
Local Coordination in Online Distributed

Constraint Optimization Problems

Tim Brys, Yann-Michaël De Hauwere, Ann Nowé, and Peter Vrancx

Computational Modeling Lab - Vrije Universiteit Brussel,
Pleinlaan 2, B-1050 Brussels, Belgium

{timbrys,ydehauwe,anowe,pvrancx}@vub.ac.be
http://como.vub.ac.be

Abstract. In cooperative multi-agent systems, group performance often
depends more on the interactions between team members, rather than
on the performance of any individual agent. Hence, coordination among
agents is essential to optimize the group strategy. One solution which is
common in the literature is to let the agents learn in a joint action space.
Joint Action Learning (JAL) enables agents to explicitly take into ac-
count the actions of other agents, but has the significant drawback that
the action space in which the agents must learn scales exponentially in
the number of agents. Local coordination is a way for a team to coordi-
nate while keeping communication and computational complexity low. It
allows the exploitation of a specific dependency structure underlying the
problem, such as tight couplings between specific agents. In this paper we
investigate a novel approach to local coordination, in which agents learn
this dependency structure, resulting in coordination which is beneficial
to the group performance. We evaluate our approach in the context of
online distributed constraint optimization problems.

1 Introduction

A key issue in multi-agent learning is ensuring that agents coordinate their indi-
vidual decisions in order to reach a jointly optimal payoff. A common approach
is to let the agents learn in the joint action space. Joint Action Learning (JAL)
enables agents to explicitly take into account the actions of other agents, but
has the significant drawback that the action space in which the agents must
learn scales exponentially in the number of agents [5], quickly becoming com-
putationally unmanageable. In this paper, we investigate a novel approach in
which agents adaptively determine when coordination is beneficial. We intro-
duce Local Joint Action Learners (LJAL) which specifically learn to coordinate
their action selection only when necessary, in order to improve the global payoff,
and evaluate our approach in the context of distributed constraint optimization.
We investigate teamwork among a group of agents attempting to optimize a set
of constraints in an online fashion. Agents learn how to coordinate their actions
using only a global reward signal resulting from the actions of the entire group
of agents.

M. Cossentino et al. (Eds.): EUMAS 2011, LNAI 7541, pp. 31–47, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



32 T. Brys et al.

The remainder of this paper is laid out as follows: in the next section we review
some background material and related work on agent coordination. Section 3
introduces our local coordination method. Section 4 introduces the optimization
problems we consider in this work. We demonstrate how optimization problems
can have an inherent structure that can be exploited by LJALs. In Section 5,
we propose and evaluate a method that allows LJALs to learn a coordination
structure optimized for the specific problem task at hand. Finally, we offer some
concluding remarks in Section 6.

2 Background and Related Work

The Local Joint Action Learner (LJAL) approach proposed below relies on the
concept of a Coordination Graph (CG) [6], which describes action dependencies
among agents. Coordination graphs formalize the way agents coordinate their
actions. In a CG, vertices represent agents, and edges between two agents indi-
cate a coordination dependency between these agents. Figure 1(a) is an example
of a CG with 7 agents. In this graph, agent 1 coordinates with agents 2, 3 and
5; agent 4 does not coordinate and thus corresponds to an independent learner;
and agent 6 coordinates with agents 5 and 7. Figure 1(a) represents an undi-
rected CG where both agents connected by an edge explicitly coordinate. A CG
can also be directed, as shown in Figure 1(b). In this graph, the same agents
are connected as in Figure 1(a), but the edges are directed and the meaning of
the graph thus differs. In Figure 1(b), agent 1 now coordinates with agents 2
and 5, but not with 3; agent 4 is still an independent learner; and agent 6 only
coordinates with 5.

1

2

3

4

5

6

7

(a) Undirected Co-
ordination Graph

1

2

3

4

5

6

7

(b) Directed Coordi-
nation Graph

Fig. 1. Two coordination graphs with 7 agents

Guestrin [6] and Kok and Vlassis [8] propose algorithms where agents, using
a message passing scheme based on a CG, calculate a global joint action by
communicating their perceived local rewards. Below we describe a new approach
which is an alternative to Independent Learning (IL) and Joint Action Learning
(JAL) [5] based on CGs, where agents optimize their local joint actions without
extensive communication, using global reward.



