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Supervisor’s Foreword

The Global Positioning System (GPS) has become an efficient tool for a wide
range of applications. However, when analysing GPS data, the stochastic model
characterising the precision and correlations of GPS observations is usually sim-
plified and incomplete. Extending the GPS stochastic model is the goal of this
thesis, using signal-to-noise ratio (SNR) measurements and time series analysis of
observation residuals.

First, this work proposes a novel SNR-based observation weighting model,
which sufficiently copes with weak signals, multipath effects and atmospheric
variations. Its employment in high precision, static relative positioning signifi-
cantly improves the results of ambiguity resolution, troposphere parameter esti-
mation and site coordinate determination. Next, applying autoregressive moving
average (ARMA) processes, the temporal correlation of GPS observation noise is
investigated in a mathematically rigorous manner. The outcomes are statistically
valid and physically interpretable, showing the influences of multipath effects,
satellite geometry and atmospheric conditions.

This study is a milestone and a key step towards a realistic GPS stochastic
model and provides an excellent example of statistical verification and physical
interpretation of results. Furthermore, this work includes a comprehensive
description of different methods, which are applicable to various other data sets.
Last but not least, this thesis gives an up-to-date overview of the GPS error effects
and an illustrative presentation of the stochastic components.

Karlsruhe, October 15, 2012 Prof. Dr.-Ing. habil. Dr. h.c. Bernhard Heck
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Chapter 1
Introduction

1.1 Problem Statement

The Global Positioning System (GPS), being one of the Global Navigation Satellite
Systems (GNSS), serves as an efficient tool for a wide range of geodetic applications
in the industrial, commercial, cadastral and scientific research sectors. The rising
demands for accurate positions and realistic quality measures require continuous
improvements, not only in hardware developments, but also in the mathematical
models applied in GPS data analysis. Using the least-squares (LS) method for GPS
data processing, the mathematical models consist of functional and stochastic compo-
nents. While the functional model formulates the mathematical relationship between
GPS measurements and unknown parameters, the stochastic model describes the
observations’ precision and correlations, generally expressed by the main- and off-
diagonal elements of a variance-covariance matrix (VCM), respectively. For accurate
parameter estimates and realistic quality measures, both the functional and stochastic
models must be properly defined.

Over the past few decades, the functional model of GPS observations has been
investigated in considerable detail (Seeber 2003; Xu 2007; Hofmann-Wellenhof et al.
2008). Nevertheless, it still contains deficiencies in terms of modelling site-specific
multipath effects and atmospheric propagation delays, particularly when using low-
elevation data. In comparison to the advanced functional model, the stochastic model
is still under development and represents a controversial research topic. The main
deficiencies of the current stochastic model arise from unrealistic observation weight-
ing and the neglect of physical correlations between GPS measurements.

Assuming azimuthal symmetry, elevation-dependent weighting models are com-
monly used in GPS software products (Euler and Goad 1991; Han 1997; King
and Bock 2002, Chap. 5, p. 9; Dach et al. 2007, p. 144). Such geometry-related
weighting schemes require a strong relationship between observation quality and
satellite elevation angle, and become inefficient for high-precision applications
when including GPS data severely affected by multipath effects, signal diffraction,
receiver characteristics and variable atmosphere. Moreover, GPS measurements are
physically correlated over time, in space and between different frequencies, known as
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2 1 Introduction

temporal, spatial and cross correlations, respectively. These dependencies are gen-
erally neglected in the stochastic model, resulting in a diagonal VCM structure. As
found in different studies, any misspecification of the stochastic model will inevitably
produce unreliable parameter estimates and over-optimistic accuracy measures
(El-Rabbany 1994, p. 21; Tiberius and Kenselaar 2000; El-Rabbany and Kleusberg
2003; Howind 2005, p. 30; Schön and Brunner 2008b).

1.2 State of the Art

In order to exploit the potential of low-elevation observations in GPS parameter
estimation, signal quality measures such as signal-to-noise ratio (SNR) are used to
enable a more realistic assessment of observation quality under non-ideal observa-
tional conditions. Different SNR-based weighting models haven been developed,
not only in an analytical manner based on the formula provided by Langley (1997)
(Brunner et al. 1999; Hartinger and Brunner 1999; Wieser and Brunner 2000), but
also in an empirical way by directly using SNR measurements (Mayer 2006, p. 62;
Luo et al. 2008a,c). Relying upon LS residuals of redundant GPS observations, real-
istic VCM can be estimated by means of rigorous statistical methods such as variance
component estimation (VCE) (Satirapod et al. 2002; Tiberius and Kenselaar 2003;
Bischoff et al. 2005, 2006; Amiri-Simkooei 2007; Li et al. 2008; Teunissen and
Amiri-Simkooei 2008; Amiri-Simkooei et al. 2009; Li et al. 2011). Studies compar-
ing these indicators for GPS observation quality, i.e., satellite elevation angle, SNR,
and LS residuals, can be found in Collins and Langley (1999), Satirapod and Wang
(2000), and Satirapod and Luansang (2008).

In addition to VCE, physical correlations of GPS observations can be mod-
elled using other techniques, for example, auto- and cross-correlation functions
(El-Rabbany 1994, p. 34; Howind et al. 1999; Tiberius et al. 1999; Bona 2000; Borre
and Tiberius 2000; El-Rabbany and Kleusberg 2003; Howind 2005, p. 57; Leandro
and Santos 2007), stochastic processes (Wang et al. 2002; Teusch 2006; Luo et al.
2011, 2012) and atmospheric turbulence theory (Schön and Brunner 2008a,b). In
fact, as found in various studies, a realistic stochastic model turns out to play an
important role in ambiguity resolution (Teunissen 2000; Wang et al. 2002; Luo et al.
2008a,c), troposphere parameter estimation (Jin and Park 2005; Luo et al. 2008b;
Lo et al. 2009; Jin et al. 2010; Zhu et al. 2010) and site coordinate determination
(Howind 2005, p. 93; Jin et al. 2005; Mayer 2006, p. 193; Lo et al. 2009; Schön
and Brunner 2008b). For more detailed reviews of previous work on SNR-based
observation weighting and temporal correlation modelling, the reader is referred to
Sects. 5.2 and 7.1, respectively.

Despite the successful attempts mentioned above, there are still a number of
open questions. For example, a SNR-based weighting scheme using the formula
given by Langley (1997) ignores any contribution to the noise characteristics from
local oscillators and is only valid for relatively strong signals (Collins and Langley
1999, p. 4). This motivates empirical SNR-based weighting models that are capable
of dealing with weak signals and handling manufacturer-dependent SNR measures.

http://dx.doi.org/10.1007/978-3-642-34836-5_5
http://dx.doi.org/10.1007/978-3-642-34836-5_7
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Within the context of residual-based correlation modelling, there exists a strong need
for additional research on a reliable extraction and characterisation of observation
noise as well as a rigorous statistical evaluation and physical interpretation of results.

1.3 Objectives of this Thesis

The main objective of this thesis is to extend the GPS stochastic model by means
of SNR-based observation weighting and residual-based temporal correlation mod-
elling. The specific objectives of this work can be formulated as follows:

• The development of an empirical SNR-based weighting model and its imple-
mentation in the Bernese GPS Software 5.0 (Dach et al. 2007). The effects of
the SNR-based weighting scheme on LS adjustment results are investigated with
respect to phase ambiguity resolution, troposphere parameter estimation and site
coordinate determination.

• The extraction of the noise component of GPS observation residuals and its char-
acterisation by means of autoregressive moving average (ARMA) processes. The
results of the residual-based temporal correlation modelling are statistically veri-
fied, physically interpreted and experimentally used to extend the GPS stochastic
model.

Representative case studies in both relative and precise point positioning (PPP) are
carried out to verify the efficiency of the proposed methods and the applied software
packages. In addition to GPS observations, freely available surface meteorologi-
cal data are incorporated, allowing for a physically reasonable interpretation of the
results.

1.4 Outline of the Thesis

This thesis is structured as follows:
Chapter 2 gives a brief introduction to the mathematical methods that are employed

in this thesis, such as LS adjustment in linear models, time series analysis, statis-
tical hypothesis tests and wavelet transforms. For a better understanding of time
series modelling and wavelet transforms, representative examples are presented. The
description of the statistical tests focuses on their core characteristics and relative
strengths and weaknesses in practical use.

Chapter 3 reviews the mathematical models for PPP and relative positioning, along
with some general background information about GPS. Furthermore, an overview
of the error sources limiting the performance of GPS positioning is provided, with a
special emphasis on their effects in the measurement and solution domains.

Chapter 4 describes the data sets and GPS processing strategies for both PPP
and relative positioning. The data include not only static GPS observations from the

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_3
http://dx.doi.org/10.1007/978-3-642-34836-5_4


4 1 Introduction

German SAPOS®network1, but also freely available DWD2 surface meteorological
measurements.

Chapter 5 deals with the realisation of an empirical SNR-based weighting model
and its implementation in the Bernese GPS Software 5.0 (Dach et al. 2007). More-
over, its advantages in appropriately handling low-quality observations of weak sig-
nals as well as in sufficiently capturing multipath and atmospheric variations are
demonstrated.

Chapter 6 presents the effects of the SNR-based weighting model on GPS short-
and long-term relative positioning, considering phase ambiguity resolution, tro-
posphere parameter estimation and site coordinate determination. Making use of
the surface meteorological data, these effects are analysed for physical causes.

Chapter 7 introduces a residual decomposition approach for noise extraction and
gives a theoretical insight into ARMA modelling for noise characterisation. While
the decomposition procedure is accomplished by performing Vondrák filtering and
sidereal stacking, the ARMA modelling is carried out using the freely available
MATLAB® Toolbox ARMASA (Broersen 2006, Chap. 9).

Chapter 8 discusses the results of the residual-based temporal correlation mod-
elling in view of satellite geometry, atmospheric conditions and multipath impact.
The efficiency of the residual decomposition and ARMA modelling is verified by
applying continuous wavelet transforms and the hypothesis tests outlined in Chap. 2.
The statistically valid ARMA model estimates are then used to extend the PPP sto-
chastic model.

Finally, Chap. 9 summaries the most important findings of this work and provides
recommendations for future research.
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Chapter 2
Mathematical Background

In this chapter the basic background of the mathematical methods applied throughout
this thesis is described. Since the classical least-squares (LS) adjustment method has
been widely used in GPS data processing, Sect. 2.1 outlines the concept of LS para-
meter estimation in linear models. Afterwards, some fundamental ideas behind time
series analysis are presented in Sect. 2.2. Of particular importance are the so-called
autoregressive moving average (ARMA) processes which hold great potential for
modelling the temporal correlation behaviour of GPS observation noise. Section 2.3
summarises the core characteristics as well as the strengths and weaknesses of the
employed statistical hypothesis tests. In view of practical applications, Appendix A
provides the quantiles of the distributions of the test statistics for usual signifi-
cance levels. Finally, Sect. 2.4 gives a brief introduction to wavelet transforms, serv-
ing within the framework of this thesis as a time-frequency analysis tool for the
visual verification of the residual-based temporal correlation modelling presented in
Chaps. 7 and 8.

2.1 Parameter Estimation in Linear Models

On the basis of the detailed discussion given by Amiri-Simkooei (2007, Sect. 2.1),
this section outlines the theory of LS adjustment in an inconsistent linear model of
observation equations, where the inconsistency arises from errors and uncertainty
in the observations. Within the context of finding certain optimum estimators for
unknown parameters, two methods, namely weighted LS estimation and best linear
unbiased estimation are briefly described. More information about this topic is avail-
able in standard textbooks on adjustment theory, such as Grafarend and Schaffrin
(1993), Caspary and Wichmann (1994), Koch (1999) and Niemeier (2008).

X. Luo, GPS Stochastic Modelling, Springer Theses, 7
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Table 2.1 Criteria used to find optimum estimators for unknown parameters

Criterion Measure Mathematical fomulation

Unbiasedness Bias of estimator E(ε̂) = E(x̂)− x = 0
Minimum variance Mean squared error MSE = E(‖x̂ − x‖2) → min
Maximum likelihood Probability value P(‖x̂ − x‖2 ≤ r2) → max

2.1.1 Estimators and Optimisation Criteria

Let l be an n-dimensional random vector whose randomness is expressed by its
probability density function (PDF) fl(l|x), where x denotes a u-dimensional non-
random vector of unknown parameters. Using an observed vector l as a realisation of
l with the PDF fl(l|x), an estimate x̂ of x can be obtained by determining a function
G : R

n �→ R
u with x̂ = G(l). Applying G to l, the resulting vector x̂ = G(l) is called

an estimator for x. x̂ is random and has its own PDF, where x̂ represents a realisation
of x̂. The difference ε̂ = x̂ − x is referred to as the estimation error. Since x̂ depends
on the selected function G, the estimation error ε̂ also depends on G. In order to find
an optimum function G that minimises ε̂, there exist different kinds of criteria such
as unbiasedness, minimum variance and maximum likelihood. Table 2.1 provides
these optimisation criteria with the associated mathematical formulations.

Based on the first moment of the distribution of x̂, the unbiasedness criterion
indicates that the mean estimation error E(ε̂) is equal to zero for all x, where E(·)
is the expectation operator. The minimum variance condition also accounts for the
second moment of the distribution of x̂ and requires the minimum mean squared error
(MSE), where ‖ · ‖ denotes the norm of a vector. The maximum likelihood (ML)
criterion makes use of the probability P(·) that the estimator x̂ is located within
a hyperspherical region centred at x with a given radius r. The estimator with the
highest probability is preferred.

2.1.2 Weighted Least-Squares Estimation

The simplest approach for estimating x requires information about the first moment
of the distribution of l. Since the PDF fl(l|x) depends on the vector of unknown
parameters x, the mean of l also depends on x. The relation between E(l) and x is
assumed to be known and can be represented by a mapping function A : R

u �→ R
n.

In the linear(ised) case, A is an n × u matrix. If n > u = rank(A), indicating
redundant measurements, the linear system of equations in the form l ≈ Ax is
overdetermined with a redundancy of m = n − u and inconsistent due to intrin-
sic errors and uncertainties in the observations. As is well known, an inconsistent
linear equation system has no solution x being able to reproduce l. To make the sys-
tem consistent, an n-dimensional observation error vector e is introduced such that
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l = Ax + e holds. This consistent linear equation system is called the linear model
of observation equations:

E(l) = Ax, W, or D(l) = Cll = σ 2
0 Qll, (2.1)

where

l : n-dimensional vector of stochastic observables,
A : n × u design matrix,
x : u-dimensional vector of unknown parameters,

W : n × n weight matrix,
Cll : n × n variance-covariance matrix (VCM),
Qll : n × n cofactor matrix,
σ 2

0 : a priori variance factor (variance of unit weight).

The design matrix A is assumed to be of full column rank, i.e., rank(A) = u ≤ n.
The matrices W , Cll and Qll are symmetric and positive-definite, where D(·) denotes
the dispersion operator. The parametric form of the linear model given by Eq. (2.1) is
referred to as a Gauss-Markov model if l is normally distributed with l ∼ N (Ax,Cll).

The introduction of the error vector e solves the problem of inconsistency, but leads
to an underdetermined system with u + n unknowns in a total set of n equations.
In this case, there are an infinite number of possible solutions for x and e. It seems
reasonable to select from the infinitely many solutions the most appropriate one with
which the resulting Ax is as close as possible to the observation vector l. This suggests
that the squared weighted norm of e, i.e.,

‖e‖2
W = eT We = (l − Ax)T W(l − Ax) (2.2)

has to be minimised, where ‖·‖ denotes the norm of a vector, and the weight matrix W
is symmetric and positive-definite. According to Eq. (2.2), the weighted LS solution
for the linear model of observation equations is given by

x̂ = arg min
x∈Ru

(l − Ax)T W(l − Ax). (2.3)

The difference ê = l − Ax̂ is known as the weighted least-squares error vector,
and its squared weighted norm ‖ê‖2

W is a scalar measure for the inconsistency of
the linear system. Considering the properties of matrix transposition, ‖ê‖2

W can be
reformulated as

‖ê‖2
W = (l − Ax̂)T W(l − Ax̂) = lT Wl − 2x̂T AT Wl + x̂T AT WAx̂. (2.4)

Setting the derivative of Eq. (2.4) with respect to x̂

∂‖ê‖2
W

∂ x̂
= −2AT Wl + 2AT WAx̂ (2.5)
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to zero, the weighted LS estimate of x is obtained as

x̂ = G(l) =
(

AT WA
)−1

AT Wl. (2.6)

If the columns of A are linearly independent, the second-order derivative, given by

∂2‖ê‖2
W

∂ x̂∂ x̂T = 2AT WA, (2.7)

is positive definite. Therefore, a minimum for ‖ê‖2
W has been found. Applying the

function G : R
n �→ R

u to the random vector l, the weighted least-squares estimator
(WLSE) for x is

x̂ = G(l) =
(

AT WA
)−1

AT Wl = Hl. (2.8)

From l̂ = Ax̂ and ê = l − l̂, the LS estimators for the observable and error vectors
can be derived as follows:

l̂ = A
(

AT WA
)−1

AT Wl = PAl, (2.9)

ê = l − l̂ = (In − PA) l = P⊥
A l, (2.10)

where PA and P⊥
A define two orthogonal projectors. PA projects onto the range

space of A (i.e., R (A)) along its orthogonal complement (i.e., R (A)⊥), while P⊥
A

projects onto R (A)⊥ along R (A). Substituting ê into Eq. (2.2) or x̂ into Eq. (2.4),
the squared weighted norm of the errors measuring the inconsistency of the linear
system is written as

‖ê‖2
W = êT Wê = lT Wl − lT WA

(
AT WA

)−1
AT Wl. (2.11)

Under the assumption that the expectation of e is equal to zero, i.e., E(e) = 0, the
WLSE x̂ for x represents a linear unbiased estimator (LUE) due to

E(x̂) =
(

AT WA
)−1

AT W · E(l) =
(

AT WA
)−1

AT WA · x = x. (2.12)

Furthermore, this unbiasedness is independent from the choice of the weight matrix
W . The unbiased properties of l̂ and ê are given by

E(l̂) = E(Ax̂) = AE(x̂) = Ax = E(l), E(ê) = E(l − l̂) = 0 = E(e). (2.13)

Since x is a non-random vector in l = Ax + e, the vector of observables l
and the error vector e exhibit the same statistical properties. Assuming that the
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variance-covariance matrix (VCM) of l, i.e., Cll , is known, the covariance matrices
of x̂, l̂ and ê can be derived by applying the variance-covariance propagation law to
Eqs. (2.8)–(2.10) as

Cx̂x̂ = HCllH
T , Cl̂l̂ = PACllP

T
A, Cêê = P⊥

A CllP
⊥T
A . (2.14)

Obviously, the statistical properties of the estimators directly depend on the observ-
ables’ VCM Cll and weight matrix W . If l follows a normal distribution, i.e.,
l ∼ N (Ax,Cll), then the random vectors x̂, l̂ and ê are also normally distributed:

x̂ ∼ N (x,Cx̂x̂), l̂ ∼ N (Ax,Cl̂l̂), ê ∼ N (0,Cêê), (2.15)

since they are all linear functions of l. Unlike x̂ and l̂, the PDF of ê is completely
known once Cll is specified. The quality of the WLSE can be assessed using

MSE = E(‖x̂ − x‖2) = E(‖x̂ − E(x̂)‖2)+ E(‖x − E(x̂)‖2), (2.16)

which measures the magnitude of the estimation error ε̂ = x̂−x. The first summand in
Eq. (2.16) is the trace of Cx̂x̂ denoted as tr(Cx̂x̂), and the second summand disappears
due to the unbiasedness of x̂ [see Eq. (2.12)]. Since Cx̂x̂ depends on the weight matrix
W included in H [see Eq. (2.8)], the MSE of the unbiased WLSE also depends on
W . Therefore, it is necessary to find the optimum weight matrix that minimises the
MSE.

In summary, Table 2.2 gives an overview of the dependencies in the weighted
LS estimation. The unbiasedness property of the WLSE depends neither on the
distribution of l nor on the choice of W and Cll . In addition, full knowledge of
the observables’ probability distribution is not required for computing x̂, l̂, ê and
the associated covariance matrices. However, in order to obtain accurate parameter
estimates and realistic quality measures, an appropriate specification of the weight
and covariance matrices turns out to be an essential issue.

Table 2.2 Overview of the dependencies in the weighted LS estimation

Estimator and Dependency on Related
statistical property Distribution of l W or Cll equation

x̂, l̂, ê No Yes (2.8)–(2.10)
Cx̂x̂, Cl̂l̂ , Cêê No Yes (2.14)

Distribution of x̂, l̂, ê Yes Yes (2.15)
Unbiasedness of WLSE No No (2.12), (2.13)
Squared norm ‖ê‖2

W No Yes (2.11)
Mean squared error No Yes (2.16)
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2.1.3 Best Linear Unbiased Estimation

The weighted LS estimation only represents an approach for solving an inconsistent
linear equation system and does not account for the optimisation criteria presented
in Table 2.1. A reasonable choice of an optimum WLSE is the one that minimises the
MSE, or the trace of Cx̂x̂ (tr(Cx̂x̂)) in the case of a LUE [see Eq. (2.16)]. The WLSE
possessing the smallest MSE of all LUE is referred to as the best linear unbiased
estimator (BLUE). If the cofactor matrix Qll is available, the BLUE is obtained by
taking the weight matrix W to be the inverse of Qll , i.e., W = Q−1

ll . As a result, the
BLUE solutions for x, l and e in equation l = Ax + e are derived as

x̂ =
(

AT Q−1
ll A

)−1
AT Q−1

ll l = Hl, l̂ = PAl, ê = P⊥
A l, (2.17)

where the orthogonal projectors PA and P⊥
A are

PA = A
(

AT Q−1
ll A

)−1
AT Q−1

ll , P⊥
A = In − PA. (2.18)

Substituting H from Eq. (2.17) as well as PA and P⊥
A from Eq. (2.18) into Eq. (2.14),

the resulting covariance matrices of x̂, l̂ and ê are

Cx̂x̂ = σ 2
0

(
ATQ−1

ll A
)−1

, Cl̂l̂ = PACll, Cêê = P⊥
A Cll. (2.19)

The minimum tr(Cx̂x̂) indicates that the BLUE is a minimum variance linear
unbiased estimator. This property is also independent of the distribution of l. Setting
W equal to Q−1

ll in Eq. (2.11), the squared weighted norm of the errors becomes

‖ê‖2
Q−1

ll
= êT Q−1

ll ê = lT Q−1
ll l − lT Q−1

ll A
(

AT Q−1
ll A

)−1
AT Q−1

ll l. (2.20)

In the weighted LS estimation, the weight matrix W plays the role of a metric
tensor in a vector space. The specification of W = Q−1

ll for the BLUE allows some
geometric interpretations of the covariance matrix in the vector space. For example,
if all observables are uncorrelated with each other, the standard basis vectors of the
vector space are orthogonal. In other words, uncorrelated observables indicate basis
vectors having no projection on each other. If all observables have additionally unit
variances, the basis vectors are orthonormal. Thus, the minimum distance in the
vector space required for the WLSE (‖ê‖2

W → min) corresponds to the minimum
variance in the stochastic space required for the BLUE (tr(Cx̂x̂) → min) (Amiri-
Simkooei 2007, p. 10).
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2.2 Time Series Analysis

A time series is a set of observations xt , each of which is recorded at a specific time
t. A discrete time series is one in which the set T of times at which observations
are made is a discrete set, while a continuous time series is obtained when observa-
tions are recorded over some continuous time interval (Brockwell and Davis 2002,
pp. 1, 2). The main objective of time series analysis consists in identifying the nature
of phenomena represented by sequences of observations (the aim to which this thesis
is primarily devoted) and predicting future values of the time series variables. For
these purposes, the determination of an appropriate time series model from the given
data plays an important role in time series analysis.

This section describes the widely used classical decomposition model and the
class of autoregressive moving average (ARMA) models which provide a general
framework for studying stationary processes. In addition to the theoretical discussion,
a practical example is presented to illustrate the approach followed in this thesis to
time series modelling. A more detailed discussion of the algorithms introduced in
this section can be found, for example, in Kendall and Ord (1990), Brockwell and
Davis (2002), Broersen (2006) and Box et al. (2008).

2.2.1 Classical Decomposition Model

In general, the first step in time series analysis is to plot the data for visual inspection.
If discontinuities are present in the time series, for instance, a sudden change of level,
it may be advisable to break the series into more homogenous segments. Furthermore,
if outlying observations exit, they should be detected and discarded on the basis of
appropriately specified outlier criteria. Inspection of a time series graph also allows
the representation of the observations {y1, . . . , yn} as a realisation of the classical
decomposition model given by

Yt = mt + st + Xt, t = 1, . . . , n, (2.21)

where mt is known as the trend component which varies slowly over time and does not
repeat within the time range captured by the data, st is the seasonal component which
may have a formally similar nature and repeats itself in systematic intervals over time,
and Xt is a random noise component which usually complicates the identification of
the deterministic terms mt and st (Brockwell and Davis 2002, p. 23).

Sometimes it is necessary to apply transformations to {Yt} in order to obtain
{Xt} which exhibits approximately consistent variability over time. For a system-
atic account of a general class of variance-stabilising transformations, the reader is
referred to Box and Cox (1964). A commonly used Box-Cox transformation fλ is
defined as
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fλ(yt) =
{
λ−1 (yλt − 1), yt ≥ 0 and λ > 0,

ln(yt), yt > 0 and λ = 0,
(2.22)

where λ values between 0 and 1.5 are reasonable. In practice, if a Box-Cox transfor-
mation is necessary, either f0 or f0.5 is adequate in most cases. f0 is particularly suitable
for positive data whose standard deviation increases linearly with level (Brockwell
and Davis 2002, pp. 188, 399). Since the work of Box and Cox (1964), many modifi-
cations of the Box-Cox transformation have been carried out, for example, by Manly
(1976), John and Draper (1980), Bickel and Doksum (1981), and Yeo and Johnson
(2000). The modified Box-Cox transformations can accommodate negative yt values
and bring the distribution of the power-transformed data closer to a Gaussian normal
distribution.

To remove the trend (mt) and seasonality (st) terms, there are two general
approaches. One is to model mt and st , and then to subtract them from the data.
The other is to eliminate mt and st by differencing the series {Yt}. To identify and
model the trend component in the observed data, two methods are commonly used in
practice, namely fitting a function and smoothing. Monotonous (consistently increas-
ing or decreasing) trends can be adequately approximated by a linear, polynomial
or exponential function, where the unknown parameters can be estimated by means
of LS regression (Chatterjee and Hadi 2006). In the case that the trending behaviour
cannot be sufficiently characterised by a global function, smoothing and filtering
techniques can be applied. The most common approaches are, for example,

• (weighted) moving average (Velleman and Hoaglin 1981, p. 167),
• Savitzky-Golay filter (Savitzky and Golay 1964),
• (robust) local regression (Cleveland 1979; Cleveland and Devlin 1988),
• exponential smoothing (Holt 2004; Hyndman et al. 2008) and
• finite impulse response filter (IEEE 1979; Shenoi 2006, Chap. 5).

Since the mathematical principles of the above-mentioned methods are well doc-
umented in the literature on time series analysis and signal processing (Brockwell
and Davis 2002, Chap. 1), they are not repeated in this thesis. Moreover, such
methods for trend determination have been implemented in statistical analysis soft-
ware such as the MATLAB® Curve Fitting ToolboxTM and the free software R
(Crawley 2007; http://www.r-project.org). In the following text, the estimated trend
component is denoted as m̂t .

In addition to trends, many time series are affected by seasonally varying factors
which can be described by a periodic component st with a period of d, satisfying
st−d = st and

∑d
j=1 sj = 0. In the absence of a trend, i.e., yt − m̂t , two com-

monly applied approaches to determining the seasonal component are the empir-
ical averaging method (EAM) and analytical harmonic regression (Brockwell and
Davis 2002, pp. 13, 31). For each k = 1, . . . , d, the average wk of the differences{
(yk+id − m̂k+id), i ∈ Z

+
0 , k + id ≤ n

}
can be computed. Since these average differ-

ences do not necessarily sum to zero, the seasonal component is estimated as

http://www.r-project.org
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ŝk = wk − 1

d

d∑
i=1

wi, k = 1, . . . , d, (2.23)

and ŝk = ŝk−d for k > d. Another convenient choice for modelling st is to use the
sum of harmonics given by

st = a0 +
k∑

j=1

[
aj cos(λj t)+ bj sin(λj t)

]
, (2.24)

where a0, a1, . . . , ak and b1, . . . , bk are unknown coefficients, and λ1, . . . , λk are
fixed frequencies, each being some integer multiple of 2π/d. These unknown coef-
ficients can be estimated by means of a LS regression on the detrended data yt − m̂t .
In case no information about d is available, an analysis in the frequency domain, for
example, with the help of Fourier or wavelet transform, is necessary to determine
the period d and the number of harmonics k.

Instead of modelling the systematic components, another approach directly elim-
inates the trend and seasonal terms by repeatedly applying differencing operators to
{Yt} (Brockwell and Davis 2002, p. 29). The lag-1 difference operator � is defined
as

�Yt = Yt − Yt−1 = (1 − r)Yt, (2.25)

where r is the backward shift operator, i.e., rsYt = Yt−s. Using� to detrend a linear
function mt = c0 + c1t results in a constant�mt = c0 + c1t − (c0 + c1(t− 1)) = c1.
Analogously, any polynomial trend of degree k can be reduced to a constant by k times
use of� (�k). In the absence of seasonality, i.e., Yt = mt +Xt , where mt = ∑k

i=0 citi,
the application of �k gives

�kYt = k! ck +�kXt . (2.26)

Considering the fact that many slowly-changing functions can be well approximated
by a low-degree polynomial on an interval of finite length, the order k of differencing
required in practice is quite small, being often one or two (Brockwell and Davis 2002,
p. 30). If the time series has a seasonal component of period d, the lag-d differencing
operator

�dYt = Yt − Yt−d = (1 − rd)Yt (2.27)

can be used to eliminate the seasonality. Applying�d to the model Yt = mt + st + Xt ,

�dYt = mt − mt−d + Xt − Xt−d (2.28)

represents a decomposition of �dYt into a trend (mt − mt−d) and a noise term
(Xt − Xt−d). The remaining trend mt − mt−d can be eliminated using a power of the
differencing operator � (Brockwell and Davis 2002, p. 33). Although the system-
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atic terms mt and st can be effectively eliminated by differencing, certain statistical
properties of the original noise component Xt such as temporal correlation, cannot
be retrieved from the differenced noise given in Eqs. (2.26) and (2.28). Accordingly,
trend and seasonality removal by repeatedly differencing is particularly applicable
when predicting future values of time series variables Yt . Moreover, differencing
introduces additional mathematical correlations which must be taken into account
when making statistical inferences by means of hypothesis tests (Howind 2005, p. 45;
Bischoff et al. 2006).

In summary, the particular method chosen for handling trend and seasonality
depends on the objective of the time series analysis as well as on the availability
of physical background information which may help one understand the apparent
systematic variability. The performance of the employed detrending and deseason-
alisation approaches directly affects the statistical properties of the derived noise
component (xt = yt − m̂t − ŝt). For example, while analysing representative residual
time series of GPS phase observations, Luo et al. (2009) investigated the influences
of different smoothing and filtering techniques on the noise’s temporal correlation
behaviour. The most significant decorrelation effect is found after applying the expo-
nential smoothing. In addition, a higher degree of local regression results in stronger
negative correlations in the noise.

2.2.2 (Partial) Autocorrelation Function

After removing the deterministic trend and seasonal components, the remaining
noise component is supposed to represent a stationary time series. Loosely speaking,
a discrete time series {Xt, t ∈ Z} with E(X2

t ) < ∞ is considered to be stationary
if it has statistical properties similar to those of the time-shifted series {Xt+h} for
each integer h. Strict stationarity of a time series is defined by the condition that
(X1, . . . ,Xn) and (X1+h, . . . ,Xn+h) have the same joint distributions for all integers
h and n > 0. A weaker form of stationarity, known as weak stationarity, simply
requires that the mean and covariance functions of {Xt}, i.e.,

μX(t) = E(Xt) (2.29)

and

γX(t + h, t) = Cov(Xt+h,Xt) = E {[Xt+h − μX(t + h)][Xt − μX(t)]} , (2.30)

do not vary with respect to time t for each h ∈ Z, indicating that

E(Xt) = μ0 (2.31)

and
γX(t + h, t) := Cov(Xt+h,Xt) = Cov(Xh,X0) =: γX(h), (2.32)
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where γX(·) is referred to as the autocovariance function (ACVF) of {Xt} and γX(h)
as its value at lag h. γX(h) depends only on the time distance (or lag) h between
two observables and is an even function, i.e., γX(−h) = γX(h). If {Xt} is strictly
stationary and E(X2

t ) < ∞ for all t, then {Xt} is also weakly stationary (Brockwell
and Davis 2002, p.15). For the sake of brevity, the term stationary used in this thesis
means weakly stationary, unless it is specified otherwise. Setting h = 0 in Eq. (2.32),
the variance function of a stationary time series is equal to a constant:

Var(Xt) = Cov(Xt,Xt) = Cov(X0,X0) = Var(X0) = γX(0). (2.33)

Relying upon the ACVF of {Xt}, the associated autocorrelation function (ACF) at
lag h is

ρX(h) := γX(h)

γX(0)
= Cor(Xt+h,Xt). (2.34)

The ACF is symmetrical about the origin where it attains its maximum value of one.
Most physical processes have an ACF decreasing in absolute value with an increasing
lag. This means that the relation between Xt at a short temporal distance is stronger
than that over a longer distance. Rapidly decaying ACF values as |h| increases indicate
short-term dependency, while slowly decaying ACF values suggest the presence of
long-term dependency.

In practical problems, one may not start directly with a model, but with observed
time series data {x1, x2, . . . , xn}. To assess the degree of dependence in the obser-
vations and to select an appropriate time series model to describe it, one important
tool is the sample ACF of the data. Assuming that {xt} is a realisation of a stationary
time series {Xt}, the sample ACF of {xt} represents an estimate of the ACF of {Xt}.
Based on the definition of the sample ACVF

γ̂ (h) := 1

n

n−|h|∑
t=1

(xt+|h| − x̄)(xt − x̄), −n < h < n, (2.35)

the sample ACF is given by

ρ̂(h) := γ̂ (h)

γ̂ (0)
, −n < h < n, (2.36)

where x̄ = 1
n

∑n
t=1 xt is the sample mean (Brockwell and Davis 2002, p. 19). Both

estimates γ̂ (h) and ρ̂(h) are biased even if the denominator n is replaced by n − |h|
in Eq. (2.35). However, using n − |h| instead of n, the sample covariance matrix

�̂n := [
γ̂ (i − j)

]n
i,j=1 =

⎛
⎜⎜⎜⎝

γ̂ (0) γ̂ (1) · · · γ̂ (n − 1)
γ̂ (1) γ̂ (0) · · · γ̂ (n − 2)
...

...
...

...

γ̂ (n − 1) γ̂ (n − 2) · · · γ̂ (0)

⎞
⎟⎟⎟⎠ (2.37)
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and the associated correlation matrix P̂n = �̂n/γ̂ (0)may not be positive-semidefinite
(Brockwell and Davis 2002, p. 60). Therefore, in this thesis, γ̂ (h) and ρ̂(h) are
calculated using Eqs. (2.35) and (2.36), respectively. For |h| values that are slightly
smaller than n, γ̂ (h) and ρ̂(h) are unreliable, since there are only a few pairs (xt+|h|, xt)

available. As a useful guide, n should be at least about 50 and h ≤ n/3 (Box and
Jenkins 1976, p. 33; Brockwell and Davis 2002, p. 404).

The sample ACF plays an important role in identifying time series models and
assessing the degree of correlation, where the distributional properties of ρ̂(h) are
assumed to be known. The probability distribution of ρ̂(h) can be asymptotically
approximated by a multivariate normal distribution, i.e.,

ρ̂h −→ N
(

ρh,
1

n
�

)
, (2.38)

where ρ̂h = [
ρ̂(1), . . . , ρ̂(h)

]T , ρh = [
ρ(1), . . . , ρ(h)

]T , and � is the VCM of ρh.
The (i, j) element of � can be computed using Bartlett’s formula (Brockwell and
Davis 2002, p. 61)

σij =
∞∑

h=1

[
ρ(h+i)+ρ(h−i)−2ρ(i)ρ(h)

]·[ρ(h+j)+ρ(h−j)−2ρ(j)ρ(h)
]
. (2.39)

If {Xt} is a sequence of independent and identically distributed (iid) random vari-
ables, each with zero mean and variance σ 2

X , denoted as {Xt} ∼ IID(0, σ 2
X), then

ρ(h) = 0 for h > 0 and ρ(h) = 1 for h = 0. Applying Bartlett’s formula to {Xt},
σij �= 0 only if i = j. Asymptotically, ρ̂(1), . . . , ρ̂(h) represent iid normal random
variables with zero mean and variance n−1 [see Eq. (2.38)]. This is usually used to
calculate the confidence bounds for sample ACF, making statistical inferences on
uncorrelatedness.

The partial correlation primarily contributes to model identification for the
observed data. Loosely speaking, it can be interpreted as the difference between the
autocorrelation coefficient at a certain lag and its extrapolation from the lower-order
correlations (Broersen 2006, p. 90). The partial autocorrelation function (PACF) of
a stationary time series {Xt} is the function α(·) defined by the equations

α(0) = 1 and α(h) = φhh, h ≥ 1, (2.40)

where φhh denotes the last element of φh = �−1
h γ h with �h = [

γ (i − j)
]h

i,j=1 and

γ h = [
γ (1), . . . , γ (h)

]T . For a set of observations {x1, . . . , xn} with xi �= xj, the
sample PACF is given by

α̂(0) = 1 and α̂(h) = φ̂hh, h ≥ 1, (2.41)

where φ̂hh is the last component of φ̂h = �̂
−1
h γ̂ h (Brockwell and Davis 2002, p. 95).
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2.2.3 Autoregressive Moving Average Processes

As an important parametric family of stationary models, autoregressive moving aver-
age (ARMA) processes play a key role in analysing time series data. According to
Brockwell and Davis (2002, p. 83), a large class of autocovariance functions that
asymptotically converge to zero can be well approximated by the autocovariance
function of an appropriately identified ARMA model. Moreover, the linear structure
of ARMA processes leads to a substantial simplification of the general methods for
linear prediction. This section provides a brief introduction to ARMA processes,
along with some of their core characteristics.

The time series {Xt} is an ARMA(p, q) process if {Xt} is stationary and

Xt +
p∑

i=1

aiXt−i = Zt +
q∑

j=1

bjZt−j (2.42)

holds for each time index t. Thereby, {Zt} is a white noise (WN) process representing
a sequence of uncorrelated random variables, each with zero mean and variance σ 2

Z .
Such a process is indicated by the notation {Zt} ∼ WN(0, σ 2

Z ) (Broersen 2006, p. 74).
The positive integer numbers p and q denote the orders of the ARMA process. The
real-valued terms {a1, a2, . . . , ap} and {b1, b2, . . . , bq} are the model coefficients. If
q = 0, {Xt} is an autoregressive process of order p, i.e., AR(p):

Xt = −
p∑

i=1

aiXt−i + Zt, (2.43)

and if p = 0, a moving average process of order q, i.e., MA(q):

Xt =
q∑

j=1

bjZt−j + Zt . (2.44)

It is more convenient to write Eq. (2.42) in a concise form as

Ap(r)Xt = Bq(r)Zt, (2.45)

where Ap(r) and Bq(r) are the pth- and qth-degree characteristic polynomials
expressed as

Ap(r) = 1 + a1r + · · · + aprp (2.46)

and
Bq(r) = 1 + b1r + · · · + bqrq, (2.47)
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respectively, and r is the backward shift operator defined by rsXt = Xt−s for arbitrary
s ∈ Z [see Eq. (2.25)]. A unique stationary solution of Eq. (2.42) exists if and only
if Ap(r) �= 0 for all r ∈ C with |r| = 1. This means, among other things, that the
AR characteristic equation Ap(r) = 0 has no unit root. An ARMA(p, q) process {Xt}
is called causal (invertible) if Ap(r) �= 0 (Bq(r) �= 0) for all r ∈ C with |r| ≤ 1,
indicating that the zeros of Ap(r) (Bq(r)) are strictly outside the unit circle in the
complex number domain (Brockwell and Davis 2002, pp. 85, 86).

Note that causality and invertibility are properties not of {Xt} alone, but rather
of the relationship between {Xt} and {Zt}. If {Xt} is an ARMA(p, q) process defined
by Ap(r)Xt = Bq(r)Zt , where Bq(r) �= 0 for |r| = 1, then it is always possible
to find polynomials Ãp(r) and B̃q(r), as well as a WN sequence

{
Z∗

t

}
, such that

Ãp(r)Xt = B̃q(r)Z∗
t represents a causal and invertible ARMA(p, q) process. How-

ever, the new WN sequence {Z∗
t } is not necessarily iid unless {Zt} is Gaussian (Brock-

well and Davis 1991, p. 127; Brockwell and Davis 2002, p. 88).
A generalisation of the ARMA class is provided by the autoregressive inte-

grated moving average (ARIMA) processes which incorporate a wide range of non-
stationary time series. If k is a positive integer, then {Yt} is an ARIMA(p, k, q) process
if the differenced process (1 − r)kYt is a causal ARMA(p, q) process, where r is the
backward shift operator, and (1 − r)k = �k denotes k times application of the lag-1
difference � [see Eq. (2.25)]. This definition means that {Yt} satisfies a difference
equation of the form

A∗
p(r)Yt = Ap(r)(1 − r)kYt = Bq(r)Z(t), {Zt} ∼ WN(0, σ 2

Z ), (2.48)

where Ap(r) and Bq(r) are the characteristic polynomials of order p and q, respec-
tively, and Ap(r) �= 0 for all |r| ≤ 1 (causality). The polynomial A∗

p(r) has a zero of
order k at r = 1, indicating the presence of a unit root and non-stationarity. Therefore,
the process {Yt} is stationary if and only if k = 0. In this case, the ARIMA (p, k, q)
process is reduced to an ARMA(p, q) process. Since non-stationary components
can be efficiently eliminated by differencing, the differenced observations can be
modelled and predicted based on the theory of ARMA processes. Taking advantage
of the data-based removal of non-stationarity, ARIMA processes are often used in
forecasting applications (Brockwell and Davis 2002, Chap. 6).

Once a causal and invertible ARMA(p, q) process is uniquely defined by Eq. (2.42),
the associated model ACVF can be computed. Two methods are briefly described in
the following text. The first one solves a set of homogenous linear difference equa-
tions (Brockwell and Davis 2002, p. 90), while the second determines the ACVF of
an ARMA process as a convolution of the separate autocovariances of the AR and
MA components (Broersen 2006, p. 74).

First Method. For a causal ARMA(p, q) process {Xt}, there exist constants
{
ψj
}

such that

Xt =
∞∑

j=0

ψjZt−j = �(r)Zt, ∀t, (2.49)
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where
∑∞

j=0

∣∣ψj
∣∣ < ∞ and �(r) = ∑∞

j=0 ψjrj (Brockwell and Davis 2002, p. 85).

Regarding Eqs. (2.45) and (2.49),
{
ψj
}

can be determined based on the relation
�(r) = Bq(r)/Ap(r), or equivalently by the identity

(1 + a1r + · · · + aprp)(ψ0 + ψ1r + · · · ) = 1 + b1r + · · · + bqrq. (2.50)

Comparing the coefficients of rj yields

ψj +
p∑

k=1

akψj−k = bj, j = 0, 1, . . . , (2.51)

where b0 := 1, bj := 0 for j > q, and ψj := 0 for j < 0. Substituting the ARMA
coefficients

{
a1, a2, . . . , ap

}
and

{
b1, b2, . . . , bq

}
into Eq. (2.51), the constants

{
ψj
}

can be calculated successively. Multiplying each side of the ARMA(p, q) process

Xt + a1Xt−1 + · · · + apXt−p = Zt + b1Zt−1 + · · · + bqZt−q (2.52)

by Xt−k = ∑∞
j=0 ψjZt−k−j, k = 0, 1, 2, . . ., and taking expectations on each side, it

follows that

γX(k)+ a1γX(k − 1)+ · · · + apγX(k − p) = σ 2
Z

∞∑
j=0

bk+jψj, 0 ≤ k < m, (2.53)

γX(k)+ a1γX(k − 1)+ · · · + apγX(k − p) = 0, k ≥ m, (2.54)

where m = max(p, q + 1),ψj := 0 for j < 0, b0 = 1, and bj := 0 for j /∈ {0, . . . , q}
(Brockwell and Davis 2002, p. 90; Broersen 2006, p. 77). Equation (2.54) represents
a set of homogenous linear difference equations with constant coefficients, and the
solution has the form

γX(h) = β1ξ
−h
1 + β2ξ

−h
2 + · · · + βpξ

−h
p , h ≥ m − p, (2.55)

where ξ1, . . . , ξp are the roots of the characteristic equation Ap(r)= 0 [see Eq. (2.46)],
and β1, . . . , βp are arbitrary constants (Brockwell and Davis 1991, Sect. 3.6).
Substituting the solution (2.55) into Eq. (2.53), the constants β1, . . . , βp and the
m − p autocovariances γX(h) with 0 ≤ h < m − p can be uniquely determined
by solving a set of m linear equations. Substituting the determined β1, . . . , βp into
Eq. (2.55), the autocovariances γX(h) are obtained for h ≥ m − p. Once the ACVF
of the ARMA(p, q) process is known, the corresponding ACF and PACF can be
computed using Eqs. (2.34) and (2.40), respectively.

Second Method. This approach considers an ARMA (p, q) process as a combi-
nation of an AR(p) process {Vt} and a MA(q) process {Xt}, i.e.,
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Ap(r)Vt = Zt, Xt = Bq(r)Vt . (2.56)

Multiplying both sides of the AR(p) equation by Vt−k

(Vt + a1Vt−1 + · · · + apVt−p) · Vt−k = Zt · Vt−k, (2.57)

and taking expectations on each side yields

γV (0)
[
1 + a1ρV (1)+ · · · + apρV (p)

] = σ 2
Z , k = 0, (2.58)

ρV (k)+ a1ρV (k − 1)+ · · · + apρV (k − p) = 0, k ≥ 1. (2.59)

After solving the linear equation system resulting from Eq. (2.59), the auto-
correlation coefficients ρV (1), ρV (2), . . . , ρV (p) can be uniquely determined
(Broersen 2006, Sect. 4.4.3). Next, they are substituted into Eq. (2.58) to calculate
the variance γV (0). For an arbitrary k, the autocovariance γV (k) can be computed by
γV (k) = γV (0)ρV (k), where ρV (k) is successively derived using Eq. (2.59).

Considering the second part of Eq. (2.56), the input process {Vt} is an autoregres-
sive process and no longer a white noise. Therefore, the convenient approach for com-
puting the ACVF of a MA(q) process provided by Brockwell and Davis (2002, p. 89)
cannot be applied. Multiplying each side of the MA(q) process by Xt−k

Xt · Xt−k = (Vt + b1Vt−1 + · · · + bqVt−q) · Xt−k, (2.60)

and taking expectations on each side, it follows that

γX(k) = E(XtXt−k)

= E
[
(Vt + b1Vt−1 + · · · + bqVt−q)(Vt−k + b1Vt−k−1 + · · · + bqVt−k−q)

]
.

(2.61)

Making use of the associated covariances, Eq. (2.61) can be written as

γX(k) = (1 b1 · · · bq)

⎛
⎜⎜⎜⎝

γV (k) γV (k + 1) · · · γV (k + q)
γV (k − 1) γV (k) · · · γV (k + q − 1)

...
...

...
...

γV (k − q) γV (k − q + 1) · · · γV (k)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

1
b1
...

bq

⎞
⎟⎟⎟⎠ ,

(2.62)
or in a more compact form as

γX(k) =
q∑

m=−q

⎛
⎝γV (k + m)

q∑
j=0

bjbj+|m|

⎞
⎠ , ∀k. (2.63)
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As Eq. (2.63) shows, the ACVF of an ARMA(p, q) process {Xt} can be calculated as
a convolution of the autoregressive ACVF γV (k)with the sum of products of the MA
coefficients (Broersen 2006, p. 75). Based on the ACVF of {Xt}, the corresponding
ACF and PACF can be easily derived.

2.2.4 An Example of the Classical Decomposition Model

To demonstrate the general approach to time series modelling, an example of the
classical decomposition model is presented in this section. Figure 2.1a shows the
monthly sales (in kiloliters) of red wine by Australian winemakers from January
1980 to December 1990. Given a set of n observations available at uniformly
spaced time intervals, the time axis is usually rescaled in such a way that the set
of times T becomes the set of integers {1, 2, . . . , n}. In this example, T has a total of
11 years × 12 months = 132 elements. The graph illustrates that the sales have an
upward trend and a seasonal pattern with a peak in July and a trough in January.
Furthermore, the seasonal and noise fluctuations seem to increase with time. This
appearance suggests a preliminary data transformation, for example, using the Box-
Cox transformation given by Eq. (2.22). In Fig. 2.1b, the transformed data obtained by
setting λ = 0 exhibit considerably more homogenous variability along the upward
trend and can thus be more appropriately described by a classical decomposition
model than the original data. Since the transformed observations appear to increase
at a roughly linear rate, a parametric trend model of the form mt = a0 + a1t is
estimated by means of the ordinary LS (OLS) regression.

After subtracting the estimated linear trend m̂t from the Box-Cox transformed
data, Fig. 2.2 displays the seasonal component determined by applying the empirical
averaging method [EAM; see Eq. (2.23)] and analytical harmonic regression [see

(a) (b)
ˆ

Fig. 2.1 Monthly Australian red wine sales from January 1980 to December 1990 with Box-Cox
transformation and linear trend estimation (Brockwell and Davis 2002, p. 2)
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(a) (b)

(c) (d)

Fig. 2.2 Determination of the seasonal component ŝt of the time series shown in Fig. 2.1 by applying
empirical averaging and harmonic regressions [see Eqs. (2.23) and (2.24)]

Eq. (2.24)]. The regression order and all fixed frequencies are obtained by performing
a spectral analysis (see Fig. 2.2b), where the normalised frequency axis, normally
ranging from 0 Hz to the Nyquist frequency of 0.5 Hz, is converted into times per
year by multiplying the frequencies by 12 months. The unknown parameters in
the harmonic regression model, i.e., a0, a1, . . . , ak and b1, . . . , bk in Eq. (2.24), are
estimated using the OLS method.

As can be seen from Fig. 2.2a, the empirical approach EAM turns out to be an
efficient method for determining the seasonal component in the detrended data. Com-
paring the results from the harmonic regressions shown in Fig. 2.2c and d, the higher-
order harmonic with k = 4 enables a more accurate characterisation of the seasonal
behaviour, and the resulting curve is rather similar to that from the empirical aver-
aging. The reason for the relatively poor fit using the first-order harmonic with
k = 1 can be found in the amplitude spectrum of the detrended data visualised in
Fig. 2.2b. Obviously, the total energy of the signal cannot be sufficiently approx-
imated by considering only the most significant frequency of once per year (i.e.,
period d = 12 months). From this comparison, it can be concluded that although
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sometimes the dominant period is quite visible in the time domain, a spectral analysis
of the detrended data is strongly advisable for a more reasonable specification of the
order of harmonics.

After removing the seasonal component ŝt determined using different techniques,
the resulting noise series and the associated amplitude spectra are depicted in Fig. 2.3.
Due to the better performance of the EAM and fourth-order harmonic regression, the
corresponding noise series are more homogenous and exhibit smaller variation ranges
(see Fig. 2.3a). Examining Fig. 2.3b, the frequencies that have not been considered
in the course of harmonic regression illustrate significant noise amplitude spectra.
Furthermore, the advantages of the empirical averaging over the harmonic regression
are clearly visible at the frequencies of twice and six times per year. In addition to
the annual and sub-annual periodicities, the first significant peak in Fig. 2.3b at a
frequency (period) of about 0.27 times per year (3.7 years) indicates a long-periodic
signal, which may be attributed to an artefact without a realistic background (Fischer
et al. 2011).

Although ACF and PACF are defined for stationary time series (Brockwell and
Davis 2002, p. 16), their empirical versions are often used in practice even if the
data do not fulfil the stationarity conditions given by Eqs. (2.31) and (2.32). To
illustrate the difficulties in the interpretation of the correlation behaviour caused by
the systematic components, Fig. 2.4 compares the sample ACF and PACF of the
Box-Cox transformed, linearly detrended and differently deseasonlised (noise) data.
In terms of the maximum lag value, Brockwell and Davis (2002, p. 404) noted that
the sample ACF and PACF are good estimates of the ACF and PACF of a stationary
process for lags up to about one third of the sample size, i.e., hmax = 132/3 = 44.

As the graphs show, the trend and seasonal components have a significant impact
on the temporal correlation structure represented by the sample ACF and PACF. A
sample ACF which is positive and very slowly decaying implies that the data may
have a trend (see the Box-Cox transformed data in Fig. 2.4a). A sample ACF with
very slowly damped periodicity suggests the presence of a seasonal component (see

(a) (b)

Fig. 2.3 Noise component after applying linear detrending and different deseasonalisation methods
to the time series shown in Fig. 2.1
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(a) (b)

Fig. 2.4 Comparison of the sample ACF and PACF of the Box-Cox transformed, linearly detrended
and differently deseasonlised (noise) data for the time series shown in Fig. 2.1

the linearly detrended data in Fig. 2.4a). In comparison to the sample ACF, the sample
PACF depicted in Fig. 2.4b appears to be primarily affected by the seasonal compo-
nent. In this example, the better performance of the EAM technique in modelling
seasonality is verified by the smaller variations in the corresponding noise’s sample
ACF and PACF. The dashed horizontal lines in the figures are the confidence bounds
±1.96/

√
n. If the data series represents a realisation of an iid sequence, approx-

imately 95 % of the sample autocorrelations should lie within these bounds [see
Eq. (2.38)]. Large or frequent excursions from the bounds indicate significant depen-
dencies in the data. Under the assumption that the trend and seasonal components
have been sufficiently reduced, the remaining noise can be modelled by means of
ARMA processes.

The determination of a well-fitting ARMA(p, q) model to represent a station-
ary times series involves a number of interrelated problems, such as the choice
between AR(p), MA(q) and ARMA(p, q) processes, the selection of the order para-
meters p and q, as well as the estimation of the model coefficients {a1, a2, . . . , ap},
{b1, b2, . . . , bq} and the WN variance σ 2

Z . The solutions to these problems will be
discussed in Sect. 7.3. The appropriateness of the fitted ARMA model can be assessed
by means of suitable hypothesis tests. Once a time series model has been properly
identified and statistically verified, it can then be used to enhance our understanding
of the underlying mechanisms that generate the time series data.

2.3 Statistical Hypothesis Tests

In this thesis, the efficiency of the residual-based temporal correlation modelling
is statistically evaluated by means of various hypothesis tests for normality, trend,
stationarity and uncorrelatedness. The description of the applied test methods in this

http://dx.doi.org/10.1007/978-3-642-34836-5_7
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section focuses on their main characteristics as well as their relative strengths and
weaknesses in practical use. Prior to this, the basic theory of hypothesis testing is
briefly outlined.

2.3.1 Hypothesis Testing

A statistical hypothesis is a statement about a population parameter which may or
may not be true. The best way to find out whether a statistical hypothesis is true
or not would be to examine the entire population. Since this is often impractical, a
random sample from the population is usually used to verify the consistency of the
sample data with the statistical hypothesis. There are two complementary statements
in a hypothesis testing problem: the null hypothesis and the alternative hypothesis.
They are denoted by H0 : θ ∈ �0 and H1 : θ ∈ �c

0, respectively, where θ is the
population parameter, and�0 is some subset of the parameter space with its comple-
ment�c

0 (Casella and Berger 2002, p. 373). H0 usually represents the hypothesis that
sample observations result purely by chance, while H1 is the hypothesis that sample
observations are influenced by some non-random factors. A hypothesis is referred
to as a simple hypothesis if the population distribution is completely known, and a
composite one if some of the characteristic parameters of the population distribution
are left unspecified (Tiberius and Borre 1999). The concept of simple and composite
hypotheses applies to both H0 and H1.

Hypothesis testing, also known as confirmatory data analysis in contrast to
exploratory data analysis, is a formal process to decide whether to reject a null
hypothesis based on sample data. A hypothesis test is typically specified by a test
statistic T := f ({X1, . . . ,Xn}) = f (X) that represents a function of the random
sample {X1, . . . ,Xn} (Casella and Berger 2002, p. 374). The choice of a test statis-
tic depends not only on the assumed probability model, but also on the hypotheses
under consideration. From the observed data x = {x1, . . . , xn}, a realisation of T ,
i.e., t = f (x), can be calculated. Under H0, the probability distribution of T can be
analytically derived or asymptotically approximated. It partitions all possible values
of T into a rejection region (R) and a complementary non-rejection region (Rc). These
regions are defined by considering the significance level at which the test is carried
out, and whether the test is one-sided or two-sided.

In the case of simple hypotheses, the significance level, usually denoted by the
Greek symbol α, is the probability that the test incorrectly rejects the null hypothesis
(i.e., Type I error, see Table 2.3). It is set by the investigator in consideration of its
consequence on the test decision. That is, one specifies α to be as small as possible
to protect the null hypothesis and to prevent, as far as possible, the investigator from
inadvertently making false conclusions. Usually, the significance level is chosen to
be 1, 5 or 10 %. A one-sided (two-sided) statistical hypothesis test means that the
rejection region R is on only one side (both sides) of the probability distribution of
T . The choice between a one-sided and a two-sided test is determined by the purpose
of the investigation. Based on the calculated test statistic t = f (x) and the rejection
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region R, the decision rule is to reject H0 at a significance level of α if t is located in
R, and to fail to reject H0 otherwise.

In addition to the decision rule based on t and R, the so-called p-value that measures
the strength of evidence in support of a null hypothesis is often used to make a
test decision. Assuming that H0 is true (i.e., θ ∈ �0), the p-value represents the
probability of obtaining a test statistic as large as or larger than t by chance alone.
Mathematically, it can be expressed as

p(x) = sup
θ∈�0

Pθ (T ≥ t). (2.64)

The smaller the p-value, the stronger the evidence for rejecting H0. If the p-value is
smaller than the specified significance level α, the null hypothesis has to be rejected.
In comparison to the region-based decision rule, a p-value reports the test results on
a more continuous scale, rather than a dichotomous choice “Reject H0” or “Do not
reject H0” (Casella and Berger 2002, p. 397).

It is important to note the philosophical difference between “acceptance” and
“failure to reject”. The “failure to reject” terminology emphasises the fact that H0
is assumed to be true from the start of the test, since the data are not sufficiently
persuasive to prefer H1 over H0. The expression “acceptance” indicates that H0 has
been proved to be true simply because it cannot be rejected by the data. This is a
logical fallacy known as “argumentum ad ignorantiam”, asserting that a proposition
is necessarily true because it has not been proven false (or vice versa; Casella and
Berger 2002, p. 374). Therefore, the phrase “failure to reject” is used in this thesis
for the case that H0 cannot be rejected at the specified significance level.

In deciding whether to reject H0, a hypothesis test of H0 : θ ∈ �0 versus
H1 : θ ∈ �c

0 may be subject to one of two types of errors. A Type I error is committed
if the test incorrectly decides to reject H0 in spite of θ ∈ �0. The corresponding prob-
ability can be written as Pθ (θ ∈ �0 ∧ T ∈ R). On the other hand, if θ ∈ �c

0, but the
test decides not to reject H0, a Type II error is made and the associated probability is

Pθ (θ ∈ �c
0 ∧ T ∈ Rc) = 1 − Pθ (θ ∈ �c

0 ∧ T ∈ R). (2.65)

Obviously, all the probabilistic information about the test with respect to the rejection
region R is included in

Pθ (T ∈ R) =
{

Pθ (θ ∈ �0 ∧ T ∈ R) = α

1 − Pθ (θ ∈ �c
0 ∧ T ∈ Rc) = β.

(2.66)

On the basis of Eq. (2.66), the power function of a hypothesis test with rejection
region R is a function of θ defined by ζ(θ) = Pθ (T ∈ R). The ideal power value is 0
for all θ ∈ �0 (i.e., α = 0) and 1 for all θ ∈ �c

0 (i.e., β = 1). The former indicates
that H0 is never erroneously rejected, and the latter implies that H1 is permanently
correctly identified. However, these ideal situations cannot be reached in reality. A
good hypothesis test has a power function near 0 for most θ ∈ �0 and near 1 for most
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Table 2.3 Two types of errors committed in hypothesis testing

Test Actual condition
decision H0 is true (θ ∈ �0) H1 is true (θ ∈ �c

0)

Failure to Correct decision Type II error
reject H0 Pθ (θ ∈ �0 ∧ T ∈ Rc) = Pθ (θ ∈ �c

0 ∧ T ∈ Rc) =
(T ∈ Rc) 1 − α 1 − β

Reject H0 Type I error Correct decision
(T ∈ R) Pθ (θ ∈ �0 ∧ T ∈ R) = α Pθ (θ ∈ �c

0 ∧ T ∈ R) = β

(significance level)

θ ∈ �c
0. The two types of errors committed in hypothesis testing are summarised in

Table 2.3 (Casella and Berger 2002, p. 383).
Considering a class C of statistical tests for verifying H0 : θ ∈ �0 versus

H1 : θ ∈ �c
0, a test with power function ζ ∗(θ) is called the uniformly most powerful

(UMP) test at significance level α0 if ζ ∗(θ) ≤ α0 for all θ ∈ �0 and ζ ∗(θ) ≥ ζ(θ)

for all θ ∈ �c
0, where ζ(θ) is the power function of a test in class C. For example,

according to the Neyman-Pearson lemma (Lehmann and Romano 2005, p. 59), the
simple likelihood-ratio test is UMP when comparing the fit of two models (Amiri-
Simkooei 2007, p. 13). Moreover, it is worth mentioning that a UMP test may not
exist, particularly for two-sided alternative hypotheses.

2.3.2 Tests for Normality

If the noise component {Xt} resulting from the classical decomposition model repre-
sents a Gaussian process, i.e., all of its joint distributions are normal, then stronger
conclusions can be drawn when fitting a time series model to the data (Brockwell
and Davis 2002, p. 38). This section begins by specifying the null and alternative
normality hypotheses. After that, four test methods based on different principles
are briefly outlined, allowing one to verify whether it is reasonable to assume that
observations from an iid sequence are Gaussian.

The null hypothesis states that the sample {x1, . . . , xn} from an iid process
{Xt} ∼ IID(μX , σ

2
X), t = 1, . . . , n, follows a normal distribution with mean μX

and variance σ 2
X . Taking the iid property of {Xt} into account, {x1, . . . , xn} can be

interpreted as n independent realisations of a normally distributed random variable
X ∼ N (μX , σ

2
X). Therefore, the null hypothesis H0 and the complementary alterna-

tive hypothesis H1 can be formulated as

H0 : F(x) = F0(x) = �(x, μX , σ
2
X), H1 : F(x) �= F0(x), (2.67)

where F(x) denotes the cumulative distribution function (CDF) of X. The empirical
CDF Fn(x) represents an estimate of F(x) and is given by
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Fn : R → [0, 1], x → Fn(x) =
∑
xi≤x

h(xi), i = 1, . . . , n, (2.68)

where h(xi) is the relative frequency of xi. According to the strong law of large
numbers, Fn(x) converges almost surely to F(x) for all fixed x and n → ∞ (Casella
and Berger 2002, p. 235). Therefore, Fn(x) represents a consistent and unbiased
estimate of F(x).

The Jarque-Bera (JB) test assesses deviations from a normal distribution using
the sample skewness and kurtosis, also known as the third and fourth standardised
moments, respectively. In Jarque and Bera (1987), the test statistic TJB is defined as

TJB = n

6

[
g2

1 + (g2 − 3)2

4

]
, g1 = m3

m3/2
2

, g2 = m4

m2
2

, (2.69)

where g1 is the sample skewness, g2 is the sample kurtosis, and mr is the rth central
sample moment given by mr = 1

n

∑n
i=1(xi−x̄)r , with x̄ denoting the arithmetic mean.

Asymptotically, TJB follows a chi-square distribution with two degrees of freedom
(i.e., TJB → χ2

2 ). The null hypothesis of normality is rejected at a significance level
of α if TJB > χ2

2;1−α .
As is well known, the sample moments are very sensitive to outliers. Accordingly,

TJB is sensitive to extreme observations as well. Using a robust measure of variance,
Gel and Gastwirth (2008) suggested an advanced JB test which is more resistant to
outliers and delivers equal or higher statistical power than the standard JB test. In
addition, the chi-square distribution approximation of TJB is poorly suited for small
sample sizes. This leads to a high probability of wrongly rejecting H0 (Type I error,
see Table 2.3). For sample sizes n < 2,000, the MATLAB® Statistics ToolboxTM

(MST) uses critical values computed by means of Monte-Carlo simulations.
The chi-square (CS) test, also referred to as Pearson’s chi-square goodness-of-

fit test (Plackett 1983), verifies whether the frequency distribution of an observed
sample is consistent with the assumed theoretical one (Lehmann and Romano 2005,
Chap. 14). The computation of the chi-square test statistic

TCS =
m∑

k=1

(Ok − Ek)
2

Ek
(2.70)

is performed by first grouping the data into m bins and then evaluating the observed
(Ok) and the expected counts (Ek) for those bins. Ek is calculated using
Ek = n[F0(cu) − F0(cl)], where cu and cl are the upper and lower boundaries
of class k, respectively. Asymptotically, TCS follows a chi-square distribution with
(m − u) degrees of freedom (i.e., TCS → χ2

m−u), where u is the number of unknown
parameters characterising the hypothesised distribution plus one (e.g., u = 3 for a
normal distribution). H0 is rejected at a significance level of α if TCS > χ2

m−3;1−α .
The CS test can be applied to both discrete (e.g., binomial, Poisson) and con-

tinuous distributions. However, TCS is sensitive to the choice of bins. According to
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Reißmann (1980, p. 359), m between 10 and 15 with a bin width of approximately s/2
(s: sample standard deviation) seems to be a reasonable choice in practice. Moreover,
the expected counts Ek in each bin should not be less than 5. Therefore, the CS test
requires a sufficiently large sample size for reliable test results.

The Lilliefors (LF) test is based on a single distance measure defined as the
supremum of the absolute difference between the empirical (Fn) and theoretical
CDF (F0) (Lilliefors 1967):

TLF = sup
1≤i≤n

|Fn(xi)− F0(xi)| . (2.71)

The LF test is particularly suitable for composite hypotheses, where the location
and shape parameters (e.g., mean, variance) are not fully specified, but are estimated
from data. For small sample sizes (n ≤ 30), Lilliefors (1967, p. 400) provided critical
values CLF,1−α for TLF at different significance levels (see Table A.3). In the case
of n > 30, CLF,1−α can be obtained by analytical approximation or Monte-Carlo
simulations, as implemented in the MST. H0 is rejected at a significance level of α
if TLF > CLF,1−α . Additional information about the LF test is available in Conover
(1999, p. 443) and Abdi and Molin (2007).

Making use of the identical test statistic as the LF test, the Kolmogorov-Smirnov
(KS) test is applicable to simple hypotheses, where the theoretical CDF has been pre-
determined or completely specified (Chakravarti et al. 1967, pp. 392–394). Employ-
ing the KS test to verify the composite normality hypothesis of representative GPS
observation residuals, Luo et al. (2011) found a large rate of erroneous non-rejection
of H0 (Type II error, see Table 2.3).

The Anderson-Darling (AD) test uses a weighted (higher weight to the tails)
overall distance measure between the empirical and theoretical CDF to verify if a
sample of data comes from a population with the hypothesised distribution (Anderson
and Darling 1952). The AD test statistic is defined as

TAD = −n −
n∑

i=1

(2i − 1)

n

{
lnF0(yi)+ ln

[
1 − F0(yn+1−i)

]}
, (2.72)

where yi are the sorted data in ascending order. Applying the AD test for normal
distribution, yi can be replaced by (xi−x̄)/s (x̄, s: sample mean and standard deviation)
and F0 by the CDF of the standard normal distribution N (0, 1), where xi are also
sorted in ascending order. Considering the modified test statistic

T∗
AD =

(
1 + 0.75

n
+ 2.25

n2

)
TAD, (2.73)

adjusted with respect to sample size n, the critical values CAD,1−α for the composite
hypothesis of normality are available in Stephens (1986, Table 4.9) for different
significance levels. H0 is rejected at a significance level of α if T∗

AD > CAD,1−α .
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Although the AD test is restricted to continuous distributions, Stephens (1974)
found that TAD is one of the best empirical CDF statistics for detecting most
departures from normality. Moreover, the AD test incorporates the assumed distrib-
ution into the calculation of critical values. This results in the advantage of enabling
more sensitive tests, but the disadvantage of computing individual critical values for
each kind of distribution to be tested.

2.3.3 Tests for Trend

Within the framework of classical decomposition (see Sect. 2.2.1), a slowly changing
trend component has to be estimated and removed before finding a satisfactory time
series model for the noise component. The performance of the detrending procedure
can be verified by means of hypothesis tests for trend. Furthermore, the results of
trend tests help specify parameters when applying the unit root tests for stationarity
(see Sect. 2.3.4). Two non-parametric trend tests are employed in this thesis to verify
the null hypothesis H0 that there is no trend in the realisation of an iid sequence
{x1, . . . , xn} against the alternative hypothesis H1 that a monotonic trend is present.
Additional trend tests with examples can be found in Gilbert (1987, Chap. 16), Hipel
and McLeod (1994, Chap. 23) and Hartung et al. (2005, Chap. 4).

The Cox-Stuart (CT) test relies upon the simple principle that a data series
exhibits an upward (downward) trend if the earlier observations tend to be smaller
(larger) than the later ones (Cox and Stuart 1955). The test statistic TCT is defined as
the number of positive differences yi, given by

yi = xi+m − xi, i =
{

1, . . . ,m m = n/2, if n is even,
1, . . . ,m − 1 m = (n + 1)/2, if n is odd.

(2.74)

In fact, TCT follows a binomial distribution TCT ∼ Bin(L, p) with p = 1/2, where L
denotes the number of non-zero yi. If L < 20, the test decision can be made based on
the q-quantile of the binomial distribution BL,p;q, i.e., H0 is rejected at a significance
level of α if TCT < BL,p;α/2 or TCT > BL,p;1−α/2. For large L values (e.g., L ≥ 20),
the modified test statistic

ZCT = TCT − L/2√
L/2

(2.75)

follows asymptotically the standard normal distribution N (0, 1) and can be used
to make the test decision (Hartung et al. 2005, p. 242). This modification can be
easily derived by approximating the binomial distribution Bin(L, p) by the nor-
mal distribution N (Lp,Lp(1 − p)), where p = 1/2. In general, this approxima-
tion improves as L increases and is more appropriate when p is not close to 0 or 1
(Box et al. 1978, p. 130). H0 is rejected at a significance level of α if |ZCT | > z1−α/2,
where zq denotes the q-quantile of the standard normal distribution.
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The Mann-Kendall (MK) test originates from the non-parametric test for
randomness against trend proposed by Mann (1945), which constitutes a particu-
lar application of Kendall’s test for correlation between two measured quantities
(Kendall 1975). The MK test evaluates the observed data as an ordered time series,
and each observation is compared to all subsequent values. Under the null hypothesis
of a trend-free series {x1, . . . , xn}, the MK test statistic is

TMK =
n−1∑
k=1

n∑
j=k+1

sgn(xj − xk), sgn(x) =

⎧⎪⎨
⎪⎩

+1, x > 0,

0, x = 0,

−1, x < 0,

(2.76)

where sgn(x) is the signum function of a real number x (Hartung et al. 2005, p. 249).
A very large positive value of TMK indicates that there exists an upward trend in which
the observations increase with time. On the other hand, a very low negative value of
TMK means that a downward trend is present. For small sample sizes (n ≤ 40), the
q-quantile of the Kendall’s K-statistic Kn;q can be used as the critical value for TMK .
H0 is rejected at a significance level of α if TMK < −Kn;1−α/2 or TMK > Kn;1−α/2.
These quantile values are elaborately tabulated for different significance levels by
Hollander and Wolfe (1999, pp. 724–731). In the case of large n, the transformed
test statistic

ZMK = TMK√
n(n − 1)(2n + 5)/18

(2.77)

follows asympototically the standard normal distribution (Hartung et al. 2005,
p. 250). If ZMK is significantly different from zero, for example, fulfilling
|ZMK | > z1−α/2, H0 is rejected at a significance level of α, suggesting the exis-
tence of a monotonic trend.

An attractive feature of the non-parametric trend tests is that they are distribution-
free in the sense that the data to be tested do not need to conform to any particular
distribution. However, several limitations should be kept in mind. For example, these
tests are incapable of accounting for the magnitude of the data or the temporal
variations in the data (e.g., changes in slope). Moreover, the slowly varying trend
component should not repeat within the time range captured by the data. In the
presence of seasonality, the so-called (correlated) seasonal MK tests can be applied
(Hipel and McLeod 1994, pp. 866–871).

2.3.4 Tests for Stationarity

The trend tests introduced above provide information on the presence of trends, but
not on their types. According to the physical nature and causes, trend signals in time
series data can be classified into deterministic and stochastic trends. Deterministic
trends are regulated by time and imply the fact that all deviations from the long-run
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Table 2.4 Consequences of handling trend signals by means of regression and differencing

Trend True type of trend
handling Deterministic (trend-stationary) Stochastic (difference-stationary)

Regression Ok, eventually autocorrelated noise Spurious regression, biased estimator
Differencing Autocorrelated noise Ok, eventually autocorrelated noise

equilibrium path are only temporary. In contrast, stochastic trends are caused by
cumulated shocks which have persistent effects over time. In this case, the deviations
from the trending path will hardly return. Accordingly, these kinds of shocks are
called permanent in contrast to the transitory shocks in the model with a deterministic
trend (Kirchgässner and Wolters 2008, p. 191).

A time series that is stationary around a deterministic trend is called trend-
stationary, while a non-stationary time series due to stochastic trends that becomes
stationary after applying serial difference operators is called difference-stationary
[see Eq. (2.25)]. Whether a time series is trend- or difference-stationary is not only
important for selecting an appropriate detrending technique, but also has a consider-
able impact on the associated physical interpretation of the trend signals. Table 2.4
presents the consequences of trend handling using regression and differencing. Gen-
erally, the influence of spurious regression is more serious than erroneously applying
difference operators to trend-stationary time series (see Sect. 2.2.1).

Two unit root tests for stationarity are used in this thesis. The augmented Dickey-
Fuller (ADF) test verifies difference-stationarity and looks for autoregressive (AR)
unit roots. The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test examines trend-
stationarity and is based on moving average (MA) unit roots. By testing both AR and
MA unit roots, one may distinguish series that appear to be difference-stationary,
trend-stationary and series for which the data or the test methods are not sufficiently
informative to make a decision whether they are stationary or not. This section gives
a brief introduction to the ADF and KPSS tests. For a more detailed discussion of
unit root testing, see, for example, Stock (1994, Chap. 46), Maddala and Kim (1998),
Phillips and Xiao (1998) and Brockwell and Davis (2002, Sect. 6.3).

The augmented Dickey-Fuller (ADF) test is based on the existence and unique-
ness property of an ARMA(p, q) process, i.e., the pth-degree autoregressive charac-
teristic equation Ap(r) = 0 given by Eq. (2.46) has no unit root (Said and Dickey
1984). Assuming that the stochastic dynamics in the data can be sufficiently described
by an ARMA process, the regression model of the ADF test, verifying the null hypoth-
esis H0 that {xt} is difference-stationary against the alternative hypothesis H1 that
{xt} is trend-stationary, is formulated as

xt = c + δt + φxt−1 +
l−1∑
j=1

ϑj�xt−j + zt, (2.78)
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where c and δ capture the deterministic trend, φ is the AR(1) coefficient, and the
(l − 1) difference terms ϑj�xt−j approximate the ARMA structure of the residuals.
Neglecting the deterministic trend c + δt, the presentability of an ARMA process by
the ADF regression model is mathematically proved in Appendix B.1. If the trunca-
tion lag l is set to a too small value, the remaining serial (or temporal) correlations in
regression residuals will bias the test. If l is too large, then the power of the ADF test
will suffer. Ng and Perron (1995) proposed a data-dependent procedure for selecting
appropriate truncation lags. At first, the test regression is performed with a maximum
lag value l = lmax, such as the one recommended by Schwert (1989):

lmax =
⌊

12 ·
( n

100

)1/4
⌋
, (2.79)

where �x� denotes the integer part of x. Then, the significance of the coefficient of
the last lagged difference is assessed by applying the t-statistic. If this coefficient
is statistically significant, the unit root test is carried out. Otherwise, the lag value l
is reduced by one, and the procedure is repeated. The truncation lag determined in
this manner leads to a stable size (i.e., probability of incorrectly rejecting H0, Type
I error, see Table 2.3) and a minimum power loss. The test statistic of the ADF test

TADF = tφ=1 = φ̂ − 1

SE(φ̂)
(2.80)

is computed based on the OLS estimates of Eq. (2.78), where SE(φ̂) denotes the stan-
dard error of φ̂. The asymptotical distribution of TADF is referred to as the Dickey-
Fuller (DF) distribution, which does not have a closed-form representation (Dickey
and Fuller 1979). The PDF of the DF distribution is slightly left-skewed and is located
on the left side of Student’s t-distribution. For a range of sample sizes and usual sig-
nificance levels, critical values for TADF have been derived using Monte Carlo sim-
ulations (MATLAB® Econometrics ToolboxTM, MET). Furthermore, MacKinnon
(1996) suggested response surface algorithms that enable the determination of criti-
cal and p-values for an arbitrary sample size. The ADF test is a one-sided left-tailed
test, indicating that H0 is rejected at a significance level of α if TADF < DFα , where
DFα is the α-quantile of the DF distribution. It is worth mentioning that under H0,
the asymptotic distribution of TADF is affected by the presence of the deterministic
terms c and δ in Eq. (2.78), but not by their values. The modelling of a deterministic
trend in the ADF test decreases the critical values and test power (see Tables A.7
and A.8).

In addition to the ADF test, the Phillips-Perron (PP) test is also used to detect
autoregressive unit roots (Phillips and Perron 1988). Asymptotically, these two tests
are equivalent, but they may differ substantially in finite samples due to the different
handling of serial correlations in the test regression. If the ARMA representation
of the lag-1 difference of {xt} (i.e., {�xt}) has a large and negative MA compo-
nent, then the ADF and PP tests illustrate severe size distortion with a large rate of
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Type I error, where the PP test is more size-distorted than the ADF test (Schwert
1989). Furthermore, the ADF and PP tests have low power against trend-stationary
alternatives which are close to being difference-stationary (e.g., stationary persistent
processes). To achieve maximum power against highly persistent alternatives, the
efficient autoregressive unit root tests proposed by Elliott et al. (1996) and Ng and
Perron (2001) can be applied.

The Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test suggested by Kwiatkowski
et al. (1992) makes use of the fact that the serial difference of a causal and invertible
ARMA(p, q) process results in a non-invertible ARMA(p, q + 1) model, and the
associated MA characteristic equation is supposed to have a unit root (Brockwell
and Davis 2002, p. 196). This is known as overdifferencing, i.e., one erroneously
considers the time series as difference-stationary while it is actually trend-stationary.
The KPSS test has the regression model

yt = c + δt + ut + xt, ut = ut−1 + zt, zt ∼ WN(0, σ 2
z ), (2.81)

where c + δt describes the deterministic trend, {ut} represents a pure random walk
with innovation variance σ 2

z , and {xt} denotes a stationary error. The null hypothesis
of trend-stationary {yt} is formulated as H0 : σ 2

z = 0, indicating that {ut} must
be constant. The alternative hypothesis of difference-stationary {yt} is expressed
as H1 : σ 2

z > 0. Although it is not explicitly apparent, H0 implies a MA unit
root in the ARMA representation of {�yt}, which is mathematically illustrated in
Appendix B.2. Assuming that {xt} satisfies the (strong mixing) regularity conditions
of Phillips and Perron (1988, p. 336) or the linear process conditions of Phillips and
Solo (1992), the KPSS test statistic is the modified Lagrange multiplier

TKPSS =
(

n−2
n∑

t=1

Ŝ2
t

)
/λ̂2(l) (2.82)

with

Ŝt =
t∑

i=1

x̂i, t = 1, 2, . . . , n (2.83)

and

λ̂2(l) = 1

n

n∑
t=1

x̂2
t + 2

n

l∑
j=1

ωjl

n∑
t=j+1

x̂t x̂t−j. (2.84)

Ŝt denotes a partial sum process of the residual {x̂t} resulting from an OLS regression
of {yt} on c+δt, and λ̂2(l) is a consistent estimate of the long-run variance constructed
from the residuals {x̂t} (Perron 1988). For the consistency of λ̂2(l), the truncation
lag l = O(n1/2) will usually be satisfactory under both the null (Andrews 1991) and
the alternative hypothesis (Kwiatkowski et al. 1992). The term ωjl in Eq. (2.84) is a
weight function corresponding to the choice of a spectral window in the frequency
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domain. Newey and West (1987) used the Bartlett window ωjl = 1− j/(l +1)which
ensures non-negativity of λ̂2(l) values. Under the null hypothesis that {yt} is trend-
stationary, Kwiatkowski et al. (1992) showed that TKPSS converges to a function of a
standard Brownian motion that depends on the form of the deterministic terms (i.e.,
c �= 0 and δ = 0, c �= 0 and δ �= 0), but not on their numerical values. Critical
values for TKPSS must be derived by means of simulation methods. The KPSS test
is a one-sided right-tailed test so that H0 is rejected at a significance level of α if
TKPSS > CKPSS,1−α , where the (1 − α) quantiles of the asymptotical distribution of
TKPSS can be found in Nabeya and Tanaka (1988) and Kwiatkowski et al. (1992).

On the basis of numerous AR(1) simulations, Kwiatkowski et al. (1992) empir-
ically investigated the size and power of the KPSS test for different sample sizes n
and truncation lags l. It was found that the KPSS test rejects H0 (trend-stationary)
too often for positively correlated errors and too seldom for negatively correlated
errors [see xt in Eq. (2.81)]. Furthermore, in the presence of realistic amounts of
autocorrelation, using large truncation lags will mitigate the size distortion on the
one hand, and decrease the test power on the other.

2.3.5 Tests for Uncorrelatedness

To assess the significance of the temporal correlation in the extracted noise (i.e.,
residuals obtained either by estimating and subtracting the trend and seasonal com-
ponents or by applying difference operators), four test methods are used in this thesis
to verify the null hypothesis H0 that the noise data are realisations of uncorrelated
random variables. If H0 cannot be rejected at the specified significance level, then
there is no further time series modelling necessary. Otherwise, to characterise the
dependence in the noise sequence, an appropriate stationary time series model can be
found, for example, during the course of ARMA modelling (see Sect. 7.3). Moreover,
the appropriateness of the fitted ARMA(p, q) model can be examined by testing the
uncorrelatedness of the ARMA residuals. The applied tests make use of the so-called
von Neumann ratio, sample ACF and properties of empirical spectral density. For
more detailed information about uncorrelatedness tests, see, for example, Teusch
(2006, Chap. 6).

The von Neumann ratio (VNR) is defined as the ratio of the mean square suc-
cessive difference to the sample variance, i.e.,

VNR :=
1

n−1

∑n
j=2(xj − xj−1)

2

1
n

∑n
j=1(xj − x̄)2

= n

n − 1
T , x̄ = 1

n

n∑
j=1

xj. (2.85)

It was suggested by von Neumann (1941, 1942) and Young (1941) as a test statistic
for evaluating independence of observations {x1, . . . , xn} of a stationary Gaussian
time series. The VNR is approximately 2 for a WN process and 0 (4) for a strongly
positively (negatively) correlated process (Teusch 2006, p. 100). For sample sizes

http://dx.doi.org/10.1007/978-3-642-34836-5_7
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ranging from 4 to 60, the critical values for the lower level of VNR Cn;α/2 are tabulated
in Hart (1942). Since the distribution of VNR is symmetric about 2n/(n − 1) (von
Neumann 1941), the critical values for the upper level Cn;1−α/2 can be easily derived.
However, the upper limits are rarely of practical use, as large VNR values indicate
strong negative correlations and alternatively varying time series data which normally
arise from artificial observations (Hart 1942). The null hypothesis of uncorrelatedness
is rejected at a significance level of α if VNR < Cn;α/2 or VNR > Cn;1−α/2. For larger
sample sizes (n > 60), Bingham and Nelson (1981) suggested a modified test statistic

TVNR = (n + 1)1/2ε̃

(1 − ε̃2)1/2
, ε̃ =

(
n2 − 1

n2 − 4

)1/2

ε, ε = 1 − T

2
, (2.86)

where T is given in Eq. (2.85). TVNR follows approximately Student’s t-distribution
with n + 1 degrees of freedom. Comparing the quantile values derived based on
this approximation with those computed by numerical integration of a differential
equation from von Neumann (1941), four decimal accuracy is obtained for n ≥ 15.
Using this modified test statistic, the null hypothesis of uncorrelatedness is rejected
at a significance level of α if |TVNR| > tn+1;1−α/2.

The portmanteau test proposed by Box and Pierce (1970) uses the test statistic

TBP = n
h∑

j=1

ρ̂2(j), (2.87)

where ρ̂(j) denotes the sample ACF at lag j, and h is the number of lags considered in
the test statistic [see Eq. (2.36)]. If {x1, x2, . . . , xn} is a realisation of an iid sequence
with finite variance, based on the asymptotical probability distribution of sample
ACF given in Eq. (2.38), TBP represents the sum of squares of independent random
variables

√
nρ̂(j), j = 1, . . . , h, each of which follows the standard normal distri-

bution. Therefore, TBP has approximately a chi-square distribution with h degrees
of freedom. A large value of TBP indicates that the sample autocorrelations of the
data are too high to be a sample of an uncorrelated sequence. In this thesis, a refined
version of the portmanteau test proposed by Ljung and Box (1978) is applied. The
test statistic is

TLB = n(n + 2)
h∑

j=1

ρ̂2(j)/(n − j) (2.88)

whose distribution is better approximated by the chi-square distribution with h
degrees of freedom. For the truncation lag h, a value between 10 and 30 seems
to be sufficient (Ljung and Box 1978). For example, the default value for h is
min(20, n − 1) in the MST, and 12 in the TSA (time series analysis) package of
the software R (Crawley 2007). The null hypothesis of uncorrelatedness is rejected
at level α if TLB > χ2

h;1−α , where χ2
h;1−α is the (1 − α) quantile of the chi-square

distribution with h degrees of freedom. Another portmanteau test can be found in
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McLeod and Li (1983), where the sample autocorrelations of the data are replaced by
the sample autocorrelations of the squared data (Brockwell and Davis 2002, p. 36).

The Kolmogorov-Smirnov (KV) test for uncorrelatedness is based on the maxi-
mum distance between the empirical and theoretical spectral distribution functions
of a stationary process (Teusch 2006, p. 103). The spectral density and distribution
functions used in frequency-domain analysis are closely related to the ACF used
in time-domain analysis (Chatfield 2004, Chap. 6). Under the null hypothesis of
uncorrelatedness, the KV test statistic given by

TKV = max
z∈[0,1]

∣∣∣∣∣
√

2n

π

n−1∑
h=1

ρ̂(h)
sin(πz · h)

h

∣∣∣∣∣ (2.89)

follows asymptotically the Kolmogorov distribution (Kolmogorov 1933, 1941; Feller
1948). The mathematical derivation of TKV is briefly described in Appendix B.3.
Using the (1 − α) quantile of the Kolmogorov distribution K1−α , for example, pro-
vided by Kolmogorov (1941) and Teusch (2006, p. 104), the null hypothesis of
uncorrelated observations is rejected at a significance level of α if TKV > K1−α .
In addition to the tabulated K1−α values for usual significance levels, the critical
value for an arbitrary α can be computed using the routine kolminv, which is
freely available in MATLAB® Central. Marsaglia et al. (2003) wrote a C program
that efficiently computes the Kolmogorov distribution with 13–15 digit accuracy for
2 ≤ n ≤ 16,000.

The Cramér-von Mises (CM) test measures the overall distance between the
empirical and theoretical spectral distribution functions of a stationary process
(Teusch 2006, p. 104). Being continuous on a closed interval, the spectral distribution
functions are quadratically integrable. Instead of the maximum absolute deviation in
the spectral distribution, the CM test uses

TCM =
1∫

0

[√
2n

π

n−1∑
h=1

ρ̂(h)
sin(πz · h)

h

]2

dz (2.90)

as the test statistic. The distribution of TCM converges weakly to that of
∫ 1

0 B2
0(z)dz,

where B0(z) denotes the Brownian bridge. The critical values for different signifi-
cance levels C1−α can be found in Anderson and Darling (1952, Table 1). The CM test
is a one-sided right-tailed test, meaning that the null hypothesis of uncorrelatedness
is rejected at a significance level of α if TCM > C1−α . Note that the Cramér-von
Mises criterion can also be used to judge the goodness of fit of a probability distrib-
ution. More detailed information about this application is available in Anderson and
Darling (1952), Anderson (1962) and Teusch (2006, p. 113).
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2.4 Wavelet Transforms

In this thesis, wavelet transforms serve as a time-frequency analysis tool for visual
inspection and interpretation of the results from the residual-based temporal corre-
lation modelling (see Sects. 8.1.7 and 8.2.7). In comparison to conventional Fourier
transform which assumes that the signal to be processed has temporally or spatially
invariant statistical properties, analysing a given function or a time series by means
of wavelets has advantages in simultaneously examining signal characteristics in
both the time and frequency domains, in conveniently representing functions with
discontinuities and sharp peaks, as well as in accurately deconstructing and recon-
structing finite, non-periodic or non-stationary signals. This section provides some
basic background to wavelets and wavelet transforms. Taking simulated times series
as an example, the temporal variations are mapped into spectra using the MATLAB®

Wavelet ToolboxTM (MWT).
There are a variety of textbooks on wavelet theory and its application. The reader

who is primarily interested in the mathematical background of wavelet transforms is
referred to Daubechies (1992) and Holschneider (1995), which contain strong theo-
retical components and foundations for the most current applications of wavelets. A
large number of examples in terms of mathematical, physical and engineering con-
texts are available in Debnath (2002). Typical applications of wavelets in geodesy and
geodynamics are presented in Keller (2004), along with the fundamentals of Fourier
analysis and wavelet theory. Trauth (2007, Sect. 5.8) provides easy-to-understand
examples and illustrates how to perform wavelet transforms using the MWT.

2.4.1 Wavelets and Morlet Wavelet

In 1982, Jean Morlet, in collaboration with a group of French engineers, first used the
French word “ondelette”, meaning “small wave”, which was transferred to English
by translating “onde” into “wave”, giving “wavelet”. Wavelets are small packages
of wave-like oscillations that approach zero at both ends (i.e., local support). Morlet
et al. (1982) introduced the idea of wavelets as a family of functions constructed by
translating and dilating a single function known as the “mother wavelet” ψ(t):

ψa,b(t) = 1√
a
ψ

(
t − b

a

)
, a ∈ R

+, b ∈ R, (2.91)

where a denotes the scale (or dilation) parameter which measures the degree of
compression, and b is the translation parameter which determines the time location
of the wavelet. In the case of 0 < a < 1, the wavelet ψa,b(t) is the compressed
version of the mother wavelet and corresponds to high frequencies. On the other
hand, if a > 1, ψa,b(t) has a larger time width than ψ(t) and corresponds to low
frequencies (Debnath 2002, p. 12).

http://dx.doi.org/10.1007/978-3-642-34836-5_8
http://dx.doi.org/10.1007/978-3-642-34836-5_8
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The resolution of wavelets at different scales varies in the time and frequency
domains as governed by Heisenberg’s uncertainty principle which states that the more
precisely the position is determined, the less precisely the momentum is known in
this instant, and vice versa (Heisenberg 1927). For large scale values, the resolution
is coarse in the time domain, but fine in the frequency domain. Conversely, as the
scale decreases, the resolution in the time domain becomes finer while that in the
frequency domain becomes coarser (Debnath 2002, p. 12). One important property
of a wavelet is the so-called admissibility, formulated by

0 < Cψ = 2π

+∞∫

−∞

∣∣∣ψ̂(ω)
∣∣∣
2

|ω| dω < ∞, (2.92)

where ψ̂(ω) denotes the Fourier transform of the mother wavelet ψ(t) (Debnath
2002, p. 14). From Eq. (2.92) it follows immediately that

ψ̂(ω = 0) = 0 ⇐⇒ (2π)−1/2

+∞∫

−∞
ψ(t)dt = 0, (2.93)

indicating that ψ(t) must be an oscillatory function with zero mean (Holschneider
1995, p. 4; Keller 2004, p. 31). Moreover, Eq. (2.92) imposes a restriction on the rate
of decay of |ψ̂(ω)|2 and is needed for the inverse of the continuous wavelet transform
(see Sect. 2.4.2).

Many kinds of mother wavelets have been well documented in the literature, for
example, the Haar wavelet that is considered as the first known wavelet (Haar 1910),
the Morlet wavelet (Goupillaud et al. 1984) and the Daubechies wavelets (Daubechies
1992). One of the most frequently used wavelet is the Morlet wavelet, which was first
employed in geophysical exploration (Grossmann and Morlet 1985) and was at the
origin of the development of wavelet analysis. The Morlet wavelet, also referred to
as Morlet’s Gaussian wavelet, is obtained by shifting a Gaussian function in Fourier
space:

ψM(t) = π−1/4eiω0te−t2/2, (2.94)

ψ̂M(ω) = π−1/4e−(ω−ω0)
2/2, (2.95)

where eiω0t = cos(ω0t)+i sin(ω0t) is Euler’s formula, t is the non-dimensional time,
and ω0 is the wavenumber giving the number of oscillations within the wavelet itself
(Torrence and Compo 1998, Table 1; Trauth 2007, p. 115). Strictly speaking, the
Morlet wavelet is not a wavelet, since it does not satisfy the admissibility condition
given by Eq. (2.92). In particular, its Fourier transform does not vanish at ω = 0, i.e.,

ψ̂M(0) = π−1/4e−ω2
0/2 �= 0. (2.96)
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(a) (b)

Fig. 2.5 Comparison of Morlet wavelets and the associated fourier transforms using different
wavenumbers ω0 [see Eqs. (2.94) and (2.95)]

However, ψ̂M(0) is negligibly small if ω0> 0 is large enough (e.g.,ω0 ≥ 5,
Holschneider 1995, p. 31). For different wavenumbers ω0, Fig. 2.5 depicts exam-
ples of the Morlet wavelet, along with the associated Fourier transforms. Obviously,
for ω0 = 2, Eq. (2.93) is not fulfilled due to ψ̂M(0) ≈ 0.1 �= 0, while for ω0 = 6,
ψ̂M(0) is insignificantly different from zero, and the corresponding wavelet ψM(t)
sufficiently satisfies the admissibility condition.

2.4.2 Continuous Wavelet Transform

A wavelet transform represents a function by wavelets and can be classified into
continuous and discrete wavelet transforms, CWT and DWT, respectively. The CWT
operates over each possible scale and translation parameter, while the DWT is per-
formed using a specific subset of scale and translation values. The CWT of a function
f (t) ∈ Lp(R), 1 ≤ p < ∞, is defined as

Wψ [f ](a, b) = (
f , ψa,b

) =
+∞∫

−∞
f (t)ψ∗

a,b(t)dt = 1√
a

+∞∫

−∞
f (t)ψ∗

(
t − b

a

)
dt,

(2.97)

where Lp(R) is the vector space of all complex-valued pth-power Lebesgue integrable
functions defined on R, and ψ∗ is the complex conjugate of ψ defined on the open
time and scale real (b, a) half plane (Holschneider 1995, p. 5; Debnath 2002, p. 12;
Trauth 2007, p. 115). The numbers Wψ [f ](a, b) are called wavelet coefficients of f (t)
with respect to the mother wavelet ψ(t). Normally, the output Wψ [f ](a, b) is a real-
valued function except when the mother wavelet is complex. The power spectrum
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(a) (b) (c)

Fig. 2.6 A five-step CWT procedure implemented in the MATLAB® Wavelet ToolboxTM (MWT)

from the CWT can be expressed by |Wψ [f ](a, b)|2. Like the Fourier transform, the
CWT is also linear. Unlike the Fourier transform, the CWT is not a single transform,
but any transform obtained in this way. The inverse wavelet transform can be defined
such that the original function f (t) can be reconstructed by means of

f (t) = C−1
ψ

+∞∫

−∞

+∞∫

−∞
Wψ [f ](a, b)ψa,b(t)(a

−2da)db, (2.98)

provided that Cψ satisfies the admissibility condition given by Eq. (2.92). Using the
MWT to perform the CWT analysis in practice, the wavelet coefficients are the sums
of the signal f (t) multiplied by scaled and shifted versions of the mother wavelet
over all time. This process produces Wψ [f ](a, b) as a function of scale a and position
b within a total of five steps, schematically illustrated in Fig. 2.6.

1. Select a mother wavelet ψ(t) and compare it to a start section of the signal f (t).
2. Compute the correlation C between the wavelet and this signal section, where

the C values depend on the shape of the chosen wavelet (see Fig. 2.6a). If both
the signal and wavelet energies are equal to one, C may be interpreted as a
correlation coefficient.

3. Shift the wavelet rightwards by parameter b and repeat steps 1 and 2 until the
whole signal has been covered (see Fig. 2.6b).

4. Scale the wavelet using parameter a and repeat steps 1 through 3 (see Fig. 2.6c).
5. Repeat steps 1 through 4 for all scales.

After all five steps have been accomplished, the coefficients produced at different
scales and sections constitute the results of a regression of the signal f (t) on the
wavelets ψa,b(t). Based on the centre frequency Fm of the mother wavelet ψ(t), the
pseudo-frequency Fa corresponding to the scale a can be computed using

Fa = Fm

a ·�t
, (2.99)

where�t is the sampling period (MWT). The basic idea behind the centre frequency
determination is to approximate a given mother wavelet using a purely periodic sig-



44 2 Mathematical Background

(a) (b)

Fig. 2.7 Example of centre frequency determination for the real-valued Morlet wavelet with a
wavenumber of ω0 = 5 [see Eqs. (2.94) and (2.95)]

nal of frequency Fm. Thereby, the frequency that maximises |ψ̂(ω)| turns out to
be a reasonable choice for Fm, where ψ̂(ω) is the Fourier transform of the mother
wavelet ψ(t). Taking the real-valued Morlet wavelet ψM(t) = π−1/4e−t2/2 cos(5t)
with ω0 = 5 as an example, i.e., substituting eiω0t = cos(5t) into Eq. (2.94), Fig. 2.7
illustrates the results of the wavelet approximation and centre frequency determina-
tion. As can be seen from the plots, the main lobe of the Morlet wavelet is sufficiently
approximated by the periodic signal at the determined centre frequency.

The results of a CWT is usually visualised by means of so-called scalograms
which communicate the time-frequency localisation property of wavelet transforms.
The x-axis of a wavelet scalogram represents position along the signal (or time t),
the y-axis represents scale a or converted pseudo-frequency Fa [see Eq. (2.99)], and
the colour at each (x, y) point represents the magnitude of the wavelet coefficient.
Analysing a simulated signal with temporally varying periods in Sect. 2.4.4, the
resulting continuous wavelet scalogram is compared with the one from a discrete
wavelet transform (see Fig. 2.10).

2.4.3 Discrete Wavelet Transform

Calculating the wavelet coefficients at each possible scale a and position b is a
computationally time-consuming task. Therefore, in practical applications involving
fast numerical algorithms, the CWT can be performed at discrete grid points being a
subset of the whole family of scales and positions. To do this, discrete wavelets are
defined by replacing a with am

0 (a0 �= 0, 1), b with nb0am
0 (b0 �= 0), leading to

ψm,n(t) = 1√
a
ψ

(
t − b

a

)
= 1

am/2
0

ψ

(
t

am
0

− nb0

)
, (2.100)
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Fig. 2.8 Discrete wavelet transform using multiple-level decomposition, after Mallat (1989)

where m and n are integers. Accordingly, the DWT of a function f (t) is defined as

Wψ [f ](m, n) = (
f , ψm,n

) =
+∞∫

−∞
f (t)ψ∗

m,n(t)dt, (2.101)

where ψm,n(t) is given by Eq. (2.100). Generally, there is no guarantee that the
original function f (t) can be reconstructed from its discrete wavelet coefficients
Wψ [f ](m, n). If the discrete lattice has a very fine mesh, the reconstruction of
f (t) is still possible. In the case of a coarse mesh, the wavelet coefficients may
not contain sufficient information for the determination of f (t) from these coeffi-
cients (Debnath 2002, p. 14). If the function f (t) belongs to the Hilbert space L2(R)

(Debnath and Mikusinski 2005, p. 99), and the wavelets form an orthonormal basis
(Debnath 2002, pp. 15, 73), then f (t) can be completely reconstructed by its discrete
wavelet coefficients using

f (t) =
+∞∑

m,n=−∞
Wψ [f ](m, n)ψm,n(t). (2.102)

In terms of choosing an appropriate subset of scales and positions, the dyadic
scheme based on powers of two enables an efficient analysis and sufficient accu-
racy. To implement this scheme in computing the DWT, Mallat (1989) proposed a
filter-based algorithm which is actually a classical approach in the signal processing
community, known as a two-channel subband coder using conjugate quadrature filters
or quadrature mirror filters. Mallat’s algorithm for the DWT represents a multiple-
level signal decomposition and allows for a fast wavelet transform (FWT). The basic
principle of this algorithm is schematically shown in Fig. 2.8.

Given a signal S of length n, the DWT consists of a maximum of
⌊

log2 n
⌋

stages
or levels, where �x� denotes the integer part of x. S can be decomposed into approx-
imations and details; the former are the high-scale and low-frequency components,
while the latter are the low-scale and high-frequency signals. At the initialisation level
with j = 0 and cA0 = S, two sets of coefficients, namely approximation coefficients
cA1 and detail coefficients cD1 are obtained by convolving S with a low-pass and a
high-pass filter, respectively. The selection of the filters depends on the used mother
wavelet. Assuming that the length of each filter is equal to 2N , the resulting signals
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F and G are of length n+2N −1, indicating that the total data volume is increased to
about twice as much as that of the original signal. Therefore, a power-of-two down-
sampling is applied to F and G so that the coefficients cA1 and cD1 are of length
�(n − 1)/2 + N�.

This decomposition process can be iterated, i.e., the approximation coefficients
cA1 can be further separated into cA2 and cD2 by replacing cA0 by cA1. In doing
so, the signal S is broken down into many lower resolution components and has
the structure (cAj, cDj, . . . , cD1) at level j. In practice, the iterative decomposition
can proceed until the individual details consist of a single sample. An appropriate
number of levels can be selected based on the signal characteristics or a suitable
optimisation criterion such as the minimum-entropy criterion proposed by Coifman
and Wickerhauser (1992). The computation cost of the FWT is the convolution
carried out in each of the filters. Since the number of data samples in the convolution
is halved after each downsampling step, the total computational complexity is

O(n + n

2
+ n

4
+ n

8
+ · · · + 1) = O(n), (2.103)

meaning that the FWT algorithm has a linear complexity. The results of a DWT can
also be visualised by scalograms, where the x-axis represents time or position along
the signal, the y-axis represents a stage or level, and the colour at each (x, y) point
represents the absolute values of the detail coefficients.

2.4.4 An Example of Wavelet Transforms

Following the basic wavelet theory, examples are presented in this section to illus-
trate the advantages of wavelet transforms over Fourier transforms, as well as the
differences between the CWT and DWT. For these purposes, a simple sine signal
Sp of length 1,000 is simulated, where the first and second half of Sp have different
periods of 250 and 100 s, respectively. Adding an upward linear trend to Sp results
in Sd . Figure 2.9 shows the signals Sp and Sd with the associated amplitude spectra
computed using the fast Fourier transform (FFT).

As Fig. 2.9b depicts, in the absence of the linear trend (see Fig. 2.9a), the periods of
Sp can be correctly determined by means of a Fourier transform. However, if the data
exhibit a non-stationary trending behaviour, the Fourier analysis does not deliver the
true frequencies (periods). Therefore, a reliable FFT-based identification of periodic
components requires an appropriate trend detection and removal at the preliminary
stage of time series analysis. In addition, despite the correct periods detected for Sp,
information about the time at which the sine signal’s period changes is still lacking.
These deficiencies of the conventional Fourier approach are absent when performing
wavelet transforms. Figure 2.10 compares the scalograms resulting from the CWT
and DWT of Sd (i.e., sine signal with trend). For the CWT, the real-valued Morlet
wavelet (ωo = 5) shown in Fig. 2.7 is used. For the DWT, a symlet of order 6 is chosen
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(a) (b)

Fig. 2.9 Examples of periodic sine signals with the associated results of Fourier transforms

(b)(a)

Fig. 2.10 Comparison of the scalograms resulting from the continuous and discrete wavelet
transforms of the trending signal Sd (see Fig. 2.9)

which is similar to the applied Morlet wavelet with respect to the centre frequency and
symmetry properties in the time domain. Symlets are nearly symmetrical wavelets
modified by Daubechies with improved symmetry (Daubechies 1992, pp. 198, 199).
The y-axis of the CWT scalogram represents the pseudo-frequencies converted from
scales [see Eq. (2.99)]. Taking the signal length of 1,000 into account, the maximum
level visualised in the DWT scalogram is equal to

⌊
log2 1000

⌋ = 9 (see Sect. 2.4.3).
Being localised in both the time and frequency domains, the CWT scalogram

exhibits not only the correct frequencies of 4 and 10 mHz, corresponding to periods
of 250 and 100 s, respectively, but also the time t = 500 s at which the change in
the signal’s period takes place. All of these results are obtained in the presence of
the linear trend which is also visible at the bottom of the CWT scalogram around a
frequency of 1 mHz. Furthermore, according to the temporally increasing absolute
wavelet coefficients, the visibility of the linear trend also increases with time. The
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DWT scalogram represents the absolute detail coefficients which are converted to
a colour scale ranging between 0 and 64. In comparison to the continuous wavelet
scalogram, the discrete wavelet scalogram appears to be more difficult to interpret,
particularly with respect to frequency determination. Nevertheless, the main temporal
variation patterns and the moment of the frequency change can still be discerned
in the DWT scalogram, for example, by regarding the levels 6 and 7. Comparing
Figs. 2.9a and 2.10b with each other, the signal period (frequency) captured by the
symlet wavelets increases (decreases) with level. From this comparison between the
CWT and DWT scalograms it can be concluded that the CWT analysis gains in ease
of readability, but loses in terms of computational efficiency. Moreover, the CWT is
advisable for the purpose of signal interpretation, while the DWT can be used for
signal reconstruction.

As demonstrated above, the main difference between Fourier and wavelet trans-
forms is that wavelets are localised in both the time (via translations) and frequency
(via dilations) domains, while the standard Fourier transform is only localised in
the frequency domain. Performing the Fourier transform on a sliding window of
length T , known as windowed Fourier transform (WFT; Mallat 2009, Sect. 4.2),
the time-frequency localisation can be achieved by investigating all multiples of
T−1 between T−1 and the Nyquist frequency (2�t)−1 at each time step, where �t
denotes the sampling period. However, Kaiser (1994, Chap. 2) pointed out that the
WFT method is neither accurate nor efficient in practice. The inaccuracy arises from
the aliasing of the high- and low-frequencies which are not included in the frequency
range of the time window. The inefficiency in turn is attributed to a possible large
number (T/(2�t)) of frequencies that must be analysed at each time step. An addi-
tional difficulty in the practical application of the WFT method is to determine the
most appropriate window length. In view of computational efficiency, conducting the
FWT by means of the multiple-level decomposition technique, schematically shown
in Fig. 2.8, the total complexity is reduced to O(n) [see Eq. (2.103)] as compared to
O(n log2 n) of the conventional FFT (Buttkus 2000, p. 76).

Taking advantage of the time-frequency localisation property, wavelets have been
used for pattern recognition in geoscientific applications, for example, the character-
isation of temporally varying features of polar motion, the extraction of fault scarps
in bathymetric data from the seafloor and the detection of cycle slips in GPS obser-
vations (Keller 2004, Sect. 3.1). Furthermore, wavelet transforms can be used as a
spectral microscope to approximate mathematical functions, in particular those with
discontinuities and sharp spikes (Mallat 2009, Chap. 9). For instance, transients in
acoustics and audio signals usually need substantially fewer wavelets than sine-cosine
terms to achieve a comparable approximation. This property of wavelet transforms
has been exploited in data compression, such as the image coding system JPEG 2000,
which enables a smaller compression loss than the original JPEG standard based on
discrete cosine transforms (Keller 2004, p. 173; Mallat 2009, p. 523).
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Chapter 3
Mathematical Models for GPS Positioning

In this chapter, Sect. 3.1 provides a brief introduction to the Global Positioning
System (GPS). Next, Sects. 3.2 and 3.3 describe the mathematical models for GPS
absolute and relative positioning, respectively. The mathematical models of GPS
observations consist of a functional and a stochastic component. In contrast to the
continuously improved functional model, the stochastic model characterising the sta-
tistical properties of GPS measurements is still a controversial research topic. Here
the functional model is discussed with a special focus on the error sources consider-
ably affecting GPS positioning quality, while the stochastic model is presented with
respect to observation weighting and correlation structure.

For a more detailed discussion on the theory and applications of GPS, there exist
a variety of textbooks with different emphases. El-Rabbany (2006) offers profes-
sionals and practitioners a non-mathematical explanation of how GPS works and a
wide range of its applications. A detailed description of GPS signal structure can be
found, for example, in Kaplan and Hegarty (2006, Chaps. 4, 5). Textbooks such as
Teunissen and Kleusberg (1998) and Xu (2007) provide a deep theoretical insight
into the mathematical models for GPS data processing, while Hofmann-Wellenhof
et al. (2008) introduce the theory and practice of the Global Navigation Satellite Sys-
tems (GNSS), including the American system GPS, the Russian system GLONASS,
the European system Galileo, as well as additional global, regional and augmentation
systems in a more generic sense. Considering the innovative characteristics, services
and potential applications anticipated in the next generation of GNSS, Prasad and
Ruggieri (2005) examine the advanced architectures paving the way for the future
integration of different satellite-based navigation systems. Within the context of
network-aided GPS positioning, Leick (2003, Chaps. 4, 8) presents a comprehensive
treatment of least-squares (LS) adjustment methods and data quality control tech-
niques using minimum constraints, reliability measures and procedures for outlier
detection. By bringing the two fields of GNSS technology and environmental studies,
Awange (2012) provides a simplified presentation of the concepts of GNSS and its
applications to environmental monitoring.

X. Luo, GPS Stochastic Modelling, Springer Theses, 55
DOI: 10.1007/978-3-642-34836-5_3, © Springer-Verlag Berlin Heidelberg 2013
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3.1 Global Positioning System

The Global Positioning System (GPS) is a satellite-based navigation system allowing
the determination of the positions of observation sites on land or at sea, in the air or
in space, by means of artificial satellites. It was developed by the U.S. Department
of Defence in the early 1970s as the next generation replacement to the first satellite-
based navigation system, TRANSIT, which made use of Doppler shift measurements
in the early 1960s. Within the framework of the TIMATION (TIMe/navigATION)
program instigated in 1964, two satellites, known as NTS I and II (navigation tech-
nology satellite), were launched in 1974 and 1977, respectively. These were the first
satellites equipped with atomic clocks, a rubidium (Rb) and caesium (Cs) one, respec-
tively, and as such could be considered as prototypes of the later GPS satellites. In
February 1978, the first GPS satellite was successfully launched. This section briefly
outlines the main characteristics of GPS, including its reference and time systems,
segments, as well as signals and observations. The readers who are interested in the
evolution of satellite-based navigation are referred to Guier and Weiffenbach (1997),
Prasad and Ruggieri (2005, Sect. 1.2), Ashkenazi (2006), Hofmann-Wellenhof et al.
(2008, Sect. 9.1) and Parkinson and Powers (2010).

3.1.1 Reference and Time Systems

The official GPS terrestrial reference system is the three-dimensional and Earth-
centred World Geodetic System 1984 (WGS84), which was originally realised by
the coordinates of about 1,500 terrestrial sites derived from the TRANSIT Doppler
observations. Associated with the refined WGS84 (G1150, Merrigan et al. 2002),
a geocentric ellipsoid of revolution is defined by semi-major axis, flattening, Earth’s
angular velocity and geocentric gravitational constant. With respect to ITRF2008
(International Terrestrial Reference Frame), the current WGS84 frame shows system-
atic differences of the order of 1 cm (Karabatić 2011, p. 12). Moreover, the WGS84
is the reference system for the GPS broadcast ephemerides (Görres 2010b).

The system time of GPS is related to the atomic time system and referenced to
coordinated universal time (UTC). However, in contrast to UTC, GPS time (GPST)
is not corrected to match the Earth’s rotation rate. This means that while at the
GPS standard epoch, i.e., 00:00:00 UTC on January 6, 1980, UTC and GPST were
coincident with each other, since January 1, 2009, 00:00:00 UTC, GPST is ahead
of UTC by exactly 15 s. In addition, considering the current offset of 19 s between
GPST and international atomic time (TAI), it follows that

GPST = UTC + 15 s and GPST = TAI − 19 s. (3.1)

Therefore, TAI and UTC currently differ by an integer number of 34 s. This difference
will become 35 s after July 1, 2012, 00:00:00 UTC, since a positive leap second will
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be introduced at the end of June 2012 (Bulletin C43-IERS 2012). The actual integer
offsets are reported by the International Bureau of Weights and Measures (BIPM1).
Starting from the Julian date (JD) of the GPS standard epoch JD0=2444244.5, the
system time of GPS in terms of GPS week (GW) and day of week (DOW) can be
calculated using

GW = INT [(JD − JD0)/7] and DOW = MOD [INT(JD+0.5), 7] , (3.2)

where INT and MOD are the integer and modulo operators, respectively. A DOW
value of 0 means Monday, 1 means Tuesday, and so on. Taking the epoch J2012.0
(i.e., January 1, 2012, 00:00:00 UTC) as an example, where JD = 2455927.5, the
GW and DOW are equal to 1,669 and 6 (Sunday), respectively (Hofmann-Wellenhof
et al. 2008, pp. 25, 315).

3.1.2 GPS Segments

GPS is comprised of three segments: the space, control and user segments. The
present space segment consists of nominally 24 operational satellites deployed in
six evenly spaced orbital planes in near-circular orbits (i.e., an elliptical shape with
a maximum eccentricity of about 0.01; El-Rabbany 2006, p. 2) with an inclination
of 55◦ and four active satellites in each orbital plane (see Fig. 3.1a). The semi-
major axis of a GPS orbit is nearly 26,560 km, indicating a satellite altitude of about
20, 200 km above the Earth’s surface (Langley 1991b). The revolution period of a GPS
satellite is approximately half a sidereal day, i.e., around 11 h 58 min. Hence, for the
same location, the satellite configuration repeats in universal time about 4 min earlier
each day (Seeber 2003, p. 213). The initial operational capability (IOC) was officially
announced in December 1993, meaning that 24 satellites were available to be used for
navigation. The full operational capability (FOC) was achieved in July 1995, imply-
ing that the satellite constellation was tested for operational military performance
(Hofmann-Wellenhof et al. 2008, p. 310). With the full constellation geometry, the
space segment provides global coverage with 4–8 simultaneously observable satel-
lites above an elevation angle of 15◦ at any time of day. Decreasing the elevation
mask to 5◦, 12 satellites will be occasionally visible (Hofmann-Wellenhof et al. 2008,
p. 323).

Since 1978, different types of GPS satellites have been launched, such as the
Block I (no longer in service), Block II, Block IIA (A: advanced), Block IIR
(R: replenishment), Block IIR-M (M: modernised) and Block IIF (F: follow-on) satel-
lites. During the course of the GPS modernisation, the future generation Block III
satellites will be launched in 2014 and are expected to carry GPS into 2030 and
beyond. In Fig. 3.1b–f, the different generations of GPS satellites are shown. Table 3.1

1 ftp://ftp2.bipm.org/pub/tai/scale/UTCGPSGLO/utcgpsglo10.ar

ftp://ftp2.bipm.org/pub/tai/scale/UTCGPSGLO/utcgpsglo10.ar
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(a) (b) (c)

(d) (e) (f)

Fig. 3.1 GPS constellation and the different generations of GPS satellites (image sources a NOAA,
b Aerospace Corporation, c, d, f http://www.gps.gov, e http://www.navigadget.com)

Table 3.1 Selected characteristic features of the different GPS satellite categories

Satellite Launches SVNa Inclination Atomic Design life
category during (degree) clock (year)

Block I 1978–1985 01–11 (07) 63 1 Cs+2 Rb 4.5
Block II 1989–1990 13–21 55 2 Cs+2 Rb 7.5
Block IIA 1990–1997 22–40 55 2 Cs+2 Rb 7.5
Block IIR 1997–2004 41–61 (42) 55 3 Rb 10
Block IIR-M 2005–2009 48–58 55 3 Rb 10
Block IIF 2010–2012 62, 63, 65 55 1 Cs+2 Rb 12.7
a Unsuccessful launches are provided in brackets

lists some selected features of these satellite categories, where SVN denotes the satel-
lite vehicle number (Prasad and Ruggieri 2005, pp. 6, 121).

The Block I satellites, whose orbital planes had an inclination of 63◦, were built
mainly for experimental purposes. Today, none of the original Block I satellites are
in operation, the last being taken out of service in November 1995. Considering
the 4.5 year design life of the Block I satellites, it is remarkable that some of them
were operational for more than 10 years. The orbital planes of the Block II/IIA
satellites are inclined at 55◦ to the equator. Being an advanced version of Block II,

http://www.gps.gov
http://www.navigadget.com


3.1 Global Positioning System 59

Block IIA satellites are equipped with mutual communication capability and have a
larger storage capacity, increased from 14 to 180 days. While the Block I satellite
signals were fully accessible to civilian users, some Block II satellite signals are
restricted in view of U.S. national security purposes. The Block IIR/IIR-M satellites
are equipped with enhanced facilities for communication and intersatellite tracking.
In addition, an improved antenna panel was developed for the last four Block IIR and
all of the Block IIR-M satellites to increase the power of the received GPS signals.

The Block IIR-M satellites transmit the new military M-code on the carrier fre-
quencies L1 and L2 as well as the new civil L2C-code on L2, enabling an ionospheric
correction for code signals. The Block IIF satellites emit a third civil signal called L5,
along with the L2C- and the M-code previously introduced into Block IIR-M. The
L5 signal is expected to be more robust and to have a higher signal power level. The
future Block III satellites will deliver significant improvements over the current GPS
space vehicles, including a new international civil signal L1C and high-powered,
anti-jamming M-code with full Earth coverage for military users. The first Block III
satellite is scheduled to be launched in 2014 (Prasad and Ruggieri 2005, p. 123). For
a more detailed description of the GPS satellite generations, see, for example, Prasad
and Ruggieri (2005, p. 120), El-Rabbany (2006, pp. 5, 16), Hofmann-Wellenhof
et al. (2008, pp. 323, 340) and Marquis and Riggs (2010). Further information about
launch dates, orbital position and satellite status is available on the web site of the
United States Naval Observatory (USNO, http://tycho.usno.navy.mil/gpscurr.html).

The GPS control segment is composed of a master control station (MCS) located
in Colorado Springs, 12 worldwide distributed tracking (monitoring) stations and
4 ground antennas (Prasad and Ruggieri 2005, p. 123). The main tasks of the con-
trol segment are the collection of GPS observations at the unmanned tracking sta-
tions, determination and prediction of satellite orbits, clocks and other parameters
at the MCS, and the uploading of navigation data to the GPS satellites. In addition,
the MCS is responsible for monitoring the GPS system’s integrity. During satellite
maintenance or outages, the MCS sets the status of a satellite to unhealthy. Scheduled
satellite maintenance or outages are reported in the so-called NANU (notice advi-
sory to NAVSTAR users) message provided by the U.S. Coast Guard Navigation
Centre (http://www.navcen.uscg.gov). For more information about the GPS control
segment, the reader is referred to Prasad and Ruggieri (2005, Sects. 3.2.2, 6.3) and
Hofmann-Wellenhof et al. (2008, Sect. 9.4.2).

The GPS user segment can be subdivided into three groups: (1) user categories
including all military and civilian users as well as authorised and unauthorised users,
(2) receiver types characterised by the type of observables and the number of tracked
frequencies, depending on the application of concern, and (3) various services provid-
ing system status information and GPS products for positioning at different accuracy
levels (Hofmann-Wellenhof et al. 2008, p. 7).

http://tycho.usno.navy.mil/gpscurr.html
http://www.navcen.uscg.gov
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Table 3.2 Signal availability of the operational and future GPS satellites

Carrier L1 L2 L5

Modulated code C/A P/Y M C C P/Y M C

Block II/IIA/IIR X X X
Block IIR-M X X X X X X
Block IIF X X X X X X X
Block III X X X X X X X X
Frequency [MHz] f1 = 1575.42 f2 = 1227.60 f5 = 1176.45
Wavelengh [cm] λ1 = 19.0 λ2 = 24.4 λ5 = 25.5

3.1.3 GPS Signals

Each GPS satellite transmits a microwave L-band radio signal composed of carrier
frequencies modulated by ranging codes and a navigation message. The first oper-
ational GPS satellites (Block II, IIA and IIR) emit navigation signals on the carrier
frequencies L1 and L2, while the modernised satellites (Block IIR-M, IIF and III)
transmit a third civil frequency L5 and several new ranging codes on different carrier
links. An overview of the GPS signals is given in Table 3.2 (Prasad and Ruggieri
2005, p. 121; Hofmann-Wellenhof et al. 2008, p. 329).

The C/A-code (C/A: coarse/acquisition), which is only modulated onto the L1
carrier, is a stream of 1023 binary digits (i.e., zeros and ones, known as bits or chips)
that repeats itself every millisecond. This indicates a bit duration of approximately
1 μs and a chip length of about 300 m. The relatively short code duration allows
for fast signal acquisition, but makes the C/A-code susceptible to interference. Hav-
ing been designed in particular to fulfil commercial needs, the new civil L2C-code
consists of the L2CM-code (M: moderate length) and a 75 times longer L2CL-code
(L: long length). It shows improved cross-correlation performance and enables the
correction of ionospheric effects (Fontana et al. 2001). These benefits will be avail-
able to users if the majority of the GPS satellites are L2C capable (Dixon 2005).
The FOC with 24 L2C-transmitting satellites may be achieved in 2015 (Prasad and
Ruggieri 2005, p. 120). To meet the requirements of safety-of-life applications, two
ranging codes will be transmitted on L5, which are referred to as L5I- and L5Q-code.
The L5I-code (I: in-phase) is modulated with a navigation message, while the L5Q-
code (Q: quadraphase) is used as a pilot channel. In order to reduce the narrowband
interference effect, both L5I and L5Q are additionally modulated with low-frequency
secondary codes possessing lengths of 10 and 20 chips, respectively. The resulting
codes are 10 and 20 times longer than the C/A-code and exhibit advanced autocorre-
lation and cross-correlation properties that allow better resistance to interference in
combination with the higher signal power. A constellation of 24 L5-emitting satel-
lites may be achieved in 2019 (Prasad and Ruggieri 2005, p. 121). The L1C-code,
including a data channel L1CD and a pilot channel L1CP, will be the fourth civil
signal and will provide high interoperability with Galileo’s E1 signal. By applying
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the multiplexing binary offset carrier (MBOC) modulation technique, more power
is added to the higher frequencies to improve the tracking performance (Hein et al.
2006; Hofmann-Wellenhof et al. 2008, pp. 83, 336).

The P-code (P: precision), which is modulated onto both the L1 and L2 carri-
ers, has been designed primarily for military purposes. It has a very long stream of
about 2.35 · 1014 chips and repeats itself every 38 weeks, implying a chip length
of about 30 m. Due to the extremely long code length, the P-code is very difficult
to directly acquire if there is no a priori information such as accurate clock cor-
rections, coordinate estimates and satellite ephemerides. Therefore, the C/A-code is
used by military receivers for a coarse acquisition, and then the receiver locks onto
the P-code for higher performance. The main properties of the new military M-code
modulated onto the L1 and L2 carriers are the improved anti-jamming and navigation
performance, higher security using new cryptography algorithms, as well as the pos-
sibility of higher transmission power. Furthermore, being superior to the P-code,
a direct acquisition of the M-code is possible (Hofmann-Wellenhof et al. 2008,
pp. 333, 335).

For the initial series of GPS satellites (Block II, IIA and IIR), the navigation
message is added to the P- and C/A-code, and thus is available on both the L1 and L2
carriers. It contains, along with other information, the model (a quadratic polynomial)
parameters for satellite clock corrections, the satellite health status, the broadcast
ephemerides, the satellite almanac and error correction data (e.g., for ionospheric
effects). Of particular importance is the part known as the hand-over word (HOW)
that helps the receiver achieve a rapid lock to the transmitted part of the long P-
code. For the modernised GPS satellites (Block IIR-M, IIF and III), the navigation
message is added to the L2CM-, L5I- and L1CD-code. A new military navigation
message with efficient data structure and improved security and system integrity has
been specified to be modulated onto the M-code (El-Rabbany 2006, p. 15; Hofmann-
Wellenhof et al. 2008, p. 339).

Since GPS is a military system, two techniques, known as selective availabil-
ity (SA) and anti-spoofing (AS), have been implemented to limit the accuracy for
unauthorised users. The SA is realised by degrading the satellite clock (δ-process)
and manipulating the satellite ephemerides (ε-process). The δ-process is carried out
by dithering the fundamental frequency of the satellite clock, while the ε-process
truncates the orbit information in the navigation message so that the satellite posi-
tions cannot be accurately determined. The effect of the δ-process can be eliminated
by differencing simultaneous observations from one satellite to two receivers. The
SA was activated on March 25, 1990 and turned off on May 2, 2000 (Hofmann-
Wellenhof et al. 2008, pp. 319–321). Nevertheless, both processes may be retained
and reactivated due to a growing awareness of the potential misuse of GPS and the
increasing hybridisation of navigation approaches, which reduces the dependency
on GPS as the sole navigation provider (Kelly 2006). The AS has the purpose to
prevent unauthorised users from getting access to the P-code, and to “spoof” or mis-
lead a receiver. The encrypted code is called Y-code. In doing so, adversaries could
neither jam the satellite signal using ground-based transmitters, nor spoof military
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GPS receivers by transmitting a false P-code from a satellite. The time periods during
which the AS was activated can be found in Steigenberger (2009, p. 15).

3.1.4 GPS Observations

GPS observations include code pseudo-range measurements in the unit meter, carrier-
phase measurements in the unit cycle, Doppler measurements in the unit Hertz and
signal strengths in the unit decibel Hertz or in manufacturer-specific units (see
Sect. 5.1). After the activation of the AS, manufacturers of dual-frequency GPS
receivers have developed different methods to recover the P-code and the L2 car-
rier. Nowadays, most receivers apply two approaches known as cross-correlation and
Z-TrackingTM (Ashjaee and Lorenz 1992; Hofmann-Wellenhof et al. 2008, pp. 101,
102). Both techniques completely recover the L2 carrier, but at a degraded signal
strength. The degradation is even higher when applying the cross-correlation method.
The achievement of the FOC with the modernised GPS satellites (Block IIR-M, IIF
and III) will make the use of these signal-recovering techniques unnecessary (El-
Rabbany 2006, p. 19).

The pseudo-range derived from code observations represents a distance measure
between the antenna centre of the GPS receiver and the antenna centre of the GPS
satellite by determining the signal travel time in space. Since the satellite and receiver
clocks are not perfectly synchronised with each other, the measured range is distorted
by the clock synchronisation error, along with other effects and biases. As a rule
of thumb, the precision of a code pseudo-range is about 1 % of the chip length.
Accordingly, the civil C/A-code (precise P-code) has a precision of 3 m (0.3 m)
(Hofmann-Wellenhof et al. 2008, p. 106).

Another way to measure the distance between receiver and satellite is to sum
up the number of full carrier cycles plus the fractional part and then multiply that
by the carrier wavelength (see Table 3.2). After a GPS receiver is switched on, it is
capable of keeping track of phase changes, while the satellite-specific initial number
of complete cycles is still unknown or ambiguous. As long as no signal loss occurs,
this phase ambiguity remains unchanged over time. The GPS phase can be measured
to better than 0.01 cycles, indicating a precision of about 2 mm (Hofmann-Wellenhof
et al. 2008, p. 108).

The Doppler shift represents the difference between the received satellite fre-
quency and the stable frequency emitted by the satellite. Since this difference is
linearly dependent on the radial relative velocity of the satellite with respect to the
receiver, it can be used to determine the receiver velocity in real time and is thus
important for navigation. Furthermore, the Doppler shift contributes to integer ambi-
guity resolution in kinematic surveying and may be used as an additional independent
observable for point positioning. For a more detailed discussion of Doppler shift and
its geodetic applications, see, for example, Leick (1995, Sect. 8.3.6.1), El-Rabbany
(2006, p. 24) and Hofmann-Wellenhof et al. (2008, pp. 59, 108).

http://dx.doi.org/10.1007/978-3-642-34836-5_5
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3.1.5 Linear Combinations

Based on the code pseudo-range and carrier-phase measurements on two frequencies,
for example, L1 and L2, linear combinations of observations can be formed which
possess new preferable properties for different purposes. Taking the phase observa-
tions �1 and �2 in the unit meter as an example, the resulting linear combination
(LC) �i is defined as

�i = k1,i ·�1 + k2,i ·�2, (3.3)

where k1,i and k2,i are real-valued coefficients (see Table 3.3). If ns
R,1 and ns

R,2 are
the initial phase ambiguities of�1 and�2 relating to receiver R and satellite s, then
the ambiguity term of the linear combination is

ns
R,i = k1,i · λ1

λi︸ ︷︷ ︸
α1,i

ns
R,1 + k2,i · λ2

λi︸ ︷︷ ︸
α2,i

ns
R,2, (3.4)

where λ1 and λ2 can be found in Table 3.2, and λi is the effective wavelength of the
linear combination. For ns

R,i to be an integer, α1,i and α2,i defined in Eq. (3.4) must
also be integers. On the basis of α1,i and α2,i , the coefficients k1,i and k2,i can be
expressed by

k1,i = λi
α1,i

λ1
, k2,i = λi

α2,i

λ2
. (3.5)

This means that using k1,i and k2,i to compute a linear combination in metric
units implicitly converts �1 and �2 into cycles by �1/λ1 and �2/λ2 before com-
bining them. Imposing the constraint of unchanged satellite-receiver distance, i.e.,
k1,i +k2,i = 1 (Collins 1999), the wavelength λi and frequency fi of the linear com-
bination �i can be derived using Eq. (3.5) and the generic relationship λ = c/ f as

λi = λ1λ2

α2,i · λ1 + α1,i · λ2
, fi = α1,i · f1 + α2,i · f2, (3.6)

where c is the speed of light in a vacuum, and f1 and f2 are given in Table 3.2.
Assuming that the observations on L1 and L2 are uncorrelated and have the same
noise levelσ1, the noise of the linear combination is obtained by applying the variance
propagation law as

σi = σ1 ·
√

k2
1,i + k2

2,i . (3.7)

Different linear combinations are formed in the practice of GPS data analysis,
such as the wide-lane LC (LC5), the ionosphere-free LC (LC3), the geometry-free
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Table 3.3 Commonly used phase linear combinations based on L1 and L2

LC k1,i k2,i α1,i α2,i λi [m] σi/σ1 IONi

L1 1 0 1 0 0.190 1 1
L2 0 1 0 1 0.244 1 1.65

LC5 f1
f1− f2

= 4.53 − f2
f1− f2

= −3.53 1 −1 0.862 5.74 1.28

LC3
f 2
1

f 2
1 − f 2

2
= 2.55

− f 2
1

f 2
1 − f 2

2
= −1.55 77 −60 0.006a 2.98 0

LC4 1 −1 −60 77 – 1.41 0.65
a See, e.g., Wanninger (2000, p. 15)

LC (LC4) and the Melbourne-Wübbena LC (LC6). In Table 3.3, the main properties of
the commonly used phase linear combinations are summarised, where IONi denotes
the ionospheric amplification factor with respect to�1 in metric units (Collins 1999;
Seeber 2003, p. 263; Howind 2005, p. 24; Dach et al. 2007, p. 42; Wildt 2007, p. 61).

Due to a large wavelength of 86.2 cm, the LC5 is particularly suitable for ambigu-
ity resolution. The LC3 has the advantage of sufficient elimination of the first-order
ionospheric effect, but the disadvantages of the noise level being increased by a
factor of 3 compared to L1 and the extremely small wavelength of 6 mm which
makes a direct ambiguity resolution impossible (Dach et al. 2007, p. 40). There-
fore, an indirect two-step ambiguity resolution strategy is employed. On the basis of
the LC5, the wide-lane integer ambiguities are first determined. Next, the resolved
LC5 ambiguities are introduced into an ionosphere-free (LC3) solution to evaluate
the ambiguities in narrow-lane cycles with a wavelength of c/( f1 + f2) ≈ 11 cm
(Hofmann-Wellenhof et al. 2008, p. 112). This strategy is able to resolve ambiguities
for baselines of up to several hundred kilometres (Dach et al. 2007, pp. 181, 182).
Being independent of receiver and satellite clocks, and of the associated geometry
(i.e., satellite orbits and site coordinates), the LC4 mainly contains the ionospheric
effects and the non-integer ambiguity terms (Steigenberger 2009, p. 18). Thus, this
linear combination is particularly suitable for estimating ionospheric models.

Independently described by Melbourne (1985) and Wübbena (1985), the LC6
linear combination is the difference between the carrier-phase wide-lane and the
pseudo-range narrow-lane combinations (Seeber 2003, pp. 263, 265):

LC6 = 1

f1 − f2
( f1�1 − f2�2)− 1

f1 + f2
( f1 P1 + f2 P2). (3.8)

It also has a wavelength of 86.2 cm and eliminates the effects of geometry, clocks, the
ionosphere and the troposphere. Along with good P-code data, providing a precision
of less than 1 m, the LC6 can be used to resolve the wide-lane ambiguities for very
long baselines of up to 6,000 km and to check observations for cycle slips (i.e.,
discontinuities in the carrier-phase measurements by an integer number of cycles
due to temporary interruptions of the GPS signals). In addition, the noise level of
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Table 3.4 Important phase linear combinations using three frequencies [λi : Cocard et al. (2008);
σi/σ1, IONi : Eqs. (3.9) and (3.10)]

Linear combination (LC) α1,i α2,i α3,i λi [m] σi/σ1 IONi

Wide-lane region 1 0 −1 0.751 4.93 −1.34
(75 cm ≤ λi < 29.31 m) 1 −6 5 3.256 103.80 −0.07

0 1 −1 5.861 33.24 −1.72
−1 8 −7 29.305 1262.30 −16.52

Intermediate-lane region 1 −1 1 0.197 1.52 1.09
(19 cm ≤ λi < 75 cm) 1 −2 2 0.204 2.54 1.19

0 2 −1 0.235 2.13 1.51

Narrow-lane region 4 0 −3 0.108 2.61 −0.01
(10 cm ≤ λi < 19 cm) 0 24 −23 0.125 16.64 0.00

the LC6 is reduced by nearly 30 % compared to that of P1 and P2 (Dach et al. 2007,
pp. 41, 42, 182).

Considering the modernised triple-frequency GPS, the number of possible lin-
ear combinations will increase drastically. Han and Rizos (1999) proposed several
three-carrier combinations with larger effective wavelengths and lower noise amplifi-
cations. Odijk (2003) derived ionosphere-free combinations for which direct integer
ambiguity resolution is possible. In the case of triple-frequency, different ambiguity
resolution algorithms are already available, for example, the three carrier ambigu-
ity resolution (TCAR; Forssell et al. 1997; Vollath et al. 1998), the cascade integer
resolution (CIR; Hatch et al. 2000; De Jonge et al. 2000) and the least-squares ambi-
guity decorrelation adjustment (LAMBDA; Teunissen 1995; Teunissen et al. 2002).
Subdividing all possible phase linear combinations based on L1, L2 and L5 into
a wide-lane, an intermediate-lane and a narrow-lane region, Cocard et al. (2008)
performed a systematic investigation of optimum three-carrier combinations with
respect to effective wavelength, noise amplification and ionospheric sensitivity. The
most interesting results are summarised in Table 3.4, where the subscript 3 denotes
the third frequency L5 (see Table 3.2). To calculate the phase noise factor and the
first-order ionospheric scale factor in metric units, Feng (2008) provided

σi

σ1
=

[
(α1,i · f1)

2 + (α2,i · f2)
2 + (α3,i · f5)

2

(α1,i · f1 + α2,i · f2 + α3,i · f5)2

]1/2

, (3.9)

IONi = f 2
1 (α1,i/ f1 + α2,i/ f2 + α3,i/ f5)

α1,i · f1 + α2,i · f2 + α3,i · f5
, (3.10)

where the carrier-phase measurements on all three frequencies are assumed to be
mutually uncorrelated and identical in variance, i.e., σ1 = σ2 = σ5.

In the wide-lane region, there exists no linear combination which is completely
insensitive to the ionosphere and provides an acceptably low noise amplification
factor at the same time. The combination (α1,i = 1, α2,i = 0, α3,i = −1) has the
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lowest phase noise factor, while (1,−6, 5) is the most insensitive to the ionosphere.
The extra wide-lane (0, 1,−1) has been the straightforward choice in all TCAR
approaches. A potentially interesting combination is (−1, 8,−7), resulting in a
large wavelength of 29.31 m. The intermediate-lane combinations exhibit low-noise
properties and a comparable ionospheric impact as on L1. To fulfil the requirement
of little ionospheric influence, narrow-lane combinations can be formed. Regarding
both the noise and ionospheric amplification factors, (4, 0,−3) turns out to be a
promising choice. The wavelength of the triple-carrier ionosphere-free linear combi-
nation (0, 24,−23) amounts to about 12.5 cm, which is significantly larger than that
of the corresponding double-carrier combination (77,−60) (see Table 3.3). Within
the context of GNSS (GPS/Galileo/BeiDou), additional useful combinations as well
as their characteristics and applications are presented in Feng (2008).

3.2 Precise Point Positioning

Relying upon the principle of trilateration (Langley 1991a), simultaneously mea-
sured distances between a GPS receiver and four satellites are needed to determine
the receiver’s position in a three-dimensional space, along with the receiver clock
synchronisation error. In this section, the basic concept of precise point position-
ing (PPP) is described, including the associated mathematical models and error
effects. A deeper insight into PPP can be obtained from Zumberge et al. (1997),
Witchayangkoon (2000) and Bisnath and Gao (2009).

3.2.1 Introduction

Representing a modern positioning technique at the cm-level precision, PPP makes
use of undifferenced dual-frequency pseudo-range and carrier-phase measurements,
as well as accurate satellite orbit and clock products, provided, for example, by the
International GNSS Service (IGS; Moore 2007). Thereby, the first-order ionospheric
effect is eliminated by means of the ionosphere-free linear combination LC3 (see
Table 3.3). Other factors limiting the achievable positioning accuracy are either esti-
mated as additional unknown parameters (e.g., receiver clock error, tropospheric
delay) or accounted for by employing available sufficiently accurate models (e.g.,
antenna correction models, geophysical models). The PPP technique should not
be confused with the code-based single point positioning (SPP) method, which
uses the navigation message and achieves a positioning accuracy at the metre level
(El-Rabbany 2006, Sect. 5.1).

Due to the use of the LC3 and the fact that the non-integer receiver- and satellite-
dependent uncalibrated phase delays (UPD) are absorbed by the real-valued ambi-
guity estimates (Geng et al. 2010), it turns out to be a difficult task in PPP to resolve
integer ambiguities adequately to access the full GPS carrier-phase accuracy. As a
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result, long observation periods are generally required in PPP applications. Using
observations on a daily basis, static PPP is able to achieve a positioning accu-
racy of several millimetres (Kouba and Héroux 2001). Recent studies presented in
Heßelbarth (2009) showed that hourly position estimates can reach sub-decimetre
accuracy, while an observation interval of 4 h provides a positioning accuracy at the
centimetre level. In addition, the incorporation of the 30 s instead of the 5 min satel-
lite clocks and the GLONASS observations leads to improved coordinate accuracy
and reduced convergence time, particularly in kinematic applications (Wanninger
and Heßelbarth 2009).

Using data from a network consisting of about 100 globally and homogeneously
distributed reference sites, the Jet Propulsion Laboratory (JPL) generates for com-
mercial applications real-time products with an accuracy of 15–20 cm for orbits and
0.5 ns for clocks (http://www.gdgps.net). Benefiting from these real-time products
with a sampling interval of 1 s and a latency of about 5 s, Gao and Chen (2004)
showed in a static control survey that all coordinate components converge to the cen-
timetre level within 20 min. In vehicle and airborne kinematic experiments, cm-level
accuracy can be achieved after about 30 min. Moreover, the high potential of the
PPP-based real-time determination of atmospheric water vapour was demonstrated.
To overcome the limitations of PPP, such as long convergence time and the need
for dual-frequency measurements, Wübbena et al. (2005) proposed the PPP-RTK
(real time kinematic) network solution which enables the use of single-frequency
receivers by providing ionospheric corrections and improves the positioning accu-
racy and convergence time (10–50 s) by solving integer ambiguities. Recent studies
have revealed that integer ambiguity resolution in PPP is possible if the non-integer
term UPD can be precisely determined based on a network of reference sites (Lau-
richesse and Mercier 2007; Collins 2008; Ge et al. 2008). Geng et al. (2009, 2010)
found that reliable ambiguity resolution can be achieved for an observation period of
1 h. Nevertheless, over 3 h of data are still required to obtain sub-centimetre accuracy
for the vertical component.

The PPP-related services can be subdivided into data, processing and positioning
services. During the course of becoming a true GNSS service, the IGS will pro-
vide consistent GNSS products, in particular clock corrections with enhanced accu-
racy and temporal resolution (Springer and Dach 2010). As a temporary solution,
Heßelbarth and Wanninger (2008) suggested an interpolation technique for clock data
with poor temporal resolutions. For post-processing and near real-time applications,
diverse PPP online services have become convenient tools to obtain position solutions
in national or global reference frames. For example, the Canadian Spatial Reference
System-PPP (CSRS-PPP) online service enables worldwide point positioning with
a latency of 90 min and an accuracy of centimetre or sub-decimetre level, depending
on user dynamics (Tétreault et al. 2005; Ghoddousi-Fard and Dare 2006; Mireault
et al. 2008). Fuhrmann et al. (2010, Chap. 6) compared four currently available online
PPP services with respect to processing strategies, parameter estimation and residual
properties. Applying the so-called state-space concept (Mueller 1994; Kee 1996),
different global commercial services, such as OmniSTAR introduced by the Fugro
company (Heister et al. 2009, 2010), StarFire developed by John Deere and Company

http://www.gdgps.net
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(Dixon 2006) and Global Differential GPS (GDGPS) operated by JPL (Bar-Sever
et al. 2004), are available for real-time PPP. Assuming optimum receiving condi-
tions, dm-level kinematic positioning accuracy is achievable using dual-frequency
receivers (Kechine et al. 2003; Dixon 2006; Heister et al. 2010). While a momentary
interruption of the correction signal can be easily handled, the loss of GPS signals
results in significant accuracy degradation and requires reinitialisation (Heunecke
and Heister 2010).

3.2.2 Functional Model

The functional model of GPS observations formulates the mathematical relationship
between the measured satellite-receiver distances and the unknown parameters such
as site coordinates. For static PPP, the simplified observation equation of the LC3
measurements from receiver R and satellite j is

�
j
R,3 = ρ

j
R + c · (δtR − δt j )+ T j

R + λ3 · B j
R,3 + ε

j
R,3, (3.11)

where

ρ
j
R : geometrical range between receiver R and satellite j in m,
c : speed of light in a vacuum in m/s,

δtR : receiver clock offset from the GPS time in s,
δt j : satellite clock offset from the GPS time in s,
T j

R : tropospheric signal path delay in m,
λ3 : wavelength of the LC3 measurement in m,

B j
R,3 : non-integer phase ambiguity of the LC3 measurement in cycles,

ε
j
R,3 : random noise of the LC3 measurement in m.

The range ρ j
R represents the Euclidean distance between the three-dimensional

satellite position (X j ,Y j , Z j ) at the transmission epoch and the receiver position
(X R,YR, Z R) at the reception epoch, given by

ρ
j
R =

√
(X j − X R)2 + (Y j − YR)2 + (Z j − Z R)2. (3.12)

The tropospheric slant path delay (SPD) T j
R can be expressed as a product of

the zenith path delay (ZPD) TR and the mapping function (MF) m
z j
R that relates the

ZPD to the SPD at a zenith distance of z j . Hopfield (1969) showed the possibility of
separating the SPD into a predominant and well-behaved dry (d) part and a comple-
mentary and volatile wet (w) part. The dry delay term can be accurately determined
on the basis of air density (Davis et al. 1985), while the wet part is very difficult
to handle due to atmospheric water vapour being highly variable in time and space.
According to Rothacher (1992, p. 83), the total SPD can be expressed as
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T j
R = TR,d · m

z j
R,d + TR,w · m

z j
R,w, (3.13)

where TR,d is the zenith dry delay (ZDD), TR,w is the zenith wet delay (ZWD),
and m R,d and m R,w are the associated mapping functions. Under the assumption
of hydrostatic equilibrium, the ZDD can be determined at the millimetre accuracy
level using ground pressure measurements and is thus considered to be known. In
contrast, the ZWD must be estimated based on GPS data.

Substituting Eq. (3.13) into (3.11) and introducing satellite orbit (X j ,Y j , Z j ) and
clock (δt j ) products, for example, those provided by the IGS, Eq. (3.11) becomes

l j
R,3 = ρ

j
R + c · δtR + TR,w · m

z j
R,w + λ3 · B j

R,3 + ε
j
R,3. (3.14)

The vector of unknown parameters is

x = (X R,YR, Z R, δtR, TR,w, B j
R,3)

T , j = 1, . . . , ns, (3.15)

where ns denotes the total number of the satellites observed by receiver R. Regarding
all l j

R,3 in Eq. (3.14) as a realisation of the vector of stochastic observables l Z3 and

assuming zero-mean random measurement noise, i.e., E(ε j
R,3) = 0, the functional

model of static PPP is

E(l Z3) = F(x) = ρ
j
R + c · δtR + TR,w · m

z j
R,w + λ3 · B j

R,3, (3.16)

where E(·) is the expectation operator. Obviously, Eq. (3.12) is non-linear. Therefore,
a linearisation of F(x) using the Taylor series expansion around the a priori parameter
values x0 results in

F(x) = F(x0)+ ∂F(x)
∂x

(x − x0)+ · · · . (3.17)

The linearised model of the observation equations has the matrix form

A · �x̂ = �lZ3 + v, (3.18)

where A is the design matrix, �x̂ is the estimated vector of the reduced para-
meters (i.e., �x = x − x0), �lZ3 is the vector of reduced observations [i.e.,
�lZ3 = lZ3 − F(x0)], and v is the vector of residuals. As indicated by Eq. (3.17),
the design matrix A is formed by the partial derivatives of F(x) with respect to the
unknown parameters, i.e.,

A =
[
∂F(x)
∂X R

,
∂F(x)
∂YR

,
∂F(x)
∂Z R

,
∂F(x)
∂δtR

,
∂F(x)
∂TR,w

,
∂F(x)

B j
R,3

]x=x0

j=1,...,ns

, (3.19)
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where

∂F(x)
∂X R

= X R − X j

ρ
j
R

,
∂F(x)
∂YR

= YR − Y j

ρ
j
R

,
∂F(x)
∂Z R

= Z R − Z j

ρ
j
R

,

∂F(x)
∂δtR

= c,
∂F(x)
∂TR,w

= m
z j
R,w,

∂F(x)

∂B j
R,3

= 0 or λ3. (3.20)

Taking the weight matrix WZ3 to be the inverse of the cofactor matrix QZ3 of
the LC3 observations, i.e., WZ3 = Q−1

Z3 , the best linear unbiased estimate of �x is
obtained by means of Eq. (2.17) as

�x̂ = (AT WZ3 A)−1 AT WZ3︸ ︷︷ ︸
H

�lZ3. (3.21)

The final estimate of the parameter vector x is therefore

x̂ = x0 + �x̂, (3.22)

and the associated variance-covariance matrix (VCM) can be derived by applying
the variance-covariance propagation law to Eq. (3.21) as

Cx̂x̂ = σ 2
0 · H QZ3 HT = σ 2

0 · (AT WZ3 A)−1. (3.23)

The a posteriori variance of unit weight σ̂ 2
0 represents an estimate of σ 2

0 and can
be computed from the weighted sum of squared residuals and (n − u) degrees of
freedom:

σ̂ 2
0 = vT WZ3v

n − u
, (3.24)

where n is the number of observations, and u is the number of unknown parameters.
Using Eq. (3.18), the vector of least-squares residuals v is calculated as

v = A · �x̂ − �lZ3. (3.25)

It is important to note that the formal VCM of the estimated unknown parameters
Cx̂x̂ is usually over-optimistic due to the unrealistic assumption that GPS observa-
tions are physically uncorrelated (see Sect. 3.2.4). For a more detailed discussion
of the (simplified) functional model of PPP, the reader is referred to Teunissen and
Kleusberg (1998, pp. 187–230), Hofmann-Wellenhof et al. (2008, pp. 166, 254), and
Kouba (2009).

http://dx.doi.org/10.1007/978-3-642-34836-5_2
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Table 3.5 Error effects limiting the precise point positioning (PPP) quality

Satellite-specific effects Satellite orbit and clock products
Satellite antenna models
Satellite phase wind-up effecta

Satellite hardware delay

Atmospheric effects Ionospheric effects
Tropospheric effects

Site-specific effects Multipath effects
Receiver antenna models
Receiver hardware delay

Site displacement effects Effects of the solid Earth tides
Ocean loading displacement
Deformation due to polar motion
Sub-daily variations of the ERPb

Atmospheric pressure loading
Further loading displacements

Relativistic effects Effects on the equation of motion
Shapiro (gravitational) time delay
Effects on satellite clocks
Effects on receiver clocks

a Also known as phase polarisation effect (Steigenberger 2009, p. 35)
b Earth rotation parameters, i.e., pole coordinates (x p , yp) and UT1−UTC

3.2.3 Error Sources and Effects

Section 3.2.2 only presented the simplified functional model for point positioning
using dual-frequency carrier-phase observations. To exploit the full accuracy poten-
tial of PPP, additional correction terms or models are necessary to account for the
satellite-specific, atmospheric, site-specific, site displacement and relativistic effects.
This section provides an overview of these error sources, with a particular focus on
their influences in the measurement and solution domains. The effects to be discussed
in the following text are summarised in Table 3.5.

Satellite-Specific Effects

Satellite orbit and clock products. Over the past 15 years, the precision of the IGS
final orbit products has improved from about 30 cm to about 2 cm. Furthermore,
the IGS rapid combined products, which are generated using fewer tracking stations
and with faster delivery times (17–41 h latency), are now more precise than the best
analysis centre’s (AC) final solution. For the GPS satellites, the largest uncertainty in
the orbit determination is due to the solar radiation pressure which can be considered
by estimating the so-called dynamical parameters in an enhanced orbit model, for
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example, the one implemented in the Bernese GPS Software 5.0 (Beutler et al.
1994; Dach et al. 2007, pp. 31, 32). Being consistent with the orbit precision, the
current IGS final clock solutions are estimated to be precise at the 0.1 ns level.
After removing the small biases, the satellite clocks produced by different AC agree
with standard deviations of 0.03–0.07 ns or 1–2 cm (http://acc.igs.org). Within the
framework of the IGS Real-Time Pilot Project, real-time GNSS clock products with
a precision of 0.5 ns will be available to users via Internet and other economical
data streaming technologies. At the moment of writing, clock corrections for the
GLONASS satellites are provided by the Information-Analytical Centre (IAC) and
the European Space Operations Centre (ESOC) with a sampling interval of 5 min
and 30 s, respectively. A comparison of the GLONASS clock products from both AC
showed an agreement at the 0.08 ns level (Springer and Dach 2010).

Satellite antenna models. The necessity for correcting the separation between the
GPS satellite centre of mass (COM) and the antenna phase centre (APC) arises from
the fact that the force models for satellite orbit determination refer to the satellite
COM, while the measurements are related to the APC. Starting from November 5,
2006 (GW 1400), the IGS convention applies the so-called absolute phase centre
model igs05 (igs05_wwww.atx2, wwww: GPS week of the latest update), includ-
ing the satellite-specific z-offsets with an accuracy of several centimetres and the
block-specific, nadir-dependent phase centre variations (PCV) with a precision at
the sub-millimetre level (Schmid et al. 2007). The PCV of the individual satellites
within one block type are quite similar, while large differences of up to 70 cm are
present in the z-offsets within the Block II/IIA satellites. The GPS satellite-specific
z-offsets vary from 0.5 to 2.65 m, and the block-specific PCV values reach up to about
1 cm (Karabatić 2011, pp. 25, 26). For the horizontal satellite antenna phase centre
offsets (PCO), i.e., x- and y-offsets, the block-specific values provided by satellite
manufacturers are used in igs05. In the case of PPP, the neglect of the satellite PCO
may cause systematic errors of several centimetres in the horizontal components and
up to 10 cm in the vertical component, whereas the non-consideration of the satellite
PCV leads to a maximum error of 1 mm in the vertical component (Heßelbarth 2009).

Satellite phase wind-up effect. The phase wind-up effect occurs due to changes in
the mutual orientation of the transmitting satellite and the receiving antenna. For
a static receiver, its antenna remains oriented towards a fixed reference direction
(usually north), while the GPS satellite antennas undergo rapid rotations of up to
one revolution within less than half an hour when passing the subsolar point (the
so-called noon turn with the Sun-satellite-Earth constellation) and after leaving the
Earth’s shadow (the so-called midnight turn with the Sun-Earth-satellite constella-
tion). Since about 1994, most of the IGS AC employ the phase wind-up correction
model proposed by Wu et al. (1993), which is only applicable to static receivers.
Beyerle (2009) generalised this model for arbitrary receiver antenna orientations
and pointed out the necessity of the phase wind-up correction in GPS reflectometry.

2 ftp://igscb.jpl.nasa.gov/igscb/station/general/pcv_archive

http://acc.igs.org
ftp://igscb.jpl.nasa.gov/igscb/station/general/pcv_archive
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This satellite-specific effect is significant for PPP when fixing the IGS satellite orbits
and clocks, as it can reach up to one half of the wave length and result in dm-level
position errors (Kouba 2009). For a detailed discussion on the theoretical background
of this phenomenon, see, for example, Tetewsky and Mullen (1997). Practical correc-
tion models for the receiver phase wind-up effect during kinematic PPP are presented
in Le and Tiberius (2006).

Satellite hardware delay. The hardware delays in the satellite and receiver electronics
lead to non-integer ambiguities and cause biases between the code signals on L1
and L2, also known as inter-frequency biases. Since the hardware delays are fully
correlated with the clock parameters, the resulting biases can only be determined in
a differential way as differential code biases (DCB; Steigenberger, 2009, p. 16). The
inter-frequency P1P2-DCB can be obtained from a global ionosphere analysis and
vary from −5 to 8 ns for the GPS satellites. The biases between the two types of L1
code measurements, referred to as the intra-frequency P1C1-DCB, can be computed
within a global clock analysis using the LC3. The magnitude of the P1C1-DCB is
approximately one third of the P1P2-DCB, ranging between −2 and 2 ns. As shown
in Dach et al. (2007, pp. 281, 282), the satellite-specific DCB values are rather stable
over time. The inter-frequency biases play an important role in the determination
of absolute ionosphere parameters from dual-frequency (raw or smoothed) code
measurements (Newby 1992; Rideout and Coster 2006). The intra-frequency biases
must be considered when estimating satellite clocks or solving ambiguities using code
observations, for example, by means of the Melbourne-Wübbena linear combination
LC6 [see Eq. (3.8); Dach et al. 2007, p. 182].

Atmospheric Effects

Ionospheric effects. Extending from an altitude of about 50 km to about 1,000 km, the
ionosphere speeds up the propagation of the carrier-phase beyond the speed of light,
while it slows down the PRN-code by the same amount. Since the ionosphere is a dis-
persive medium for microwaves, the resulting delay is frequency-dependent. More
precisely, the lower the frequency is, the larger the delay will be. The ionospheric
delay is proportional to the total electron content (TEC) along the GPS signal path,
which in turn depends on the time of day/year, the 11 year solar cycle and the
geographical location (El-Rabbany 2006, p. 53). The maximum ionospheric delay
appears in the region about 10–15◦ north and south of the geomagnetic equator where
the Earth’s magnetic field is horizontal. The use of the LC3 eliminates the first-order
(99.9 %) ionospheric effect reaching up to 150 m at low elevation angles during the
ionospheric maximum. The second-order delay may cause a range bias of up to 4 cm
at a satellite elevation angle of 10◦, while the magnitude of the third-order effect is
about 1–4 mm (Steigenberger 2009, p. 26). Analysing the second-order ionospheric
delay, Elsobeiey and El-Rabbany (2011) showed that its effects on GPS satellite orbit
and clock reach up to 2 cm and 0.067 ns (i.e., a range error of 2 cm), respectively.
Moreover, the consideration of the second-order effect, along with advanced tro-
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pospheric models, can improve the PPP coordinate solution by 3 mm and reduce the
convergence time by 15 %. Further information about the higher-order ionospheric
effects and their impact on GPS parameter estimates can be found in Bassiri and Hajj
(1993), Kedar et al. (2003), Fritsche et al. (2005), Hernández-Pajares et al. (2007)
and Pireaux et al. (2010).

Tropospheric effects. The troposphere is the lowest part of the Earth’s atmosphere
and reaches up to 20 km at the equator and 7 km at the poles. It contains about 80 %
of the atmospheric mass and 99 % of the water vapour. Unlike the ionosphere, the
troposphere is electrically neutral and is a non-dispersive medium for radio frequen-
cies below 15 GHz (Hofmann-Wellenhof et al. 2008, p. 128). As a result, it delays the
GPS phase and code measurements identically. The tropospheric delay is minimal at
the tropospheric zenith and is equal to about 2.4 m at sea level. Subdividing the total
zenith path delay (ZPD) into a dry (ZDD) and a wet (ZWD) component, the ZDD
amounts to about 90 % of the ZPD and increases by a factor of 10 at an elevation
angle of 5◦. For more accurate weather forecasts and a better understanding of the
Earth’s climate system, the tropospheric wet delay has been exploited to reconstruct
high-resolution atmospheric water vapour fields at global and regional scales (Bevis
et al. 1992, 1994; Businger et al. 1996; Ware et al. 1997; Alber et al. 2000; Baltink
et al. 2002; Troller 2004; Troller et al. 2006; Bender and Raabe 2007; Luo et al.
2007a,b, 2008b; Morland and Mätzler 2007; Bender et al. 2008, 2011a,b; Lutz 2009;
Fuhrmann et al. 2010; Karabatić 2011). As can be seen from Eq. (3.13), high-quality
ZDD and accurate MF are essential for a reliable ZWD determination, particularly
when including low-elevation GPS data.

