
Chapter 3
Mathematical Models for GPS Positioning

In this chapter, Sect. 3.1 provides a brief introduction to the Global Positioning
System (GPS). Next, Sects. 3.2 and 3.3 describe the mathematical models for GPS
absolute and relative positioning, respectively. The mathematical models of GPS
observations consist of a functional and a stochastic component. In contrast to the
continuously improved functional model, the stochastic model characterising the sta-
tistical properties of GPS measurements is still a controversial research topic. Here
the functional model is discussed with a special focus on the error sources consider-
ably affecting GPS positioning quality, while the stochastic model is presented with
respect to observation weighting and correlation structure.

For a more detailed discussion on the theory and applications of GPS, there exist
a variety of textbooks with different emphases. El-Rabbany (2006) offers profes-
sionals and practitioners a non-mathematical explanation of how GPS works and a
wide range of its applications. A detailed description of GPS signal structure can be
found, for example, in Kaplan and Hegarty (2006, Chaps. 4, 5). Textbooks such as
Teunissen and Kleusberg (1998) and Xu (2007) provide a deep theoretical insight
into the mathematical models for GPS data processing, while Hofmann-Wellenhof
et al. (2008) introduce the theory and practice of the Global Navigation Satellite Sys-
tems (GNSS), including the American system GPS, the Russian system GLONASS,
the European system Galileo, as well as additional global, regional and augmentation
systems in a more generic sense. Considering the innovative characteristics, services
and potential applications anticipated in the next generation of GNSS, Prasad and
Ruggieri (2005) examine the advanced architectures paving the way for the future
integration of different satellite-based navigation systems. Within the context of
network-aided GPS positioning, Leick (2003, Chaps. 4, 8) presents a comprehensive
treatment of least-squares (LS) adjustment methods and data quality control tech-
niques using minimum constraints, reliability measures and procedures for outlier
detection. By bringing the two fields of GNSS technology and environmental studies,
Awange (2012) provides a simplified presentation of the concepts of GNSS and its
applications to environmental monitoring.
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3.1 Global Positioning System

The Global Positioning System (GPS) is a satellite-based navigation system allowing
the determination of the positions of observation sites on land or at sea, in the air or
in space, by means of artificial satellites. It was developed by the U.S. Department
of Defence in the early 1970s as the next generation replacement to the first satellite-
based navigation system, TRANSIT, which made use of Doppler shift measurements
in the early 1960s. Within the framework of the TIMATION (TIMe/navigATION)
program instigated in 1964, two satellites, known as NTS I and II (navigation tech-
nology satellite), were launched in 1974 and 1977, respectively. These were the first
satellites equipped with atomic clocks, a rubidium (Rb) and caesium (Cs) one, respec-
tively, and as such could be considered as prototypes of the later GPS satellites. In
February 1978, the first GPS satellite was successfully launched. This section briefly
outlines the main characteristics of GPS, including its reference and time systems,
segments, as well as signals and observations. The readers who are interested in the
evolution of satellite-based navigation are referred to Guier and Weiffenbach (1997),
Prasad and Ruggieri (2005, Sect. 1.2), Ashkenazi (2006), Hofmann-Wellenhof et al.
(2008, Sect. 9.1) and Parkinson and Powers (2010).

3.1.1 Reference and Time Systems

The official GPS terrestrial reference system is the three-dimensional and Earth-
centred World Geodetic System 1984 (WGS84), which was originally realised by
the coordinates of about 1,500 terrestrial sites derived from the TRANSIT Doppler
observations. Associated with the refined WGS84 (G1150, Merrigan et al. 2002),
a geocentric ellipsoid of revolution is defined by semi-major axis, flattening, Earth’s
angular velocity and geocentric gravitational constant. With respect to ITRF2008
(International Terrestrial Reference Frame), the current WGS84 frame shows system-
atic differences of the order of 1 cm (Karabatić 2011, p. 12). Moreover, the WGS84
is the reference system for the GPS broadcast ephemerides (Görres 2010b).

The system time of GPS is related to the atomic time system and referenced to
coordinated universal time (UTC). However, in contrast to UTC, GPS time (GPST)
is not corrected to match the Earth’s rotation rate. This means that while at the
GPS standard epoch, i.e., 00:00:00 UTC on January 6, 1980, UTC and GPST were
coincident with each other, since January 1, 2009, 00:00:00 UTC, GPST is ahead
of UTC by exactly 15 s. In addition, considering the current offset of 19 s between
GPST and international atomic time (TAI), it follows that

GPST = UTC + 15 s and GPST = TAI − 19 s. (3.1)

Therefore, TAI and UTC currently differ by an integer number of 34 s. This difference
will become 35 s after July 1, 2012, 00:00:00 UTC, since a positive leap second will
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be introduced at the end of June 2012 (Bulletin C43-IERS 2012). The actual integer
offsets are reported by the International Bureau of Weights and Measures (BIPM1).
Starting from the Julian date (JD) of the GPS standard epoch JD0=2444244.5, the
system time of GPS in terms of GPS week (GW) and day of week (DOW) can be
calculated using

GW = INT [(JD − JD0)/7] and DOW = MOD [INT(JD+0.5), 7] , (3.2)

where INT and MOD are the integer and modulo operators, respectively. A DOW
value of 0 means Monday, 1 means Tuesday, and so on. Taking the epoch J2012.0
(i.e., January 1, 2012, 00:00:00 UTC) as an example, where JD = 2455927.5, the
GW and DOW are equal to 1,669 and 6 (Sunday), respectively (Hofmann-Wellenhof
et al. 2008, pp. 25, 315).

3.1.2 GPS Segments

GPS is comprised of three segments: the space, control and user segments. The
present space segment consists of nominally 24 operational satellites deployed in
six evenly spaced orbital planes in near-circular orbits (i.e., an elliptical shape with
a maximum eccentricity of about 0.01; El-Rabbany 2006, p. 2) with an inclination
of 55◦ and four active satellites in each orbital plane (see Fig. 3.1a). The semi-
major axis of a GPS orbit is nearly 26,560 km, indicating a satellite altitude of about
20, 200 km above the Earth’s surface (Langley 1991b). The revolution period of a GPS
satellite is approximately half a sidereal day, i.e., around 11 h 58 min. Hence, for the
same location, the satellite configuration repeats in universal time about 4 min earlier
each day (Seeber 2003, p. 213). The initial operational capability (IOC) was officially
announced in December 1993, meaning that 24 satellites were available to be used for
navigation. The full operational capability (FOC) was achieved in July 1995, imply-
ing that the satellite constellation was tested for operational military performance
(Hofmann-Wellenhof et al. 2008, p. 310). With the full constellation geometry, the
space segment provides global coverage with 4–8 simultaneously observable satel-
lites above an elevation angle of 15◦ at any time of day. Decreasing the elevation
mask to 5◦, 12 satellites will be occasionally visible (Hofmann-Wellenhof et al. 2008,
p. 323).

Since 1978, different types of GPS satellites have been launched, such as the
Block I (no longer in service), Block II, Block IIA (A: advanced), Block IIR
(R: replenishment), Block IIR-M (M: modernised) and Block IIF (F: follow-on) satel-
lites. During the course of the GPS modernisation, the future generation Block III
satellites will be launched in 2014 and are expected to carry GPS into 2030 and
beyond. In Fig. 3.1b–f, the different generations of GPS satellites are shown. Table 3.1

1 ftp://ftp2.bipm.org/pub/tai/scale/UTCGPSGLO/utcgpsglo10.ar

ftp://ftp2.bipm.org/pub/tai/scale/UTCGPSGLO/utcgpsglo10.ar
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(a) (b) (c)

(d) (e) (f)

Fig. 3.1 GPS constellation and the different generations of GPS satellites (image sources a NOAA,
b Aerospace Corporation, c, d, f http://www.gps.gov, e http://www.navigadget.com)

Table 3.1 Selected characteristic features of the different GPS satellite categories

Satellite Launches SVNa Inclination Atomic Design life
category during (degree) clock (year)

Block I 1978–1985 01–11 (07) 63 1 Cs+2 Rb 4.5
Block II 1989–1990 13–21 55 2 Cs+2 Rb 7.5
Block IIA 1990–1997 22–40 55 2 Cs+2 Rb 7.5
Block IIR 1997–2004 41–61 (42) 55 3 Rb 10
Block IIR-M 2005–2009 48–58 55 3 Rb 10
Block IIF 2010–2012 62, 63, 65 55 1 Cs+2 Rb 12.7
a Unsuccessful launches are provided in brackets

lists some selected features of these satellite categories, where SVN denotes the satel-
lite vehicle number (Prasad and Ruggieri 2005, pp. 6, 121).

The Block I satellites, whose orbital planes had an inclination of 63◦, were built
mainly for experimental purposes. Today, none of the original Block I satellites are
in operation, the last being taken out of service in November 1995. Considering
the 4.5 year design life of the Block I satellites, it is remarkable that some of them
were operational for more than 10 years. The orbital planes of the Block II/IIA
satellites are inclined at 55◦ to the equator. Being an advanced version of Block II,

http://www.gps.gov
http://www.navigadget.com
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Block IIA satellites are equipped with mutual communication capability and have a
larger storage capacity, increased from 14 to 180 days. While the Block I satellite
signals were fully accessible to civilian users, some Block II satellite signals are
restricted in view of U.S. national security purposes. The Block IIR/IIR-M satellites
are equipped with enhanced facilities for communication and intersatellite tracking.
In addition, an improved antenna panel was developed for the last four Block IIR and
all of the Block IIR-M satellites to increase the power of the received GPS signals.

The Block IIR-M satellites transmit the new military M-code on the carrier fre-
quencies L1 and L2 as well as the new civil L2C-code on L2, enabling an ionospheric
correction for code signals. The Block IIF satellites emit a third civil signal called L5,
along with the L2C- and the M-code previously introduced into Block IIR-M. The
L5 signal is expected to be more robust and to have a higher signal power level. The
future Block III satellites will deliver significant improvements over the current GPS
space vehicles, including a new international civil signal L1C and high-powered,
anti-jamming M-code with full Earth coverage for military users. The first Block III
satellite is scheduled to be launched in 2014 (Prasad and Ruggieri 2005, p. 123). For
a more detailed description of the GPS satellite generations, see, for example, Prasad
and Ruggieri (2005, p. 120), El-Rabbany (2006, pp. 5, 16), Hofmann-Wellenhof
et al. (2008, pp. 323, 340) and Marquis and Riggs (2010). Further information about
launch dates, orbital position and satellite status is available on the web site of the
United States Naval Observatory (USNO, http://tycho.usno.navy.mil/gpscurr.html).

The GPS control segment is composed of a master control station (MCS) located
in Colorado Springs, 12 worldwide distributed tracking (monitoring) stations and
4 ground antennas (Prasad and Ruggieri 2005, p. 123). The main tasks of the con-
trol segment are the collection of GPS observations at the unmanned tracking sta-
tions, determination and prediction of satellite orbits, clocks and other parameters
at the MCS, and the uploading of navigation data to the GPS satellites. In addition,
the MCS is responsible for monitoring the GPS system’s integrity. During satellite
maintenance or outages, the MCS sets the status of a satellite to unhealthy. Scheduled
satellite maintenance or outages are reported in the so-called NANU (notice advi-
sory to NAVSTAR users) message provided by the U.S. Coast Guard Navigation
Centre (http://www.navcen.uscg.gov). For more information about the GPS control
segment, the reader is referred to Prasad and Ruggieri (2005, Sects. 3.2.2, 6.3) and
Hofmann-Wellenhof et al. (2008, Sect. 9.4.2).

The GPS user segment can be subdivided into three groups: (1) user categories
including all military and civilian users as well as authorised and unauthorised users,
(2) receiver types characterised by the type of observables and the number of tracked
frequencies, depending on the application of concern, and (3) various services provid-
ing system status information and GPS products for positioning at different accuracy
levels (Hofmann-Wellenhof et al. 2008, p. 7).

http://tycho.usno.navy.mil/gpscurr.html
http://www.navcen.uscg.gov
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Table 3.2 Signal availability of the operational and future GPS satellites

Carrier L1 L2 L5

Modulated code C/A P/Y M C C P/Y M C

Block II/IIA/IIR X X X
Block IIR-M X X X X X X
Block IIF X X X X X X X
Block III X X X X X X X X
Frequency [MHz] f1 = 1575.42 f2 = 1227.60 f5 = 1176.45
Wavelengh [cm] λ1 = 19.0 λ2 = 24.4 λ5 = 25.5

3.1.3 GPS Signals

Each GPS satellite transmits a microwave L-band radio signal composed of carrier
frequencies modulated by ranging codes and a navigation message. The first oper-
ational GPS satellites (Block II, IIA and IIR) emit navigation signals on the carrier
frequencies L1 and L2, while the modernised satellites (Block IIR-M, IIF and III)
transmit a third civil frequency L5 and several new ranging codes on different carrier
links. An overview of the GPS signals is given in Table 3.2 (Prasad and Ruggieri
2005, p. 121; Hofmann-Wellenhof et al. 2008, p. 329).

The C/A-code (C/A: coarse/acquisition), which is only modulated onto the L1
carrier, is a stream of 1023 binary digits (i.e., zeros and ones, known as bits or chips)
that repeats itself every millisecond. This indicates a bit duration of approximately
1 μs and a chip length of about 300 m. The relatively short code duration allows
for fast signal acquisition, but makes the C/A-code susceptible to interference. Hav-
ing been designed in particular to fulfil commercial needs, the new civil L2C-code
consists of the L2CM-code (M: moderate length) and a 75 times longer L2CL-code
(L: long length). It shows improved cross-correlation performance and enables the
correction of ionospheric effects (Fontana et al. 2001). These benefits will be avail-
able to users if the majority of the GPS satellites are L2C capable (Dixon 2005).
The FOC with 24 L2C-transmitting satellites may be achieved in 2015 (Prasad and
Ruggieri 2005, p. 120). To meet the requirements of safety-of-life applications, two
ranging codes will be transmitted on L5, which are referred to as L5I- and L5Q-code.
The L5I-code (I: in-phase) is modulated with a navigation message, while the L5Q-
code (Q: quadraphase) is used as a pilot channel. In order to reduce the narrowband
interference effect, both L5I and L5Q are additionally modulated with low-frequency
secondary codes possessing lengths of 10 and 20 chips, respectively. The resulting
codes are 10 and 20 times longer than the C/A-code and exhibit advanced autocorre-
lation and cross-correlation properties that allow better resistance to interference in
combination with the higher signal power. A constellation of 24 L5-emitting satel-
lites may be achieved in 2019 (Prasad and Ruggieri 2005, p. 121). The L1C-code,
including a data channel L1CD and a pilot channel L1CP, will be the fourth civil
signal and will provide high interoperability with Galileo’s E1 signal. By applying
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the multiplexing binary offset carrier (MBOC) modulation technique, more power
is added to the higher frequencies to improve the tracking performance (Hein et al.
2006; Hofmann-Wellenhof et al. 2008, pp. 83, 336).

