage of runs in which
we get within 99% of our highest quality (0.99×Quality) is 100%.

Fig. 7. Performance graph for MI approach

Figure 8 presents an illustration of the best obtained feature set using MI approach
(108 features out of 142). White area corresponds to the selected regions.

Fig. 8. Selected Features for MI approach

For RI, the best obtained classification accuracy is again 98.5%. The quality of the
second approach over all runs is 98.5% and the reliability is 100%. Figure 9 shows
classification accuracy plotted against the number of iterations.

Fig. 9. Performance Graph for RI approach

508 A.R. Ardakany and S.J. Louis

Figure 10 present an illustration of best obtained feature set using RI approach (69
features out of 142).

Fig. 10. Selected Features for RI approach

Both sets of results show that our method works well in improving the perfor-
mance of gender recognition system. We showed that, using CHC genetic algorithm
we can both reduce the number of features from 142 to 69 and improve the classifica-
tion accuracy at the same time. The best result we can obtain simply and directly us-
ing our SVM classifier without feature subset selection is 94.36% classification accu-
racy. We thus believe that genetic algorithms hold much potential for feature subset
selections for computer vision problems as well as for other classification problems.
We plan on continuing this work to analyze features that were selected by the genetic
algorithm. For example, we are working on comparing performance when using the
top 69 PCA components for classification and should have results in time for the final
version of this paper (if accepted).

5 Conclusion

In this paper we present a combinational method uses local binary pattern for feature
extraction and genetic algorithms for feature selection. We also use a support vector
machine for classification purposes. We use genetic algorithm for searching the space
of feature subsets to find a set of features that maximizes gender classification accura-
cy. By evaluating our method on FERET database we showed that using genetic algo-
rithms we can both increase classification accuracy and speed up testing phase at the
same time. Starting with 142 features, the genetic algorithm reduces the feature set
size by approximately half resulting in 98.5% accuracy with 100% reliability.

References

1. Mäkinen, E., Raisamo, R.: An experimental comparison of gender classification methods.
Pattern Recognition Letters 29, 1544–1556 (2008)

2. Wu, B., Ai, H., Huang, C.: Real-time gender classification, pp. 498–503 (2003)
3. Wu, J., Smith, W.A.P., Hancock, E.R.: Semi-supervised Feature Selection for Gender

Classification. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009, Part II.
LNCS, vol. 5995, pp. 23–33. Springer, Heidelberg (2010)

4. Xu, Z., Lu, L., Shi, P.: A hybrid approach to gender classification from face images. In:
19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4 (2008)

5. Alexandre, L.A.: Gender recognition: A multiscale decision fusion approach. Pattern Rec-
ognition Letters 31, 1422–1427 (2010)

 Improving Gender Recognition Using Genetic Algorithms 509

6. Moghaddam, B., Yang, M.-H.: Gender Classification with Support Vector Machines. Pre-
sented at the Proceedings of the Fourth IEEE International Conference on Automatic Face
and Gesture Recognition (2000)

7. Balci, K., Atalay, V.: PCA for Gender Estimation: Which Eigenvectors Contribute? Pre-
sented at the Proceedings of the 16th International Conference on Pattern Recognition,
ICPR 2002 (2002)

8. Lian, H.-C., Lu, B.-L.: Multi-view Gender Classification Using Local Binary Patterns and
Support Vector Machines. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.)
ISNN 2006. LNCS, vol. 3972, pp. 202–209. Springer, Heidelberg (2006)

9. Iga, R., Izumi, K., Hayashi, H., Fukano, G., Ohtani, T.: A gender and age estimation sys-
tem from face images. In: SICE 2003 Annual Conference, pp. 756–761 (2003)

10. Hosoi, S., Takikawa, E., Kawade, M.: Ethnicity estimation with facial images. In: Proceed-
ings of the Sixth IEEE International Conference on Automatic Face and Gesture Recogni-
tion, pp. 195–200 (2004)