Local Coordination in Online DCOPs 33

3 Local Joint Action Learners

We now introduce our Local Joint Action Learner (LJAL) framework. LJALs
are a generalization of the Joint Action Learners proposed in [5]. The main
idea is that agents keep estimates of expected rewards, not just for their own
actions, but for combinations of actions of multiple agents. Contrary to the JALs,
however, LJALs do not coordinate over the joint actions of all agents, but rather
coordinate with a specific subset of all agents. An LJAL relies on a coordination
graph to encode coordination, and will keep estimates only for the combinations
of its own actions with those of its direct neighbors in the graph.

It can easily be seen that LJALs cover the entire range of possible coordination
settings from Independent Learning (IL) agents, who only consider their own
actions, to Joint Action Learners (JAL), who take into account the actions of
all agents. As LJALs keep estimates for joint actions with their neighbours in
the graph, ILs can be represented with a fully disconnected graph, whereas
the coordination between JALs can be represented with a fully connected or
complete graph.

Figure 2 illustrates the CGs for ILs and JALs, as well as showing another
possible LJAL graph. Note that this representation is not directly related to
the underlying structure of the problem being solved, but rather represents the
solution method being used. In the experiments below, we will evaluate the effect
of matching the CG to the problem structure on the performance, this in terms
of learning speed and final performance.

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

IL JAL LJAL

Fig. 2. Coordination graphs for independent learners and joint action learners and an
example graph for local joint action learners

3.1 Action Selection

We view the learning problem as a distributed n-armed bandit problem, where
every agent must individually decide which of n actions to execute and the
reward depends on the combination of all chosen actions. In the case that the
reward for each agent is generated by the same function, the game is said to
be cooperative. It is with such cooperative or coordination games that we are
concerned in this paper. Below, we describe the action estimation and action
selection method used by LJALs.



34 T. Brys et al.

Each agent estimates rewards for (possibly joint) action a according to fol-
lowing incremental update formula [11]:

Qt+1(a) = Qt(a) + α [r(t+ 1)−Qt(a)] (1)

where α is the step-size parameter, balancing the importance of recent and past
rewards, and r(t) is the reward received for action a at time t. (L)JALs also keep
a probabilistic model of the other agents’ action selection, by using empirical
distributions, i.e. counting the number of times C each action has been chosen
by each agent. Agent i maintains the frequency F i

aj
, that agent j selects action

aj from its action set Aj :

F i
aj

=
Cj

aj
∑

bj∈Aj
Cj

bj

(2)

Using their estimates for joint actions and their probabilistic models of other
agents’ action selection, agents can evaluate the expected value for selecting a
specific action from their individual action set:

EV (ai) =
∑

a∈Ai

Q(a ∪ {ai})
∏

j

F i
a[j], (3)

where A
i = ×j∈N(i)Aj and N(i) represents the set of neighbors of agent i in

the CG. This means that the expected value for playing a specific action, is the
average reward of the observed joint actions in which the action occurs, weighted
by their relative frequencies.

Agents choose their actions probabilistically according to a Boltzmann distri-
bution over the current estimates EV of their actions [11]. The probability of
agent i selecting action ai, at time t is given by:

Pr(ai) =
eEV (ai)/τ

∑n
bi=1 e

EV (bi)/τ
(4)

The parameter τ is called the temperature and expresses how greedy the actions
are being selected. Low values for τ represent a more greedy action selection
mechanism.

3.2 LJAL Performance

In this section, we briefly evaluate empirically how different types of LJALs
relate to each other in terms of solution quality and computation speed. Specif-
ically, we will evaluate the effect of increased graph density on performance; it
results in more information, but also higher complexity for agents. Intuitively,
we expect that ILs and JALs will lie at extreme ends of the performance spec-
trum that LJALs encompass. ILs possess little information and thus should yield
the worst solutions, while JALs, who in theory have all possible information,



Local Coordination in Online DCOPs 35

should find the best solutions. On the other hand, JALs need to deal with the
total complexity of the problem, resulting in long computation times, while ILs
only reason about themselves and should logically compute fastest of all LJALs.

