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Abstract. Reinforcement learning agents can successfully learn in a variety of
difficult tasks. A fundamental problem is that they may learn slowly in com-
plex environments, inspiring the development of speedup methods such as trans-
fer learning. Transfer improves learning by reusing learned behaviors in similar
tasks, usually via an inter-task mapping, which defines how a pair of tasks are
related. This paper proposes a novel transfer learning technique to autonomously
construct an inter-task mapping by using a novel combinations of sparse cod-
ing, sparse projection learning, and sparse pseudo-input gaussian processes. Ex-
periments show successful transfer of information between two very different
domains: the mountain car and the pole swing-up task. This paper empirically
shows that the learned inter-task mapping can be used to successfully (1) improve
the performance of a learned policy on a fixed number of samples, (2) reduce the
learning times needed by the algorithms to converge to a policy on a fixed number
of samples, and (3) converge faster to a near-optimal policy given a large amount
of samples.

1 Introduction

Reinforcement Learning (RL)is a popular framework that allows agents to solve
sequential-action selection tasks with minimal feedback. Unfortunately, RL agents may
learn slowly in large or complex environments due to the amount of computational
effort and/or experience needed to attain an acceptable performing policy. Transfer
Learning [17] (TL) is one technique used to cope with this difficulty by providing a
good starting prior for the RL agent attained in a related source task.

The source task can differ from the target task in many ways. If the tasks have differ-
ent representations of state or action spaces, some type of mapping between the tasks is
required. This inter-task mapping matches each state/action pair of the source task to its
corresponding state/action pair in the target facilitating transfer. While there have been a
number of successes in using such a mapping, the approaches are typically hand-coded
and may require substantial human knowledge [17,19]. Our contributions in this paper
are twofold. First, we propose a novel scheme to automatically learn an inter-task map-
ping between two tasks. Second, we introduce the new Transfer Least Squares Policy
Iteration (TrLSPI) algorithm for transfer between tasks of continuous state spaces and
discrete action spaces.
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To the best of our knowledge, this paper shows the first successful attempts to auto-
matically transfer between RL benchmark tasks that are very different. Namely, we con-
duct experiments to automatically transfer from the Mountain Car to the Pole balancing
problem. Our results show (1) improved performance on a fixed number of samples, (2)
a reduction in the convergence times to attain a policy on a fixed number of samples,
and (3) a reduction in the time needed to attain a near-optimal policy on a large amount
of samples.

The rest of the paper proceeds as follows. Related work is discussed next in Section 2.
Background information is presented in Section 3. Section 4 describes how an inter-task
mapping can be learned between two tasks by leveraging sparse coding, sparse projec-
tion learning and sparse pseudo-input gaussian processes. In Section 5, we introduce
our novel TrLSPI algorithm showing how the learned mapping can be used to transfer
information between a source task and target task. Experiments of transfer between two
very different tasks are presented in Section 6. Section 7 presents a discussion on the
scope an applicability of our framework. Section 8 concludes and reflects upon inter-
esting future work directions.

2 Related Work

In the past few years there has been a significant amount of work done in transfer
learning for RL tasks. This section outlines the most related work and contrasts it with
the work in this paper.

The majority of current transfer learning work in RL assumes that either 1) the two
agents are very similar and no mapping is needed, or 2) the inter-task mapping is pro-
vided by a human. For instance, [19] transfers advice and [17] transfers Q-values —
both methods assume that a mapping between the state and action variables in the two
tasks has been provided. Another approach is to frame different tasks as having a shared
agent space [5], so that no explicit mapping is needed. However, this requires that the
agent acting in both tasks share the same actions and a human to map new sensors back
into the agent space. The primary contrast between these methods and the current work
is that we are interested in learning a mapping between states and actions in pairs of
tasks, rather than assuming that it is provided or unnecessary.

Our previous work [1] required the presence of hand-coded features shared between
two tasks in order to automatically learn the inter-task mapping. This work extends the
previous approach to overcome the need for a predefined common subspace to deter-
mine the inter-task mapping.

