
A Multi-agent Based Governance
of Machine-to-Machine Systems

Camille Persson1,2, Gauthier Picard2, Fano Ramparany1, and Olivier Boissier2

1 Orange Labs Network and Carrier, TECH/MATIS, Grenoble, France
firstname.lastname@orange.com

2 Fayol Institute, Ecole des Mines de Saint-Etienne, France
lastname@emse.fr

Abstract. In Machine-to-Machine (M2M) systems, multiple devices (sensors,
actuators), situated in the physical world, interact together to provide data to
added value services. In the SensCity project, the proposed M2M infrastructure,
to support cityscale application, must be able to support the increase in the num-
ber of services and applications that are deployed on it. It is thus necessary to
share the infrastructure use dynamically between them. In this paper, we propose
the use of multi-agent technologies to define an adaptive and agile layer to gov-
ern and adapt the M2M infrastructure to the different applications using it. We
illustrate our proposal within a smart parking management application.

1 Introduction

The next generation of cities are getting smarter by providing automated services to
improve the life of their citizens (e.g. optimized garbage collection, smart metering,
traffic redirection and parking management). These added value services build what we
call Machine-to-Machine (M2M) systems, i.e. a network of smart devices –sensors and
actuators– interacting with each other without human intervention (see Fig. 1).

Recent improvements in low-power wireless technologies [15] enable wireless de-
vices to be connected to the Internet with a low deployment cost and a long lifespan
–20 years expected. Such developments allow applications to be immersed in the real
world and to directly act on the environment. When looking at the deployment of such

Fig. 1. An end-to-end M2M architecture [6]

M. Cossentino et al. (Eds.): EUMAS 2011, LNAI 7541, pp. 205–220, 2012.
© Springer-Verlag Berlin Heidelberg 2012

206 C. Persson et al.

systems, stakeholders are involved in different areas: application providers, constrained
devices constructors, LLNs radio experts and telecommunication operators. However,
the building of such vertical solutions on a city scale is too expensive and not flexi-
ble enough. There is a growing need and interest for M2M infrastructures that provide
horizontal integration and sharing of devices between stakeholders [1].

This paper considers the practical use case issued from the SensCity1 project, which
aims at providing an M2M platform for deploying multiple smart city services. This
platform makes possible to connect heterogeneous wireless devices to a GPRS gateway
using Wavenis –long range, energy efficient radio technology. As for the application,
standard access to the devices is provided via web services.

In order to be deployed on a city scale and used by different applications, such an
infrastructure is faced with a multi-faceted problem of scalability [7] in terms of size,
heterogeneity, topology, etc.To tackle this problem, an agile governance is required to
conciliate both “vertical” and “horizontal” concerns. Such a governance system should
adapt to the different requirements of the M2M applications deployed on such an in-
frastructure so that the whole system scales.

Given the complexity and inherent decentralization of the infrastructure, we pro-
pose the use of multi-agent technologies to define this governance layer on top of the
M2M infrastructure. We used a newborn multi-agent oriented programming framework
called JaCaMo2 to implement it. In order to obtain an agile governance, the gover-
nance strategy is defined as an explicit organization specification, using the MOIS E
framework [9], part of the JaCaMo platform. Thanks to the explicit and agent-readable
specifications, agents are able to reason about the governance of the system to change
and adapt it to the evolution of the system. The proposed multi-agent governance is
illustrated by a smart parking management application.

Section 2 motivates our approach with a description of the M2M infrastructure and
the smart parking application that we consider in this paper. Based on this applicative
context, we describe the multi-agent governance layer deployed on top of the M2M
components (Section 3). We then focus, in Section 4, on the definition of the governance
strategy stressing how it can be dynamically adapted by agents. The application of this
governance applied to the smart parking management use case is described in Section 5.
Then, Section 6 discusses the proposed approach and compares it to related works.
Finally, Section 7 concludes this paper and considers the perspectives for future work.

2 Motivations

Machine to Machine (M2M) systems are an early technology which is just raising out
of fully proprietary solutions with different standard proposals [6]. We first give an
overview of the M2M architecture standard proposal on which we are basing our work.
We then introduce the smart parking management application as an illustrative example
where we highlight the need of an agile governance layer.