We compare respectively ILs, LJALs using randomly generated, directed CGs
with an out-degree of 2 for each agent, random LJALs with out-degree 3, and
JALs, see Figure 3. These types of learners were evaluated on randomly gener-
ated distributed bandit problems, i.e. for each possible joint action of the team,
a fixed global reward is drawn from a normal distribution N (0, 50) (50 = 10×#
agents). A single run of the experiment consists of 200 iterations, also referred
to as plays, in which 5 agents choose between 4 actions, and receive a re-
ward for the global joint action, as determined by the problem. Every run,
LJAL-2 and LJAL-3 get a new random graph with the specified out-degree.
All learners employ softmax action selection with temperature function τ =
1000 × 0.94play. Figure 4 displays the results of this experiment averaged over
10000 runs and Table 1 shows the speed (running time needed to complete
the experiment) and solution quality for the various learners, relative those of
the JALs.

These results corroborate our hypothesis that ILs and JALs are both ends of
the LJAL performance spectrum. Since any LJAL possesses no more information
than JALs and no less than ILs, their solution quality lies in between these two
extreme approaches. Moreover, because the complexity of LJAL joint actions lies
in between ILs and JALs, we also observe that LJALs perform computationally

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

IL LJAL-2 LJAL-3 JAL

Fig. 3. Coordination graphs for independent learners and joint action learners, and
examples of random coordination graphs for local joint action learners with out-degrees
2 and 3

Table 1. Comparison of speed and solution quality for independent learners, joint ac-
tion learners and local joint action learners solving a typical distributed bandit problem.
All differences are significant, p < 0.05.

Learner Avg # partners Speed Solution Quality

IL 0 ×31.5 71.1%

LJAL-2 2 ×12.1 80.5%

LJAL-3 3 ×4.4 89.3%

JAL 4 ×1 100%



36 T. Brys et al.

Fig. 4. Comparison of independent learners, joint action learners and local joint action
learners on a typical distributed bandit problem

no faster than ILs and no slower than JALs. As expected, as the complexity of
the CG used increases, so does the solution quality, but at the cost of a longer
computation time.

4 Distributed Constraint Optimization

In the previous section, we have shown that it is possible to use our proposed
local coordination method to balance the trade-off between solution quality and
computation speed, a problem often encountered in real settings. In this section,
we take this a step further, as we aim to show that we can exploit a problem’s
structure using local coordination, reducing computational complexity, but min-
imizing the corresponding loss in solution quality. Since the simple bandit prob-
lem of the previous section does not have such a structure, as the reward for
every joint action is generated independently, we look at another type of prob-
lem, which is ideally suited to represent problems with an inherent structure,
i.e. Distributed Constraint Optimization Problems.

A Constraint Optimization Problem (COP) describes the problem of assign-
ing values to a set of variables, subject to a number of soft constraints. Each
constraint takes the form of a function assigning rewards to variable assignments.
A solution to a constraint optimization problem assigns a value to each variable
and has an associated total reward, which is the sum of the rewards for every
constraint. Solving a COP means maximizing this reward. A Distributed Con-
straint Optimization Problem (DCOP) describes the distributed equivalent of
constraint optimization. A group of agents must solve a COP in a distributed
way, each agent controlling a subset of the variables in the problem.



Local Coordination in Online DCOPs 37

Formally, a DCOP is a tuple (A, X , D, C, f), where:
– A = {a1, a2, ..., a�}, the set of agents.
– X = {x1, x2, ..., xn}, the set of variables.
– D = {D1, D2, ..., Dn}, the set of domains. Variable xi can be assigned values

from the finite domain Di.
– C = {c1, c2, ..., cm}, the set of constraints. Constraint ci is a function Da ×

Db × ... ×Dk → R, with {a, b, . . . , k} ⊆ {1, . . . , n}, projecting the domains
of a subset of variables onto a real number, being the reward.

– f : X → A, a function mapping variables onto a single agent.

The total reward of a variable assignment S, assigning value v(xi) ∈ Di to
variable xi, is:

C(S) =

m∑

i=1

ci(v(xa), . . . , v(xk)) (5)

For simplicity, we assume only one variable per agent and only binary con-
straints. Unary constraints can easily be added and higher arity constraints can
be constructed using unary and binary constraints.

Distributed Constraint Problems are used to model a variety of real problems,
ranging from disaster response scenarios [2] and distributed sensor network man-
agement [7], to traffic management in congested networks [9].

