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Abstract. The paper introduces an argumentation semantics that can
deal with several challenges that arise when using abstract argumen-
tation within multi-agent systems. The extensions are computed with
respect to initial constraints that specify the desired justification state
of some arguments. The constraints can come from the agent’s goals, its
confidence in information from other agents or they may describe a deci-
sion context, where the agent must choose between several alternatives.
The core idea behind the approach is the fact that, in order to find an
extension that satisfies the constraints, an agent needs to find a suitable
set of arguments to defeat.

We provide a full scenario where an auction for two items is modeled
as a game where the participating agents take turns at updating an argu-
mentation framework describing the possible states of the environment
as well as the agents’ intentions. The agents’ goals and the consistency of
the environment’s state are described with constraints. Our argumenta-
tion semantics is shown to provide a very natural strategy for the agents
playing this game. It can also be used at the end of the game for deciding
its outcome, namely the final state of the environment and the actions
of the agents.

Keywords: argumentation, semantics, multi-agent systems.

1 Introduction

Abstract argumentation was introduced by Dung [8] in 1995 and has been a
hot research topic since. Several approaches were defined in the literature for
using argumentation in artificial intelligence and several works deal with abstract
argumentation itself.

The most common approach for using argumentation with multi-agent sys-
tems relies on extending the model with some additional features that make it
more expressive for use with agents, such as preferences or values.

This paper aims to provide a different approach, by defining an argumentation
semantics that can deal with the challenges of using argumentation frameworks
in multi-agent systems. More precisely, our approach does not change the formal
model proposed by Dung, it only defines a new semantics that has properties
relevant for use in multi-agent systems.

Section 2 provides some argumentation background, together with a discus-
sion of related work. Our approach is presented in Section 3. The details of an

M. Cossentino et al. (Eds.): EUMAS 2011, LNAI 7541, pp. 129–144, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



130 C. Gratie and A.M. Florea

argumentation-based multi-agent system corresponding to an auction scenario
is discussed in Section 4. The paper ends in Section 5 with conclusions and ideas
for future research.

2 Argumentation Basics and Related Work

This section is focused on argumentation research that is relevant to this paper,
but is also aimed at providing the reader with basic argumentation background.
We start with the definition of argumentation frameworks, as introduced by
Dung in [8], and the basic terminology used when talking about arguments.

Definition 1. An argumentation framework is a pair F = (A,R), where
A is a set of arguments and R ⊆ A × A is a binary attack relation on A. We
say that an argument a attacks another argument b and we write this as a→ b
iff (a, b) ∈ R. Otherwise, a does not attack b and we write a �→ b. Also, we say
that a set of arguments S attacks an argument a iff S contains an attacker of a.
A set of arguments S defends an argument a iff S attacks all the attackers of
a. The characteristic function FF returns, for every set of arguments S, the
set of arguments defended by S in F .

We have split the presentation of argumentation research related to our work
into several subsections with respect to different facets of our approach.

2.1 Extension-Based Semantics

Given a set of arguments and the attack relation between them, one must be
able to identify the arguments that are acceptable. Several semantics were de-
fined in the literature for finding the extensions of an argumentation framework,
namely the sets of arguments that satisfy certain properties. Definition 2 lists
the semantics introduced by Dung himself in [8].

Definition 2. Let F = (A,R) be an argumentation framework and let S be a
set of arguments.

– S is conflict-free (CF) iff S does not attack any of its arguments.
– S is admissible (AS) iff S is conflict-free and S defends all its arguments.
– S is a complete extension (CO) iff S is admissible and it contains all the

arguments it defends.
– S is a stable extension (ST ) iff S is conflict-free and it attacks all the

arguments it does not contain.
– S is a preferred extension (PR) iff S is a maximal (with respect to set

inclusion) admissible set.
– S is the grounded extension (GR) of F iff S is the least fixed point of the

characteristic function.

For an argumentation semantics Sem we will use ESem to denote the set of
all extensions prescribed by it, for example ECO(F ) stands for all the complete
extensions of F .
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Of the six types of sets introduced in Definition 2, only the last four correspond
to actual argumentation semantics, whereas the first two describe properties
satisfied by almost all semantics defined in the literature. The four semantics
are not independent: stable extensions are also preferred, preferred extensions
are also complete and the grounded extension is the minimal (with respect to
set inclusion) complete extension [8].