The ZDD derived based on pressure level data from numerical weather models
(NWM) provided, for example, by the European Centre for Medium-Range Weather
Forecasts (ECMWF; Woods 2006), is temporally variable and delivers a more real-
istic a priori mode than that obtained using the standard atmosphere (STDAMT;
NOAA/NASA/USAF 1976). Steigenberger (2009, p. 23) showed cm-level biases
between the ZDD computed using the STDATM and the ECMWF data, where the
maximum bias of 19 cm was found in Antarctica. In the case that neither near-ground
meteorological measurements nor representative weather model data are available
for the GPS site, Luo et al. (2012a) proposed a height-dependent correction model for
the ZDD calculated on the basis of the STDATM. By incorporating freely available
regional surface meteorological data, this approach significantly reduces the mean
bias in the a priori ZDD from several centimetres to about 5 mm. This correction
model has been experimentally applied to regional water vapour determination using
PPP (Fuhrmann et al. 2010, Sect. 8.1).

Up-to-date tropospheric mapping functions mainly have the continued fraction
form proposed by Marini (1972), which was later modified by Herring (1992) and
Niell (1996). The Niell mapping function (NMF; Niell 1996), derived based on
radiosonde data, has the main advantage that the function value only depends on
the day of year and the site location, but the disadvantages of low temporal/spatial
(1 day/15◦ in latitude) resolution and the neglect of short-term variations of several
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hours to days (Niell 2001). Furthermore, the dry NMF unrealistically assumes the
same seasonal behaviour of the southern and northern hemispheres.

Recent mapping functions, such as the isobaric mapping function (IMF; Niell
2000) and the Vienna mapping function (VMF1; Boehm et al. 2006b), rely upon the
NWM and have an improved temporal resolution of 6 h. The IMF inputs include
the latitude and height of the station, the height of the 200 hpa pressure level and
the ratio of the wet delay along a geometric path at an elevation angle of 3◦ to the
zenith wet delay. The VMF1 was developed by direct ray tracing through the ECMWF
weather model. Using the VMF1 instead of the NMF in GPS data analysis, Boehm
et al. (2006b) found significant station height changes by up to 1 cm and precision
improvements between 3 mm and 1 cm. Applying a spherical harmonic expansion up
to degree and order 9 to the VMF1 parameters on a global grid, the global mapping
function (GMF; Boehm et al. 2006a) represents an easy-to-implement and consistent
version of the VMF1. Although the GMF is less accurate than the VMF1 in terms of
modelling short-term variations, it provides more reliable height estimates than the
NMF. For an elevation angle of 3◦, biases of about 0.1 between the dry NMF and
GMF are shown in Steigenberger (2009, p. 24). Together with the global pressure
and temperature model (GPT; Boehm et al. 2007), the GMF is particularly applicable
if the VMF1 is not implemented or the surface meteorological data are not available.
In addition to the mapping functions in the form of continued fraction, Saha et al.
(2010) proposed a new dry Tropo-Chi MF by modifying the analytical solution of
the Chapman grazing incident (Chi) function. Using the Tropo-Chi function instead
of the dry NMF or GMF, the vertical position error was reduced by up to about 1 cm
in the Indian region.

If low-elevation data are included, the azimuthal asymmetry of the tropospheric
delay at an observation site should be considered by additionally estimating hori-
zontal troposphere gradients. These parameters describe a tilting of the tropospheric
zenith (i.e., the direction with the minimal tropospheric delay) with respect to the
geometrical zenith. For an elevation cut-off angle of 10◦, Fuhrmann et al. (2010,
p. 62) obtained meaningful and interpretable horizontal troposphere gradients from
static PPP at a regional scale. A more detailed discussion of tropospheric gradients
can be found in Meindl et al. (2004) and Dach et al. (2007, Sect. 11.4.3).

Site-Specific Effects

Multipath effects. Being a major error source of cm-level positioning, multipath
effects distort the original GPS signals through interference with diffused and
specularly reflected signals, primarily at the receiver antenna. The phase multipath
error can reach a quarter of a cycle, that is about 4.8 cm for the L1 and 6.1 cm for
the L2 carrier (Hofmann-Wellenhof et al. 2008, p. 157). However, this value may
increase when using phase linear combinations, for example, the maximum mul-
tipath error for the LC3 is 21.7 cm (Wildt 2007, p. 61). The site-specific multipath
effects can be subdivided into a near-field and a far-field component. Far-field effects
show short-periodic properties (up to half an hour; Seeber 2003, p. 317) and can be
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averaged out over a long observation period (e.g., several hours). In contrast, near-
field effects have non-zero mean and exhibit long-periodic characteristics (up to
several hours; Wübbena et al. 2006a). They can be determined during the course of
the robot-based absolute antenna calibration (Wübbena et al. 2006b, 2011). Purely
from geometry, signals received at low (high) satellite elevation angles are more
susceptible to the far-field (near-field) multipath.

A straightforward option for multipath reduction is to avoid, as far as possible,
reflecting objects in the vicinity of the receiver antenna. Further methods for multipath
mitigation can be classified as follows: (1) antenna-based attenuation (e.g., improving
the antenna gain pattern by choke rings, taking advantage of the right-handed sig-
nal polarisation and using absorbent antenna ground planes), (2) improved receiver
architecture (e.g., employing the Gated Correlator, the advanced Strobe Correlator
and the enhanced MEDLL3; Ray 2006) and (3) advanced signal and data processing
(e.g., exploring signal-to-noise ratio measurements, smoothing carrier-phases and
performing stacking and filtering techniques). For more information about multipath
mitigation, see, for example, Dilßner (2007, Sect. 3.1.7) and Hofmann-Wellenhof
et al. (2008, Sect. 5.6.3).

Receiver antenna models. For a receiver antenna, the antenna phase centre (APC)
at which the GPS signal is received does not necessarily coincide with the antenna
geometrical (mechanical) centre. The antenna PCO is the difference between the
mean electrical APC and the antenna reference point (ARP) that is defined by the
IGS convention as the intersection of the vertical antenna axis of symmetry with
the bottom of the antenna. As demonstrated by Hofmann-Wellenhof et al. (2008,
pp. 150, 154), the location of the mean APC is a function of the elevation cut-off
angle. The deviation between the APC of an individual phase measurement and the
mean APC is known as the antenna PCV, which is frequency-dependent and varies
with elevation, azimuth and intensity of the observed signal. The PCO can reach up
to 10 cm, while the PCV values are usually smaller than 2 cm for geodetic antennas
(Zeimetz and Kuhlmann 2006). The magnitude of range errors caused by the receiver
antenna PCO and PCV depends on the antenna type and is typically of the order of
a few centimetres (El-Rabbany 2006, p. 50).

For unchanged receiver antennas, the effects of the PCO and PCV are essentially
stable, providing the prerequisite for antenna calibration. Three major calibration
methods are available: (1) relative field calibration using data collected on short
baselines (Mader 1999), (2) absolute field calibration, where the GPS antenna is
rotated and tilted by a high-precision robot (Wübbena et al. 2000) and (3) absolute
calibration performed in an anechoic chamber (Zeimetz and Kuhlmann 2006). The
relative method determines the PCO and PCV with respect to a reference antenna
(e.g., AOAD/M_T choke ring antenna). Generally, PCV values down to an eleva-
tion angle of 10◦ are determined due to the higher noise level of low-elevation data.
Allowing for an enhanced error separation and bias removal, the absolute methods

3 Multipath estimating delay lock loop.
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calibrate each antenna individually and provide elevation- and azimuth-dependent
PCV down to 0◦. The calibration accuracy represents the deviations between repeated
calibrations using the same antenna and method, but under different observational
conditions, and is better than 1 mm for elevation angles above 10◦ and about
1–2 mm below 10◦ (Zeimetz and Kuhlmann 2006; Görres 2010a). The converted
robot calibration values with respect to the AOAD/M_T antenna are found to be
very consistent with the relative IGS values at the 1–2 mm level (Rothacher 2001).
The two absolute calibration methods agree with each other at the level of 1–2 mm
(Görres et al. 2006; Zeimetz and Kuhlmann 2008). Using the IGS orbit and clock
products in PPP, the applied receiver antenna models should conform to the current
IGS convention (Kouba 2009).

Receiver hardware delay. By convention, the IGS precise satellite clock corrections
must be consistent with the P1 and P2 observables. Since the clock analysis is per-
formed on the basis of the LC3, each clock correction contains the ionosphere-free
linear combination of the unknown P1 and P2 code biases. In order to be fully con-
sistent with the satellite clock information, the code tracking data must be corrected
depending on the receiver type with respect to the code registration, such as P1/P2
receivers observing C1, P1, P2 (e.g., Ashtech Z18, Javad, Topcon), C1/X2 cross-
correlation receivers (e.g., Rogue, Trimble 4000) and C1/P2 receivers (e.g., recent
Leica and Trimble receiver models). Otherwise, the receiver clock and position solu-
tions may be degraded. It should be noted that certain GNSS receivers cannot be
uniquely attributed to one of the classes mentioned above. For example, the Trimble
NetR5 behaves like a C1/P2 receiver for GPS and like a P1/P2 receiver for GLONASS
(Dach et al. 2007, pp. 279, 282). By an agreed convention, no P1P2-DCB correc-
tions are applied in any IGS AC analysis. Therefore, such DCB calibrations are not
necessary when using the LC3 of P1/P2 code data or when the IGS clock products
are held fixed or constrained in dual frequency PPP (Kouba 2009). Nevertheless, the
pseudo-range observations from C1/X2 and C1/P2 receivers must be corrected for
the P1C1-DCB to achieve full consistency with P1/P2 data, or precise satellite clock
information (Dach et al. 2007, p. 283).

Site Displacement Effects

Effects of the solid Earth tides. The solid Earth tides describe the elastic response of
the Earth’s crust to the external tide-generating potential of the Sun and the Moon.
They result in permanent and periodic site displacements in the radial and transverse
directions. The radial component of the permanent tidal effect amounts to about
−12 cm at the poles and about 6 cm at the equator. Adding this effect to the “conven-
tional tide-free” position (e.g., ITRF), one obtains the so-called “mean tide” position
(Petit and Luzum 2010, p. 108).

The periodic site displacements which can be subdivided into long-periodic, diur-
nal and semi-diurnal movements are typically described by spherical harmonics in
terms of the Love and Shida numbers (Mathews et al. 1997). The values of these
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numbers depend on the site’s latitude and the tidal frequency. According to the
current IERS Conventions 2010 (Petit and Luzum 2010, p. 103), the periodic site
displacement vector is computed by means of a two-step procedure. The first step
considers the degree 2 and degree 3 tides using the respective nominal values of
the Love and Shida numbers. For the degree 3 tides, only the Moon’s contribution,
causing a radial displacement of up to 1.7 mm, needs to be taken into account. The
second step accounts for the frequency-dependent deviations of the Love and Shida
numbers from their nominal values as well as the out-of-phase contribution from the
zonal tides.

Comparing the solid Earth tide models specified in the IERS Conventions 1992
and 2003, Watson et al. (2006) found aliased annual and semi-annual signals in the
time series of height differences. The signal amplitudes increase as a function of
latitude, amounting to 0.4 mm at the equator and 2 mm at the geographical poles.
Furthermore, mm-level differences with a dominant diurnal frequency were detected
in the zenith path delay (ZPD) estimates. This indicates that the choice of the solid
Earth tide model is an important issue for an accurate ZPD evaluation, and thus may
contribute to the error budget in the PPP-based water vapour determination.

Ocean loading displacement. The ocean loading effects on the underlying crust
originate from the ocean tides and are dominated by diurnal and semi-diurnal periods.
In comparison to the solid Earth tides, the ocean tide loading is more localised and the
resulting site displacements are almost one order of magnitude smaller, reaching up to
several centimetres in the vertical component. In addition, the non-tidal ocean loading
effect caused by varying sea surface height and changing density in the water column
results in mm-level vertical site displacements for coastline stations (Karabatić 2011,
p. 33; Williams and Penna 2011). For cm-level kinematic or short-term (several hours)
static PPP along coastal regions, the ocean loading effects must be taken into account.
When performing static PPP on a daily basis, where troposphere and clock estimates
are required, ocean loading corrections must also be included, unless the station
is more than 1000 km away from the nearest coastline (Kouba 2009). Otherwise,
the ocean loading effects will map into the solutions for troposphere parameters and
receiver clocks (Dragert et al. 2000). The neglect of ocean loading displacement may
lead to station height errors of up to 5 cm (Heßelbarth 2009). In the current IERS
Conventions 2010 (Petit and Luzum 2010, p. 109), the ocean loading displacement
is characterised by site-dependent tidal coefficients. Since 2007, most IGS AC apply
the ocean loading corrections considering the sub-daily centre of mass (COM) tidal
variations when generating their orbit and clock products (Ray and Griffiths 2008;
Kouba 2009). Therefore, using the IGS products in a PPP solution, the ocean loading
corrections should not include the COM motion.

Deformation due to polar motion. Polar motion describes the changes in the Earth’s
rotation axis relative to the Earth’s crust as viewed from an Earth-fixed reference
system (e.g., ITRF). It also causes periodic site displacements of up to several cen-
timetres due to the resulting variations in the Earth’s centrifugal potential. Unlike
the solid Earth tides and the ocean loading effects, the pole tides do not average to
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nearly zero over 24 h and have predominantly Chandler (∼435 days) and annual
periods (Torge 2001, p. 34). Considering the fact that the pole coordinates amount to
0.8 arcsec at most, the maximum site displacements due to polar motion can reach
about 25 mm in the radial and 7 mm in the horizontal directions (Petit and Luzum
2010, p. 116). Using the second degree tidal Love and Shida numbers, most IGS
AC apply the pole tide corrections when generating their orbit and clock products
(Kouba 2009).

Sub-daily variations of the ERP. The sub-daily variations of the Earth rotation para-
meters (ERP), i.e., pole coordinates (x p, yp) and UT1 − UTC, are dominated by
diurnal and sub-diurnal periods of ocean tide origin, and can reach up to 3 cm on
the Earth’s surface (Kouba 2009). Much like the ocean tide loading, the sub-daily
ERP variations average out to nearly zero over a period of 24 h. Nevertheless, for
short-term PPP, sub-daily ERP corrections are still required to achieve sub-centimetre
positioning precision. This arises from the fact that the sub-daily ERP variations are
not included in the current IERS Conventions 2010 (Petit and Luzum 2010, pp. 50,
52), while they have been considered in all IGS solutions since June 30, 1996 (Héroux
and Kouba 2001). In particular, the instantaneous sub-daily ERP must be added to
the tide-free IERS ERP values prior to all transformations between the ITRF and
the ICRF (International Celestial Reference Frame). As Kouba (2002b) showed, an
inconsistent application of the sub-daily ERP model by the IGS AC can result in
significant orbit differences exceeding the 5 cm level. Moreover, the neglect of the
sub-daily ERP variations in short-term PPP may introduce errors of more than 1 cm
in the position, ZPD and receiver clock estimates.

Atmospheric pressure loading. The atmospheric pressure loading (APL) can be
explained as the displacements of the Earth’s crust due to the temporal variations in
the geographic distribution of atmospheric mass. The APL can displace the positions
of geodetic sites by as much as 10–25 mm vertically and one-tenth to one-third
of this magnitude horizontally, particularly in the continental medium- and high-
latitude regions where the largest pressure variations prevail (van Dam et al. 1994;
Mangiarotti et al. 2001; Brondeel and Willems 2003; Rodrigues 2007). Like the
ocean loading, the APL can also be separated into a tidal and a non-tidal part, where
the non-tidal component plays a dominant role (Karabatić 2011, p. 33).

The geophysical approach for modelling the APL convolves Green’s function
(Farrell 1972) with a global pressure field provided by the ECMWF or by the NCEP
(National Centres for Environmental Prediction) operational analyses. The ocean’s
response to the APL is modelled as an inverted barometer (Sun et al. 1995; Petrov
and Boy 2004). This geophysical approach, however, suffers from the availability
of a global pressure data set with a minimum latency of 24 h, the low temporal
and spatial resolution of the pressure data itself, as well as uncertainties in Green’s
function and in the ocean response model (McCarthy and Petit 2004, p. 85). The
APL corrections resulting from the geophysical model can be used to adjust site
coordinates, to correct original observations (Tregoning and van Dam 2005) and to
estimate regression coefficients by fitting local pressure variations (van Dam et al.
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1994; Kaniuth and Vetter 2006). The current IERS Conventions 2010 suggest the
S1–S2 APL tidal model (RP03) derived from the ECMWF operational global surface
pressure fields with a spatial resolution of 1.125◦. The diurnal (S1) and semi-diurnal
(S2) atmospheric tides exhibit amplitudes of up to 1.5 mm in the equatorial regions.
Assuming that the oceans respond to the APL as the solid Earth, the three-dimensional
surface displacements can be determined using the elastic Green’s functions. Gridded
values of the predicted surface displacements from the RP03 model are available
online4. In fact, corrections for the vertical displacement are usually sufficient (Petit
and Luzum 2010, p. 112).

Recent studies presented in Dach et al. (2010) showed the advantages of applying
the APL corrections at the GPS observation level as well as their impacts on geodetic
datum definition and precise orbit determination. According to Steigenberger et al.
(2009), parts of the APL-induced deformation may be absorbed by the troposphere
modelling when using the GPT together with the GMF. This can be prevented by
applying the ECMWF-derived a priori ZDD and the VMF1 so that the complete
APL effect remains in the site coordinate estimates. At the time of writing, APL
displacements have not been considered in the IGS products. However, in order to
improve the quality of GPS data analysis, the IGS AC are required to apply the APL
corrections, for example, by means of the RP03 model.

Further loading displacements. Further loading effects due to changes in snow and
ice cover, soil moisture and groundwater, as well as in ocean-bottom pressure, also
contribute to site displacements. Nominally, they have a comparable or smaller mag-
nitude than the APL. However, at seasonal time scales, hydrological loads may cause
larger surface displacements than air pressure, reaching up to 30 mm in the vertical
component (Blewitt et al. 2001; Schuh et al. 2004). Models for non-tidal motions
associated with changing environmental loads are still under development. Thus,
they are not included in the current IERS Conventions 2010 (Petit and Luzum 2010,
p. 99). Since the unmodelled loading effects remain as signals in the geodetic time
series results, they can be extracted in post-analysis studies, for example, based on
long-term (several years) GPS coordinate time series and GRACE (Gravity Recovery
And Climate Experiment) surface load estimates (Tregoning et al. 2009).

Relativistic Effects

Effects on the equation of motion. The major acceleration correction to the equation
of motion, known as the Schwarzschild term, is due to the general relativistic curva-
ture of space-time caused by the Earth’s gravity field. In the case of GPS, it can reach
up to 3 · 10−10 ms−2 (Zhu and Groten 1988). The much smaller effects of the de Sit-
ter precession (2 · 10−11 ms−2) and the Lense-Thirring precession (1 · 10−12 ms−2)
can be neglected (Steigenberger 2009, p. 36). While the Schwarzschild term pri-
marily results in a secular shift in the argument of perigee, the Lense-Thirring

4 http://geophy.uni.lu/ggfc-atmosphere/tide-loading-calculator.html

http://geophy.uni.lu/ggfc-atmosphere/tide-loading-calculator.html
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and de Sitter effects cause precessions of the orbital plane. Within the context of
orbit determination, the neglect of the Schwarzschild term may lead to an apparent
reduction of the orbit radius by 4 mm for circular orbits at all heights (Petit and
Luzum 2010, p. 156).

Shapiro (gravitational) time delay. The Shapiro time delay, in this case, describes the
increased propagation time of GPS signals due to the space-time curvature induced
by the Earth’s gravity field. The propagation correction to obtain the Euclidean
distance depends on the geometry between the station, the satellite and the geocentre,
amounting to a maximum of about 19 mm. Note that this maximum only applies to
absolute point positioning (Zhu and Groten 1988; Hofmann-Wellenhof et al. 2008,
p. 145).

Effects on satellite clocks. By convention, the relativistic effects on satellite clocks
are subdivided into a constant and a periodic component. The constant part is
attributed to both general and specific relativity caused by the gravitational poten-
tial differences and the mean satellite velocity, respectively. This component can
be compensated by shifting the nominal frequency ( f0 = 10.23 MHz) of all GPS
satellite frequency standards by a constant clock rate of 
 f/ f0 = −4.4647 · 10−10

(ICD-GPS-200C 1993, p. 11), which indicates that the standard clock in orbit will
run faster by 38.575 μs/day. More specifically, the general relativistic time gain due
to the satellite’s altitude is about 45.6 μs/day, while the special relativistic time loss
because of the satellite’s orbital speed is about 7.2 μs/day (Mungan 2006). Based on
empirical analyses of the IGS final combined clock products, Kouba (2002a) found
that the differences in the constant part are quite insignificant from satellite to satel-
lite (i.e., about 0.01 μs/day). Taking the different mean orbit altitudes of the GPS
satellites into consideration, the actual relativistic frequency offset for an individual
satellite can differ from the constant clock shift by up to 10−13 (Petit and Luzman
2010, p. 154).

The periodic part is primarily due to the eccentricity of the satellite’s orbit. The
amplitude of the periodic correction is proportional to the orbit eccentricity eo,
amounting to about 2.29 · eo μs. For GPS orbits, eo can reach up to 0.02, lead-
ing to a maximum clock correction of 46 ns (Kouba 2002a; Petit and Luzum 2010,
p. 154). This conventional periodic correction given in ICD-GPS-200C (1993, p. 88)
has been applied by the IGS for its official GPS and GLONASS clock products.
However, it can introduce small clock rate errors of up to about 0.2 ns/day, as well
as periodic errors with amplitudes of about 0.1 and 0.2 ns, and periods of about 6 h
and 14 days, respectively. These small relativistic error effects are caused by the
gravity field oblateness term J2 and will become more significant for the future GPS
and Galileo satellites which are equipped with better frequency standards. While the
small clock rates and the 14 day periodic errors are completely absorbed into the
daily clock rates, the 6 h periodic effects necessitate frequent clock estimation and
distribution (e.g., hourly; Kouba 2004).
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Effects on receiver clocks. The Sagnac effect describes a relativistic effect on the
receiver clock induced by the Earth’s rotation while the GPS signal propagates from
the satellite to the receiver. It can lead to a relative frequency shift of
 f/ f0 = 10−12,
corresponding to a clock error of 10 ns or 3 m after 3 h (Hofmann-Wellenhof et al.
2008, p. 147). The Sagnac effect is generally corrected by the receiver software, and
a detailed description of the correction model is provided by Marmet (2000). For
more information about relativity in GPS, see, for example, Ashby (2002), Kouba
(2002a, 2004) and Petit and Luzum (2010, Chap. 10).

3.2.4 Stochastic Model

In addition to the functional model defining the mathematical relationship between
GPS measurements and the unknown parameters, the stochastic model describing
the observation’s statistical properties is also needed for a least-squares (LS) evalu-
ation. The stochastic model is generally expressed by a variance-covariance matrix
(VCM) that characterises the observations’ precision and correlations by the main
and off-diagonal elements, respectively (Tiberius et al. 1999). To obtain the best
linear unbiased parameter estimates, the inverse of the cofactor matrix Qll should
be used as the weight matrix W in the LS algorithm (see Sect. 2.1.3). As presented
in Table 2.2, the stochastic model affects not only the estimates, but also the accu-
racy measures of the unknown parameters such as phase ambiguities (Teunissen
et al. 1998; Teunissen 2000; Wang et al. 2002; Luo et al. 2008a,d), site coordinates
(Howind et al. 1999; Jin et al. 2005; Schön and Brunner 2008b) and troposphere
parameters (Jin and Park 2005; Luo et al. 2008a,c,d). A realistic accuracy assess-
ment plays a key role in quality control and integrity monitoring (Teunissen 1998;
Kim and Langley 2001; Wieser and Brunner 2002).

In contrast to the functional model, which has been intensively investigated by
accounting for a majority of the error sources and effects discussed in Sect. 3.2.3,
the commonly used stochastic model (VCM) still exhibits deficiencies arising from
unrealistic observation weighting (variances) and the neglect of physical correla-
tions between GPS measurements (covariances). The physical correlations can be
subdivided into temporal, spatial and cross correlations that describe observational
dependencies over time, in space and between frequencies, respectively. In order to
achieve a better understanding of each constituent of the stochastic model, Fig. 3.2
displays schematically the structure of a fully populated VCM (CZ) of the orig-
inal undifferenced GPS phase observations from one station (R) to four satellites
( j, k, l, r ) at two epochs (t1, t2).

The main diagonal elements of the VCM characterise the observation quality and
are different from each other with respect to satellite, frequency and epoch, i.e.,

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
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Fig. 3.2 Schematical presentation of a fully populated variance-covariance matrix (VCM) CZ of
the original undifferenced phase observations in PPP (SV: space vehicle)
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The off-diagonal elements represent the different types of physical correlations,
where the so-called inter-physical correlations, including more than one correlating
component [e.g., σ jk

R,12(t1), σ
jk

R,1(t12), σ
j

R,12(t12)], are assumed to be absent. Using
a simplified VCM, for example, only containing the diagonal elements of variances,
will result in biased parameter estimates and over-optimistic formal accuracy mea-
sures (El-Rabbany 1994, p. 21; Howind 2005, p. 30). In the following text, the main
properties of the stochastic components are described.

Variance

The variance of an individual GPS observation σ 2 can be obtained based on the a
priori variance factor σ 2

0 and the associated weight w using σ 2 = σ 2
0 /w (Hofmann-

Wellenhof et al. 2008, p. 239). The necessity of appropriate observation weighting
arises from the fact that the GPS measurements from different satellites at different
epochs cannot have the same precision (e.g., due to different atmospheric effects).
A precise observation should have a higher weight (or lower variance) and contribute
more to parameter estimation than an imprecise one. In statistical inferences and
quality control processes, improper weights may cause outliers to remain undetected
and truly high-quality observations to be rejected, leading to a considerable loss of
accuracy in spite of largely redundant observations. However, in the practice of GPS
data analysis, a realistic observation weighting turns out to be a difficult task due to
various factors such as tracking loop characteristics, receiver and antenna hardware
properties, signal strength, receiver dynamics, multipath and atmospheric effects,
and so forth (Wieser 2007).

The simplest weighting scheme assigns an identical weight of w = 1 to all obser-
vations of the same type recorded by the same receiver. Under the assumption of
uncorrelated GPS measurements, the VCM represents a scaled identity matrix. Due
to the unrealistic assumptions of uncorrelatedness and homoscedasticity (i.e., homo-
geneity of variance), this simplified stochastic model is inadequate for high-precision
GPS applications, particularly when including low-elevation observations (Luo et al.
2007c; Wieser 2007; Satirapod and Luansang 2008). The commonly applied variance
model for GPS phase observations, other than a scaled identity matrix, uses the satel-
lite elevation angle as an indicator for observation quality. The basic idea behind the
elevation-dependent weighting concept is that observations at lower elevation angles
suffer more strongly from atmospheric and multipath effects, hence are more noisy
than those at higher elevation angles. Table 3.6 summarises some commonly used
elevation-dependent variance models and the associated weight functions derived
with respect to the geometrically optimum observation in the zenith direction. By
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Table 3.6 Commonly used variance functions depending on the satellite elevation angle e

Notation Variance function σ 2
0 (e = 90◦) Weight function

CSC1
σ 2 = σ 2

0 /[2 sin(e)] if e < 30◦

σ 2 = σ 2
0 if e ≥ 30◦ σ 2

0 w = σ 2
0

σ 2

CSC2 σ 2 = a2 + b2/ sin2(e) a2 + b2

CSC3 σ 2 = [c + d/ sin(e)]2 (c + d)2

EXP σ 2 = [
m + n · exp(−e/e0)

]2 [
m + n · exp(−90◦/e0)

]2

(a) (b)

Fig. 3.3 Comparison of the commonly used elevation-dependent weight and cofactor functions
presented in Table 3.6 (CSC2(BS): a = 0 mm, b = 1 mm, Dach et al. 2007, p. 144; CSC2(GA):
a = 4.3 mm, b = 7 mm, King and Bock 2002, Chap. 5, pp. 9, 12; CSC3: c = 5 cm, d = 2 cm,
Ray and Griffiths 2008; EXP: m = 0.3 cm, n = 2.6 cm, e0 = 20◦, Han 1997)

specifying representative model parameters, these weight functions and the corre-
sponding cofactor values (q = 1/w) are compared in Fig. 3.3.

Comparing the weight and cofactor values shown in Fig. 3.3, particularly for
low satellite elevation angles between 3 and 10◦, these elevation-dependent weight
functions can be categorised into three groups: (1) CSC2 strongly downweighting
low-elevation observations, (2) CSC1 and CSC3 producing significantly higher
weights at low elevation angles and (3) EXP appearing to be a compromise between
(1) and (2). For elevation angles larger than about 55◦, the maximum difference in
the cofactor values is less than one. The variance function CSC2(BS) has been imple-
mented in the Bernese GPS Software 5.0 (Dach et al. 2007, p. 144), while the variance
model CSC2(GA) is available in the GAMIT GPS data analysis package (King and
Bock 2002, Chap. 5, p. 9). The CSC1 and CSC3 are employed by the IGS analysis cen-
tres (AC) GFZ (Geo-ForschungsZentrum, Potsdam, Germany) and NGS (National
Geodetic Survey, NOAA, USA), respectively. A detailed overview of the observa-
tion weighting schemes used by the IGS AC is provided by Ray and Griffiths (2008).
In comparison to the widely used cosecant (CSC) construction, the exponential vari-
ance function EXP proposed by Euler and Goad (1991) has the advantage of non-
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singularity in e = 0◦. The model parameters m, n and e0 (see Table 3.6) can be
determined depending on the receiver and observation types.

The elevation-dependent variance models assume a strong correlation between
the satellite elevation angle and GPS signal quality. They become inefficient for
observations which are strongly affected by multipath effects, signal diffraction and
receiver characteristics. For measurements collected under non-ideal observational
conditions, direct signal quality measures such as signal-to-noise ratio (SNR; see
Sect. 5.1) are more appropriate to assess the quality of GPS observations. In addi-
tion, since SNR values are generally available on both L1 and L2, the SNR-based
variance models account for the frequency-related differences in observation quality.
Langley (1997) showed the large potential of SNR as a key parameter in analysing
GPS receiver performance and provided a SNR-based variance model for phase
observations. In Sect. 5.2, this variance model will be discussed in more detail.

Instead of properly specifying σ0 and w, the variance of an individual GPS
observation can be determined using variance component estimation (VCE), for
example, by means of the MINQUE (minimum norm quadratic unbiased esti-
mation) procedure (Rao 1970, 1971). While the elevation-dependent and SNR-
based variance models use the observed information before a LS adjustment is
performed, the VCE is carried out based on the residuals obtained from a LS
evaluation. The basic assumption is that the LS residuals represent the same sta-
tistical properties as the true errors if the observation period is long enough to
remove all systematic effects. Comprehensive details of employing the VCE tech-
nique to estimate variance-covariance components of GPS observations can be found
in Wang et al. (1998), Satirapod et al. (2002), Tiberius and Kenselaar (2003),
Amiri-Simkooei (2007), Li et al. (2008, 2011) and Amiri-Simkooei et al. (2009).
Moreover, Bischoff et al. (2005, 2006) provided test methods to statistically verify
the hypothesis of heterogeneous variances, and estimation procedures to determine
the values of variances. For GPS PPP, Satirapod and Luansang (2008) compared the
MINQUE method with a scaled identity matrix and an elevation-dependent variance
model of the cosecant construction. Thereby, the stochastic model estimated using
the MINQUE method produced the most accurate coordinate estimates of both the
horizontal and vertical components.

Covariance

The covariances are the off-diagonal elements of the VCM and represent the dif-
ferent kinds of physical correlations between GPS observations, such as the spatial
correlation between different channels [e.g., ρ jk

R,1(t1)], the cross correlation between

the L1 and L2 carriers [e.g., ρ j
R,12(t1)], and the temporal correlation between dif-

ferent epochs [e.g., ρ j
R,1(t12)]. On the basis of the covariances, the corresponding

correlation coefficients quantifying the observational dependencies in space, between
frequencies, and over time can be expressed as

http://dx.doi.org/10.1007/978-3-642-34836-5_5
http://dx.doi.org/10.1007/978-3-642-34836-5_5
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Usually, the physical correlations are not considered in the stochastic model of
GPS observations. The spatial correlation between the observations from one site
to different satellites or from different sites to one satellite within one epoch is
due to the similar observational conditions for these measurements. In fact, this
kind of correlation makes the differencing technique applied in relative positioning
effective in mitigating error effects (see Sect. 3.3.3). Intuitively, observations being
spatially close to each other are more strongly correlated than those with a large spatial
distance. Applying the VCE method to residuals from a zero-baseline, Tiberius and
Kenselaar (2003) detected insignificant spatial correlation coefficients of the order
of −0.1–0.1, which cannot be directly transferred into PPP.

Analysing time series of the LS residuals on L1 and L2, Tiberius et al. (1999) found
considerable positive correlation between the L1 and L2 phase observations, partic-
ularly for the C1/X2 cross-correlation receivers. The detected cross-correlation coef-
ficients range between 0.3 and 0.7, depending on the receiver type. The correlation
between code and phase observations seems negligible (see also Bonna 2000). Using
the VCE technique, these results were verified by Tiberius and Kenselaar (2003).
Recent LS-VCE studies such as Amiri-Simkooei et al. (2009) showed significant
positive correlations of up to 0.8 between the L1 and L2 phase observations.

Since the residual systematic errors change slowly over time, temporal corre-
lation may exist between the observations from one site to the same satellite at
different epochs. The temporal correlation behaviour of GPS observations depends
not only on the satellite geometry, but also on the prevailing atmospheric conditions
(e.g., wind speed and direction; Schön and Brunner 2008a), the site-specific effects
(e.g., multipath impact; Amiri-Simkooei and Tiberius 2007; Nahavandchi and
Joodaki 2010) and the receiver characteristics (e.g., signal smoothing and filtering;
Tiberius et al. 1999; Amiri-Simkooei and Tiberius 2007). The larger the temporal
separation distance is, the weaker the temporal correlation will be. Applying
atmospheric turbulence theory to GPS carrier-phase data, Schön and Brunner
(2008b) determined temporal correlation lengths of about 300–600 s for GPS double-
difference observations. Smaller correlation lengths can be expected in the case of
PPP, since the double differencing procedure may increase the correlation time of
GPS phase observations (Nahavandchi and Joodaki 2010).

Variance-Covariance Propagation

The weight matrix WZ derived from the VCM CZ of the original phase observations
�Z, as shown in Fig. 3.2, cannot be directly substituted into Eq. (3.21) for WZ3 of
the LC3 measurements �Z3. Relying upon the linear relationship between �Z and
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�Z3 formulated by the matrix DZ , the VCM of �Z3, which is denoted as CZ3, can
be obtained by applying the variance-covariance propagation law to CZ as

�Z3 = DZ · �Z, CZ3 = DZ · CZ · DT
Z . (3.28)

In fact, the matrix DZ expresses the ionosphere-free linear combination LC3 in
a matrix form and contains predominantly zero elements and the real-valued LC3
coefficients k1,3 and k2,3 [see Eq. (3.3) and Table 3.3]. According to the variance-
covariance structure shown in Fig. 3.2, Fig. 3.4 displays the construction of �Z,
DZ and �Z3. The matrix CZ3 computed using Eq. (3.28) represents a fully popu-
lated VCM for the LC3 observations. The corresponding weight matrix WZ3 can be
calculated as WZ3 = (CZ3/σ

2
3 )

−1, where σ3 is given by Eq. (3.7). Then, WZ3 is
used to estimate the unknown parameters in a LS adjustment, along with the LC3
observation vector �Z3 and the design matrix A [see Eq. (3.19)].

Benefiting from the continuously improved orbit and clock products, PPP has
become a powerful technique with a promising future during the course of GNSS
evolution. To exploit its full accuracy potential, numerous studies have been carried
out aiming at ambiguity resolution, the integration of PPP with RTK and INS (inertial
navigation system), and the incorporation of precise atmospheric models (Bisnath
and Gao 2009). In contrast, little attention has been paid to the stochastic model
which undoubtedly plays a key role in outlier detection and integrity monitoring.
Focusing on the temporal correlation of GPS observation noise, Chaps. 7 and 8 will
extend the PPP stochastic model in a mathematically rigorous manner.

3.3 Relative Positioning

Relative positioning employs at least two receivers simultaneously tracking the same
satellites to determine the coordinates of an unknown point relative to a reference site
with precisely known coordinates. Benefiting from the differencing technique, rela-
tive positioning generally provides a higher accuracy than autonomous positioning.
Since the principle and the functional model of relative positioning are well doc-
umented in GPS literature (Hofmann-Wellenhof et al. 2008, Sect. 6.3), this section
gives a more detailed discussion of the error effects and the stochastic model with
respect to its structure, derivation and differences from that of PPP.

3.3.1 Introduction

For relative positioning, a minimum of four visible satellites is required at both
the reference site and the remote site with unknown position. Assuming that GPS
observations are sufficiently simultaneous (Wanninger 2000, p. 11), single-, double-,
and triple-differences can be formed between receivers, satellites, and epochs. The

http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_8


3.3 Relative Positioning 89

Fig. 3.4 Construction of �Z , DZ and �Z3 corresponding to the VCM illustrated in Fig. 3.2
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terminus single-difference used in this thesis involves two receivers and one satel-
lite. This kind of single-difference eliminates the satellite clock bias and hardware
delay. In addition, atmospheric and orbit errors are reduced, particularly for short
baselines. Nevertheless, the ambiguities of single-differences are still non-integer
values due to the generally unequal receiver hardware delays. Double-differences are
obtained by subtracting two single-differences referring to the same baseline. The
elimination of the receiver clock biases is the main reason why double-differences
are preferably used. Since both the satellite and receiver hardware delays are can-
celled, the double-differenced phase ambiguities have the integer property. Triple-
differences, resulting from differencing double-differences between two epochs, can
be used to eliminate the time-invariant ambiguities, provided that the receivers did
not loose lock within this time interval. The triple-difference solution serves as an
important reference for cycle slip detection. Tropospheric effects, which usually do
not change rapidly with time, are considerably reduced on the triple-difference level.
However, this is not the case for ionospheric effects, which may show very rapid tem-
poral variations, particularly in the high northern and southern latitudes (Dach et al.
2007, pp. 39, 116). Mathematical formulations for the differenced phase equations
can be found in Hofmann-Wellenhof et al. (2008, Sect. 6.3.2).

Relative positioning can be performed in both static and kinematic modes, where
the static relative positioning with phase measurements is currently the most accurate
satellite-based positioning technique. Depending on the baseline length, the expected
accuracy using geodetic-type receivers is normally 5 mm + 0.5 ppm for the horizontal
components and 5 mm + 1 ppm for the vertical component, where ppm stands for
parts per million. For short baselines of up to 20 km, ambiguity resolution is a key
issue to ensure high-performance positioning. In this case, it is recommended to
resolve L1 and L2 ambiguities directly (Dach et al. 2007, p. 182). For long baselines
of up to several hundred kilometres or more, the ionosphere-free linear combination
LC3 should be used along with the precise orbit product (El-Rabbany 2006, p. 73).

The kinematic relative positioning can be subdivided into the post-processed
kinematic (PPK) and real time kinematic (RTK). The PPK method starts with a
process known as receiver initialisation, where the initial integer ambiguities are
first determined. Once the initialisation has been successfully accomplished, cm-
level positioning accuracy can be achieved. The coordinates of the unknown points
are obtained by post-processing the collected data. In an RTK operation, the ini-
tial ambiguities are resolved almost instantaneously using the so-called on-the-fly
ambiguity resolution technique (Hofmann-Wellenhof et al. 2008, p. 217). Estab-
lishing data communication (e.g., VHF or UHF radio, cellular telephone), the base
receiver measurements and coordinates are transmitted to the rover receiver whose
built-in software processes the collected GPS data to obtain the rover’s coordinates
in real-time. The expected RTK positioning accuracy using geodetic-type receivers
is 1 cm + 1 ppm horizontally and 2 cm + 1 ppm vertically. Under the same condi-
tions, the positioning quality of the RTK method is slightly degraded in comparison
to that of the PPK method. This is mainly due to the latency while preparing and
transmitting the base data, which necessitates data extrapolation to mach the time
tag of the rover receiver measurements (El-Rabbany 2006, pp. 76, 77).
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To achieve rapid and reliable ambiguity resolution, the maximum baseline length
in a single-base RTK positioning should not exceed 20 km. This limitation is due to the
distance-dependent biases such as orbit errors and signal refraction in the atmosphere
(see Sect. 3.3.3). However, these errors can be accurately modelled based on the
observations from an array of GPS reference sites (Wanninger 2000, Chap. 4; Dai
et al. 2001; Fotopoulos and Cannon 2001). This leads to an extension of the RTK
positioning from a single base to a multi-base technique. Moreover, continuously
operating reference station networks, for example, the German Satellite Positioning
Service (SAPOS®; Stronk and Wegener 2005), have been established to provide
network RTK positioning services using the master-auxiliary concept (MAC; Brown
et al. 2006), area correction parameters (FKP; Wübbena et al. 2001) and virtual refer-
ence stations (VRS; Wanninger 2002, 2003). More information about the principles,
limitations and future challenges of network RTK is provided by Rizos (2003) and
Wanninger (2004, 2006). Additional GPS relative positioning modes, such as rapid
static and stop-and-go, can be found in El-Rabbany (2006, Chap. 5).

3.3.2 Functional Model

The functional model of relative positioning describes the mathematical relationship
between double-differenced observations and the unknown parameters. Under the
assumption of equal frequency f = f j = f k for the satellite signals, which is true
in the case of GPS by applying the code division multiple access (CDMA) technique,
the simplified observation equation of phase double-differences relating to receivers
A and B, satellites j and k, and frequency f is

�
jk
AB, f = ρ

jk
AB + λ f · N jk

AB, f + ε
jk
AB, f , (3.29)

where

ρ
jk
AB : double-difference of the geometrical ranges in m,

λ f : wavelength of the carrier in m,

N jk
AB, f : integer double-difference phase ambiguity in cycles,

ε
jk
AB, f : random noise of the double-difference in m.

Such a simplification is valid for short baselines under ideal observational condi-
tions (Wanninger 2000, p. 12). The term ρ

jk
AB contains the geometry and can be

decomposed as

ρ
jk
AB = ρk

AB − ρ
j
AB = ρk

B − ρk
A − ρ

j
B + ρ

j
A. (3.30)

Substituting Eq. (3.30) into (3.29), the simplified observation equation becomes
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l jk
AB, f = ρk

B − ρk
A − ρ

j
B + ρ

j
A + λ f · N jk

AB, f + ε
jk
AB, f . (3.31)

In the case of relative positioning, the coordinates of the reference site (e.g., site A)
are precisely known. Accordingly, the vector of unknown parameters consists of the
coordinates of the rover site B and all double-difference ambiguities, i.e.,

x = (X B,YB , Z B, N i
AB, f )

T , i = 1, . . . ,msp, (3.32)

where msp denotes the number of the formed satellite pairs. Regarding all l jk
AB, f

as a realisation of the vector of stochastic double-difference observables l D and
assuming zero-mean random observation noise, the functional model of static relative
positioning reads

E(l D) = F(x) = ρk
B − ρk

A − ρ
j
B + ρ

j
A + λ f · N jk

AB, f . (3.33)

The expansion of Eq. (3.33) into a Taylor series around the approximate position
of the rover site B (X B0,YB0, Z B0) leads to the linearised model of observation
equations in the matrix form A · �x̂ = �l D + v. According to Hofmann-Wellenhof
et al. (2008, p. 255), the design matrix A can be written as

A =
[
∂F(x)
∂X B

,
∂F(x)
∂YB

,
∂F(x)
∂Z B

,
∂F(x)

N i
AB, f

]x=x0

i=1,...,msp

, (3.34)

where

∂F(x)
∂X B

= X B − Xk

ρk
B

− X B − X j

ρ
j
B

,
∂F(x)
∂YB

= YB − Y k

ρk
B

− YB − Y j

ρ
j
B

,

∂F(x)
∂Z B

= Z B − Zk

ρk
B

− Z B − Z j

ρ
j
B

,
∂F(x)

∂N i
AB, f

= 0 or λ f . (3.35)

The vector of reduced parameters �x can be expressed as

�x = x − x0 = (
X B,
YB,
Z B , N i
AB, f )

T , i = 1, . . . ,msp. (3.36)

From Eq. (3.33), the reduced observation for l jk
AB, f is


l jk
AB, f = l jk

AB, f − F(x0) = l jk
AB, f − ρk

B0 + ρk
A + ρ

j
B0 − ρ

j
A, (3.37)

where the position of the reference site A is assumed to be known, and the approx-
imate N jk

AB, f is equal to zero [cf. Eqs. (3.32) and (3.36)]. Once the design matrix
A, the vector of reduced double-difference observations �l D and the corresponding
weight matrix WD are available, the parameter estimate x̂ = x0 + �x̂ and the asso-
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ciated VCM Cx̂x̂ can be obtained from a LS adjustment. Initially, the LS ambiguity
estimates are float values. The fixing of the float ambiguities to their integer values,
known as ambiguity resolution, fully exploits the high accuracy of phase observations
and significantly improves the quality of parameter estimates. A detailed discussion
of different ambiguity resolution algorithms is provided by Hofmann-Wellenhof et al.
(2008, Sect. 7.2). For geodetic-type dual-frequency receivers, the optimum ambigu-
ity resolution strategy primarily depends on the availability of high-quality code
measurements on both carriers, as well as on the baseline and session length (Dach
et al. 2007, p. 180).

3.3.3 Error Sources and Effects

For relative positioning using baselines, it seems reasonable to classify the error
sources into distance-dependent and site-specific (distance-independent) effects.
Depending on the baseline length, the spatially correlated errors, such as ionospheric
and tropospheric refraction, will be reduced by differencing. In contrast, site-specific
effects, for example, multipath, are individual for each station and may even be ampli-
fied when forming differences between observations (Schön 2010). Moreover, some
effects can be completely neglected for cm-level relative positioning and for base-
lines less than 100 km, but they must be taken into account when processing long
baselines (e.g., more than 500 km). This section briefly describes the effects of the
error sources in the solution domain, with an emphasis on the distance-dependent
factors. In Table 3.7, the relevant error effects limiting the relative positioning quality
are listed.

Distance-Dependent Effects

Satellite orbit errors. For the influence of unmodelled satellite orbit errors on station
coordinate estimates, a handy rule of thumb is available in Dach et al. (2007, p. 24).
It provides the error in baseline length 
l as a function of the error in satellite orbit

O using


l ≈ l

d
·
O, (3.38)

where l is the baseline length in km, and d ≈ 25,000 km is the approximate distance
between the satellite system and the survey area. Substituting the current accuracy
specifications of the IGS products for GPS satellite orbits into Eq. (3.38), the resulting
errors in baseline length are presented in Table 3.8. Obviously, for regional networks
consisting of baselines shorter than 500 km, the expected errors in baseline length
due to inaccurate satellite orbits are below 1 mm if the IGS ultra-rapid, rapid or
final orbit products are used. Furthermore, satellite orbit errors may cause apparent
network rotations (Beutler et al. 1989).
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Table 3.7 Error effects limiting the relative positioning quality

Distance-dependent effects Satellite orbit errors
Ionospheric effects
Tropospheric effects

Site-specific effects Multipath effects
Receiver antenna models

Other relevant effects Satellite antenna models
Satellite phase wind-up effect
Site displacement effects
Relativistic effects

Table 3.8 Approximate errors in baseline length (
l) using different IGS products for GPS satellite
orbits [see Eq. (3.38), unit: mm]

Baseline length [km] Accuracy of the IGS orbit product [mm]a

Broadcast Ultra-rapid (P)b Ultra-rapid (O)b Rapid & Final

1,000 50 30 25

10 0.4 0.0 0.0 0.0
100 4.0 0.2 0.1 0.1
500 20.0 1.0 0.6 0.5

1,000 40.0 2.0 1.2 1.0
a http://igscb.jpl.nasa.gov/components/prods.html
b P: predicted part, O: observed part

Ionospheric effects. An erroneous estimate of the ionospheric total electron content
(TEC) affects single-frequency relative positioning primarily in the form of a scale
error. For the maximum zenith angle zmax = 80◦ on a medium-latitude site, an
underestimation of the TEC by 10 TECU (1 TECU = 1016 electrons/m2) leads to a
decrease in baseline length of 0.7 ppm (i.e., l = 100 km → 
l = 7 cm; Santerre
1989, p. 108). The magnitude of this scale effect depends on the site location, solar
activity and occurrence of sudden ionospheric disturbances. Using the ionosphere-
free linear combination LC3, the ionospheric effects can be largely reduced. However,
the employment of the LC3 has the disadvantages of complicated ambiguity reso-
lution as well as increased multipath effects and observation noise. Therefore, for
baselines of up to several kilometres, the LC3 is not recommended, and single-
frequency relative positioning is even preferred for coordinate estimation (Wanninger
2000, p. 19). If dual-frequency observations are available, ionosphere models can be
determined using the geometry-free linear combination LC4 on the zero- or double-
difference level (see Table 3.3). Local and regional ionosphere models can be derived
by applying two-dimensional Taylor series expansions, while continental and global

http://igscb.jpl.nasa.gov/components/prods.html
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ionosphere maps can be generated with the help of spherical harmonic expansions
(Dach et al. 2007, Chap. 12).

Tropospheric effects. According to Beutler et al. (1988), the troposphere biases in
relative positioning can be subdivided into an absolute and a relative component. The
absolute troposphere biases are caused by errors arising from tropospheric refraction
which are common to both endpoints of a baseline. They mainly produce scale
errors in the estimated baseline lengths. The relative troposphere biases are due to
errors of tropospheric refraction at one endpoint of a baseline relative to the other.
They primarily induce errors in the estimated station heights. Assuming uniformly
distributed satellites above the observing sites, the impact of an absolute (
T 0

a ) and
a relative troposphere bias in the zenith direction (
T 0

r ) can be calculated as


l

l
= 
T 0

a

RE · cos(zmax)
, 
h = 
T 0

r

cos(zmax)
, (3.39)

where RE ≈ 6371 km is the Earth’s radius, 
l is the error in baseline length, and

h is the bias in station height (Dach et al. 2007, p. 240). For zmax = 80◦ or an
elevation cut-off angle of 10◦, Eq. (3.39) implies that an absolute troposphere bias
of 7 cm causes a scale error of 0.06 ppm (i.e., l = 100 km → 
l = 6 mm), whereas
a relative troposphere bias of 1 mm already leads to an error of approximately 6 mm
in the estimated station height. Note that relative troposphere errors are much more
important for local and regional applications. Table 3.9 provides more numerical
examples of the biases caused by the atmospheric effects in relative positioning.

In comparison to the satellite orbit errors, the atmospheric effects reach orders of
magnitude above the noise level of GPS phase observations and play a dominant role
in the error budget of relative positioning. Due to the fact that the tropospheric refrac-
tion originates from the lowest part of the Earth’s atmosphere (99 % below 10 km)
whereas the ionospheric shell height is about 400 km, the tropospheric effects are
more site-specific and can be accounted for by estimating site-specific troposphere
parameters and gradients in GPS data processing. However, using differenced obser-
vations in relative positioning, the resulting troposphere solutions may be biased by a
constant offset, particularly for local and regional networks (i.e., l < 500 km; Kouba

Table 3.9 Examples of biases in baseline length (
l) and station height (
h) induced by
atmospheric effects [see Eq. (3.39), unit: m]

Baseline length [km] Ionosphere (
l) Troposphere (
l) Troposphere (
h)

10 TECU (0.7 ppm) 
T 0
a = 0.1 m 
T 0

r = 0.01 m

zmax = 80◦ zmax = 80◦ zmax = 87◦ zmax = 80◦ zmax = 87◦

10 0.007 0.001 0.009 0.058 0.191
100 0.070 0.009 0.087 0.058 0.191
500 0.350 0.045 0.437 0.058 0.191

1,000 0.700 0.090 0.874 0.058 0.191
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2009). To achieve the absolute level, an external tropospheric calibration is required,
for example, by means of PPP or the IGS combined troposphere products (Byun and
Bar-Sever 2009). Furthermore, the strong correlation between the zenith tropospheric
delay and station height estimates can be considerably reduced by lowering the ele-
vation cut-off angle. Appropriate handling of low-elevation observations requires
advanced mapping functions (e.g., GMF, VMF1) on the one hand, and improved
stochastic models (e.g., observation weighting) on the other.

Site-Specific Effects

Multipath effects. For precise relative positioning with short baselines, multipath
represents the major systematic error source. Its impact on carrier-phases should
generally not exceed about 1 cm under good satellite geometry over a reasonably
long observation period. Nevertheless, a simple change of the receiver antenna height
may increase the multipath effects and deteriorate the positioning results (Hofmann-
Wellenhof et al. 2008, p. 155). In addition to the techniques employed in antenna
and receiver design, different data-processing approaches have been proposed for
multipath mitigation, such as wavelet algorithms (Xia and Liu 2001; Souza and
Monico 2004; Satirapod and Rizos 2005; Zhong et al. 2008; Wu et al. 2009), SNR-
based methods (Bilich 2006; Bilich and Larson 2007; Bilich et al. 2008; Rost and
Wanninger 2009, 2010; Rost 2011), sidereal filtering (Zheng et al. 2005; Ragheb et al.
2007; Zhong et al. 2010; Lau 2012) and least mean square adaptive filters (Ge et al.
2000; Weinbach et al. 2009; Liu et al. 2011). Analysing the temporal characteristics
of multipath errors by means of auto-covariance functions, Nahavandchi and Joodaki
(2010) modelled multipath effects stochastically. Making use of the site environment
information, for example, represented by a georeferenced 3D site digital model, Fan
and Ding (2006) employed the electromagnetic modelling technique to determine
GPS phase multipath signals and visualised their propagations in an urban 3D model.
The variety of multipath mitigation methods indicates that a generally valid and
applicable multipath model is still lacking, which is mainly attributed to its strong
time- and location-dependent properties. For rapid static survey applications, longer
observation periods are advisable in the presence of strong multipath interference.

Receiver antenna models. In short-baseline relative positioning using the same
antenna type and orientation, phase centre corrections only insignificantly affect
the estimated coordinates, because the satellite signals are received under the almost
identical azimuth and elevation angles. Nonetheless, if different antenna types are
used at either end of a baseline, receiver antenna models must be considered in accor-
dance with the current IGS convention. For long-baseline solutions, even using the
same antenna type, calibration effects will not cancel out due to the non-negligible dif-
ferences in satellite geometry caused by the Earth’s curvature. These effects increase
if site-specific troposphere parameters are estimated (Menge et al. 1998). Analysing
a baseline of about 100 km with elevation-dependent relative and absolute receiver
antenna models, Mader (2001) reported height biases varying from several millime-
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tres to several centimetres. Furthermore, the use of radome calibrations may influence
the height component by more than 1 cm. Differences between individual antennas
of the same antenna type may induce discontinuities in GPS coordinate time series.
This can be handled either by individual absolute antenna calibrations (e.g., chamber
and robot calibration; Steigenberger 2009, pp. 151, 153), or by relative calibrations
with respect to an absolutely calibrated antenna.

Other Relevant Effects

Satellite antenna models. For cm-level relative positioning and baselines of less
than 100 km, the influence of phase centre models of GPS satellite antennas can be
safely neglected (Kouba 2009). However, the only use of absolute receiver antenna
corrections was found to produce a global reference frame which differs from the
results achieved with very long baseline interferometry (VLBI) and satellite laser
ranging (SLR) by about 15 ppb (part per billion). This corresponds to a height vari-
ation of about 10 cm for all global sites (Rothacher 2001; Schmid and Rothacher
2003; Zhu et al. 2003). This scale problem was solved by additionally considering
absolute satellite antenna PCO and PCV which have been successively estimated by
fixing the absolute receiver antenna models and the terrestrial scale (Schmid et al.
2007). Note that all satellite antenna model parameters refer to the LC3, while an
absolute receiver antenna calibration (e.g., robot-based) delivers phase centre cor-
rections for L1 and L2. The use of absolute instead of relative receiver and satellite
antenna models in GPS global solutions leads to decreased dependency of para-
meter estimates on the elevation cut-off angle (Schmid et al. 2005), improved orbit
consistency, reduced biases in troposphere parameters, and vertical (horizontal) coor-
dinate changes of up to about 2 cm (1 cm) (Schmid et al. 2007; Steigenberger 2009,
Sect. 9.2). For the switch from ITRF05 to ITRF08, Dach et al. (2011) performed an
update of the absolute IGS antenna phase centre model by a GLONASS extension of
the reprocessed GPS-only products (Steigenberger 2009). The differences between
the GPS- and GLONASS-specific receiver antenna PCV amount to 10 mm for the
LC3. This update considerably affects site coordinates by up to 5 mm and most bene-
fits GLONASS-only rapid static or kinematic solutions. Due to the antenna assembly
and power supply, the satellite antenna PCV are actually azimuth-dependent (Czopek
and Shollenberger 1993) and may cause changes in the horizontal components by
up to about 1 cm (Steigenberger 2009, p. 149). However, this dependency is not
considered in the current IGS phase centre model igs08 (Schmid 2010).

Satellite phase wind-up effect. In general, the satellite phase wind-up correction can
be neglected for double-difference positioning on baselines or networks spanning
up to a few hundred kilometres (Kouba 2009). However, for very long baselines
(e.g., 4,000 km), this correction term has been shown to amount to 4 cm (Wu et al.
1993; Steigenberger 2009, p. 35). The receiver phase wind-up effect is fully absorbed



98 3 Mathematical Models for GPS Positioning

into station clock solutions or eliminated during the course of double differencing
(Le and Tiberius 2006; Kouba 2009).

Site displacement effects. Since the site displacement effects discussed in
Sect. 3.2.3 are nearly the same over large areas, they almost cancel out in relative
positioning over short baselines (i.e., l < 100 km), and thus need not be considered.
However, for baselines that are more than 500 km, the site displacement corrections
must be computed and added to the regularised5 ITRF coordinates to obtain the
instantaneous position (Kouba 2009).

Relativistic effects. In terms of relativistic effects, the dynamic component (Schwarz-
schild term) and the Shapiro time delay which impact on satellite orbits and signal
propagation, respectively, cannot be eliminated by differencing and cause errors of
up to 0.001 ppm in positioning (i.e., 7 mm for a baseline of 7,000 km; Zhu and
Groten 1988). Therefore, they should be considered in high-accuracy applications,
for example, when generating satellite orbit products (Dach et al. 2007, p. 92). The
influence on the satellite clock is completely cancelled out in the between-station
differences and is harmless for relative positioning (Zhu and Groten 1988).

3.3.4 Stochastic Model

Since a double-difference is composed of four zero-differences, the stochastic model
of relative positioning is more complex than that of PPP, particularly with regard to
correlation type and structure. Instead of a description of the individual stochastic
components, as is done for PPP, this section focuses on the mathematical correlation
introduced during the course of double differencing, as well as on the variance-
covariance structure and propagation. Finally, different approaches for completing
and improving the stochastic model in relative positioning, especially with respect
to modelling physical correlations, are briefly summarised.

Mathematical Correlation

If double-differenced observations are analysed, the so-called mathematical corre-
lations between the differenced measurements must be taken into account, because
the same original observation may be involved in different observation differences
(Beutler et al. 1987). As shown by Santos et al. (1997), a proper modelling of math-
ematical correlations results in more accurate baseline lengths and more realistic
formal errors of the estimated position differences. Nowadays, this type of correla-

5 The purpose of introducing a regularised (conventional tide-free) position is to remove high-
frequency time variations which are mainly caused by geophysical phenomena, in order to obtain
a position with more regular time variations (Petit and Luzum 2010, p. 34).
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tion has been successfully considered in both baseline and network solutions using
high-end GPS analysis software, for example, the Bernese GPS Software 5.0 (Dach
et al. 2007, p. 146). To gain a better understanding of how the mathematical cor-
relation originates, let �Z , �S and �D be the zero-, single- and double-difference
phase observation vector relating to two receivers (A, B) and four satellites ( j, k, l, r )
observed at the same epoch:

�Z = (�
j
A,�

k
A,�

l
A,�

r
A,�

j
B ,�

k
B,�

l
B,�

r
B)

T , (3.40)

�S = (�
j
AB,�

k
AB ,�

l
AB,�

r
AB)

T , �D = (�
jk
AB,�

jl
AB,�

jr
AB)

T ,

where the double- and single-differences are formed as

�
jk
AB = �k

AB −�
j
AB = (�k

B −�k
A)− (�

j
B −�

j
A). (3.41)

The single- and double-differences can be computed from the matrix-vector rela-
tion as

�S = DZ · �Z, �D = DS · �S, (3.42)

where DZ and DS are

DZ =

⎛
⎜⎜⎝

−1 0 0 0 1 0 0 0
0 −1 0 0 0 1 0 0
0 0 −1 0 0 0 1 0
0 0 0 −1 0 0 0 1

⎞
⎟⎟⎠ , DS =

⎛
⎝

−1 1 0 0
−1 0 1 0
−1 0 0 1

⎞
⎠ (3.43)

with j chosen as the reference satellite for double differencing. Assuming that the
observation errors of �Z are mutually uncorrelated and exhibit a random behaviour
following a normal distribution with expectation zero and variance σ 2

1 , then the VCM
of �Z, �S and �D are

CZ = σ 2
1 · I, CS = DZ · CZ · DT

Z , CD = DS · CS · DT
S , (3.44)

where I is a 8×8 identity matrix, and the matrices CS and CD are derived by means
of the variance-covariance propagation law. Substituting Eq. (3.43) into (3.44) yields

CS = σ 2
1 ·

⎛
⎜⎜⎝

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

⎞
⎟⎟⎠ = 2σ 2

1 ·

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , (3.45)

CD = 2σ 2
1 ·

⎛
⎝

2 1 1
1 2 1
1 1 2

⎞
⎠ = 4σ 2

1 ·
⎛
⎝

1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

⎞
⎠ . (3.46)
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The results clearly show that the single-differences are mathematically uncorre-
lated, while a mathematical correlation is present in the double-differences, with
a correlation coefficient of 0.5. The derivations of mathematical correlations in
double-differenced network solutions and in triple-differences are well documented
in Hofmann-Wellenhof et al. (2008, pp. 181, 259).

Variance-Covariance Structure and Propagation

Equations (3.43) and (3.44) indicate that the mathematical correlation introduced by
the double-differencing process is maintained when applying the variance-covariance
propagation law to the VCM CZ of the original undifferenced phase observation
vector �Z . Therefore, the structures of CZ, DZ and DS are essential for appropriately
defining the stochastic model in relative positioning. Taking the temporal, spatial and
cross correlations into account, Fig. 3.5 illustrates schematically the construction of a
fully populated VCM of �Z relating to two stations (A, B), four satellites ( j, k, l, r )
and two epochs (t1, t2).

Under the assumption that the inter-physical correlations with more than one
correlating component are absent (see Sect. 3.2.4), Fig. 3.5 primarily displays the
covariance structure due to correlations with respect to satellite, station, frequency
and epoch. While the spatial correlation in PPP exists only between observations
from one receiver to different satellites, it is also present between observations from
one satellite to different stations in relative positioning (see the black dashed line
frames in Fig. 3.5). Intuitively, observations from short baselines are more strongly
correlated in space than those from long baselines. The cross and temporal correlation
structures shown in Fig. 3.5 represent an extension of Fig. 3.2 for two sites.

Regarding Eq. (3.42), it seems reasonable to accomplish the whole differencing
process in a single step using

�D = DSZ · �Z, DSZ = DS · DZ. (3.47)

Applying Eq. (3.47) to the numerical example given in Eq. (3.43), the resulting matrix
DSZ is equal to

DSZ =
⎛
⎝

1 −1 0 0 −1 1 0 0
1 0 −1 0 −1 0 1 0
1 0 0 −1 −1 0 0 1

⎞
⎠ , (3.48)

where the number of columns (rows) of DSZ corresponds to the number of zero-
differences (double-differences). Instead of showing the structures of DZ and DS
individually, Fig. 3.6 visualises the construction of DSZ for deriving the LC3
double-difference observations �D3 from �Z whose VCM is illustrated in Fig. 3.5.
For the sake of simplicity, in this example, DSZ has the same structure at different
epochs t1 and t2. Depending on the satellite geometry and the choice of the reference
satellite, the construction of DSZ may differ from one epoch to another. Although
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Fig. 3.5 Schematical presentation of a fully populated variance-covariance matrix (VCM) CZ of
the original undifferenced phase observations in relative positioning (cf. Fig. 3.2)
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Fig. 3.6 Construction of �Z , DSZ and �D3 corresponding to the VCM shown in Fig. 3.5
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DSZ is presented for the LC3 double-differences, it can be applied to other linear
combinations using the corresponding coefficients given in Table 3.3. Based on the
matrices CZ and DSZ depicted in Figs. 3.5 and 3.6, respectively, the VCM of �D3 can
be determined by applying the variance-covariance propagation law to Eq. (3.47) as

CD3 = DSZ · CZ · DT
SZ. (3.49)

The associated weight matrix WD3 can be computed as WD3 = (
CD3/σ

2
3

)−1
, where

σ3 in relative positioning is equal to

σ3 = 2σ1 ·
√

k2
1,3 + k2

2,3 (3.50)

with the coefficients k1,3 and k2,3 provided in Table 3.3 (see also Howind 2005,
p. 29). Using the fully-populated weight matrix WD3 together with the LC3 double-
difference observation vector �D3 and the design matrix A given in Eq. (3.34),
a LS adjustment can be performed to estimate the unknown parameters such as site
coordinates and phase ambiguities. Additional discussion of the VCM structure in
relative positioning is available in Howind et al. (1999).

Improved Stochastic Models of GPS Observations

Up to now, different methods have been proposed to improve the stochastic model
of GPS observations in relative positioning. Table 3.10 provides an overview
of these methods with respect to variance and covariance modelling. While the
elevation-dependent and SNR-based variance (or observation weighting) schemes
are usually applied to the original undifferenced measurements, the VCE technique
is often performed based on the residuals of differenced observations from zero and
ultra-short baselines. Moreover, the VEC method has been successfully employed to
study the covariance structure of GPS observations and receiver noise characteristics
(Tiberius and Kenselaar 2003; Amiri-Simkooei and Tiberius 2007; Li et al. 2008,
2011; Amiri-Simkooei et al. 2009). Analysing time series of observation residuals,
the temporal and spatial correlations haven been investigated by means of ACF, CCF,
and ARMA processes (Bona 2000; Wang et al. 2002; Howind 2005, p. 57; Leandro
and Santos 2007; Luo et al. 2012b). In addition to the mathematical approaches,
the application of ATT enables a better understanding of the physical processes that
correlate and decorrelate GPS phase observations (Schön and Brunner 2008a,b). It is
worth mentioning that among all the listed techniques, the VCE method is the only
one used to characterise all stochastic components.

In this thesis, an empirical SNR-based observation weighting model is devel-
oped and its effects on GPS relative positioning are investigated with respect to
ambiguity resolution, troposphere parameter estimation and site coordinate deter-
mination. Furthermore, based on residual decomposition and ARMA modelling,
a mathematically rigorous temporal correlation analysis is carried out and the
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Table 3.10 Approaches to completing and improving the stochastic model of GPS observations

Stochastic component Modelling methods

ELVa SNRb VCEc ACFd ARMAe CCFf ATTg

Variance (observation weighting) X X X X
Covariance Spatial correlation X X X X

Cross correlation X X X
Temporal correlation X X X X

a ELV: satellite elevation angle
b SNR: signal-to-noise ratio
c VCE: variance component estimation
d ACF: autocorrelation function
e ARMA: autoregressive moving average
f CCF: cross-correlation function
g ATT: atmospheric turbulence theory

results are statistically verified, physically interpreted and experimentally used to
extend the PPP stochastic model. Representative GPS data and freely available
surface meteorological information are incorporated into three case studies which
will be described in the next chapter, along with the applied GPS data processing
strategies.
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Chapter 4
Data and GPS Processing Strategies

This chapter describes the data and GPS processing strategies used to evaluate the
efficiency of the signal-to-noise ratio (SNR)-based observation weighting and the
residual-based temporal correlation modelling, which will be presented in Chaps. 5
and 7, respectively. In addition to representative GPS measurements, freely avail-
able surface meteorological data are incorporated, enabling a physically reasonable
interpretation of the results. Section 4.1 gives an overview of the selected mete-
orological and GPS sites, along with the baselines formed for the case studies of
relative positioning. After that, Sects. 4.2 and 4.3 offer more detailed information
about the data characteristics and GPS processing strategies applied for relative posi-
tioning and precise point positioning (PPP). The GPS data are analysed using the
Bernese GPS Software 5.0, where deeper insights into the algorithms are provided by
Dach et al. (2007a).

4.1 Selecting Sites and Forming Baselines

To verify the advantages of an improved stochastic model in high-accuracy GPS
positioning (Howind et al. 1999; Özlüdemir 2004; Jin et al. 2005) and tropospheric
modelling (Jin and Park 2005; Luo et al. 2008a,b,c; Jin et al. 2010), representative
GPS observations from the German SAPOS® (Satellite Positioning Service of the
German State Survey) network are used. The investigation area is located in the
Upper Rhine Graben (URG) region, which is a seismically active area in southwest
Germany (Knöpfler et al. 2010; Fuhrmann et al. 2012; Mayer et al. 2012). The GPS
data are chosen by considering the sampling interval, observation period and data
quality (e.g., site-specific multipath effects). Apart from GPS observations, freely
available surface meteorological data from DWD (German Meteorological Service)
stations, such as air pressure, temperature, relative humidity and precipitation, are
used to characterise the near-ground atmospheric conditions during the periods for
which GPS data are processed. Figure 4.1a depicts the locations of the selected GPS

X. Luo, GPS Stochastic Modelling, Springer Theses, 117
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Fig. 4.1 Selected SAPOS®sites (filled triangle), DWD meteorological stations (multiplication
sign, right point triangle, circle, asterisk, plus sign, square) and formed baselines (relief model of
the Earth’s surface: ETOPO1; Amante and Eakins 2009)

and meteorological sites, while Fig. 4.1b shows the formed baselines and single
points to be analysed within the following three case studies:

• Case study 1: long-term relative positioning,
• Case study 2: short-term relative positioning,
• Case study 3: long-term precise point positioning.

Case studies 1 and 2 are carried out to evaluate the performance of the SNR-
based observation weighting model (see Chap. 6), while the residual time series
from case studies 2 and 3 are used to examine the temporal correlation properties
of GPS observations (see Chap. 8). More detailed information about the site charac-
teristics is provided in Table 4.1, where the multipath classification in case study 1
follows Mayer et al. (2004). For case studies 2 and 3, the phase multipath effects are
investigated using the post-processing software WaSoft/Multipath (Wanninger and
Wildt 1997; Wanninger and May 2000). Some results of the multipath analyses will
be discussed in Sects. 4.2.3 and 4.3.2. As Fig. 4.1a illustrates, a total of six DWD
meteorological sites are chosen, which almost cover the whole investigation area.
Some properties of the meteorological stations are presented in Table 4.2.

The DWD surface meteorological data are available online1 free of charge. They
can be downloaded in the collective standard format KL2000 and have a temporal
resolution of 6 h. Meteorological observations such as air pressure (P), temperature
(T ) and relative humidity (RH ) are registered at 6:50, 12:50 and 18:50 in Central
European Time (CET), while precipitation (or rain fall RF) is measured for the CET
time intervals 18:50 (previous day)–6:50, 6:50–12:50 and 12:50–18:50. Based on
the relationship between CET and UTC, i.e., CET = UTC + 1 h, as well as the

1 Available at http://www.dwd.de → Services A-Z → Free Meteorological Information.

http://dx.doi.org/10.1007/978-3-642-34836-5_6
http://dx.doi.org/10.1007/978-3-642-34836-5_8
http://www.dwd.de
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Table 4.2 Characteristics of the selected DWD meteorological stations

Station name Station ID Lon. [◦] Lat. [◦] Heighta [m] Since

Frankfurt FRAN 8.583 50.033 112 1949
Karlsruhe KARL 8.350 49.033 112 1876
Würzburg WUER 9.950 49.767 268 1901
Stuttgart STUT 9.217 48.683 371 1953
Konstanz KONS 9.183 47.667 443 1972
Kempten KEMP 10.333 47.717 705 1952
a Height above mean sea level

small difference of 15 s between GPS time (GPST) and UTC compared to the 6 h
temporal resolution [see Eq. (3.1)], the DWD meteorological data P , T and RH can
be considered to be approximately related to 6, 12 and 18 h in UTC or in GPST.
Accordingly, they are denoted as MET6, MET12 and MET18, respectively, where
M ET is a generic notation for the meteorological parameters.

In addition to the measurements registered at the three aforementioned time points,
a daily mean value METm is also available for P , T and RH , which is derived from
more than 21 hourly observations or the measurements at 0, 6, 12 and 18 h in UTC.
Therefore, using the daily mean value METm and the observations MET6, MET12,
MET18, the unavailable P , T and RH at 0 h UTC (MET0) can be calculated as

M ET0 = 4M ETm − M ET6 − M ET12 − M ET18. (4.1)

The validity and reasonability of the obtained MET0 are verified, for example, by
considering the possible ranges of the meteorological parameters. If the computed
RH0 is slightly larger than 100 %, it is simply corrected to 100 %. In Sect. 4.2.2, some
examples will be shown to demonstrate the applicability of Eq. (4.1) to the MET0
reconstruction. While describing the individual case studies, the meteorological data
will be presented in more detail. Apart from P , T , RH and RF , additional mete-
orological parameters such as wind speed and direction are also available, which
may be interesting for modelling physical correlations of GPS observations based
on atmospheric turbulence theory (Schön and Brunner 2008).

As Fig. 4.1b shows, for the case studies of relative positioning, a total of nine
baselines are formed with respect to baseline length, antenna-receiver combination
and multipath impact. More detailed information about the baseline characteristics
is given in Table 4.3. In each case study, there exist baselines of comparable lengths,
but with significantly different site-specific multipath impact, for example, OFHE
and SISC in case study 1, and HEDA and TAAF in case study 2. The shortest and
longest baselines are AFLO and RATA, reaching about 32 and 204 km, respectively.
The absolute height differences between the two endpoints of a baseline range from
12.56 m (HLTA) to 256.63 m (RATA).

http://dx.doi.org/10.1007/978-3-642-34836-5_3
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Table 4.3 Characteristics of the formed baselines (see Fig. 4.1)

Baseline From To Length [km] |�H| [m] Multipath

Case study 1: long-term relative positioning
KAST KARL STUT 61.4 158.11 Strong
HLTA HLBR TAUB 63.2 12.56 Weak
OFHE OFFE HEID 114.8 64.66 Strong
SISC SIGM SCHA 119.4 212.25 Weak
Case study 2: short-term relative positioning
AFLO AFBG LOHR 32.4 51.74 Weak
SIBI SIGM BIBE 42.5 45.98 Weak
TAAF TAUB AFBG 53.7 73.84 Weak
HEDA HEID DARM 54.1 55.12 Strong
RATA RAVE TAUB 203.7 256.63 Weak

4.2 Relative Positioning Processing Strategies

This section focuses on the GPS processing strategies employed for static relative
positioning. Following a general description of the processing steps with the Bernese
GPS Software 5.0, the more important specifications of the GPS data analysis are
provided for the long- and short-term case studies. Furthermore, the DWD surface
meteorological data and the results of the multipath analyses using the software
WaSoft/Multipath are shown and discussed.

4.2.1 Processing Steps

Using the Bernese GPS Software 5.0, the relative GPS positioning performed in
this thesis follows the data processing strategies that have been developed and
refined during the previous research projects at the Geodetic Institute of KIT (GIK),
such as improved stochastic modelling of GPS phase observations (Howind 2005),
high-accuracy coordinate and velocity estimation in the Antarctic Peninsula (Mayer
et al. 2000; Mayer 2006) and extended GPS-based determination of high-resolution
atmospheric water vapour fields (Luo et al. 2007). The baseline data analysis with
the Bernese GPS Software mainly consists of three steps: data preparation, data
preprocessing and parameter estimation, schematically illustrated in Fig. 4.2. In the
following text, only the key issues in each data processing step are described. For
a more detailed discussion of the software routines, the mathematical algo-
rithms and the parameter settings, the reader is referred to Dach et al. (2007a,b).

Following the campaign initialisation, which includes data collection, session def-
inition and site specification, the a priori station coordinates for the observation epoch
can be obtained either by linearly extrapolating the coordinates from a reference
epoch based on the velocity information with the program COOVEL, or by directly



122 4 Data and GPS Processing Strategies

Fig. 4.2 Processing steps of the GPS baseline data analysis with the Bernese GPS Software 5.0

performing PPP (PPP.PCF) as described by Dach et al. (2007a, Sect. 20.4.1). The
former is usually used to derive the a priori coordinates for reference sites (e.g., IGS
sites in ITRF), while the latter can be applied to new sites. The subsequent orbit part
consists of the preparation of the Earth orientation parameters (EOP2) and the satel-
lite ephemerides. A set of five EOP, i.e., the pole coordinates (x p, yp), the difference
UT1–UTC and the celestial pole offsets (dψ, dε), describe the irregularities of the
Earth’s rotation and are required for the transformation from the Earth-fixed ITRF
to the space-fixed ICRF or vice versa. The program POLUPD transforms the EOP
files from the IGS or IERS format into the Bernese format. In this thesis, only the
precise ephemerides in the SP3 format are used, which represent the satellite obits
as earth-fixed, geocentric positions tabulated every 15 min. Making use of the EOP,
the program PRETAB converts the satellite positions from the earth-fixed system to
the inertial system J2000.0, resulting in the intermediate tabular orbit files. After-
wards, the program ORBGEN performs a numerical integration of the equations of
motion, and the outcomes are epoch-wise satellite positions in the binary standard

2 The Earth orientation parameters (EOP) include the Earth rotation parameters (ERP) which com-
prise the pole coordinates (x p, yp) and the difference UT1–UTC (Dach et al. 2007a, p. 85).
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orbit format with an internal consistency of about 1 cm with respect to the 15 min
tabular positions (Dach et al. 2007a, p. 95). The standard orbits and the EOP together
define the satellite positions in the terrestrial reference frame. In the last step of data
preparation, the RINEX (Receiver Independent Exchange Format) observation files
are imported into the Bernese format by means of the program RXOBV3, where
numerous checks on the RINEX header information are carried out.

The data preprocessing step starts with the code-based receiver clock synchroni-
sation which computes the corrections for the receiver clocks with respect to GPS
time, i.e., δtR in Eq. (3.11). Even for a double-difference data analysis, this must
be accomplished in order to accurately determine the geometric distance between
satellite and receiver (Dach et al. 2007a, pp. 38, 39). Applying the least-squares (LS)
method, the program CODSPP processes zero-difference code measurements (usu-
ally the ionosphere-free linear combination LC3) epoch by epoch and produces δtR

with an accuracy of less than 1μs (Dach et al. 2007a, p. 108). Apart from the receiver
clock synchronisation, CODSPP can be used to estimate the receiver coordinates at
metre level accuracy, provided that P-code measurements are available without selec-
tive availability (see Sect. 3.1.3). The program CODXTR extracts the CODSPP output
and provides a short summary of the code-based point positioning and data screen-
ing results. The program SNGDIF forms baselines from zero-difference observation
files, where different strategies are available concerning the number of observations
(OBS-MAX), the baseline length (SHORTEST), the network structure (STAR) and
the baseline predefinition (DEFINED). The last named strategy is applied in this
thesis, forming the predefined baselines shown in Fig. 4.1b. In the case of relative
positioning, the program MAUPRP works with baseline observation files. It marks
low-quality observations (e.g., low-elevation data, epochs with unpaired observa-
tions, short periods of measurements), identifies significant outliers, detects cycle
slips and introduces multiple phase ambiguities if the size of the cycle slip cannot
be estimated reliably. Moreover, an epoch-difference (triple-difference) solution is
performed which represents an approximation of the final solution and serves as the
reference for the automatic cycle slip detection. For a successful phase preprocessing,
the root mean square error of the epoch-difference solution should be less than 2 cm
(Dach et al. 2007a, p. 124), and the coordinate differences, i.e., estimated − a priori,
are expected to be less than about 0.5 m (Dach et al. 2007b, p. 34). The program
MPRXTR extracts the most important information from the MAUPRP output and gen-
erates a summary of the baseline length, the epoch-difference solution and the cycle
slip detection.

