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Abstract. This article shows that seemingly diverse implementations of
multi-agent reinforcement learning share the same basic building block
in their learning dynamics: a mathematical term that is closely related
to the gradient of the expected reward. Gradient Ascent on the expected
reward has been used to derive strong convergence results in two-player
two-action games, at the expense of strong assumptions such as full infor-
mation on the game that is being played. Variations of Gradient Ascent,
such as Infinitesimal Gradient Ascent (IGA), Win-or-Learn-Fast IGA,
and Weighted Policy Learning (WPL), assume a known value function
for which the reinforcement gradient can be computed directly. In con-
trast, independent multi-agent reinforcement learning algorithms that
assume less information on the game being played such as Cross learn-
ing, variations of Q-learning and Regret minimization base their learning
on feedback from discrete interactions with the environment, requiring
neither an explicit representation of the value function nor its gradient.
Despite this much stricter limitation on information available to these al-
gorithms, they yield dynamics which are very similar to Gradient Ascent
and exhibit equivalent convergence behavior. In addition to the formal
derivation, directional field plots of the learning dynamics in representa-
tive classes of two-player two-action games illustrate the similarities and
strengthen the theoretical findings.

1 Introduction

Recent multi-agent learning survey papers and publications at agents and ma-
chine learning conferences make clear that the number of newly proposed multi-
agent learning algorithms is constantly growing. Many domain-specific problems
are tackled by modifying or refining the learning algorithms in question for the
task at hand. An overview of well-established multi-agent learning algorithms
with their various purposes is given in [5]; it demonstrates the need for a com-
prehensive understanding of their similarities and differences. The diversity of
learning algorithms makes it imperative to specify the assumptions (learning
bias) which precede any discussion [6]. Within the scope of this article, agents
can only observe their own actions and payoffs (i.e., learning with Minimal In-
formation).

Q-learning has been linked to a dynamical system which allows decomposing
the learning dynamics into exploitation and exploration terms [20]. This reveals
that the exploitation terms, which move the behavior toward higher payoff, are
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equivalent to Cross Learning as described in [3]. The remaining terms allow for
inferior strategies to be explored. This article extends this decomposition, and
further relates Cross Learning to the most fundamental concept of learning to
increase payoff – learning along the reinforcement gradient.

Specifically, two independent branches of multi-agent learning research can be
distinguished based on their respective assumptions and premises.The first branch
assumes that the value function of the game is known to all players, which is then
used to update the learning policy based onGradientAscent. Notable algorithms in
this branch include Infinitesimal Gradient Ascent (IGA) [17], the variationWin or
LearnFast IGA(WoLF) [4] and theWeightedPolicyLearner [1].The secondbranch
ofmulti-agent learning is concernedwith learning in unknown environments, using
interaction-based Reinforcement Learning, and contains those algorithms which
have been shown to be formally connected to the replicator equations of Evolu-
tionary Game Theory. In this case, the learning agent updates its policy based
on a sequence of 〈action, reward〉 pairs that indicate the quality of the actions
taken. Notable algorithms include Cross Learning [7], Regret Minimization [13],
and variations of Q-learning [11,21]. This article demonstrates inherent similar-
ities between these diverse families of algorithms by comparing their underlying
learning dynamics, derived as the continuous time limit of their policy updates.
These dynamics have already been investigated for algorithms from each family
separately [1,3,4,11,13,17], however, they have not yet been discussed in context of
the relation to each other, and the origin of their similarity has not been discussed
satisfactorily.

The remainder of this article is structured as follows: Section 2 formally in-
troduces Gradient Ascent, Reinforcement Learning, and the concepts of Evolu-
tionary Game Theory that are used in the analysis. This analysis is presented
in Section 3 and starts with a comparison of the evolutionary dynamics of re-
inforcement learning. Representative two-player two-action games serve as an
illustrative example for the comparison of these dynamics to gradient ascent.
This comparison is then generalized to two-player normal form games. Section 4
emphasizes the practical differences between reinforcement learning and gradient
ascent, and sketches the merits of evolutionary game theory. Finally, Section 5
concludes the article.