The P-code (P: precision), which is modulated onto both the L1 and L2 carri-
ers, has been designed primarily for military purposes. It has a very long stream of
about 2.35 · 1014 chips and repeats itself every 38 weeks, implying a chip length
of about 30 m. Due to the extremely long code length, the P-code is very difficult
to directly acquire if there is no a priori information such as accurate clock cor-
rections, coordinate estimates and satellite ephemerides. Therefore, the C/A-code is
used by military receivers for a coarse acquisition, and then the receiver locks onto
the P-code for higher performance. The main properties of the new military M-code
modulated onto the L1 and L2 carriers are the improved anti-jamming and navigation
performance, higher security using new cryptography algorithms, as well as the pos-
sibility of higher transmission power. Furthermore, being superior to the P-code,
a direct acquisition of the M-code is possible (Hofmann-Wellenhof et al. 2008,
pp. 333, 335).

For the initial series of GPS satellites (Block II, IIA and IIR), the navigation
message is added to the P- and C/A-code, and thus is available on both the L1 and L2
carriers. It contains, along with other information, the model (a quadratic polynomial)
parameters for satellite clock corrections, the satellite health status, the broadcast
ephemerides, the satellite almanac and error correction data (e.g., for ionospheric
effects). Of particular importance is the part known as the hand-over word (HOW)
that helps the receiver achieve a rapid lock to the transmitted part of the long P-
code. For the modernised GPS satellites (Block IIR-M, IIF and III), the navigation
message is added to the L2CM-, L5I- and L1CD-code. A new military navigation
message with efficient data structure and improved security and system integrity has
been specified to be modulated onto the M-code (El-Rabbany 2006, p. 15; Hofmann-
Wellenhof et al. 2008, p. 339).

Since GPS is a military system, two techniques, known as selective availabil-
ity (SA) and anti-spoofing (AS), have been implemented to limit the accuracy for
unauthorised users. The SA is realised by degrading the satellite clock (δ-process)
and manipulating the satellite ephemerides (ε-process). The δ-process is carried out
by dithering the fundamental frequency of the satellite clock, while the ε-process
truncates the orbit information in the navigation message so that the satellite posi-
tions cannot be accurately determined. The effect of the δ-process can be eliminated
by differencing simultaneous observations from one satellite to two receivers. The
SA was activated on March 25, 1990 and turned off on May 2, 2000 (Hofmann-
Wellenhof et al. 2008, pp. 319–321). Nevertheless, both processes may be retained
and reactivated due to a growing awareness of the potential misuse of GPS and the
increasing hybridisation of navigation approaches, which reduces the dependency
on GPS as the sole navigation provider (Kelly 2006). The AS has the purpose to
prevent unauthorised users from getting access to the P-code, and to “spoof” or mis-
lead a receiver. The encrypted code is called Y-code. In doing so, adversaries could
neither jam the satellite signal using ground-based transmitters, nor spoof military
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GPS receivers by transmitting a false P-code from a satellite. The time periods during
which the AS was activated can be found in Steigenberger (2009, p. 15).

3.1.4 GPS Observations

GPS observations include code pseudo-range measurements in the unit meter, carrier-
phase measurements in the unit cycle, Doppler measurements in the unit Hertz and
signal strengths in the unit decibel Hertz or in manufacturer-specific units (see
Sect. 5.1). After the activation of the AS, manufacturers of dual-frequency GPS
receivers have developed different methods to recover the P-code and the L2 car-
rier. Nowadays, most receivers apply two approaches known as cross-correlation and
Z-TrackingTM (Ashjaee and Lorenz 1992; Hofmann-Wellenhof et al. 2008, pp. 101,
102). Both techniques completely recover the L2 carrier, but at a degraded signal
strength. The degradation is even higher when applying the cross-correlation method.
The achievement of the FOC with the modernised GPS satellites (Block IIR-M, IIF
and III) will make the use of these signal-recovering techniques unnecessary (El-
Rabbany 2006, p. 19).

The pseudo-range derived from code observations represents a distance measure
between the antenna centre of the GPS receiver and the antenna centre of the GPS
satellite by determining the signal travel time in space. Since the satellite and receiver
clocks are not perfectly synchronised with each other, the measured range is distorted
by the clock synchronisation error, along with other effects and biases. As a rule
of thumb, the precision of a code pseudo-range is about 1 % of the chip length.
Accordingly, the civil C/A-code (precise P-code) has a precision of 3 m (0.3 m)
(Hofmann-Wellenhof et al. 2008, p. 106).

Another way to measure the distance between receiver and satellite is to sum
up the number of full carrier cycles plus the fractional part and then multiply that
by the carrier wavelength (see Table 3.2). After a GPS receiver is switched on, it is
capable of keeping track of phase changes, while the satellite-specific initial number
of complete cycles is still unknown or ambiguous. As long as no signal loss occurs,
this phase ambiguity remains unchanged over time. The GPS phase can be measured
to better than 0.01 cycles, indicating a precision of about 2 mm (Hofmann-Wellenhof
et al. 2008, p. 108).

The Doppler shift represents the difference between the received satellite fre-
quency and the stable frequency emitted by the satellite. Since this difference is
linearly dependent on the radial relative velocity of the satellite with respect to the
receiver, it can be used to determine the receiver velocity in real time and is thus
important for navigation. Furthermore, the Doppler shift contributes to integer ambi-
guity resolution in kinematic surveying and may be used as an additional independent
observable for point positioning. For a more detailed discussion of Doppler shift and
its geodetic applications, see, for example, Leick (1995, Sect. 8.3.6.1), El-Rabbany
(2006, p. 24) and Hofmann-Wellenhof et al. (2008, pp. 59, 108).

http://dx.doi.org/10.1007/978-3-642-34836-5_5
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3.1.5 Linear Combinations

Based on the code pseudo-range and carrier-phase measurements on two frequencies,
for example, L1 and L2, linear combinations of observations can be formed which
possess new preferable properties for different purposes. Taking the phase observa-
tions �1 and �2 in the unit meter as an example, the resulting linear combination
(LC) �i is defined as

�i = k1,i · �1 + k2,i · �2, (3.3)

where k1,i and k2,i are real-valued coefficients (see Table 3.3). If ns
R,1 and ns

R,2 are
the initial phase ambiguities of �1 and �2 relating to receiver R and satellite s, then
the ambiguity term of the linear combination is

ns
R,i = k1,i · λ1

λi
︸ ︷︷ ︸

α1,i

ns
R,1 + k2,i · λ2

λi
︸ ︷︷ ︸

α2,i

ns
R,2, (3.4)

where λ1 and λ2 can be found in Table 3.2, and λi is the effective wavelength of the
linear combination. For ns

R,i to be an integer, α1,i and α2,i defined in Eq. (3.4) must
also be integers. On the basis of α1,i and α2,i , the coefficients k1,i and k2,i can be
expressed by

k1,i = λi
α1,i

λ1
, k2,i = λi

α2,i

λ2
. (3.5)

This means that using k1,i and k2,i to compute a linear combination in metric
units implicitly converts �1 and �2 into cycles by �1/λ1 and �2/λ2 before com-
bining them. Imposing the constraint of unchanged satellite-receiver distance, i.e.,
k1,i +k2,i = 1 (Collins 1999), the wavelength λi and frequency fi of the linear com-
bination �i can be derived using Eq. (3.5) and the generic relationship λ = c/ f as

λi = λ1λ2

α2,i · λ1 + α1,i · λ2
, fi = α1,i · f1 + α2,i · f2, (3.6)

where c is the speed of light in a vacuum, and f1 and f2 are given in Table 3.2.
Assuming that the observations on L1 and L2 are uncorrelated and have the same
noise level σ1, the noise of the linear combination is obtained by applying the variance
propagation law as

σi = σ1 ·
√

k2
1,i + k2

2,i . (3.7)

Different linear combinations are formed in the practice of GPS data analysis,
such as the wide-lane LC (LC5), the ionosphere-free LC (LC3), the geometry-free
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Table 3.3 Commonly used phase linear combinations based on L1 and L2

LC k1,i k2,i α1,i α2,i λi [m] σi /σ1 IONi

L1 1 0 1 0 0.190 1 1
L2 0 1 0 1 0.244 1 1.65

LC5 f1
f1− f2

= 4.53 − f2
f1− f2

= −3.53 1 −1 0.862 5.74 1.28

LC3
f 2
1

f 2
1 − f 2

2
= 2.55

− f 2
1

f 2
1 − f 2

2
= −1.55 77 −60 0.006a 2.98 0

LC4 1 −1 −60 77 – 1.41 0.65
a See, e.g., Wanninger (2000, p. 15)

LC (LC4) and the Melbourne-Wübbena LC (LC6). In Table 3.3, the main properties of
the commonly used phase linear combinations are summarised, where IONi denotes
the ionospheric amplification factor with respect to �1 in metric units (Collins 1999;
Seeber 2003, p. 263; Howind 2005, p. 24; Dach et al. 2007, p. 42; Wildt 2007, p. 61).

Due to a large wavelength of 86.2 cm, the LC5 is particularly suitable for ambigu-
ity resolution. The LC3 has the advantage of sufficient elimination of the first-order
ionospheric effect, but the disadvantages of the noise level being increased by a
factor of 3 compared to L1 and the extremely small wavelength of 6 mm which
makes a direct ambiguity resolution impossible (Dach et al. 2007, p. 40). There-
fore, an indirect two-step ambiguity resolution strategy is employed. On the basis of
the LC5, the wide-lane integer ambiguities are first determined. Next, the resolved
LC5 ambiguities are introduced into an ionosphere-free (LC3) solution to evaluate
the ambiguities in narrow-lane cycles with a wavelength of c/( f1 + f2) ≈ 11 cm
(Hofmann-Wellenhof et al. 2008, p. 112). This strategy is able to resolve ambiguities
for baselines of up to several hundred kilometres (Dach et al. 2007, pp. 181, 182).
Being independent of receiver and satellite clocks, and of the associated geometry
(i.e., satellite orbits and site coordinates), the LC4 mainly contains the ionospheric
effects and the non-integer ambiguity terms (Steigenberger 2009, p. 18). Thus, this
linear combination is particularly suitable for estimating ionospheric models.

Independently described by Melbourne (1985) and Wübbena (1985), the LC6
linear combination is the difference between the carrier-phase wide-lane and the
pseudo-range narrow-lane combinations (Seeber 2003, pp. 263, 265):

LC6 = 1

f1 − f2
( f1�1 − f2�2) − 1

f1 + f2
( f1 P1 + f2 P2). (3.8)

It also has a wavelength of 86.2 cm and eliminates the effects of geometry, clocks, the
ionosphere and the troposphere. Along with good P-code data, providing a precision
of less than 1 m, the LC6 can be used to resolve the wide-lane ambiguities for very
long baselines of up to 6,000 km and to check observations for cycle slips (i.e.,
discontinuities in the carrier-phase measurements by an integer number of cycles
due to temporary interruptions of the GPS signals). In addition, the noise level of
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Table 3.4 Important phase linear combinations using three frequencies [λi : Cocard et al. (2008);
σi /σ1, IONi : Eqs. (3.9) and (3.10)]

Linear combination (LC) α1,i α2,i α3,i λi [m] σi /σ1 IONi

Wide-lane region 1 0 −1 0.751 4.93 −1.34
(75 cm ≤ λi < 29.31 m) 1 −6 5 3.256 103.80 −0.07

0 1 −1 5.861 33.24 −1.72
−1 8 −7 29.305 1262.30 −16.52

Intermediate-lane region 1 −1 1 0.197 1.52 1.09
(19 cm ≤ λi < 75 cm) 1 −2 2 0.204 2.54 1.19

0 2 −1 0.235 2.13 1.51

Narrow-lane region 4 0 −3 0.108 2.61 −0.01
(10 cm ≤ λi < 19 cm) 0 24 −23 0.125 16.64 0.00

the LC6 is reduced by nearly 30 % compared to that of P1 and P2 (Dach et al. 2007,
pp. 41, 42, 182).

Considering the modernised triple-frequency GPS, the number of possible lin-
ear combinations will increase drastically. Han and Rizos (1999) proposed several
three-carrier combinations with larger effective wavelengths and lower noise amplifi-
cations. Odijk (2003) derived ionosphere-free combinations for which direct integer
ambiguity resolution is possible. In the case of triple-frequency, different ambiguity
resolution algorithms are already available, for example, the three carrier ambigu-
ity resolution (TCAR; Forssell et al. 1997; Vollath et al. 1998), the cascade integer
resolution (CIR; Hatch et al. 2000; De Jonge et al. 2000) and the least-squares ambi-
guity decorrelation adjustment (LAMBDA; Teunissen 1995; Teunissen et al. 2002).
Subdividing all possible phase linear combinations based on L1, L2 and L5 into
a wide-lane, an intermediate-lane and a narrow-lane region, Cocard et al. (2008)
performed a systematic investigation of optimum three-carrier combinations with
respect to effective wavelength, noise amplification and ionospheric sensitivity. The
most interesting results are summarised in Table 3.4, where the subscript 3 denotes
the third frequency L5 (see Table 3.2). To calculate the phase noise factor and the
first-order ionospheric scale factor in metric units, Feng (2008) provided

σi

σ1
=

[

(α1,i · f1)
2 + (α2,i · f2)

2 + (α3,i · f5)
2

(α1,i · f1 + α2,i · f2 + α3,i · f5)2

]1/2

, (3.9)

IONi = f 2
1 (α1,i/ f1 + α2,i/ f2 + α3,i/ f5)

α1,i · f1 + α2,i · f2 + α3,i · f5
, (3.10)

where the carrier-phase measurements on all three frequencies are assumed to be
mutually uncorrelated and identical in variance, i.e., σ1 = σ2 = σ5.

In the wide-lane region, there exists no linear combination which is completely
insensitive to the ionosphere and provides an acceptably low noise amplification
factor at the same time. The combination (α1,i = 1, α2,i = 0, α3,i = −1) has the
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lowest phase noise factor, while (1,−6, 5) is the most insensitive to the ionosphere.
The extra wide-lane (0, 1,−1) has been the straightforward choice in all TCAR
approaches. A potentially interesting combination is (−1, 8,−7), resulting in a
large wavelength of 29.31 m. The intermediate-lane combinations exhibit low-noise
properties and a comparable ionospheric impact as on L1. To fulfil the requirement
of little ionospheric influence, narrow-lane combinations can be formed. Regarding
both the noise and ionospheric amplification factors, (4, 0,−3) turns out to be a
promising choice. The wavelength of the triple-carrier ionosphere-free linear combi-
nation (0, 24,−23) amounts to about 12.5 cm, which is significantly larger than that
of the corresponding double-carrier combination (77,−60) (see Table 3.3). Within
the context of GNSS (GPS/Galileo/BeiDou), additional useful combinations as well
as their characteristics and applications are presented in Feng (2008).

3.2 Precise Point Positioning

Relying upon the principle of trilateration (Langley 1991a), simultaneously mea-
sured distances between a GPS receiver and four satellites are needed to determine
the receiver’s position in a three-dimensional space, along with the receiver clock
synchronisation error. In this section, the basic concept of precise point position-
ing (PPP) is described, including the associated mathematical models and error
effects. A deeper insight into PPP can be obtained from Zumberge et al. (1997),
Witchayangkoon (2000) and Bisnath and Gao (2009).