4.1 Relation of LJAL to Other DCOP Algorithms

As noted in [12], a DCOP can be reformulated as a distributed n-armed bandit
problem. Assign one variable to each agent and let it choose from the values
in the domain corresponding to the variable as it would select an arm from an
n-armed bandit. With such a formulation, we can apply our previously described
learners to DCOPs. In this section, we briefly evaluate the relation of LJAL to
other DCOP algorithms and in which context LJALs are best applied.

Comparing LJAL to the unifying DCOP algorithm framework proposed by
Chapman et al. in [3], we see that it relates most to the ”local iterative, ap-
proximate best response algorithms”. Algorithms in this class are incomplete –
they are not guaranteed to find the optimal solution –, but on the other hand,
they only use local information, having neighbouring agents communicate only
their state, and thus do not suffer from exponential complexity in the size of
the problem. These algorithms typically converge to local optima, or Nash equi-
libria, and are often preferred in real-world settings, as these require a balance
between solution quality and computational complexity, or timeliness, and com-
munication overhead. In contrast, ”distributed complete algorithms”, such as
ADOPT [1] are proven to find the optimal solution for a DCOP, although with
an exponential communication or computational complexity[4,10].

We are not specifically interested in developing a state-of-the-art DCOP solver,
but rather a multi-agent reinforcement learning technique which can trade-off so-
lution quality and complexity, taking advantage of a problem’s structure. There-
fore, we explore solving DCOPs in an online reinforcement learning scenario.



38 T. Brys et al.

This means that agents do not have any prior knowledge of the reward function
and must sample actions in order to solve the problem. In conventional DCOP
settings, local reward functions are assumed to be deterministic and available to
the agent. As such the problem can be treated as a distributed planning prob-
lem. In our setting, the rewards associated with constraints can be stochastic
and agents may have few opportunities to sample rewards. Moreover, the agents
cannot directly observe the local rewards resulting from their actions, but only
receive the global reward resulting from the joint action of all agents.

Finally, and most importantly, we do not assume knowledge of the constraint
graph underlying the problem is always available, an assumption found all over
the literature, and often not justifiable in real-world settings.

4.2 Experiments

Since each constraint in a DCOP has its own reward function and the total
reward for a solution is simply the sum of all rewards, some constraints can have
a larger impact on the solution quality than others, i.e. when there is a higher
variance in their rewards. Therefore, coordination between specific agents can
be more important than between others. In this section, we will investigate the
performance of LJALs on DCOPs where some constraints are more important
than others. We will generate random, fully connected DCOPs, drawing the
rewards of every constraint function from different normal distributions. The
variance in rewards is controlled by means of weights, formalizing the importance
of specific constraints with respect to the whole problem. We attach a weight
wi ∈ [0, 1] to each constraint ci; the problem’s variance σ is multiplied with
this weight when building the reward function for constraint ci. A weight of 1
indicates the constraint is of the highest importance, while 0 makes the constraint
of no importance. When building a DCOP, rewards for constraint ci are drawn
from this distribution:

N (0, σwi) (6)

Figure 5 visualizes the structure of the problem we will compare different LJALs
on in the first experiment. The colors of constraints or edges indicate the im-
portance of that constraint. The darker the constraint, the higher the weight.
The rewards for each constraint function are fixed before every run with σ = 70
(10 × # agents). The black edges in the figure correspond to weights of 0.9,
light-grey edges are weights of 0.1. What this graph formalizes, is that the con-
straints between agents 1, 2 and 3, and 5 and 6 are very important, while the
contribution of all other constraints to the total reward is quite limited.

We state again that we are interested in using knowledge of the problem’s
underlying structure to minimize the loss in solution quality when reducing com-
putational complexity. Therefore, in addition to independent learners (IL), joint
action learners (JAL), and local joint action learners with a random 2-degree
CG (LJAL-1), we compare LJALs with a CG matching the problem structure
(LJAL-2), and the same graph, augmented with coordination between agents 1
and 5 (LJAL-3), see Figure 6.



Local Coordination in Online DCOPs 39

1

2

3

4

5

6

7

Fig. 5. Distributed constraint satisfaction problem used in the experiments. Dark edges
mean important constraints, light edges are unimportant constraints.

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

LJAL-1 LJAL-2 LJAL-3JAL

1

2

3

4

5

6

7

IL

Fig. 6. Different local joint action learners, visualized by their coordination graphs.
LJAL-1 is an example graph with outdegree 2.

