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Preface

In the last two decades, we have seen a significant increase of interest in agent-
based computing. This field is now set to become one of the key technologies
in the twenty-first century. It is crucial that both academics and industrialists
within Europe have access to a forum at which current research and application
issues are presented and discussed.

In December 2003, the First European Workshop on Multi-Agent Systems
(EUMAS) was held at the University of Oxford, UK. This workshop emerged
from a number of related workshops and other scholarly activities that were tak-
ing place at both national and European levels, and was intended to provide a
single recognized forum at which researchers and those interested in activities
relating to research in the area of autonomous agents and multi-agent systems
could meet, present research results, problems, and issues in an open and infor-
mal but academic environment. This set-up allows for discussions of the latest,
potentially preliminary findings of state-of-the-art research.

Following in the tradition of past EUMAS events (Oxford 2003, Barcelona
2004, Brussels 2005, Lisbon 2006, Hammamet 2007, Bath 2008, Agia Napa 2009,
and Paris 2010), the aim of the 9th European Workshop on Multi-Agent Systems
held in Maastricht (The Netherlands) during November 14–15, 2011, was to
encourage and support activity in the research and development of multi-agent
systems, in academic and industrial efforts.

In 2011, the EUMAS workshop had 45 papers accepted for oral presentation
and the demo session hosted four contributions. The workshop was very well
attended and the presentations gave the opportunity for several debates often
continuing during the coffee breaks.

The two-day event also gave the opportunity to listen to three exciting in-
vited talks given by Marie-Pierre Gleizes (Université Paul Sabatier, France),
Peter McBurney (King’s College London, UK), and Milind Tambe (University
of Southern California, USA).

After the workshop, the best papers were selected taking into account the
reviews they received during the pre-workshop review phase and the discussion
generated by their presentations. The authors of these papers were asked to
significantly improve their manuscripts and the resulting works passed through a
new review cycle. These papers are the backbone of this book. They are perfectly
completed by three papers written by the invited speakers, discussing key issues
in multi-agent systems.

May 2012 Massimo Cossentino
Michael Kaisers

Karl Tuyls
Gerhard Weiss
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Reinforcement Learning Transfer Using a Sparse Coded
Inter-task Mapping

Haitham Bou Ammar1, Matthew E. Taylor2, Karl Tuyls1, and Gerhard Weiss1

1 Department of Knowledge Engineering, Maastricht University
The Netherlands

2 Department of Computer Science, Lafayette College
USA

Abstract. Reinforcement learning agents can successfully learn in a variety of
difficult tasks. A fundamental problem is that they may learn slowly in com-
plex environments, inspiring the development of speedup methods such as trans-
fer learning. Transfer improves learning by reusing learned behaviors in similar
tasks, usually via an inter-task mapping, which defines how a pair of tasks are
related. This paper proposes a novel transfer learning technique to autonomously
construct an inter-task mapping by using a novel combinations of sparse cod-
ing, sparse projection learning, and sparse pseudo-input gaussian processes. Ex-
periments show successful transfer of information between two very different
domains: the mountain car and the pole swing-up task. This paper empirically
shows that the learned inter-task mapping can be used to successfully (1) improve
the performance of a learned policy on a fixed number of samples, (2) reduce the
learning times needed by the algorithms to converge to a policy on a fixed number
of samples, and (3) converge faster to a near-optimal policy given a large amount
of samples.

1 Introduction

Reinforcement Learning (RL)is a popular framework that allows agents to solve
sequential-action selection tasks with minimal feedback. Unfortunately, RL agents may
learn slowly in large or complex environments due to the amount of computational
effort and/or experience needed to attain an acceptable performing policy. Transfer
Learning [17] (TL) is one technique used to cope with this difficulty by providing a
good starting prior for the RL agent attained in a related source task.

The source task can differ from the target task in many ways. If the tasks have differ-
ent representations of state or action spaces, some type of mapping between the tasks is
required. This inter-task mapping matches each state/action pair of the source task to its
corresponding state/action pair in the target facilitating transfer. While there have been a
number of successes in using such a mapping, the approaches are typically hand-coded
and may require substantial human knowledge [17,19]. Our contributions in this paper
are twofold. First, we propose a novel scheme to automatically learn an inter-task map-
ping between two tasks. Second, we introduce the new Transfer Least Squares Policy
Iteration (TrLSPI) algorithm for transfer between tasks of continuous state spaces and
discrete action spaces.

M. Cossentino et al. (Eds.): EUMAS 2011, LNAI 7541, pp. 1–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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To the best of our knowledge, this paper shows the first successful attempts to auto-
matically transfer between RL benchmark tasks that are very different. Namely, we con-
duct experiments to automatically transfer from the Mountain Car to the Pole balancing
problem. Our results show (1) improved performance on a fixed number of samples, (2)
a reduction in the convergence times to attain a policy on a fixed number of samples,
and (3) a reduction in the time needed to attain a near-optimal policy on a large amount
of samples.

The rest of the paper proceeds as follows. Related work is discussed next in Section 2.
Background information is presented in Section 3. Section 4 describes how an inter-task
mapping can be learned between two tasks by leveraging sparse coding, sparse projec-
tion learning and sparse pseudo-input gaussian processes. In Section 5, we introduce
our novel TrLSPI algorithm showing how the learned mapping can be used to transfer
information between a source task and target task. Experiments of transfer between two
very different tasks are presented in Section 6. Section 7 presents a discussion on the
scope an applicability of our framework. Section 8 concludes and reflects upon inter-
esting future work directions.

2 Related Work

In the past few years there has been a significant amount of work done in transfer
learning for RL tasks. This section outlines the most related work and contrasts it with
the work in this paper.

The majority of current transfer learning work in RL assumes that either 1) the two
agents are very similar and no mapping is needed, or 2) the inter-task mapping is pro-
vided by a human. For instance, [19] transfers advice and [17] transfers Q-values —
both methods assume that a mapping between the state and action variables in the two
tasks has been provided. Another approach is to frame different tasks as having a shared
agent space [5], so that no explicit mapping is needed. However, this requires that the
agent acting in both tasks share the same actions and a human to map new sensors back
into the agent space. The primary contrast between these methods and the current work
is that we are interested in learning a mapping between states and actions in pairs of
tasks, rather than assuming that it is provided or unnecessary.

Our previous work [1] required the presence of hand-coded features shared between
two tasks in order to automatically learn the inter-task mapping. This work extends the
previous approach to overcome the need for a predefined common subspace to deter-
mine the inter-task mapping.

There has also been recent work that approaches fully autonomous transfer. For ex-
ample, semantic knowledge about state features between two tasks may be used [6,9],
background knowledge about the range or type of state variables can be used [14,18],
or transition models for each possible mapping could be generated and tested [15].
Transfer learning has also been successful across different domains, e.g., using a sim-
ple discrete, deterministic task to improve learning on a complex, continuous, noisy
task [16]. However, there are currently no general methods to learn an inter-task map-
ping without requiring (1) background knowledge, which is not typically present in RL
settings, or (2) an expensive analysis of an exponential number of inter-task mappings.
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This paper overcomes these problems by automatically discovering high-level features
and using them to conduct transfer within reasonable time requirements.

Unlike all other existing methods (to the best of our knowledge) and complemen-
tary to our previous work [1,15,16], we assume differences among all the variables of
Markov Decision Processes describing the source and target tasks and focus on learning
an inter-state mapping, rather than a state-variable mapping. Additionally, our frame-
work can use state-dependent action mappings, allowing flexibility that other existing
algorithms do not.

3 Background

This section provides the reader with a short overview of sparse coding, reinforcement
learning, gaussian processes, transfer learning and other learning methods used in this
paper.

3.1 Reinforcement Learning (RL)

In an RL problem, an agent must decide how to sequentially select actions to maxi-
mize its expected long term reward [3,13]. Such problems are typically formalized as
Markov decision processes (MDPs). An MDP is defined by 〈S,A, P,R, γ〉, where S is
the (potentially infinite) set of states, A is the set of all possible actions that the agent
may execute, P : S × A → S is a state transition probability function defining the
transition dynamics, R : S×A → R is the reward function measuring the performance
of the agent, and γ ∈ [0, 1) is the discount factor. A policy π : S → A is defined as a
probabilistic mapping from a state to an action, where π(a|s), represents the probability
of choosing an action a in a state s. The goal of an RL agent is to improve its policy,
potentially reaching the optimal policy π� represented by taking greedy actions in the
optimal Q-function:

Q�(s, a) = max
π

E[
∞∑
t=0

γtR(st, at)|s = s0, π] (1)

In tasks with continuous state and/or action spaces, the Q functions and policies cannot
be represented in a table format, typically requiring sampling and function approxi-
mation techniques. This paper uses one such technique, Least Squares Policy Iteration
(LSPI), which will be explained in Section 5.2.

3.2 Transfer Learning in RL Tasks

Typically, when using Transfer Learning (TL) in RL tasks, there is a source and a target
task [17]. When the source and the target tasks are related, transferring a learned source
behavior should improve learning in the target task by providing an informative prior.
The prior will restrict the exploration in the target task by biasing the agent so that it
chooses actions that are better than random exploration, reducing the target task learning
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times and improving the overall performance. In our formulation, each of these tasks is
defined as an MDP which is a tuple of 〈S(i), A(i), P (i)(s, a), R(i), γ(i)〉 for i ∈ {1, 2}
where S(i), A(i), P (i)(s, a), R(i) and γ(i) represent the state spaces, action spaces, state
transition probabilities, reward functions and discount factors for each of the source
(i = 1) and target (i = 2) tasks.

The source and the target task may differ in their state spaces and/or action spaces
(as well as other components of the MDP). If transfer is to be useful when such dif-
ferences exist, an inter-task mapping relating these state-action spaces differences [17]
can be used. Traditionally, such a mapping was thought to be a one-to-one mapping
between the state/action variables representing the tasks [17]. This paper instead con-
siders a mapping that relates state-action successor state triplets from the source with
the target task. Mathematically,χ : Ss×As×Ss → St×At×St, where S and A repre-
sent the state space and the action space of the source and the target task, respectively.
This paper’s inter-task mapping is more than just a one-to-one mapping between the
state and/or action spaces of the MDPs. It also includes other terms that are automat-
ically discovered by our global approximators, which ultimately enhance the transfer
approach.

The main focus in this paper is the automatic discovery of an inter-task mapping to
enable transfer. The upcoming sections will further clarify the need for such a mapping
as well as describe our novel framework.

3.3 Sparse Coding

Sparse coding (SC) [8] is an unsupervised learning technique used to find a high-level
representation for a given set of unlabeled input data. It does this by discovering a
succinct over-complete basis for the provided data set. Given m k-dimensional input
vectors, ζ, SC finds a set of n basis vectors, b, and activations, a, with n > k such
that ζ ≈

∑n
j=1 a

(i)
j bj , where i and j represent the number of input data patterns and

number of bases, respectively. SC begins by assuming a Gaussian and a sparse prior
on the reconstruction error (ζ(i) −

∑n
j=1 a

(i)
j bj) and on the activations, leading to the

following an optimization problem:

min
{bj},{a(i)

j }

m∑
i=1

1

2σ2
||ζ(i) −

n∑
j=1

bja
(i)
j ||2

2
(2)

+β

m∑
i=1

n∑
j=1

||a(i)j ||1

s.t. ||bj ||22 ≤ c, ∀j = {1, 2, . . . , n}

The problem presented in Equation 2 is considered to be a “hard” optimization problem
as it is not jointly convex (i.e, in the activations and bases). However, fast and efficient
optimization algorithms exist [8] and were used in our work.
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3.4 Gaussian Processes

Gaussian processes (GPs) constitute a research field by themselves. It is beyond the
scope of this paper to fully detail the mathematical framework. This section briefly
explains GPs and refers the reader elsewhere [11] for a more in-depth treatment.

GPs are a form of supervised learning used to discover a relation between a given
set of input vectors, x, and set of output pairs, y. As opposed to normal regression
techniques that perform inference in the weight space, GPs perform inference directly
in the functional space, making learning simpler. Following existing notation [11], if a
function is sampled according to a GP we write:

f(x) ∼ GP(m(x), k(x, x
′
)), (3)

where m(x) and k(x, x
′
) , represent the mean and covariance function that fully specify

a GP.
Learning in a GP setting involves maximizing the marginal likelihood:

log p(y|x) = −1

2
yT K−1y − 1

2
log|K| − n

2
log2π. (4)

Maximizing Equation 4 may be computationally complex as we must invert the covari-
ance matrix K, which is of order of O(N3), where N is the number of input points.
Therefore, we use a fast learning technique, sparse pseudo-input gaussian processes
(SPGP), as proposed elsewhere [12].

SPGPs aim to reduce the complexity of learning and prediction in GPs by parametriz-
ing the regression model with M << N pseudo-input points, while still preserving
the full Bayesian framework. The covariance of the GP model is parametrized by the
location of the M << N pseudo-inputs. Existing results [12] show a complexity re-
duction in the training cost (i.e., the cost of finding the parameters of the covariances) to
O(M2N) and in the prediction cost (i.e., prediction on a new set of inputs) to O(M2).

4 Learning the Inter-task Mapping

In order to automatically construct an inter-task mapping,χ, this paper proposes a novel
framework using sparse coding, a L1 projection scheme, and sparse pseudo-input gaus-
sian processes. Each of these methods is necessary to solve a problem that is inherent
to TL in RL tasks. We approach the problem of learning the inter-task mapping, χ, as
a supervised learning problem. As χ is a mapping relating state-action triplets from the
source with the target task, related triplets should be provided as training data points.
Unfortunately, this is itself a hard problem — it is not trivial for the user to describe
what state triplets in the source task correspond to what in the target task. We there-
fore approach this problem by automatically transforming the problem spaces (i.e., the
state-action spaces of the two tasks) into a higher representational space through SC,
projecting the target task data onto those attained bases and then using a Euclidean dis-
tance measure to gauge similarity (Section 4.1). At this stage, the data set is provided
to a regressor to construct the inter-task mapping. Many regression techniques could be
applied to the approach but we chose to use a non-parametric approximation scheme
because of its generalization advantages.
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Our framework can conceptually be split into three essential parts. The first is the
dimensional unification of both the source and target task state-action spaces of the
MDPs. The second is the automatic discovery of a high dimensional informative space
for the source task. This is achieved through SC, as described in Section 4.1, ensuring
that transfer is conducted in a high representational space of the source task. In order
to use a similarity measure among different patterns, the data should be present in the
same space. That is why the target task samples still need to be projected to the attained
high representational space of the source. This is done using sparse projection learn-
ing, described in Section 4.2. The third and final step is to approximate the inter-task
mapping via a non-parametric regression technique, explained in Section 4.3.

4.1 Sparse Coding Transfer for RL

As described in Section 3.3, SC is an efficient way to discover higher level information
in an unlabeled data set. We use SC to solve two inherent problems in transfer learning
for RL tasks. The first is to unify the dimensions of the state action spaces of the two
different MDPs. The second is to discover a higher level representation for the attained
bases and activations of the source task state-action spaces. This step guarantees that our
scheme works with the “best” available representation/information space of the source
task.

Unifying the Source and Target Dimensions. Our problem commences by first uni-
fying the dimensions of the state action spaces of the two MDPs, an essential step for
discovering the inter-task mapping. After this step has finished, any existing TL in RL
technique may be used. However, this paper goes further and proposes a new transfer
framework based on the attained bases and activations, described in Section 5.

This “dimensional unification” process is described in Algorithm 1. In short, Algo-
rithm 1 sparse codes random samples from the source task, constrained by learning the
same number of bases (dt) as the target task.

The algorithms proposed elsewhere [8] solve Equation 6 on line 3 of Algorithm 1.
After this stage is done, new activations and bases describing the samples are attained.1

Note that, these newly attained samples—described as a linear combinations of the
bases and activations (Ab)—do not yet relate anything to the target task ones. The target
task samples still need to be projected towards these bases. This is done as described in
Section 4.2.

After Algorithm 1 is finished, new features in the source task state action spaces
are discovered. This is reasonable as TL typically transfers between a low dimensional
source task to a high dimensional target task. Here, SC is determining new bases that
are of a higher number than the original state action dimensions in the source task.
If successful, new patterns and representations are discovered in the source task state-
action spaces. These new features describe new representations not anticipated by the
original dimensions. Therefore, this new information can be used to help and guide the
transfer learning scheme.

1 Please note that while writing Algorithm 1 it was assumed that the dimensions of the source
task ds are lower than those of the target task dt. But it is worth noting that it works as well
for the other cases with no restrictions.
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Algorithm 1. Sparse Coding Transfer Reinforcement Learning

Require: Source MDP samples {〈ss, as, s′s〉}mi=1, target MDP samples {〈st, at, s′t〉}fj=1

1: Calculate ds and dt which are the dimensions of each of the state action spaces of the MDPs
2: Sparse code the source by solving:
3:

min
{bj},{a(i)

j
}

m∑
i=1

1

2σ2
||〈ss, as, s

′
s〉(i) −

dt∑
j=1

bja
(i)
j ||2

2
(5)

+β
m∑
i=1

dt∑
j=1

||a(i)j ||1

s.t. ||bj ||22 ≤ c,∀j = {1, 2, . . . , dt}

4: Solve the problem of Equation 6 using the algorithm proposed in [8]
5: Return the activation matrix (A ∈ R

m×dt ) and the bases (b ∈ R
dt×1)

High Information Representation. After dimensional unification, as described in
the previous section, SC is again used to discover a succinct higher informational/
representational bases of the activations than the unified dimensional spaces. This in-
sures that our transfer approach operates in the “richest” space described through the
samples. This is done in a similar framework to that in Section 4.1 and is described in
Algorithm 2.

Algorithm 2. Succinct High Information Representation of MDPs
Require: Activations acquired through Algorithm 1, number of new high dimensional bases dn
1: Represent the activations in the dn bases by solving the following problem using the algo-

rithm in [8]:
2:

min
{zj},{c(i)j }

m∑
i=1

1

2σ2
||〈a1:dt〉(i) −

dn∑
j=1

zjc
(i)
j ||2

2
(6)

+β

m∑
i=1

dn∑
j=1

||c(i)j ||1

s.t. ||zj ||22 ≤ o,∀j = {1, 2, . . . , dn}

3: return activations C ∈ R
m×dn and bases z ∈ R

dn×1

The idea presented by Algorithm 2 is to sparse code the activations, representing the
original samples of the MDPs, to a higher representational space, dn.2 This stage should
guarantee that we project the samples of the source task MDP into a high informational

2 In our experiments we have set dn to be 100, a relatively high number.
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space where a similarity measure can be used to find a relation between the source and
target task triplets. Noting that there are no restrictions on the number of bases to be
determined: unneeded bases have an activation of zero once the SC problem has been
solved.

At this stage, the source state action spaces are described in a rich informational
space determined by the newly discovered bases and activations. The next step is to
project the target task samples to that space described by Z so that triplets can be ordered
and the inter-task mapping approximated.

4.2 L1 Sparse Projection Learning

Once the above stages have finished, the source samples are described via the activations
generated in Algorithm 2. However, target task samples still have no relationship to the
learned activations. In other words, the bases and activations that have been attained
successfully describe high informational patterns and representations in the source task
state-action spaces but do not represent the target state-action spaces. Since we are
seeking a similarity correspondence between the source and target task triplets, the
target task samples should be represented in the same high informational space.

Therefore, the next step is to learn a sparse projection to project the target task sam-
ples onto the Z basis representing the source task MDP. In other words, the goal now
is to learn a sparse projection that is capable of representing the random target task
samples as a combination of some activations, automatically learned, and the Z bases
generated by Algorithm 2. The overall scheme is described in Algorithm 3, where the
activations are learned by solving the L1 regularized least squares optimization problem
of Equation 7. This optimization problem guarantees that the attained activations are as
sparse as possible and is solved using the interior point methods [4].

At this stage all the samples from both the target and source task are projected to
the same space described by the sparse coded vectors Z. The next step will be to order
the data points from both the source and the target task so to approximate the inter-task
mapping.

Algorithm 3. Reflecting Target Task Samples

Require: Sparse coded bases Z generated by Algorithm 2, target MDP samples {〈st, at, s′t〉}fi=1

1: for i = 1 → f do
2: Represent the target data patterns in the sparse coded bases, Z, by solving:
3:

φ̂(i)(〈st, at, s
′
t〉) = argmin

φ(i)
||〈st, at, s

′
t〉 −

dn∑
j=1

φ
(i)
j zj ||22 (7)

+β||φ(i)||1
4: end for
5: return activations Φ
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4.3 Similarity Measure and Inter-task Mapping Approximation

As mentioned previously, we tackle the problem of learning an inter-task mapping via
supervised learning. Since χ maps triplets from the source task to their corresponding
triplets in the target task, the problem at this stage is to attain the training patterns to
approximate χ.

After reaching the rich space representing the random samples of the 2 MDPs (i.e.,
Z), a Euclidean distance measure is used to compare triplets, providing a data set to the
regressor (i.e, SPGPs) to approximate the inter-task mapping χ. This similarity measure
is used to determine the correspondence of the source and target tasks triplets. Once
applied, the similarity measure will seek the triplets of the source task closest to those
of the target task and map them together as being inputs and outputs for the regression
algorithm, respectively. This is shown on line 2 of Algorithm 4. Since the similarity
measure is used in the sparse coded spaces, the distance is calculated using the attained
activation (C and Φ) rather than the samples themselves. Therefore, the scheme has to
trace the data back to the original dimensions of the state-action pairs of the MDPs.

There are few restrictions on the function approximation techniques that could be
used. We use nonparametric regression with sparse gaussian processes technique [12].
We prefer sparse gaussian processes rather than normal gaussian processes regression
technique as the latter may have problems dealing with large data sets. To clarify, con-
sider the learning phase of a GP that involves maximizing Equation 4. It is clear that
the inversion of the covariance matrix, K, is required on each iteration with complex-
ity O(n3), where n is the number of samples. Additionally, the maximiztion algorithm
(Conjugate Gradient Descent [10]) may get stuck in a local maximum of Equation 4, a
common problem in function approximation schemes and maximization problems.

Algorithm 4. Similarity Measure & Inter-Task mapping approximation

Require: Sparse coded basis Z, sparse coded activations of the source task C ∈ R
m×dn , pro-

jected target task activations φ ∈ R
m×dn

1: for all φ do
2: Calculate the closest activation in C minimizing the Euclidean/similarity distance mea-

sure.
3: end for
4: Correspond the triplets with the minimum similarity measure as being inputs and outputs to

create a data set D
5: Approximate the inter-task mapping, χ using SPGPs
6: return The approximated inter-task mapping χ

5 Transfer Scheme

Assuming there exists a “good enough” policy, π�
s for the source task, we propose a

novel transfer algorithm for pairs of tasks with continuous state spaces and discrete
action spaces, titled Transfer Least Squares Policy Iteration.

This section describes the novel transfer scheme and reflects on the details and tech-
nicalities of the approach. It starts by describing a well-known reinforcement learning
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algorithm (LSPI), that our novel transfer algorithm builds on. Then clarifies all the tech-
nicalities involved in the proposed TrLSPI algorithm.

5.1 Least Squares Policy Iteration

LSPI [7] is an approximate RL algorithm that is considered an actor/critic method. LSPI
is composed of two parts. The first is an evaluation step, Least Squares Temporal Dif-
ference Q-learning (LSTDQ) and the second is a policy improvement step. In LSTDQ
the algorithm will update the weights representing the policy so that the new parameters
minimize certain error criteria. For example, the LSTDQ could be set to minimize the
Bellman residual error of the projected Bellman equations. Once this step has finished,
LSPI uses the attained weights to improve the policy by taking greedy actions in the
approximated Q-function.

Approximate Value Function 

Approximate Policy  

Actor 

Policy 
Projection 

Value Function 
Projection 

Critic 

Model 

Polic

oject

Fig. 1. Least Squares Policy Iteration schematic [7]

Figure 1 highlights the actor and critic organization of LSPI. Since LSPI uses func-
tion approximators to represent theQ-functions and/or policies, there also exist two pro-
jection phases for both the Q-function and the policy, as can been seen in the schematic.
A more thorough treatment may be found elsewhere [7].

5.2 Transfer Least Squares Policy Iteration (TrLSPI)

TrLSPI, Algorithm 5, can be split into two sections. The first determines χ (Section 4),
using source task samples3 from π�

s . The second provides those samples for the evalu-
ation phase of the LSPI algorithm (LSTDQ), to learn a policy for the target task. The

3 If using an approximate RL algorithm in the source task, the policy would instead by near-
optimal.
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Algorithm 5. TrLSPI

Require: Source MDP samples {〈ss, as, s′s〉}mi=1, target MDP samples {〈st, at, s′t}, number for
re-samples ns, a (near-)optimal policy for the source system π�

s , state action basis functions
for the target task ψ1, . . . , ψk

1: Unify the dimensions using Algorithm 1
2: Discover high informational representation using Algorithm 2
3: Sparse project the target task samples using Algorithm 3
4: Use a similarity measure to attain the data set and approximate χ using Algorithm 4
5: Randomly sample ns source task triplets 〈ss, as, s′s〉ns

i=1 greedily in the optimal policy π�
s ,

set of state-dependent basis function ψ1, . . . , ψk : St × At → R

6: for i = 1 → ns do
7: Find the corresponding target task triplets as 〈s(i)t , a

(i)
t , s

(i)′
t 〉 = χ(〈s(i)s , a

(i)
s , s

(i)′
s 〉)

8: end for
9: Find the closest triplet in the initial samples to the ones predicted by χ

10: Use LSTDQ described by [7] to evaluate those samples
11: Learn and improve policy till convergence using LSPI [7]
12: return Learned policy π�

target

intuition here is that if the tasks are similar and if the inter-task mapping is “good
enough,” then those samples will bias the target task controller towards choosing good
actions and restricting its area of exploration and reducing learning times and increasing
performance.

Provided that the tasks are related, Algorithm 5 is capable of attaining a good starting
behavior for the target task. The performance of this policy depends on the state space
region where those samples were provided. In other words, it is not possible to achieve
near-optimal performance with a small number of samples that are in regions far from
the goal state.4 Therefore, if the agent has to seek a near-optimal policy, then either a
new sampling step using the current policy should be added to Algorithm 5, or a large
amount of samples should be provided. It is worth noting that it is not necessary for the
algorithm to be provided by a model for the system to perform that sampling. A black
box generative model taking inputs being states and actions and producing outputs of
successor states and rewards is sufficient.

6 Experiments and Results

Two very different tasks were chosen to evaluate the proposed framework, the RL
benchmark tasks Mountain Car (MC) and Pole balancing (see Figure 2).

The control objective of MC, the source task, is to drive the car up the hill (Figure 2(a)).
The difficulty is that gravity is stronger than the car’s motor—even at maximum throttle
the car can not directly reach the top of the hill. The solution is to first move away from the
target to the opposite side of the hill and then accumulate enough energy to reach the top
of the hill. The dynamics of the car are described via two continuous state variables (x, ẋ)
representing the position and velocity of the center of gravity of the car, respectively.

4 This is a problem that is inherentt to LSPI and is not due to the TrLSPI algorithm.
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(a) Mountain Car (b) Pole Balancing

Fig. 2. Mountain Car to Pole Balancing Transfer

There are three actions: maximum throttle forward (+1), zero throttle (0), and maximum
throttle reverse (-1). The car is rewarded by +1 once it reaches the top of the hill, −1 if
it hits the wall, and zero elsewhere. At the end of each episode the start state is randomly
initialized at the bottom of the hill.

The target task is the Pole Balancing problem described in Figure 2(b). The control
goal of the pole balancing system is balancing the pole in an upright position (i.e., θ =
θ̇ = 0). The allowed actions are (+1) for full throttle right and (-1) for full throttle left.
The reward function of the system consists of two parts: (1) cos(θ), which yields its
maximum value of +1 at the upright position of the pole, and (2) −1 if the cart hits the
boundaries of the track. The angle was restricted to be within |θ| < π

9 while the position
was restricted to |x| < 3 and the start state was randomly chosen within that interval.

As is clear from the description, the two MDPs representing the tasks are signifi-
cantly different. The source and target task have different state spaces, action spaces,
transition probabilities, and reward functions. No previous work can learn to
autonomously transfer between such different tasks.

Our framework requires an optimal policy in the MC source task, π�
MC .

SARSA(λ) [13] is used to learn π�
MC . The learned policy is then used to randomly

sample different numbers of states, to be used by χ. We started with 5000 and 2, 000
randomly sampled states (using a random policy) for the MC and the Pole Balancing,
respectively. These samples were used by the algorithm described in Section 4 to at-
tain the inter-task mapping χ. After χ has been learned, different amounts of samples
were sampled from the source task using the optimal policy π�

MC . Specifically, we have
sampled 500, 1, 000,. . .20, 000 states as input to the TrLSPI algorithm to measure per-
formance and convergence times.

Our results show 1) an increase in the performance on a fixed number of samples, 2)
a decrease in the convergence time when using a predefined number of samples, and 3)
a decrease in the time required to learn a near-optimal policy.

6.1 Performance on a Fixed Number of Samples

The first sets of experiments we conducted were to measure the performance in the
target task, given a fixed number of source task transferred samples. Namely, we
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Fig. 3. Transfer Results on the Pole Balancing task

measured the number of successful control steps in the target task given a fixed number
of 500, . . .20, 000 transferred MC samples. We compared the performance to a normal
LSPI (i.e., random sampling) learner in the target task. The graph in Figure 3 summa-
rizes the attained results and clearly shows an increase in the number of control steps in
the case of the transferred samples compared to a random sampling scheme. For exam-
ple it can be seen that at a small number of samples, e.g. 2, 000, our transfer scheme was
able to attain an average of 600 control steps with about 400 for the random case. This
performance increases with the number of samples to reach 800 steps at 4, 000 trans-
ferred samples. The random case needed to be provided by 9, 000 samples to attain
an 800 steps performance. Finally, the transferred algorithm and the random selection
scheme seem to converge, on a large amount of samples 20, 000 to the same number of
control steps, about 1, 300. This leads to the following conclusion:

Conclusion 1: TrLSPI has provided a better distribution of samples compared to ran-
dom policy in the target task. random what? a random policy in cart-pole?

6.2 Convergence Times on Fixed Number of Samples

The other improvement we report is the decrease in the convergence times, represented
by the number of iterations in LSPI, provided a fixed amount of transferred sampled.
This time was measured by comparing the convergence times of TrLSPI and LSPI on a
fixed number of transferred and random samples, respectively. To clarify, LSPI was able
to converge faster once provided the transferred samples compared to a random sample
data set. For example, it took LSPI 7 iteration to converge provided 5, 000 transferred
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samples with 12 iterations for the random case. Further the algorithm converged within
14 iteration provided 20, 000 transferred samples while it took it about 21 for the ran-
dom case.

Conclusion 2: TrLSPI converged faster provided a fixed amount of samples.

6.3 Convergence Times to a Near-Optimal Policy

The last performance measure we tested was the amount of time required by TrLSPI to
converge to a near-optimal policy, which was compared to normal LSPI learners in the
target tasks. LSPI was able to converge to an acceptable policy within a 22.5 minutes
after being provided a random data set, compared to 17 minutes with the transferred
data set5. Calculating χ took an addition 3.7 minutes.

Conclusion 3: TrLSPI converged faster to a near-optimal policy compared to a random
selection scheme.

7 Discussion

The proposed TL framework is compatible with other sample-based model-free learn-
ing methods and can be used on a variety of RL tasks with continuous state spaces
and discrete action spaces. The framework has the advantage of automatically finding
the inter-task mapping using SC and any “good” regression technique. But there is one
potential weakness, discussed next.

Our framework should work correctly when the two tasks at hand are semantically
similar, as the rewards of the two systems were not taken into account in the explained
scheme. For instance, consider the transfer example between the same robot but with
opposite rewards.

Our mapping scheme from Section 4, once applied, will produce a one-to-one map-
ping from the source to the target task. In other words, since the two tasks have the
same state and action spaces, the mapping that will be one-to-one, mapping the same
state action successor state triplets of the two tasks together. Therefore, the transition of
the robots to the rewardable/ un-rewardable states will map together. Since the optimal
policies of the two robots are opposite, it is easy to see that in this case the target task has
been provided with a “bad” biased starting policy which will decrease the agents per-
formance rather than enhancing it. Such negative transfer is a well-known problem in
TL for RL tasks. This paper’s approach may be able to avoid this problem once rewards
are added to the similarity measure, used to generate the training set to approximate the
inter-task mapping χ. However, this enhancement will be left to future work.

8 Conclusions and Future Work

This paper has presented a novel technique for transfer learning in reinforcement learn-
ing tasks. Our framework may be applied to pairs of reinforcement learning problems

5 Our experiments were performed on a 2.8 Ghz Intel Core i7.
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with continuous state spaces and discrete action spaces. The main contributions of this
paper are (1) the novel method of automatically attaining the inter-task mapping, χ
and (2) the new TrLSPI algorithm for tasks with continuous state spaces and discrete
actions. We approached the problem by framing the approximation of the inter-task
mapping as a supervised learning problem that was solved using sparse pseudo input
gaussian processes. sparse coding, accompanied with a similarity measure, was used
to determine the data set required by the regressor for approximating χ. Our results
demonstrate successful transfer between two very different tasks, the mountain car to
the pole balancing task. Success was measured both in an increase in learning perfor-
mance as well as a reduction in convergence time.

There are many exciting directions for future work. First, different distance metrics
should be compared and their effects on the overall performance of the algorithm mea-
sured. Second, the distance measure will be improved by incorporating the rewards in
the framework, helping to avoid the problem of negative transfer, as well as determine
a criterion for TL in RL. Third, this approach should be applied to other RL method,
such as our preliminary investigation described elsewhere [2].
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Abstract. The goal of this paper is to introduce a real-world challenge problem
for researchers in multiagent systems and beyond, where our collective efforts
may have a significant impact on activities in the real-world. The challenge is in
applying game theory for security: Our goal is not only to introduce the prob-
lem, but also to provide exemplars of initial successes of deployed systems in
this challenge problem arena, some key open research challenges and pointers to
getting started in this research.

Keywords: Game Theory, Security, Multiagent Systems.

1 Introduction

Security is a critical concern around the world that arises in protecting our ports, air-
ports, transportation or other critical national infrastructure from adversaries, in protect-
ing our wildlife and forests from poachers and smugglers, and in curtailing the illegal
flow of weapons, drugs and money; and it arises in problems ranging from physical
to cyber-physical systems. In all of these problems, we have limited security resources
which prevent full security coverage at all times; instead, limited security resources
must be deployed intelligently taking into account differences in priorities of targets
requiring security coverage, the responses of the adversaries to the security posture and
potential uncertainty over the types, capabilities, knowledge and priorities of adver-
saries faced.

Game theory is well-suited to adversarial reasoning for security resource allocation
and scheduling problems. Casting the problem as a Bayesian Stackelberg game, we have
developed new algorithms for efficiently solving such games to provide randomized pa-
trolling or inspection strategies. These algorithms have led to some initial successes in
this challenge problem arena, leading to advances over previous approaches in secu-
rity scheduling and allocation, e.g., by addressing key weaknesses of predictability of
human schedulers. These algorithms are now deployed in multiple applications: AR-
MOR has been deployed at the Los Angeles International Airport (LAX) since 2007 to
randomizes checkpoints on the roadways entering the airport and canine patrol routes
within the airport terminals [1]; IRIS, is a game-theoretic scheduler for randomized
deployment of the US Federal Air Marshals (FAMS) requiring significant scale-up in
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underlying algorithms has been in use since 2009 [2]; PROTECT, which uses a new
set of algorithms based on quantal-response is deployed in the port of Boston for ran-
domizing US coast guard patrolling [3, 4]; PROTECT has been deployed in the port
of Boston since April 2011 and is now in use at the port of New York; GUARDS is
under evaluation for national deployment by the US Transportation Security Adminis-
tration (TSA) [5], and TRUSTS is being tested by the Los Angeles Sheriffs Department
(LASD) in the LA Metro system to schedule randomized patrols for fare inspection [6].
These initial successes point the way to major future applications in a wide range of
security arenas; with major research challenges in scaling up our game-theoretic algo-
rithms, to addressing human adversaries’ bounded rationality and uncertainties in action
execution and observation, as well as in preference elicitation and multiagent learning.

This paper will provide pointers to our algorithms, key research challenges and how
to get started in this research. While initial research has made a start, a lot remains
to be done; yet these are large-scale interdisciplinary research challenges that call upon
multiagent researchers to work with researchers in other disciplines, be “on the ground”
with domain experts, and examine real-world constraints and challenges that cannot be
abstracted away. Together as an international community of multiagent researchers, we
can accomplish more!

2 Stackelberg Games Background

A generic Stackelberg game has two players, a leader, and a follower. These players
need not represent individuals, but could also be groups that cooperate to execute a
joint strategy, such as a police force or a terrorist organization. Each player has a set of
possible pure strategies, or the actions that they can execute. A mixed strategy allows
a player to play a probability distribution over pure strategies. Payoffs for each player
are defined over all possible pure-strategy outcomes for both the players. The payoff
functions are extended to mixed strategies by taking the expectation over pure-strategy
outcomes. The follower can observe the leader’s strategy, and then act in a way to
optimize its own payoffs. Thus, the attacker’s strategy in a Stackelberg game is a best
response to the leader’s strategy.

The most common solution concept in game theory is a Nash equilibrium, which is a
profile of strategies for each player in which no player can gain by unilaterally changing
to another strategy [7]. Strong Stackelberg equilibrium is a refinement of Nash equilib-
rium; it is a form of equilibrium where the leader commits to a strategy first, and the
follower provides a best response while breaking ties in favor of the leader.1 This Strong
Stackelberg equilibrium is the solution concept adopted in security applications [7–10].

The Bayesian extension to the Stackelberg game allows for multiple types of play-
ers, with each type associated with its own payoff values [11, 12, 10]. For real-world
security domains, we assume that there is only one leader type (e.g., only one police
force), although there are multiple follower types (e.g. multiple groups of adversaries
are trying to infiltrate security). Each follower type is represented by a different payoff
matrix. The leader does not know the follower’s type. The goal is to find the optimal

1 The leader can always induce the follower to strictly break ties in favor of the leader by per-
turbing his strategy by an infinitesimal amount [8].
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mixed strategy for the leader to commit to, given that each follower type will know the
mixed strategy of the leader when choosing its own strategy.

3 Deployed and Emerging Security Applications

The last several years have witnessed the successful application of multi-agent sys-
tems in allocating limited resources to protect critical infrastructures [13–15, 5, 3].
The framework of game-theory (more precisely, Stackelberg games) is well suited to
formulate the strategic interaction in security domains in which there are usually two
players: the security force (defender) commits to a security policy first and the attacker
(e.g., terrorist, poacher and smuggler) conducts surveillance to learn the policy and
then takes his best attacking action.2 Stackelberg games have been widely used for
modeling/reasoning complex security problems and a variety of algorithms have been
proposed to efficiently compute the equilibrium strategy, i.e., defender’s best way of
utilizing her limited security resources (there is actually a special class of Stackelberg
games that often gets used in these security domains, and this class is referred to as se-
curity games). In the rest of this section, we describe the application of the Stackelberg
game framework in multiple significant security domains.

3.1 ARMOR for Los Angeles International Airport

Los Angeles International Airport (LAX) is the largest destination airport in the United
States and serves 60-70 million passengers per year. The LAX police use diverse mea-
sures to protect the airport, which include vehicular checkpoints, police units patrolling
the roads to the terminals, patrolling inside the terminals (with canines), and security
screening and bag checks for passengers. The application of game-theoretic approach is
focused on two of these measures: (1) placing vehicle checkpoints on inbound roads that
service the LAX terminals, including both location and timing (2) scheduling patrols
for bomb-sniffing canine units at the different LAX terminals. The eight different termi-
nals at LAX have very different characteristics, like physical size, passenger loads, foot
traffic or international versus domestic flights. These factors contribute to the differing
risk assessments of these eight terminals. Furthermore, the numbers of available vehicle
checkpoints and canine units are limited by resource constraints. Thus it is challenging
to optimally allocate these resources to improve their effectiveness while avoiding pat-
terns in the scheduled deployments.

The ARMOR system (Assistant for Randomized Monitoring over Routes) focuses
on two of the security measures at LAX (checkpoints and canine patrols) and opti-
mizes security resource allocation using Bayesian Stackelberg games. Take the vehicle
checkpoints model as an example. Assume that there are n roads, the police’s strat-
egy is placing m < n checkpoints on these roads where m is the maximum number
of checkpoints. The adversary may potentially choose to attack through one of these
roads. ARMOR models different types of attackers with different payoff functions, rep-
resenting different capabilities and preferences for the attacker. ARMOR uses DOBSS
(Decomposed Optimal Bayesian Stackelberg Solver) to compute the defender’s optimal
strategy [10]. ARMOR has been successfully deployed since August 2007 at LAX.

2 Or the attacker may be sufficiently deterred and dissuaded from attacking the protected target.
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3.2 IRIS for US Federal Air Marshals Service

The US Federal Air Marshals Service (FAMS) allocates air marshals to flights orig-
inating in and departing from the United States to dissuade potential aggressors and
prevent an attack should one occur. Flights are of different importance based on a vari-
ety of factors such as the numbers of passengers, the population of source/destination,
international flights from different countries, and special events that can change the
risks for particular flights at certain times. Security resource allocation in this domain
is significantly more challenging than for ARMOR: a limited number of FAMS need
to be scheduled to cover thousands of commercial flights each day. Furthermore, these
FAMS must be scheduled on tours of flights that obey various constraints (e.g., the time
required to board, fly, and disembark). Simply finding schedules for the marshals that
meet all of these constraints is a computational challenge. Our task is made more dif-
ficult by the need to find a randomized policy that meets these scheduling constraints,
while also accounting for the different values of each flight.

Against this background, the IRIS system (Intelligent Randomization In Scheduling)
has been developed and has been deployed by FAMS since October 2009 to randomize
schedules of air marshals on international flights. In IRIS, the targets are the set of
n flights and the attacker could potentially choose to attack one of these flights. The
FAMS can assign m < n air marshals that may be assigned to protect these flights.

Since the number of possible schedules exponentially increases with the number
of flights and resources, DOBSS is no longer applicable to the FAMS domain. Instead,
IRIS uses the much faster ASPEN algorithm [16] to generate the schedule for thousands
of commercial flights per day. IRIS also use an attribute-based preference elicitation
system to determine reward values for the Stackelberg game model.

3.3 PROTECT for US Coast Guard

The US Coast Guard’s (USCG) mission includes maritime security of the US coasts,
ports, and inland waterways; a security domain that faces increased risks due to threats
such as terrorism and drug trafficking. Given a particular port and the variety of critical
infrastructure that an adversary may attack within the port, USCG conducts patrols to
protect this infrastructure; however, while the adversary has the opportunity to observe
patrol patterns, limited security resources imply that USCG patrols cannot be at every
location 24/7. To assist the USCG in allocating its patrolling resources, the PROTECT
(Port Resilience Operational / Tactical Enforcement to Combat Terrorism) model is be-
ing designed to enhance maritime security and has been in use at the port of Boston
since April 2011 and now is also in use at the port of New York (Figure 1). Similar to
previous applications ARMOR and IRIS, PROTECT uses an attacker-defender Stack-
elberg game framework, with USCG as the defender against terrorist adversaries that
conduct surveillance before potentially launching an attack.

The goal of PROTECT is to use game theory to assist the USCG in maximizing its
effectiveness in the Ports, Waterways, and Coastal Security (PWCS) Mission. PWCS
patrols are focused on protecting critical infrastructure; without the resources to provide
one hundred percent on scene presence at any, let alone all of the critical infrastructure,
optimization of security resource is critical. Towards that end, unpredictability creates
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(a) PROTECT is being used in Boston (b) Extending PROTECT to
NY

Fig. 1. USCG boats patrolling the ports of Boston and NY

situations of uncertainty for an enemy and can be enough to deem a target less appeal-
ing. The PROTECT system, focused on the PWCS patrols, addresses how the USCG
should optimally patrol critical infrastructure in a port to maximize protection, knowing
that the adversary may conduct surveillance and then launch an attack. While random-
izing patrol patterns is key, PROTECT also addresses the fact that the targets are of
unequal value, understanding that the adversary will adapt to whatever patrol patterns
USCG conducts. The output of PROTECT is a schedule of patrols which includes when
the patrols are to begin, what critical infrastructure to visit for each patrol, and what ac-
tivities to perform at each critical infrastructure.

While PROTECT builds on previous work, it offers some key innovations. First,
this system is a departure from the assumption of perfect adversary rationality noted in
previous work, relying instead on a quantal response (QR) model [17] of the adversary’s
behavior. Second, to improve PROTECT’s efficiency, a compact representation of the
defender’s strategy space is used by exploiting equivalence and dominance. Finally, the
evaluation of PROTECT for the first time provides real-world data: (i) comparison of
human-generated vs PROTECT security schedules, and (ii) results from an Adversarial
Perspective Team’s (human mock attackers) analysis. The PROTECT model is now
being extended to the port of New York and it may potentially be extended to other
ports in the US.

3.4 GUARDS for US Transportation Security Agency

The United States Transportation Security Administration (TSA) is tasked with pro-
tecting the nation’s over 400 airports which services approximately 28,000 commer-
cial flights and up to approximately 87,000 total flights per day. To protect this large
transportation network, the TSA employs approximately 48,000 Transportation Secu-
rity Officers, who are responsible for implementing security activities at each individual
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airport. While many people are aware of common security activities, such as individual
passenger screening, this is just one of many security layers TSA personnel implement
to help prevent potential threats [18, 19]. These layers can involve hundreds of hetero-
geneous security activities executed by limited TSA personnel leading to a complex
resource allocation challenge. While activities like passenger screening are performed
for every passenger, the TSA cannot possibly run every security activity all the time.
Thus, while the resources required for passenger screening are always allocated by the
TSA, it must also decide how to appropriately allocate its remaining security officers
among the layers of security to protect against a number of potential threats, while
facing challenges such as surveillance and an adaptive adversary as mentioned before.

To aid the TSA in scheduling resources to protect airports, a new application called
GUARDS (Game-theoretic Unpredictable and Randomly Deployed Security) has been
developed. While GUARDS also utilizes Stackelberg games as ARMOR and IRIS,
GUARDS faces three key challenges [5]: 1) reasoning about hundreds of heterogeneous
security activities; 2) reasoning over diverse potential threats; and 3) developing a sys-
tem designed for hundreds of end-users. To address those challenges, GUARDS created
a new game-theoretic framework that allows for heterogeneous defender activities and
compact modeling of a large number of threats and developed an efficient solution tech-
nique based on general-purpose Stackelberg game solvers. GUARDS is currently under
evaluation and testing for scheduling practices at an undisclosed airport. If successful,
the TSA intends to incorporate the system into their unpredictable scheduling practices
nationwide.

3.5 TRUSTS for Urban Security in Transit Systems

In some urban transit systems, including the Los Angeles Metro Rail system, passengers
are legally required to purchase tickets before entering but are not physically forced
to do so (Figure 2). Instead, security personnel are dynamically deployed throughout
the transit system, randomly inspecting passenger tickets. This proof-of-payment fare
collection method is typically chosen as a more cost-effective alternative to direct fare
collection, i.e., when the revenue lost to fare evasion is believed to be less than what it
would cost to directly preclude it.

Take the Los Angeles Metro as an example. With approximately 300,000 riders daily,
this revenue loss can be significant; the annual cost has been estimated at $5.6 mil-
lion [20]. The Los Angeles Sheriffs Department (LASD) deploys uniformed patrols on
board trains and at stations for fare-checking (and for other purposes such as crime pre-
vention), in order to discourage fare evasion. With limited resources to devote to patrols,
it is impossible to cover all locations at all times. The LASD thus requires some mecha-
nism for choosing times and locations for inspections. Any predictable patterns in such
a patrol schedule are likely to be observed and exploited by potential fare-evaders. The
LASD’s current approach relies on humans for scheduling the patrols. However, human
schedulers are poor at generating unpredictable schedules; furthermore such schedul-
ing for LASD is a tremendous cognitive burden on the human schedulers who must
take into account all of the scheduling complexities (e.g., train timings, switching time
between trains, and schedule lengths).
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(a) Los Angeles Metro (b) Barrier-free entrance to transit system

Fig. 2. TRUSTS for transit systems

The TRUSTS system (Tactical Randomization for Urban Security in Transit Sys-
tems) models the patrolling problem as a leader-follower Stackelberg game [21]. The
leader (LASD) precommits to a mixed patrol strategy (a probability distribution over all
pure strategies), and riders observe this mixed strategy before deciding whether to buy
the ticket or not. Both ticket sales and fines issued for fare evasion translate into revenue
to the government. Therefore the optimization objective for the leader is to maximize
total revenue (total ticket sales plus penalties). Urban transit systems, however, present
unique computational challenges since there are exponentially many possible patrol
strategies, each subject to both the spatial and temporal constraints of travel within
the transit network under consideration. To overcome this challenge, TRUSTS uses a
compact representation which captures the spatial as well as temporal structure of the
domain. The LASD is currently testing TRUSTS in the LA Metro system by deploying
patrols according to the generated schedules and measuring the revenue recovered.

3.6 Future Applications

Beyond the deployed and emerging applications above are a number of different appli-
cation areas. One of those is protecting forests [22], where we must protect a continuous
forest area from extractors by patrols through the forest that seek to deter such extrac-
tion activity. With limited resources for performing such patrols, a patrol strategy will
seek to distribute the patrols throughout the forest, in space and time, in order to min-
imize the resulting amount of extraction that occurs or maximize the degree of forest
protection. This problem can be formulated as a Stackelberg game and the focus is
computing optimal allocations of patrol density [22].

Another potential application is police patrols for crime suppression which is a
data-intensive domain [23]. Thus it would be promising to use data mining tools on
a database of past reported crime and events to identify the locations to be patrolled,
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the times at which the game changes, and the types of adversaries faced. The idea is
to exploit temporal and spatial patterns of crime on the area to be patrolled to deter-
mine the priorities on how to use the limited security resources. Even with all of these
applications, we have barely scratched the surface of possibilities in terms of potential
applications for multiagent researchers for applying game theory for security.

The Stackelberg game framework can also be applied to adversarial domains that
exhibit ‘contagious’ actions for each player. For example, word-of-mouth advertising
/ viral marketing has been widely studied by marketers trying to understand why one
product or video goes ‘viral’ while others go unnoticed [24]. Counterinsurgency is the
contest for the support of the local leaders in an armed conflict and can include a variety
of operations such as providing security and giving medical supplies. Just as in word-
of-mouth advertising and peacekeeping operations, these efforts carry a social effect
beyond the action taken that can cause advantageous ripples through the neighboring
population. Moreover, multiple intelligent parties attempt to leverage the same social
network to spread their message, necessitating an adversary-aware approach to strategy
generation. Game-theoretic approaches can be used to generate resource allocations
strategies for such large-scale, real world networks. The interaction can be modeled as
a graph with one player attempting to spread influence while the other player attempts
to stop the probabilistic propagation of that influence by spreading their own influence.
This ‘blocking’ problem models situations faced by governments/peacekeepers com-
batting the spread of terrorist radicalism and armed conflict with daily/weekly/monthy
visits with local leaders to provide support and discuss grievances [25].

Game-theoretic methods are also appropriate for modeling resource allocation in cy-
bersecurity [26] such as packet selection and inspection for detecting potential threats
in large computer networks [27]. The problem of attacks on computer systems and cor-
porate computer networks gets more pressing each year as the sophistication of the
attacks increases together with the cost of their prevention. A number of intrusion de-
tection and monitoring systems is being developed, e.g., deep packet inspection method
that periodically selects a subset of packets in a computer network for analysis. How-
ever, there is a cost associated with the deep packet inspection, as it leads to significant
delays in the throughput of the network. Thus, the monitoring system works under a
constraint of limited selection of a fraction of all packets which can be inspected. The
attacking/pretecting problem can be formulated as a game between two players: the
attacker (or the intruder), and the defender (the detection system) [27]. The intruder
wants to gain control over (or to disable) a valuable computer in the network by scan-
ning the network, hacking into a more vulnerable system, and/or gaining access to fur-
ther devices on the computer network. The actions of the attacker can therefore be seen
as sending malicious packets from a controlled computer (termed source) to a single
or multiple vulnerable computers (termed targets). The objective of the defender is to
prevent the intruder from succeeding by selecting the packets for inspection, identify-
ing the attacker, and subsequently thwarting the attack. However, packet inspections
cause unwanted latency and hence the defender has to decide where and how to inspect
network traffic in order to maximize the probability of a successful malicious packet
detection. The computational challenge is efficiently computing the optimal defending
strategies [27].
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4 Open Research Issues

While the deployed applications have advanced the state of the art, significant future re-
search remains to be done. In the following, we highlight some key research challenges,
including scalability, robustness, human adversary modeling and mixed-initiative opti-
mization. The main point we want to make is that this research does not require access
to classified information of any kind. Problems, solution approaches and datasets are
well specified in the papers discussed below,

Scalability: The first research challenge is improving the scalability of our algorithms
for solving Stackelberg (security) games. The strategy space of both the defender and
the attacker in these games may exponentially increase with the number of security ac-
tivities, attacks, and resources. As we scale up to larger domains, it is critical to develop
newer algorithms that scale up significantly beyond the limits of the current state of the
art of Bayesian Stackelberg solvers. Driven by the growing complexity of applications,
a sequence of algorithms for solving security games have been developed including
DOBSS [10], ERASER [15], ASPEN [16]. However, existing algorithms still cannot
scale up to very large scale domains such as scheduling randomized checkpoints in
cities. In such graph based security games, the strategy space of the defender grows ex-
ponentially with the number of available resources and the strategy space of the attacker
grows exponentially with the size of the road network considered. The latest technique
to schedule such checkpoints is based on a “double oracle approach” which does not
require the enumeration of the entire strategy space for either of the players [28]. How-
ever, existing algorithms still cannot scale up to large scale domains such as scheduling
randomized checkpoints in cities of the size of Mumbai (Figure 3).

Fig. 3. The terrorist attacks of 2008 in Mumbai

Robustness: The second challenge is improving solutions’ robustness. Classical game
theory solution concepts often make assumptions on the knowledge, rationality, and
capability (e.g., perfect recall) of players. Unfortunately, those assumptions could be
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wrong in real-world scenarios. Therefore, while computing the defender’s optimal strat-
egy, algorithms should take into account various uncertainties faced in the domain, in-
cluding payoff noise [29], execution/observation error [30], uncertain capability [31].
While there are algorithms for dealing with different types of uncertainties, there is no
general algorithm/framework that can deal with different types of uncertainty simulta-
neously. Furthermore, existing work assumes that the attacker knows (or with a small
noise) the defender’s strategy and there is no formal framework to model the attacker’s
belief update process and how it makes tradeoffs in consideration of surveillance cost,
which remains an open issue for in future research.