11. Lian, H.-C., Lu, B.-L., Takikawa, E., Hosoi, S.: Gender Recognition Using a Min-Max
Modular Support Vector Machine. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005.
LNCS, vol. 3611, pp. 438–441. Springer, Heidelberg (2005)

12. Fleming, M.K., Cottrell, G.W.: Categorization of faces using unsupervised feature extrac-
tion. IJCNN 2, 65–70 (1990)

13. Golomb, B., Lawrence, D., Sejnowski, T.: SexNet: A neural network identifies sex from
human faces. Presented at the Proceedings of the 1990 Conference on Advances in Neural
Information Processing Systems 3, Denver, Colorado, United States (1990)

14. Gutta, S., Huang, J.R.J., Jonathon, P., Wechsler, H.: Mixture of experts for classification
of gender, ethnic origin, and pose of human faces. IEEE Transactions on Neural Net-
works 11, 948–960 (2000)

15. Moghaddam, B., Ming-Hsuan, Y.: Learning gender with support faces. IEEE Transactions
on Pattern Analysis and Machine Intelligence 24, 707–711 (2002)

16. Burton, A.M., Bruce, V., Dench, N.: What’s the difference between men and women? Evi-
dence from facial measurement. Perception 22, 153–176 (1993)

17. XueMing, L., YiDing, W.: Improving generalization for gender classification. In: 15th
IEEE International Conference on Image Processing, ICIP 2008, pp. 1656–1659 (2008)

18. Shakhnarovich, G., Viola, P., Moghaddam, B.: A unified learning framework for real time
face detection and classification. In: Proceedings of the Fifth IEEE International Confe-
rence on Automatic Face and Gesture Recognition, pp. 14–21 (2002)

19. Wu, B., Ai, H., Huang, C.: LUT-Based Adaboost for Gender Classification. In: Kittler, J.,
Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 104–110. Springer, Heidelberg
(2003)

20. Baluja, S., Rowley, H.: Boosting Sex Identification Performance. International Journal of
Computer Vision 71, 111–119 (2007)

21. Erno, M.K.: Evaluation of Gender Classification Methods with Automatically Detected
and Aligned Faces. IEEE Transactions on Pattern Analysis and Machine Intelligence 30,
541–547 (2008)

22. Ojala, T., Pietikäinen, M., et al.: A comparative study of texture measures with classifica-
tion based on featured distribution. Pattern Recognition 29(1), 51–59 (1996)

23. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Ad-
dison-Wesley (1989)

24. Principal Component Analysis. In Wikipedia,
http://en.wikipedia.org/wiki/Principal_component_analysis
(retrieved April 29, 2012)

510 A.R. Ardakany and S.J. Louis

25. Makinen, E., Raisamo, R.: An experimental comparison of gender classification methods.
Pattern Recognition Letters 29(10), 1544–1556 (2008)

26. Wu, B., Ai, H., Huang, C.: Real-time Gender Classification. In: Proceedings of SPIE 5286
Third International Symposium on Multispectral Image Processing and Pattern Recogni-
tion, pp. 498–503 (2003)

27. Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The FERET evaluation methodology for face-
recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 22, 1090–1104 (2000)

28. Viola, P., Jones, M.: Robust Real-time Object Detection. International Journal of Comput-
er Vision (2002) (to appear)

Author Index

Abbass, Hussein A. 73, 148, 290, 381,
400

Achalakul, Tiranee 248
Arun Srivatsan, Rangaprasad 460
Ascó, Amadeo 32
Atkin, Jason A.D. 32

Badduri, Jaideep 460
Bandyopadhyay, Sandipan 460
Banharnsakun, Anan 248
Bender, Axel 381
Benlic, Una 128
Bharti, Kusum Kumari 300
Bhattacharya, Mahua 117
Bonnevay, Stéphane 104
Borschbach, Markus 158
Bounekkar, Ahmed 104
Bui, Lam Thu 148, 450
Bui, Vinh 400
Burke, Edmund K. 32