Fig. 7. Comparison of independent learners, joint action learners and local joint action
learners on a distributed constraint optimization problem

Table 2. Comparison of speed and solution quality for independent learners, joint ac-
tion learners and local joint action learners solving a distributed constraint optimization
problem. All differences are significant p < 0.05.

Learner Avg # partners Speed Solution Quality

IL 0 ×442 86.2%

LJAL-1 2 ×172 86.4%

LJAL-2 1.14 ×254 91.6%

LJAL-3 1.43 ×172 90.2%

JAL 6 ×1 100%



40 T. Brys et al.

The results, averaged over 100000 runs, are shown in Figure 7 and Table 2.
As seen in the previous section, ILs and JALs perform respectively best and
worst in terms of solution quality. More importantly, as we compare LJAL-1
and LJAL-2, we see that LJAL-2 perform 6% better, while being at the same
time 1.5× faster. The higher solution quality results from matching coordination
with the problem structure, and lower computation times are due to the lower
complexity (in LJAL-1, each agent coordinates with two partners, in LJAL-2, an
agent coordinates with only 1.14 partners on average1). This shows that using
a specific CG can help LJALs solve a problem better, using less computational
resources.

A more surprising result is the performance difference between LJAL-2 and
LJAL-3. Although agents 1 and 5 in LJAL-3 possess more information than
in LJAL-2 through increased coordination, LJAL-3 performs worse in terms of
solution quality (and speed, due to the increased coordination). We hypothesise
that the extra information about an unimportant constraint complicates the
coordination on important constraints.

We set up an experiment to evaluate the effect an extra coordination edge
has on solution quality. It compares LJAL-2 and LJAL-3 from the previous
experiment with LJAL-4, which like LJAL-2 uses a graph matching the problem
structure, only now augmented with a coordination edge between agents 4 and
7. As agents 4 and 7 are otherwise not involved in important constraints, we
predict that adding this coordination will improve performance, as opposed to
the extra edge between 1 and 5 in LJAL-3. Figure 8 and Table 3 show the results
this experiment.

Fig. 8. Evaluating the effect of extra coordination edges on solution quality

Since agents 4 and 7 are not involved in important constraints as defined by
the problem, the addition of this edge improves performance slightly; the agents
will learn to optimize the marginally important constraint between them, with-
out complicating the coordination necessary for important constraints. These

1 Three agents with two partners, two with one and two without partners.



Local Coordination in Online DCOPs 41

Table 3. Evaluating the effect of extra coordination edges on solution quality. Solution
qualities are relative to that of independent learners. All differences are significant
p < 0.05.

Learner Solution Quality

IL 100%

LJAL-2 105.9%

LJAL-3 104.5%

LJAL-4 106.2%

results show that the choice of the graph is very important and even small
changes influence the agents’ performance. In [12], Taylor et al. also conclude
that increasing team work is not necessarily beneficial to solution quality.

5 Learning Coordination Graphs

In the previous sections, we have shown that matching the CG of local joint
action learners to the inherent structure of a problem helps to improve solution
quality without having to deal with the total complexity of the problem. The
next problem we consider is learning this graph. In some problems, such as the
graph colouring problem, this graph may be obvious. In others, the structure
of the problem may not be known beforehand and thus the designer of the
system has no way of knowing what graph to implement. In this section, we
will investigate a way to allow the local joint action learners to optimize the CG
themselves.

5.1 Method

We encode the problem of learning a CG as a distributed n-armed bandit prob-
lem. In the simplest case, each agent is allowed to pick one coordination partner
and has as many actions as there are agents in the problem. For example, agent
2 choosing action 5 means a directed coordination edge in the CG from agent
2 to 5. Agent 3 choosing action 3 means agent 3 chooses not to coordinate, so
no additional edge in the CG. The combined choices of the agents describe the
coordination graph structure. In the experiments, we limit the learners to either
one or two coordination partners, to evaluate how low complexity systems can
perform on more complex problems. We map the two-partner selection to an
n-armed bandit problem by making actions represent pairs of agents instead of
single agents, e.g. action 10 means selecting agents 2 and 3. This is feasible in
small domains, but with more agents and a higher complexity limit per agent, the
problem of choosing multiple partners should be modelled as a Markov Decision
Process, with partner selection spread out over multiple states, i.e. multi-stage.