3.2.1 Introduction

Representing a modern positioning technique at the cm-level precision, PPP makes
use of undifferenced dual-frequency pseudo-range and carrier-phase measurements,
as well as accurate satellite orbit and clock products, provided, for example, by the
International GNSS Service (IGS; Moore 2007). Thereby, the first-order ionospheric
effect is eliminated by means of the ionosphere-free linear combination LC3 (see
Table 3.3). Other factors limiting the achievable positioning accuracy are either esti-
mated as additional unknown parameters (e.g., receiver clock error, tropospheric
delay) or accounted for by employing available sufficiently accurate models (e.g.,
antenna correction models, geophysical models). The PPP technique should not
be confused with the code-based single point positioning (SPP) method, which
uses the navigation message and achieves a positioning accuracy at the metre level
(El-Rabbany 2006, Sect. 5.1).

Due to the use of the LC3 and the fact that the non-integer receiver- and satellite-
dependent uncalibrated phase delays (UPD) are absorbed by the real-valued ambi-
guity estimates (Geng et al. 2010), it turns out to be a difficult task in PPP to resolve
integer ambiguities adequately to access the full GPS carrier-phase accuracy. As a
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result, long observation periods are generally required in PPP applications. Using
observations on a daily basis, static PPP is able to achieve a positioning accu-
racy of several millimetres (Kouba and Héroux 2001). Recent studies presented in
Heßelbarth (2009) showed that hourly position estimates can reach sub-decimetre
accuracy, while an observation interval of 4 h provides a positioning accuracy at the
centimetre level. In addition, the incorporation of the 30 s instead of the 5 min satel-
lite clocks and the GLONASS observations leads to improved coordinate accuracy
and reduced convergence time, particularly in kinematic applications (Wanninger
and Heßelbarth 2009).

Using data from a network consisting of about 100 globally and homogeneously
distributed reference sites, the Jet Propulsion Laboratory (JPL) generates for com-
mercial applications real-time products with an accuracy of 15–20 cm for orbits and
0.5 ns for clocks (http://www.gdgps.net). Benefiting from these real-time products
with a sampling interval of 1 s and a latency of about 5 s, Gao and Chen (2004)
showed in a static control survey that all coordinate components converge to the cen-
timetre level within 20 min. In vehicle and airborne kinematic experiments, cm-level
accuracy can be achieved after about 30 min. Moreover, the high potential of the
PPP-based real-time determination of atmospheric water vapour was demonstrated.
To overcome the limitations of PPP, such as long convergence time and the need
for dual-frequency measurements, Wübbena et al. (2005) proposed the PPP-RTK
(real time kinematic) network solution which enables the use of single-frequency
receivers by providing ionospheric corrections and improves the positioning accu-
racy and convergence time (10–50 s) by solving integer ambiguities. Recent studies
have revealed that integer ambiguity resolution in PPP is possible if the non-integer
term UPD can be precisely determined based on a network of reference sites (Lau-
richesse and Mercier 2007; Collins 2008; Ge et al. 2008). Geng et al. (2009, 2010)
found that reliable ambiguity resolution can be achieved for an observation period of
1 h. Nevertheless, over 3 h of data are still required to obtain sub-centimetre accuracy
for the vertical component.

The PPP-related services can be subdivided into data, processing and positioning
services. During the course of becoming a true GNSS service, the IGS will pro-
vide consistent GNSS products, in particular clock corrections with enhanced accu-
racy and temporal resolution (Springer and Dach 2010). As a temporary solution,
Heßelbarth and Wanninger (2008) suggested an interpolation technique for clock data
with poor temporal resolutions. For post-processing and near real-time applications,
diverse PPP online services have become convenient tools to obtain position solutions
in national or global reference frames. For example, the Canadian Spatial Reference
System-PPP (CSRS-PPP) online service enables worldwide point positioning with
a latency of 90 min and an accuracy of centimetre or sub-decimetre level, depending
on user dynamics (Tétreault et al. 2005; Ghoddousi-Fard and Dare 2006; Mireault
et al. 2008). Fuhrmann et al. (2010, Chap. 6) compared four currently available online
PPP services with respect to processing strategies, parameter estimation and residual
properties. Applying the so-called state-space concept (Mueller 1994; Kee 1996),
different global commercial services, such as OmniSTAR introduced by the Fugro
company (Heister et al. 2009, 2010), StarFire developed by John Deere and Company

http://www.gdgps.net
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(Dixon 2006) and Global Differential GPS (GDGPS) operated by JPL (Bar-Sever
et al. 2004), are available for real-time PPP. Assuming optimum receiving condi-
tions, dm-level kinematic positioning accuracy is achievable using dual-frequency
receivers (Kechine et al. 2003; Dixon 2006; Heister et al. 2010). While a momentary
interruption of the correction signal can be easily handled, the loss of GPS signals
results in significant accuracy degradation and requires reinitialisation (Heunecke
and Heister 2010).

3.2.2 Functional Model

The functional model of GPS observations formulates the mathematical relationship
between the measured satellite-receiver distances and the unknown parameters such
as site coordinates. For static PPP, the simplified observation equation of the LC3
measurements from receiver R and satellite j is

�
j
R,3 = ρ

j
R + c · (δtR − δt j ) + T j

R + λ3 · B j
R,3 + ε

j
R,3, (3.11)

where

ρ
j
R : geometrical range between receiver R and satellite j in m,
c : speed of light in a vacuum in m/s,

δtR : receiver clock offset from the GPS time in s,
δt j : satellite clock offset from the GPS time in s,
T j

R : tropospheric signal path delay in m,
λ3 : wavelength of the LC3 measurement in m,

B j
R,3 : non-integer phase ambiguity of the LC3 measurement in cycles,

ε
j
R,3 : random noise of the LC3 measurement in m.

The range ρ
j
R represents the Euclidean distance between the three-dimensional

satellite position (X j , Y j , Z j ) at the transmission epoch and the receiver position
(X R, YR, Z R) at the reception epoch, given by

ρ
j
R =

√

(X j − X R)2 + (Y j − YR)2 + (Z j − Z R)2. (3.12)

The tropospheric slant path delay (SPD) T j
R can be expressed as a product of

the zenith path delay (ZPD) TR and the mapping function (MF) m
z j
R that relates the

ZPD to the SPD at a zenith distance of z j . Hopfield (1969) showed the possibility of
separating the SPD into a predominant and well-behaved dry (d) part and a comple-
mentary and volatile wet (w) part. The dry delay term can be accurately determined
on the basis of air density (Davis et al. 1985), while the wet part is very difficult
to handle due to atmospheric water vapour being highly variable in time and space.
According to Rothacher (1992, p. 83), the total SPD can be expressed as



3.2 Precise Point Positioning 69

T j
R = TR,d · m

z j
R,d + TR,w · m

z j
R,w, (3.13)

where TR,d is the zenith dry delay (ZDD), TR,w is the zenith wet delay (ZWD),
and m R,d and m R,w are the associated mapping functions. Under the assumption
of hydrostatic equilibrium, the ZDD can be determined at the millimetre accuracy
level using ground pressure measurements and is thus considered to be known. In
contrast, the ZWD must be estimated based on GPS data.

Substituting Eq. (3.13) into (3.11) and introducing satellite orbit (X j , Y j , Z j ) and
clock (δt j ) products, for example, those provided by the IGS, Eq. (3.11) becomes

l j
R,3 = ρ

j
R + c · δtR + TR,w · m

z j
R,w + λ3 · B j

R,3 + ε
j
R,3. (3.14)

The vector of unknown parameters is

x = (X R, YR, Z R, δtR, TR,w, B j
R,3)

T , j = 1, . . . , ns, (3.15)

where ns denotes the total number of the satellites observed by receiver R. Regarding
all l j

R,3 in Eq. (3.14) as a realisation of the vector of stochastic observables l Z3 and

assuming zero-mean random measurement noise, i.e., E(ε
j
R,3) = 0, the functional

model of static PPP is

E(l Z3) = F(x) = ρ
j
R + c · δtR + TR,w · m

z j
R,w + λ3 · B j

R,3, (3.16)

where E(·) is the expectation operator. Obviously, Eq. (3.12) is non-linear. Therefore,
a linearisation of F(x) using the Taylor series expansion around the a priori parameter
values x0 results in

F(x) = F(x0) + ∂F(x)

∂x
(x − x0) + · · · . (3.17)

The linearised model of the observation equations has the matrix form

A · �x̂ = �lZ3 + v, (3.18)

where A is the design matrix, �x̂ is the estimated vector of the reduced para-
meters (i.e., �x = x − x0), �lZ3 is the vector of reduced observations [i.e.,
�lZ3 = lZ3 − F(x0)], and v is the vector of residuals. As indicated by Eq. (3.17),
the design matrix A is formed by the partial derivatives of F(x) with respect to the
unknown parameters, i.e.,

A =
[

∂F(x)

∂ X R
,
∂F(x)

∂YR
,
∂F(x)

∂ Z R
,
∂F(x)

∂δtR
,
∂F(x)

∂TR,w

,
∂F(x)

B j
R,3

]x=x0

j=1,...,ns

, (3.19)
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where

∂F(x)

∂ X R
= X R − X j

ρ
j
R

,
∂F(x)

∂YR
= YR − Y j

ρ
j
R

,
∂F(x)

∂ Z R
= Z R − Z j

ρ
j
R

,

∂F(x)

∂δtR
= c,

∂F(x)

∂TR,w

= m
z j
R,w,

∂F(x)

∂ B j
R,3

= 0 or λ3. (3.20)

Taking the weight matrix WZ3 to be the inverse of the cofactor matrix QZ3 of
the LC3 observations, i.e., WZ3 = Q−1

Z3 , the best linear unbiased estimate of �x is
obtained by means of Eq. (2.17) as

�x̂ = (AT WZ3 A)−1 AT WZ3
︸ ︷︷ ︸

H

�lZ3. (3.21)

The final estimate of the parameter vector x is therefore

x̂ = x0 + �x̂, (3.22)

and the associated variance-covariance matrix (VCM) can be derived by applying
the variance-covariance propagation law to Eq. (3.21) as

Cx̂x̂ = σ 2
0 · H QZ3 HT = σ 2

0 · (AT WZ3 A)−1. (3.23)

The a posteriori variance of unit weight σ̂ 2
0 represents an estimate of σ 2

0 and can
be computed from the weighted sum of squared residuals and (n − u) degrees of
freedom:

σ̂ 2
0 = vT WZ3v

n − u
, (3.24)

where n is the number of observations, and u is the number of unknown parameters.
Using Eq. (3.18), the vector of least-squares residuals v is calculated as

v = A · �x̂ − �lZ3. (3.25)

It is important to note that the formal VCM of the estimated unknown parameters
Cx̂x̂ is usually over-optimistic due to the unrealistic assumption that GPS observa-
tions are physically uncorrelated (see Sect. 3.2.4). For a more detailed discussion
of the (simplified) functional model of PPP, the reader is referred to Teunissen and
Kleusberg (1998, pp. 187–230), Hofmann-Wellenhof et al. (2008, pp. 166, 254), and
Kouba (2009).

http://dx.doi.org/10.1007/978-3-642-34836-5_2
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Table 3.5 Error effects limiting the precise point positioning (PPP) quality

Satellite-specific effects Satellite orbit and clock products
Satellite antenna models
Satellite phase wind-up effecta

Satellite hardware delay

Atmospheric effects Ionospheric effects
Tropospheric effects

Site-specific effects Multipath effects
Receiver antenna models
Receiver hardware delay

Site displacement effects Effects of the solid Earth tides
Ocean loading displacement
Deformation due to polar motion
Sub-daily variations of the ERPb

Atmospheric pressure loading
Further loading displacements

Relativistic effects Effects on the equation of motion
Shapiro (gravitational) time delay
Effects on satellite clocks
Effects on receiver clocks

a Also known as phase polarisation effect (Steigenberger 2009, p. 35)
b Earth rotation parameters, i.e., pole coordinates (x p , yp) and UT1−UTC

3.2.3 Error Sources and Effects

Section 3.2.2 only presented the simplified functional model for point positioning
using dual-frequency carrier-phase observations. To exploit the full accuracy poten-
tial of PPP, additional correction terms or models are necessary to account for the
satellite-specific, atmospheric, site-specific, site displacement and relativistic effects.
This section provides an overview of these error sources, with a particular focus on
their influences in the measurement and solution domains. The effects to be discussed
in the following text are summarised in Table 3.5.

Satellite-Specific Effects

Satellite orbit and clock products. Over the past 15 years, the precision of the IGS
final orbit products has improved from about 30 cm to about 2 cm. Furthermore,
the IGS rapid combined products, which are generated using fewer tracking stations
and with faster delivery times (17–41 h latency), are now more precise than the best
analysis centre’s (AC) final solution. For the GPS satellites, the largest uncertainty in
the orbit determination is due to the solar radiation pressure which can be considered
by estimating the so-called dynamical parameters in an enhanced orbit model, for
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example, the one implemented in the Bernese GPS Software 5.0 (Beutler et al.
1994; Dach et al. 2007, pp. 31, 32). Being consistent with the orbit precision, the
current IGS final clock solutions are estimated to be precise at the 0.1 ns level.
After removing the small biases, the satellite clocks produced by different AC agree
with standard deviations of 0.03–0.07 ns or 1–2 cm (http://acc.igs.org). Within the
framework of the IGS Real-Time Pilot Project, real-time GNSS clock products with
a precision of 0.5 ns will be available to users via Internet and other economical
data streaming technologies. At the moment of writing, clock corrections for the
GLONASS satellites are provided by the Information-Analytical Centre (IAC) and
the European Space Operations Centre (ESOC) with a sampling interval of 5 min
and 30 s, respectively. A comparison of the GLONASS clock products from both AC
showed an agreement at the 0.08 ns level (Springer and Dach 2010).

Satellite antenna models. The necessity for correcting the separation between the
GPS satellite centre of mass (COM) and the antenna phase centre (APC) arises from
the fact that the force models for satellite orbit determination refer to the satellite
COM, while the measurements are related to the APC. Starting from November 5,
2006 (GW 1400), the IGS convention applies the so-called absolute phase centre
model igs05 (igs05_wwww.atx2, wwww: GPS week of the latest update), includ-
ing the satellite-specific z-offsets with an accuracy of several centimetres and the
block-specific, nadir-dependent phase centre variations (PCV) with a precision at
the sub-millimetre level (Schmid et al. 2007). The PCV of the individual satellites
within one block type are quite similar, while large differences of up to 70 cm are
present in the z-offsets within the Block II/IIA satellites. The GPS satellite-specific
z-offsets vary from 0.5 to 2.65 m, and the block-specific PCV values reach up to about
1 cm (Karabatić 2011, pp. 25, 26). For the horizontal satellite antenna phase centre
offsets (PCO), i.e., x- and y-offsets, the block-specific values provided by satellite
manufacturers are used in igs05. In the case of PPP, the neglect of the satellite PCO
may cause systematic errors of several centimetres in the horizontal components and
up to 10 cm in the vertical component, whereas the non-consideration of the satellite
PCV leads to a maximum error of 1 mm in the vertical component (Heßelbarth 2009).