1 The SensCity project (FUI Minalogic) Sensors and Services for Sustainable Cities:
http://www.senscity-grenoble.com/

2 http://www.jacamo.sourceforge.net

http://www.senscity-grenoble.com/
http://www.jacamo.sourceforge.net

A Multi-agent Based Governance of M2M Systems 207

2.1 Machine-to-Machine Architecture

The M2M Technical Committee of the European Telecommunications Standards Insti-
tute (ETSI) is defining standards for M2M infrastructure. The scope of these standards
cover communication from the devices to the applications, through gateways and a core
platform. As shown in the latest version of ETSI’s specification draft [6], the M2M ar-
chitecture is divided into three domains (cf. Fig. 1): Device, Network and Application.

The Device Domain is composed of applicative devices –sensors and actuators– and
repeaters communicating in a Wireless Sensor and Actuator Network (WSAN) linked
to a gateway. The WSAN groups several devices communicating together. Devices can
embed several sensors and actuators, or none of them. Repeaters are placed to extend
the coverage managed by a gateway. It manages one or several WSANs, security and
device authentication and can also manage quick reaction to sensed events generat-
ing commands to devices. The gateway sends/receives messages to/from the platform
via broadband access. Thus it also belongs to the Network Domain. The core platform
is involved in both the Network Domain and the Application Domain, as shown with the
synthesis of the functionalities of this platform in Table 1. On one hand, it is responsi-
ble for network communications with other platforms. On the other hand, it gives the
application –managing business logic– transparent access to the devices and stores the
messages (see ETSI M2M Functional Specification [6] for further details).

Table 1. M2M core platform’s functionalities [6]

Network Domain Application Domain

REM Remote Entity Management AE Application Enablement
GC Generic Communication CB Compensation Brokerage

RAR Reachability Addressing and Repository TM Transaction Management
CS Communication Selection HDR History Data Retention
IP Interworking Proxy

SEC Security

2.2 Use Case Scenario: A Smart Parking Management

In order to be deployed at a city scale and used by different client applications, a verti-
cal solution as a whole cannot be used since it is too expensive and not flexible enough.
Installing horizontal integration solution is of growing interest in order to share de-
vices between different stakeholders [1]. To this aim, agility is required for conciliating
different requirements.

In the following, let’s consider a Smart Parking System where car detectors are used
for monitoring parking places. The collected data are used and shared between, at least,
two applications: Car Guidance, City Monitoring. When a car parks in or leaves the
place, the event is notified through the M2M infrastructure: a message is 1. sent to the
gateway (Device Domain) which 2. authenticates and 3. forwards it to the M2M plat-
form (Network Domain) where 4a. it is stored and 4b. notified to subscriber applications
(Application Domain), which in turn 5. retrieve the message. Applications can also send
commands to the devices using the reverse path to act on the environment, e.g. to raise
a parking post to reserve a place.

208 C. Persson et al.

The Car Guidance application helps drivers to find a parking place directly and close
to their destination following their preferences, reducing traffic flow and pollution3.
To do this, it needs to monitor the places within an area around the destination when
the driver is getting close to this area. In the case of reservable parking places, the
application can send a message to actuate a parking post for the user.

The City Monitoring application is used by city services (eg. police) to monitor no-
parking places. It requires alerts to be sent when a place is occupied during a nonstation-
ary time with a variable priority (e.g. water access for firemen has priority over garage
doors).

As sending messages consumes a lot of energy, due to several applications sharing
the same devices with heterogeneous requirements, it raises issues such as scalabil-
ity and energy consumption. Furthermore, other applications, using other devices, will
share the same infrastructure –the platform and the gateways– generating traffic and
resource management issues.

In this context, an agile governance is required to define how the resources –devices,
servers, network– should be used. Each vertical requirements can be specified by a
Service Level Agreement (SLA) contract between an application, the shared infrastruc-
ture (i.e. servers, gateways and repeaters) and a set of devices. The governance layer
concerns both the vertical infrastructure –i.e. interactions between an application and
devices– and the horizontal infrastructure –i.e. sharing the resources between different
applications. The goal of this paper is to propose a multi-agent based governance model
to manage the shared M2M infrastructure.

3 Overview of the Multi-agent Governance

Given the different requirements and motivations expressed in the previous section,
this section describes the multi-agent approach used to define the M2M governance,
describe by Fig. 2. To clearly separate the different concerns that arise in such applica-
tions, we have chosen a multi-agent oriented programming approach which is supported
by the JaCaMo4 [18] framework. This multi-agent oriented programming framework
allows the development of MAS taking into account three different programming di-
mensions, namely agent, environment, and organization.