One required research direction with respect to robustness is addressing bounded
rationality of human adversaries, which is a fundamental problem that can affect the
performance of our game theoretic solutions. Recently, there has been some research
on applying ideas (e.g., prospect theory [32], and quantal response [17]) from social
science or behavioral game theory within security game algorithms [33, 34]. Previous
work usually applies existing frameworks and sets the parameters of these frameworks
by experimental tuning or learning. However, in real-world security domains, we may
have very limited data, or may only have some limited information on the biases dis-
played by adversaries. It is thus still a challenging problem to build high fidelity human
adversary models that can address human bounded rationality. Furthermore, since real-
world human adversaries are sometimes distributed coalitions of socially, culturally and
cognitively-biased agents, acting behind a veil of uncertainty, we may need significant
interdisciplinary research to build in social, cultural and coalitional biases into our ad-
versary models.

Mixed-Initiative Optimization: Another challenging research problem in security
games is mixed-initiative optimization in which human users and software assistants col-
laborate to make security decisions [35]. There often exist different types of constraints
in security applications. For instance, the defender always has resource constraints, e.g.,
the numbers of available vehicle checkpoints, canine units, or air marshals. In addition,
human users may place constraints on the defender’s actions to affect the output of the
game when they are faced with exceptional circumstances and extra knowledge. For
instance, in the ARMOR system there could be forced checkpoints (e.g., when the Gov-
ernor is flying) and forbidden checkpoints. Existing applications simply compute the
optimal solution to meet all the constraints (if possible). Unfortunately, these user de-
fined constraints may lead to poor (or infeasible) solutions due to the users’ bounded
rationality and insufficient information about how constraints affect the solution qual-
ity. Significantly better solution quality can be obtained if some of these constraints can
be relaxed. However, there may be infinitely many ways of relaxing constraints and the
software assistant may not know which constraints can be relaxed and by how much, as
well as the real-world consequences of relaxing some constraints.

Thus, it is promising to adopt a mixed-initiative approach in which human users
and software assistants collaborate to make security decisions. However, designing an
efficient mixed-initiative optimization approach is not trivial and there are five ma-
jor challenges. First, the scale of security games and constraints prevent us from us-
ing an exhaustive search algorithm to explore all constraint sets. Second, the user’s
incomplete information regarding the consequences of relaxing constraints requires
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preference elicitation support. Third, the decision making of shifting control between
the user and the software assistant is challenging. Fourth, it is difficult to evaluate the
performance of a mixed-initiative approach. Finally, it is a challenging problem to de-
sign good user interfaces for the software assistant to explain how constraints affect the
solution quality. What remains to be done for the mixed-initiative approach includes
sensitivity analysis for understanding how different constraints affect the solution qual-
ity, inference/learning for discovering directions of relaxing constraints, search for find-
ing constraint sets to explore, preference elicitation for finding the human user’s prefer-
ence of different constraint sets, and interface design for explaining the game theoretic
solver’s performance.

Multi-objective Optimization: In existing applications such as ARMOR, IRIS and
PROTECT, the defender is trying to maximize a single objective. However, there are
domains where the defender has to consider multiple objectives simultaneously. For ex-
ample, the Los Angeles Sheriff’s Department (LASD) needs to protect the city’s metro
system from ticketless travelers, common criminals, and terrorists. From the perspec-
tive of LASD, each one of these attacker types provides a unique threat (lost revenue,
property theft, and loss of life). Given this diverse set of threats, selecting a security
strategy is a significant challenge as no single strategy can minimize the threat for all
attacker types. Thus, tradeoffs must be made and protecting more against one threat may
increase the vulnerability to another threat. However, it is not clear how LASD should
weigh these threats when determining the security strategy to use. One could attempt
to establish methods for converting the different threats into a single metric. However,
this process can become convoluted when attempting to compare abstract notions such
as safety and security with concrete concepts such as ticket revenue.

Multi-objective security games (MOSG) have been proposed to address the chal-
lenges of domains with multiple incomparable objectives [36]. In an MOSG, the threats
posed by the attacker types are treated as different objective functions which are not
aggregated, thus eliminating the need for a probability distribution over attacker types.
Unlike Bayesian security games which have a single optimal solution, MOSGs have a
set of Pareto optimal (non-dominated) solutions which is referred to as the Pareto fron-
tier. By presenting the Pareto frontier to the end user, they are able to better understand
the structure of their problem as well as the tradeoffs between different security strate-
gies. As a result, end users are able to make a more informed decision on which strategy
to enact. Existing approaches so far assume that each attacker type has a single objec-
tive and there is no uncertainty regarding each attacker type’s payoffs. It is challenging
to develop algorithms for solving multi-objective security games with multiple attacker
objectives and uncertain attacker payoffs.

In addition to the above research challenges, there are other on-going challenges
such as preference elicitation for acquiring necessary domain knowledge in order to
build game models and evaluation of the game theoretic applications [37].

5 Resources for Starting This Research

Security is recognized as a world-wide grand challenge and game theory is an increas-
ingly important paradigm for reasoning about complex security resource allocation.
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While the deployed game theoretic applications have provided a promising start, very
significant amount of research remains to be done. These are large-scale interdisciplinary
research challenges that call upon multiagent researchers to work with researchers in
other disciplines, be “on the ground” with domain experts, and examine real-world con-
straints and challenges that cannot be abstracted away.

There are a number of resources (mostly online) for starting this research. The re-
search papers related to game theory for security have been extensively published at
AAMAS conference3 and the reader can also find some papers from AAAI4 and IJ-
CAI5. Additional resources:

– Key papers describing important algorithms and the deployed systems can also be
found from a recently published book –Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned [38].

– The details of those deployed systems as well as related publications can also be
found at http://teamcore.usc.edu/projects/security/.

– From http://teamcore.usc.edu/projects/security/, the reader can also find a tuto-
rial at UAI’2011 – Game Theory for Security: Lessons learned from deployed
applications.

While we have focused on research conducted by our Teamcore group, there are a few
other research groups that have started addressing challenges in security games [13, 14,
39–42].
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Abstract. In cooperative multi-agent systems, group performance often
depends more on the interactions between team members, rather than
on the performance of any individual agent. Hence, coordination among
agents is essential to optimize the group strategy. One solution which is
common in the literature is to let the agents learn in a joint action space.
Joint Action Learning (JAL) enables agents to explicitly take into ac-
count the actions of other agents, but has the significant drawback that
the action space in which the agents must learn scales exponentially in
the number of agents. Local coordination is a way for a team to coordi-
nate while keeping communication and computational complexity low. It
allows the exploitation of a specific dependency structure underlying the
problem, such as tight couplings between specific agents. In this paper we
investigate a novel approach to local coordination, in which agents learn
this dependency structure, resulting in coordination which is beneficial
to the group performance. We evaluate our approach in the context of
online distributed constraint optimization problems.

1 Introduction

A key issue in multi-agent learning is ensuring that agents coordinate their indi-
vidual decisions in order to reach a jointly optimal payoff. A common approach
is to let the agents learn in the joint action space. Joint Action Learning (JAL)
enables agents to explicitly take into account the actions of other agents, but
has the significant drawback that the action space in which the agents must
learn scales exponentially in the number of agents [5], quickly becoming com-
putationally unmanageable. In this paper, we investigate a novel approach in
which agents adaptively determine when coordination is beneficial. We intro-
duce Local Joint Action Learners (LJAL) which specifically learn to coordinate
their action selection only when necessary, in order to improve the global payoff,
and evaluate our approach in the context of distributed constraint optimization.
We investigate teamwork among a group of agents attempting to optimize a set
of constraints in an online fashion. Agents learn how to coordinate their actions
using only a global reward signal resulting from the actions of the entire group
of agents.

M. Cossentino et al. (Eds.): EUMAS 2011, LNAI 7541, pp. 31–47, 2012.
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The remainder of this paper is laid out as follows: in the next section we review
some background material and related work on agent coordination. Section 3
introduces our local coordination method. Section 4 introduces the optimization
problems we consider in this work. We demonstrate how optimization problems
can have an inherent structure that can be exploited by LJALs. In Section 5,
we propose and evaluate a method that allows LJALs to learn a coordination
structure optimized for the specific problem task at hand. Finally, we offer some
concluding remarks in Section 6.

2 Background and Related Work

The Local Joint Action Learner (LJAL) approach proposed below relies on the
concept of a Coordination Graph (CG) [6], which describes action dependencies
among agents. Coordination graphs formalize the way agents coordinate their
actions. In a CG, vertices represent agents, and edges between two agents indi-
cate a coordination dependency between these agents. Figure 1(a) is an example
of a CG with 7 agents. In this graph, agent 1 coordinates with agents 2, 3 and
5; agent 4 does not coordinate and thus corresponds to an independent learner;
and agent 6 coordinates with agents 5 and 7. Figure 1(a) represents an undi-
rected CG where both agents connected by an edge explicitly coordinate. A CG
can also be directed, as shown in Figure 1(b). In this graph, the same agents
are connected as in Figure 1(a), but the edges are directed and the meaning of
the graph thus differs. In Figure 1(b), agent 1 now coordinates with agents 2
and 5, but not with 3; agent 4 is still an independent learner; and agent 6 only
coordinates with 5.
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(b) Directed Coordi-
nation Graph

Fig. 1. Two coordination graphs with 7 agents

Guestrin [6] and Kok and Vlassis [8] propose algorithms where agents, using
a message passing scheme based on a CG, calculate a global joint action by
communicating their perceived local rewards. Below we describe a new approach
which is an alternative to Independent Learning (IL) and Joint Action Learning
(JAL) [5] based on CGs, where agents optimize their local joint actions without
extensive communication, using global reward.
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3 Local Joint Action Learners

We now introduce our Local Joint Action Learner (LJAL) framework. LJALs
are a generalization of the Joint Action Learners proposed in [5]. The main
idea is that agents keep estimates of expected rewards, not just for their own
actions, but for combinations of actions of multiple agents. Contrary to the JALs,
however, LJALs do not coordinate over the joint actions of all agents, but rather
coordinate with a specific subset of all agents. An LJAL relies on a coordination
graph to encode coordination, and will keep estimates only for the combinations
of its own actions with those of its direct neighbors in the graph.

It can easily be seen that LJALs cover the entire range of possible coordination
settings from Independent Learning (IL) agents, who only consider their own
actions, to Joint Action Learners (JAL), who take into account the actions of
all agents. As LJALs keep estimates for joint actions with their neighbours in
the graph, ILs can be represented with a fully disconnected graph, whereas
the coordination between JALs can be represented with a fully connected or
complete graph.

Figure 2 illustrates the CGs for ILs and JALs, as well as showing another
possible LJAL graph. Note that this representation is not directly related to
the underlying structure of the problem being solved, but rather represents the
solution method being used. In the experiments below, we will evaluate the effect
of matching the CG to the problem structure on the performance, this in terms
of learning speed and final performance.
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Fig. 2. Coordination graphs for independent learners and joint action learners and an
example graph for local joint action learners

3.1 Action Selection

We view the learning problem as a distributed n-armed bandit problem, where
every agent must individually decide which of n actions to execute and the
reward depends on the combination of all chosen actions. In the case that the
reward for each agent is generated by the same function, the game is said to
be cooperative. It is with such cooperative or coordination games that we are
concerned in this paper. Below, we describe the action estimation and action
selection method used by LJALs.
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Each agent estimates rewards for (possibly joint) action a according to fol-
lowing incremental update formula [11]:

Qt+1(a) = Qt(a) + α [r(t+ 1)−Qt(a)] (1)

where α is the step-size parameter, balancing the importance of recent and past
rewards, and r(t) is the reward received for action a at time t. (L)JALs also keep
a probabilistic model of the other agents’ action selection, by using empirical
distributions, i.e. counting the number of times C each action has been chosen
by each agent. Agent i maintains the frequency F i

aj
, that agent j selects action

aj from its action set Aj :

F i
aj

=
Cj

aj∑
bj∈Aj

Cj
bj

(2)

Using their estimates for joint actions and their probabilistic models of other
agents’ action selection, agents can evaluate the expected value for selecting a
specific action from their individual action set:

EV (ai) =
∑
a∈Ai

Q(a ∪ {ai})
∏
j

F i
a[j], (3)

where Ai = ×j∈N(i)Aj and N(i) represents the set of neighbors of agent i in
the CG. This means that the expected value for playing a specific action, is the
average reward of the observed joint actions in which the action occurs, weighted
by their relative frequencies.

Agents choose their actions probabilistically according to a Boltzmann distri-
bution over the current estimates EV of their actions [11]. The probability of
agent i selecting action ai, at time t is given by:

Pr(ai) =
eEV (ai)/τ∑n

bi=1 e
EV (bi)/τ

(4)

The parameter τ is called the temperature and expresses how greedy the actions
are being selected. Low values for τ represent a more greedy action selection
mechanism.

3.2 LJAL Performance

In this section, we briefly evaluate empirically how different types of LJALs
relate to each other in terms of solution quality and computation speed. Specif-
ically, we will evaluate the effect of increased graph density on performance; it
results in more information, but also higher complexity for agents. Intuitively,
we expect that ILs and JALs will lie at extreme ends of the performance spec-
trum that LJALs encompass. ILs possess little information and thus should yield
the worst solutions, while JALs, who in theory have all possible information,
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should find the best solutions. On the other hand, JALs need to deal with the
total complexity of the problem, resulting in long computation times, while ILs
only reason about themselves and should logically compute fastest of all LJALs.

We compare respectively ILs, LJALs using randomly generated, directed CGs
with an out-degree of 2 for each agent, random LJALs with out-degree 3, and
JALs, see Figure 3. These types of learners were evaluated on randomly gener-
ated distributed bandit problems, i.e. for each possible joint action of the team,
a fixed global reward is drawn from a normal distribution N (0, 50) (50 = 10×#
agents). A single run of the experiment consists of 200 iterations, also referred
to as plays, in which 5 agents choose between 4 actions, and receive a re-
ward for the global joint action, as determined by the problem. Every run,
LJAL-2 and LJAL-3 get a new random graph with the specified out-degree.
All learners employ softmax action selection with temperature function τ =
1000 × 0.94play. Figure 4 displays the results of this experiment averaged over
10000 runs and Table 1 shows the speed (running time needed to complete
the experiment) and solution quality for the various learners, relative those of
the JALs.

These results corroborate our hypothesis that ILs and JALs are both ends of
the LJAL performance spectrum. Since any LJAL possesses no more information
than JALs and no less than ILs, their solution quality lies in between these two
extreme approaches. Moreover, because the complexity of LJAL joint actions lies
in between ILs and JALs, we also observe that LJALs perform computationally
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Fig. 3. Coordination graphs for independent learners and joint action learners, and
examples of random coordination graphs for local joint action learners with out-degrees
2 and 3

Table 1. Comparison of speed and solution quality for independent learners, joint ac-
tion learners and local joint action learners solving a typical distributed bandit problem.
All differences are significant, p < 0.05.

Learner Avg # partners Speed Solution Quality

IL 0 ×31.5 71.1%

LJAL-2 2 ×12.1 80.5%

LJAL-3 3 ×4.4 89.3%

JAL 4 ×1 100%
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Fig. 4. Comparison of independent learners, joint action learners and local joint action
learners on a typical distributed bandit problem

no faster than ILs and no slower than JALs. As expected, as the complexity of
the CG used increases, so does the solution quality, but at the cost of a longer
computation time.

4 Distributed Constraint Optimization

In the previous section, we have shown that it is possible to use our proposed
local coordination method to balance the trade-off between solution quality and
computation speed, a problem often encountered in real settings. In this section,
we take this a step further, as we aim to show that we can exploit a problem’s
structure using local coordination, reducing computational complexity, but min-
imizing the corresponding loss in solution quality. Since the simple bandit prob-
lem of the previous section does not have such a structure, as the reward for
every joint action is generated independently, we look at another type of prob-
lem, which is ideally suited to represent problems with an inherent structure,
i.e. Distributed Constraint Optimization Problems.

A Constraint Optimization Problem (COP) describes the problem of assign-
ing values to a set of variables, subject to a number of soft constraints. Each
constraint takes the form of a function assigning rewards to variable assignments.
A solution to a constraint optimization problem assigns a value to each variable
and has an associated total reward, which is the sum of the rewards for every
constraint. Solving a COP means maximizing this reward. A Distributed Con-
straint Optimization Problem (DCOP) describes the distributed equivalent of
constraint optimization. A group of agents must solve a COP in a distributed
way, each agent controlling a subset of the variables in the problem.
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Formally, a DCOP is a tuple (A, X , D, C, f), where:
– A = {a1, a2, ..., a�}, the set of agents.
– X = {x1, x2, ..., xn}, the set of variables.
– D = {D1, D2, ..., Dn}, the set of domains. Variable xi can be assigned values

from the finite domain Di.
– C = {c1, c2, ..., cm}, the set of constraints. Constraint ci is a function Da ×

Db × ... ×Dk → R, with {a, b, . . . , k} ⊆ {1, . . . , n}, projecting the domains
of a subset of variables onto a real number, being the reward.

– f : X → A, a function mapping variables onto a single agent.

The total reward of a variable assignment S, assigning value v(xi) ∈ Di to
variable xi, is:

C(S) =

m∑
i=1

ci(v(xa), . . . , v(xk)) (5)

For simplicity, we assume only one variable per agent and only binary con-
straints. Unary constraints can easily be added and higher arity constraints can
be constructed using unary and binary constraints.

Distributed Constraint Problems are used to model a variety of real problems,
ranging from disaster response scenarios [2] and distributed sensor network man-
agement [7], to traffic management in congested networks [9].

4.1 Relation of LJAL to Other DCOP Algorithms

As noted in [12], a DCOP can be reformulated as a distributed n-armed bandit
problem. Assign one variable to each agent and let it choose from the values
in the domain corresponding to the variable as it would select an arm from an
n-armed bandit. With such a formulation, we can apply our previously described
learners to DCOPs. In this section, we briefly evaluate the relation of LJAL to
other DCOP algorithms and in which context LJALs are best applied.

Comparing LJAL to the unifying DCOP algorithm framework proposed by
Chapman et al. in [3], we see that it relates most to the ”local iterative, ap-
proximate best response algorithms”. Algorithms in this class are incomplete –
they are not guaranteed to find the optimal solution –, but on the other hand,
they only use local information, having neighbouring agents communicate only
their state, and thus do not suffer from exponential complexity in the size of
the problem. These algorithms typically converge to local optima, or Nash equi-
libria, and are often preferred in real-world settings, as these require a balance
between solution quality and computational complexity, or timeliness, and com-
munication overhead. In contrast, ”distributed complete algorithms”, such as
ADOPT [1] are proven to find the optimal solution for a DCOP, although with
an exponential communication or computational complexity[4,10].

We are not specifically interested in developing a state-of-the-art DCOP solver,
but rather a multi-agent reinforcement learning technique which can trade-off so-
lution quality and complexity, taking advantage of a problem’s structure. There-
fore, we explore solving DCOPs in an online reinforcement learning scenario.
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This means that agents do not have any prior knowledge of the reward function
and must sample actions in order to solve the problem. In conventional DCOP
settings, local reward functions are assumed to be deterministic and available to
the agent. As such the problem can be treated as a distributed planning prob-
lem. In our setting, the rewards associated with constraints can be stochastic
and agents may have few opportunities to sample rewards. Moreover, the agents
cannot directly observe the local rewards resulting from their actions, but only
receive the global reward resulting from the joint action of all agents.

Finally, and most importantly, we do not assume knowledge of the constraint
graph underlying the problem is always available, an assumption found all over
the literature, and often not justifiable in real-world settings.

4.2 Experiments

Since each constraint in a DCOP has its own reward function and the total
reward for a solution is simply the sum of all rewards, some constraints can have
a larger impact on the solution quality than others, i.e. when there is a higher
variance in their rewards. Therefore, coordination between specific agents can
be more important than between others. In this section, we will investigate the
performance of LJALs on DCOPs where some constraints are more important
than others. We will generate random, fully connected DCOPs, drawing the
rewards of every constraint function from different normal distributions. The
variance in rewards is controlled by means of weights, formalizing the importance
of specific constraints with respect to the whole problem. We attach a weight
wi ∈ [0, 1] to each constraint ci; the problem’s variance σ is multiplied with
this weight when building the reward function for constraint ci. A weight of 1
indicates the constraint is of the highest importance, while 0 makes the constraint
of no importance. When building a DCOP, rewards for constraint ci are drawn
from this distribution:

N (0, σwi) (6)

Figure 5 visualizes the structure of the problem we will compare different LJALs
on in the first experiment. The colors of constraints or edges indicate the im-
portance of that constraint. The darker the constraint, the higher the weight.
The rewards for each constraint function are fixed before every run with σ = 70
(10 × # agents). The black edges in the figure correspond to weights of 0.9,
light-grey edges are weights of 0.1. What this graph formalizes, is that the con-
straints between agents 1, 2 and 3, and 5 and 6 are very important, while the
contribution of all other constraints to the total reward is quite limited.

We state again that we are interested in using knowledge of the problem’s
underlying structure to minimize the loss in solution quality when reducing com-
putational complexity. Therefore, in addition to independent learners (IL), joint
action learners (JAL), and local joint action learners with a random 2-degree
CG (LJAL-1), we compare LJALs with a CG matching the problem structure
(LJAL-2), and the same graph, augmented with coordination between agents 1
and 5 (LJAL-3), see Figure 6.
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Fig. 5. Distributed constraint satisfaction problem used in the experiments. Dark edges
mean important constraints, light edges are unimportant constraints.
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Fig. 6. Different local joint action learners, visualized by their coordination graphs.
LJAL-1 is an example graph with outdegree 2.

Fig. 7. Comparison of independent learners, joint action learners and local joint action
learners on a distributed constraint optimization problem

Table 2. Comparison of speed and solution quality for independent learners, joint ac-
tion learners and local joint action learners solving a distributed constraint optimization
problem. All differences are significant p < 0.05.

Learner Avg # partners Speed Solution Quality

IL 0 ×442 86.2%

LJAL-1 2 ×172 86.4%

LJAL-2 1.14 ×254 91.6%

LJAL-3 1.43 ×172 90.2%

JAL 6 ×1 100%
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The results, averaged over 100000 runs, are shown in Figure 7 and Table 2.
As seen in the previous section, ILs and JALs perform respectively best and
worst in terms of solution quality. More importantly, as we compare LJAL-1
and LJAL-2, we see that LJAL-2 perform 6% better, while being at the same
time 1.5× faster. The higher solution quality results from matching coordination
with the problem structure, and lower computation times are due to the lower
complexity (in LJAL-1, each agent coordinates with two partners, in LJAL-2, an
agent coordinates with only 1.14 partners on average1). This shows that using
a specific CG can help LJALs solve a problem better, using less computational
resources.

A more surprising result is the performance difference between LJAL-2 and
LJAL-3. Although agents 1 and 5 in LJAL-3 possess more information than
in LJAL-2 through increased coordination, LJAL-3 performs worse in terms of
solution quality (and speed, due to the increased coordination). We hypothesise
that the extra information about an unimportant constraint complicates the
coordination on important constraints.

We set up an experiment to evaluate the effect an extra coordination edge
has on solution quality. It compares LJAL-2 and LJAL-3 from the previous
experiment with LJAL-4, which like LJAL-2 uses a graph matching the problem
structure, only now augmented with a coordination edge between agents 4 and
7. As agents 4 and 7 are otherwise not involved in important constraints, we
predict that adding this coordination will improve performance, as opposed to
the extra edge between 1 and 5 in LJAL-3. Figure 8 and Table 3 show the results
this experiment.

Fig. 8. Evaluating the effect of extra coordination edges on solution quality

Since agents 4 and 7 are not involved in important constraints as defined by
the problem, the addition of this edge improves performance slightly; the agents
will learn to optimize the marginally important constraint between them, with-
out complicating the coordination necessary for important constraints. These

1 Three agents with two partners, two with one and two without partners.
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Table 3. Evaluating the effect of extra coordination edges on solution quality. Solution
qualities are relative to that of independent learners. All differences are significant
p < 0.05.

Learner Solution Quality

IL 100%

LJAL-2 105.9%

LJAL-3 104.5%

LJAL-4 106.2%

results show that the choice of the graph is very important and even small
changes influence the agents’ performance. In [12], Taylor et al. also conclude
that increasing team work is not necessarily beneficial to solution quality.

5 Learning Coordination Graphs

In the previous sections, we have shown that matching the CG of local joint
action learners to the inherent structure of a problem helps to improve solution
quality without having to deal with the total complexity of the problem. The
next problem we consider is learning this graph. In some problems, such as the
graph colouring problem, this graph may be obvious. In others, the structure
of the problem may not be known beforehand and thus the designer of the
system has no way of knowing what graph to implement. In this section, we
will investigate a way to allow the local joint action learners to optimize the CG
themselves.

5.1 Method

We encode the problem of learning a CG as a distributed n-armed bandit prob-
lem. In the simplest case, each agent is allowed to pick one coordination partner
and has as many actions as there are agents in the problem. For example, agent
2 choosing action 5 means a directed coordination edge in the CG from agent
2 to 5. Agent 3 choosing action 3 means agent 3 chooses not to coordinate, so
no additional edge in the CG. The combined choices of the agents describe the
coordination graph structure. In the experiments, we limit the learners to either
one or two coordination partners, to evaluate how low complexity systems can
perform on more complex problems. We map the two-partner selection to an
n-armed bandit problem by making actions represent pairs of agents instead of
single agents, e.g. action 10 means selecting agents 2 and 3. This is feasible in
small domains, but with more agents and a higher complexity limit per agent, the
problem of choosing multiple partners should be modelled as a Markov Decision
Process, with partner selection spread out over multiple states, i.e. multi-stage.

After choosing coordination partners, the agents solve the learning problem
using that coordination graph. The reward achieved after learning is then used
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as feedback for the choosing of coordination partners; agents estimate rewards
for the partner choices. This constitutes one play at the meta-learning level. This
process is repeated until the graph has converged due to decreasing temperature
in the meta-bandit action selection. We choose to make the agents in the meta-
bandit independent learners, although it would also be possible to allow them
to coordinate. Only then the question of which CG to pick would arise again.

5.2 Learning in DCOPs with a Particular Structure

In our first experiment, we make agents learn a CG on the problem used in
previous sections and illustrated in Figure 5. As such, we can compare the learned
CGs with the (to us) known problem structure. One meta-bandit run consists
of 1500 plays. In each play, the chosen CG is evaluated in 100 runs of 200 plays;
100 runs to account for the inherent stochasticity of the learning process so as
to get relatively accurate estimates for the quality of the chosen graph. This
evaluation is basically the same setup as the experiments in Section 4.2. The
average of the reward achieved over these 100 runs is the estimated reward for the
chosen CG.

In addition to ILs, JALs and LJALs with a CG matching the problem struc-
ture, LJAL-1, we compare two teams of LJALS who optimize their CG, with
respective complexity limits of one, OptLJAL-1, and two, OptLJAL-2, coor-
dination partners. Figure 9 and Table 4 show the results of this experiment,
averaged over 1000 runs, each time a newly generated problem, although with
the same inherent structure. Temperature τ in the meta-bandit is decreased as
such: τ = 1000× 0.994play.

Fig. 9. Comparing the solution qualities of independent learners, joint action learners,
local joint action learners with the supposedly optimal coordination graph and local
joint action learners who optimize their coordination graph
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Table 4. Comparing the computation speeds and solution qualities of independent
learners, joint action learners, local joint action learners with the supposedly optimal
coordination graph and local joint action learners who optimize their coordination
graph, respectively limited to one and two coordination partners per agent. All differ-
ences are significant p < 0.05, except between OptLJAL-1 and OptLJAL-2.

Learner Avg # partners Speed Solution Quality

IL 0 ×374 86.2%

LJAL-1 1.14 ×243 91.1%

OptLJAL-1 0.81 ×290 94.5%

OptLJAL-2 1.28 ×240 94.7%

JAL 6 ×1 100%

The results show that not only can the agents adapt their coordination graph
to the problem and thus improve performance over agents with random graphs,
they also manage to outperform the LJALs that use the CG mimicking the
problem structure. That graph is surprisingly not the optimal coordination struc-
ture, as the optimizing agents in general find better graphs, graphs with a lower
complexity; a maximum complexity of one coordination partner in the case of
OptLJAL-1, as opposed to two partners in the graph matching the problem.
OptLJAL-2 has similar performance as OptLJAL-1, although with a slightly
higher complexity and thus longer computation time. It is important to note
that graphs optimized by OptLJAL-2 in general have a complexity of 1.28, which
is very low considering the highest possible complexity is 2. More coordination
again does not appear to be always beneficial. Compare for example the average
complexities of the resulting graphs, 0.81 and 1.28 for limits 1 and 2 respectively,
with that of the random graphs in the exploration stages: 0.86 and 1.59.

To get a better insight into how OptLJAL-1 and OptLJAL-2 can outperform
LJAL-1, we look at some of the optimized graphs for this problem. Figure 10
shows the graphs learned by OptLJAL-1 and OptLJAL-2 respectively on five
instances of the given problem. These graphs represent cases where optimizing
agents significantly outperformed LJAL-1, who mimick the problem structure in
their CG.

When viewing these optimized graphs, we would expect to find at least some
of the problem structure reflected in them. This is clearly the case. In every
single graph, we find that agents 5 and 6 learn to coordinate. There is also
always some coordination in the agents 1-2-3 cluster. This is also reflected in
Table 5, where the average number of edges between any two agents in a cluster
is shown. Agents 1, 2 and 3, and agents 5 and 6 coordinate significantly more
than they would in random graphs, while 4 and 7 coordinate less. Counting the
incoming edges, we note that agents 1, 2, 3 have on average 1.0 agents adapting
to them, 5 and 6 have 1.2 such agents, while 4 and 7 only 0.1.

This shows that the agents can determine which agents are more important
to coordinate with. Still, this does not explain how the agents with an optimized
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Fig. 10. Optimized coordination graphs. Graphs in the top row are limited to one
coordination partner per agent, graphs in the bottom row are limited to two partners.

Table 5. The average number of directed edges between any two agents in a cluster.
Agents in important problem substructures coordinate significantly more often in op-
timized graphs than in random graphs. The inverse is true for agents in unimportant
substructures.

1-2-3 5-6 4-7

OptLJAL-1 0.68 1.53 0.13

Random-1 0.28 0.28 0.28

OptLJAL-2 0.85 1.54 0.33

Random-2 0.53 0.53 0.53

graph can perform better with a lower coordination complexity than those who
use the problem structure as a coordination graph. We believe the explanation is
two-fold. First, in optimized graphs, agents often practice something we like to
call ”follow the leader”. Basically, this comes down to one agent performing as
leader, often an independent learner, while other agents coordinate unilaterally
with that agent. This allows the other agents to choose actions in function of
the same leader, while that leader can learn without knowing that other agents
are coordinating, or rather adapting, to him, simplifying the problem for every
agent by concentrating the exploration in certain parts of the search space. This
is especially beneficial when only a limited amount of trials is allowed. Secondly,
agents that do not coordinate directly are independent learners relative to each
other. Independent learners have been shown to be able to find an optimum by
climbing, i.e. each agent in turn changing an action [5]. The starting point for
this climbing, in a two-dimensional game, is usually the row and column with
the highest average reward. If the global optimum can be reached by climbing
from this starting point, independent learning suffices to optimize the problem.
When analysing the reward functions for these agents that choose to be inde-
pendent learners, we see that they are involved in games where such climbing is
possible. This is also the reason why a team of independent learners can perform
reasonably well in this setting.
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5.3 Learning in DCOPs with Random Structure

We have previously only focused on one specific problem, with only two very
distinct categories of constraint importance, i.e. very important and very unim-
portant (respectively 0.9 and 0.1 as weight parameters). Such clear distinctions
are not realistic and therefore we shall now investigate problems with constraints
of varying importance. One issue with such problems is that, even if the structure
of the problem is known, it is not easy to decide when coordination is important
and when not. Is it necessary to coordinate over the constraint with weight 0.6,
and not over the one with weight 0.59? Learning the graph should prove to be a
better approach than guessing or fine-tuning by hand, as evidenced by the pre-
vious experiment where the preprogrammed graph was shown not to be optimal
compared to other graphs of similar and even lower complexity.

The next experiment compares ILs, JALs, LJALs with a fixed CG, LJAL-1,
and two teams of LJALs learning a CG, OptLJAL-1 and OptLJAL-2, on DCOPs
with a randomly generated weights graph. The non-optimizing LJALs have a CG
derived from the problem’s weight graph; all constraints with weight 0.75 and
higher are included in the graph. The results of this experiment are shown in
Figure 11 and Table 6.

Although the LJALs with fixed CG coordinate over a quarter of all the con-
straints, and the most important ones at that, they do not manage to improve
much over the solutions found by ILs. These LJALs have a CG with an av-
erage complexity of 7×6×0.25

7 = 1.5 coordination partners per agent. Compare
that to the average complexity of 0.8 in OptLJAL-1. With less coordination and
therefore less computation, they again manage to improve much on the solution
quality.

Fig. 11. Comparing the solution qualities of independent learners, joint action learners,
local joint action learners with fixed coordination graph and local joint action learners
who optimize their coordination graph on distributed constraint optimization problems
with a random weights graph
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Table 6. Comparing the computation speeds and solution qualities of independent
learners, joint action learners, local joint action learners with the supposedly optimal
coordination graph and local joint action learners who optimize their coordination
graph, respectively limited to one and two coordination partners per agent. All differ-
ences are significant p < 0.05, except between OptLJAL-1 and OptLJAL-2.

Learner Avg # partners Speed Solution Quality

IL 0 ×315 88.9%

LJAL-1 1.5 ×101 90.2%

OptLJAL-1 0.8 ×254 94.2%

OptLJAL-2 1.28 ×204 94.3%

JAL 6 ×1 100%

6 Conclusion

In this paper, we investigated local coordination in a multi-agent reinforcement
learning setting as a way to reduce complexity. Local joint action learners were
developed as a trade-off between independent learners and joint action learners.
Local joint action learners make use of a coordination graph that defines which
agents need to coordinate when solving a problem. The density of the graph
determines the computational complexity for each agent, and also influences the
solution quality found by the group of agents.

Problems that have an inherent structure, making coordination between cer-
tain agents more important, can be solved by local joint action learners that
have a coordination graph adapted to the structure of the problem. Learners us-
ing such a graph can perform better than those using a random graph of higher
density, both in terms of solution quality and computation time.

We have also shown that the coordination graph itself can be optimized by the
agents to better match the potentially unknown structure of the problem being
solved. This optimization often leads to unexpected graphs, where important
constraints in the problem are not mimicked in the coordination graph by a direct
coordination link. Instead, this coordination is achieved through mechanisms
such as leader-follower relationships and relative independent learning.
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Abstract. This article proposes a Multi-Agent Systems (MAS) archi-
tecture for network diagnosis under uncertainty. Network diagnosis is di-
vided into two inference processes: hypotheses generation and hypotheses
confirmation. The first process is distributed among several agents based
on a Multiply Sectioned Bayesian Network (MSBN), while the second one
is carried out by agents using semantic reasoning. A diagnosis ontology
has been defined in order to combine both reasoning processes. To drive
the deliberation process, the strength of influence obtained from Cu-
mulative Distribution Function (CDF) method is used during diagnosis
process. In order to achieve quick and reliable diagnoses, this influence
is used to choose the best action to perform. This approach has been
evaluated in a P2P video streaming scenario. Computational and time
improvements are highlighted as conclusions.

Keywords: agent, Bayesian, ontology, diagnosis, network.

1 Introduction

The complexity of telecommunication networks has increased the demand for
network and service management systems. Nowadays, network fault management
requires high skilled engineers, which are not able to cope with the increasing
heterogeneity and complexity of the network. The probability of occurrence of
faults in large telecommunication networks grows as they become widespread,
complex and heterogeneous [3]. Thus, the role of automatic diagnosis modules is
getting more attention, in order to cover faults detection, isolation and recovery.

Furthermore, other important aspect to point out is the need for dealing with
uncertainty during the diagnosis task, since many corroboration tasks cannot be
carried out because of different reasons, such as the cost itself of the action or
that the action requires to access the subscriber equipment and could cause him
any trouble.

In recent past, several works have studied different approaches to deal with
uncertainty using Bayesian networks for diagnosis [7,11]. The main focus of this
work is to present a MAS architecture that combines two reasoning processes:
semantic reasoning and Bayesian reasoning. This approach proposes to use Ba-
yesian inference to handle uncertainty inherent in any diagnosis process and

M. Cossentino et al. (Eds.): EUMAS 2011, LNAI 7541, pp. 48–62, 2012.
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semantic inference to discriminate which action is the best one to perform de-
pending on the available data.

The reminder of this article is structured as follows. Firstly, Sect. 2 shows
the knowledge model used in this work. Sect. 3 proposes an agent architecture
for reasoning during both phases of a diagnosis: hypotheses generation and hy-
potheses confirmation. Sect. 4 exposes the testbed scenario and exemplifies the
diagnosis process. Sect. 5 shows the evaluation and presents the results of com-
parison with other approaches. Finally, Sect. 6 draws out the main conclusions
about the application of this approach and, besides, a brief description of future
possible improvements.

2 Knowledge-Level Model of the Diagnosis Task for
Telecommunication Networks

Following the knowledge-level analysis of the diagnosis task by Benjamins [2],
diagnosis can be decomposed into three subtasks: (i) symptom detection, finding
out whether complaints are indeed symptoms, (ii) hypotheses generation, gener-
ating possible causes based on the symptoms, and (iii) hypotheses discrimination,
discriminating between the hypotheses based on additional observations.

In this article, we focus on the last two tasks, hypotheses generation and
discrimination, as well as in the repair task, as illustrated in Fig. 1.

Fig. 1. Diagnosis inference structure. Legend: box (concept), oval (inference), rounded
corner box (task).

The first process, hypotheses generation, consists of generating hypotheses
from the notified fault based on a causal model. Since this process needs to
handle uncertainty, a Bayesian network has been selected for expressing the
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causal model. Moreover, given that this Bayesian network could not scale well
with the size and heterogeneity of telecommunication networks, our architec-
ture proposes the usage of MSBN [13] technique, which allows to distribute this
reasoning process across MASs.

The two other processes, hypotheses discrimination and repairing, follow a
similar pattern. The first one obtains a test action plan to confirm the generated
hypotheses. This process contains a list of ordered actions to be executed based
on the expected benefits of the tests. The expected benefit of an action is defined
as how relevant is for the current and is equal to the influence between varia-
bles inside causal model [8]. In this way, the system can perform more efficient
hypotheses discrimination (as shown in Sect. 5).

Finally, the repair process obtains a healing action plan to repair the confirmed
diagnosis. In order to reason under uncertainty, we propose to use an ontology
based reasoning process, combining a diagnosis ontology expressed in Ontology
Web Language (OWL) [14] with rules expressed in Semantic Web Rule Language
(SWRL) [10].

Nevertheless, a technique to communicate both reasoning processes is needed,
in order to be able to provide feedback and integrate learning mechanisms of the
confidence of the generated hypotheses based on the results of the tests.

In order to carry out the exposed diagnosis process, an upper-ontology has
been defined to facilitate the communication between the agents in the fault
diagnosis task. This upper-ontology (Fig. 2) shows that hypotheses are generated
according to failure classes. These hypotheses identify a suspected component as
the location of the failure. In this way, the ontology represents what is happening
and where is happening. Depending on the hypothesis class, different actions
can be carried out for corroborating the hypothesis (test actions) or repairing
the component (healing actions). All actions have conditions(preconditions and
postconditions) that allow somebody to evaluate its eligibility for execution.

Fig. 2. Upper-ontology for diagnosis

Furthermore, the upper-ontology also includes the concept of diagnosis. A
diagnosis has its set of hypotheses, its set of performed tests and its set of per-
formed healing actions. This collection of data is useful for self-learning processes
as reinforcement learning, for example which healing actions repaired a certain
failure.

Another important assumption is that actions are executed by actors. Actors
can be humans (manual actions) or agents (automatic actions). Actions can be
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Fig. 3. Action upper-ontology

Fig. 4. Condition upper-ontology

classified according to the disjoint classes Available / Unavailable, when all pre-
conditions are satisfied or not; and, if an available action has been performed, it
is classified according to the disjoint classes Successful Performed / Unsuccess-
ful Performed, when all postconditions are satisfied or not. This classification is
shown in Fig. 3.

This model has been formalised as an OWL ontology for reasoning on diagno-
sis tasks. To adapt this generic diagnosis ontology for a specific diagnosis case,
the generic diagnosis ontology must be extended with specific concepts, i.e. possi-
ble faults, specific actors, specific conditions, etc. The conditions of an action are
modelled with the ontology class Condition. Fig. 4 shows two generic conditions:
Required Data that specifies a required parameter and Required Actor that spec-
ifies an actor to perform the action. The second one is condition for all actions,
because all actions need to be executed by someone. But these two conditions are
generic conditions; all conditions that particularise specific restrictions should be
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added depending on the domain. Conditions can be classified according to the
disjoint classes Satisfied/Unsatisfied. To check all conditions, we use SWRL. In
section 4, the use of conditions and SWRL rules is shown.

3 Agent Architecture for Diagnosis

The upper-ontology presented in Sect. 2 has guided the design of an agent ar-
chitecture that performs out both tasks: hypotheses generation and hypotheses
confirmation.

The proposed agent architecture (Fig. 5) consists of four modules. Hypothe-
ses generation is carried out by Bayesian module and the Hypotheses confirma-
tion, by Ontology module. Both modules are governed by Agent Control module
which is an extended Belief-Desire-Intention (BDI) agent architecture (B2DI
Agent Model [4]) where beliefs are distributed and shared across the MAS. Ba-
yesian Module is a reasoning inference engine that processes environment data
to infer possible fault root causes (i.e. hypotheses with associated confidences).
For this task, Bayesian networks are used to represent several concepts like
symptom, possible root causes, etc. and the relations among them in a Directed
Acyclic Graph (DAG) in which each node contains a Conditional Probability Ta-
ble (CPT). Bayesian networks have been design accordign to BN3M model [9]
which structures causal models in Bayesian networks to three groups of notes:
context, fault and evidence. Context variables model the environment, in this
case, these variables are used to model information about the network in which
each agent resides. Fault and Evidence variables are used to model the possible
failures through hypotheses and observations (i.e. results of tests).

Fig. 5. Agent Architecture

Since a Bayesian network is a DAG with probability distributions, each node
has a concrete influence on its neighbours [8]. The relevance of this influence in
the diagnosis procedure varies depending on the available information about the
environment. In other words, the influence represents how useful is the informa-
tion that the agent would obtain if it would perform one action, for example,
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if it would execute a test. To obtain these data, CDF [9] distance is used. The
outcomes of this method are used to sort all possible actions for an agent by
relevance in order to reach a reliable and fast diagnosis.

The outcomes of hypotheses generation task is added to Ontology-based Rea-
soning Module. This module is responsible for deliberating which action should
be performed out using the outcomes of the Bayesian module. This module filters
the sorted action list based on preconditions of each action (see Sect. 2). After
executing one action, its result is fedback to the Bayesian module to generate
updated hypotheses.

It should pointed out that the mapping between Bayesian module and On-
tology module is not trivial. So, Mapping module performs the mapping process
to create ontology individuals and extract information from ontology concepts
to probabilistic data that can be input to the Bayesian module. To perform this
task, we use Probabilistic OWL (PR-OWL) [5] ontology that supports a way to
add probabilistic information to others concepts defined using OWL.

SWRL rules are used before, during and after diagnosis process to choose
which action is the best one to perform in each moment to diagnose a problem
or to fix it, to check if the result of a performed action is the expected one or it
was an error, to notify human operators, etc. Finally, the use of SWRL, OWL
and Bayesian networks adds adaptability to the system since the behaviour of
the agent can be deployed by a simple message with an OWL file as content
that adds or modifies the current rules or Bayesian networks on the fly using
PR-OWL.

Since presented modules can be split in different agents, some functionalities
can be distributed across several agents in order to obtain more scalability, re-
mote access to restricted data, less computational requirements, etc. Depending
on which modules compound each agent, we can classify agents in three types:

– Fully Autonomous Agent which has all modules presented before. It is able
to evaluate the environment, reason (in a distributed way) under uncer-
tainty, perform actions, etc. It can work autonomously, but it has better
performance working together with other agents.

– Semi-Autonomous Agent which has Agent Control Module and Ontology
based Reasoning Module. It cannot deal with uncertainty, but it is able to
interact with its environment. To reason with uncertainty, it has to interact
with an Fully Autonomous Agent.

– Dependent Agent which has only the Agent Control Module. It is able only
to perform prefixed request actions. For example, the execution of one test
or one monitoring action.

Furthermore, the extensibility of the upper-ontology is possible using specific
domain ontologies and Bayesian networks which represent diagnosis knowledge
of a diagnosis domain.

Uncertainty handling and extensibility are highly recommended features for
systems that work in complex environments like network management. Our pro-
posal consists of defining a flexible agent architecture which integrates the previ-
ously identified modules. These functionalities can be distributed at design time
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or even run time by the agents themselves (creating agents on demand), depend-
ing on non functional requirements (time restrictions) or functional requirements
(distribution requirements for complex actions on remote equipments).

4 Case Study

This section shows the case study used in this work. First of all, the scenario used
to evaluate the model is presented in Sect. 4.1. Sect. 4.2 presents a example of the
proposed agent architecture. In Sect. 4.3, the agents deployment is exposed in
order to facilitate the explanation of a detailed diagnosis case, shown in Sect.4.4.

4.1 Scenario

To properly frame this study, a P2P streaming scenario (see Fig. 7) was chosen.
In this scenario, there are a multimedia provider user and a multimedia consumer
user. Multimedia contents are stored in a video server inside of the Multimedia
Provider Home Area Network (HAN) and are remotely accessed from the Multi-
media Consumer HAN. Multimedia contents are transmitted in real time using
Real Time Streaming Protocol (RTSP) for session establishment and Real-time
Transport Protocol (RTP) for content delivery. Many faults may occur both in
connection and in services. The system is designed to provide, to an end-user or
an operator, the result of the diagnosis made upon receipt of a failure symptom
notification. The diagnosis result is expressed in percentages representing the
certainty of the occurrence of a given hypothesis.

4.2 Agent Architecture Example

For exemplification purposes and facilitating the understanding of the deploy-
ment of agents in the scenario, an agent responsible to diagnose faults in Multi-
media Provider HAN is presented.

Agent Control Module has a main goal that is to diagnose network faults. This
module is responsible for acting as bridge between the other modules. Bayesian
module contains a Bayesian network that models possible failures and possible
tests in the Provider HAN region. A simplified version of this Bayesian network
and one of its CPTs are shown in Fig. 6.

Ontology based Reasoning module works with a specific domain diagnosis on-
tology specialised for P2P streaming scenario. In other words, this ontology that
extends the generic diagnosis ontology presented previously contains specific
concepts like Session or RTPMonitoringAction, specific conditions like Requi-
redRTPSessionCondition, etc. Mapping module has been adapted to properly
translate data between both domains: semantic and probabilistic domains.

4.3 Agents Deployment

In the scenario presented in Sect. 4.1, some agents have been deployed according
to their geographic distribution for exemplification purposes. One Fully Autono-
mous Agent is executed inside each subnetwork. One agent has been deployed
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Fig. 6. Bayesian network for case study

in a internal server of ISP Network. The other two ones have been deployed
in HAN gateways. Each one of these three agents is responsible to diagnose
faults inside their domain. These agents have been deployed into devices with
enough computational resources, but other three Semi-Autonomous Agents has
been deployed taking care of minimising the consumed resources, since they are
deployed in final user domain, such as multimedia consumer PC. One of them
resides into the multimedia consumer PC. This agent has monitoring capabilities
to detect and monitor quality of streaming sessions. The second one, into Mul-
timedia Streaming Server with low resources. This agent has testing capabilities
to know the server status. The other one is deployed in the network operator
terminal to notify diagnosis results. These deployments are shown in Fig. 7.

Notice that these agents publish all actions they are able to perform in a direc-
tory facilitator like a service. Thus, any agent can request an action execution.

4.4 Streaming Diagnosis Case

In order to facilitate the understanding of the example, only three agents are in-
volved in the exposed diagnosis case: “StreamingClientAgent” (Semi-Autonomous
Agent), “DiagnosisClientAgent” and “DiagnosisServerAgent” (both Fully Auto-
nomous Agents). Notice that all words with italic style in this section represent
ontology classes, not ontology individuals.

The presented case study starts when a user requests a video streaming ses-
sion. This streaming session is detected by the Semi-Autonomous Agent that
resides inside multimedia client PC, named “StreamingClientAgent”. This agent
creates a new RTPSession individual in the ontology with properties that re-
presents information about this session, like, which computer is the client and
which computer is the streaming server. The creation of this individual triggers
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Fig. 7. Agent deployment in case study scenario

SWRL engine to evaluate if any possible action is now available, i.e. if all its
preconditions are satisfied.

To simplify the explanation, we consider this agent is able to do only two
types of actions: RTPMonitoringAction (to monitor Quality of Service (QoS) in
RTP sessions) and NotifySymptomAction (to notify other agents about a new
detected symptoms).

RTPMonitoringAction has two preconditions: RequiredActorCondition and
RequiredRTPSessionCondition. To check if this conditions are satisfied, several
SWRL rules are used. Rule 1 is used for RequiredActorCondition and Rule 2 for
RequiredRTPSessionCondition.

Rule 1. Actor(?actor),
RequiredActorCondition(?condition),
hasPrecondition(?action, ?condition),
canPerform(?actor, ?action)
→ satisfied(?condition, true)

Rule 1 searches all individuals of class Actor and class RequiredActorCondition.
Then, it searches all actions which have one condition of this type. And finally, it
searches if one agent can perform a determined action. If these subconditions are
satisfied, the RequiredActorCondition individual changes its property “satisfied”
to true.

Rule 2. RTPSession(?session),
RequiredRTPSessionCondition(?condition),
hasPrecondition(?action, ?condition),
hasClient(?session, ?system),
Actor(?agent),
id(?agent, ClientAgent),
isExecutingIn(?agent, ?system),
→ satisfied(?condition, true)
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Rule 2 searches all individuals of class RTPSession and class RequiredRTPSe-
ssionCondition. Then, it searches all actions which have one condition of this
type. It obtains the client system of the streaming session and gets the local
system, i.e. the system in which the agent is executing currently. If both systems
are the same, the condition is satisfied.

Once both conditions are satisfied, the Action individual changes its property
“available” to true. Since “StreamingClientAgent” does not have more avail-
able actions, RTPMonitoringAction is selected to be executed. So, it performs a
monitoring action to know the quality of the session. For this example, a quality
degradation suddenly occurs and is detected. So, a new Symptom individual is
generated in the ontology and SWRL engine is triggered again.

Now, NotifySymptomAction can be executed using rules similar to rules 1
and 2. “StreamingClientAgent” has not enough information to process this symp-
tom, and it needs to cooperate with a Fully Autonomous Agent (in this case, the
Fully Autonomous Agent that resides in the Multimedia Consumer Home Gate-
way, named “DiagnosisClientAgent”). “DiagnosisClientAgent” agent receives a
message that notifies the new symptom. “StreamingClientAgent” receives an
acknowledgement message and a new SymptomACKMessage individual is cre-
ated and a postcondition is evaluated (see Rule 3. When all postconditions are
satisfied, “sucessfullyPerformed” property is set to true.

Rule 3. SymptomACKMessage(?msg),
RequiredACKCondition(?condition),
PerformedAction(?action),
NotifySymptomAction(?action),
hasPostcondition(?action, ?condition),
hasSymptomContent(?msg,?symptom),
hasSymptom(?action, ?symptom),
→ satisfied(?condition, true)

“DiagnosisClientAgent” is able to process symptoms performing Bayesian infe-
rence in a distributed way (using MSBN approach). In other words, this agent
shares information with others Fully Autonomous Agents that are able to rea-
son with high level data. So, the received Symptom individual is translated to
Bayesian format through the Mapping module (see Sect. 3).

Once this information is inserted into Bayesian module (see Sect. 3), all Fully
Autonomous Agents are working together and in parallel thanks to MSBN. Each
one takes its own decisions using all available knowledge (shared knowledge and
its own private knowledge).

When “DiagnosisClientAgent” has processed the new symptom and a set of
hypotheses are obtained from Bayesian module, it has to decide which action
is the best to be executed now. Depending on the state of the environment
and the knowledge base of the agent, one action could change its influence in the
diagnosis process. To deal with this issue, we use the CDF method (see Section 3).
With this method, all possible actions are ordered by relevance to reach a reliable
confidence in the diagnosis process. The first one whose preconditions are fulfilled



58 Á. Carrera and C.A. Iglesias

is selected and executed. All Fully Autonomous Agents deployed in the scenario
have to sort all possible actions to choose the best one.

For example, “DiagnosisServerAgent” has received shared knowledge when
“DiagnosisClientAgent” has added the new symptom to the Bayesian module.
So, “DiagnosisServerAgent” starts its own decision process to choose the best
action that can be performed by itself. After it gets a set ofHypothesis individuals
from Bayesian Module, then this agent chooses a ConnectivityTestAction to
perform using CDF method (see Sect. 3). But it must check if all preconditions
for this action are satisfied. In this case, two preconditions must be satisfied.
One RequiredActorCondition (Rule 1) and one RequiredDataCondition (Rule 4).

Rule 4. RequiredDataCondition(?condition),
Variable(?variable),
requiredVariableType(?condition, ?typecond),
variableType(?variable, ?typecond)
→ satisfied(?condition, true)

Rule 4 searches all individuals of class Variable and class RequiredDataCondition.
Then, it searches type of the condition variables. If a variable has the wanted
type, then the condition is satisfied. In the case of ConnectivityTestAction the
required variable type is “Streaming Server LAN IP” and the variable value is
“192.168.1.11”.

Since both preconditions are satisfied, the agent executes the test and obtains
more information about the environment. The postcondition of this action is
a RequiredDataCondition which checks if a result is obtained later the test is
executed. This result is added to Bayesian module as evidence. The output of
Bayesian reasoning process is processed by Mapping module and inserted in
Ontology module as a new set of Hypothesis individuals. Once all hypotheses
are updated, CDF method is executed again to get which action is the most
relevant to be executed in order to reach a fast and reliable diagnosis. Then, the
most relevant available action is executed and the making decision process starts
again, i.e., to sort possible actions by relevance, to check preconditions, to filter
available actions, to choose the most relevant available action and to execute it.