2 Background

This section provides an overview of the basic concepts of Gradient Ascent,
Reinforcement Learning, and Evolutionary Game Theory, that are necessary
to understand the remainder of this paper. This overview is not meant to be
complete; references are provided for those readers that want to delve deeper
into these diverse fields.

2.1 Gradient Ascent

The idea of gradient ascent (or decent) is a well known optimization technique
in the field of Machine Learning. If an appropriate objective function can be
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defined, the learning process can be directed in the direction of its gradient in
order to find an optimum. This concept can be adapted for multi-agent learning
by having the learning agents’ policies follow the gradient of their expected
payoff. Naturally, this approach assumes that the expected payoff function is
known to the learners, which is not generally feasible in practice.

One algorithm that implements gradient ascent is Infinitesimal Gradient
Ascent (IGA) [17], in which a learner updates its policy by taking infinitesimal
steps in the direction of the gradient of its expected payoff. It has been proven
that in two-player two-action games IGA either converges to a Nash equilibrium
or the asymptotic expected payoff of the two players converges to the expected
payoff of a Nash equilibrium. A discrete time algorithms using a finite decreasing
step size is shown to share these properties as well.

A learner’s policy π(t) = {π1, π2, . . . , πn} denotes a probability distribution
over its n possible actions at time t, where πi is the probability of selecting action
i, i.e., ∀i : 0 ≤ πi ≤ 1, and

∑
i πi = 1. Take V (π) : Rn → R to be the value

function that maps a policy to its expected payoff. The policy update rule for
IGA can now be defined as

Δπi(t)← α
∂V (π(t))

∂πi(t)

πi(t+ 1)← projection(πi(t) +Δπi(t))

(1)

where α denotes the learning step size. The intended change Δπ(t) may take π
outside of the valid policy space, in which case it is projected back to the nearest
valid policy by the projection function.

Win or Learn Fast. (WoLF) [4] is a variation on IGA which uses a variable
learning rate. The intuition behind this scheme is that an agent should adapt
quickly if it is performing worse than expected, whereas it should be more cau-
tious when it is winning. The modified learning rule of IGA-WoLF is

Δπi(t)← ∂V (π(t))

∂πi(t)

{
αmin if V (π(t)) > V (π∗)
αmax otherwise

πi(t+ 1)← projection(πi(t) +Δπi(t))

(2)

where π∗ is an arbitrary Nash equilibrium policy. This means that, next to the
assumption that the value function is known to all agents, WoLF also assumes
that the agents have knowledge of at least one strategy which is part of a Nash
equilibrium of the learning problem.

The Weighted Policy Learner (WPL) [1] is a second variation of IGA that
also modulates the learning rate, but in contrast to WoLF-IGA does not require
knowledge of Nash equilibria. The update rule of WPL is defined as

Δπi(t)← α
∂V (π(t))

∂πi(t)

{
πi(t) if ∂V (π(t))

∂πi(t)
< 0

1− πi(t) otherwise

πi(t+ 1)← projection(πi(t) +Δπi(t))

(3)
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where the update is weighted either by πi or by 1 − πi depending on the sign
of the gradient. This means that π is driven away from the boundaries of
the policy space. The projection function is slightly different from IGA, in that
the policy is projected to the closest valid policy that lies at distance ε within the
boundary of the policy space. Note that while WPL does not require the Nash
equilibria to be known, it still requires that the gradient of the value function is
known.

2.2 Reinforcement Learning

Reinforcement Learning starts from a different premise than gradient ascent.
Instead of assuming full knowledge of the value function, a reinforcement learning
agent learns from scratch by repeatedly interacting with its environment. After
taking an action, the agent perceives the resulting state of the environment and
receives a reward that captures the desirability of that state and the cost of the
action. While the single-agent reinforcement learning problem is well defined
as a Markov decision process, the multi-agent case is more complex. As state
transitions and rewards are influenced by the joint action of all agents, the
Markov property is no longer satisfied from a single agents’ point of view. In
essence, each agent is chasing its optimal policy, which depends on what the
other agents do – and since they change as well, all agents chase a moving
target. Nevertheless, single-agent reinforcement learning algorithms have been
shown to produce good results in the multi-agent case [5]. Three independent
reinforcement algorithms are selected for this article: the policy iterator Cross
Learning; and the value iterators Regret Minimization and Q-learning.