After choosing coordination partners, the agents solve the learning problem
using that coordination graph. The reward achieved after learning is then used



42 T. Brys et al.

as feedback for the choosing of coordination partners; agents estimate rewards
for the partner choices. This constitutes one play at the meta-learning level. This
process is repeated until the graph has converged due to decreasing temperature
in the meta-bandit action selection. We choose to make the agents in the meta-
bandit independent learners, although it would also be possible to allow them
to coordinate. Only then the question of which CG to pick would arise again.

5.2 Learning in DCOPs with a Particular Structure

In our first experiment, we make agents learn a CG on the problem used in
previous sections and illustrated in Figure 5. As such, we can compare the learned
CGs with the (to us) known problem structure. One meta-bandit run consists
of 1500 plays. In each play, the chosen CG is evaluated in 100 runs of 200 plays;
100 runs to account for the inherent stochasticity of the learning process so as
to get relatively accurate estimates for the quality of the chosen graph. This
evaluation is basically the same setup as the experiments in Section 4.2. The
average of the reward achieved over these 100 runs is the estimated reward for the
chosen CG.

In addition to ILs, JALs and LJALs with a CG matching the problem struc-
ture, LJAL-1, we compare two teams of LJALS who optimize their CG, with
respective complexity limits of one, OptLJAL-1, and two, OptLJAL-2, coor-
dination partners. Figure 9 and Table 4 show the results of this experiment,
averaged over 1000 runs, each time a newly generated problem, although with
the same inherent structure. Temperature τ in the meta-bandit is decreased as
such: τ = 1000× 0.994play.

Fig. 9. Comparing the solution qualities of independent learners, joint action learners,
local joint action learners with the supposedly optimal coordination graph and local
joint action learners who optimize their coordination graph



Local Coordination in Online DCOPs 43

Table 4. Comparing the computation speeds and solution qualities of independent
learners, joint action learners, local joint action learners with the supposedly optimal
coordination graph and local joint action learners who optimize their coordination
graph, respectively limited to one and two coordination partners per agent. All differ-
ences are significant p < 0.05, except between OptLJAL-1 and OptLJAL-2.

Learner Avg # partners Speed Solution Quality

IL 0 ×374 86.2%

LJAL-1 1.14 ×243 91.1%

OptLJAL-1 0.81 ×290 94.5%

OptLJAL-2 1.28 ×240 94.7%

JAL 6 ×1 100%

The results show that not only can the agents adapt their coordination graph
to the problem and thus improve performance over agents with random graphs,
they also manage to outperform the LJALs that use the CG mimicking the
problem structure. That graph is surprisingly not the optimal coordination struc-
ture, as the optimizing agents in general find better graphs, graphs with a lower
complexity; a maximum complexity of one coordination partner in the case of
OptLJAL-1, as opposed to two partners in the graph matching the problem.
OptLJAL-2 has similar performance as OptLJAL-1, although with a slightly
higher complexity and thus longer computation time. It is important to note
that graphs optimized by OptLJAL-2 in general have a complexity of 1.28, which
is very low considering the highest possible complexity is 2. More coordination
again does not appear to be always beneficial. Compare for example the average
complexities of the resulting graphs, 0.81 and 1.28 for limits 1 and 2 respectively,
with that of the random graphs in the exploration stages: 0.86 and 1.59.

To get a better insight into how OptLJAL-1 and OptLJAL-2 can outperform
LJAL-1, we look at some of the optimized graphs for this problem. Figure 10
shows the graphs learned by OptLJAL-1 and OptLJAL-2 respectively on five
instances of the given problem. These graphs represent cases where optimizing
agents significantly outperformed LJAL-1, who mimick the problem structure in
their CG.

When viewing these optimized graphs, we would expect to find at least some
of the problem structure reflected in them. This is clearly the case. In every
single graph, we find that agents 5 and 6 learn to coordinate. There is also
always some coordination in the agents 1-2-3 cluster. This is also reflected in
Table 5, where the average number of edges between any two agents in a cluster
is shown. Agents 1, 2 and 3, and agents 5 and 6 coordinate significantly more
than they would in random graphs, while 4 and 7 coordinate less. Counting the
incoming edges, we note that agents 1, 2, 3 have on average 1.0 agents adapting
to them, 5 and 6 have 1.2 such agents, while 4 and 7 only 0.1.