This process is repeated until, at least, one hypothesis has enough confi-
dence, i.e. the confidence is higher than a threshold. Diagnosis conclusions are
shared using MSBN approach and, then, diagnosis finishes and a healing action is
searched to fix the problem if it is possible, otherwise the system notifies a human
operator.

To summarise the case study explanation, several agents have been deployed
in different devices to perform distribute diagnosis and the proposed upper-
ontology has been applied (see Fig. 7). Some agents have all modules proposed
in section 3. These agents can work isolated without problems and offer more
functionality to our diagnosis system. But, there are some devices such as ded-
icated multimedia server that have low performance computational resources
and it is not possible to deploy Fully Autonomous Agents in these devices. On
one hand, to solve this problem, we deploy only key modules in several agents to
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reduce required resources. But, on the other hand, an agent without Bayesian
module cannot reach any diagnosis, because it only can perform actions (diag-
nosis tests), it does not perform inference. So, this light-weight agents have to
share knowledge with Bayesian agents to reach diagnosis conclusions.

5 Evaluation

The benefits of the proposed upper-ontology have been evaluated comparing this
approach with previous works [7,11]. In this paper, we compare the performance
of the system using deliberation driven by “cost” or by “influence”.

In previous works, test actions were ordered by estimated cost. This cost
combined time cost and computational cost and it was estimated a priori by
human experts. Then, all test actions are executed always in the same order.
Even, sometimes, unneeded actions are executed.

In this work, test actions are sorted by relevance. Depending on the evidences
about the environment, an action can modify its relevance for the current diag-
nosis (see Sect. 3).

The evaluation has been carried out based on a benchmark for a real diagnosis
scenario of the R&D project Magneto [1]. With data stored in database with old
diagnoses and the same Bayesian networks have been used in both cases. The
volume of this data is around 500 diagnoses. We have clustered diagnoses in 13
diagnosis cases to simplify comparison and shown results.

As it is shown in Fig. 8, the number of performed tests has been reduced.
Taking data from data base mentioned above, the average of performed test
with deliberation driven by cost is 5.23 tests (with standard deviation 3.11).
Using deliberation driven by influence, this number is reduced to 2.76 (with
standard deviation 1.42); in other words, the number of performed tests has
been reduced in 47.05%.

With deliberation driven by influence, there are two diagnosis cases that per-
form one test more than following the previous approach (driven by cost). The
reason of this behaviour is that these are connectivity failures inside user HAN.
These failures are very uncommon; for this reason, these hypotheses have, a pri-
ori, low confidence and other hypotheses have to be confirmed or refused first.

Table 1 shows the evaluation results in several columns. Mean Time to Diag-
nose (MTTD) [6] stands for the average time until the root cause of the failure
is correctly diagnosed.

The column named “Result” represents if deliberation driven by influence
improves driven by cost one or not in a specific diagnosis case.

The average of MTTD in previous approach is 25.47 seconds (with standard
deviation 15.33), in proposed approach is 12.01 seconds (with standard deviation
7.12). Time improvement is 52.87%. These results show that the use of CDF
method to extract the relevance of an action from Bayesian networks combained
with semantic reasoning improves the performance of previous approaches driven
by cost.
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Fig. 8. Comparison: previous work vs proposed approach

Table 1. Evaluation of MTTD and number of tests using cost or influence metrics for
ordering tests

Diagnosis case MTTD Number of tests Result
Cost Influence Cost Influence

Case 1 41 29 9 6 �
Case 2 5 7 1 2 	
Case 3 36 8 7 2 �
Case 4 39 15 7 4 �
Case 5 4 8 1 2 	
Case 6 36 8 7 2 �
Case 7 9 9 2 2 ∼
Case 8 34 8 7 2 �
Case 9 40 24 9 5 �
Case 10 33 13 7 3 �
Case 11 5 5 1 1 ∼
Case 12 13 8 3 2 �
Case 13 36 14 7 3 �

6 Conclusions and Future Work

We have presented a MAS that uses a diagnosis upper-ontology with Bayesian
reasoning using OWL and SWRL to choose actions to perform. We focused on
the deliberation process for hypotheses generation and discrimination. Our pro-
posal of decision support improves previous approaches [7,11] both in time and
in computational cost. Furthermore, the proposed modular architecture presents
the capability to add or remove some modules of the architecture to reduce the
resources required by agents, because there are important computational restric-
tions in devices like routers, TVs or STBs. Finally, one of the main advantages
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of use Bayesian Networks and semantic reasoning is the possibility of deploy new
knowledge base or new reasoning rules on the fly, without restarting or deploying
new agents.

As future work, we will study in depth the application of MSBNs [12,13] to
distribute the Bayesian inference engine that offers support to self-organisation
capabilities to add robustness and to maintain coherence and consistency in a
distributed reasoning process. For depth comparisons, we plan to simulate more
complex network environment and to test several agent architectures in order to
measure the performance of each architecture.
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7. Garćıa-Algarra, F.J., Arozarena-Llopis, P., Garćıa-Gómez, S., Carrera-Barroso, A.:
A lightweight approach to distributed network diagnosis under uncertainty. In:
INCOS 2009: Proceedings of the 2009 International Conference on Intelligent Net-
working and Collaborative Systems, pp. 74–80. IEEE Computer Society, Washing-
ton, DC (2009)

8. Kjaerulff, U.B., Madsen, A.L.: Bayesian Networks and Influence Diagrams. Infor-
mation Science and Statistics. Springer, New York (2008)

9. Kraaijeveld, P., Druzdzel, M., Onisko, A., Wasyluk, H.: Genierate: An interactive
generator of diagnostic bayesian network models. In: Proc. 16th Int. Workshop
Principles Diagnosis, pp. 175–180. Citeseer (2005)
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Abstract. The design of MAS organizations is a complex activity where
a proper methodological approach may offer a significant advantage in
enabling the conception of the best solution. Moreover, the aid provided
by a supporting tool significantly contributes to make the approach tech-
nically sound and it is a fundamental ingredient of a feasible strategy to
the development of large MASs. In this paper, we introduce a portion
of methodological approach devoted to design MAS organizations and a
preliminary version of a specific case tool, named MoT (Moise+ Tool),
for supporting activities from design production to automatic code gener-
ation. MoT provides four kinds of diagrams based on a definite graphical
notation for representing organizational elements. Our process is applied
to a classical write paper simulator example. Results include portion of
the automatically generated code according to Moise+ specifications.

1 Introduction

Distributed and open systems are widely employed in the simulation and man-
agement of highly complex scenarios in dynamic environments. To this end, such
systems should act in quasi-real time to changes occurring in the environment
adopting the most suitable behavior for reacting to the new conditions. Agents
can provide a good way for solving complex problems and they are very useful
to both design and implementation levels [13][14].

The ability of simulating complex hierarchical organization provides further
utility to the design of multi-agent systems (MAS from now on). In other words,
organizations can be seen as a set of constraints [4] that rules the behavior of
every single agent in a multi agent society.

The implementation of an organization in a MAS is normally decided at design
time. The way in which a MAS may re-organize itself has then to be investi-
gated from two different points of view, i.e. the design (methodological) and the
implementation point of view. A robust approach to agent organizations comes
from the work of Hubner et al. [10] where a definition of an organizational
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model (Moise+) is presented. MASs designed in accord with the Moise+ model
are able to re-organize their processes and then react to what occurs in the
environment.

Organizations are described in the Moise+ model by three main views: the
structural, the functional and normative perspectives. In this model an organi-
zation is established a priori (created at design-time) and the agents ought to
follow it. The structural and functional view are considered almost independent
while the normative dimension is used for establishing a link between them. Fur-
thermore, the Moise+ model is complemented with a development tool called
J-Moise+[7], a Jason extension allowing developers to use Jason for program-
ming agents and their organizations [1]. This is nevertheless a powerful tool, but
it is not still adequately supported by a well defined methodological approach.

Some researchers have developed in the past other methodologies for MASs
where some aspects of organization were modeled. In [16] the concepts of envi-
ronment, roles, interactions and organizational rules are considered as organiza-
tional abstractions. Another example has been proposed in [3] where holarchy
represents the organization structure of the MAS made of holons [5], hence the
main element to be developed for building the MAS organization. Despite the
number of methodologies only few of them cover the entire process lifecycle, from
analysis to implementation, and above all very few is aided by tools.

In this paper we introduce a portion of methodological approach devoted
to design MAS organizations and a preliminary version of a specific case tool,
named MoT (Moise+ Tool), for supporting our approach from design production
to automatic code generation.

In particular, MoT is based on a UML compliant graphical notation to repre-
sent the Moise+ specific elements and on a code generator in order to produce
the final XML code containing the Moise+ organizational specification.

MoT has been realized by using a known tool, Metaedit+ by Metacase [12][6],
that offers a valid environment for domain specific modeling. Metaedit+ provides
means for creating an ad-hoc modeling language with concepts and rules from a
well specific problem domain, and notation to be used for drawing diagrams.

The advantages of graphically representing organizations are evident: first of
all, graphical notations are more readable and understandable at a glance than
any coding language, secondly it is usually easier to explain a graphical notation
to stakeholders involved in the design (that are not technical designers) than read
the application code with them. The possibility of involving stakeholders like
system users enables the adoption of agile or extreme development approaches
and improves the flexibility of conventional ones.

The remainder of the paper is organized as follows. In section 2 the Moise+
organizational model and Metaedit+ are introduced. In section 3 we present our
tool with the definite notation. Section 4 shows a portion of the design process
for developing organizational MAS with the related work products. Such pro-
cess is explained applying it to an example inspired by the Moise+ tutorial [8].
Moreover, in this section we address the issues concerning the Moise+ code
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generation. Finally some discussions and conclusions are drawn in section 5 to-
gether with a comparison with others MAS modeling proposals.

2 Background and Motivation

Since the beginning of computer science the need for adequately managing con-
cepts related to the applications under development raised with the complexity
of systems. A promising approach to this issue has been the definition of means
for specifying what a system should do instead of how to do something. This ap-
proach led to formulation of the Model driven Engineering [11] (MDE) paradigm
that deeply changed the way of thinking and then working of designers and
programmers.

Designers and developers are no more involved in the specification of each
single detail of the system using a programming language but they can model
the needed functionalities and the architecture of the system. This fact presents
many advantages like the increasing goodness of the softwares produced, the
easiness and the rapidity of conveying information among team members and the
possibility, through the use of model transformation techniques, of automatically
generating code. However this latter issue is not still supported by adequately
technology.

Our work focuses on the creation of a notation and a CASE tool, created as an
instance of a meta-CASE tool (Metaedit+), for supporting the methodological
activities involved in the development of organizational MASs. In so doing we
exploited the Moise+ organizational model and the features of Metaedit+ for
creating a graphical environment allowing the designer to implement concepts
and rules of the Moise+ model in specific design diagrams and to automatically
produce portions of code.

In the next subsections an overview of Moise+ and Metaedit+ is given.

2.1 Moise+

Moise+ [9][10] is an organizational model for MASs based on a few key elements
to characterize an organization. It provides MASs with an explicit definition of
their organizations. The organizational specification is useful both to the agents
to clearly know their organizational structure and their particular purpose and to
the organization framework, to ensure that the agents follow the specifications.
More specifically, Moise+ looks at organization as a three dimensional element
characterized by structural, functional and normative dimension.

Looking only at the structural dimension, an organization can be seen as a set
of Roles linked by Relations and clustered into Groups. The functional dimension
enriches the model showing the global objectives of the organization. It gives
some information about the plans and the way for reaching the organizational
global goals by means of Social Schemes. In these schemes the functionalities of
the organization are represented as Goals grouped into Missions.
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Finally, the normative dimension is fundamental into the Moise+ model be-
cause it shows the connecting elements, the Norms, between the functional and
structural dimension of an organization. It defines the behavioral rules to be
observed by Roles in order to reach the organizational global goal. Defining the
norms basing on Moise+ means to create links between Roles and Missions. Ac-
tually, Moise+ supports two kinds of norms: the Permission and the Obligation
norms.

Practically, designing an organization using the Moise+ model means to de-
fine an Organizational Specification (OS) which is the union of the structural,
functional and normative specification corresponding to each dimension. An OS
is an XML file with a precise structure that defines the features of the previously
mentioned elements. In the following a portion of Moise+ XML code represent-
ing the skeleton of a classical Organizational Specification is reported. This code
shows not only the main elements to be defined inside each specification but also
the order in which the elements have to be defined.

< organisational − specification >
< structural − specification >

< role− definitions > . . .
< group − specification > . . .
< formation− constraints > . . .

< /structural − specification >

< functional − specification >
< scheme >

< goal > . . .
< mission > . . .

< /scheme >
< /functional − specification >

< normative − specification >
< normtype =?role =?mission =? > . . .

< /normative − specification >
< /organisational − specification >

Fig. 1. Moise+ XML code representing an organizational specification

In section 3 we present the proposed CASE tool developed in order to easily
realize organization with Moise+.

2.2 Metaedit+

Recently designers manifested the need for changing CASE tools in order to
customize them for their demands and to meet the features of different applica-
tion domains. This customization is not possible with every CASE tool because
tools constrain how the designer can do their work, how they can draw dia-
grams/models or manage tool concepts. Generally tools allow to use only fixed
methods and notation.

What Metaedit+ proposes is a way for overcoming this limitation by adding
the notion of meta-CASE tool to that of CASE tool. The meta-CASE tool is
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based on a three layered architecture in which the lowest level is the model level,
hence the system design. The middle level contains a model of the bottom level,
the model of a model is called metamodel. Metamodel contains concepts and
rules for creating models. These two levels are already present in a CASE tool
but the metamodel is imposed by the creators of the tool thus implying the
previous said rigidity.

With the introduction of the third layer (the meta-metamodel one) Metaedit+
establishes concepts and rules for creating metamodels, indeed Metaedit+ offers
the possibility of modifying the metamodel by following the rules established in
the meta-metamodel, thus overcoming the constraints of CASE tools and having
the possibility of specifying modeling languages that can then be used with the
right tool. Metaedit+ is at the same time a CASE tool and a meta-CASE tool;
by using the meta-CASE tool the designer may specify her/his own modeling
language that (s)he can use by instantiating the meta-CASE tool in the CASE
tool.

MetaEdit+ is based on a specific metamodeling language, GOPPRR that
means Graph, Object, Property, Port, Relationship and Role. They are the
metatypes used for defining modeling languages and each of them has its own
semantic. Graph is the individual model, usually a diagram, the object is the
main element of the graph, the relationships connect objects, the role connects
relationships and objects, port gives the possibility to add semantics to the role
and the property. The structure and the semantic of each modeling language can
be described by a metamodel created by using these metatypes.

In addition to the previous features Metaedit+ offers an optimum support to
the UML modeling language on which a lot of design methodologies are based.
Finally Metaedit+ offers some preinstalled reports, or the possibility of cre-
ating new ones by using a specific language, the Metaedit Reporting Language
(MERL). The report is a small program defined and working onto every diagram
and, in addition to other facilities it offers, there is the document generation in
html format or others and the generation of code skeleton in various program-
ming languages (Java, C, C++, . . . ). The more the description of each single
element of the diagram is precise and detailed the more the produced code is
complete.

This latter functionality has been highly exploited in order to create a report
for each single newly introduced diagram of the proposed work and to generate
the corresponding xml code.

3 An Organization Design Tool: MoT

The Moise+ Tool (MoT1) wants to be a tool supporting all the phases from the
agent organization design to Moise+ code generation. MoT has been realized by
using Metaedit+. It owns a graphical notation to represent the Moise+ specific
elements and a code generator in order to produce the final XML code containing
the Moise+ organizational specification. Fig. 2 shows a screenshot of MoT.

1 MoT is available at http://www.pa.icar.cnr.it/aose/MoT.html

http://www.pa.icar.cnr.it/aose/MoT.html 
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Fig. 2. A Screenshot of MoT

MoT is based on the metamodel shown in Fig. 3, it describes an organizational
structure for MASs adapted from Moise+. The core element of the metamodel is
the Organization that pursues some objectives (Goals), each of them reachable
executing a particular Plan. A Group is usually responsible of at least a Scheme
and a Scheme can be adopted to monitor the execution of another Scheme. A
Scheme contains several Missions composed of a set of Goals. In addition, an
Organization is composed of several Roles. When an agent adopts a Role it is
committed to a Mission that is regulated by means of Norms. The Organiza-
tional Link and the Compatibility Link respectively define social exchanges and
compatibility relations among agent roles.

is committed to

pursues
Organization

Norms

Role

MissionSchemeGroup

PlanGoal

Compatibility 
LinkOrganizational 

Link

Responsibility

Monitor

Fig. 3. Metamodel adopted in the MoT
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In the following subsections we present the adopted notation.

Fig. 4. The Notation for MoT

3.1 Notation

MoT provides four kinds of diagrams: the Organizational Diagram - OD, the
Scheme Structural Diagram - SSD, theGoal Structural Diagram - GSD and the
Goal Functional Diagram - GFD that we will detail in the following.

These diagrams can be composed using the notation we present in this paper.
Such notation allows to represent all the concepts involved in modeling and
designing organizational MASs according to the metamodel shown in Fig. 3.
This notation has been created as a UML profile. It allows to represent the
following concepts (graphically shown in Fig. 4).

Roles. A Role is a UML class depicted as a sticky man. Its properties are
represented in the form of class attributes. The main features of a MoiseRole
are: a RoleName, a MaxAscribe and a MinAscribe representing the cardinality
of the role in the organization. An abstract role, as usual, is identified using an
italic font.

Groups. A Group is represented by means of a package with a sticky men icon.
It may contain several structural elements (Roles) and other grouping elements
(sub-groups). According to the Moise+ definition, the membership of an agent
to a group constrains the agents that can cooperate with it.

Goals. In order to represent a goal in MoT we have used a UML class graphically
depicted as circle with a check. Each goal element is characterized by a name
and by a collection of attributes. Each attribute corresponds to a specific feature
of the Moise+ concept of goal. As regard the attribute compartment, it basically
contains the GoalType propriety that represents the two kinds of goal namely
achievement and maintenance and the ttf attribute value prescribing the time
requested for fulfilling the goal. The default type for every goal is achievement.

Missions. In the Moise+ model, a Mission is defined as a coherent set of au-
thorized goals to achieve. In order to represent a mission in MoT we have used
a UML class graphically depicted as a dartboard. Here the attributes’ compart-
ment contains values for the minimum and the maximum commitments to the
mission.

Social Schemes. A Social Scheme or simply Scheme in Moise+ is composed
of a functional goal decomposition tree (where the root is the objective of the
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Scheme and the goals are decomposed within global plan) and a set of missions
(where the responsibilities for the sub-goals are grouped to be distributed among
Roles). In our tool, we prefer split its structural aspect (described in the SSD
and represented by means of a UML package) from the functional one (described
as a plan in the GFD). Thus, the schemes in the SSD are represented only as a
set of associated missions while the GFD shows further features.

Relationships. The elements of the model can be logically related one another
using several kinds of relationships. We omit to define the common UML rela-
tions that we use in MoT diagrams. In the following we describe those specially
introduced for specifying Moise+ concepts.

� Organizational Link - It defines the way in which social exchanges be-
tween agent roles occur. Moise+ model defines three types of Organizational
links: communication representing exchange of information; authority defin-
ing control power; acquaintance representing knowledge about other agents.
In MoT these relations are graphically represented by the first relation shown
in Fig. 4 and can be characterized by means of a label showing the type.

� Compatibility Link - It is always plotted between two roles and estab-
lishes the possibility for an agent to simultaneously play the two roles. It is
graphically represented by the second relation shown in Fig. 4. When the
link is oriented, it means that the agent playing the source role can play the
target role but not the vice-versa.

� Norm - In the Moise+ model, a role is usually linked by means of Norms
to one or more missions defined in a particular scheme. In our tool, we have
defined a new link type named MoiseNormLink graphically represented by
the third relation shown in Fig. 4. This link is characterized by the Norm-
LinkType propriety and can take two values: Obligation and Permission. In
MoT this link is a directed arc that starts always from a Role to a Mission.
It expresses that an agent playing the role is obliged/allowed to fulfill the
mission.

In the following section we introduce all phases of our methodological approach
with the related work products (MoT diagrams). Our design process will be
detailed with the aid of the the classical example (“Writing paper”) reported in
the Moise Tutorial [8].

4 Methodological Approach

We aim at defining a complete methodological approach ranging from require-
ments analysis to code production and system deployment. Such a methodol-
ogy will include a goal oriented analysis (with some features inspired by the
i* [15] and Tropos [2] approaches), the design of organizations that will be de-
scribed below and the design of agents based on the Jason platform. The scope
of this paper is limited to the organizational part of this work and therefore



Towards a Design Process for Modeling MAS Organizations 71

Goal 
Decomposition

Mission 
Identification

Plan 
Description

Organization 
Definition

GSD GFDSSD OD

Problem 
Specification

Code 
Generation

Moise+ Code

Fig. 5. Portion of the Design Process for Organizational Multi-Agent Systems

(also for space concerns) we skip the initial part of the methodology (require-
ments analysis) and the final one (the agent design and what follows it). In
other words, this section introduces only the portion of our methodological ap-
proach devoted to instantiate the metamodel shown in Fig. 3. The diagrams
we illustrated in the previous section are used for representing the outcome of
this portion of design process, as it is sketched in Fig. 5. Let us assume that
the problem specification document is already existing and it provides a list of
system goals obtained for instance with a Tropos or i* like design process. The
aim of our methodology is to model organizational multi-agent systems princi-
pally by means of goals, their decomposition, missions and roles; in the following
table, we highlight the work product where each metamodel element of Fig. 3 is
instantiated.

Table 1. Summary of instantiated element

Work Product Metamodel Element

Goal Structural Diagram Goal

Scheme Structural Diagram Scheme, Mission

Goal Functional Diagram Plan

Organizational Diagram
Role, Group, Monitor, Norm, Organizational
Link, Compatibility Link

In the following subsections are detailed all phases of our approach shown in
Fig. 5.

4.1 The Goal Decomposition Phase

The Goal Decomposition phase (see Fig.5) of the proposed design process in-
volves activities for the decomposition of the identified goals and the identifi-
cation of their dependencies. During this phase, goals are refined by means of
an AND/OR decomposition. This allows to determine a hierarchical structure
among goals and to individuate the dependencies between a high level goal and
its subgoals. A dependency among goals implies that a given goal is constrained
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by another one for its fulfillment. In particular, an AND dependency means that
all subgoals must be satisfied in order to fulfill the original goal. Vice versa, in
an OR dependency the original goal is satisfied when any one of its children is
fulfilled. This phase results in the Goal Structural Diagram where the goal (see
metamodel Fig. 3) is instantiated.

In MoT, the GSD is an extended UML class diagram where the Goal is the
only Moise+ element permitted.

Fig. 6. Goal Structural Diagram for the Writing Paper example - GSD

In order to add a Goal in an GSD the MoiseGoal object from toolbar of the
GSD must be selected. In this diagram, goals are related to other goals by means
of an AND or OR dependency relation.

Fig. 6 shows the GSD for the “Writing paper” example. In this example, a set
of agents wants to write a paper. In order to solve the problem, an organizational
strategy is adopted. In this instance, we don’t want to argue about the design
choice. Vice versa, we accept the solution proposed in [8] because we want to
show how it is represented in a GSD.

As we can see in Fig. 6, the global objective of the organization (to be created)
is decomposed into two sub-goals fdv (first draft version) and sv (submit version).
The fdv goal is, in turn, decomposed into three sub-goals: write a title (wtitle),
an abstract (wabs), and the section titles (wsectitles). For the other hand, in
order to fulfill the sv, it is necessary to write the sections (wsecs) and to finalize
the paper (finish), that is to write the conclusion (wconc) and the bibliography
(wrefs). The GSD for the “Writing paper” example highlights the root goal of
the organization may be reachable only if all its subgoals have been satisfied.
This is because all the relations linking goals with the related subgoals are AND
relations.
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Fig. 7. The Writing Paper Example - SSD

4.2 Mission Identification Phase

The Goal Structural Diagram is the input of the Mission Identification phase
where the main aim is to identify Roles,Missions and Schemes. This phase starts
with the Roles Identification activity. Roles are identified by looking at Positions
coming out from the previously report Tropos or i*-like analysis phase. We con-
sider a Position characterized by its own competencies in order to fulfill its goals.
Often Roles are identified in an iterative refinement process working in this way:
some candidate Roles are identified, their consistency is verified against the Mis-
sions that is possible to assign them (see description of next activity). Roles
are splitted or merged according to what emerges from the analysis of Mission
assignments. Instantiating Missions is useful for the definition of organizations
complying with the Moise specification. Thus it is necessary to establish how to
group goals coming from the previous Goal Decomposition Phase. Practically,
we group the leaf goals of the diagram into missions according to the previously
identified candidate Roles, starting from the GSD. The Role involved in pursuing
a Goal is sometimes the same Role who has a direct interest in its achievement,
other times the goal is under the responsibility of other Roles. We assume that
information about Roles responsibility are coming from the requirements anal-
ysis phase and guide this activity. The analysis of mission assignment to Roles
may be useful for identifying Roles needing too many capacities or incoherent
profiles. This may lead to split the candidate Role. Other times, missions analy-
sis may indicate that similar Roles exist and their merging may be advisable. At
the end of this iterative activity, missions are grouped into Schemes according to
the high level goal to be satisfied. This series of iterations produces the Scheme
Structural Diagram, where the Mission and Scheme metamodel elements (see
Fig. 3) are instantiated.

In MoT, the SSD is an extended UML class diagram where main elements
are Goal, Scheme and Mission. In the SSD, a Scheme is modeled by means of a
package with a little sheet icon, where classes (i.e. missions) are grouped. The
package’s name corresponds to the social scheme id. In a SSD can be represented
more than one Scheme, thus representing the existence of different schemes in
the same organization with different objectives.
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The Goal element is the same previously defined in the GSD and imported
in the SSD view. An SSD allows MAS developers to design the structure of
the Social Schemes in terms of goals and missions. In this diagram, we can also
specify the composition of each single mission with related goals. Some of these
goals are labelled as the root goal of the related Scheme.

As regards relationships among elements, we only use two kinds of relation-
ship: the aggregation and the dependency. The latter is used for representing
how two different schemes depend each others, the former is used for relating
missions and goals. With respect to Moise+, goals are aggregated into missions
that will be distributed/committed to Roles.

Fig. 7 shows a portion of the SSD for the “Writing paper” example. It is
composed of two Social Schemes, writePaperSch andmonitoringSch. The portion
of writePaperSch scheme reported in Fig. 7 shows how the mManager mission
is a composition of five goals: wp, wtitle, concl, wabs, wsectitles. This mission
concerns the general management of the writing process. While the illustrated
portion of monitoringSch scheme includes two missions: ms and mr mission
formed by sanctioning and rewarding goal respectively. These missions concern
the employment of sanctioning and rewarding policies in order to enforce rules.
In the SSD, it is also possible to underline the dependences among different
Social Schemes. As Fig. 7 shows, the Scheme writePaperSch is related to the
monitoringSch Scheme through a “monitoring” dependency relationship. This
is because the scheme monitoringSch is adopted in order to ensure the correct
execution of the writePaperSch.

4.3 The Plan Description Phase

The Plan Description phase allows to establish the precedence relations among
goals, that is the temporal sequence in which the goals are to be fulfilled. Es-
tablishing precedence relations among goals allows to consider different design
choices. This phase is assisted by the Goal Functional Diagram. At this stage of
the process, the functional aspect of goals (Plan) is determined.

The Goal Functional Diagram represents the functional view of the root
goals of the schemes. In other words, it depicts how the task/activity related
to each subgoal must be executed in order to fulfill the scheme root goal (that
is the plans to reach the root goal). It is important to highlight that there
are three different types of goal fulfillment: sequential, parallel and choice. If
two goals are related with a sequential relationship then the target goal can
be reached only after that the source goal is reached. If two goals are related
with a parallel relationship then both goals can be simultaneously reached. Fi-
nally, a choice relationship indicates that it is possible to choose the goal to be
achieved.

A GFD in MoT is realized by means of a UML activity diagram where the
Goal is represented by an activity where the name is the goal’s id. In a GFD the
plans to reach the goals are also defined. There are three different kinds of plan
operator: sequence, parallelism and choice, the first means that a goal gi (having
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(a) (b)

Fig. 8. Goal Functional Diagrams of the Writing Paper Example - GFD

two sub-goals gi,i and gi,i+j) can be achieved only if the sequence of gi,i and
gi,i+j is terminated. All of them can be easily represented by means of the UML
activity diagram syntax, for instance the parallelism is represented through the
fork and the choice through the decision diamond. Sequence is represented by a
straight arrow line.

Fig. 8(a) and Fig. 8(b) show the Goal Functional Diagrams built for the wp
and monitoring goals for the Writing Paper example which are the root goals of
writePaperSch and monitoringSch (defined in the previous section) correspond-
ingly. The GFD of the writePaperSch (see Fig. 8(a)) explains how to achieve
the root goal of the scheme. In detail, the fulfillment of the wp goal depends on
the achievement of the fdv and sv goal. The sv goal is reachable only after that the
fdv is satisfied. In turn, fdv is achieved executing the atomic goalswtitle, wabs and
wsectitles sequentially.

4.4 The Organizational Definition Phase

Finally, the Organizational Definition is the core phase of our methodology and
it includes several steps. This phase uses the work products coming from the
previous ones. Thus, it is almost natural finalizing the Roles of the Organization
to be created, by means of the elements previously identified and instantiated.
As a consequence, we can determine the kind of rule (Norms) that bind the Role
to the mission and also the work teams (Groups) to Roles belong.

The set of all formed work groups compose the entire Organization. The last
steps of this phase are to establish which Roles are compatibles (Compatibility
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Fig. 9. The Writing Paper Example - OD

Links) with some others according to the policy adopted in the organization and
which subordination relations exist among Roles (Organizational links). This
phase is assisted by the Organizational Diagram.

In MoT, an Organizational Diagram is an extended UML class diagram for
designing the structural and normative aspect of an organization. The OD fo-
cuses on Moise+ elements such as Roles, Groups, Missions, Schemes and different
kinds of relationships.

Fig. 9 shows the Organizational Diagram for the Writing Paper example.
A possible solution for this problem, can be provided defining an organization
with one group (wpgroup) and two roles (Writer and Editor). These roles are
an extension of the abstract role Author. As exemplified in Fig. 9, an agent
playing the writer role can play the editor role at the same time and vice-versa
because they are linked by a bidirectional MoiseCompatibilityLink. Moreover, in
this diagram the organizational links existing between roles are also represented.
For example, the MoiseOrganizationalLink between editor and writer role is of
the type Authority. This means that an agent playing the role editor in the
writing paper organization has some kind of control on agents playing the writer
role.

Finally, the instantiated roles are linked by means of MoiseNormLinks to
related missions. In the portion of diagram reported in Fig. 9, one of the Writer ’s
mission is mbib (i.e. getting references for the paper). The norm linking that
mission to the role is an Obligation, that is the agent playing the Writer role
must commit to this mission. The Editor, instead, may commit to the mission
mManager because the link is a Permission norm.
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SEE FIG. 9
SSG

Fig. 10. Moise+ Structural Specification generated code from OD

4.5 Code Generation Phase

The last phase of our process is the Code Generation. This phase is devoted to
produce the Moise+ organizational specifications of the MAS to be developed.
MoT supports this phase generating Moise+ code automatically.

In the previous sections we have defined the domain-specific modeling lan-
guage in order to design agent organizations to be implemented in Moise+. The
resulting metamodel containing the domain concepts with their relations and
notation is shown in Fig.3. In this subsection, instead, we want to specify the
mapping from model to code by defining a domain-specific code generator us-
ing MetaEdit+. In MetaEdit+, code generators are defined in the Generator
Editor using the MERL scripting language. MERL enables navigating through
the elements of the user designed diagrams accessing the data according to the
defined metamodel. Moreover, MERL allows translating the design data into the
formats required by the generation target language.

For our purposes, we have defined the main generators associated with the
diagram types defined in the section 3.1. Each generator is responsible of pro-
ducing a Moise+ specification portion.

Specifically, the Structural Specification Generator (SSG) and the Normative
Specification Generator (NSG) produces the XML portion of code concerning
the Moise+ Structural and Normative Specification by respectively analyzing
the elements designed in the Organizational Diagram.

The Functional Specification Generator (FSG) generates the Moise+ Func-
tional Specification. This (as hinted in the section 2) shows how the organiza-
tional goals can be reached and how to compose the missions to be assigned to a
specific role. For these reasons, the FSG is obtained merging two sub-generators:
the former maps of the Goal Functional Diagram in the XML code concerning
the Moise+ goal decomposition tree; the latter traduces the design data of the
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Scheme Structural Diagram in the portion of XML code representing the com-
position of the missions. The Fig. 10 shows the portion of structural specifica-
tion generated by means of application of SSG to the OD of the writing paper
example.

5 Conclusion

In order to fully exploit the powerful of agents nowadays research is directing
towards multi agent systems organized in the same way the humans do. The
design and implementation of this kind of system obviously requires to manage
abstractions that have to be used for modeling norms, goals, social schemes ad
so on. Above all it requires supporting tools for guiding the designer from the
analysis to the implementation in simple and less costly fashion.

This paper introduce a first step towards the creation of a design process for
developing MASs organized in hierarchical structures that can be implemented
with Moise+ and supported by a CASE tool using a specific notation for repre-
senting organizations. In particular, we illustrated a portion of our methodolog-
ical approach devoted to instantiate the main elements necessary to create an
agent organization with Moise+.

Moreover, we developed a CASE tool by using Metaedit+ that allows to
generate specific code for each kind of diagrams, in so doing we are able to
support the designer in producing organizational multi agent systems models and
then implementing them in a semi automatic way. The Moise+ metamodel is the
basis for our tool that, thanks to automatic generation of code from diagrams,
lets the designer free from the heavy work related to the manual production of
organization XML code.

Finally it is worth noting that the use of Metaedit+ constitutes a first ex-
periment that produced very good results in terms of CASE tool for supporting
design activities. The approach we adopted for the creation of the UML profile
for representing organizations is general enough for being applied with every kind
of tools since it is grounded on the creation of a metamodel that complement
the one of Moise+ with that of UML.

For the future we are planning to develop a CASE tool as an extension of
Eclipse that might let us overcome the age-old limit of Metaedit+ in managing
images and easily positioning elements in the diagrams.

Acknowledgment. This work was realized within IMPULSO and partially
supported by the EU project FP7-Humanobs and by the FRASI project.
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Abstract. What argument(s) do I put forward in order to persuade another agent
to do something for me? This is an important question for an autonomous agent
collaborating with others to solve a problem. How effective were similar argu-
ments in convincing similar agents in similar circumstances? What are the risks
associated with putting certain arguments forward? Can agents exploit evidence
derived from past dialogues to improve the outcome of delegation decisions? In
this paper, we present an agent decision-making mechanism where models of
other agents are refined through evidence derived from dialogues, and where
these models are used to guide future argumentation strategy. We combine ar-
gumentation, machine learning and decision theory in a novel way that enables
agents to reason about constraints (e.g., policies) that others are operating within,
and make informed decisions about whom to delegate a task to. We demonstrate
the utility of this novel approach through empirical evaluation in a plan resourcing
domain. Our evaluation shows that a combination of decision-theoretic and ma-
chine learning techniques can significantly help to improve dialogical outcomes.

1 Introduction

It is typical in collaborative settings for agents (human or artificial) to work together,
act on each others’ behalf, share resources, etc [4,8]. This presupposes that there exist
some kind of relationship or agreement between collaborators. Regardless of whether
such relationships are transient or permanent, collaborators often engage in dialogue
regarding task delegation, or resources sharing. Agents in such settings may, however,
be subject to policy restrictions. Such policies might regulate what resources may be
released to an agent from some other organisation, under what conditions they may be
used, and what information regarding their use is necessary to make a decision.

Given that agents are operating under policies, and some policies may prohibit an
agent from performing an action under certain circumstances, how can we utilise mod-
els of others’ policies that have been learned to devise a strategy for selecting an ap-
propriate agent from a pool of potential providers? To do this, we propose an approach
based on decision theory, which utilises a model of the policies and resource availabili-
ties of others to aid in deciding who to talk to and what information needs to be revealed.
We explore, in this paper, strategies for task delegation where agents operate under poli-
cies, and we intend to validate the following hypothesis: agents that build more accu-
rate models of others and use this to drive argumentation strategy will perform better
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than those that do not. More specifically, exploiting appropriate decision-theoretic and
machine learning techniques will mean that agents can: (1) significantly improve the
cumulative utility of dialogical outcomes; (2) reduce communication overhead; and (3)
strike a balance between maximising utility and minimising communication overhead.

The remainder of this paper is organised as follows: Section 2 presents our frame-
work and describes how policies are learned through evidence, and Section 3 discusses
our decision-theoretic model. Section 4 presents a number of strategies for selecting ar-
guments. Section 5 reports the results of our evaluation, and Section 6 discusses related
work and future direction. Section 7 concludes.

2 Our Framework

One of the core goals of this research is to learn models of the policies of others. In this
section, we describe how policies are captured and learned. We begin by formulating a
mechanism to capture agents’ policies.

2.1 Agents’ Policies

Agents’ policies regulate how tasks are delegated or resources deployed to others. Here,
we develop an abstract model of policies, which provides the basis for designing a
framework that allows agents to reason about others’ policies as they collaborate, com-
municate and coordinate their activities. In this model, we assume that agent policies
can be described in terms of features that characterise the prevailing circumstances. Our
approach of using features to model systems has been used in data mining and machine
learning problems [2,10], where features capture the attributes and characteristics of
objects. We model policies as conditional entities that are relevant to an agent under
specific circumstances only. These circumstances are characterised by a set of features
such as the type of resource required, the location of an operation, and so on.

We define a feature as a characteristic of the prevailing circumstance within which
an agent operates. Let F be the set of all features such that f1, f2, . . . ∈ F . Our concept
of policy maps a set of features into an appropriate policy decision. In our framework,
an agent can make one of two policy decisions at a time, namely (i) grant, which means
that the policy allows the agent to provide the resource when requested, and (ii) decline,
which means that the policy prohibits the agent from providing the resource.

Definition 1. (Policies) A policy is a function Π : 2F → {grant, decline}, which
maps feature vectors of agents to appropriate policy decisions.

We illustrate, by examples, the way policies may be captured in this model.

P1: You are prohibited from releasing a helicopter to any agent if the weather re-
port says there are volcanic clouds (vc) in the location the agent intends to deploy the
helicopter.

P2: You are permitted to release a helicopter (h), to any agent if the helicopter is
required for transporting relief materials (trm) and the weather is good.

P3: You are permitted to release a jeep (j) to any agent for any purpose, irrespective
of the day and the weather report.
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In the above example, if a helicopter is intended to be deployed in an area with volcanic
clouds then the provider is prohibited from providing the resource but might offer a
ground vehicle (e.g., jeep) to the consumer if the resource is available. Policies are
important factors that regulate agents’ behaviour in a society. Given that policies are
often private, and agents are required to work together as they collaborate to solve a
problem then how can agents identify what policies others are working within? Our
claim is that there is useful evidence that one can extract from interactions with other
agents. Such additional evidence can help to build more accurate models of others’
policies. In the next section, we discuss how argumentation-based dialogue allows us to
gather such useful evidence.

2.2 Argumentation-Derived Evidence (ADE)

We explore the evidence that argumentation-based dialogue provides in revealing un-
derlying policy constraints, and thereafter we present the interaction protocol employed
in this research. Three important types of evidence are considered in this paper, namely:
(i) seeking information about the issue under negotiation; (ii) providing explanations or
justifications; and (iii) suggesting alternatives. This is not intended as an exhaustive list,
but do represent three of the most common sources of evidence in argument-based dia-
logue in general [14].

Seeking Further Information. When an agent receives a request to provide a resource,
it checks whether or not it is permitted to honour the request. To do this, it must com-
pare the details provided by the consumer with the policies it must operate within to
make a decision. If the details of the task context provided by the consumer is insuffi-
cient for the provider to make a decision, it will need to seek further information. The
consumer could use that information as input to try to model what policies the provider
agent may be operating with. Such a request for further information could mean that
there are specific values of certain features that may lead to different policy-governed
decisions.

Suggesting Alternatives. When an agent is unable to grant a request because there
is either a policy restriction or a resource availability constraint, it may wish to suggest
alternatives. For example, a consumer may request the use of a helicopter to transport
relief materials in bad weather conditions. If the provider is prohibited from providing
a helicopter in such conditions but permitted to provide a jeep then it may offer a jeep
as an alternative for transporting those materials. If we assume that an agent will only
suggest an alternative if that alternative is available and there is no policy that forbids its
provision, then the suggestion provides evidence regarding the policies of the provider
with respect to the suggested resource. While the issue of deception remains an open
problem, some techniques for addressing this assumption have been investigated [12].

Justifications. Following a request for a resource, ultimately the provider agent will
either agree to provide it or decline the request (though further information may be
sought in the interim and suggestions made). In the case where the provider agent agrees
to grant the request, the consumer agent obtains a positive example of a task context that
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START-
DIALOGUE REQUEST ACCEPT END-DIALOGUE

REFUSE

OFFER

REFUSE

CHALLENGE

JUSTIFY

QUERY

ASSERT

REFUSE

Fig. 1. The interaction protocol

the provider agent’s policies permit the provision of the resource. On the other hand,
if the request is refused then the consumer may seek further explanation for the refusal.
The justification provided in response to the challenge may offer further evidence that
may help to identify the underlying constraints.

Interaction Protocol. Here, we present the protocol employed in this framework which
guides the interaction between agents (see Figure 1). Our approach is similar to [1,5] in
negotiating for resources required to enact a plan. To illustrate the sorts of interaction
between agents, consider the example dialogue in Table 1. Let x and y be consumer
and provider agents respectively. Suppose we have an argumentation framework that
allows agents to ask for and receive explanations (as in Table 1, lines 11 to 14), offer
alternatives (line 10 in Table 1), or ask and receive more information about the attributes
of requests (lines 4 to 9 in Table 1), then x can gather additional information regarding
the policy rules guiding y concerning the provision of resources.

Negotiation for resources takes place in a turn-taking fashion. The dialogue starts,
and then agent x sends a request to agent y (e.g., line 3, Table 1). The provider, y, may
respond by conceding to the request (accept), refusing, offering an alternative resource,
or asking for more information (query) such as in line 4 in Table 1. If the provider agrees
to provide the resource then the negotiation ends. If, however, the provider declines the
request then the consumer may challenge that decision, and so on. If the provider sug-
gests an alternative (line 10 in Table 1) then the consumer evaluates it to see whether it
is acceptable or not. Furthermore, if the provider needs more information from the con-
sumer in order to decide, the provider would ask questions that will reveal the features
it requires to make a decision (query, assert/refuse in Figure 1). There is a cost attached
to the revelation of private information to another agent. An agent might refuse to reveal
a piece of information if doing so is expensive [9].

2.3 Policy Modelling through Argumentation-Derived Evidence (ADE)

When an agent has a collection of experiences with other agents described by feature
vectors (see Section 2.1), we can make use of existing machine learning techniques for
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Table 1. Dialogue example

# Dialogue Sequence Locution Type
1 x: Start dialogue. START-DIALOGUE
2 y: Start dialogue. START-DIALOGUE
3 x: Can I have a helicopter for $0.1M reward? REQUEST
4 y: What do you need it for? QUERY
5 x: To transport relief materials. ASSERT
6 y: To where? QUERY
7 x: A refugee camp near region XYZ. ASSERT
8 y: Which date? QUERY
9 x: On Friday 16/4/2010. ASSERT
10 y: I can provide you with a jeep for $5,000. OFFER
11 x: But I prefer a helicopter, why offer me a jeep? CHALLENGE
12 y: I am not allowed to release a helicopter JUSTIFY

in volcanic eruption.
13 x: There is no volcanic eruption near region XYZ. CHALLENGE
14 y: I agree, but the ash cloud is spreading, and weather JUSTIFY

report advises that it is not safe to fly on that day.
15 x: Ok then, I accept your offer of a jeep. ACCEPT
16 y: That’s alright. Good-bye. END-DIALOGUE

learning associations between sets of features and policy decisions. For each interaction,
which involves resourcing a task t using provider y, we add the example (Fy, grant)
or (Fy, decline) to the training set, depending on the evidence obtained from the inter-
action where Fy ∈ 2F . Specifically, we investigate three classes of machine learning
algorithms [6,15], namely: decision tree learning (using C4.5), instance-based learning
(using k-nearest neighbours), and rule-based learning (using sequential covering).

f4=xx
f4=ss

f2=yy
f2=trm

f1=jf1=cf5=ef5=z

f3=vc f3=w

f4
f4=aa

f2

grantdecline

f5

decline grant f3
grant

f1

grant

decline

Fig. 2. Example decision tree

Figure 2 shows an example tree representing an agent’s policy model learned from
interactions. Nodes of the decision tree capture features of an agent’s policy, edges
denote feature values, while the leaves are policy decisions.



Argumentation Strategies for Task Delegation 85

3 Decision-Theoretic Model

We have described how the policies of other agents can be learned with the help of
evidence derived from argumentation. In this section, we demonstrate the use of such
structures in developing argumentation strategies for deciding which agent(s) to nego-
tiate with and what arguments to put forward. Our model takes into account communi-
cation cost and utility to be derived from fulfilling a task. Agents attempt to complete
tasks by approaching the most promising provider. Here, we formalise the decision
model developed for this aim; a model that we empirically evaluate in Section 5.

Let A be a society of agents. Agents play one of two roles: consumer and provider.
Let R be the set of resources such that r1, r2, . . . ∈ R and T be the set of tasks such
that t1, t2, . . . ∈ T , and, as noted above, F is the set of features of possible task con-
texts such that f1, f2, . . . ∈ F . Each consumer agent x ∈ A maintains a list of tasks
t1, t2, . . . tn ∈ T and the rewards Ωt1

x , Ωt2
x , ...Ωtn

x to be received for fulfilling each
corresponding task. We assume here that tasks are independent; in other words, x will
receive Ωt1

x if t1 is fulfilled irrespective of the fulfilment of any other task. Further,
we assume that tasks require single resources that can each be provided by a single
agent; i.e. we do not address problems related to the logical or temporal relationships
among tasks or resources. Providers operate according to a set of policies that regulate
its actions, and (normally) agents operate according to their policies.

Each consumer agent x ∈ A has a function μr
x with signature A×R×T ×2F → R

that computes the utility gained if x ∈ A acquires resource r ∈ R from provider y ∈ A
in order to fulfil task t ∈ T , assuming that the information revealed to y regarding the
use of r is F ⊆ F . This F will typically consist of the information features revealed
to persuade y to provide r within a specific task context. (Although we focus here on
resource provision, the model is equally applicable to task delegation, where we may
define a function μt

x : A× T × 2F → R that computes the utility gained if y agrees to
complete task t for x, assuming that the information revealed to y to persuade it to do t
is F ⊆ F .)

Generally, agents receive some utility for resourcing a task and incur costs in pro-
viding information, as well as paying for the resource. In some domains, there may be
other benefits to the consumer and/or provider in terms of some kind of non-monetary
transfers between them, but we do not attempt to capture such issues here. Hence, in
our case, the utility of the consumer is simply the reward obtained for resourcing a task
minus the cost of the resource and the cost of revealing information.

Definition 2. (Resource Acquisition Utility) The utility gained by x in acquiring re-
source r from y through the revelation of information F is:

μx(y, r, t, F ) = Ωt
x − (Φr

y + Costx(F, y)) (1)

where Ωt
x is the reward received by x for resourcing task t, Φr

y is the cost of acquiring
r from y (which we assume to be published by y and independent of the user of the
resource), and Costx(F, y) is the cost of revealing the information features contained
in F to y (which we define below).
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The cost of revealing information to some agent captures the idea that there is some
risk in informing others of, for example, details of private plans1. Even in a cooperative
setting, there is a chance that information revealed to others can be exploited. We agree,
however, that there might be situations where revealing more information could lead to
better outcomes for both agents. Notwithstanding, this does not rule out the fact that
revealing too much information in a current dialogue might damage an agent’s chance
of winning a future argument. This line of argument has seen use in many practical
applications. For example, during job interviews, applicants often plan to reveal infor-
mation that they think is likely to project them as the right candidate for the job. In that
regard, they usually plan not to present any information that could reveal otherwise. In
another practical example, [11] speculates that certain government spying organisations
are easily able to break most forms of encryption. However, when required to present
evidence in a court of law, these organisations try to pose arguments that avoid reveal-
ing such information. This is because they consider revealing such information to be
expensive.

Definition 3. (Information Cost) We model the cost of agent x revealing a single item
of information, f ∈ F , to a specific agent, y ∈ A, through a function: costx : F×A →
R. On the basis of this function, we define the cost of revealing a set of information
F ∈ F to agent y, as the sum of the cost of each f ∈ F .

Costx(F, y) =
∑
f∈F

costx(f, y) (2)

Cost, therefore, depends on y, but not on the task/resource. This definition captures a
further assumption of the model; i.e. that information costs are additive. In general, we
may define a cost function Cost′x : 2F × A → R. Such a cost function, however, will
have some impact upon the strategies employed (e.g. if the cost of revealing fj is sig-
nificantly higher if fk has already been revealed), but the fundamental ideas presented
in this paper do not depend on this additive information cost assumption.

Predictions regarding the information that an agent, x, will need to reveal to y for a
resource r to persuade it to make that resource available is captured in the model that
x has developed of the policies of y. For example, if, through prior experience, it is
predicted that a car rental company will not rent a car for a trip outside the country,
revealing the fact that the destination of the trip is within the country will be necessary.
The actual destination may not be necessary, but would also be sufficient. The costs
incurred in each case may differ, however. Let Pr(Permitted |y, r, F ) be the proba-
bility that, according to the policies of y (as learned by x), y is permitted to provide
resource r to x given the information revealed about the context of the use of this
resource is F .

Predictions about the availability of resources also form part of the model of other
agents. Let Pr(Avail|y, r) be the probability of the resource being available given we
ask agent y for resource r. These probabilities are captured in the models learned about
other agents from previous encounters.

1 It is worth noting that the utility derived by the agent to whom the information was revealed is
beyond the scope of this paper, and so is not discussed here.
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Definition 4. (Resource Acquisition Probability) A prediction of the likelihood of a
resource being acquired from an agent y can be computed on the basis of predictions
of the policy constraints of y and the availability of r from y:

Pr(Yes |y, r, F ) = Pr(Permitted|y, r, F )× Pr(Avail|y, r) (3)

With these definitions in place, we may now model the utility that an agent may expect
to acquire in approaching some other agent to resource a task.

Definition 5. (Expected Utility) The utility that an agent, x, can expect by revealing F
to agent y to persuade y to provide resource r for a task t is computed as follows:

E(x, y, r, t, F ) = μx(y, r, t, F )× Pr(Yes |y, r, F ) (4)

At this stage we again utilise the model of resource providers that have been learned
from experience. The models learned also provide the minimal set of information that
needs to be revealed to some agent y about the task context in which some resource
r is to be used that maximises the likelihood of there being no policy constraint that
restricts the provision of the resource in that context. This set of information depends
upon the potential provider, y, the resource being requested, r, and the task context, t.
(If, according to our model, there is no way to convince y to provide the r in context t,
then this is the empty set.)

Definition 6. (Information Function) The information required for y to make avail-
able resource r in task context t according to x’s model of the policies of y is a function
λx : A×R× T → 2F

Now, we can characterise the optimal agent to approach for resource r, given an infor-
mation function λx as the agent that maximises the expected utility of the encounter:

yopt = argmax
y∈A

E(x, y, r, t, F ) s.t. F = λ(y, r, t) (5)

Our aim here is to support decisions regarding which agent to approach regarding task
resourcing (or equivalently task performance); an aim that is met through the identifica-
tion of yopt . The question remains, however, how the agent seeking a resource presents
arguments to the potential provider, and what arguments to put forward. To this end, we
present strategies for selecting arguments in the next section.

4 Strategies for Selecting Arguments

We focus on minimising communication overhead (i.e. reducing the number of mes-
sages between agents) and minimising the information communicated (i.e. reducing the
cost incurred in revealing information). To illustrate these strategies, consider a situ-
ation in which, according to the evaluation made by x (the consumer) of yopt ’s (the
provider’s) policies, λx(yopt , r, t) = {f1, f2, f3, f4} for resource r used for task t. The
costs for revealing each feature is, as described above, costx(f1, yopt), etc. Using this
situation, in the following sections we discuss 3 strategies: message minimisation; profit
maximisation; and combined.
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4.1 Profit Maximisation

The rationale for this strategy is to attempt to maximise the profit acquired in resourcing
a task by attempting to reduce the information revelation costs in acquiring a resource.
To effectively specify this heuristic, we define a function power, which returns the
strength or persuasive power of a feature in leading to a positive response from the
provider as follows.

Definition 7. (Persuasive Power) The persuasive power of a single item of information
f ∈ F with respect to a specific agent, y ∈ A regarding a specific resource r ∈ R,
denoted as powerx(y, r, f), is defined as the confidence that agent x, has in the fact
that revealing f to another agent, y, will contribute positively towards persuading y
along the desired (or positive) direction regarding the provision of r.

powerx : A×R×F → R (6)

Computationally, this can be done by generating confidence values (or probabilities
over the information features) with respect to how features have contributed to positive
responses in past dialogues. We leave the choice of which approach to use in generating
the persuasive power or strength of arguments (that is, information feature) to system
designers who can decide based on their objectives and the peculiarities of the domain
of interest.

Using this strategy, the agent uses the models of other agents developed from past
encounters to compute confidence values (or persuasive power) for each diagnostic in-
formation feature. Suppose that the persuasive power of the features from λx(y, r, t)
are f3 > f1, f3 > f2, f1 > f4 and f2 > f4. Using this information, the agent will
inform the potential provider of these features of the task context in successive mes-
sages according to this order when asked for justification of its request until agreement
is reached (or the request fails). In the above example, if the most persuasive justifica-
tion (feature of the task context) succeeds, it will achieve an outcome of Ωt

x − (Φr
y +

Costx(f3, y)), if further justification is required either f1 or f2 is used, and so on.
Other strategies are, of course, possible. An immediate possibility is to order the

features to be released on the basis of cost, or a combination of persuasive power and
cost. Rather than discussing these relatively simple alternatives, in the following we
discuss how such simple strategies could be combined.