Satellite phase wind-up effect. The phase wind-up effect occurs due to changes in
the mutual orientation of the transmitting satellite and the receiving antenna. For
a static receiver, its antenna remains oriented towards a fixed reference direction
(usually north), while the GPS satellite antennas undergo rapid rotations of up to
one revolution within less than half an hour when passing the subsolar point (the
so-called noon turn with the Sun-satellite-Earth constellation) and after leaving the
Earth’s shadow (the so-called midnight turn with the Sun-Earth-satellite constella-
tion). Since about 1994, most of the IGS AC employ the phase wind-up correction
model proposed by Wu et al. (1993), which is only applicable to static receivers.
Beyerle (2009) generalised this model for arbitrary receiver antenna orientations
and pointed out the necessity of the phase wind-up correction in GPS reflectometry.

2 ftp://igscb.jpl.nasa.gov/igscb/station/general/pcv_archive

http://acc.igs.org
ftp://igscb.jpl.nasa.gov/igscb/station/general/pcv_archive
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This satellite-specific effect is significant for PPP when fixing the IGS satellite orbits
and clocks, as it can reach up to one half of the wave length and result in dm-level
position errors (Kouba 2009). For a detailed discussion on the theoretical background
of this phenomenon, see, for example, Tetewsky and Mullen (1997). Practical correc-
tion models for the receiver phase wind-up effect during kinematic PPP are presented
in Le and Tiberius (2006).

Satellite hardware delay. The hardware delays in the satellite and receiver electronics
lead to non-integer ambiguities and cause biases between the code signals on L1
and L2, also known as inter-frequency biases. Since the hardware delays are fully
correlated with the clock parameters, the resulting biases can only be determined in
a differential way as differential code biases (DCB; Steigenberger, 2009, p. 16). The
inter-frequency P1P2-DCB can be obtained from a global ionosphere analysis and
vary from −5 to 8 ns for the GPS satellites. The biases between the two types of L1
code measurements, referred to as the intra-frequency P1C1-DCB, can be computed
within a global clock analysis using the LC3. The magnitude of the P1C1-DCB is
approximately one third of the P1P2-DCB, ranging between −2 and 2 ns. As shown
in Dach et al. (2007, pp. 281, 282), the satellite-specific DCB values are rather stable
over time. The inter-frequency biases play an important role in the determination
of absolute ionosphere parameters from dual-frequency (raw or smoothed) code
measurements (Newby 1992; Rideout and Coster 2006). The intra-frequency biases
must be considered when estimating satellite clocks or solving ambiguities using code
observations, for example, by means of the Melbourne-Wübbena linear combination
LC6 [see Eq. (3.8); Dach et al. 2007, p. 182].

Atmospheric Effects

Ionospheric effects. Extending from an altitude of about 50 km to about 1,000 km, the
ionosphere speeds up the propagation of the carrier-phase beyond the speed of light,
while it slows down the PRN-code by the same amount. Since the ionosphere is a dis-
persive medium for microwaves, the resulting delay is frequency-dependent. More
precisely, the lower the frequency is, the larger the delay will be. The ionospheric
delay is proportional to the total electron content (TEC) along the GPS signal path,
which in turn depends on the time of day/year, the 11 year solar cycle and the
geographical location (El-Rabbany 2006, p. 53). The maximum ionospheric delay
appears in the region about 10–15◦ north and south of the geomagnetic equator where
the Earth’s magnetic field is horizontal. The use of the LC3 eliminates the first-order
(99.9 %) ionospheric effect reaching up to 150 m at low elevation angles during the
ionospheric maximum. The second-order delay may cause a range bias of up to 4 cm
at a satellite elevation angle of 10◦, while the magnitude of the third-order effect is
about 1–4 mm (Steigenberger 2009, p. 26). Analysing the second-order ionospheric
delay, Elsobeiey and El-Rabbany (2011) showed that its effects on GPS satellite orbit
and clock reach up to 2 cm and 0.067 ns (i.e., a range error of 2 cm), respectively.
Moreover, the consideration of the second-order effect, along with advanced tro-
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pospheric models, can improve the PPP coordinate solution by 3 mm and reduce the
convergence time by 15 %. Further information about the higher-order ionospheric
effects and their impact on GPS parameter estimates can be found in Bassiri and Hajj
(1993), Kedar et al. (2003), Fritsche et al. (2005), Hernández-Pajares et al. (2007)
and Pireaux et al. (2010).

Tropospheric effects. The troposphere is the lowest part of the Earth’s atmosphere
and reaches up to 20 km at the equator and 7 km at the poles. It contains about 80 %
of the atmospheric mass and 99 % of the water vapour. Unlike the ionosphere, the
troposphere is electrically neutral and is a non-dispersive medium for radio frequen-
cies below 15 GHz (Hofmann-Wellenhof et al. 2008, p. 128). As a result, it delays the
GPS phase and code measurements identically. The tropospheric delay is minimal at
the tropospheric zenith and is equal to about 2.4 m at sea level. Subdividing the total
zenith path delay (ZPD) into a dry (ZDD) and a wet (ZWD) component, the ZDD
amounts to about 90 % of the ZPD and increases by a factor of 10 at an elevation
angle of 5◦. For more accurate weather forecasts and a better understanding of the
Earth’s climate system, the tropospheric wet delay has been exploited to reconstruct
high-resolution atmospheric water vapour fields at global and regional scales (Bevis
et al. 1992, 1994; Businger et al. 1996; Ware et al. 1997; Alber et al. 2000; Baltink
et al. 2002; Troller 2004; Troller et al. 2006; Bender and Raabe 2007; Luo et al.
2007a,b, 2008b; Morland and Mätzler 2007; Bender et al. 2008, 2011a,b; Lutz 2009;
Fuhrmann et al. 2010; Karabatić 2011). As can be seen from Eq. (3.13), high-quality
ZDD and accurate MF are essential for a reliable ZWD determination, particularly
when including low-elevation GPS data.

The ZDD derived based on pressure level data from numerical weather models
(NWM) provided, for example, by the European Centre for Medium-Range Weather
Forecasts (ECMWF; Woods 2006), is temporally variable and delivers a more real-
istic a priori mode than that obtained using the standard atmosphere (STDAMT;
NOAA/NASA/USAF 1976). Steigenberger (2009, p. 23) showed cm-level biases
between the ZDD computed using the STDATM and the ECMWF data, where the
maximum bias of 19 cm was found in Antarctica. In the case that neither near-ground
meteorological measurements nor representative weather model data are available
for the GPS site, Luo et al. (2012a) proposed a height-dependent correction model for
the ZDD calculated on the basis of the STDATM. By incorporating freely available
regional surface meteorological data, this approach significantly reduces the mean
bias in the a priori ZDD from several centimetres to about 5 mm. This correction
model has been experimentally applied to regional water vapour determination using
PPP (Fuhrmann et al. 2010, Sect. 8.1).

Up-to-date tropospheric mapping functions mainly have the continued fraction
form proposed by Marini (1972), which was later modified by Herring (1992) and
Niell (1996). The Niell mapping function (NMF; Niell 1996), derived based on
radiosonde data, has the main advantage that the function value only depends on
the day of year and the site location, but the disadvantages of low temporal/spatial
(1 day/15◦ in latitude) resolution and the neglect of short-term variations of several
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hours to days (Niell 2001). Furthermore, the dry NMF unrealistically assumes the
same seasonal behaviour of the southern and northern hemispheres.

Recent mapping functions, such as the isobaric mapping function (IMF; Niell
2000) and the Vienna mapping function (VMF1; Boehm et al. 2006b), rely upon the
NWM and have an improved temporal resolution of 6 h. The IMF inputs include
the latitude and height of the station, the height of the 200 hpa pressure level and
the ratio of the wet delay along a geometric path at an elevation angle of 3◦ to the
zenith wet delay. The VMF1 was developed by direct ray tracing through the ECMWF
weather model. Using the VMF1 instead of the NMF in GPS data analysis, Boehm
et al. (2006b) found significant station height changes by up to 1 cm and precision
improvements between 3 mm and 1 cm. Applying a spherical harmonic expansion up
to degree and order 9 to the VMF1 parameters on a global grid, the global mapping
function (GMF; Boehm et al. 2006a) represents an easy-to-implement and consistent
version of the VMF1. Although the GMF is less accurate than the VMF1 in terms of
modelling short-term variations, it provides more reliable height estimates than the
NMF. For an elevation angle of 3◦, biases of about 0.1 between the dry NMF and
GMF are shown in Steigenberger (2009, p. 24). Together with the global pressure
and temperature model (GPT; Boehm et al. 2007), the GMF is particularly applicable
if the VMF1 is not implemented or the surface meteorological data are not available.
In addition to the mapping functions in the form of continued fraction, Saha et al.
(2010) proposed a new dry Tropo-Chi MF by modifying the analytical solution of
the Chapman grazing incident (Chi) function. Using the Tropo-Chi function instead
of the dry NMF or GMF, the vertical position error was reduced by up to about 1 cm
in the Indian region.

If low-elevation data are included, the azimuthal asymmetry of the tropospheric
delay at an observation site should be considered by additionally estimating hori-
zontal troposphere gradients. These parameters describe a tilting of the tropospheric
zenith (i.e., the direction with the minimal tropospheric delay) with respect to the
geometrical zenith. For an elevation cut-off angle of 10◦, Fuhrmann et al. (2010,
p. 62) obtained meaningful and interpretable horizontal troposphere gradients from
static PPP at a regional scale. A more detailed discussion of tropospheric gradients
can be found in Meindl et al. (2004) and Dach et al. (2007, Sect. 11.4.3).

Site-Specific Effects

Multipath effects. Being a major error source of cm-level positioning, multipath
effects distort the original GPS signals through interference with diffused and
specularly reflected signals, primarily at the receiver antenna. The phase multipath
error can reach a quarter of a cycle, that is about 4.8 cm for the L1 and 6.1 cm for
the L2 carrier (Hofmann-Wellenhof et al. 2008, p. 157). However, this value may
increase when using phase linear combinations, for example, the maximum mul-
tipath error for the LC3 is 21.7 cm (Wildt 2007, p. 61). The site-specific multipath
effects can be subdivided into a near-field and a far-field component. Far-field effects
show short-periodic properties (up to half an hour; Seeber 2003, p. 317) and can be
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averaged out over a long observation period (e.g., several hours). In contrast, near-
field effects have non-zero mean and exhibit long-periodic characteristics (up to
several hours; Wübbena et al. 2006a). They can be determined during the course of
the robot-based absolute antenna calibration (Wübbena et al. 2006b, 2011). Purely
from geometry, signals received at low (high) satellite elevation angles are more
susceptible to the far-field (near-field) multipath.

A straightforward option for multipath reduction is to avoid, as far as possible,
reflecting objects in the vicinity of the receiver antenna. Further methods for multipath
mitigation can be classified as follows: (1) antenna-based attenuation (e.g., improving
the antenna gain pattern by choke rings, taking advantage of the right-handed sig-
nal polarisation and using absorbent antenna ground planes), (2) improved receiver
architecture (e.g., employing the Gated Correlator, the advanced Strobe Correlator
and the enhanced MEDLL3; Ray 2006) and (3) advanced signal and data processing
(e.g., exploring signal-to-noise ratio measurements, smoothing carrier-phases and
performing stacking and filtering techniques). For more information about multipath
mitigation, see, for example, Dilßner (2007, Sect. 3.1.7) and Hofmann-Wellenhof
et al. (2008, Sect. 5.6.3).

Receiver antenna models. For a receiver antenna, the antenna phase centre (APC)
at which the GPS signal is received does not necessarily coincide with the antenna
geometrical (mechanical) centre. The antenna PCO is the difference between the
mean electrical APC and the antenna reference point (ARP) that is defined by the
IGS convention as the intersection of the vertical antenna axis of symmetry with
the bottom of the antenna. As demonstrated by Hofmann-Wellenhof et al. (2008,
pp. 150, 154), the location of the mean APC is a function of the elevation cut-off
angle. The deviation between the APC of an individual phase measurement and the
mean APC is known as the antenna PCV, which is frequency-dependent and varies
with elevation, azimuth and intensity of the observed signal. The PCO can reach up
to 10 cm, while the PCV values are usually smaller than 2 cm for geodetic antennas
(Zeimetz and Kuhlmann 2006). The magnitude of range errors caused by the receiver
antenna PCO and PCV depends on the antenna type and is typically of the order of
a few centimetres (El-Rabbany 2006, p. 50).

For unchanged receiver antennas, the effects of the PCO and PCV are essentially
stable, providing the prerequisite for antenna calibration. Three major calibration
methods are available: (1) relative field calibration using data collected on short
baselines (Mader 1999), (2) absolute field calibration, where the GPS antenna is
rotated and tilted by a high-precision robot (Wübbena et al. 2000) and (3) absolute
calibration performed in an anechoic chamber (Zeimetz and Kuhlmann 2006). The
relative method determines the PCO and PCV with respect to a reference antenna
(e.g., AOAD/M_T choke ring antenna). Generally, PCV values down to an eleva-
tion angle of 10◦ are determined due to the higher noise level of low-elevation data.
Allowing for an enhanced error separation and bias removal, the absolute methods

3 Multipath estimating delay lock loop.
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calibrate each antenna individually and provide elevation- and azimuth-dependent
PCV down to 0◦. The calibration accuracy represents the deviations between repeated
calibrations using the same antenna and method, but under different observational
conditions, and is better than 1 mm for elevation angles above 10◦ and about
1–2 mm below 10◦ (Zeimetz and Kuhlmann 2006; Görres 2010a). The converted
robot calibration values with respect to the AOAD/M_T antenna are found to be
very consistent with the relative IGS values at the 1–2 mm level (Rothacher 2001).
The two absolute calibration methods agree with each other at the level of 1–2 mm
(Görres et al. 2006; Zeimetz and Kuhlmann 2008). Using the IGS orbit and clock
products in PPP, the applied receiver antenna models should conform to the current
IGS convention (Kouba 2009).

Receiver hardware delay. By convention, the IGS precise satellite clock corrections
must be consistent with the P1 and P2 observables. Since the clock analysis is per-
formed on the basis of the LC3, each clock correction contains the ionosphere-free
linear combination of the unknown P1 and P2 code biases. In order to be fully con-
sistent with the satellite clock information, the code tracking data must be corrected
depending on the receiver type with respect to the code registration, such as P1/P2
receivers observing C1, P1, P2 (e.g., Ashtech Z18, Javad, Topcon), C1/X2 cross-
correlation receivers (e.g., Rogue, Trimble 4000) and C1/P2 receivers (e.g., recent
Leica and Trimble receiver models). Otherwise, the receiver clock and position solu-
tions may be degraded. It should be noted that certain GNSS receivers cannot be
uniquely attributed to one of the classes mentioned above. For example, the Trimble
NetR5 behaves like a C1/P2 receiver for GPS and like a P1/P2 receiver for GLONASS
(Dach et al. 2007, pp. 279, 282). By an agreed convention, no P1P2-DCB correc-
tions are applied in any IGS AC analysis. Therefore, such DCB calibrations are not
necessary when using the LC3 of P1/P2 code data or when the IGS clock products
are held fixed or constrained in dual frequency PPP (Kouba 2009). Nevertheless, the
pseudo-range observations from C1/X2 and C1/P2 receivers must be corrected for
the P1C1-DCB to achieve full consistency with P1/P2 data, or precise satellite clock
information (Dach et al. 2007, p. 283).