Chandra, Rohitash 178
Chen, Xianshun 83, 258, 480
Cho, Sung-Bae 351, 491

Davarynejad, Mohsen 62
Debie, Essam 198
Dong, Do Duc 188

Ellabaan, Mostafa 83
Elsayed, Saber M. 1
El-Sourani, Nail 158
Engelbrecht, Andries P. 228
Essam, Daryl L. 1, 168

Forghany, Zary 62
Frouzesh, Faezeh 208
Fu, Wenlong 22

Gras, Robin 52

Ha, Hai Trung 430
Ha, Quang Minh 280
Ha Dai, Duong 331
Hao, Jin-Kao 128

Hirose, Yuichi 208
Ho, Choon Sing 258, 480
Ho, Tuong Vinh 218, 470
Hoang, Viet 450
Honiden, Shinichi 361
Huan, Hoang Xuan 188
Huang, Hsueh En 480
Hunt, Rachel 320

Ishibuchi, Hisao 93
Ismail, Adiel 228

Jaruszewicz, Marcin 420
Johnston, Mark 22, 341

Kafafy, Ahmed 104
Khater, Marwa 52
Krömer, Pavel 410

Lanzi, Pier Luca 138
Law, Edwin Hui-Hean 371
Le, Bac 270
Lee, Young-Seol 351
Lim, Meng Hiot 480
Liu, Jing 440
Louis, Sushil J. 501
Luyen, Thu Trang 280

Mańdziuk, Jacek 420
McKay, Bob 391
Merrick, Kathryn E. 198, 290
Moriguchi, Hirotaka 361

Nakata, Masaya 138
Neshatian, Kourosh 320
Ngo, Long Thanh 430
Nguyen, Manh Hung 218, 470
Nguyen, Manh Son 218
Nguyen, Nam Vinh 270
Nguyen, Quang Huy 83
Nguyen, Quang Uy 391
Nguyen, Su 341
Nguyen, Thi Hien 391
Nguyen, Xuan Hoai 391
Nguyen Manh, Ha 188
Nojima, Yusuke 93

512 Author Index

Ong, Yew-Soon 258

Peng, Lifeng 178
Petraki, Eleni 400
Pham, Binh Huy 430
Pha.m, Dũng Viê.t 310
Phan, Dung H. 42
Phan, Thi Ha 218
Phan, Thi Hoai Phuong 218
Phon-Amnuaisuk, Somnuk 371
Platoš, Jan 410
Pledger, Shirley 208

Rada-Vilela, Juan 238
Roayaie Ardakany, Abbas 501
Rosenthal, Susanne 158

Salehi, Elham 52
Saravana Kumar, Gurunathan 460
Sarker, Ruhul A. 1, 168
Sayed, Eman 168
Seah, Winston 238
Setayesh, Mahdi 208
Shafi, Kamran 73, 198, 381
Sharma, Harish 117
Shengbo, Xu 361
Shukla, Anupam 117

Singh, Pramod Kumar 300
Singh Rana, Prashant 117
Sirinaovakul, Booncharoen 248
Snášel, Václav 410
Suzuki, Junichi 42

Tagawa, Kiyoharu 12
Takadama, Keiki 138
Tan, Ah-Hwee 258
Tan, Kay Chen 341
Tinh, Dao Thanh 331
Tran, Quang Anh 280
Trinh, Van Anh 218

van den Berg, Jan 62
Vu, Cuong C. 148

Wang, Bing 290
Wang, Kun 400

Yamane, Masakazu 93
Yi, Si-Hyuk 491

Zhang, Bin 73
Zhang, Mengjie 22, 178, 238, 320, 341
Zucker, Jean-Daniel 470

	Title
	Preface
	Organization
	Table of Contents
	Evolutionary Algorithms
	The Influence of the Number of Initial Feasible Solutions on the Performance of an Evolutionary Optimization Algorithm
	Introduction
	Differential Evolution
	Mutation
	Crossover

	Design of Experiments
	Analysis and Discussions
	Small Scale Problems
	Large Scale Problems