The task of parameter estimation is primarily fulfilled by the program GPSEST
using the LS adjustment method. Its first run for the purpose of data quality assess-
ment produces an ambiguity-free (float ambiguity) LC3 solution based on all avail-
able observations. Although the unknown parameters, such as station coordinates
(CRD) and site-specific troposphere parameters (TRP), are estimated within this run,
only the normalised residuals (see Sect. 7.2.1) are saved, which are then analysed by
the program RESRMS. This analysis provides an overview of the data quality and
generates an edit information file containing the epochs of the outlying residuals.
Using this file, the program SATMRK marks the corresponding measurements in the

http://dx.doi.org/10.1007/978-3-642-34836-5_3
http://dx.doi.org/10.1007/978-3-642-34836-5_3
http://dx.doi.org/10.1007/978-3-642-34836-5_7
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observation files. Due to the medium baseline lengths between 32 and 204 km (see
Table 4.3), a two-step ambiguity resolution strategy suggested by Dach et al. (2007a,
p. 182) is employed in this thesis. Since good a priori station coordinates are avail-
able, the wide-lane (LC5) ambiguities are first resolved by fixing all site coordinates
and by incorporating the ionosphere model from the Centre for Orbit Determina-
tion in Europe (CODE). After that, the resolved LC5 ambiguities are introduced
to perform a narrow-lane ambiguity resolution using the LC3 phase observations
(see Sect. 3.1.5). Because of the small wavelength, the estimation of site-specific
troposphere parameters is highly recommended (Dach et al. 2007a, p. 181). In both
ambiguity resolution steps, the SIGMA-dependent algorithm is applied (Dach et al.
2007a, Sect. 8.3.3). Introducing the resolved ambiguities as known quantities, the
last run of GPSEST produces the final parameter estimates (CRD, TRP) and the nor-
malised double-difference residuals (RES) for temporal correlation modelling. The
main purpose of the program COMPAR is to calculate the mean station coordinates
from a list of input coordinate files and the associated repeatability.

4.2.2 A Long-Term Case Study

Within the case study of long-term relative positioning, daily (24 h) SAPOS®data
sets are processed in the static mode. In contrast to other experiments, for example,
those presented by Hartinger and Brunner (1999) in which mainly short baselines
(6, 153, 938 m) were analysed, the average baseline length in this case study amounts
to more than 100 km (see Table 4.3). The use of longer baselines enables in particular
a more realistic examination of the effects of the observation weighting model on
the zenith tropospheric delay estimates. Following the processing steps described in
Sect. 4.2.1, the GPS data analysis is performed on a daily basis, where some of the
important specifications are listed in Table 4.4.

Figure 4.3 depicts the box plots of the observed meteorological parameters
MET6,12,18 and the MET0 computed using Eq. (4.1). All P0 and T0 values are located
within the 1.5 · IQR (interquartile range) of the lower and upper quartiles, which are
given on the bottom left of the corresponding box plots. Due to the strong altitude
dependency of air pressure, the obtained P0 values cover the whole range of the pres-
sure observations, while the T0 values are concentrated, as expected, in the lower half
of the temperature measurements. In contrast to T0, the calculated RH0 are predom-
inantly in the upper half of the RH observations, with 6 out of 48 values exceeding
the maximum possible RH of 100 %. As the bar plot illustrates, these 6 values are
very close to the upper limit, making a simple correction to 100 % applicable.

In Fig. 4.4, the incorporated DWD surface meteorological data are plotted for the
whole investigation period of case study 1. The P values shown in Fig. 4.4a illustrate
the temporally variable atmospheric conditions and the strong height dependency of
air pressure (cf. Table 4.2). The T and RH data clearly display diurnal variation pat-
terns, where RH increases (decreases) with decreasing (increasing) T . This explains
the opposite general tendency in the computed RH0 and T0 values presented in

http://dx.doi.org/10.1007/978-3-642-34836-5_3
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Table 4.4 Important specifications of the GPS data analysis within the long-term relative
positioning case study

Geodetic datum ITRF2000, epoch 1997.0 (Altamimi et al. 2002)
Processing time interval DOY2004:186–193, daily solution
GPS observation data 15 s phase double-differences
Observation weighting model CSC2(BS) (i.e., sin2(e), see Fig. 3.3)

SNR-based (i.e., EMPSNR2, see Sect. 5.3)
Elevation cut-off angle 3◦ and 10◦, with screening post-fit residuals
EOP/satellite orbits Final IGS products (24 h/15 min)
Ionosphere model Precise CODE products
Troposphere a priori model Saastamoinen model (Saastamoinen 1973)
Tropospheric mapping function Niell mapping functions (Niell 1996; dry, wet)
Time span for troposphere parameters 2 h (Dach et al. 2007a, p. 251)
Phase ambiguity resolution SIGMA-dependent strategy (LC5, LC3)
Satellite antenna correction Relative calibration
Receiver antenna correction Individual absolute calibration
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Fig. 4.3 Calculated meteorological parameters MET0 based on the daily mean METm and the
observations MET6, MET12 and MET18 [see Eq. (4.1)]

Fig. 4.3. Furthermore, RH appears to be more spatially variable and site-dependent
than T . Comparing the T and RH curves between the northern, middle and southern
areas, obvious differences in the near-ground atmospheric conditions are detectable,
for example, on day 188. The associated lower T and higher RH values in the south-
ern area, see, for instance, KEMP and KONS, evidently correspond to the increased
amount of precipitation depicted in Fig. 4.4d. High rain fall was registered by all
DWD sites on days 190 and 191, where the weather front seems to move from the
northwest towards the southeast.

http://dx.doi.org/10.1007/978-3-642-34836-5_3
http://dx.doi.org/10.1007/978-3-642-34836-5_5
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Fig. 4.4 Freely available DWD surface meteorological data used to characterise the near-ground
atmospheric conditions during the investigation period of case study 1 (DOY2004:186–193)

4.2.3 A Short-Term Case Study

For static GPS positioning on a daily basis, the site coordinate estimates may not
significantly benefit from a realistic observation weighting model which is more
appropriate for dealing with low-elevation and low-quality measurements. There-
fore, another case study of short-term (3 h) relative positioning is carried out using
21 days (DOY2007:161–181) of 1 s SAPOS®data3. The 3 h time interval is selected
based on the distribution of satellite elevation angles. Taking the GPS data from the
SAPOS®site Kitzingen on day 175 as an example, Fig. 4.5 shows the box plots and
histograms of the hourly satellite elevation angles. The maximum median elevation
angle is found between 10 and 11 h, and the associated histogram illustrates a rela-
tively uniform distribution. A low median elevation angle with a small interquartile

3 Alternatively, one may analyse GPS data in the kinematic mode, where the station coordinates
are estimated epoch-wise. This data processing technique is not applied in this thesis, but should
be considered in future research.



4.2 Relative Positioning Processing Strategies 127

1 3 5 7 9 11 13 15 17 19 21 23

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

(a) (b)

Fig. 4.5 Selecting the processing time interval for the case study of short-term relative positioning
based on the distribution of satellite elevation angles (SAPOS®site: Kitzingen, 24 h observation
data, DOY2007:175, sampling interval: 1 s)

range is detected between 17 and 18 h, indicating a strong concentration of low-
elevation observations, as displayed in the corresponding histogram. Together with
the neighbouring two hours 15–17 h in which the GPS data are also dominated by
low-elevation measurements, the final 3 h processing time interval is chosen to be
15–18 h. In addition to the site Kitzingen located in the northeast of the investigation
area, satellite elevation angles from more SAPOS®sites (e.g., Muttenz located in the
southwest) are analysed in an analogous manner, yielding very similar conclusions.
Furthermore, by neglecting the processing step “screening post-fit residuals” shown
in Fig. 4.2, low-quality data are included in this case study.

To assess the multipath impact of the SAPOS®sites, the northern and south-
ern sub-networks are created, with sizes of about 100 km. Using the software
WaSoft/Multipath (Wanninger and Wildt 1997; Wanninger and May 2000), the 21
days of GPS data are analysed on a daily basis, where the original 1 s observations
are resampled every 60 s to reduce the computational burden. The northern sub-
network includes, among others, the sites AFBG, LOHR, HEID, TAUB and DARM,
while BIBE, SIGM and RAVE are included in the southern sub-network. Based on
the results of daily multipath analyses, Fig. 4.6 shows examples of mean multipath
plots, illustrating weak, medium and strong site-specific multipath effects.

In addition to the mean results, the daily multipath plots for the site HEID are
presented in Fig. C.1. The apparent day-to-day variations are mainly due to the
variable atmospheric conditions which either introduce changes to the site multi-
path environments or cannot be sufficiently described by the applied atmospheric
models and thus are erroneously considered as multipath signals. In the latter case,
assuming that the residual atmospheric effects are random, it seems more appropri-
ate to use the mean multipath plots than those resulting from the daily solutions.
Apart from the graphic multipath characterisation, the software WaSoft/Multipath
also delivers the so-called multipath index (MPI) which allows numerical analyses
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Fig. 4.6 Examples of mean multipath plots generated using the software WaSoft/Multipath
(DOY2007:171–181, sampling interval: 60 s; plots provided by A. Knöpfler)
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Fig. 4.7 Site multipath index (MPI) provided by the post-processing software WaSoft/Multipath
(DOY2007:161–181, sampling interval: 60 s)

of multipath impact. Comparing the MPI of the sites simultaneously processed in the
same network, a higher MPI indicates stronger multipath effects. For the investiga-
tion period of case study 2, Fig. 4.7 displays the MPI of the selected SAPOS®sites
obtained by analysing the northern and southern sub-networks. For BIBE, HEID and
DARM, the associated MPI values correspond fairly well to the mean multipath plots
illustrated in Fig. 4.6. Moreover, the LOHR-related MPI curve exhibits significant
increases on days 171, 172 and 173, which is in fact due to the low-quality GPS data
contaminated by numerous observation gaps and short periods of measurements.
This will be discussed in more detail when analysing the influence of the SNR-based
observation weighting model on site coordinate estimates (see Sect. 6.2.4).

Except for the processing step “screening post-fit residuals”, the GPS data analysis
scheme shown in Fig. 4.2 is also applied to the short-term relative positioning. How-
ever, considering the short data sampling interval of 1 s, some parameter settings,
particularly in the step of data preprocessing using the program MAUPRP, must be
adapted for reliable observation check, cycle slip detection and outlier rejection. An
elevation cut-off angle of 3◦ is specified for this case study. Due to the short process-
ing time interval of 3 h, the site-specific troposphere parameters are estimated every

http://dx.doi.org/10.1007/978-3-642-34836-5_6
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Table 4.5 Important specifications of the GPS data analysis within the short-term relative posi-
tioning case study

Geodetic datum ETRS89, epoch1989.0 (Boucher and Altamimi 1992)
Processing time interval DOY2007:161–181, 15–18 h (GPS time)
GPS observation data 1 s phase double-differences
Observation weighting model CSC2(BS) (i.e., sin2(e), see Fig. 3.3)

SNR-based (i.e., EMPSNR2, see Sect. 5.3)
Elevation cut-off angle 3◦, without screening post-fit residuals
EOP/satellite orbits Final IGS products (24 h/15 min)
Ionosphere model Precise CODE products
Troposphere a priori model Saastamoinen model (Saastamoinen 1973)
Tropospheric mapping function Niell mapping functions (Niell 1996; dry, wet)
Time span for troposphere parameters 15 min (empirically determined, see Sect. 6.2.3)
Phase ambiguity resolution SIGMA-dependent strategy (LC5, LC3)
Satellite antenna correction IGS absolute antenna model (Schmid et al. 2007)
Receiver antenna correction Individual absolute calibration

15 min. Such a time span was empirically determined by analysing 1 h GPS data
with different time windows of 5, 10, 15, 30 and 60 min. Thereby, the 15 min variant
appeared to be a good compromise between sufficient troposphere characterisation
and precise parameter estimation. Examples within this context will be presented in
Sect. 6.2.3. For the investigation period of this case study, the IGS absolute phase
centre model is readily available which includes satellite-specific z-offsets and block-
specific phase centre variations (see Sect. 3.2.3). The use of the absolute phase centre
model improves the consistency between the satellite and receiver antenna correc-
tions. Table 4.5 lists some important specifications of the GPS data analysis carried
out within case study 2.

Considering the time interval of the daily GPS data analysis, i.e., 15–18 h in
GPS time, the P, T, RH observations at 18 h UTC and the RF measurements cov-
ering 12–18 h UTC are incorporated into this case study to characterise the near-
ground atmospheric conditions. As Fig. 4.8 shows, temporally and spatially variable
atmospheric conditions prevailed during the period of investigation. Regarding the
whole investigation area, larger amounts of precipitation were registered on days
166 and 176, with lower T and higher RH values. On day 164, the southern area
seems to be more humid, while on day 169, higher RH and RF were observed in
the northern and middle areas. Such freely available surface meteorological infor-
mation is particularly helpful for a physically reasonable interpretation of the GPS
processing results (see Chap. 6).

http://dx.doi.org/10.1007/978-3-642-34836-5_3
http://dx.doi.org/10.1007/978-3-642-34836-5_5
http://dx.doi.org/10.1007/978-3-642-34836-5_6
http://dx.doi.org/10.1007/978-3-642-34836-5_6
http://dx.doi.org/10.1007/978-3-642-34836-5_3
http://dx.doi.org/10.1007/978-3-642-34836-5_6
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Fig. 4.8 Freely available DWD surface meteorological data for the investigation period of case
study 2 (DOY2007:161–181, P, T, R H : 18 h UTC, RF : 12–18 h UTC)

4.3 PPP Processing Strategies

Like Sect. 4.2, this section first gives an overview of the processing steps of the
PPP data analysis using the Bernese GPS Software 5.0. After that, some important
parameter settings of the GPS data processing are presented for a long-term case
study. Additional information about the site-specific multipath effects and the near-
ground atmospheric conditions during the period of investigation is also provided.

4.3.1 Processing Steps

The PPP data analysis is performed within the framework of Fuhrmann et al.
(2010), where the standard PPP processing control file (PPP.PCF) from Dach et al.
(2007a, Sect. 20.4.1) is slightly modified to enable more reliable outlier detection
and troposphere parameter estimation. Table 4.6 gives an overview of the PPP data
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Table 4.6 Processing steps of the modified PPP data analysis with the Bernese GPS Software 5.0
(Dach et al. 2007a, Sect. 20.4.1; Fuhrmann et al. 2010, p. 48)

Script/Program Purpose in the PPP data analysis

Copy required files
PPPCOP Putting the required files from the local data source into the campaign directories

Prepare pole, satellite orbit and clock information
POLUPD Transforming the EOP files from the IGS or IERS format into the Bernese format
PRETAB Converting the SP3 orbits (Earth-fixed frame) into the tabular orbits (inertial frame)
ORBGEN Integrating the equations of motion to produce the binary Bernese standard orbits
CCRNXC Converting the clock files from the RINEX format into the Bernese format

Convert, synchronise and preprocess observation data
RNXGRA Giving an overview of the observed satellites, involved sites and their performance
RXOBV3 Creating the Bernese observation files and checking the RINEX header information
CRDMERGE Setting the geodetic datum and the coordinate reference epoch to a common value
CODSPP Synchronising receiver clocks, estimating coordinates and detecting outliers
CODXTR Producing a CODSPP summary of outliers, missing orbits and clocks, etc.
MAUPRP Preprocessing the phase data (marking observations and detecting cycle slips)

Compute PPP solutions (parameter estimation)
PPPEDT Screening the phase observation data and computing PPP solutions

GPSEST(1) Saving the LC3 normalised residuals for data screening
RESRMS(2) Screening the residual files and detecting outliers
SATMRK(3) Marking the corresponding outliers in the observation files
ITERATION Running steps (1–3) iteratively with decreased limits for outlier detection
GPSEST(4) Estimating parameters using the cleaned data and saving normal equations
ADDNEQ2 Generating PPP result files for each station in the Bernese and external formats

GPSXTR Producing a summary of the GPSEST(4) solution and data cleaning
PPPCHK Producing residual statistics before and after data screening

RESRMS Generating residual statistics before screening [i.e., the first run of GPSEST(1)]
RESRMS Generating residual statistics after screening [i.e., GPSEST(4)]
RESCHK Creating statistics for residual screening

GPSEST Saving the LC3 normalised residuals for temporal correlation modelling
RESFMT Converting the residual files from the binary format into the ASCII format
CRDMERGE Merging the site-specific coordinate files into one coordinate file
ADDNEQ2 Generating a combined normal equation file containing all stations

Generate summaries and clean directories
PPPSUM Generating a summary of the whole PPP data analysis
PPPDEL Deleting the superfluous output files created during the PPP processing

processing flow using the Bernese GPS Software 5.0, where the modifications are
marked in bold. In the following text, only some modified processing steps are
described, with a particular emphasis on their purposes and advantages over the
standard ones. For a more detailed description of the PPP data analysis, the reader
is referred to Dach et al. (2007a, Sect. 20.4.1) and Fuhrmann et al. (2010, Chap. 5).
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In the standard PPP data processing flow, the program RNXSMT is used to screen
code and phase observations for outliers and cycle slips, and to smooth the code
data with the phase measurements. However, the main disadvantage of processing
phase observations with RNXSMT is that the phase data can only be cleaned with
the code measurement accuracy (Dach et al. 2007a, p. 102). Furthermore, apply-
ing the smoothed code observations to receiver clock synchronisation, Fuhrmann
et al. (2010, p. 55) found strong variations in the estimated receiver clock errors
between 10−7 and 10−5 s, which disappear when using the original code observa-
tions. Therefore, instead of the smoothed code data, the original code measurements
are processed by the program CODSPP. In place of RNXSMT, the program MAUPRP
is employed for more sophisticated outlier and cycle slip detection, where high-rate
satellite clock products (accuracy < 0.1 ns; same sampling as data) are necessary
(Dach et al. 2007a, p. 116).

For high-precision zenith tropospheric delays, Fuhrmann et al. (2010, Sect. 5.3.2)
proposed an improved approach that combines two sets of site-specific troposphere
parameters (TRP) estimated with a constant time offset. Taking a TRP time span of
2 h as an example, two parameter sets with a time shift of 1 h, i.e., TRP at 0, 2, 4, . . . h
and TRP at 1, 3, 5, . . . h, are merged to obtain the final TRP estimates which have
a temporal resolution of 1 h and standard deviations being comparable to those
derived using a time window of 2 h. Such a simple combination in the parameter
domain provides a practical solution to the problem of achieving temporally sufficient
troposphere characterisation and statistically reliable parameter estimation.

4.3.2 A Long-Term Case Study

Within the long-term PPP case study, 10 days (DOY2008:275–284) of 24 h SAPOS®

data are analysed according to the processing flowchart presented in Table 4.6. The
resulting zero-difference residual time series are used later to study the temporal cor-
relation behaviour of GPS observations. Benefiting from the employment of zero-
differences in PPP, the residual signal components can be reasonably interpreted
(see Sect. 7.2), and the noise’s temporal correlations, modelled by means of autore-
gressive moving average processes (see Sect. 7.3), may give a realistic picture of
the statistical properties of GPS observations. Moreover, based on zero-difference
residuals including one site and one satellite, the effects of satellite geometry and
site environments on the noise’s temporal correlation can be investigated in a more
sophisticated manner than using double-difference residuals, which involve two sites
and two satellites. Table 4.7 provides some important information about the long-
term PPP data analysis.

For the case study of long-term PPP, two SAPOS®sites, Tübingen (TUEB) and
Bingen (BING), are selected, which differ from each other significantly in view
of multipath impact. Figure 4.9 shows the site images and examples of the asso-
ciated mean multipath plots. The GPS antenna at TUEB is established on the roof
of a building and is relatively free of signal interruption. In contrast, the antenna at

http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_7
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Table 4.7 Important parameter specifications of the long-term PPP data analysis

Geodetic datum IGS05, epoch 2000.0 (Ferland 2006)
Processing time interval DOY2008:275–284, daily solution
GPS observation data 30 s phase zero-differences (LC3)
Observation weighting model CSC2(BS) (i.e., sin2(e), see Fig. 3.3)
Elevation cut-off angle 10◦, with screening post-fit residuals
EOP/satellite orbits/clocks Final CODE products (24 h/15 min/30 s)
Troposphere a priori model Saastamoinen model (Saastamoinen 1973)
Tropospheric mapping function Niell mapping functions (Niell 1996; dry, wet)
Time span for troposphere parameters 30 min, combination of 1 h solutions

(Fuhrmann et al. 2010, p. 59)
Time span for troposphere gradients 24 h (Dach et al. 2007a, p. 249)
Phase ambiguity resolution Float ambiguity estimates (unresolved)
Satellite antenna correction IGS absolute antenna model (Schmid et al. 2007)
Receiver antenna correction Individual absolute calibration

(a) (b)
– –

Fig. 4.9 Site images and mean multipath plots of the SAPOS®sites Tübingen (TUEB) and Bingen
(BING) (plots provided by A. Knöpfler, current site images available at http://www.sapos.de)

BING is installed on a mast and has numerous multipath reflectors in its surrounding
areas. Although the GPS data sets used to generate the multipath plots do not coin-
cide with the investigation period of this case study, i.e., DOY2008:275–284, these
plots are capable of providing an impression of the different multipath situations,
since no antenna replacements have taken place at both sites during the period from
DOY2008:275 to DOY2009:181. Applying an advanced residual stacking technique
using congruent cells, Fuhrmann et al. (2010, p. 120) verified the different multi-
path impacts between TUEB and BING for the processing time interval of this case
study. Additional plots illustrating the strong multipath environments of BING can
be found in Knöpfler et al. (2010).

Although in this thesis the long-term PPP case study does not focus on troposphere
parameter estimation, the available DWD surface meteorological data are incorpo-
rated to enable a physical interpretation of the results from the residual-based tem-
poral correlation analysis (see Chaps. 7 and 8). The consideration of meteorological
information within this context is reasonable, since on the one hand, the remaining

http://dx.doi.org/10.1007/978-3-642-34836-5_3
http://www.sapos.de
http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_8
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Fig. 4.10 Freely available DWD surface meteorological data for the investigation period of case
study 3 (DOY2008:275–284)

tropospheric effects exist in the observation residuals, while on the other, the temporal
correlation properties of GPS observations depend not only on the satellite geometry,
but also on the prevailing atmospheric conditions (Schön and Brunner 2008).

Figure 4.10 depicts the DWD surface meteorological data for the investigation
period, where the MET0 values are also computed using Eq. (4.1). The pressure mea-
surements (P) clearly illustrate an increasing trend, while the temperature observa-
tions (T ) initially decrease during the period DOY2008:275–278, and then increase
on day 279 to a relatively constant level. Large amounts of rain fall were registered
on days 276, 280 and 281. Taking the locations of the selected SAPOS®sites BING
and TUEB into account, the meteorological data from the nearest respective DWD
stations FRAN and STUT should be particularly considered (see Fig. 4.1).
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Chapter 5
Observation Weighting Using Signal
Quality Measures

In addition to pseudo-range and carrier-phase measurements, a modern geodetic-
type GPS receiver also records signal-to-noise ratio (SNR) data. Relying upon signal
quality measures, the heteroscedasticity (i.e., inhomogeneity of variances) of GPS
phase observations can be more realistically described than using the satellite ele-
vation angle. Section 5.1 gives a brief introduction to SNR and numerical examples
of how various factors affect its characterisation. Next, in Sect. 5.2, different SNR-
based weighting schemes are reviewed, with a particular focus on their strengths and
weaknesses. Section 5.3 presents an empirical SNR-based weighting model and its
implementation in the Bernese GPS Software 5.0. The proposed approach is com-
pared with the commonly applied elevation-dependent weighting scheme and two
other SNR-based alternatives. Finally, in Sect. 5.4, the main properties of the novel
SNR-based weighting model are summarised from both theoretical and practical
points of view.

5.1 Signal-to-Noise Ratio

The notation SNR represents a generic term for signal quality and is defined as the
ratio of signal power S in watts (W) to noise power N in W, measured at the same
time and place in a circuit. The signal and noise power can be estimated during the
synchronisation (or correlation) between the received and replica signals (Butsch and
Kipka 2004). The main part of noise originates from the receiver electronics (e.g.,
thermal noise created by the inevitable motion of electrons within any conductor or
semiconductor) and the electromagnetic radiation from the sky, ground and objects
in the antenna’s vicinity. Thermal noise is generally assumed to be uncorrelated
(white) noise with a Gaussian distribution (Langley 1997). Intuitively, the larger the
SNR = S/N value, the better the signal quality.

Normally, SNR measurements are obtained using the signal power Scorr and
noise power Ncorr of the modulated signal at the correlator output, indicating that
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SNR = S/N = Scorr/Ncorr . However, to assess the quality of a received GPS signal,
the so-called carrier-to-noise ratio (CNR = C/N) is preferred, which makes use of
the signal power Cant and noise power Nant of the unmodulated carrier at the receiv-
ing antenna (i.e., CNR = C/N = Cant/Nant ; Ward et al. 2006, p. 185). From the
receiver antenna to correlator output, GPS signals may be amplified by a factor of
about 1010, so that Scorr is significantly larger than Cant (Butsch and Kipka 2004).
Nevertheless, according to the fact that the signal and noise powers are amplified by
approximately the same factor, Scorr/Ncorr and Cant/Nant are almost identical, i.e.,

CNR := C

N
= Cant

Nant
≈ Scorr

Ncorr
= S

N
=: SNR. (5.1)

For GPS signals, S is several magnitudes lager than N . Therefore, SNR values are
usually expressed in terms of the logarithmic decibel (dB) scale by

SNR [dB] = 10 · log10(SNR). (5.2)

In addition, noise power N can be written as the product of noise power density N0
and loop bandwidth BL (Misra and Enge 2006, p. 403):

N [W] = N0 [W/Hz] · BL [Hz] , (5.3)

where BL is commonly the same on L1 and L2 for GPS receivers (Lau and Mok
1999). Substituting Eq. (5.3) into (5.1), SNR is normalised to a specific bandwidth
of 1 Hz, and Eq. (5.2) becomes

SNR [dB] = 10 · log10
S

N0 · BL
= 10 · log10

(
S

N0

)
− 10 · log10(BL) (5.4)

= SNR0 [dBHz] − BL [dBHz] ,

where SNR0 (or S/N0) is called signal-to-noise power density ratio. It plays a key
role in analysing GPS receiver performance and is directly related to the precision
of pseudo-range and carrier-phase observations (Langley 1997). For moderate to
strong signals, the corresponding SNR0 should be larger than 35 dBHz (Hofmann-
Wellenhof et al. 2008, p. 86). Most high-end GPS receivers deliver SNR0 of up to
50 dBHz. Using the minimum received signal strength of S = −160 dBW and a
typical value for noise power density of N0 = −204 dBW/Hz (IS-GPS-200E 2010,
p. 15), a nominal SNR0 of 44 dBHz is obtained.

In fact, SNR0 measurements are affected by various factors, for example, (1) the
antenna gain of the transmitting satellite and thus by the satellite type, (2) polarisation
errors, (3) the size of solar panels and batteries, (4) changes in path (spreading) loss
due to the varying satellite-receiver distance, (5) variations in atmospheric attenuation
and receiver antenna gain patterns, depending on the elevation angle and azimuth
of the arriving signal, and (6) signal power losses in preamplifier, antenna cable
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and receiver subsystems. Furthermore, the noise level may be slightly increased by
the signals from other simultaneously observed satellites (Langley 1997). Table 5.1
provides numerical examples of signal power losses, transmitter and receiver antenna
gains, as well as the typical noise characterisation of a GPS receiver (Misra and Enge
2006, Chap. 10).

Taking the C/A-code on L1 as an example, a GPS satellite transmits a signal
power of about 27 W, corresponding to PS = 10 · log10(27) = 14.3 dBW. This
power level is derived from GPS specifications, and typical GPS satellites broad-
cast 2–4 dB more power (3 dB: twice as powerful; Misra and Enge 2006, p. 395).
Assuming that the GPS signals were transmitted in all directions, path loss describes
the spreading of the total signal energy over the entire surface area of the sphere,
which is centred on the satellite. The path loss can be expressed by LP = 4πR2,
where R is the satellite-receiver distance, computed based on the satellite elevation
angle e and approximate values of the Earth’s and orbital radii, RE = 6,371 km and
RS = 26,560 km, respectively. For a satellite in the zenith direction, i.e., e = 90◦
and R = RS − RE = 20,189 km, the resulting LP is 157.1 dBm2, corresponding
to a power attenuation of about 2.0 × 10−16/m2. Since a GPS satellite focuses its
signal energy towards the Earth, satellite antenna gain (or concentration factor) char-

Table 5.1 Typical values for signal power losses, transmitter and receiver antenna gains and noise
characterisation of a GPS receiver (Misra and Enge 2006, Tables 10.1–10.4)

Signal characterisation Notation Unit e = 5◦ e = 40◦ e = 90◦
Power (satellite antenna input) PS dBW 14.3 14.3 14.3
Satellite-antenna distance R km 25,235 22,013 20,189
Path (spreading) loss LP dBm2 159.0 157.8 157.1
Satellite nadir angle α degree ±13.8 ±10.6 ±0
Satellite antenna gain GS dB 12.1 12.9 10.2
Atmospheric loss LA dB 2.0 0.5 0.5
Received power density PDR dBW/m2 −134.6 −131.1 −133.1
Effective area of an IRAa AR(IRA) dBm2 −25.4 −25.4 −25.4
Received power for an IRA PR(IRA) dBW −160.0 −156.5 −158.5
Receiver antenna gain GR(IRA) dB −4 2 4
Noise characterisation Notation Unit Bef. LNAb LNA Aft. LNA
Power gain Gi dB −1 20 −10
Power loss (1/gain) Li dB 1 −20 10
Noise figure Fi dB 1 3 10
Power (C/A-code signal) Notation Unit e = 5◦ e = 40◦ e = 90◦
Received signal power S dBW −164.0 −154.5 −154.5
Noise power density N0 dBW/Hz −201 −201 −201
Power density ratio SNR0 dBHz 37.0 46.5 46.5
Signal-to-noise (power) ratio SNR dB −36.0 BL = 20 MHz −26.5

4.0 2 KHz 13.5
34.0 2 Hz 43.5

a IRA: isotropic receiver antenna
b LNA: low noise amplifier
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acterises the amplification of the signal power in a certain direction with respect
to an isotropic antenna. Assuming that the satellite is capable of concentrating its
radiated power within the beam angle completely, the satellite antenna gain GS can
be determined as the ratio of the area of the whole sphere to the area of a spherical
cap:

GS(α) = 4πR2

π(R
√

2 − 2 cosα)2
= 2

1 − cosα
, (5.5)

where α is the satellite nadir angle and can be calculated using e, RE and RS . For
e = 0◦, α reaches a maximum of about 13.9◦. In effect, the GPS signal beam has a
wider spread of α = ±21.3◦. As a consequence, the maximum satellite antenna gain
may be more realistically approximated by GS(21.3◦) = 14.7 dB [see Eq. (5.5)].
Moreover, due to the additional power loss in the satellite antenna and the compen-
sation for the larger distance to those areas at the edge of the Earth, the actual satellite
antenna gain is less than 14.7 dB and is about 2 dB higher for α = ±13.9◦(e = 0◦)
than along the so-called bore sight with α = ±0◦(e = 90◦) (Misra and Enge 2006,
p. 397). As an example, for a satellite at zenith with α = ±0◦, the effective radiated
power is equal to PS + GS = 14.3 dBW + 10.2 dB = 24.5 dBW = 282 W.

Within the context of atmospheric loss, LA, oxygen is the dominant source of
signal power attenuation at L-band. However, for elevation angles exceeding 40◦,
the atmospheric loss approaches 0.035 dB and thus can be safely neglected. Other
phenomena, such as atmospheric turbulence and water vapour, may sometimes cause
additional losses (Betz 2010). Considering the worst-case scenario, LA is specified
to 2 dB for e = 5◦ (Mehaffey 2011). For a moderate elevation angle and near
zenith at which higher received signal power is expected, a representative value of
LA = 0.5 dB is used (GPS-SPS-SS 1995, p. 18). Combining the above-introduced
factors that impact upon the transmitted signal power, the received power density
PDR is given by

PDR[dBW/m2] = PS [dBW] + GS [dB] − LP[dBm2] − LA [dB] . (5.6)

The received signal power is the product of the received power density in the
incident signal field PDR and the receiver antenna effective area denoted as AR. This
term measures the antenna’s ability to capture the power in a field incident to a
certain direction. It can be calculated based on the receiver antenna gain, GR, which
characterises the antenna’s ability to focus transmitted power in a certain direction:

AR = λ2

4π
GR, λ = c

f
, (5.7)

where λ is the wavelength of the signal, c is the speed of light in a vacuum, and
f is the frequency of the signal (Jordan and Balmain 1968, p. 377). An isotropic
receiver antenna (IRA) is equally sensitive to signals from any direction and has unit
gain, indicating GR(IRA) = 1 and AR(IRA) = λ2/(4π). Taking the L1 carrier with
a wavelength of about 19 cm as an example, the corresponding AR(IRA) is equal to
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2.87 × 10−3m2 = −25.4 dBm2. Assuming that the receiver antenna gain GR(IRA)
is given relative to an isotropic antenna, the received signal power is

S [dBW] = PDR[dBW/m2] + AR(IRA)[dBm2]︸ ︷︷ ︸
PR(IRA)[dBW]

+GR(IRA) [dB] . (5.8)

As shown by Misra and Enge (2006, p. 400) and IS-GPS-200E (2010, p. 45), the
received C/A-code signal level depends on the satellite elevation angle e. As e varies
from 5 to 90◦ (zenith), PR(IRA) first increases to its maximum of −156.3 dBW at
an elevation angle of about 45◦ and then decreases. Such a variation pattern can also
be expected in the received signal power S, since for most civilian GPS receiver
antennas, GR(IRA) decreases slowly from about 4 dB at e = 90◦ to −4 dB at e = 5◦
(Misra and Enge 2006, p. 401).

The factors that influence the noise power level include the thermal noise generated
in the receiver, natural noise from sources outside the receiver, reflected signals
(e.g., multipath), signals from other simultaneously observed GPS satellites and the
interfering signals from systems other than GPS. Within the context of noise analysis,
it is convenient to treat a GPS receiver as a cascade of components (or subsystems),
each of which can be characterised by its power gain Gi and noise figure Fi. While
some components, for example, low noise amplifier (LNA), amplify the signal power,
some subsystems, such as cables and connectors before and after the LNA, attenuate
signals and have gain values of less than one (i.e., Gi < 1). These components with
negative Gi values in dB are termed passive. The resulting power loss converts into
heat and introduces thermal noise. Noise figure Fi describes the degradation of SNR0
as the signal passes through each receiver component. If there is no internal noise,
i.e., Fi = 1, then the SNR0 at the output of the subsystem i is identical with that at
the input. For a passive component, Fi is equal to the power loss Li, which represents
the inverse of Gi. The component before the LNA consists of a low-loss filter that
removes signals outside the GPS band, and a short (low-loss) cable that connects
the antenna to the LNA (Hofmann-Wellenhof et al. 2008, p. 88). For this part, a
low power loss of 1 dB is specified in Table 5.1. The LNA is also designed for high
gain and low noise, having a typical gain (noise figure) of 20 dB (3 dB). Due to the
following more complex filtering and converting steps, the part after the LNA has a
significantly higher power loss of 10 dB. Using these noise characteristics, the noise
power density N0 can be determined (Misra and Enge 2006, p. 409). For a typical
GPS receiver, N0 is of the order of −201 to −204 dBW/Hz (Hofmann-Wellenhof
et al. 2008, p. 86). On the basis of S and N0, the resulting SNR0 values vary from
37.0 to 46.5 dBHz for satellites at low and high elevation angles, respectively.

The bandwidth BL of a GPS receiver is wider for the components near the
antenna and becomes narrower as the signal processing proceeds. For instance,
the earliest filters in the receiver front end have bandwidths of tens of megahertz.
If BL = 20 MHz = 73 dBHz, the signal power is 26.5 to 36 dB weaker than the
noise power, indicating that the GPS signal is below the noise floor. As the process-
ing develops, however, the bandwidth decreases. For a bandwidth of 2 Hz (Langley
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Fig. 5.1 Example of SNR0 values in dBHz (SAPOS ®site: RAVE, weak multipath, receiver: Leica
SR520, antenna: LEIAT503, DOY2004:186; see Table 4.1)

1997), the GPS signal is about 34.0 to 43.5 dB above the noise floor (see Table 5.1).
The technique of increasing signal power by decreasing bandwidth is known as
despreading, which is performed by correlators contained in the delay lock loops
(Misra and Enge 2006, Sect. 10.5).

Depending on the satellite elevation angle, Fig. 5.1 shows examples of daily SNR0
measurements and the associated box plots for a Leica antenna-receiver combination.
In Fig. 5.1a, the SNR0 values illustrate a strong elevation dependence, with low-
quality (i.e., SNR0 < 35 dBHz; see Fig. 5.6) observations concentrating within the
range of e < 20◦. The staircase-shaped structure of the SNR0 values arises from
both the resolution of signal quality registration and the derivation of SNR0 from the
raw observation data (Mayer 2006, p. 63). In comparison to L1, the SNR0 values on
L2 exhibit a larger minimum (L1: 32 dBHz, L2: 36 dBHz) and a narrower variation
range (L1: 19 dBHz, L2: 15 dBHz). These can be easily observed by comparing
the sample minima and interquartile ranges (IQR) of the box plots (see Fig. 5.1b).
Moreover, the L2 SNR0 achieves a maximum of 51 dBHz at an elevation angle of
about 40◦ and maintains it for e > 50◦, while the L1 SNR0 approaches its maximum
at about e = 50◦ and varies within 6 dBHz for higher elevation angles. Applying
elevation-dependent observation weighting models (e.g., sin2(e)), these frequency-
related characteristics of signal quality are simply ignored. However, they can be
considered by incorporating frequency-dependent signal quality measures into the
observation weighting procedure.

Geodetic-type GPS receivers usually provide SNR in dB or SNR0 in dBHz. How-
ever, sometimes the so-called arbitrary manufacturer (mystery) units (AMU), also
known as signal-to-noise counts (SNC), are used to assess the quality of GPS sig-
nals (e.g., Trimble 4000SSI receivers). These values are obtained by integrating the
output of a signal correlator and can vary from receiver to receiver due to the differ-
ences in receiver bandwidth and in integration time. To keep the consistency across
a product line, AMU values are scaled to match a measurement over a bandwidth of

http://dx.doi.org/10.1007/978-3-642-34836-5_4
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1 kHz. This particular bandwidth is chosen due to the fact that the integration time
of a majority of early receivers is 1 ms, corresponding to an effective bandwidth of
1 kHz (Trimble 1999). Applying the manufacturer-specific formula

SNR0 [dBHz] = 27 + 20 · log10(AMU), (5.9)

AMU values, for example, from a Trimble 4000SSI receiver, can be converted into
SNR0. Note that the converted SNR0 only represents an approximation, and biases
of up to 3 dBHz are possible, particularly for small AMU values at low elevation
angles, where the conversion tends to be considerably non-linear (Butsch and Kipka
2004). Figure 5.2 depicts the conversion function Eq. (5.9), along with some satellite-
and site-related results for an antenna-receiver combination from the Trimble 4000
series products. Apart from the conversion formula itself, Fig. 5.2a also illustrates
the variation in SNR0 due to an error of 1 AMU, derived by applying the error
propagation law to Eq. (5.9). For AMU < 10, the conversion exhibits a significantly
non-linear behaviour, leading to errors that are considerably larger than 1 dBHz.
In Fig. 5.2b, the AMU and the converted SNR0 values are displayed for a specific
satellite, where the elevation angles are obtained from the GPS navigation message

24
28
32
36
40
44
48
52
56
60

AMU
0 5 10 15 20 25 30 35 40

0
1
2
3
4
5
6
7
8
9

E
ffe

ct
 o

f a
n 

er
ro

r 
of

 1
 A

M
U

0

10

20

30

40

50

60

9 10 11 12 13 14 15 16 17 18
0

15

30

45

60

75

90

0

10

20

30

40

50

60

maximum

minimum

upper
quartile

lower
quartile

median

IQR

(b)

(c) (d)

(a) [              ]

L1
L2

L1
L2

Fig. 5.2 Examples of AMU and converted SNR0 values in dBHz (site: SPR1, strong multipath,
receiver: Trimble 4000SSI, antenna: Trimble 4000ST L1/L2 GEO; Mayer 2006, p. 44)
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file. The conversion from AMU into SNR0 causes an obvious offset and a slight
compression of the variation range. In spite of the strong correlation between the
signal quality measure and the satellite elevation angle, the maximum AMU (or
SNR0) is reached not at the maximum elevation angle of about 66◦, but at about 50◦.
This coincides with the variation pattern of the received signal power and implies the
unrealistic assumption generally made by elevation-dependent weighting models,
namely, the larger the satellite elevation angle, the better the observation quality, and
the smaller the observation variance. Regarding the items listed in Table 5.1 under
“Signal characterisation”, this assumption is true for path loss, atmospheric loss
and receiver antenna gain, but not valid for satellite antenna gain. Considering all
observed satellites, Fig. 5.2c plots the original AMU and the converted SNR0 versus
satellite elevation angle. The offset and compression effects observed in Fig. 5.2b
are clearly visible. The large dispersion in signal quality, especially for e > 50◦, is
attributed to the near-ground installation of the GPS antenna (Mayer 2006, p. 45).
The box plots shown in Fig. 5.2d provide an excellent illustration of the changes due
to the conversion from AMU into SNR0, namely the increased medians and decreased
IQR.

Provided that SNR can be accurately recovered by the receiver, it turns out to be
a more realistic quality indicator for GPS observations than the satellite elevation
angle. However, due to receiver firmware problems, sudden drops in SNR may occur
for high-elevation satellites, even when regarding the same receiver type (Satirapod
and Wang 2000). Figure 5.3 illustrates this problem using AMU values from the same
satellite, which is simultaneously observed at three sites that have different multipath
effects, but the same antenna-receiver combination. In this example, obvious sudden
drops are present in the PRA1- and OHG1-related AMU values, while they are
completely absent for the site SPR1 using the same antenna-receiver combination, but
with a different firmware version. This emphasises the importance of the information
about firmware updates when performing SNR-based data analyses. Furthermore, the
site-specific AMU presentation in Fig. 5.3c corresponds to the multipath specification
provided by Mayer (2006, p. 44), indicating the great potential of SNR in multipath
modelling.

5.2 Review of Previous Work

Although the potential merits of using signal quality measures as a weighting scheme
were outlined by Talbot (1988), it appears that more intensive investigations and
comprehensive applications of this quality indicator for GPS phase observations have
only been carried out after Langley (1997) published a direct relationship between
the phase variance σ 2

�i
in m2 and the signal-to-noise power density ratio SNR0i in

dBHz as

σ 2
�i

= BL ·
(
λi

2π

)2

· 10−
(

SNR0i
10

)
= Ci · 10−

(
SNR0i

10

)
, (5.10)
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(a) Site: PRA1, weak multipath, firmware version: NP 7.24/SP 3.07

(b) Site: OHG1, weak multipath, firmware version: NP 7.24/SP 3.07

(c) Site: SPR1, strong multipath, firmware version: NP 7.09/SP 3.03

Fig. 5.3 Comparison of satellite- and site-related AMU values with respect to multipath impact and
receiver firmware (satellite: PRN 29, receiver: Trimble 4000SSI, antenna: Trimble 4000ST L1/L2
GEO, site multipath specification: Mayer 2006, p. 44)

where the subscript i denotes the carrier frequency (e.g., i = 1 for L1). The factor Ci

in m2Hz depends on the carrier tracking loop bandwidth BL in Hz and a quadratic
term which is related to the wavelengthλi in m. Using representative loop bandwidths
of 5, 10 and 15 Hz for GPS (Braasch and van Dierendonck 1999), Fig. 5.4 depicts
the phase standard deviation σ�i derived by means of Eq. (5.10). In the case that
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Fig. 5.4 Illustration of the phase standard deviations derived by means of the SNR-based variance
Eq. (5.10) (left: L1 with λ1 = 19.0 cm, right: L2 with λ2 = 24.4 cm; see Table 3.2)

BL = 15 Hz, the L1 (L2) phase standard deviation decreases from 3.7 (4.7) to about
0.2 mm as SNR0 increases from 30 to 55 dBHz. Furthermore, it can be seen that the
phase error is inversely proportional to signal strength and directly proportional to
the loop bandwidth and wavelength.

Analysing Eq. (5.10) and Fig. 5.4, one may attempt to improve the noise perfor-
mance by narrowing the loop bandwidth. However, BL must be wide enough to be
able to follow the receiver dynamics. A tracking loop with a narrow bandwidth may
have problems dealing with rapid phase variations. For most static applications, a
bandwidth of 2 Hz or less can be used to derive the phase variance (Langley 1997).
Instead of specifying a typical BL value, Hartinger and Brunner (1999) developed
the SIGMA-ε model, where the factor Ci is determined based on double-difference
residual and SNR0 variances, depending upon the receiver and antenna types. By
analysing multiple data sets, C1 is estimated to be approximately 1.6 × 10−2 m2Hz.
Experimental studies using baselines of up to about 1 km have showed that by
applying appropriate observation weights, the SIGMA-ε model enables the use of
low-elevation data with a cut-off angle of 7.5◦. This overcomes the problem of
poor satellite geometry and improves the performance of parameter estimation. To
illustrate the differences between the commonly used elevation-dependent and SNR-
based variance models, i.e., σ 2

i / sin2(e) and Eq. (5.10), respectively, Fig. 5.5 com-
pares the phase standard deviations σ�i and observation weights w�i computed using
the elevation angles and SNR0 values shown in Fig. 5.1a. Thereby, σ1 and σ2 are equal
to 1 and 1.3 mm, respectively (Dach et al. 2007, p. 144). The frequency-related Ci

is calculated in such a way that σ�i = σi holds for the best observation with the
maximum SNR0i (here 51 dBHz).

As Fig. 5.5a and c show, for L1 observations at satellite elevation angles above 5◦,
both variance models coincide fairly well in this example. The elevation-dependent
weights are obviously equal to sin2(e), while the SNR-based ones are computed
using σ 2

i /σ
2
�i

. Considering low-elevation observations, for example, at an elevation
angle of 3◦, the SNR-based phase standard deviations σ�1 vary between 4 and 9 mm,
while the elevation-dependent ones amount to about 2 cm. As the elevation angle

http://dx.doi.org/10.1007/978-3-642-34836-5_3
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Fig. 5.5 Phase standard deviations and observation weights derived using the elevation-dependent
[σ 2

i / sin2(e)] and SNR-based [Eq. (5.10)] variance models (σ1 = 1 mm, σ2 = 1.3 mm, SNR0i from
Fig. 5.1, C1 ≈ 0.126 m2Hz,C2 ≈ 0.213 m2Hz,w�i = σ 2

i /σ
2
�i

)

further decreases, σ�1 increases rapidly to about 6 cm for e = 1◦. In contrast to L1,
the elevation-dependent variance model appears to be incapable of realistically char-
acterising the observation quality on L2. Throughout the whole range of elevation
angles, particularly for e < 10◦, it provides considerably larger σ�2 (see Fig. 5.5b)
and smaller w�2 (see Fig. 5.5d) than the SNR-based approach, indicating an under-
estimation of the L2 observations in the LS parameter adjustment. Moreover, this
model comparison produces an important message that a frequency-related observa-
tion weighting is possible when using signal quality measures instead of the satellite
elevation angle. In fact, only considering parameter estimates, it is not even necessary
to choose a suitable receiver bandwidth BL or to estimate a realistic model parameter
Ci, since the term Ci only changes the a priori variance factor (Collins and Langley
1999, p. 26). Nevertheless, in the interest of quality control, parameter constraining
and relative weighting of observation groups, BL and Ci should be carefully specified.

Although the variance model given by Eq. (5.10) allows for a more realistic quality
assessment of GPS observations, it ignores any contribution to the phase noise from
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the local oscillator and is only suitable for relatively strong signals well above the
tracking threshold of the receiver (Collins and Langley 1999, p. 4). However, under
real observational conditions, signal distortions occur, for example, due to multipath
and diffraction. To achieve a realistic SNR-based error characterisation of GPS phase
observations without the a priori knowledge about the receiver environment, Brunner
et al. (1999) developed the SIGMA-�model that automatically computes the phase
noise based on the measured SNR0 and a SNR0 template for a certain antenna type.
Such a template is defined by the highest SNR0 value at a certain satellite elevation
angle. Applying the SIGMA-� model in static and kinematic GPS surveys, the
position errors caused by signal diffraction can be reduced by about 50–85 %.

Wieser and Brunner (2000) verified the effectiveness of estimating the actual
phase observation noise in the SIGMA-ε model, as well as the appropriateness of
using SNR as an indicator for signal distortions in the SIGMA-�model. In addition,
the limitations of the SNR-based weighting schemes were demonstrated, particu-
larly in the presence of strong multipath effects. To overcome these limitations,
the SIGMA-ε model was extended by applying robust estimation methods (e.g., the
Danish method) and by incorporating residual information into multipath and diffrac-
tion handling. The extended weighting model showed good performance in identify-
ing and removing biases, where its efficiency mainly depends on the redundancy
of the observation data and the evaluation of the residual covariance matrix. In
this context, the epoch-wise data analysis strategy, commonly implemented in GPS
processing software, is questionable. If all epochs are processed simultaneously, the
temporal (inter-epoch) correlations must be taken into account. Satirapod and Wang
(2000) compared the two quality indicators, SNR and satellite elevation angle, and
concluded that SNR generally represents a more realistic quality measure, but both
of them do not always reflect reality.

In order to mitigate multipath and interference in GPS relative positioning in engi-
neering surveying, Lau and Mok (1999) suggested the CALMS (combined AFM
and LSM method with SNR weighting) approach, which combines the ambiguity
function method (AFM; Mader 1992) and the SNR-weighted least-squares method
(LSM). Thereby, the double-difference weight matrix is multiplied by a SNR cofac-
tor matrix, resulting in the final weight matrix for the LS adjustment. Employing
this SNR-weighted LS algorithm in short-baseline (<10 km) applications, improved
positioning accuracy was reported when using 1 min of GPS data (6 epochs) col-
lected in a strong multipath environment. Since the multipath error is reduced by
means of an advanced stochastic model, a long observation period for averaging out
multipath is not required.

Taking advantage of other favourable properties of SNR, for instance, being sen-
sitive to carrier-phase multipath and reflecting changes in the multipath environment,
Bilich and Larson (2007) developed a method to map the temporally variable ampli-
tude and frequency content of various multipath constituents by applying the con-
tinuous wavelet transform (see Sect. 2.4.2) to SNR time series. Using representative
continuously operating GPS sites from geodetic networks, it was concluded that near-
field multipath, associated with high satellite elevation angles, does not significantly
contribute to position errors, while the impact of far-field multipath, particularly that

http://dx.doi.org/10.1007/978-3-642-34836-5_2
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caused by topographic features, seems to be more serious than previously believed.
If multipath signals are not correctly understood and sufficiently modelled, they may
be mistaken for seismic waves in applications of GPS seismology. Based on the
theory that the time-evolving property of multipath leads to equal-frequency, but
out-of-phase oscillations in carrier-phase and SNR, Bilich et al. (2008) proposed
the combined wavelet-ALS algorithm for modelling GPS phase multipath error.
The model parameters, such as the amplitude and relative phase, are estimated by
means of an adaptive LS (ALS) method. Applying this approach to short-baseline
(11–17 m) network solutions using GPS data collected from a large salt flat (Salar de
Uyuni), multipath signals with periods between 200 and 2,000 s can be successfully
detected and sufficiently reduced. It was shown that a reduction in phase residual
noise of up to 20 % is achievable for static positioning, and an improvement of
1–7 dB in spectral power at multipath periods is possible for kinematic positioning.
In spite of the considerable enhancements, the suggested algorithm still has difficul-
ties in extracting multipath amplitude and phase information from SNR time series,
and is restricted to simple multipath environments.

According to the same relationship between carrier-phase multipath error and
SNR, Rost and Wanninger (2009) derived a simplified multipath correction model
for GPS static positioning and single dominant reflectors. It requires a SNR resolu-
tion of at least 0.25 dBHz and mainly considers the multipath relative phase as well
as the ratio of the composite and direct signal amplitudes. Using GPS data from a
short baseline of 10 m, established on a parking lot, it was verified that the SNR-
based multipath corrections only depend on the receiver antenna height and satellite
elevation angle due to the large horizontal reflector. Applying the correction val-
ues to the phase observations, both the double-difference residuals and single-epoch
coordinate estimates are improved by almost 25 %. In Rost and Wanninger (2010),
this model was used to correct the GNSS (GPS/GLONASS) data from the contin-
uously operating reference stations (CORS) of the German SAPOS ®sub-network
of Saxony-Anhalt. Comparing the LC3 single-epoch coordinate standard deviation
before and after applying the multipath corrections, both amelioration of up to 13 %
and deterioration of up to −6.5 % are observed in the height and horizontal compo-
nents, respectively. If the model assumption of one well-defined horizontal reflector is
fulfilled, a large portion of the phase multipath effects can be removed. Nonetheless,
the proposed method is not generally applicable to multipath mitigation.

Enabling a more realistic assessment of GPS observation quality, SNR-based vari-
ance (or weighting) models are preferable for GPS data analysis, particularly when
including observations from low-elevation satellites. However, the performance of
the variance model given by Eq. (5.10) strongly depends on how well the gener-
ally unknown loop bandwidth BL is specified. Furthermore, as mentioned above,
such a variance model ignores the contribution of the local oscillator to the phase
noise. By individually estimating the factor Ci for different antenna and receiver
types, the SIGMA-ε model is capable of considering site-specific environments and
antenna-receiver characteristics. Nevertheless, it still has the disadvantage of being
only strictly suitable for relatively strong signals well above the tracking thresh-
old of the receiver (Collins and Langley 1999, p. 4). To overcome these drawbacks
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of this analytical SNR-based variance model, an empirical SNR-based weighting
scheme is developed in this thesis, which also accounts for site-specific effects and
antenna-receiver characteristics. Due to the unrealistic assumptions of the SNR-based
multipath modelling (e.g., a well-defined horizontal reflector), the sidereal stacking
technique is employed in this work, which makes use of multiple consecutive days
of residual time series (see Sect. 7.2.5).

5.3 SNR-Based Weighting Model

In this section, an empirical SNR-based weighting model is presented. Following a
detailed description of its realisation and contribution to the GPS stochastic model,
its advantages are demonstrated in comparison to other analytical and empirical
approaches using SNR or the satellite elevation angle. Next, the model implementa-
tion in the Bernese GPS Software 5.0 is briefly discussed. Finally, the key properties
of the proposed SNR-based weighting scheme are summarised considering different
aspects, emphasising its strengths in GPS data analysis.

5.3.1 Model Realisation

The empirical SNR-based weighting model relies upon a simple and intuitive princi-
ple that the best GPS observations with the largest SNR should obtain the maximum
weight of one. The weights for other measurements depend on the minimum-related
ratios of the corresponding SNR values to the maximum SNR. To ensure the compa-
rability between various SNR realisations (see Sect. 5.1), the signal quality measures
should be available as SNR0 in dBHz or can be converted into SNR0, where external
information from receiver manufacturers, such as SNR unit and computation, may be
necessary. Using observation data in the RINEX format, for example, Version 2.10,
SNR measurements are reported as observable types S1 and S2, and represent the
raw signal strengths as provided by the receiver for L1 and L2 phase observations
(Gurtner 2002, Sect. 0.4). The current RINEX Version 3.00 requires that the raw
signal strengths should be stored in dBHz if possible, where the raw SNR values
are obtained at the correlator output without attempting to recover any correlation
loss. In addition, a new header record SIGNAL STRENGTH UNIT is available,
providing the unit of the signal quality measurements (Gurtner and Estey 2007,
pp. 10, 28). The raw signal strength in dBHz can be expressed as a scale of 1–9
(1: very weak, . . . , 9: very strong) by means of

SNRrnx = min{max [INT(SNR0/6), 1] , 9}, (5.11)

resulting in the so-called RINEX signal strength indicator (Gurtner and Estey 2007,
Sect. 5.7). A SNRrnx of 5 corresponds to a SNR0 of about 35 dBHz and is the threshold
for average signal quality. If SNRrnx is equal to zero, the associated SNR0 is unknown

http://dx.doi.org/10.1007/978-3-642-34836-5_7
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Fig. 5.6 Projection of the raw signal strength SNR0 in dBHz into the RINEX signal strength
indicator SNRrnx [Gurtner and Estey 2007, Table 7; see Eq. (5.11)]

or not present. Figure 5.6 shows the SNR projection given by Eq. (5.11) in graphic
and tabular form. As the graph displays, the transform from SNR0 into SNRrnx can
be considered linear.

Although signal quality data can be stored in the unique unit dBHz, differences
in SNR0 are still present due to receiver characteristics (e.g., hardware, receiver
firmware) and site-specific effects (e.g., multipath). The corresponding variations
in observation quality should be considered in the SNR-based weighting model to
achieve a more realistic noise assessment of GPS phase measurements. Keeping
this in mind, an empirical SNR-based weighting scheme is realised in two steps,
schematically shown in Fig. 5.7 for GPS relative positioning.

In the first step, signal quality measurements are extracted from the RINEX obser-
vation files, where missing SNR data are marked by zero. As an alternative to the
self-programmed routine, SNR values can be conveniently obtained for each satel-
lite by applying the cf2ps program (Hilla 2002) to the TEQC plot files (Estey
and Meertens 1999). If the extracted SNR quantities are not SNR0 in dBHz (e.g.,
AMU, SNR in dB), they are converted into SNR0 based on the information pro-
vided by receiver manufacturers. Once the SNR data are aligned to a comparable
level, for each antenna-receiver combination (ARC) being present in the network, the
frequency-dependent minimum and maximum SNR0 values, denoted as SNR0min

ARC,i
and SNR0max

ARC,i, respectively, are searched over the entire observation period. This
procedure guarantees that the found extreme signal strengths are representative with
respect to the site’s environments, atmospheric variations as well as antenna and
receiver characteristics. The zero-valued SNR data due to missing observations are
excluded from the minimum search procedure. In order to avoid the situation where
the found global extremes are actually outliers, for each ARC, statistical analysis of
SNR0 is performed by means of box plots, as demonstrated in Fig. 5.1b.

Following the first step in which the SNR measurements are homogenised and the
global references for low- and high-quality observations are found, the second step
produces individual weights for each L1 and L2 phase observation by calculating the
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Fig. 5.7 An empirical SNR-based observation weighting scheme and its contribution to the sto-
chastic model in GPS relative positioning (WGT: weight, VCM: variance-covariance matrix), after
Luo et al. (2008a,b)

minimum-related ratio between the actual SNR0 and the corresponding maximum.
Considering the phase observation�s

R,i(t), which is related to receiver R, satellite s,
frequency i and epoch t, the corresponding SNR-based weight is computed as

w
[
�s

R,i(t)
] = f

[
SNR0s

R,i(t)
] =

[
a + (1 − a) ·

(
SNR0s

R,i(t)− SNR0min
ARC,i

SNR0max
ARC,i − SNR0min

ARC,i

)]2

,

(5.12)

where the parameter a is introduced to avoid the singularity problem of the cofac-
tor q = w−1 in the case that SNR0s

R,i(t) = SNR0min
ARC,i. To fulfil the precondition

f (SNR0max
ARC,i) = 1, a factor of (1−a) is multiplied to the minimum-related ratio. For

representative SNR0 values between 10 and 55 dBHz (see Fig. 5.6), Fig. 5.8 illustrates
the weights and cofactors derived from Eq. (5.12) using different specifications for
a. As a decreases from 0.1 to 0.01, one can discern an overall downweighting effect,
with decreased weights and increased cofactors, particularly for low-quality signals.
By considering Fig. 5.5a and c, a = sin 5◦ ≈ 0.1 is used in this thesis to reduce the
downweighting effect on low-quality observations of weak signals.

The SNR-based weights computed using Eq. (5.12) improve the scaled identity
matrix, which is denoted as CZ0 in Fig. 5.7, to the variance-covariance matrix (VCM)
CZ with different diagonal elements. Next, CZ, the VCM of zero-differences, is prop-
agated by considering the propagation matrix DSZ, which contains the coefficients
for linear combination and double differencing (see Fig. 3.6). The resulting VCM
of double-differences CD is then used for the LS parameter estimation. Although in
this thesis the empirical SNR-based weighting model is only applied to GPS relative
positioning, it can be easily adapted to precise point positioning (PPP) by neglecting
the variance propagation step with respect to double differencing.

http://dx.doi.org/10.1007/978-3-642-34836-5_3


5.3 SNR-Based Weighting Model 153

10 15 20 25 30 35 40 45 50 55
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
W

ei
gh

t

10 15 20 25 30 35 40 45 50 55
0

10

20

30

40

50

60

70

80

90

100

C
of

ac
to

r

Fig. 5.8 Influence of the model parameter a in Eq. (5.12) on the SNR-based weight and cofactor
values (SNR0min

ARC,i = 10 dBHz, SNR0max
ARC,i = 55 dBHz)

5.3.2 Model Comparison

In this section, the suggested SNR-based weighting model (EMPSNR2) is compared
with different alternatives, such as the analytical approach (ANLSNR) given by
Eq. (5.10), another empirical method (EMPSNR1) proposed by Mayer (2006, p. 62)
and the commonly used elevation-dependent weighing function sin2(e) denoted as
CSC2(BS) in Fig. 3.3.

For SNR0 varying from 10 and 35 to 55 dBHz, Fig. 5.9 compares the weight and
cofactor values produced by ANLSNR and EMPSNR2, where the ANLSNR-related
weights are computed with respect to the maximum SNR0. As Collins and Langley
(1999, p. 4) noted, the analytical model ANLSNR is only suitable for relatively strong
signals (i.e., SNR0 > 35 dBHz), while the empirical approach EMPSNR2 is also able
to deliver reasonable weights for relatively weak signals (i.e., SNR0 ≤ 35 dBHz).
This indicates a better performance of EMPSNR2 for both low- and high-quality
GPS measurements. Furthermore, when decreasing the SNR0 range from [10, 55] to
[35, 55], the differences between ANLSNR and EMPSNR2 also decrease.

Analysing GPS data from the densification network of the Antarctic Peninsula,
Mayer (2006, Sect. 5.4.2) computed SNR-based observation weights empirically by
simply dividing the signal quality measurements by the maximum found during an
observation campaign. This approach assumes a homogenous antenna-receiver com-
bination within a survey campaign and delivers almost azimuth-independent weights
between 0.1 and 0.3 for low-elevation (i.e., e < 20◦) data. For GPS measurements
from medium- and high-elevation satellites, the corresponding weights are gener-
ally larger than 0.5 (Mayer 2006, pp. 62, 67). Figure 5.10 illustrates the weights and
cofactors produced by EMPSNR1 and EMPSNR2. From Fig. 5.10, one can easily
discern that EMPSNR1 always produces larger weights than EMPSNR2, particularly
for the narrower SNR0 variation range [35, 55]. Overweighting low-quality observa-
tions leads to small cofactor values and overestimates the contribution of low-quality
data to the LS parameter estimation.

http://dx.doi.org/10.1007/978-3-642-34836-5_3
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Fig. 5.9 Comparison of the weight and cofactor values produced by the observation weighting
models ANLSNR and EMPSNR2 [ANLSNR: w�i = σ 2

�i
(SNR0max

i = 55 dBHz)/σ 2
�i
(SNR0i), see

Eq. (5.10); EMPSNR2: a = 0.1, see Eq. (5.12)]
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Fig. 5.10 Comparison of the weight and cofactor values produced by the empirical observation
weighting models EMPSNR1 and EMPSNR2 [EMPSNR1: w�i = SNR0i/SNR0max

i , Mayer 2006,
Sect. 5.4.2; EMPSNR2: a = 0.1, see Eq. (5.12)]

Taking the SNR0 data shown in Fig. 5.1a as an example, Fig. 5.11 compares the
empirically derived observation weights depending on the satellite elevation angle. If
EMPSNR1 is applied, observations at e < 20◦ already maintain considerably large
weights of about 0.7, which attenuates the qualitative difference between an average
and a good observation. This kind of overweighting effect is considerably reduced by
means of the proposed EMPSNR2. Thereby, low-elevation observations obtain more
realistic weights of up to about 0.4. Therefore, the employment of EMPSNR2 seems
to achieve a balance between appropriately downweighting low-quality observations
and effectively improving the satellite geometry by incorporating low-elevation mea-
surements into the parameter adjustment.

The commonly used elevation-dependent variance models presented in Table 3.6
depend on the cosecant function of the satellite elevation angle, i.e., 1/ sin(e), which
actually represents a first-order approximation of the tropospheric mapping function.

http://dx.doi.org/10.1007/978-3-642-34836-5_3
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Fig. 5.11 Empirical weights derived using the SNR0 measurements shown in Fig. 5.1a

The underlying theory is that the tropospheric delay error increases towards the
horizon, as does the amount of noise inherent to GPS observations. Therefore, the
variance of phase noise is assumed to be directly proportional to the squared value of
1/ sin(e) (Collins and Langley 1999, p. 1). Figure 5.12 compares the empirical SNR-
based weighting model EMPSNR2 with the elevation-dependent weighting scheme
CSC2(BS) (i.e., sin2(e); Dach et al. 2007, p. 144) with respect to observation data
volume, antenna-receiver combination and site-specific multipath impact.

Comparing the weight values for the site RAVE on a daily basis, Fig. 5.12a shows
the advantage of EMPSNR2 in attenuating observation downweighting effects over
the whole elevation range. Moreover, the differences in observation quality between
L1 and L2 become more obvious for e > 20◦, and they cannot be accounted for
by means of CSC2(BS), but by applying EMPSNR2 (see also Fig. 5.11b). In this
example, the SNR0 values on the L2 carrier frequency range from 36 to 51 dBHz and
are well above the tracking threshold of 35 dBHz (see Figs. 5.1b and 5.6). Accord-
ingly, similar results are also obtained using the analytical approach ANLSNR (see
Figs. 5.5d and 5.9).

In addition to long-term (24 h) GPS measurements, short-term static observa-
tions are also used for model comparison. Although the weight values presented in
Fig. 5.12b–d are related to a 1 h time interval, the antenna-receiver-specific SNR0
extremes are determined based on representative data sets. Despite the different data
volumes and receiver firmware versions, the variation patterns of the SNR-based
weights shown in Fig. 5.12b are quite similar to those displayed in Fig. 5.12a. This
demonstrates the potential of EMPSNR2 in short-term static applications if reliable
SNR0 extremes are available, for example, in the case of CORS.

For the same observation period, a similar degree of multipath impact, but another
antenna-receiver combination, Fig. 5.12c illustrates SNR-based weights with consid-
erably different patterns when compared to Fig. 5.12b. The antenna-receiver-specific
handling, which is realised in EMPSNR2, contributes to the maintenance of instru-
mental characteristics, although both the Leica and Trimble receivers deliver SNR0
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Fig. 5.12 Comparison of the observation weights produced by CSC2(BS) and EMPSNR2 consid-
ering different aspects (a DOY2004:186, b–d DOY2007:161, 17–18 h, GPS time)
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in dBHz (Landau 2006). Furthermore, the elevation-dependent weighting model
CSC2(BS) seems to produce more serious downweighting effect on the L1 (L2)
observations from the Trimble (Leica) receiver at low (high) elevation angles. In
Fig. 5.12d, the SNR-based and elevation-dependent weights are compared for the
site DARM, which has the same antenna-receiver combination as the site GZBG,
but a stronger multipath impact (see Fig. 4.6c). This can be well captured by means
of EMPSNR2 due to the fact that the frequency and amplitude content of SNR data
are directly related to carrier-phase multipath errors (Bilich et al. 2008).

Another advantage of EMPSNR2 over CSC2(BS) is that SNR measurements
respond to environmental variations, while GPS satellite elevation angles observed
at the same site repeat with an approximate period of one mean sidereal day. As a
result, SNR-based weights reflect changes in observation quality induced by vari-
able atmospheric conditions, while elevation-dependent weights completely ignore
these day-to-day variations and thus produce an unrealistic mapping of observa-
tion quality. To demonstrate this benefit from EMPSNR2, Fig. 5.13 takes the site
DARM as an example and compares the 1 h L2 weights on three consecutive days
(DOY2007:179–181). By considering an approximate repeat time of the GPS constel-
lation of one mean sidereal day (i.e., 23 h 56 min 4 s; see Sect. 7.2.5), the observation
weights are determined under an almost identical satellite geometry, as illustrated in
Fig. 5.13a.

For elevation angles around 20◦ as well as between 50 and 70◦, Fig. 5.13b and d
exhibit minor, but visible differences in the L2 weights between days 179 and 181.
On day 180, large variations are present, particularly at high elevation angles (see
Fig. 5.13c). Taking the strong multipath environment of the site DARM into account,
these day-to-day variations may be attributed to the changes in site reflection prop-
erties, which are caused by variable atmospheric conditions (see RH at FRAN in
Fig. 4.8c). In contrast, due to the repeating satellite geometry, the elevation-dependent
weights are identical on different days.

The above comparison emphasises the advantages of the proposed SNR-based
weighting scheme EMPSNR2 in downweighting reduction, overweighting preven-
tion and realistic characterisation of GPS observation quality. In order to exploit
these benefits in GPS data analysis and to improve the performance of parameter
estimation, the EMPSNR2 model is experimentally implemented in the Bernese
GPS Software 5.0 (Dach et al. 2007).

5.3.3 Model Implementation

The implementation of the empirical SNR-based weighting model consists of two
parts, namely weight calculation and weight application, schematically shown in
Fig. 5.14. According to the flowchart presented in Fig. 5.7, the computation of the
frequency-related weights is performed in MATLAB. As a result, for each site in
each session, a weight file (WGT) is generated, which contains epochs in GPS time,
satellite PRN (pseudo random noise) numbers and observation weights for L1 and L2

http://dx.doi.org/10.1007/978-3-642-34836-5_4
http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_4
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(a) (b)

(c) (d)

Fig. 5.13 Comparison of the 1 h L2 observation weights produced by CSC2(BS) and EMPSNR2
under an almost identical satellite geometry on three consecutive days (site: DARM, strong multi-
path, DOY2007:179–181, 17–18 h, GPS time, sampling interval: 1 s)

Fig. 5.14 Implementation of EMPSNR2 in the Bernese GPS Software 5.0 for relative positioning
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phase measurements. The WGT files are located in an additional campaign directory
named as SNR (i.e., ${P}/MYCAMP/SNR/*.WGT).

At the preliminary stage of the implementation of EMPSNR2 in the Bernese
GPS Software 5.0, the input panel of the main program GPSEST, located in the
user-specific directory (${U}/PAN/GPSEST.INP), is modified by adding another
observation weighting option SNR to the already existing models NONE (i.e., equal
weight with w = 1) and COSZ (i.e., elevation-dependent weight with w = sin2(e)).
To connect the extended weighting option to the related Fortran routines, a new
keyValue must be specified in the subroutine RDIGEN, which is located in the
library directory (${C}/LIB) and has the task of reading general input options for
GPSEST (${C}/PGM). If the SNR-based weighting model is chosen for parameter
estimation, observation weights are read from the WGT files by the self-written sub-
routine WGTSNR, which is also located in the LIB directory. Otherwise, one of the
standard weighting models (NONE or COSZ) is applied.

After importing the observation weights, the VCM of zero-differences CZ is con-
structed by the subroutine ADDCOR. The building of the propagation matrix DSZ is
not affected by a change in the observation weighting model, since its elements only
depend on the coefficients for the used linear combination and double differencing
(see Fig. 3.6). Once CZ and DSZ are available, the VCM of double-differences CD
can be derived by applying the variance-covariance propagation law to CZ, which is
accomplished by the subroutine CORREL (see Fig. 5.7 for CZ, DSZ and CD). Ben-
efiting from the more realistic SNR-based observation weights, such an advanced
stochastic model enhances the epoch-wise data processing performed by the subrou-
tinePRCEPO. The main program GPSEST callsPRCEPO and estimates the unknown
parameters, such as phase ambiguities (AMB), site-specific troposphere parameters
(TRP) and station coordinates (CRD). Improvements in the parameter estimates will
reflect the superior performance of the proposed SNR-based weighing model in
comparison to the standard elevation-dependent one.

For the residual-based temporal correlation modelling, which will be presented
in Chap. 7, double-difference residuals are saved, along with the corresponding time
stamps and information about satellite geometry. The necessary modifications were
first made in the Bernese GPS Software 4.2 by Howind (2005) and then adapted to
the Version 5.0 by Luo et al. (2007, p. 27).

5.4 Concluding Remarks

Being a more realistic quality indicator for GPS phase observations, the signal-to-
noise ratio (SNR) holds great potential for improving the stochastic model in GPS
data analysis. This chapter introduced an empirical SNR-based weighting model
called EMPSNR2, which relies upon a minimum-related scaling of representative
signal quality measurements. In view of downweighting effect reduction and realistic
quality assessments, EMPSNR2 appears to be superior to the analytical approach
ANLSNR proposed by Langley (1997), as well as to the commonly used elevation-

http://dx.doi.org/10.1007/978-3-642-34836-5_3
http://dx.doi.org/10.1007/978-3-642-34836-5_7
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Table 5.2 Key properties of the elevation-dependent and SNR-based weighting models

Aspect CSC2(BS): sin2(e) EMPSNR2: Eq. (5.12)

Quality indicator Indirect: satellite elvation angle (e) Direct: signal-to-noise ratio (SNR)
Model principle Squared inverse of the tropospheric

mapping function
Antenna-receiver-specific scaling

of SNR measurements
Application area Kinematic, short- and long-term

static positioning
Short- and long-term static

positioning (e.g., CORSa)
Degree of reality Low, affected by site-specific

effects and variable
atmospheric conditions

High, due to the sensitivity of SNR
to different quality limiting
factors (e.g., multipath)

Individual weights
for L1 and L2

Impossible, due to the same
satellite elevation angle for
both frequencies

Possible, due to the individual
SNR registration for each
carrier frequency

Downweighting Possible, particularly at low
elevation angles

Considerably reduced over the
whole elevation range

Complexity Simple, low computational cost Complex, high computational cost
a CORS: continuously operating reference stations

dependent weighting scheme CSC2(BS) [i.e., sin2(e)]. In this thesis, EMPSNR2
has been experimentally implemented in the Bernese GPS Software 5.0, and its
advantages over CSC2(BS) in GPS relative positioning will be presented in the
next chapter. Table 5.2 compares the key properties of CSC2(BS) and EMPSNR2
considering different aspects (Luo et al. 2008a).
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Chapter 6
Results of SNR-Based Observation Weighting

Analysing the relative positioning case studies described in Sect. 4.2, this chapter
presents the effects of the SNR-based observation weighting model EMPSNR2 on
GPS baseline solutions using the Bernese GPS Software 5.0. Thereby, three impor-
tant aspects, namely ambiguity resolution, troposphere parameter estimation and
coordinate determination, are taken into account. Being structured in a similar way,
Sects. 6.1 and 6.2 first compare the weight values, then the adjustment results obtained
by means of the commonly used elevation-dependent weighting scheme CSC2(BS)
and the proposed SNR-based EMPSNR2. Section 6.3 summarises the main findings
from the case studies, providing a realistic picture of the advantages of EMPSNR2.

6.1 Case Study 1: Long-Term Relative Positioning

The long-term relative positioning case study is carried out to determine the effects
of the SNR-based weighting model on daily GPS baseline solutions, which represent
a typical scenario for a wide range of geodetic applications, such as long-term defor-
mation analysis and reference frame realisation. This section begins with a discussion
of the antenna-receiver-specific SNR extremes, playing a key role in the computation
of observation weights (see Fig. 5.7). Next, for different elevation cut-off angles of
10 and 3◦ (see Table 4.4), the impacts of the SNR-based weighting scheme on GPS
parameter estimation are demonstrated using representative examples.

6.1.1 SNR Extremes and Observation Weights

As described in Sect. 5.3.1, the frequency-related extremes of the signal-to-noise
power density ratio SNR0 in dBHz are found for each antenna-receiver combination
(ARC) by considering all available non-zero signal quality measurements over the
entire investigation period. These extremes are substituted into Eq. (5.12) to derive
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Table 6.1 Antenna-receiver-specific SNR extremes used for computing the SNR-based observation
weights in case study 1 (SNR0 in dBHz)

ARC Antenna Receiver Min/Max (L1) Min/Max (L2)

1 TRM29659 Trimble 4000SSI 30.38/57.38 32.27/57.43
2 TRM23903 Trimble 4000SSI 21.39/57.38 32.27/58.28
3 LEIAT503 Leica SR520 32.00/51.00 36.00/51.00
4 LEIAT303 Leica SR520 32.00/51.00 36.00/51.00

the SNR-based weights for GPS phase observations. Therefore, the quality of the
detected minimum and maximum is essential for realistic weight specification and
reliable parameter estimation. Considering the four ARC applied in this case study
(see Table 4.1), Table 6.1 provides the SNR extremes on L1 and L2. While the Leica
equipment delivers identical extreme values, the L1 minima from the Trimble instru-
ments exhibit a difference of about 9 dBHz. This may be explained by the differences
in antenna performance (TRM23903: Trimble Permanent L1/L2; TRM29659: Trim-
ble L1/L2 D/M choke ring antenna) and site-specific multipath impact (see Table 4.1;
Mayer et al. 2004).

Another difference between the SNR0 associated with the Leica and Trimble
instruments is that the former are directly extracted from the RINEX observation
files, while the latter are converted from signal-to-noise power ratio SNR in dB (see
Sect. 5.1). Instead of using Eq. (5.4) by specifying an appropriate value for loop band-
width BL , manufacturer-specific formulas for the Trimble 4000 series receivers are
applied, which establish relationships between SNR in dB, AMU (arbitrary manufac-
turer units) and SNR0 in dBHz (Trimble 1999). First, the SNR values are converted
into AMU units by means of (Landau 2006a)

SNR1 [dB] = 10 · log10(230 · AMU2
1 ), (6.1)

SNR2 [dB] = 10 · log10[50 · (AMU2 − 5)2], (6.2)

where the subscripts 1 and 2 denote the carrier frequencies L1 and L2, respectively.
Next, the resulting AMU can be easily converted into SNR0 using Eq. (5.9). For a
reasonable range of AMU units, Fig. 6.1a illustrates Eqs. (5.9), (6.1) and (6.2), which
are involved in this two-step conversion process. Obviously, the transform from SNR2
into AMU2 has a singularity at AMU2 = 5 and is not unique for SNR2 < 31 dB. To
solve this ambiguity problem, the corresponding SNR1 is compared with a reference
of 37.6 dB, derived by substituting AMU1 = 5 into Eq. (6.1). If the SNR1 to be
converted is smaller (larger) than this threshold, then the AMU2 solution for the
corresponding SNR2 is located on the left (right) hand side relative to AMU2 = 5.
Taking SNR2 = 17 dB as an example, different AMU2 of 4 and 6 are obtained for
SNR1 of 36 and 40 dB, respectively. Considering the entire period of investigation,
Fig. 6.1b presents the results of the SNR conversion for the SAPOS®site KARL,
which is equipped with the Trimble instruments denoted as ARC1 in Table 6.1.
The difference in the sample medians of SNR1 and SNR2 coincides with the offset
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Fig. 6.1 Conversion of SNR into SNR0 for a Trimble 4000SSI receiver using the manufacturer-
specific formulas (5.9), (6.1) and (6.2) (SAPOS®site: KARL, DOY2004:186–193)
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Fig. 6.2 Box plots of the SNR0 values from the Leica ARC (DOY2004:186–193; see Table 6.1)

between the associated conversion curves shown in Fig. 6.1a. After transforming
SNR into AMU and SNR0, this difference is considerably reduced, and the resulting
box plots illustrate similar characteristics to those depicted in Fig. 5.2d, indicating
the appropriateness of the employed conversion approach.