This article considers the special case of stateless reinforcement learning,
which facilitates the analysis of the algorithms and enables natural compari-
son to the similarly stateless gradient ascent algorithms. One of the most basic
reinforcement learning algorithms is Cross Learning [3,7], which updates its
policy π based on the reward r received after taking action j:

πi(t+ 1)←
{
r(t) + [1− r(t)] πi(t) if i = j
[1− r(t)] πi(t) otherwise

(4)

In this case, no projection function is needed as a valid policy is ensured by the
update rule as long as the rewards are normalized, i.e., 0 ≤ r ≤ 1. Cross Learning
is closely related to Finite Action-set Learning Automata (FALA) [15,19]. In
particular, it is equivalent to a learning automaton with a linear reward-inaction
(LR−I) scheme and a learning step size of 1.

The notion of Regret Minimization (RM) forms the basis for a differ-
ent type of reinforcement learning algorithms. In the Polynomial Weights algo-
rithm [2], the learner calculates the loss li of taking action i rather than the
best action in hindsight as li = r∗ − r where r is the reward received, and r∗

is the optimal reward. The learner maintains a set of weights w for its actions,
updates these weights according to the perceived loss, and derives a new policy
by normalization:
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A11, B11 A12, B12

A21, B21 A22, B22

)

Fig. 1. General payoff bi-matrix (A, B) for two-player two-action games

wi(t+ 1)← wi(t) [1− αli(t)]

πi =
wi∑
j wj

(5)

Like Cross Learning, this algorithm ensures a valid policy as long as the rewards
are normalized. There is however a difference in information requirements: Re-
gret Minimization requires to know the optimal reward in hindsight.

Arguably the best-known reinforcement learning algorithm is Q-learning.
Q-learning estimates the expected discounted future reward achievable for every
action from the learner’s current state [21]. In the stateless learning problem,
learning the expected discounted future reward is equivalent to learning the
expected instantaneous reward. The action-value function Q is updated at each
step according to

Qi(t+ 1)← Qi(t) + α [r(t) −Qi(t)] (6)

after which a new policy can be derived. Various schemes exist to derive the
policy, which mainly differ in the way they balance exploration and exploitation.
The Boltzmann scheme [18] allows controlling this balance using a temperature
parameter τ :

πi =
eQi·τ−1

∑
j e

Qj ·τ−1
(7)

A high temperature promotes exploration, whereas a low temperature favors
exploitation and generates a close-to-greedy policy. Q-learning using the Boltz-
mann scheme ensures a valid policy independent of the reward range, and does
not require the reward function to be known.

2.3 Evolutionary Game Theory

Game theory models strategic interactions in the form of games. Each player has
a set of actions, and a preference over the joint action space which is captured in
the numerical payoff signal. For two-player games, the payoffs can be represented
by a bi-matrix (A,B), that gives the payoff for the row player in A, and the
column player in B (see Figure 1). In this example, the row player chooses one
of the two rows, the column player chooses on of the columns, and the outcome
of this joint action determines the payoff to both. The goal for each player is
to come up with a strategy (a probability distribution over its actions) that
maximizes its expected payoff in the game.

It is assumed that the players are hyper-rational, in the sense that each player
purely tries to maximize its own payoff, and assumes the others are doing like-
wise. Under this assumption, the Nash equilibrium prescribes what players will
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reasonably choose to do. A set of strategies forms a Nash equilibrium if no single
player can do better by unilaterally switching to a different strategy [8]. In other
words, each strategy in a Nash equilibrium is a best response against all other
strategies in that Nash equilibrium.

Classical game theory requires that full information about the game is avail-
able to each player, which together with the assumption of hyper-rationality does
not reflect the dynamical nature of most real world environments [9]. Evolution-
ary Game Theory (EGT) replaces the assumption of rationality by concepts like
natural selection and mutation from evolutionary biology [14]. Since EGT relies
on relaxed assumptions, it provides a solid basis to study the decision making
process of bounded rational players in an uncertain environment.