	Conclusions
	References

	Concurrent Differential Evolution Based on Generational Model for Multi-core CPUs
	Introduction
	Differential Evolution
	Representation
	Strategy of DE
	Generation Alternation Model

	Concurrent Differential Evolution
	Concurrent Program
	Main Thread of CDE
	Worker Thread of CDE/S
	Worker Thread of CDE/G

	Experiment
	Setup of Experiment
	Result of Experiment

	Conclusion
	References

	Figure of Merit Based Fitness Functions in Genetic Programming for Edge Detection
	Introduction
	Goals
	Organisation

	Background
	FOM
	Related Work for Edge Detection Using GP

	Method
	Sets of Terminals and Functions
	Fitness Functions Based on FOM

	Experimental Design
	Results and Discussion
	Overall Results
	Detected Images
	Discussion

	Conclusions
	References

	An Evolutionary Algorithm for the Over-constrained Airport Baggage Sorting Station Assignment Problem
	Introduction
	The Airport Baggage Sorting Station Problem
	Algorithm
	Steady State Evolutionary Algorithm
	Population Selectors
	Member Selectors
	Operators

	Results
	Experiments

	Conclusions
	References

	A Non-parametric Statistical Dominance Operator for Noisy Multiobjective Optimization
	Introduction
	Related Work
	The U-Dominance Operator
	Experimental Evaluation
	Experimental Results

	Conclusions
	References

	The Emergence of New Genes in EcoSim and Its Effect on Fitness
	Introduction
	EcoSim
	Emergence of New Genes
	Building a Random Forest Classifier for Inference
	Rule Learning Using JRip
	Conclusion
	References

	Mass-Dispersed Gravitational Search Algorithm for Gene Regulatory Network Model Parameter Identification
	Introduction
	Gene Regulatory Networks
	Population Based S-Systems Model Parameter Identification
	A Brief Tour of the Gravitational Search Algorithm
	mdGSA, a Mass-Dispersed GSA

	Experimental Setup and Results
	Parameter Settings
	Standard Optimization Problems
	GRN Model Parameter Identification

	Conclusions and Future Work
	References

	A Density Based Approach to the Access Point Layout Smart Distribution Grid Design Optimization Problem
	Introduction
	Background
	Smart Metering in Power Distribution
	Multi-Objective Optimization and NSGA-II

	Methods
	Problem Formulation and Simulation
	Experimental Design

	Preliminary Experiment Result
	Evolution of Objectives
	Coverage First and Redundancy Reevaluation
	Add Density Evaluation from the Perspective of AP

	Conclusion
	References

	Multi-modal Valley-Adaptive Memetic Algorithm for Efficient Discovery of First-Order Saddle Points
	Introduction
	Problem Statement
	Multi-modal Valley-Adaptive Clearing Memetic Algorithm
	Benchmark Problems
	Experimental Study
	Percentages and Precision Accuracy of Uncovered First-Order SaddlePoints
	Convergence Speed

	Conclusion
	References

	Ensemble Fuzzy Rule-Based Classifier Design by Parallel Distributed Fuzzy GBML Algorithms
	Introduction
	Fuzzy Rule-Based Classifiers and Fuzzy GBML Algorithms
	Island Model for Parallel Distributed Implementation
	Experimental Results
	Conclusions
	References

	HEMH2: An Improved Hybrid Evolutionary Metaheuristics for 0/1 Multiobjective Knapsack Problems
	Introduction
	Basic Concepts and Definitions
	HEMH, an Overview
	Adaptive Binary Differential Evolution
	Path Relinking
	The Proposed HEMH2
	Experimental Design
	Parameter Settings
	Assessment Metrics

	Experimental Results
	Conclusion
	References

	Theoretical Developments
	Guided Reproduction in Differential Evolution
	Introduction
	Classical Differential Evolution Algorithm
	GRDE: Guided Reproduction in Differential Evaluation
	Experiment Results and Discussion
	Conclusion
	References