JaCaMo is built upon the synergistic integration of three existing agent-based tech-
nologies: (i) Jason [4], (ii)Moise [9], and (iii) CArtAgO[19]. A JaCaMo multi-agent
system (i.e., a software system programmed in JaCaMo) is given by a multi-agent orga-
nization programmed inMoise, organizing autonomous agents programmed in Jason,
working in shared distributed artifact-based environments programmed in CArtAgO.
JaCaMo integrates these three platforms by defining a semantic link among concepts
of the different programming dimensions at the meta-model and programming levels,
in order to obtain a uniform and consistent programming model aimed at simplifying
the combination of those dimensions when programming multi-agent systems.

3 Parking search is estimated to be from 5% to 10% of traffic and represented a total waste of 70
millions hours for a cost of 600 millions in France [13] (2005).

4 http://www.jacamo.sourceforge.net

http://www.jacamo.sourceforge.net

A Multi-agent Based Governance of M2M Systems 209

Fig. 2. On top of the SensCity Core Platform, the multi-agent based governance layer architecture
is as follows: artifacts encapsulate the components to allow the agents to control the platform by
applying the SLAs strategy defined by an organization following the ETSI recommendations

210 C. Persson et al.

These three dimensions are used to define the governance layer deployed on top of
the M2M infrastructure (cf. Fig. 2) aiming at governing its use by the different appli-
cations: (i) artifacts encapsulate the infrastructure components and provide the agents
with the necessary actions and perceptions to monitor and control the use of these com-
ponents, (ii) agents are the reasoning entities that make local decisions with respect to
the governance taking into account their partial view on the infrastructure status and
that cooperate with the other agents participating in the governance, (iii) organization
that structures and regulates the autonomous functioning of the agents with respect to
the global governance strategy defined from the requirements issued from the applica-
tions providing added value services in the smart city by acting on and consuming the
data provided by the M2M infrastructure.

The organization limits the place of the possible actions that the agents can execute,
letting them decide locally and autonomously. Thanks to theMoise framework, agents
are able to reason about the organization and decide to change it when it is not adapted
anymore to the current state of the governance requirements (e.g. high number of vio-
lations greater than authorized by the SLA contract).

Before detailling the governance strategy as an organization in the next section (Sec-
tion 4), we first start by describing the use of artifacts (Section 3.1) to monitor and control
the SensCity platform and the agents (Section 3.2) of the proposed governance model.

3.1 Artifacts to Control the M2M Infrastructure

Artifacts defined with the CArtAgO platform are used to encapsulate components of the
M2M infrastructure to give the agents the control of it. In the context of the SensCity
project, the governance layer is deployed on top the core platform which is divided into
an USP part to manage the notifications sent to the applications, their rights and billing,
and an UCCP part to manage the devices and communications with them. Fig. 3 de-
scribes the component-based architecture of these two platforms. Artifacts encapsulate
the components’ functionality.

These artifacts are used to give the agents a representation of the system to govern.
An artifact monitors one or several components’ activity: the agents are notified of
statuses and calls to the components by signals and observable properties. The artifact’s
operations enable the agents to use the component.

3.2 Agents to Apply and Reason about the Governance Strategy

Agents are the decision-making entities of the governance layer. They adopt one or
several roles in the organization corresponding to the part of the governance for which
they assume responsibility. Following the strategy specification given by the organiza-
tion (described in Section 4), they ensure that the M2M system is functioning correctly
by monitoring the infrastructure and adapting it using the artifacts. For example, if an
agent notices an overload on the platform, it can interrupt the calls to its components in
order to filter the calls and redirect some of them to another platform.

Agents implements the governance policies. They can reason about the strategy def-
inition and evaluate it with respect to the M2M system’s functioning. They can adapt
either the M2M infrastructure using the artifacts or redefine the strategy by proposing
new organizational specifications.

A Multi-agent Based Governance of M2M Systems 211

Fig. 3. The SensCity’s core platform component-based architecture divided into an USP part
communicating with applications and an UCCP part communicating with the gateways and de-
vices

As the different parts of the M2M infrastructure should be handled differently, dif-
ferent kinds of agents have been identified: appAg, platformAg, gwAg and deviceAg.

The appAg agents ensure the requirements fulfilment from the application point of
view. Thus, this type of agent regulates the commands and requests sent by an applica-
tion to the devices and check the notifications it receives. To perform this regulation, an
AppAg is able to intercept messages by using the AppCNXArt artifact to control them
and validate the transmission.