For the sake of completeness, Fig. 6.2 shows the box plots of the SNR0 mea-
surements which are directly extracted from the RINEX observation files. Despite
the different antenna types between ARC3 and ARC4 (see Table 6.1), these plots
illustrate comparable statistical characteristics of the SNR0 data. Apart from the
SAPOS®sites used for GPS data processing in this case study, additional stations
with the same ARC are considered in order to obtain more reliable and representative
SNR extremes.

After determining the SNR extremes for each ARC, Fig. 6.3 compares the obser-
vation weights produced by the SNR-based EMPSNR2 and the elevation-dependent
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Fig. 6.3 Comparison of the observation weights produced by CSC2(BS) and EMPSNR2 (upper
plots: site KARL with ARC1, lower plots: site TAUB with ARC3; see Tables 4.1 and 6.1)

CSC2(BS), where the latter is implemented by default in the Bernese GPS Soft-
ware 5.0 (Dach et al. 2007, p. 177). For this comparison, two SAPOS®sites, KARL
(ARC1) and TAUB (ARC3), are chosen, which are located in the middle and north-
ern parts of the investigation area with the DWD meteorological stations KARL and
WUER close by, respectively (see Fig. 4.1). The above-described SNR conversion,
i.e., SNR [dB] → AMU → SNR0 [dBHz], is applied to the signal quality measure-
ments from KARL, prior to computing observation weights using Eq. (5.12). Two
representative days, 189 and 192, are considered, which are directly before and after
the major rain event that occurred during days 190 and 191 (see Fig. 4.4d).

Comparing the SNR-based weights on day 189, the ARC-dependent deviations
between L1 and L2 are clearly visible. However, these differences are completely
ignored when using the elevation-dependent weighting model. In general, EMP-
SNR2 produces higher weights than CSC2(BS) for elevation angles e of up to 70◦.
As e further increases, the SNR-based weights may decrease, demonstrating the fact
that the best signal quality may not be necessarily achieved at the highest eleva-
tion angle. Based on the converted SNR0 (KARL with ARC1), the weight structure
is comparable to that derived from the observed SNR0 (TAUB with ARC3), once
again verifying the appropriateness of the applied SNR conversion. Nevertheless,
the singularity occurring when converting SNR2 into AMU2, i.e., AMU2 = 5 in
Eq. (6.2), is obviously present in the resulting L2 weights with SNR0 = 41 dBHz and
w = 0.17 (see Figs. 6.1a and 6.3b). Moreover, the weights shown in Fig. 6.3e exhibit
similar patterns to those displayed in Fig. 5.5d, which are obtained using the ana-
lytical model ANLSNR [see Eq. (5.10)]. This can be understood by examining the
associated weights illustrated in Fig. 5.9 for SNR0 between 35 and 55 dBHz. In
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comparison to day 189, the L1 weights on day 192 are slightly nosier for e < 30◦
(see Fig. 6.3c and f). This indicates that EMPSNR2 copes with variable atmospheric
conditions and enables a realistic quality assessment of low-elevation observations.
Such advantages can be exploited when including low-elevation data to overcome
poor satellite geometry and to decorrelate station height and troposphere parameter
estimates (Dach et al. 2007, p. 247).

Since in this case study the information about antenna radomes is not available
in the RINEX observation files, radome types are not considered in the ARC spec-
ification. Moreover, the receiver firmware version is also not taken into account,
while an a posteriori check of the related station log files does not find any receiver
firmware update during the investigation period of this case study. In terms of future
research, model refinements within these contexts should be carried out, for example,
by examining station log files and RINEX header information.

6.1.2 Effects on Ambiguity Resolution

Using the SIGMA-dependent algorithm of the Bernese GPS Software 5.0 to resolve
phase ambiguities, the success rate is directly related to the a posteriori errors of the
float ambiguity estimates, resulting from the initial least-squares (LS) adjustment
(Dach et al. 2007, p. 175). Since not only the parameter estimates, but also the
associated accuracy measures can be improved by an advanced stochastic model,
EMPSNR2 is supposed to perform better than CSC2(BS) in ambiguity resolution.
Considering site multipath effects and elevation cut-off angle, Fig. 6.4 compares the
percentages of the resolved ambiguities with respect to observation weighting.

Due to the significantly larger wide-lane (WL) cycle of about 86 cm than the
narrow-lane (NL) cycle of about 11 cm (see Sect. 3.1.5), more WL ambiguities are
resolved within the LC5 solutions than NL ambiguities within the LC3 evaluations.
This becomes more evident as the elevation cut-off angle decreases (cf. Fig. 6.4a
and b), and the multipath impact increases (cf. Fig. 6.4a and c). For a minimum
elevation angle of 10◦, the employment of EMPSNR2 only insignificantly (slightly)
improves the results of WL (NL) ambiguity resolution (see Fig. 6.4a and c). However,
for a minimum elevation angle of 3◦, about 10 % of the WL and NL ambiguities can
be additionally resolved if the elevation-dependent weighting model CSC2(BS) is
replaced by the SNR-based EMPSNR2 (see Fig. 6.4b and d). As the elevation cut-off
angle decreases from 10 to 3◦, the daily number of ambiguities increases from about
64 to 98. This is because low-elevation GPS data are frequently contaminated by
unrepairable cycle slips, such that an introduction of multiple ambiguities is neces-
sary. Regarding the day-to-day variations in the results of NL ambiguity resolution,
lower percentages of resolved ambiguities are detected on days 188 and 190, corre-
sponding to the time periods with high precipitation (RF) measurements at the DWD
meteorological sites (see Fig. 4.4d).

For a minimum elevation angle of 3◦, Table 6.2 provides the complete results of
ambiguity resolution obtained by means of different observation weighting mod-

http://dx.doi.org/10.1007/978-3-642-34836-5_3
http://dx.doi.org/10.1007/978-3-642-34836-5_4


168 6 Results of SNR-Based Observation Weighting

186 187 188 189 190 191 192 193
30

40

50

60

70

80

90

100

DOY2004:186-193

R
es

ol
ve

d
ph

as
e

am
bi

gu
iti

es
[%

]

WL CSC2(BS)
WL EMPSNR2
NL CSC2(BS)
NL EMPSNR2

186 187 188 189 190 191 192 193
30

40

50

60

70

80

90

100

DOY2004:186-193

R
es

ol
ve

d
ph

as
e

am
bi

gu
iti

es
[%

]

WL CSC2(BS)
WL EMPSNR2
NL CSC2(BS)
NL EMPSNR2

186 187 188 189 190 191 192 193
30

40

50

60

70

80

90

100

DOY2004:186-193

R
es

ol
ve

d
ph

as
e

am
bi

gu
iti

es
[%

]

WL CSC2(BS)
WL EMPSNR2
NL CSC2(BS)
NL EMPSNR2

186 187 188 189 190 191 192 193
30

40

50

60

70

80

90

100

DOY2004:186-193

R
es

ol
ve

d
ph

as
e

am
bi

gu
iti

es
[%

]

WL CSC2(BS)
WL EMPSNR2
NL CSC2(BS)
NL EMPSNR2

(c) Baseline: OFHE, elevation cut-off
angle: 10

(d) Baseline: OFHE, elevation cut-off
angle: 3

(b) Baseline: SISC, elevation cut-off
angle: 3

(a) Baseline: SISC, elevation cut-off
angle: 10

Fig. 6.4 Representative examples of the results of ambiguity resolution using CSC2(BS) and
EMPSNR2 (SISC: 119.4 km, weak multipath, OFHE: 114.8 km, strong multipath; see Table 4.3)

els. Applying CSC2(BS) and EMPSNR2 to the same data set, the daily numbers of
ambiguities (#AMB) are sometimes slightly different, with a maximum difference
of 6 (KAST, day 190). This originates from the processing step “screening post-fit
residuals” (see Fig. 4.2 and Table 4.4). By considering all baselines, the conclusions
drawn from Fig. 6.4 can be verified numerically. Using the SNR-based observation
weighting scheme, the results of WL and NL ambiguity resolution can be enhanced
by up to 16.7 % (OFHE, day 192) and 23.9 % (KAST, day 191), respectively.
Moreover, the improvement in resolving the WL ambiguities appears to be more
significant for longer baselines (cf., e.g., HLTA and SISC). On average, for GPS
baseline solutions at a regional scale, an enhancement of about 10 % in both WL
and NL ambiguity resolution can be expected when employing EMPSNR2 instead
of CSC2(BS). Considering the influence of variable atmospheric conditions, lower
success rates of NL ambiguity resolution are observed on day 190 for HLTA, KAST
and SISC as well as on days 188 and 190 for OFHE, showing an excellent agree-
ment with the DWD RF measurements illustrated in Fig. 4.4d. This demonstrates the
contribution of such freely available surface meteorological data to a physical inter-

http://dx.doi.org/10.1007/978-3-642-34836-5_4
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Table 6.2 Effects of applying different observation weighting models on the results of phase
ambiguity resolution in case study 1 (elevation cut-off angle: 3◦)

Baseline CSC2(BS) EMPSNR2 Improvement

DOY2004 Number/Percent Number/Percent Percent

#AMB WL NL #AMB WL NL WL NL

HLTA
186 85 83/97.6 64/75.3 85 83/97.6 75/88.2 0.0 12.9
187 97 94/96.9 59/60.8 96 93/96.9 74/77.1 0.0 16.3
188 94 91/96.8 60/63.8 94 92/97.9 68/72.3 1.1 8.5
189 86 81/94.2 51/59.3 84 81/96.4 66/78.6 2.2 19.3
190 92 84/91.3 50/54.3 89 86/96.6 57/64.0 5.3 9.7
191 100 98/98.0 68/68.0 100 98/98.0 85/85.0 0.0 17.0
192 99 96/97.0 59/59.6 99 97/98.0 82/82.8 1.0 23.2
193 94 92/97.9 62/66.0 94 92/97.9 78/83.0 0.0 17.0
Total 747 719/96.3 473/63.3 741 722/97.4 585/78.9 1.1 15.6
KAST
186 106 100/94.3 68/64.2 105 100/95.2 81/77.1 0.9 12.9
187 106 102/96.2 68/64.2 103 96/93.2 80/77.7 −3.0 13.5
188 99 96/97.0 65/65.7 99 95/96.0 80/80.8 −1.0 15.1
189 118 114/96.6 74/62.7 116 108/93.1 90/77.6 −3.5 14.9
190 119 114/95.8 66/55.5 113 107/94.7 74/65.5 −1.1 10.0
191 109 107/98.2 71/65.1 109 107/98.2 97/89.0 0.0 23.9
192 109 107/98.2 67/61.5 107 103/96.3 89/83.2 −1.9 21.7
193 107 104/97.2 71/66.4 106 103/97.2 93/87.7 0.0 21.3
Total 873 844/96.7 550/63.0 858 819/95.5 684/79.7 −1.2 16.7
SISC
186 106 87/82.1 80/75.5 105 99/94.3 90/85.7 12.2 10.2
187 106 94/88.7 74/69.8 106 102/96.2 89/84.0 7.5 14.2
188 103 87/84.5 73/70.9 102 98/96.1 81/79.4 11.6 8.5
189 98 84/85.7 66/67.3 98 92/93.9 81/82.7 8.2 15.4
190 90 76/84.4 55/61.1 90 86/95.6 66/73.3 11.2 12.2
191 92 84/91.3 73/79.3 91 88/96.7 80/87.9 5.4 8.6
192 97 80/82.5 70/72.2 97 87/89.7 78/80.4 7.2 8.2
193 92 82/89.1 73/79.3 92 89/96.7 82/89.1 7.6 9.8
Total 784 674/86.0 564/71.9 781 741/94.9 647/82.8 8.9 10.9
OFHE
186 89 78/87.6 53/59.6 89 83/93.3 68/76.4 5.7 16.8
187 100 86/86.0 50/50.0 100 93/93.0 64/64.0 7.0 14.0
188 92 75/81.5 49/53.3 91 83/91.2 59/64.8 9.7 11.5
189 93 75/80.6 52/55.9 92 83/90.2 57/62.0 9.6 6.1
190 84 69/82.1 48/57.1 79 71/89.9 53/67.1 7.8 10.0
191 94 79/84.0 60/63.8 94 85/90.4 69/73.4 6.4 9.6
192 96 74/77.1 57/59.4 96 90/93.8 68/70.8 16.7 11.4
193 90 74/82.2 57/63.3 89 85/95.5 65/73.0 13.3 9.7
Total 738 610/82.7 426/57.7 730 673/92.2 503/68.9 9.5 11.2
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pretation of GPS processing results, even though they do not have high temporal and
spatial resolution. For an elevation cut-off angle of 10◦, the complete results of ambi-
guity resolution are presented in Table D.1. The improvements achieved by applying
EMPSNR2 are significantly smaller, being less than 5 % on average. Nevertheless,
for the baselines KAST and OFHE, which are strongly affected by multipath effects,
considerable increases in the NL ambiguity resolution of 8.1 and 9.5 % are detected
on days 186 and 192, respectively.

6.1.3 Effects on Troposphere Parameters

The use of low-elevation (i.e., e< 10◦) GPS measurements with appropriate weights
may improve the performance of site-specific troposphere parameter (TRP) esti-
mation. This plays an important role in characterising the state of the Earth’s
neutral atmosphere, for example, GPS water vapour monitoring is currently one
of the operational techniques in GPS meteorology. To demonstrate the influence
of the SNR-based weighting model EMPSNR2 on TRP evaluation, Fig. 6.5 com-
pares the parameter estimates and the associated standard deviations (STD) obtained
by analysing the two longer baselines SISC and OFHE with similar lengths but dif-
ferent multipath impact. In addition, different elevation cut-off angles of 10 and 3◦
are considered.

Prior to comparing the TRP estimates, the site-specific constant a priori model
values (Dach et al. 2007, pp. 244, 533), for example, computed using the dry Saas-
tamoinen model (Saastamoinen 1973) in combination with the dry Niell mapping
function (Niell 1996), are removed. Therefore, each visualised TRP contains not only
the zenith wet delay, but also the deviation of the a priori model from the reality.
Specifying a TRP time span of 2 h for GPS daily solutions (see Table 4.4), a total
of 12 + 1 = 13 parameters per day per station are estimated due to the piece-wise
linear parameterisation of TRP in the Bernese GPS Software 5.0 (Dach et al. 2007,
p. 246). Since the thirteenth parameter on the current day and the first parameter
on the next day refer to the same time point and possess a similar precision, only
the first 12 parameters resulting from a one-day session are plotted. While �TRPa

(�TRPr) denotes the median absolute (relative) difference between the TRP obtained
using EMPSNR2 and CSC2(BS),�STDa (�STDr) is the median absolute (relative)
improvement in the associated standard deviations:

�TRPr [%] = �TRPa

med
(
TRPCSC2(BS),i

) = med
(∣∣TRPCSC2(BS),i − TRPEMPSNR2,i

∣∣)

med
(
TRPCSC2(BS),i

) ,

(6.3)

�STDr [%] = �STDa

med
(
STDCSC2(BS),i

) = med
(
STDCSC2(BS),i − STDEMPSNR2,i

)

med
(
STDCSC2(BS),i

) ,

(6.4)
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(a) TRP: SCHA, elevation cut-off angle: 10 (b) STD of the TRP estimates shown in (a)

(c) TRP: SCHA, elevation cut-off angle: 3 (d) STD of the TRP estimates shown in (c)

(e) TRP: HEID, elevation cut-off angle: 3 (f) STD of the TRP estimates shown in (e)

Fig. 6.5 Representative examples of the results of TRP estimation using CSC2(BS) and EMPSNR2
(SISC: 119.4 km, weak multipath, OFHE: 114.8 km, strong multipath; see Table 4.3)
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where med(·) denotes the median operator, and i indicates the TRP index varying
from 1 to 12 × 8 (days) = 96. Regarding the TRP estimates for the site SCHA, the
median absolute difference �TRPa amounts to about 1 cm for both elevation cut-
off angles, leading to a relative difference �TRPr of more than 5 % (see Fig. 6.5a
and c). The employment of EMPSNR2 significantly improves the standard deviations
of TRP, resulting in�STDr of 10.6 and 19.5 % for minimum elevation angles of 10
and 3◦, respectively (see Fig. 6.5b and d). As the elevation cut-off angle decreases
from 10 to 3◦, the median standard deviation of TRP decreases by 1.2 mm, which is
mainly due to the increased data volume and redundancy by including low-elevation
observations. In comparison to the SCHA-related TRP estimates, the HEID-related
ones shown in Fig. 6.5e exhibit a larger parameter change of �TRPa = 1.4 cm,
corresponding to a �TRPr of about 10 %. Furthermore, the use of EMPSNR2 pro-
duces a more significant quality enhancement of �STDr = 21.7 % (see Fig. 6.5f).
Considering the similar baseline lengths of SISC (119.4 km) and OFHE (114.8 km),
a comparison between Fig. 6.5d and f reflects the impact of strong multipath effects
on the quality of the TRP estimates.

As can be seen in Fig. 6.5a and c, the SCHA-related TRP values depict a significant
decrease on day 188. To explain this, Fig. 6.6 illustrates the TRP estimates together
with the freely available water vapour pressure data from the DWD stations WUER
and STUT, which are located relatively close to the SAPOS®site SCHA (see Fig. 4.1).
After applying a simple moving average filter, Fig. 6.6a visualises the smoothed TRP,
which maintain the long-periodic variation pattern of the original 2 h estimates and
appear to be more suitable for a comparison with the DWD meteorological data
at a lower temporal resolution of 6 h. Note that the DWD water vapour pressure
data are not observations but quantities computed based on surface temperature (T )
and humidity (RH) measurements (Mayer 2006, Sect. 8.3.2). As Fig. 6.6b shows,
the smoothed TRP values are positively correlated with the water vapour pressure
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Fig. 6.6 Physical interpretation of the SCHA-related TRP estimates using the freely available
DWD surface water vapour pressure data (SISC: 119.4 km, weak multipath, observation weighting
model: EMPSNR2; see Fig. 6.5c).
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Table 6.3 Effects of using different observation weighting models on the results of the TRP
estimation in case study 1 [�TRPa/r [cm/%], �STDa/r [mm/%]; see Eqs. (6.3) and (6.4)]

Baseline Multipath Station Elevation cut-off Elevation cut-off
Lenght [km] impact ID angle: 10◦ angle: 3◦

�TRPa/r �STDa/r �TRPa/r �STDa/r

HLTA Weak HLBR 1.4/11.6 1.0/12.0 1.8/13.0 1.2/20.6
63.2 TAUB 1.5/12.8 1.0/12.5 1.7/14.0 1.2/20.5
KAST Strong KARL 2.7/19.0 1.3/14.3 2.6/16.4 1.4/17.4
61.4 STUT 2.7/18.8 1.3/14.4 2.4/14.8 1.4/16.9
SISC Weak SIGM 0.7/4.6 0.5/10.4 0.8/5.4 0.6/19.7
119.4 SCHA 0.7/5.0 0.5/10.6 0.9/6.4 0.6/19.5
OFHE Strong OFFE 1.4/9.7 0.9/14.5 1.3/9.6 1.0/21.7
114.8 HEID 1.4/10.3 0.9/14.7 1.4/9.9 1.0/21.7
Mean − − 1.6/11.5 0.9/12.9 1.6/11.2 1.1/19.8

data from both meteorological sites, particularly on day 188. The clearly visible
disagreement on day 190 is probably due to an overestimation of the dry delay
component using the a priori Saastamoinen model, since on this day the air pressure
reaches its minimum (see Fig. 4.4a), while the water vapour pressure achieves its
maximum (see Fig. 6.6b).

Considering all analysed baselines and different elevation cut-off angles of 10
and 3◦, Table 6.3 provides the median absolute and relative differences, �TRPa/r

and �STDa/r , defined by Eqs. (6.3) and (6.4), respectively. On average, the appli-
cation of different observation weighting models, i.e., CSC2(BS) and EMPSNR2,
results in absolute TRP deviations of up to 2.7 cm, reaching approximately 20 % of
the parameter estimate. Compared to the elevation-dependent CSC2(BS), the use of
the SNR-based EMPSNR2 enhances the TRP precision as much as 1.4 mm absolutely
and 21.7 % relatively. Similar magnitudes of improvements, achieved by means
of advanced stochastic models, were also reported by Jin and Park (2005) and Jin
et al. (2010). Decreasing the elevation cut-off angle from 10 to 3◦, the numerator of
Eq. (6.4)�STDa increases (see Table 6.3), while the denominator decreases because
of the increased data volume and redundancy (cf. Fig. 6.5b and d). These two fac-
tors lead to rapidly increased �STDr from about 13 to 20 %. Within the context of
TRP estimation, more significant effects of EMPSNR2 are also observed for base-
lines with strong multipath impact (e.g., KAST, OFHE). Changes in TRP estimates
at the centimetre level and improvements in TRP precision at the millimetre level
are already significant for GNSS-based determination of atmospheric water vapour
fields (Bender et al. 2008; Fuhrmann et al. 2010, Sect. 8.3).

http://dx.doi.org/10.1007/978-3-642-34836-5_4
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Table 6.4 Effects of applying different observation weighting models on site coordinate estimates
in case study 1 [unit: mm; see Eq. (6.5)]

Analysed Length Multipath Station Cut-off angle: 10◦ Cut-off angle: 3◦
baseline [km] impact ID �Na �Ea �Ha �Na �Ea �Ha

HLTA 63.2 Weak TAUB 0.4 0.1 3.1 0.4 0.2 4.1
KAST 61.4 Strong STUT 0.4 0.9 1.6 0.3 0.5 1.3
SISC 119.4 Weak SCHA 0.2 0.1 0.9 0.2 0.1 0.5
OFHE 114.8 Strong HEID 0.3 0.2 1.8 0.5 0.2 1.5

6.1.4 Effects on Coordinate Estimates

After significant improvements in ambiguity resolution and TRP estimation have
been detected, the effects of EMPSNR2 on GPS positioning results are initially
investigated based on the median absolute coordinate difference, which is defined as

�CRDa [mm] = med
(∣∣CRDCSC2(BS),i − CRDEMPSNR2,i

∣∣) , (6.5)

where CRD represents a generic notation for the topocentric coordinates northing
(N), easting (E) and height (H). The index i varies from 1 to 8 (days), since a daily
solution produces one set of station coordinates (N, E, H). For different elevation
cut-off angles of 10 and 3◦, Table 6.4 provides �CRDa only for the rover site of
each processed baseline (see Table 4.3), as the reference site is kept fixed to its a
priori coordinates. It can be seen that the median absolute coordinate differences
induced by applying different observation weighting models are below 1 mm in the
horizontal components N and E, but can reach up to about 5 mm in the vertical
component H. Furthermore, larger �CRDa are found in the coordinate estimates of
TAUB, STUT and HEID, which coincides fairly well with the results of the TRP
estimation presented in Table 6.3. This indicates the well-known correlation between
TRP and station height estimates on the one hand, and verifies the higher degree of
effectiveness of EMPSNR2 in a strong multipath environment on the other. Using
different stochastic models to analyse long-term GPS observations collected for more
than 12 h, Jin et al. (2010) also found differences in baseline components of up to
3 mm, particularly in the height component.

In addition to examining the absolute coordinate differences, the repeatability of
daily coordinate estimates is analysed to evaluate the performance of the proposed
SNR-based weighting model in long-term relative positioning. Considering different
elevation cut-off angles and observation weighting models, Table 6.5 provides the
coordinate root mean square deviations (RMSD) of the northing, easting and height
components in a local topocentric system. Regarding the magnitudes of the RMSD
at first, the maximum is below 2 mm for the horizontal components and 4 mm for
the vertical. The small RMSD values demonstrate not only the high performance
of the Bernese GPS Software 5.0, but also the appropriateness of the applied GPS
data processing strategies. For both minimum elevation angles, increased multipath
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Table 6.5 Effects of applying different observation weighting models on site coordinate root mean
square deviations (RMSD) in case study 1 (unit: mm)

Elevation cut-off angle: 10◦ CSC2(BS) EMPSNR2

Baseline Length [km] Multipath Station ID N E H N E H

HLTA 63.2 Weak TAUB 0.9 0.6 1.1 0.9 0.9 1.8
KAST 61.4 Strong STUT 1.4 1.1 3.2 1.5 1.3 3.4
SISC 119.4 Weak SCHA 0.8 0.7 3.2 0.6 0.6 3.8
OFHE 114.8 Strong HEID 1.3 1.9 3.5 1.5 1.8 3.7
Elevation cut-off angle: 3◦
HLTA 63.2 Weak TAUB 1.1 0.7 2.0 1.4 0.8 2.3
KAST 61.4 Strong STUT 1.5 1.1 2.3 1.5 1.3 3.7
SISC 119.4 Weak SCHA 0.8 0.7 3.0 0.9 0.7 3.2
OFHE 114.8 Strong HEID 1.7 1.8 3.1 1.8 1.8 3.5

impact leads to larger RMSD, which is clearly visible in the horizontal components
(cf., e.g., SISC and OFHE) and indicates a decreased stability of the daily coordinate
estimates. For the majority of cases, decreasing the elevation cut-off angle from 10
to 3◦ affects the height repeatability in a positive manner. This arises from the use
of low-elevation observations, which improve the satellite geometry and decorrelate
the station height and TRP estimates. Such a systematic behaviour of the vertical
RMSD depending on the minimum satellite elevation angle was also detected by
Luo and Mayer (2008) in a preliminary investigation for automatic near real-time
monitoring of the GPS permanent site at the Black Forest Observatory (BFO).

Comparing the coordinate RMSD with respect to observation weighting, EMP-
SNR2 exhibits insignificant advantages over CSC2(BS) in the horizontal compo-
nents and a slight degradation in the vertical component, with a maximum of 1.4 mm
(STUT, elevation cut-off angle: 3◦). This can be explained by the following three
facts. Firstly, although some selected sites, such as STUT and HEID, have rela-
tively strong multipath effects, the SAPOS®stations are on average high-quality
continuously operating reference stations (CORS), which attenuates the degree of
efficiency of EMPSNR2. Secondly, the use of highly redundant GPS data on a daily
basis enhances the robustness of static coordinate estimates against adverse satellite
geometry and low data quality. Finally, the deficiencies in tropospheric modelling
cannot be simply compensated by an advanced stochastic model and have a stronger
impact when analysing long baselines and low-elevation data. To demonstrate the
last named argument, examples of station height increments are shown in Fig. 6.7.
For both weighting schemes, larger height variations are detected on days 188, 190
and 191 with high RH and RF measurements (see Fig. 4.4c and d). As expected, the
SNR-based EMPSNR2 is more sensitive to variable atmospheric conditions than the
elevation-dependent CSC2(BS). A comparison between Figs. 6.5c and 6.7b shows a
clear correlation between the TRP estimates and height increments.

In order to unveil the full impact of EMPSNR2 on site coordinate determina-
tion, the aforementioned three points must be taken into account when selecting and
processing GPS data. In particular, the data analysis should be carried out using
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(a) Site: STUT (baseline: KAST, 61.4 km) (b) Site: SCHA (baseline: SISC, 119.4 km)

Fig. 6.7 Representative examples of station height increments obtained by means of different
observation weighting models (elevation cut-off angle: 3◦)

short-term (e.g., several hours) and low-quality observations collected in strong
multipath environments. To ensure that the potential coordinate improvements are
actually due to the use of EMPSNR2, the tropospheric models should remain the same
as in the case study of long-term relative positioning. Nevertheless, more sophisti-
cated tropospheric delay modelling, for example, by incorporating high-resolution
meteorological data and by means of advanced mapping functions such as GMF and
VMF1, is indispensable for accurate and reliable positioning results.

6.2 Case Study 2: Short-Term Relative Positioning

The main objective of this case study is to investigate the influence of the suggested
SNR-based weighting model on site coordinate determination using short-term GPS
observations. Nonetheless, to verify the improvements achieved in case study 1, addi-
tional aspects such as ambiguity resolution and TRP estimation are also considered.
According to the result from case study 1 that the effects of EMPSNR2 on parameter
estimation become more obvious as the elevation cut-off angle decreases, the GPS
data analysis in this case study is carried out with a minimum elevation angle of 3◦
and without screening post-fit residuals in order to reach a higher degree of model
efficiency (see Table 4.5).

6.2.1 SNR Extremes and Observation Weights

Based on the information about signal quality measures provided by Landau (2006b),
all Trimble receivers applied in this case study deliver SNR0 in dBHz directly so that
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Table 6.6 Antenna-receiver-specific SNR extremes used for computing the SNR-based observation
weights in case study 2 (SNR0 in dBHz)

ARC Antenna Receiver Radome Min/Max (L1) Min/Max (L2)

I TRM55971 Trimble NetR5 TZGD 22/56 10/47
II TRM29659 Trimble 4700 TCWD 25/56 8/52
III LEIAT503 Leica SR520 LEIC 32/51 36/51
IV LEIAT303 Leica SR520 LEIC 32/51 36/51

no SNR conversion is necessary. Furthermore, the RINEX observation files contain
antenna radome types that must be taken into account in the specification of antenna-
receiver combination (ARC). Although only 3 h GPS data are processed for each
of the 21 consecutive days (DOY2007:161–181; see Sect. 4.2.3), all available SNR
measurements are used to find representative extremes for reliable weight compu-
tation. Table 6.6 provides the detected SNR extremes on L1 and L2 for different
ARC. The Leica instruments deliver the same minimum and maximum as found
in case study 1 (see Table 6.1), while the SNR0 data from the Trimble equipment
exhibit larger ranges, especially for L2 (e.g., ARCII). By examining the correspond-
ing box plots, these boundary values are analysed for extreme outliers defined as
SNR0 outside the 3 · IQR of the lower and upper quartiles (IQR: interquartile range;
see Fig. 5.1b). For a sample data set from a normal distribution with N (μ, σ 2), the
3-IQR limit corresponds approximately to μ ± 5σ (Falk et al. 2002, p. 29). The
results showed that the SNR extremes given in Table 6.6 are non-outliers and can be
substituted into Eq. (5.12) to calculate the SNR-based observation weights.

For the selected 3 h processing time interval, i.e., 15–18 h in GPS time (see
Fig. 4.5), Fig. 6.8 compares the observation weights produced by CSC2(BS) and
EMPSNR2 under different aspects. While the elevation-dependent weights exhibit a
uniform behaviour, the SNR-based ones illustrate obvious variations with respect to
carrier frequency, antenna-receiver combination, site-specific multipath impact and
near-ground atmospheric conditions. Furthermore, for low- and medium-elevation
observations, EMPSNR2 generally provides higher weights than CSC2(BS).

Regarding the individual plots of Fig. 6.8, the SNR-based weights shown in
Fig. 6.8a display the typical characteristics of the analysed Leica ARC (see Fig. 6.3d
and e). In spite of a relatively short observation period of 3 h, the BIBE-related SNR0
values cover the full ranges of [32, 51] and [36, 51] for L1 and L2, respectively,
defined by the associated global extremes (see ARCIII in Table 6.6). Considering the
same day but another ARC, for instance, ARCII, Fig. 6.8b depicts obviously different
variation patterns of the SNR-based weights, especially for L2. Substituting the L1
local minimum SNR01 = 29 dBHz and the L2 local maximum SNR02 = 48 dBHz
into Eq. (5.12), along with the corresponding global SNR extremes presented in
Table 6.6, the resulting minimum L1 and maximum L2 weights are equal to 0.05
and 0.85, respectively. In Fig. 6.8c, the SNR-based weights are shown for the site
DARM, which is strongly affected by multipath effects (see Fig. 4.6c). The weight
values exhibit larger variation ranges and a decreasing tendency for L1 observations
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(a) Site BIBE, weak MP, ARCIII, day 165, SNR0min
1/2 = 32 /36 dBHz, SNR0max

1/2 = 51/51 dBHz

(b) Site AFBG, weak MP, ARCII, day 165, SNR0min
1/2 = 29 /8 dBHz, SNR0max

1/2 = 55/48 dBHz

(c) Site DARM, strong MP, ARCI, day 165, SNR0min
1/2 = 29/12 dBHz, SNR0max

1/2 = 55/44 dBHz

(d) Site DARM, strong MP, ARCI, day 166, SNR0
min
1/2 = 26 /12 dBHz, SNR0max

1/2 = 55/45 dBHz

EMPSNR2
CSC2(BS)

EMPSNR2
CSC2(BS)

EMPSNR2
CSC2(BS)

EMPSNR2
CSC2(BS)

EMPSNR2
CSC2(BS)

EMPSNR2
CSC2(BS)

EMPSNR2
CSC2(BS)

EMPSNR2
CSC2(BS)

Fig. 6.8 Comparison of the observation weights produced by CSC2(BS) and EMPSNR2 for short-
term (3 h) and high-frequency (1 Hz) GPS measurements (MP: multipath; see Table 4.1 for site
characteristics and Table 6.6 for global SNR extremes)
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at elevation angles above 60◦. For the same site DARM and day 166, on which high
relative humidity (RH) and precipitation (RF) were registered at the DWD mete-
orological sites (see Fig. 4.8c and d), Fig. 6.8d depicts significant variations in the
SNR-based weights. This emphasises the necessity of such a realistic observation
weighting model in the presence of strong multipath effects, particularly under vari-
able atmospheric conditions. In this case, changes in site environment, for example,
surface moisture content, may considerably affect site-specific multipath character-
istics, leading to substantial variations in GPS observation quality.

The larger the differences between the weights from CSC2(BS) and EMPSNR2,
the more significant the effects on GPS parameter estimation. In comparison to
CSC2(BS), the impacts of EMPSNR2 on ambiguity resolution, TRP estimation and
coordinate determination are analysed in the following sections. Special attention is
paid to the evaluation of site coordinates, which is strongly related to the results of
ambiguity resolution and TRP estimation.

6.2.2 Effects on Ambiguity Resolution

In this case study, the phase ambiguities are resolved using the same algorithm
that was employed in case study 1 (i.e., SIGMA-dependent strategy, LC5, LC3; see
Table 4.5). To demonstrate the advantages of EMPSNR2 over CSC2(BS) in ambigu-
ity resolution, Fig. 6.9 compares the percentages of the resolved wide-lane (WL) and
narrow-lane (NL) ambiguities with respect to baseline length and multipath impact.
As Fig. 6.9a shows, for the shortest baseline AFLO (32.4 km), very slight improve-
ments in WL ambiguity resolution are visible, while the application of EMPSNR2
increases the percentages of the resolved NL ambiguities by up to 18.5 % (day 172).
The effect of this significant enhancement on coordinate estimation will be discussed
in Sect. 6.2.4. Regarding the longest baseline RATA (203.7 km), the results of WL
and NL ambiguity resolution are improved by an average of about 5 and 9 %,
respectively, when utilising EMPSNR2 instead of CSC2(BS). A comparison between
Fig. 6.9a and b indicates that the performance of ambiguity resolution degrades with
increasing baseline length, which is particularly obvious when examining the results
of the NL ambiguity resolution. Moreover, it is interesting to note that the days on
which fewer NL ambiguities are resolved, i.e., 163, 164, 169 and 173, correspond to
the days with high precipitation (RF) measurements at the DWD sites KEMP and
WUER, being located near the SAPOS®stations RAVE and TAUB, respectively (see
Figs. 4.1 and 4.8). Such day-to-day variations in the success rates of NL ambiguity
resolution were also observed in case study 1 (see Sect. 6.1.2). Comparing the base-
lines TAAF and HEDA which have similar lengths but different multipath effects,
Fig. 6.9c and d depict average increases in NL ambiguity resolution of 7.4 and 5.2 %,
respectively, if the proposed SNR-based weighting model EMPSNR2 is applied in
place of the standard elevation-dependent CSC2(BS).

Considering all baselines analysed in this case study, Table 6.7 presents the total
results of ambiguity resolution using different observation weighting models. Replac-
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(a)AFLO: 32.4 km, weak MP (left: WL AMB resolution, right: NL AMB resolution)

(b) RATA: 203.7 km, weak MP (left: WL AMB resolution, right: NL AMB resolution)

(c) TAAF: 53.7 km, weak MP,
NL AMB resolution

(d) HEDA: 54.1 km, strong MP,
NL AMB resolution

Fig. 6.9 Representative examples of the results of ambiguity (AMB) resolution using CSC2(BS)
and EMPSNR2 (elevation cut-off angle: 3◦, MP: multipath; see Table 4.3)
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Table 6.7 Effects of applying different observation weighting models on the total results of phase
ambiguity resolution in case study 2 (elevation cut-off angle: 3◦)

Baseline CSC2(BS) EMPSNR2 Improvement
Number/Percent Number/Percent Total Max

�AMB WL NL �AMB WL NL WL NL WL NL

AFLO 1007 983/97.6 770/76.5 1007 986/97.9 828/82.2 0.3 5.7 6.7 18.5
SIBI 769 725/94.3 521/67.8 769 729/94.8 564/73.3 0.5 5.5 3.1 17.5
TAAF 639 608/95.1 429/67.1 639 606/94.8 476/74.5 −0.3 7.4 0.0 14.8
HEDA 661 609/92.1 435/65.8 661 611/92.4 469/71.0 0.3 5.2 6.9 17.3
RATA 735 608/82.7 397/54.0 735 644/87.6 460/62.6 4.9 8.6 14.7 18.4

ing the conventional CSC2(BS) by the advanced EMPSNR2 within GPS data analy-
sis, the average success rates of WL and NL ambiguity resolution can be improved by
up to 4.9 and 8.6 %, respectively. The corresponding maximum daily enhancements
amount to 14.7 and 18.5 %, coinciding with the respective maximum improvements
of 16.7 and 23.9 % found in case study 1 (see Table 6.2). While EMPSNR2 leads to
considerable increases in WL ambiguity resolution only for long baselines (>100 km;
e.g., RATA), significant improvements in NL ambiguity resolution are also detected
for short baselines (<40 km; e.g., AFLO). In addition to the results of ambiguity solu-
tion summarised over the whole investigation period of 21 days, representative daily
results are provided in Table D.2 for AFLO and RATA, and in Table D.3 for TAAF
and HEDA. In Table D.2, the AFLO-related daily numbers of ambiguities (#AMB)
show extremely large values on days 171 and 172, while a significant improvement
in NL ambiguity resolution is achieved only on day 172 (see Fig. 6.9a). This will be
discussed in more detail in Sect. 6.2.4.

6.2.3 Effects on Troposphere Parameters

Prior to analysing the effects of EMPSNR2 on site-specific troposphere parameter
(TRP) estimation, Fig. 6.10 shows some results of the determination of an appropriate
TRP time span using short-term (1 h) and high-frequency (1 Hz) GPS observations.
To illustrate the worst-case scenario with respect to multipath impact, the DARM-
related TRP estimates and standard deviations, obtained by specifying different time
spans of 5, 10, 15, 30 and 60 min, are compared for two representative days, 167
and 174. According to the DWD surface meteorological data depicted in Fig. 4.8,
dry atmospheric conditions prevailed on day 167, while on day 174 there was high
relative humidity (RH) and significant precipitation (RF) in the northern part of the
investigation area (see the DWD sites FRAN and WUER). These differences in near-
ground atmospheric conditions are clearly reflected by the different magnitudes of
the corresponding TRP values (cf. Fig. 6.10a and c). Using a larger time window,
TRP can be more precisely estimated due to the higher observation redundancy
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(a) TRP: DARM, day 167: dry (b) STD of the TRP estimates shown in (a)

(c) TRP: DARM, day 174: humid (d) STD of the TRP estimates shown in (c)

Fig. 6.10 Representative examples of TRP estimation using different time spans (base-
line: HEDA, 54.1 km, strong multipath effects, elevation cut-off angle: 3◦, observation weighting
model: CSC2(BS), sampling interval: 1 s, processing time interval: 17–18 h)

(see Fig. 6.10b and d). However, at the same time, more details in the temporal
variations of TRP are neglected because of the decreased parameter number. For
both dry and humid atmospheric conditions, a time span of 15 min turns out to
be a reasonable compromise between adequate delay characterisation and reliable
parameter estimation. Within the context of GPS meteorology, such a 15 min TRP
time interval was also used by Bender et al. (2008) to achieve an optimum evaluation
of the zenith tropospheric delay. Additional examples of the span determination are
provided in Fig. C.2 to demonstrate the appropriateness of the selected TRP time
window to short-term GPS relative positioning using high-frequency data.

Considering multipath impact and baseline length, Fig. 6.11 illustrates examples
of the results of TRP estimation using different observation weighting schemes.
A comparison between AFBG and DARM shows that strong multipath effects sig-
nificantly amplify the TRP noise level and increases the median standard deviation
from about 5 mm (AFBG) to 8 mm (DARM) (cf. Fig. 6.11b and d). For the site DARM
(see Fig. 6.11c and d), the use of different observation weighting models results in
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(c) TRP: DARM, HEDA: 54.1 km, strong MP (d) STD of the TRP estimates shown in (c)
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Fig. 6.11 Representative examples of the results of TRP estimation using CSC2(BS) and
EMPSNR2 (elevation cut-off angle: 3◦, TRP time span: 15 min, MP: multipath)
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Table 6.8 Effects of applying different observation weighting models on the results of the TRP
estimation in case study 2 [see Eqs. (6.3) and (6.4)]

Analysed Length Multipath Station Elevation cut-off angle: 3◦
baseline [km] impact ID �TRPa/r [cm/%] �STDa/r [mm/%]

AFLO 32.4 Weak AFBG 4.6/19.8 1.1/13.3
LOHR 4.5/20.2 1.1/13.4

SIBI 42.5 Weak SIGM 1.9/13.8 0.7/12.2
BIBE 1.9/14.2 0.7/12.5

TAAF 53.7 Weak TAUB 2.3/14.0 0.5/8.2
AFBG 2.3/13.5 0.5/8.4

HEDA 54.1 Strong HEID 5.2/40.4 2.5/24.1
DARM 5.1/38.1 2.4/23.7

RATA 203.7 Weak RAVE 0.5/3.8 0.2/13.3
TAUB 0.5/3.2 0.2/14.5

Mean − − − 2.9/18.1 1.0/14.4

significant �TRPa/r and �STDa/r values of 5.1 cm/38.1 % and 2.4 mm/23.7 %,
respectively [see Eqs. (6.3) and (6.4)]. As the baseline length increases, for example,
from TAAF (53.7 km) to RATA (203.7 km), the median TRP standard deviation
decreases from about 5 mm for AFBG to 1.5 mm for TAUB (cf. Fig. 6.11b and f).
Such improved TRP precision with increasing baseline length was also reported by
Luo et al. (2007, p. 67), which may be explained by the decreased correlation in the
observation and parameter domains for larger separation distances.

In addition, DWD surface meteorological data are used to support the inter-
pretation of the significant differences in the TRP estimates, which are marked in
Fig. 6.11a, c and e. As Fig. 4.8c shows, relatively high RH of 77 % was measured
on day 161 at the DWD station FRAN, which is located close to the SAPOS®site
AFBG (see Fig. 4.1). Day 166 is the most humid time over the entire investigation
period, which affects the SNR-based observation weights of DARM in a significant
manner (see Fig. 6.8d). On day 164, a high RH of 82 % and large RF of 26 mm
were registered by the DWD station KEMP, which is not far from the SAPOS®site
RAVE (see Fig. 4.8c and d). The correlation between the considerable deviations in
the TRP estimates and the DWD surface metrological data verifies the high sensi-
tivity of EMPSNR2 to variations in the near-ground atmospheric conditions, which
takes a further step towards a realistic assessment of GPS observation quality.

On the basis of�TRPa/r and�STDa/r given by Eqs. (6.3) and (6.4), respectively,
Table 6.8 presents the effects of different observation weighting on the results of
TRP estimation for all baselines analysed in this case study. The employment of
different weighting models results in �TRPa values of up to 5.2 cm, appearing to
increase with increasing multipath impact and to decease with increasing baseline
length. In comparison to CSC2(BS), the use of EMPSNR2 improves on average the
TRP standard deviations by as much as 2.5 mm absolutely and 24.1 % relatively.
The enhancements in the TRP standard deviations, i.e., �STDa, are affected by

http://dx.doi.org/10.1007/978-3-642-34836-5_4
http://dx.doi.org/10.1007/978-3-642-34836-5_4
http://dx.doi.org/10.1007/978-3-642-34836-5_4


6.2 Case Study 2: Short-Term Relative Positioning 185

multipath impact and baseline length in a similar manner as to the differences in
the TRP estimates, i.e., �TRPa. The mean �TRPa resulting from case study 2 is
nearly twice as large as that from case study 1, while the mean�STDa from both case
studies are at a comparable level (cf. Tables 6.3 and 6.8). Due to the strong correlation
between station height and TRP estimates (Dach et al. 2007, p. 241), significant
changes in TRP may lead to considerable variations in the vertical component of a
site’s coordinates. This provides additional motivation for examining the effects of
EMPSNR2 on station coordinate determination.

6.2.4 Effects on Coordinate Estimates

To verify the impact of significant changes in TRP on site coordinate estimates,
Fig. 6.12 illustrates examples of absolute differences of topocentric coordinates deter-
mined by means of CSC2(BS) and EMPSNR2. As can be seen from Fig. 6.12a–c,
cm-level coordinate changes are possible when significant deviations in the corre-
sponding TRP estimates are present, for example, on days 161, 166 and 164 as shown
in Fig. 6.11a, c and e, respectively. Moreover, it is interesting to see that large coor-
dinate differences are found not only in the station height, but also in the horizontal
components, particularly for the site DARM, which is strongly affected by multi-
path effects. These considerable coordinate variations, occurring under non-ideal
observational conditions such as a highly variable atmosphere and a strong multi-
path environment, demonstrate the realistic properties of the proposed SNR-based
weighting model and its applicability to short-term GPS relative positioning using
low-quality data. Compared to the other three examples, Fig. 6.12d depicts clearly
larger horizontal coordinate differences. This is mainly attributed to the low data
quality caused by numerous observation gaps and short periods of measurements,
as mentioned within the context of multipath analysis in Sect. 4.2.3 (see Fig. 4.7a).
Additional discussion of this phenomenon will be provided later in this section when
analysing the influence of EMPSNR2 on coordinate repeatability.

As Fig. 6.12 illustrates, in the presence of outliers, it is particularly appropriate to
use the median absolute coordinate difference �CRDa, given by Eq. (6.5), to assess
the average effect of EMPSNR2 on site coordinate estimates. The resulting�CRDa

are provided in Table 6.9 and show a dominant impact on the height component with
a maximum of 6.1 mm for the site DARM. Position changes at this level are sig-
nificant for studies involving highly precise and sensitive detection of recent crustal
movements using CORS (Knöpfler et al. 2010). Furthermore, comparing the coordi-
nate differences in the horizontal components, larger values are found in the northing
component, which was also observed in case study 1 (see Table 6.4).

After analysing the absolute coordinate changes induced by different observation
weighting, Table 6.10 gives an impression of the effect of EMPSNR2 on coordinate
repeatability. Thereby, the root mean square deviations (RMSD) of the daily coordi-
nate solutions from the arithmetic mean are presented in the local topocentric system.
Due to the short observation period of 3 h, the coordinate estimates from this case

http://dx.doi.org/10.1007/978-3-642-34836-5_4
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Fig. 6.12 Examples of absolute differences of topocentric coordinates estimated by means of
different observation weighting models (MP: multipath; cf. Fig. 6.11a, c and e)

study exhibit cm-level repeatability, which is obviously larger than that from case
study 1 using daily GPS measurements (see Table 6.5). Nevertheless, the employ-
ment of EMPSNR2 seems to considerably improve both the horizontal (e.g., LOHR)
and vertical (e.g., DARM) coordinate repeatability. However, degraded stability in
the height component is also observed (e.g., TAUB). In the following examples, daily
coordinate increments are investigated in more detail in order to provide a realistic
picture of the positive impact of EMPSNR2 on coordinate repeatability.

Figure 6.13 depicts the height increments of the stations for which considerable
deviations in the TRP estimates are detected in Fig. 6.11a, c and e. On days 161, 166
and 164 when there are large differences in the estimated TRP for AFBG, DARM
and TAUB, respectively, significant discrepancies are found in the corresponding
height increments. For the site DARM, which is strongly affected by multipath
effects, noticeable changes are also visible on days 161 and 162, coinciding with
the large coordinate differences in Fig. 6.12b. While the height increments of AFBG
and DARM are enhanced by applying EMPSNR2 instead of CSC2(BS), the TAUB-
related ones experience a negative impact. In particular, the height increment on day
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Table 6.9 Effects of applying different observation weighting models on site coordinate estimates
in case study 2 [unit: mm; see Eq. (6.5)]

Analysed Length Multipath Station Elevation cut-off angle: 3◦
baseline [km] impact ID �Na �Ea �Ha

AFLO 32.4 Weak LOHR 1.3 0.8 3.5
SIBI 42.5 Weak BIBE 0.5 0.5 1.0
TAAF 53.7 Weak AFBG 0.8 0.5 1.8
HEDA 54.1 Strong DARM 1.0 0.6 6.1
RATA 203.7 Weak TAUB 0.5 0.3 1.8

Table 6.10 Effects of applying different observation weighting models on site coordinate root
mean square deviations (RMSD) in case study 2 (unit: cm)

Elevation cut-off angle: 3◦ CSC2(BS) EMPSNR2

Baseline Length [km] Multipath Station ID N E H N E H

AFLO 32.4 Weak LOHR 2.1 3.9 1.0 0.6 1.2 1.2
SIBI 42.5 Weak BIBE 0.6 0.3 1.2 0.7 0.3 1.3
TAAF 53.7 Weak AFBG 1.3 1.0 1.6 1.3 0.9 1.5
HEDA 54.1 Strong DARM 0.8 1.5 2.3 0.9 1.0 1.8
RATA 203.7 Weak TAUB 0.6 0.3 1.4 0.6 0.4 1.8
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Fig. 6.13 Representative examples of station height increments corresponding to the TRP estimates
with significant differences shown in Fig. 6.11a, c and e (MP: multipath)

164 increases to a similar level as seen on day 173. Considering the related DWD
surface meteorological data from WUER, KONS and KEMP (see Fig. 4.8), humid
atmospheric conditions prevailed on days 164 and 173. This indicates that the use
of EMPSNR2 does not necessarily improve coordinate repeatability, but produces
more realistic and physically interpretable results.

In addition to the vertical component, Fig. 6.14 depicts examples of easting coor-
dinate increments, along with the daily number of double-difference observations
(#OBS) and daily number of phase ambiguities (#AMB). It can be seen that the use
of EMPSNR2 improves the coordinate estimates by 4.7 cm on day 166 for DARM
(see Fig. 6.14a) and 16.5 cm on day 172 for LOHR (see Fig. 6.14c). This corresponds

http://dx.doi.org/10.1007/978-3-642-34836-5_4
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Fig. 6.14 Comparison of easting coordinate (CRD) increments with respect to observation weight-
ing model, daily number of double-difference observations (#OBS) and daily number of phase
ambiguities (#AMB) (MP: multipath)

to the significant absolute coordinate differences |�E| illustrated in Fig. 6.12b and
d. For the baseline HEDA with strong multipath impact, both #OBS and #AMB are
relatively constant over time (see Fig. 6.14b). Therefore, the DARM-related example
demonstrates the fact that EMPSNR2 is capable of dealing with multipath variations
induced by variable atmospheric conditions, for example, changes in the surface
moisture content (day 166: high RH; see Fig. 4.8c). In contrast, the AFLO-related
#OBS and #AMB exhibit strong variations on days 171 and 172, which are also
visible in the LOHR-related multipath index shown in Fig. 4.7a. Despite a large
#AMB of 262 on day 171, there exist adequate observations with which more than
80 % of the NL ambiguities are resolved (see Fig. 6.9a). However, on day 172, #AMB
remains more or less the same, while #OBS is only half as much as that on day 171,
resulting in the lowest success rate of NL ambiguity resolution using CSC2(BS).
Under this circumstance, the employment of EMPSNR2 significantly enhances the
percentage of the resolved NL ambiguities by 18.5 %, leading to accurate coordinate
estimates in spite of the limited data quality. Therefore, the LOHR-related example
shows the applicability of EMPSNR2 to short-term and low-quality GPS data.

http://dx.doi.org/10.1007/978-3-642-34836-5_4
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Based on the more detailed analysis of site coordinate increments, it becomes
evident that the apparently considerable decreases in the coordinate RMSD pre-
sented in Table 6.10 are mainly due to the occurrence of special cases with respect
to atmospheric variability and data quality. Under normal observational conditions,
a general improvement in station coordinate determination by means of EMPSNR2,
however, cannot be verified through this case study. Taking the coordinate RMSD
of the site BIBE as an example (see Table 6.10), the use of EMPSNR2 instead of
CSC2(BS) seems to exert only a minor influence on coordinate repeatability. In order
to exploit the full potential of EMPSNR2, additional case studies are necessary, par-
ticularly considering observation period, data quality and processing technique (e.g.,
precise point positioning).

6.3 Concluding Remarks

In comparison to the elevation-dependent observation weighting model CSC2(BS),
which is implemented by default in the Bernese GPS Software 5.0, this chapter
verified the efficiency of the proposed SNR-based weighting scheme EMPSNR2 in
long- and short-term relative positioning. By considering baseline length, multipath
impact, minimum elevation angle and atmospheric conditions, parameter estimates
such as phase ambiguities, site-specific troposphere parameters (TRP) and station
coordinates were analysed with respect to observation weighting. A physical inter-
pretation of the results was achieved by incorporating freely accessible DWD surface
meteorological data. The main findings from two representative case studies are sum-
marised as follows:

• Despite the complexity induced by SNR conversion, the observation weights
derived using signal quality measures reflect variations in receiver characteris-
tics, site quality and atmospheric conditions. Compared to CSC2(BS), EMPSNR2
produces higher weights for low- and medium-elevation data, increasing their
contributions to parameter estimation.

• Using EMPSNR2 instead of CSC2(BS) to resolve double-difference phase ambi-
guities, an average improvement of 10 % can be expected in both wide-lane
(WL) and narrow-lane (NL) ambiguity resolution. While the advantages in resolv-
ing the WL ambiguities are primarily found for long baselines (e.g., >100 km),
the enhancements in resolving the NL ambiguities are also detected for shorter
baselines (e.g., < 40 km).

• A switch from CSC2(BS) to EMPSNR2 may lead to cm-level (20 %) changes
in site-specific TRP estimates and mm-level (20 %) improvements in the associated
standard deviations. The degree of efficiency of EMPSNR2 seems to increase with
increasing multipath impact and decreasing elevation cut-off angle, for example,
from 10 to 3◦.
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• Under normal observational conditions (i.e., calm atmosphere and weak multi-
path), the employment of EMPSNR2 instead of CSC2(BS) results in coordinate
changes of up to about 5 mm. However, when analysing short-term and low-quality
GPS data, EMPSNR2 may significantly improve site coordinate estimates at the
cm- or even dm-level.

The effects of EMPSNR2 on the results of parameter estimation are not indepen-
dent from each other, but are mutually related. For example, improved ambiguity
resolution may enhance the performance of TRP estimation, and both improvements
together contribute to accurate and reliable coordinate determination. Furthermore,
in spite of their low temporal (6 h) and spatial (6 sites) resolution, the freely available
DWD surface meteorological data played an important role in the physical interpre-
tation of the results, providing a realistic picture of the model efficiency.
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Chapter 7
Residual-Based Temporal Correlation
Modelling

This chapter describes a residual-based approach to modelling temporal correlations
of GPS observations. Section 7.1 reviews previous studies on temporal correlation
modelling and their main achievements. Next, Sect. 7.2 presents a decomposition
procedure using the studentised residual, which is more suitable for temporal cor-
relation analysis than the least-squares (LS) residual. At the preliminary stage of
the residual-based temporal correlation modelling, the remaining systematic sig-
nals, caused by multipath effects for instance, are extracted via Vondrák filtering
and sidereal stacking. Thereby, the determination of appropriate filter parameters
and orbit repeat times, as well as statistically rigorous outlier handling, play an
important role. The resulting noise component is almost free of systematic effects
and can be used to study the temporal correlation properties of GPS observations.
Finally, for each decomposed noise series, the best-fitting autoregressive moving
average (ARMA) model is automatically identified by means of the freely available
MATLAB® Toolbox ARMASA. Section 7.3 provides a deeper insight into ARMA
modelling with respect to order selection and parameter estimation.

7.1 Review of Previous Work

As summarised in Table 3.10, for modelling temporal correlations of GPS obser-
vations, several approaches have been proposed, such as autocorrelation function
(ACF), variance component estimation (VCE), ARMA processes and atmospheric
turbulence theory. Analysing baselines mainly ranging between 10 and 60 km,
El-Rabbany (1994, p. 34) described the temporal correlation behaviour by fitting
empirical correlation functions of exponential and polynomial types to the sample
ACF of double-difference phase residuals. The exponential function

fAE(h) = exp(−|h|/T) (7.1)

X. Luo, GPS Stochastic Modelling, Springer Theses, 193
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was found to be the best LS approximation for the ACF of GPS phase residuals.
The term h is the time shift (or lag), and T denotes the unknown correlation time
corresponding to the 1/e point, where e is Euler’s number. It was concluded that
GPS double-difference observations are positively correlated, and the correlation
time takes values of 263, 270 and 169 s for L1, L2 and the ionosphere-free linear
combination LC3, respectively. These results are generally valid for baselines of up
to 100 km. Moreover, there is no particular trend for correlation time as a function
of baseline length until this distance (El-Rabbany 1994, pp. 36, 89).

Howind et al. (1999) integrated the temporal correlation function given by
Eq. (7.1) into the LS adjustment process to assess the sensitivity of the estimated site
coordinates in GPS networks with long baselines (e.g., 548 km). Significant coordi-
nate changes of up to 2 cm are possible, with the largest variations in the longitude
and ellipsoidal height. Accordingly, the consideration of temporal correlations turns
out to be an important issue when using GPS observations for deformation analysis.
The origin of temporal correlations is attributed to the influence of the troposphere.
El-Rabbany and Kleusberg (2003) presented a modified sequential LS adjustment
in which temporal correlations are modelled by means of Eq. (7.1). For all analysed
baselines, the neglect of temporal correlations has insignificant effects on parameter
estimates, but results in over-optimistic accuracy measures and a smaller size of the
confidence hyperellipsoid (i.e., shorter ambiguity search time). Increasing the data
sampling interval from 20 s to 10 min, the coordinate standard deviations obtained by
neglecting temporal correlations approach those derived with temporal correlations
considered. It was also concluded that there exists no particular relationship between
correlation time and baseline length. For sampling intervals shorter than 5 min, an
increase of 30 % in correlation time (from 263 to 342 s) increases the coordinate
standard deviations by 20–30 %.

Howind (2005, p. 57) suggested another empirical correlation function that con-
sists of an exponential and a cosine oscillation component:

fJH(h) =
⎧⎨
⎩

1, if h = 0,

0.5 · exp

(
− h

ND1

)
cos

(
2π · h

ND1 · P

)
, if h ≥ 1,

(7.2)

where ND1 is known as the zero-crossing correlation length, and P denotes the oscil-
lation period. While the parameter ND1, representing the smallest lag value at which
the sample ACF falls below zero, is determined numerically, the unknown period P is
estimated using a LS regression on the sample ACF of detrended double-difference
residuals. Applying this correlation model to relative positioning in the Antarctic
GPS network, the phase observations are found to be positively correlated over time,
and the correlation lengths reach about 300 s for short baselines (14 km) and 15 min
for long baselines (127–433 km). Furthermore, in terms of short-baseline solutions,
the extension of the GPS stochastic model by considering temporal correlations
leads to insignificant changes in coordinate estimates, but to more realistic (twice
as large) coordinate errors. For long-baseline solutions, both coordinate estimates
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and the associated accuracy measures are considerably improved by taking temporal
correlations into account.

On the basis of stochastic parameters estimated by analysing raw GPS observa-
tions, Leandro and Santos (2007) developed an empirical stochastic (ESto) model
to construct the variance-covariance matrix (VCM) for pseudo-range measurements.
The temporal and spatial correlations are determined using sample auto- and cross-
correlation functions of double-difference code observations, which are initially
reduced by the approximate geometric distances between the receiver and satellite
antennas in order to satisfy the stationarity assumption. The ESto model provides a
good approximation of the residual autocorrelation, which decreases with decreas-
ing satellite elevation angle. Using ESto to analyse the C/A-code data from a short
baseline of 2 km, coordinate biases can be significantly reduced by up to 37 cm
(71 %), particularly in the height component. Moreover, in comparison to a scaled
identity matrix and an empirically determined elevation-dependent variance model,
ESto produces more realistic coordinate errors.

Using high-frequency (e.g., 1 and 5 Hz) single- and double-difference residuals
from zero and short baselines (e.g., 3 and 10 m), the stochastic analyses carried out by
the Delft group focused on the receiver-dependent noise and correlation character-
istics. Examining the correlograms of LS residual time series, Tiberius et al. (1999)
reported temporal correlation lengths of about 10 s for L2 observations, while L1
measurements were found to be temporally uncorrelated. In addition, by applying
different signal processing techniques, various receivers may exhibit distinctly dif-
ferent temporal correlation properties. Analysing zero-baseline residual time series
by means of sample ACF, Borre and Tiberius (2000) showed that a GPS receiver is
indeed capable of providing temporally uncorrelated observations at a sampling rate
of 1 Hz. However, significant temporal correlations of 0.8–0.9 may exist between
consecutive 5 Hz observations. This is because, at high sampling rates between 5
and 10 Hz, a default tracking loop bandwidth may not be sufficiently large to provide
independent measurements (Braasch and van Dierendonck 1999). By studying the
noise characteristics of seven commonly used GPS receivers, Bona (2000) found that
the noise was seldom white, particularly for code observations.

Although the VCE technique has been successfully used to estimate observation
variances, as well as covariances between channels (spatial correlations) and between
observation types (cross correlations) (Wang et al. 1998; Tiberius and Kenselaar
2000; Satirapod et al. 2002; Amiri-Simkooei et al. 2009; Li et al. 2011), it is rarely
applied to modelling temporal correlations of GPS observations. By estimating time
covariances based on 1 Hz residuals from a zero-baseline, Tiberius and Kenselaar
(2003) verified the conclusions drawn by Tiberius et al. (1999), namely the absence
of temporal correlations on L1 and correlation lengths of about 10–20 s on L2. How-
ever, the assessment of GPS receiver noise using zero-baselines does not necessarily
provide an accurate indication of receiver performance (Langley 1997; Richter and
Green 2004). Analysing 1 Hz residuals from ultra-short baselines of about 5 m, Li
et al. (2008) detected significant temporal correlations for all observation types, being
larger than 0.5 at a lag of 50 s.
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Another mathematical approach to describe the temporal correlation behaviour of
GPS observations is to fit stochastic processes to residual time series. For example,
Wang et al. (2002) employed first-order autoregressive processes [AR(1)] within a
stochastic assessment procedure, which accounts for the heteroscedastic, spatially
and temporally correlated error structure of GPS observations. Thereby, the temporal
correlation coefficients are first estimated to transform the original double-difference
observations into temporally uncorrelated measurements whose VCM has a block-
diagonal structure and can be obtained by means of VCE (e.g., MINQUE). The final
parameter estimation is carried out using the transformed observations and the asso-
ciated VCM. Applying this advanced stochastic assessment to baseline solutions,
essentially random residuals are obtained for different baseline lengths of 15 m,
215 m and 13 km. While more reliable ambiguity resolution is achieved for the short
baseline of 15 m, significant changes of up to 1 cm in the height component are found
for the longer baselines of 215 m and 13 km. This procedure is only suitable for short
observation periods as it assumes that the AR(1) coefficients and the variances of
GPS observations are time-invariant for the entire observation period. To process
long-term observation data sets, Satirapod et al. (2001) suggested a segmented sto-
chastic modelling method, which effectively deals with long observation periods and
comes up with a computationally more efficient approach for VCE. The employment
of this advanced modelling procedure in medium-baseline (e.g., 23 and 75 km) solu-
tions leads to more random residuals and mm-level accuracy improvements in the
estimated baseline components. Borre and Tiberius (2000) also made use of AR(1)
processes to describe receiver temporal correlations, where the results are strongly
dependent on the observation and receiver types.

Starting from the origin of the physical correlations between GPS signals propa-
gating through the Earth’s lower atmosphere, namely turbulent irregularities, Schön
and Brunner (2008a) developed a fully populated variance-covariance model based
on atmospheric turbulence theory. Assuming Taylor’s hypothesis of frozen turbu-
lence (Wheelon 2001, p. 240), temporal correlations are converted into spatial cor-
relations with the help of wind velocity and direction. In the absence of wind, only
the slowly varying satellite geometry decorrelates GPS observations. Consequently,
based on the results of simulation studies, large correlation lengths of up to 3,600 s
are possible. The introduction of a wind vector with a moderate velocity of 4 m/s
significantly changes the correlation structure and reduces the correlation length
to about 600 s. Furthermore, low-elevation observations are found to be less cor-
related over time due to the faster changing characteristic separation distances of
the lines-of-sights at low elevation angles. Employing the VCE method, Schön and
Brunner (2008b) proposed the SIGMA-C model that combines the SIGMA-ε model
(Hartinger and Brunner 1999) with a fully populated VCM derived using atmospheric
turbulence theory. Analysing GPS data from the specially designed Seewinkel test
network, which consists of six exactly aligned GPS sites and provides baselines of
1 to 16 km, the SIGMA-C model produces physical correlation patterns of GPS
double-difference observations that are similar to those obtained by means of sam-
ple auto- and cross-correlation functions. Using representative model parameters and
wind vectors, temporal correlations over about 300 s are reported, with a sharp drop
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from 100 to 50–60 % at a lag of 1 epoch (1 s). In comparison to temporal correlations,
only marginal (<20 %) spatial correlations between double-differences are detected.
In addition, the use of SIGMA-C delivers more realistic formal coordinate variances
in spite of highly redundant observation data.

Focusing on the effects of physical correlations on long-baseline (e.g., about
1,500 km) positioning and tropospheric zenith path delay (ZPD) estimation, Jin
et al. (2010) applied the residual-based stochastic model that relies upon the classi-
cal variation covariance (equivalent to Method 3 in Satirapod et al. 2001). For long
observation periods, the entire session is divided into short segments for which a
time-invariant stochastic model can be assumed due to the slowly changing error
characteristics over time. Comparing this residual-based stochastic model with a
scaled identity matrix, differences reach about 1 cm in the troposphere parameters
and as much as 3–6 mm in the baseline components, particularly in the height esti-
mate. Furthermore, taking physical correlations into account, the baseline and ZPD
estimates are closer to the reference values.

By differencing observations across adjacent epochs, Petovello et al. (2009) pre-
sented a new Kalman filter formulation, which not only cancels time-correlated errors
in GPS observations, but also gives full consideration to measurement noise. In both
simulated and field studies, where time-correlated errors are generated and approxi-
mated by means of first-order Gauss-Markov processes, the conventional Kalman fil-
ter neglects temporal correlations and produces over-optimistic estimates of position
errors. In contrast, the proposed algorithm delivers more realistic accuracy measures,
which are closer to the actual values if the magnitude of the time-correlated error is
significantly (e.g., 5 times) larger than that of the measurement noise.

To summarise, although based on different modelling theories, all of the afore-
mentioned approaches aim for accurate parameter estimates and realistic quality
measures by considering temporal correlations of GPS observations in the stochastic
model. The achieved encouraging results serve as valuable experiences and helpful
references for the questions to be answered in this thesis. For example, while perform-
ing residual-based temporal correlation analysis using ACF and stochastic processes,
the assumption of stationarity is usually made. However, its validity in practice has
been rarely verified, for instance, by applying statistical tests. In the occurrence of
non-stationarity, it is important to ask for the possible physical causes or error sources
by considering their characteristics in the time and frequency domains. In addition,
the impacts of the remaining systematic errors (e.g., multipath) on temporal correla-
tion properties should be investigated in more detail. Instead of specifying a certain
type of ARMA process with a predefined order like AR(1), the best-fitting ARMA
model can be identified for a given noise time series. This enables not only a more
accurate description of the temporal correlation behaviour, but also the verification
of the sufficiency of AR(1) modelling. Apart from sample ACF, rigorous statistical
tests are available for assessing the efficiency of the estimated ARMA models. Tak-
ing some of these aspects into account, the next section introduces a decomposition
process for extracting stochastic noise from GPS observation residuals.
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7.2 Residual Decomposition

This section begins with a brief introduction to the so-called studentised residu-
als, serving as input data for the decomposition procedure. Subsequently, to give
an overview, the entire residual decomposition process is presented, along with its
contributions to the mathematical models of GPS observations. Next, the principles
and key issues of the individual decomposition steps are described in more detail,
where representative examples are provided.

7.2.1 Studentised Residuals

The ordinary LS residual vector v = (v1, . . . , vn)
T , for example, resulting from GPS

data analysis, represents a negative estimate of the stochastic error vector e, i.e.,

v = −ê = Ax̂ − l. (7.3)

The vector of stochastic error terms e cannot be directly observed and is generally
assumed to be normally distributed with e ∼ N (0, σ 2

0 Qee), where σ 2
0 is the a priori

variance factor (or variance of unit weight), and Qee is the cofactor matrix of e. For
uncorrelated stochastic errors, i.e., Cee = σ 2

0 Qee = diag(σ 2
1 , . . . , σ

2
n ), v reflects the

variance function of the true model errors. Therefore, the unknown variances σ 2
i

are commonly determined by estimating the variances of the ordinary LS residu-
als, indicating σ 2

i = Var(vi) which holds approximately in static GPS positioning
(Bischoff et al. 2006). If e follows a normal distribution, the LS residuals are also
normally distributed with N (0, σ 2

0 Qvv), where Qvv is the residual cofactor matrix
(Heck 1981a). GPS measurement errors, which are insufficiently described by the
functional model, will distort the residuals’ probability distribution and induce devi-
ations from the assumed normality (Luo et al. 2011a).

Within the context of GPS temporal correlation modelling, the LS residuals have
the main disadvantage that they are commonly heteroscedastic, strongly depending
on the satellite elevation angle. This is due on the one hand to the correlation between
observation quality and satellite geometry, and on the other to the decreasing effi-
ciency of the applied functional model for low-elevation measurements. To avoid the
difficulties in statistical assessments caused by the heteroscedasticity of LS residuals,
the studentised residuals, defined as

ri = vi

σ̂i
= vi

σ̂0 · √
Qvv(i, i)

, (7.4)

are preferred for temporal correlation analysis of GPS observations, where σ̂ 2
0 is the a

posteriori variance factor, and Qvv(i, i) is the ith diagonal element of Qvv (Cook and
Weisberg 1982, p. 18; Howind 2005, pp. 39, 42). Dividing vi by the corresponding
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Fig. 7.1 Examples of LS and studentised residuals [SAPOS®site: OFFE, satellite: PRN 08,
DOY2008:276, elevation cut-off angle: 10◦, observation weighting model: sin2(e); see Eq. (7.4)]

standard deviation estimates σ̂i, the resulting ri exhibit more homogenous variances
than vi and maintain the temporal correlation properties, since the off-diagonal ele-
ments of Qvv do not appear in the residual standardisation given by Eq. (7.4). Along
with satellite elevation angles, Fig. 7.1 shows examples of LS and studentised residu-
als, obtained from a precise point positioning (PPP) analysis using the Bernese GPS
Software 5.0 (Dach et al. 2007, pp. 231, 427).

The Bernese GPS Software 5.0 provides both LS (REAL) and normalised resid-
uals, where the latter is defined as vi/

√
Qvv(i, i). Being different from LS residuals,

normalised residuals are converted to one-way L1 carrier-phase residuals. Assum-
ing that all observations are equally weighted, a real double-difference LC3 residual
of 36 mm corresponds to a normalised one-way L1 residual of 6 mm (Dach et al.
2007, p. 145). For reliable statistical assessments, for example, outlier detection, it is
recommended to store normalised residuals when analysing low-elevation data with
an elevation-dependent observation weighting model. Dividing normalised residuals
by the a posteriori sigma of unit weight σ̂0, which represents the estimated sigma
of one-way L1 observable at zenith, unitless studentised residuals are obtained [see
Eq. (7.4)]. Under the assumption of independent and identically distributed (iid)
measurement errors, studentised residuals possess a constant variance of 1 and
are thus homoscedastic (Howind 2005, p. 39). Exhibiting strong elevation depen-
dency, the LS residuals shown in Fig. 7.1a are heteroscedastic and range between
−3 and 3 cm, while the studentised residuals displayed in Fig. 7.1b are considerably
homoscedastic and mainly vary within ±1. The homogenous variance structure is
due to the elevation-dependent factor

√
Qvv(i, i), which is illustrated in Fuhrmann

et al. (2010, p. 52). Furthermore, as Howind (2005, pp. 38, 39) showed, the use
of an observation weighting model insignificantly affects LS residuals, but strongly
influences studentised residuals.

From its denotation, the studentised residual may be erroneously assumed to fol-
low the well-known Student’s t-distribution. In fact, it follows Pope’s τ -distribution
with f degrees of freedom, where f is equal to the redundancy of a LS adjustment
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(i.e., f = n − u; Pope 1976, p. 15; Heck 1981b). For f ≥ 2, according to Beckman
and Trussell (1974) and Heck (1981a), there exists a rigorous relationship between
a τ -distributed random variable with f degrees of freedom τ f and a t-distributed
random variable with f − 1 degrees of freedom tf −1:

τ f =
√√√√ f · t2

f −1

f − 1 + t2
f −1

, tf −1 =
√√√√ (f − 1) · τ 2

f

f − τ 2
f

. (7.5)

For large degrees of freedom, i.e., f ≥ 30, which is generally fulfilled in static GPS
positioning, both the τ - and t-distributions approach the standard normal distribution
N (0, 1), where the probability density function of the τ -distribution has a lower rate
of convergence (Heck 1981a). Taking advantage of this convergence in distribution,
a two-step procedure for multiple outlier detection is developed in this thesis and
will be presented in Sect. 7.2.4. An important application of studentised residuals
is to test geodetic observations for outliers in combination with Pope’s τ -criterion.
Such a testing procedure is particularly applicable if σ 2

0 is unknown, making the use
of Baarda’s data-snooping impossible (Heck 1981b).

In spite of improved homogeneity of variance, the studentised residuals of GPS
observations are also affected by various systematic effects that are insufficiently con-
sidered or completely neglected within the mathematical models and remain in the
LS residuals. Regarding some representative examples shown in Fig. 7.2, the residual
time series of PRN 24 illustrates a slowly varying trend, while obvious quasi-periodic
oscillations are present in the residuals of PRN 18. Such long-periodic trends are fre-
quently detected for low-elevation satellites, while the oscillations with increasing
periods at higher elevation angles reflect the characteristics of site-specific multi-
path effects (Bilich et al. 2008). These remaining systematic errors may introduce
non-stationary signal components, significantly affecting the temporal correlation
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(a) Slowly varying trend (PRN 24) (b) Quasi-periodic oscillations (PRN 18)

Fig. 7.2 Examples of studentised residuals with systematic signals [SAPOS®site: OFFE,
DOY2008:276, elevation cut-off angle: 10◦, observation weighting model: sin2(e)]
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analysis by means of (empirical or sample) ACF and ARMA processes (Brockwell
and Davis 2002, p 23; Howind 2005, p. 55; Schön and Brunner 2008b). There-
fore, relying upon the classical component model described in Sect. 2.2.1, a residual
decomposition process is first developed in order to separate the remaining systematic
effects from stochastic noise.

7.2.2 Decomposition Model

Based on the concept of the classical additive decomposition model, which subdi-
vides a time series into a long-periodic trend, an oscillating seasonal component and
a random noise [see Eq. (2.21)], Fig. 7.3 schematically shows the residual decom-
position process and its potential contributions to the mathematical models of GPS
observations. The input data are time series of studentised residuals, which are avail-
able on multiple consecutive days and under almost identical satellite geometry (see
Sect. 7.2.5). The first run of the Vondrák filter produces the detrended (Vondrák)
residuals (see Sect. 7.2.3), which are subsequently used for outlier detection and

Raw studentised residuals
identical satellite geometry

ARMA modelling

stationary, white noise (WN)

ARMA residuals (WNR)

Sidereal stacking (epoch-wise means)

Noise component (NCR)

stationary, coloured noise

Stochastic model

Functional model

Mathematical models

Trend component

slowly varying, long-periodic daily repeating characteristics, quasi-periodic oscillations

Vondrák filtering

changing periods over time

Quasi-periodic component

Residual component
Key characteristics
Modelling approach

Detrended (Vondrák) residuals (DTR)

ARMA model ACF

Outlier handling

Repaired residuals (OFR)

outlier-free

After the
run of the

Vondrák filter

first

Mathematical model Sect. 7.2.3 Sect. 7.2.4

Sect. 7.2.5

Sect. 7.3

Fig. 7.3 Flowchart of a residual decomposition process for analysing and modelling temporal
correlations of GPS observations (ACF: autocorrelation function), after Luo (2010)

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
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repair (see Sect. 7.2.4). The second run of the Vondrák filter on the basis of the
repaired (outlier-free) studentised residuals (OFR) delivers the slowly varying and
long-periodic trend component. After that, taking advantage of the daily repeating
GPS satellite geometry, the site-specific effects of a quasi-periodic nature are cap-
tured by means of a sidereal stacking technique, which calculates the epoch-wise
arithmetic means of the detrended residuals (DTR; Howind 2005, p. 55). After sub-
tracting both the trend and quasi-periodic components from the outlier-free residuals,
the noise component (NCR) can be obtained, which generally represents temporally
correlated coloured noise. Finally, the dependence in the noise component can be
modelled by fitting appropriate ARMA processes, resulting in temporally uncorre-
lated white noise residuals (WNR). The decomposed systematic terms, i.e., the trend
and quasi-periodic components, may contribute to refining the functional model of
GPS observations, while the temporal correlations, characterised by means of ARMA
model ACF, should be taken into consideration in the stochastic model.

In order to verify the efficiency of the proposed residual decomposition and
ARMA modelling, the statistical hypothesis tests introduced in Sect. 2.3 are applied
to the residuals after repairing outliers (OFR), after detrending (DTR), after sidereal
stacking (NCR) and after ARMA modelling (WNR). The tests for normal distribution
(see Sect. 2.3.2) are able to illustrate the effects of the remaining systematic errors
on the distributional properties of GPS observables, providing additional proofs for
the postulates asserted by Tiberius and Borre (1999). The trend tests (see Sect. 2.3.3)
are carried out not only to evaluate the efficiency of the detrending approach using
the Vondrák filter, but also to provide valuable information for the trend modelling
when performing the (non-)stationarity tests (see Sect. 2.3.4). The unit root tests for
(non-)stationarity examine the applicability of ACF and ARMA processes in more
sophisticated ways than the tests for homogeneity of variances, such as the two-
sample F-test, β-test and the multi-sample Bartlett test (Howind 2005, pp. 16, 17).
The tests for uncorrelatedness (see Sect. 2.3.5) are only applied to the residuals before
and after ARMA modelling, i.e., NCR and WNR, respectively, since OFR and DTR
are evidently temporally correlated due to the remaining systematic signals. Based
on the results of the uncorrelatedness tests, the appropriateness of the determined
ARMA models can be assessed in a statistically rigorous manner.

In the past, several studies have demonstrated the possibility of mitigating the
remaining systematic errors by means of an improved stochastic model (Wang et al.
2002; Nahavandchi and Joodaki 2010). Nevertheless, the proposed approach first
removes the remaining systematic effects in order to fulfil the precondition of ARMA
modelling. Furthermore, such a mathematically rigorous analysis may construct a
future temporal correlation scenario of GPS observations, where the residual sys-
tematic errors could be sufficiently considered in GPS data analysis, for example,
using advanced atmospheric and multipath models.