	A Study of Breakout Local Search for the Minimum Sum Coloring Problem
	Introduction
	Breakout Local Search (BLS) for the MSCP
	General BLS Procedure
	Neighborhood Relations and Evaluation Functions
	Adaptive Perturbation Mechanism
	Experimental Results

	Discussions
	Conclusion
	References

	XCS with Adaptive Action Mapping
	Introduction
	The XCS Classifier System
	XCS with Adaptive Action Mapping
	Identifying the Actions for the Best Mapping
	Identifying Classifiers for Best Action Mappings
	Focusing Evolution on the Best Actions

	Experimental Results
	Design of Experiments
	Boolean Multiplexer
	Multi-step Problems
	Evolution of the Best Action Mapping

	Conclusion
	References

	DEAL: A Direction-Guided Evolutionary Algorithm
	Introduction
	Background
	Methodology
	Overview
	Directional Information
	General Structure

	A Case Study
	Testing Problems
	Experimental Setup
	Results and Discussion

	Conclusion
	References

	Introduction of a Mutation Specific Fast Non-dominated Sorting GA Evolved for Biochemical Optimizations
	Introduction
	Review of m.-o. GAs
	Introduction of MSNSGA-II
	Experiments
	Conclusion
	References

	Using Hybrid Dependency Identification with a Memetic Algorithm for Large Scale Optimization Problems
	Introduction
	Literature Review
	Proposed Model
	Dependency Identification (DI) and Problem Decomposition
	Subproblem Optimization and Information Exchange
	Subproblems Aggregation and Optimization

	Experiments
	Results and Analysis
	Conclusion and Future Work
	References

	 Application of Cooperative Convolution Optimization for ^13C Metabolic Flux Analysis: Simulation of Isotopic Labeling Patterns Based on Tandem Mass Spectrometry Measurements
	Introduction
	Mathematical Models for ^13C MFA
	 Metabolic Model
	Mathematical Description of the Model
	 Correlation between Isotopomer Distributions (IDVs) and Tandem MS Measurements

	Cooperative Coevolution for Solving the Metabolic Flux Model
	Conversion to an Optimisation Problem
	Optimisation Using Cooperative Coevolution
	Sub-populations of Cooperative Coevolution

	Simulation and Analysis
	Simulation of IDVs from Given Predefined Flux Values
	Further Discussions

	Conclusions and Future Work
	References

	Swarm Intelligence
	An Efficient Two-Phase Ant Colony Optimization Algorithm for the Closest String Problem
	Introduction
	Closest String Problem and Related Works
	Closest String Problem
	Memetic Framework

	ACOM-CSP Algorithm
	ACO-CSP
	Memetic-CSP Algorithm

	Experimental Results
	Comparing Effect and Runtime with a Predefined Number of Loops
	Comparing Three Algorithms in the Same Runtime
	Comparing the Stability of ACO-CSP and ACOM-CSP

	Conclusion
	References

	Evolution of Intrinsic Motives in Multi-agent Simulations
	Introduction
	Background
	Computational Motive Profiles
	Prisoner's Dilemma

	Evolutionary Game Theoretic Model for Motivated Agents
	Agent Representation
	Evolutionary Dynamics
	Fitness Functions

	Experimental Setup
	Model 1: Experimental Results and Analysis
	Model 2: Experimental Results and Analysis

	Conclusion and Future Work
	References

	A Hybrid Particle Swarm OptimizationApproach to Bernoulli Mixture Models
	Introduction
	Background
	Data and Notations
	EM Algorithm for Finite Mixture Models
	Particle Swarm Optimisation

	PSO for Optimisation of Parameters of Bernoulli Mixture Model
	Fitness Function for PSO
	Particle Encoding
	PSO with EM Algorithm

	Experiment Design
	Results and Discussion
	Conclusion
	References

	An Agent-Based Model for Simulation of Traffic Network Status
	Introduction
	Propose Model
	A Case Study: Simulation of Hanoi Traffic Network Status
	Simulation Setup
	Results