There has also been recent work that approaches fully autonomous transfer. For ex-
ample, semantic knowledge about state features between two tasks may be used [6,9],
background knowledge about the range or type of state variables can be used [14,18],
or transition models for each possible mapping could be generated and tested [15].
Transfer learning has also been successful across different domains, e.g., using a sim-
ple discrete, deterministic task to improve learning on a complex, continuous, noisy
task [16]. However, there are currently no general methods to learn an inter-task map-
ping without requiring (1) background knowledge, which is not typically present in RL
settings, or (2) an expensive analysis of an exponential number of inter-task mappings.
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This paper overcomes these problems by automatically discovering high-level features
and using them to conduct transfer within reasonable time requirements.

Unlike all other existing methods (to the best of our knowledge) and complemen-
tary to our previous work [1,15,16], we assume differences among all the variables of
Markov Decision Processes describing the source and target tasks and focus on learning
an inter-state mapping, rather than a state-variable mapping. Additionally, our frame-
work can use state-dependent action mappings, allowing flexibility that other existing
algorithms do not.

3 Background

This section provides the reader with a short overview of sparse coding, reinforcement
learning, gaussian processes, transfer learning and other learning methods used in this
paper.

3.1 Reinforcement Learning (RL)

In an RL problem, an agent must decide how to sequentially select actions to maxi-
mize its expected long term reward [3,13]. Such problems are typically formalized as
Markov decision processes (MDPs). An MDP is defined by 〈S,A, P,R, γ〉, where S is
the (potentially infinite) set of states, A is the set of all possible actions that the agent
may execute, P : S × A → S is a state transition probability function defining the
transition dynamics, R : S×A → R is the reward function measuring the performance
of the agent, and γ ∈ [0, 1) is the discount factor. A policy π : S → A is defined as a
probabilistic mapping from a state to an action, where π(a|s), represents the probability
of choosing an action a in a state s. The goal of an RL agent is to improve its policy,
potentially reaching the optimal policy π� represented by taking greedy actions in the
optimal Q-function:

Q�(s, a) = max
π

E[
∞∑

t=0

γtR(st, at)|s = s0, π] (1)

In tasks with continuous state and/or action spaces, the Q functions and policies cannot
be represented in a table format, typically requiring sampling and function approxi-
mation techniques. This paper uses one such technique, Least Squares Policy Iteration
(LSPI), which will be explained in Section 5.2.

3.2 Transfer Learning in RL Tasks

Typically, when using Transfer Learning (TL) in RL tasks, there is a source and a target
task [17]. When the source and the target tasks are related, transferring a learned source
behavior should improve learning in the target task by providing an informative prior.
The prior will restrict the exploration in the target task by biasing the agent so that it
chooses actions that are better than random exploration, reducing the target task learning
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times and improving the overall performance. In our formulation, each of these tasks is
defined as an MDP which is a tuple of 〈S(i), A(i), P (i)(s, a), R(i), γ(i)〉 for i ∈ {1, 2}
where S(i), A(i), P (i)(s, a), R(i) and γ(i) represent the state spaces, action spaces, state
transition probabilities, reward functions and discount factors for each of the source
(i = 1) and target (i = 2) tasks.

The source and the target task may differ in their state spaces and/or action spaces
(as well as other components of the MDP). If transfer is to be useful when such dif-
ferences exist, an inter-task mapping relating these state-action spaces differences [17]
can be used. Traditionally, such a mapping was thought to be a one-to-one mapping
between the state/action variables representing the tasks [17]. This paper instead con-
siders a mapping that relates state-action successor state triplets from the source with
the target task. Mathematically,χ : Ss×As×Ss → St×At×St, where S and A repre-
sent the state space and the action space of the source and the target task, respectively.
This paper’s inter-task mapping is more than just a one-to-one mapping between the
state and/or action spaces of the MDPs. It also includes other terms that are automat-
ically discovered by our global approximators, which ultimately enhance the transfer
approach.

The main focus in this paper is the automatic discovery of an inter-task mapping to
enable transfer. The upcoming sections will further clarify the need for such a mapping
as well as describe our novel framework.