Central to evolutionary game theory are the replicator dynamics, that describe
how a population of candidate strategies evolves over time. Suppose that each
player is represented by a population consisting of pure strategies. The fact that
a player plays action i with probability πi can then be translated as a fraction πi

of the population playing pure strategy i. In this evolutionary setting, the fitness
of each candidate strategy is defined by its expected payoff against a randomly
selected individual from the opponent’s population. The reproduction rate of
each strategy depends on the difference between its individual fitness and the
average fitness of the whole population: if a strategy does better than average,
its population share will increase; if it does worse, it will decrease.

In a two-player game with payoff bi-matrix (A,B), where the two players
use the strategies π and σ respectively, the fitness of row player’s ith candidate
strategy can be calculated as

∑
j Aijσj . Similarly, the average fitness of the pop-

ulation is defined as
∑

i πi

∑
j Aijσj . In matrix form, this leads to the following

dynamical system describing the change over time in the frequency distribution
of the candidate strategies:

π̇i = πi

[
eiAσ

T − πAσT
]

σ̇i = σi

[
πBeTi − πBσT

] (8)

where ei is the ith unit vector. These differential equations are the replicator
dynamics that encode the evolutionary concept of selection based on fitness.

2.4 Linking Reinforcement Learning to Evolutionary Game Theory

Multi-Agent Learning and Evolutionary Game Theory share a substantial part
of their foundation, in that they both deal with the decision making process of
bounded rational agents, or players, in uncertain environments. The link between
these two field is not only an intuitive one, but was made formal with the proof
that the continuous time limit of Cross Learning converges to the replicator
dynamics [3].

Recall the update rule of Cross Learning given in Equation 4. This update
rule can be rewritten to take the form πi(t+ 1) = πi(t) +Δπi(t) as

πi(t+ 1)← πi(t) +

{
r(t) − r(t)πi(t) if i = j
−r(t)πi(t) otherwise
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Note that the probability πi of action i is affected both if i is selected and if
another action j is selected, and let ri or rj be the reward received for taking
action i or j respectively. The expected change E [Δπi(t)] can now be calculated
as

E [Δπi(t)] = πi(t) [ri(t)− ri(t)πi(t)] +
∑

j �=i

πj [−rj(t)πi(t)]

= πi(t)

⎡

⎣ri(t)−
∑

j

πj(t)rj(t)

⎤

⎦

If the discrete updates are considered learning steps of time 1, then the con-
tinuous limit of this process can be taken as πi(t + δ) = πi(t) + δΔπi(t), with
lim δ → 0. This yields a continuous system which can be expressed with a partial
differential equation as

π̇i = πi

⎡

⎣fi −
∑

j

xjfj

⎤

⎦ where fi = E [ri]

which is the single-population replicator dynamic. In a two-agent scenario with
rewards defined by the payoff bi-matrix (A,B) and agents following policies π
and σ, the multi-population replicator dynamics of Equation 8 turn up again.
This can be seen by replacing the expected reward fi = eiAσ for the first agent.

3 Analysis

This section presents an overview of the dynamics of the different algorithms,
and highlights their similarities. The discussion is limited to the domain of two-
player normal form games for the sake of clarity. First, the evolutionary game
theoretic models that have been derived for Cross Learning, Frequency Adjusted
Q-learning and Regret Minimization are described and compared. Next, the sim-
ilarities between these evolutionary dynamics and the gradient ascent algorithms
are derived for two-player two-action games. In addition, the various dynamics
are visualized in directional field plots. Finally, these findings are generalized to
two-player normal-form games.

3.1 Evolutionary Dynamics of Reinforcement Learning

Cross Learning (CL) was the first algorithm to be linked to a dynamical system
from evolutionary game theory [3]. As described in Section 2.4, the learning dy-
namics of CL in the limit of an infinitesimal update step approach the replicator
dynamics of Equation 8, which is reiterated here for one player:

π̇i = πi

[
eiAσ

T − πAσT
]

The link between a policy learner like CL and a dynamical system in the policy
space may be rather straight forward. However, the link has been extended to
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value based learners as well. A model of Q-learning with the Boltzman update
scheme has been proposed in [20], given the additional assumption of updating
all actions simultaneously. The variation Frequency-Adjusted Q-learning
(FAQ-learning) [11] implements this model by modulating the update rule in-
versely proportional to πi, thereby approximating simultaneous action updates.