Similarly, the deviceAg agents control the usage of the devices specified by the
SLA, by using encapsulation artifacts such as DeviceCNXArt , to ensure that the devices
perform their obligations. The agent can evaluate the load of a device by the number of
roles it has adopted, and so make smarter use of the device (e.g. combine two messages
at once, or skip messages if not necessary). The main goal of such an agent is to make
the device’s life as long as possible. It negotiates the requirements in this aim and can
eventually give priority to one contract over another.

212 C. Persson et al.

The platformAg agents are responsible for the platform functioning. They contribute
to the contract agreement by evaluating the traffic and the load it will generate on the
server itself. For example, when it is too high, it can intercept calls to some components
and redirect them to a delegated server. This has to be done with respect to the latency
requirements specified, so redirection has to be carried out according to the priority of
the message and its destination. For example, priority to notifications to the CityMonitor-
ing application over the CarGuidance.

The gatewayAg agents are concerned with traffic and load on the Gateway, as plat-
formAg, but also with the local rule treatment. Indeed, application can define rules to
generate –i.e. through the gateway– commands locally to the devices based on events
sensed by the sensors, generating added computational and memory load. In this case,
it is defined by a scheme which specifies the rules and is validated by the agent respon-
sible for the gateway.

4 An Organizational Model for the M2M Governance Strategy

Multi-agent organizations are concerned with the cooperation schemes between agents
to achieve global goals [8] whether they result from agent interactions [17] or explicitly
defined in terms of roles, plans, groups and links [8]. As M2M infrastructures should
preferably be open to various applications and stakeholders, it is necessary to spec-
ify the governance strategies of such systems explicitly in order to guarantee that the
requirements are fulfilled.

The Moise framework [10] provides a programming language to describe an or-
ganization following two independent dimensions: (i) the structural specification (SS)
defines the roles and groups that the agents can adopt and enter in and (ii) the functional
specification (FS) is a set of social schemes, i.e. a tree decomposition of goals organized
into missions that the agents have to fulfil. The two dimensions are linked together by
the normative specification (NS) assigning missions to roles. This makesMoise very
suitable for the definition of a flexible governance strategy since we can envision to
change either the SS, the FS or the NS without changing the other ones.

The organizational specification describes the governance objectives with respect to
both vertical and horizontal concerns. In fact, as the infrastructure is shared by several
heterogeneous applications and devices, the governance strategy must take into account
the “horizontal” issues. Hence, a main frame defines the horizontal aspects which are
extended for each vertical applicative requirements.

This section describes the organization corresponding to the M2M Organizational
Specification (OS) for the governance strategy of the M2M architecture as described
in Section 2 and highlights the key points for reorganization. This specification can be
understood by the agents, so they can govern the M2M system based on it. Furthermore,
they can reason about it to choose whether to follow it or not and then to adapt it to the
situation.

4.1 Structural Specification

Fig. 4 shows the structural specification of the M2M OS. On one side it specifies the
horizontal structure of an M2M architecture (within the M2M System group) and on the

A Multi-agent Based Governance of M2M Systems 213

Fig. 4. Structural Specification for an M2M system and its extension for a “vertical” application
(Car Guidance)

other side it defines one or several vertical groups (e.g. gpGuidance group). The agents
can adopt one or several roles –depending on compatibility and cardinalities– to declare
explicitly which part of the governed system they assume the responsibility of.

The horizontal part is composed of three groups corresponding to the M2M archi-
tecture described in Section 2.1: (i) the Device Domain group, (ii) the Network Domain
group and (iii) the Application Domain group. This specification maps the functionalities
of these different domains into roles.

The Gateway and Gateway Proxy roles are made compatible to allow agents to play both
roles at the same time in the Device Domain and Network Domain groups respectively.

Each functionality of the M2M Core Platform is defined as a role in the Applica-
tion Domain group –Application Enabler , Application Security Manager , Data History Man-
ager , Compensation Broker– or in the Network Domain group –Remote Entity Manager ,
Network Security Manager , Communication Enabler , Interworking Proxy. All these roles
inherit from the abstract Platform Manager role to make global the property of compati-
bility between any of these roles and to also express the communication link.

Finally, the Application role is responsible for performing the business logic by send-
ing commands to the devices and by retrieving the collected data.

The vertical part is composed of specific groups which represent a contract between
an application, the devices, the platforms and gateways. In particular, such a group ex-
presses the application needs in terms of parts of the M2M system to be involved in the

214 C. Persson et al.

Fig. 5. Functional Specification: the Data Collection scheme

applicative realization and their cardinality. The adoption of a vertical role by the agents
can be considered as a contract agreement. The content of this contract is defined by
the norms which assigns missions to the roles specifying the requirements. The group
is composed of roles linked to the horizontal specification using compatibility links.
Thus, the agents can be involved in both the vertical and the horizontal organization to
link the two concerns.