Several additional semantics were defined in the literature, such as: semi-
stable [3], ideal [9], eager [4], prudent [6], CF2 [2], resolution-based grounded
[1], enhanced preferred [11]. We will provide more details about the last two, as
this work combines ideas from both of them.

For the resolution-based grounded semantics we introduce the corresponding
terminology in Definition 3.

Definition 3. Two arguments a and b are conflicting iff a → b or b → a.
For an argumentation framework F , the set of all conflicting pairs of arguments
is denoted by CONF(F ). Given two argumentation frameworks F1 = (A1,R1)
and F2 = (A2,R2), we say that F1 is more skeptical than F2 and we write
F1 � F2 iff CONF(F1) = CONF(F2) and R2 ⊆ R1. Two frameworks F1 and F2

are comparable (with respect to skepticism) iff F1 � F2 or F2 � F1. The set of
maximal (with respect to �) frameworks comparable with a given framework F is
denoted with RES(F ). The resolution-based version of a given argumentation
semantics Sem is defined as ESem∗(F ) = MIN (

⋃
F ′∈RES(F ) ESem(F ′)), where

MIN (X) denotes the minimal (with respect to set inclusion) elements of X.

In other words, it is easy to see that an argumentation framework F1 is less
skeptical than a framework F2 iff some of F2’s mutual attacks are replaced with
unidirectional attacks in F1. With the terminology in [10], F1 is a partial res-
olution of F2. In a complete resolution, all mutual attacks are replaced with
unidirectional ones. Thus, computing the resolution-based version of some ar-
gumentation semantics Sem consists of taking all the complete resolutions of
the argumentation framework, applying Sem to each of them, then choosing the
minimal (with respect to set inclusion) of all the resulting extensions.

In the partial resolution of an argumentation framework, some of the mutual
attacks are converted to unidirectional ones, which is the same as discarding
some attacks. In our approach we apply the same idea, but to arguments instead
of attacks.

We now turn to the work of Zhang and Lin on enhanced preferred extensions
[11]. We summarize their work in Definition 4, but using defense instead of
acceptability with respect to a set.

Definition 4. A pair of sets of arguments (S,H) defends an argument a iff
a �∈ H, H ∩ S = ∅ and S defends a against all attacks that do not come from
H. Given a framework F = (A,R) a conflict-free set of arguments S and a set
of arguments H, we say that (S,H) is an admissible pair iff (1) S �= ∅ or
H = A, and (2) (S,H) defends all arguments in S. A pair (S,H) is a minimal
admissible pair if it is an admissible pair and its second element H is minimal
(with respect to cardinality) among all admissible pairs. A pair (S,H) is an
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enhanced preferred extension iff its first element S is maximal (with respect
to set inclusion) among all minimal admissible pairs. The first element of an
enhanced preferred extension is called proper enhanced preferred extension.

In other words, for computing the enhanced preferred extension, admissible ex-
tensions are computed with respect to subframeworks of F , then the maximal
extensions are picked among those of all subframeworks of maximal cardinality.

As we have already mentioned while discussing resolution-based semantics,
our approach relies on ignoring arguments as well and computing a given se-
mantics on subframeworks. However, the sets of ignored arguments are mini-
mized with respect to set inclusion instead of cardinality, additional constraints
are imposed on the pair of sets and the extensions are not maximized, nor is
the second element dropped. Instead we work with several sets (we actually use
labelings).

2.2 Argument Labelings

In this section we will focus on argument labelings, as proposed in [3]. We do
this because our proposal is most intuitively expressed in terms of labelings. At
the same time, using labels allows us to compare our approach with existing
semantics.

Definition 5. Let F = (A,R) be an argumentation framework. A labeling is
a total function L : A → {in, out, undec}. A labeling L is complete iff (1) an
argument is labeled in iff all its attackers are labeled out, and (2) an argument
is labeled out iff it has an attacker that is labeled in.

Alternatively, a labeling L can be seen as a partition of the set of arguments into
three sets (in(L), out(L), undec(L)). It is shown in [3] that any complete labeling
L is uniquely defined by either in(L) or out(L). For the grounded labeling, in(L)
and out(L) are minimal, whereas undec(L) is maximal. Preferred labelings have
maximal in(L) and out(L), whereas the semi-stable extensions correspond to
labelings that have a minimal undec(L).