4.2 Message Minimisation

The rationale for the use of this first strategy is for the consumer agent, x, to resource
task, t, as soon as possible. To this aim, x seeks to minimise the number of messages
exchanged with potential providers required to release the required resource, r. The
consumer, therefore, reveals all the information that, according to λx, the provider
will require to release the resource in a single proposal. Since cost is incurred when
information is revealed, however, this strategy will, at best, get the baseline utility;
i.e. the utility expected if the provider indeed requires all information predicted to
release the resource. In the example introduced above, the consumer, x, will send
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λx(y, r, t) = {f1, f2, f3, f4} to the provider in one message, and, if the request is
successful, the utility gained will be:

μx(y, r, t, λx(y, r, t)) = Ωt
x − (Φr

y + Costx(λx(y, r, t), y))

This strategy ensures minimal messaging overhead if the consumer has an accurate
model of the policy and resource availability models of providers. A number of vari-
ations can be formulated for this strategy. An immediate possibility is for agents to
anticipate the next question of the other party and provide a response in advance. To
demonstrate this variation, we refer to the dialogue captured earlier in Table 1. In line
4 of the dialogue, y asks “What do you need it for?”. Agent x, rather than just respond
with “To transport relief materials”., may prefer to respond with “To transport relief
materials to refugee camp near region XYZ”. In our evaluation, we implement the vari-
ation of message minimisation strategy that reveals all the information (in one response)
that, according to λx, will be required to release r.

4.3 Combined Strategies

The rationale for these combined strategies is to capture the trade-off between present-
ing all the features of the task context in a single message, thereby, reducing the com-
munication, and attempting to extract as much utility as possible from the encounter
(in this case by utilising information regarding relative persuasive power). One way of
doing this, is to set a message threshold (a limit to the number of messages sent to a
potential provider), σm. In other words, an agent can try to maximise utility (using the
profit maximising strategy) in σm−1 steps (or messages) and if the information revealed
is insufficiently persuasive then the agent reveal all remaining task context features in
the final message. It is easy to see that when σm is set to 1 then the agent adopts the
message minimisation strategy, and if σm is set to |λx(y, r, t)| this is equivalent to the
profit maximising strategy.

Another way, is to identify the diagnostic features of the provider’s decision (from
the model), and compute the confidence values (persuasive power) for each feature. If
the confidence value of a given feature exceeds some threshold, σc, then that feature
is included in the set of information that will be revealed first (under the assumption
that this set of features is most likely to persuade the provider to release the resource).
If this does not succeed, the remaining features are revealed according to the profit
maximisation strategy. For example, if f3, f2 and f1 all exceed σc, these are sent in the
first message, providing an outcome ofΩt

x−(Φr
y+Costx({f1, f2, f3}, y)) if successful,

and, if not, f4 is used in a follow-up message.
Again, other strategies are possible such as computing a limited number of clus-

ters of features on the basis of their persuasive power, or clustering by topic (if such
background information is available). Our aim here is not to exhaustively list possi-
ble strategies, but to empirically evaluate the impact of utilising information from the
models of others learned from past encounters to guide decisions regarding whom to
engage in dialogue and what arguments to put forward to secure the provision of a re-
source (or, equivalently, a commitment to act). We turn to the evaluation of our model
in the following section.
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5 Evaluation

In evaluating our approach, we employed a simulated agent society where a set of con-
sumer agents interact with a set of provider agents with regard to resourcing tasks as-
signed to them, and we test the following hypothesis:

– Hypothesis 1: Incremental revelation of information ordered by persuasive power
significantly improves the cumulative utility of dialogical outcomes.

– Hypothesis 2: Anticipation of information needs of others leads to significant re-
duction in the number of messages exchanged (i.e. communication overhead).

5.1 Experimental Setup

The scenario involves a team of five software agents (one consumer and four provider
agents) collaborating to complete a joint activity over a period of three simulated days.
There are five resource types, five locations, and five purposes that provide the pos-
sible task context of the use of a resource (375 possible task configurations). A task
involves the consumer agent identifying resource needs for a plan and collaborating
with provider agents to see how that plan can be resourced. Experiments were con-
ducted with consumer agents initialised with random models of the policies of provider
agents. In the control condition, the consumer simply memorises outcomes from past
interactions (see SM configuration below). Since there is no generalisation in the con-
trol condition, the confidence (or prediction accuracy) is 1.0 if there is an exact match in
memory, otherwise we assume there is a 50:50 chance of the prediction being accurate.
Typically, if there is no exact match the control condition does not look for the best
match (because this will involve some generalisation, which is not allowed in this con-
figuration). In other configurations involving machine learning (e.g., SC, see below),
the confidence can be generalised from past interactions.

In our experimental setup, the consumer’s policies allow it to delegate the provision
of resources to any of the four providers in the system. However, the cost of revealing
information to various providers differ. This could be used to model such things as trust
(or distrust). Each provider is assigned a set of resources, and resources are associated
with some charge,Φr. Providers also operate under a set of policy constraints that deter-
mine under what circumstances they are permitted to provide a resource to a consumer.
We conducted 800 experiments, and in each experiment 100 tasks were randomly gen-
erated (from the 375 possible task configurations) and assigned to a consumer, and the
consumer attempts to delegate to others the provision of resources required to fulfil each
task. Based on previous experience (that is, the policy model built so far), an agent tries
to predict whether or not a provider is permitted to release a given resource. The predic-
tion is logged and after the experiment the predictions are checked against the agent’s
policies. The more accurate the policy model built, the more accurate the predictions.

For example, suppose a consumer is assigned to deliver relief materials to victims
of a natural disaster in a certain location. The consumer then probes the environment
for provider agents that can provide required resources. After identifying potential
providers, it employs our decision model to select the most promising candidate. There-
after, it engages in argumentation-based negotiation with the agent in an attempt to ac-
quire such resources. The procedure for the negotiation follows the interaction protocol
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(presented in Section 2). For example, in the argumentation-based dialogue captured in
Table 1, the consumer x, initiated the dialogue. The provider had a policy that forbid
it from releasing a helicopter but was allowed to release a jeep and so it offered the
consumer a jeep.

Table 2. Experimental Conditions

Condition Description
SM Simple memorisation of outcomes
SMMMS SM + message minimising strategy
SMPMS SM + profit maximising strategy
SC Sequential covering rule learning algorithm
SCMMS SC + message minimising strategy
SCPMS SC + profit maximising strategy

In this evaluation, we aim to demonstrate that a careful combination of machine
learning and decision theory can be used to aid agents in choosing who to partner with,
and what information needs to be revealed in order to persuade the partner to release the
resource. We consider six experimental conditions in total (i.e. SM, SMMMS, SMPMS,
SC, SCMMS, SCPMS). In an earlier research [3], Emele et al. explored the performance
of different classes of machine learning techniques in building accurate models of the
policies of others through argumentation-derived evidence. Out of all the algorithms
investigated in that research, SC was one of the best performers, and so we use it as the
learning algorithm for the remaining parts of this evaluation. The SC algorithm also has
the benefit of representing models of others’ policies as rules, and hence are amenable
to presentation to human decision makers.

Table 2 outlines the configurations tested in our experiments while Table 3 captures
the cost that the consumer associates with revealing the various features of a task to dif-
ferent providers (y1, y2, y3 and y4). We assume that these costs are constant throughout
the experiment. This simplification is to enable us concentrate on such things as identi-
fying the most promising candidate and what information features are more persuasive
in a given context. In addition, the reward offered for fulfilling tasks were randomly
generated and range between $18 and $25. The price of resources were also randomly
generated and lies between $7 and $12. Once the price of resources are generated at the
beginning of the experiment, it remains the same throughout the experiment. Again, the
reason for this is both to simplify the experiment and to allow us investigate the effect
of our decision model without bias.

Table 3. Cost associated with revealing various features to various providers

Feature Costx(F, y1) Costx(F, y2) Costx(F, y3) Costx(F, y4)
Resource $2 $2 $2 $2
Day $1 $1 $1 $2.50
Location $4 $1.50 $1 $3
Purpose $6 $4 $7 $2
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5.2 Results

We aim to confirm whether or not agents that utilise a combination of machine learn-
ing and decision theory to guide their argumentation strategies can perform better than
those that do not.

Hypothesis 1
In a set of experiments, we evaluate the performance of incremental revelation of infor-
mation features, ordered by persuasive power of arguments, on the cumulative utility
gained from dialogical encounters.
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Figure 3 t agents perform better (that is, gain higher cumulative average utility) when
they reveal information in incremental fashion given that such information is ordered
by its persuasive power. Regardless of how simple or sophisticated an agents learning
approach is, results show that if agents can (somehow) order the information according
to its persuasive power and incrementally reveal them during negotiation the agent is
more likely to perform better and thereby gain higher cumulative average utility. More
specifically, the SMPMS consistently gained higher utility than the SM configuration.
Likewise, the SCPMS recorded greater improvement in the cumulative utility gained
than its counterpart (i.e. SC). For example, after 800 tasks, the cumulative average util-
ity gained by agents using the incremental revelation approach had risen above $190 and
$520 (in SMPMS and SCPMS configurations respectively) while the configuration that
reveals information without considering the persuasive power approaches $96 and $312
(in SM and SC configurations respectively). Clearly, the configurations in which incre-
mental revelation of information takes into account the persuasive power significantly
and consistently outperforms those without such consideration. These results show that
incremental revelation of information ordered by persuasive power significantly im-
proves the cumulative utility of dialogical outcomes, which confirms our hypothesis.
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In order to test the statistical significance of the results of our evaluation, we carried
out a paired t-test to determine whether or not the null hypothesis H0 should be rejected
in favour of the alternative hypothesis H1.

– H0 = There is NO significant difference in the performance of agents that revealed infor-
mation incrementally (based on the persuasive power) and those that revealed information
without paying attention to the persuasive power of arguments being put forward.

– H1 = There is a significant difference between the performance of agents that revealed infor-
mation incrementally (based on the persuasive power) and those that revealed information
without paying attention to the persuasive power of arguments being put forward.

Table 4. Statistical analysis of utility gained across different configurations

Configuration t-statistic p-value 95% Conf. interval Significant
From To

SM vs SMPMS 1.71 0.033 0.56 2.86 Yes
SC vs SCPMS 24.34 � 0.001 23.19 25.49 Yes

In Table 4, we summarise the results of the statistical analysis performed on the ex-
perimental data in various configurations of the agent. From the statistical analysis,
the results show that there is a significant difference in the performance of agents in
the SM vs SMPMS and SC vs SCPMS configurations. With each pairwise comparison
recording p < 0.05, we reject the null hypothesis, and conclude that agents that reveal
information incrementally (based on the persuasive power) perform better than those
that reveal information without considering the persuasive power of arguments being
put forward. This further confirms our hypothesis.

Hypothesis 2
In a series of experiments, we evaluate the effectiveness of anticipating the information
needs of others, and how it affects the number of messages exchanged (i.e. communi-
cation overhead) during dialogical encounters. We considered the following configura-
tions — SM, SMMMS, SC, and SCMMS.

For all the configurations considered, the number of messages exchanged during
dialogical encounters was considerably reduced in configurations where agents antici-
pate the information needs of others (and therefore provide it ahead of time) than those
without such capability. Figures 4 shows the effectiveness of anticipation of information
needs of others using simple memorisation, and rule learning respectively. In each case,
results clearly show that communication overhead is reduced when agents anticipate
others’ information needs. Irrespective of the complexity or simplicity of the learning
approach employed, results show that if agents can accurately predict the information
requirement of other partners in collaborative problem solving activities then they can
significantly reduce the communication overhead. For example, after 600 tasks, the
number of messages exchanged per 100 tasks by agents that anticipate the information
needs of others had fallen below 595 and 240 messages (averaging about 6, 3 messages
per task) in SMMMS and SCMMS configurations respectively, while configurations in
which agents do not anticipate others’ information needs is above 845 and 510messages
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per 100 tasks (that is, more than 8 and 5 messages per task) in SM, and SC configu-
rations respectively. Clearly, these results show that anticipation of information needs
of others consistently and significantly reduces the number of messages exchanged (i.e.
communication overhead) during dialogical encounters. This confirms our hypothesis.

We carried out a paired t-test analysis to test the statistical significance of the results
of our evaluation. The null hypothesis H0 and the alternative hypothesis H1 are as
follows:

– H0 = The number of messages exchanged by agents that anticipate the information needs of
others is equal to those exchanged by agents that do not anticipate the information needs of
others.

– H1 = There is a significant difference between the number of messages exchanged by agents
that anticipate the information needs of others and those that do not anticipate others’ infor-
mation needs.

Table 5. Statistical analysis of messages exchanged across configurations

Configuration t-statistic p-value 95% Conf. interval Significant
From To

SM vs SMMMS 1.90 0.030 0.75 3.05 Yes
SC vs SCMMS 14.32 � 0.001 13.17 15.47 Yes

In Table 5, we summarise the results of the statistical analysis performed on the ex-
perimental data in various configurations of the agent. From the statistical analysis, the
results show that there is a significant difference in the number of messages exchanged
by agents in the SM vs SMMMS and SC vs SCMMS configurations. With each pair-
wise comparison recording p < 0.05, we reject the null hypothesis, and conclude that
agents that anticipate the information needs of others perform better (lead to significant
reduction in communication overhead) than those that do not consider such anticipation
in their interactions. This further confirms our hypothesis.
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6 Discussion

The results we have presented show that a decision-making mechanism based on a com-
bination of decision-theoretic and machine learning techniques can clearly help agents
to improve their performance both in terms of utility and communication overhead. Our
approach represents the first model for combining argumentation, machine learning and
decision theory to learn underlying social characteristics (e.g. policies/norms) of others
and exploit the models learned to reduce communication overhead and improve strate-
gic outcomes. There is, however, some prior research in combining machine learning
and argumentation, and in using argument structures for machine learning. In that re-
search, Možina et al. [7] propose an induction-based machine learning mechanism us-
ing argumentation. However, the framework developed in that research will struggle
to learn and build an accurate model of policies from argumentation-derived evidence,
which is the main issue we are addressing in our work. Also, the authors assume that
the agent knows and has access to the arguments required to improve the prediction
accuracy, but we argue that it is not always the case. As a result, we use dialogue to
tease out evidence that could be used to improve performance.

In recent research, Sycara et al. [13] investigate agent support for human teams in
which software agents aid the decision making of team members during collaborative
planning. One area of support that was identified as important in this context is guidance
in making policy-compliant decisions. This prior research focuses on giving guidance
to humans regarding their own policies. An important and open question, however, is
how can agents support humans in developing models of others’ policies and using
these in decision making? We use a novel combination of techniques to build accurate
models of others’ policies, and use these to aid decision making. We believe that our
research contributes both to the understanding of argumentation strategy for dialogue
among autonomous agents, and to applications of these techniques in agent support for
human decision-making.

In the evaluation presented in this paper, we assume that the consumer makes a single
decision per task about which provider to choose, irrespective of whether it fails or suc-
ceeds. In our future work, we plan to make the decision process more iterative such that
if the most promising candidate fails to provide the resource, the next most promising
is approached and the sunk cost incurred while interacting with the previous provider is
taken into account in computing the total cost of resourcing the task, etc. We are hoping
that some of these ideas will provide helpful feedback to future research on developing
strategies for delegation in which there might be a cost for failing to resource a task.

7 Conclusions

In this paper, we have presented an agent decision-making mechanism where models of
other agents are refined through evidence from past dialogues, and are used to guide fu-
ture argumentation strategy. Furthermore, we have empirically evaluated our approach
and the results of our investigations show that decision-theoretic and machine learning
techniques can individually and in combination significantly improve the cumulative
utility of dialogical outcomes, and help to reduce communication overhead. The results
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also demonstrate that this combination of techniques can help in developing more ro-
bust and adaptive strategies for advising human decision makers on how a plan may be
resourced (or a task delegated), who to talk to, and what arguments are most persuasive.

References

1. Amgoud, L., Parsons, S., Maudet, N.: Argument, dialogues and negotiation. In: Horn, W.
(ed.) Proceedings of European Conference on Artificial Intelligence 2000, pp. 338–342. IOS
Press, Amsterdam (2000)

2. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning.
Artificial Intelligence 97(1-2), 245–271 (1997)

3. Emele, C.D., Norman, T.J., Guerin, F., Parsons, S.: On the Benefits of Argumentation-
Derived Evidence in Learning Policies. In: McBurney, P., Rahwan, I., Parsons, S. (eds.)
ArgMAS 2010. LNCS, vol. 6614, pp. 86–104. Springer, Heidelberg (2011)

4. Grosz, B., Kraus, S.: Collaborative plans for group activities. In: Proceedings of the 13th
International Joint Conference on Artificial Intelligence, pp. 367–373 (1993)

5. McBurney, P., Parsons, S.: Games that agents play: A formal framework for dialogues be-
tween autonomous agents. Journal of Logic, Language and Information 12(2), 315–334
(2002)

6. Mitchell, T.M.: Machine Learning. McGraw Hill (1997)
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Abstract. The design and implementation of open interaction systems
is widely recognized to be a crucial issue in the development of inno-
vative applications on the Internet. In this paper we pursue the goal of
enhancing interoperability and openness in open interaction systems by
systematic use of web standards. We propose a way of using the semantic
web language OWL 2 DL to represent both the content of an ACL mes-
sage, whose structure is compatible with FIPA-ACL, and the meaning of
the whole message, adopting a commitment-based semantics, in such a
way that OWL reasoning on message meaning is made possible. To this
purpose we specify a number of ACL conventions regarding the domain
independent components of the content language and the semantics of
messages; we describe a set of supporting OWL ontologies, and exemplify
our proposal with the analysis of a commissive message: a promise to per-
form a certain action within a given deadline if certain conditions hold.
We then describe a demonstrative prototype of a system where those
conventions are concretely implemented that is based on Web Service
technologies (WSDL, SOAP, and HTTP for message transport).

1 Introduction

The design and implementation of open interaction systems (OISs) is widely
recognized to be a critical issue in the development of innovative applications
on the Internet, like e-commerce systems, e-marketplaces, and applications for
the management of virtual enterprises. Basically, we can conceive an OIS as a
distributed system which different computer programs (regarded as autonomous
agents) may freely enter or leave, with the purpose of achieving their individ-
ual goals by interacting with other agents according to shared rules. In an OIS,
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rules cover several aspects of the interaction, and in particular the communica-
tion conventions regulating the exchange of messages and their semantics, and
the artificial institutions [7,5,3] specifying the roles, powers, and norms that
constitute the social environment within which the interactions are carried out.

It has long been recognized that the set of conventions regulating the exchange
of messages is particularly important. Since the 1990s this fact has led to a
flourishing of studies on Agent Communication Languages (ACLs), and there
are signs that this area of research may take front stage once again [1]. Indeed,
in an OIS the communication conventions have to cover several layers, all of
which are crucial to the successful exchange of messages between agents; moving
bottom-up, such layers concern:

1. connectivity: the ability of agents to exchange messages as binary data with
other agents, typically running on different and possibly heterogeneous plat-
forms;

2. data format : the concrete serialization of the binary data that represent
messages;

3. message structure: the application-independent component of messages (i.e.,
the abstract syntax);

4. terminology: the application-independent and the application-dependent
terms contained in a message;

5. semantics : the contribution of the message structure and of the application-
independent and application-dependent terminology to the meaning of the
message;

6. conversation management : the rules concerning how a conversation should
be initiated, carried out, and terminated.

In Section 2 and 3 we mainly focus on the message structure, terminology, and
semantics, whereas in Section 4 we propose an approach for the connectivity
and data format based on web services technologies. As far as possible, we fol-
low the spirit of FIPA-ACL specifications1. In particular, we take from such
specifications that:

1. a message is articulated in a set of sections, each of which is introduced by
a specific parameter (like sender, receiver, etc.);

2. every message realizes a communicative act, whose type (like inform, request,
etc.) is explicitly represented in the message;

3. the content of the message is expressed in a suitable Content Language (CL).

The main goal of this paper is to propose an approach to agent communication
that maximizes interoperability, at both the syntactic and the semantic level, as
a means to achieve true openness. For this reason we conform, as far as possible,
to the suitable W3C recommendations, and in particular to those concerning the
Semantic Web and the Service Oriented Architecture (SOA). More precisely, we
show how agent communication can be based on OWL ontologies, used to specify
the semantics of the application-independent component of the content language,

1 http://www.fipa.org/repository/aclspecs.html

http://www.fipa.org/repository/aclspecs.html
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the application-dependent terminology, and the semantics of the whole message
(inclusive of the illocutionary force of the message).

In particular in Section 2 we define a minimal set of conventions concerning
the message structure, the content language, and the semantics of performatives,
that would guarantee agent interoperability if adopted as interaction standards.
In Section 3 we present the semantics of commissive communicative acts. In
Section 4 we describe a demonstrative prototype which implements the various
layers of communication conventions for an OIS. Finally, in Section 5 we discuss
the contribution of this paper with respect to other relevant proposals available
in the literature and draw some conclusions.

2 Message Structure and Content Language

An OIS is a system where agents can interact to achieve their individual goals
by coordinating and negotiating their activities. Contrary to more traditional
distributed systems, the distinctive feature of an OIS is that it allows external
agents to enter the system, participate in the activities, and then leave the system
at will. This brings to the foreground the problem of interoperability, because
for the interaction to be successful all agents have to comply with a set of shared
conventions, which will have to be taken as standards by the designers of the
agents. In this section we introduce a set of possible conventions, covering the
structure of the messages (i.e. their abstract syntax ), the syntax and semantics
of the application-independent part of the content language, and the syntax
and semantics of the application-dependent terminology used in the content
expression.

Regarding the structure of messages and the content language, when possible
we will try to roughly follow FIPA-ACL specifications2. Regarding the semantics
of the message, as discussed in [12,4], we depart significantly from the seman-
tics of FIPA-ACL; this because, among other problems, FIPA-ACL is unable to
account for the normative consequences of message exchanges, which are essen-
tial to a satisfactory treatment of agent interactions. More specifically, we adopt
commitment-based semantics for communicative acts and institutional semantics
for declarations. In the past we have expressed the semantics of communicative
acts using the Event Calculus [5]; however, given the current importance of ex-
ploiting industry-level technology, in this paper we consider the application of
Semantic Web technologies [9]. For the moment, in the next section we propose
a semantics of commissive communicative acts, using an extension of the OWL
ontology of obligations presented in [3]. We plan to further extend this ontology
in the future, to express the semantics of directive and assertive communicative
acts and of declarations.

2.1 Message Structure

In this section we propose the message structure of our ACL. Like in FIPA-
ACL, a message contains an acl-envelope, used to correctly route the message

2 http://www.fipa.org/repository/aclspecs.html
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to the final destination and comprised of a number of attributes, including to,
from, length, encoding, and others. The message also contains an acl-payload,
characterized by the following components:

– performative: a symbol denoting the type of the communicative act, that
in our ACL may be: promise, inform, request, agree, refuse, cancel, query-ref,
query-if, declare; further types may be added and specified according to need;

– sender: the identifier of the agent that sends the message;
– receiver: the identifier of the recipients of the message;
– content: a complex expression that can represent: a state of affair if the

performative is assertive (like inform); an action with a deadline if the per-
formative is commissive (like promise) or directive (like request); and an
institutional action if the performative is declare;

– reply-by: the time within which it is possible to answer to a request;
– msg-id: the unique identifier of the message, generated by the sender of the

message by using its name as namespace followed by a progressive number,
for example John:001.

The following parameters are used to describe the content of the message:

– language: denotes the name of the formal language in which the value of the
content parameter is expressed;

– ontology: denotes the name of the ontology that specifies the concepts used
in the content expression.

FIPA-ACL defines other parameters (like reply-to, protocol, conversation-id, reply-
with, in-reply-to) that can be used for conversation management but that are nor
relevant for the goals of this paper.

2.2 Content Language

Content expressions are sentences belonging to a content language (CL). This
consists of: (i) application-independent terms, like for example those used to de-
scribe the logical structure of actions and events ; and (ii) application-dependent
terms used in relation to specific domains, for example to describe actions of
payment, delivery, bidding, and so on. All such terms must merge to form a
unique formal language.

As we have already remarked, in the attempt to maximize interoperability
we conform as far as possible to widely adopted standards, like those recom-
mended by W3C. A similar attempt has been made by FIPA, which proposes
FIPA-RDF3, an application-independent content language whose application-
independent classes and properties are defined using RDF Schema. However
RDF-based solutions, while very flexible and expressive, are limited in the com-
plexity of the inferences they can support. This is due to the limited expressive
power of RDF Schema, which for example does not allow one to specify the

3 http://www.fipa.org/specs/fipa00011/
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disjointness of classes, cardinality restrictions of properties, and formal charac-
teristics of properties like transitivity.

We thus opted for OWL (more precisely, OWL 2 DL4 that is briefly de-
scribed in Appendix A) as the formal language for the specification of both the
application-independent and the application-dependent terms of our content lan-
guage. The reasons of our choice are that: (i) OWL, recommended by W3C, is by
now a fairly well-known standard; (ii) OWL is a very expressive, but still decid-
able, logical language, which licenses powerful reasoning procedures; (iii) many
open source tools are already available for editing OWL ontologies, carrying out
reasoning, and realizing applications like Development Environments and APIs5;
(iv) there are many available OWL ontologies, which can be easily integrated in
our proposal thanks to the fact that two ontologies can be usually merged by
simply taking the union of their axioms; (v) as discussed in Section 3, OWL 2
DL can be used to specify both the semantics of the content of messages and
the semantics of the whole messages (inclusive for example, of its performative).

In this section we describe the application-independent concepts that can be
used in the content of ACL messages: the specification of these concepts makes
up what we call the CL Ontology (i.e., the Content Language Ontology). In
turn, this ontology imports the OWL Time Ontology6 that defines classes like
Instant � TemporalEntity, Interval � TemporalEntity, ProperInterval � Interval,
Discla(ProperInterval,Instant), and properties like hasBeginning: TemporalEntity
→ Instant, hasEnd: TemporalEntity → Instant (for connecting a temporal entity
to its start and end instant of time) and before: TemporalEntity → TemporalEnty
(for expressing that a temporal entity is before another temporal entity).

The Content of Assertive Messages. The content of assertive messages,
like for example an inform message, is the description of a state of affairs, that
is, a proposition. For the moment, in our content language we consider only
a restricted type of propositions, namely those that can be expressed as a set
of positive or negative OWL assertions (i.e., the elements of an OWL ABox).
Such assertions in the set are implicitly in logical conjunction. For example, the
proposition “John owns a red car” must first be analysed as the conjunction
of four atomic propositions, and then represented as the following set of OWL
assertions:

Agent(john-001), Car(car-001), owns(john-001,car-001), Red(car-001),

where: the Agent class is defined in the CL Ontology; the Car and Red classes,
and the property owns: Agent → Car, are defined in what we call the Domain
Ontology. As we shall see, similar OWL assertions appear also as parts of the
content of non-assertive messages.

The Content of Directive and Commissive Messages. The content of
a directive or commissive message (like a request and a promise, respectively)
includes the description of an action, which ought to be carried out in the future.

4 http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
5 http://www.w3.org/2007/OWL/wiki/Implementations
6 http://www.w3.org/TR/owl-time/

http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
http://www.w3.org/2007/OWL/wiki/Implementations
http://www.w3.org/TR/owl-time/
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The semantics behind the exchange of a promise (as we shall see in Section 3) is
that the sender is in charge of performing, within a given deadline, an instance
of the action described in the message.

In the CL Ontology we define the Action class for representing the description
of actions. The Action class is the domain of the following properties that can
be used to characterize the action that has to be performed:

– The property hasActor, used to represent the agent responsible for the execu-
tion of the action; the range of this property is the application-independent
class Agent.

– The property hasDeadline, that represents the instant of time within which
the action has to be performed. It is empty if the deadline for the performance
of the action is not known when the message is sent. In this case the deadline
depends on the time when some other event happens; for example, in the
promise to pay a given book within one week from delivery, the deadline
depends on the date of delivery. The range of this property is the Instant
class.

– The property hasDuration, which can be used to specify the interval of time
within which the action has to be performed, starting from the instant of
time when the event described in the condition component of the message
will happen. Its range is the DurationDescription class.

– Other properties that can be defined in the Domain Ontology for describ-
ing specific types of actions. For instance, in an application where agents
talk about payment and delivery, a Commercial Ontology will define the
class Pay � Action and Deliver � Action (for representing the action of pay-
ing and delivering), with properties hasAmount and hasRecipient, hasObject,
and the class Item for representing the items exchanged in the commercial
transaction.

In many commissive and directive messages, the action is specified as a condi-
tional action, that is, as an action that has to be executed if certain conditions
obtain. The ConditionalAction class is used for representing an action that ought
to be executed, on condition that a given condition event occurs; this is very
frequent in both request and promise communicative acts. The content and the
condition part are inserted in the message by introducing the property hasCon-
tentPart, whose range is the Action class, and the property hasConditionPart,
whose range is the Event class.

To this purpose we introduce in the CL Ontology the application-independent
Event class that generalizes the class Action � Event (in fact an action is regarded
as an event with an actor). The Event class has some subclasses, and in particular:
the class TimedEvent � Event, used to represent those events that are connected
through the property atTime: TimedEvent → Instant to exactly one instant of
time, as specified by the following axiom: TimedEvent � =1atTime.Instant; and
the class TimeEvent� TimedEvent, used to specify as condition event the elapsing
of a given instant of time.
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Finally, we require that the content of directive or commissive messages are a
set of OWL assertions specifying exactly one individual belonging to the Condi-
tionalAction class.

Example: The Promise Communicative Act. To exemplify the proposed
message structure and content language we formalize a type of commissive act,
the promise. We use as an example the following promise that can be useful in
an electronic commerce application: “agent John promises to agent Mary that
John will pay 5 euro to Mary within 2 days from the delivery of book1”. The
message with the content expressed in the Commercial Ontology which imports
the CL Ontology, which in turn imports the Time Ontology is:

(promise

:sender John :receiver Mary

:language OWL-2-DL :ontology Commercial Ontology

:msg-id John:001

:content

ConditionalAction(condAct),
hasActionPart(condAct, promisedAction),
Pay(promisedAction), hasActor(promisedAction, John),
hasAmount(promisedAction, 5), hasDuration(promisedAction, 2),

hasConditionPart(condAct, cond),
Deliver(cond), hasActor(cond, Mary),
hasRecipient(cond, John), hasObject(cond, book1)

)

3 Message Semantics

Basically, the meaning of a message derives from a combination of the message’s
performative and content expression. Different performatives combine with the
content expression in different ways; this approach is compatible with the idea,
which is fundamental in Speech Act Theory, that the meaning of a message de-
pends on its illocutionary force (denoted by the performative) and propositional
content (represented by the content expression) [11].

One of our assumptions is that the content expression of a message is a set
of OWL axioms, which represent the propositional content of the speech act
performed by sending the message. More precisely, such propositional content
coincides with the meaning that the set of OWL axioms have under standard
OWL 2 DL semantics [9] in the context of the Domain Ontology referred with
the ontology parameter of the message. Such a propositional content is suitably
transformed to obtain the meaning of the whole message, in a way that depends
on the message performative. What remains to be decided is how the perfor-
mative transforms the propositional content to produce a representation of the
meaning of the whole message and how to represent this meaning.



104 N. Fornara, D. Okouya, and M. Colombetti

The semantics of the whole message that we adopt in this paper is inspired by
the commitment-based semantics that we firstly presented in [4], enriched with
the semantics of declarations expressed via institutional concepts as presented in
[5]. In this work we only formalize the semantics of the promise communicative
act; we plan to cover other types of communicative acts, extending the approach
proposed in this section, in our future works.

There is, we believe, no single solution to the problem of choosing a represen-
tation for the message meaning: the choice depends on what the representation
is going to be used for. For the same reasons expounded in the previous section,
we chose to base our representation of message meaning on OWL. That is, we
propose to express the semantics of the whole message as a set of OWL axioms,
which extend a pre-existing ontology representing the meanings of the previous
messages belonging to the same conversation (this aspect is not treated in the
current paper).

In the case of a promise (and, more generally, of commissive messages), an im-
portant point is the ability to represent, and reason on, the obligations brought
about by making the promise. The matter here is more complex than with the
representation of propositional content (i.e., of the meaning of the content expres-
sion). The reason is that a representation of obligations is already problematic
in full First Order Logic (FOL), and even more so in the fragment of First Order
Logic covered by OWL 2 DL. A suitable representation can be developed, how-
ever, if there is a clear specification of the reasoning tasks that the representation
is intended to support. At the present stage of our research, we intend to use
the representation of message meanings for monitoring the temporal evolution
of commitments, obligations, etc., that are incurred by the agents as an effect of
communication (either in a real OIS or in simulations). Therefore, to deal with
the meaning of promises we designed an OWL representation of obligations that
allows us to exploit standard OWL reasoning to monitor the temporal evolution
of an obligation, as part of the state of the interaction of certain agents at any
time instant.

We represent the state of an interaction (which includes the relevant events
and actions that happen in the system) in a specific OWL ontology, the State
Ontology. This ontology imports the Domain Ontology (introduced in the pre-
vious section) and the Obligation Ontology, which specifies the concepts needed
to represents obligations of the interacting agents. The overall picture of the
ontologies used and their dependencies is depicted in Figure 1.

Many classes and properties of the Obligation Ontology were formalized in [3],
and some of them have been customized to the need of representing the seman-
tics of communicative acts. More precisely the Obligation Ontology defines the
classes and properties for the management of the obligations derived from the ex-
change of certain messages (like promises) and for the monitoring of their state
(from activated to fulfilled or violated). It imports the CL Ontology, because
this specifies some classes (like Agent, Action, Event) that are used as domain
or range of properties related to obligations. The Obligation Ontology defines the
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Fig. 1. Overall picture of the OWL ontologies used and their dependencies

class Obligation, which is the domain of a set of properties used to represent the
debtor and the creditor of the obligation (their range being the Agent class).
The start event of an obligation is a subclass of the Event class: when an event
that belongs to the start event class of an obligation takes place, the obligation
becomes activated. The content of the obligation is a subclass of the Action class:
when an action that belongs to the content class of an obligation is executed
within a given deadline the obligation becomes fulfilled.

The State Ontology is used to represent and monitor the temporal evolu-
tion of the interaction, therefore it defines the class Elapsed � Instant, used to
model that an instant of time is elapsed. As this ontology is used to represent
the events and the actions that happen during an interaction, we introduce the
class OccurredEvent � TimedEvent defined by the following axiom: OccurredE-
vent ≡ ∀ atTime.Elapsed; this class contains the events that happened up to an
elapsed instant of time. Finally we introduce the class PerformedAction defined
by the following axiom: PerformedAction ≡ Action � OccurredEvent; it is neces-
sary for distinguishing between the description of an action used in the content
of messages, and an action that has been executed, and is actually related to its
elapsed instant of execution by means of the atTime property. The main classes
and properties of the State Ontology (some of them are imported from the other
ontologies) are represented in Figure 2.

As we already said, the State Ontology is used to represent at run-time the
state of the interaction among agents; this is the ontology on which we run a
reasoner for deducing relevant facts. As already proposed in [3], a program is in
charge of representing the elapsing of time and the functionalities necessary to
perform closed-world reasoning on certain classes, with the goal of monitoring the
state of obligations and reacting to their fulfillment or violation. This program is
also in charge of inserting into the State Ontology the new assertions and axioms
used for representing the semantics of the messages.
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Fig. 2. Graphical representation of the main classes and properties of the State Ontol-
ogy (some of them imported). Properties are represented with dotted lines, solid lines
are used for subclasses.

3.1 Semantics of the Promise Communicative Act

A communicative act performed by exchanging a message is characterized by: a
set of preconditions that need to be evaluated for the successful performance of
the communicative act, and a set of effects that affect the state of the interaction
if the communicative act is successfully performed and represent its meaning.

For a promise to be a valid communicative act it is necessary that: (i) the
content belongs to the ConditionalAction class, with its action part belonging to
the Action class and its condition part, if specified, belonging to the Event class;
(ii) the action has to be performed in the future (i.e., if a deadline is specified
it has to be in the future of the message exchange); and (iii) the sender of the
message has to coincide with the actor of the promised action.

Following the commitment-based semantics for ACL proposed in [5], the per-
formance of communicative acts has the effect of creating or changing social
commitments [4]. The semantics of a promise communicative act is represented
by a commitment of the message sender to perform the communicated action;
this commitment can be viewed as a special case of social commitment, and co-
incides with the obligation to perform the action. Therefore in our proposal the
effects of a promise are represented by creating in the state of the interaction an
obligation of the message sender, directed to the receiver, to perform the action
described in the content of the message within the specified deadline, if a certain
communicated condition holds. Those effects are represent in the State Ontology
by a program that is in charge of extending its ABox and TBox with a set of
OWL axioms used to define the new obligation generated by the message and
to monitor its state.

We now exemplify the axioms that need to be defined by using the promise
message presented in the previous section; this procedure can be easily general-
ized and automatically applied to every promise message received by an agent.
First of all we insert in the ABox of the State Ontology the following assertions:
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Obligation(obl-1), Instant(instant1), atTime(obl-1,instant1)
hasDebtor(obl-1,John), hasCreditor(obl-1,Mary),
ProperInterval(interval1), hasInterval(obl-1,interval1),
Instant(instant2), hasEnd(interval1, instant2),
days(duration1, 2), hasDurationDescription(interval1,duration1),

The intuitive meaning of these assertions is as follows. A new individual obl-1
belonging to the class Obligation is created at the time instant instant1, equal to
the instant of time when the message is received. The debtor of the obligation
is the sender of the message and its creditor is the receiver of the message.
The obligation is related to an interval of time that starts at the time instant
when the obligation is activated and ends in the time instant communicated in
the message as the deadline (if any). The instant of time at which this interval
starts is computed as soon as an individual starts to belong to the Start-Event-1
class (defined below). If the message communicates a duration for the interval
(in this case for example the duration is 2), the end instant of time is computed
summing the duration to the start instant of time as soon as it becomes known.

The TBox of the State Ontology has also to be updated with the axioms
necessary for representing the start event and the content of the newly created
obligation. A crucial aspect of our model is that the start event and the content
of an obligation are represented as OWL classes. Any instance belonging to such
classes will satisfy the corresponding representations. The fact that a concrete
action belongs to the start event class or to the content class can be established
through an OWL 2 DL reasoner; therefore, an agent may exploit reasoning to
choose which action to perform in order to fulfill a given obligation. We define
the StartEvent-1 class of obligation obl-1 as a class of possible events. This class
is defined as the intersection of a set of classes, defined using the properties
communicated in the condition event part of the message content, and some
other classes that are necessary to express the fact that the start event has to
occur after the creation of the obligation:

StartEvent-1 ≡ Deliver � hasActor�Mary � hasRecipient�John �
hasObject�book1 � OccurredEvent � (∃evBefore−�obl-1).

The content of the obligation, the Content-1 class, is defined as the intersection
of a set of classes that are defined using the properties communicated in the
content of the message, the class of the content, and the PerformedAction class:

Content-1 ≡ Pay � hasActor�John � hasRecipient�Mary � hasAmount�5 �
PerfomedAction.

The Deadline-1 class of the obligation obl-1 contains only the time event that
happens at the instant of time which terminates the interval of the obligation
(which may be known or unknown when the obligation is created), and it is
defined by the following axiom:

Deadline-1 ≡ ∃ atTime.(∃ hasEnd−.(hasInterval− � obl-1))

For those obligations whose deadline event is a fixed time event, it is important
to check that the start event happens before the end event. By introducing the
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following axiom, if the deadline time event is before or equal to the start time
event, then the ontology becomes contradictory:

Deadline-1 � (evBefore.StartEvent-1 � evSameTime.StartEvent-1) � ⊥
The EndEvent-1 class for this obligation is equivalent to the empty set: EndEvent-
1 ≡ ⊥ because in this example the message does not specify an event that will
terminate the obligation.

When a new obligation is created, we introduce in the TBox of the Sate
Ontology also the following four axioms, necessary to deduce the state of a given
obligation, that is, to deduce if the obligation belongs to the Activated, Cancelled,
Fulfilled, or Violated classes. As we have already shown in [6], we need to perform
some form of closed-world reasoning on the Cancelled and Fulfilled classes; this
is done by a program, which computes the class KCancelled � Cancelled as the
class that contains all obligations that are known to be in the Cancelled class,
and the class KFulfilled � Fulfilled as the class that contains all obligations that
are known to be in the Fulfilled class.

{obl-1} � ¬ KCancelled � (∃evBefore.(StartEvent-1 � ∃atTime.Elapsed) �
∃evSameTime.(StartEvent-1 � ∃atTime.Elapsed) ) � Activated

{obl-1} � ∃evBefore.(EndEvent-1 � ∃atTime.Elapsed) � Cancelled

{obl-1} � Activated � (∃evBefore.(Content-1 � ∃atTime.Elapsed) �
∃evSameTime.(Content-1 � ∃atTime.Elapsed)) � ∃evBefore.(Content-1 �
∃evBefore.Deadline-1) � Fulfilled

{obl-1} � Activated � ¬KFulfilled � ∃evBefore.(Deadline-1 �
∃ atTime.Elapsed) � Violated

4 Demonstrative Prototype

In this section we describe the demonstrative prototype that we have imple-
mented for testing the various layers of communication conventions for OIS pro-
posed in this paper. Due to the openness of the proposed framework we based our
approach to message structure and terminology on Semantic Web Technologies
that are W3C recommendations. Similarly we based our approach to connectiv-
ity and data format on principles and standards of Service Oriented Architecture
(SOA); this because they address crucial low-level aspects of openness and in-
teroperability [2], are sufficiently mature and relatively stable, and are already
accepted and used by a large industrial community.

For realizing the connectivity layer we adopted current SOA standards: the
transport protocol is HTTP, and the message structure protocol is SOAP7(Simple
Object Access Protocol). In the most popular implementation of the Service
Oriented Architecture two distinct software applications play the role of Service
Requestor and the role of Service Provider. This architecture can be adapted to
our need of peer to peer (P2P) interactions by merging the two roles into one
software application that plays both roles simultaneously.

7 http://www.w3.org/TR/2007/REC-soap12-part0-20070427/

http://www.w3.org/TR/2007/REC-soap12-part0-20070427/
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All the components of our open system possess a listening point to receive mes-
sages and a talking point to send messages. The listening point is represented
as a web-service service8. As such it is exposed on the Internet via a contract
defined in a WSDL (Web Service Definition Language) file. The talking point
is a web-service client, which communicates in conformance with the previously
mentioned contract. More precisely the contract defines an operation called send-
message, which expects as input a message with the parameters described in Sec-
tion 2, and the listening point that provides the service of delivering the message.
The corresponding service contract contains a reference to the abstract syntax of
the messages proposed in this paper, specified using an XML schema. Both the
envelope and the payload of the messages are serialized as an XML document and
they constitute the body of a SOAP message. The content part of the message is
serialized in XML using the RDF/XML syntax of OWL. A crucial advantage of
this approach is the provision of a human-readable communication contract that
can be easily handled with the support of runtime frameworks coming along with
web-service technology, such as for example Apache CXF. Hence anyone can eas-
ily generate the infrastructure to handle the transmission of a message abiding to
the exposed messaging protocol and adapt it to his needs, in order to participate
in the OIS. Effort will only be required for the handling of ACL communication
content.

Our approach assumes that each agent has a well-defined identity, which is
kept constant across different interactions. This justifies the assumption that
every agent has a unique agent identifier. The fact that it is unique implies
the existence of a service for the registration of unique names. We do not as-
sume that such an identifier is initially known to all possible partners: this im-
plies the need of agent directories. Those services plus the description of the
services provided by the participants in SOA are provided by the UDDI (Uni-
versal Description Discovery and Integration) component. In our open interac-
tion system those services (plus other services in support of the communication
layer) are provided by an intermediary that should not be understood as an
agent (in that it has no autonomy in the choice of goals or strategies), but
rather as a component of the OIS whose function is to enable and support
openness. The intermediary interacts with all participating agents through the
communication interface and may provide the following functions in support
of the communication among agents: (i) checking messages for compliance at
the levels of syntax, terminology, and preconditions; (ii) forwarding messages
to receivers, provided that they are correct at all these levels (otherwise an er-
ror message will be sent to the sender); (iii) keeping track of the semantics of
messages and monitoring the evolution of the state of the system (for exam-
ple by checking if obligations are fulfilled and applying sanctions if they are
violated).

8 This name is due to the fact that we consider “web-service” as the name of a
technology, that we differentiate from the formal concept of service and client as
understood in SOC/SOA; in principle this can be provided on the web using web-
service technology or something else.
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To run the experiment, we have implemented the intermediary in Java and
two dummy participant agents in JADE (Java Agent DEvelopment Framework),
but in principle a participant agent can be any software able to comply with
the communication conventions and with the web-service contract. The Java
components of the implemented framework use the JENA9 API for accessing
and modifying the ontologies and the Pellet OWL 2 DL reasoner10 for reasoning
on the ontologies.

5 Discussion and Conclusions

The contribution of this paper regards mainly the formalization and implemen-
tation of a proposal for using OWL 2 DL as content language of an ACL and
for expressing the commitment-based semantics [4] of the whole message.

The advantages of using Semantic Web languages, like OWL 2 DL, with re-
spect to other formal languages proposed in other approaches, like FIPA SL or
FIPA KIF11, or formalisms like the Event Calculus [5], [13] are mainly due to the
fact that: (i) Semantic Web languages are international standards, and therefore
it is possible to realize systems able to reuse existing ontologies (like for exam-
ple the FOAF ontology), and to use numerous existing tools for programming,
editing, validating, and reasoning on ontologies; (ii) OWL 2 DL is a decidable
fragment of FOL, for which several reasoners are available; (iii) ontologies from
different sources can be merged by taking the union of their axioms (or using
ontology alignment mechanisms when the different ontologies are not immedi-
ately compatible), making it possible for an agent to participate to different
interactions using one knowledge base; (iv) the same ontologies can be adopted
for defining the concepts to be used in the content language and in the State
Ontology.

The idea of using Semantic Web languages for the specification of the content
of communicative acts has been proposed for the first time by FIPA in 2001. The
main differences between the FIPA’s proposal and the one presented in this paper
are that: (i) FIPA proposed to use RDF and RDF Schema for expressing the
content of messages instead of using OWL 2 DL with the limitations discussed in
Section 2.2; (ii) in FIPA’s application-independent content language, fipa-rdf0,
there is no definition of the concept of event, which is useful to specify conditions
for the performance of actions, there is no formal definition of the notion of time,
and actions are not related to their deadlines; (iii) FIPA’s ACL semantics is only
based on agents’ beliefs and intentions and, differently from what we propose
in this paper, it does not take into account the deontic consequences of the
exchange of messages.

In [10] a proposal for using OWL DL as content language of FIPA-ACL is
presented and the limits of FIPA SL and FIPA KIF as content languages are
widely discussed. This work and our proposal have in common the use OWL DL

9 http://incubator.apache.org/jena/
10 http://clarkparsia.com/pellet/
11 http://www.fipa.org/repository/cls.php3
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for expressing the content of messages but in [10] the focus is on the semantics of
the content part of messages, that is, the semantics of the OWL language. This
approach is exemplified by the formalization of a query-ref message whose content
is a referential expression formulated as an OWL DL class expression followed by
an inform message whose content is a set of assertions in OWL DL. Differently in
the ACL proposed in this paper we distinguish the semantics of the propositional
content from the meaning of the whole message, which depends also from the
message performative. We exemplified this approach with the formalization of a
distinctive communicative act, the promise. In this type of acts the content of the
message describes the action that has to be performed within a given deadline,
and the meaning of the whole message is to commit the sender of the message
to the actual performance of the action within the given deadline.

In [14] a proposal of using the Darpa Agent Markup Language (DAML) lan-
guage for expressing the content of message is presented. The main concepts
formalized in the content language are similar to the one presented in this pa-
per, except for the use of a question part and a result part for queries. The main
problem of the proposal of using DAML as content language is that it is not a
current standard for representing knowledge in the Semantic Web.

Regarding our proposal of using Web Service technologies like WSDL, SOAP,
and HTTP for message transport, our approach is similar to the one proposed in
[8], where messages are sent between JADE platforms using SOAP over HTTP;
in our proposal, however, the content of SOAP messages is described with an
XML Schema instead of using JADE custom binary data format, a solution that
better supports openness.

In this work we formalized the semantics of the whole message only for the
promise communicative act; we plan to formalize the semantics of other types
of communicative acts, like request, query-ref, inform, and declare by extending
the approach proposed in this paper, in our future works.
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Appendix A: OWL 2 DL

OWL 2 DL is a practical realization of a Description Logic known as SROIQ(D).
It allows one to define classes, properties, and individuals. An OWL ontology con-
sists of: a set of class axioms that specify logical relationships between classes,
which constitutes the Terminological Box (TBox ); a set of property axioms to
specify logical relationships between properties, which constitutes a Role Box
(RBox ); and a collection of assertions that describe individuals, which consti-
tutes an Assertion Box (ABox ).

Classes are formal descriptions of sets of objects (taken from a nonempty
universe), and individuals can be regarded as names of objects of the universe.
A class is either a basic class (i.e., an atomic class name) or a complex class
build through a number of available constructors. Properties can be either object
properties, which represent binary relations between objects of the universe, or
data properties, which represent binary relationships between objects and data
values (taken from XML Schema datatypes).

Through class axioms one may specify that subclass (�) or equivalence (≡)
relationships hold between certain classes, and that certain classes are disjoint. In
particular, class axioms allow one to specify the domain and range of a property
p (p: A → B where class A is the domain and class B is the range), and that a
property is functional or inverse functional. Property axioms allow one to specify
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that a given property (or chain of subproperties) is a subproperty of another
property, that two properties are equivalent, or that a property is reflexive,
irreflexive, symmetric, asymmetric, or transitive. Finally, assertions allow one
to specify that an individual a belongs to a class C, C(a), that an individual a
is or is not related to another individual b through an object property R, R(a,b)
or ¬R(a,b), that an individual is or is not related to a data value through a data
property, or that two individuals are equal or different.

Complex classes can be specified by using Boolean operations on classes: C
� D is the union of classes, C � D is the intersection of classes, and ¬ C is the
complement of class C. Classes can be specified also through property restric-
tions : (i) ∃ R.C denotes the set of all objects that are related through property
R to some objects belonging to class C, at least one; if we want to specify to
how many objects an object is related we should write: ≤nR, ≥nR, =nR where
n is any natural number; (ii) ∀ R.C denotes the set of all objects that are related
through R only to objects belonging to class C; (iii) R�a denotes the set of all
objects that are related to a through R.

We use capital initials for classes, and lower case initials for properties and
individuals. We assume that all individuals introduced in the ABox are asserted
to be different individuals.
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Abstract. Nowadays and in the near future, the complexity of com-
puter applications is exponentially increasing. This complexity comes
from the inherent properties of such applications: the great number of
their involved components, the distribution of their control and skills,
the nonlinearity of their process and their increasing openness. This is
also caused by the unpredictable coupling with their environment due
to high dynamicity. To fulfill these requirements, systems have to adapt
themselves in order to be robust and efficient. This paper will deal with
self-adaptation in software systems, particularly from a multi-agent view-
point and will focus on the Adaptive Multi-Agent Systems theory.

1 Introduction

Nowadays and in the near future, the complexity of computer applications is
exponentially increasing. This complexity comes from the inherent properties
of such applications: the great number of their involved components, the dis-
tribution of their control and skills, the nonlinearity of their process and their
increasing openness. This is also caused by the unpredictable coupling with their
environment due to high dynamicity. Complexity was previously studied in a for-
mal way, mainly by Kurt Gödel who stated that some inherent limitations exist
about completeness and consistency for formal theories including arithmetic.
This means that their own validity can only be proved outside of them. Demon-
stration of Gödel ’s incompleteness theorem introduced the computable function,
formalized later in computer science (such as pi-calculus, Turing machines, re-
cursive functions, Post’s machine). These lead to main several limitations in
complex artificial systems: we cannot prove in a general way that they cannot
be free of bugs, and these bugs can only be detected at runtime. From this very
basic result, it is possible to define some directions to design complex systems:

– A complex system must be able to self-adapt during its execution because of
the dynamics but also because residual bugs are potentially included despite
the design and verification phases. For the same reasons, classical learning
methods cannot be sufficiently general in order to suppress these residual
bugs and we must discover new approaches able to self-adapt at the micro-
level without any knowledge of the global goal to achieve at the macro-level.

M. Cossentino et al. (Eds.): EUMAS 2011, LNAI 7541, pp. 114–128, 2012.
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– Each component of the system has only to be coupled with a small number of
the total amount composing the global system. This constraint comes from
the previously quoted inapplicability of the global function at the micro-
level, but implies the definition of micro-theories able to converge towards
the desired emergent global functions.

– Designing systems in a top-down manner presupposes that the assembling
of the specified components provide the desired global behaviour. Unfortu-
nately, it is well-known that non-linearities and the multiplicity of dynamics
lead to emergent phenomena at the macro-level. Consequently top-down de-
sign is fundamentally inappropriate for complex systems design.

These reasons lead us to change the perspective in order to design complex adap-
tive systems from satisfaction of system requirements by global and top-down
activity to satisfaction of system requirements by local and bottom-up activity.
Self-organisation is a way to achieve this change by allowing the design of sys-
tem with emergent funtionality. To contribute to this approach, the Adaptive
Multi-Agent Systems (AMAS) theory provides a guide to design self-organising
systems. This theory is based on the observation that the cooperation enables to
guide the agent behaviour at the micro-level, helping the agents to self-organise
and to obtain adaptation at the macro-level. The modification of the interac-
tions between the agents of the system modifies also the global function and
makes the system able to adapt to changes in its environment. The interactions
between agents depend on the local view these agents have and on their ability
to ”cooperate” with each other.

In section 2, the motivations leading to design self-adaptive complex systems
are expounded. Then, section 3 presents the concepts of self-organisation and
emergence. Section 4 details the AMAS theory which is studied in the SMAC1

research group in Toulouse and has lead to Research led to a Spin off, UPETEC2.
Then, section 5 concludes and proposes some perspectives.

2 Motivations

Nowadays, applications to design and problems to solve become more and more
complex such as energy management [1], aircraft design [2], crisis management
[3], maritime surveillance systems [4], ambient systems [5]... This complexity
is due to a combination of aspects such as the great number of components
involved in the applications, the fact that knowledge and control have to be
distributed, the presence of non linear processes in the system, the fact that
the system is more and more often open, its environment dynamic and the in-
teractions unpredictable [6]. So, these properties motivate designer to realize
software systems taking into account scalability, difficulty to solve problems, dy-
namics and under-specifications. In order to tackle the design of such complex

1 SMAC Systèmes Multi-Agents Coopératifs www.irit.fr/SMAC
2 www.upetec.fr

www.irit.fr/SMAC
www.upetec.fr
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systems, self-adaptive multi-agent systems represent a promising approach pro-
viding the needed robustness and adaptation in the light of the aforementioned
difficulties.