As an example, Fig. 4 shows such a vertical group for a Parking Guidance application
(gpGuidance group). It involves the application itself (GuidanceApp role), the platform
(GuidancePlatform role), a gateway (GuidanceGW role) and parking sensors (Guidance-
Sensor role).

As shown in [11] this structure can evolve along different dimensions (roles, groups,
cardinalities, links. . .). This allow the governance to suits to the infrastructure’s dynam-
ics. As an example, if more agents are needed to manage a part of the M2M system, the
cardinality of the corresponding roles can be increased.

4.2 Functional Specification

The functional specification describes coordination schemes by means of goals to be
globally satisfied by the agents in the organization. It gives the agents a comprehensive
understanding of the system’s functioning but it does not tell them how to achieve these
goals: the agents are free to decide which actions to perform to satisfy the goals they are
committed to. The following describes one of the social schemes that we have defined
for vertical data collection.

The scheme in Fig. 5 describes the goals to collect data from sensors. The root goal
(Monitor Environment), is a maintenance goal which is satisfied sequentially by (i)
sensing the environment (SenseEnvironment) and (ii) notifying the subscribed appli-
cations the environment’s state (NotifyEnvironmentState). The first sub-goal is accom-
plished in the context of the the mSense mission. The notification can be made either
after each time something is sensed or after reporting several measures at once. It is an
achievement goal satisfied by the following sub-goal sequence: (i) send to the gateway
(SendToGW), (ii) send to the platform (SendToPlatform) and (iii) notify applications
the sensed value (NotifyApplication).

Let’s notice that the figure does not express the whole specification. In particular,
each mission is qualified by the minimum and maximum number of agents to commit
to; goals can be parameterized when instantiating the scheme. Agents can customize a

A Multi-agent Based Governance of M2M Systems 215

scheme for a particular application or for special situations. For example, different areas
of the city could be monitored differently depending on the traffic, the time of day or
the user demand, then the agents can fine-tune these values to adapt the scheme to the
situation in order to avoid unuseful message transmissions.

4.3 Normative Specification

Norms delimit the actions that are allowed in the system. In Moise a norm assigns a
mission to a role, following a deontic relation when a condition is satisfied and specifies
a finite time in which to fulfil it. Thus, it provides a flexible way of assigning tasks to
the agents.

Table 2 summarizes a part of the norms used for the M2M system corresponding to
the data collection scheme. Agents playing Sensor roles must sense the environment
(mSense mission). This mission consists of sensing the environment either regularly
(norm n01), or at each change (norm n02). In any case, Sensor agents must commit to
the mSense mission (norm n03).

Agents are free to decide whether to follow or violate these norms. It can be regulated
by reinforcement or punishment to encourage them to follow the norms. But it also
provides a way to detect irrelevant specifications: an agent might violate a norm because
it is impossible to satisfy a goal. Then agents should either redefine the norm –e.g.
modify the condition, relax the deontic relation– or the scheme itself –e.g. delete a goal
or add an alternative to it; define a sequence to make the goal reachable.

Table 2. Normative specification for an M2M system

Id Condition Role Rel. Mission TTF
n01 scheduled(sensing_time) Sensor perm mSense tsense
n02 occurred(event) Sensor perm mSense tsense
n03 n01 ∨ n02 Sensor obl mSense tsense
n04 changed(sensed_value) Sensor obl mNotify tsend∧is_critical(situation)
n05 tlast_msg ≥ msg_period Sensor obl mNotify tsend∨is_ f ull(bu f f er)
n06 on_receive(msg) Repeater obl mRepeat trepeat
n07 on_receive(msg) Gateway perm mNotify tnoti f y∧is_authenticated(msg)

.

5 Application: Smart Parking Management with the SensCity
Platform

This section describes the application of the governance model presented in Sections 3
and 4 to the scenario described in Section 2.2. It consists of an extension of the based
organization by new roles, linked to the generic ones, grouped in a specific group that
is responsible for specific schemes and ruled by specific norms.