We will provide a labeling-based definition for our approach and then compare
it with complete labelings in Section 3.

2.3 Constrained Argumentation Frameworks

Our proposal is also related to constrained argumentation frameworks [7], but
we prefer to relate the constraints to the labelings rather than to the framework
itself, thus obtaining parameterized semantics.

The basic idea, roughly speaking, for constrained argumentation frameworks is
that the extensions are computed for regular semantics, then only the extensions
satisfying the constraints are kept. We do something similar, but with labelings
and we apply constraints on a general enough set of labelings so as to be able
to satisfy any reasonable constraint.
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3 Constrained Strict Semantics

In this section we introduce the constrained strict semantics, describing it in
terms of labelings. In order to do this, we first enrich the usual set of labels
{in, out, undec} with an additional label, ign, which stands for arguments that
are ignored.

The idea behind ignoring arguments is that a rational agent may choose to
doubt some of the information it has in order to be able to take a decision or
enforce one of its goals in the extensions of the corresponding argumentation
framework.

Definition 6. Let F = (A,R) be an argumentation framework. An open la-
beling is a mapping L : A → {in, out, undec, ign} such that:

– an argument is labeled in iff all its attackers are labeled either out or ign

– an argument is labeled out iff it has an attacker labeled in

As one can see from Definition 6, the open labelings can be seen as complete
labelings for subframeworks that ignore some arguments from the original frame-
work. Note that arguments are only provisionally ignored, while computing ex-
tensions and searching for those satisfying certain constraints (as we shall see
further on). In the end, however, the ignored arguments must be defeated (with
new arguments, for example) so that the corresponding open labeling becomes
a complete labeling of the framework. More about this aspect in Section 4.

We regard the ability to ignore arguments as a tool for being more decided
about the status of the arguments that are not ignored. This leads to the defi-
nition of decided open labelings.

Definition 7. An open labeling is said to be decided iff it has no undec-labeled
argument.

Let us first see that such labelings exist for any argumentation framework.
Just as in [5], we will use in(L) to stand for the set of in-labeled arguments
for an open labeling L and so on for the other labels. A complete labeling
Lc can thus be viewed as a partition of the set of arguments into three sets
(in(Lc), out(Lc), undec(Lc)), whereas an open labeling L corresponds to a par-
tition into four sets (in(L), out(L), undec(L), ign(L)).

Proposition 1. For any argumentation framework F = (A,R), the following
open labelings are decided:

(i) L = (S,∅,∅,A \ S), where S is any conflict-free set of F .
(ii) L = (in(Lc), out(Lc),∅, undec(Lc)), where Lc is any complete labeling of

F .

Note that applying the condition from Definition 7 to complete labelings leads to
stable labelings, which may not exist for certain argumentation frameworks. So
ignoring some arguments does indeed enable us to enforce stronger restrictions
on the arguments that are not ignored.



134 C. Gratie and A.M. Florea

Since a decided open labeling only uses three labels (in , out and ign),
similarly to the complete labelings, it is natural to ask ourselves whether our
approach does indeed bring something new. It may seem that decided open la-
belings are only able to ignore parts of a complete labeling, thus only reducing
the in and out parts. We show that this is not the case.

Example 1. Consider the argumentation framework F = (A,R), with A =
{a, b, c} and R = {(a, b), (b, c), (c, a)}. Its only complete labeling is Lc = (∅,
∅, {a, b, c}). On the other hand, the framework has 7 decided labelings: L1 =
({a}, {b},∅, {c}), L2 = ({b}, {c},∅, {a}), L3 = ({c}, {a},∅, {b}), L4 = ({a},
∅, ∅, {b, c}), L5 = ({b},∅,∅, {a, c}), L6 = ({c},∅,∅, {a, b}), L7 = (∅, ∅,∅,
{a, b, c}). All labelings except the trivial L7 are able to accept one argument,
whereas the complete labeling was undecided.