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2


7.2 Residual Decomposition 203

7.2.3 Vondrák Filtering

A time series of observational data can be written as (xi, yi), i = 1, 2, . . . , n, where
xi and yi denote the measurement epochs and the measurements, respectively. The
basic idea behind the Vondrák filter is to find a compromise between absolute fitting
(F) and absolute smoothing (S), which can be expressed mathematically as follows
(Vondrák 1969):

Q = F + λ2S −→ min, F =
n∑

i=1

pi · (y′
i − yi)

2, S =
n−3∑
i=1

(�3y′
i)

2, (7.6)

where y′
i is the filtered value corresponding to observation yi, pi is the weight of yi,

�3y′
i is the third-order difference of the filtered values calculated based on a cubic

Lagrange polynomial Li(x), and λ2 is a unitless positive coefficient that regulates
the degree of filtering or the smoothness of y′

i. The smoothed curve is defined in the
interval between two points (xi+1, y′

i+1) and (xi+2, y′
i+2) as Li(x), running through

the four adjacent points (xi, y′
i), (xi+1, y′

i+1), (xi+2, y′
i+2) and (xi+3, y′

i+3), i.e.,

(�3y′
i)

2 =
xi+2∫

xi+1

[
L′′′

i (x)
]2

dx = (aiy
′
i + biy

′
i+1 + ciy

′
i+2 + diy

′
i+3)

2, (7.7)

where the definition of the Lagrange polynomial Li(x) and the derivation of Eq. (7.7)
are provided in Appendix B.4, along with the coefficients ai, bi, ci and di. To minimise
the objective function Q in Eq. (7.6), its first-order partial derivative with respect to
y′

i is set to zero:

∂Q

∂y′
i

= ∂F

∂y′
i
+ λ2 ∂S

∂y′
i

= 0, (7.8)

where all partial derivatives have been elaborated by Vondrák (1969). The filtered
values y′

i can be obtained by solving a system of n linear equations in the form

A · y′ = b, (7.9)

where A is the coefficient matrix, y′ = (y′
1, . . . , y′

n)
T , and b = (b1, . . . , bn)

T with
bi = (pi/λ

2)·yi. While the vector b can be built up in a trivial manner, the construction
of the coefficient matrix A turns out to be a more complex issue. In Appendix B.5,
the Vondrák coefficient matrix A and the computation of its elements are discussed
in more detail.

Applying the Vondrák filter in practice, the unitless positive coefficient λ2 must
be properly specified, since it controls the degree of the compromise between the
two extreme possibilities, namely absolute fitting and absolute smoothing. If λ = 0,
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then Q can be minimised by simply setting y′
i = yi, indicating that the filtered values

are identical with the measurements. This option will result in a rough curve and is
known as absolute fitting. In contrast, if λ −→ ∞, then there are two conditions
to be satisfied at the same time: S = 0 and F −→ min. Under this circumstance,
the use of y′

i = yi will not work, because the condition S = 0 will thereby not
be fulfilled. However, fitting a quadratic polynomial by means of the LS algorithm
satisfies both conditions simultaneously, and this option is referred to as absolute
smoothing. To demonstrate the influence of λ2 on the filter outcomes, Fig. 7.4 shows
examples of applying the Vondrák filter with different smoothing factors ε, where ε
is defined as the inverse of λ2, i.e., ε = 1/λ2. Obviously, the smaller ε (larger λ), the
stronger the smoothing effect. In addition, it is worth mentioning that both short- and
long-periodic signals can be efficiently captured by the Vondrák filter when using
appropriate smoothing factors.

In order to find the optimum value for ε, different methods have been proposed.
Assuming that the measurement accuracy m is known, Vondrák (1969) suggested
the use of the mean error M = M(ε), which is estimated on the basis of the Vondrák
residuals ỹi = yi − y′

i as

M =
[

1

n − 3

n−3∑
i=1

(
pi · ỹ2

i

)]1/2

, (7.10)

where n − 3 is the number of redundant observations. The most appropriate value
of ε is the one for which the equation M(ε) = m is satisfied. By randomly sampling
the observation series into a filtering and a validation series, which are denoted
as (x1,i, y1,i) and (x2,i, y2,i), respectively, Zheng et al. (2005) employed the cross-
validation technique based on the variance of the validation series relative to the
filtered values:

C = 1

n2

n2∑
i=1

[
y2,i − f ′(x2,i)

]2
, (7.11)
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Fig. 7.4 Vondrák filtering of studentised double-difference residuals with different smoothing
factors (baseline: HEDA, 54.1 km, strong multipath, satellite pair: PRN 22-12, DOY2007:165)
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where n2 is the length of the validation series, and f ′(x2,i) are values obtained by
applying the cubic spline interpolation to the filtered values

{
y′

1,1, y′
1,2, . . . , y′

1,n1

}
at the epoch x2,i. Resampling the measurement data for each of the smoothing fac-
tors coming into question, the ε value with the smallest average C is chosen to be
the optimum one. Taking advantage of the sidereal daily repeating properties of
GPS multipath signals, Zheng et al. (2005) used the cross-validation Vondrák filter
(CVVF) to derive multipath models for coordinate time series obtained by process-
ing three consecutive days of 10 Hz GPS data from a short baseline of about 86 m.
The results showed that the root mean square (RMS) of GPS position errors can be
reduced by 20–40 %. However, it should be noted that the CVVF method assumes
temporally uncorrelated white noise with a Gaussian (normal) distribution. It repre-
sents an effective signal decomposer that can be used to separate noise and signal in
a data series, when the noise level is lower than the magnitude of the signal. If the
noise level is higher the signal magnitude, high-frequency signals tend to be filtered
out together with the noise (Zheng et al. 2005).

Within the framework of the residual decomposition process described in
Sect. 7.2.2, the Vondrák filter is used only to capture the slowly varying and long-
periodic trend component. This allows for a more physically reasonable extraction of
quasi-periodic signals, for example, by means of sidereal stacking (see Sect. 7.2.5),
and avoids the significant impact of Vondrák filtering on the temporal correlation
properties of the decomposed noise. Keeping these points in mind, an empirical
criterion for the determination of the optimum ε is developed in this thesis, which
maximises the similarity (or day-to-day correlation) of the detrended residual time
series (DTR in Fig. 7.3) being available on N consecutive days:

R =
N−1∑
I=1

N∑
J=I+1

corr(ỹI,i, ỹJ,i) −→ max, N > 1, i = 1, . . . , n, (7.12)

where corr(·) denotes the correlation coefficient operator (e.g., using corrcoef
in MATLAB®). Due to the actually unknown temporal correlation behaviour of the
noise component, simulation studies were carried out based on representative noise
and signal realisations to study the influence of ε on the residual temporal correla-
tion properties and the applicability of the CVVF method to temporally correlated
coloured noise (see Sect. 8.1.2).

From a theoretical point of view, the Vondrák filter represents an appropriate
smoothing method, since it directly treats the observations of a variable without any
superfluous intermediate steps. From a practical perspective, it does not require any
predefined fitting function and provides filtered values even at the two ends of a data
series. In addition, being superior to the original Whittaker’s method (Whittaker and
Robinson 1924, pp. 303–316), the Vondrák filter is applicable to both equidistant and
non-equidistant data series (Zheng and Luo 1992; Zheng et al. 2005). Finally, the
performance of the Vondrák filter is hardly restricted by non-linearities in the data,
which is not the case for the smoothing algorithms based on (weighted) moving
average (Vondrák 1969; Brockwell and Davis 2002, p. 27).

http://dx.doi.org/10.1007/978-3-642-34836-5_8
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7.2.4 Outlier Handling

In this thesis, outliers are defined as individual studentised residuals that are incon-
sistent with the statistical nature of the bulk of the data. Prior to the residual-based
temporal correlation modelling, outliers should be detected and appropriately han-
dled, since they may adversely affect the results of Vondrák filtering, the performance
of sidereal stacking and the stationarity of the decomposed noise. Making use of the
Vondrák residuals ỹi = yi − y′

i (DTR in Fig. 7.3), a two-step procedure is employed,
consisting of outlier identification and validation. To identify outliers in the first step,
the MAD-based (median absolute deviation) criterion is used, which is also imple-
mented in the MATLAB® Curve Fitting ToolboxTM for robust local regression. This
criterion considers ỹi (and thus yi) as an outlier if

|ỹi − med(ỹ)| > 5MAD with MAD = med(|ỹi − med(ỹ)|), (7.13)

where med(·) is the median operator, and ỹ = {ỹ1, . . . , ỹn}. For samples from
a normal distribution N (μ, σ 2), it can be proved that MAD = z0.75 · σ , where
z0.75 = 0.675 is the 0.75-quantile (or upper quartile) of the standard normal distribu-
tion N (0, 1). Therefore, the 5-MAD criterion applied in this thesis is consistent with
the commonly used 3-sigma rule for outlier detection, provided that the population
can be assumed to be normal.

According to the fact that the sample variance is more sensitive to outliers than
the sample mean, the F-test is undertaken in the second step to assess the influence
of the identified 5-MAD outliers on the sample variance of ỹ (Snedecor and Cochran
1967, p. 116; Niemeier 2008, p. 110). Thereby, the residual data sets with and with-
out outliers are denoted as ỹa and ỹb, respectively. Since the sample variance s2

a is
generally larger than s2

b, the one-sided F-test for equality of variances is performed
based on the F-distributed test statistic TF

TF = s2
a

s2
b

=
1

na−1

∑na
j=1(ỹa,j − μa)

2

1
nb−1

∑nb
k=1(ỹb,k − μb)2

∼ F(νa, νb) (7.14)

with νa = na −1 and νb = nb −1 degrees of freedom, where na and nb are the sample
sizes of ỹa and ỹb, respectively, and μa and μb are the corresponding sample means.
The null hypothesis of equal variances σ 2

a = σ 2
b , indicating an insignificant effect of

the detected 5-MAD outliers, is rejected at a significance level ofα if TF > Fνa,νb;1−α ,
where Fνa,νb;1−α is the (1−α) quantile of the F-distribution. Since the F-test is known
to be extremely sensitive to non-normality (Markowski and Markowski 1990), it is
carried out using the Vondrák residuals ỹi instead of the original studentised residuals
yi whose probability distribution may be considerably distorted by long-periodic
trends. A rejection of the null hypothesis suggests the statistical significance of the
outlying ỹi, which are then replaced by the linearly interpolated values of the non-
outlying ỹi. Next, the repaired Vondrák residuals are added to the filtered values y′

i
to obtain the outlier-free (or repaired) studentised residuals (OFR). After handling
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Fig. 7.5 Examples of outlier detection by employing the 5-MAD criterion and one-sided F-test
(baseline: TAAF, 53.7 km, weak multipath, satellite pair: PRN 22-12; see Fig. 4.8c)

significant outliers by means of such a remove-repair-restore (RRR) technique, the
Vondrák filter is applied to the OFR, as changes in the residual data may lead to
different smoothing factors ε determined using Eq. (7.12). The two-step approach to
outlier detection has been successfully employed in residual stacking for multipath
mitigation (Fuhrmann et al. 2010, p. 84) as well as in data scrubbing for distribution
analysis of GPS observations (Luo et al. 2011a). More detailed statistical assessments
of TF and representative examples of outlier repair will be presented in Sects. 8.1.3
and 8.2.3. Figure 7.5 illustrates different effects of the identified 5-MAD outliers
(black dots) on the variance of Vondrák residuals.

Comparing the residuals related to the same double-difference and two consec-
utive days, Fig. 7.5 depicts completely different results of outlier detection. After
removing the long-periodic trends, which are sufficiently captured by the Vondrák
filter in both examples, a total of 71 and 3 outlying ỹi are identified using the 5-MAD
criterion for days 166 and 167, respectively. Moreover, the filtered values y′

i shown
in Fig. 7.5a are hardly degraded by the outliers. Applying the F-test at a significance
level of α = 1 %, the 71 outliers lead to a rejection of the null hypothesis of equal
variances, while the 3 outliers influence the Vondrák residual variance in a statisti-
cally insignificant manner. Accordingly, the 5-MAD outliers on day 166 need to be
repaired. The different numbers of outliers between the two consecutive days can be
explained by the different atmospheric conditions, which are particularly visible in
the relative humidity (RH) measurements shown in Fig. 4.8c. The number of outliers
seems to be physically interpretable, and this will be discussed in more detail in
Sects. 8.1.3 and 8.2.3.

http://dx.doi.org/10.1007/978-3-642-34836-5_4
http://dx.doi.org/10.1007/978-3-642-34836-5_8
http://dx.doi.org/10.1007/978-3-642-34836-5_8
http://dx.doi.org/10.1007/978-3-642-34836-5_4
http://dx.doi.org/10.1007/978-3-642-34836-5_8
http://dx.doi.org/10.1007/978-3-642-34836-5_8
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7.2.5 Sidereal Stacking

The main objective of sidereal stacking is to extract the remaining site-specific effects
(e.g., multipath), which do not change significantly between consecutive days. As
described in Sect. 3.2.3, multipath effects can be subdivided into a near-field and a far-
field component. The former exhibits long-periodic and non-zero mean properties,
while the latter introduces short-periodic and zero mean signals. Using the Vondrák
filter, the near-field multipath with a period of up to several hours (Wübbena et al.
2006) can be effectively detected. The far-field multipath with a period of up to half
an hour (Seeber 2003, p. 317) remains in the Vondrák residuals (DTR) and can be
captured during the stacking process. In general, multipath signals repeat with the
daily repeating GPS satellite constellation, although variations do occur if the surface
moisture content changes or the satellite orbits are considerably altered (Kim et al.
2003; Lau 2012).

As a usual rule of thumb, the repeat time of the GPS constellation is 23 h 56 min
(86,160 s), indicating that the GPS satellites visible today are supposed to be visible
at the same location 23 h 56 min later. A more accurate approximation of the orbit
repeat time is one mean sidereal day, i.e., 23 h 56 min 4 s (86,164 s). During such
a period the GPS satellites complete two orbits in inertial space, and the Earth one
revolution. Instead of the large-valued orbit repeat time, the term orbit repeat lag or
daily advance is also used, which represents the difference between one mean solar
day of 24 h (86,400 s) and the orbit repeat time, amounting to approximately 236 s.
In general, all GPS satellites are assumed to have the same sidereal repeat time.

Seeber et al. (1998) found that the satellite orbit repeat time is neither sidereal nor
identical, but varies from satellite to satellite. The orbital period of the GPS satellites
is intentionally specified to be about 4 s shorter than half a sidereal day in order
to compensate for the dominant nodal drift rate (d�/dt) of about 14.7◦ per year
towards the west, which is caused by the dynamic form factor J2 (Choi et al. 2004;
Dilßner 2007, p. 119). Therefore, it is expected that the GPS orbit repeat time is
generally about 8 s shorter than one mean sidereal day. Accordingly, the orbit repeat
lag is on average about 8 s larger than 236 s. Regarding the one-year satellite-specific
orbit repeat periods illustrated by Dilßner (2007, p. 122), three types of signals are
clearly visible. The satellite-dependent quasi-linear drifts of up to ±8 s per year are
due to the resonance effects associated with the tesseral harmonics in the Earth’s
gravity field. Small-amplitude (<1 s) oscillations with a period of about 14 days are
produced by the lunar gravity, while large abrupt changes are attributed to satellite
manoeuvres (Choi et al. 2004).

The orbit repeat time of the GPS satellites can be evaluated in different ways. Based
on Kepler’s third law, Choi et al. (2004) used the broadcast ephemerides to determine
the orbit repeat time for each satellite. Considering the results when filtering 1 Hz GPS
position estimates, low-frequency (0.001–0.04 Hz) errors are significantly reduced.
Two programs for finding the repeat periods of the GPS constellation were provided
by Agnew and Larson (2007). One determines the orbit repeat time by applying
Kepler’s third law, and the other makes use of the aspect repeat time, representing

http://dx.doi.org/10.1007/978-3-642-34836-5_3
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the period over which the satellite comes closest to occupying the same topocentric
place. The aspect repeat time (lag) has an average value of 86,153 s (247 s) and
fluctuates through the day by as much as 2.5 s at high latitudes. Moreover, the orbit
and aspect repeat times can differ from each other by up to 3 s, where the aspect
repeat time is usually shorter. Relying upon the autocorrelation of coordinate time
series and double-difference residuals, Ragheb et al. (2007) found the optimum GPS
orbit repeat time (lag) of 86,154 s (246 s), providing an independent verification
for the previous results. Within the context of GPS seismology, Larson et al. (2007)
used 1 Hz GPS position time series to estimate time-varying and site-dependent
orbit repeat lags by maximising the peak cross-correlation or minimising the RMS
difference for a range of lag values (e.g., 236–256 s). In general, the repeat lags
determined using both techniques agree at the level of 1 or 2 s and are centred at
about 245 s. Taking advantage of the sidereal repeatability of the GPS constellation,
the orbit repeat time has been successfully employed for multipath mitigation in the
measurement and position domains (Choi et al. 2004; Larson et al. 2007; Ragheb
et al. 2007; Zhong et al. 2010; Lau 2012).

In this thesis, an empirical approach has been developed that enables the determi-
nation of satellite- and site-specific orbit repeat times (lags) based on GPS broadcast
ephemerides. Taking the satellite elevation angle as an example, the principle sketch
of this empirical method is shown in Fig. 7.6a. Assuming that GPS observations and
(site-specific) navigation messages are available in the RINEX format on at least
two consecutive days, information about satellite azimuth and elevation angle is first
derived with the help of the program cf2ps (Hilla 2002). After finding the common
part of satellite geometry between the two consecutive days I and I + 1, the mean
orbit repeat lag �t(I, I + 1) for a certain satellite can be computed as

�t(I, I + 1) = 1

n

n∑
i=1

�ti(I, I + 1) = 1

n

n∑
i=1

[ti(I)− ti(I + 1)] , (7.15)

where n denotes the number of the used observations, depending on the data sampling
interval. If a total of N(N ≥ 2) consecutive days of data are available, then the final
satellite-specific orbit repeat lag �t for the entire observation period is

�t = 1

N − 1

N−1∑
I=1

�t(I, I + 1). (7.16)

By considering different values for the orbit repeat time, Fig. 7.6b–d shows 1 h
satellite geometry on 21 consecutive days to demonstrate the advantage of the individ-
ually determined satellite-specific orbit repeat time. Figure 7.6b displays the scenario
in which the sidereal repeatability of the GPS constellation or the orbit repeat lag
is completely ignored. As a result, different satellite geometry prevails within the
same GPS time interval on the consecutive days. This difference can be significantly
reduced if one mean sidereal day of 23 h 56 min 4 s is used as the orbit repeat
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time (see Fig. 7.6c). Nevertheless, as Fig. 7.6d illustrates, the optimum results with
respect to identical satellite geometry is achieved by applying the satellite-specific
orbit repeat time, which is 10 s less than one mean sidereal day in this example.
Section 8.1.1 will present more examples of the determined satellite-specific orbit
repeat lags and the associated quality measures. Furthermore, the empirically derived
lag values are verified by means of the Fortran program orbrep.f1, provided by
Agnew and Larson (2007).

Although the determination of satellite-specific orbit repeat times is discussed
within the context of sidereal stacking, it must be considered during the course of
residual data preparation. Using the satellite individual orbit repeat periods, time
windows can be found in which almost identical satellite geometry prevails on mul-
tiple consecutive days (see Fig. 7.6d). Furthermore, the satellite-specific property of
the orbit repeat time turns out to be an important issue when stacking residuals with
a short sampling interval, for example, 1 s. Nevertheless, in the case that observation
data are collected with longer sampling intervals (e.g., 30 s), it is still recommended
to apply the best possible orbit repeat period (e.g., 86,160 s; Ragheb et al. 2007)
rather than to simply neglect it (Howind 2005, p. 55). Under the assumption that
satellite-specific orbit repeat times have been taken into account, the sidereal stack-
ing procedure is carried out by computing the epoch-wise arithmetic means of the
Vondrák residual (DTR) time series, which are available on N consecutive days:

si = 1

N

N∑
I=1

ỹi(I), i = 1, . . . , n, I = 1, . . . ,N . (7.17)

A small N (e.g., N = 3) may be helpful for si to capture short-term variations in
local site environment, for example, changes in surface moisture content. In contrast,
a larger N will make the stacking results less dependent on such factors, reflecting
an average situation of the remaining site-specific effects. Intuitively, the day-to-day
correlation between ỹ(I) decreases with an increasing temporal separation distance.
To achieve a better understanding, the principle of the sidereal stacking is schemati-
cally shown in Fig. 7.7.

After performing Vondrák filtering and sidereal stacking, the long-periodic trend
y′

i [see Eq. (7.6)] and short-periodic oscillation si [see Eq. (7.17)] can be obtained
separately. A further subtraction of si from the Vondrák residuals ỹi(I) results in
the noise component NCR, which is supposed to be homoscedastic and temporally
correlated (i.e., coloured noise). Since the remaining systematic effects have been
largely reduced, the sample ACF can be conveniently used to assess the degree of the
noise’s temporal correlation. If it is significant, an appropriate ARMA time series
model can be estimated to characterise the correlation behaviour and exploit it to
predict future values.

1 Available free of charge at www.ngs.noaa.gov/gps-toolbox/Larson.htm.

http://dx.doi.org/10.1007/978-3-642-34836-5_8
www.ngs.noaa.gov/gps-toolbox/Larson.htm
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Fig. 7.6 Empirical determination of satellite-specific orbit repeat lags and their influence on
1 h GPS satellite geometry on 21 consecutive days (SAPOS®site: RAVE, satellite: PRN 22,
DOY2007:161–181, sampling interval: 1 s)
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Fig. 7.7 Sidereal stacking by calculating epoch-wise mean values of the Vondrák residuals ỹ being
available on N consecutive days [see Eq. (7.17)]
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Fig. 7.8 ARMA modelling using the ARMASA Toolbox, after Luo et al. (2011b)

7.3 ARMA Modelling

ARMA modelling aims for the determination of an appropriate ARMA(p, q) model
as given in Eq. (2.42) to represent a stationary time series {x1, x2, . . . , xn}, for exam-
ple, the noise component obtained from the residual decomposition process (see
Sect. 7.2.2). It involves a number of interrelated problems, such as parameter esti-
mation (i.e., computing the coefficients {a1, . . . , ap} and {b1, . . . , bq} as well as the
white noise variance σ 2

Z ), order selection (i.e., finding the optimum orders p and q)
and model identification (i.e., deciding among the best-fitting AR, MA and ARMA
models). In this thesis, ARMA modelling is carried out by means of the ARMASA
Toolbox2, which is available free of charge in MATLAB® Central and enables an
automatic identification of the best-fitting ARMA model for a given noise realisa-
tion (Broersen 2000b). The determination of a suitable ARMA(p, q) model using
the ARMASA Toolbox mainly consists of two steps: order selection and model
identification, schematically shown in Fig. 7.8.

In the first step, AR, MA and ARMA models are computed to some user-specified
maximum orders pmax

AR , qmax
MA and (pmax

AM , pmax
AM − 1), respectively. For AR estimation,

Burg’s maximum entropy algorithm (Burg 1967) is applied, where the best model
candidate is chosen based on the combined information criterion (CIC, see Sect. 7.3.1;
Broersen 2000c). For MA and ARMA estimation, Durbin’s first (Durbin 1959) and
second (Durbin 1960) methods are employed, along with the generalised information
criterion (GIC, see Sect. 7.3.2; Broersen 2000b) for order selection. In the second

2 Available at www.mathworks.com/matlabcentral/fileexchange/1330.

http://dx.doi.org/10.1007/978-3-642-34836-5_2
www.mathworks.com/matlabcentral/fileexchange/1330
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step, the model identification among the best-fitting AR, MA and ARMA candidates
is performed using an accuracy measure called prediction error (PE, see Sect. 7.3.4;
Broersen 2006, p. 99). The model candidate with the minimum PE is identified as
the final AR-MA(p, q) model for the given data. The notation AR-MA(p, q) is used
if AR, MA and ARMA processes are not intentionally distinguished. In this section,
both the algorithms for parameter estimation and the criteria for model selection
are briefly described (Luo et al. 2011b). For a more detailed discussion of ARMA
modelling, the reader is referred to the cited original articles and textbooks, for
example, Brockwell and Davis (2002, Chap. 5) and Broersen (2006).

7.3.1 AR Estimation

The AR process of order p defined by Eq. (2.43) plays an important role in time series
analysis. Using the so-called Yule-Walker equations, given by

�p · αp = −γ p and γ (0)+ αT
p · γ p = σ 2

Z , (7.18)

the vector of AR coefficients αp = (a1, . . . , ap)
T and the white noise (WN) vari-

ance σ 2
Z can be determined based on the true covariance matrix �p = [

γ (i − j)
]p

i,j=1

[cf. Eq. (2.37)] and the true autocovariance vector γ p = [
γ (1), . . . , γ (p)

]T (Brock-
well and Davis 2002, p. 139; Broersen 2006, p. 91). In the case of finite samples, where
the true autocovariances γ (h) are generally unknown, the biased estimates γ̂ (h) [see
Eq. (2.35)] are usually substituted for the true covariances γ (h) into Eq. (7.18). The
approximation of γ (h) by γ̂ (h) is accurate only if the length of the observed data is
much larger than the length of the true autocovariance function (ACVF), where a short
ACVF indicates uncorrelatedness at small lags (Broersen 2006, p. 44). Accordingly,
in the literature, γ̂ (h) is often referred to as the asymptotically unbiased estimator
for the true ACVF. The deviation from the asymptotical theory may produce severe
biases in the estimated model parameters (Broersen and Wensink 1993).

In addition to the Yule-Walker solution, the AR(p) parameters can also be esti-
mated simultaneously using the forward least-squares (LS) algorithm by minimising
the residual sum of squares (RSS)

RSS(p) =
n∑

t=p+1

(
xt + â1xt−1 + · · · + âpxt−p

)2
, (7.19)

where n denotes the length of {xt}. However, the LS method does not necessarily
guarantee the stationarity and causality of the AR model estimate (see Sect. 2.2.3;
Broersen 2006, p. 125). Causality is often required, for example, in filter design
(Klees et al. 2003).

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
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In comparison to the above-mentioned approaches, Burg’s method, also known
as the maximum entropy algorithm, is preferred in the practice of AR estimation,
because it always produces causal models (Klees and Broersen 2002, p. 5; Broersen
2006, p. 126) and frequently delivers higher Gaussian likelihood than the Yule-
Walker method (Brockwell and Davis 2002, p. 406). In principle, Burg’s algorithm
determines each AR coefficient individually by successively minimising the cor-
responding sum of squares of the forward and backward residuals. According to
Broersen (2006, p. 127), for a given noise time series {xt} with n elements, the
forward (f ) and backward (b) residuals of order k (k ≥ 0) are defined as

f0(t) = b0(t) = xt, (7.20)

fk(t) = xt + âk
1xt−1 + · · · + âk

kxt−k, (7.21)

bk(t) = âk
kxt + âk

k−1xt−1 + · · · + xt−k, (7.22)

where t = k + 1, . . . , n. If α̂[k] = (âk
1, âk

2, . . . , âk
k)

T is the vector of the estimated

AR coefficients and ˜̂α[k] = (âk
k, âk

k−1, . . . , âk
1)

T is its reversal vector, the forward
and backward residuals at stage k can be written in the matrix form as

fk(t) = (
xt xt−1 · · · xt−k

) (
1

α̂[k]

)
, (7.23)

bk(t) = (
xt xt−1 · · · xt−k

) ( ˜̂α[k]

1

)
. (7.24)

Employing the Levinson-Durbin recursion (Broersen 2006, p. 94), which relates
the coefficients of the AR(k − 1) model to those of the AR(k) model by

α̂[k] =
(

α̂[k−1] + âk
k · ˜̂α[k−1]

âk
k

)
, (7.25)

the forward and backward residuals of order k become

fk(t) = fk−1(t)+ âk
kbk−1(t − 1), (7.26)

bk(t) = bk−1(t − 1)+ âk
k fk−1(t). (7.27)

To minimise the sum of the squares of the forward and backward residuals, i.e.,

RSS(k) =
n∑

t=k+1

[
f 2
k (t)+ b2

k(t)
]
, (7.28)
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its derivative with respect to âk
k is set to zero. Then, the single unknown âk

k , repre-
senting the final Burg’s estimate of ak

k , can be expressed explicitly by

âk
k = −2

∑n
t=k+1

[
fk−1(t) · bk−1(t − 1)

]
∑n

t=k+1

[
f 2
k−1(t)+ b2

k−1(t − 1)
] , (7.29)

provided that the AR(k − 1) model has already been estimated by means of Burg’s
algorithm. Considering the inequality f 2

k−1(t)+ b2
k−1(t−1) ≥ ±2fk−1(t)·bk−1(t−1),

the estimate âk
k will never be larger than one in absolute value. This indicates that

all zeros of the AR polynomial given by Eq. (2.46) are outside the unit circle, and
thus the determined AR(k) model is causal (Broersen 2006, p. 128). The residual
variance can be computed recursively using

ŝ2
k = ŝ2

k−1

[
1 − (âk

k)
2
]
, (7.30)

where a detailed proof of Eq. (7.30) is provided by Brockwell and Davis (2002, p. 70).
The starting values of the Levinson-Durbin recursion

s2
0 = γ (0), a1

1 = α[1] = −γ (1)
s2

0

, s2
1 = s2

0

[
1 − (a1

1)
2
]

(7.31)

can be used to initialise Burg’s successive estimation. In fact, the starting value for a1
1

can be derived from Eqs. (7.26–7.29). For finite samples, the sample variance γ̂ (0)
and the lagged product autocovariance γ̂ (1) are substituted into Eq. (7.31) for γ (0)
and γ (1), respectively.

After estimating all AR models to some user-specified maximum order pmax
AR ,

the optimum AR(p̂AR) model is selected as the one that minimises the combined
information criterion

CIC(p) = ln s2
p + max

( p∏
k=0

1 + 1/(n + 1 − k)

1 − 1/(n + 1 − k)
− 1, 3

p∑
k=0

1

n + 1 − k

)
(7.32)

with the residual variance

s2
p = σ 2

X

p∏
k=1

(1 − r2
k ), (7.33)

where σ 2
X denotes the process variance, and rk is known as the reflection coefficient

of order k, defined as the negative of the partial correlation at lag k (Broersen 2006,
pp. 90, 96, 200). Comparing Eqs. (7.30) and (7.33) with each other, rk is actually
identical with the AR coefficient ak . Applying Burg’s method, all absolute values of
the reflection coefficients are less than one. Therefore, the residual variance s2

p given

http://dx.doi.org/10.1007/978-3-642-34836-5_2
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by Eq. (7.33) tends to decrease with increasing p. To avoid over-parameterisation,
the second summand of the CIC becomes larger as p increases. Moreover, the CIC
takes a higher penalty factor of 3 than Akaike’s information criterion (AIC) using
a penalty factor of 2 (Akaike 1973). The higher the penalty factor, the smaller the
probability of overfitting (Broersen 2006, p. 192). In Broersen (2000c), the CIC was
reported to perform better than the AIC if the candidate order is higher than 0.1n.
This advantage is of particular importance when estimating AR models for short
data sets. To achieve accurate model estimates with moderate computational time,
the highest candidate order for model selection with the CIC is min(n/2, 1,000) in
the ARMASA Toolbox. If the highest available candidate is selected, it is advisable
to try higher AR candidate orders (Broersen 2006, p. 224).

7.3.2 MA Estimation

For a given noise realisation, the determination of an appropriate MA model defined
by Eq. (2.44) is more complicated than the AR estimation. Applying the innovation
algorithm, for example, described in Brockwell and Davis (2002, p. 71), the initial
estimates of the MA model parameters can be computed recursively, which are
then optimised within an iterative and non-linear process to maximise the Gaussian
likelihood. However, the optimisation cannot be always achieved at the specified
accuracy level. Furthermore, the obtained MA model is not necessarily invertible
(see Sect. 2.2.3; Klees and Broersen 2002, p. 6). In the ARMASA Toolbox, Durbin’s
first method is implemented for MA estimation, since it always produces invertible
MA models (Broersen 2006, p. 136). Based on the asymptotical equivalence of
AR(∞) and MA(q) (Brockwell and Davis 2002, p. 233), Durbin’s algorithm makes
use of a long AR process of order M [AR(M)] as an intermediate stage to approximate
the MA(q) process Bq(r), i.e.,

CM(r)xt = ẑt, xt = Bq(r)zt, (7.34)

where CM(r) is the Mth-degree characteristic polynomial of AR(M), and Bq(r) is
given by Eq. (2.47). Best results were reported in Broersen (2000a) if M = 2p̂AR + q,
where p̂AR is the optimum AR order selected by means of the CIC [see Eq. (7.32)].
Since ẑt ≈ zt holds for large M, for an arbitrary MA order of q, it follows from
Eq. (7.34) that

CM(r)Bq(r) ≈ 1, Bq(r) ≈ 1/CM(r). (7.35)

An estimate of Bq can be obtained by fitting an AR(q) model using the Yule-
Walker algorithm, if one treats the AR(M) parameters {ĉ1, . . . , ĉM} as a MA(M)
process (Broersen 2006, p. 136). According to Broersen (2006, p. 224), the residual
variance s2

q can be determined in an empirical manner by filtering the noise realisation

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
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{xt} with B̂−1
q (r):

ẑt = B̂−1
q (r)xt, ŝ2

q = 1

n

n∑
t=1

ẑ2
t . (7.36)

After determining all MA models to some user-specified maximum order qmax
MA , the

best-fitting MA(q̂MA) process is chosen by minimising the generalised information
criterion

GIC(q) = ln s2
q + 3

q

n
. (7.37)

The maximum q specified in the ARMASA Toolbox is min(n/5, 400), which is lower
than that for AR estimation. This is mainly due to the use of a long AR model as an
intermediate stage in the MA estimation (Broersen 2006, pp. 180, 224).

7.3.3 ARMA Estimation

The estimation of an ARMA(p, q) model turns out to be the most complicated step.
The difficulties consist not only in the non-linearity of the MA estimation, but also in
the separation of the process dynamics into the AR and MA components. In practice,
the Hannen-Rissanen algorithm can be used to obtain preliminary model parameters
by performing a high-order AR estimation and a LS linear regression (Hannen and
Rissanen 1982; Brockwell and Davis 2002, p. 156). Next, a non-linear optimisation
of the initial estimates is undertaken to maximise the Gaussian likelihood function.
As mentioned before, the maximum likelihood solution does not guarantee reliable
parameter determination due to the inherent convergence problem and deficiencies
in producing causal and invertible models.

From a given noise sequence {xt}, the ARMASA Toolbox determines ARMA
models by means of Durbin’s second method. Using Durbin’s first method, the
unknown residuals of an ARMA(p, q) process can be estimated by approximating a
long AR(M) model:

CM(r)xt = ẑt, Ap(r)xt = Bq(r)zt . (7.38)

The order M is chosen to be M = 3p̂AR + p + q (Broersen 2000a), where p̂AR is the
order of the best-fitting AR process with the minimum CIC [see Eq. (7.32)]. Based
on the residual estimates {ẑt}, the parameters of Âp(r) and B̂q(r) can be obtained by
minimising

n∑
t=max(p,q)+1

[
Âp(r)xt − B̂q(r)ẑt

]2
. (7.39)
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The estimates of Ap(r) and Bq(r) only represent an initial approximation of the
true ARMA process and do not necessarily satisfy the causality and invertibility
requirements. Therefore, Âp(r) and B̂q(r) are improved successively within a two-
step procedure. In the first step, Âp(r) is used together with CM(r) to obtain a better
estimate of Bq(r) by

B̂′
q(r) ≈ C−1

M (r)Âp(r), (7.40)

which can be easily derived from Eq. (7.38) by setting ẑt ≈ zt . In the second step,
the enhanced MA estimate B̂′

q(r) is used to derive a better estimate of Ap(r) by

Â′
p(r) ≈ CM(r)B̂

′
q(r). (7.41)

The original method proposed by Durbin (1960) performs iterative updates of the MA
and AR parameters until the estimates converge. Iteration of Eqs. (7.40) and (7.41)
will considerably improve the quality of the estimated ARMA model if the initial AR
estimate Âp(r) is very poor (Klees and Broersen 2002, p. 7; Broersen 2006, p. 145).

To find the best-fitting ARMA(p̂AM , q̂AM ) model for the given noise data {xt}, the
residual variance s2

p,q is computed for each ARMA candidate after filtering {xt} with

Â′
p(r)/B̂

′
q(r) by

ẑt = Â′
p(r)

B̂′
q(r)

xt, ŝ2
p,q = 1

n

n∑
t=1

ẑ2
t . (7.42)

The final ARMA order (p̂AM , q̂AM ) is selected as the pair that minimises the
GIC(p + q) given by Eq. (7.37). When choosing ARMA order candidates, the
ARMASA Toolbox does not consider all possible (p, q) combinations within the
user-specified maximum order pmax

AM , but only examines the so-called hierarchi-
cal ARMA models with q = p − 1. Accordingly, the highest order candidate
is ARMA(pmax

AM , pmax
AM − 1), and the best-fitting ARMA model possesses the order

(p̂AM , p̂AM − 1) and the minimum GIC(2p̂AM − 1). The special nesting of (p, p − 1)
is due to the fact that the hierarchical ARMA models are good discrete approxima-
tions for continuous time processes (Priestly 1981, p. 382) and enables a significant
reduction in the required computational time. Furthermore, limiting the selection
candidates exclusively to ARMA(p, p − 1) models reduces the loss in model quality
caused by the order selection process (Broersen and de Waele 2004). However, one
disadvantage is that the true underlying ARMA process may not always be among
the nested candidate models, which does not necessarily has a negative impact on the
quality of model estimates (Broersen 2006, p. 215). Using the ARMASA Toolbox,
ARMA(p, p − 1) models are evaluated for p = 2, . . . ,min(n/10, 200) (Broersen
2006, p. 225).



7.3 ARMA Modelling 219

Fig. 7.9 Difference between residual variance and prediction error

7.3.4 AR-MA Identification

Once the best-fitting AR(p̂AR), MA(q̂MA) and ARMA(p̂AM , p̂AM − 1) model can-
didates are selected, the model identification is carried out based on the minimum
squared error of the one-step prediction, simply called the prediction error (PE).
Figure 7.9 illustrates the difference between the PE and residual variance computed
by Eqs. (7.33), (7.36) and (7.42) for AR, MA and ARMA models, respectively. If the
parameter estimates [i.e., p̂, q̂, Âp̂(r), B̂q̂(r)] and the residuals {ẑt} are related to the
same data series, for example, {xt}, the variance of {ẑt} is referred to as the residual
variance. In contrast, the term PE is defined as the variance of the residuals obtained
by filtering the data series from the same AR-MA(p, q) process, for example, {x′

t},
which, however, has not contributed to determining the model parameters.

Note that the minimum obtainable PE is the white noise variance σ 2
Z , which is

found when the true AR-MA process and the model estimate are identical (Broersen
2006, p. 101). For unbiased AR-MA(p̂, q̂) estimates, i.e., p̂ ≥ p and q̂ ≥ q, the
asymptotic expectation of the PE is

E(PE) = σ 2
Z

(
1 + p̂ + q̂

n

)
, (7.43)

where n is the number of observations (Broersen 2006, p. 129). The residual variance
is always smaller than the PE due to the dependence between the data and parameter
estimates (Klees and Broersen 2002, p. 4). As a scaled version of the PE, the model
error

ME = n

(
PE

σ 2
Z

− 1

)
(7.44)

provides an easy measure for assessing the quality of the model estimates (Broersen
2006, p. 102). Regarding Eqs. (7.43) and (7.44) together, for unbiased AR-MA esti-
mates, the asymptotic expectation of the ME does not depend on the number of
observations and is equal to the sum of the selected orders, i.e., E(ME) = p̂ + q̂.



220 7 Residual-Based Temporal Correlation Modelling

The term p̂ + q̂ is also known as the Cramér-Rao lower bound (Stoica and Moses
1997, p. 286) for achievable accuracy with unbiased models. According to Broersen
(2000b), the PE for the best-fitting AR(p̂AR) model is

PE(p̂AR) = s2
p̂AR

p̂AR∏
k=1

1 + 1/(n + 1 − k)

1 − 1/(n + 1 − k)
, (7.45)

where s2
p̂AR

is the associated residual variance [see Eq. (7.33)]. For the optimum
MA(q̂MA) and ARMA(p̂AM , q̂AM = p̂AM − 1) models, the PE can be calculated
using

PE(m) = s2
m

1 + m/n

1 − m/n
, (7.46)

where the parameter m denotes the number of the estimated model coefficients, i.e.,
m = q̂MA and m = p̂AM + q̂AM = 2p̂AM − 1, respectively, and s2

m is the residual
variance of the corresponding model [see Eqs. (7.36) and (7.42)]. The best-fitting
model candidate with the minimum PE is identified as the final time series model for a
given noise realisation. Filtering a coloured noise with an appropriate AR-MA model
estimate, the residual time series should represent a white noise sequence. Therefore,
the efficiency of the estimated AR-MA model in characterising the noise’s temporal
correlation behaviour can be assessed by testing the residuals for uncorrelatedness. To
demonstrate the high performance of the ARMASA Toolbox in modelling temporal
correlations of GPS observations, Fig. 7.10 presents the results of fitting an AR-MA
model to a decomposed noise series from a PPP data analysis using the Bernese GPS
Software 5.0.
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Fig. 7.10 Example of ARMA modelling using the ARMASA Toolbox (a) decomposed noise series,
(b) sample and model ACF, (c) ARMA residuals, (d) power spectral density (PSD) before and
after ARMA modelling (SAPOS®site: TUEB, weak multipath, satellite: PRN 32, DOY2008:275,
sampling interval: 30 s)
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The decomposed noise series to be analysed is shown in Fig. 7.10a, and the asso-
ciated sample and model ACF of the best-fitting AR, MA and ARMA candidates
are depicted in Fig. 7.10b. Due to the minimum PE, the ARMA(3, 2) model is con-
sidered to be the most appropriate one to describe the noise’s temporal correlation
behaviour. This PE-based model identification can be verified by comparing the
model and sample ACF curves. It can be seen that the ARMA(3, 2) process produces
the best-fitting model ACF. After filtering the coloured noise with the estimated
ARMA(3, 2) model, the residual time series is displayed in Fig. 7.10c, with a sam-
ple variance of 0.129 computed by means of Eq. (7.42). As expected, this residual
variance is smaller than the corresponding PE of 0.1317, which is attributed to the
dependence between the data and parameter estimates (see Fig. 7.9). To assess the
efficiency of the ARMA(3, 2) model, Fig. 7.10d compares the power spectral density
(PSD) of the coloured noise and ARMA residuals. According to the fact that a white
noise process WN(0, σ 2

Z ) has a constant PSD function of σ 2
Z /(2π) (Brockwell and

Davis 2002, p. 118), the ARMA residuals appear to be largely uncorrelated, and the
associated mean PSD is very close to the theoretical value, with a relative bias of
about 3 %. More results of the ARMA modelling will be presented in Sects. 8.1.6
and 8.2.6, along with the associated performance assessments, for example, using
suitable statistical hypothesis tests (see Sects. 8.1.7 and 8.2.7).

7.4 Concluding Remarks

Reviewing the previous studies on temporal correlations of GPS observations, there
are two main deficiencies in the proposed approaches using autocorrelation functions
(ACF) and first-order autoregressive [AR(1)] processes, namely statistically rigorous
verification of the assumed stationarity and appropriate handling of the remaining
systematic effects. In order to take these aspects into account, this chapter initially
introduced a residual decomposition process, which captures the long-periodic trends
and quasi-periodic oscillations with the help of Vondrák filtering and sidereal stack-
ing, respectively. Next, the decomposed noise is described by the best-fitting autore-
gressive moving average (ARMA) model, derived automatically by means of the
ARMASA Toolbox. The reliable performance of the suggested residual-based tem-
poral correlation modelling is ensured by applying the studentised residuals with
homogenous variances, an effective procedure for handling outliers and a satellite-
specific determination of orbit repeat times. The main advantages of such a method-
ically sophisticated modelling approach are summarised as follows:

• Being largely free of the residual systematic effects, the decomposed noise is
essentially stochastic. Therefore, from a theoretical point of view, it is reasonable
to characterise it in the stochastic model of GPS observations. Moreover, in the
absence of systematic signals, the derived temporal correlation may provide a more
realistic picture of the statistical properties of GPS measurement noise.

http://dx.doi.org/10.1007/978-3-642-34836-5_8
http://dx.doi.org/10.1007/978-3-642-34836-5_8
http://dx.doi.org/10.1007/978-3-642-34836-5_8
http://dx.doi.org/10.1007/978-3-642-34836-5_8
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• The separation between long-periodic trends and quasi-periodic oscillations makes
it possible to study their individual influences on the residual statistical properties,
such as probability distribution, stationarity and temporal correlation.

• The extension from AR(1) to AR-MA(p, q) processes allows for a more accurate
description of the noise’s temporal correlation behaviour. In addition, an evaluation
of the selected orders and identified model types based on representative data sets
can verify the sufficiency of the commonly used AR(1) models.

• In comparison to sample and empirically fitted ACF, causal and invertible AR-
MA(p, q) models determined using information criteria and statistical measures are
mathematically more rigorous. They not only provide correlation information in
the form of model ACF, but also establish linear relationships between observables
at different epochs. This may be exploited in developing a dynamic GPS stochastic
model which propagates over time.

The efficiency of the residual decomposition and ARMA modelling can be visually
assessed by performing continuous wavelet transforms (see Sect. 2.4), and statisti-
cally verified by applying hypothesis tests for normality, trend, (non-)stationarity and
uncorrelatedness (see Sect. 2.3).
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Chapter 8
Results of Residual-Based Temporal
Correlation Modelling

Using the studentised GPS residuals from the short-term relative positioning and
long-term precise point positioning (PPP) case studies (see Sects. 4.2.3 and 4.3.2),
this chapter presents the outcome of the temporal correlation modelling described
in Chap. 7 with respect to satellite geometry, multipath impact and atmospheric
conditions. Prior to this, the results of computing satellite-specific orbit repeat lags,
determining appropriate Vondrák filter parameters and detecting significant residual
outliers are shown and discussed. The efficiency of the proposed residual decom-
position and ARMA modelling is visually assessed based on wavelet scalograms,
and statistically evaluated by means of hypothesis tests. Making use of the estimated
ARMA models, the PPP stochastic model is extended by taking the noise’s temporal
correlation into account.

8.1 Case Study 2: Short-Term Relative Positioning

This case study uses a subset of the residuals from the short-term relative positioning,
namely 10 days (DOY2007:161–170) of 1 h studentised double-difference residuals
(SDDR) of the ionosphere-free linear combination LC3 (see Table 4.5). The data sam-
pling interval is 1 s, and the observation weighting model is the proposed SNR-based
EMPSNR2 (see Sect. 5.3). Analysing representative observational data in terms of
baseline length (see Table 4.3), multipath impact (see Fig. 4.6) and atmospheric
conditions (see Fig. 4.8), the effects of these factors on the noise’s temporal corre-
lation properties and the results of ARMA modelling can be studied. Considering
the 1 s data sampling interval, an accurate determination of satellite-specific orbit
repeat lags plays an important role in residual homogenisation with regard to satel-
lite geometry. As illustrated in Fig. 7.6, appropriate orbit repeat lags are essential for
similar satellite-receiver geometry on multiple consecutive days.
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8.1.1 Satellite-Specific Orbit Repeat Lags

Having been defined in Sect. 7.2.5, orbit repeat lag is the difference between one
mean solar day (24 h = 86,400 s) and the satellite orbit repeat period, amounting on
average to 246 s (Ragheb et al. 2007). For each of the 8 SAPOS® sites used in this case
study (see Table 4.1), the satellite-specific orbit repeat lags are determined by means
of the empirical approach described in Sect. 7.2.5, where the entire 21 days of 3 h
(i.e., DOY2007:161–181, 15–18 h) GPS observations and navigation messages are
considered. For one satellite observed at one site, the corresponding orbit repeat lag
can be computed for a maximum number of 20 times. Regarding the satellite-related
mean lag values and standard deviations derived from different sites, only marginal
differences are detected, which are, in most cases, less than the data sampling interval
of 1 s. Therefore, the final satellite-specific orbit repeat lags and the associated
standard deviations are site-averaged values.

Figure 8.1 compares the empirically determined results with those obtained using
the program orbrep.f, representing an analytical approach based on Kepler’s
third law (Agnew and Larson 2007). As Fig. 8.1a shows, the orbit repeat lags vary
from satellite to satellite between 240 and 263 s. The empirical and analytical results
coincide fairly well with each other, exhibiting a mean difference of 0.4 s and a stan-
dard deviation of about 1 s. Considering the analytical results as a reference, a mean
difference near zero and a small standard deviation indicate the high accuracy and
consistency of the empirically derived orbit repeat lags, respectively. Comparing the
median standard deviations (see Fig. 8.1b), which characterise the average precision
of the lag estimates, the analytical method seems to be twice as good as the empirical
one. This may be explained by the different time periods of the input navigation
messages. While the empirical results are produced based on 3 h navigation data, the
program orbrep.f reads daily broadcast ephemeris files. In most instances, the
standard deviations of the empirically determined orbit repeat lags are less than 1 s,
coping with the sidereal stacking applied to the 1 s residual data. Table D.4 provides
the final satellite-specific orbit repeat lags, calculated by employing the empirical
and analytical methods.

Taking two representative GPS satellites, PRN 05 and 08, as an example, Fig. 8.2
compares the individual orbit repeat lags derived by applying different approaches.
The analytical method delivers lag values on a daily basis, indicating a total of
21 estimates for each satellite. The corresponding results shown in Fig. 8.2 clearly
depict the small-amplitude (<1 s) and 14 day periodic oscillations caused by the lunar
gravity (Choi et al. 2004). Making use of the information about satellite geometry,
the empirical approach provides one solution for two consecutive days, leading to a
maximum number of 20 lag estimates. In spite of a short observation period of 3 h,
it is interesting to observe that the empirically derived orbit repeat lags also reflect
the small-amplitude oscillations, with mean biases corresponding to those displayed
in Fig. 8.1a. Considering the 1 s data sampling interval, integer values (in seconds)
of the empirically determined orbit repeat lags are used to homogenise the residual
time series for similar satellite geometry on consecutive days.
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Fig. 8.1 Validation of the empirically determined satellite-specific orbit repeat lags by means of
the program orbrep.f (Agnew and Larson 2007; PRN: pseudo random noise)
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Fig. 8.2 Examples of GPS satellite-specific orbit repeat lags determined using the analytical
(Agnew and Larson 2007) and empirical (see Sect. 7.2.5) approaches (see Fig. 8.1a)

8.1.2 Vondrák Filter Parameters

The smoothing factor ε of the Vondrák filter regulates the degree of filtering or the
smoothness of the filtered series (see Fig. 7.4). According to Vondrák (1969) and
Zheng et al. (2005), ε can be expressed as

ε = 1/λ2 = 10−k, (8.1)

whereλ2 can be found in Eq. (7.6), and k is a positive integer referred to as the Vondrák
filter parameter. Determining the most appropriate smoothing factor ε is practically
equivalent to finding the best possible k. Based on the optimisation criterion given
by Eq. (7.10), Vondrák (1969) found the optimum value of k = 8 when filtering a
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Table 8.1 Model parameters of the stochastic processes employed for noise simulation

Stochastic Model parameters according to Eq. (2.42) Reference
process a1 a2 a3 b1 b2 σZ [mm]

WN(0, 1) − − − − − 1.00 Broersen (2006, p. 60)
AR(1) −0.90 − − − − 1.00 Wang et al. (2002)
ARMA(3, 2) −0.73 −0.38 0.14 −0.33 −0.35 1.00 Luo et al. (2012)

set of latitude observations at the Geodetic Observatory Pecný. Within the context of
multipath mitigation, Zheng et al. (2005) applied the cross-validation Vondrák filter
(CVVF) to GPS coordinate time series, where the detected optimum k values vary
between 4 and 7 for different days and coordinate components.

In this thesis, the Vondrák filter is used to capture slowly varying long-periodic
trends, so that the remaining daily repeating signals of a quasi-periodic nature can
be extracted in a physically more sophisticated manner, for example, by means of
the sidereal stacking technique. Keeping this objective in mind, the optimum filter
parameters are derived by maximising the day-to-day correlation of the Vondrák
residuals and minimising the impact of Vondrák filtering on the noise’s temporal
correlation structure. While the former condition can be mathematically formulated
by Eq. (7.12), the latter must be empirically assessed by simulation-based analysis
due to the generally unknown noise’s correlation characteristics. Each simulated
time series represents the sum of a signal and a noise component. Considering that
multipath effects induce both short- and long-periodic perturbations (see Sect. 3.2.3),
the signal component is generated using the multipath model

δφ(e;ϑ, d, λ) = λ

2π
tan−1 ϑ sin

[
4π d

λ
sin e

]

1 + ϑ cos
[
4π d

λ
sin e

] , (8.2)

which primarily depends on the elevation angle e of the incident signal (Elósegui
et al. 1995; King and Williams 2009). This multipath model assumes that the incom-
ing GPS signals are plane waves with a wavelength of λ. Furthermore, the hori-
zontal reflector is planar and infinitely large, located at a distance of d below the
GPS antenna. The parameter ϑ , ranging between 0 and 1, denotes the attenuation
of the voltage amplitude of the reflected signal with respect to the direct signal. In
order to construct scenarios as close to reality as possible, the elevation angles of 9
GPS satellites, observed at the SAPOS®site Heidelberg (HEID) during a 1 h period
(DOY2007:161, 17–18 h), are incorporated into the multipath simulation. Follow-
ing the parameter settings in King and Williams (2009) and Zhong et al. (2010),
the reflected signal in a static multipath environment is assumed to be attenuated
by a factor of ϑ = 0.1. Moreover, representative reflector-antenna distances d of
0.1–3.0 m are specified to produce multipath signals with different quasi-periods.
The multipath simulation is only carried out for L1 observations, indicating that
λ = 19 cm (see Table 3.2).
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Fig. 8.3 Model ACF of the noise-generating stochastic processes presented in Table 8.1

In addition to the signal, the noise part is created using different stochastic
processes, like the Gaussian white noise (WN) process, {Zt } ∼ WN(0, σ 2

Z ), and
representative autoregressive moving average (ARMA) processes. The ARMA coef-
ficients are specified by considering the temporal correlation properties of GPS obser-
vation noise presented in Wang et al. (2002) and Luo et al. (2012). Following the
notation of a general ARMA(p, q) process defined by Eq. (2.42), Table 8.1 provides
the model parameters of the applied noise-generating processes. Once an ARMA
process is uniquely known, the associated autocorrelation function (ACF) can be
derived from the model parameters using the two methods described in Sect. 2.2.3.
Figure 8.3 illustrates the model ACF of the noise-generating processes. As can be
seen, the ARMA model ACF exclusively exhibit positive correlations, corresponding
to the general assumption that GPS observations are positively correlated over time.
In comparison to the AR(1) process, the model ACF of the ARMA(3, 2) process
depicts a slowly decaying temporal correlation structure, implying a larger correla-
tion length. However, as will be demonstrated in Sect. 8.1.6, the order of the best-
fitting ARMA model identified from a given noise realisation depends on the entire
correlation structure rather than on the correlation length alone.

For the GPS satellite PRN 18, Fig. 8.4 illustrates some examples of the simu-
lated data series using different reflector-antenna distances [d = 0.1, 1.5, 3.0 m;
see Eq. (8.2)] and noise-generating processes (see Table 8.1). First of all, it can
be seen that the quasi-periodic nature of the simulated multipath signal becomes
less obvious as d decreases. This agrees with the theory that a near-ground antenna
with a small d is primarily affected by the near-field multipath, producing slowly
varying long-periodic errors. As d increases, the antenna experiences greater influ-
ence from distant reflectors, causing rapidly oscillating quasi-periodic signals (Geor-
giadou and Kleusberg 1988; Wanninger 2000, p. 23). In this multipath simulation,
an upper limit of 3 m is chosen for d, which still reflects reality under certain site-
specific observational conditions. For example, in order to attenuate signal shadowing
and diffraction effects, the GPS antenna at the Black Forest Observatory (BFO) is
installed on top of an aluminium tripod, being about 3.6 m above the ground (Luo and
Mayer 2008). Regarding the simulated noise, the positive correlations seem to signif-
icantly amplify the process variance. For instance, AR(1) processes have a variance
of σ 2

X = σ 2
Z/(1 − a2

1) (Brockwell and Davis 2002, p. 18), increasing σZ = 1 mm by
more than twice to σX = 2.3 mm (a1 = −0.9; see Table 8.1).
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Fig. 8.4 Examples of the simulated data series using different reflector-antenna distances d and
noise-generating stochastic processes [SAPOS® site: HEID, satellite: PRN 18, DOY2007:161,
17–18 h, MP: multipath; see Table 8.1 and Eq. (8.2)]

In the case that the noise’s temporal correlation behaviour is exactly known,
for example, described by the model ACF of an ARMA process, the objective of
minimising the impact of Vondrák filtering on the noise’s correlation structure can
be formulated by

hmax∑
h=1

[
ρ̂ỹ(h)− ρM (h)

]2 −→ min, h ∈ N, (8.3)

where ρ̂ỹ(h) denotes the sample ACF of the Vondrák residual time series ỹ at lag h,
and ρM(h) is the model ACF of the noise-generating stochastic process. Applying
this ACF-based minimum constraint, the optimum filter parameter k can be deter-
mined for each simulated data series, where hmax is equal to 20, 50 and 150 s for
WN(0, 1), AR(1) and ARMA(3, 2), respectively (see Fig. 8.3). Analysing the exam-
ples shown in Fig. 8.4, Fig. 8.5 compares the results of the Vondrák filter, where the
optimum k values are determined using the CVVF method (Zheng et al. 2005) and
Eq. (8.3). If the simulated noise is WN, both approaches produce comparably large
filter parameters, leading to almost identical filtered values. However, if the simu-
lated noise exhibits strong positive correlations, the CVVF method tends to provide
small k values and rough filtered series. This may be attributed to its performance
degradation when the noise level is higher than the magnitude of the signal (Zheng
et al. 2005). As Fig. 8.4 illustrates, increased noise level can be a consequence of
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Fig. 8.5 Vondrák filtering of the simulated series using filter parameters determined by means of
different approaches (CVVF: Zheng et al. 2005; Thesis: Eq. (8.3); see Fig. 8.4)

positive temporal correlations. In comparison to CVVF, the ACF-based minimum
constraint delivers larger k values, sufficiently capturing the generated multipath
signals. To show the effects of the filter parameters on the noise’s correlation struc-
ture, Fig. 8.6 compares the sample ACF of the Vondrák residuals with the model
ACF of the noise-generating processes. In the case of coloured noise, i.e., AR(1) and
ARMA(3, 2), the CVVF method generally eliminates the noise’s autocorrelations,
resulting in almost uncorrelated Vondrák residuals. In contrast, the use of Eq. (8.3)
maintains the input noise’s correlation structure, where this maintenance appears to
degrade with increasing model complexity.

Considering all the reflector-antenna distances and GPS satellites analysed in this
simulation study, Fig. 8.7 displays the optimum Vondrák filter parameters determined
by means of Eq. (8.3). Figure 8.7a shows the satellite geometry during the 1 h time
interval. For all three noise-generating processes, the mean k value decreases as
the reflector-antenna distance d increases. This is due to the increased multipath
oscillations whose characterisation requires smaller filter parameters (see Fig. 8.4).
Regarding the coloured noise models, i.e., AR(1) and ARMA(3, 2), illustrated in
Fig. 8.7c and d, respectively, one can easily discern that the satellite-specific filter
parameters become more variable as d increases. Accordingly, for large reflector-
antenna distances, differences in satellite geometry play an important role when using
the Vondrák filter to capture quasi-periodic far-field multipath signals. In summary,
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Fig. 8.6 Comparison of the sample ACF of the Vondrák residuals with the model ACF of the
noise-generating processes (see Table 8.1 and Figs. 8.3, 8.4 and 8.5)

Vondrák filtering with k = 13 seems to sufficiently detect long-periodic trends
without significant impact on the noise’s temporal correlation.

To effectively extract the remaining daily repeating signals by means of sidereal
stacking, the optimum Vondrák filter parameters are computed for each double-
difference by maximising the day-to-day correlation of the Vondrák residuals [see
Eq. (7.12)]. Thereby, the candidate values for k vary from 1 to kmax with a step of 1,
where the upper limit kmax is chosen to be 13 and 10 for the baselines with weak and
strong multipath impact, respectively (see Table 4.3). This choice is made according
to the mean results presented in Fig. 8.7. The determined optimum k values are
visualised in Fig. 8.8 for all the available double-differences, where kmax is in most
cases considered as the best possible one. The use of smaller Vondrák filter parameters
allows capturing some randomly occurring signals, for instance, induced by variable
atmospheric conditions. This may improve the day-to-day similarity of the Vondrák
residuals, and consequently, the performance of sidereal stacking. Taking the double-
difference TAAF1718 (i.e., baseline: TAAF, satellite pair: PRN 17-18) as an example,
the employment of the Vondrák filter with k = 12 increases the residual mean day-
to-day correlation coefficient by more than 50 %, from 0.30 to 0.46. Filtering the
raw SDDR with the derived optimum k values, the resulting Vondrák residuals are
first used for outlier detection (see Fig. 7.3).

http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_4
http://dx.doi.org/10.1007/978-3-642-34836-5_7
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Fig. 8.7 Optimum Vondrák filter parameters determined using Eq. (8.3) for all the analysed
reflector-antenna distances and GPS satellites (site: HEID, DOY2007:161, 17–18 h)

Fig. 8.8 Optimum Vondrák filter parameters determined using Eq. (7.12) for all the available
double-differences (see Table 4.3 for baseline characteristics)

http://dx.doi.org/10.1007/978-3-642-34836-5_7
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Fig. 8.9 Results of the two-step procedure for outlier detection using the Vondrák residuals (see
Eqs. (7.13) and (7.14); MAD: median absolute deviation)

8.1.3 Results of Outlier Handling

Relying upon the Vondrák residuals, the outlier detection described in Sect. 7.2.4
is performed in two steps: outlier identification using the 5-MAD criterion [see
Eq. (7.13)] and outlier verification by means of the one-sided F-test [see Eq. (7.14)].
This two-step procedure is applied to a total of 368 SDDR times series. The minimum
data length is chosen to be 600 epochs (1 epoch = 1 s) by considering the correlation
time of about 200 s for LC3 double-difference observations (El-Rabbany 1994, p. 36)
and the rule of thumb that the sample ACF can be reliably estimated for lags of up to
a third of the sample size (Brockwell and Davis 2002, p. 404). The results of outlier
detection are shown in Fig. 8.9.

As can be seen from Fig. 8.9a, 5-MAD outliers exist in 303 (82 %) Vondrák
residual time series, where in 95 % of the cases the number of outliers in a single
series is less than 30. This requires a careful examination of the influence of the
identified 5-MAD outliers. Figure 8.9b illustrates the results of outlier verification by
means of the one-sided F-test at a significance level of α = 1 %, which corresponds
to the probability of committing a Type I error (see Sect. 2.3.1). For 275 of the
303 time series with outliers, the detected 5-MAD outliers appear to insignificantly
affect the sample variance of the Vondrák residuals. In the occurrence of significant
impacts, where the test statistics are larger than the critical values, a strong positive
correlation between the F-test statistic and the number of outliers is clearly visible.

In order to benefit from a large and representative residual data set, the
303 − 275 = 28 residual time series with significant 5-MAD outliers are not simply
excluded from the temporal correlation modelling, but repaired using the remove-
repair-restore (RRR) technique introduced in Sect. 7.2.4. In the remove step, the Von-
drák filtered values are subtracted from the raw SDDR. In the repair step, the 5-MAD
outliers are replaced by the linearly interpolated values of the non-outlying Vondrák
residuals. In the restore step, the repaired Vondrák residuals are added to the filtered

http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_7
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Fig. 8.10 Results of the outlier repair by means of the remove-repair-restore (RRR) technique

values, which were subtracted in the remove step. By doing so, the repaired SDDR
should be free of the 5-MAD outliers that strongly affect the sample variance of the
Vondrák residuals. Taking the SDDR time series TAAF2212166 (baseline: TAAF,
satellite pair: PRN 22-12, DOY2007:166) with the largest test statistic as an example
(see Fig. 8.9b), Fig. 8.10a illustrates the efficiency of the RRR technique with which
the significantly outlying SDDR can be sufficiently reduced. Based on the repaired
SDDR (OFR in Fig. 7.3), the optimum Vondrák filter parameters k are determined
again, and the results are identical with those shown in Fig. 8.8. Applying the Von-
drák filter to OFR, the resulting residuals are reanalysed for outliers. As Fig. 8.10b
shows, all the F-test statistics are less than the critical values, and the numbers of
5-MAD outliers are largely reduced in comparison to Fig. 8.9b. These improvements
verify the performance of the RRR approach, producing high-quality SDDR data for
the subsequent residual decomposition and ARMA modelling.

From a theoretical point of view, the applied F-test assumes statistically inde-
pendent and normally distributed samples (ỹa,1, . . . , ỹa,na ) and (ỹb,1, . . . , ỹb,nb )
(Niemeier 2008, p. 110). However, considering the principle of the outlier verifi-
cation, both data sets ỹa and ỹb are obviously dependent, since they differ from
each other only with respect to the presence of 5-MAD outliers. Furthermore, the
remaining quasi-periodic signals may cause deviations from the assumed normal dis-
tribution. Therefore, under statistical aspects, a comparison between the empirical
distribution of the test statistic TF and the theoretical F-distribution will illustrate
the influence of applying the F-test in violation of the theoretical assumptions.

Taking the one-sided test property into account (see Sect. 7.2.4), Fig. 8.11 com-
pares the empirical cumulative distribution function (CDF) of TF with the theoretical
CDF of the F-distribution, where the degrees of freedom νa and νb are specified by
considering the maximum sample size and the maximum number of outliers. As one
can easily discern in Fig. 8.11a, prior to outlier repair, there exist large deviations
between the empirical and theoretical CDF for TF > 1.05. These discrepancies are
taken advantage of to assess the significance of the identified 5-MAD outliers. After
repairing outliers by means of the RRR technique, as Fig. 8.11b displays, both CDF

http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_7
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Fig. 8.11 Comparison of the empirical and theoretical distributions of the F-test statistic TF before
and after outlier repair using the RRR technique [see Eq. (7.14)].
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Fig. 8.12 Comparison of the daily numbers of 5-MAD outliers with surface relative humidity (R H )
measurements (baselines: TAAF and RATA, DWD station: WUER; see Figs. 4.1 and 4.8c)

curves coincide with each other, exhibiting quantile differences of less than 0.01 in
most cases. To account for the correlation between the data sets ỹa and ỹb, the test
for comparing two correlated variances (Snedecor and Cochran 1967, p. 195) may
be applied for future research.

In addition, by incorporating the DWD surface meteorological data (see Fig. 4.8),
attempts are made to find physical factors that influence the number of outliers.
Considering the comparable heights and the relatively short distance between the
SAPOS®site TAUB and the DWD station WUER (see Fig. 4.1a), Fig. 8.12 compares
the relative humidity (RH ) measurements from WUER with the daily numbers of
5-MAD outliers from the TAUB-related baselines TAAF and RATA (see Table 4.3),
detected prior to outlier repair .

As can be clearly seen in Fig. 8.12, the daily numbers of 5-MAD outliers and the
RH measurements are positively correlated, with a correlation coefficient of about
0.6. Such a considerable correlation indicates the strong impact of the wet atmosphere
on GPS data quality and emphasises the necessity of advanced tropospheric mod-
elling, particularly for the wet delay component. This can be achieved, for exam-

http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_4
http://dx.doi.org/10.1007/978-3-642-34836-5_4
http://dx.doi.org/10.1007/978-3-642-34836-5_4
http://dx.doi.org/10.1007/978-3-642-34836-5_4
http://dx.doi.org/10.1007/978-3-642-34836-5_4
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ple, by incorporating representative meteorological data with a high temporal and
spatial resolution into GPS data analysis, as well as by applying the state-of-the-art
tropospheric mapping functions such as the GMF and VMF1 (Boehm et al. 2006a,b).
In order to benefit from a larger residual data set without significant outliers, the
repaired SDDR are used as input for the temporal correlation modelling, which
actually begins with residual decomposition.

8.1.4 Results of Residual Decomposition

Following the data homogenisation with respect to satellite geometry and outlier
repair by means of the RRR technique, the residual decomposition process described
in Sect. 7.2.2 is carried out in order to obtain stochastic noise that is largely free of the
remaining systematic effects. Using the notations introduced before, OFR denotes
the repaired SDDR, DTR refers to the detrended (Vondrák) residuals, and NCR
represents the decomposed noise. Considering that the baselines TAAF and HEDA
have similar lengths but different multipath effects (see Table 4.3), Figs. 8.13, 8.14
and 8.15 depict the results of Vondrák filtering, sidereal stacking and noise extraction
for the satellite pair PRN 12-05, respectively.

As Fig. 8.13 shows, the 10 days of site-mean elevation angles are largely con-
sistent, reflecting the high accuracy of the empirically determined satellite-specific
orbit repeat lags (see Fig. 8.1 and Table D.4). Employing a filter parameter of k = 13,
Fig. 8.13a illustrates the efficiency of the Vondrák filter in capturing slowly varying
long-periodic trends. In spite of the similar satellite geometry on the 10 consecutive
days, obvious deviations are present in the filtered values, which are mainly due to
the different atmospheric conditions. These kinds of day-to-day deviations tend to
become more significant as baseline length increases. In comparison to the TAAF-
related example, Fig. 8.13b exhibits considerably larger variations in OFR, which
are caused predominantly by the strong multipath impact of HEDA (see Figs. 4.6
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Fig. 8.13 Examples of Vondrák filtering with respect to multipath impact (TAAF: 53.7 km, weak
multipath, HEDA: 54.1 km, strong multipath, DOY2007:161–170; see Table 4.3)
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Fig. 8.14 Examples of sidereal stacking using different days of DTR (DOY2007:168–170, orbit
repeat lags: 250 s for PRN 12, 240 s for PRN 05, 245 s for PRN 12-05; see Table D.4)
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Fig. 8.15 Noise after applying the 3 and 10 day sidereal stacking (DOY2007:161–170)

and 4.7a). Furthermore, the interaction between site-specific multipath effects and
variable atmospheric conditions may induce some randomly occurring and strongly
deviating signals, which can be well detected by the Vondrák filter using smaller
filter parameters (e.g., k = 10).

After removing the trend component from OFR, the resulting DTR are used for
sidereal stacking to extract the daily repeating signals of a quasi-periodic nature.
Comparing the 3 day DTR displayed in Fig. 8.14, the TAAF-related example pri-
marily shows daily repeating effects, while the HEDA-related one clearly exhibits
quasi-periodic signals with a period of several minutes. As schematically illustrated
in Fig. 7.7, the sidereal stacking is accomplished by computing the epoch-wise arith-
metic means of DTR from multiple days. Two approaches based on 10 and 3 day DTR
are compared with each other. In comparison to the 3 day stacking variant, the 10 day
means are not only smoother, but also slightly shifted, where the shifts are particularly
observable in the presence of quasi-periodic oscillations (see Fig. 8.14b). This may
arise from using the average of the two related satellite-specific orbit repeat lags as

http://dx.doi.org/10.1007/978-3-642-34836-5_4
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the representative value for a satellite pair. As a consequence, the decomposed noise
may still contain some periodic signals, contaminating the results of the temporal
correlation analysis.

Subtracting the daily repeating signals from DTR results in the final stochastic
noise NCR (see Fig. 8.15). Compared to the 10 day stacking approach, the 3 day
solution enables a more accurate signal characterisation, leading to more homoge-
nous noise with smaller variance. Moreover, the variance of the noise component
seems to decrease with increasing multipath impact.

To minimise the influence of the remaining systematic effects on the residual-
based temporal correlation modelling, such a decomposition process is necessary
prior to analysing the noise’s temporal correlation properties. To demonstrate this,
Fig. 8.16 compares the sample ACF of OFR, DTR and NCR from the same exam-
ples used for residual decomposition. As can be seen in both plots, the remaining
systematic signals in OFR and DTR significantly affect the temporal correlation
structure, and consequently, the ACF-based evaluation of the temporal correlation
characteristics (e.g., correlation length). While Fig. 8.16a primarily illustrates the
effect of long-periodic trends, Fig. 8.16b also shows the impact of quasi-periodic
signals. In addition, comparing the sample ACF of NCR(3) and NCR(10), obtained
after stacking 3 and 10 day DTR, respectively, the advantages of applying a shorter
stacking time interval in capturing quasi-periodic oscillations are clearly visible.
Accordingly, the NCR(3) data are used for the following correlation analysis and
ARMA modelling. Within this context, it is worth mentioning that observations col-
lected over three consecutive days are often used in coordinate- and residual-level
GPS sidereal filtering for multipath mitigation (Zheng et al. 2005; Ragheb et al. 2007;
Zhong et al. 2010). Comparing the sample ACF of NCR(3) with respect to multi-
path impact, the zero-crossing correlation length (i.e., lag value for ACF being equal
to zero) seems to decrease with increasing multipath, while the lag-1 correlation
level (i.e., ACF value for lag being equal to one) appears to increase with increasing
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Fig. 8.16 Comparison of the sample ACF of OFR, DTR and NCR (TAAF: 53.7 km, weak multipath,
HEDA: 54.1 km, strong multipath, DOY2007:161–170; see Figs. 8.13, 8.14 and 8.15)
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multipath. In order to obtain a realistic picture of the noise’s temporal correlation
behaviour, a detailed analysis is carried out with regard to baseline length, multipath
impact, satellite geometry and atmospheric conditions.

8.1.5 Results of the Correlation Analysis

The noise’s temporal correlation analysis is performed based on the two aforemen-
tioned characteristics of the sample ACF of NCR(3), namely the zero-crossing cor-
relation length and lag-1 correlation level. The former represents the smallest lag
at which the sample ACF falls below zero [see N D1 in Eq. (7.2)]. The latter is the
autocorrelation coefficient at lag 1, which is usually of great interest in assessing
correlatedness. To study the effects of baseline length and multipath impact on the
noise’s temporal correlation, both parameters are computed baseline-wise, and the
results are presented by box plots in Fig. 8.17. The statistical characteristics, such as
arithmetic mean and 95 % quantile, are derived without the extreme outliers outside
the interval [Q0.25 − 3 · IQR, Q0.75 + 3 · IQR], where Q0.25 and Q0.75 denote the
lower and upper quartiles, respectively, and IQR is the interquartile range defined as
Q0.75 − Q0.25.

Comparing the HEDA-related box plots with those of other baselines, strong
multipath effects seem to halve the mean correlation length from about 80 to 40 s with
a decreased IQR, and to double the mean correlation level from about 0.3 to 0.6 with
an increased IQR. The extreme outliers, marked by red plus signs in Fig. 8.17a, can
be partly found in Fig. 8.16b at small lags. Regarding the box plots of SIBI (42.5 km)
and RATA (203.7 km) for instance, baseline length appears to insignificantly affect
the noise’s temporal correlation properties. This may be explained by the sufficient
removal of the remaining distance-dependent systematic effects during the course of
the residual decomposition and coincides with the findings reported by El-Rabbany
(1994, p. 89) and El-Rabbany and Kleusberg (2003).
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Fig. 8.17 Temporal correlation characteristics with respect to baseline length and multipath impact
(see Table 4.3 for baseline properties, 1 h decomposed SDDR noise, sampling interval: 1 s)
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Examining the sample ACF shown in Figs. 8.16 and C.3, the reduction of long-
periodic trends significantly impacts upon both the correlation length and level,
while the removal of daily-repeating signals decreases the correlation level and the
portion of negative correlations. The dominance of positive correlations in NCR(3)
corresponds to the general assumption of positively correlated GPS observations.
Considering all the analysed noise series, the zero-crossing correlation length and
lag-1 correlation level have 95 % quantiles of 133 s and 0.7, respectively. The max-
imum correlation length found in this case study is about 180 s (3 min). Note that
the temporal correlation properties are derived from only 1 h SDDR and thus are
not necessarily representative. Since the GPS data are dominated by low-elevation
observations (see Fig. 4.5), the presented results may illustrate a low-correlation
scenario, provided that the noise’s temporal correlation decreases with decreasing
satellite elevation angle.

To demonstrate the impact of satellite geometry on the noise’s temporal correla-
tion behaviour, the mean correlation characteristics are calculated for each satellite
pair, where the sample sizes vary from 25 to 50. In addition, for each satellite pair, a
representative elevation angle is derived as follows: On the basis of the epoch-wise
4-element means, the median elevation angle is first computed for one baseline, one
satellite pair and one day. Next, the average of all medians, which are related to
the same satellite pair, but to different baselines and days, is calculated as the final
representative elevation angle. Figure 8.18 depicts the mean temporal correlation
characteristics with respect to satellite geometry. For different satellite pairs, there
exist obvious deviations in the correlation properties, particularly in the correlation
lengths. Furthermore, it is interesting to observe that the mean correlation length
and level are positively correlated with the representative elevation angle, where the
correlation coefficients are larger than 0.6. This simply indicates that the noise’s tem-
poral correlation becomes on average shorter and weaker as the satellite elevation
angle decreases. Such variation patterns were also reported by Leandro and San-
tos (2007) while analysing geometrically reduced double-difference pseudo-ranges
from small baselines. Schön and Brunner (2008a) explained the cause based on the
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Fig. 8.18 Temporal correlation characteristics with respect to satellite geometry (see Fig. 8.7a for
satellite geometry, 1 h decomposed SDDR noise, sampling interval: 1 s)
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characteristic separation distances of the lines-of-sights, which vary much faster at
low elevation angles. Although the SDDR used in this case study evidently reflect the
influence of satellite elevation angle on the noise’s temporal correlation, a double-
difference residual involves two satellites and two sites, making it difficult to find a
representative measure of satellite geometry. For this reason, it seems more appro-
priate to use studentised zero-difference residuals, for example, those obtained from
precise point positioning (see Sect. 8.2.5).

On the basis of atmospheric turbulence theory, Schön and Brunner (2008a) showed
that the correlation pattern of GPS phase observations depends not only on the chang-
ing satellite geometry, but also on the prevailing atmospheric conditions. For exam-
ple, the wind speed (W S) plays a key role in decorrelation processes. Moreover, as
illustrated in Fuhrmann et al. (2010, pp. 92, 104), after removing the remaining site-
specific effects by stacking, there are still signals in the GPS observation residuals
that are induced by the azimuthally anisotropic tropospheric wet delays. In the light
of these findings, it seems reasonable to incorporate the DWD surface meteorological
data into the noise’s temporal correlation analysis to enable a physical interpretation
of the results.

Along with the W S and RH measurements, Fig. 8.19 presents the mean corre-
lation characteristics on a daily basis, where the sample sizes vary between 26 and
44. The W S data in the DWD collective standard format KL2000 are given on the
Beaufort scale (B), which empirically relates wind speed to observed conditions at
sea, such as foam coverage and wave shape. While a Beaufort number of 0 describes
a calm sea like a mirror, a value of 12 indicates hurricane-force wind, leading to
huge waves making the sea completely white with driving spray. Using the empirical
formula

v10 [m/s] = 0.836 [m/s] · B3/2 (8.4)
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Fig. 8.19 Temporal correlation characteristics with respect to atmospheric conditions (see Fig. 4.8
for the DWD surface meteorological data; W S: wind speed, R H : relative humidity)
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provided by Stewart (2008, p. 43), the Beaufort scale B can be converted into the
metric-based unit m/s, where v10 is the wind speed at a height of 10 m above the
ground in a flat and completely open area. As Fig. 8.19a shows, temporally variable
W S was predominantly observed at the northern and central four DWD sites, i.e.,
FRAN, WUER, KARL and STUT, while variable RH was measured at all the six
meteorological stations. To achieve the maximum temporal variability, the mean W S
and RH are computed using the above-mentioned four and all the six DWD sites,
respectively. The upper plot of Fig. 8.19b illustrates a moderate negative correla-
tion of −0.4 between the daily mean zero-crossing correlation length and W S. In
particular, large correlation lengths are found on days 162 and 169 with low W S,
while a small correlation length is visible on day 167 with a high W S. In spite of
the moderate correlation level, it is interesting to see that the mathematically derived
correlation lengths can be physically interpreted. From the lower plot of Fig. 8.19b,
one can easily discern a strong positive correlation of 0.8 between the daily mean
lag-1 correlation level and RH . As mentioned before, this can be explained by the
remaining tropospheric wet delays and the changes in the site-specific multipath
environment due to variable atmospheric conditions.