Qi(t+ 1)← Qi(t) +
1

πi
α [ri(t)−Qi(t)]

This update rule corresponds to a dynamical system that can be decomposed
into the replicator dynamics and terms for randomization, where the temperature
parameter τ tunes the balance between the two. The replicator dynamics enforce
the selection of knowingly better actions (exploitation), while randomization
corresponds to mutations (exploration). In brief, the FAQ-learning dynamics
are a weighted average between CL and exploration.

π̇i =
απi

τ

[
eiAσ

T − πAσT
]

︸ ︷︷ ︸
selection

−απi

[

log πi −
∑

k

πk log πk

]

︸ ︷︷ ︸
mutation

Recently, the evolutionary framework has also been extended to the Polynomial
Weights algorithm, which implementsRegret Minimization [2,13]. Despite the
great difference in update rule and policy generation (see Eq. 5), the infinitesimal
limit has been linked to a dynamical system with CL dynamics in the nominator.

π̇i =
απi

[
eiAσ

T − πAσT
]

1− α [maxk ekAσT − πAσT ]

The denominator can be interpreted as a learning rate modulation dependent
on the best action’s relative fitness.

3.2 Similarities in Two-Player Two-Action Games

For two-agent two-action games, the dynamics can be simplified. Let h = (1,−1),
π = (x, 1−x) and σ = (y, 1− y). The dynamics are completely described by the
pair (ẋ, ẏ), which denote the probability changes of the first actions. For CL in
self-play, this leads to the following simplified form:

ẋ = x(1− x)
[
yhAhT +A12 −A22

]

ẏ = y(1− y)
[
xhBhT +B21 −B22

]

Here, the payoff matrices A and B are again taken from the bi-matrix given in
Figure 1. The second player’s update ẏ is completely analogous to ẋ, and will be
omitted in the subsequent discussion. Similarly, for FAQ-learning the simplified
dynamics read

ẋ = αx(1 − x)

(

τ−1
[
yhAhT +A12 −A22

]− log
x

1− x

)
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The dynamics of RM are slightly more complex. To simplify the notation for two-
action games, let ð = e1Aσ

T − e2Aσ
T = yhAhT + A12 − A22. The numerator

is equal to Cross Learning with an additional step size parameter α, and the
denominator depends on which action gives the highest reward. This can be
derived from the gradient: the first action will be maximal iff ð > 0. If the first
action is maximal, the denominator can be worked out to read 1 − α(1 − x)ð.
Similarly, when the second action is maximal the denominator reads 1+αð. The
dynamics of RM in two action games can then be written as follows:

ẋ = αx(1 − x)ð ·
{
(1 + αxð)−1 if ð < 0
(1− α(1 − x)ð)−1 otherwise

For Gradient Ascent, the update rule can be worked out in a similar fashion.
The main term in this update rule is the gradient of the expected reward, which
in two player two-action games can be written as

∂V (x, y)

∂x
=

∂

∂x
(x, 1− x)A

(
y

1− y

)

= y(A11 −A12 −A21 +A22) +A12 −A22

= yhAhT +A12 −A22

= ð

This reduces the dynamics of the update rule for IGA in two-player two-action
games to

ẋ = αð

The extension of the dynamics of IGA to IGA-WoLF and WPL are straightfor-
ward. Table 1 lists the dynamics of the six discussed algorithms: IGA, WoLF,
WPL, CL, FAQ and RM. It is immediately clear from this table that all algo-
rithms have the same basic term in their dynamics : the gradient ð. Depending
on the algorithm, the gradient is scaled with a learning speed modulation. FAQ-
learning yields the only dynamics that additionally add exploration terms to the
process.