	Conclusion
	References

	Self-Adaptive Particle Swarm Optimization
	Introduction
	Particle Swarm Optimization
	Adaptive Learning Particle Swarm Optimization
	Self-Adaptive Particle Swarm Optimization
	Experiments and Results
	Experimental Procedure
	Experimental Results

	Conclusion
	References

	Evaporation Mechanisms for Particle Swarm Optimization
	Introduction
	Particle Swarm Optimization
	Random Asynchronous PSO
	Noise in Optimization
	Evaporation in PSO
	Related Work

	Experimental Design
	Benchmarks
	Experimental Setup

	Results and Discussions
	Conclusions
	Future Work
	References

	The Performance and Sensitivity of the Parameters Setting on the Best-so-far ABC
	Introduction
	The Ideas of the Best-so-far ABC Algorithm
	The Best-so-far Method (BSF)
	The Adjustable Search Radius (ASR)
	The Objective-Value-Based Comparison Method (OBC)

	The Performance Analysis on the Best-so-far ABC Algorithm
	The Effect of the Best-so-far Method
	The Effect of the Adjustable Search Radius
	The Effect of Objective-Value-Based Comparison Method

	Sensitivity of the Parameters Setting on the Best-so-far ABC
	Variation in Colony Sizes
	Variation in Limit Values

	Conclusions
	References

	FAME, Soft Flock Formation Control for Collective Behavior Studies and Rapid Games Development
	Introduction
	Related Works
	FAME API and Architecture
	Soft Formation Features
	Defining Flock of Irregular Formation
	Self-organized Agents Within Formation
	Formation Shape Morphing
	Flexible Formation Path following Mechanism
	Seamless Space Partitioning of Agent Object

	FAME in Successful Commercial Game Launch
	Conclusion
	References

	Data Mining
	Incremental Spatial Clustering in Data Mining Using Genetic Algorithm and R-Tree
	Introduction
	Preliminaries
	Spatial Clustering
	Genetic Algorithm
	R-tree

	Algorithm
	Encoding
	Fitness Function
	Crossover
	Mutation
	Algorithm Cluster_GA

	Experiments
	Conclusions
	References

	Personalized Email Recommender System Based on User Actions
	Introduction
	Preliminaries
	Naïve Bayesian Classifier
	Dataset

	Theoretical Framework
	Descriptions of the Framework
	Classifier
	Tokens Extraction
	Feature Extraction

	Experiments
	Experiment Settings
	Naïve Bayesian Classifier Performance
	Discussions

	Conclusion
	References

	Developing Attention Focus Metrics for Autonomous Hypothesis Generation in Data Mining
	Introduction
	Background
	Hypothesis Generation
	Attention Focus

	Characterising Attention Focus in Hypothesis Generation
	Complexity of Hypothesis Generation
	Perceptual Selectivity in Hypothesis Generation

	Prototype Hypothesis Generation Algorithm for Multiple Linear Function Mining Task
	Stochastic Search Based Hypothesis Generation
	Representation of Hypothesis

	Experiments and Discussion
	Conclusion
	References

	Emergent Self Organizing Maps for Text Cluster Visualization by Incorporating Ontology Based Descriptors
	Introduction
	Literature Review
	Proposed Methodology
	Unigram and Unigram-Bigram Generation
	Legitimate Terms Extraction
	Term Weighting

	Experimental Setup
	Results and Discussion

	Conclusion and Future Work
	References

	Online Handwriting Recognition Using Multi Convolution Neural Networks
	Introduction
	Convolution Neural Network (CNN)
	The UNIPEN Trainset
	Image Pre-processing and Segmentation
	Recognition System Using Multi Neural Networks
	Recognition Results
	Conclusion
	References

	A Genetic Programming Approach to Hyper-Heuristic Feature Selection
	Introduction
	Background
	Feature Selection
	GP Based Hyper-Heuristics