To illustrate the effects of a humid atmosphere on the noise’s temporal correlation
structure, Fig. 8.20 compares the decomposed noise and the associated sample ACF
for the double-difference RATA1826 on two representative days, 166 and 170, with
the maximum and minimum mean RH , respectively (see Fig. 8.19b). In comparison
to day 170, the noise series from day 166 is more variable and exhibits increased
signal content with decreasing satellite elevation angle. As a result, the corresponding
sample ACF depicts a higher lag-1 correlation level (day 166: 0.36, day 170: 0.17)
and a longer zero-crossing correlation length (day 166: 137 s, day 170: 92 s). By
comparing the mean correlation length and RH shown in Fig. 8.19b, a weak positive
correlation of 0.3 is detected.
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Fig. 8.20 Effects of a humid atmosphere on the noise’s temporal correlation (baseline: RATA,
203.7 km, weak multipath, satellite pair: PRN 18-26, DOY2007:166, 170; see Fig. 8.19b)
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Analysing the short-term (1 h) SDDR, being located near the observation time of
the DWD surface meteorological data (see Fig. 4.8), the noise’s temporal correlation
characteristics derived in this case study are physically interpretable and sensitive to
variations in atmospheric conditions. Nevertheless, additional studies are necessary
in which not only more representative residuals, but also high-resolution meteorolog-
ical data should be used. Moreover, forming baselines and selecting satellite tracks
by paying particular attention to their orientations, the effects of satellite azimuth
and wind direction on the noise’s correlation properties can be investigated. For each
decomposed noise series, the best-fitting ARMA model is determined, allowing for
a mathematically rigorous description of the noise’s temporal stochastic behaviour.

8.1.6 Results of ARMA Modelling

In this thesis, ARMA modelling is carried out using the ARMASA Toolbox (Broersen
2006, Chap. 9), which enables an automatic identification of the best-fitting ARMA
model for a given noise realisation (see Sect. 7.3). Before applying this free toolkit
within the residual-based temporal correlation modelling, Luo et al. (2011b) empiri-
cally evaluated its performance based on numerous simulated noise time series with
representative temporal correlations, being comparable to GPS residuals. The results
showed that having sufficient data is essential for unbiased model identification and
parameter estimation. In the case where the data volume is about 10 times the zero-
crossing correlation length, the model error defined by Eq. (7.44) is very close to the
optimum efficiency of the Cramér-Rao lower bound (see Sect. 7.3.4). For longer data
series, more than 80 % of the identified ARMA models are unbiased, and the rate
of biased model estimates increases with increasing correlation complexity. Further-
more, the employment of hierarchical ARMA(p, p−1) models considerably reduces
the required computational time. In summary, the ARMASA Toolbox is capable of
efficiently producing causal and invertible ARMA models for stationary GPS noise
series of sufficient length.

The input data for ARMA modelling are the decomposed noise sequences NCR(3)
(see Fig. 7.3). As illustrated in Figs. 8.16 and C.3, the noise’s sample ACF values
decay rapidly, which is desirable for fitting ARMA models (Brockwell and Davis
2002, p. 403). Following the suggestions given by the ARMASA demonstration
program, the maximum candidate orders pmax

AR , qmax
M A and pmax

AM are chosen to be
100, 20 and 10 for the AR(p), MA(q) and ARMA(p, p − 1) models, respectively.
Accordingly, the maximum order models are AR(100), MA(20) and ARMA(10, 9).
In Fig. 8.21, the results of model identification and order selection are presented.

From the upper plot of Fig. 8.21a it can be seen that AR and ARMA estimates
dominate the results of the model identification. In fact, only one noise series from
the baseline SIBI can be considered as WN, and MA models are identified only
three times for the HEDA-related data. Moreover, multipath impact seems to play an
important role in model identification. If strong multipath is present (e.g., HEDA),
AR models are preferred in comparison to ARMA alternatives. In contrast to multi-
path, baseline length insignificantly affects the model identification. Regarding the
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http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_7


8.1 Case Study 2: Short-Term Relative Positioning 247

(a)

(c) (d)

(e) (f)

(b)

S

AFLO(67) TAAF(76) HEDA(63) SIBI(78) RATA(84) ALL(368)
0

20

40

60

80

100

Baseline (number of noise time series)

M
od

el
 ty

pe
 [%

]
AR model MA model ARMA model

S
um

 o
f o

rd
er

s

AR(102) ARMA(262)
0

10

20

30

40

50

Model type (number of model estimates)

95% quantilemaximum

minimum

upper quartile

lower quartile
median

extreme
outliersIQR

IQR: interquartile range

Fig. 8.21 Results of the model identification and order selection using the ARMASA Toolbox (1 h
decomposed SDDR noise, sampling interval: 1 s, AR: p̂AR , ARMA: p̂AM + q̂AM = 2 p̂AM − 1;
see Table 4.3 for baseline properties and Sect. 7.3 for ARMA modelling)

http://dx.doi.org/10.1007/978-3-642-34836-5_4
http://dx.doi.org/10.1007/978-3-642-34836-5_7


248 8 Results of Residual-Based Temporal Correlation Modelling

box plots of the sum of orders shown in the lower plot of Fig. 8.21a, the specified
maximum orders, i.e., pmax

AR = 100 and pmax
AM = 10, appear to be sufficient, since all

the selected p̂AR are below 50, and 99 % of p̂AM + q̂AM are less than 10 + 9 = 19.
Considering the AR and ARMA model estimates for each baseline, Fig. 8.21b–f

illustrate the box plots of the sum of orders (i.e., AR: p̂AR , ARMA: p̂AM + q̂AM =
2 p̂AM − 1) as well as the relative frequency of the identified hierarchical ARMA
models. For the baselines with weak multipath impact, the 95 % quantiles of the AR
orders vary from 17 to 27 with an IQR (interquartile range) between 3 and 6, while the
95 % quantiles of the sum of the ARMA orders vary from 7 to 11 with a constant IQR
of 2. This indicates the inadequacy of using AR(1) processes to describe the noise’s
temporal correlation and the necessity of applying higher-order AR and ARMA
models, even in weak multipath environments. As Fig. 8.21d displays, higher-order
AR processes appear to be more applicable in the case of strong multipath impact,
where the AR orders have a 95 % quantile of 48 and a significantly increased IQR
of 24. Regarding the associated ARMA estimates, p̂AM + q̂AM ≤ 7 is satisfied for
13 out of 17 cases. Like the problem of polynomial fitting, higher ARMA orders
allow for a more accurate characterisation or a better fit to the given noise, but
do not necessarily indicate longer and stronger temporal correlations. In spite of
the thorough filtering and stacking procedures performed during the course of the
residual decomposition, there may exist remaining systematic effects in NCR(3),
which do not destroy the noise stationarity. In this case, the ARMASA Toolbox
attempts to account for the residual signals by selecting higher-order time series
models. This is true for the baseline HEDA with strong multipath impact, particularly
under variable atmospheric conditions.

In addition to the baseline-related analysis, Fig. 8.22 depicts the sum of ARMA
orders with respect to satellite geometry and atmospheric conditions, where the same
representative elevation angles and mean W S are used, as shown in Figs. 8.18 and
8.19b, respectively. Despite a weak negative correlation of −0.3 between the 95 %
quantiles of the sum of orders and the representative elevation angles, Fig. 8.22a
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Fig. 8.22 Sum of ARMA orders with respect to satellite geometry and atmospheric conditions (see
Fig. 8.18 for representative elevation angles and Fig. 8.19b for mean W S)
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suggests that the sum of orders tends to increase with decreasing satellite elevation
angle. This can be understood by considering the increased residual systematic sig-
nals at low elevation angles. They are neither considered in GPS data processing nor
captured during the residual decomposition, but can be handled by fitting high-order
ARMA models. Comparing the 95 % quantiles of the sum of orders with the mean
W S, Fig. 8.22b illustrates a moderate negative correlation of −0.4. Using another
completely different software called ITSM2000-V.7.1 (Brockwell and Davis 2002,
p. 395), Luo et al. (2012) analysed the same SDDR data by means of ARIMA(p, 1, q)
processes. Thereby, W S exhibits a similar influence on order selection, where the
remaining systematic effects are eliminated by undertaking the first-order difference
instead of the residual decomposition (see Sect. 2.2.1).

Figure 8.23 illustrates examples of ARMA modelling under variable atmospheric
conditions. The baselines HEDA and RATA are chosen, which are representative with
respect to multipath impact and baseline length, respectively (see Table 4.3). Two
consecutive days, 166 and 167, are considered, for which the RH measurements
at the DWD stations are significantly different (see Fig. 8.19a). The noise series
displayed in Fig. 8.23a and b reflect the variable atmosphere, leading to deviations
in the remaining systematic signals in NCR(3). As Fig. 8.23c and d show, high-
order AR(31) and AR(12) models are identified for day 166 and characterise the
complex correlation structure, which is actually caused by the large magnitudes of
the residual systematic effects. For day 167, low-order ARMA(3, 2) models appear
to be adequate enough to describe the noise’s correlation properties. Applying the
empirical ACF given by Eq. (7.2) (Howind 2005, p. 57), the results are compared
with those from the ARMA modelling. In the low-valued lag areas, where strong
temporal correlations are present, the estimated empirical ACF exhibit considerable
deviations from the noise’s sample ACF. This is attributed to the specification of a
constant coefficient of 0.5 and the use of LS regression for overall minimisation. In
contrast, the ARMA model ACF flexibly capture the lag-1 correlations of the noise’s
sample ACF and enable a more accurate fit in the presence of a damped periodicity.
Such advantages of fitting ARMA models over estimating the empirical ACF were
also reported by Luo et al. (2012). Filtering the coloured noise series NCR(3) with
the determined ARMA models, the outcomes are called ARMA residuals (WNR in
Fig. 7.3), visualised in Fig. 8.23e and f. Obviously, the systematic signals remaining in
NCR(3), particularly on day 166, are well absorbed by the ARMA models, resulting
in homogeneous WNR. To verify the uncorrelatedness of WNR or the efficiency of
ARMA modelling, the statistical tests described in Sect. 2.3.5 are employed, and the
results will be discussed in Sect. 8.1.7. Comparing Fig. 8.23e and f with each other,
it is clearly visible that the HEDA-related WNR exhibit smaller variances than the
RATA-related ones. This gives some motivation to perform a more detailed analysis
of the residual (or estimated WN) variances.

Figure 8.24 provides a baseline-wise presentation of the standard deviations
(STD) of NCR(3) and WNR. In comparison to other baselines with weak multi-
path impact, the HEDA-related STD of NCR(3) are on average 0.16 smaller. After
filtering NCR(3) with the identified ARMA models, the mean STD is reduced by
about 0.05, with a maximum decrease of 0.08 for HEDA. This agrees with the results
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Fig. 8.23 Examples of ARMA modelling under different atmospheric conditions (HEDA: 54.1 km,
strong multipath, RATA: 203.7 km, weak multipath, satellite pair: PRN 22-12, DOY2007:166, 167;
see Fig. 8.19a for R H measurements)
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Fig. 8.24 Noise standard deviations (STD) before [NCR(3)] and after (WNR) ARMA modelling
(see Table 4.3 for baseline properties)
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Fig. 8.25 Standard deviations (STD) of NCR(3) and WNR with respect to satellite geometry (see
Fig. 8.18 for representative elevation angles)

of order selection shown in Fig. 8.21, since fitting a higher-order ARMA model gen-
erally leads to a lower estimated WN variance (Brockwell and Davis 2002, p. 169).
Therefore, the smaller variances observed in Fig. 8.23e are due to stronger multipath
effects and higher ARMA orders, where the former plays a dominant role.

Figure 8.25 depicts the STD of NCR(3) and WNR with respect to satellite geom-
etry. In both plots, there exist strong negative correlations of about −0.9 between the
mean STD and the representative elevation angles. Considering the conclusion drawn
from Fig. 8.22a that higher orders are needed at low elevation angles, as well as the
fact that higher-order ARMA models result in smaller estimated WN variances, the
STD of WNR is supposed to decrease with decreasing elevation angle. However, as
Fig. 8.25a illustrates, the STD of NCR(3) increases as the elevation angle decreases,
which seems to be a more dominant factor making the STD of WNR larger than the
higher ARMA orders trying to make them smaller. In addition, the daily mean STD
of WNR is found to be weakly correlated with the mean W S and RH , with correla-

http://dx.doi.org/10.1007/978-3-642-34836-5_4
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tion coefficients of 0.2 and −0.3, respectively. When employing ARMA models in
forecasting applications, although not relevant for this work, the choice of arbitrarily
high orders should be avoided, since the quality of the forecasts depends not only on
the WN variance, but also on the errors of the estimated model parameters. These will
become large for high-order ARMA models (Brockwell and Davis 2002, p. 169).

Assuming that the fitted time series model represents the true data-generating
process, the ARMA residuals (WNR) would be realisations of a WN process. In this
case, about 95 % of the sample ACF of WNR should lie within the confidence bounds
±1.96/

√
n, where 1.96 is the 0.975-quantile of the standard normal distribution,

and n is the data length (see Sect. 2.2.2). Regarding the same examples used for
the residual decomposition (see Fig. 8.16), Fig. 8.26 shows the sample ACF of
NCR(3) and WNR, along with the model ACF of the fitted ARMA processes. For
lags of up to the zero-crossing correlation length (see Sect. 8.1.5), the sample ACF of
NCR(3) can be well approximated by the ARMA model ACF. However, the noise’s
sample autocorrelations at large lags cannot be captured, reflecting the short-memory
nature of stationary ARMA processes (Luo et al. 2012). After filtering NCR(3) with
the estimated ARMA models, the sample ACF of the resulting WNR fall within
the plotted confidence intervals roughly 95 % of the time. This indicates not only
the uncorrelatedness of the ARMA residuals, but also the appropriateness of the
identified ARMA models. Comparing the widths of the confidence intervals from
both examples, the one displayed in Fig. 8.26a is slightly smaller (TAAF1205: 0.07,
HEDA1205: 0.10). This is due to the longer data length of TAAF1205 (2848 epochs)
in comparison to HEDA1205 (1604 epochs). Additional examples, demonstrating
the efficiency of ARMA processes in modelling coloured noise, are provided in
Fig. C.4, particularly in the presence of residual systematic signals, as shown in the
upper plot of Fig. 8.23a.

Although the residual-based temporal correlation modelling by means of ARMA
processes represents a mathematical approach, the estimated model parameters
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Fig. 8.26 Comparison of the noise’s sample and ARMA model ACF (TAAF: 53.7 km, weak
multipath, HEDA: 54.1 km, strong multipath, satellite pair: PRN 12-05, DOY2007:161–170)
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reflect the influences of site-specific multipath effects, satellite geometry and
variable atmospheric conditions. The effectiveness of using ARMA models of moder-
ate orders in noise characterisation also verifies the high performance of the proposed
residual decomposition in detecting the remaining systematic signals of long- and
short-periodic nature. In the next section, the efficiency of the residual decomposition
and ARMA modelling will be assessed by means of continuous wavelet transforms
and appropriate statistical hypothesis tests.

8.1.7 Visual and Statistical Verification

Applying the continuous wavelet transform (CWT) to the residual components, for
example, by means of the MATLAB® Wavelet ToolboxTM (MWT; see Sect. 2.4.2),
the resulting scalograms are initially used for the visual verification of the resid-
ual decomposition and ARMA modelling. Thereby, the real-valued Morlet wavelet
ψM (t) = π−1/4e−t2/2 cos(5t) with a centre frequency of Fm = 0.813 is chosen
as the mother wavelet (see Fig. 2.7). Substituting Fm = 0.813 and 
t = 1 s into
Eq. (2.99), scales a varying between 50 and n · Fm with a step of 25 are found suit-
able for detecting signals with the minimum and maximum periods of 1 min and n s,
respectively, where n denotes the data length and has a minimum of 600 in this case
study (see Sect. 8.1.3). In terms of positions b, the CWT performed using the MWT
smoothly shifts the analysing wavelet over the full domain of the signal to be trans-
formed. Considering different multipath impact, Figs. 8.27 and 8.28 show represen-
tative examples of wavelet scalograms. Using the real-valued Morlet wavelet ψM (t)
as the mother wavelet, the resulting wavelet coefficients WψM [ f ](a, b) of a signal
f (t) are also real numbers [see Eq. (2.97)]. The absolute values of WψM [ f ](a, b)
are visualised in the wavelet scalograms, illustrating the time-frequency localisation
property of the CWT. The y-axis represents the pseudo-frequency, which is com-
puted from Eq. (2.99) for each scale a. Regarding the scale limits n · Fm and 50, the
corresponding pseudo-frequencies are 1,000/n and 16 mHz, respectively.

As Figs. 8.27a and 8.28a show, the wavelet scalograms well represent the signal
composition of the repaired SDDR (OFR) in both the time and frequency domains,
particularly the low-frequency trends and the quasi-periodic oscillations with tem-
porally varying frequencies. Both examples exhibit signals with short periods of sev-
eral minutes, suggesting the existence of far-field multipath effects. Employing the
Vondrák filter with k = 12 (see Fig. 8.8), as displayed in Fig. 8.27b, the slowly
varying trend component can be sufficiently detected. If a smaller filter parameter of
k = 10 is used, the filtered curve depicted in Fig. 8.28b also contains some oscillations
with a period of about 500 s. After removing the Vondrák trends, Figs. 8.27c and 8.28c
illustrate the detrended residuals (DTR), predominantly affected by rapidly oscillat-
ing signals of a quasi-periodic nature. In the TAAF-related example (see Fig. 8.27d),
the 3 day sidereal stacking sufficiently captures the short-periodic component, leading
to stochastic noise [NCR(3)] that is largely free of systematic effects (see Fig. 8.27e).

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
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254 8 Results of Residual-Based Temporal Correlation Modelling

(b) 

(c) (d) 

(e) (f) 
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Fig. 8.27 Verification of the residual decomposition and ARMA modelling based on wavelet
scalograms (baseline: TAAF, 53.7 km, weak multipath, satellite pair: PRN 18-26, DOY2007:165,
mother wavelet: Morlet wavelet; see Eq. (2.94) and Fig. 2.7)

In contrast, as can be observed in Fig. 8.28d, only a part of the quasi-periodic
signals can be stacked so that some high-frequency oscillations remain in NCR(3)
(see Fig. 8.28e). After filtering the noise series with the identified low-order
ARMA(4, 3) and high-order AR(46) models, the scalograms of the resulting ARMA
residuals (WNR) exhibit insignificant wavelet coefficients in Figs. 8.27f and 8.28f,
respectively. This indicates that the remaining systematic signals in the noise com-
ponent can be efficiently handled by the determined ARMA models.

In addition to wavelet scalograms, which provide a visual impression of the per-
formance of the residual decomposition and ARMA modelling, the input OFR as well
as the outputs DTR, NCR(3) and WNR are also statistically verified by means of dif-
ferent hypothesis tests for normality, trend, (non-)stationarity and uncorrelatedness
(see Sect. 2.3). To allow for an easy application of these test methods, the quantiles
of the distributions of the test statistics are provided in Appendix A, along with
the available MATLAB® functions. Table 8.2 gives an overview of the employed
statistical tests, including the associated null hypotheses H0, notations and key
references. In this case study, the hypothesis testing is performed at a significance

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
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(f) (e) 

(c) (d) 

(b) (a) 

Fig. 8.28 Verification of the residual decomposition and ARMA modelling based on wavelet
scalograms (baseline: HEDA, 54.1 km, strong multipath, satellite pair: PRN 18-26, DOY2007:165,
mother wavelet: Morlet wavelet; see Eq. (2.94) and Fig. 2.7)

level of α = 1 %, which corresponds to the probability of committing a Type I error
(see Table 2.3). In the following analysis, the non-rejection rate of H0 is used to
evaluate the assumed validity of the tested null hypothesis (see Sect. 2.3.1), where
only representative examples are discussed. For the sake of completeness, the entire
test results are presented in Table D.5.

As described in Sect. 7.2.1, the studentised residual like SDDR follows Pope’s
τ -distribution which approaches the standard normal distribution for large degrees
of freedom (Heck 1981). This is generally valid in static GPS positioning due to
the large number of redundant observations. However, the distribution of SDDR
can significantly deviate from the assumed normality due to the remaining dif-
ferential atmospheric delays and generally unmodelled multipath effects. This is
particularly true when analysing long-baseline GPS data collected under non-ideal
observational conditions (Tiberius and Borre 1999; Luo et al. 2011a). After Vondrák
filtering and sidereal stacking, the remaining systematic signals are supposed to be
largely reduced. Therefore, testing the repaired SDDR (OFR) and the decomposed
noise [NCR(3)] for normality indirectly evaluates the efficiency of the suggested

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
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Table 8.2 Overview of the statistical hypothesis tests used for the performance verification of the
residual decomposition and ARMA modelling (see Sect. 2.3 and Appendix A)

Null hypothesis H0 Statistical test Notation Reference

Normal distribution Jarque-Bera test JB Jarque and Bera (1987)
Anderson-Darling test AD Anderson and Darling

(1952)
Lilliefors test LF Lilliefors (1967)
Chi-square test CS Lehmann and Romano

(2005, p. 590)
Trend-free Cox-Stuart test CT Hartung et al. (2005,

pp. 247, 249)
Mann-Kendall test MK

Non-stationarity Augmented
Dickey-Fuller test

ADF Said and Dickey (1984)

Stationarity KPSSa test KPSS Kwiatkowski et al. (1992)
Uncorrelatedness Von Neumann ratio VNR Bingham and Nelson (1981)

Ljung-Box portmanteau
test

LB Teusch (2006, pp. 100–104)

Kolmogorov-Smirnov
test

KV

Cramér-von Mises test CM
a Kwiatkowski-Phillips-Schmidt-Shin

residual decomposition approach. Moreover, in the interest of a reliable outlier vali-
dation using the F-test statistic given by Eq. (7.14), it is necessary to check for the
distribution of the detrended residuals (DTR), since the F-test is known to be highly
sensitive to non-normality (Markowski and Markowski 1990). If both NCR(3) and
ARMA residuals (WNR) can be regarded as normal, then the determined ARMA
model reflects a Gaussian linear process, providing favourable properties in statis-
tical modelling. Due to the large baseline length of RATA and the strong multipath
impact of HEDA (see Table 4.3), their results of the normality tests are illustrated in
Fig. 8.29, where a total of 226,957 and 163,490 samples (84 and 63 data series) are
considered, respectively.

To cope with the deficiencies in the GPS mathematical models, the tests for nor-
mal distribution are carried out in the composite hypothesis case, i.e., the mean and
variance are estimated from data. Nevertheless, the null hypothesis that the samples
are normally distributed cannot be rejected for only a small part of OFR, about 39 and
10 % in the case of RATA and HEDA, respectively. Furthermore, in regional-scale
GPS networks, multipath impact seems to affect the test results more significantly
than baseline length. After removing the Vondrák trends (i.e., from OFR to DTR), the
non-rejection rates of the normality hypothesis are increased by nearly 50 %, reach-
ing on average 84 and 68 % for RATA and HEDA, respectively. This verifies not only
the efficiency of Vondrák filtering, but also the appropriateness of using DTR for out-
lier validation. In the HEDA-related example, an additional improvement of about
15 % is achieved after performing the 3 day sidereal stacking. Compared to far-field

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_4
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Fig. 8.29 Representative results of the applied Jarque-Bera test (JB), Anderson-Darling test (AD),
Lilliefors test (LF) and chi-square test (CS) for normality (α = 1 %; see Sect. 2.3.2)

multipath, which induces rapidly oscillating quasi-periodic signals, near-field effects
cause slowly varying long-periodic errors and have a more significant impact on the
probability distribution of GPS phase observations (Luo et al. 2011a). As shown in
Fig. 8.28e, the HEDA-related noise series may still contain some systematic oscilla-
tions, which can be sufficiently handled within ARMA modelling. This increases the
average non-rejection rate of H0 to 98 % for WNR (see Fig. 8.29b), corresponding
fairly well to the specified significance level of α = 1 %. Note that the increased
non-rejection of the normality hypothesis from OFR to WNR is also attributed to the
decreased temporal correlation, which better fulfils the test assumption of uncorre-
lated samples. By incorporating DWD surface meteorological data, Luo et al. (2011a)
found obvious positive correlations of about 0.5 between the normality test statistics
and relative humidity measurements.

A favourable property of the non-parametric trend tests is that the data do not need
to follow any particular distribution (see Sect. 2.3.3). Therefore, they are especially
applicable to OFR for which the normality hypothesis appears to be largely invalid
(see Fig. 8.29). For the baselines RATA and HEDA, Fig. 8.30 shows the results of the
trend tests. One can easily discern that more than 80 % of OFR exhibit trends, which
can be sufficiently captured by the Vondrák filter, resulting in predominantly trend-
free DTR. A better trend removal is achieved for HEDA, which may be explained by
the use of the smaller Vondrák filter parameters (see Fig. 8.8). The sidereal stacking
primarily deals with quasi-periodic signals and thus only insignificantly affects the
results of the trend tests. The obtained NCR(3) are largely free of long-term depen-
dency and suitable for ARMA modelling. Filtering NCR(3) with stationary ARMA
models, the resulting WNR are also trend-free. Apart from evaluating the detrending
performance, the trend tests also help accurately specify the model parameters when
testing for (non-)stationarity.

The temporal correlation modelling by means of ARMA processes assumes sta-
tionarity of the decomposed noise, which makes a rigorous statistical assessment of
this assumption necessary. It is accomplished using the ADF and KPSS unit root tests,
which specify opposite null hypotheses. While the ADF test verifies non-stationarity

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
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Fig. 8.30 Representative results of the applied Cox-Stuart test (CT) and Mann-Kendall test (MK)
for trend (α = 1 %; see Sect. 2.3.3)
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Fig. 8.31 Representative results of the applied augmented Dickey-Fuller test (ADF) and
Kwiatkowski-Phillips-Schmidt-Shin test (KPSS) for (non-)stationarity (α = 1 %; see Sect. 2.3.4)

by looking for AR unit roots, the KPSS test checks for stationarity by searching for
MA unit roots (see Appendix B.2). An AR unit root suggests that the data cannot be
directly described by a stationary ARMA model, whereas a MA unit root indicates
that the data are overdifferenced (see Sect. 2.3.4). For reliable test results, one has to
choose appropriate regression models, i.e., c and δ in Eqs. (2.78) and (2.81), as well
as reasonable truncation lags, i.e., l in Eqs. (2.78) and (2.84). As mentioned before,
the specification of the test regression with respect to trend modelling relies upon
the results of the trend tests. More precisely speaking, a linear trend is estimated
only if its presence can be validated by both the CT and MK tests, since modelling
a deterministic trend will decrease the power of the ADF test. For the KPSS test,
a truncation lag of

√
n is used, where n denotes the data length (Kwiatkowski et al.

1992). For the ADF test, the lag number is selected according to Eq. (2.79) (Schwert
1989). Note that using too large truncation lags will decrease the power of both the
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ADF and KPSS tests. Applying the unit root tests to the residual components from
RATA and HEDA, the results are depicted in Fig. 8.31.

Due to the opposite null hypotheses, the ADF and KPSS tests deliver comple-
mentary results. Regarding the OFR-related test outcomes, the sums of the ADF and
KPSS non-rejection rates amount to 92 and 93 % for RATA and HEDA, respec-
tively. This demonstrates not only the internal consistency of the applied unit root
tests, but also the appropriateness of the used regression models and truncation lags.
The deviations from 100 % can be attributed to the specified significance level of
α = 1 % and the fact that the KPSS test tends to reject the null hypothesis too fre-
quently for positively correlated data (Kwiatkowski et al. 1992). Since the stationarity
hypothesis cannot be rejected for only about 50 % of OFR, it seems inappropriate
to perform ARMA modelling at this level. After removing the Vondrák trends, the
resulting DTR mainly contain quasi-periodic signals and appear to largely satisfy
the stationarity assumption. Nevertheless, due to the presence of systematic oscil-
lations (see Fig. 8.14b), fitting ARMA models to DTR may suffer from selecting
very high orders. The 3 day sidereal stacking sufficiently reduces the residual daily
repeating effects and preserves the stationary property, making NCR(3) the most
suitable data for ARMA modelling. Filtering stationary noise series with stationary
ARMA models, the resulting WNR are also stationary.

The tests for uncorrelatedness introduced in Sect. 2.3.5 assess not only the signif-
icance of the noise’s temporal correlation, but also the appropriateness of the ARMA
model estimates. Due to the remaining systematic signals, the temporal correlations
in OFR and DTR are obviously significant (see Fig. 8.16). Therefore, the uncorre-
latedness tests are only applied to NCR(3) and WNR, i.e., noise before and after
ARMA modelling, respectively. According to Brockwell and Davis (2002, pp. 39,
415), a truncation lag of h = 20 is used for the computation of the LB test statistic
given by Eq. (2.88). Figure 8.32 presents the results of the uncorrelatedness tests
for RATA and HEDA. Although the systematic signals are largely reduced during
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Fig. 8.32 Representative results of the applied test based on von Neumann ratio (VNR),
Ljung-Box portmanteau test (LB), Kolmogorov-Smirnov test (KV) and Cramér-von Mises test
(CM) for uncorrelatedness (α = 1 %; see Sect. 2.3.5)

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2


260 8 Results of Residual-Based Temporal Correlation Modelling

the course of the residual decomposition, all the analysed noise series exhibit sta-
tistically significant temporal correlations, which must be accounted for in the GPS
stochastic model. After filtering the coloured noise with the estimated ARMA mod-
els, the resulting WNR are temporally uncorrelated and represent realisations of WN
processes. By additionally considering the normality test results (see Fig. 8.29), the
random variables generating each WNR time series are independent and identically
distributed (Kreiß and Neuhaus 2006, p. 22).

Apart from verifying the performance of the residual decomposition and ARMA
modelling, the hypothesis tests also contribute to a better understanding of the impacts
of signal components on the residual statistical properties. In comparison to quasi-
periodic oscillations induced by far-field multipath, long-periodic trends due to near-
field multipth and residual atmospheric effects lead to more significant deviations of
SDDR from normality and stationarity (see Figs. 8.29 and 8.31). Therefore, appro-
priate handling of the remaining systematic effects is not only in the interest of the
GPS functional model, but also benefits the stochastic model.

8.2 Case Study 3: Long-Term PPP

In addition to the 1 s SDDR from the short-term relative positioning, the temporal
correlation modelling is also carried out based on 10 days (DOY2008:275–284) of
30 s studentised zero-difference residuals (SZDR) from the precise point positioning
(PPP) described in Sect. 4.3.2. Taking advantage of the simple receiver-satellite rela-
tionship in PPP, the influence of satellite geometry on the noise’s temporal correlation
properties can be studied more reliably. Different multipath environments are also
considered within this case study to verify the related conclusions drawn from case
study 2. Along with visual and statistical assessments, the results are physically
interpreted by incorporating DWD surface meteorological data. Making use of the
best-fitting ARMA model estimates, the PPP stochastic model is extended by taking
the temporal correlation of GPS observation noise into account.

8.2.1 Unique Orbit Repeat Lag

In case study 2, satellite-specific orbit repeat lags are accurately determined by means
of the empirical approach outlined in Sect. 7.2.5, where the resulting lag values vary
between 240 and 263 s (see Table D.4). Analysing the broadcast ephemerides of
all GPS satellites from DOY1996:001 to DOY2006:120, Agnew and Larson (2007)
showed a major lag variation band of 238–253 s (cf. Fig. 8.1a). The data sampling
interval in this case study is 30 s and is larger than these lag variation ranges, making
it reasonable to use a unique orbit repeat lag for all GPS satellites. A value of 240 s
seems to be a good choice, as it is closest to the optimum lag of 246 s (Ragheb et al.
2007) and results in an integer daily advance of 8 epochs (Howind 2005, p. 55).

http://dx.doi.org/10.1007/978-3-642-34836-5_4
http://dx.doi.org/10.1007/978-3-642-34836-5_7


8.2 Case Study 3: Long-Term PPP 261

0

15

30

45

60

75

90

2100 2200 2300 2400 2500 2600
0

60

120

180

240

300

360

0

15

30

45

60

75

90

2100 2200 2300 2400 2500 2600
0

60

120

180

240

300

360

(a) (b) 

Fig. 8.33 Comparison of satellite geometry using different orbit repeat lags (SAPOS® site: TUEB,
satellite: PRN 11, DOY2008:275–284, sampling interval: 30 s)

Figure 8.33 compares the satellite geometry on 10 consecutive days, emphasising
the necessity of considering the orbit repeat lag for similar satellite geometry and
accurate stacking results.

As Fig. 8.33a illustrates, the neglect of the orbit repeat lag leads to considerably
different satellite geometries on multiple consecutive days, which would decrease
the day-to-day similarity of the residual time series and attenuate the efficiency of
the sidereal stacking technique (see Sect. 7.2.5). If the unique lag value of 240 s
(8 epochs) is considered, the satellite geometry becomes largely consistent, resulting
in high day-to-day correlations of the SZDR data. In addition to the visual assessment,
for the GPS satellites observed at the SAPOS®sites TUEB and BING, the median
and maximum absolute differences of the satellite elevation angle (ELV) and azimuth
(AZI) between the two days DOY2008:275 and 284 are computed after accounting
for the constant orbit repeat lag. The statistical characteristics can be expressed by

|
GMT|opt = opt
(∣∣GMT275,i − GMT284,i

∣∣) , (8.5)

where GMT denotes the geometry component (i.e., ELV, AZI), opt is the statistical
operator (i.e., min, med, max), and i refers to the epoch. The complete results of the
satellite geometry analysis are presented in Table D.6. Taking the site TUEB and
satellite PRN 11 as an example, Fig. 8.34 shows the ELV and AZI for the boundary
days 275 and 284, as well as the associated absolute differences.

First of all, the minimum absolute difference of ELV, denoted as |
ELV|min, is
found at the epoch i = 2,393 (see Fig. 8.34b), which is very close to
i = 2,391 when the 2 day mean elevation angle attains its maximum (see Fig. 8.34a).
Furthermore, it is interesting to observe that the epoch i of |
ELV|min coincides fairly
well with that of |
AZI|max, being equal to 2,393 in this example. Regarding the
entire analysis results provided in Table D.6, the characteristic values |
ELV|med,
|
ELV|max and |
AZI|med are always below 1◦. In terms of |
AZI|max, Fig. 8.34
actually depicts the worst-case scenario, with the largest |
AZI|max of 4.9◦. For 40
out of the 47 analysed cases (i.e., 85 %), |
AZI|max is less than 2◦. Based on the

http://dx.doi.org/10.1007/978-3-642-34836-5_7
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Fig. 8.34 Example of satellite geometry on the boundary days to verify the appropriateness of the
unique orbit repeat lag (SAPOS® site: TUEB, satellite: PRN 11, DOY2008:275 and 284)

results from the visual and numerical assessments, the unique orbit repeat lag of
240 s seems to be an appropriate choice to obtain multiple days of SZDR time series
with similar satellite geometry.

8.2.2 Vondrák Filter Parameters

Considering the results achieved in Sect. 8.1.2 and the fact that the GPS antennas at
both SAPOS® sites TUEB and BING are installed far above the ground (see Fig. 4.9),
kmax = 10 is used in this case study to determine the optimum Vondrák filter parame-
ters k, which enable an adequate trend characterisation and have a minimum impact
on the noise’s temporal correlation. Applying the maximum constraint on the day-to-
day correlation of the Vondrák residuals given by Eq. (7.12), the best possible k val-
ues are derived for each zero-difference by examining the candidates k = 1, 2, . . . ,
kmax = 10. The results are displayed in Fig. 8.35, along with the BING-related mean
day-to-day correlation coefficients before and after Vondrák filtering.

In Fig. 8.35a, the derived optimum filter parameters mainly range between 7
and 10, where the average seems to decrease with increasing multipath impact. This
agrees with the finding from the simulation study presented in Sect. 8.1.2 that the
optimum k decreases with an increasing reflector-antenna distance, producing more
far-field multipath signals. In most cases, k = kmax = 10 is considered as the
best one, resulting in the maximum daily similarity of the Vondrák residuals. For
the BING-related SZDR before and after Vondrák filtering, Fig. 8.35b illustrates
the mean day-to-day correlation coefficients, which fluctuate around a high level
of 0.8 and exhibit an obvious positive correlation of 0.6 with the median satellite
elevation angles. The degree of residual day-to-day similarity is weaker (stronger) for
low-elevation (high-elevation) satellites, such as PRN 4, 17 and 29 (PRN 11, 15 and
20). This may be explained by the higher sensitivity of low-elevation data to variable
atmospheric conditions. The strong daily correlation of the raw SZDR verifies the

http://dx.doi.org/10.1007/978-3-642-34836-5_4
http://dx.doi.org/10.1007/978-3-642-34836-5_7
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Fig. 8.35 Optimum Vondrák filter parameters determined using Eq. (7.12) and the BING-related
mean day-to-day correlation coefficients (see Table 4.1 for site characteristics, red circles in (a): low-
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Fig. 8.36 Day-to-day correlation matrix before and after Vondrák filtering (site: TUEB, weak
multipath, satellite: PRN 02, DOY2008:275–284, filter parameter: k = 5; see Fig. 8.35a)

appropriateness of the applied unique orbit repeat lag, while the high correlation level
of the Vondrák residuals indicates the efficiency of the determined optimum filter
parameters in capturing long-periodic trends. After Vondrák filtering, the mean day-
to-day correlation coefficients increase by about 0.1 for the low-elevation satellites
PRN 2, 4, 17 and 29. This is due to the employment of smaller filter parameters
(see the red circles in Fig. 8.35a), which are capable of dealing with some randomly
occurring signals of a non-daily repeating nature. To demonstrate the improved day-
to-day correlation structure, Fig. 8.36 displays the correlation matrix, associated with
the smallest k value shown in Fig. 8.35a.

In this example, performing the Vondrák filter with k = 5 enhances the day-
to-day correlation by up to 0.3 in both the near- and far-diagonal areas (see Fig. 8.36c).
The correlation pattern depicted in Fig. 8.36b additionally implies the applicability
of the 3 day stacking approach rather than the 10 day one. The use of a shorter stack-
ing time interval benefits from the higher day-to-day correlation level and allows
for a more reliable detection of the daily repeating systematic signals. Analysing
the TUEB-related raw SZDR data, the mean day-to-day correlation coefficients

http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_4
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vary around 0.6 and illustrate a moderate positive correlation of about 0.4 with the
median satellite elevation angles. For low-elevation satellites, Vondrák detrending
also improves the mean day-to-day correlation coefficient by up to 0.1 (cf. Fig. 8.35b).
After applying the Vondrák filter to the raw SZDR, the obtained residuals are first
used for outlier detection.

8.2.3 Results of Outlier Handling

In case study 2, low-quality GPS observations down to an elevation angle of 3◦ are
included to exploit the potential of the SNR-based weighting model (see Table 4.5).
For the PPP analysis, a higher elevation cut-off angle of 10◦ is specified, and a
sophisticated outlier detection is undertaken by means of the program MAUPRP and
by screening post-fit residuals (see Tables 4.6 and 4.7). Therefore, it is expected
that fewer outliers exist in the SZDR data set, providing a possibility to assess the
performance of the proposed two-step outlier detection in confirming non-outliers
(see Sect. 7.2.4).

A total of 515 Vondrák residual time series of lengths ranging between 240 and
680 epochs (1 epoch = 30 s) are investigated, with the results presented in Fig. 8.37.
According to the 5-MAD criterion given by Eq. (7.13), a total of 165 (32 %) Vondrák
residual time series possess outliers, where, in about 95 % of cases, the number of
outliers is less than 7. Regarding the outcomes of the one-sided F-test for outlier
verification shown in Fig. 8.37b, only 2 of the 165 time series contain outliers that
considerably affect the sample variance of the Vondrák residuals at a significance level
of α = 1 %. Despite the small numbers of outliers, a positive correlation between the
F-test statistic TF and the number of outliers is clearly visible, indicating the high
sensitivity of TF [see Eq. (7.14)]. For the site BING with strong multipath impact,
significantly fewer 5-MAD outliers are identified, which was also observed in case
study 2 (see the HEDA-related results in Fig. 8.9b).

To verify the conclusions drawn from case study 2, Fig. 8.38 illustrates some
additional findings with respect to the distribution of the F-test statistic TF and
physical interpretation of the number of outliers. In Fig. 8.38a, the empirical CDF
of TF is compared with the theoretical F-distribution, where the degrees of freedom
are specified using the maximum sample size and the maximum number of outliers.
In most cases, the quantile differences between the empirical and theoretical CDF
are less than 0.03 and decrease, particularly for TF > 1.15, after repairing the
significant 5-MAD outliers by means of the remove-repair-restore (RRR) technique
(see Sect. 8.1.3). Comparing the daily numbers of outliers with the mean relative
humidity (RH ), averaged over the northern and central DWD meteorological stations
(i.e., FRAN, WUER, KARL, STUT), a positive correlation is visible in spite of the
small numbers of outliers. Therefore, it can be concluded that the proposed two-step
procedure for outlier detection is also capable of dealing with the case where non-
outliers are predominantly present. Furthermore, the influence of a humid atmosphere
on the number of outliers can be validated (cf. Fig. 8.12).

http://dx.doi.org/10.1007/978-3-642-34836-5_4
http://dx.doi.org/10.1007/978-3-642-34836-5_4
http://dx.doi.org/10.1007/978-3-642-34836-5_4
http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_7
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Fig. 8.37 Results of the two-step procedure for outlier detection using the Vondrák residuals (see
Eqs. (7.13) and (7.14); MAD: median absolute deviation)
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Fig. 8.38 Additional results of outlier detection with respect to the distribution of TF [see Eq. (7.14)]
and physical interpretation of the number of outliers (see Fig. 4.10c)

8.2.4 Results of Residual Decomposition

On the basis of the SZDR, which are homogenised with respect to satellite geometry
and repaired for outliers (i.e., OFR), the residual decomposition outlined in Sect. 7.2.2
is undertaken to remove the remaining systematic effects. The resulting stochastic
noise is then used for correlation analysis and ARMA modelling. For the SZDR
time series, which are related to the same GPS satellite PRN 11 and the sites TUEB
and BING with different multipath impact, the results of Vondrák filtering, sidereal
stacking and noise extraction are depicted in Figs. 8.39, 8.40 and 8.41, respectively.
Following the same notations, DTR denotes the detrended residuals after Vondrák
filtering, and NCR refers to the decomposed noise after sidereal stacking.

Making use of OFR, the optimum Vondrák filter parameters k are again deter-
mined. Due to the predominantly insignificant effects of the found 5-MAD outliers

http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_4
http://dx.doi.org/10.1007/978-3-642-34836-5_7
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Fig. 8.39 Examples of Vondrák filtering with respect to multipath impact (TUEB: weak multipath,
BING: strong multipath, satellite: PRN 11, DOY2008:275–284; see Table 4.1)
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Fig. 8.40 Examples of sidereal stacking using different days of DTR (DOY2008:282–284, unique
orbit repeat lag: 240 s; see Sect. 8.2.1)

(see Fig. 8.37b), the obtained k values are identical to those presented in Fig. 8.35a.
Representative examples of Vondrák filtering of OFR are shown in Fig. 8.39. While
the SZDR time series from TUEB primarily illustrate long-periodic trends, those
from BING additionally exhibit quasi-periodic oscillations with temporally varying
periods, depending on the satellite elevation angle. From both examples it can be con-
cluded that the Vondrák filter sufficiently captures the slowly varying trends, which
display not only systematic behaviour, but also day-to-day variations, particularly at
low elevation angles.

After subtracting the long-periodic trends from OFR, the resulting DTR are
stacked to detect the daily repeating systematic signals. Based on 3 and 10 day DTR,
the calculated epoch-wise means are compared in Fig. 8.40. Benefiting from the on
average stronger day-to-day correlation within shorter time periods (see Fig. 8.36b),
the 3 day sidereal stacking allows for a more accurate signal characterisation. This
is especially visible in the TUEB-related example with a smaller mean day-to-day

http://dx.doi.org/10.1007/978-3-642-34836-5_4
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Fig. 8.41 Noise after applying the 3 and 10 day sidereal stacking (DOY2008:275–284)
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Fig. 8.42 Comparison of the sample ACF of OFR, DTR and NCR (TUEB: weak multipath, BING:
strong multipath, satellite: PRN 11, DOY2008:275–284; see Figs. 8.39, 8.40 and 8.41)

correlation coefficient of DTR (TUEB11: 0.5, BING11: 0.9; see Fig. 8.35b). As
observed in Fig. 8.14, the slight shifts of the 10 day mean curves relative to the 3 day
mean curves are also found in this case study, particularly for satellites PRN 04, 13,
17 and 31 with larger |
ELV|med and |
AZI|med in Table D.6. This suggests that
these shifts may be attributed to the remaining inconsistency in satellite geometry,
which is caused by using the average of the satellite-specific orbit repeat lags for
SDDR and by applying the unique orbit repeat lag for SZDR. The removal of the
stacked signals from DTR leads to the decomposed noise NCR (see Fig. 8.41). As
expected, the 3 day stacking variant produces noise series with more homogenous
variances, which is clearly visible in Fig. 8.41b. Moreover, as already observed in
Fig. 8.15, the noise variance seems to decrease with increasing multipath impact.

For both examples of the residual decomposition, Fig. 8.42 shows the sample ACF
of OFR, DTR and NCR to illustrate the significant impact of the remaining systematic
effects on the temporal correlation structure as well as the efficiency of the decompo-
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sition process in signal-noise separation. While the sample ACF of OFR in Fig. 8.42a
decay slowly and suggest long-term dependency, those in Fig. 8.42b fall fairly rapidly
and exhibit quasi-periodic oscillations. After Vondrák filtering, the long-term depen-
dency in the TUEB-related OFR is largely reduced, and the quasi-periodic autocorre-
lation in the BING-related DTR becomes more obvious. After sidereal stacking, the
noise’s sample ACF in both plots depict positive correlations and decay rapidly as the
lag increases, indicating short-term dependency. By comparing the noise’s sample
ACF with respect to multipath impact, the zero-crossing correlation length appears
to decrease as multipath effects increase, which was also observed in Fig. 8.16.
As Fig. 8.41b illustrates, the 3 day stacking approach produces more homogenous
noise than the 10 day stacking variant. However, it seems to insignificantly improve
the noise correlation structure when comparing the sample ACF of NCR(10) and
NCR(3) in Fig. 8.42b. A more significant example is presented in Fig. C.5 to empha-
sise the advantages of using a shorter stacking time period in dealing with rapid
quasi-periodic oscillations at low elevation angles. In the presence of such fluctua-
tions with periods of less than 10 epochs (5 min), stacking DTR from 3 instead of 10
consecutive days significantly enhances the noise’s homoscedacity and sample ACF.
A stable temporal correlation structure is a key issue for reliable correlation analysis
and ARMA modelling.

8.2.5 Results of the Correlation Analysis

Using the same characteristics of the noise’s sample ACF, namely the zero-crossing
correlation length and lag-1 correlation level, the temporal correlation analysis per-
formed in this case study also considers multipath impact, satellite geometry and
atmospheric conditions. For each decomposed noise series NCR(3), both the cor-
relation characteristics are computed. Figure 8.43 presents the results with respect
to multipath impact, where the arithmetic means and 95 % quantiles are calculated
without the extreme outliers outside the 3-IQR limits (IQR: interquartile range).

As can be seen from Fig. 8.43a, the BING-related mean zero-crossing correlation
length is about 3 min (30 %) shorter than the TUEB-related one. This explains
the noise’s correlation behaviour illustrated in Fig. 8.42 and verifies the conclusion
drawn from case study 2 that the noise correlation length tends to decrease with
increasing multipath effects (cf. Fig. 8.17a). However, as Fig. 8.43b shows, the strong
multipath impact at BING only insignificantly increases the mean lag-1 correlation
level by 0.02, indicating the efficiency of the 3 day sidereal stacking in capturing
daily repeating quasi-periodic signals. Considering all the noise series analysed in
this case study, the mean zero-crossing correlation length and lag-1 correlation level
amount to 8 min and 0.37, with 95 % quantiles of 17 min and 0.62, respectively.

In view of satellite geometry, the mean correlation length and level are com-
puted for each satellite, where the sample sizes are 19 or 20. The results are visu-
alised in Fig. 8.44, along with the median satellite elevation angles. For most of the
analysed satellites, the noise’s temporal correlation tends to become longer (shorter)
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Fig. 8.43 Temporal correlation characteristics with respect to multipath impact (TUEB: weak
multipath, BING: strong multipath, 24 h decomposed SZDR noise, sampling interval: 30 s)
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Fig. 8.44 Temporal correlation characteristics with respect to satellite geometry (24 h decomposed
SZDR noise, sampling interval: 30 s)

and stronger (weaker) as the median satellite elevation angle increases (decreases),
corresponding to the results achieved in case study 2 (cf. Fig. 8.18). Nevertheless, it
should be noted that using SZDR on a daily basis has on the one hand the advantage
in data volume and number of satellites, and on the other the disadvantage in the rep-
resentativity of the median satellite elevation angles. Therefore, for future residual-
based temporal correlation analysis, it is recommended to use high-frequency (e.g.,
1 Hz) SZDR over a short time period (e.g., several hours).

To assess the physical interpretability of the derived temporal correlation charac-
teristics, DWD surface meteorological data such as wind speed (W S) and relative
humidity (RH ) are also incorporated into this case study. Considering the locations
of the SAPOS® sites TUEB and BING, only the northern and central DWD mete-
orological stations, i.e., FRAN, WUER, KARL and STUT, are taken into account
(see Fig. 4.1). Since the temporal correlation analysis is carried out based on resid-
uals from daily PPP solutions, the physical interpretation of the analysis results is
accordingly done using daily mean W S and RH shown in Fig. 8.45a. Despite a

http://dx.doi.org/10.1007/978-3-642-34836-5_4
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Fig. 8.45 Temporal correlation characteristics with respect to atmospheric conditions (see Fig. 4.10
for the DWD surface meteorological data; WS: wind speed, RH: relative humidity)

short investigation period of 10 days, there exist variable atmospheric conditions.
For example, high W S and low RH prevailed on day 279, while low W S and high
RH were observed on day 281. Additional surface meteorological data at a higher
temporal resolution of 6 h are presented in Fig. 4.10. After averaging the daily mean
W S and RH over the four aforementioned DWD stations, the final mean W S and
RH are displayed in Fig. 8.45b together with the daily mean temporal correlation
characteristics, where the sample sizes range between 50 and 53.

From the upper plot of Fig. 8.45b, one can easily discern that the daily mean
zero-crossing correlation length increases (decreases) as the mean W S decreases
(increases). In particular, the minimum mean correlation length is found on day 279,
with a relatively large mean W S of 5 m/s and the minimum mean RH of 68 %.
The maximum mean correlation length appears on day 281, with a relatively small
mean W S of 2 m/s and a large mean RH of 83 %. The lower plot of Fig. 8.45b
depicts a positive correlation between the daily mean lag-1 correlation level and the
mean RH , which is particularly obvious on day 279. The large discrepancies on
days 283 and 284 may be attributed to the poor representativity of the corresponding
mean RH , if one regards the FRAN-related daily mean RH (see Fig. 8.45a) and
the STUT-related 6 h RH (see Fig. 4.10c) . Moreover, it is found that the mean
correlation length (level) increases with increasing (decreasing) mean RH (W S).
To illustrate the effects of variable atmospheric conditions on the noise’s temporal
correlation properties, Fig. 8.46 compares the correlation characteristics from the two
representative days 279 and 281, along with the associated noise’s sample ACF. Both
SAPOS®sites and all observed GPS satellites are taken into consideration, giving a
sample size of 51 for each day.

In addition to the increased mean correlation length and level from day 279 to
281, Fig. 8.46a also exhibits decreased interquartile ranges (IQR), indicating less
variability in the determined temporal correlation characteristics. For the entire period
of investigation, Fig. C.6 compares the IQR of the zero-crossing correlation length
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Fig. 8.46 Effects of variable atmospheric conditions on the noise’s temporal correlation properties
(SAPOS®sites: TUEB, weak multipath, BING, strong multipath, all GPS satellites, DOY2008:279
and 281; see Fig. 8.45b for mean W S and R H )

with the mean W S. A positive correlation is clearly present, suggesting that the
noise’s temporal correlation structure would be more heterogeneous from satellite to
satellite as the wind becomes stronger. The sample ACF curves depicted in Fig. 8.46b
provide not only visual supports for the conclusions drawn from the box plots, but
also images of short-term dependency, which is desirable for ARMA modelling.

8.2.6 Results of ARMA Modelling

The ARMASA Toolbox is also used in this case study to determine the best-fitting
ARMA model for each decomposed noise series NCR(3), where the maximum orders
pmax

AR , qmax
M A and pmax

AM are chosen to be 100, 20 and 10, respectively. The results of the
model identification and order selection are presented in Fig. 8.47. Fitting ARMA
models to a total of 515 noise series, non-zero orders are obtained for 510 noise
sequences, indicating that only about 1 % of NCR(3) can be considered as white
noise (WN) realisations. Regarding the identified model types shown in Fig. 8.47a,
AR and ARMA processes appear to play a dominant role, where AR models are
preferred in the case of BING, which is strongly affected by multipath effects. This
agrees with the HEDA-related results illustrated in Fig. 8.21a. Taking the 510 non-
zero ARMA model estimates into account, Fig. 8.47b displays the box plots of the
sum of orders for AR, MA and hierarchical ARMA models (see Sect. 7.3.3), i.e.,
p̂AR , q̂M A and p̂AM + q̂AM = 2 p̂AM − 1, respectively. The box plot of p̂AR clearly
demonstrates the inadequacy of using first-order AR processes [AR(1)] to describe
the noise’s temporal correlation behaviour. In fact, for only 30 noise series, the AR(1)
model is identified as the most appropriate one. In comparison to the MA model
estimates, the sums of AR and ARMA orders are less variable and exhibit smaller

http://dx.doi.org/10.1007/978-3-642-34836-5_7
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Fig. 8.47 Results of the model identification and order selection using the ARMASA Toolbox (24 h
SZDR noise, sampling interval: 30 s, AR: p̂AR , MA: q̂M A, ARMA: p̂AM + q̂AM = 2 p̂AM − 1; see
Table 4.1 for station properties and Sect. 7.3 for ARMA modelling)

95 % quantiles of 10 and 9, respectively. A site-related presentation of the model
identification shows that higher AR and ARMA orders are selected for the noise
series from BING. This coincides with the conclusion drawn from case study 2 that
in the presence of strong multipath effects, higher-order ARMA models are needed
to cope with the residual systematic effects in the decomposed noise. However, in
this case study, the impact of strong multipath on AR order selection is much less
significant than that depicted in Fig. 8.21d. This corresponds to the message sent
by Fig. 8.43b that the 3 day sidereal stacking largely captures the quasi-periodic
oscillations so that only marginal systematic signals remain in the noise component
NCR(3). Regarding the TUEB-related results of order selection shown in Fig. 8.47c,
it is interesting to observe that the ARMA(2, 1) model is identified in nearly 80 %
of cases. In addition, the associated MA model estimates exhibit on average higher
and more variable orders than the BING-related ones.
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Fig. 8.48 Sum of ARMA orders with respect to satellite geometry and atmospheric conditions (see
Fig. 8.45b for mean wind speed W S and relative humidity R H )

Taking advantage of a large number of satellites and the simple receiver-satellite
relationship, Fig. 8.48a shows an obvious negative correlation of −0.5 between the
sum of orders and the median satellite elevation angle, where the 95 % quantiles
are derived based on sample sizes between 17 and 20. If only the AR and ARMA
model estimates are considered, the negative correlation becomes more significant,
with a correlation coefficient of −0.8. Although the noise series from low-elevation
satellites exhibit shorter and weaker temporal correlations (see Fig. 8.44), higher-
order ARMA models are required to deal with the more complex temporal correlation
structures caused by the increased residual systematic effects at low elevation angles.

In view of atmospheric conditions, Fig. 8.48b depicts higher orders on day 279
with relatively high wind speed (W S) and low relative humidity (RH ). However,
under such atmospheric conditions, the mean temporal correlation characteristics
are supposed to be small, as illustrated in Figs. 8.45b and 8.46. Therefore, Fig. 8.48
demonstrates that the magnitudes of the determined ARMA orders cannot be simply
related to the zero-mean correlation length and lag-1 correlation level, since the
order selection with the ARMASA Toolbox considers the whole temporal correlation
structure rather than the two characteristic values. As Figs. 8.22b and 8.23 show,
variable atmospheric conditions do affect the selected orders, but probably in both
positive and negative senses.

After analysing the order parameters under different aspects, Fig. 8.49 provides
a site-related comparison of the standard deviations (STD) of NCR(3) and WNR,
i.e., noise before and after ARMA modelling, respectively. As can be seen from
both plots, the noise STD become on average smaller with increasing multipath
effects (TUEB vs. BING) and decreasing temporal correlations (NCR(3) vs. WNR),
coinciding with the conclusions drawn from Fig. 8.24. However, in this case study,
the magnitudes of the decreases in STD due to multipath and decorrelation are at a
comparable level of about 0.03 (cf. Fig. 8.24). Furthermore, the BING-related box
plots exhibit slightly larger IQR, indicating more variable STD.

In addition to the analysis with respect to multipath impact, the mean STD of
NCR(3) and WNR are investigated with regard to satellite geometry and atmospheric
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Fig. 8.49 Noise standard deviations (STD) before [NCR(3)] and after (WNR) ARMA modelling
(TUEB: weak multipath, BING: strong multipath; see Table 4.1)

conditions. While the satellite-related mean STD are computed using 19 or 20 sam-
ples, the daily mean STD are obtained based on sample sizes between 50 and 53.
Differing from the results achieved in the short-term relative positioning case study
(see Fig. 8.25), the mean STD of NCR(3) and the median satellite elevation angle
are weakly correlated in this case study, with a correlation coefficient of −0.2 (see
Fig. 8.50a). This may arise from the use of long-term residual data, making the vari-
ability of NCR(3) less sensitive to the changing satellite geometry. Moreover, for
most of the observed GPS satellites, the median elevation angles are calculated over
a time period of up to about 6 h and thus may not be representative for such an investi-
gation. Therefore, high-frequency (e.g., 1 Hz) SZDR from a short-term (e.g., several
hours) PPP data analysis are strongly recommended for future residual-based tempo-
ral correlation modelling of GPS observations. Comparing the two mean STD curves,
the noise level of NCR(3) turns out to be the determining factor for that of WNR,
which was also observed in case study 2 (see Fig. 8.25). The almost constant offset
between the mean STD of NCR(3) and WNR amounts to about 0.03, corresponding
to the average decrease in noise STD due to ARMA decorrelation (see Fig. 8.49).
In terms of atmospheric conditions, Fig. 8.50b shows a strong positive (negative)
correlation of 0.8 (−0.7) between the daily mean STD of WNR and the mean W S
(RH ). Such correlations were also found in case study 2, but at considerably lower
levels (see Sect. 8.1.6).

Filtering the decomposed noise NCR(3) shown in Fig. 8.41 with the corresponding
best-fitting ARMA models, Fig. 8.51 demonstrates the efficiency of ARMA decorre-
lation. Considering the percentages of the noise’s sample ACF falling into the 95 %
confidence bounds, the NCR(3) data exhibit significant positive correlations, where
longer correlation lengths result in lower percentage values (see Fig. 8.51a). As can be
seen from both examples, for lags of up to the zero-crossing point, the noise’s tempo-
ral correlation properties can be sufficiently described by the ARMA model ACF. In
contrast to NCR(3), the ARMA residuals (WNR) are largely uncorrelated over time,

http://dx.doi.org/10.1007/978-3-642-34836-5_4
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Fig. 8.50 Mean standard deviations (STD) of NCR(3) and WNR with respect to satellite geometry
and atmospheric conditions (see Fig. 8.45b for mean W S and R H )
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Fig. 8.51 Comparison of the noise’s sample and ARMA model ACF (TUEB: weak multipath,
BING: strong multipath, satellite: PRN 11, DOY2008:275–284)

with nearly 95 % of the associated sample ACF lying within the confidence bounds.
The different widths of the confidence intervals (i.e., TUEB11: 0.16, BING11: 0.19)
are actually due to the different data lengths (i.e., TUEB11: 610 epochs, BING11: 416
epochs).

Based on the studentised residuals of daily GPS observations, collected at a sam-
pling interval of 30 s and analysed using the PPP technique, the results of ARMA
modelling from this case study generally agree with those presented in case study 2,
reflecting variations in multipath impact, satellite geometry and atmospheric condi-
tions. This agreement also verifies the performance of the proposed residual decom-
position, which produces stochastic noise being largely free of systematic effects and
possessing favourable properties for ARMA modelling.
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8.2.7 Visual and Statistical Verification

By examining the scalograms resulting from continuous wavelet transforms (CWT),
the performance of the residual decomposition and ARMA modelling can be visually
assessed. Considering the rapid quasi-periodic oscillations with periods of less 10
epochs (i.e., 5 min, with 1 epoch = 30 s; see Fig. C.5), scales a ranging between 6 and
n · Fm with a step of 3 are used to capture signals with the minimum and maximum
periods of 7 and n epochs, respectively, where n denotes the data length, and Fm

is the centre frequency of the applied Morlet wavelet (see Fig. 2.7). Substituting
Fm = 0.813, a = 6, and 
t = 30 s into Eq. (2.99), the maximum detectable
frequency amounts to 4.5 mHz.

To highlight the efficiency of the proposed residual decomposition and ARMA
modelling, particularly in the presence of strong multipath effects, Fig. 8.52 illustrates
the absolute wavelet coefficients for the residual components of BING11 on day 281.
This particular day is chosen due to the larger temporal correlation characteristics
shown in Fig. 8.45b. Taking advantage of the time-frequency localisation property
of the CWT, the wavelet scalogram depicted in Fig. 8.52a displays the OFR signal
structure, consisting of a low-frequency (long-period) trend, quasi-periodic oscilla-
tions with temporally variable frequencies, and high-frequency noise. Applying the
Vondrák filter to OFR with the determined optimum filter parameter k = 10 (see
Fig. 8.35a), the slowly varying trend is accurately detected, which can be seen from
Fig. 8.52b in both the time and frequency domains. After removing the trend compo-
nent from OFR, Fig. 8.52c mainly presents the noise and quasi-periodic oscillations
whose frequencies (periods) seem to increase (decrease) with decreasing satellite ele-
vation angle. This reflects the typical dependence of site-specific multipath effects on
the satellite geometry [see Eq. (8.2)]. Considering a roof environment for instance,
rapidly oscillating signals at low elevation angles suggest distant reflectors causing
far-field multipath effects. Performing the 3 day sidereal stacking, the quasi-periodic
signals can be sufficiently captured (see Fig. 8.52d), indirectly verifying the appro-
priateness of the employed unique orbit repeat lag of 240 s (see Sect. 8.2.1). The
decomposed noise shown in Fig. 8.52e still exhibits some stochastic signals of a
non-daily repeating nature. They produce short-term temporal correlations, which
can be well described by an AR(2) model. After filtering the noise series with the
AR(2) process, Fig. 8.52f illustrates the ARMA residuals (WNR) with insignificant
wavelet coefficients.

For the same day DOY2008:281 and the same satellite PRN 11, the TUEB-
related wavelet scalograms of the residual components are presented in Fig. C.7. In
the case of weak multipath effects, the efficiency of Vondrák filtering and sidereal
stacking can also be verified. Since the detrended residuals DTR from TUEB have
a lower mean day-to-day correlation level than those from BING (see Sect. 8.2.2),
the decomposed noise exhibits more stochastic signals in Fig. C.7e, which can be
sufficiently accounted for by an ARMA(2, 1) model.

Wavelet scalograms allow for a spectral investigation into the performance of
the residual-based temporal correlation modelling. In addition to visual inspections,
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Fig. 8.52 Verification of the residual decomposition and ARMA modelling based on wavelet
scalograms (SAPOS® site: BING, strong multipath, satellite: PRN 11, DOY2008:281, mother
wavelet: Morlet wavelet; see Eq. (2.94) and Fig. 2.7).

suitable hypothesis tests for normality, trend, (non-)stationarity and uncorrelatedness
are used to enable a statistical assessment of the results of the residual decomposition
and ARMA modelling (see Sect. 2.3). Instead of the significance level α = 1 %
applied in case study 2, α = 5 % is specified in this case study to verify the test
performance at different significance levels. Note that a larger α value decreases the
confidence in determining significance, but reduces the risk of failing to reject a false
null hypothesis (or committing a Type II error), and thus indicates more statistical
power. The null hypotheses (H0) and notations of the employed test methods can be
found in Table 8.2. Based on the non-rejection rates of H0 given in percentages, the
test results are presented in bar graphs, and the corresponding numerical values are
provided in Table D.5.

Considering different multipath impact, Fig. 8.53 provides a site-related presen-
tation of the normality test results, where a total of 132,979 and 124,133 samples
(252 and 263 data series) from TUEB and BING are used, respectively. First of all,
the significant influence of strong multipath effects on the probability distribution
of residuals can be verified. While nearly 60 % of the TUEB-related OFR seem to

http://dx.doi.org/10.1007/978-3-642-34836-5_2
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Fig. 8.53 Results of the applied Jarque-Bera test (JB), Anderson-Darling test (AD), Lilliefors test
(LF) and chi-square test (CS) for normality (α = 5 %; see Sect. 2.3.2)
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Fig. 8.54 Results of the applied Cox-Stuart test (CT) and Mann-Kendall test (MK) for trend
(α = 5 %; see Sect. 2.3.3)

follow a normal distribution, the normality hypothesis cannot be rejected for only
about 40 % of the BING-related OFR. In Fig. 8.53a, it is interesting to observe that the
normal distribution assumption becomes more valid during the course of the resid-
ual decomposition and decorrelation (cf. Fig. 8.29). In particular, the non-rejection
rate of H0 is improved by about 20, 10 and 5 % after Vondrák filtering, sidereal
stacking and ARMA modelling, respectively. However, regarding the BING-related
test results depicted in Fig. 8.53b, the performance of sidereal stacking and ARMA
modelling only insignificantly (even negatively) affects the distributional properties
of the residual data. Nevertheless, the dominant enhancement of about 16 % is also
achieved through Vondrák detrending from OFR to DTR.

Applying the non-parametric trend tests to the residual components, the results
are shown in Fig. 8.54. As both plots illustrate, the null hypothesis that the time
series has no trend cannot be rejected for only small percentages of OFR, i.e., about
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Fig. 8.55 Results of the applied augmented Dickey-Fuller test (ADF) and Kwiatkowski-Phillips-
Schmidt-Shin test (KPSS) for (non-)stationarity (α = 5 %; see Sect. 2.3.4)

24 % for TUEB and 37 % for BING. However, after detrending OFR by means of the
Vondrák filter, the non-rejection rates of H0 increase to about 85 %, indicating the
filter efficiency in trend characterisation. As expected, the removal of quasi-periodic
signals from DTR to NCR(3) insignificantly affects the trend behaviour. After fil-
tering NCR(3) with the estimated ARMA models, the non-rejection rates of H0 are
improved by more than 15 %, which may be attributed to the favourable statistical
properties of the WNR series, each of which provides realisations of independent
and identically distributed (iid) random variables.

The results of the trend tests also contribute to specifying appropriate regression
models for the (non-)stationarity tests. If the presence of a trend can be verified
by both the CT and MK tests, a linear trend is included in the test regression, i.e.,
c �= 0 and δ �= 0 in Eqs. (2.78) and (2.81). The truncation lags are set in the
same way as done in case study 2, i.e., using Eq. (2.79) for the ADF test and

√
n

for the KPSS test, where n denotes the time series length. Figure 8.55 depicts the
results of the unit root tests, evaluating opposite null hypotheses (i.e., ADF: non-
stationarity, KPSS: stationarity; see Sect. 2.3.4). The complementary and consistent
outcomes demonstrate not only the dominant role of long-periodic trends in causing
non-stationarity, but also the stationarity of the noise component NCR(3) prior to
ARMA modelling. By comparing the OFR-related test results, a considerably lower
(higher) percentage of non-stationary (stationary) SZDR is visible for BING with
strong multipath impact. This agrees with the conclusions drawn from Fig. 8.39
that the OFR data from TUEB are predominantly influenced by slowly varying
long-periodic trends, while those from BING are additionally affected by rapidly
oscillating quasi-periodic signals caused by far-field multipath effects.

To assess the significance of the noise’s temporal correlation and the appropri-
ateness of the ARMA model estimates, the noise series before and after ARMA
modelling, i.e., NCR(3) and WNR, respectively, are tested for uncorrelatedness,
with the results shown in Fig. 8.56. For the computation of the LB test statistic given
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Fig. 8.56 Results of the applied test based on von Neumann ratio (VNR), Ljung-Box portmanteau
test (LB), Kolmogorov-Smirnov test (KV) and Cramér-von Mises test (CM) for uncorrelatedness
(α = 5 %; see Sect. 2.3.5)

by Eq. (2.88), a truncation lag of h = 20 is also applied. As can be seen from both
plots, different test methods produce largely consistent results, exhibiting statisti-
cally significant temporal correlations in NCR(3). This emphasises the necessity of
extending the PPP stochastic model by taking the noise’s temporal correlation into
consideration. After filtering the coloured noise NCR(3) with the best-fitting ARMA
models, the resulting ARMA residuals WNR are almost uncorrelated. This verifies
the efficiency of the identified stationary time series models in characterising the
noise’s temporal correlation behaviour.

Both the continuous wavelet scalograms and statistical test results obtained in this
case study confirm the high performance of the residual-based temporal correlation
modelling. Moreover, the impacts of the remaining systematic effects on the residual
statistical properties can also be verified. While the long-periodic trends consider-
ably distort the normality and stationarity, the quasi-periodic oscillations seem to
induce only insignificant non-stationary components. After the appropriateness of
the determined ARMA models is visually and statistically validated, the associated
model ACF are used to extend the PPP stochastic model.

8.2.8 Extension of the PPP Stochastic Model

Exploiting the main property of a stationary ARMA process that its covariance
function does not vary with respect to time [see Eq. (2.32)], the GPS stochastic
model, usually expressed by a variance-covariance matrix (VCM), can be extended
using the ACF of the estimated ARMA models. Taking the ionosphere-free linear
combination (LC3) for a period of 10 epochs (5 min) as an example, Fig. 8.57
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illustrates the influence of such a model extension on the structure of the VCM and
the associated correlation matrix (CRM).

In this example, the variances, or the diagonal elements of the VCM, are computed
using Eq. (3.7) in combination with the elevation-dependent observation weighting
model CSC2(BS) [i.e., sin2(e)]. Thereby, the L1 and L2 observations are assumed
to be mutually uncorrelated and have the same a priori noise level of 1 mm in the
zenith direction (Dach et al. 2007, p. 144). For LC3 measurements at elevation
angles between 10 and 90◦, the corresponding variances vary from 3.0 · 10−4 to
8.9 · 10−6 m2. According to Eq. (3.27), the covariances reflecting the temporal
correlation of GPS observation noise can be derived by means of

σ
j

R,3(t12) =
√
σ

j
R,3(t1)

2 · σ j
R,3(t2)

2 · ρ j
R,3(t12), (8.6)

where σ j
R,3(t1)

2 and σ j
R,3(t2)

2 are the LC3 variances for station R and satellite j at
epochs t1 and t2, respectively, calculated depending on the satellite elevation angle.
The term ρ

j
R,3(t12) is the correlation coefficient at epoch difference t12, provided by

the ARMA model ACF (Howind 2005, p. 59.)
Neglecting the physical correlations completely, the PPP stochastic model repre-

sents a diagonal VCM (see Fig. 8.57a), and the corresponding CRM is an identity
matrix (see Fig. 8.57b). Such a simple stochastic model has the advantages of easy
implementation and fast computation, but the disadvantages of inaccurate parame-
ter estimation and over-optimistic quality evaluation (Howind et al. 1999; Wang
et al. 2002; Schön and Brunner 2008b). Regarding the variances within one epoch,
i.e., 9 matrix elements, significant differences are visible, indicating heterogeneous
observation quality. As demonstrated in Chap. 6, the proposed SNR-based weight-
ing scheme EMPSNR2 is superior to the elevation-dependent model CSC2(BS).
Therefore, it is strongly recommended to use realistic observation weights instead
of an identical weight, particularly when including low-elevation (below 10◦) data
collected under non-ideal observational conditions (Dach et al. 2007, p. 144). The
extension of the PPP stochastic model by accounting for the noise’s temporal
correlation brings considerable changes in the VCM and CRM structures. As
Fig. 8.56 shows, the temporal correlation in the noise component NCR(3) is sta-
tistically significant, leading to covariances and correlation coefficients of up to
3.5 · 10−5 m2 and 0.63, respectively. Correlations at this level should not be sim-
ply neglected in GPS data analysis. As expected, the magnitudes of the covari-
ances and correlations decrease as the distance from the main diagonal (or epoch
lag) increases. In fact, the VCM shown in Fig. 8.57c represents a realisation of the
variance-covariance structure schematically presented in Fig. 3.2, where the spatial
and cross correlations are still neglected.

Considering the determined mean zero-crossing correlation length of about 8 min
(see Fig. 8.43a), Fig. 8.58 displays the extended PPP stochastic model for a period
of 16 epochs with respect to multipath impact and atmospheric conditions. In doing
so, the sensitivity of the covariance structure can be assessed against these two
factors, which strongly affect the noise’s temporal correlation characteristics (see

http://dx.doi.org/10.1007/978-3-642-34836-5_3
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(a) (b)

(c) (d)

Fig. 8.57 Examples of PPP variance-covariance matrices (VCM) and correlation matrices (CRM)
before and after considering the noise’s temporal correlation (SAPOS®site: TUEB, weak multipath,
DOY2008:279, epochs: 1–10, 1 epoch = 30 s, 9 GPS satellites per epoch)

Figs. 8.43 and 8.45). While the SAPOS®sites TUEB and BING are significantly
different concerning multipath impact (see Fig. 4.9), the days DOY2008:279 and
281 are representative in view of atmospheric conditions (see Fig. 8.45a). Comparing
the VCM and CRM structures shown in Fig. 8.58a and b, it can be easily seen that
the correlation length decreases with increasing multipath effects. Considering that
a total of 9 satellites are observed at each epoch (1 epoch = 30 s), the covariances,
covering about 120 and 70 matrix elements, exhibit correlation lengths of 7 and
4 min, respectively. These agree with the median correlation times presented in
Fig. 8.43a, showing that the extended stochastic model reflects the influence of site-
specific multipath on the noise’s temporal correlation properties. Since the correlation
analysis is undertaken based on the noise’s sample ACF, while the VCM extension
is performed using the ARMA model ACF, this agreement indirectly verifies the
efficiency of the identified ARMA models in noise characterisation.
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Fig. 8.58 Extended PPP stochastic model with respect to multipath (MP) impact and atmospheric
conditions (16 epochs, 1 epoch = 30 s, day 279: high W S and low R H , day 281: low W S and high
R H ; see Fig. 4.9 for MP and Figs. 4.10c and 8.45 for W S and R H )
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As Fig. 8.44 shows, the noise’s temporal correlation tends to increase with increas-
ing satellite elevation angle. To minimise the impact of satellite geometry on the VCM
comparison with respect to atmospheric conditions, the considered time interval is
shifted from [17, 32] on day 279 to [1, 16] on day 281 by 16 epochs (8 epochs per
day), where the unique orbit repeat lag of 240 s (8 epochs) is used (see Sect. 8.2.1).
As a consequence, the extended VCM and CRM depicted in Fig. 8.58b and c are
related to a similar satellite geometry, and the differences between them are primarily
caused by variable atmospheric conditions. Compared to day 279, on which higher
wind speed (W S) and lower relative humidity (RH ) prevailed, considerably stronger
temporal correlation can be observed in the VCM and CRM on day 281 with lower
W S and higher RH , coinciding with the results illustrated in Fig. 8.46. In summary,
the effects of variable atmospheric conditions on the temporal correlation of GPS
observation noise can be accounted for by appropriately identified ARMA models.
Using the ARMA model ACF to extend the PPP stochastic model, the resulting VCM
and CRM also reflect atmospheric variations.

In this thesis, the extension of the GPS stochastic model is only carried out for PPP.
However, it can be easily adopted to improve the VCM of double-difference observa-
tions. For example, instead of fitting empirical ACF given by Eqs. (7.1) and (7.2), one
can use the model ACF of the ARMA estimates determined by analysing the noise
component of studentised double-difference residuals. In addition to the information
about temporal correlation, an ARMA model provides a rigorous mathematical rela-
tionship for a sequence of random variables. This may be taken advantage of in the
future to develop a temporally propagating stochastic model, which is applicable to
epoch-parameter estimation (Dach et al. 2007, p. 149) and avoids VCM inversion in
a large least-squares problem (Klees et al. 2003).

8.3 Concluding Remarks

Using the studentised residuals of GPS observations from short-term relative posi-
tioning (SDDR) and long-term PPP (SZDR), this chapter presented the results of
the residual-based temporal correlation modelling with respect to satellite geometry,
multipath impact and atmospheric conditions. The findings from both case studies
are generally consistent and can be physically interpreted by incorporating DWD sur-
face meteorological data. The efficiency of the residual decomposition and ARMA
modelling is verified by means of continuous wavelet transforms (CWT) and statis-
tical hypothesis tests for normality, trend, (non-)stationarity and uncorrelatedness.
The main conclusions drawn from the case studies are summarised as follows:

• In order to obtain multiple days of 1 s SDDR with similar satellite geometry,
satellite-specific orbit repeat lags are determined using the empirical approach
described in Sect. 7.2.5. The resulting lag values vary from 240 to 263 s and agree
at the 1 s level with the outcomes of the program orbrep.f (Agnew and Larson

http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_7


8.3 Concluding Remarks 285

2007). For the 30 s SZDR, a unique orbit repeat lag of 240 s turns out to be
applicable to all GPS satellites.

• The Vondrák filter is employed to capture long-periodic trends, where the opti-
mum filter parameter k is derived by maximising the day-to-day correlation of the
detrended residuals. The k estimates, mainly ranging between 7 and 13, decrease
with increasing multipath effects. Moreover, it is found that the cross-validation
Vondrák filter (CVVF) proposed by Zheng et al. (2005) filters signals, along with
noise’s temporal correlations.

• Applying the 5-MAD (median absolute deviation) criterion and the one-sided
F-test to the Vondrák residuals, the two-step procedure for detecting multiple out-
liers is highly efficient in practice. The test statistic increases with the number of
outliers, which is in turn positively correlated with atmospheric relative humid-
ity. Using a remove-repair-restore (RRR) technique, the significant outliers can
be sufficiently repaired, which, however, hardly affects the determination of the
optimum Vondrák filter parameters.

• After properly handling outliers, the residual decomposition is performed. The
slowly varying long-periodic trends can be well captured by the Vondrák filter,
as well as some randomly occurring and non-daily repeating signals. The 3 day
sidereal stacking enables an accurate detection of daily repeating (quasi-periodic)
signals, producing homoscedastic coloured noise. Moreover, the remaining sys-
tematic effects significantly impact upon the residual correlation structure and
should be removed prior to temporal correlation analysis.

• Making use of the zero-crossing correlation length and lag-1 correlation level of
the noise’s sample ACF, the correlation analysis is carried out by considering
baseline length, multipath impact, satellite geometry and atmospheric conditions.
Based on 10 days of 1 h (24 h) SDDR (SZDR) with a sampling interval of 1 s
(30 s), the determined mean correlation length and level amount to about 80 s
(8 min) and 0.4 (0.4), respectively. At a regional scale, baseline length appears
to marginally influence the noise’s temporal correlation behaviour, while strong
multipath effects may decrease the correlation length by up to 50 %. Further-
more, the noise’s temporal correlation becomes longer and stronger as the satellite
elevation angle increases. By considering the freely available DWD surface meteo-
rological data, the correlation characteristics tend to be larger as wind speed (W S)
decreases and relative humidity (RH ) increases.