216 C. Persson et al.

 S
m

ar
t

P
ar

ki
ng

 g
ov

er
na

nc
e

P
ro

po
sa

l

V
al

id
at

io
n

S
LA

 n
eg

oc
ia

tio
n

S
ch

em
e

ex
ec

ut
io

n

D
at

a
C

ol
le

ct
io

n

Fig. 6. Multi-agent governance of a smart parking management application

A Multi-agent Based Governance of M2M Systems 217

In the smart parking scenario the CarGuidance and CityMonitoring applications are
governed by appAg agents while the CarDetector , ParkingPost devices are controlled by
deviceAg agents. Each of the SensCity sub-platforms (USP and UCCP are controlled
by a platformAg agent). In order to simplify and reduce the applicative description, no
Gateway is considered here.

The following scenario is illustrated by the Fig. 6 sequence diagram in which the
agents are the underlined participants, the all participant represents all the agents
involved in the collaboration scheme, the OrgBoard artifact represents the organi-
zational specification and controls, and CAR_GUIDANCE, USP1, USP2, UCCP and
PARK_SENSOR represent elements of the M2M infrastructure, encapsulated by arti-
facts.

The first step consists of negotiating the SLA defined by a set of norms that man-
age the application-specific roles and missions. The SLA definition is done following
the norm negociation cycle principle [3]: (i) a social scheme template is parameter-
ized following the application needs, (ii) social norms define the SLAs for these goals
and (iii) acceptance is achieved by role adoption. When the CAR_GUIDANCE applica-
tion asks (1) the USP1 platform for a subscription to a set of Npark_sensors devices, the
appAg agent intercepts (1.1) the call and formulates the requirements as an organiza-
tional specification (1.1.1): a gpGuidance group composed of the GuidanceApp, Guid-
ancePlatform (with cardinality 2) and GuidanceSensor (with cardinality Npark_sensors)
roles, a parameterized Data Collection scheme and norms corresponding to the appli-
cation’s requirements. All of the agents concerned are notified of the proposal (2). The
agents can validate the SLA proposal by adopting one or several roles in the organiza-
tion (2.1). But if they estimate that the proposal is not affordable, e.g. a resource will
be overloaded (2.2), they can propose a new specification (2.2.1). This new proposal is
communicated again (2.3) and the same process occurs until all of the agents validate
the SLA by adopting the roles (2.4). Then the appAg will update the application’s rights
in the USP1 platform.

Then the CAR_GUIDANCE application can start the subscription (3) which will be
handled (3.1) by the appAg by starting the Data Collection scheme (3.1.1). The agents
are notified of goals to achieve defined by the norms (3.2), so the deviceAg agents ac-
tivate the PARK_SENSOR devices they are responsible for (3.2.1). When messages are
received by the UCCP platform (4), the deviceAg makes sure that it meets the require-
ments (4.1, 4.1.1).

The UCCP’s StoreNForward component is encapsulated by an artifact, so a platfor-
mAg agent can regulate and validate the message’s storage (4.2, 4.2.1, 4.2.2) before it
is transmitted to the USP1 platform (5). There, a platformAg agent interrupts the Mes-
sageDispatcher component (5.1) because it is overloaded (5.1.1) and decides to redirect
it to the USP2 platform (5.1.2) which transfers the message to the application (5.2, 6).
This is notified to the appAg agent (6.1) which considers the requirements as not satis-
fied (6.1.1).

The norm violation (7) can be handled either by reinforcement and punishment
mechanisms (7.1) applied to the agents and/or by a reorganization process (7.2) based
on the analysis of the system’s failures by the agents.

218 C. Persson et al.

6 Related Work and Discussion

M2M is a promising paradigm and is the topic of several works. For instance, the SEN-
SEI project5 uses a virtual representation called “WSAN Islands” which provides the
sensor value of the physical device and can be fed by predictive agents to reduce com-
munications to sensors. Our work goes a step further since SENSEI doesn’t yet provide
any governance structure to control its components’ behavior.

Some of them propose a governance structure. For instance, an agent-based approach
is used by the US Ocean Observatories Initiatives to build an Ocean Observatories Ini-
tiative Cyberinfrastructure [5] to monitor the oceans with a marine sensor platform. It
defines an infrastructure for an M2M server composed of six service networks interact-
ing together following predefined interaction scenarios. The AAMSRT framework [14]
gives another multi-agent approach for managing sensor re-targeting on satellites. Yet,
both of these models use a static organizational model even if the second one is based
on agents negotiating their commitment to missions.