Site Displacement Effects

Effects of the solid Earth tides. The solid Earth tides describe the elastic response of
the Earth’s crust to the external tide-generating potential of the Sun and the Moon.
They result in permanent and periodic site displacements in the radial and transverse
directions. The radial component of the permanent tidal effect amounts to about
−12 cm at the poles and about 6 cm at the equator. Adding this effect to the “conven-
tional tide-free” position (e.g., ITRF), one obtains the so-called “mean tide” position
(Petit and Luzum 2010, p. 108).

The periodic site displacements which can be subdivided into long-periodic, diur-
nal and semi-diurnal movements are typically described by spherical harmonics in
terms of the Love and Shida numbers (Mathews et al. 1997). The values of these
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numbers depend on the site’s latitude and the tidal frequency. According to the
current IERS Conventions 2010 (Petit and Luzum 2010, p. 103), the periodic site
displacement vector is computed by means of a two-step procedure. The first step
considers the degree 2 and degree 3 tides using the respective nominal values of
the Love and Shida numbers. For the degree 3 tides, only the Moon’s contribution,
causing a radial displacement of up to 1.7 mm, needs to be taken into account. The
second step accounts for the frequency-dependent deviations of the Love and Shida
numbers from their nominal values as well as the out-of-phase contribution from the
zonal tides.

Comparing the solid Earth tide models specified in the IERS Conventions 1992
and 2003, Watson et al. (2006) found aliased annual and semi-annual signals in the
time series of height differences. The signal amplitudes increase as a function of
latitude, amounting to 0.4 mm at the equator and 2 mm at the geographical poles.
Furthermore, mm-level differences with a dominant diurnal frequency were detected
in the zenith path delay (ZPD) estimates. This indicates that the choice of the solid
Earth tide model is an important issue for an accurate ZPD evaluation, and thus may
contribute to the error budget in the PPP-based water vapour determination.

Ocean loading displacement. The ocean loading effects on the underlying crust
originate from the ocean tides and are dominated by diurnal and semi-diurnal periods.
In comparison to the solid Earth tides, the ocean tide loading is more localised and the
resulting site displacements are almost one order of magnitude smaller, reaching up to
several centimetres in the vertical component. In addition, the non-tidal ocean loading
effect caused by varying sea surface height and changing density in the water column
results in mm-level vertical site displacements for coastline stations (Karabatić 2011,
p. 33; Williams and Penna 2011). For cm-level kinematic or short-term (several hours)
static PPP along coastal regions, the ocean loading effects must be taken into account.
When performing static PPP on a daily basis, where troposphere and clock estimates
are required, ocean loading corrections must also be included, unless the station
is more than 1000 km away from the nearest coastline (Kouba 2009). Otherwise,
the ocean loading effects will map into the solutions for troposphere parameters and
receiver clocks (Dragert et al. 2000). The neglect of ocean loading displacement may
lead to station height errors of up to 5 cm (Heßelbarth 2009). In the current IERS
Conventions 2010 (Petit and Luzum 2010, p. 109), the ocean loading displacement
is characterised by site-dependent tidal coefficients. Since 2007, most IGS AC apply
the ocean loading corrections considering the sub-daily centre of mass (COM) tidal
variations when generating their orbit and clock products (Ray and Griffiths 2008;
Kouba 2009). Therefore, using the IGS products in a PPP solution, the ocean loading
corrections should not include the COM motion.

Deformation due to polar motion. Polar motion describes the changes in the Earth’s
rotation axis relative to the Earth’s crust as viewed from an Earth-fixed reference
system (e.g., ITRF). It also causes periodic site displacements of up to several cen-
timetres due to the resulting variations in the Earth’s centrifugal potential. Unlike
the solid Earth tides and the ocean loading effects, the pole tides do not average to
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nearly zero over 24 h and have predominantly Chandler (∼435 days) and annual
periods (Torge 2001, p. 34). Considering the fact that the pole coordinates amount to
0.8 arcsec at most, the maximum site displacements due to polar motion can reach
about 25 mm in the radial and 7 mm in the horizontal directions (Petit and Luzum
2010, p. 116). Using the second degree tidal Love and Shida numbers, most IGS
AC apply the pole tide corrections when generating their orbit and clock products
(Kouba 2009).

Sub-daily variations of the ERP. The sub-daily variations of the Earth rotation para-
meters (ERP), i.e., pole coordinates (x p, yp) and UT1 − UTC, are dominated by
diurnal and sub-diurnal periods of ocean tide origin, and can reach up to 3 cm on
the Earth’s surface (Kouba 2009). Much like the ocean tide loading, the sub-daily
ERP variations average out to nearly zero over a period of 24 h. Nevertheless, for
short-term PPP, sub-daily ERP corrections are still required to achieve sub-centimetre
positioning precision. This arises from the fact that the sub-daily ERP variations are
not included in the current IERS Conventions 2010 (Petit and Luzum 2010, pp. 50,
52), while they have been considered in all IGS solutions since June 30, 1996 (Héroux
and Kouba 2001). In particular, the instantaneous sub-daily ERP must be added to
the tide-free IERS ERP values prior to all transformations between the ITRF and
the ICRF (International Celestial Reference Frame). As Kouba (2002b) showed, an
inconsistent application of the sub-daily ERP model by the IGS AC can result in
significant orbit differences exceeding the 5 cm level. Moreover, the neglect of the
sub-daily ERP variations in short-term PPP may introduce errors of more than 1 cm
in the position, ZPD and receiver clock estimates.

Atmospheric pressure loading. The atmospheric pressure loading (APL) can be
explained as the displacements of the Earth’s crust due to the temporal variations in
the geographic distribution of atmospheric mass. The APL can displace the positions
of geodetic sites by as much as 10–25 mm vertically and one-tenth to one-third
of this magnitude horizontally, particularly in the continental medium- and high-
latitude regions where the largest pressure variations prevail (van Dam et al. 1994;
Mangiarotti et al. 2001; Brondeel and Willems 2003; Rodrigues 2007). Like the
ocean loading, the APL can also be separated into a tidal and a non-tidal part, where
the non-tidal component plays a dominant role (Karabatić 2011, p. 33).

The geophysical approach for modelling the APL convolves Green’s function
(Farrell 1972) with a global pressure field provided by the ECMWF or by the NCEP
(National Centres for Environmental Prediction) operational analyses. The ocean’s
response to the APL is modelled as an inverted barometer (Sun et al. 1995; Petrov
and Boy 2004). This geophysical approach, however, suffers from the availability
of a global pressure data set with a minimum latency of 24 h, the low temporal
and spatial resolution of the pressure data itself, as well as uncertainties in Green’s
function and in the ocean response model (McCarthy and Petit 2004, p. 85). The
APL corrections resulting from the geophysical model can be used to adjust site
coordinates, to correct original observations (Tregoning and van Dam 2005) and to
estimate regression coefficients by fitting local pressure variations (van Dam et al.
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1994; Kaniuth and Vetter 2006). The current IERS Conventions 2010 suggest the
S1–S2 APL tidal model (RP03) derived from the ECMWF operational global surface
pressure fields with a spatial resolution of 1.125◦. The diurnal (S1) and semi-diurnal
(S2) atmospheric tides exhibit amplitudes of up to 1.5 mm in the equatorial regions.
Assuming that the oceans respond to the APL as the solid Earth, the three-dimensional
surface displacements can be determined using the elastic Green’s functions. Gridded
values of the predicted surface displacements from the RP03 model are available
online4. In fact, corrections for the vertical displacement are usually sufficient (Petit
and Luzum 2010, p. 112).

Recent studies presented in Dach et al. (2010) showed the advantages of applying
the APL corrections at the GPS observation level as well as their impacts on geodetic
datum definition and precise orbit determination. According to Steigenberger et al.
(2009), parts of the APL-induced deformation may be absorbed by the troposphere
modelling when using the GPT together with the GMF. This can be prevented by
applying the ECMWF-derived a priori ZDD and the VMF1 so that the complete
APL effect remains in the site coordinate estimates. At the time of writing, APL
displacements have not been considered in the IGS products. However, in order to
improve the quality of GPS data analysis, the IGS AC are required to apply the APL
corrections, for example, by means of the RP03 model.

Further loading displacements. Further loading effects due to changes in snow and
ice cover, soil moisture and groundwater, as well as in ocean-bottom pressure, also
contribute to site displacements. Nominally, they have a comparable or smaller mag-
nitude than the APL. However, at seasonal time scales, hydrological loads may cause
larger surface displacements than air pressure, reaching up to 30 mm in the vertical
component (Blewitt et al. 2001; Schuh et al. 2004). Models for non-tidal motions
associated with changing environmental loads are still under development. Thus,
they are not included in the current IERS Conventions 2010 (Petit and Luzum 2010,
p. 99). Since the unmodelled loading effects remain as signals in the geodetic time
series results, they can be extracted in post-analysis studies, for example, based on
long-term (several years) GPS coordinate time series and GRACE (Gravity Recovery
And Climate Experiment) surface load estimates (Tregoning et al. 2009).

Relativistic Effects

Effects on the equation of motion. The major acceleration correction to the equation
of motion, known as the Schwarzschild term, is due to the general relativistic curva-
ture of space-time caused by the Earth’s gravity field. In the case of GPS, it can reach
up to 3 · 10−10 ms−2 (Zhu and Groten 1988). The much smaller effects of the de Sit-
ter precession (2 · 10−11 ms−2) and the Lense-Thirring precession (1 · 10−12 ms−2)
can be neglected (Steigenberger 2009, p. 36). While the Schwarzschild term pri-
marily results in a secular shift in the argument of perigee, the Lense-Thirring

4 http://geophy.uni.lu/ggfc-atmosphere/tide-loading-calculator.html

http://geophy.uni.lu/ggfc-atmosphere/tide-loading-calculator.html
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and de Sitter effects cause precessions of the orbital plane. Within the context of
orbit determination, the neglect of the Schwarzschild term may lead to an apparent
reduction of the orbit radius by 4 mm for circular orbits at all heights (Petit and
Luzum 2010, p. 156).

Shapiro (gravitational) time delay. The Shapiro time delay, in this case, describes the
increased propagation time of GPS signals due to the space-time curvature induced
by the Earth’s gravity field. The propagation correction to obtain the Euclidean
distance depends on the geometry between the station, the satellite and the geocentre,
amounting to a maximum of about 19 mm. Note that this maximum only applies to
absolute point positioning (Zhu and Groten 1988; Hofmann-Wellenhof et al. 2008,
p. 145).

Effects on satellite clocks. By convention, the relativistic effects on satellite clocks
are subdivided into a constant and a periodic component. The constant part is
attributed to both general and specific relativity caused by the gravitational poten-
tial differences and the mean satellite velocity, respectively. This component can
be compensated by shifting the nominal frequency ( f0 = 10.23 MHz) of all GPS
satellite frequency standards by a constant clock rate of 
 f/ f0 = −4.4647 · 10−10

(ICD-GPS-200C 1993, p. 11), which indicates that the standard clock in orbit will
run faster by 38.575 μs/day. More specifically, the general relativistic time gain due
to the satellite’s altitude is about 45.6 μs/day, while the special relativistic time loss
because of the satellite’s orbital speed is about 7.2 μs/day (Mungan 2006). Based on
empirical analyses of the IGS final combined clock products, Kouba (2002a) found
that the differences in the constant part are quite insignificant from satellite to satel-
lite (i.e., about 0.01 μs/day). Taking the different mean orbit altitudes of the GPS
satellites into consideration, the actual relativistic frequency offset for an individual
satellite can differ from the constant clock shift by up to 10−13 (Petit and Luzman
2010, p. 154).

The periodic part is primarily due to the eccentricity of the satellite’s orbit. The
amplitude of the periodic correction is proportional to the orbit eccentricity eo,
amounting to about 2.29 · eo μs. For GPS orbits, eo can reach up to 0.02, lead-
ing to a maximum clock correction of 46 ns (Kouba 2002a; Petit and Luzum 2010,
p. 154). This conventional periodic correction given in ICD-GPS-200C (1993, p. 88)
has been applied by the IGS for its official GPS and GLONASS clock products.
However, it can introduce small clock rate errors of up to about 0.2 ns/day, as well
as periodic errors with amplitudes of about 0.1 and 0.2 ns, and periods of about 6 h
and 14 days, respectively. These small relativistic error effects are caused by the
gravity field oblateness term J2 and will become more significant for the future GPS
and Galileo satellites which are equipped with better frequency standards. While the
small clock rates and the 14 day periodic errors are completely absorbed into the
daily clock rates, the 6 h periodic effects necessitate frequent clock estimation and
distribution (e.g., hourly; Kouba 2004).
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Effects on receiver clocks. The Sagnac effect describes a relativistic effect on the
receiver clock induced by the Earth’s rotation while the GPS signal propagates from
the satellite to the receiver. It can lead to a relative frequency shift of 
 f/ f0 = 10−12,
corresponding to a clock error of 10 ns or 3 m after 3 h (Hofmann-Wellenhof et al.
2008, p. 147). The Sagnac effect is generally corrected by the receiver software, and
a detailed description of the correction model is provided by Marmet (2000). For
more information about relativity in GPS, see, for example, Ashby (2002), Kouba
(2002a, 2004) and Petit and Luzum (2010, Chap. 10).

3.2.4 Stochastic Model

In addition to the functional model defining the mathematical relationship between
GPS measurements and the unknown parameters, the stochastic model describing
the observation’s statistical properties is also needed for a least-squares (LS) evalu-
ation. The stochastic model is generally expressed by a variance-covariance matrix
(VCM) that characterises the observations’ precision and correlations by the main
and off-diagonal elements, respectively (Tiberius et al. 1999). To obtain the best
linear unbiased parameter estimates, the inverse of the cofactor matrix Qll should
be used as the weight matrix W in the LS algorithm (see Sect. 2.1.3). As presented
in Table 2.2, the stochastic model affects not only the estimates, but also the accu-
racy measures of the unknown parameters such as phase ambiguities (Teunissen
et al. 1998; Teunissen 2000; Wang et al. 2002; Luo et al. 2008a,d), site coordinates
(Howind et al. 1999; Jin et al. 2005; Schön and Brunner 2008b) and troposphere
parameters (Jin and Park 2005; Luo et al. 2008a,c,d). A realistic accuracy assess-
ment plays a key role in quality control and integrity monitoring (Teunissen 1998;
Kim and Langley 2001; Wieser and Brunner 2002).