2.1 Scalability

The scalability of MAS [7] means that the system well behaves with a small
numbers of agents but also with a great number of agents. A scalable system
is a system which reaches scalable solutions that is to say with ”reasonable”
performances regardless of problem size.

The need of large-scale systems is an obvious fact in numerous domains as
traffic control systems, maritime surveillance systems, simulation of biochemical
reactions [8]. These domains provide strong constraints for the designer. The
first one concerns the control which must be decentralized. Decentralization
is required because it is too much difficult to get all informations about all
entities in a single point without leading to a bottleneck. Decentralization enables
to improve the system performances. The second point is about the solving
which also must be distributed. It is a quite obvious consequence of the first
point and this is also inevitable in systems composed of different physical agents
such as cars or aircrafts in a traffic control system. The last point refers to the
accessibility of a global knowledge about the system. Usually, because the
system is too large, an agent inside the system has only a partial knowledge
about the system,which is acquired from its environment. Depending on the size
of the system, a global knowledge is available or not.

2.2 Problems Difficult to Solve

Several reasons can explain the difficulty for humans to solve some types of
problems. The problem can present some non-linearity, some interdependencies
between its parameters. The most representative classes of these problems are
the multi-disciplinary, multi-objective, multi-level optimisation problems [2] and
the distributed constraint-satisfaction problems [9]. The recognition of the whole
problem is not possible because of its complexity. This has led to design self-
organising systems presenting emergent functionalities [10], [11]. Those systems
are necessarily composed of several autonomous interacting agents, plunged into
an environment. In general, the global behaviour of the system emerges from the
local interactions between agents. The potential of this approach is important
because it simplifies the design and diminishes the design delays. But this is
not so easy to do, as Van Parunak & Zambonelli [12] have claimed: ”Such be-
haviour can also surface in undesirable ways”. So, systems can reach undesirable
states because the main difficulty lies in controlling the global behaviour while
designing at micro-level.

2.3 Dynamics

Challenges of current systems are to take into account the dynamics. This dy-
namics is the result of changes that may be endogenous or exogenous to the
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system. Endogenous changes are generated by the system and derive, for ex-
ample, from hardware failures or errors of the software behavior. Exogenous
disturbances come from the system environment. To enable the system to con-
tinue to fulfill the function for which it was designed, it is necessary that it can
adapt in real time. The system must also be open which means that an entity
of the system (agent) may be added or removed at runtime. Disturbances from
the environment of the system cause it to adapt.

2.4 High Level Expression of Requirement or under-Specified
Problems

The way we usually design computational systems requires for the designer, to
have some important initial knowledge. The first information a designer has to
know is the exact purpose of the system. But sometimes, the main goal of the
system is described at a very high level such as, for example: the system must
satisfy the end-user. It is difficult to freeze this goal at the design time. Or the
solution to be reached can be modified during the execution and in order to do
this, the end-users have to be able to interact with the system. The system and
the user have to co-construct the solution. It is the case, for example, for complex
constraints problem solving in which the user can relax some constraints. The
second kind of knowledge that the engineer has to know, concerns every inter-
action to which the system may be confronted in the future. The environment
of the system can evolve and by consequences, the designer is not able to know
all these situations at design time. The evolution of computer science forces us
to consider that it is more and more difficult - if not impossible - not only to
control accurately the activity of software with increasing complexity but also
to describe completely how they work [17]. Making systems more autonomous
and more adaptive is a way to simplify the task of the designer. That means
that systems are able to modify their behaviour in order to achieve what they
have to do at a given time.

3 Self-adaptation

As we have seen in section 2, the system to be designed must tackle complexity
by using self-adaptation.

3.1 Self-adaptive Systems

In [13], according to the DARPA definition, it is said ”self-adaptive software
evaluates its own behavior and changes behavior when the evaluation indicates
that it is not accomplishing what the software is intended to do, or when better
functionality or performance is possible”. This definition must be completed by
the fact that the system realizes the adaptation in an autonomous way, without
the designer intervention and at runtime. So, we do not have to stop the system
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in order to adapt it, it is able to adapt its behaviour, by itself, without stopping
its excecution. This explains the prefix ”self”.

Designing these self-adaptive systems requires a radical change of perspective.
Classicaly, designers satisfy the requirements by a global and top-down activity.
They usually know the purpose of the system (main objective) and the interac-
tions corpus in the future between the system and its environment. Designers
must switch to the requirements satisfaction by a local and bottom-up activ-
ity. Furthermore, they do not know the purpose of the system and the body
of interactions occuring in the future between the system and its environment.
One of the most well-known mechanism used to enable adaptation of a system
is inspired from natural systems and social animals like ants, termites... and is
called self-organisation.

3.2 Self-organisation and Emergence

The works of the Agentlink Technical Forum on Self-Organisation in Multi-Agent
Systems[14] have established two definitions of self-organising systems:

– Strong self-organising systems are systems that change their organisa-
tion without any explicit, internal or external, central control;

– Weak self-organising systems are systems where reorganisation occurs
as a result of an internal central control or planning.

Furthermore, self-organisation implies organisation, which in turn implies some
ordered structure and component behaviour. In this respect, the process of self-
organisation changes the respective structure and behaviour and a new distinct
organisation is self-produced [14]. Finding a solution with this kind of systems
is equivalent to find the right organisation [15]. For designers, the benefits of
self-organising systems are mainly due to the fact that the resolution process as
a whole is not to be designed. To develop a complex system, it is sufficient to
design its agents, to provide them with means to self-organise and to enable them
to interact with the environment. Then, the solving process is self-constructed:
it emerges from the interactions between agents [6].

The concept of self-organisation is often coupled with the concept of emer-
gence. Emergence is the result of a collective activity and self-organisation is
the means to obtain an emergent phenomenon. And it seems that emergence
is a suitable context to design complex systems that cannot be controlled by a
human in a centralised way. We commonly agree with the fact that an emergent
phenomenon must be observable. From an observer point of view, we assume
that if one can observe the content of the entities of a system and if one can
observe at the system level a behaviour that cannot be reduced to the behaviour
of the entities, the global behaviour can be qualified as emergent. In other words,
we can say that a human cannot determine the global behaviour of the system
only by looking at the agent behaviour. We can also qualify a phenomenon as
emergent if we need different terms, vocabularies to explain the micro and the
macro levels. This leads to give the following operational definition of emer-
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gence in artificial systems, based on three points: what we want to be emergent
(subject), at what condition it is emergent and how we can use it (method) [16].

1. Subject. The goal of a computational system is to realise an adequate func-
tion, judged by a relevant user. This ”function” can be for instance a be-
haviour, a pattern, a property (which may evolve during time) that has to
emerge.

2. Condition. This function is emergent if the coding of the system does not
depend on the knowledge of this function. This coding has to contain the
mechanisms facilitating the adaptation of the system during its coupling with
the environment, so as to tend toward a coherent and relevant function.

3. Method. The mechanisms which allow the changes are specified by self-
organisation rules, providing autonomous guidance to the components’ be-
haviour without any explicit knowledge about the collective function nor
how to reach it.

3.3 Self-organisation / Re-organization

Two well-known communities focus on the design of adaptive and robust sys-
tems: SASO(Self-Adaptive and Self-Organising systems) and COIN (Coordi-
nation, Organisation, Institutions and Norms in agent systems). The SASO
community studies self-adaptation and self-organisation. In a self-organising
multi-agent systems context, the designer of such systems first focuses on agent
local behaviours and peer-to-peer interactions. The organisation is the result
of the collective emergent behaviour due to how agents act their individual
behaviours and interact in a common shared and dynamic environment. The
designer does not put any global knowledge about the organisation inside the
agents.

In the COIN community, the designer provides on one hand, the entire or-
ganisation and coordination patterns, and on the other hand, the agents local
behaviours . At runtime, the agents may consider the constraints imposed by the
defined organisation as compulsory or possible guidelines for the coordination of
their local behaviours. The organisation exists at design time. The designer puts
this knowledge inside the system and allows the agent access to this information.

Both communities are interested in adaptation and self-adaptation and use
the organisation concept but the hypothesis for designing systems are different.
Organisation is a first-abstract class in the design of COIN systems, required
at design time. In self-organising systems, the organisation is the result of the
collective behaviour.

3.4 Self-organisation Mechanisms

Currently, a lot of mechanisms of self-organisation are implemented in artifi-
cial systems [11] and cannot be all detailed here. The older are nature-inspired
mechanism and copy the activity of social animals such as: foraging, nest build-
ing, sorting, web weaving... The most well-known technique is the stigmergy
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mechanism. It has been widely used and was first observed in societies of social
insects by Grassé and can be summarised as ”the work excites the workers”
[17]. Agents leave information in the environment which can be perceived by the
others. This information, usually evaporates after a given time. This mechanism
allows task coordination and regulation within a group, using only indirect in-
teractions and without any central control. There is no method to develop this
technique and the primary difficulty is to adjust the different parameters such
as the speed of evaporation or the amount of information dropped. Because the
solution must be represented in the environment, the final goal of the system
guides the design phase. Some mechanisms are inspired from physics such as the
gradient fields. They are based on attraction and repulsion behaviours and show
self-organised behaviour [18]. We can also find mechanisms imitating human be-
haviour such as gossip. It enables to spread information and to create evolving
organisations [19].

In all these works, researchers have applied a mechanism observed or not in
the nature, a theory to an application. Sometimes the phenomenon observed
by simulating the system is interesting such as web weaving. But it is difficult
to find a real application which can be realized by the system. Concerning web
weaving, researchers have applied it to regions detection but they do not propose
another application. What we try to do in my research group is to constantly go
from applications to theory but also from the theory to applications. We realize
specific applications by highlighting generic behaviours and then, we reuse these
behaviours by improving them to design other applications. Applications enrich
theory and theory enables to develop new applications. This theory: the Adap-
tive Multi-Agent Systems theory [20],[21],[16], [6] is presented in the following
sections.

4 AMAS Theory

The first aim of the AMAS theory is to design MAS having a coherent collective
activity that achieves the right task. We name this property ”functional ade-
quacy” and we proved the following theorem: ”For any functionally adequate
system, there is at least a cooperative interior medium system which fulfills an
equivalent function in the same environment”. Therefore, we focused on the de-
sign of cooperative interior medium systems in which agents are in cooperative
interactions. The specificity of the theory resides in the fact that we do not code
the global function of the system within the agents. Agents have only a partial
knowledge. The global function of this system emerges from the collective be-
havior of the different agents composing it. Each agent possesses the ability of
self-organisation i.e. the capacity to locally rearrange its interactions with oth-
ers depending on the individual task it has to solve. Changing the interactions
between agents can indeed lead to a change at the global level. This induces the
modification of the global function. This capacity of self-organisation enables to
change the global function without coding this modification at the upper level
of the system. An intuitive example is the realisation of an elementary math-
ematical function. Let five agents be *, +, 2, 100, 5, if the organisation is the
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following: 2+(5*100) the result is 502 but if the organisation was (2+5)*100, the
result would be 700. With this simple example, we can see that a change inside
an organisation, changes the results provided by it. Self-organization in AMAS
is based on the capacity an agent possesses to be locally ”cooperative”.

These agents, called cooperative agents are composed of five parts con-
tributing to their behavior: skills (what the agent is able to do), representations
of the world (the knowledge it has about itself, about the others or about its
environment), an interaction language (to communicate with others or with its
environment), aptitudes (the capacities it possesses to reason on its knowledge)
and a social attitude led by what we call cooperation.

4.1 Definition of Cooperation

The basic definition of the cooperation between two agents is that an agent helps
the other to execute a task. For example, two agents are needed to carry a very
heavy object and they must help each other to do it. In Artificial Intelligence
[22] cooperation means that, if two agents have two different goals then the fact
that an agent can reach its goal, does not prevent the other to reach its own one.
In the AMAS theory, cooperation defines more an attitude, a behaviour that an
agent has to follow.

In the AMAS theory, an agent is benevolent, sincere, willing, fair and imple-
ments reciprocity. Benevolence is different from altruistism and means that for
a limited duration, an agent can leave its individual goal to help another agent
or to adopt the goal of another one. An agent is sincere if it never lies to other
agents. A willing agent is an agent which tries to satisfy a request if it is coherent
with its own skills and the current state of the world, and if no damage results
from the action, either to the acting agent or to another. If there is a resulting
damage, refer to property four. A fair agent always tries to satisfy, when it is
possible, agents with the highest level of difficulty for reaching their goals. Reci-
procity is the fact that each agent of the same society knows that itself and the
others verify these four main properties.

4.2 Cooperative Agent Behaviour

A cooperative agent aims at always being in a cooperative state that is in co-
operative interactions with its environement. However, because of the dynamic
nature of the environment of the system, as well as the dynamics of the inter-
actions between agents, an agent can be in a non cooperative state or can be at
the origin of cooperation failures. We call these states: ”Non Cooperative Situ-
ations” (NCS). More precisely an agent can detect NCS at three different steps
during its lifecyle:

– when a signal perceived from its environment is not understood and not read
without ambiguity;

– when the information perceived is not useful for the agent’s reasoning;
– when concluding results lead to act in a useless way in the environment.
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The general algorithm followed by a cooperative agent (see 1) consists in exe-
cuting what the agent has been created for (called its Nominal behaviour), if it
does not detect NCS. But if a cooperation problem occurs, it can realize one or
more of the three following behaviours: tuning, reorganisation and evolution. For
tuning, an agent changes the value of some of its internal parameters. For reor-
ganising, an agent modifies the way it interacts with its neighbours by: adding
or removing a neighbour, modifying the trust it has in a neighbour. Concerning
the evolution, the agent self-removes or creates another agent (a replication of
it for example). Note that these behaviours lead to self-organisation.

Begin while The agent is alive do
if The agent does not detect any Non Cooperative Situation then

Execute the Nominal Behaviour;
else

The agent tries to:
Adjust its internal parameters: Tuning;
and/or Change its interactions: Reorganization;
and/or Add or remove an agent: Evolution;

end

end
Algorithm 1. Cooperative agent’s behaviour

In the algorithm, we can note that the detection of NCS infuences the agent
behaviour. As a consequence, a central point in the AMAS theory has been the
definition of NCS. At this step of our work, we have registered seven NCS [23]:

– Incomprehension is related to the interpretation of the messages and in-
forms that the agent is not able to extract any understandable information
from the received message.

– Ambiguity informs the agent that different interpretations are possible,
and therefore, an accurate representation update is not possible. That can
be due for instance to missing information.

– Incompetence is detected when the agent does not have the competence
to process the received information such as answering an agent request.

– Unproductivity is detected when the agent has accurately interpreted the
received information but cannot use it to produce any useful information for
itself because it already has this information, it is of no interest for it or the
received information is incomplete.

– Conflict is detected either when considering the list of possible future ac-
tions or when detecting a conflict in the environment. In the first case, among
the list of possible actions some are conflicting and such actions cannot be
performed by the agent at the same time (i.e. lack of resources). In the sec-
ond case, the conflict can either be due to a previous action performed by
the agent or another agent, or a change in the environment not related to
the agent activity. This situation is also detected when the agent considers
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that modifying the environment can prevent other agents from reaching their
goals.

– Concurrence concerns the interactions between the agent and its environ-
ment. It is detected when among the list of possible actions, some can put
the agent in concurrence or competition with other agents.

– Uselessness is detected when the agent considers itself not useful for the
system or its environment. This can be due to a lack of information or unused
knowledge.

Depending on the application, only some of these NCS are relevant. For example,
in an ant simulation, the notion of incomprehension is not necessary because an
ant can always understand what it perceives (food, pheromone, ant, obstacle).

4.3 Mechanisms for Implementing Cooperation

Cooperation is considered as an attitude which guides the agent behaviour in
using only a partial knowledge: the agent’s knowledge and its local perceptions.
The cooperation is implemented inside an agent with the four following mecha-
nisms:

– spontaneously communicate,
– anticipate cooperation failures,
– repair cooperation failures,
– act for helping its worst neighbours.

Notice that depending on the application, not all these mechanisms must be
implemented by the designer inside the agent.

Spontaneous Communication. Spontaneous communication consists in com-
municating to an agent an information not requested by it. An agent sends a
piece of information if it thinks that this information can be useful to another
agent. An example of this action has been implemented in the simulation of for-
aging ants [24]. In this simulation, the environment is composed of the nest, some
obstacles, pheromone, pieces of food and ants. The pheromone self-evaporates
during time and can be accumulated when several ants drop pheromone at the
same place. The foraging ants are the cooperative agents of the multi-agent
system. Their behaviour is copied from natural ants and consists first in ex-
ploring the environment. When it encounters an obstacle, it avoids it. When
it encounters food, it can harvest it. When it is loaded, it goes back to nest
in dropping a given quantity of pheromone on the ground. By consequence,
tracks of pheromone appear in the environment. During its exploration, an ant
is attracted by pheromone and leads to follow pheromone track. This behaviour
implies a reinforcement of the existing tracks. In the following situation called
”come back to the nest”: when an ant is loaded and comes back to the nest,
it puts pheromone on the ground to mark the location. The spontaneous com-
munication is implemented as follows: in the ”come back to the nest” situation
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Fig. 1. Spontaneous communication of an ant

if in addition the ant perceives new pieces of food, it drops a higher quantity
of pheromone on the ground (see figure 1). This is done to provide a better
information about the environment to other ants.

Anticipation of Non Cooperative Situations. If it is possible, an agent can
try to anticipate NCS. The designer has to implement the detection of possible
NCS due to the future action of the agent. If an agent can know in advance
that its action will lead to a NCS, it has to avoid it. For example, an agent can
anticipate anUnproductivity NCS by informing other agents about the update
of its profile such as the agents main interest or the information produced by the
agent and judged helpful for others. The NCS anticipation can be illustrated in

Fig. 2. Carrier robots

the carrier robots application [25]. In this application, see figure 2, there are two
rooms A and B, separated by two narrow corridors (where two robots cannot
cross). The robots have to take a box in the room A and to drop it in the room
B. They have only local perceptions (only adjacent cases). For each robot, we
store the ten last locations where the robot has encountered problems (most of
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the time a location where it cannot move because something is in front of it).
These locations are in blue in the figure 2. There are a lot because all locations
marked by all robots are visualised on this figure. Of course for one robot there
are no more than ten blue locations. Therefore thanks to this memory a robot
can anticipate that there is a robot coming in the opposite diretion in front of
it, and choose another direction to avoid the conflict.

Treatment of Non Cooperative Situations. If an agent detects NCS, it
must act to repair them. By consequence, the designer has to provide for each
NCS an handler which will be executed by the agent to come back in a coop-
erative state. This handler is application-dependent. For example, if an Incom-
prehension NCS is detected, to solve this NCS, the agent can for instance ask
the sender to modify its message, or ask other agents that may understand it
for a translation/decryption.

The NCS treatment can be illustrated in the carrier robots application see
figure 2. A conflict occurs when inside the corridor, one robot is in front of
another robot moving in the opposite direction. In this case, if it is possible, the
agent must move to its sides (left or right). If it cannot move laterally, two other
solutions are opened. If the other robot has an antagonist goal, the robot which
is the most far from its goal will move backward to free the way for the robot
which is the closest to its goal. Robots can evaluate which is the most distant
since they know their goals and the associated zones.

Action to Help Its Worst Neighbour. Each agent can measure the degree
of difficulty it has to reach its individual goal. This measure is called critical-
ity. When an agent receives a request from its neighbours, the request can be
provided with the criticality of the sender agent. So a cooperative attitude is to
try to help its neighbours which have the most difficulties to reach their goals.
In fact, in doing this the satisfaction of all the agents in the system tends to be
balanced. No agent is very satisfied and no agent is not satisfied at all.

Fig. 3. Criticality in the MASCODE system
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The criticality notion can be showed in the MASCODE system [2]. MAS-
CODE is an aircraft design system which realizes multi-disicplinary and multi-
objective optimisation. When designing a new aircraft, a designer defines his
objective parameters, the main constraints on the design and the main expected
performances. Each of these parameters are agentified. The criticality of an agent
provides information on the fact that the value of the parameter (it represents)
found by the agent is inside or outside the validity interval (see figure 3). With
the curve of figure provided to the agent, this latter is able to compute its criti-
cality. Within the objective limits, the agent is completely satisfied and it is not
critical. Outside its physical limits, it is not at all satisfied and its criticality is
equal to the maximum value.

4.4 Designing Self-adaptive MAS

To facilitate the design of systems based on the AMAS theory, we have proposed
a methodology called ADELFE [26] and a framework called MAY3. These two
tools will not be described here, only the main steps the designer has to follow
are summarized. First of all the designer has to determine the agents and their
nominal behaviour. He has also to verify which mechanism is needed and relevant
i.e. he has to decide if spontaneous communication is needed. Then, he has to
find for every type of agents, which NCS among the seven NCS (described in
section 4.2) an agent can encounter. For every possible NCS, he has to provide
a handler to treat this NCS and for every anticipated NCS, to provide a handler
to avoid it. At the end, he has to explore the utility of using or not criticality
notion.

All these steps are more or less simple, the expertise acquired in building
AMAS systems is of course very useful to design a new system. But the main
difficulty is to think ”local”. Because the designer knows what the collective
has to do, he tends to put this knowledge inside the agents. This is the wrong
way to design adaptive complex systems. Because of the difficulty to realize the
global task or at the deployment phase with a great number of agents, this global
knowledge is no more accessible.

5 Conclusion

Self-adaptive complex systems are relevant systems to cope with scalability, dy-
namics, difficulty to solve a problem, and under-specification. The AMAS the-
ory, presented in this paper, is our contribution to design a class of self-adaptive
systems: the self-adaptive multi-agent systems. This theory was and is also cur-
rently applied in numerous research projects but also in industrial ones: maritime
surveillance, aircraft electric harness optimisation, energy management,... Future
systems will be composed of systems and will be system of systems which will
not be designed by the same designer. In this context, interoperability and ope-
ness will be the main future research challenges. The large scale of systems will
require to find new means to evaluate and validate them. The context in which

3 www.irit.fr/MAY

www.irit.fr/MAY
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the system will be deployed will not be known in advance. The designer will have
to tackle unanticipated adaptation. This means that he will not precisely know
this context at design time. Self-adaptive complex systems should be improved
to answer to these fascinating and open challenges.
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Abstract. The paper introduces an argumentation semantics that can
deal with several challenges that arise when using abstract argumen-
tation within multi-agent systems. The extensions are computed with
respect to initial constraints that specify the desired justification state
of some arguments. The constraints can come from the agent’s goals, its
confidence in information from other agents or they may describe a deci-
sion context, where the agent must choose between several alternatives.
The core idea behind the approach is the fact that, in order to find an
extension that satisfies the constraints, an agent needs to find a suitable
set of arguments to defeat.

We provide a full scenario where an auction for two items is modeled
as a game where the participating agents take turns at updating an argu-
mentation framework describing the possible states of the environment
as well as the agents’ intentions. The agents’ goals and the consistency of
the environment’s state are described with constraints. Our argumenta-
tion semantics is shown to provide a very natural strategy for the agents
playing this game. It can also be used at the end of the game for deciding
its outcome, namely the final state of the environment and the actions
of the agents.

Keywords: argumentation, semantics, multi-agent systems.

1 Introduction

Abstract argumentation was introduced by Dung [8] in 1995 and has been a
hot research topic since. Several approaches were defined in the literature for
using argumentation in artificial intelligence and several works deal with abstract
argumentation itself.

The most common approach for using argumentation with multi-agent sys-
tems relies on extending the model with some additional features that make it
more expressive for use with agents, such as preferences or values.

This paper aims to provide a different approach, by defining an argumentation
semantics that can deal with the challenges of using argumentation frameworks
in multi-agent systems. More precisely, our approach does not change the formal
model proposed by Dung, it only defines a new semantics that has properties
relevant for use in multi-agent systems.

Section 2 provides some argumentation background, together with a discus-
sion of related work. Our approach is presented in Section 3. The details of an
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argumentation-based multi-agent system corresponding to an auction scenario
is discussed in Section 4. The paper ends in Section 5 with conclusions and ideas
for future research.

2 Argumentation Basics and Related Work

This section is focused on argumentation research that is relevant to this paper,
but is also aimed at providing the reader with basic argumentation background.
We start with the definition of argumentation frameworks, as introduced by
Dung in [8], and the basic terminology used when talking about arguments.

Definition 1. An argumentation framework is a pair F = (A,R), where
A is a set of arguments and R ⊆ A × A is a binary attack relation on A. We
say that an argument a attacks another argument b and we write this as a → b
iff (a, b) ∈ R. Otherwise, a does not attack b and we write a �→ b. Also, we say
that a set of arguments S attacks an argument a iff S contains an attacker of a.
A set of arguments S defends an argument a iff S attacks all the attackers of
a. The characteristic function FF returns, for every set of arguments S, the
set of arguments defended by S in F .

We have split the presentation of argumentation research related to our work
into several subsections with respect to different facets of our approach.

2.1 Extension-Based Semantics

Given a set of arguments and the attack relation between them, one must be
able to identify the arguments that are acceptable. Several semantics were de-
fined in the literature for finding the extensions of an argumentation framework,
namely the sets of arguments that satisfy certain properties. Definition 2 lists
the semantics introduced by Dung himself in [8].

Definition 2. Let F = (A,R) be an argumentation framework and let S be a
set of arguments.

– S is conflict-free (CF) iff S does not attack any of its arguments.
– S is admissible (AS) iff S is conflict-free and S defends all its arguments.
– S is a complete extension (CO) iff S is admissible and it contains all the

arguments it defends.
– S is a stable extension (ST ) iff S is conflict-free and it attacks all the

arguments it does not contain.
– S is a preferred extension (PR) iff S is a maximal (with respect to set

inclusion) admissible set.
– S is the grounded extension (GR) of F iff S is the least fixed point of the

characteristic function.

For an argumentation semantics Sem we will use ESem to denote the set of
all extensions prescribed by it, for example ECO(F ) stands for all the complete
extensions of F .
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Of the six types of sets introduced in Definition 2, only the last four correspond
to actual argumentation semantics, whereas the first two describe properties
satisfied by almost all semantics defined in the literature. The four semantics
are not independent: stable extensions are also preferred, preferred extensions
are also complete and the grounded extension is the minimal (with respect to
set inclusion) complete extension [8].

Several additional semantics were defined in the literature, such as: semi-
stable [3], ideal [9], eager [4], prudent [6], CF2 [2], resolution-based grounded
[1], enhanced preferred [11]. We will provide more details about the last two, as
this work combines ideas from both of them.

For the resolution-based grounded semantics we introduce the corresponding
terminology in Definition 3.

Definition 3. Two arguments a and b are conflicting iff a → b or b → a.
For an argumentation framework F , the set of all conflicting pairs of arguments
is denoted by CONF(F ). Given two argumentation frameworks F1 = (A1,R1)
and F2 = (A2,R2), we say that F1 is more skeptical than F2 and we write
F1 � F2 iff CONF(F1) = CONF(F2) and R2 ⊆ R1. Two frameworks F1 and F2

are comparable (with respect to skepticism) iff F1 � F2 or F2 � F1. The set of
maximal (with respect to �) frameworks comparable with a given framework F is
denoted with RES(F ). The resolution-based version of a given argumentation
semantics Sem is defined as ESem∗(F ) = MIN (

⋃
F ′∈RES(F ) ESem(F ′)), where

MIN (X) denotes the minimal (with respect to set inclusion) elements of X.

In other words, it is easy to see that an argumentation framework F1 is less
skeptical than a framework F2 iff some of F2’s mutual attacks are replaced with
unidirectional attacks in F1. With the terminology in [10], F1 is a partial res-
olution of F2. In a complete resolution, all mutual attacks are replaced with
unidirectional ones. Thus, computing the resolution-based version of some ar-
gumentation semantics Sem consists of taking all the complete resolutions of
the argumentation framework, applying Sem to each of them, then choosing the
minimal (with respect to set inclusion) of all the resulting extensions.

In the partial resolution of an argumentation framework, some of the mutual
attacks are converted to unidirectional ones, which is the same as discarding
some attacks. In our approach we apply the same idea, but to arguments instead
of attacks.

We now turn to the work of Zhang and Lin on enhanced preferred extensions
[11]. We summarize their work in Definition 4, but using defense instead of
acceptability with respect to a set.

Definition 4. A pair of sets of arguments (S,H) defends an argument a iff
a �∈ H, H ∩ S = ∅ and S defends a against all attacks that do not come from
H. Given a framework F = (A,R) a conflict-free set of arguments S and a set
of arguments H, we say that (S,H) is an admissible pair iff (1) S �= ∅ or
H = A, and (2) (S,H) defends all arguments in S. A pair (S,H) is a minimal
admissible pair if it is an admissible pair and its second element H is minimal
(with respect to cardinality) among all admissible pairs. A pair (S,H) is an
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enhanced preferred extension iff its first element S is maximal (with respect
to set inclusion) among all minimal admissible pairs. The first element of an
enhanced preferred extension is called proper enhanced preferred extension.

In other words, for computing the enhanced preferred extension, admissible ex-
tensions are computed with respect to subframeworks of F , then the maximal
extensions are picked among those of all subframeworks of maximal cardinality.

As we have already mentioned while discussing resolution-based semantics,
our approach relies on ignoring arguments as well and computing a given se-
mantics on subframeworks. However, the sets of ignored arguments are mini-
mized with respect to set inclusion instead of cardinality, additional constraints
are imposed on the pair of sets and the extensions are not maximized, nor is
the second element dropped. Instead we work with several sets (we actually use
labelings).

2.2 Argument Labelings

In this section we will focus on argument labelings, as proposed in [3]. We do
this because our proposal is most intuitively expressed in terms of labelings. At
the same time, using labels allows us to compare our approach with existing
semantics.

Definition 5. Let F = (A,R) be an argumentation framework. A labeling is
a total function L : A → {in, out, undec}. A labeling L is complete iff (1) an
argument is labeled in iff all its attackers are labeled out, and (2) an argument
is labeled out iff it has an attacker that is labeled in.

Alternatively, a labeling L can be seen as a partition of the set of arguments into
three sets (in(L), out(L), undec(L)). It is shown in [3] that any complete labeling
L is uniquely defined by either in(L) or out(L). For the grounded labeling, in(L)
and out(L) are minimal, whereas undec(L) is maximal. Preferred labelings have
maximal in(L) and out(L), whereas the semi-stable extensions correspond to
labelings that have a minimal undec(L).

We will provide a labeling-based definition for our approach and then compare
it with complete labelings in Section 3.

2.3 Constrained Argumentation Frameworks

Our proposal is also related to constrained argumentation frameworks [7], but
we prefer to relate the constraints to the labelings rather than to the framework
itself, thus obtaining parameterized semantics.

The basic idea, roughly speaking, for constrained argumentation frameworks is
that the extensions are computed for regular semantics, then only the extensions
satisfying the constraints are kept. We do something similar, but with labelings
and we apply constraints on a general enough set of labelings so as to be able
to satisfy any reasonable constraint.
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3 Constrained Strict Semantics

In this section we introduce the constrained strict semantics, describing it in
terms of labelings. In order to do this, we first enrich the usual set of labels
{in, out, undec} with an additional label, ign, which stands for arguments that
are ignored.

The idea behind ignoring arguments is that a rational agent may choose to
doubt some of the information it has in order to be able to take a decision or
enforce one of its goals in the extensions of the corresponding argumentation
framework.

Definition 6. Let F = (A,R) be an argumentation framework. An open la-
beling is a mapping L : A → {in, out, undec, ign} such that:

– an argument is labeled in iff all its attackers are labeled either out or ign

– an argument is labeled out iff it has an attacker labeled in

As one can see from Definition 6, the open labelings can be seen as complete
labelings for subframeworks that ignore some arguments from the original frame-
work. Note that arguments are only provisionally ignored, while computing ex-
tensions and searching for those satisfying certain constraints (as we shall see
further on). In the end, however, the ignored arguments must be defeated (with
new arguments, for example) so that the corresponding open labeling becomes
a complete labeling of the framework. More about this aspect in Section 4.

We regard the ability to ignore arguments as a tool for being more decided
about the status of the arguments that are not ignored. This leads to the defi-
nition of decided open labelings.

Definition 7. An open labeling is said to be decided iff it has no undec-labeled
argument.

Let us first see that such labelings exist for any argumentation framework.
Just as in [5], we will use in(L) to stand for the set of in-labeled arguments
for an open labeling L and so on for the other labels. A complete labeling
Lc can thus be viewed as a partition of the set of arguments into three sets
(in(Lc), out(Lc), undec(Lc)), whereas an open labeling L corresponds to a par-
tition into four sets (in(L), out(L), undec(L), ign(L)).

Proposition 1. For any argumentation framework F = (A,R), the following
open labelings are decided:

(i) L = (S,∅,∅,A \ S), where S is any conflict-free set of F .
(ii) L = (in(Lc), out(Lc),∅, undec(Lc)), where Lc is any complete labeling of

F .

Note that applying the condition from Definition 7 to complete labelings leads to
stable labelings, which may not exist for certain argumentation frameworks. So
ignoring some arguments does indeed enable us to enforce stronger restrictions
on the arguments that are not ignored.
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Since a decided open labeling only uses three labels (in , out and ign),
similarly to the complete labelings, it is natural to ask ourselves whether our
approach does indeed bring something new. It may seem that decided open la-
belings are only able to ignore parts of a complete labeling, thus only reducing
the in and out parts. We show that this is not the case.

Example 1. Consider the argumentation framework F = (A,R), with A =
{a, b, c} and R = {(a, b), (b, c), (c, a)}. Its only complete labeling is Lc = (∅,
∅, {a, b, c}). On the other hand, the framework has 7 decided labelings: L1 =
({a}, {b},∅, {c}), L2 = ({b}, {c},∅, {a}), L3 = ({c}, {a},∅, {b}), L4 = ({a},
∅, ∅, {b, c}), L5 = ({b},∅,∅, {a, c}), L6 = ({c},∅,∅, {a, b}), L7 = (∅, ∅,∅,
{a, b, c}). All labelings except the trivial L7 are able to accept one argument,
whereas the complete labeling was undecided.

It is known that complete labelings are uniquely identified by either their in or
out parts. For open labelings this is generally not the case, as for each ign part
there are several complete labelings for the resulting subframework. This means
that the open labelings are uniquely identified by two of their sets, either ign

and in or ign and out. These observations hold even if we focus on decided
labelings only. Indeed, consider the following example:

Example 2. Let F = (A,R), with A = {a, b, c, d} and R = {(a, b), (b, c), (c, d),
(d, a)}. We consider the following decided labelings: L1 = ({a, c}, {b, d},∅,∅),
L2 = ({a, c}, {b},∅, {d}), L3 = ({a}, {b},∅, {c, d}) and L4 = ({b, d}, {a, c}, ∅,
∅). Note that we have in(L1) = in(L2), out(L2) = out(L3) and ign(L1) =
ign(L4). Thus, none of the labels can uniquely identify decided labelings on its
own (the undec label is not part of this discussion, as undec(L) = ∅ for any
decided labeling L). On the other hand, let us see that L2 and L3 are uniquely
determined by their ign parts. We consider this property useful because, given
a set of such labelings, choosing the desired one only depends on choosing the
arguments to ignore (and later defeat).

Definition 8. An open labeling of an argumentation framework F is unique if
no other open labeling of F has the same set of ign-labeled arguments.

Such labelings exist for all argumentation frameworks, as the labelings from
Proposition 1 (i) are also unique. In the general case, however, not all unique
labelings are also decided. Indeed, consider the framework from Example 1 and
notice that L = (∅,∅, {a, b, c},∅) is a unique but not decided open labeling of
F .

In fact, the decided labelings correspond to stable labelings of subframeworks,
whereas the unique labelings correspond to grounded labelings of subframeworks
that have a single complete labeling.

Definition 9. An open labeling is said to be strict iff it is both decided and
unique.

Again, we rely on Proposition 1 (i) to see that strict labelings exist for any
argumentation framework.
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We are now ready to add constraints to our labelings. The approach is similar
to that used for constrained argumentation frameworks in [7] We will use PLS

to denote the propositional language defined in the usual inductive way from the
set of propositional symbols S and the logical connectives �,⊥,¬,∧,∨.

Definition 10. Let F = (A,R) be an argumentation framework, L one of its
open labelings and ϕ ∈ PLA. We say that L satisfies ϕ and write L � ϕ, where
satisfiability is recursively defined for each formula as follows:

– L � �
– L ��⊥
– L � a iff a ∈ in(L), for all a ∈ A
– L � ¬a iff a ∈ out(L) or a ∈ ign(L), for all a ∈ A
– L � φ ∧ ψ iff L � φ and L � ψ, for all φ ∈ PLA and ψ ∈ PLA
– L � φ ∨ ψ iff L � φ or L � ψ, for all φ ∈ PLA and ψ ∈ PLA

Note that in Definition 10 there is no rule for arbitrary negations, but only for
negated propositional symbols. This is because the negation of a propositional
symbol does not only mean that the corresponding argument is not in, but also
that it is not undec. We have chosen this approach because we consider that it
makes little sense to actually want an argument to be undecided. Whenever writ-
ing constraints, we will make sure that all negations are applied to propositional
symbols.

The interesting question is whether, given a formula ϕ, there is an open la-
beling that satisfies it. Clearly this is not possible for inconsistent formulas.
Furthermore, consistency of a formula should also be related in some way to the
attack relation, as it is clearly not possible to have both an argument and its
attacker marked as in, for example.

Definition 11. Let F = (A,R) be an argumentation framework and ϕ ∈ PLA
a satisfiable formula. We say that ϕ is consistent with F iff the set of formulas
{ϕ} ∪ {¬a ∨ ¬b | (a, b) ∈ R} is satisfiable.

Satisfiability in Definition 11 refers to the usual satisfiability in propositional
logic and is not connected to labelings. Whenever we talk about satisfiability
with respect to labelings, we will explicitly say that the formula is satisfied by a
labeling, to avoid any confusion.

Proposition 2. A satisfiable formula ϕ is consistent with an argumentation
framework F iff its disjunctive normal form contains at least one conjunction
whose positive literals correspond to the elements of a conflict-free set of F .

Proof. For the “⇐” part, suppose that the disjunctive normal form of ϕ contains
the conjunction ψ = a1∧. . .∧an∧¬b1∧. . .∧¬bk such that the set S = {a1, . . . , an}
is a conflict-free set of F . We assign ai = � for all i’s and we assign ⊥ to all
the other arguments. This assignment is correct because the a’s and the b’s are
distinct, as a result of the fact that ϕ is satisfiable. Suppose that there is a formula
¬a∨¬b that corresponds to an attack in R and is not satisfied. That would mean
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that both a and b are true and, thus, are elements of the conflict-free set S. But
then they cannot attack one another, which contradicts our assumption. We can
conclude that ϕ is consistent with F .

For the “⇒” part, consider a truth assignment that satisfies ϕ. Then the
disjunctive normal form of ϕ contains at least one conjunction that is satisfied.
The positive literals of that conjunction correspond to a conflict-free set, because
otherwise there would be an attack whose corresponding formula is not satisfied,
which would in turn violate the fact that ϕ is consistent with F . This completes
our proof. ��

Note that, as a term in some conjunction of the disjunctive normal form of a
formula, � corresponds to the empty set, which is a conflict-free set of every
framework. This is in accordance with the expected fact that � is consistent
with every framework.

We are now ready for the main theoretical result of this paper, namely the
existence of strict labelings satisfying any reasonable constraint.

Proposition 3. Any formula ϕ that is consistent with an argumentation frame-
work F is satisfied by at least one strict labeling of F .

Proof. From Proposition 2 we have that the disjunctive normal form of ϕ con-
tains a conjunction ψ = a1 ∧ . . . ∧ an ∧ ¬b1 ∧ . . . ∧ ¬bk such that the set
S = {a1, . . . , an} is a conflict-free set of F . We denote B = {b1, . . . , bk}. Let
T = {b | ∃a(a ∈ S∧ (b, a) ∈ R)}, the set of arguments that attack elements of S.
Let Lgr denote the grounded labeling of the restricted argumentation framework
F ↓A\(B∪T ), where F ↓X= (X,R ∩ (X × X)). We consider the open labeling
L = (in(Lgr), out(Lgr), ∅, undec(Lgr)∪ B ∪ T ).

First, let us see that S ⊆ in(Lgr). Indeed, since all attackers of arguments
from S were ignored, all elements of S are unattacked in the restricted framework
so they must be part of the grounded extension. Coupled with the fact that all
arguments in B are ignored, this leads to the fact that L satisfies ψ and hence
it satisfies ϕ as well.

What is left to show is that L is indeed a strict labeling. Since the in and out

parts come from Lgr , the labeling satisfies the conditions for an open labeling.
Also, the in and out arguments of the grounded labeling form a subframework
that allows no other complete labeling, so L is unique. Since undec(L) = ∅, L
is also decided and thus strict. ��

The result of Proposition 3 is quite strong as it shows that, given any reasonable
constraints, one can find strict labelings that satisfy them. This is the most im-
portant feature that distinguishes our work from the constrained argumentation
frameworks in [7].

Since there may still be several labelings to choose from, we can refine the
approach even more and finally define the constrained strict labelings.

Definition 12. A constrained strict labeling of an argumentation framework
F with respect to a formula ϕ that is consistent with F is a strict open labeling
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L that satisfies ϕ and has ign(L) minimal (with respect to set inclusion) among
all strict open labelings that satisfy ϕ.

The intuition behind Definition 12 is that one should decide the status of as many
arguments as possible, while not violating the constraint ϕ or the restrictions of
strict labelings.

4 Constrained Argumentation Game

In this section we show that the constrained strict semantics is relevant for the
multi-agent systems community by introducing an argumentation-based game
featuring agents. We instantiate the approach by modeling a special auction
scenario and we show how desired features of the scenario can be mapped into
game elements.. At the end of the section we discuss the critical role that the
constrained strict semantics plays for this game.

4.1 Auction Scenario

The example scenario that we will translate into a constrained argumentation
game consists in a special kind of multiple items auction. To keep things simple,
we will use an unspecified currency (just a positive integer). We will consider
just three persons in our scenario: Anthony, Brian and Carol.

Anthony has two old pieces of furniture, a chair and a table, that he would
like to sell. Since he has been a collector for quite some time now, he is rather
good at appraising antiques so he knows that the chair values 200, while the
table values 300. Anthony is determined to get at least these prices or keep the
items. Anthony is familiar with most types of auctions, but he would like a bit
more control over the outcome, so he organizes a special kind of auction.

The auction starts with Anthony announcing the rules, the items for sale
and the minimum prices. To avoid any suspicions, the bidding process is public,
spoken out loud. In a round-robin order, each participant can place, update or
retract bids for any of the items that are put up for sale. Anthony can benefit
from auctioning both items at the same time, as he is part of the auction himself
and, on his turn, he reserves the right to impose additional restrictions or, on
the contrary, relax some constraints. Each participant may also choose to pass,
if satisfied with the current outcome (unless other restrictions are applicable,
the highest bidder for each item wins that item). The auction ends when all
participants pass.

We assume, for simplicity, that only two potential buyers show up for the auc-
tion: Brian and Carol. Brian is rather rich and knows very little about antiques,
so he is willing to pay even twice their value: 400 for the chair and 600 for the
table. However, he is determined to either get both items or none of them. That
is why he likes Anthony’s idea of an auction: he does not risk buying the first
item only to find himself unable to acquire the second as well. Carol, on the other
hand, has more limited resources so she cannot afford both items. However, she
would really like acquiring one of them. She is willing to pay 300 for the chair
and 500 for the table.
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In the following subsections we will translate this auction scenario step by
step into a turn-based game featuring agents that work with an abstract argu-
mentation framework and constraints.

4.2 Arguments for the Environment

We start by discussing the environment of the multi-agent system and its repre-
sentation using arguments. We will use a first order language containing predi-
cates for various aspects of possible states of the environment and constants for
the relevant objects. For our particular scenario, we have two items (chair and
table) and three agents (Anthony, Brian and Carol).

The only relevant outcome of our auction is the final owner of each item.
First, we consider the (rather naive) approach of assigning a first-order formula
for each possible state: s1 = has(Anthony, chair) ∧ has(Anthony, table), s2 =
has(Anthony, chair)∧has(Brian, table), and so on, for a total of 32 = 9 states.
We can read these states as arguments, deduce that no two of them can hold
at the same time and decide to add attacks between all pairs of arguments.
In order to ensure that any extension of the framework does select a state, we
can add the constraint φE = s1 ∨ . . . ∨ s9 and use strict constrained labelings.
Since φE can be satisfied, the corresponding strict constrained labelings ignore
no argument so they are in effect complete labelings. Each of the 9 possible states
forms a singleton complete extension. This representation, although semantically
reasonable, is exponential in the number of items.

Ac

Bc Cc

At

Bt Ct

Fig. 1. State arguments for the auction example

We can come up, on the other hand, with an approach that is linear in the
number of items. Indeed, it is rather easy to see that our states depend on
two distinguishable parameters, the owners of each item. Thus, we can use just
the following arguments: Ac = has(Anthony, chair), At = has(Anthony, table),
Bc = has(Brian, chair), Bt = has(Brian, table), Cc = has(Carol, chair) and
Ct = has(Carol, table). A suitable and intuitive framework for this case is the
one in Figure 1, in conjunction with the following constraint: φE = (Ac ∨ Bc ∨
Cc)∧(At∨Bt∨Ct). The constraint ensures that each item will have at least one
owner, whereas the attacks between the states enforce at most one owner, thus
leading to the desirable outcome that each item has exactly one owner. Let us
note that the number of possible states is again given by the number of complete
labelings, but this time each extension has exactly two elements.
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4.3 Action and Reaction

We will use first order predicates to talk about actions as well. In fact, since our
auction is more like a negotiation game, what we talk about are intentions of
taking some action. We will see them as action arguments, to distinguish them
from those describing the environment, which we shall call state arguments.

In our scenario, the only possible action consists in placing a bid for an item,
for example bids(table, 350). Such actions will be annotated with the name of
the agent performing them, as in Carol : bids(table, 350). The implicit attacks
between such arguments come from the fact that a higher bid on the same item
is preferred to a lower one.

Furthermore, actions may have an impact on the state of the environment.
For example, the bid Carol : bids(table, 350), if highest, should imply that Carol
becomes the owner of the table. For this, we should have the following attacks:
Carol : bids(table, 350) → At and Carol : bids(table, 350) → Bt. We assume
that such implicit attacks are common knowledge for all the participants at the
auction.

Ac

Bc Cc

At

Bt Ct

Brian : bids(chair, 400)

Carol : bids(chair, 300)

Brian : bids(table, 450)

Carol : bids(table, 500)

Fig. 2. Simple bid scenario on top of the initial environment representation. Grayed
arguments form the only complete extension of the framework.

The framework in Figure 2 describes a possible moment from our auction. The
grayed arguments form the only complete extension of the framework which, in
addition, satisfies the environment constraint formula from the previous subsec-
tion. We will say that the extension is a valid outcome of the framework. Should
this be the final state of the framework, it would mean that Brian is bound
to pay 400 for the chair and Carol should pay 500 for the table. The result-
ing state after these actions would be the one also described by the extension,
where the winning bidders actually get the items they pay for. But more about
commitment and the outcome of a game later on.
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4.4 Beliefs, Desires, Intentions

In this subsection we explore the role that beliefs, desires and intentions play
in our model. While there is no one-to-one correspondence, we have several
mechanisms that can help. First of all, let us see that the action arguments can
be seen as intentions, or even plans, of the agents. They turn into actions only
once an extension is chosen as the outcome of the framework.

Another mechanism consists in restricting the action arguments that are avail-
able to each agent. This can help us express the desires of the agent (the agent
only considers the actions it would do) but it may also describe the abilities
of the agent (some agents may have a smaller set of abilities with respect to
others). In our case, we have that Brian’s actions range from bids(chair, 1)
to bids(chair, 400) and from bids(table, 1) to bids(table, 600), while Carol’s ac-
tions range from bids(chair, 1) to bids(chair, 300) and from bids(table, 1) to
bids(table, 500).

We also know that Carol can only afford one item. In order to say this, we
will add attacks between Carol’s bid for the chair and her bid for the table. Fur-
thermore, Anthony wants some minimum price for each item. We can simulate
this by having him bid as well, with the desired values. Thus, if he is the highest
bidder for some item, that item will not be sold. The complete framework for
this case is depicted in Figure 3.

Anthony : bids(chair, 200) Anthony : bids(table, 300)

Ac

Bc Cc

At

Bt Ct

Brian : bids(chair, 400)

Carol : bids(chair, 300)

Brian : bids(table, 450)

Carol : bids(table, 500)

Fig. 3. Complete bid scenario extended from Figure 2. Grayed arguments form the
only complete extension of the framework.

The goals of the agents can be expressed by means of constraints. Brian’s
desire to buy either both items or none can be expressed by φBrian = Bc ∧
Bt ∨ ¬Bc ∧ ¬Bt. Carol’s wish to buy one of the items can be expressed by
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φCarol = Cc∨Ct. Anthony’s wish to sell both items can be written as φAnthony =
¬Ac∧¬At. We can see in Figure 3 that the only complete extension does satisfy
the environment constraint, but does not satisfy Brian’s.

Beliefs may also be encoded by means of additional state arguments that are
not common knowledge, but are private to one or several agents. The agent may
choose to disclose such information or not. For example, Carol may wish to de-
bate the authenticity of the table. For this, she may provide the state arguments
auth(table) and ¬auth(table), each attacking the other, then also add an action
argument defeating the former: Carol : newPaint(table) → auth(table). It may
also be implied that Anthony is no longer able to sell the table or that he must
settle for a lower price. We will not detail this spin-off here, as it is not part of
the initial scenario.

4.5 The Outcome of Changing the World

What we have seen so far is that the instantaneous state of the game can be
described using an argumentation framework plus constraints. But we have said
nothing about moving from one state to the other or about how the framework
actually changes.

The auction will run as a turn-based game. During its turn, each agent can
change the current argumentation framework so that it satisfies its goals (de-
scribed with the corresponding constraint formula). However, not everything can
be changed, as we shall see.

First of all, an agent is free to retract any of its own action arguments (inten-
tions) or to add new ones to the framework Furthermore, each agent may have
some influence on some of the state arguments. To maintain a unified approach,
we shall assume that for each agent we can define the set of arguments it can
control and that the set always includes its own actions. Now, given an argument
it can control, an agent may add or remove attacks against it in order to express
certain states of affairs. Let us explain this on our auction example.

All state arguments in our scenario are controlled by Anthony, since he is
the one organizing the auction. This means that, if he so chooses, Anthony may
change the rules of the game, for example by adding or removing attacks between
state arguments. If Anthony prefers Carol to Brian, he may choose to favor her
by removing the attacks Bc → Cc and Bt → Ct. Thus, whenever both Carol
and Brian might win, Carol will be preferred.

The bidding agents, each during its own turn, may change their bid on some
of the items. They will generally do so by looking at the outcome of the current
framework. From a strategical perspective, constrained strict labelings are fit
for this task, because the agents may use their goals as constraints and find
minimal sets of arguments that are to be attacked. From the arguments they
have available, they may then choose which of them to put forward or in what
way to change the framework.

The outcome of an instantaneous configuration, as well as the outcome of the
game’s final configuration, consists in the choice of a constrained extension of
the framework, using an algorithm that is known to all participants of the game
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in advance, for example the constrained strict semantics. If all agents strive
to maintain the environment constraint satisfiable at all times by a complete
labeling, then at the end of the game this will also hold so none of the arguments
will need to be ignored.

Let us consider the example in Figure 3 again and see how that configuration
looks for each of the participants and what might be their next move, were it to
be their turn. The only complete labeling is the one depicted in the figure and it
also satisfies the environment constraint. Anthony gets to sell both items, so his
goal is fulfilled. Thus, Anthony will pass. So will Carol, whose goal is to obtain
one of the objects. However, this configuration is not good for Brian, who wishes
either both objects or none.

What Brian must do in this case is recompute the open labelings using both
the environment constraint and his own goal. In this case he will end up with sets
of arguments to ignore. All such sets that contain arguments that Brian himself
cannot control are to be discarded. He may then choose between remaining
alternatives, if any.

In the particular case of Figure 3, Brian may notice that a simple solution to
his problem consists in ignoring Carol’s bid. Since actually ignoring it is not an
option, Brian must defeat it. For this, it is enough to put forward a higher bid
for the table.

4.6 End of the Game and Commitment

We have seen that the game proceeds in turn-based fashion, each agent changing
the current configuration to better fulfill its goals. Whenever an agent is satisfied
with the current configuration, or has no available action arguments to put
forward for producing a favorable change, the agent will pass. The game ends
after every agent has passed in a full round.

Once the game has reached its final configuration, all agents are committed
to fulfill their intentions executing the corresponding actions. In doing so, the
environment will also enter the state described by the chosen extension of the
argumentation framework for the configuration.

An additional challenge for such a game is to arrange the initial configuration
in such a way as to describe the actual initial state. In our auction scenario,
instead of letting all states be acceptable, one might add Anthony’s arguments
so that the ownership of the items can only be his in acceptable extensions of
the initial framework.

4.7 Discussion

We will end this section with a discussion of the relevance of constrained strict
labelings for the presented argumentation-based multi-agent system. These ex-
tensions may play a part at the end of the game, where a suitable outcome is to
be chosen. Since the environment constraint must be satisfied, in more liberal
games, where it is not enforced at all points, it may be needed to ignore some of
the arguments at the end of the game.
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On the other hand, for the outcome algorithm it might be better to consider
frameworks where there is a single extension satisfying the environment con-
straint. Of course, it may be declared in the beginning of such a game that some
semantics that provides multiple extensions will be used and that the result will
be undecided if several extensions are available. Thus, this may work as an incen-
tive for participants that would not be satisfied with an undecided negotiation
to work towards reaching a final state that has a single extension.

The most important part where our semantics can undoubtedly be put to
good use is the agent’s strategy for executing its move. At that point, the agent
may use the same semantics as the one used for the game outcome, but update
the constraint to include its own goals thus identifying arguments that are to be
attacked or ignored. It is important that all the arguments found in the chosen
ignored set can actually be controlled or attacked by the agent.

5 Conclusions

We have introduced a new argumentation semantics, based on labelings, which
allows us to impose constraints on the labelings. We have proved that for any
reasonable constraint we get at least one constrained strict labeling and we have
shown how to use these labelings in an agent setting.