3.3 Sparse Coding

Sparse coding (SC) [8] is an unsupervised learning technique used to find a high-level
representation for a given set of unlabeled input data. It does this by discovering a
succinct over-complete basis for the provided data set. Given m k-dimensional input
vectors, ζ, SC finds a set of n basis vectors, b, and activations, a, with n > k such
that ζ ≈ ∑n

j=1 a
(i)
j bj , where i and j represent the number of input data patterns and

number of bases, respectively. SC begins by assuming a Gaussian and a sparse prior
on the reconstruction error (ζ(i) −∑n

j=1 a
(i)
j bj) and on the activations, leading to the

following an optimization problem:

min
{bj},{a(i)

j }

m∑

i=1

1

2σ2
||ζ(i) −

n∑

j=1

bja
(i)
j ||2

2
(2)

+β

m∑

i=1

n∑

j=1

||a(i)j ||1

s.t. ||bj ||22 ≤ c, ∀j = {1, 2, . . . , n}

The problem presented in Equation 2 is considered to be a “hard” optimization problem
as it is not jointly convex (i.e, in the activations and bases). However, fast and efficient
optimization algorithms exist [8] and were used in our work.
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3.4 Gaussian Processes

Gaussian processes (GPs) constitute a research field by themselves. It is beyond the
scope of this paper to fully detail the mathematical framework. This section briefly
explains GPs and refers the reader elsewhere [11] for a more in-depth treatment.

GPs are a form of supervised learning used to discover a relation between a given
set of input vectors, x, and set of output pairs, y. As opposed to normal regression
techniques that perform inference in the weight space, GPs perform inference directly
in the functional space, making learning simpler. Following existing notation [11], if a
function is sampled according to a GP we write:

f(x) ∼ GP(m(x), k(x, x
′
)), (3)

where m(x) and k(x, x
′
) , represent the mean and covariance function that fully specify

a GP.
Learning in a GP setting involves maximizing the marginal likelihood:

log p(y|x) = −1

2
yT K−1y − 1

2
log|K| − n

2
log2π. (4)

Maximizing Equation 4 may be computationally complex as we must invert the covari-
ance matrix K, which is of order of O(N3), where N is the number of input points.
Therefore, we use a fast learning technique, sparse pseudo-input gaussian processes
(SPGP), as proposed elsewhere [12].

SPGPs aim to reduce the complexity of learning and prediction in GPs by parametriz-
ing the regression model with M << N pseudo-input points, while still preserving
the full Bayesian framework. The covariance of the GP model is parametrized by the
location of the M << N pseudo-inputs. Existing results [12] show a complexity re-
duction in the training cost (i.e., the cost of finding the parameters of the covariances) to
O(M2N) and in the prediction cost (i.e., prediction on a new set of inputs) to O(M2).

4 Learning the Inter-task Mapping

In order to automatically construct an inter-task mapping,χ, this paper proposes a novel
framework using sparse coding, a L1 projection scheme, and sparse pseudo-input gaus-
sian processes. Each of these methods is necessary to solve a problem that is inherent
to TL in RL tasks. We approach the problem of learning the inter-task mapping, χ, as
a supervised learning problem. As χ is a mapping relating state-action triplets from the
source with the target task, related triplets should be provided as training data points.
Unfortunately, this is itself a hard problem — it is not trivial for the user to describe
what state triplets in the source task correspond to what in the target task. We there-
fore approach this problem by automatically transforming the problem spaces (i.e., the
state-action spaces of the two tasks) into a higher representational space through SC,
projecting the target task data onto those attained bases and then using a Euclidean dis-
tance measure to gauge similarity (Section 4.1). At this stage, the data set is provided
to a regressor to construct the inter-task mapping. Many regression techniques could be
applied to the approach but we chose to use a non-parametric approximation scheme
because of its generalization advantages.
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Our framework can conceptually be split into three essential parts. The first is the
dimensional unification of both the source and target task state-action spaces of the
MDPs. The second is the automatic discovery of a high dimensional informative space
for the source task. This is achieved through SC, as described in Section 4.1, ensuring
that transfer is conducted in a high representational space of the source task. In order
to use a similarity measure among different patterns, the data should be present in the
same space. That is why the target task samples still need to be projected to the attained
high representational space of the source. This is done using sparse projection learn-
ing, described in Section 4.2. The third and final step is to approximate the inter-task
mapping via a non-parametric regression technique, explained in Section 4.3.