In contrast to the functional model, which has been intensively investigated by
accounting for a majority of the error sources and effects discussed in Sect. 3.2.3,
the commonly used stochastic model (VCM) still exhibits deficiencies arising from
unrealistic observation weighting (variances) and the neglect of physical correla-
tions between GPS measurements (covariances). The physical correlations can be
subdivided into temporal, spatial and cross correlations that describe observational
dependencies over time, in space and between frequencies, respectively. In order to
achieve a better understanding of each constituent of the stochastic model, Fig. 3.2
displays schematically the structure of a fully populated VCM (CZ) of the orig-
inal undifferenced GPS phase observations from one station (R) to four satellites
( j, k, l, r ) at two epochs (t1, t2).

The main diagonal elements of the VCM characterise the observation quality and
are different from each other with respect to satellite, frequency and epoch, i.e.,

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
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Fig. 3.2 Schematical presentation of a fully populated variance-covariance matrix (VCM) CZ of
the original undifferenced phase observations in PPP (SV: space vehicle)
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The off-diagonal elements represent the different types of physical correlations,
where the so-called inter-physical correlations, including more than one correlating
component [e.g., σ

jk
R,12(t1), σ

jk
R,1(t12), σ

j
R,12(t12)], are assumed to be absent. Using

a simplified VCM, for example, only containing the diagonal elements of variances,
will result in biased parameter estimates and over-optimistic formal accuracy mea-
sures (El-Rabbany 1994, p. 21; Howind 2005, p. 30). In the following text, the main
properties of the stochastic components are described.

Variance

The variance of an individual GPS observation σ 2 can be obtained based on the a
priori variance factor σ 2

0 and the associated weight w using σ 2 = σ 2
0 /w (Hofmann-

Wellenhof et al. 2008, p. 239). The necessity of appropriate observation weighting
arises from the fact that the GPS measurements from different satellites at different
epochs cannot have the same precision (e.g., due to different atmospheric effects).
A precise observation should have a higher weight (or lower variance) and contribute
more to parameter estimation than an imprecise one. In statistical inferences and
quality control processes, improper weights may cause outliers to remain undetected
and truly high-quality observations to be rejected, leading to a considerable loss of
accuracy in spite of largely redundant observations. However, in the practice of GPS
data analysis, a realistic observation weighting turns out to be a difficult task due to
various factors such as tracking loop characteristics, receiver and antenna hardware
properties, signal strength, receiver dynamics, multipath and atmospheric effects,
and so forth (Wieser 2007).

The simplest weighting scheme assigns an identical weight of w = 1 to all obser-
vations of the same type recorded by the same receiver. Under the assumption of
uncorrelated GPS measurements, the VCM represents a scaled identity matrix. Due
to the unrealistic assumptions of uncorrelatedness and homoscedasticity (i.e., homo-
geneity of variance), this simplified stochastic model is inadequate for high-precision
GPS applications, particularly when including low-elevation observations (Luo et al.
2007c; Wieser 2007; Satirapod and Luansang 2008). The commonly applied variance
model for GPS phase observations, other than a scaled identity matrix, uses the satel-
lite elevation angle as an indicator for observation quality. The basic idea behind the
elevation-dependent weighting concept is that observations at lower elevation angles
suffer more strongly from atmospheric and multipath effects, hence are more noisy
than those at higher elevation angles. Table 3.6 summarises some commonly used
elevation-dependent variance models and the associated weight functions derived
with respect to the geometrically optimum observation in the zenith direction. By
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Table 3.6 Commonly used variance functions depending on the satellite elevation angle e

Notation Variance function σ 2
0 (e = 90◦) Weight function

CSC1
σ 2 = σ 2

0 /[2 sin(e)] if e < 30◦

σ 2 = σ 2
0 if e ≥ 30◦ σ 2

0 w = σ 2
0

σ 2

CSC2 σ 2 = a2 + b2/ sin2(e) a2 + b2

CSC3 σ 2 = [c + d/ sin(e)]2 (c + d)2

EXP σ 2 = [

m + n · exp(−e/e0)
]2 [

m + n · exp(−90◦/e0)
]2

(a) (b)

Fig. 3.3 Comparison of the commonly used elevation-dependent weight and cofactor functions
presented in Table 3.6 (CSC2(BS): a = 0 mm, b = 1 mm, Dach et al. 2007, p. 144; CSC2(GA):
a = 4.3 mm, b = 7 mm, King and Bock 2002, Chap. 5, pp. 9, 12; CSC3: c = 5 cm, d = 2 cm,
Ray and Griffiths 2008; EXP: m = 0.3 cm, n = 2.6 cm, e0 = 20◦, Han 1997)

specifying representative model parameters, these weight functions and the corre-
sponding cofactor values (q = 1/w) are compared in Fig. 3.3.

Comparing the weight and cofactor values shown in Fig. 3.3, particularly for
low satellite elevation angles between 3 and 10◦, these elevation-dependent weight
functions can be categorised into three groups: (1) CSC2 strongly downweighting
low-elevation observations, (2) CSC1 and CSC3 producing significantly higher
weights at low elevation angles and (3) EXP appearing to be a compromise between
(1) and (2). For elevation angles larger than about 55◦, the maximum difference in
the cofactor values is less than one. The variance function CSC2(BS) has been imple-
mented in the Bernese GPS Software 5.0 (Dach et al. 2007, p. 144), while the variance
model CSC2(GA) is available in the GAMIT GPS data analysis package (King and
Bock 2002, Chap. 5, p. 9). The CSC1 and CSC3 are employed by the IGS analysis cen-
tres (AC) GFZ (Geo-ForschungsZentrum, Potsdam, Germany) and NGS (National
Geodetic Survey, NOAA, USA), respectively. A detailed overview of the observa-
tion weighting schemes used by the IGS AC is provided by Ray and Griffiths (2008).
In comparison to the widely used cosecant (CSC) construction, the exponential vari-
ance function EXP proposed by Euler and Goad (1991) has the advantage of non-
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singularity in e = 0◦. The model parameters m, n and e0 (see Table 3.6) can be
determined depending on the receiver and observation types.

The elevation-dependent variance models assume a strong correlation between
the satellite elevation angle and GPS signal quality. They become inefficient for
observations which are strongly affected by multipath effects, signal diffraction and
receiver characteristics. For measurements collected under non-ideal observational
conditions, direct signal quality measures such as signal-to-noise ratio (SNR; see
Sect. 5.1) are more appropriate to assess the quality of GPS observations. In addi-
tion, since SNR values are generally available on both L1 and L2, the SNR-based
variance models account for the frequency-related differences in observation quality.
Langley (1997) showed the large potential of SNR as a key parameter in analysing
GPS receiver performance and provided a SNR-based variance model for phase
observations. In Sect. 5.2, this variance model will be discussed in more detail.

Instead of properly specifying σ0 and w, the variance of an individual GPS
observation can be determined using variance component estimation (VCE), for
example, by means of the MINQUE (minimum norm quadratic unbiased esti-
mation) procedure (Rao 1970, 1971). While the elevation-dependent and SNR-
based variance models use the observed information before a LS adjustment is
performed, the VCE is carried out based on the residuals obtained from a LS
evaluation. The basic assumption is that the LS residuals represent the same sta-
tistical properties as the true errors if the observation period is long enough to
remove all systematic effects. Comprehensive details of employing the VCE tech-
nique to estimate variance-covariance components of GPS observations can be found
in Wang et al. (1998), Satirapod et al. (2002), Tiberius and Kenselaar (2003),
Amiri-Simkooei (2007), Li et al. (2008, 2011) and Amiri-Simkooei et al. (2009).
Moreover, Bischoff et al. (2005, 2006) provided test methods to statistically verify
the hypothesis of heterogeneous variances, and estimation procedures to determine
the values of variances. For GPS PPP, Satirapod and Luansang (2008) compared the
MINQUE method with a scaled identity matrix and an elevation-dependent variance
model of the cosecant construction. Thereby, the stochastic model estimated using
the MINQUE method produced the most accurate coordinate estimates of both the
horizontal and vertical components.

Covariance

The covariances are the off-diagonal elements of the VCM and represent the dif-
ferent kinds of physical correlations between GPS observations, such as the spatial
correlation between different channels [e.g., ρ jk

R,1(t1)], the cross correlation between

the L1 and L2 carriers [e.g., ρ
j
R,12(t1)], and the temporal correlation between dif-

ferent epochs [e.g., ρ
j
R,1(t12)]. On the basis of the covariances, the corresponding

correlation coefficients quantifying the observational dependencies in space, between
frequencies, and over time can be expressed as

http://dx.doi.org/10.1007/978-3-642-34836-5_5
http://dx.doi.org/10.1007/978-3-642-34836-5_5
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ρ
jk
R,1(t1) = σ

jk
R,1(t1)

σ
j

R,1(t1) · σ k
R,1(t1)

, ρ
j
R,12(t1) = σ

j
R,12(t1)

σ
j

R,1(t1) · σ
j

R,2(t1)
,

ρ
j
R,1(t12) = σ

j
R,1(t12)

σ
j

R,1(t1) · σ
j

R,1(t2)
. (3.27)

Usually, the physical correlations are not considered in the stochastic model of
GPS observations. The spatial correlation between the observations from one site
to different satellites or from different sites to one satellite within one epoch is
due to the similar observational conditions for these measurements. In fact, this
kind of correlation makes the differencing technique applied in relative positioning
effective in mitigating error effects (see Sect. 3.3.3). Intuitively, observations being
spatially close to each other are more strongly correlated than those with a large spatial
distance. Applying the VCE method to residuals from a zero-baseline, Tiberius and
Kenselaar (2003) detected insignificant spatial correlation coefficients of the order
of −0.1–0.1, which cannot be directly transferred into PPP.

Analysing time series of the LS residuals on L1 and L2, Tiberius et al. (1999) found
considerable positive correlation between the L1 and L2 phase observations, partic-
ularly for the C1/X2 cross-correlation receivers. The detected cross-correlation coef-
ficients range between 0.3 and 0.7, depending on the receiver type. The correlation
between code and phase observations seems negligible (see also Bonna 2000). Using
the VCE technique, these results were verified by Tiberius and Kenselaar (2003).
Recent LS-VCE studies such as Amiri-Simkooei et al. (2009) showed significant
positive correlations of up to 0.8 between the L1 and L2 phase observations.

Since the residual systematic errors change slowly over time, temporal corre-
lation may exist between the observations from one site to the same satellite at
different epochs. The temporal correlation behaviour of GPS observations depends
not only on the satellite geometry, but also on the prevailing atmospheric conditions
(e.g., wind speed and direction; Schön and Brunner 2008a), the site-specific effects
(e.g., multipath impact; Amiri-Simkooei and Tiberius 2007; Nahavandchi and
Joodaki 2010) and the receiver characteristics (e.g., signal smoothing and filtering;
Tiberius et al. 1999; Amiri-Simkooei and Tiberius 2007). The larger the temporal
separation distance is, the weaker the temporal correlation will be. Applying
atmospheric turbulence theory to GPS carrier-phase data, Schön and Brunner
(2008b) determined temporal correlation lengths of about 300–600 s for GPS double-
difference observations. Smaller correlation lengths can be expected in the case of
PPP, since the double differencing procedure may increase the correlation time of
GPS phase observations (Nahavandchi and Joodaki 2010).

Variance-Covariance Propagation

The weight matrix WZ derived from the VCM CZ of the original phase observations
�Z, as shown in Fig. 3.2, cannot be directly substituted into Eq. (3.21) for WZ3 of
the LC3 measurements �Z3. Relying upon the linear relationship between �Z and



88 3 Mathematical Models for GPS Positioning

�Z3 formulated by the matrix DZ , the VCM of �Z3, which is denoted as CZ3, can
be obtained by applying the variance-covariance propagation law to CZ as

�Z3 = DZ · �Z, CZ3 = DZ · CZ · DT
Z . (3.28)

In fact, the matrix DZ expresses the ionosphere-free linear combination LC3 in
a matrix form and contains predominantly zero elements and the real-valued LC3
coefficients k1,3 and k2,3 [see Eq. (3.3) and Table 3.3]. According to the variance-
covariance structure shown in Fig. 3.2, Fig. 3.4 displays the construction of �Z,
DZ and �Z3. The matrix CZ3 computed using Eq. (3.28) represents a fully popu-
lated VCM for the LC3 observations. The corresponding weight matrix WZ3 can be
calculated as WZ3 = (CZ3/σ

2
3 )−1, where σ3 is given by Eq. (3.7). Then, WZ3 is

used to estimate the unknown parameters in a LS adjustment, along with the LC3
observation vector �Z3 and the design matrix A [see Eq. (3.19)].

Benefiting from the continuously improved orbit and clock products, PPP has
become a powerful technique with a promising future during the course of GNSS
evolution. To exploit its full accuracy potential, numerous studies have been carried
out aiming at ambiguity resolution, the integration of PPP with RTK and INS (inertial
navigation system), and the incorporation of precise atmospheric models (Bisnath
and Gao 2009). In contrast, little attention has been paid to the stochastic model
which undoubtedly plays a key role in outlier detection and integrity monitoring.
Focusing on the temporal correlation of GPS observation noise, Chaps. 7 and 8 will
extend the PPP stochastic model in a mathematically rigorous manner.

3.3 Relative Positioning

Relative positioning employs at least two receivers simultaneously tracking the same
satellites to determine the coordinates of an unknown point relative to a reference site
with precisely known coordinates. Benefiting from the differencing technique, rela-
tive positioning generally provides a higher accuracy than autonomous positioning.
Since the principle and the functional model of relative positioning are well doc-
umented in GPS literature (Hofmann-Wellenhof et al. 2008, Sect. 6.3), this section
gives a more detailed discussion of the error effects and the stochastic model with
respect to its structure, derivation and differences from that of PPP.

3.3.1 Introduction

For relative positioning, a minimum of four visible satellites is required at both
the reference site and the remote site with unknown position. Assuming that GPS
observations are sufficiently simultaneous (Wanninger 2000, p. 11), single-, double-,
and triple-differences can be formed between receivers, satellites, and epochs. The

http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_8
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Fig. 3.4 Construction of �Z , DZ and �Z3 corresponding to the VCM illustrated in Fig. 3.2
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terminus single-difference used in this thesis involves two receivers and one satel-
lite. This kind of single-difference eliminates the satellite clock bias and hardware
delay. In addition, atmospheric and orbit errors are reduced, particularly for short
baselines. Nevertheless, the ambiguities of single-differences are still non-integer
values due to the generally unequal receiver hardware delays. Double-differences are
obtained by subtracting two single-differences referring to the same baseline. The
elimination of the receiver clock biases is the main reason why double-differences
are preferably used. Since both the satellite and receiver hardware delays are can-
celled, the double-differenced phase ambiguities have the integer property. Triple-
differences, resulting from differencing double-differences between two epochs, can
be used to eliminate the time-invariant ambiguities, provided that the receivers did
not loose lock within this time interval. The triple-difference solution serves as an
important reference for cycle slip detection. Tropospheric effects, which usually do
not change rapidly with time, are considerably reduced on the triple-difference level.
However, this is not the case for ionospheric effects, which may show very rapid tem-
poral variations, particularly in the high northern and southern latitudes (Dach et al.
2007, pp. 39, 116). Mathematical formulations for the differenced phase equations
can be found in Hofmann-Wellenhof et al. (2008, Sect. 6.3.2).