	Genetic Programming Hyper-Heuristic Method for Feature Selection
	Representation: Feature Selection Search Space
	Representation: Heuristic Search Space
	Primitive Functions
	Fitness Function

	Experiment Design
	Datasets
	Parameters

	Results
	Example Heuristic

	Conclusions
	References

	A New Approach to Vision-Based Fire Detection Using Statistical Features and Bayes Classifier
	Introduction
	Statistical Features of Fire Regions
	Motion
	Color
	Skewness
	Coarseness

	Fire Detection Algorithm
	Bayes Classifier
	Algorithm

	Experiments
	Experiment 1
	Experiment 2

	Conclusions
	References

	Learning Methodologies
	Automatic Discovery of Optimisation Search Heuristics for Two Dimensional Strip Packing Using Genetic Programming
	Introduction
	The New Method
	Representation of Search Heuristics
	Fitness Function
	The New GPHH Algorithm

	Results
	Conclusions
	References

	Solving Graph Coloring Problem by Fuzzy Clustering-Based Genetic Algorithm
	Introduction
	Background
	Graph Coloring
	Clustering Algorithms
	Related Works

	Proposed Method
	Encoding and Fitness Function
	Fitness Estimation Using Fuzzy c-means Clustering

	Experimental Results
	Experimental Settings
	Experimental Results

	Concluding Remarks
	References

	Efficient Neuroevolution for a Quadruped Robot
	Introduction
	Related Work
	Algorithms
	CMA-NeuroES hansen2001completely,Heidrich-Meisner2009
	CoSyNE gomez2008accelerated
	Nelder-Mead Simplex (NMS) Nelder1965
	Random Search (RS)

	 Experimental Setup
	Quadruped Robot
	Neural Network
	Evaluation

	Results and Discussion
	The Reason of Performance Difference between CoSyNE and CMA-NeuroES
	Robustness of CMA-NeuroES against the Bad Initial Distribution

	Conclusion and Future Work
	References

	Learning and Generating Folk Melodies Using MPF-Inspired Hierarchical Self-Organising Maps
	Background
	Learning Folk Melodies Using MPF-HSOM
	Knowledge Representation
	MPF Inspired Hierarchical Self-Organising Maps (MPF-HSOM)
	Predicting Missing Data Elements Using MPF-HSOM

	Experimental Design and Results
	Training data
	Melody Prediction
	Discussion

	Conclusion
	References

	Multi Objective Learning Classifier Systems Based Hyperheuristics for Modularised Fleet Mix Problem
	Introduction
	Background
	Modularised Fleet Mix Problem (MFMP)
	Existing Fleet Optimisation System
	Hyperheuristics
	Learning Classifier Systems

	LCS Based Hyperheuristic for MFMP
	XCS Based Hyperheuristic (XCSHH) for MFMP
	UCS Based Hyperheuristic (UCSHH) for MFMP
	Low-Level MFMP Heuristics

	Experimental Setup
	Data Sourcing
	Parameter Setting
	Experiments

	Conclusions
	References

	Where Should We Stop? An Investigation on Early Stopping for GP Learning
	Introduction
	Background
	Over-fitting and Generalisation in GP
	Early Stopping for Learning Machines

	Methods
	Experiments
	Results and Discussions
	Conclusions
	References

	From Subjective to Objective Metrics for Evolutionary Story Narration Using Event Permutations
	Introduction
	Story Dependence Network
	Story Generation as Permutation Problem
	Encoding Narration into Genome
	Obtaining Text-Form Story from Genotype-phenotype Mapping

	Story Measures Selection
	Subjective Story Measures
	Objective Story Features

	Experimental Study
	Experiment Design
	Results and Analysis

	Conclusion and Future Work
	References

	GPU Accelerated Genetic Clustering
	Introduction
	Evolutionary Clustering
	Clustering Representation
	Clustering Evaluation

	Genetic Algorithm for Clustering on CUDA
	The Design of GA for Clustering on CUDA
	CUDA-C Kernels for Geneti Clustering