It is known that complete labelings are uniquely identified by either their in or
out parts. For open labelings this is generally not the case, as for each ign part
there are several complete labelings for the resulting subframework. This means
that the open labelings are uniquely identified by two of their sets, either ign

and in or ign and out. These observations hold even if we focus on decided
labelings only. Indeed, consider the following example:

Example 2. Let F = (A,R), with A = {a, b, c, d} and R = {(a, b), (b, c), (c, d),
(d, a)}. We consider the following decided labelings: L1 = ({a, c}, {b, d},∅,∅),
L2 = ({a, c}, {b},∅, {d}), L3 = ({a}, {b},∅, {c, d}) and L4 = ({b, d}, {a, c}, ∅,
∅). Note that we have in(L1) = in(L2), out(L2) = out(L3) and ign(L1) =
ign(L4). Thus, none of the labels can uniquely identify decided labelings on its
own (the undec label is not part of this discussion, as undec(L) = ∅ for any
decided labeling L). On the other hand, let us see that L2 and L3 are uniquely
determined by their ign parts. We consider this property useful because, given
a set of such labelings, choosing the desired one only depends on choosing the
arguments to ignore (and later defeat).

Definition 8. An open labeling of an argumentation framework F is unique if
no other open labeling of F has the same set of ign-labeled arguments.

Such labelings exist for all argumentation frameworks, as the labelings from
Proposition 1 (i) are also unique. In the general case, however, not all unique
labelings are also decided. Indeed, consider the framework from Example 1 and
notice that L = (∅,∅, {a, b, c},∅) is a unique but not decided open labeling of
F .

In fact, the decided labelings correspond to stable labelings of subframeworks,
whereas the unique labelings correspond to grounded labelings of subframeworks
that have a single complete labeling.

Definition 9. An open labeling is said to be strict iff it is both decided and
unique.

Again, we rely on Proposition 1 (i) to see that strict labelings exist for any
argumentation framework.



Argumentation Semantics for Agents 135

We are now ready to add constraints to our labelings. The approach is similar
to that used for constrained argumentation frameworks in [7] We will use PLS

to denote the propositional language defined in the usual inductive way from the
set of propositional symbols S and the logical connectives �,⊥,¬,∧,∨.

Definition 10. Let F = (A,R) be an argumentation framework, L one of its
open labelings and ϕ ∈ PLA. We say that L satisfies ϕ and write L � ϕ, where
satisfiability is recursively defined for each formula as follows:

– L � �
– L ��⊥
– L � a iff a ∈ in(L), for all a ∈ A
– L � ¬a iff a ∈ out(L) or a ∈ ign(L), for all a ∈ A
– L � φ ∧ ψ iff L � φ and L � ψ, for all φ ∈ PLA and ψ ∈ PLA
– L � φ ∨ ψ iff L � φ or L � ψ, for all φ ∈ PLA and ψ ∈ PLA

Note that in Definition 10 there is no rule for arbitrary negations, but only for
negated propositional symbols. This is because the negation of a propositional
symbol does not only mean that the corresponding argument is not in, but also
that it is not undec. We have chosen this approach because we consider that it
makes little sense to actually want an argument to be undecided. Whenever writ-
ing constraints, we will make sure that all negations are applied to propositional
symbols.

The interesting question is whether, given a formula ϕ, there is an open la-
beling that satisfies it. Clearly this is not possible for inconsistent formulas.
Furthermore, consistency of a formula should also be related in some way to the
attack relation, as it is clearly not possible to have both an argument and its
attacker marked as in, for example.

Definition 11. Let F = (A,R) be an argumentation framework and ϕ ∈ PLA
a satisfiable formula. We say that ϕ is consistent with F iff the set of formulas
{ϕ} ∪ {¬a ∨ ¬b | (a, b) ∈ R} is satisfiable.

Satisfiability in Definition 11 refers to the usual satisfiability in propositional
logic and is not connected to labelings. Whenever we talk about satisfiability
with respect to labelings, we will explicitly say that the formula is satisfied by a
labeling, to avoid any confusion.

Proposition 2. A satisfiable formula ϕ is consistent with an argumentation
framework F iff its disjunctive normal form contains at least one conjunction
whose positive literals correspond to the elements of a conflict-free set of F .