• For each decomposed noise series, the best-fitting ARMA model is automatically
identified using the free MATLAB® Toolbox ARMASA (Broersen 2006, Chap. 9).
The results of the model identification are dominated by AR and ARMA processes,
where AR models are preferred in the presence of strong multipath effects. In
the case of weak multipath, AR and ARMA models of orders of up to 22 and
(6, 5), respectively, seem to be adequate. In general, higher ARMA orders can
be expected when analysing residuals from low-elevation satellites and strong
multipath environments. The ARMA decorrelation decreases the noise standard
deviation and produces white noise residuals whose standard deviation exhibits a
positive (negative) correlation with W S (RH ).
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• Provided that the scale is properly specified, the CWT using the Morlet wavelet
represents an efficient tool for visually assessing the residual decomposition and
ARMA modelling. Enabling a rigorous performance evaluation, the applied sta-
tistical tests show not only significant impacts of site-specific multipath on the
residual probability distribution, but also strong influences of long-periodic trends
on the fulfilment of normality and stationarity. Being largely free of systematic
signals, the noise component still possesses statistically significant positive corre-
lations, which must be considered in the GPS stochastic model.

• Using the ARMA model ACF, the PPP stochastic model is extended, and the
resulting variance-covariance matrix (VCM) has a diagonal-dominant structure.
Since the noise’s temporal correlation can be sufficiently described by the esti-
mated ARMA models, the extended VCM also reflects variations in multipath
effects and atmospheric conditions.

Applying the residual-based temporal correlation modelling to different data sets,
the outcomes are largely consistent, statistically valid and physically interpretable.
Nevertheless, for a reliable comparison of the noise’s temporal correlation proper-
ties between relative positioning and PPP, additional investigation is required, for
example, using SDDR and SZDR from GPS data analyses with widely consistent
parameter settings. In order to benefit from the recent developments in the Bernese
GNSS Software, such as improved troposphere modelling by means of GMF/GPT
and VMF1 (Boehm et al. 2006a,b, 2007), GPS data processing may be carried out
using the new software version 5.21. In the interest of a more accurate physical inter-
pretation of the results, meteorological data at high temporal and spatial resolution
should be incorporated into the residual-based temporal correlation analysis. Finally,
the effects of the extended stochastic model on GPS parameter estimation need more
research in the future.

References

Agnew, D. C., & Larson, K. M. (2007). Finding the repeat times of the GPS constellation. GPS
Solutions, 11(1), 71–76. doi:10.1007/s10291-006-0038-4.

Anderson, T. W., & Darling, D. A. (1952). Asymptotic theory of certain “goodness of fit” criteria
based on stochastic processes. Annals of Mathematical Statistics, 23(2), 193–212. doi:10.1214/
aoms/1177729437.

Bingham, C., & Nelson, L. S. (1981). An approximation for the distribution of the von Neumann
ratio. Technometrics, 23(3), 285–288. doi:10.2307/1267792.

Boehm, J., Niell, A., Tregoning, P., & Schuh, H. (2006a). Global Mapping Function (GMF): A
new empirical mapping function based on numerical weather model data. Geophysical Research
Letters, 33, L07304. doi:10.1029/2005GL025546.

Boehm, J., Werl, B., & Schuh, H. (2006b). Troposphere mapping functions for GPS and very long
baseline interferometry from European Centre for Medium-Range Weather Forecasts operational
analysis data. Journal of Geophysical Research, 111, B02406. doi:10.1029/2005JB003629.

1 More information available at www.bernese.unibe.ch/features/

http://dx.doi.org/10.1007/s10291-006-0038-4
http://dx.doi.org/10.1214/aoms/1177729437
http://dx.doi.org/10.1214/aoms/1177729437
http://dx.doi.org/10.2307/1267792
http://dx.doi.org/10.1029/2005GL025546
http://dx.doi.org/10.1029/2005JB003629
www.bernese.unibe.ch/features/


References 287

Boehm, J., Heinkelmann, R., & Schuh, H. (2007). Short note: A global model of pressure and tem-
perature for geodetic applications. Journal of Geodesy, 81(10), 679–683. doi:10.1007/s00190-
007-0135-3.

Brockwell, P. J., & Davis, R. A. (2002). Introduction to time series and forecasting (2nd ed.). New
York: Springer.

Broersen, P. M. T. (2006). Automatic autocorrelation and spectral analysis. London: Springer.
Choi, K., Bilich, A., Larson, K. M., & Axelrad, P. (2004). Modified sidereal filtering: Implica-

tions for high-rate GPS positioning. Geophysical Research Letters, 31, L22608. doi:10.1029/
2004GL021621.

Dach, R., Hugentobler, U., Fridez, P., & Meindl, M. (2007). Bernese GPS Software Version 5.0.
Astronomical Institute, University of Bern, Stämpfli Publications AG, Bern.

Elósegui, P., Davis, J. L., Jaldehag, R. T. K., Johansson, J. M., Niell, A. E., & Shapiro, I. I. (1995).
Geodesy using the Global Positioning System: The effects of signal scattering on estimates of
site position. Journal of Geophysical Research, 100(B6), 9921–9934. doi:10.1029/95JB00868.

El-Rabbany, A. (1994). The effect of physical correlations on the ambiguity resolution and accuracy
estimation in GPS differential positioning. PhD thesis, Department of Geodesy and Geomatics
Engineering, Technical Report, No. 170, University of New Brunswick (UNB), New Brunswick.

El-Rabbany, A., & Kleusberg, A. (2003). Effect of temporal physical correlation on accuracy esti-
mation in GPS relative positioning. Journal of Surveying Engineering, 129(1), 28–32. doi:10.
1061/(ASCE)0733-9453(2003)129:1(28).

Fuhrmann, T., Knöpfler, A., Mayer, M., Luo, X., & Heck, B. (2010). Zur GNSS-basierten Bestim-
mung des atmosphärischen Wasserdampfgehalts mittels Precise Point Positioning. Schriftenreihe
des Studiengangs Geodäsie und Geoinformatik, Band 2/2010, Karlsruher Institute für Technolo-
gie (KIT), KIT Scientific Publishing, Karlsruher.

Georgiadou, Y., & Kleusberg, A. (1988). On carrier signal multipath effects in relative GPS posi-
tioning. Manuscripta Geodaetica, 13(3), 172–179.

Hartung, J., Elpelt, B., & Klösener, K.-H. (2005). Statistik: Lehr- und Handbuch der angewandten
Statistik (14th ed.). Munich: Oldenbourg.

Heck, B. (1981). Der Einfluß einzelner Beobachtungen auf das Ergebnis einer Ausgleichung und
die Suche nach Ausreißern in den Beobachtungen. Allgemeine Vermessungs-Nachrichten (AVN),
88(1), 17–34.

Howind, J., Kutterer, H., & Heck, B. (1999). Impact of temporal correlations on GPS-derived relative
point positions. Journal of Geodesy, 73(5), 246–258. doi:10.1007/s001900050241.

Howind, J. (2005). Analyse des stochastischen Modells von GPS-Trägerphasenbeobachtungen.
Deutsche Geodätische Kommission, No. C584, Verlag der Bayerischen Akademie der Wis-
senschaften, Munich.

Jarque, C. M., & Bera, A. K. (1987). A test for normality of observations and regression residuals.
International Statistical Review, 55(2), 163–172. doi:10.2307/1403192.

King, M. A., & Williams, S. D. P. (2009). Apparent stability of GPS monumentation from short-
baseline time series. Journal of Geophysical Research, 114, B10403. doi:10.1029/2009JB006319.

Klees, R., Ditmar, P., & Broersen, P. (2003). How to handle colored observation noise in large least-
squares problems. Journal of Geodesy, 76(11–12), 629–640. doi:10.1007/s00190-002-0291-4.

Kreiß, J.-P., & Neuhaus, G. (2006). Einführung in die Zeitreihenanalyse. Berlin: Springer.
Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of

stationarity against the alternative of a unit root: How sure are we that economic time series have
a unit root? Journal of Econometrics, 54(1–3), 159–178. doi:10.1016/0304-4076(92)90104-Y.

Leandro, R. F., & Santos, M. C. (2007). Stochastic models for GPS positioning: An empirical
approach. GPS World, 18(2), 50–56.

Lehmann, E. L., & Romano, J. P. (2005). Testing statistical hypotheses (3rd ed.). New York: Springer.
Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov test for normality with mean and vari-

ance unknown. Journal of the American Statistical Association, 62(318), 399–402. doi:10.2307/
2283970.

http://dx.doi.org/10.1007/s00190-007-0135-3
http://dx.doi.org/10.1007/s00190-007-0135-3
http://dx.doi.org/10.1029/2004GL021621
http://dx.doi.org/10.1029/2004GL021621
http://dx.doi.org/10.1029/95JB00868
http://dx.doi.org/10.1061/(ASCE)0733-9453(2003)129:1(28)
http://dx.doi.org/10.1061/(ASCE)0733-9453(2003)129:1(28)
http://dx.doi.org/10.1007/s001900050241
http://dx.doi.org/10.2307/1403192
http://dx.doi.org/10.1029/2009JB006319
http://dx.doi.org/10.1007/s00190-002-0291-4
http://dx.doi.org/10.1016/0304-4076(92)90104-Y
http://dx.doi.org/10.2307/2283970
http://dx.doi.org/10.2307/2283970


288 8 Results of Residual-Based Temporal Correlation Modelling

Luo, X., & Mayer, M. (2008). Automatisiertes GNSS-basiertes Bewegungsmonitoring am Black
Forest Observatory (BFO) in Nahezu-Echtzeit. Zeitschrift für Geodäsie, Geoinformation und
Landmanagement (ZfV), 133(5), 283–294.

Luo, X., Mayer, M., & Heck, B. (2011a). On the probability distribution of GNSS carrier phase
observations. GPS Solutions, 15(4), 369–379. doi:10.1007/s10291-010-0196-2.

Luo, X., Mayer, M., & Heck, B. (2011b). Verification of ARMA identification for modelling tem-
poral correlations of GNSS observations using the ARMASA toolbox. Studia Geophysica et
Geodaetica, 55(3), 537–556. doi:10.1007/s11200-011-0033-2.

Luo, X., Mayer, M., & Heck, B. (2012). Analysing time series of GNSS residuals by means
of AR(I)MA processes. In: N. Sneeuw et al. (Eds.), Proceedings of the VII Hotine-Marussi
Symposium on Mathematical Geodesy, Rome, Italy, 6–10 July, 2009, IAG Symposia. vol. 137,
Berlin: Springer, pp. 129–134. doi:10.1007/978-3-642-22078-4_19.

Markowski, C. A., & Markowski, E. P. (1990). Conditions for the effectiveness of a preliminary
test of variance. The American Statistician, 44(4), 322–326. doi:10.2307/2684360.

Niemeier, W. (2008). Ausgleichungsrechnung: Statistische Auswertemethoden (2nd ed.).
Berlin: Walter de Gruyter.

Ragheb, A. E., Clarke, P. J., & Edwards, S. J. (2007). GPS sidereal filtering: Coordinate- and carrier-
phase-level strategies. Journal of Geodesy, 81(5), 325–335. doi:10.1007/s00190-006-0113-1.

Said, S. E., & Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models
of unknown order. Biometrika, 71(3), 599–607. doi:10.1093/biomet/71.3.599.

Schön, S., & Brunner, F. K. (2008a). Atmospheric turbulence theory applied to GPS carrier-phase
data. Journal of Geodesy, 82(1), 47–57. doi:10.1007/s00190-007-0156-y.

Schön, S., & Brunner, F. K. (2008b). A proposal for modelling physical correlations of GPS phase
observations. Journal of Geodesy, 82(10), 601–612. doi:10.1007/s00190-008-0211-3.

Schwert, G. W. (1989). Tests for unit roots: A Monte Carlo investigation. Journal of Business and
Economic Statistics, 7(2), 147–159. doi:10.2307/1391432.

Snedecor, G. W., & Cochran, W. G. (1967). Statistical methods (6th ed.). Ames: Iowa State Uni-
versity Press.

Stewart, R. H. (2008). Introduction to physical oceanography. Department of Oceanography, Texas
A & M University.

Teusch, A. (2006). Einführung in die Spektral- und Zeitreihenanalyse mit Beispielen aus der Geo-
däsie. Deutsche Geodätische Kommission, No. A120, Verlag der Bayerischen Akademie der
Wissenschaften, Munich.

Tiberius, C., & Borre, K. (1999). Probability distribution of GPS code and phase data. Zeitschrift
für Vermessungswesen (ZfV), 124(8), 264–273.

Vondrák, J. (1969). A contribution to the problem of smoothing observational data. Bulletin of the
Astronomical Institute of Czechoslovakia, 20(6), 349–355.

Wang, J., Satirapod, C., & Rizos, C. (2002). Stochastic assessment of GPS carrier phase measure-
ments for precise static relative positioning. Journal of Geodesy, 76(2), 95–104. doi:10.1007/
s00190-001-0225-6.

Wanninger, L. (2000). Präzise Positionierung in regionalen GPS-Referenzstationsnetzen. Deutsche
Geodätische Kommission, No. C508, Verlag der Bayerischen Akademie der Wissenschaften,
Munich.

Zheng, D. W., Zhong, P., Ding, X. L., & Chen, W. (2005). Filtering GPS time-series using a
Vondrak filter and cross-validation. Journal of Geodesy, 79(6–7), 363–369. doi:10.1007/s00190-
005-0474-x.

Zhong, P., Ding, X., Yuan, L., Xu, Y., Kwok, K., & Chen, Y. (2010). Sidereal filtering based on
single differences for mitigating GPS multipath effects on short baselines. Journal of Geodesy,
84(2), 145–158. doi:10.1007/s00190-009-0352-z.

http://dx.doi.org/10.1007/s10291-010-0196-2
http://dx.doi.org/10.1007/s11200-011-0033-2
http://dx.doi.org/10.1007/978-3-642-22078-4_19
http://dx.doi.org/10.2307/2684360
http://dx.doi.org/10.1007/s00190-006-0113-1
http://dx.doi.org/10.1093/biomet/71.3.599
http://dx.doi.org/10.1007/s00190-007-0156-y
http://dx.doi.org/10.1007/s00190-008-0211-3
http://dx.doi.org/10.2307/1391432
http://dx.doi.org/10.1007/s00190-001-0225-6
http://dx.doi.org/10.1007/s00190-001-0225-6
http://dx.doi.org/10.1007/s00190-005-0474-x
http://dx.doi.org/10.1007/s00190-005-0474-x
http://dx.doi.org/10.1007/s00190-009-0352-z


Chapter 9
Conclusions and Recommendations

9.1 Conclusions

Using the least-squares (LS) method to analyse GPS data, both the functional and
stochastic models must be appropriately specified for accurate parameter estimates
and realistic quality measures. In comparison to the highly developed functional
model, the stochastic model applied in many GPS software products is considered
unrealistic due to the elevation-dependent (or even identical) weighting model and
the neglect of physical correlations between GPS observations. Following the specific
objectives described in Sect. 1.3, this thesis has proposed an advanced observation
weighting scheme based on signal-to-noise ratio (SNR) measurements and a rigorous
temporal correlation analysis using residual time series from LS evaluation. The main
conclusions for the two stochastic modelling approaches presented in this work are
the following:

1. SNR-Based Observation Weighting

The suggested SNR-based weighting model relies upon a minimum-related scaling of
representative signal quality measurements and is completely independent from the
formula provided by Langley (1997). It properly handles low-quality measurements
of weak signals and sufficiently characterises variations in observation quality due
to multipath and atmospheric effects. After implementing the SNR-based weight-
ing scheme in the Bernese GPS Software 5.0 (Dach et al. 2007), short- (3 h) and
long-term (24 h) static relative positioning were carried out to study its effects on
phase ambiguity resolution, troposphere parameter (TRP) estimation and site coordi-
nate determination. Compared to the commonly used elevation-dependent weighting
model sin2(e), the most important findings are summarised as follows:

• At a regional scale, for a minimum elevation angle of 3◦, the SNR-based weighting
model improves on average the wide- and narrow-lane ambiguity resolution by
10 % and the TRP standard deviation by 20 %. In terms of TRP estimates, cm-level
changes are possible.
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• The impact of the SNR-based weighting model on coordinate estimates is normally
below 5 mm. However, it may increase to several centimetres, and even more than
one decimetre, when analysing short-term and low-quality data collected under
non-ideal observational conditions.

2. Residual-Based Temporal Correlation Modelling

The proposed residual-based temporal correlation modelling essentially consists of
two steps, namely noise extraction through residual decomposition and noise charac-
terisation using autoregressive moving average (ARMA) processes. The remaining
systematic effects are subdivided into long-periodic trends and quasi-periodic oscil-
lations, which are captured by performing Vondrák filtering and sidereal stacking,
respectively. The optimum Vondrák filter parameter is empirically determined by
considering its influence on the residual day-to-day repeatability and noise’s tem-
poral correlation. On the basis of the detrended residuals, outliers are detected in a
statistically rigorous manner and can be repaired by means of a remove-repair-restore
(RRR) technique. Within the context of sidereal stacking, appropriate orbit repeat
lags are employed to ensure similar satellite geometry on multiple consecutive days.
Once the stochastic noise is thoroughly extracted, its temporal correlation properties
are investigated based on the zero-crossing correlation length and lag-1 correlation
level of the associated sample autocorrelation function (ACF).

For each decomposed noise series, the best-fitting ARMA model is automatically
identified using the free MATLAB® Toolbox ARMASA (Broersen 2006, Chap. 9).
Both the temporal correlation characteristics and the results of ARMA modelling are
analysed with respect to multipath impact, satellite geometry and atmospheric condi-
tions. By applying the continuous wavelet transform and statistical hypothesis tests
for normality, trend, (non-)stationarity and uncorrelatedness, the efficiency of the
residual decomposition and ARMA modelling is verified. Making use of the model
ACF of statistically valid ARMA estimates, the GPS stochastic model is extended by
taking the noise’s temporal correlation into account. This modelling approach was
tested using 1 s studentised double-difference residuals (SDDR) from short-term rel-
ative positioning and 30 s studentised zero-difference residuals (SZDR) from long-
term precise point positioning (PPP). The most important results are summarised
as follows:

• The mean zero-crossing correlation length and lag-1 correlation level deter-
mined by analysing SDDR (SZDR) are 80 s (8 min) and 0.4 (0.4), with 95 %
quantiles of 130 s (17 min) and 0.7 (0.6), respectively. The noise’s temporal corre-
lation decreases with increasing wind speed and increases with increasing relative
humidity and satellite elevation angle. Strong multipath effects may significantly
reduce the noise’s correlation length.

• First-order autoregressive processes [AR(1)] are inadequate for noise characteri-
sation. The model identification is dominated by AR and ARMA processes, where
AR models are preferred if strong multipath is present. When analysing residuals
from low-elevation satellites and severe multipath environments, higher ARMA
orders are selected.
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• The residual long-periodic trend is the most significant cause of deviations from the
assumed normality and stationarity. The decomposed noise is largely stationary,
fulfilling the assumption of ARMA modelling. The coloured noise series can be
effectively described by the ARMA estimates, and the extended PPP stochastic
model reflects multipath and atmospheric variations.

9.2 Recommendations

This thesis has presented considerable positive effects of the SNR-based weighting
model on static GPS relative positioning, as well as statistically significant and phys-
ically interpretable temporal correlations of GPS observations. In order to transfer
the research results into practical applications, there are some topics that should be
considered in the future:

• SNR-based observation weighting. Benefiting from the standardisation of signal
strengths in RINEX Version 3.00 (see Sect. 5.3.1; Gurtner and Estey 2007, p. 10),
empirical SNR-based weighting models will be more applicable in practice. The
proposed approach requires additional verification, for example, using PPP and
representative data sets with respect to observation quality and period as well
as equipment types. In addition, the impact on the allowable a priori coordinate
uncertainty should be studied (Collins and Langley 1999, p. 29). To achieve
high computational efficiency, it is strongly recommended to implement the SNR-
based weighting model in GPS data processing software completely, without any
auxiliary components.

• Residual-based correlation modelling. Relying upon large amounts of residual
data, the outcomes of the temporal correlation analysis should be verified and
further investigated with regard to double differencing, receiver type and wind
direction. The results of ARMA modelling need to be considered in the GPS
stochastic model by applying, for instance, the LS evaluation with approximated
matrix inversion (Howind et al. 1999), the modified sequential LS adjustment
algorithm (El-Rabbany and Kleusberg 2003) and the measurement transforma-
tion (decorrelation) method (Wang et al. 2002). Moreover, the development of a
temporally propagating GPS stochastic model based on ARMA estimates requires
more research. In the future, the unmodelled site-specific multipath effects and the
remaining tropospheric delays should be handled more efficiently using robot/in-
situ station calibration (Wübbena et al. 2011), modern residual stacking techniques
(Fuhrmann et al. 2010, Chap. 7), high-resolution meteorological data and advanced
tropospheric models (Boehm et al. 2006a,b, 2007). Additional studies on spatial
and cross correlations are also necessary, which may be undertaken by means of
cross-correlation functions (Leandro and Santos 2007) and multivariate ARMA
processes (Brockwell and Davis 2002, Chap. 7).

• Other suggestions. To allow for a physical interpretation of the results, it is strongly
advisable to incorporate surface metrological data, even though they may not have

http://dx.doi.org/10.1007/978-3-642-34836-5_5
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high temporal and spatial resolution. The free MATLAB® Toolbox ARMASA is
particularly applicable in the case of large data volumes and high-order model esti-
mation, while the ITSM2000 software package provided by Brockwell and Davis
(2002, p. 395) is more appropriate for single time series analysis and simulation
studies (Luo et al. 2011, 2012).

• Applications. Considering its significant effects on site-specific troposphere para-
meter estimation (see Sects. 6.1.3 and 6.2.3), the SNR-based weighting scheme
is especially deployable to high-resolution atmospheric water vapour determina-
tion (Alshawaf et al. 2013). The derived numerical results of satellite orbit repeat
lags, Vondrák filter parameters and temporal correlation characteristics may be
regarded as rough guides and used in other studies for the purpose of comparison.
Without complex modifications, the temporal correlation modelling can be applied
to residuals of GLONASS and Galileo observations. The employed mathematical
methods, such as Vondrák filtering, outlier detection, ARMA modelling, wavelet
transforms and statistical tests, are applicable to other data sets, for example, those
from gravity field missions like GRACE (Gravity Recovery And Climate Experi-
ment) and GOCE (Gravity field and steady-state Ocean Circulation Explorer).
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Appendix A
Quantiles of Test Statistics

This appendix contains the right (1−α) and left tail (α) quantiles of the distributions
of the test statistics for typical significance levels α (see Sect. 2.3). Based on these
quantiles and the test properties, for example, one- or two-sided test, the correspond-
ing critical values can be easily derived. The tabulated values are either taken from
cited references or computed using analytical approximations and empirical sim-
ulations performed in MATLAB® R2009b. The quantiles that are not available in
the cited references are denoted by the string “N/A”. Furthermore, in the following
tables, MST/MET and REF refer to the associated MATLAB® Toolbox and refer-
ence, respectively, outlined in the description of each.

A.1 Tests for Normality

Test: Jarque-Bera (JB) test
MATLAB® function: jbtest
REF: Jarque and Bera (1987, Table 2)
MST: MATLAB® Statistics ToolboxTM
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Table A.1 Right tail (1−α) quantiles of the distribution of the JB test statistic TJB [see Eq. (2.69)]

Sample size n Significance levelα

1 % 5 % 10 %

REF MST REF MST REF MST

20 N/A 9.75 3.26 3.80 2.13 2.35
30 N/A 11.33 3.71 4.40 2.49 2.74
40 N/A 12.04 3.99 4.75 2.70 3.00
50 N/A 12.37 4.26 4.97 2.90 3.18
75 N/A 12.59 4.27 5.27 3.09 3.49
100 N/A 12.51 4.29 5.43 3.14 3.67
125 N/A 12.36 4.34 5.53 3.31 3.80
150 N/A 12.18 4.39 5.59 3.43 3.90
200 N/A 11.86 4.43 5.68 3.48 4.03
250 N/A 11.59 4.51 5.73 3.54 4.12
300 N/A 11.37 4.60 5.77 3.68 4.19
400 N/A 11.02 4.74 5.82 3.76 4.27
500 N/A 10.76 4.82 5.86 3.91 4.33
800 N/A 10.29 5.46 5.91 4.32 4.42
1,000 N/A 10.11 5.99 5.93 4.61 4.46
5,000 N/A 9.41 5.99 5.98 4.61 4.56
10,000 N/A 9.31 5.99 5.98 4.61 4.58
100,000 N/A 9.22 5.99 5.99 4.61 4.60
∞ → χ2

2;1−α N/A 9.21 5.99 5.99 4.61 4.61

Test: Chi-square (CS) test
MATLAB® function: chi2gof
REF: Niemeier (2008, Table A.4, p. 474)

Table A.2 Right tail (1−α) quantiles of the distribution of the CS test statistic TC S [see Eq. (2.70)]

Number of bins m Degrees of freedom f = m − 3 Significance level α (REF)

0.5 % 1 % 2.5 % 5 % 10 %

10 7 20.78 18.48 16.01 14.07 12.02
11 8 21.96 20.09 17.53 15.51 13.36
12 9 23.59 21.67 19.02 16.92 14.68
13 10 25.19 23.21 20.48 18.31 15.99
14 11 26.76 24.72 21.92 19.68 17.28
15 12 28.30 26.22 23.34 21.03 18.55

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
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Test: Lilliefors (LF) test
MATLAB® function: lillietest
REF: Lilliefors (1967, Table 1)
MST: MATLAB® Statistics ToolboxTM

Table A.3 Right tail (1−α) quantiles of the distribution of the LF test statistic TLF [see Eq. (2.71)]

Sample size n Significance level α

1 % 5 % 10 %

REF MST REF MST REF MST

10 0.294 0.303 0.258 0.262 0.239 0.241
11 0.284 0.292 0.249 0.252 0.230 0.231
12 0.275 0.281 0.242 0.242 0.223 0.222
13 0.268 0.271 0.234 0.233 0.214 0.215
14 0.261 0.262 0.227 0.226 0.207 0.208
15 0.257 0.254 0.220 0.219 0.201 0.201
16 0.250 0.247 0.213 0.213 0.195 0.195
17 0.245 0.240 0.206 0.207 0.189 0.190
18 0.239 0.234 0.200 0.201 0.184 0.185
19 0.235 0.229 0.195 0.197 0.179 0.181
20 0.231 0.223 0.190 0.192 0.174 0.176
25 0.203 0.201 0.180 0.173 0.165 0.159
30 0.187 0.185 0.161 0.159 0.144 0.146
n > 30 REF: 1.031/

√
n REF: 0.886/

√
n REF: 0.805/

√
n

50 0.146 0.145 0.125 0.125 0.114 0.114
100 0.103 0.104 0.089 0.089 0.081 0.082
300 0.060 0.061 0.051 0.052 0.046 0.048
500 0.046 0.047 0.040 0.040 0.036 0.037
1,000 0.033 0.033 0.028 0.029 0.025 0.026
3,000 0.019 0.019 0.016 0.017 0.015 0.015
5,000 0.015 0.015 0.013 0.013 0.011 0.012
10,000 0.010 0.011 0.009 0.009 0.008 0.008

Test: Anderson-Darling (AD) test
REF: Stephens (1986, Table 4.9)

Table A.4 Right tail (1−α) quantiles of the distribution of the modified AD test statistic T ∗
AD [see

Eq. (2.73)]

Right tail quantile Significance levelα (REF)

1 % 2.5 % 5 % 10 % 15 % 25 % 50 %

CAD,1−α 1.035 0.873 0.752 0.631 0.561 0.470 0.341

http://dx.doi.org/10.1007/978-3-642-34836-5_2
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A.2 Tests for Trend

Test: Cox-Stuart (CT) test
REF: Hartung et al. (2005, Table A.2, p. 891)
MST: MATLAB® Statistics ToolboxTM (function: binoinv)

Table A.5 Right tail (1 − α) quantiles of the distribution of the CT test statistics TCT and ZCT
[see Eq. (2.75)]

Sample size n Significance level α

0.5 % 1 % 2.5 % 5 % 10 % Source

n < 20 : TCT ∼ Bin(n, 0.5)
5 5 5 5 4 4 MST
6 6 6 5 5 5
7 7 6 6 6 5
8 7 7 7 6 6
9 8 8 7 7 6
10 9 9 8 8 7
11 10 9 9 8 8
12 10 10 9 9 8
13 11 11 10 9 9
14 12 11 11 10 9
15 12 12 11 11 10
16 13 13 12 11 11
17 14 13 12 12 11
18 14 14 13 12 12
19 15 14 14 13 12
n ≥ 20 : ZCT ∼ N (0, 1)
n ≥ 20 2.576 2.326 1.960 1.645 1.282 REF

If p = 0.5, the discrete binomial distribution Bin(n, p) is a symmetric probability
distribution. This can be easily demonstrated by setting p = 0.5 for the skewness of
Bin(n, p), given by

SBin(n,p) = (1 − 2p)/
√

np(1 − p). (A.1)

As is well known, a skewness of zero indicates a symmetric distribution. Taking
advantage of the distributional symmetry, the left tail (α) quantile Bn, 0.5; α can be
expressed by

Bn, 0.5; α = n − Bn, 0.5; 1−α, (A.2)

where Bn,0.5;1−α denotes the corresponding right tail (1–α) quantile and is directly
obtainable from Table A.5.

http://dx.doi.org/10.1007/978-3-642-34836-5_2
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Test: Mann-Kendall (MK) test
REF: Hartung et al. (2005, Table 44, p. 249; Table A.2, p. 891)

Table A.6 Right tail (1−α) quantiles of the distribution of the MK test statistics TMK [see Eq. (2.76)]
and ZMK [see Eq. (2.77)]

Sample size n Significance levelα (REF)

0.5 % 1 % 2.5 % 5 % 10 %

4 6 6 6 6 5
5 10 9 8 8 7
6 14 13 11 9 7
7 17 15 13 11 9
8 21 19 16 14 11
9 25 23 19 16 13
10 29 26 23 19 15
15 52 47 40 34 27
20 80 72 59 49 38
25 110 100 84 71 56
30 145 131 111 93 73
35 183 165 139 117 88
40 222 200 169 142 111
n > 40 : ZMK ∼ N (0, 1)
n > 40 2.576 2.326 1.960 1.645 1.282

A.3 Tests for Stationarity

Test: augmented Dickey-Fuller (ADF) test
MATLAB® function: adftest
REF: Dickey (1976); Fuller (1996, Table 10.A.2)
MET: MATLAB® Econometrics ToolboxTM

Table A.7 Left tail (α) quantiles of the distribution of the ADF test statistic TADF [see Eq. (2.80)]

Regression model Sample size n Significance levelα

1 % 5 % 10 %

REF MET REF MET REF MET

Equation (2.78), 30 N/A −2.643 N/A −1.950 N/A −1.607
c = δ = 0 40 N/A −2.625 N/A −1.948 N/A −1.610

50 −2.62 −2.612 −1.95 −1.947 −1.61 −1.612
75 N/A −2.597 N/A −1.945 N/A −1.613

100 −2.60 −2.590 −1.95 −1.944 −1.61 −1.614
150 N/A −2.581 N/A −1.943 N/A −1.615
200 N/A −2.575 N/A −1.942 N/A −1.616
250 −2.58 −2.576 −1.95 −1.942 −1.62 −1.616
300 N/A −2.576 N/A −1.942 N/A −1.617
500 −2.58 −2.570 −1.95 −1.941 −1.62 −1.616

1,000 −2.58 −2.569 −1.95 −1.942 −1.62 −1.617
10,000 −2.58 −2.566 −1.95 −1.942 −1.62 −1.618

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
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Table A.8 Left tail (α) quantiles of the distribution of the ADF test statistic TADF [continuation of
Table A.7; see Eq. (2.80)]

Regression model Sample size n Significance levelα

1 % 5 % 10 %

REF MET REF MET REF MET

Equation (2.78), 30 N/A −3.679 N/A −2.968 N/A −2.623
c �= 0, δ = 0 40 N/A −3.612 N/A −2.940 N/A −2.608

50 −3.59 −3.573 −2.93 −2.924 −2.60 −2.600
75 N/A −3.523 N/A −2.901 N/A −2.588

100 −3.50 −3.499 −2.90 −2.890 −2.59 −2.581
150 N/A −3.478 N/A −2.881 N/A −2.577
200 N/A −3.462 N/A −2.876 N/A −2.574
250 −3.45 −3.459 −2.88 −2.874 −2.58 −2.573
300 N/A −3.456 N/A −2.871 N/A −2.572
500 −3.44 −3.442 −2.87 −2.868 −2.57 −2.570

1,000 −3.42 −3.438 −2.86 −2.865 −2.57 −2.569
10,000 −3.42 −3.431 −2.86 −2.861 −2.57 −2.567

Equation (2.78), 30 N/A −4.311 N/A −3.574 N/A −3.221
c �= 0, δ �= 0 40 N/A −4.214 N/A −3.530 N/A −3.197

50 −4.16 −4.155 −3.50 −3.505 −3.18 −3.183
75 N/A −4.088 N/A −3.472 N/A −3.163

100 −4.05 −4.055 −3.45 −3.456 −3.15 −3.154
150 N/A −4.024 N/A −3.441 N/A −3.145
200 N/A −4.006 N/A −3.434 N/A −3.141
250 −3.98 −3.998 −3.42 −3.430 −3.13 −3.138
300 N/A −3.991 N/A −3.426 N/A −3.136
500 −3.97 −3.978 −3.42 −3.419 −3.13 −3.133

1,000 −3.96 −3.969 −3.41 −3.415 −3.13 −3.128
10,000 −3.96 −3.959 −3.41 −3.412 −3.13 −3.128

Test: Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test
MATLAB® function: kpsstest
REF: Kwiatkowski et al. (1992, Table 1)

Table A.9 Right tail (1 − α) quantiles of the distribution of the KPSS test statistic TKPSS [see
Eq. (2.82)]

Regression model Significance levelα (REF)

1 % 2.5 % 5 % 10 %

Equation (2.81) c �= 0, δ = 0 0.739 0.574 0.463 0.347
c �= 0, δ �= 0 0.216 0.176 0.146 0.119

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
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A.4 Tests for Uncorrelatedness

Test: based on von Neumann ratio (VNR)
REF: Hart (1942); Bingham and Nelson (1981, Table 2)
MST: MATLAB® Statistics ToolboxTM (function: tinv)

Table A.10 Left tail (α) quantiles of VNR [see Eq. (2.85)] and right tail (1 − α) quantiles of the
distribution of the modified test statistic TV N R [n ≥ 15; see Eq. (2.86)]

Sample size n Degrees of freedom Significance level α (REF: Cn;α , MST: tn+1;1−α)

1 % 2.5 % 5 % 10 %

REF MST REF MST REF MST REF MST

5 6 0.672 − 0.831 − 1.026 − 1.314 −
10 11 0.835 − 1.012 − 1.180 − 1.390 −
15 16 0.988 2.584 1.146 2.120 1.291 1.746 1.468 1.337
20 21 1.095 2.518 1.239 2.080 1.368 1.721 1.523 1.323
25 26 1.175 2.479 N/A 2.056 1.424 1.706 N/A 1.315
30 31 1.236 2.453 N/A 2.040 1.467 1.696 N/A 1.310
35 36 1.285 2.435 N/A 2.028 1.501 1.688 N/A 1.306
40 41 1.327 2.421 N/A 2.020 1.530 1.683 N/A 1.303
45 46 1.362 2.410 N/A 2.013 1.555 1.679 N/A 1.300
50 51 1.391 2.402 N/A 2.008 1.575 1.675 N/A 1.298
55 56 1.416 2.395 N/A 2.003 1.592 1.673 N/A 1.297
60 61 1.438 2.389 N/A 2.000 1.608 1.670 N/A 1.296
70 71 N/A 2.380 N/A 1.994 N/A 1.667 N/A 1.294
80 81 N/A 2.373 N/A 1.990 N/A 1.664 N/A 1.292
90 91 N/A 2.368 N/A 1.986 N/A 1.662 N/A 1.291
100 101 N/A 2.364 N/A 1.984 N/A 1.660 N/A 1.290
150 151 N/A 2.351 N/A 1.976 N/A 1.655 N/A 1.287
200 201 N/A 2.345 N/A 1.972 N/A 1.653 N/A 1.286
300 301 N/A 2.339 N/A 1.968 N/A 1.650 N/A 1.284
400 401 N/A 2.336 N/A 1.966 N/A 1.649 N/A 1.284
600 601 N/A 2.333 N/A 1.964 N/A 1.647 N/A 1.283
800 801 N/A 2.331 N/A 1.963 N/A 1.647 N/A 1.283
1,000 1,001 N/A 2.330 N/A 1.962 N/A 1.646 N/A 1.282
10,000 10,001 N/A 2.327 N/A 1.960 N/A 1.645 N/A 1.282

Test: Ljung-Box (LB) portmanteau test
MATLAB® function: lbqtest
REF: Hartung et al. (2005, Table A.4, p. 893)

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
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Table A.11 Right tail (1 −α) quantiles of the distribution of the LB portmanteau test statistic TL B
[see Eq. (2.88)]

Degrees of freedom Significance levelα (REF)

(truncation lag h) 0.5 % 1 % 2.5 % 5 % 10 %

10 25.19 23.21 20.48 18.31 15.99
12 28.30 26.22 23.34 21.03 18.55
14 31.32 29.14 26.12 23.68 21.06
16 34.27 32.00 28.85 26.30 23.54
18 37.16 34.81 31.53 28.87 25.99
20 40.00 37.57 34.17 31.41 28.41
22 42.80 40.29 36.78 33.92 30.81
24 45.56 42.98 39.36 36.42 33.20
26 48.29 45.64 41.92 38.89 35.56
28 50.99 48.28 44.46 41.34 37.92
30 53.67 50.89 46.98 43.77 40.26

Test: Kolmogorov-Smirnov (KV) test
REF1: Kolmogorov (1941)
REF2: Teusch (2006, Table 6.2, p. 104)
MCF: MATLAB® Central function (kolminv1).

Table A.12 Right tail (1−α) quantiles of the distribution of the KV test statistic TK V [see Eq. (2.89)]

Source Significance levelα

0.5 % 1 % 2.5 % 5 % 10 %

REF1 1.73 1.63 N/A 1.35 N/A
REF2 1.731 1.628 1.480 1.358 N/A
MCF 1.731 1.628 1.480 1.358 1.224

Test: Cramér-von Mises (CM) test
REF1: Anderson and Darling (1952, Table 1)
REF2: Csörgő and Faraway (1996, Table 1)

Table A.13 Right tail (1 − α) quantiles of the distribution of the CM test statistic TC M [see
Eq. (2.90)]

Source Sample size n Significance levelα

1 % 2.5 % 5 % 10 %

REF1 ∞ 0.7435 N/A 0.4614 0.3473
REF2 20 0.7290 0.5733 0.4578 0.3462

50 0.7373 0.5775 0.4599 0.3468
200 0.7415 0.5797 0.4609 0.3472

1,000 0.7426 0.5803 0.4612 0.3472
∞ 0.7435 0.5806 0.4614 0.3473

1 Available free of charge at www.mathworks.com/matlabcentral/fileexchange/4369.

http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
http://dx.doi.org/10.1007/978-3-642-34836-5_2
www.mathworks.com/matlabcentral/fileexchange/4369


Appendix B
Derivations of Equations

This appendix provides the derivations of some equations which have not been
included in the main text for the sake of brevity. They may provide the reader with
a better understanding of the underlying mathematical concepts and relations.

B.1 Equation (2.78): ADF Regression Model

In this section, the possibility of representing a general ARMA(p, q) process by the
regression model of the augmented Dickey-Fuller (ADF) test is mathematically illus-
trated. Given that an ARMA(p, q) process can be well approximated by a long autore-
gressive process of order m (AR(m); Graupe et al. 1975; Broersen 2006, p. 142), for
example, when using Durbin’s methods to estimate model parameters (Durbin 1959,
1960), it is essential to prove that a long AR(m) process, given by

Xt = −
m∑

i=1

ai Xt−i + Zt , m ∈ N, (B.1)

can be expressed by the regression model of the ADF test, i.e.,

Xt = φXt−1 +
m−1∑
j=1

ϑ j�Xt− j + Zt , (B.2)

where {Zt } denotes a white noise (WN) process, and the terms c and δ characterising
the deterministic trend are neglected [see Eq. (2.78)]. The symbol � represents the
lag-1 (or first-order) difference operator and is defined as �Xt = Xt − Xt−1 [see
Eq. (2.25)].

X. Luo, GPS Stochastic Modelling, Springer Theses, 303
DOI: 10.1007/978-3-642-34836-5, © Springer-Verlag Berlin Heidelberg 2013
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Proof of the representability of Eq. (B.1) using Eq. (B.2)
For m = 1, the trivial case occurs, where φ is equal to −a1, and the second sum-

mand on the right hand side of Eq. (B.2) disappears. This indicates that the underlying
data-generating process can be sufficiently described by an AR(1) process. In this
case, Eq. (B.2) is known as the regression model of the standard Dickey-Fuller test
(Dickey and Fuller 1979).

For m = 2, adding the null term

N2 = −a2 Xt−1 + a2 Xt−1 (B.3)

to the AR(2) process

Xt = −a1 Xt−1 − a2 Xt−2 + Zt , (B.4)

it follows that

Xt = −(a1 +a2)Xt−1 +a2(Xt−1 − Xt−2)+ Zt = φXt−1 +ϑ1�Xt−1 + Zt , (B.5)

where φ = −(a1 + a2), and ϑ1 = a2. Therefore, an AR(2) process can be expressed
by the regression model of the ADF test.

For m = 3, adding the null terms N2 [see Eq. (B.3)] and N3 given by

N3 = (−a3 Xt−1 + a3 Xt−1)+ (−a3 Xt−2 + a3 Xt−2) (B.6)

to the AR(3) process

Xt = −a1 Xt−1 − a2 Xt−2 − a3 Xt−3 + Zt , (B.7)

one obtains

Xt = −(a1 + a2 + a3)Xt−1 + (a2 + a3)(Xt−1 − Xt−2)+ a3(Xt−2 − Xt−3)+ Zt

= φXt−1 + ϑ1�Xt−1 + ϑ2�Xt−2 + Zt , (B.8)

where φ = −(a1 + a2 + a3), ϑ1 = (a2 + a3), and ϑ2 = a3. Accordingly, the
proposition to be proved also holds for m = 3.

Analogously, for an arbitrary integer AR order m > 3, the corresponding null
term Nm can be written as

Nm =
m−1∑
j=1

(−am Xt− j + am Xt− j ). (B.9)

Adding all null terms N2, . . . , Nm to the AR(m) process

Xt = −a1 Xt−1 − a2 Xt−2 − · · · − am Xt−m + Zt (B.10)
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results in

Xt = −
m∑

i=1

ai Xt−1 +
m∑

i=2

ai�Xt−1 + · · · + am�Xt−(m−1) + Zt , (B.11)

which can be reformulated as

Xt = φXt−1 +
m−1∑
j=1

ϑ j�Xt− j + Zt , (B.12)

where φ = −∑m
i=1 ai , and ϑ j = ∑m

i= j+1 ai . Comparing Eqs. (B.10) and (B.12)
with each other, the proposition that a long AR(m) process can be represented by
the ADF regression model is also true for an arbitrary integer m > 3. Considering
the approximation of an ARMA(p, q) process by a long AR(m) process, the rep-
resentability of ARMA structure by the regression model of the ADF test has been
proved for all natural numbers m; q.e.d.

B.2 Equation (2.81): MA Unit Root in the KPSS Test

This section outlines the basic concept behind the stationarity tests, making use
of moving average (MA) unit roots. Furthermore, the principle of the Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) test and its relation to the standard Dickey-Fuller (DF)
test are shown. The basic idea behind stationarity tests using MA unit roots can be
explained by regarding a time series {Yt } that can be decomposed into a deterministic
trend and an AR(1) process as

Yt = c + δt + Xt , Xt = −a1 Xt−1 + Zt , Zt ∼ WN(0, σ 2
Z ). (B.13)

Applying the lag-1 difference operator � to {Yt }, it follows that

�Yt = Yt − Yt−1 = δ +�Xt = δ − a1�Xt−1 + Zt − Zt−1. (B.14)

In fact, Eq. (B.14) represents an ARMA(1, 1) process with respect to {�Xt }, i.e.,

�Xt = −a1�Xt−1 + Zt + b1 Zt−1, (B.15)

where b1 = −1. However, this ARMA(1, 1) process is non-invertible, since the
corresponding MA characteristic equation 1 + b1r = 0 has a unit root for b1 = −1
[see Eq. (2.47)]. In general, if {Xt } is a causal and invertible ARMA(p, q) process
satisfying

Ap(r)Xt = Bq(r)Zt , Zt ∼ WN(0, σ 2
Z ), (B.16)

http://dx.doi.org/10.1007/978-3-642-34836-5_2
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the serially differenced series {�Xt } is a non-invertible ARMA(p, q+1) process with
a MA polynomial of Bq(r)(1−r). Therefore, testing for a MA unit root is equivalent
to verifying whether the time series is overdifferenced (Brockwell and Davis 2002,
p. 196). An AR unit root in the original data suggests that the observations should
be differenced before fitting an ARMA model, while a MA unit root in the lag-1
differenced data indicates that the data were overdifferenced, and they can be directly
modelled by means of ARMA processes.

The KPSS test subdivides a time series {Yt } into a deterministic trend c + δt , a
pure random walk {Ut } and a stationary error {Xt } as

Yt = c + δt + Ut + Xt , Ut = Ut−1 + Zt , Zt ∼ WN(0, σ 2
Z ). (B.17)

Applying the lag-1 difference operator � to {Yt }, one obtains

�Yt = δ + Zt +�Xt . (B.18)

Considering Wt = Zt +�Xt as the error term for �Yt and assuming that {Xt } and
{Zt } are serially and mutually uncorrelated, {Wt } has a non-zero lag-1 autocorre-
lation, with all other autocorrelations being equal to zero. Therefore, {Wt } can be
expressed as a MA(1) process, i.e., Wt = Mt +b1 Mt−1, where {Mt } denotes a white
noise process with Mt ∼ WN(0, σ 2

M ). Accordingly, Eq. (B.18) can be rewritten as

Yt + a1Yt−1 = δ + Mt + b1 Mt−1, (B.19)

where a1 = −1. Equation (B.19) illustrates an interesting relation between the KPSS
test and the standard DF test (Dickey and Fuller 1979). The DF test verifies AR unit
roots assuming the nuisance parameter b1 = 0, while the KPSS test checks for MA
unit roots assuming the nuisance parameter a1 = 0 (Kwiatkowski et al. 1992).

B.3 Equation (2.89): Kolmogorov-Smirnov Test Statistic

In this section, the derivation of the test statistic of the Kolmogorov-Smirnov (KV)
test for uncorrelatedness is briefly described. For a more detailed discussion of this
topic with rigorous mathematical proofs, the reader is referred to Teusch (2006,
p. 101). Background information about the spectral representation of a stationary
time series can be found in Brockwell and Davis (2002, Chap. 4) and Broersen
(2006).

A stationary time series {Xt } is a white noise (WN) process if its normalised
spectral density is equal to a constant, i.e., fN (λ) = 1

2π for all λ on the interval
[−π, π ] (Brockwell and Davis 2002, p. 118). According to the fact that the spectral
density function of a stationary process is an even function (Brockwell and Davis
2002, p. 113), the spectral distribution function of {Xt } can be expressed by the
integrated spectrum over the positive frequency range as
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F+
N (ω) := 2

ω∫

0

fN (λ)dλ, ω ∈ [0, π ]. (B.20)

Under the null hypothesis of uncorrelated random variables Xt , Eq. (B.20) becomes

F+
N (ω) = 2

ω∫

0

fN (λ)dλ = 2

ω∫

0

1

2π
dλ = ω

π
, ω ∈ [0, π ]. (B.21)

For a zero-mean stationary time series {Xt } with autocovariance function (ACVF)
γ (·) satisfying

∑∞
h=−∞ |γ (h)| < ∞, the normalised spectral density function of

{Xt } is defined as

fN (λ) = 1

2π · γ (0)
∞∑

h=−∞
γ (h) e−ihλ, −∞ < λ < ∞, (B.22)

where eiλ = cos λ+ i sin λ is Euler’s formula, and i = √−1 (Brockwell and Davis
2002 , p. 112; Broersen 2006, p. 35). Substituting the sample ACVF γ̂ (h) given by
Eq. (2.35) into Eq. (B.22) for the true ACVF γ (h), a reasonable estimate of fN (λ)

is obtained as

f̂N (λ) = 1

2π

n−1∑
h=−(n−1)

γ̂ (h)

γ̂ (0)
e−ihλ = 1

2π

n−1∑
h=−(n−1)

ρ̂(h) e−ihλ

= 1

2π

n−1∑
h=−(n−1)

ρ̂(h) [cos(hλ)− i sin(hλ)] , (B.23)

where ρ̂(h) is the corresponding sample ACF at lag h. Considering that sin(·) is an
odd function, and cos(·) and ρ̂(·) are even functions, Eq. (B.23) can be written as

f̂N (λ) = 1

2π

[
ρ̂(0)+ 2

n−1∑
h=1

ρ̂(h) cos(λh)

]
= 1

2π
+ 1

π

n−1∑
h=1

ρ̂(h) cos(λh). (B.24)

Consequently, an estimate of F+
N (ω) of a stationary time series {Xt } can be

obtained by integrating Eq. (B.24), i.e.,

F̂+
N (ω) = 2

ω∫

0

f̂N (λ)dλ = ω

π
+ 2

π

n−1∑
h=1

ρ̂(h)
sin(ωh)

h
, ω ∈ [0, π ]. (B.25)

http://dx.doi.org/10.1007/978-3-642-34836-5_2
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For large sample sizes, under the null hypothesis of uncorrelatedness,
the equation E

[
ρ̂(h)

] = ρ(h) = 0 holds for h ≥ 1. Accordingly, the expectation of

F̂+
N (ω) is

E
[

F̂+
N (ω)

]
= ω

π
+ 2

π

n−1∑
h=1

E
[
ρ̂(h)

] sin(ωh)

h
= ω

π
, ω ∈ [0, π ]. (B.26)

Substituting ω = π z into Eq. (B.26), it follows that

E
[

F̂+
N (π z)

]
= z, z ∈ [0, 1]. (B.27)

Therefore, the difference between F̂+
N (π z) and z can be used as an indicator to assess

the degree of deviation from the null hypothesis of uncorrelatedness.
Based on the mathematical proofs presented in Teusch (2006, pp. 102, 103), the

maximum of the scaled difference

BN (z) : =
√

n

2

[
F̂+

N (π z)− z
]

=
√

n

2

[
z + 2

π

n−1∑
h=1

ρ̂(h)
sin(π z · h)

h
− z

]

=
√

2n

π

n−1∑
h=1

ρ̂(h)
sin(π z · h)

h
(B.28)

follows asymptotically the distribution of the maximum of the Brownian bridge
(Glasserman 2004, p. 83), i.e.,

Z N := max
z∈[0,1] |BN (z)| D−→ Z0 := max

z∈[0,1] |B0(z)| , (B.29)

where B0(z) denotes the Brownian bridge (Teusch 2006, pp. 65, 66), and D sym-
bolises convergence in distribution (Casella and Berger 2002, p. 235). The random
variable Z0 follows the Kolmogorov distribution (Kolmogorov 1933, 1941; Feller
1948; Marsaglia et al. 2003; Teusch 2006, pp. 103, 104). Accordingly, the test statistic
of the KV test for uncorrelatedness is given by

TK V := Z N = max
z∈[0,1] |BN (z)| = max

z∈[0,1]

∣∣∣∣∣
√

2n

π

n−1∑
h=1

ρ̂(h)
sin(π z · h)

h

∣∣∣∣∣ . (B.30)

B.4 Equation (7.7): Lagrange Polynomial

In numerical analysis, Lagrange polynomials are often used for the interpolation of
a given set of discrete points by a polynomial, which runs exactly through the data
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points. In the case of the Vondrák filter, given a set of four adjacent points (xi , y′
i ),

(xi+1, y′
i+1), (xi+2, y′

i+2) and (xi+3, y′
i+3), the third-order interpolation polynomial

in the Lagrange form Li (x) is a linear combination of the Lagrange basis polynomials
l j (x), i.e.,

Li (x) :=
i+3∑
j=i

l j (x)y
′
j , l j (x) :=

i+3∏
m=i,m �= j

x − xm

x j − xm
. (B.31)

Rewriting Eq. (B.31) in an explicit form, it follows that

Li (x) = li (x)y
′
i + li+1(x)y

′
i+1 + li+2(x)y

′
i+2 + li+3(x)y

′
i+3, (B.32)

where

li (x) = x − xi+1

xi − xi+1
· x − xi+2

xi − xi+2
· x − xi+3

xi − xi+3
, (B.33)

li+1(x) = x − xi

xi+1 − xi
· x − xi+2

xi+1 − xi+2
· x − xi+3

xi+1 − xi+3
, (B.34)

li+2(x) = x − xi

xi+2 − xi
· x − xi+1

xi+2 − xi+1
· x − xi+3

xi+2 − xi+3
, (B.35)

li+3(x) = x − xi

xi+3 − xi
· x − xi+1

xi+3 − xi+1
· x − xi+2

xi+3 − xi+2
. (B.36)

If x = xi , all basis polynomials including (x − xi ) in the numerator are equal
to zero, except for li (x = xi ) = 1. As a result, it follows that Li (x = xi ) =
li (x = xi )y′

i = y′
i . Analogously, it can be easily derived that Li (x = xi+1) = y′

i+1,
Li (x = xi+2) = y′

i+2, and Li (x = xi+3) = y′
i+3, indicating that the Lagrange

polynomial Li (x) actually runs through the four adjacent points. In accordance with
Eq. (B.31), the third derivative of Li (x) with respect to x can be written as

L ′′′
i (x) =

i+3∑
j=i

l ′′′j (x)y
′
j , l ′′′j (x) =

i+3∏
m=i,m �= j

6

x j − xm
, (B.37)

where L ′′′
i (x) is in fact independent from x . Therefore, the square of the third-

difference of the filtered values (�3 y′
i )

2 given by Eq. (7.7) can be computed by

(�3 y′
i )

2 =
xi+2∫

xi+1

[
L ′′′

i (x)
]2

dx = [
L ′′′

i (x)
]2
(xi+2 − xi+1) (B.38)

=
[

L ′′′
i (x)

√
xi+2 − xi+1

]2 = (ai y′
i + bi y′

i+1 + ci y′
i+2 + di y′

i+3)
2,

http://dx.doi.org/10.1007/978-3-642-34836-5_7
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where

ai = 6
√

xi+2 − xi+1

(xi − xi+1)(xi − xi+2)(xi − xi+3)
, (B.39)

bi = 6
√

xi+2 − xi+1

(xi+1 − xi )(xi+1 − xi+2)(xi+1 − xi+3)
, (B.40)

ci = 6
√

xi+2 − xi+1

(xi+2 − xi )(xi+2 − xi+1)(xi+2 − xi+3)
, (B.41)

di = 6
√

xi+2 − xi+1

(xi+3 − xi )(xi+3 − xi+1)(xi+3 − xi+2)
. (B.42)

The explicit presentations of Li (x) and (�3 y′
i )

2, given by Eqs. (B.32–B.36) and
(B.38–B.42), respectively, can also be found in Vondrák (1969), but without detailed
derivations. For equidistant arguments (i.e., xi+1 − xi = k,∀i), the coefficients
ai , bi , ci , di and (�3 y′

i )
2 become

ai = −k− 5
2 , bi = 3k− 5

2 , ci = −3k− 5
2 , di = k− 5

2 , (B.43)

(�3 y′
i )

2 = k−5(−y′
i + 3y′

i+1 − 3y′
i+2 + y′

i+3)
2. (B.44)

Apart from the multiplier k−5, Eq. (B.44) represents the square of the third-difference
of the filtered values, which was originally defined by Whittaker and Robinson (1924,
p. 304).

B.5 Equation (7.9): Vondrák Coefficient Matrix

Using Eqs. (6) and (7) in Vondrák (1969), the elements of the Vondrák coefficient
matrix A can be determined row by row. For the row index i between 4 and n − 3,
there exist seven non-zero elements in each row of A. However, for the first and last
three linear equations, some of the seven coefficients are equal to zero. Taking n = 8
as an example, the linear equation system given by Eq. (7.9) can be expressed as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X X X X 0 0 0 0
X X X X X 0 0 0
X X X X X X 0 0
X X X X X X X 0
0 X X X X X X X
0 0 X X X X X X
0 0 0 X X X X X
0 0 0 0 X X X X

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A:8×8

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y′
1

y′
2

y′
3

y′
4

y′
5

y′
6

y′
7

y′
8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
y′:8×1

= ε

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 · y1
p2 · y2
p3 · y3
p4 · y4
p5 · y5
p6 · y6
p7 · y7
p8 · y8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

︸ ︷︷ ︸
b:8×1

(B.45)
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Table B.1 Coefficients for the filtered values y′
i as elements in the matrix A (Vondrák 1969)

Coefficients for i = 1 i = 2 i = 3
y′

1 ε · p1 + a2
1 a1b1 a1c1

y′
2 a1b1 ε · p2 + a2

2 + b2
1 a2b2 + b1c1

y′
3 a1c1 a2b2 + b1c1 ε · p3 + a2

3 + b2
2 + c2

1
y′

4 a1d1 a2c2 + b1d1 a3b3 + b2c2 + c1d1
y′

5 0 a2d2 a3c3 + b2d2
y′

6 0 0 a3d3
y′

7 0 0 0

Coefficients for 4 ≤ i ≤ n − 3
y′

i−3 ai−3di−3
y′

i−2 ai−2ci−2 + bi−3di−3
y′

i−1 ai−1bi−1 + bi−2ci−2 + ci−3di−3

y′
i ε · pi + a2

i + b2
i−1 + c2

i−2 + d2
i−3

y′
i+1 ai bi + bi−1ci−1 + ci−2di−2

y′
i+2 ai ci + bi−1di−1

y′
i+3 ai di

Coefficients for i = n − 2 i = n − 1 i = n
y′

n−6 0 0 0
y′

n−5 an−5dn−5 0 0
y′

n−4 an−4cn−4 + bn−5dn−5 an−4dn−4 0
y′

n−3 an−3bn−3 + bn−4cn−4 an−3cn−3 + bn−4dn−4 an−3dn−3
+cn−5dn−5

y′
n−2 ε · pn−2 + b2

n−3 + c2
n−4 + d2

n−5 bn−3cn−3 + cn−4dn−4 bn−3dn−3

y′
n−1 bn−3cn−3 + cn−4dn−4 ε · pn−1 + c2

n−3 + d2
n−4 cn−3dn−3

y′
n bn−3dn−3 cn−3dn−3 ε · pn + d2

n−3

where the symbol “X” in A denotes the non-zero coefficients, ε is the smoothing
factor regulating the degree of filtering [see Eq. (8.1)], and pi are the weights for
observations yi . The non-zero elements in the coefficient matrix A are explicitly
provided in Table B.1, where the parameter values for ai , bi , ci , di can be computed
using Eqs. (B.39–B.42).
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Fig. C.1 Examples of daily and mean multipath plots generated using the past-processing software
WaSoft/Multipath (SAPOS ®site: HEID, strong multipath effects, DOY2007:161–181, sampling
interval: 60 s; multipath plots provided by A. Knöpfler) Sect. (4.2.3)
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Fig. C.2 Examples of TRP estimation using different time spans (baseline: HEDA, 54.1 km,
strong multipath, elevation cut-off angle: 3◦, observation weighting model: CSC2(BS), sampling
interval: 1 s, processing time interval: 17–18 h) (Sect. 6.2.3)
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Fig. C.3 Comparison of the sample ACF of OFR (SDDR after repairing outliers), DTR (resid-
ual after Vondrák filtering) and NCR(3) (residual after 3 day sidereal stacking) (see Table 4.3 for
baseline characteristics) (Sect. 8.1.5)
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Fig. C.4 Comparison of the noise’s sample ACF and ARMA model ACF in the presence of strong
systematic effects in NCR(3) (HEDA: 54.1 km, strong multipath, satellite pairs: PRN 17-18, 18-26)
(Sect. 8.1.6)
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Fig. C.5 Example illustrating the advantages of employing a shorter stacking time period
(SAPOS ®site: TUEB, weak multipath, satellite: PRN 28, DOY2008:275–284) (Sect. 8.2.4)
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Fig. C.6 Daily dispersion of the zero-crossing correlation length with respect to wind speed
(W S) (SAPOS ®sites: TUEB, weak multipath, BING, strong multipath, all observed GPS satel-
lites, DOY2008:275–284) (Sect. 8.2.5)
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Fig. C.7 Verification of the residual decomposition and ARMA modelling based on wavelet
scalograms (SAPOS ®site: TUEB, weak multipath, satellite: PRN 11, DOY2008:281, mother
wavelet: Morlet wavelet; see Eq. (2.94) and Fig. 2.7) (Sect. 8.2.7)
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Table D.1 Results of ambiguity resolution using different observation weighting models in case
study 1 (elevation cut-off angle: 10◦) (Sect. 6.1.2)

Baseline CSC2(BS) EMPSNR2 Improvement

DOY2004 Number/Percent Number/Percent Percent

#AMB WL NL #AMB WL NL WL NL

HLTA
186 57 57/100.0 50/87.7 57 57/100.0 52/91.2 0.0 3.5

187 61 58/95.1 49/80.3 60 56/93.3 48/80.0 −1.8 −0.3

188 58 56/96.6 51/87.9 58 57/98.3 50/86.2 1.7 −1.7

189 56 55/98.2 47/83.9 54 53/98.1 48/88.9 −0.1 5.0

190 56 54/96.4 48/85.7 56 54/96.4 49/87.5 0.0 1.8

191 63 60/95.2 57/90.5 63 59/93.7 55/87.3 −1.5 −3.2

192 57 54/94.7 52/91.2 57 54/94.7 53/93.0 0.0 1.8

193 54 53/98.1 51/94.4 54 54/100.0 52/96.3 1.9 1.9

Total 462 447/96.8 405/87.7 459 444/96.7 407/88.7 −0.1 1.0

KAST
186 74 71/95.9 59/79.7 74 70/94.6 65/87.8 −1.3 8.1
187 78 76/97.4 64/82.1 78 74/94.9 65/83.3 −2.5 1.2

188 70 69/98.6 63/90.0 70 69/98.6 65/92.9 0.0 2.9

189 87 83/95.4 68/78.2 86 81/94.2 72/83.7 −1.2 5.5

190 79 75/94.9 63/79.7 76 68/89.5 63/82.9 −5.4 3.2

191 76 75/98.7 66/86.8 75 73/97.3 69/92.0 −1.4 5.2

192 73 70/95.9 64/87.7 73 71/97.3 64/87.7 1.4 0.0

193 75 73/97.3 64/85.3 75 74/98.7 66/88.0 1.4 2.7

Total 612 592/96.7 511/83.5 607 580/95.6 529/87.1 −1.1 3.6

SISC
186 64 60/93.8 58/90.6 64 61/95.3 59/92.2 1.5 1.6

187 71 69/97.2 61/85.9 71 69/97.2 64/90.1 0.0 4.2

188 69 63/91.3 59/85.5 69 64/92.8 60/87.0 1.5 1.5

189 64 60/93.8 57/89.1 64 61/95.3 58/90.6 1.5 1.5

190 59 54/91.5 50/84.7 58 54/93.1 51/87.9 1.6 3.2

191 62 60/96.8 57/91.9 62 60/96.8 57/91.9 0.0 0.0

192 59 55/93.2 54/91.5 59 55/93.2 53/89.8 0.0 −1.7

193 63 59/93.7 56/88.9 63 60/95.2 58/92.1 1.5 3.2

Total 511 480/93.9 452/88.5 510 484/94.9 460/90.2 1.0 1.7

OFHE
186 61 56/91.8 47/77.0 59 54/91.5 50/84.7 −0.3 7.7

187 64 58/90.6 48/75.0 64 58/90.6 49/76.6 0.0 1.6

188 61 53/86.9 45/73.8 59 54/91.5 47/79.7 4.6 5.9

189 64 60/93.8 51/79.7 63 58/92.1 50/79.4 −1.7 −0.3

190 61 56/91.8 46/75.4 61 57/93.4 50/82.0 1.6 6.6

191 65 61/93.8 52/80.0 65 62/95.4 55/84.6 1.6 4.6

192 62 60/96.8 51/82.3 61 59/96.7 56/91.8 −0.1 9.5
193 58 56/96.6 49/84.5 58 55/94.8 51/87.9 −1.8 3.4

Total 496 460/92.7 389/78.4 490 457/93.3 408/83.3 0.6 4.9
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Table D.2 Results of ambiguity resolution using different observation weighting models in case
study 2 (AFLO: 32.4 km, weak multipath, RATA: 203.7 km, weak multipath, elevation cut-off
angle: 3◦) (Sect. 6.2.2)

Baseline CSC2(BS) EMPSNR2 Improvement

DOY2007 Number/Percent Number/Percent Percent

#AMB WL NL #AMB WL NL WL NL

AFLO
161 20 18/90.0 13/65.0 20 18/90.0 14/70.0 0.0 5.0

162 28 25/89.3 19/67.9 28 25/89.3 20/71.4 0.0 3.5

163 19 17/89.5 14/73.7 19 17/89.5 15/78.9 0.0 5.2

164 16 16/100.0 15/93.8 16 16/100.0 15/93.8 0.0 0.0

165 15 15/100.0 13/86.7 15 15/100.0 14/93.3 0.0 6.6

166 16 15/93.8 13/81.2 16 15/93.8 13/81.2 0.0 0.0

167 15 14/93.3 12/80.0 15 15/100.0 12/80.0 6.7 0.0

168 18 18/100.0 14/77.8 18 18/100.0 15/83.3 0.0 5.5

169 22 22/100.0 18/81.8 22 22/100.0 17/77.3 0.0 −4.5

170 15 15/100.0 14/93.3 15 15/100.0 13/86.7 0.0 −6.6

171 262 253/96.6 214/81.7 262 255/97.3 215/82.1 0.7 0.4

172 238 237/99.6 150/63.0 238 237/99.6 194/81.5 0.0 18.5
173 94 91/96.8 75/79.8 94 91/96.8 77/81.9 0.0 2.1

174 54 53/98.1 42/77.8 54 53/98.1 45/83.3 0.0 5.5

175 71 71/100.0 60/84.5 71 71/100.0 62/87.3 0.0 2.8

176 18 17/94.4 12/66.7 18 17/94.4 13/72.2 0.0 5.5

177 16 16/100.0 13/81.2 16 16/100.0 14/87.5 0.0 6.3

178 14 14/100.0 12/85.7 14 14/100.0 13/92.9 0.0 7.2

179 18 18/100.0 13/72.2 18 18/100.0 13/72.2 0.0 0.0

180 19 19/100.0 16/84.2 19 19/100.0 17/89.5 0.0 5.3

181 19 19/100.0 18/94.7 19 19/100.0 17/89.5 0.0 −5.2

Total 1007 983/97.6 770/76.5 1007 986/97.9 828/82.2 0.3 5.7
RATA
161 37 30/81.1 15/40.5 37 30/81.1 19/51.4 0.0 10.9

162 45 39/86.7 23/51.1 45 42/93.3 31/68.9 6.6 17.8

163 33 26/78.8 12/36.4 33 29/87.9 17/51.5 9.1 15.1

164 38 30/78.9 13/34.2 38 34/89.5 20/52.6 10.6 18.4
165 35 27/77.1 18/51.4 35 30/85.7 23/65.7 8.6 14.3

166 26 21/80.8 17/65.4 26 22/84.6 18/69.2 3.8 3.8

167 25 21/84.0 14/56.0 25 23/92.0 17/68.0 8.0 12.0

168 28 23/82.1 18/64.3 28 23/82.1 18/64.3 0.0 0.0

169 27 23/85.2 11/40.7 27 24/88.9 13/48.1 3.7 7.4

170 35 25/71.4 19/54.3 35 30/85.7 22/62.9 14.3 8.6

171 31 23/74.2 16/51.6 31 26/83.9 17/54.8 9.7 3.2

172 34 29/85.3 20/58.8 34 29/85.3 21/61.8 0.0 3.0

173 31 25/80.6 14/45.2 31 26/83.9 14/45.2 3.3 0.0

174 34 24/70.6 18/52.9 34 29/85.3 20/58.8 14.7 5.9

175 39 35/89.7 24/61.5 39 36/92.3 26/66.7 2.6 5.2

176 36 32/88.9 22/61.1 36 33/91.7 25/69.4 2.8 8.3

177 35 31/88.6 21/60.0 35 32/91.4 24/68.6 2.8 8.6

178 38 35/92.1 22/57.9 38 35/92.1 26/68.4 0.0 10.5

179 42 37/88.1 25/59.5 42 37/88.1 28/66.7 0.0 7.2

180 41 31/75.6 26/63.4 41 33/80.5 28/68.3 4.9 4.9

181 45 41/91.1 29/64.4 45 41/91.1 33/73.3 0.0 8.9

Total 735 608/82.7 397/54.0 735 644/87.6 460/62.6 4.9 8.6

http://dx.doi.org/10.1007/978-3-642-34836-5_6
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Table D.3 Results of ambiguity resolution using different observation weighting models in case
study 2 (TAAF: 53.7 km, weak multipath, HEDA: 54.1 km, strong multipath, elevation cut-off
angle: 3◦) (Sect. 6.2.2)

Baseline CSC2(BS) EMPSNR2 Improvement

DOY2007 Number/Percent Number/Percent Percent

#AMB WL NL #AMB WL NL WL NL

TAAF
161 34 31/91.2 18/52.9 34 31/91.2 19/55.9 0.0 3.0

162 48 47/97.9 36/75.0 48 46/95.8 37/77.1 −2.1 2.1

163 39 37/94.9 18/46.2 39 37/94.9 22/56.4 0.0 10.2

164 35 34/97.1 23/65.7 35 34/97.1 27/77.1 0.0 11.4

165 34 32/94.1 22/64.7 34 32/94.1 26/76.5 0.0 11.8

166 30 27/90.0 19/63.3 30 27/90.0 19/63.3 0.0 0.0

167 23 22/95.7 14/60.9 23 22/95.7 17/73.9 0.0 13.0

168 27 26/96.3 21/77.8 27 26/96.3 23/85.2 0.0 7.4

169 32 31/96.9 20/62.5 32 31/96.9 23/71.9 0.0 9.4

170 32 30/93.8 20/62.5 32 29/90.6 24/75.0 −3.2 12.5

171 27 25/92.6 15/55.6 27 25/92.6 19/70.4 0.0 14.8
172 24 23/95.8 18/75.0 24 23/95.8 20/83.3 0.0 8.3

173 23 21/91.3 15/65.2 23 21/91.3 15/65.2 0.0 0.0

174 26 25/96.2 19/73.1 26 25/96.2 21/80.8 0.0 7.7

175 37 36/97.3 26/70.3 37 36/97.3 30/81.1 0.0 10.8

176 27 25/92.6 20/74.1 27 25/92.6 21/77.8 0.0 3.7

177 24 24/100.0 18/75.0 24 24/100.0 21/87.5 0.0 12.5

178 31 30/96.8 23/74.2 31 30/96.8 24/77.4 0.0 3.2

179 29 28/96.6 21/72.4 29 28/96.6 23/79.3 0.0 6.9

180 28 26/92.9 20/71.4 28 26/92.9 20/71.4 0.0 0.0

181 29 28/96.6 23/79.3 29 28/96.6 25/86.2 0.0 6.9

Total 639 608/95.1 429/67.1 639 606/94.8 476/74.5 −0.3 7.4
HEDA
161 41 37/90.2 19/46.3 41 38/92.7 21/51.2 2.5 4.9

162 40 38/95.0 22/55.0 40 38/95.0 28/70.0 0.0 15.0

163 38 34/89.5 26/68.4 38 35/92.1 28/73.7 2.6 5.3

164 33 30/90.9 24/72.7 33 30/90.9 25/75.8 0.0 3.1

165 37 34/91.9 25/67.6 37 35/94.6 29/78.4 2.7 10.8

166 28 25/89.3 19/67.9 28 24/85.7 20/71.4 −3.6 3.5

167 29 26/89.7 19/65.5 29 25/86.2 17/58.6 −3.5 −6.9

168 28 26/92.9 20/71.4 28 25/89.3 19/67.9 −3.6 −3.5

169 44 40/90.9 33/75.0 44 40/90.9 32/72.7 0.0 −2.3

170 29 27/93.1 19/65.5 29 27/93.1 21/72.4 0.0 6.9

171 27 24/88.9 18/66.7 27 24/88.9 18/66.7 0.0 0.0

172 30 29/96.7 22/73.3 30 29/96.7 24/80.0 0.0 6.7

173 25 23/92.0 16/64.0 25 23/92.0 18/72.0 0.0 8.0

174 29 27/93.1 17/58.6 29 27/93.1 22/75.9 0.0 17.3
175 27 26/96.3 19/70.4 27 26/96.3 21/77.8 0.0 7.4

176 34 33/97.1 21/61.8 34 33/97.1 26/76.5 0.0 14.7

177 36 34/94.4 25/69.4 36 33/91.7 25/69.4 −2.7 0.0

178 25 23/92.0 19/76.0 25 23/92.0 18/72.0 0.0 −4.0

179 29 28/96.6 20/69.0 29 28/96.6 23/79.3 0.0 10.3

180 29 25/86.2 17/58.6 29 27/93.1 16/55.2 6.9 −3.4

181 23 20/87.0 15/65.2 23 21/91.3 18/78.3 4.3 13.1

Total 661 609/92.1 435/65.8 661 611/92.4 469/71.0 0.3 5.2

http://dx.doi.org/10.1007/978-3-642-34836-5_6
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Table D.4 Satellite-specific orbit repeat lags determined by means of the empirical and analytical
approaches (see Sect. 7.2.5) (Sect. 8.1.1)

Satellite Empirical approacha Analytical approachb Difference

PRN #Valuec Lag [s] STD [s]d #Valuec Lag [s] STD [s]d �Lag [s]

01 2 262.81 0.7 21 259.41 0.2 3.40
02 9 248.15 0.4 249.32 0.4 −1.17
04 17 248.36 0.5 250.61 0.4 −2.25
05 20 240.07 0.7 241.19 0.4 −1.12
06 3 242.13 0.6 241.76 0.5 0.37
08 20 243.59 0.5 243.76 0.3 −0.17
09 20 243.58 0.5 244.05 0.3 −0.47
10 20 247.12 0.4 246.61 0.3 0.51
11 20 246.00 3.0 244.27 0.4 1.73
12 20 250.18 0.6 248.96 0.4 1.22
14 20 251.11 0.3 249.65 0.2 1.46
17 20 247.04 0.8 247.92 0.4 −0.88
18 20 248.34 1.0 248.95 0.2 −0.61
19 12 244.91 1.5 242.01 0.4 2.90
21 12 248.63 0.5 247.90 0.3 0.73
22 20 245.39 0.7 245.37 0.2 0.02
24 7 246.18 0.4 245.51 0.3 0.67
26 20 246.16 0.9 245.98 0.2 0.18
27 15 243.51 0.5 243.69 0.3 −0.18
28 20 245.54 2.1 244.44 0.4 1.10
29 20 246.65 0.6 246.09 0.1 0.56
30 20 240.49 0.6 241.51 0.4 −1.02
32 13 250.97 0.9 249.81 0.2 1.16
Mean − 246.82 0.8 − 246.47 0.3 0.35
Median − 246.18 0.6 − 245.98 0.3 0.37
a Empirical approach: use of Eqs. (7.15) and (7.16), input data: 21 days of 3 h GPS observations
and navigation messages (DOY2007:161–181, 15–18 h)
b Analytical approach: use of the freely available program orbrep.f (Agnew and Larson 2007),
input data: 21 days of 24 h broadcast ephemeris files (DOY2007:161–181)
c Number of lag estimates (a maximum number of 20 for the empirical approach, the same number
21 for the analytical approach)
d Standard deviations of the determined satellite-specific orbit repeat lags

http://dx.doi.org/10.1007/978-94-007-5715-8_7
http://dx.doi.org/10.1007/978-94-007-5715-8_8
http://dx.doi.org/10.1007/978-3-642-34836-5_7
http://dx.doi.org/10.1007/978-3-642-34836-5_7
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Table D.6 Analysis of satellite geometry to evaluate the appropriateness of the unique orbit repeat
lag applied in case study 3 (DOY2008:275 and 284) (Sect. 8.2.1)

SAPOS ® Satellite Max |�ELV| |�AZI| Epoch i for

site PRN ELV med max med max Max ELV |�ELV|min |�AZI|max

TUEB (23) 02 35.8 0.1 0.2 0.1 0.2 1243 1434 1109

03 84.8 0.3 0.3 0.1 3.3 1970 1968 1968

07 72.0 0.2 0.3 0.1 1.0 168 175 165

08 84.5 0.1 0.2 0.1 1.8 326 335 329

10 68.1 0.2 0.3 0.1 0.6 352 330 343

11 83.3 0.5 0.6 0.2 4.9 2391 2393 2393

12 72.5 0.3 0.3 0.1 0.4 1122 1431 1122

13 81.9 0.7 0.8 0.4 3.4 1 346 1

14 42.1 0.1 0.2 0.1 0.1 2262 2370 2285

16 74.2 0.3 0.4 0.1 1.3 1722 1722 1723

17 40.4 0.4 0.6 0.7 0.9 814 788 794

18 49.2 0.1 0.2 0.1 0.3 1873 1916 1866

19 82.3 0.1 0.2 0.2 0.9 2118 2097 2110

20 83.0 0.0 0.1 0.2 0.3 2546 2178 2552

21 75.1 0.3 0.4 0.1 1.4 1669 1670 1668

22 62.1 0.4 0.4 0.2 0.9 2007 2005 1998

23 70.6 0.3 0.3 0.1 0.1 2640 2388 2511

24 59.2 0.4 0.4 0.3 0.9 1499 1493 1485

25 67.9 0.2 0.3 0.1 0.8 79 87 77

27 77.5 0.1 0.2 0.1 0.7 198 222 203

28 62.1 0.5 0.5 0.4 1.2 554 544 540

31 55.2 0.6 0.8 0.8 1.6 1431 1457 1440

32 86.8 0.0 0.1 0.2 1.0 2418 2367 2406

BING (24) 02 35.3 0.1 0.2 0.1 0.2 1250 1424 1078

03 84.2 0.3 0.3 0.1 3.0 1961 1959 1961

04 22.2 0.2 0.5 0.7 0.8 1124 1094 1095

07 70.4 0.2 0.3 0.1 0.9 172 181 173

08 82.6 0.1 0.2 0.1 1.3 330 340 333

10 68.5 0.2 0.3 0.1 0.6 345 326 339

11 82.6 0.5 0.6 0.2 4.4 2383 2385 2384

13 82.9 0.8 0.8 0.3 2.3 1 337 1

14 41.6 0.1 0.2 0.0 0.1 2268 2374 2283

15 80.2 0.2 0.3 0.1 1.3 662 654 659

16 74.4 0.3 0.4 0.1 1.4 1714 1713 1717

17 39.8 0.4 0.6 0.7 0.9 822 794 802

18 48.3 0.1 0.2 0.1 0.3 1883 1917 1869

20 85.1 0.0 0.1 0.2 0.4 2543 2190 2548

21 73.4 0.3 0.4 0.1 1.3 1673 1674 1670

22 60.8 0.4 0.4 0.2 0.9 2012 2010 2002

23 68.9 0.3 0.3 0.1 0.1 2640 2402 2639

24 58.0 0.4 0.4 0.3 0.9 1505 1498 1496

25 66.4 0.2 0.3 0.2 0.7 82 94 83

27 75.8 0.1 0.2 0.1 0.6 203 226 214

28 60.8 0.5 0.5 0.4 1.2 559 549 553

29 67.7 0.7 0.8 0.3 0.3 1461 1736 1551

31 56.1 0.6 0.8 0.7 1.6 1426 1450 1434

32 88.9 0.0 0.1 0.2 2.7 2420 2407 2416

http://dx.doi.org/10.1007/978-3-642-34836-5_8
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