4.1 Sparse Coding Transfer for RL

As described in Section 3.3, SC is an efficient way to discover higher level information
in an unlabeled data set. We use SC to solve two inherent problems in transfer learning
for RL tasks. The first is to unify the dimensions of the state action spaces of the two
different MDPs. The second is to discover a higher level representation for the attained
bases and activations of the source task state-action spaces. This step guarantees that our
scheme works with the “best” available representation/information space of the source
task.

Unifying the Source and Target Dimensions. Our problem commences by first uni-
fying the dimensions of the state action spaces of the two MDPs, an essential step for
discovering the inter-task mapping. After this step has finished, any existing TL in RL
technique may be used. However, this paper goes further and proposes a new transfer
framework based on the attained bases and activations, described in Section 5.

This “dimensional unification” process is described in Algorithm 1. In short, Algo-
rithm 1 sparse codes random samples from the source task, constrained by learning the
same number of bases (dt) as the target task.

The algorithms proposed elsewhere [8] solve Equation 6 on line 3 of Algorithm 1.
After this stage is done, new activations and bases describing the samples are attained.1

Note that, these newly attained samples—described as a linear combinations of the
bases and activations (Ab)—do not yet relate anything to the target task ones. The target
task samples still need to be projected towards these bases. This is done as described in
Section 4.2.

After Algorithm 1 is finished, new features in the source task state action spaces
are discovered. This is reasonable as TL typically transfers between a low dimensional
source task to a high dimensional target task. Here, SC is determining new bases that
are of a higher number than the original state action dimensions in the source task.
If successful, new patterns and representations are discovered in the source task state-
action spaces. These new features describe new representations not anticipated by the
original dimensions. Therefore, this new information can be used to help and guide the
transfer learning scheme.

1 Please note that while writing Algorithm 1 it was assumed that the dimensions of the source
task ds are lower than those of the target task dt. But it is worth noting that it works as well
for the other cases with no restrictions.
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Algorithm 1. Sparse Coding Transfer Reinforcement Learning

Require: Source MDP samples {〈ss, as, s′s〉}mi=1, target MDP samples {〈st, at, s′t〉}fj=1

1: Calculate ds and dt which are the dimensions of each of the state action spaces of the MDPs
2: Sparse code the source by solving:
3:

min
{bj},{a(i)

j
}

m∑

i=1

1

2σ2
||〈ss, as, s

′
s〉(i) −

dt∑

j=1

bja
(i)
j ||2

2
(5)

+β
m∑

i=1

dt∑

j=1

||a(i)j ||1

s.t. ||bj ||22 ≤ c,∀j = {1, 2, . . . , dt}

4: Solve the problem of Equation 6 using the algorithm proposed in [8]
5: Return the activation matrix (A ∈ R

m×dt ) and the bases (b ∈ R
dt×1)

High Information Representation. After dimensional unification, as described in
the previous section, SC is again used to discover a succinct higher informational/
representational bases of the activations than the unified dimensional spaces. This in-
sures that our transfer approach operates in the “richest” space described through the
samples. This is done in a similar framework to that in Section 4.1 and is described in
Algorithm 2.

Algorithm 2. Succinct High Information Representation of MDPs
Require: Activations acquired through Algorithm 1, number of new high dimensional bases dn
1: Represent the activations in the dn bases by solving the following problem using the algo-

rithm in [8]:
2:

min
{zj},{c(i)j }

m∑

i=1

1

2σ2
||〈a1:dt〉(i) −

dn∑

j=1

zjc
(i)
j ||2

2
(6)

+β

m∑

i=1

dn∑

j=1

||c(i)j ||1

s.t. ||zj ||22 ≤ o,∀j = {1, 2, . . . , dn}

3: return activations C ∈ R
m×dn and bases z ∈ R

dn×1

The idea presented by Algorithm 2 is to sparse code the activations, representing the
original samples of the MDPs, to a higher representational space, dn.2 This stage should
guarantee that we project the samples of the source task MDP into a high informational

2 In our experiments we have set dn to be 100, a relatively high number.
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space where a similarity measure can be used to find a relation between the source and
target task triplets. Noting that there are no restrictions on the number of bases to be
determined: unneeded bases have an activation of zero once the SC problem has been
solved.