Proof. For the “⇐” part, suppose that the disjunctive normal form of ϕ contains
the conjunction ψ = a1∧. . .∧an∧¬b1∧. . .∧¬bk such that the set S = {a1, . . . , an}
is a conflict-free set of F . We assign ai = � for all i’s and we assign ⊥ to all
the other arguments. This assignment is correct because the a’s and the b’s are
distinct, as a result of the fact that ϕ is satisfiable. Suppose that there is a formula
¬a∨¬b that corresponds to an attack in R and is not satisfied. That would mean



136 C. Gratie and A.M. Florea

that both a and b are true and, thus, are elements of the conflict-free set S. But
then they cannot attack one another, which contradicts our assumption. We can
conclude that ϕ is consistent with F .

For the “⇒” part, consider a truth assignment that satisfies ϕ. Then the
disjunctive normal form of ϕ contains at least one conjunction that is satisfied.
The positive literals of that conjunction correspond to a conflict-free set, because
otherwise there would be an attack whose corresponding formula is not satisfied,
which would in turn violate the fact that ϕ is consistent with F . This completes
our proof. ��

Note that, as a term in some conjunction of the disjunctive normal form of a
formula, � corresponds to the empty set, which is a conflict-free set of every
framework. This is in accordance with the expected fact that � is consistent
with every framework.

We are now ready for the main theoretical result of this paper, namely the
existence of strict labelings satisfying any reasonable constraint.

Proposition 3. Any formula ϕ that is consistent with an argumentation frame-
work F is satisfied by at least one strict labeling of F .

Proof. From Proposition 2 we have that the disjunctive normal form of ϕ con-
tains a conjunction ψ = a1 ∧ . . . ∧ an ∧ ¬b1 ∧ . . . ∧ ¬bk such that the set
S = {a1, . . . , an} is a conflict-free set of F . We denote B = {b1, . . . , bk}. Let
T = {b | ∃a(a ∈ S∧ (b, a) ∈ R)}, the set of arguments that attack elements of S.
Let Lgr denote the grounded labeling of the restricted argumentation framework
F ↓A\(B∪T ), where F ↓X= (X,R ∩ (X × X)). We consider the open labeling
L = (in(Lgr), out(Lgr), ∅, undec(Lgr)∪ B ∪ T ).

First, let us see that S ⊆ in(Lgr). Indeed, since all attackers of arguments
from S were ignored, all elements of S are unattacked in the restricted framework
so they must be part of the grounded extension. Coupled with the fact that all
arguments in B are ignored, this leads to the fact that L satisfies ψ and hence
it satisfies ϕ as well.

What is left to show is that L is indeed a strict labeling. Since the in and out

parts come from Lgr , the labeling satisfies the conditions for an open labeling.
Also, the in and out arguments of the grounded labeling form a subframework
that allows no other complete labeling, so L is unique. Since undec(L) = ∅, L
is also decided and thus strict. ��

The result of Proposition 3 is quite strong as it shows that, given any reasonable
constraints, one can find strict labelings that satisfy them. This is the most im-
portant feature that distinguishes our work from the constrained argumentation
frameworks in [7].

Since there may still be several labelings to choose from, we can refine the
approach even more and finally define the constrained strict labelings.

Definition 12. A constrained strict labeling of an argumentation framework
F with respect to a formula ϕ that is consistent with F is a strict open labeling
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L that satisfies ϕ and has ign(L) minimal (with respect to set inclusion) among
all strict open labelings that satisfy ϕ.

The intuition behind Definition 12 is that one should decide the status of as many
arguments as possible, while not violating the constraint ϕ or the restrictions of
strict labelings.

4 Constrained Argumentation Game

In this section we show that the constrained strict semantics is relevant for the
multi-agent systems community by introducing an argumentation-based game
featuring agents. We instantiate the approach by modeling a special auction
scenario and we show how desired features of the scenario can be mapped into
game elements.. At the end of the section we discuss the critical role that the
constrained strict semantics plays for this game.

4.1 Auction Scenario

The example scenario that we will translate into a constrained argumentation
game consists in a special kind of multiple items auction. To keep things simple,
we will use an unspecified currency (just a positive integer). We will consider
just three persons in our scenario: Anthony, Brian and Carol.

Anthony has two old pieces of furniture, a chair and a table, that he would
like to sell. Since he has been a collector for quite some time now, he is rather
good at appraising antiques so he knows that the chair values 200, while the
table values 300. Anthony is determined to get at least these prices or keep the
items. Anthony is familiar with most types of auctions, but he would like a bit
more control over the outcome, so he organizes a special kind of auction.