We have provided a detailed scenario that can be modeled as a multi-agent
system based on argumentation where our semantics can play a significant part
in determining the next move for each agent. The proposal is a significant contri-
bution in itself, as it provides an alternative approach for using argumentation in
multi-agent systems. Future work will compare our turn-based game with other
approaches in the literature.

It would be interesting to analyze the proposed semantics with respect to its
computational complexity, this being an important goal of future research, as
the applicability of our approach in real multi-agent systems strongly depends
on this.
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and the Reinforcement Gradient
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Abstract. This article shows that seemingly diverse implementations of
multi-agent reinforcement learning share the same basic building block
in their learning dynamics: a mathematical term that is closely related
to the gradient of the expected reward. Gradient Ascent on the expected
reward has been used to derive strong convergence results in two-player
two-action games, at the expense of strong assumptions such as full infor-
mation on the game that is being played. Variations of Gradient Ascent,
such as Infinitesimal Gradient Ascent (IGA), Win-or-Learn-Fast IGA,
and Weighted Policy Learning (WPL), assume a known value function
for which the reinforcement gradient can be computed directly. In con-
trast, independent multi-agent reinforcement learning algorithms that
assume less information on the game being played such as Cross learn-
ing, variations of Q-learning and Regret minimization base their learning
on feedback from discrete interactions with the environment, requiring
neither an explicit representation of the value function nor its gradient.
Despite this much stricter limitation on information available to these al-
gorithms, they yield dynamics which are very similar to Gradient Ascent
and exhibit equivalent convergence behavior. In addition to the formal
derivation, directional field plots of the learning dynamics in representa-
tive classes of two-player two-action games illustrate the similarities and
strengthen the theoretical findings.

1 Introduction

Recent multi-agent learning survey papers and publications at agents and ma-
chine learning conferences make clear that the number of newly proposed multi-
agent learning algorithms is constantly growing. Many domain-specific problems
are tackled by modifying or refining the learning algorithms in question for the
task at hand. An overview of well-established multi-agent learning algorithms
with their various purposes is given in [5]; it demonstrates the need for a com-
prehensive understanding of their similarities and differences. The diversity of
learning algorithms makes it imperative to specify the assumptions (learning
bias) which precede any discussion [6]. Within the scope of this article, agents
can only observe their own actions and payoffs (i.e., learning with Minimal In-
formation).

Q-learning has been linked to a dynamical system which allows decomposing
the learning dynamics into exploitation and exploration terms [20]. This reveals
that the exploitation terms, which move the behavior toward higher payoff, are
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equivalent to Cross Learning as described in [3]. The remaining terms allow for
inferior strategies to be explored. This article extends this decomposition, and
further relates Cross Learning to the most fundamental concept of learning to
increase payoff – learning along the reinforcement gradient.

Specifically, two independent branches of multi-agent learning research can be
distinguished based on their respective assumptions and premises.The first branch
assumes that the value function of the game is known to all players, which is then
used to update the learning policy based onGradientAscent. Notable algorithms in
this branch include Infinitesimal Gradient Ascent (IGA) [17], the variationWin or
LearnFast IGA(WoLF) [4] and theWeightedPolicyLearner [1].The secondbranch
ofmulti-agent learning is concernedwith learning in unknown environments, using
interaction-based Reinforcement Learning, and contains those algorithms which
have been shown to be formally connected to the replicator equations of Evolu-
tionary Game Theory. In this case, the learning agent updates its policy based
on a sequence of 〈action, reward〉 pairs that indicate the quality of the actions
taken. Notable algorithms include Cross Learning [7], Regret Minimization [13],
and variations of Q-learning [11,21]. This article demonstrates inherent similar-
ities between these diverse families of algorithms by comparing their underlying
learning dynamics, derived as the continuous time limit of their policy updates.
These dynamics have already been investigated for algorithms from each family
separately [1,3,4,11,13,17], however, they have not yet been discussed in context of
the relation to each other, and the origin of their similarity has not been discussed
satisfactorily.

The remainder of this article is structured as follows: Section 2 formally in-
troduces Gradient Ascent, Reinforcement Learning, and the concepts of Evolu-
tionary Game Theory that are used in the analysis. This analysis is presented
in Section 3 and starts with a comparison of the evolutionary dynamics of re-
inforcement learning. Representative two-player two-action games serve as an
illustrative example for the comparison of these dynamics to gradient ascent.
This comparison is then generalized to two-player normal form games. Section 4
emphasizes the practical differences between reinforcement learning and gradient
ascent, and sketches the merits of evolutionary game theory. Finally, Section 5
concludes the article.

2 Background

This section provides an overview of the basic concepts of Gradient Ascent,
Reinforcement Learning, and Evolutionary Game Theory, that are necessary
to understand the remainder of this paper. This overview is not meant to be
complete; references are provided for those readers that want to delve deeper
into these diverse fields.

2.1 Gradient Ascent

The idea of gradient ascent (or decent) is a well known optimization technique
in the field of Machine Learning. If an appropriate objective function can be
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defined, the learning process can be directed in the direction of its gradient in
order to find an optimum. This concept can be adapted for multi-agent learning
by having the learning agents’ policies follow the gradient of their expected
payoff. Naturally, this approach assumes that the expected payoff function is
known to the learners, which is not generally feasible in practice.

One algorithm that implements gradient ascent is Infinitesimal Gradient
Ascent (IGA) [17], in which a learner updates its policy by taking infinitesimal
steps in the direction of the gradient of its expected payoff. It has been proven
that in two-player two-action games IGA either converges to a Nash equilibrium
or the asymptotic expected payoff of the two players converges to the expected
payoff of a Nash equilibrium. A discrete time algorithms using a finite decreasing
step size is shown to share these properties as well.

A learner’s policy π(t) = {π1, π2, . . . , πn} denotes a probability distribution
over its n possible actions at time t, where πi is the probability of selecting action
i, i.e., ∀i : 0 ≤ πi ≤ 1, and

∑
i πi = 1. Take V (π) : Rn → R to be the value

function that maps a policy to its expected payoff. The policy update rule for
IGA can now be defined as

Δπi(t) ← α
∂V (π(t))

∂πi(t)

πi(t+ 1) ← projection(πi(t) +Δπi(t))

(1)

where α denotes the learning step size. The intended change Δπ(t) may take π
outside of the valid policy space, in which case it is projected back to the nearest
valid policy by the projection function.

Win or Learn Fast. (WoLF) [4] is a variation on IGA which uses a variable
learning rate. The intuition behind this scheme is that an agent should adapt
quickly if it is performing worse than expected, whereas it should be more cau-
tious when it is winning. The modified learning rule of IGA-WoLF is

Δπi(t) ←
∂V (π(t))

∂πi(t)

{
αmin if V (π(t)) > V (π∗)
αmax otherwise

πi(t+ 1) ← projection(πi(t) +Δπi(t))

(2)

where π∗ is an arbitrary Nash equilibrium policy. This means that, next to the
assumption that the value function is known to all agents, WoLF also assumes
that the agents have knowledge of at least one strategy which is part of a Nash
equilibrium of the learning problem.

The Weighted Policy Learner (WPL) [1] is a second variation of IGA that
also modulates the learning rate, but in contrast to WoLF-IGA does not require
knowledge of Nash equilibria. The update rule of WPL is defined as

Δπi(t) ← α
∂V (π(t))

∂πi(t)

{
πi(t) if ∂V (π(t))

∂πi(t)
< 0

1− πi(t) otherwise

πi(t+ 1) ← projection(πi(t) +Δπi(t))

(3)
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where the update is weighted either by πi or by 1 − πi depending on the sign
of the gradient. This means that π is driven away from the boundaries of
the policy space. The projection function is slightly different from IGA, in that
the policy is projected to the closest valid policy that lies at distance ε within the
boundary of the policy space. Note that while WPL does not require the Nash
equilibria to be known, it still requires that the gradient of the value function is
known.

2.2 Reinforcement Learning

Reinforcement Learning starts from a different premise than gradient ascent.
Instead of assuming full knowledge of the value function, a reinforcement learning
agent learns from scratch by repeatedly interacting with its environment. After
taking an action, the agent perceives the resulting state of the environment and
receives a reward that captures the desirability of that state and the cost of the
action. While the single-agent reinforcement learning problem is well defined
as a Markov decision process, the multi-agent case is more complex. As state
transitions and rewards are influenced by the joint action of all agents, the
Markov property is no longer satisfied from a single agents’ point of view. In
essence, each agent is chasing its optimal policy, which depends on what the
other agents do – and since they change as well, all agents chase a moving
target. Nevertheless, single-agent reinforcement learning algorithms have been
shown to produce good results in the multi-agent case [5]. Three independent
reinforcement algorithms are selected for this article: the policy iterator Cross
Learning; and the value iterators Regret Minimization and Q-learning.

This article considers the special case of stateless reinforcement learning,
which facilitates the analysis of the algorithms and enables natural compari-
son to the similarly stateless gradient ascent algorithms. One of the most basic
reinforcement learning algorithms is Cross Learning [3,7], which updates its
policy π based on the reward r received after taking action j:

πi(t+ 1) ←
{
r(t) + [1− r(t)] πi(t) if i = j
[1− r(t)] πi(t) otherwise

(4)

In this case, no projection function is needed as a valid policy is ensured by the
update rule as long as the rewards are normalized, i.e., 0 ≤ r ≤ 1. Cross Learning
is closely related to Finite Action-set Learning Automata (FALA) [15,19]. In
particular, it is equivalent to a learning automaton with a linear reward-inaction
(LR−I) scheme and a learning step size of 1.

The notion of Regret Minimization (RM) forms the basis for a differ-
ent type of reinforcement learning algorithms. In the Polynomial Weights algo-
rithm [2], the learner calculates the loss li of taking action i rather than the
best action in hindsight as li = r∗ − r where r is the reward received, and r∗

is the optimal reward. The learner maintains a set of weights w for its actions,
updates these weights according to the perceived loss, and derives a new policy
by normalization:
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(
A11, B11 A12, B12

A21, B21 A22, B22

)

Fig. 1. General payoff bi-matrix (A, B) for two-player two-action games

wi(t+ 1) ← wi(t) [1− αli(t)]

πi =
wi∑
j wj

(5)

Like Cross Learning, this algorithm ensures a valid policy as long as the rewards
are normalized. There is however a difference in information requirements: Re-
gret Minimization requires to know the optimal reward in hindsight.

Arguably the best-known reinforcement learning algorithm is Q-learning.
Q-learning estimates the expected discounted future reward achievable for every
action from the learner’s current state [21]. In the stateless learning problem,
learning the expected discounted future reward is equivalent to learning the
expected instantaneous reward. The action-value function Q is updated at each
step according to

Qi(t+ 1) ← Qi(t) + α [r(t) −Qi(t)] (6)

after which a new policy can be derived. Various schemes exist to derive the
policy, which mainly differ in the way they balance exploration and exploitation.
The Boltzmann scheme [18] allows controlling this balance using a temperature
parameter τ :

πi =
eQi·τ−1∑
j e

Qj ·τ−1
(7)

A high temperature promotes exploration, whereas a low temperature favors
exploitation and generates a close-to-greedy policy. Q-learning using the Boltz-
mann scheme ensures a valid policy independent of the reward range, and does
not require the reward function to be known.

2.3 Evolutionary Game Theory

Game theory models strategic interactions in the form of games. Each player has
a set of actions, and a preference over the joint action space which is captured in
the numerical payoff signal. For two-player games, the payoffs can be represented
by a bi-matrix (A,B), that gives the payoff for the row player in A, and the
column player in B (see Figure 1). In this example, the row player chooses one
of the two rows, the column player chooses on of the columns, and the outcome
of this joint action determines the payoff to both. The goal for each player is
to come up with a strategy (a probability distribution over its actions) that
maximizes its expected payoff in the game.

It is assumed that the players are hyper-rational, in the sense that each player
purely tries to maximize its own payoff, and assumes the others are doing like-
wise. Under this assumption, the Nash equilibrium prescribes what players will
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reasonably choose to do. A set of strategies forms a Nash equilibrium if no single
player can do better by unilaterally switching to a different strategy [8]. In other
words, each strategy in a Nash equilibrium is a best response against all other
strategies in that Nash equilibrium.

Classical game theory requires that full information about the game is avail-
able to each player, which together with the assumption of hyper-rationality does
not reflect the dynamical nature of most real world environments [9]. Evolution-
ary Game Theory (EGT) replaces the assumption of rationality by concepts like
natural selection and mutation from evolutionary biology [14]. Since EGT relies
on relaxed assumptions, it provides a solid basis to study the decision making
process of bounded rational players in an uncertain environment.

Central to evolutionary game theory are the replicator dynamics, that describe
how a population of candidate strategies evolves over time. Suppose that each
player is represented by a population consisting of pure strategies. The fact that
a player plays action i with probability πi can then be translated as a fraction πi

of the population playing pure strategy i. In this evolutionary setting, the fitness
of each candidate strategy is defined by its expected payoff against a randomly
selected individual from the opponent’s population. The reproduction rate of
each strategy depends on the difference between its individual fitness and the
average fitness of the whole population: if a strategy does better than average,
its population share will increase; if it does worse, it will decrease.

In a two-player game with payoff bi-matrix (A,B), where the two players
use the strategies π and σ respectively, the fitness of row player’s ith candidate
strategy can be calculated as

∑
j Aijσj . Similarly, the average fitness of the pop-

ulation is defined as
∑

i πi

∑
j Aijσj . In matrix form, this leads to the following

dynamical system describing the change over time in the frequency distribution
of the candidate strategies:

π̇i = πi

[
eiAσ

T − πAσT
]

σ̇i = σi

[
πBeTi − πBσT

] (8)

where ei is the ith unit vector. These differential equations are the replicator
dynamics that encode the evolutionary concept of selection based on fitness.

2.4 Linking Reinforcement Learning to Evolutionary Game Theory

Multi-Agent Learning and Evolutionary Game Theory share a substantial part
of their foundation, in that they both deal with the decision making process of
bounded rational agents, or players, in uncertain environments. The link between
these two field is not only an intuitive one, but was made formal with the proof
that the continuous time limit of Cross Learning converges to the replicator
dynamics [3].

Recall the update rule of Cross Learning given in Equation 4. This update
rule can be rewritten to take the form πi(t+ 1) = πi(t) +Δπi(t) as

πi(t+ 1) ← πi(t) +

{
r(t) − r(t)πi(t) if i = j
−r(t)πi(t) otherwise
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Note that the probability πi of action i is affected both if i is selected and if
another action j is selected, and let ri or rj be the reward received for taking
action i or j respectively. The expected change E [Δπi(t)] can now be calculated
as

E [Δπi(t)] = πi(t) [ri(t)− ri(t)πi(t)] +
∑
j �=i

πj [−rj(t)πi(t)]

= πi(t)

⎡
⎣ri(t)−∑

j

πj(t)rj(t)

⎤
⎦

If the discrete updates are considered learning steps of time 1, then the con-
tinuous limit of this process can be taken as πi(t + δ) = πi(t) + δΔπi(t), with
lim δ → 0. This yields a continuous system which can be expressed with a partial
differential equation as

π̇i = πi

⎡
⎣fi −∑

j

xjfj

⎤
⎦ where fi = E [ri]

which is the single-population replicator dynamic. In a two-agent scenario with
rewards defined by the payoff bi-matrix (A,B) and agents following policies π
and σ, the multi-population replicator dynamics of Equation 8 turn up again.
This can be seen by replacing the expected reward fi = eiAσ for the first agent.

3 Analysis

This section presents an overview of the dynamics of the different algorithms,
and highlights their similarities. The discussion is limited to the domain of two-
player normal form games for the sake of clarity. First, the evolutionary game
theoretic models that have been derived for Cross Learning, Frequency Adjusted
Q-learning and Regret Minimization are described and compared. Next, the sim-
ilarities between these evolutionary dynamics and the gradient ascent algorithms
are derived for two-player two-action games. In addition, the various dynamics
are visualized in directional field plots. Finally, these findings are generalized to
two-player normal-form games.

3.1 Evolutionary Dynamics of Reinforcement Learning

Cross Learning (CL) was the first algorithm to be linked to a dynamical system
from evolutionary game theory [3]. As described in Section 2.4, the learning dy-
namics of CL in the limit of an infinitesimal update step approach the replicator
dynamics of Equation 8, which is reiterated here for one player:

π̇i = πi

[
eiAσ

T − πAσT
]

The link between a policy learner like CL and a dynamical system in the policy
space may be rather straight forward. However, the link has been extended to
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value based learners as well. A model of Q-learning with the Boltzman update
scheme has been proposed in [20], given the additional assumption of updating
all actions simultaneously. The variation Frequency-Adjusted Q-learning
(FAQ-learning) [11] implements this model by modulating the update rule in-
versely proportional to πi, thereby approximating simultaneous action updates.

Qi(t+ 1) ← Qi(t) +
1

πi
α [ri(t)−Qi(t)]

This update rule corresponds to a dynamical system that can be decomposed
into the replicator dynamics and terms for randomization, where the temperature
parameter τ tunes the balance between the two. The replicator dynamics enforce
the selection of knowingly better actions (exploitation), while randomization
corresponds to mutations (exploration). In brief, the FAQ-learning dynamics
are a weighted average between CL and exploration.

π̇i =
απi

τ

[
eiAσ

T − πAσT
]︸ ︷︷ ︸

selection

−απi

[
log πi −

∑
k

πk log πk

]
︸ ︷︷ ︸

mutation

Recently, the evolutionary framework has also been extended to the Polynomial
Weights algorithm, which implementsRegret Minimization [2,13]. Despite the
great difference in update rule and policy generation (see Eq. 5), the infinitesimal
limit has been linked to a dynamical system with CL dynamics in the nominator.

π̇i =
απi

[
eiAσ

T − πAσT
]

1− α [maxk ekAσT − πAσT ]

The denominator can be interpreted as a learning rate modulation dependent
on the best action’s relative fitness.

3.2 Similarities in Two-Player Two-Action Games

For two-agent two-action games, the dynamics can be simplified. Let h = (1,−1),
π = (x, 1−x) and σ = (y, 1− y). The dynamics are completely described by the
pair (ẋ, ẏ), which denote the probability changes of the first actions. For CL in
self-play, this leads to the following simplified form:

ẋ = x(1− x)
[
yhAhT +A12 −A22

]
ẏ = y(1− y)

[
xhBhT +B21 −B22

]
Here, the payoff matrices A and B are again taken from the bi-matrix given in
Figure 1. The second player’s update ẏ is completely analogous to ẋ, and will be
omitted in the subsequent discussion. Similarly, for FAQ-learning the simplified
dynamics read

ẋ = αx(1 − x)

(
τ−1

[
yhAhT +A12 −A22

]
− log

x

1− x

)
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The dynamics of RM are slightly more complex. To simplify the notation for two-
action games, let ð = e1Aσ

T − e2Aσ
T = yhAhT + A12 − A22. The numerator

is equal to Cross Learning with an additional step size parameter α, and the
denominator depends on which action gives the highest reward. This can be
derived from the gradient: the first action will be maximal iff ð > 0. If the first
action is maximal, the denominator can be worked out to read 1 − α(1 − x)ð.
Similarly, when the second action is maximal the denominator reads 1+αð. The
dynamics of RM in two action games can then be written as follows:

ẋ = αx(1 − x)ð ·
{
(1 + αxð)−1 if ð < 0
(1− α(1 − x)ð)−1 otherwise

For Gradient Ascent, the update rule can be worked out in a similar fashion.
The main term in this update rule is the gradient of the expected reward, which
in two player two-action games can be written as

∂V (x, y)

∂x
=

∂

∂x
(x, 1− x)A

(
y

1− y

)
= y(A11 −A12 −A21 +A22) +A12 −A22

= yhAhT +A12 −A22

= ð

This reduces the dynamics of the update rule for IGA in two-player two-action
games to

ẋ = αð

The extension of the dynamics of IGA to IGA-WoLF and WPL are straightfor-
ward. Table 1 lists the dynamics of the six discussed algorithms: IGA, WoLF,
WPL, CL, FAQ and RM. It is immediately clear from this table that all algo-
rithms have the same basic term in their dynamics : the gradient ð. Depending
on the algorithm, the gradient is scaled with a learning speed modulation. FAQ-
learning yields the only dynamics that additionally add exploration terms to the
process.

In order to illustrate the similarities between the algorithms, their dynamics
are visualized in representative classes of two-player two-action games. Three
distinct classes can be identified [9]. The first class consists of games with one
pure Nash equilibrium, such as the Prisoner’s Dilemma. The second class of
games has two pure and one mixed Nash equilibrium, such as the Battle of the
Sexes. Finally, the third class of games has only one mixed Nash equilibrium; an
example is the Matching Pennies game. The payoff bi-matrices of these games
are presented in Figure 2.

Since the dynamics in two-player two-action games are completely described
by the pair (ẋ, ẏ) as described above, it is possible to plot the dynamics in the
unit square that makes up the joint policy space. The dynamics can be visualized
using a directional field plot, where each arrow indicates the direction of change
at that point (x, y) in the policy space.
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Table 1. This table shows an overview of the learning dynamics, rewritten for the
specific case of two-agent two-action games. For simplicity, the common gradient is
abbreviated ð =

[
yhAhT +A12 − A22

]
.

Algorithm ẋ

IGA αð

WoLF ð ·
{
αmin if V (x, y) > V (xe, y)
αmax otherwise

WPL αð ·
{
x if ð ¡ 0
(1− x) otherwise

CL αx(1− x) ð

FAQ αx(1− x)
[
ð ·τ−1 − log x

1−x

]
RM αx(1− x) ð ·

{
(1 + αxð)−1 if ð < 0
(1− α(1− x)ð)−1 otherwise

C
D

C D(
3
5
, 3
5

0, 1
1, 0 1

5
, 1
5

)
O
F

O F(
1, 1

2
0, 0

0, 0 1
2
, 1

)
H
T

H T(
1, 0 0, 1
0, 1 1, 0

)

Prisoner’s Dilemma Battle of the Sexes Matching Pennies

Fig. 2. Normalized payoff matrices for three representative two-player two-action
games

Figure 3 shows the learning dynamics of the different algorithms in the Pris-
oner’s Dilemma, Battle of the Sexes, and Matching Pennies game. The dynamics
of RM are not shown, as they are visually indistinguishable from CL. Figure 3
illustrates the high similarity between all algorithms in the first two games. They
all share the same convergence properties, and follow similar trajectories. The
dynamics of IGA and WoLF in the Prisoners’ Dilemma show the need for the
projection function to prevent the update from taking the policies π and σ out
of the valid policy space.

In the Matching Pennies, IGA and CL both cycle around the Nash equilib-
rium. The other three algorithms all spiral inwards and eventually converge, but
do so in a different manner. The dynamics of WoLF clearly show the effect of
the win or learn fast scheme, switching between the two discrete learning step
values at x = 0.5 and y = 0.5.

3.3 Generalization to Two-Player Normal Form Games

The previous section has show the gradient ð to be a basic building block of
several learning algorithms in two-action games, where the policy can be written
as π = {x, 1 − x}. This section extends the definition to the more general case
of two-player normal form games, where each player has a finite discrete set of
actions, and π = {π1, π2, . . . , πn} such that

∑
i πi = 1 and ∀πi : 0 ≤ πi ≤ 1. To

ensure satisfying the first constraint the gradient needs to be normalized such
that

∑
i ði = 0, where ði is the ith component of the gradient, i.e., ði is the
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Fig. 3. This figure shows the learning dynamics of the various algorithms in the Pris-
oners’ Dilemma, Battle of the Sexes, and Matching Pennies. The Nash Equilibria are
indicated with ⊗.
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partial derivative of the value function with respect to πi. The second constraint
is satisfied either by projecting π to the (closest point in the) valid policy space,
or by making π̇i itself dependent on π, analogous to the different policy update
rules of the algorithms.

Recall that the value function in two-player normal form games is defined
as V (π, σ) = πAσT . The ith element of the gradient can be calculated as the
partial derivative of V with respect to πi. Let ei denote the ith unit vector, the
differential with respect to πi can then be defined as δei. However, recall that
π̇ needs to be normalized in order to stay on the tangent space of π. This can
be guaranteed by projecting δei onto the tangent space using the orthogonal
projection function Φ(ζ) = ζ − 1

n

∑
j ζj [16]. This gradient can now be written

as
∂V (π, σ)

∂πi
= lim

δ→0

[π + Φ(δei)]Aσ
T − πAσT

δ

= Φ(ei)Aσ
T

= eiAσ
T − 1

n

∑
j

ejAσ
T

which closely resembles the replicator dynamics (see Equation 8). As explained
in Section 2, IGA and WoLF use a projection function to ensure a valid policy
(i.e., to satisfy ∀πi : 0 ≤ πi ≤ 1). Similarly, their dynamical models need to
be projected back to the valid policy space. CL, FAQ and RM take another
approach, and ensure validity of the policy update by making the update rule
proportional to π. Incorporating proportional updating into the gradient-based
policy update rule yields

πi(t+ 1) ← πi(t) + πi
∂V (π, σ)

∂πi

The projection function Φ which projects δei to the tangent space of π needs to
change as well in order to properly map the weighted gradient. Intuitively, this
can be achieved by using a weighted mean instead of a standard mean, such that
Φ̂(ζ, w) = ζ−

∑
j wjζj where w is a normalized weight vector. Using w = π, this

leads to the following dynamics:

π̇i = πi lim
δ→0

[
π + Φ̂(δei, π)

]
AσT − πAσT

δ

= πi lim
δ→0

πAσT + Φ̂(δei, π)Aσ
T − πAσT

δ

= πiΦ̂(ei, π)Aσ
T

= πi[eiAσ
T −

∑
j

πjejAσ
T ]

= πi[eiAσ
T − πAσT ]

These resulting dynamics are exactly the replicator dynamics of Equation 8,
which shows that Cross Learning is equal to Gradient Ascent with proportional



Multi-agent Learning and the Reinforcement Gradient 157

updates. This provides a strong link between the two families of algorithms,
gradient ascent on the one hand and independent multi-agent reinforcement
learning on the other.

All of the algorithms described in this section reveal dynamics that follow the
reinforcement gradient. The terms of the gradient appear to be the foundation
of multi-agent reinforcement learning, with learning rate modulations and some
deviations for the sake of exploration and coordination.

4 Discussion

Gradient Ascent on the expected reinforcement assumes that the gradient is
known or can be computed by the agent. This is typically not the case in rein-
forcement learning problems. The merits of Gradient Ascent are more theoretical
– it allows to provide convergence guarantees at the cost of stronger assumptions.
Recently, similar guarantees have also been derived for evolutionary models of
independent multi-agent reinforcement learning. These guarantees either draw
on well established models from evolutionary biology, or study newly derived
variations. For example, the cyclic behavior of the replicator dynamics is a well
studied phenomenon [10], while the dynamics of FAQ-learning have been thor-
oughly analyzed in two-agent two-action games showing convergence to Nash
equilibria [12]. In addition, the findings presented in this article highlight the
commonalities of gradient ascent and reinforcement learning. Future research
can build on this basis and further unite the two parallel streams of literature.

5 Conclusions

This article relates two seemingly diverse families of algorithms within the field
multi-agent learning: gradient ascent and independent reinforcement learning.
The main contributions can be summarized as follows: First, it is shown that the
replicator dynamics are a prime building block of various types of independent
reinforcement learning algorithms, such as Cross Learning, Regret Minimization,
and Q-learning. Second, the replicator dynamics are shown to relate to the gra-
dient of the expected reward, which forms the basis of Gradient Ascent. Both the
replicator dynamics and gradient ascent base their update on the difference be-
tween the expected reward of an action and the average expected reward over all
actions. The difference lies in the weight given to each action’s update: gradient
ascent assumes uniform weights as given by the gradient, whereas the replicator
dynamics use the action-selection probabilities as weights. The theoretical com-
parison is complimented by a visualization of the different learning dynamics in
representative two-agent two-action games – a class in which their similarity is
particularly compelling.

In sum, this article structures a highly diversified field such as multi-agent
learning. The number of proposed learning algorithms is continuously increas-
ing, and we deem recognizing persistent principles such as learning along the



158 M. Kaisers, D. Bloembergen, and K. Tuyls

reinforcement gradient crucial to the integrity of the field. This approach pro-
vides the basis for an analysis of the inherent capabilities but also limitations of
what is learnable with independent reinforcement learning in multi-agent games.
Eventually, we are seeking to establish lower bounds on the performance in multi-
agent games similar to Probably Approximately Correct Learning guarantees in
single-agent learning.
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Abstract. Increasingly research into the uses of argumentation in multi-
agent dialogues takes an experimental approach. Such studies explore
how agents can successfully employ argumentation besides the best and
worst case situations of formal analysis. While a vital part in these exper-
iments is influenced by the scenarios from which dialogues are generated,
there is very little research on how these can be generated in a meaningful
way, respecting the characteristics of the underlying dialogue problem.
This paper proposes, by means of an example system for deliberation
dialogues, a methodology for the construction and evaluation of a sce-
nario generation process. It is shown how scenarios can accommodate
argumentation with structured arguments and how it is tested whether
the generated scenarios are interesting for experimentation.

1 Introduction

One of the key components of multi-agent systems is communication and in
recent years systems have been developed to model agent communication us-
ing argumentation-enabled dialogue systems. Such systems promise to be more
efficient in bringing agents to a decision and yield better agreements. [10]

While formal studies have indeed provided insights into theoretical reacha-
bility of ideal and intuitive conclusions, more and more research is looking to
empirically investigate benefits to overcome the often strong limitations that
are introduced in formal studies and to find results besides best and worst case
situations. Through a software experiment unique situations, called scenarios,
are generated. Agents are run to construct a dialogue from the scenario, after
which the efficiency and effectiveness of the dialogue is measured. Inherently this
specific scenario directly influences the results and it is therefore crucial that it
is generated in a meaningful fashion. However, very little research has focussed
on how scenarios can be generated while respecting the characteristics of the
underlying dialogue problem.

This paper, being part of a project taking the experimental approach to find-
ing the use of argumentation for agents, will provide a methodology to gener-
ate scenarios in a structured way. An example dialogue system with BDI-based
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agents is introduced for which scenarios are generated. Several desirable metrics
are introduced by which it is shown how the most influential input parameters
of the system can be found.

2 Background on Experimentation in Argumentation-
Enabled Dialogues

Computational argumentation is roughly divided in the areas of argumentation
logics and dialogical argumentation. The former pertains to the evaluation of
an argumentation system as to identify the justified arguments while the latter
usually makes use of such logics but studies the effects of arguments in agent
dialogues instead. Agents engage in various types of dialogues where argumen-
tation is useful; notably, as classified by Walton and Krabbe [12], negotiation,
persuasion and deliberation.

2.1 Existing Work

Several works explored the practical benefits of argumentation in dialogues. In
both Karunatillake et al. [3] and Paquier et al. [8] argumentation-based negotia-
tion is studied. While the focus of the systems is different (social agent societies
and exploring the negotiation space respectively) the argumentative parts of
agents are modelled alike. Within a dialogue agents may ask for and supply a
motivation behind proposals. However, the language does not allow agents to
build structured arguments, which severely limit the expressivity of agents.

Black and Bentley [1] empirically investigated the use of argumentation in
two-party deliberation dialogues. Agents are initialized with a set of abstract
value-based arguments which are used in the dialogue to decide on some action.
The argumentative strategy is shown to outperform a simple consensus form-
ing strategy in randomly generated dialogues with a wide variety in number of
arguments, values and actions.

Ontañón and Plaza [6] experiment with two-agent inductive learning dialogues
using structured arguments. Evaluation is performed using examples from an
existing repository, in contrast to generating new scenarios for the agents.

2.2 Characteristics of Deliberation Dialogues

While the existing work already points towards useful applications, there has not
yet been a project that uses argumentation with structured arguments, formed
from an agents beliefs and goals. This paper shows a methodology to generate
scenarios that accommodate for argumentation with structured arguments while
strongly reflecting the characteristics of deliberation dialogue type as identified
from the existing literature on argumentation-based dialogues [1,4,5]:
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– Mutual deliberation goal
– Unequal roles between agents
– Not all options (possible actions) are known by all agents
– Both compatible and conflicting goals between agents
– Incomplete information and from different sources

The scenario generation process that is now introduced is grounded in and sup-
ports these characteristics. A similar analysis of the characteristics of the under-
lying problem structure should be performed for any dialogue type that is under
experimentation.

2.3 Generating Interesting Scenarios for Experimentation

Scenarios generated using the methodology proposed in this paper will reflect
the unique features of the deliberation dialogue as just identified. However, we
also need to evaluate whether the generated scenarios will be interesting enough
to use in argumentation dialogue experiments. That is, the scenarios need to
provide incentive to the deliberation process. When testing argumentation in
deliberation dialogues it is desired that agents can indeed make proposals for
some action, forward (counter-)arguments and question statements. Scenarios
can be interesting in two ways: to which degree it allows for the justification
of doing some action and to which degree proposals for these actions can be
attacked. How to test scenarios on these qualities will be discussed in section 5.

3 Deliberation Model

To facilitate scenarios with the complexity of the deliberation dialogues a model
is now introduced that combines a structured argumentation logic with a multi-
agent deliberation dialogue system. This forms the example system for which a
scenario generation process is modelled and evaluated.

3.1 Argumentation Logic

Arguments in the deliberation dialogues are formed using a simple instantiation
of the abstract ASPIC framework for argumentation with structured arguments
[9], which is an instance of the Dung [2] abstract argumentation model. It allows
agents to create structured arguments, modelled as inference trees of applied
strict and defeasible rules.

An argument can be attacked by rebutting a conclusion of a defeasible infer-
ence, by undermining one of its premises or by undercutting one of its defeasible
inferences. From the resulting attack relation and a preference relation on the
arguments the status of an argument can be evaluated.

In this paper a simple instantiation of the ASPIC framework is assumed,
with a simple logical language consisting of propositional literals, only defeasible
rules and no preference ordering on arguments (such an instantiation is called
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an ASPIC argumentation system). Rules are written as p ⇒� q, where the rule
name � is omitted for clarity when appropriate and where the premise p and
conclusion q are literals in the topic language. Arguments are written as A |∼ p
where A is the set of used premises and inferences and p is the conclusion.
Extended versions of this simple instantiation will be studied in later work.

3.2 Dialogue Context

The deliberation dialogues consist of a series of moves that, except for propos-
als, always reply to a previous move. In these moves the agents make proposals,
question statements, provide arguments or surrender to a previous statement.
Although the full dynamics of an argumentation-based deliberation dialogue
model are not needed for this paper, it is still good to briefly cover the inter-
play between agents, arguments and the proposals. The multi-agent deliberation
model here is a simplification from that of Kok et al. [4].

First of all the dialogue takes place in a deliberation dialogue context.

Definition 1. A deliberation dialogue context consists of:

– An ASPIC argumentation system L
– A topic language Lt consisting of

• options Lo ⊆ Lt

• goals Lg ⊆ Lt

• beliefs Lb ⊆ Lt

– A mutual deliberation goal gd ∈ Lg

Agents engage in a dialogue and make proposals for action respecting a mutual
goal describing their shared interest, like making profit. Reasons for submitting
proposals can in turn be requested to which arguments can be forwarded showing
how some goal is achieved by performing the proposed action. From there the
agents question or surrender to premises and provide arguments.

Agents take turns and every turn they may submit multiple moves to the
dialogue. Except the propose move every move has a specific target that it attacks
or to which it surrenders. In this way multiple distinct proposal trees can be
constructed by the agents. When no agent makes any more moves the dialogue
ends and the winning proposal can be determined according to some heuristic.
Figure 1 show an example in which a proposed option o is supported by two
arguments with a goal as conclusion, one of which is has a counter-argument
causing agent b to retract his earlier claim.

3.3 Agent Model

Every participating agent has a certain role in the system, such as a topic expert
or nancial agent. This role describes the duties and desires of an agent as being
a part of its context.

Definition 2. A set of rolesR is defined where every role r ∈ R in a deliberation
context with mutual goal gd and set sizes nOr and nGr is assigned:
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1(b) : propose(o)

2(a) : why-propose(o)

3(b) : argue(o, o ⇒�1 g1 |∼ g1) 4(a) : argue(o, o ⇒�2 g2 |∼ g2)

5(a) : argue(¬
1 |∼ ¬
1) 6(b) : retract (
1)

Fig. 1. Example of a proposal tree with two arguments from option o

– A set of options Or ⊆ Lo defined by Or = {o1, . . . , oi} such that |Or| = nOr

– A set of goals Gr ⊆ Lg defined by Gr = {g1, . . . , gj} such that |Gr | = nGr

The idea is that the role accounts for the basic set of options that the agent
knows about and the goals the agent has. The variables nOr and nGr are used
to vary the number of options and goals associated with a role.

Internally the agents are modelled using the influential BDI architecture [11],
which is also a natural way of designing argumentation-enabled agents. [7] An
agent maintains a set of goals that it wants to bring about and a set of beliefs
consisting of facts and rules. For deliberation systems this is extended with a
set of options, which are the actions that an agent knows it can propose to solve
the deliberation problem at hand.

Definition 3. A set of agents A is defined where every agent a ∈ A has:

– A role r ∈ R
– A set of options Oa ⊆ Lo

– A set of goals Ga ⊆ Lg

– A set of beliefs Ba ⊆ Lb

4 Scenario Generation

As established above, generated scenarios will need to support full structured
argumentation using the agents’ beliefs and goals. Options in a deliberation prob-
lem typically exist because, through some line of reasoning, they promote the
achievement of a goal, as supported by an argument for the option. This property
forms the idea behind the five-step process for the generations of scenarios.

To illustrate the generation process a running example is used. Three agents
will participate in a deliberation dialogue with mutual goal gd. These agents are
split into two different roles, both of which are assigned two options and two
goals, as visualized in Table 1.

4.1 Rule Chaining

The first step in generating scenarios is to create a body of knowledge that, as
is typical in deliberation problems, forms lines of reasoning between options and
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Table 1. Example dialogue with three agents

nA = 3 A = {a1, a2, a3}
nR = 2 R = {r1, r2}
nOr = 2 Or1 = {o1, o2} Or2 = {o2, o3}
nGr = 2 Gr1 = {g1, gd} Gr2 = {g3, g4}
nS = 10 S = {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10}

the goals that they promote. These are called rule chains and will connect a
role’s option to one of the role’s goals. Rules in these chains are built from a
limited set of atoms called the chaining seed set.

Definition 4. A chaining seed set of atoms S ⊆ Lb is defined as S = {p1, . . . .pi}
such that |S| = nS

The variable nS , the running example uses nS = 10, is used to control the
number of atoms that are used to generate rules for a chain. A chain starts with
a rule with an option as premise and ends with a rule with a goal as conclusion.
The consequence to all other rules is an atom from the chaining seed set and in
turn is the antecedent for the follow-up rule. Although chains of rules with only
one positive antecedent may seem restricted, it will already support a sufficiently
complex scenario as will be shown in Section 5.

Definition 5. Given a goal g, an option o and a chain length l a rule chain is
a set of rules Cg,o such that

– if l = 1 then Cg,o = {o ⇒ g}
– if l > 1 then Cg,o = {o ⇒ p1, . . . , pi ⇒ pj , . . . , pn ⇒ g} where n = l − 1

and {p1, . . . , pn} ⊆ S

Intermediate atoms used to create rules are chosen arbitrarily from the chaining
seed set. Note that only one chain is possible with chain length 1, but multiple
paths with larger chain lengths, using different intermediate atoms. Also, the
option o is the only required premise to generate a full argument in L for the
goal g and every pi is a sub-conclusion in such an argument.

When generating a chain for the running example, we may for instance chain
role r1’s goal gd to its option o1. With l = 3 and the seed set S a chain Cg2,o1 =
{o1 ⇒�1 p5, p5 ⇒�2 p2, p2 ⇒�3 g2} is constructed. Agents that know about all
rules in this chain as well as the option o1 will be able to construct a single
argument for g2.

4.2 Conflict Generation

Scenarios do not only contain reasons why an option will lead to some goal
being achieved. An important part of deliberation problems is that there are
conflicts between what is known and what the rule chains proclaim. Therefore,
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the second generation step is to extend the scenario with conflicting knowledge.
This is modelled using negated facts which are created based on a rule chain.
A negated fact is generated for every way that a rule in some chain can be
attacked in L, that is by undercutting, undermining or rebutting. These negated
facts represent the contrary views in the deliberation problem over the truth
status of relevant facts.

Definition 6. A rule chain Cg,o with length l linking some goal g and option o
has a set of possible conflicts C̄g,o containing for every rule p ⇒� q ∈ Cg,o:

– a fact ¬� (an undercutter)
– a fact ¬p (an underminer)
– a fact ¬q (a rebuttal)

A set of possible conflicts C̄g,o thus contains facts that can be used to generate
counter-arguments to arguments formed using Cg,o. Note that no rule weights
are used in both chains and conflict set. Therefore the attack between two argu-
ments as formed from these rules is always be symmetric, i.e. they are equally
acceptable. Although this is a simplification of the complex knowledge of real
world deliberation problems it does already allow for structured arguments and
counter arguments and, as demonstrated later, can be sufficiently complex to
generate interesting dialogues.

Consider the example chain Cg2,o1 = {o1 ⇒�1 p5, p5 ⇒�2 p2, p2 ⇒�3 g2} then
there is a set of possible conflicts C̄g2,o1 = {¬�1,¬o1,¬p5,¬�2,¬p2,¬�3}.

4.3 Completing the Knowledge Pool

As a third step the pool of knowledge is completed before being allocated to the
agents. The options and goals in the pool are aggregated from the roles in the
system.

Definition 7. A knowledge pool K is assigned:

– a set of pool options OK =
⋃

r∈ROr

– a set of pool goals GK =
⋃

r∈RGr

Beliefs are derived from roles as well, by, for every option in the pool, generating
either a chain or a set of conflicts, depending on whether the role was assigned
the specific option.

Definition 8. For every option o ∈ OK , given some role r ∈ R and a set size
nBo

r̄
a set of role-option beliefs Bo

r is any set such that:

– if o ∈ Or then Bo
r = Cgd,o ∪ Cg,o for some goal g ∈ Gr

– if o �∈ Or then Bo
r ⊆ C̄g,o for an arbitrary goal g ∈ Gr such that |Bo

r | = nBo
r̄

The knowledge pool now contains both full paths from some option to some goal
as well as negated facts to form counter arguments. The variable nBo

r̄
can be used

to tweak the number of generated negated beliefs for options not assigned to a
role. Table 2 shows the rule chains that are generated for the roles in the running
example as well as the selected negated beliefs for every chain.
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Table 2. Belief assignment in the example’s knowledge pool

l = 3 (chains with length 3)
nBo

r̄
= 2 (full chain or 2 negated beliefs)

r1
Bo1

r1 o1 ⇒�1 p5, p5 ⇒�2 p2, p2 ⇒�3 g2,
o1 ⇒�4 p6, p6 ⇒�5 p4, p4 ⇒�6 gd

Bo2
r1 o2 ⇒�7 p5, p5 ⇒�2 p2, p2 ⇒�8 g1,

o2 ⇒�9 p9, p9 ⇒�10 p1, p1 ⇒�11 gd
Bo3

r1 ¬
17,¬p3
r2

Bo1
r2 ¬p2,¬
3

Bo2
r2 o2 ⇒�9 p9, p9 ⇒�12 p8, p8 ⇒�13 g4,

o2 ⇒�14 p1, p1 ⇒�15 p9, p9 ⇒�16 gd
Bo3

r2 o3 ⇒�17 p7, p7 ⇒�18 p3, p3 ⇒�19 g4,
o3 ⇒�17 p7, p7 ⇒�21 p8, p8 ⇒�22 gd

4.4 Option and Goal Allocation

Following the characteristics of deliberation problems, agents inherit options and
goals associated with their roles. Additionally, agents have personal goals that
they do not necessarily share with other agents. Examples of such goals are those
originating from personal values or goals transcending an agent’s current role.

Definition 9. An agent a ∈ A with role r and a set size nGr̄ has:

– A set of options Oa = Or

– A set of non-role originating goals Gr̄
a where for every g ∈ Gr̄

a it holds that
g ∈ GK \Gr and such that |Gr̄

a| = nGr̄
a

– The combined set of goals Ga = Gr ∪Gr̄
a ∪ {gd}

Non-role originating goals are only goals that already exist in the knowledge
pool. This is not for simplicity but ensures partial overlap between the goals of
agents with different roles, as is typical for deliberation situations. The variable
nGr̄

a
will be used to set the number of non-role goals allocated to an agent.

4.5 Role and Non-role Belief Allocation

The final step is to allocate the beliefs that an agent will have in the deliberation
scenario. We will again use an agent’s role to allocate knowledge from the pool
to an agent. Since we have seen that agents usually have incomplete knowledge
we will not assign all of a role’s rule chains or negated facts.

Definition 10. An agent a ∈ A with some role r is assigned a set of nBr
a
role-

originating beliefs

Br
a ⊆

⋃
o∈OK

Bo
r such that |Br

a| = nBr
a
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Table 3. Information allocation to the agents for the example

(Agents a1 and a2 have role r1; agent a3 has role r2)
nGr̄

a
= 1 (Agents inherit goals, gd and get one non-role goal)

Oa1 o1, o2 Ga1 gd, g1, g2, g4
Oa2 o1, o2 Ga2 gd, g1, g2, g3
Oa3 o2, o3 Ga3 gd, g3, g4, g2

nBr
a
= 13 (Agents inherit 13 of their 14 role beliefs)

nBr̄
a
= 2 (And get 2 non-role beliefs)

Ba1 o1 ⇒�1 p5, p5 ⇒�2 p2, p2 ⇒�3 g2,
o1 ⇒�4 p6, p4 ⇒�6 gd,
o2 ⇒�7 p5, p5 ⇒�2 p2, p2 ⇒�8 g1,
o2 ⇒�9 p9, p9 ⇒�10 p1, p1 ⇒�11 gd,
¬
17,¬p3,
o1 ⇒�23 p2, p3 ⇒�19 g4

Ba2 p5 ⇒�2 p2, p2 ⇒�3 g2,
o1 ⇒�4 p6, p6 ⇒�5 p4, p4 ⇒�6 gd,
o2 ⇒�7 p5, p5 ⇒�2 p2, p2 ⇒�8 g1,
o2 ⇒�9 p9, p9 ⇒�10 p1, p1 ⇒�11 gd,
¬
17,¬p7,
o2 ⇒�25 p2, o1 ⇒�25 p5

Ba3 ¬
4,
o2 ⇒�9 p9, p9 ⇒�12 p8, p8 ⇒�13 g4,
o2 ⇒�14 p1, p1 ⇒�15 p9, p9 ⇒�16 gd,
o3 ⇒�17 p7, p7 ⇒�18 p3, p3 ⇒�19 g4,
o3 ⇒�17 p7, p7 ⇒�21 p8, p8 ⇒�22 gd,
p8 ⇒�26 p7, p2 ⇒�3 g2

The variable nBr
a
is used to set the number of role-option beliefs, which for

simplicity is equal for all agents. Since no agent will be assigned full knowledge,
it is likely to miss some rule needed to construct a full argument for a chain, or
that it cannot construct a counter-argument.

Agents also have beliefs that not necessarily originate from the role they have
in the system. Such beliefs can come from various sources, such as an agent’s
expertise or prior encounters. It will be modelled as a set of rules taken from
newly generated chains for some of the agent’s options and goals, not different
than how chains are generated for roles.

Definition 11. An agent a ∈ A is assigned a set of nBr̄
a
non-role originating

beliefs

Br̄
a ⊆

⋃
o∈Oa

Cg,o for an arbitrary goal g ∈ Ga such that |Br
a| = nBr̄

a

The variable nBr̄
a
is used to set the number of non-role originating beliefs known

to the agent. The additional chains, if fully assigned to the agent, can be used
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to create supplementary arguments from some option to an agent’s goal. In
addition, the individual rules in the chain can solve the problem of missing rules
in the chains it was assigned from its role. For instance if, in our running example,
agent a2 was not assigned the rule �4 it no longer knows all rules in the chain and
cannot construct an argument for g1 any more. However, its non-role originating
beliefs set may include a supplementary chain {o2 ⇒ p1, p1 ⇒ p2, p2 ⇒ gd}
which again allows him to construct an argument for g1 from o2.

The total set of beliefs is the union of role and non-role originating beliefs.

Definition 12. An agent a ∈ A is assigned a set of beliefs Ba = Br
a ∪Br̄

a

The running example’s allocated options, goals and beliefs are listed in Table
3. Agents a1 and a2 share a role r1 in the system, while agent a3 has role r2.
Every agent inherits the options, goals and an arbitrary part of the beliefs from
their role (as specified in Table 2), but also is assigned a supplementary non-role
originating goal and a small arbitrary set of non-role originating beliefs.

5 Evaluation of Generated Scenarios

A method to structurally generate deliberation scenarios has been presented
that models the dynamics of deliberation problems using goals, rule chains and
(non-)role based belief allocation. Recall from 2.3 that generated scenarios should
be tested on to what extent they have the potential to produce interesting di-
alogues, which is defined by to what degree an agent has an argument for its
options and to what degree counter-arguments to those exist.

It is now shown how an experimental approach, similar to experimentation
with a full dialogue system, can be used to evaluate the scenario generation pro-
cess. Importantly, the generation process uses 10 input parameters, as collected
in Table 4 for the system in this paper, which directly influence how a scenario
looks like and therefore to what degree the scenario is interesting.

5.1 Metrics for Interesting Scenarios

For an agent to propose one of its options in a deliberation dialogue it needs
to be able to generate an argument from the option to one of its goals. Con-
sequently, the first metric for interesting scenarios is to test if agents can form
such arguments, in which case the option is called justified.

Definition 13. An agent a’s option o ∈ Oa is a justified option if, on the basis
of the beliefs Ba ∪ {o}, an argument A |∼ g can be constructed for some goal
g ∈ Ga such that o ∈ A.

Note that depending on the exact deliberation dialogue system used the argu-
ment may be required to be a credulously or sceptically acceptable argument
or even have the mutual deliberation goal as conclusion. For the system in this
paper we will require an argument that is defensible under preferred semantics,
matching the credulous nature of practical reasoning in deliberation dialogues.
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Table 4. Input parameters used in the scenario generation process

min example max
nA The number of agents 1 3 6
nR The number of roles 1 2 6
nOr A role r’s options set size 2 2 5
nGr A role r’s goals set size 2 2 5
nS The chaining seedset size 10 10 100
l The length of rule chains 3 3 9
nBo

r̄
An agent a’s negated role-option beliefs set size 0 3 15

nGr̄
a

An agent a’s non-role originating goals set size 0 1 2

nBr
a

An agent a’s role-originating beliefs set size 1 7 15
nBr̄

a
An agent a’s non-role originating beliefs set size 0 2 20

It is now possible to define a metric that indicates to what extent a scenario
is interesting, that is, which of the options of the agents are justified.

Definition 14. A generated scenario with a set of agents A has an option jus-
tification percentage

jA =
|
⋃

a∈A{o|o ∈ Oa where o is a justified option}|
nA × nOr

× 100

Consider again the generated example scenario. For each of the three agents
their two options are tested. Table 5 shows the arguments that the agents can
form. Agents a1 and a2 have arguments from both their options, while agent a3
was able to construct an argument for o2 but not for o3 since it misses the rule
p8 ⇒�16 g3. Hence, the option justification percentage jA = 5

6 × 100 = 83%.
To see if scenarios also spur counter-arguments to the arguments used for

justified options a second metric is defined. The idea is that for every justified
option of an agent the other agents’ knowledge is used to construct a counter-
argument as so to allow attacks on proposals as made in a deliberation dialogue.

Definition 15. An agent a’s justified option o, as supported by argument A |∼
g, is also a countered justified option if some agent a′ ∈ A, where a �= a′, can, on
the basis of beliefs Ba′ ∪ {o}, construct a counter-argument B |∼ p that defeats
A |∼ g.

Analogous to the degree of option justification we define a metric for the degree
of justified options that are also countered by some argument.

Definition 16. A generated scenario with a set of agents A has an option coun-
tered justification percentage

j̄A =
|
⋃

a∈A{o|o ∈ Oa where o is a countered justified option}|
|
⋃

a∈A{o|o ∈ Oa where o is a justified option}| × 100

The example’s countered option justification percentage j̄A = 3
5 × 100 = 60%

since agent a3 can construct a counter-argument for three of the justified options:
to both agent a1’s and a2’s argument for o1 and to agent a2’s argument for o2.
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Table 5. Arguments for option justification in the example scenario

justification argument counter-argument
a1 o1 o1, o1 ⇒�1 p5 ¬o1 by a3

p5, p5 ⇒�2 p2
p2, p2 ⇒�3 gd

o2 o2, o2 ⇒�4 p2 (no counter-argument)
p2, p2 ⇒�5 p9

p9, p9 ⇒�6 g1
a2 o1 o1, o1 ⇒�1 p5 ¬o1 by a3

p5, p5 ⇒�2 p2
p2, p2 ⇒�3 gd

o2 o2, o2 ⇒�18 p6 ¬p6 by a3
p6, p6 ⇒�19 p2

p2, p2 ⇒�5 p9
p9, p9 ⇒�6 g1

a3 o2 o2, o2 ⇒�12 p3 (no counter-argument)
p3, p3 ⇒�13 p7

p7, p7 ⇒�14 g3
o3 (no argument)
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(b)

Fig. 2. Average (countered) option justification percentages jA and j̄A (with standard
errors of the mean) with nBr

a
∈ {1, . . . , 25}

5.2 Experimental Validation of Scenario Generation

The scenario generation method is controlled by a large number of input pa-
rameters. To investigate which input parameter settings within a reasonable
range (see Table 4) produce interesting dialogues a software experiment was per-
formed. Scenarios were generated repeatedly, with a total of a 1000, with random
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Table 6. Input parameters and their influence on jA and j̄A

option justification jA countered option justification j̄A
β t P ideal β t P ideal

l −0.51 −28.66 < 0.001 5 −0.05 −1.65 < 0.1 4
nBr

a
0.43 23.99 < 0.001 60 0.53 14.60 < 0.001 45

nBr̄
a

0.21 12.29 < 0.001 9 −0.03 −0.84 NS 3
nOr −0.15 −8.71 < 0.001 3 −0.16 −5.31 < 0.001 2
nS −0.12 −6.72 < 0.001 75 −0.15 −4.67 < 0.001 35
nBo

r̄
−0.04 −2.09 < 0.05 5 0.08 2.52 < 0.05 6

nR −0.04 −2.54 < 0.05 5 0.10 3.32 < 0.001 5
nGr̄

a
−0.02 −0.96 NS 2 0.05 1.67 < 0.1 3

nA 0.01 0.47 NS 4 0.37 12.26 < 0.001 6
nGr −0.01 −0.43 NS 2 −0.04 −1.44 NS 3

parameter settings and the two metrics jA and j̄A are applied to see if the agent’s
options in the scenario are justified and countered justified.