At this stage, the source state action spaces are described in a rich informational
space determined by the newly discovered bases and activations. The next step is to
project the target task samples to that space described by Z so that triplets can be ordered
and the inter-task mapping approximated.

4.2 L1 Sparse Projection Learning

Once the above stages have finished, the source samples are described via the activations
generated in Algorithm 2. However, target task samples still have no relationship to the
learned activations. In other words, the bases and activations that have been attained
successfully describe high informational patterns and representations in the source task
state-action spaces but do not represent the target state-action spaces. Since we are
seeking a similarity correspondence between the source and target task triplets, the
target task samples should be represented in the same high informational space.

Therefore, the next step is to learn a sparse projection to project the target task sam-
ples onto the Z basis representing the source task MDP. In other words, the goal now
is to learn a sparse projection that is capable of representing the random target task
samples as a combination of some activations, automatically learned, and the Z bases
generated by Algorithm 2. The overall scheme is described in Algorithm 3, where the
activations are learned by solving the L1 regularized least squares optimization problem
of Equation 7. This optimization problem guarantees that the attained activations are as
sparse as possible and is solved using the interior point methods [4].

At this stage all the samples from both the target and source task are projected to
the same space described by the sparse coded vectors Z. The next step will be to order
the data points from both the source and the target task so to approximate the inter-task
mapping.

Algorithm 3. Reflecting Target Task Samples

Require: Sparse coded bases Z generated by Algorithm 2, target MDP samples {〈st, at, s′t〉}fi=1

1: for i = 1 → f do
2: Represent the target data patterns in the sparse coded bases, Z, by solving:
3:

φ̂(i)(〈st, at, s
′
t〉) = argmin

φ(i)
||〈st, at, s

′
t〉 −

dn∑

j=1

φ
(i)
j zj ||22 (7)

+β||φ(i)||1
4: end for
5: return activations Φ
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4.3 Similarity Measure and Inter-task Mapping Approximation

As mentioned previously, we tackle the problem of learning an inter-task mapping via
supervised learning. Since χ maps triplets from the source task to their corresponding
triplets in the target task, the problem at this stage is to attain the training patterns to
approximate χ.

After reaching the rich space representing the random samples of the 2 MDPs (i.e.,
Z), a Euclidean distance measure is used to compare triplets, providing a data set to the
regressor (i.e, SPGPs) to approximate the inter-task mapping χ. This similarity measure
is used to determine the correspondence of the source and target tasks triplets. Once
applied, the similarity measure will seek the triplets of the source task closest to those
of the target task and map them together as being inputs and outputs for the regression
algorithm, respectively. This is shown on line 2 of Algorithm 4. Since the similarity
measure is used in the sparse coded spaces, the distance is calculated using the attained
activation (C and Φ) rather than the samples themselves. Therefore, the scheme has to
trace the data back to the original dimensions of the state-action pairs of the MDPs.

There are few restrictions on the function approximation techniques that could be
used. We use nonparametric regression with sparse gaussian processes technique [12].
We prefer sparse gaussian processes rather than normal gaussian processes regression
technique as the latter may have problems dealing with large data sets. To clarify, con-
sider the learning phase of a GP that involves maximizing Equation 4. It is clear that
the inversion of the covariance matrix, K, is required on each iteration with complex-
ity O(n3), where n is the number of samples. Additionally, the maximiztion algorithm
(Conjugate Gradient Descent [10]) may get stuck in a local maximum of Equation 4, a
common problem in function approximation schemes and maximization problems.