The auction starts with Anthony announcing the rules, the items for sale
and the minimum prices. To avoid any suspicions, the bidding process is public,
spoken out loud. In a round-robin order, each participant can place, update or
retract bids for any of the items that are put up for sale. Anthony can benefit
from auctioning both items at the same time, as he is part of the auction himself
and, on his turn, he reserves the right to impose additional restrictions or, on
the contrary, relax some constraints. Each participant may also choose to pass,
if satisfied with the current outcome (unless other restrictions are applicable,
the highest bidder for each item wins that item). The auction ends when all
participants pass.

We assume, for simplicity, that only two potential buyers show up for the auc-
tion: Brian and Carol. Brian is rather rich and knows very little about antiques,
so he is willing to pay even twice their value: 400 for the chair and 600 for the
table. However, he is determined to either get both items or none of them. That
is why he likes Anthony’s idea of an auction: he does not risk buying the first
item only to find himself unable to acquire the second as well. Carol, on the other
hand, has more limited resources so she cannot afford both items. However, she
would really like acquiring one of them. She is willing to pay 300 for the chair
and 500 for the table.
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In the following subsections we will translate this auction scenario step by
step into a turn-based game featuring agents that work with an abstract argu-
mentation framework and constraints.

4.2 Arguments for the Environment

We start by discussing the environment of the multi-agent system and its repre-
sentation using arguments. We will use a first order language containing predi-
cates for various aspects of possible states of the environment and constants for
the relevant objects. For our particular scenario, we have two items (chair and
table) and three agents (Anthony, Brian and Carol).

The only relevant outcome of our auction is the final owner of each item.
First, we consider the (rather naive) approach of assigning a first-order formula
for each possible state: s1 = has(Anthony, chair) ∧ has(Anthony, table), s2 =
has(Anthony, chair)∧has(Brian, table), and so on, for a total of 32 = 9 states.
We can read these states as arguments, deduce that no two of them can hold
at the same time and decide to add attacks between all pairs of arguments.
In order to ensure that any extension of the framework does select a state, we
can add the constraint φE = s1 ∨ . . . ∨ s9 and use strict constrained labelings.
Since φE can be satisfied, the corresponding strict constrained labelings ignore
no argument so they are in effect complete labelings. Each of the 9 possible states
forms a singleton complete extension. This representation, although semantically
reasonable, is exponential in the number of items.

Ac

Bc Cc

At

Bt Ct

Fig. 1. State arguments for the auction example

We can come up, on the other hand, with an approach that is linear in the
number of items. Indeed, it is rather easy to see that our states depend on
two distinguishable parameters, the owners of each item. Thus, we can use just
the following arguments: Ac = has(Anthony, chair), At = has(Anthony, table),
Bc = has(Brian, chair), Bt = has(Brian, table), Cc = has(Carol, chair) and
Ct = has(Carol, table). A suitable and intuitive framework for this case is the
one in Figure 1, in conjunction with the following constraint: φE = (Ac ∨ Bc ∨
Cc)∧(At∨Bt∨Ct). The constraint ensures that each item will have at least one
owner, whereas the attacks between the states enforce at most one owner, thus
leading to the desirable outcome that each item has exactly one owner. Let us
note that the number of possible states is again given by the number of complete
labelings, but this time each extension has exactly two elements.
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4.3 Action and Reaction

We will use first order predicates to talk about actions as well. In fact, since our
auction is more like a negotiation game, what we talk about are intentions of
taking some action. We will see them as action arguments, to distinguish them
from those describing the environment, which we shall call state arguments.

In our scenario, the only possible action consists in placing a bid for an item,
for example bids(table, 350). Such actions will be annotated with the name of
the agent performing them, as in Carol : bids(table, 350). The implicit attacks
between such arguments come from the fact that a higher bid on the same item
is preferred to a lower one.

Furthermore, actions may have an impact on the state of the environment.
For example, the bid Carol : bids(table, 350), if highest, should imply that Carol
becomes the owner of the table. For this, we should have the following attacks:
Carol : bids(table, 350) → At and Carol : bids(table, 350) → Bt. We assume
that such implicit attacks are common knowledge for all the participants at the
auction.

Ac

Bc Cc

At

Bt Ct

Brian : bids(chair, 400)

Carol : bids(chair, 300)

Brian : bids(table, 450)

Carol : bids(table, 500)

Fig. 2. Simple bid scenario on top of the initial environment representation. Grayed
arguments form the only complete extension of the framework.