In order to illustrate the similarities between the algorithms, their dynamics
are visualized in representative classes of two-player two-action games. Three
distinct classes can be identified [9]. The first class consists of games with one
pure Nash equilibrium, such as the Prisoner’s Dilemma. The second class of
games has two pure and one mixed Nash equilibrium, such as the Battle of the
Sexes. Finally, the third class of games has only one mixed Nash equilibrium; an
example is the Matching Pennies game. The payoff bi-matrices of these games
are presented in Figure 2.

Since the dynamics in two-player two-action games are completely described
by the pair (ẋ, ẏ) as described above, it is possible to plot the dynamics in the
unit square that makes up the joint policy space. The dynamics can be visualized
using a directional field plot, where each arrow indicates the direction of change
at that point (x, y) in the policy space.
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Table 1. This table shows an overview of the learning dynamics, rewritten for the
specific case of two-agent two-action games. For simplicity, the common gradient is
abbreviated ð =

[
yhAhT +A12 − A22

]
.

Algorithm ẋ

IGA αð

WoLF ð ·
{
αmin if V (x, y) > V (xe, y)
αmax otherwise

WPL αð ·
{
x if ð ¡ 0
(1− x) otherwise

CL αx(1− x) ð

FAQ αx(1− x)
[
ð ·τ−1 − log x

1−x

]
RM αx(1− x) ð ·

{
(1 + αxð)−1 if ð < 0
(1− α(1− x)ð)−1 otherwise

C
D

C D(
3
5
, 3
5

0, 1
1, 0 1

5
, 1
5

)
O
F

O F(
1, 1

2
0, 0

0, 0 1
2
, 1

)
H
T

H T(
1, 0 0, 1
0, 1 1, 0

)

Prisoner’s Dilemma Battle of the Sexes Matching Pennies

Fig. 2. Normalized payoff matrices for three representative two-player two-action
games

Figure 3 shows the learning dynamics of the different algorithms in the Pris-
oner’s Dilemma, Battle of the Sexes, and Matching Pennies game. The dynamics
of RM are not shown, as they are visually indistinguishable from CL. Figure 3
illustrates the high similarity between all algorithms in the first two games. They
all share the same convergence properties, and follow similar trajectories. The
dynamics of IGA and WoLF in the Prisoners’ Dilemma show the need for the
projection function to prevent the update from taking the policies π and σ out
of the valid policy space.

In the Matching Pennies, IGA and CL both cycle around the Nash equilib-
rium. The other three algorithms all spiral inwards and eventually converge, but
do so in a different manner. The dynamics of WoLF clearly show the effect of
the win or learn fast scheme, switching between the two discrete learning step
values at x = 0.5 and y = 0.5.

3.3 Generalization to Two-Player Normal Form Games

The previous section has show the gradient ð to be a basic building block of
several learning algorithms in two-action games, where the policy can be written
as π = {x, 1 − x}. This section extends the definition to the more general case
of two-player normal form games, where each player has a finite discrete set of
actions, and π = {π1, π2, . . . , πn} such that

∑
i πi = 1 and ∀πi : 0 ≤ πi ≤ 1. To

ensure satisfying the first constraint the gradient needs to be normalized such
that

∑
i ði = 0, where ði is the ith component of the gradient, i.e., ði is the
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Fig. 3. This figure shows the learning dynamics of the various algorithms in the Pris-
oners’ Dilemma, Battle of the Sexes, and Matching Pennies. The Nash Equilibria are
indicated with ⊗.
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partial derivative of the value function with respect to πi. The second constraint
is satisfied either by projecting π to the (closest point in the) valid policy space,
or by making π̇i itself dependent on π, analogous to the different policy update
rules of the algorithms.

Recall that the value function in two-player normal form games is defined
as V (π, σ) = πAσT . The ith element of the gradient can be calculated as the
partial derivative of V with respect to πi. Let ei denote the ith unit vector, the
differential with respect to πi can then be defined as δei. However, recall that
π̇ needs to be normalized in order to stay on the tangent space of π. This can
be guaranteed by projecting δei onto the tangent space using the orthogonal
projection function Φ(ζ) = ζ − 1

n

∑
j ζj [16]. This gradient can now be written

as
∂V (π, σ)