Algorithm 4. Similarity Measure & Inter-Task mapping approximation

Require: Sparse coded basis Z, sparse coded activations of the source task C ∈ R
m×dn , pro-

jected target task activations φ ∈ R
m×dn

1: for all φ do
2: Calculate the closest activation in C minimizing the Euclidean/similarity distance mea-

sure.
3: end for
4: Correspond the triplets with the minimum similarity measure as being inputs and outputs to

create a data set D
5: Approximate the inter-task mapping, χ using SPGPs
6: return The approximated inter-task mapping χ

5 Transfer Scheme

Assuming there exists a “good enough” policy, π�
s for the source task, we propose a

novel transfer algorithm for pairs of tasks with continuous state spaces and discrete
action spaces, titled Transfer Least Squares Policy Iteration.

This section describes the novel transfer scheme and reflects on the details and tech-
nicalities of the approach. It starts by describing a well-known reinforcement learning
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algorithm (LSPI), that our novel transfer algorithm builds on. Then clarifies all the tech-
nicalities involved in the proposed TrLSPI algorithm.

5.1 Least Squares Policy Iteration

LSPI [7] is an approximate RL algorithm that is considered an actor/critic method. LSPI
is composed of two parts. The first is an evaluation step, Least Squares Temporal Dif-
ference Q-learning (LSTDQ) and the second is a policy improvement step. In LSTDQ
the algorithm will update the weights representing the policy so that the new parameters
minimize certain error criteria. For example, the LSTDQ could be set to minimize the
Bellman residual error of the projected Bellman equations. Once this step has finished,
LSPI uses the attained weights to improve the policy by taking greedy actions in the
approximated Q-function.

Approximate Value Function 

Approximate Policy  

Actor 

Policy 
Projection 

Value Function 
Projection 

Critic 

Model 

Polic

oject

Fig. 1. Least Squares Policy Iteration schematic [7]

Figure 1 highlights the actor and critic organization of LSPI. Since LSPI uses func-
tion approximators to represent theQ-functions and/or policies, there also exist two pro-
jection phases for both the Q-function and the policy, as can been seen in the schematic.
A more thorough treatment may be found elsewhere [7].

5.2 Transfer Least Squares Policy Iteration (TrLSPI)

TrLSPI, Algorithm 5, can be split into two sections. The first determines χ (Section 4),
using source task samples3 from π�

s . The second provides those samples for the evalu-
ation phase of the LSPI algorithm (LSTDQ), to learn a policy for the target task. The

3 If using an approximate RL algorithm in the source task, the policy would instead by near-
optimal.
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Algorithm 5. TrLSPI

Require: Source MDP samples {〈ss, as, s′s〉}mi=1, target MDP samples {〈st, at, s′t}, number for
re-samples ns, a (near-)optimal policy for the source system π�

s , state action basis functions
for the target task ψ1, . . . , ψk

1: Unify the dimensions using Algorithm 1
2: Discover high informational representation using Algorithm 2
3: Sparse project the target task samples using Algorithm 3
4: Use a similarity measure to attain the data set and approximate χ using Algorithm 4
5: Randomly sample ns source task triplets 〈ss, as, s′s〉ns

i=1 greedily in the optimal policy π�
s ,

set of state-dependent basis function ψ1, . . . , ψk : St × At → R

6: for i = 1 → ns do
7: Find the corresponding target task triplets as 〈s(i)t , a

(i)
t , s

(i)′
t 〉 = χ(〈s(i)s , a

(i)
s , s

(i)′
s 〉)

8: end for
9: Find the closest triplet in the initial samples to the ones predicted by χ

10: Use LSTDQ described by [7] to evaluate those samples
11: Learn and improve policy till convergence using LSPI [7]
12: return Learned policy π�

target

intuition here is that if the tasks are similar and if the inter-task mapping is “good
enough,” then those samples will bias the target task controller towards choosing good
actions and restricting its area of exploration and reducing learning times and increasing
performance.

Provided that the tasks are related, Algorithm 5 is capable of attaining a good starting
behavior for the target task. The performance of this policy depends on the state space
region where those samples were provided. In other words, it is not possible to achieve
near-optimal performance with a small number of samples that are in regions far from
the goal state.4 Therefore, if the agent has to seek a near-optimal policy, then either a
new sampling step using the current policy should be added to Algorithm 5, or a large
amount of samples should be provided. It is worth noting that it is not necessary for the
algorithm to be provided by a model for the system to perform that sampling. A black
box generative model taking inputs being states and actions and producing outputs of
successor states and rewards is sufficient.