The framework in Figure 2 describes a possible moment from our auction. The
grayed arguments form the only complete extension of the framework which, in
addition, satisfies the environment constraint formula from the previous subsec-
tion. We will say that the extension is a valid outcome of the framework. Should
this be the final state of the framework, it would mean that Brian is bound
to pay 400 for the chair and Carol should pay 500 for the table. The result-
ing state after these actions would be the one also described by the extension,
where the winning bidders actually get the items they pay for. But more about
commitment and the outcome of a game later on.
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4.4 Beliefs, Desires, Intentions

In this subsection we explore the role that beliefs, desires and intentions play
in our model. While there is no one-to-one correspondence, we have several
mechanisms that can help. First of all, let us see that the action arguments can
be seen as intentions, or even plans, of the agents. They turn into actions only
once an extension is chosen as the outcome of the framework.

Another mechanism consists in restricting the action arguments that are avail-
able to each agent. This can help us express the desires of the agent (the agent
only considers the actions it would do) but it may also describe the abilities
of the agent (some agents may have a smaller set of abilities with respect to
others). In our case, we have that Brian’s actions range from bids(chair, 1)
to bids(chair, 400) and from bids(table, 1) to bids(table, 600), while Carol’s ac-
tions range from bids(chair, 1) to bids(chair, 300) and from bids(table, 1) to
bids(table, 500).

We also know that Carol can only afford one item. In order to say this, we
will add attacks between Carol’s bid for the chair and her bid for the table. Fur-
thermore, Anthony wants some minimum price for each item. We can simulate
this by having him bid as well, with the desired values. Thus, if he is the highest
bidder for some item, that item will not be sold. The complete framework for
this case is depicted in Figure 3.

Anthony : bids(chair, 200) Anthony : bids(table, 300)

Ac

Bc Cc

At

Bt Ct

Brian : bids(chair, 400)

Carol : bids(chair, 300)

Brian : bids(table, 450)

Carol : bids(table, 500)

Fig. 3. Complete bid scenario extended from Figure 2. Grayed arguments form the
only complete extension of the framework.

The goals of the agents can be expressed by means of constraints. Brian’s
desire to buy either both items or none can be expressed by φBrian = Bc ∧
Bt ∨ ¬Bc ∧ ¬Bt. Carol’s wish to buy one of the items can be expressed by
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φCarol = Cc∨Ct. Anthony’s wish to sell both items can be written as φAnthony =
¬Ac∧¬At. We can see in Figure 3 that the only complete extension does satisfy
the environment constraint, but does not satisfy Brian’s.

Beliefs may also be encoded by means of additional state arguments that are
not common knowledge, but are private to one or several agents. The agent may
choose to disclose such information or not. For example, Carol may wish to de-
bate the authenticity of the table. For this, she may provide the state arguments
auth(table) and ¬auth(table), each attacking the other, then also add an action
argument defeating the former: Carol : newPaint(table) → auth(table). It may
also be implied that Anthony is no longer able to sell the table or that he must
settle for a lower price. We will not detail this spin-off here, as it is not part of
the initial scenario.

4.5 The Outcome of Changing the World

What we have seen so far is that the instantaneous state of the game can be
described using an argumentation framework plus constraints. But we have said
nothing about moving from one state to the other or about how the framework
actually changes.

The auction will run as a turn-based game. During its turn, each agent can
change the current argumentation framework so that it satisfies its goals (de-
scribed with the corresponding constraint formula). However, not everything can
be changed, as we shall see.

First of all, an agent is free to retract any of its own action arguments (inten-
tions) or to add new ones to the framework Furthermore, each agent may have
some influence on some of the state arguments. To maintain a unified approach,
we shall assume that for each agent we can define the set of arguments it can
control and that the set always includes its own actions. Now, given an argument
it can control, an agent may add or remove attacks against it in order to express
certain states of affairs. Let us explain this on our auction example.

All state arguments in our scenario are controlled by Anthony, since he is
the one organizing the auction. This means that, if he so chooses, Anthony may
change the rules of the game, for example by adding or removing attacks between
state arguments. If Anthony prefers Carol to Brian, he may choose to favor her
by removing the attacks Bc → Cc and Bt → Ct. Thus, whenever both Carol
and Brian might win, Carol will be preferred.