∂πi
= lim

δ→0

[π + Φ(δei)]Aσ
T − πAσT

δ

= Φ(ei)Aσ
T

= eiAσ
T − 1

n

∑

j

ejAσ
T

which closely resembles the replicator dynamics (see Equation 8). As explained
in Section 2, IGA and WoLF use a projection function to ensure a valid policy
(i.e., to satisfy ∀πi : 0 ≤ πi ≤ 1). Similarly, their dynamical models need to
be projected back to the valid policy space. CL, FAQ and RM take another
approach, and ensure validity of the policy update by making the update rule
proportional to π. Incorporating proportional updating into the gradient-based
policy update rule yields

πi(t+ 1)← πi(t) + πi
∂V (π, σ)

∂πi

The projection function Φ which projects δei to the tangent space of π needs to
change as well in order to properly map the weighted gradient. Intuitively, this
can be achieved by using a weighted mean instead of a standard mean, such that
Φ̂(ζ, w) = ζ−∑

j wjζj where w is a normalized weight vector. Using w = π, this
leads to the following dynamics:

π̇i = πi lim
δ→0

[
π + Φ̂(δei, π)

]
AσT − πAσT

δ

= πi lim
δ→0

πAσT + Φ̂(δei, π)Aσ
T − πAσT

δ

= πiΦ̂(ei, π)Aσ
T

= πi[eiAσ
T −

∑

j

πjejAσ
T ]

= πi[eiAσ
T − πAσT ]

These resulting dynamics are exactly the replicator dynamics of Equation 8,
which shows that Cross Learning is equal to Gradient Ascent with proportional
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updates. This provides a strong link between the two families of algorithms,
gradient ascent on the one hand and independent multi-agent reinforcement
learning on the other.

All of the algorithms described in this section reveal dynamics that follow the
reinforcement gradient. The terms of the gradient appear to be the foundation
of multi-agent reinforcement learning, with learning rate modulations and some
deviations for the sake of exploration and coordination.

4 Discussion

Gradient Ascent on the expected reinforcement assumes that the gradient is
known or can be computed by the agent. This is typically not the case in rein-
forcement learning problems. The merits of Gradient Ascent are more theoretical
– it allows to provide convergence guarantees at the cost of stronger assumptions.
Recently, similar guarantees have also been derived for evolutionary models of
independent multi-agent reinforcement learning. These guarantees either draw
on well established models from evolutionary biology, or study newly derived
variations. For example, the cyclic behavior of the replicator dynamics is a well
studied phenomenon [10], while the dynamics of FAQ-learning have been thor-
oughly analyzed in two-agent two-action games showing convergence to Nash
equilibria [12]. In addition, the findings presented in this article highlight the
commonalities of gradient ascent and reinforcement learning. Future research
can build on this basis and further unite the two parallel streams of literature.

5 Conclusions

This article relates two seemingly diverse families of algorithms within the field
multi-agent learning: gradient ascent and independent reinforcement learning.
The main contributions can be summarized as follows: First, it is shown that the
replicator dynamics are a prime building block of various types of independent
reinforcement learning algorithms, such as Cross Learning, Regret Minimization,
and Q-learning. Second, the replicator dynamics are shown to relate to the gra-
dient of the expected reward, which forms the basis of Gradient Ascent. Both the
replicator dynamics and gradient ascent base their update on the difference be-
tween the expected reward of an action and the average expected reward over all
actions. The difference lies in the weight given to each action’s update: gradient
ascent assumes uniform weights as given by the gradient, whereas the replicator
dynamics use the action-selection probabilities as weights. The theoretical com-
parison is complimented by a visualization of the different learning dynamics in
representative two-agent two-action games – a class in which their similarity is
particularly compelling.

In sum, this article structures a highly diversified field such as multi-agent
learning. The number of proposed learning algorithms is continuously increas-
ing, and we deem recognizing persistent principles such as learning along the
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reinforcement gradient crucial to the integrity of the field. This approach pro-
vides the basis for an analysis of the inherent capabilities but also limitations of
what is learnable with independent reinforcement learning in multi-agent games.
Eventually, we are seeking to establish lower bounds on the performance in multi-
agent games similar to Probably Approximately Correct Learning guarantees in
single-agent learning.
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