This shows that the agents can determine which agents are more important
to coordinate with. Still, this does not explain how the agents with an optimized



44 T. Brys et al.

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

OptLJAL-1

OptLJAL-2

Fig. 10. Optimized coordination graphs. Graphs in the top row are limited to one
coordination partner per agent, graphs in the bottom row are limited to two partners.

Table 5. The average number of directed edges between any two agents in a cluster.
Agents in important problem substructures coordinate significantly more often in op-
timized graphs than in random graphs. The inverse is true for agents in unimportant
substructures.

1-2-3 5-6 4-7

OptLJAL-1 0.68 1.53 0.13

Random-1 0.28 0.28 0.28

OptLJAL-2 0.85 1.54 0.33

Random-2 0.53 0.53 0.53

graph can perform better with a lower coordination complexity than those who
use the problem structure as a coordination graph. We believe the explanation is
two-fold. First, in optimized graphs, agents often practice something we like to
call ”follow the leader”. Basically, this comes down to one agent performing as
leader, often an independent learner, while other agents coordinate unilaterally
with that agent. This allows the other agents to choose actions in function of
the same leader, while that leader can learn without knowing that other agents
are coordinating, or rather adapting, to him, simplifying the problem for every
agent by concentrating the exploration in certain parts of the search space. This
is especially beneficial when only a limited amount of trials is allowed. Secondly,
agents that do not coordinate directly are independent learners relative to each
other. Independent learners have been shown to be able to find an optimum by
climbing, i.e. each agent in turn changing an action [5]. The starting point for
this climbing, in a two-dimensional game, is usually the row and column with
the highest average reward. If the global optimum can be reached by climbing
from this starting point, independent learning suffices to optimize the problem.
When analysing the reward functions for these agents that choose to be inde-
pendent learners, we see that they are involved in games where such climbing is
possible. This is also the reason why a team of independent learners can perform
reasonably well in this setting.



Local Coordination in Online DCOPs 45

5.3 Learning in DCOPs with Random Structure

We have previously only focused on one specific problem, with only two very
distinct categories of constraint importance, i.e. very important and very unim-
portant (respectively 0.9 and 0.1 as weight parameters). Such clear distinctions
are not realistic and therefore we shall now investigate problems with constraints
of varying importance. One issue with such problems is that, even if the structure
of the problem is known, it is not easy to decide when coordination is important
and when not. Is it necessary to coordinate over the constraint with weight 0.6,
and not over the one with weight 0.59? Learning the graph should prove to be a
better approach than guessing or fine-tuning by hand, as evidenced by the pre-
vious experiment where the preprogrammed graph was shown not to be optimal
compared to other graphs of similar and even lower complexity.

The next experiment compares ILs, JALs, LJALs with a fixed CG, LJAL-1,
and two teams of LJALs learning a CG, OptLJAL-1 and OptLJAL-2, on DCOPs
with a randomly generated weights graph. The non-optimizing LJALs have a CG
derived from the problem’s weight graph; all constraints with weight 0.75 and
higher are included in the graph. The results of this experiment are shown in
Figure 11 and Table 6.

Although the LJALs with fixed CG coordinate over a quarter of all the con-
straints, and the most important ones at that, they do not manage to improve
much over the solutions found by ILs. These LJALs have a CG with an av-
erage complexity of 7×6×0.25

7 = 1.5 coordination partners per agent. Compare
that to the average complexity of 0.8 in OptLJAL-1. With less coordination and
therefore less computation, they again manage to improve much on the solution
quality.

Fig. 11. Comparing the solution qualities of independent learners, joint action learners,
local joint action learners with fixed coordination graph and local joint action learners
who optimize their coordination graph on distributed constraint optimization problems
with a random weights graph



46 T. Brys et al.

Table 6. Comparing the computation speeds and solution qualities of independent
learners, joint action learners, local joint action learners with the supposedly optimal
coordination graph and local joint action learners who optimize their coordination
graph, respectively limited to one and two coordination partners per agent. All differ-
ences are significant p < 0.05, except between OptLJAL-1 and OptLJAL-2.