Our paper proposes a template for an end-to-end M2M architecture. The openness
and the heterogeneity of applicative requirements made necessary to ensure agility
to the specifications by the means of organizational adaptations. For example, the
sensing_time and tsense values in norm n01 are specific to the applicative needs and
the type of sensor. Agents can adapt the OS by extending the existing organization as
a generic framework: new norms specific to applicative requirements, involving new
roles extending existing ones to fulfil specific goals.

Moreover, as the OS is explicit and understandable for the agents, they can reason
about it in order to improve the system’s performances. For example, faced to a scal-
ability issue, role cardinalities could be increased to enable some functionalities and
components of the platform to be delegated to several agents. In contrast, security is-
sues could lead to more atomicity by lowering role cardinalities.

Nevertheless, such a reorganization raises several issues: while self-organizing
MAS’s are more adaptive and robust, they might not converge in a stable organiza-
tion [16]. Furthermore, the (re)organizational cost [12] must be taken into account to
decide when to adapt. Another issue is to define who manages the reorganization: ded-
icated agents applying the organizational policy [11] or the applicative agents directly
as in the AMAS [2] theory? While the former solution suffers robustness and scalabil-
ity, the latter raises trust management issues. A possibility would be balancing between
agents adapting locally based on their perception and dedicated agents for definitive
organizational changes.

A contribution of our work is the explicitly expression of the vertical and horizontal
concerns as different part of the organization. This model simplifies the analyze and
reorganization process as the agent can clearly identify which part of the specification
doesn’t suit. Nevertheless, modifying a part of the organization raises issues with re-
spect to the organization’s integrity and consistency. For example, what does an agent
is supposed to do when it is fulfilling a mission but the cardinality has just decreased in
the OS? And what are the side effects?

5 SENSEI (Integrating the Physical with the Digital World of the Network of the Future), EU
ICT FP7, http://www.sensei-project.eu/

http://www.sensei-project.eu/

A Multi-agent Based Governance of M2M Systems 219

Hence, a solution is to stop the organization, update its definition and restart the
groups and schemes. However, this approach is not satisfying neither as maintenance
goals make difficult to define the time to stop a scheme. Furthermore, goals might have
been modified so it is not possible to save all the schemes’ states to restore them.

Therefore, a step further would be to split the model into several organizations: one
for the horizontal concerns and one for each vertical application requirements. This
would lead to several small organizations easier to analyze and adapt separately. Then
agents will be able to reason in term of organization involvement in order to adapt the
priority of one application’s requirements or the horizontal objectives. Yet, much work
have to be done to specify extra-organization links and constraints.

7 Conclusion and Further Work

Through a smart parking management application, this paper has presented a multi-
agent architecture for an agile governance of Machine-to-Machine systems. The gov-
ernance system is implemented using the JaCaMo framework in order to separate the
different governance layers: CArtAgO artifacts are used to monitor and handle the M2M
infrastructure, Jason agents applies the governance strategy and reason about the gov-
ernance objectives which are specified as aMoise organization.

This governance model takes into account both the vertical application requirements
and the shared infrastructure horizontal concerns, following the latest recommendations
of the ETSI [6]. Furthermore, in order to meet scalability requirements, it highlights sev-
eral key elements for adapting the structural, functional and normative specifications.

An other step in our work will focus on exploring reorganization aspects following
two directions: (i) a behavioural specification to enable agents to adapt the organization
directly and (ii) the definition of new roles dedicated to organization monitoring and
reorganization processes to control the reorganization. Furthermore, while splitting the
horizontal and the vertical concerns into several organization, it would be necessary to
define heuristics to prioritize an organization over an other one.

In the meantime, the proposed organization, agents and artifacts will be deployed in
an M2M infrastructure as a demonstrator in order to test and validate this model under
real conditions.

References

1. Barkai, J.: Keynote speech – how to design your business (and products) for machine to
machine communication. In: Connected World Conference (2008),
http://www.connectedworldmag.com/conference/
index.php?q=2008-Presentations

2. Bernon, C., Camps, V., Gleizes, M.P., Picard, G.: Engineering Self-Adaptive Multi-Agent
Systems: the ADELFE Methodology, ch. 7, pp. 172–202. Idea Group Publishing (2005)

3. Boella, G., Van Der Torre, L.: Norm negociation in mutltiagent systems. International Journal
of Cooperative Information Systems 16(1), 97–122 (2007)

4. Bordini, R., Hübner, J., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak
Using Jason. John Wiley & Sons, Ltd. (2007)

http://www.connectedworldmag.com/conference/index.php?q=2008-Presentations
http://www.connectedworldmag.com/conference/index.php?q=2008-Presentations