Relative positioning can be performed in both static and kinematic modes, where
the static relative positioning with phase measurements is currently the most accurate
satellite-based positioning technique. Depending on the baseline length, the expected
accuracy using geodetic-type receivers is normally 5 mm + 0.5 ppm for the horizontal
components and 5 mm + 1 ppm for the vertical component, where ppm stands for
parts per million. For short baselines of up to 20 km, ambiguity resolution is a key
issue to ensure high-performance positioning. In this case, it is recommended to
resolve L1 and L2 ambiguities directly (Dach et al. 2007, p. 182). For long baselines
of up to several hundred kilometres or more, the ionosphere-free linear combination
LC3 should be used along with the precise orbit product (El-Rabbany 2006, p. 73).

The kinematic relative positioning can be subdivided into the post-processed
kinematic (PPK) and real time kinematic (RTK). The PPK method starts with a
process known as receiver initialisation, where the initial integer ambiguities are
first determined. Once the initialisation has been successfully accomplished, cm-
level positioning accuracy can be achieved. The coordinates of the unknown points
are obtained by post-processing the collected data. In an RTK operation, the ini-
tial ambiguities are resolved almost instantaneously using the so-called on-the-fly
ambiguity resolution technique (Hofmann-Wellenhof et al. 2008, p. 217). Estab-
lishing data communication (e.g., VHF or UHF radio, cellular telephone), the base
receiver measurements and coordinates are transmitted to the rover receiver whose
built-in software processes the collected GPS data to obtain the rover’s coordinates
in real-time. The expected RTK positioning accuracy using geodetic-type receivers
is 1 cm + 1 ppm horizontally and 2 cm + 1 ppm vertically. Under the same condi-
tions, the positioning quality of the RTK method is slightly degraded in comparison
to that of the PPK method. This is mainly due to the latency while preparing and
transmitting the base data, which necessitates data extrapolation to mach the time
tag of the rover receiver measurements (El-Rabbany 2006, pp. 76, 77).
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To achieve rapid and reliable ambiguity resolution, the maximum baseline length
in a single-base RTK positioning should not exceed 20 km. This limitation is due to the
distance-dependent biases such as orbit errors and signal refraction in the atmosphere
(see Sect. 3.3.3). However, these errors can be accurately modelled based on the
observations from an array of GPS reference sites (Wanninger 2000, Chap. 4; Dai
et al. 2001; Fotopoulos and Cannon 2001). This leads to an extension of the RTK
positioning from a single base to a multi-base technique. Moreover, continuously
operating reference station networks, for example, the German Satellite Positioning
Service (SAPOS®; Stronk and Wegener 2005), have been established to provide
network RTK positioning services using the master-auxiliary concept (MAC; Brown
et al. 2006), area correction parameters (FKP; Wübbena et al. 2001) and virtual refer-
ence stations (VRS; Wanninger 2002, 2003). More information about the principles,
limitations and future challenges of network RTK is provided by Rizos (2003) and
Wanninger (2004, 2006). Additional GPS relative positioning modes, such as rapid
static and stop-and-go, can be found in El-Rabbany (2006, Chap. 5).

3.3.2 Functional Model

The functional model of relative positioning describes the mathematical relationship
between double-differenced observations and the unknown parameters. Under the
assumption of equal frequency f = f j = f k for the satellite signals, which is true
in the case of GPS by applying the code division multiple access (CDMA) technique,
the simplified observation equation of phase double-differences relating to receivers
A and B, satellites j and k, and frequency f is

�
jk
AB, f = ρ

jk
AB + λ f · N jk

AB, f + ε
jk
AB, f , (3.29)

where

ρ
jk
AB : double-difference of the geometrical ranges in m,

λ f : wavelength of the carrier in m,

N jk
AB, f : integer double-difference phase ambiguity in cycles,

ε
jk
AB, f : random noise of the double-difference in m.

Such a simplification is valid for short baselines under ideal observational condi-
tions (Wanninger 2000, p. 12). The term ρ

jk
AB contains the geometry and can be

decomposed as

ρ
jk
AB = ρk

AB − ρ
j
AB = ρk

B − ρk
A − ρ

j
B + ρ

j
A. (3.30)

Substituting Eq. (3.30) into (3.29), the simplified observation equation becomes
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l jk
AB, f = ρk

B − ρk
A − ρ

j
B + ρ

j
A + λ f · N jk

AB, f + ε
jk
AB, f . (3.31)

In the case of relative positioning, the coordinates of the reference site (e.g., site A)
are precisely known. Accordingly, the vector of unknown parameters consists of the
coordinates of the rover site B and all double-difference ambiguities, i.e.,

x = (X B, YB , Z B, N i
AB, f )

T , i = 1, . . . , msp, (3.32)

where msp denotes the number of the formed satellite pairs. Regarding all l jk
AB, f

as a realisation of the vector of stochastic double-difference observables l D and
assuming zero-mean random observation noise, the functional model of static relative
positioning reads

E(l D) = F(x) = ρk
B − ρk

A − ρ
j
B + ρ

j
A + λ f · N jk

AB, f . (3.33)

The expansion of Eq. (3.33) into a Taylor series around the approximate position
of the rover site B (X B0, YB0, Z B0) leads to the linearised model of observation
equations in the matrix form A · �x̂ = �l D + v. According to Hofmann-Wellenhof
et al. (2008, p. 255), the design matrix A can be written as

A =
[

∂F(x)

∂ X B
,
∂F(x)

∂YB
,
∂F(x)

∂ Z B
,

∂F(x)

N i
AB, f

]x=x0

i=1,...,msp

, (3.34)

where

∂F(x)

∂ X B
= X B − Xk

ρk
B

− X B − X j

ρ
j
B

,
∂F(x)

∂YB
= YB − Y k

ρk
B

− YB − Y j

ρ
j
B

,

∂F(x)

∂ Z B
= Z B − Zk

ρk
B

− Z B − Z j

ρ
j
B

,
∂F(x)

∂ N i
AB, f

= 0 or λ f . (3.35)

The vector of reduced parameters �x can be expressed as

�x = x − x0 = (
X B,
YB,
Z B , N i
AB, f )

T , i = 1, . . . , msp. (3.36)

From Eq. (3.33), the reduced observation for l jk
AB, f is


l jk
AB, f = l jk

AB, f − F(x0) = l jk
AB, f − ρk

B0 + ρk
A + ρ

j
B0 − ρ

j
A, (3.37)

where the position of the reference site A is assumed to be known, and the approx-
imate N jk

AB, f is equal to zero [cf. Eqs. (3.32) and (3.36)]. Once the design matrix
A, the vector of reduced double-difference observations �l D and the corresponding
weight matrix WD are available, the parameter estimate x̂ = x0 + �x̂ and the asso-
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ciated VCM Cx̂x̂ can be obtained from a LS adjustment. Initially, the LS ambiguity
estimates are float values. The fixing of the float ambiguities to their integer values,
known as ambiguity resolution, fully exploits the high accuracy of phase observations
and significantly improves the quality of parameter estimates. A detailed discussion
of different ambiguity resolution algorithms is provided by Hofmann-Wellenhof et al.
(2008, Sect. 7.2). For geodetic-type dual-frequency receivers, the optimum ambigu-
ity resolution strategy primarily depends on the availability of high-quality code
measurements on both carriers, as well as on the baseline and session length (Dach
et al. 2007, p. 180).

3.3.3 Error Sources and Effects

For relative positioning using baselines, it seems reasonable to classify the error
sources into distance-dependent and site-specific (distance-independent) effects.
Depending on the baseline length, the spatially correlated errors, such as ionospheric
and tropospheric refraction, will be reduced by differencing. In contrast, site-specific
effects, for example, multipath, are individual for each station and may even be ampli-
fied when forming differences between observations (Schön 2010). Moreover, some
effects can be completely neglected for cm-level relative positioning and for base-
lines less than 100 km, but they must be taken into account when processing long
baselines (e.g., more than 500 km). This section briefly describes the effects of the
error sources in the solution domain, with an emphasis on the distance-dependent
factors. In Table 3.7, the relevant error effects limiting the relative positioning quality
are listed.

Distance-Dependent Effects

Satellite orbit errors. For the influence of unmodelled satellite orbit errors on station
coordinate estimates, a handy rule of thumb is available in Dach et al. (2007, p. 24).
It provides the error in baseline length 
l as a function of the error in satellite orbit

O using


l ≈ l

d
· 
O, (3.38)

where l is the baseline length in km, and d ≈ 25,000 km is the approximate distance
between the satellite system and the survey area. Substituting the current accuracy
specifications of the IGS products for GPS satellite orbits into Eq. (3.38), the resulting
errors in baseline length are presented in Table 3.8. Obviously, for regional networks
consisting of baselines shorter than 500 km, the expected errors in baseline length
due to inaccurate satellite orbits are below 1 mm if the IGS ultra-rapid, rapid or
final orbit products are used. Furthermore, satellite orbit errors may cause apparent
network rotations (Beutler et al. 1989).
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Table 3.7 Error effects limiting the relative positioning quality

Distance-dependent effects Satellite orbit errors
Ionospheric effects
Tropospheric effects

Site-specific effects Multipath effects
Receiver antenna models

Other relevant effects Satellite antenna models
Satellite phase wind-up effect
Site displacement effects
Relativistic effects

Table 3.8 Approximate errors in baseline length (
l) using different IGS products for GPS satellite
orbits [see Eq. (3.38), unit: mm]

Baseline length [km] Accuracy of the IGS orbit product [mm]a

Broadcast Ultra-rapid (P)b Ultra-rapid (O)b Rapid & Final

1,000 50 30 25

10 0.4 0.0 0.0 0.0
100 4.0 0.2 0.1 0.1
500 20.0 1.0 0.6 0.5

1,000 40.0 2.0 1.2 1.0
a http://igscb.jpl.nasa.gov/components/prods.html
b P: predicted part, O: observed part

Ionospheric effects. An erroneous estimate of the ionospheric total electron content
(TEC) affects single-frequency relative positioning primarily in the form of a scale
error. For the maximum zenith angle zmax = 80◦ on a medium-latitude site, an
underestimation of the TEC by 10 TECU (1 TECU = 1016 electrons/m2) leads to a
decrease in baseline length of 0.7 ppm (i.e., l = 100 km → 
l = 7 cm; Santerre
1989, p. 108). The magnitude of this scale effect depends on the site location, solar
activity and occurrence of sudden ionospheric disturbances. Using the ionosphere-
free linear combination LC3, the ionospheric effects can be largely reduced. However,
the employment of the LC3 has the disadvantages of complicated ambiguity reso-
lution as well as increased multipath effects and observation noise. Therefore, for
baselines of up to several kilometres, the LC3 is not recommended, and single-
frequency relative positioning is even preferred for coordinate estimation (Wanninger
2000, p. 19). If dual-frequency observations are available, ionosphere models can be
determined using the geometry-free linear combination LC4 on the zero- or double-
difference level (see Table 3.3). Local and regional ionosphere models can be derived
by applying two-dimensional Taylor series expansions, while continental and global

http://igscb.jpl.nasa.gov/components/prods.html
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ionosphere maps can be generated with the help of spherical harmonic expansions
(Dach et al. 2007, Chap. 12).

Tropospheric effects. According to Beutler et al. (1988), the troposphere biases in
relative positioning can be subdivided into an absolute and a relative component. The
absolute troposphere biases are caused by errors arising from tropospheric refraction
which are common to both endpoints of a baseline. They mainly produce scale
errors in the estimated baseline lengths. The relative troposphere biases are due to
errors of tropospheric refraction at one endpoint of a baseline relative to the other.
They primarily induce errors in the estimated station heights. Assuming uniformly
distributed satellites above the observing sites, the impact of an absolute (
T 0

a ) and
a relative troposphere bias in the zenith direction (
T 0

r ) can be calculated as


l

l
= 
T 0

a

RE · cos(zmax)
, 
h = 
T 0

r

cos(zmax)
, (3.39)

where RE ≈ 6371 km is the Earth’s radius, 
l is the error in baseline length, and

h is the bias in station height (Dach et al. 2007, p. 240). For zmax = 80◦ or an
elevation cut-off angle of 10◦, Eq. (3.39) implies that an absolute troposphere bias
of 7 cm causes a scale error of 0.06 ppm (i.e., l = 100 km → 
l = 6 mm), whereas
a relative troposphere bias of 1 mm already leads to an error of approximately 6 mm
in the estimated station height. Note that relative troposphere errors are much more
important for local and regional applications. Table 3.9 provides more numerical
examples of the biases caused by the atmospheric effects in relative positioning.

In comparison to the satellite orbit errors, the atmospheric effects reach orders of
magnitude above the noise level of GPS phase observations and play a dominant role
in the error budget of relative positioning. Due to the fact that the tropospheric refrac-
tion originates from the lowest part of the Earth’s atmosphere (99 % below 10 km)
whereas the ionospheric shell height is about 400 km, the tropospheric effects are
more site-specific and can be accounted for by estimating site-specific troposphere
parameters and gradients in GPS data processing. However, using differenced obser-
vations in relative positioning, the resulting troposphere solutions may be biased by a
constant offset, particularly for local and regional networks (i.e., l < 500 km; Kouba

Table 3.9 Examples of biases in baseline length (
l) and station height (
h) induced by
atmospheric effects [see Eq. (3.39), unit: m]

Baseline length [km] Ionosphere (
l) Troposphere (
l) Troposphere (
h)

10 TECU (0.7 ppm) 
T 0
a = 0.1 m 
T 0

r = 0.01 m

zmax = 80◦ zmax = 80◦ zmax = 87◦ zmax = 80◦ zmax = 87◦

10 0.007 0.001 0.009 0.058 0.191
100 0.070 0.009 0.087 0.058 0.191
500 0.350 0.045 0.437 0.058 0.191

1,000 0.700 0.090 0.874 0.058 0.191
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2009). To achieve the absolute level, an external tropospheric calibration is required,
for example, by means of PPP or the IGS combined troposphere products (Byun and
Bar-Sever 2009). Furthermore, the strong correlation between the zenith tropospheric
delay and station height estimates can be considerably reduced by lowering the ele-
vation cut-off angle. Appropriate handling of low-elevation observations requires
advanced mapping functions (e.g., GMF, VMF1) on the one hand, and improved
stochastic models (e.g., observation weighting) on the other.