The bidding agents, each during its own turn, may change their bid on some
of the items. They will generally do so by looking at the outcome of the current
framework. From a strategical perspective, constrained strict labelings are fit
for this task, because the agents may use their goals as constraints and find
minimal sets of arguments that are to be attacked. From the arguments they
have available, they may then choose which of them to put forward or in what
way to change the framework.

The outcome of an instantaneous configuration, as well as the outcome of the
game’s final configuration, consists in the choice of a constrained extension of
the framework, using an algorithm that is known to all participants of the game
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in advance, for example the constrained strict semantics. If all agents strive
to maintain the environment constraint satisfiable at all times by a complete
labeling, then at the end of the game this will also hold so none of the arguments
will need to be ignored.

Let us consider the example in Figure 3 again and see how that configuration
looks for each of the participants and what might be their next move, were it to
be their turn. The only complete labeling is the one depicted in the figure and it
also satisfies the environment constraint. Anthony gets to sell both items, so his
goal is fulfilled. Thus, Anthony will pass. So will Carol, whose goal is to obtain
one of the objects. However, this configuration is not good for Brian, who wishes
either both objects or none.

What Brian must do in this case is recompute the open labelings using both
the environment constraint and his own goal. In this case he will end up with sets
of arguments to ignore. All such sets that contain arguments that Brian himself
cannot control are to be discarded. He may then choose between remaining
alternatives, if any.

In the particular case of Figure 3, Brian may notice that a simple solution to
his problem consists in ignoring Carol’s bid. Since actually ignoring it is not an
option, Brian must defeat it. For this, it is enough to put forward a higher bid
for the table.

4.6 End of the Game and Commitment

We have seen that the game proceeds in turn-based fashion, each agent changing
the current configuration to better fulfill its goals. Whenever an agent is satisfied
with the current configuration, or has no available action arguments to put
forward for producing a favorable change, the agent will pass. The game ends
after every agent has passed in a full round.

Once the game has reached its final configuration, all agents are committed
to fulfill their intentions executing the corresponding actions. In doing so, the
environment will also enter the state described by the chosen extension of the
argumentation framework for the configuration.

An additional challenge for such a game is to arrange the initial configuration
in such a way as to describe the actual initial state. In our auction scenario,
instead of letting all states be acceptable, one might add Anthony’s arguments
so that the ownership of the items can only be his in acceptable extensions of
the initial framework.

4.7 Discussion

We will end this section with a discussion of the relevance of constrained strict
labelings for the presented argumentation-based multi-agent system. These ex-
tensions may play a part at the end of the game, where a suitable outcome is to
be chosen. Since the environment constraint must be satisfied, in more liberal
games, where it is not enforced at all points, it may be needed to ignore some of
the arguments at the end of the game.
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On the other hand, for the outcome algorithm it might be better to consider
frameworks where there is a single extension satisfying the environment con-
straint. Of course, it may be declared in the beginning of such a game that some
semantics that provides multiple extensions will be used and that the result will
be undecided if several extensions are available. Thus, this may work as an incen-
tive for participants that would not be satisfied with an undecided negotiation
to work towards reaching a final state that has a single extension.

The most important part where our semantics can undoubtedly be put to
good use is the agent’s strategy for executing its move. At that point, the agent
may use the same semantics as the one used for the game outcome, but update
the constraint to include its own goals thus identifying arguments that are to be
attacked or ignored. It is important that all the arguments found in the chosen
ignored set can actually be controlled or attacked by the agent.

5 Conclusions

We have introduced a new argumentation semantics, based on labelings, which
allows us to impose constraints on the labelings. We have proved that for any
reasonable constraint we get at least one constrained strict labeling and we have
shown how to use these labelings in an agent setting.

We have provided a detailed scenario that can be modeled as a multi-agent
system based on argumentation where our semantics can play a significant part
in determining the next move for each agent. The proposal is a significant contri-
bution in itself, as it provides an alternative approach for using argumentation in
multi-agent systems. Future work will compare our turn-based game with other
approaches in the literature.

It would be interesting to analyze the proposed semantics with respect to its
computational complexity, this being an important goal of future research, as
the applicability of our approach in real multi-agent systems strongly depends
on this.
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