	Experimental Evaluation
	Conclusions
	References

	Memetic Input Variable Selection in Neuro-Genetic Prediction System
	Introduction
	System Overview
	Summary of Results

	Autonomous Extraction of Technical Analysis Patterns
	The Relevance of the Formation-Based Data

	Memetic-Like Improvements to the Prediction System
	Conclusions
	References

	Learning Rule for TSK Fuzzy Logic Systems Using Interval Type-2 Fuzzy Subtractive Clustering
	Introduction
	Interval Type-2 Fuzzy Logic Systems
	Type-2 Fuzzy Sets
	Type-1 TSK Fuzzy Logic Systems
	Interval Type-2 TSK Fuzzy Logic Systems

	Rule Extraction for Interval Type-2 TSK FLS
	Learning Rule Antecedents
	Learning Rule Consequent Using LSE Algorithm
	Building for Interval Type-2 TSK FLS

	Experimental Results
	Conclusion
	References

	Real-World Applications
	Constrained Layout Optimization in Satellite Cabin Using a Multiagent Genetic Algorithm
	Introduction
	Definition of CLOPssc
	Multiagent Genetic Algorithm for CLOPssc
	Experiments
	CLOP with 5 Objects [3]
	CLOP with 7 Objects [4]
	CLOP with 40 Objects [3]

	Conclusions
	References

	A Multi-Objective Approach for Master's Thesis Committees Scheduling Using DMEA
	Introduction
	Scheduling and Resource Allocation
	Master's Thesis Committees Scheduling
	Problem Context
	Multi-Objective Master's Thesis Committees Scheduling Problem - MMTCS

	Design of an Evolutionary Multi-Objective Scheduling Algorithm
	A Case Study
	Test Scenarios and Settings
	Results and Discussion

	Conclusion
	References

	Coupler-curve synthesis of a planar four-bar mechanism using NSGA-II
	Introduction
	Kinematic Formulation of the Objectives and Constraints
	Development of the Constraint-Handling Scheme
	Tuning of NSGA-II Parameters Using DoE
	Results and Discussions
	Optimisation of NSGA-II Parameters Using DoE
	Improvement of Convergence of NSGA-II Due to Transformation of Constraint Functions
	Comparison of Results

	Conclusion
	References

	A Simulation Model for Optimise the Fire Evacuation Configuration in the Metro Supermarket of Hanoi
	Introduction
	Simulation Modelling
	Agents
	Evacuee Movement Principle
	Evacuee Power Reduce Principle
	Simulation Parameters
	Analysis and Evaluation Criteria
	Simulation Plan

	Optimisation of Evacuation Configuration
	Optimisation 1: Change of Signs Direction
	Optimisation 2: Change of Signs Position
	Improvement 3: Change of Shelves Configuration
	Improvement 4: Change of Exits Configuration

	Conclusion and Future Works
	References

	Interactive GA Flock Brush for Non-Photorealistic Rendering
	Introduction
	Background
	Non-Photorealistic Rendering
	Evolutionary Computing and NPR
	Flock Modelling
	Interactive Genetic Algorithms

	Flock Paint with Interactive Genetic Algorithm
	Flock Brush Parameters and Representation
	System Modules

	Results and Discussion
	Conclusion and Future Work
	References
	Conclusion and Future Work

	Generating Diverse Behaviors of Evolutionary Robots with Speciation for Theory of Mind
	Introduction
	Related Work
	ToM Applications in Simulation
	Speciation with Distance Measure

	Proposed Method
	Neural Network Controller
	Behavior Based Fitness Sharing
	Physical Distance
	Angle Distance
	Edit Distance

	Experiment
	Experiments Settings
	Tracking Environment
	Result

	Conclusion
	References

	Improving Gender Recognition Using Genetic Algorithms
	Introduction
	Tools
	Local Binary Pattern
	Genetic Algorithms
	Principal Component Analysis
	Support Vector Machine
	Database
	Feature Extraction

	Encoding and Methodology
	Results and Discussion
	Conclusion
	References

	Author Index