Site-Specific Effects

Multipath effects. For precise relative positioning with short baselines, multipath
represents the major systematic error source. Its impact on carrier-phases should
generally not exceed about 1 cm under good satellite geometry over a reasonably
long observation period. Nevertheless, a simple change of the receiver antenna height
may increase the multipath effects and deteriorate the positioning results (Hofmann-
Wellenhof et al. 2008, p. 155). In addition to the techniques employed in antenna
and receiver design, different data-processing approaches have been proposed for
multipath mitigation, such as wavelet algorithms (Xia and Liu 2001; Souza and
Monico 2004; Satirapod and Rizos 2005; Zhong et al. 2008; Wu et al. 2009), SNR-
based methods (Bilich 2006; Bilich and Larson 2007; Bilich et al. 2008; Rost and
Wanninger 2009, 2010; Rost 2011), sidereal filtering (Zheng et al. 2005; Ragheb et al.
2007; Zhong et al. 2010; Lau 2012) and least mean square adaptive filters (Ge et al.
2000; Weinbach et al. 2009; Liu et al. 2011). Analysing the temporal characteristics
of multipath errors by means of auto-covariance functions, Nahavandchi and Joodaki
(2010) modelled multipath effects stochastically. Making use of the site environment
information, for example, represented by a georeferenced 3D site digital model, Fan
and Ding (2006) employed the electromagnetic modelling technique to determine
GPS phase multipath signals and visualised their propagations in an urban 3D model.
The variety of multipath mitigation methods indicates that a generally valid and
applicable multipath model is still lacking, which is mainly attributed to its strong
time- and location-dependent properties. For rapid static survey applications, longer
observation periods are advisable in the presence of strong multipath interference.

Receiver antenna models. In short-baseline relative positioning using the same
antenna type and orientation, phase centre corrections only insignificantly affect
the estimated coordinates, because the satellite signals are received under the almost
identical azimuth and elevation angles. Nonetheless, if different antenna types are
used at either end of a baseline, receiver antenna models must be considered in accor-
dance with the current IGS convention. For long-baseline solutions, even using the
same antenna type, calibration effects will not cancel out due to the non-negligible dif-
ferences in satellite geometry caused by the Earth’s curvature. These effects increase
if site-specific troposphere parameters are estimated (Menge et al. 1998). Analysing
a baseline of about 100 km with elevation-dependent relative and absolute receiver
antenna models, Mader (2001) reported height biases varying from several millime-
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tres to several centimetres. Furthermore, the use of radome calibrations may influence
the height component by more than 1 cm. Differences between individual antennas
of the same antenna type may induce discontinuities in GPS coordinate time series.
This can be handled either by individual absolute antenna calibrations (e.g., chamber
and robot calibration; Steigenberger 2009, pp. 151, 153), or by relative calibrations
with respect to an absolutely calibrated antenna.

Other Relevant Effects

Satellite antenna models. For cm-level relative positioning and baselines of less
than 100 km, the influence of phase centre models of GPS satellite antennas can be
safely neglected (Kouba 2009). However, the only use of absolute receiver antenna
corrections was found to produce a global reference frame which differs from the
results achieved with very long baseline interferometry (VLBI) and satellite laser
ranging (SLR) by about 15 ppb (part per billion). This corresponds to a height vari-
ation of about 10 cm for all global sites (Rothacher 2001; Schmid and Rothacher
2003; Zhu et al. 2003). This scale problem was solved by additionally considering
absolute satellite antenna PCO and PCV which have been successively estimated by
fixing the absolute receiver antenna models and the terrestrial scale (Schmid et al.
2007). Note that all satellite antenna model parameters refer to the LC3, while an
absolute receiver antenna calibration (e.g., robot-based) delivers phase centre cor-
rections for L1 and L2. The use of absolute instead of relative receiver and satellite
antenna models in GPS global solutions leads to decreased dependency of para-
meter estimates on the elevation cut-off angle (Schmid et al. 2005), improved orbit
consistency, reduced biases in troposphere parameters, and vertical (horizontal) coor-
dinate changes of up to about 2 cm (1 cm) (Schmid et al. 2007; Steigenberger 2009,
Sect. 9.2). For the switch from ITRF05 to ITRF08, Dach et al. (2011) performed an
update of the absolute IGS antenna phase centre model by a GLONASS extension of
the reprocessed GPS-only products (Steigenberger 2009). The differences between
the GPS- and GLONASS-specific receiver antenna PCV amount to 10 mm for the
LC3. This update considerably affects site coordinates by up to 5 mm and most bene-
fits GLONASS-only rapid static or kinematic solutions. Due to the antenna assembly
and power supply, the satellite antenna PCV are actually azimuth-dependent (Czopek
and Shollenberger 1993) and may cause changes in the horizontal components by
up to about 1 cm (Steigenberger 2009, p. 149). However, this dependency is not
considered in the current IGS phase centre model igs08 (Schmid 2010).

Satellite phase wind-up effect. In general, the satellite phase wind-up correction can
be neglected for double-difference positioning on baselines or networks spanning
up to a few hundred kilometres (Kouba 2009). However, for very long baselines
(e.g., 4,000 km), this correction term has been shown to amount to 4 cm (Wu et al.
1993; Steigenberger 2009, p. 35). The receiver phase wind-up effect is fully absorbed
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into station clock solutions or eliminated during the course of double differencing
(Le and Tiberius 2006; Kouba 2009).

Site displacement effects. Since the site displacement effects discussed in
Sect. 3.2.3 are nearly the same over large areas, they almost cancel out in relative
positioning over short baselines (i.e., l < 100 km), and thus need not be considered.
However, for baselines that are more than 500 km, the site displacement corrections
must be computed and added to the regularised5 ITRF coordinates to obtain the
instantaneous position (Kouba 2009).

Relativistic effects. In terms of relativistic effects, the dynamic component (Schwarz-
schild term) and the Shapiro time delay which impact on satellite orbits and signal
propagation, respectively, cannot be eliminated by differencing and cause errors of
up to 0.001 ppm in positioning (i.e., 7 mm for a baseline of 7,000 km; Zhu and
Groten 1988). Therefore, they should be considered in high-accuracy applications,
for example, when generating satellite orbit products (Dach et al. 2007, p. 92). The
influence on the satellite clock is completely cancelled out in the between-station
differences and is harmless for relative positioning (Zhu and Groten 1988).

3.3.4 Stochastic Model

Since a double-difference is composed of four zero-differences, the stochastic model
of relative positioning is more complex than that of PPP, particularly with regard to
correlation type and structure. Instead of a description of the individual stochastic
components, as is done for PPP, this section focuses on the mathematical correlation
introduced during the course of double differencing, as well as on the variance-
covariance structure and propagation. Finally, different approaches for completing
and improving the stochastic model in relative positioning, especially with respect
to modelling physical correlations, are briefly summarised.

Mathematical Correlation

If double-differenced observations are analysed, the so-called mathematical corre-
lations between the differenced measurements must be taken into account, because
the same original observation may be involved in different observation differences
(Beutler et al. 1987). As shown by Santos et al. (1997), a proper modelling of math-
ematical correlations results in more accurate baseline lengths and more realistic
formal errors of the estimated position differences. Nowadays, this type of correla-

5 The purpose of introducing a regularised (conventional tide-free) position is to remove high-
frequency time variations which are mainly caused by geophysical phenomena, in order to obtain
a position with more regular time variations (Petit and Luzum 2010, p. 34).
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tion has been successfully considered in both baseline and network solutions using
high-end GPS analysis software, for example, the Bernese GPS Software 5.0 (Dach
et al. 2007, p. 146). To gain a better understanding of how the mathematical cor-
relation originates, let �Z , �S and �D be the zero-, single- and double-difference
phase observation vector relating to two receivers (A, B) and four satellites ( j, k, l, r )
observed at the same epoch:

�Z = (�
j
A,�k

A,�l
A,�r

A,�
j
B ,�k

B,�l
B,�r

B)T , (3.40)

�S = (�
j
AB,�k

AB ,�l
AB,�r

AB)T , �D = (�
jk
AB,�

jl
AB,�

jr
AB)T ,

where the double- and single-differences are formed as

�
jk
AB = �k

AB − �
j
AB = (�k

B − �k
A) − (�

j
B − �

j
A). (3.41)

The single- and double-differences can be computed from the matrix-vector rela-
tion as

�S = DZ · �Z, �D = DS · �S, (3.42)

where DZ and DS are

DZ =

⎛

⎜

⎜

⎝

−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1

⎞

⎟

⎟

⎠

, DS =
⎛

⎝

−1 1 0 0
−1 0 1 0
−1 0 0 1

⎞

⎠ (3.43)

with j chosen as the reference satellite for double differencing. Assuming that the
observation errors of �Z are mutually uncorrelated and exhibit a random behaviour
following a normal distribution with expectation zero and variance σ 2

1 , then the VCM
of �Z, �S and �D are

CZ = σ 2
1 · I, CS = DZ · CZ · DT

Z , CD = DS · CS · DT
S , (3.44)

where I is a 8×8 identity matrix, and the matrices CS and CD are derived by means
of the variance-covariance propagation law. Substituting Eq. (3.43) into (3.44) yields

CS = σ 2
1 ·

⎛

⎜

⎜

⎝

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎞

⎟

⎟

⎠

= 2σ 2
1 ·

⎛

⎜

⎜

⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎠

, (3.45)

CD = 2σ 2
1 ·

⎛

⎝

2 1 1
1 2 1
1 1 2

⎞

⎠ = 4σ 2
1 ·

⎛

⎝

1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

⎞

⎠ . (3.46)
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The results clearly show that the single-differences are mathematically uncorre-
lated, while a mathematical correlation is present in the double-differences, with
a correlation coefficient of 0.5. The derivations of mathematical correlations in
double-differenced network solutions and in triple-differences are well documented
in Hofmann-Wellenhof et al. (2008, pp. 181, 259).

Variance-Covariance Structure and Propagation

Equations (3.43) and (3.44) indicate that the mathematical correlation introduced by
the double-differencing process is maintained when applying the variance-covariance
propagation law to the VCM CZ of the original undifferenced phase observation
vector �Z . Therefore, the structures of CZ, DZ and DS are essential for appropriately
defining the stochastic model in relative positioning. Taking the temporal, spatial and
cross correlations into account, Fig. 3.5 illustrates schematically the construction of a
fully populated VCM of �Z relating to two stations (A, B), four satellites ( j, k, l, r )
and two epochs (t1, t2).

Under the assumption that the inter-physical correlations with more than one
correlating component are absent (see Sect. 3.2.4), Fig. 3.5 primarily displays the
covariance structure due to correlations with respect to satellite, station, frequency
and epoch. While the spatial correlation in PPP exists only between observations
from one receiver to different satellites, it is also present between observations from
one satellite to different stations in relative positioning (see the black dashed line
frames in Fig. 3.5). Intuitively, observations from short baselines are more strongly
correlated in space than those from long baselines. The cross and temporal correlation
structures shown in Fig. 3.5 represent an extension of Fig. 3.2 for two sites.

Regarding Eq. (3.42), it seems reasonable to accomplish the whole differencing
process in a single step using

�D = DSZ · �Z, DSZ = DS · DZ. (3.47)

Applying Eq. (3.47) to the numerical example given in Eq. (3.43), the resulting matrix
DSZ is equal to

DSZ =
⎛

⎝

1 −1 0 0 −1 1 0 0
1 0 −1 0 −1 0 1 0
1 0 0 −1 −1 0 0 1

⎞

⎠ , (3.48)

where the number of columns (rows) of DSZ corresponds to the number of zero-
differences (double-differences). Instead of showing the structures of DZ and DS
individually, Fig. 3.6 visualises the construction of DSZ for deriving the LC3
double-difference observations �D3 from �Z whose VCM is illustrated in Fig. 3.5.
For the sake of simplicity, in this example, DSZ has the same structure at different
epochs t1 and t2. Depending on the satellite geometry and the choice of the reference
satellite, the construction of DSZ may differ from one epoch to another. Although
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Fig. 3.5 Schematical presentation of a fully populated variance-covariance matrix (VCM) CZ of
the original undifferenced phase observations in relative positioning (cf. Fig. 3.2)
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Fig. 3.6 Construction of �Z , DSZ and �D3 corresponding to the VCM shown in Fig. 3.5
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DSZ is presented for the LC3 double-differences, it can be applied to other linear
combinations using the corresponding coefficients given in Table 3.3. Based on the
matrices CZ and DSZ depicted in Figs. 3.5 and 3.6, respectively, the VCM of �D3 can
be determined by applying the variance-covariance propagation law to Eq. (3.47) as

CD3 = DSZ · CZ · DT
SZ. (3.49)

The associated weight matrix WD3 can be computed as WD3 = (

CD3/σ
2
3

)−1
, where

σ3 in relative positioning is equal to

σ3 = 2σ1 ·
√

k2
1,3 + k2

2,3 (3.50)

with the coefficients k1,3 and k2,3 provided in Table 3.3 (see also Howind 2005,
p. 29). Using the fully-populated weight matrix WD3 together with the LC3 double-
difference observation vector �D3 and the design matrix A given in Eq. (3.34),
a LS adjustment can be performed to estimate the unknown parameters such as site
coordinates and phase ambiguities. Additional discussion of the VCM structure in
relative positioning is available in Howind et al. (1999).

Improved Stochastic Models of GPS Observations

Up to now, different methods have been proposed to improve the stochastic model
of GPS observations in relative positioning. Table 3.10 provides an overview
of these methods with respect to variance and covariance modelling. While the
elevation-dependent and SNR-based variance (or observation weighting) schemes
are usually applied to the original undifferenced measurements, the VCE technique
is often performed based on the residuals of differenced observations from zero and
ultra-short baselines. Moreover, the VEC method has been successfully employed to
study the covariance structure of GPS observations and receiver noise characteristics
(Tiberius and Kenselaar 2003; Amiri-Simkooei and Tiberius 2007; Li et al. 2008,
2011; Amiri-Simkooei et al. 2009). Analysing time series of observation residuals,
the temporal and spatial correlations haven been investigated by means of ACF, CCF,
and ARMA processes (Bona 2000; Wang et al. 2002; Howind 2005, p. 57; Leandro
and Santos 2007; Luo et al. 2012b). In addition to the mathematical approaches,
the application of ATT enables a better understanding of the physical processes that
correlate and decorrelate GPS phase observations (Schön and Brunner 2008a,b). It is
worth mentioning that among all the listed techniques, the VCE method is the only
one used to characterise all stochastic components.

In this thesis, an empirical SNR-based observation weighting model is devel-
oped and its effects on GPS relative positioning are investigated with respect to
ambiguity resolution, troposphere parameter estimation and site coordinate deter-
mination. Furthermore, based on residual decomposition and ARMA modelling,
a mathematically rigorous temporal correlation analysis is carried out and the
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Table 3.10 Approaches to completing and improving the stochastic model of GPS observations

Stochastic component Modelling methods

ELVa SNRb VCEc ACFd ARMAe CCFf ATTg

Variance (observation weighting) X X X X
Covariance Spatial correlation X X X X

Cross correlation X X X
Temporal correlation X X X X

a ELV: satellite elevation angle
b SNR: signal-to-noise ratio
c VCE: variance component estimation
d ACF: autocorrelation function
e ARMA: autoregressive moving average
f CCF: cross-correlation function
g ATT: atmospheric turbulence theory

results are statistically verified, physically interpreted and experimentally used to
extend the PPP stochastic model. Representative GPS data and freely available
surface meteorological information are incorporated into three case studies which
will be described in the next chapter, along with the applied GPS data processing
strategies.
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