220 C. Persson et al.

5. Chave, A., Arrott, M., Farcas, C., Farcas, E., Krueger, I., Meisinger, M., Orcutt, J., Vernon,
F., Peach, C., Schofield, O., Kleinert, J.: Cyberinfrastructure for the US Ocean Observatories
Initiative: Enabling interactive observation in the ocean. In: Oceans 2009-Europe, pp. 1–10
(May 2009)

6. ETSI: Tech. Spec. 102 690 V<0.13.3>, Machine-to-Machine communications – Functional
architecture (July 2011)

7. Firesmith, D.: Profiling Systems Using the Defining Characteristics of Systems of Systems
(SoS). Techreport, Software Engineer Institute, Pittsburgh, Pennsylvania (2010)

8. Horling, B., Lesser, V.: A survey of multi-agent organizational paradigms. The Knowledge
Engineering Review 19(04), 281–316 (2005)

9. Hübner, J.F., Sichman, J.S., Boissier, O.: Developing Organised Multi-Agent Systems Using
the MOISE+ Model: Programming Issues at the System and Agent Levels. Agent-Oriented
Software Engineering 1(3/4), 370–395 (2007)

10. Hübner, J.F., Sichman, J.S., Boissier, O.: A Model for the Structural, Functional, and Deontic
Specification of Organizations in Multiagent Systems. In: Bittencourt, G., Ramalho, G.L.
(eds.) SBIA 2002. LNCS (LNAI), vol. 2507, pp. 118–128. Springer, Heidelberg (2002)

11. Hübner, J.F., Sichman, J.S., Boissier, O.: Using the MOISE+ for a Cooperative Framework
of MAS Reorganisation. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI),
vol. 3171, pp. 506–515. Springer, Heidelberg (2004)

12. Kota, R., Gibbins, N., Jennings, N.: Decentralised Approaches for Self-Adaptation in Agent
Organisations. ACM Transactions on Autonomous and Adaptive Systems, 1–36 (2011)

13. Lefauconnier, A., Gantelet, E.: Parking place search: strategies, associated nuisances, park-
ing management issues in france. Tech. rep., SARECO, Paris, France (2005) (in French),
http://www.sareco.fr/Publications/Temps_de_recherche.pdf

14. Levy, R., Chen, W., Lyell, M.: Software agent-based framework supporting autonomous and
collaborative sensor utilization. In: Proc. of 8th Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2009), pp. 93–100 (May 2009)

15. Ma, X., Luo, W.: The Analysis of 6LowPAN Technology. In: IEEE Pacific-Asia Workshop
on Computational Intelligence and Industrial Application, vol. 1, pp. 963–966. IEEE Com.
Soc. (December 2008)

16. Picard, G., Hübner, J.F., Boissier, O., Gleizes, M.P.: Reorganisation and Self-organisation
in Multi-Agent Systems. In: 1st International Workshop on Organizational Modeling,
ORGMOD 2009, pp. 66–80 (June 2009)

17. Picard, G., Mellouli, S., Gleizes, M.-P.: Techniques for Multi-agent System Reorganization.
In: Dikenelli, O., Gleizes, M.-P., Ricci, A. (eds.) ESAW 2005. LNCS (LNAI), vol. 3963, pp.
142–152. Springer, Heidelberg (2006)

18. Piunti, M., Boissier, O., Hübner, J.F., Ricci, A.: Embodied Organizations: a unifying perspec-
tive in programming Agents, Organizations and Environments. In: COIN10@MALLOW, pp.
98–114. Springer (September 2010)

19. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in cartago. In: Bor-
dini, R.H., Dastani, M., Dix, J., El Fallah-Seghrouchni, A. (eds.) Multi-Agent Programming:
Languages, Platforms and Applications, vol. 2, pp. 259–288. Springer (2009)

http://www.sareco.fr/Publications/Temps_de_recherche.pdf

	A Multi-agent Based Governanceof Machine-to-Machine Systems
	Introduction
	Motivations
	Machine-to-Machine Architecture
	Use Case Scenario: A Smart Parking Management

	Overview of the Multi-agent Governance
	Artifacts to Control the M2M Infrastructure
	Agents to Apply and Reason about the Governance Strategy

	An Organizational Model for the M2M Governance Strategy
	Structural Specification
	Functional Specification
	Normative Specification

	Application: Smart Parking Management with the SensCity Platform
	Related Work and Discussion
	Conclusion and Further Work
	References