Learner Avg # partners Speed Solution Quality

IL 0 ×315 88.9%

LJAL-1 1.5 ×101 90.2%

OptLJAL-1 0.8 ×254 94.2%

OptLJAL-2 1.28 ×204 94.3%

JAL 6 ×1 100%

6 Conclusion

In this paper, we investigated local coordination in a multi-agent reinforcement
learning setting as a way to reduce complexity. Local joint action learners were
developed as a trade-off between independent learners and joint action learners.
Local joint action learners make use of a coordination graph that defines which
agents need to coordinate when solving a problem. The density of the graph
determines the computational complexity for each agent, and also influences the
solution quality found by the group of agents.

Problems that have an inherent structure, making coordination between cer-
tain agents more important, can be solved by local joint action learners that
have a coordination graph adapted to the structure of the problem. Learners us-
ing such a graph can perform better than those using a random graph of higher
density, both in terms of solution quality and computation time.

We have also shown that the coordination graph itself can be optimized by the
agents to better match the potentially unknown structure of the problem being
solved. This optimization often leads to unexpected graphs, where important
constraints in the problem are not mimicked in the coordination graph by a direct
coordination link. Instead, this coordination is achieved through mechanisms
such as leader-follower relationships and relative independent learning.

References

1. Ali, S., Koenig, S., Tambe, M.: Preprocessing techniques for accelerating the dcop
algorithm adopt. In: Proceedings of the Fourth International Joint Conference on
Autonomous agents and Multiagent Systems, AAMAS 2005, pp. 1041–1048. ACM,
New York (2005)

2. Chapman, A.C., Micillo, R.A., Kota, R., Jennings, N.R.: Decentralised dynamic
task allocation: a practical game-theoretic approach. In: Proceedings of the 8th In-
ternational Conference on Autonomous Agents and Multiagent Systems, AAMAS
2009, Richland, SC, vol. 2, pp. 915–922 (2009)

3. Chapman, A.C., Rogers, A., Jennings, N.R., Leslie, D.S.: A unifying framework
for iterative approximate best-response algorithms for distributed constraint opti-
mization problems. Knowledge Eng. Review 26(4), 411–444 (2011)



Local Coordination in Online DCOPs 47

4. Chechetka, A., Sycara, K.: No-commitment branch and bound search for dis-
tributed constraint optimization. In: Proceedings of the Fifth International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 1427–1429. ACM,
New York (2006)

5. Claus, C., Boutilier, C.: The dynamics of reinforcement learning in cooperative
multiagent systems. In: Proceedings of National Conference on Artificial Intelli-
gence, AAAI 1998, pp. 746–752 (1998)

6. Guestrin, C., Lagoudakis, M., Parr, R.: Coordinated reinforcement learning. In:
Proceedings of the ICML 2002 The Nineteenth International Conference on Ma-
chine Learning, pp. 227–234 (2002)

7. Kho, J., Rogers, A., Jennings, N.R.: Decentralized control of adaptive sampling in
wireless sensor networks. ACM Trans. Sen. Netw. 5(3), 19:1–19:35 (2009)

8. Kok, J.R., Vlassis, N.: Using the Max-Plus Algorithm for Multiagent Decision
Making in Coordination Graphs. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi,
Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 1–12. Springer, Heidelberg
(2006)

9. van Leeuwen, P., Hesselink, H., Rohling, J.: Scheduling aircraft using constraint
satisfaction. Electronic Notes in Theoretical Computer Science 76, 252–268 (2002)

10. Modi, P.J., Shen, W.M., Tambe, M., Yokoo, M.: An asynchronous complete method
for distributed constraint optimization. In: Autonomous Agents and Multiagent
Systems, pp. 161–168 (2003)

11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press (March 1998)

12. Taylor, M.E., Jain, M., Tandon, P., Yokoo, M., Tambe, M.: Distributed on-line
multi-agent ooptimization under uncertainty: Balancing exploration and exploita-
tion. Advances in Complex Systems (ACS) 14(03), 471–528 (2011)


	Local Coordination in Online Distributed
Constraint Optimization Problems
	Introduction
	Background and Related Work
	Local Joint Action Learners
	Action Selection
	LJAL Performance

	Distributed Constraint Optimization
	Relation of LJAL to Other DCOP Algorithms
	Experiments

	Learning Coordination Graphs
	Method
	Learning in DCOPs with a Particular Structure
	Learning in DCOPs with Random Structure

	Conclusion
	References