6 Experiments and Results

Two very different tasks were chosen to evaluate the proposed framework, the RL
benchmark tasks Mountain Car (MC) and Pole balancing (see Figure 2).

The control objective of MC, the source task, is to drive the car up the hill (Figure 2(a)).
The difficulty is that gravity is stronger than the car’s motor—even at maximum throttle
the car can not directly reach the top of the hill. The solution is to first move away from the
target to the opposite side of the hill and then accumulate enough energy to reach the top
of the hill. The dynamics of the car are described via two continuous state variables (x, ẋ)
representing the position and velocity of the center of gravity of the car, respectively.

4 This is a problem that is inherentt to LSPI and is not due to the TrLSPI algorithm.
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(a) Mountain Car (b) Pole Balancing

Fig. 2. Mountain Car to Pole Balancing Transfer

There are three actions: maximum throttle forward (+1), zero throttle (0), and maximum
throttle reverse (-1). The car is rewarded by +1 once it reaches the top of the hill, −1 if
it hits the wall, and zero elsewhere. At the end of each episode the start state is randomly
initialized at the bottom of the hill.

The target task is the Pole Balancing problem described in Figure 2(b). The control
goal of the pole balancing system is balancing the pole in an upright position (i.e., θ =
θ̇ = 0). The allowed actions are (+1) for full throttle right and (-1) for full throttle left.
The reward function of the system consists of two parts: (1) cos(θ), which yields its
maximum value of +1 at the upright position of the pole, and (2) −1 if the cart hits the
boundaries of the track. The angle was restricted to be within |θ| < π

9 while the position
was restricted to |x| < 3 and the start state was randomly chosen within that interval.

As is clear from the description, the two MDPs representing the tasks are signifi-
cantly different. The source and target task have different state spaces, action spaces,
transition probabilities, and reward functions. No previous work can learn to
autonomously transfer between such different tasks.

Our framework requires an optimal policy in the MC source task, π�
MC .

SARSA(λ) [13] is used to learn π�
MC . The learned policy is then used to randomly

sample different numbers of states, to be used by χ. We started with 5000 and 2, 000
randomly sampled states (using a random policy) for the MC and the Pole Balancing,
respectively. These samples were used by the algorithm described in Section 4 to at-
tain the inter-task mapping χ. After χ has been learned, different amounts of samples
were sampled from the source task using the optimal policy π�

MC . Specifically, we have
sampled 500, 1, 000,. . .20, 000 states as input to the TrLSPI algorithm to measure per-
formance and convergence times.

Our results show 1) an increase in the performance on a fixed number of samples, 2)
a decrease in the convergence time when using a predefined number of samples, and 3)
a decrease in the time required to learn a near-optimal policy.

6.1 Performance on a Fixed Number of Samples

The first sets of experiments we conducted were to measure the performance in the
target task, given a fixed number of source task transferred samples. Namely, we
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Fig. 3. Transfer Results on the Pole Balancing task

measured the number of successful control steps in the target task given a fixed number
of 500, . . .20, 000 transferred MC samples. We compared the performance to a normal
LSPI (i.e., random sampling) learner in the target task. The graph in Figure 3 summa-
rizes the attained results and clearly shows an increase in the number of control steps in
the case of the transferred samples compared to a random sampling scheme. For exam-
ple it can be seen that at a small number of samples, e.g. 2, 000, our transfer scheme was
able to attain an average of 600 control steps with about 400 for the random case. This
performance increases with the number of samples to reach 800 steps at 4, 000 trans-
ferred samples. The random case needed to be provided by 9, 000 samples to attain
an 800 steps performance. Finally, the transferred algorithm and the random selection
scheme seem to converge, on a large amount of samples 20, 000 to the same number of
control steps, about 1, 300. This leads to the following conclusion:

Conclusion 1: TrLSPI has provided a better distribution of samples compared to ran-
dom policy in the target task. random what? a random policy in cart-pole?