To visualize the effect an input parameter can have Figure 2 shows the (coun-
tered) option justification for the number of role-originating beliefs nBr

a
allocated

to an agent. Clearly the more beliefs are assigned to an agent the higher chances
are that it can form arguments for its options (Figure 2a) and that other agents
can form a counter-argument to that (Figure 2b).

While the effects on individual parameters can already be seen in graphs, this
does not provide a full insight into the dynamics between the parameters. For
example, it might be that the number of roles has no effect unless the number of
agents is high (or low). It is important to capture the interplay of parameters as
so to find the parameters that are most influential to the degree of (countered)
option justification. When performing experiments that make use of the scenario
generation process it is possible to adjust those important parameters.

The input parameters with the strongest influence on jA and j̄A are found by
performing a multiple linear regression analysis on the set of 2000 scenarios that
were generated with random input parameter settings. This creates a model of
the data and, in a stepwise fashion, determines the parameters that contributed
significantly to the (countered) option justification metrics jA and j̄A.

Out of the 10 input parameters 7 have a statistically significant influence on
jA, with F (10, 1989) = 158.7, P < 0.001 and adjusted R-squared 0.44. This
means that 44% of the variance in jA can be explained from the 7 input pa-
rameters. For j̄A 8 parameters have a statistically significant influence, with
F (10, 768) = 42.94, P < 0.001 and adjusted R-squared 0.35, that is, explaining
35% of the variation in j̄A. Table 6 shows the input parameters with significant
influence ordered by the amount of influence (standard beta coefficient), t and
P values (probability values, where non-significant parameters are labelled NP).

Different interesting results can be derived from the statistical analysis. Fore-
most, when experimenting with the deliberation system and scenario generation
process of this paper the length of rule chains l is the first parameter that should
be varied when a differing degree of option justification jA is to be tested. The
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bigger l is, the smaller jA will be, in line with the intuition that it increases
belief disparity. On the other hand, if focus of an experiment is on countering
proposals the number of agents nA should be varied instead, since that will have
most influence on j̄A. Unsurprisingly the number of role-originating beliefs nBr

a

has a high influence on both jA and j̄A, since a larger number of beliefs from
an agent’s role will increase the chance of ending op with all rules for a chain or
the right negated beliefs for a chain respectively. Moreover, it has an even bigger
influence on j̄A than on jA, visualized by the steeper slope in Figure 2.

The most influential parameters have been established, but not yet the pa-
rameter setting that gives the most interesting dialogues, that is, that maximizes
jA and j̄A. This often will be the starting point when experimenting since it of-
fers the agents scenarios with most chances of proposing options and countering
those. The parameter setting that maximizes one of the metrics will be called the
ideal setting and can be found using the regression model defined above. As the
model predicts precisely (with P < 0.001) the outcome of jA or j̄A it can also
be used to find the maximal value. A sufficiently large data set (N = 2000) is
produced for both metrics and maximal values are found. The parameter values
that produce these maximal values are shown in Table 6 and yield jA = 66%
and j̄A = 99%. Hence, with the ideal settings for jA the agents will be able
to propose roughly half of their options while with the ideal values for j̄A the
agents can counter essentially all options that are justified. Future work will
study how a single ideal setting for combined measures of interestingness can be
established.

6 Conclusion

A methodology has been proposed to model a scenario generation process for
argumentation-enabled deliberation dialogues. The contribution is twofold. First,
the state of the art in preparation of experiments for argumentation-based di-
alogues has been advanced. A scenario generation process for deliberation is
proposed that is the first to the authors’ knowledge that allows for structured
argumentation and through this supporting the full dynamics of the underly-
ing argumentation problem. Secondly, it is shown how an experimental analysis
helps to evaluate the quality of the scenario generation process by identifying
the most influential input parameters and giving the ideal parameter settings
that maximize the interestingness of scenarios.

The method as proposed in this paper, as well as the specific system de-
scribed, is used in a larger project to make the uses of argumentation in multi-
agent systems concrete. It has allowed us to experimentally analyse the uses of
argumentation in realistic scenarios by testing a variety of strategies for argu-
mentative and non-arguing agents as well as identify specific scenarios in which
argumentation is more (or less) suited.
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What Are Models for?

Peter McBurney

Department of Informatics, King’s College London, London WC2R 2LS, UK

Abstract. In this paper I discuss some of the purposes and functions of build-
ing models, particularly agent-based models, and present a comprehensive list
of these purposes and functions. Careful thought and attention is needed when
modeling domains containing intelligent entities, which is usually the case for
agent modeling. Reflection on the challenges involved in such domains leads me
to propose the construction of meta-models, which are models of the relation-
ship between an intended model of the domain and the entities in the domain,
when the entities may have access to the intended model or its outputs. Agent-
based computing approaches provide disciplined means of specifying, designing,
developing and evaluating such meta-models.

1 Introduction

What are models for? Most users and developers of models, in my experience, seem to
assume the answer to this question is obvious and thus never raise it. In fact, modeling
has many potential purposes, and some of these may conflict with one another. Criticism
of modeling efforts or the outputs of those efforts may arise because of mis-perception
of the aims and purposes of the modeling activity. Agent-based modeling is usually
undertaken for domains having autonomous entities, whether living or organizational,
and these entities may also be intelligent. In such cases, a model may exert an influence
on the domain being modeled, because the entities in the domain may have, or may
seek to have, models of their own. I discuss some of these issues in this paper, starting
with the issues of representation and prediction of some real world domain. Many of
my reflections apply to any type of modeling, not just agent-based modeling and not
even just computer simulation modeling; they also apply to both models developed for
business and public policy decisions as well as models for research purposes.

2 Representational and Predictive Functions

2.1 Models and Reality

Most modelers when asked what models are for are likely to answer that they are in-
tended to represent some real phenomenon, some portion of reality. Following Rosen
[1] and Hughes [2], we might understand the relationship between the model and reality
by means of a sequence of relationships between reality and models:1

1 The three process labels are due to Hughes [2].

M. Cossentino et al. (Eds.): EUMAS 2011, LNAI 7541, pp. 175–188, 2012.
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– Denotation is the process by which the model (let us call it M1) is developed in
order to represent some portion of reality (called R1).

– Demonstration is the working-out or working-through of the model, finding the
consequences of the initial states or assumptions either deductively or otherwise,
so that we move from some initial model state M1 to some consequential state or
collection of model outputs, M2.

– Interpretation is the process of inference from the model consequences M2 back
to the reality intended to be modeled, perhaps back to an inferred or consequential
state of reality, called R2.

Demonstration could be undertaken in many different ways: deductive mathematical
consequence; physical motions, as in a wind-tunnel or in an orrery (a physical model
of planetary relationships and motions); or the flow of communicative interactions be-
tween individual agents in a multi-agent model of a society. These various mechanisms
are referred to as the internal dynamics of the model by Hughes [2]. Morgan [3] argues
that such dynamics are typically set going by something external to the model, such as
the asking of a “What if” question. When run, the model’s internal dynamics lead it
to some resulting state or to the generation of outputs or consequences, as properties
of the model. The modeler then uses these model properties to infer conclusions about
the real domain that the model was intended to represent. Such inference from the con-
clusions or consequences generated by the model back to the reality may be contested.
In mainstream economic theory, for example, inference from non-deductive models has
usually been regarded as problematic, as discussed in [4,5]. One consequence of this
view in mainstream economics has been that research drawing on agent-based models
has had great difficulty being published.2 But since all modeling involves abstraction
from reality, even deductive inference is only valid if certain governing assumptions
about those aspects of reality abstracted away hold true. In past work [7], we identified
12 inference steps necessary to validly draw conclusions about human carcinogenicity
of chemicals based on experimental evidence, of which only one step was statistical
inference (i.e., inductive inference). Any inference from a mathematical model using
deductive internal dynamics back to reality would require similar contextual inference
steps for validity of the interpretation stage.

Robert Rosen understood this fact through the use of a category theoretic model of
the modeling process [1]. The three successive processes — denotation, followed by
demonstration, followed by interpretation — that connect real state R1 to real state R2
are only valid if the indirect path they construct between R1 and R2 via M1 and M2
mirrors some alternative direct path between R1 and R2. In other words, modeling the
domain will only produce valid inference if the successive stages of denotation, demon-
stration, and interpretation mirror (in some domain-specific sense) the development of
the real phenomenon when it transitions from R1 to R2.

What exactly does it mean “to mirror”? In an influential article in 1953 [8], the
economist Milton Friedman argued that models aimed at prediction only need to predict
well. They do not need to, and indeed may not be able to, describe the world in state

2 According to [6], only 8 out of 43,000 recent papers in the top twenty journals in Economics
drew upon multi-agent models or computational economics.
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R1, nor even the actual physical or social processes that take the world from state
R1 to state R2. In other words, a model may have good predictive properties without
having good representational or explanatory properties. Newton’s theory of gravity, for
example, predicted the motion of the planets in solar orbit without providing any (or any
reasonable) explanation for gravity. Friedman’s famous example also involved Newton:
a good player of billiards may be able, based on experience and intuition, predict the
likely motion of a billiard ball without any knowledge, let alone any use, of Newton’s
three laws of motion. Whether or not we accept Friedman’s argument depends to a large
extent on what we believe a model is for: is it essentially to predict the world or only to
represent or explain it?

The game theorist and economist, Ariel Rubinstein, has said that his main purpose
in creating models is to better understand and to sharpen his intuitions about the real
phenomenon being modeled [9]. How does a model help in understanding? In a series
of papers, Mary Morgan and colleagues [3,10,11,12,13,14] have argued that models
in economics are idealizations or abstractions of aspects of reality which enable the
creation of worlds parallel to the real world. By altering the underlying assumptions
or by exploring the internal mechanisms of the model, the modeler is able to explore
alternatives to the real world by, for example, asking What if? questions, considering
counter-factual assumptions, or pursuing alternative development paths. Thus, both the
world represented by the model and the world of the model can be explored. In this
view of modeling, Morgan argues, models themselves are not best understood as passive
recipients of exploration, but as active participants in the creation of knowledge [3]: by
their physical, mathematical, or computational nature, models resist some uses and they
facilitate others.

Another issue for representation is that most models typically denote multiple real
phenomena, not one particular phenomenon or one state of reality. Newton’s equations
of motion, although developed with the planets of Earth’s solar system in mind, in fact
constitute a class of distinct models, and only some (perhaps even only one) denote
the actual planets of our Solar system. To model the particular solar system we find
ourselves in, various variables, called parameters, need to be instantiated with particu-
lar values. This process of instantiation of parameter values so as to match a particu-
lar reality is called model calibration. The idea that modeling is a process of creating
classes of models has been explored in economics by John Sutton [15]. An example of
this class-of-models approach is the model of diffusion of agent-software technologies
across business networks given in [16]. A related view, due to Trygve Haavelmo [17]
and Marcel Boumans [18], is that a model can be seen as an experimental design, and
the data used for calibration comprises one experimental outcome of it. Running the
model with different input parameters or initial values generates additional experimen-
tal outcomes.

Calibration of models and assessment of model predictions assumes that we have
some way to measure those aspects of reality that our model purports to represent. This
can be problematic, for various reasons. In the case of economic and social domains, the
aspects of reality used for calibration or model prediction may be social artefacts: most
macro-economic variables (e.g., inflation rates, unemployment levels, etc) do not exist
in nature, and are themselves socially-constructed entities. Often their construction is a
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long and technical process, itself drawing on theories or models of the phenomena in
question, and subject to debate and contestation along the way. There are many different
operationalizations of the variable called the supply of money, for example, and so a
modeler may have considerable freedom of choice in calibrating or assessing his or her
model against monetary reality. A related issue is the use of stylized facts for model
calibration and assessment: these are generalizations of reality, also usually developed
or mediated through some theory. In economics, the “fact” that an increase in price
leads to a fall in aggregate demand is an example: in any particular market at any
particular time, aggregate demand may or may not fall when price rises, for any number
of reasons. So many are the exceptions to this particular “fact” that economists even
have a name for the exceptions to it, which are called Giffen Goods. In calibrating or
assessing the predictions of a model against stylized facts, a modeler is not using a
model to represent reality, but using a model to represent another model of reality.

A further issue with model calibration and assessment arises in theoretical physics
and elsewhere: we may have no independent access to the reality intended to be repre-
sented by the model other than via the model itself. String theory, for example, seeks to
model reality by positing a number of additional spatial dimensions to the three which
we humans have experience of. Since we do not have access to these dimensions we
cannot independently calibrate string theoretic models against them, nor assess any pre-
dictions arising from our models about them.3 It would seem to me that this situation
makes absurd any claims that mathematics is “unreasonably effective” in modeling
scientific phenomena [20], since how we could tell? Our only way to assess the ef-
fectiveness or otherwise of mathematical models of physics is via more mathematics.4

Likewise, marketing models seeking to predict future consumer purchase intentions can
not be calibrated independently of the models themselves, since there are no facts of the
matter to assess the model against.

2.2 Intelligent Entities

For the social and policy sciences, the real phenomena represented by a model usually
include human individuals or organizations. These entities may be intelligent and may
thus act in anticipation of future events.5 Indeed, models of human societies or human
activities may well seek to represent entities — for example, economic agents — who
themselves have models of their environment, and who may use these models to guide
their actions. What should the modeler assume about the models being used by the en-
tities being modeled? This is a question which most agent-based modelers will face at
some point, because agent-based models seek to represent entities in some real domain
as separate individuals. One very strange answer to this question is given by a branch
of economics, so-called Rational Expectations Theory, which assumes, firstly, that all

3 Perhaps this explains why, at the time of writing, String Theory and M-theory models have yet
to generate a single empirically-testable prediction after nearly four decades and thousands of
person-years of development [19].

4 I owe this insight to Stephen Reye.
5 Focusing mainly on biological and ecological domains, Rosen called such phenomena antici-

patory systems [1].
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economic actors in the model have access to an identical model themselves, and, sec-
ondly, that this identical model is the very model being constructed by the modeler. This
recursive theory, due originally to economist John Muth [21], has become influential in
mainstream economics.6 To anyone outside mainstream economics, however, these two
assumptions are simply bizarre.

Another issue for models of intelligent entities is that the model, or even the fact of
modeling, may influence the behavior of the real entities. The most famous example is
the Black-Scholes-Merton model of options pricing [23,24]. Prior to the development
of this model, trade in options and similar derivative financial products was limited
because potential traders were not able to coherently price such products, and there
was no agreed theoretical basis for determining such prices. Black and Scholes, and
separately Merton, proposed a family of models for options pricing which then led to
an explosion in trading of these. To develop their models, the modelers needed to make
assumptions about how traders would behave in such marketplaces. Once the models
were available, traders, having available no other guide to their behavior, adopted the
behaviors assumed by the modelers. Borrowing a term from the philosophy of language
for utterances which bring about changes in the world [25], sociologists of economics
have called such modeling activities, performative [26]: they create the very reality they
purport to describe.

Other examples in Economics involve the use of economic game theory to design
auction mechanisms, particularly for complex domains such as the combinatorial auc-
tions of PCS radio-frequency spectrum in the USA from 1994 onwards by the US
Federal Communications Commission [27,28]. Here one can see the models acting as
blueprints for the behaviors of the participants, facilitating some behaviors and preclud-
ing others.

Game theory also features in another primary instance of models being performative:
the development of western military strategy for nuclear weapons. Game theory models
of nuclear warfare provided strategists with the language and conceptual frameworks
to identify and explore alternative actions and their likely consequences in this domain
[29,30]. One weakness with a game-theoretic view of some interaction is that the actions
and strategies suggested by the theory rely on all the participants believing they are
playing the same “game”, and believing that the other participants also believe this of
one another. Philip Mirowski even speculates that in the late 1950s, the USA feared that
the leaders of the USSR were not playing the same game as they were, and so American

6 An interesting question for sociologists of economics is why this theory became influential.
One possible explanation is that these assumptions may lead the resulting models to be math-
ematically tractable more often than do more realistic assumptions. Another possible explana-
tion is that rational expectations theory justifies a particular (conservative) position regarding
public policy: any macro-economic policy action will be undermined by pre-emptive, counter-
vailing actions by intelligent economic actors able to second-guess the policy makers. Thus,
in this view, it is better for a policy-maker to do nothing than for policies to be subverted
pre-emptively. As economist George Stigler once suggested [22], in the market for economic
theories, as in any other market, the suppliers of theories produce the theories demanded by
those potential consumers of theories who have the money to pay for them; perhaps, then, it
should not be surprising that mainstream economic theory has tended to provide support for
government policies that favour rich and powerful interests.
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political and military leaders embarked on a campaign to persuade the Soviet Union to
adopt game theory for nuclear strategy also7 [30].

2.3 Models and Public Policy

Several features of the relationships between models and domains containing intelligent
entities have significant consequences for public policy development and implementa-
tion. Two important such features, both related to perfomativity of models, are those of
self-fulfilling and self-denying prophecies.8 If everyone in some system believes that all
the others in the system will act in a certain way, each person may then act pre-emptively
or in mitigation such that the forecasted behaviour is, or is not, brought about. For ex-
ample, if there are two alternative routes between two towns, and the majority of drivers
hear a radio forecast of heavy traffic on the first route, they may all choose instead to
take the second route, thus leading to congestion on the second and lighter traffic on the
first; the forecast would therefore be self-denying. Alternatively, if the experience of
drivers is such that they tend to dis-believe radio forecasts they hear, then the majority
may choose the first route, thus fulfilling the forecast.

As would be expected, these issues become important in matters of public policy,
particularly where governments or regulators, by their announcements or their words,
communicate forecasts to citizens. In Britain in March 2012, drivers of tankers carrying
petrol to service stations indicated that they may stage a strike the following month.
A Government minister then announced that car-owners should ensure, in anticipation
of any strike, that their petrol tanks were full, an announcement that led to mass and
immediate panic buying of petrol. There was thus soon a shortage of petrol caused
solely by the widespread and erroneous belief that a petrol shortage was imminent. The
fact that panic buying led to garages selling out of petrol of course confirmed public
beliefs of an impending shortage.9

Because of incidents such as this, most western Governments are very careful about
what they announce to their citizens, how they announce it, and when, regarding matters
of public health, food safety or national security. Such careful consideration is not uni-
form across all public policy areas, however. Within economics, there is a widespread
belief that the more information is widely known to economic agents, the better will
be their economic decision-making, and the better the functioning of the economy as a
whole. This belief has led most western central banks to release full information about
their decision-making processes for deciding policy on interest rates and on other mone-
tary policy instruments; the Bank of England, for example, openly publishes the minutes
of the meetings of its Monetary Policy Committee (albeit with a short delay after each
meeting). Clearly, the economic actors concerned with decisions about central bank in-
terest rates are (or, are assumed to be) better informed, and possibly more deliberative

7 US leaders seem to have done so by stating publicly that game theory was not useful for
nuclear strategy, as a form of reverse psychology.

8 These terms were coined by sociologist Robert K. Merton in 1948 [31], who was, interestingly,
the father of Robert C. Merton, co-developer of options pricing theory [24].

9 Funder [32] presents another example, from the last days of the German Democratic Republic
in 1988-1989.
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decision-makers, than are members of the general public concerned with mad-cow dis-
ease or similar health scares. But, as far as I am aware, there is no over-arching theory
or model of the relationships between model and domain for public policy domains
comprising intelligent, purposeful entities that suggests information should be publicly
released by governments in the case of economic domains, and not publicly released in
the case of health or security domains. Both these contrasting public policies (release
all information readily versus release only limited information carefully) seem to be
based merely on implicit, untested assumptions about model-domain relationships and
the impacts of additional information on participant behaviours.

3 Mensatic and Epideictic Functions

In addition to representation and prediction, models also serve several other functions in
use. Here I discuss two functions which are usually either overlooked or implicit. In
their list of three primary roles of business models, for example, Baden-Fuller and Mor-
gan [33] appear to overlook both these roles of models.

The first I term the mensatic function, from the Latin word for table, mensa. Here
the model acts as a vehicle to identify interested stakeholders and to bring them to-
gether, around a common metaphorical table. Models for forecasting demand can serve
this function internally within companies and with interested outsiders, such as distri-
bution partners [34]. For potential new ventures, particularly those in high-technology
industries, business models and plans serve this function with investors and with other
potential stakeholders, such as regulators and suppliers. Doganova and Eyquem-Renault
present a case study of a potential high-technology start-up in France, describing this
mensatic role in detail [35]. In matters of public policy, too, models can act to bring
stakeholders together and to help co-ordinate their beliefs and actions. In formulating
public health policies for dealing with malaria in developing countries, for instance, epi-
demiological models can act to co-ordinate the actions of the many stakeholders who
need to participate for effective strategy formulation and execution: medical personnel,
public health officials, national, regional and local government officials, community and
religious leaders, foreign aid donors, international agencies, pharmaceutical companies,
and suppliers of other treatment materials. Policy development and planning requires
the co-ordination of actions between these various stakeholders in order to design and
execute co-ordinated campaigns against the disease [36].

By bringing stakeholders “to the table”, models also serve as the basis for identi-
fying, and potentially deciding, trade-offs in public policy. In complex policy domains
such as public health or environmental risk assessment, the potential consequences,
costs or benefits of decisions may be experienced differentially by different people or
groups within a society, and thus identification of these becomes a major part of pub-
lic policy formulation [37]. Policy decisions in these domains usually involve complex
multi-attribute trade-offs, and, here too, both the making of policy and the forging of a
wide public consensus benefit from having different stakeholders discuss and compare
decision alternatives [38]. Within western public policy, these deliberative decision pro-
cesses are probably most finely developed for environmental risk assessment decisions
[39,40] and in land-use planning decisions [41].
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The mensatic role of models is particularly important for decisions made by multiple
people or teams, such as those for major public policy domains. Even for the trading de-
cisions of a private hedge fund, decisions may involve competitors and other outsiders,
with the model playing a central role, as Hardie and Mackenize have shown [42]. For
economic and marketplace domains, sociologist Michel Callon has called models mar-
ket devices, because they help to engineer, to bring into being, the associated market-
place [43].

Models may also serve an epideictic function. Epideictic reasoning involves infer-
ence from the form or the style of an argument, rather than from its content only. In an
example due to William Rehg [44], suppose you seek advice from two different doctors
about treatment for a serious medical condition. One doctor, let us call her Dr X, says
that there are three possible courses of treatment. She labels these courses, A, B and C,
and then proceeds to walk you methodically through each course – what separate basic
procedures are involved, in what order, with what what likely consequences and side
effects, and with what costs and durations, what chances of success or failure, and what
survival rates. She finishes this methodical exposition by summing up each treatment,
with pithy statements such as, “Course A is the cheapest and most proven. Course B is
an experimental treatment, which makes it higher risk, but it may be the most effective.
Course C . . . ”, etc.

The other doctor, lets call him Dr Y, in contrast talks in a manner which is apparently
lacking all structure. He begins a long, discursive narrative about the many different
basic procedures possible, not in any particular order, jumping back and forth between
these as he focuses first on the costs of procedures, then switching to their durations,
then back again to a discussion of costs, then on to some expected side effects, with
tangential discussions about the history of the experimental tests undertaken on one of
the procedures, and also about the architect who built the hospital, etc, etc. And he does
all this without any indication that some basic procedures are part of larger courses
of treatment, or that they are even linked in any way, and speaking without using any
patient-friendly labeling or summarizing of the decision-options.

Which doctor would you choose to treat you? If this description was all that you
knew, then Doctor X would appear to be the much better organized of the two doctors.
Most of us would have more confidence being treated by a doctor who sounds better-
organized, who appears to know what he or she was doing, compared to a doctor who
sounds disorganized. More importantly, it is also evident that Doctor X knows how to
structure what she knows into a coherent whole, into a form which makes her knowledge
easier to transmit to others, easier for a patient to understand, and which also facilitates
the subsequent decision-making by the patient. We generally have more confidence in
the underlying knowledge and expertise of people able to explain their knowledge and
expertise well, than in those who cannot, and usually this confidence is justified.

If we reasoned this way, we would be choosing between the two doctors on the basis
of their different rhetorical styles: we would be judging the contents of their arguments
(in this case, the content is their ability to provide us with effective treatment) on the ba-
sis of the styles of their arguments. Such reasoning processes, which use an argument’s
form to assess its content, are called epideictic, as are arguments which draw attention
to their own style.
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Since the advent of spreadsheet software applications, business plans for new ven-
tures or new products almost invariably contain a model of the business and of the mar-
ketplace in which it will exist. Such business plans and models are often out-of-date
very quickly, particularly in turbulent or high-technology markets, or depend on unveri-
fiable conjectures about which there are no facts of the matter (such as future consumer
purchase intentions or the reactions of competitors). Investors and other stakeholders,
such as distribution partners or suppliers, assessing plans for new business ventures
know all this. The function of such business plans and models is not to model or to
predict or to control reality accurately, since these goals in any case would usually
be impossible. Rather, the function of these models is to force intending new venture
managers to engage in structured and rigorous thinking about the domain, and to pro-
vide a means by which potential investors in the venture can probe this thinking. By
challenging the prior assumptions, the internal dynamics, or the interpretation of the
model, potential investors can assess the depth and rigor of the thinking of the man-
agement, as well as as assessing managers’ flexibility and adaptability in recognizing
and responding to changes in the market environment. Investors and other stakehold-
ers thus typically engage in a stress-test of managers’ beliefs and plans — contesting
the assumptions and reasoning of the business plan; being unreasonable in questions
and challenges; prodding and poking and provoking the management team to see how
well and how quickly they can respond, in real time, without preparation. In all of this,
a decision on the substance of the investment is being made from evidence about the
form, of how well the management team responds to such stress testing. This is per-
fectly rational, given the absence of any other basis on which to make a decision and
given our imperfect knowledge of the future. Thus, the business model becomes a ve-
hicle by which potential investors and other stakeholders may assess the capabilities of
the management team; the model serves, in other words, an epideictic function.

4 A List of Reasons for Modeling

Several authors have proposed lists of reasons for undertaking modeling, or lists of po-
tential functions of models: Rubinstein [9] lists four reasons for undertaking economic
modeling; Bailer-Jones [45] lists five functions of models in science; Epstein [46] lists
17 reasons to build explicit models;10 and Baden-Fuller and Morgan [33] present three
functions of models in business domains. Each of these lists has omissions. Seeking a
comprehensive list of reasons for constructing models, I have drawn on these four lists
as well as the the reflections above, to create the following list:

1. To understand natural reality: To better understand some real phenomena or
existing system. This is perhaps the most commonly perceived purpose of modeling, in
the sciences and the social sciences.

2. To predict natural reality: To predict (some properties of) some real phenomena
or existing system. As discussed above, a model aiming to predict some domain may be

10 Epstein’s reasons are at multiple levels of granularity, and some of his reasons are the con-
sequences of modeling rather than reasons for doing so, at least for honest modelers, e.g.,
“Challenge the robustness of prevailing theory through peturbations” and “Expose prevailing
wisdom as incompatible with available data”. He also numbers only 16 of the 17 reasons.
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successful without aiding our understanding of the domain at all. For many modeling
activities, calibration and prediction are problematic, and so predictive capability may
not always be possible as a means of model assessment.

3. To control natural reality: To manage or control (some properties of) some real
phenomena or existing system.

4. To understand an existing human model or artefact: To better understand a
model of some real phenomena or existing system. Arguably, most of economic theo-
rizing and modeling falls into this category, and Rubinsteins preferred purpose is this
type [9].

5. To predict an existing human model or artefact: To predict (some properties
of) a model of some real phenomena or existing system.

6. To understand, predict or control a future human model or artefact: To better
understand, predict or manage some intended (not-yet-existing) artificial system, so
to guide its design and development. Understanding a system that does not yet exist
is qualitatively different to understanding an existing domain or system, because the
possibility of calibration is absent and because the model may act to define the limits
and possibilities of subsequent design actions on the artificial system. The use of speech
act theory (a model of natural human language) for the design of artificial machine-to-
machine languages, or the use of economic game theory (a mathematical model of
a stylized conceptual model of particular micro-economic realities) for the design of
online auction sites are examples here. The modeling activity can even be performative,
helping to create the reality it may purport to describe, as in the case of the Black-
Scholes-Merton model of options pricing discussed above.

7. As a locus for discussion: To provide a locus for discussion between relevant
stakeholders in some business or public policy domain, a function I termed, mensatic.
Most large-scale business planning models have this purpose within companies, par-
ticularly when multiple partners are involved. Likewise, models of major public policy
issues, such as epidemics, often have this function. In many complex domains, such as
those in public health, models provide a means to tame the complexity of the domain.
Modeling thus enables stakeholders to jointly explore relevant concepts, data, system
dynamics, policy options, and the assessment of potential consequences of policy op-
tions, in a structured and shared way.

8. To resolve trade-offs: To provide a means for identification, articulation and
potentially resolution of alternative action options, alternative trade-offs, and their con-
sequences in some business or public policy domain; examples include health risk
assessment of chemicals or new products by environmental protection agencies, and
models of disease epidemics deployed by government health authorities.

9. To structure thinking: To enable rigorous, structured and justified thinking about
the assumptions and their relationships to one another in modeling some domain. Busi-
ness planning models usually serve this purpose. They may be used to inform actions,
both to eliminate or mitigate potential negative consequences and to enhance potential
positive consequences, as in retroflexive decision making [47].

10. To train people: Models can provide expedited and deliberately-focused experi-
ences of reality, which is why flight simulators are used to train airplane pilots. Market
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games and marketing models are now commonplace in companies for training of mar-
keting, sales and advertising staff.

11. To assess the modelers: To enable a means of assessment of managerial compe-
tencies of the people undertaking the modeling activity. This is the epideictic function
of modeling, where the model itself is a vehicle to enable interested stakeholders to
learn about and assess the assumptions, the reasoning processes, and the future action
plans of the people doing the modeling. As mentioned above, business plans and models
for new ventures are almost always used in this way by potential investors and business
partners to assess the management team of new ventures, and to decide whether or not
to participate in the venture.

12. To play: As a means of play, to enable the exercise of human intelligence, inge-
nuity and creativity, in developing and exploring the properties of models themselves.
This purpose is true of that human activity known as doing pure mathematics, and per-
haps of most of that academic activity known as doing mathematical economics.

5 Conclusions

The list of reasons for modeling given in this paper shows the diversity of functions of
models, particularly when models are created not merely for research, but to support
decision-making in business or in public policy. The brief discussion at the end of Sec-
tion 2.3 about the varying views across different public policy domains on the question
of what model information should be available to the entities being modeled, points to
the need for the development of meta-models for any model of an important domain.
Imagine we seek to model a target domain, X . A meta-model M would include the
intended model of the domain, let us call it Model A, together with a representation
(another model, B) of the domain X . The key purpose of the meta-model is to better
understand (and possibly also to predict and to control) the relationships between Model
A and the real intelligent entities inside domain X . Depending on the granularity of our
model A, then we may be able to assume that model B is in fact the same model as
model A. Likewise, the real entities inside X may be assumed themselves to have ac-
cess to model A or to model B. As with any model, constructing the meta-model M
will allow us to explore “What if?” questions, such as alternative policies regarding the
release of information arising from model A to the intelligent entities inside domain X .
Indeed, we could even explore the consequences of allowing the entities inside X to
have access to our meta-model M .

Constructing such a meta-model in any particular domain will not necessarily be
straightforward and will require careful thinking and analysis. Because of the recur-
siveness involved, the thought and analysis required is similar to that used in counter-
espionage, as described, for example, in [48]. Fortunately, we in the multi-agent
systems community have several well-developed techniques for undertaking such meta-
modeling: proven methodologies for agent-oriented software engineering, such as Gaia
[49], and detailed, comprehensive techniques for the careful analysis of dynamic knowl-
edge and belief, such as those in [50]. Arguably, all we currently lack is a good theo-
retical understanding of joint action, and how it occurs among a group of autonomous
agents.
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Abstract. Decentralized Partially Observable Markov Decision Pro-
cesses (Dec-POMDPs) provide powerful modeling tools for multiagent
decision-making in the face of uncertainty, but solving these models
comes at a very high computational cost. Two avenues for side-stepping
the computational burden can be identified: structured interactions be-
tween agents and intra-agent communication. In this paper, we focus on
the interplay between these concepts, namely how sparse interactions
impact the communication needs. A key insight is that in domains with
local interactions the amount of communication necessary for successful
joint behavior can be heavily reduced, due to the limited influence be-
tween agents. We exploit this insight by deriving local POMDP models
that optimize each agent’s communication behavior. Our experimental
results show that our approach successfully exploits sparse interactions:
we can effectively identify the situations in which it is beneficial to com-
municate, as well as trade off the cost of communication with overall task
performance.

1 Introduction

Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs)
provide powerfulmodeling tools for multiagent decision-makingwith limited sens-
ing capabilities in stochastic environments. However, the prohibitive computa-
tional cost required to compute an optimal decision rule renders them intractable
except for the smallest of problems.1 In the literature, two avenues for side-stepping
the computational burden can be identified: localized interactions between
agents—where the actions of each agent depend on the other agents only in spe-
cific, localized situations [1–7]—and intra-agent communication—where agents
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1 Dec-MDPs are known to be NEXP-complete even in 2-agent scenarios.
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are able to communicate with one another so as to partly mitigate the impact of
partial observability [8–15]. In this paper, we focus on the interplay between these
concepts, namely how sparse interactions impact the communication needs.

A key insight is that in domains with local interactions the amount of com-
munication necessary for successful joint behavior can be heavily reduced, due
to the limited influence between agents. Several previous works have implicitly
relied on this observation, exploring sparse interactions by having agents share
information locally [5, 7, 11, 16, 17]. In this work, we explicitly reason about the
benefits of communication/information sharing in scenarios with sparse interac-
tions. Sparse interactions enable, to some extent, decoupling the decision-process
of the different agents. We leverage such decoupling to derive local models that
optimize each agent’s communication behavior, allowing it to overcome partial
observability in those situations where decoupled decisions are not possible.

We provide a new way of optimizing communication by proposing a model
in which agents need to plan about when to query other agents’ local states,
which we call QueryPOMDP. We observe that to execute optimal joint poli-
cies in fully observable scenarios—policies which can be computed efficiently—
agents will generally need to reason about the state of other agents. However, in
scenarios where interactions are sparse, this need will be greatly reduced. Our
approach thus relies on the interplay between sparse interactions and their im-
pact on the communication needs for executing fully observable policies. Our
agents construct a local POMDP model of the environment from the fully ob-
servable joint policy of all other agents. Solving this POMDP model allows the
agent not only to determine how to solve the task at hand but also to determine
when to query the local state of the environment. Our approach thus allows
the agents to explicitly reason about communication, without incurring in the
prohibitive computational cost of Dec-POMDP models that include communi-
cation [18]. Furthermore, in contrast to many methods in the literature [11,14],
QueryPOMDP can properly handle noisy communication channels, and does
not require strong independence assumptions [19]. Our empirical analysis on
benchmark problems demonstrates the efficacy of QueryPOMDP in balancing
communication costs with coordination benefits.

The remainder of this work is organized as follows. First, Section 2 briefly
introduces the relevant background regarding Dec-POMDP models, followed by
a motivating example which is presented in Section 3. Section 4 describes our
proposed model for state querying, and how it can be solved for multiple agents.
Experiments are presented in Section 5, followed by a discussion of related re-
search in Section 6. Finally, Section 7 concludes and describes future work.

2 Background

We start by reviewing Decentralized Partially Observable Markov Decision Pro-
cesses (Dec-POMDPs) and related decision theoretic models. An N -agent Dec-
POMDP M can be specified as a tuple M = (N,X , (Ak), (Zk),P, (Ok), r, γ),
where:
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– X is the joint state-space;
– A = ×N

i=1Ai is the set of joint actions, with each Ai the individual action
set for agent i, i = 1, . . . , N ;

– Each Zi, i = 1, . . . , N, represents the set of possible local observations for
agent i;

– P(y | x, a) represents the transition probabilities from joint state x to joint
state y when the joint action a is taken;

– Each Oi(zi | x, a), i = 1, . . . , N, represents the probability of agent i making
the local observation zi when the joint state is x and the last joint action
taken was a;

– r(x, a) represents the expected reward received by all agents for taking the
joint action a in joint state x;

– The scalar γ is a discount factor.

An N -agent Decentralized Markov decision process (Dec-MDP) is a particular
class of Dec-POMDP in which the state is jointly fully observable. Formally this
can be translated into the following condition: for every joint observation z ∈ Z,
with Z = ×N

i=1Zi, there is a state x ∈ X such that P [X(t) = x | Z(t) = z] = 1,
where X(t) is the joint state of the process at time t and Z(t) the corresponding
joint observation. Although apparently simpler, optimally solving of a Dec-MDP
is in the same complexity class as optimally solving a Dec-POMDP. A partially
observable Markov decision process (POMDP) is a 1-agent Dec-POMDP and
a Markov decision process (MDP) is a 1-agent Dec-MDP. Finally, an N -agent
multiagent MDP (MMDP) is an N -agent Dec-MDP that is fully observable,
i.e., for every individual observation zi ∈ Zi there is a state x ∈ X such that
P [X(t) = x | Zi(t) = zi] = 1.

In this partially observable multiagent setting, an individual (non-Markov)
policy for agent i is a mapping πi : Hi −→ Δ(Ai), where Δ(Ai) is the space of
probability distributions over Ai, and Hi is the set of all possible finite histories
for agent i. The purpose of all agents is to determine a joint policy π that
maximizes the total sum of discounted rewards. In other words, considering a
distinguished initial state x0 ∈ X that is assumed common knowledge among all
agents, the goal of the agents is to maximize

V π = Eπ

[ ∞∑
t=0

γtr
(
X(t), A(t)

)
| X(0) = x0

]
. (1)

For a more detailed introduction to Dec-POMDPs and related models see, for
example, [20].

3 A Motivating Example

Multi-robot systems constitute a primary motivation for our work and provide
a natural example of the class of problems considered herein. In multi-robot
systems, interaction among robots is naturally limited by the robot’s physical
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Robot 1 Robot 2

Goal 1Goal 2

Doorway

Fig. 1. H-Environment, where two robots need to interact only around the narrow
doorway to reach their corresponding goals. The shaded arrows correspond to a possible
policy for Robot 2 in the absence of Robot 1.

boundaries (workspace, communication range, etc.) and limited perception ca-
pabilities. It is therefore natural to subdivide the overall task into smaller tasks
that each robot can execute either autonomously or as part of a small group.
Moreover, besides being embedded in a physical environment, robots typically
have a way of communicating among themselves.

We motivate our ideas in a simple navigation scenario, depicted in Fig. 1. In
this scenario, two robots (Robot 1 and Robot 2) must navigate to their corre-
sponding goal states (marked as Goals 1 and 2). At the same time, they must
avoid colliding in the narrow doorway (the central state), since it leads to a
large penalty. Each robot has 4 possible actions (namely “Move North”, “Move
South”, “Move East” and “Move West”) that move the robot in the correspond-
ing direction. The motion of one robot does not depend on the position or action
of the other robot except in the doorway: if the robots collide in the doorway,
then their actions have an increasing failure probability. Complicating matters,
initially each robot starts uniformly at random in one of the 10 locations on its
side of the doorway.

In a fully observable situation, the agents will move toward their respective
goals. When reaching the doorway, if the other robot is also close to the doorway
one of the two will stop so that the other can safely traverse.2 It will then resume
its trajectory to its goal.

In order for the agents to actually execute the policy just described, they only
need to reason about the state of the other agent when reaching the darker area
in their starting side of the environment. And then, once one robot is in the door-
way, it can just proceed toward its goal, independently of the state of the other
robot. Moreover, even if the robots are generally unable to observe the position

2 Which one stops is determined by the joint policy they adopt.
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of the other robot, but they are able to query it, they can reasonably assume that
the other robot will behave more or less as in the fully observable scenario. This
observation is the departing point for the model and approach proposed in this
paper and described in the continuation.

4 A Model for State Querying

We depart from an N -agent Dec-MDP model, and address the problem of when
communication can be beneficial to improve the performance in such a model.
For the purposes of our study, we momentarily focus on the decision processes of
all except one agent, which we refer to as agent k. Unlike other communication-
based approaches to Dec-MDPs (e.g., [11]), we adopt a relatively general com-
munication model, in which the messages received by an agent are taken as part
of its local (noisy) observation. Also, messages received by agent k depend on
explicit information-querying actions executed by k.

Throughout this section, we represent the (finite) state-space of the Dec-MDP
as a set X and assume that it can be factorized as X = Xk × X−k, where the
elements xk ∈ Xk correspond to agent k’s local state. The state at time t, X(t),
is thus a pair 〈Xk(t), X−k(t)〉. We also assume that the observations of each
agent do not depend on the actions of the remaining agents, i.e.,

P [Zi(t) = zi | X(t), A(t)] = P [Zi(t) = zi | X(t), Ai(t)] ,

for all i = 1, . . . , N . Therefore, we can simply write the observation probabilities
as Oi(zi | x, ai), i = 1, . . . , N .

4.1 Query Actions and Resulting Observations

For the purpose of allowing our agent to reason about communication, we as-
sume that each agent has the ability to query the other agents for their local
state information. In order to make this explicit, we differentiate between com-
munication actions and the remaining actions—henceforth referred as primitive
actions, and write the set of individual actions for agent k as the cartesian prod-
uct of the set of communication actions, AC

k , and the set of primitive actions,
AP

k , i.e., Ak = AC
k ×AP

k . We also assume that transition probabilities are inde-
pendent of the communication actions,

P(y | x, 〈a−k, (a
C
k , a

P
k )〉) = P(y | x, 〈a−k, (b

C
k , a

P
k )〉)

for any x, y ∈ X , a−k ∈ A−k, a
P
k ∈ AP

k and aCk , b
C
k ∈ AC

k .
We also differentiate between communication observations—i.e., observations

that result from communication actions—and primitive observations, that do not
depend on the communication actions. Formally, we write the set of individual
observations for agent k as the cartesian product of the set of communication
observations, ZC

k , and primitive observations, ZP
k , i.e., Zk = ZC

k × ZP
k . Com-

munication observations correspond to either the local state of other agents or
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Fig. 2. The factored decision model, from agent k’s perspective

the null observation, 0, i.e., ZC
k = X−k ∪ {0}. Moreover, we consider that com-

munication observations do not depend on primitive actions, and that primitive
observations do not depend on communication actions. This means that we can
decouple the observation probabilities as

Ok

(
(zCk , zPk ) | x, (aCk , aPk )

)
= OC

k (z
C
k | x, aCk )OP

k (z
P
k | x, aPk ),

where

OC
k (z

C
k | x, aCk ) = P

[
ZC
k (t) = zCk | X(t) = x,AC

k (t) = aCk
]

OP
k (z

P
k | x, aPk ) = P

[
ZP
k (t) = zPk | X(t) = x,AP

k (t) = aPk
]
.

Finally, we assume that the reward function can also be decomposed as the
sum of two components. The first component, denoted rC , concerns the cost of
communication and is independent on the primitive actions of agent k and on the
actions of the other agents. The second component, denoted as rP corresponds
to the “regular” (or domain-level) reward defining the overall goal of the agents.
It is assumed independent of the communication actions of agent k. Formally, if
a = 〈a−k, ak〉 and ak = (aCk , a

P
k ), this means that the reward r can be written

as
r(x, a) = rP (x, 〈a−k, a

P
k 〉) + rC(x, aCk ). (2)

Figure 2 depicts a dynamic Bayesian network that summarizes all above consid-
erations.

Following the discussion in Section 3, and for the purpose of its planning
process, agent k will treat all remaining agents as if they follow a Markov policy,
π−k, that corresponds to the optimal policy for the underlying MMDP. This
policy, being Markovian, depends only on the state of the system at time t,
X(t), i.e.,

P [A−k(t) = a−k | H(t)] = P [A−k(t) = a−k | X(t) = x] = π−k(x, a−k), (3)
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where A−k(t) denotes the action taken by all agents other than k at time t, H(t)
denotes the whole history of the process up to time t and a−k ∈ A−k. From this
perspective, the decision process for agent k can be modeled as a (single-agent)
POMDP that we describe in the next section.

4.2 POMDP Model for a Single Agent

Let M = (N,X , (Ak), (Zk),P, (Ok), r, γ) be a Dec-MDP as described above.
Let π−k denote the (state-dependent) joint MMDP policy for all agents other
than k. We can now denote the single-agent POMDP model for agent k as a
tuple Mk = (X ,Ak,Zk,Pk,Ok, rk, γ), where:

– X corresponds to the original Dec-MDP state-space.
– Ak is the individual action-space for agent k.
– Zk is the individual observation-space for agent k.
– Pk are the transition probabilities obtained from the original transition prob-

abilities. In particular, given an action ak = (aCk , a
P
k ), we have

Pk(y | x, ak) =
∑

a−k∈A−k

π−k(x, a−k)P(y | x, 〈a−k, a
P
k 〉).

– Ok are the observation probabilities for agent k, that match the original Dec-
MDP observation probabilities. In particular, given an action ak = (aCk , a

P
k ),

we have
Ok(zk | x, ak) = OC

k (z
C
k | x, aCk )OP

k (z
P
k | x, aPk ), (4)

where zk = (zCk , zPk ).
– rk is the reward function obtained from the original Dec-MDP reward func-

tion after averaging over the other agents’ policy, π−k, i.e.,

rk(x, ak) =
∑

a−k∈A−k

π−k(x, a−k)r(x, 〈a−k , ak〉).

Given this POMDP model, we can use standard POMDP solution techniques to
explore the trade-off between the costs and benefits of communication for agent
k.

4.3 Results for the H-Environment Example

Continuing the example of Section 3, the application of our model allows us to
better understand under which circumstances the benefits of using communica-
tion compensate for its costs. For this purpose, we fix the policy of Agent 2 as
shown in Fig. 1, which corresponds one possible joint MMDP policy for this en-
vironment. As explained above, given such a policy we can construct a POMDP
from the point of view of Agent 1, in which it can query Agent 2’s states at
any time step, at a particular communication cost. For illustration purposes, the
initial state of Agent 2 is selected randomly on the right half of the environment.
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0.10 0.10

0.04 0.35

0.45 1.10 1.00 1.00
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0.11 0.10 1.00

(a) Det. P, rC = 0.0.

0.12

0.22 0.55

0.29 1.75 1.25 1.25

0.13 0.76 0.04 0.00

0.13 0.24 0.19 0.73

(b) Noisy P, rC = 0.0.

0.37

0.44 0.17

0.32

(c) Noisy P, rC = −0.3.

Fig. 3. Results for the H-environment. (a)-(c) Query frequency in each state for
Agent 1, varying in deterministic (Det. P) or noisy (Noisy P) transitions and com-
munication cost.

We test several experimental conditions that include the presence or absence of
transition noise and different costs for the communication actions.

We examine in which states Agent 1 queries Agent 2’s state. When commu-
nication is free (Figs. 3(a) and (b)), Agent 1 queries in all the states it passes
through.3 With a communication cost of 0.3 (Fig. 3(c)), however, it only queries
when near to and left of the doorway. In these states it is crucial to know
Agent 2’s location to avoid potential collisions, an intuition that is exploited
automatically by our model. The use of a POMDP model in this context en-
sures that the agent explicitly reasons about information gathering which, in
our setting, translates in weighting the benefits of communication in terms of
the overall task against the costs associated with it.

4.4 Computing Policies for Multiple Agents

In the previous section we proposed using a POMDP model to compute the
policy for one agent k, treating all other agents as if they were following the
optimal joint policy for the underlying MMDP. Given this POMDP model for
agent k we can compute the corresponding optimal policy using any preferred
POMDP solution technique. We use this approach to better understand the
communication needs of one agent in a simple multiagent navigation scenario,
and to determine in which situations the cost of communication outweighs its
value.

We now want to extend these ideas and actually compute the policy for all
agents in the Dec-MDP. The idea of using POMDP models to plan in multiagent
scenarios has been previously explored in the Dec-POMDP literature [21, 22].
The general difficulty with these approaches arises from the fact that each agent
has only a local observation of the joint state of the world. This implies that,

3 We note that, due to the transition noise, an agent can remain in the same state
more than one consecutive time-step, and hence the values > 1.



QueryPOMDP: POMDP-Based Communication in Multiagent Systems 197

when planning for agent k, the POMDP model necessary to properly capture
the behavior of all agents other than k can either be prohibitively large, require
agent k to reason about how the other agents reason about agent k’s state,
leading to infinitely nested beliefs, or both [21, 22].

In our approach, we rely on the intuition discussed in Section 3, according to
which the use of active communication allied with sparse interactions may actu-
ally alleviate the difficulties associated with planning in multiagent systems with
partial observability. We plan for each agent k while treating all other agents
as if following the optimal joint MMDP policy. In scenarios where interactions
are sparse, the general behavior of the agents is expected to roughly follow the
MMDP policy, as discussed in Section 3 and in those situations where coordina-
tion is necessary, agents can resort to communication, but weighting the benefits
of such communication with the associated costs.

Several previous works have already studied the benefits of exploiting commu-
nication and structured interactions separately (see, for example, [5,6,8]).4 The
novelty in our approach lies precisely on the fact that we can explicitly exploit
the interplay between these two aspects (communication and sparse interactions)
to attain efficient planning in multiagent problems. Section 5 describes the ap-
plication of our approach in several navigation scenarios of different dimensions.
Our results empirically show that our approach is indeed able to make effective
use of communication and attain a performance that indeed approaches that
observed in fully observable settings.

5 Experiments

In this section we illustrate the application of our method to several navigation
scenarios from the POMDP and Dec-POMDP literature. We use robot navi-
gation scenarios (Fig. 4), since our model is particularly suited for modeling
multi-robot problems. Furthermore, results can be easily visualized and inter-
preted in this class of problems.

Experimental Setup. In each of the test scenarios, each of two (identical)
robots departs from one of the locations marked with a dot, and must reach the
state marked with a circle that is furthest from its initial state. Each robot has 4
actions that move the robot in one of the four possible direction with probability
0.8 and fail with probability 0.2, plus a fifth “NoOp” action.

All agents have full local state observability. The shaded regions correspond to
areas inside of which the agents are able to successfully communicate, i.e., when
an agent queries another agent, it incurs a cost of −0.1 and successfully observes
the local state of the queried agent with a probability of 0.8. With a probability
of 0.2 it receives no observation about the state of the other. In the white cells,
an agent is never able to perceive the state of the other, but still incurs a penalty
of −0.1 if it attempts to communicate. In other words, the agents can always

4 We refer to Section 6 for a detailed discussion of related approaches.
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(a) Map 01. (b) Map 02. (c) Map 03.

(d) pentagon. (e) cit. (f) isr.

(g) suny. (h) mit.

Fig. 4. Environments used in the experiments

attempt to communicate, incurring in a penalty of −0.1 (rC(x) = −0.1 for all
x ∈ X ), but only in the shaded areas does communication succeed (with high
probability). The darker cells correspond to states where the agents receive a
penalty of −20 when standing there simultaneously, in which case the rate of
action failure is also increased to 0.4 for both agents. When an agent reaches
its goal position, it receives a reward of 10 and moves to a rewardless absorbing
state. Throughout the experiments, we used γ = 0.95.

For each of the test scenarios, following the approach in Section 4, we compute
the optimal MMDP joint policy that we use to determine a POMDP model
describing the decision process for each individual agent. This POMDP is then
solved using the Perseus approximate solver [23]. We test our QueryPOMDP
policy for 100 independent trials of 250 steps each and measure the obtained
performance in terms of total discounted reward. We also test the performance
of other sets of agents that communicate at different (but fixed) frequencies (see
Table 1(a)):

– “Never Comm” agents never communicate. These agents observe only their
local state, and each follows the optimal policy for the underlying single-
agent MDP obtained by disregarding the other agent in the environment;

– “Always Comm” agents communicate at every time-step, incurring the
corresponding penalty. As QueryPOMDP agents, they are subject to
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Table 1. (a) Main differences between the groups of agents used. (b) Total discounted
reward for each set of agents in each of the test-scenarios. Entries in italic in the same
column are not statistically different.

(a) Different methods used.

Agents
Comm. Succ. Failed

Freq. Comm. Comm.

QueryPOMDP Variable POMDP POMDP
Never Comm Never − Indiv. MDP
Always Comm 1 step MMDP Indiv. MDP
Comm k = 2 2 steps MMDP Indiv. MDP
Comm k = 3 3 steps MMDP Indiv. MDP
Comm k = 4 4 steps MMDP Indiv. MDP

(b) Experimental results.

Environment Map 1 Map 2 Map 3 cit isr mit Pent. suny

# States 441 1, 296 400 4, 900 1, 849 2, 401 2, 704 5, 476

QueryPOMDP 5.132 3.598 6.156 5 .260 6 .755 2 .964 6.444 5 .328
Never Comm −1.834 0.900 1.917 5 .306 6.663 2 .959 5.641 5 .283
Always Comm 1.961 2.248 3.276 3.286 4.779 1.116 5.038 3.297

Comm k = 2 −0.069 1.097 3.001 4.306 5.839 2.141 5.578 4.294
Comm k = 3 −0.127 1.707 1.564 4.666 6.114 2.426 5.246 4.646
Comm k = 4 −0.785 1.289 3.295 4.324 5.760 2.106 5.448 4.317

mmdp 5.787 5.253 6.608 5 .305 6 .817 3.182 7.606 5 .297

communication errors/limitations and, as such, are not always able to per-
ceive the state of the other agent. When communication fails, the agent
observes only its local state and adopts the individual MDP policy. When
communication succeeds, it adopts the underlying MMDP policy.

– “Comm k = 2, 3, 4” agents query the state of the other agent every k steps.
Except for the different communication frequency, they are otherwise similar
to “Always Comm” agents.

Comparisons between these different agents will allow us to analyze (i) the im-
pact that communication costs can have on performance, if communication is
not optimized; and (ii) the impact that communication can have in mitigating
partial observability. As discussed ahead, direct comparison against other meth-
ods such as the one in [11] is not very informative, as these do not trade-off
communication costs with task performance.

Results and Discussion. The performance of the 6 agent groups in terms
of total discounted reward is summarized in Table 1(b). As a reference against
which to assess the quality of our computed policy we also provide the results
for the MMDP optimal policy in the different environments, providing a perfor-
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mance upper bound. The QueryPOMDP approach performs very favorably,
outperforming all other policies and coming close to the MMDP upper bound in
several of the tested scenarios.