6.2 Convergence Times on Fixed Number of Samples

The other improvement we report is the decrease in the convergence times, represented
by the number of iterations in LSPI, provided a fixed amount of transferred sampled.
This time was measured by comparing the convergence times of TrLSPI and LSPI on a
fixed number of transferred and random samples, respectively. To clarify, LSPI was able
to converge faster once provided the transferred samples compared to a random sample
data set. For example, it took LSPI 7 iteration to converge provided 5, 000 transferred
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samples with 12 iterations for the random case. Further the algorithm converged within
14 iteration provided 20, 000 transferred samples while it took it about 21 for the ran-
dom case.

Conclusion 2: TrLSPI converged faster provided a fixed amount of samples.

6.3 Convergence Times to a Near-Optimal Policy

The last performance measure we tested was the amount of time required by TrLSPI to
converge to a near-optimal policy, which was compared to normal LSPI learners in the
target tasks. LSPI was able to converge to an acceptable policy within a 22.5 minutes
after being provided a random data set, compared to 17 minutes with the transferred
data set5. Calculating χ took an addition 3.7 minutes.

Conclusion 3: TrLSPI converged faster to a near-optimal policy compared to a random
selection scheme.

7 Discussion

The proposed TL framework is compatible with other sample-based model-free learn-
ing methods and can be used on a variety of RL tasks with continuous state spaces
and discrete action spaces. The framework has the advantage of automatically finding
the inter-task mapping using SC and any “good” regression technique. But there is one
potential weakness, discussed next.

Our framework should work correctly when the two tasks at hand are semantically
similar, as the rewards of the two systems were not taken into account in the explained
scheme. For instance, consider the transfer example between the same robot but with
opposite rewards.

Our mapping scheme from Section 4, once applied, will produce a one-to-one map-
ping from the source to the target task. In other words, since the two tasks have the
same state and action spaces, the mapping that will be one-to-one, mapping the same
state action successor state triplets of the two tasks together. Therefore, the transition of
the robots to the rewardable/ un-rewardable states will map together. Since the optimal
policies of the two robots are opposite, it is easy to see that in this case the target task has
been provided with a “bad” biased starting policy which will decrease the agents per-
formance rather than enhancing it. Such negative transfer is a well-known problem in
TL for RL tasks. This paper’s approach may be able to avoid this problem once rewards
are added to the similarity measure, used to generate the training set to approximate the
inter-task mapping χ. However, this enhancement will be left to future work.

8 Conclusions and Future Work

This paper has presented a novel technique for transfer learning in reinforcement learn-
ing tasks. Our framework may be applied to pairs of reinforcement learning problems

5 Our experiments were performed on a 2.8 Ghz Intel Core i7.
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with continuous state spaces and discrete action spaces. The main contributions of this
paper are (1) the novel method of automatically attaining the inter-task mapping, χ
and (2) the new TrLSPI algorithm for tasks with continuous state spaces and discrete
actions. We approached the problem by framing the approximation of the inter-task
mapping as a supervised learning problem that was solved using sparse pseudo input
gaussian processes. sparse coding, accompanied with a similarity measure, was used
to determine the data set required by the regressor for approximating χ. Our results
demonstrate successful transfer between two very different tasks, the mountain car to
the pole balancing task. Success was measured both in an increase in learning perfor-
mance as well as a reduction in convergence time.

There are many exciting directions for future work. First, different distance metrics
should be compared and their effects on the overall performance of the algorithm mea-
sured. Second, the distance measure will be improved by incorporating the rewards in
the framework, helping to avoid the problem of negative transfer, as well as determine
a criterion for TL in RL. Third, this approach should be applied to other RL method,
such as our preliminary investigation described elsewhere [2].

References

1. Ammar, H.B., Taylor, M.E.: Common subspace transfer for reinforcement learning tasks. In:
Proceedings of the Adaptive and Learning Agents Workshop, at AAMAS 2011 (May 2011)

2. Ammar, H.B., Tuyls, K., Taylor, M.E., Driessens, K., Weiss, G.: Reinforcement learning
transfer via sparse coding. In: Proceedings of the Eleventh International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS) (June 2012)
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