The results in Table 1(b) prompt several interesting observations. First, com-
paring the performance of the MMDP policy against that of the group that never
communicates provides an important indication of how critical coordination is
in a given scenario. NeverComm agents act individually, disregarding the exis-
tence of other agents in the environment. In environments where coordination is
critical, NeverComm agents will perform poorly. MMDP agents, on the other
hand, always act in a perfectly coordinated manner, in which coordination does
not come at a cost. In an environment where little coordination is needed, the
difference between these two groups is going to be small. In contrast, scenar-
ios that require significant coordination will cause the performance of the two
groups to significantly differ.

From Table 1(b), we can see that coordination is critical in the smaller envi-
ronments (Maps 1-3). In the larger environments, such as cit, mit and suny,
coordination is less critical. The results in the smaller environments illustrate
the impact of effective communication in mitigating the effects of partial ob-
servability. Our method is actually able to attain a performance very close to
that of the MMDP agents, even paying for communication. Additionally, our
approach uses communication efficiently, since the performance of all other com-
municating agents is significantly inferior. In contrast, in cit, mit and suny,
non-communicating agents actually attain optimal performance. The difference
in performance to the communicating groups can be explained by the com-
munication penalty. Again, in these scenarios, our approach is able to manage
communication needs, as it performs similarly to non-communicating agents.

A second observation is that the MMDP performance is an upper bound on the
optimal Dec-MDP performance. This means that in those scenarios where our
approach performs close to or as well as the MMDP group, we can immediately
conclude that it is also performing close to or as well as the optimal Dec-MDP
policy. A general comparison of the performance of our method against that of
the MMDP group indicates that our method, if not optimal, must be very close
to optimal in most scenarios tested. This, in turn, indicates that approximating
the behavior of our agents with that of MMDP agents does provide a solid basis
for planning.

We also applied our approach to a benchmark problem from the Dec-POMDP
literature, namely the firefighting problem with 3 houses and 3 fire levels [24].
In this scenario, the QueryPOMDP agents are allowed to communicate at a
cost, but no observation results out of it, since there is no communication in the
original problem. Allowing for no shared information among agents renders our
version of the firefighting problem effectively equivalent to the original problem
and thus enables a meaningful comparison between the two methods.

Applying our method in the firefighting problem provides useful insights into
two important aspects of our method. First, on the trade-off between communi-
cation costs and benefits, our method should figure out that communication is
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Table 2. Results of QueryPOMDP in the Firefighting problem [24]

Problem Dimension QueryPOMDP Optimal

Firefighters [24] 432 −7.679 −7.176

useless in this setting and effectively not use it. Second, concerning the general
applicability of our method, the results should shed some light on whether the
proposed approximation provides meaningful information in scenarios with local
interactions sense, i.e., if each agent, by assuming the other agents to behave
according to the MMDP policy, are still able to make good decisions.

The performance of our approach is summarized in Table 2, corresponding to
the total reward obtained over a 6-step run, averaged over 1, 000 independent
Monte Carlo trials. For comparison, we also provide the optimal value for the
6-step horizon, reported in [25]. As expected, the QueryPOMDP agents learn
not to use communication. Moreover, although the firefighting problem does not
strictly adhere to the setting considered in this paper, it still exhibits some level
of independence that our approach is successfully able to leverage—the difference
in obtained performance is statistically not significant.

Summarizing, our results show that, in scenarios with sparse interactions like
the ones analyzed, our agents behave approximately as MMDP agents, effectively
using communication to mitigate the effects of partial observability.

6 Related Work

In the Dec-POMDP literature, early approaches introduced the idea of transition
and reward independence as forms of simplified interactions [26]. Further exam-
ples of models with sparse interactions include interaction-driven Markov games
(IDMGs) [5, 17], distributed POMDPs with coordination locales [7], transition-
decoupled POMDPs [6], factored Dec-POMDPs [4], and models relying on event-
driven interactions [3, 27].

Our representation is closest to IDMGs [5], which leverage independence be-
tween different agents in a Dec-POMDP to decouple the decision process in
significant portions of the joint state-space. In those situations in which agents
interact, IDMGs rely on communication to bring down the the computational
complexity of the joint decision process. The use of communication to overcome
partial observability sets this approach apart from other approaches that also
exploit local interactions. However, communication is assumed to always take
place and to be error-free [5]. In our case, we add explicit query actions to
the agents action repertoires, enabling them to ask another agent’s state, un-
der environment-specific constraints. For instance, two robots may only be able
to share information when they are physically close. We further assume that
communication is not error-free and comes at a cost that must be considered.

Explicit communication in multiagent planning was already addressed in [18],
where the proposed Com-MTDP model allows agents to explicitly reason about
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communication in Dec-POMDP scenarios. However, being a generalization of
Dec-POMDPs, it shares the discouraging computational complexity of the lat-
ter model. The actual process of communication has been investigated in [28].
Roth et al. [11] propose to exploit a factored Dec-MDP model and policy repre-
sentation, in which agents query other agents’ local states when this knowledge
is required for choosing their local actions. Although this work already seeks to
optimize communication, this optimization is conducted parallel with the under-
lying decision process. Therefore, the cost of communication does not directly
translate in the agent’s task performance, as in our proposed approach, ren-
dering the tradeoff between communication costs and benefits unclear. Another
closely related work is that of Wu et al. [14] where communication is used as a
means to decrease the planning complexity in Dec-POMDP models. Like in our
proposed approach, this work considers that communication may not always be
available. However, unlike our approach, this work does not consider explicitly
optimization of communication. Finally, Mostafa and Lesser [16] do optimize
communication, while considering the presence of communication limitations.
However, this optimization is also conducted parallel with the underlying deci-
sion process, without directly impacting in the agent’s task performance. Also,
none of the aforementioned methods considers noisy communication channels.

A key point in our approach is that, although we use the MMDP policy in
our planning, its computation is significantly more efficient than computing a
centralized policy for the actual partially observable decision problem. The fact
that we plan individually for each agent is somewhat related to several works
that use round-robin policy optimization to individually optimize the policy of
different agents in Dec-POMDP settings. One of the early examples is the JESP
algorithm [21], which also models agents individually as POMDPs, but does
not use communication. Round-robin policy optimization has been used to learn
communication primitives in Dec-POMDPs whose base models are transition
and observation independent [12], but which are coupled through the communi-
cation actions agents can choose to execute. In that case, however, agents have
to learn when sending a particular message will be beneficial for team perfor-
mance, which is far from trivial given that the policy of the receiving agent
does not exploit the information provided by incoming messages. In our case,
however, agents can opt to query other agents’ states, and it is much easier to
determine when doing so improves performance. Secondly, we consider a much
richer model where agents also “physically” influence each other, instead of only
through communication.

7 Conclusions

In this paper, we analyzed the interplay between sparse interactions and com-
munication in multiagent planning. We observed that, in scenarios where in-
teractions among agents are sparse (i.e., intra-agent action coordination is only
infrequently necessary), the distributed execution of an MMDP policy seldom
requires full-state information. As such, if each agent is (individually) allowed to
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query other agents for their local state information when necessary, it may be
possible to partly mitigate partial state observability and leverage more efficient
planning approaches.

Relying on this insight, we proposed the use of a POMDPmodel to analyze the
communication needs of an agent in a Dec-MDP scenario where the interaction
between the agents is sparse. Our model accommodates communication costs
and failures—the agent must explicitly reason about these factors in its decision
process. QueryPOMDP allows agents to optimize communication, explicitly
trading-off its costs with its benefits in terms of the underlying task.

We used our approach to optimize communication in the simple scenario of
Fig. 1, where our approach was successfully able to capture the intuition that the
fundamental states for coordination are those around the doorway. We further
explored the usefulness of this approach in computing policies for larger and
more general Dec-MDPs. We built POMDP models for each agent by consider-
ing the other agents to behave as if in an MMDP, and use the obtained POMDP
optimal policies. Our results show that our agents are able to effectively using
communication to mitigate the effects of partial observability, behaving approx-
imately as MMDP agents. One important avenue of future work is to generalize
these techniques beyond Dec-MDPs, to scenarios in which agents can query other
agents’ observations instead of states.
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Abstract. In Machine-to-Machine (M2M) systems, multiple devices (sensors,
actuators), situated in the physical world, interact together to provide data to
added value services. In the SensCity project, the proposed M2M infrastructure,
to support cityscale application, must be able to support the increase in the num-
ber of services and applications that are deployed on it. It is thus necessary to
share the infrastructure use dynamically between them. In this paper, we propose
the use of multi-agent technologies to define an adaptive and agile layer to gov-
ern and adapt the M2M infrastructure to the different applications using it. We
illustrate our proposal within a smart parking management application.

1 Introduction

The next generation of cities are getting smarter by providing automated services to
improve the life of their citizens (e.g. optimized garbage collection, smart metering,
traffic redirection and parking management). These added value services build what we
call Machine-to-Machine (M2M) systems, i.e. a network of smart devices –sensors and
actuators– interacting with each other without human intervention (see Fig. 1).

Recent improvements in low-power wireless technologies [15] enable wireless de-
vices to be connected to the Internet with a low deployment cost and a long lifespan
–20 years expected. Such developments allow applications to be immersed in the real
world and to directly act on the environment. When looking at the deployment of such

Fig. 1. An end-to-end M2M architecture [6]
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systems, stakeholders are involved in different areas: application providers, constrained
devices constructors, LLNs radio experts and telecommunication operators. However,
the building of such vertical solutions on a city scale is too expensive and not flexi-
ble enough. There is a growing need and interest for M2M infrastructures that provide
horizontal integration and sharing of devices between stakeholders [1].

This paper considers the practical use case issued from the SensCity1 project, which
aims at providing an M2M platform for deploying multiple smart city services. This
platform makes possible to connect heterogeneous wireless devices to a GPRS gateway
using Wavenis –long range, energy efficient radio technology. As for the application,
standard access to the devices is provided via web services.

In order to be deployed on a city scale and used by different applications, such an
infrastructure is faced with a multi-faceted problem of scalability [7] in terms of size,
heterogeneity, topology, etc.To tackle this problem, an agile governance is required to
conciliate both “vertical” and “horizontal” concerns. Such a governance system should
adapt to the different requirements of the M2M applications deployed on such an in-
frastructure so that the whole system scales.

Given the complexity and inherent decentralization of the infrastructure, we pro-
pose the use of multi-agent technologies to define this governance layer on top of the
M2M infrastructure. We used a newborn multi-agent oriented programming framework
called JaCaMo2 to implement it. In order to obtain an agile governance, the gover-
nance strategy is defined as an explicit organization specification, using the MOIS E
framework [9], part of the JaCaMo platform. Thanks to the explicit and agent-readable
specifications, agents are able to reason about the governance of the system to change
and adapt it to the evolution of the system. The proposed multi-agent governance is
illustrated by a smart parking management application.

Section 2 motivates our approach with a description of the M2M infrastructure and
the smart parking application that we consider in this paper. Based on this applicative
context, we describe the multi-agent governance layer deployed on top of the M2M
components (Section 3). We then focus, in Section 4, on the definition of the governance
strategy stressing how it can be dynamically adapted by agents. The application of this
governance applied to the smart parking management use case is described in Section 5.
Then, Section 6 discusses the proposed approach and compares it to related works.
Finally, Section 7 concludes this paper and considers the perspectives for future work.

2 Motivations

Machine to Machine (M2M) systems are an early technology which is just raising out
of fully proprietary solutions with different standard proposals [6]. We first give an
overview of the M2M architecture standard proposal on which we are basing our work.
We then introduce the smart parking management application as an illustrative example
where we highlight the need of an agile governance layer.

1 The SensCity project (FUI Minalogic) Sensors and Services for Sustainable Cities:
http://www.senscity-grenoble.com/

2 http://www.jacamo.sourceforge.net

http://www.senscity-grenoble.com/
http://www.jacamo.sourceforge.net
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2.1 Machine-to-Machine Architecture

The M2M Technical Committee of the European Telecommunications Standards Insti-
tute (ETSI) is defining standards for M2M infrastructure. The scope of these standards
cover communication from the devices to the applications, through gateways and a core
platform. As shown in the latest version of ETSI’s specification draft [6], the M2M ar-
chitecture is divided into three domains (cf. Fig. 1): Device, Network and Application.

The Device Domain is composed of applicative devices –sensors and actuators– and
repeaters communicating in a Wireless Sensor and Actuator Network (WSAN) linked
to a gateway. The WSAN groups several devices communicating together. Devices can
embed several sensors and actuators, or none of them. Repeaters are placed to extend
the coverage managed by a gateway. It manages one or several WSANs, security and
device authentication and can also manage quick reaction to sensed events generat-
ing commands to devices. The gateway sends/receives messages to/from the platform
via broadband access. Thus it also belongs to the Network Domain. The core platform
is involved in both the Network Domain and the Application Domain, as shown with the
synthesis of the functionalities of this platform in Table 1. On one hand, it is responsi-
ble for network communications with other platforms. On the other hand, it gives the
application –managing business logic– transparent access to the devices and stores the
messages (see ETSI M2M Functional Specification [6] for further details).

Table 1. M2M core platform’s functionalities [6]

Network Domain Application Domain

REM Remote Entity Management AE Application Enablement
GC Generic Communication CB Compensation Brokerage

RAR Reachability Addressing and Repository TM Transaction Management
CS Communication Selection HDR History Data Retention
IP Interworking Proxy

SEC Security

2.2 Use Case Scenario: A Smart Parking Management

In order to be deployed at a city scale and used by different client applications, a verti-
cal solution as a whole cannot be used since it is too expensive and not flexible enough.
Installing horizontal integration solution is of growing interest in order to share de-
vices between different stakeholders [1]. To this aim, agility is required for conciliating
different requirements.

In the following, let’s consider a Smart Parking System where car detectors are used
for monitoring parking places. The collected data are used and shared between, at least,
two applications: Car Guidance, City Monitoring. When a car parks in or leaves the
place, the event is notified through the M2M infrastructure: a message is 1. sent to the
gateway (Device Domain) which 2. authenticates and 3. forwards it to the M2M plat-
form (Network Domain) where 4a. it is stored and 4b. notified to subscriber applications
(Application Domain), which in turn 5. retrieve the message. Applications can also send
commands to the devices using the reverse path to act on the environment, e.g. to raise
a parking post to reserve a place.
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The Car Guidance application helps drivers to find a parking place directly and close
to their destination following their preferences, reducing traffic flow and pollution3.
To do this, it needs to monitor the places within an area around the destination when
the driver is getting close to this area. In the case of reservable parking places, the
application can send a message to actuate a parking post for the user.

The City Monitoring application is used by city services (eg. police) to monitor no-
parking places. It requires alerts to be sent when a place is occupied during a nonstation-
ary time with a variable priority (e.g. water access for firemen has priority over garage
doors).

As sending messages consumes a lot of energy, due to several applications sharing
the same devices with heterogeneous requirements, it raises issues such as scalabil-
ity and energy consumption. Furthermore, other applications, using other devices, will
share the same infrastructure –the platform and the gateways– generating traffic and
resource management issues.

In this context, an agile governance is required to define how the resources –devices,
servers, network– should be used. Each vertical requirements can be specified by a
Service Level Agreement (SLA) contract between an application, the shared infrastruc-
ture (i.e. servers, gateways and repeaters) and a set of devices. The governance layer
concerns both the vertical infrastructure –i.e. interactions between an application and
devices– and the horizontal infrastructure –i.e. sharing the resources between different
applications. The goal of this paper is to propose a multi-agent based governance model
to manage the shared M2M infrastructure.

3 Overview of the Multi-agent Governance

Given the different requirements and motivations expressed in the previous section,
this section describes the multi-agent approach used to define the M2M governance,
describe by Fig. 2. To clearly separate the different concerns that arise in such applica-
tions, we have chosen a multi-agent oriented programming approach which is supported
by the JaCaMo4 [18] framework. This multi-agent oriented programming framework
allows the development of MAS taking into account three different programming di-
mensions, namely agent, environment, and organization.

JaCaMo is built upon the synergistic integration of three existing agent-based tech-
nologies: (i) Jason [4], (ii)Moise [9], and (iii) CArtAgO[19]. A JaCaMo multi-agent
system (i.e., a software system programmed in JaCaMo) is given by a multi-agent orga-
nization programmed inMoise, organizing autonomous agents programmed in Jason,
working in shared distributed artifact-based environments programmed in CArtAgO.
JaCaMo integrates these three platforms by defining a semantic link among concepts
of the different programming dimensions at the meta-model and programming levels,
in order to obtain a uniform and consistent programming model aimed at simplifying
the combination of those dimensions when programming multi-agent systems.

3 Parking search is estimated to be from 5% to 10% of traffic and represented a total waste of 70
millions hours for a cost of 600 millions in France [13] (2005).

4 http://www.jacamo.sourceforge.net

http://www.jacamo.sourceforge.net
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Fig. 2. On top of the SensCity Core Platform, the multi-agent based governance layer architecture
is as follows: artifacts encapsulate the components to allow the agents to control the platform by
applying the SLAs strategy defined by an organization following the ETSI recommendations
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These three dimensions are used to define the governance layer deployed on top of
the M2M infrastructure (cf. Fig. 2) aiming at governing its use by the different appli-
cations: (i) artifacts encapsulate the infrastructure components and provide the agents
with the necessary actions and perceptions to monitor and control the use of these com-
ponents, (ii) agents are the reasoning entities that make local decisions with respect to
the governance taking into account their partial view on the infrastructure status and
that cooperate with the other agents participating in the governance, (iii) organization
that structures and regulates the autonomous functioning of the agents with respect to
the global governance strategy defined from the requirements issued from the applica-
tions providing added value services in the smart city by acting on and consuming the
data provided by the M2M infrastructure.

The organization limits the place of the possible actions that the agents can execute,
letting them decide locally and autonomously. Thanks to theMoise framework, agents
are able to reason about the organization and decide to change it when it is not adapted
anymore to the current state of the governance requirements (e.g. high number of vio-
lations greater than authorized by the SLA contract).

Before detailling the governance strategy as an organization in the next section (Sec-
tion 4), we first start by describing the use of artifacts (Section 3.1) to monitor and control
the SensCity platform and the agents (Section 3.2) of the proposed governance model.

3.1 Artifacts to Control the M2M Infrastructure

Artifacts defined with the CArtAgO platform are used to encapsulate components of the
M2M infrastructure to give the agents the control of it. In the context of the SensCity
project, the governance layer is deployed on top the core platform which is divided into
an USP part to manage the notifications sent to the applications, their rights and billing,
and an UCCP part to manage the devices and communications with them. Fig. 3 de-
scribes the component-based architecture of these two platforms. Artifacts encapsulate
the components’ functionality.

These artifacts are used to give the agents a representation of the system to govern.
An artifact monitors one or several components’ activity: the agents are notified of
statuses and calls to the components by signals and observable properties. The artifact’s
operations enable the agents to use the component.

3.2 Agents to Apply and Reason about the Governance Strategy

Agents are the decision-making entities of the governance layer. They adopt one or
several roles in the organization corresponding to the part of the governance for which
they assume responsibility. Following the strategy specification given by the organiza-
tion (described in Section 4), they ensure that the M2M system is functioning correctly
by monitoring the infrastructure and adapting it using the artifacts. For example, if an
agent notices an overload on the platform, it can interrupt the calls to its components in
order to filter the calls and redirect some of them to another platform.

Agents implements the governance policies. They can reason about the strategy def-
inition and evaluate it with respect to the M2M system’s functioning. They can adapt
either the M2M infrastructure using the artifacts or redefine the strategy by proposing
new organizational specifications.
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Fig. 3. The SensCity’s core platform component-based architecture divided into an USP part
communicating with applications and an UCCP part communicating with the gateways and de-
vices

As the different parts of the M2M infrastructure should be handled differently, dif-
ferent kinds of agents have been identified: appAg, platformAg, gwAg and deviceAg.

The appAg agents ensure the requirements fulfilment from the application point of
view. Thus, this type of agent regulates the commands and requests sent by an applica-
tion to the devices and check the notifications it receives. To perform this regulation, an
AppAg is able to intercept messages by using the AppCNXArt artifact to control them
and validate the transmission.

Similarly, the deviceAg agents control the usage of the devices specified by the
SLA, by using encapsulation artifacts such as DeviceCNXArt , to ensure that the devices
perform their obligations. The agent can evaluate the load of a device by the number of
roles it has adopted, and so make smarter use of the device (e.g. combine two messages
at once, or skip messages if not necessary). The main goal of such an agent is to make
the device’s life as long as possible. It negotiates the requirements in this aim and can
eventually give priority to one contract over another.
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The platformAg agents are responsible for the platform functioning. They contribute
to the contract agreement by evaluating the traffic and the load it will generate on the
server itself. For example, when it is too high, it can intercept calls to some components
and redirect them to a delegated server. This has to be done with respect to the latency
requirements specified, so redirection has to be carried out according to the priority of
the message and its destination. For example, priority to notifications to the CityMonitor-
ing application over the CarGuidance.

The gatewayAg agents are concerned with traffic and load on the Gateway, as plat-
formAg, but also with the local rule treatment. Indeed, application can define rules to
generate –i.e. through the gateway– commands locally to the devices based on events
sensed by the sensors, generating added computational and memory load. In this case,
it is defined by a scheme which specifies the rules and is validated by the agent respon-
sible for the gateway.

4 An Organizational Model for the M2M Governance Strategy

Multi-agent organizations are concerned with the cooperation schemes between agents
to achieve global goals [8] whether they result from agent interactions [17] or explicitly
defined in terms of roles, plans, groups and links [8]. As M2M infrastructures should
preferably be open to various applications and stakeholders, it is necessary to spec-
ify the governance strategies of such systems explicitly in order to guarantee that the
requirements are fulfilled.

The Moise framework [10] provides a programming language to describe an or-
ganization following two independent dimensions: (i) the structural specification (SS)
defines the roles and groups that the agents can adopt and enter in and (ii) the functional
specification (FS) is a set of social schemes, i.e. a tree decomposition of goals organized
into missions that the agents have to fulfil. The two dimensions are linked together by
the normative specification (NS) assigning missions to roles. This makesMoise very
suitable for the definition of a flexible governance strategy since we can envision to
change either the SS, the FS or the NS without changing the other ones.

The organizational specification describes the governance objectives with respect to
both vertical and horizontal concerns. In fact, as the infrastructure is shared by several
heterogeneous applications and devices, the governance strategy must take into account
the “horizontal” issues. Hence, a main frame defines the horizontal aspects which are
extended for each vertical applicative requirements.

This section describes the organization corresponding to the M2M Organizational
Specification (OS) for the governance strategy of the M2M architecture as described
in Section 2 and highlights the key points for reorganization. This specification can be
understood by the agents, so they can govern the M2M system based on it. Furthermore,
they can reason about it to choose whether to follow it or not and then to adapt it to the
situation.

4.1 Structural Specification

Fig. 4 shows the structural specification of the M2M OS. On one side it specifies the
horizontal structure of an M2M architecture (within the M2M System group) and on the
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Fig. 4. Structural Specification for an M2M system and its extension for a “vertical” application
(Car Guidance)

other side it defines one or several vertical groups (e.g. gpGuidance group). The agents
can adopt one or several roles –depending on compatibility and cardinalities– to declare
explicitly which part of the governed system they assume the responsibility of.

The horizontal part is composed of three groups corresponding to the M2M archi-
tecture described in Section 2.1: (i) the Device Domain group, (ii) the Network Domain
group and (iii) the Application Domain group. This specification maps the functionalities
of these different domains into roles.

The Gateway and Gateway Proxy roles are made compatible to allow agents to play both
roles at the same time in the Device Domain and Network Domain groups respectively.

Each functionality of the M2M Core Platform is defined as a role in the Applica-
tion Domain group –Application Enabler , Application Security Manager , Data History Man-
ager , Compensation Broker– or in the Network Domain group –Remote Entity Manager ,
Network Security Manager , Communication Enabler , Interworking Proxy. All these roles
inherit from the abstract Platform Manager role to make global the property of compati-
bility between any of these roles and to also express the communication link.

Finally, the Application role is responsible for performing the business logic by send-
ing commands to the devices and by retrieving the collected data.

The vertical part is composed of specific groups which represent a contract between
an application, the devices, the platforms and gateways. In particular, such a group ex-
presses the application needs in terms of parts of the M2M system to be involved in the
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Fig. 5. Functional Specification: the Data Collection scheme

applicative realization and their cardinality. The adoption of a vertical role by the agents
can be considered as a contract agreement. The content of this contract is defined by
the norms which assigns missions to the roles specifying the requirements. The group
is composed of roles linked to the horizontal specification using compatibility links.
Thus, the agents can be involved in both the vertical and the horizontal organization to
link the two concerns.

As an example, Fig. 4 shows such a vertical group for a Parking Guidance application
(gpGuidance group). It involves the application itself (GuidanceApp role), the platform
(GuidancePlatform role), a gateway (GuidanceGW role) and parking sensors (Guidance-
Sensor role).

As shown in [11] this structure can evolve along different dimensions (roles, groups,
cardinalities, links. . . ). This allow the governance to suits to the infrastructure’s dynam-
ics. As an example, if more agents are needed to manage a part of the M2M system, the
cardinality of the corresponding roles can be increased.

4.2 Functional Specification

The functional specification describes coordination schemes by means of goals to be
globally satisfied by the agents in the organization. It gives the agents a comprehensive
understanding of the system’s functioning but it does not tell them how to achieve these
goals: the agents are free to decide which actions to perform to satisfy the goals they are
committed to. The following describes one of the social schemes that we have defined
for vertical data collection.

The scheme in Fig. 5 describes the goals to collect data from sensors. The root goal
(Monitor Environment), is a maintenance goal which is satisfied sequentially by (i)
sensing the environment (SenseEnvironment) and (ii) notifying the subscribed appli-
cations the environment’s state (NotifyEnvironmentState). The first sub-goal is accom-
plished in the context of the the mSense mission. The notification can be made either
after each time something is sensed or after reporting several measures at once. It is an
achievement goal satisfied by the following sub-goal sequence: (i) send to the gateway
(SendToGW), (ii) send to the platform (SendToPlatform) and (iii) notify applications
the sensed value (NotifyApplication).

Let’s notice that the figure does not express the whole specification. In particular,
each mission is qualified by the minimum and maximum number of agents to commit
to; goals can be parameterized when instantiating the scheme. Agents can customize a
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scheme for a particular application or for special situations. For example, different areas
of the city could be monitored differently depending on the traffic, the time of day or
the user demand, then the agents can fine-tune these values to adapt the scheme to the
situation in order to avoid unuseful message transmissions.

4.3 Normative Specification

Norms delimit the actions that are allowed in the system. In Moise a norm assigns a
mission to a role, following a deontic relation when a condition is satisfied and specifies
a finite time in which to fulfil it. Thus, it provides a flexible way of assigning tasks to
the agents.

Table 2 summarizes a part of the norms used for the M2M system corresponding to
the data collection scheme. Agents playing Sensor roles must sense the environment
(mSense mission). This mission consists of sensing the environment either regularly
(norm n01), or at each change (norm n02). In any case, Sensor agents must commit to
the mSense mission (norm n03).

Agents are free to decide whether to follow or violate these norms. It can be regulated
by reinforcement or punishment to encourage them to follow the norms. But it also
provides a way to detect irrelevant specifications: an agent might violate a norm because
it is impossible to satisfy a goal. Then agents should either redefine the norm –e.g.
modify the condition, relax the deontic relation– or the scheme itself –e.g. delete a goal
or add an alternative to it; define a sequence to make the goal reachable.

Table 2. Normative specification for an M2M system

Id Condition Role Rel. Mission TTF
n01 scheduled(sensing_time) Sensor perm mSense tsense
n02 occurred(event) Sensor perm mSense tsense
n03 n01 ∨ n02 Sensor obl mSense tsense
n04 changed(sensed_value) Sensor obl mNotify tsend∧is_critical(situation)
n05 tlast_msg ≥ msg_period Sensor obl mNotify tsend∨is_ f ull(bu f f er)
n06 on_receive(msg) Repeater obl mRepeat trepeat
n07 on_receive(msg) Gateway perm mNotify tnoti f y∧is_authenticated(msg)

. . . . . . . . .

5 Application: Smart Parking Management with the SensCity
Platform

This section describes the application of the governance model presented in Sections 3
and 4 to the scenario described in Section 2.2. It consists of an extension of the based
organization by new roles, linked to the generic ones, grouped in a specific group that
is responsible for specific schemes and ruled by specific norms.
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Fig. 6. Multi-agent governance of a smart parking management application
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In the smart parking scenario the CarGuidance and CityMonitoring applications are
governed by appAg agents while the CarDetector , ParkingPost devices are controlled by
deviceAg agents. Each of the SensCity sub-platforms (USP and UCCP are controlled
by a platformAg agent). In order to simplify and reduce the applicative description, no
Gateway is considered here.

The following scenario is illustrated by the Fig. 6 sequence diagram in which the
agents are the underlined participants, the all participant represents all the agents
involved in the collaboration scheme, the OrgBoard artifact represents the organi-
zational specification and controls, and CAR_GUIDANCE, USP1, USP2, UCCP and
PARK_SENSOR represent elements of the M2M infrastructure, encapsulated by arti-
facts.

The first step consists of negotiating the SLA defined by a set of norms that man-
age the application-specific roles and missions. The SLA definition is done following
the norm negociation cycle principle [3]: (i) a social scheme template is parameter-
ized following the application needs, (ii) social norms define the SLAs for these goals
and (iii) acceptance is achieved by role adoption. When the CAR_GUIDANCE applica-
tion asks (1) the USP1 platform for a subscription to a set of Npark_sensors devices, the
appAg agent intercepts (1.1) the call and formulates the requirements as an organiza-
tional specification (1.1.1): a gpGuidance group composed of the GuidanceApp, Guid-
ancePlatform (with cardinality 2) and GuidanceSensor (with cardinality Npark_sensors)
roles, a parameterized Data Collection scheme and norms corresponding to the appli-
cation’s requirements. All of the agents concerned are notified of the proposal (2). The
agents can validate the SLA proposal by adopting one or several roles in the organiza-
tion (2.1). But if they estimate that the proposal is not affordable, e.g. a resource will
be overloaded (2.2), they can propose a new specification (2.2.1). This new proposal is
communicated again (2.3) and the same process occurs until all of the agents validate
the SLA by adopting the roles (2.4). Then the appAg will update the application’s rights
in the USP1 platform.

Then the CAR_GUIDANCE application can start the subscription (3) which will be
handled (3.1) by the appAg by starting the Data Collection scheme (3.1.1). The agents
are notified of goals to achieve defined by the norms (3.2), so the deviceAg agents ac-
tivate the PARK_SENSOR devices they are responsible for (3.2.1). When messages are
received by the UCCP platform (4), the deviceAg makes sure that it meets the require-
ments (4.1, 4.1.1).

The UCCP’s StoreNForward component is encapsulated by an artifact, so a platfor-
mAg agent can regulate and validate the message’s storage (4.2, 4.2.1, 4.2.2) before it
is transmitted to the USP1 platform (5). There, a platformAg agent interrupts the Mes-
sageDispatcher component (5.1) because it is overloaded (5.1.1) and decides to redirect
it to the USP2 platform (5.1.2) which transfers the message to the application (5.2, 6).
This is notified to the appAg agent (6.1) which considers the requirements as not satis-
fied (6.1.1).

The norm violation (7) can be handled either by reinforcement and punishment
mechanisms (7.1) applied to the agents and/or by a reorganization process (7.2) based
on the analysis of the system’s failures by the agents.
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6 Related Work and Discussion

M2M is a promising paradigm and is the topic of several works. For instance, the SEN-
SEI project5 uses a virtual representation called “WSAN Islands” which provides the
sensor value of the physical device and can be fed by predictive agents to reduce com-
munications to sensors. Our work goes a step further since SENSEI doesn’t yet provide
any governance structure to control its components’ behavior.

Some of them propose a governance structure. For instance, an agent-based approach
is used by the US Ocean Observatories Initiatives to build an Ocean Observatories Ini-
tiative Cyberinfrastructure [5] to monitor the oceans with a marine sensor platform. It
defines an infrastructure for an M2M server composed of six service networks interact-
ing together following predefined interaction scenarios. The AAMSRT framework [14]
gives another multi-agent approach for managing sensor re-targeting on satellites. Yet,
both of these models use a static organizational model even if the second one is based
on agents negotiating their commitment to missions.

Our paper proposes a template for an end-to-end M2M architecture. The openness
and the heterogeneity of applicative requirements made necessary to ensure agility
to the specifications by the means of organizational adaptations. For example, the
sensing_time and tsense values in norm n01 are specific to the applicative needs and
the type of sensor. Agents can adapt the OS by extending the existing organization as
a generic framework: new norms specific to applicative requirements, involving new
roles extending existing ones to fulfil specific goals.

Moreover, as the OS is explicit and understandable for the agents, they can reason
about it in order to improve the system’s performances. For example, faced to a scal-
ability issue, role cardinalities could be increased to enable some functionalities and
components of the platform to be delegated to several agents. In contrast, security is-
sues could lead to more atomicity by lowering role cardinalities.

Nevertheless, such a reorganization raises several issues: while self-organizing
MAS’s are more adaptive and robust, they might not converge in a stable organiza-
tion [16]. Furthermore, the (re)organizational cost [12] must be taken into account to
decide when to adapt. Another issue is to define who manages the reorganization: ded-
icated agents applying the organizational policy [11] or the applicative agents directly
as in the AMAS [2] theory? While the former solution suffers robustness and scalabil-
ity, the latter raises trust management issues. A possibility would be balancing between
agents adapting locally based on their perception and dedicated agents for definitive
organizational changes.

A contribution of our work is the explicitly expression of the vertical and horizontal
concerns as different part of the organization. This model simplifies the analyze and
reorganization process as the agent can clearly identify which part of the specification
doesn’t suit. Nevertheless, modifying a part of the organization raises issues with re-
spect to the organization’s integrity and consistency. For example, what does an agent
is supposed to do when it is fulfilling a mission but the cardinality has just decreased in
the OS? And what are the side effects?

5 SENSEI (Integrating the Physical with the Digital World of the Network of the Future), EU
ICT FP7, http://www.sensei-project.eu/

http://www.sensei-project.eu/
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Hence, a solution is to stop the organization, update its definition and restart the
groups and schemes. However, this approach is not satisfying neither as maintenance
goals make difficult to define the time to stop a scheme. Furthermore, goals might have
been modified so it is not possible to save all the schemes’ states to restore them.

Therefore, a step further would be to split the model into several organizations: one
for the horizontal concerns and one for each vertical application requirements. This
would lead to several small organizations easier to analyze and adapt separately. Then
agents will be able to reason in term of organization involvement in order to adapt the
priority of one application’s requirements or the horizontal objectives. Yet, much work
have to be done to specify extra-organization links and constraints.

7 Conclusion and Further Work

Through a smart parking management application, this paper has presented a multi-
agent architecture for an agile governance of Machine-to-Machine systems. The gov-
ernance system is implemented using the JaCaMo framework in order to separate the
different governance layers: CArtAgO artifacts are used to monitor and handle the M2M
infrastructure, Jason agents applies the governance strategy and reason about the gov-
ernance objectives which are specified as aMoise organization.

This governance model takes into account both the vertical application requirements
and the shared infrastructure horizontal concerns, following the latest recommendations
of the ETSI [6]. Furthermore, in order to meet scalability requirements, it highlights sev-
eral key elements for adapting the structural, functional and normative specifications.

An other step in our work will focus on exploring reorganization aspects following
two directions: (i) a behavioural specification to enable agents to adapt the organization
directly and (ii) the definition of new roles dedicated to organization monitoring and
reorganization processes to control the reorganization. Furthermore, while splitting the
horizontal and the vertical concerns into several organization, it would be necessary to
define heuristics to prioritize an organization over an other one.

In the meantime, the proposed organization, agents and artifacts will be deployed in
an M2M infrastructure as a demonstrator in order to test and validate this model under
real conditions.
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Abstract. This paper focuses on the field of Situational Method Engi-
neering (SME) for the construction of agent-oriented design processes.
Whatever SME approach a method designer wants to use, he has to
manage two main elements: the (method or process) fragment and the
repository where it is stored. Specific fragment definition and documen-
tation are fundamental during these activities, for new process composi-
tion, and for the consequent system design activities. This paper aims at
illustrating a proposal of fragment definition and documentation. This
proposal is aimed to be an input for the IEEE FIPA Design Process Doc-
umentation and Fragmentation working group and, as regards our own
research work, this is the ideal completion of the methodological practices
prescribed in the PRoDe approach for new processes composition.

1 Introduction

The work presented in this paper starts and is based on what we have done
during the latest years towards the definition of the best way to create ad-hoc
agent oriented design processes. The development of a multi agent system always
requires great efforts in learning and using an existing design process.

It has been said and heard several times that it does not exist one design
process (or also a methodology or a method) to develop systems able to solve
every kind of problems and that there is the need for creating techniques and
tools for a designer to develop an ad-hoc design process prior to use it on the
base of his own needs [11][20][19].

In order to solve this problem and to give means for one to develop an agent
system using the “right” design process, we adopted the (Situational) Method
Engineering approach and we started from pointing out what we intend for
design process. (Situational) Method Engineering [8][2][11][15] provides tools
and techniques for creating design processes by reusing portion of existing ones,
called method fragment, stored in a repository, the method base.

In [4] the main elements of an agent-oriented design process have been identi-
fied, they fundamentally ground on three of the main elements a designer always
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meets during design, they refer to the stakeholders that perform activities in or-
der to produce design results (also labelled work products or artefacts).

The key idea of our approach is that this core triad has to be augmented by
another important element: the system metamodel. This concern, also deduced
from the MDE [16] approach, led to the consideration that producing design
results, is nothing else but instantiating elements from a (meta-)model.

The system metamodel is the fundamental element to be considered following
the (Situational) Method Engineering approach, PRoDe (the Process for design-
ing Design Processes), we have recently created [17]. In PRoDe the creation of
design processes can be done by following specific phases from analysis to im-
plementation. The system metamodel contains the set of constructs that will
satisfy the system requirements.

A lot of existing (Situational) Method Engineering approaches exist [7][14][12]
[9][1], they are developed around three main phases: the process requirements
analysis, the process fragments selection and the process fragment assembly. The
principal aim of SME is to manage the method fragment.

Nowadays, there are a lot of definitions of method fragment in the research
on (Situational) Method Engineering. We claim that none of them can be uni-
versally applied. Different (Situational) Method Engineering approaches own
different notion of method fragment and as a consequence they use proprietary
repositories. Actually, this reason and the lack of a unique fragment interface
severely limit the availability of repositories.

In this paper we focus on the process fragment definition and documentation
by identifying its main elements and following a twofold aim: reuse, in terms of
providing all the information for supporting the selection and assembly phases,
and reuse in a more general design point of view, hence providing information
useful to designers. During system development, designer needs guidelines on
the portion of work described in the fragment and how to produce the related
artefacts. So the main notion, we deal with, is the System Metamodel that
represents the major improvement to the work proposed in [17].

Our aim is to give a definition aiming at well documenting the process frag-
ment. We pursue a twofold objective: 1) using the fragment at the system design
time and 2) reusing in storage and assembly, in so doing we lay the founda-
tions for establishing a standard definition of fragment and the related standard
documentation. This work is the natural prosecution of the work done by the
authors within the IEEE FIPA Design Process Documentation and Fragmenta-
tion working group that already resulted in the standard way of documenting
design processes [10].

In the following sections the definition and a template for documentation of
process fragment will be shown together with an example of documentation.

2 Background and Motivation

During the latest years the fact that the projects’ features and organization
specificities greatly influence the software development methods has become
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evident. Besides the more the software systems become complex the more this
fact becomes urgent. The consequence is that it does not exist a unique devel-
opment method that could fit every kind of needs organizations could present
and that can be used for engineering every kind of software systems.

In this scenario it is increasing the need for techniques allowing organizations
to create and then to use their own development method(s). Specific development
methods could take into account the kind of problems the organization is devoted
to solve and the characteristics they present in terms of designers/developers
skills, known and used tools and so on.

The discipline of Method Engineering has faced this problem and some im-
portant results has been reached. The Method Engineering has been defined by
Brinkkemper et al. [2] as “the engineering discipline to design, construct and
adapt methods, techniques and tools for the development of information sys-
tems ”. Method engineering aims to accomplish two different scopes: the first
is to create situation specific methods for meeting organizational features and
represent a sort of choice list, the second is to produce the so called method “on
the fly”. Hence the system development implies and starts with the definition
of development methods that fit specific project situations (this is the matter
of a sub-area of Method Engineering (ME), the Situational Method Engineering
(SME) [11]).

The best and quickest way to develop situation specific methods is reusing ex-
isting ones. For these purposes (S)ME prescribes to break down existing methods
into “components” that may be stored in a repository. These components may
be retrieved (analyzed and then selected) from the repository in order to be
composed/assembled in a new method fitting project/organization needs. They
can also be used as they are or adapted in order to best fit specific needs or in
order to facilitate the composition of the process.

Still open issues are: the definition of the components and their granularity,
how they have to be selected from the repository and how they can be assembled.

In the past the authors developed an approach for new design processes com-
position (PRoDe [17]) that entails the aforementioned “component” namely the
Process Fragment and also the System Metamodel.

The Process Fragment is a portion of design process adequately
created and structured for being reused during the composition and
enactment of new design processes both in the field of agent oriented
software engineering and in other ones (model driven engineering-based
approaches are preferred fields of application for the proposed definition).

The System Metamodel is the definition of constructs needed for
creating system models.

It is our belief that during the enactment of the methods one (or more) process
role refers, more or less knowingly, to the metamodel in order to produce work
products where instances of a set of metamodel constructs are managed (more
details about this argument can be found in [10]).
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Managing process fragments is the main aim of PRoDe, it covers the three
main phases of SME, the process requirement analysis and the definition of
process fragment, the selection and then the assembly. Because of our conviction
about the importance of the system metamodel in all the design activities, it has
a central role in PRoDe.

The first activity in the PRoDe approach entails a set of steps that, starting
from the process requirements, are able to produce the system metamodel or
in any case a first draft of it. PRoDe is iterative, the new design process, after
a first enactment, might be modified/enhanced due to test results and new re-
quirements identification. As regard selection and assembly the PRoDe approach
provides a well defined set of activities for identifying and retrieving fragments
from repository basing on some considerations made on the system metamodel
[17]. The PRoDe activities, as well as other SME approach activities, are also
highly grounded on the SME fundamental element, the Process Fragment (or
method fragment or chunk or simply fragment - however it is named by differ-
ent researchers), and obviously on the repository aimed at storing it. In order
to apply a SME approach in the most fruitful way, a well done definition and
documentation of process fragment is useful for properly storing, selecting and
assembling new design processes whatever SME approach one wants to follow.

The process fragment definition together with the specific SME process (see
for instance [17]) used for retrieving and composing fragments may notably in-
fluence how the repository is conceived and constructed. We try to not take this
chance by using the definition we propose in the following section.

3 The Process Fragment Definition

Figure 1 represents all the elements composing a Process Fragment. It contains
all the elements useful for representing and documenting the fragment under the
process, product and reuse point of view; the proposed fragment documentation
template, that will be presented in the following section, slavishly follows the
proposed representation, its elements and their definitions.

The root element, the Process Fragment, has been generally extracted from
an existing design process, therefore an important information to be stored in
the repository is the Design Process the fragment refers to. This serves for the
designer to set the application context and the particular features the fragment
would exhibit. The Process Fragment can be of three different levels of granu-
larity: phase, composed and atomic, each of them is related to the quantity of
work to be done and to the complexity of the produced outcome.

– A phase (process) fragment delivers a set of work products belonging to the
same design abstraction level of the design flow. Such a work product may
belong to any of the cited work product types. An example of phase-level
work product may be a system analysis document; it is composed of several
work products (diagrams, text documents, . . . ) all belonging to the same
design abstraction level (system analysis).
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Fig. 1. The Process Fragment View

– A composed (process) fragment delivers a work product (or a set of instances
of the same work product). Such a work product may belong to any of the
cited work product types.

– An atomic (process) fragment delivers a portion of a work product and/or a
set of system model constructs (in terms of their instantiation or refinement).
A portion of a work product is here intended never to be a whole work
product; in other words, atomic fragments never deliver entire work products.

The process fragment prescribes some activities to do, each of them is a portion
of work that has to be performed by one or more stakeholders (Roles).

Activity delivers Work Products, where the results of design activities are
drawn by using a specific Notation and each work product is developed under
the responsibility of one role. The notation to be used greatly influences the flow
of work to be done for producing a work product and for this reason a fragment
has to be supplied with a set of Guidelines. As regards the process and product
perspective of the fragment the Enactment Guidelines provides all the elements,
description and so on, for applying the workflow prescribed in the fragment.

It is not mandatory to follow a specific notation, the same kind of diagram (for
instance a structural one) may be expressed by using different notations without
significant differences in the resulting expressiveness. Moreover, different kinds
(WP Kind) of work products can be delivered. We identified two main work
product kinds: graphical and textual, the former when an activity results in a
diagram, the second when designers produce textual documents. Finally a work
product can be of composite kind if it is a composition of the previous said kinds,
for instance a document with a diagram and the text explaining it (more details
can be found in [18]).



226 V. Seidita, M. Cossentino, and A. Chella

As well as in the design process definition, one of the most important elements
in the fragment definition is the (Multi-Agent) System Metamodel (Multi-Agent
SMM); each fragment is based on a system metamodel that is obviously a part
of the metamodel of the design process it comes from. The metamodel contains
the set of constructs representing the (portion of) system to be designed using
a specific process fragment. We consider System Metamodel composed of con-
structs that can be elements (SMME - the concepts to be designed), relationships
among them (SMMR), attributes (SMMA) and operations (SMMO) for respec-
tively representing a particular feature and the behavioral characteristics of an
element (see [6] for further details).

The main aim of process fragment is to instantiate one (or more) system
metamodel construct(s) (SMMC) and in so doing it may be requested to define
relationships among elements or to quote other elements and/or relationships;
besides the result of defining an element or a relationship might be the refinement
of existing elements or relationships. This fact led to the definition of the kinds of
action to be done on a system metamodel construct (see the following section for
details). Finally SMMC has a definition to be listed in a glossary; the definition
is mainly useful during selection when the method designer wants know which
kind of metamodel construct better fits with the metamodel construct s/he is
dealing with.

Until now we explored the process and product part of the fragment through a
set of elements that has to be necessarily present in the fragment documentation,
now let us quickly focus on the elements that principally deal with the reuse
aspect of the fragment: Goal, and Dependency guidelines. The fragment goal is
the objective the process part of the fragment wants to pursue and it is to be
used during fragment selection from the repository. For this reason it is related
to the new design process requirements, in other words, a goal describes the
contribution a fragment may give to the accomplishment of some design process
requirements.

The dependency guideline aims at describing specific constraints, if they ex-
ist, for the fragment to be composed with other ones, for instance, there can
be fragments dealing with system metamodel elements that are very specific to
particular application domains, in this case it should be possible that such frag-
ments can be composed with fragments coming from the same classes of design
processes.

It is important noting that the way the work has to be performed inside one
fragment may slightly change depending on the notation of the work product
produced; if the result has to be a graphical work product the activity and
the related guidelines are different if we want to use two different notations.
Since the fragment aims at designing a specific system metamodel construct,
we can consider the fragment itself independent from the specific notation. The
same result can be obtained by producing different work products in different
notations.

In the following table we give the detailed definition of all the elements com-
posing a process fragment:
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Table 1. Process Fragment Elements Definitions

Term Definition

Design Process It is the design process from which the fragment
has been extracted.

Phase A specification of the fragment position in the de-
sign workflow. Usually referring to a taxonomy
(i.e. Requirements elicitation, Analysis, Design,
etc.)

Goal The process-oriented objective of the fragment.
Activity A portion of work assignable to a performer (role).

An activity may be atomic (sometimes addressed
as Action) or composed by other activities.

Work Product The resulting product of the work done in the frag-
ment; it can be realized in different ways (diagram,
text,..) also depending on the specific adopted no-
tation.

WP Kind Represents the specific kind one work product can
be; it strictly depends on the means the adopted
notation provides. One work product can be:
Structured or Free text, Structural, Behavioural
or Composite

Notation Each deliverable can be drawn by using a specific
notation. Concepts dealt by the fragment have to
find a mapping in the notation. Notation usually
includes a metamodel and a set of pictorial pre-
scriptions used to represent the instantiation of
metamodel elements.

Role The stakeholder performing the work in the pro-
cess and responsible of producing a work product
(or a part of it). Usually referring to a taxonomy
(i.e. System Analyst, Test Designer, etc.)

System Metamodel Construct (abstract class) The concept the fragment deals
with, for instance a fragment aiming at defining
the system requirements has to define and to iden-
tify the concept of requirements. Each metamodel
construct has to be defined during, at least, one
portion of process work and has to appear in at
least one work product.

System Metamodel Element It is an entity of the metamodel that is instantiable
into an entity of the system model. Examples of
SystemMetamodel Elements (SMME) are: classes,
use cases,. . . .

System Metamodel Relationship It is the construct used for representing the exis-
tence of a relationship between two (or more) in-
stances of SMMEs. For instance, the aggregation
relationship among two instances of a SMME class
is an instance of the SMMR association.

System Metamodel Attribute It is a particular kind of elements used for adding
properties to SMMEs. An SMMA is a structural
feature and it relates an instance of the class to
a value or collection of values of the type of the
attribute. [21]. The attributes type is a SMME.

System Metamodel Operation It is a behavioral feature of a classifier that spec-
ifies the name, type, parameters, and constraints
for invoking an associated behavior [21].

Glossary A list of definitions for the system metamodel con-
structs.

Description It is the textual and pictural description of the
fragment; it provides a bird-eye on the whole pro-
cess the fragments comes from and the fragment
overview in terms of tasks to be performed, roles
and work product kind to be delivered.
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Table 1. (Continued)

Term Definition

Composition Guideline A set of guidelines for assembling/composing the
fragments with others. This may include nota-
tional specifications, and constraints (also ad-
dressing issues like platform to be used for system
implementation and application area)

Dependency The description of specific dependencies of this
fragment from other ones; it is useful for compo-
sition.

Enactment Guideline The description of how to perform the prescribed
activity. This may include best practices and spe-
cific techniques for achieving the expected results.

4 The Process Fragment Documentation

The document used for the Process Fragment description is made of six main
sections (the template is shown in Figure 2), each of them refers to one (or a
set of) element(s) of the Process Fragment representation (see Figure 1). Three
sections deals with the three main elements a design process is composed of, as
we stated in section 2, they are: Stakeholders, Workflow and Deliverable, hence
the description of who performs the work to be done and how, in order to deliver
an artefact of the system model.

The Stakeholders have to be simply described through the name and the
description of the activities (the work) their are responsible for. They are named
Role in compliance with SPEM 2.0 [13].

The Workflow section serves for documenting all that regards the structure of
the portion of work to be done in the process fragment. It covers the set of proce-
dural rules for sequencing design activities and documents/artefacts exchanged
among Roles in order to produce the main output of the fragment.

The concept of workflow we had in mind when we created this document tem-
plate is the one introduced by [22], it is structured by work breakdown elements
that give us the possibility to represent portion of design work at every level of
granularity, hence we can represent phases, activities and tasks.

The Workflow description is made with one SPEM 2.0 activity diagram that
represents the portion of work related to the role performing it and all the needed
input and output documents. Each work breakdown element is completed with
a textual description of information such as the name, the kind e.g. if it is a
task, an activity or other else, the description and the roles involved in the
work. Besides the list of all the input and output system metamodel constructs
and the list of all the input and output work products are needed in order to
have means for analyzing the process fragment, also automatically, during the
selection and assembly phase when a new design process is being creating.

The Deliverable section is made of two main parts, the first deals with the
truly description of the document kinds to be produced in order to provide
guidelines for producing them and the second handles the relationships of the
work product with the constructs of the system metamodel here managed. So in
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1. Fragment Description
1.1. Fragment Goal
1.2. Fragment Granularity

1.2.1. Composing fragments
1.3. Fragment Origin

1.3.1. The Process Lifecycle
1.4. Fragment Overview

2. System metamodel
2.1. Definition of System metamodel elements
2.2. Definition of System metamodel relationships
2.3. Definition of System metamodel attributes
2.4. Definition of System metamodel operations

2.4.1. Fragment Input/Output in Terms of System Metamodel Constructs
2.4.2. Definition of input system metamodel constructs

3. Stakeholders
3.1. Role 1

4. Workflow
4.1. Workflow description
4.2. Work Break Down Elements description
4.3. Work Break Down Elements’ input/output in terms of system metamodel constructs
4.4. Fragment’s Input/Output in terms of Work Product

5. Deliverables
5.1. Document name

5.1.1. Deliverable notation
5.1.2. Deliverable content in terms of system metamodel constructs

6. Guidelines
6.1. Enactment Guidelines
6.2. Reuse Guidelines

6.2.1. Composition
6.2.2. Dependency Relationship with other fragments

7. Glossary
8. References

Fig. 2. Process Fragment Document Template

the first part of the section the description on how to produce the work product
and an example on the specific notation used are given.

This part of the document aims at exhaustively providing all the information
for the designer to produce the deliverables. In the second part of this section
the said relationships are represented in a particular kind of diagram that the
authors created by extending SPEM 2.0 [6], namely the work product content
diagram.

The word content let us understand that this diagram aims at having a com-
plete and detailed view on the elements managed during the production of the
work product. Exactly this diagram collects all the system metamodel constructs
that are managed during the enactment of the process fragment and are also re-
ported in the work product, hence the design process input constructs that are
not reported in the work product are not shown in this diagram.

Input constructs are used by designer for the analysis and for reasoning about
the system to be produced. In the content diagram we also report information
about the type of design actions made on each construct.

One specific design action is made on each metamodel construct and it is
useful for catching various information about the fragment and the resulting
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work product. The list of possible design actions has been identified by ana-
lyzing the way of working of designer; we used for that a lot of agent oriented
design processes under the hypothesis that each work product production aims
at instantiating at least one metamodel construct.

Instantiating means defining one or more instances of metamodel construct
that have to be represented in the work product following one specific notation.
Often, during the definition of one construct designer needs to consider other
constructs already defined in other process fragment and/or to report them in
the work product he is producing. Another frequent situation is when designer
relates one instance of one construct to another one, for instance a generalization
among classes, in this case he defines a relationship.

Finally designer could need to refine constructs by adding information or
features to an already defined one, in this case he defines attributes and/or
operations for that construct. Therefore the possible design actions to be made
on system metamodel constructs are:

– define, instantiation of construct (element, relationship, attribute and op-
eration), the label used is D for all construct except for the relationship in
which case it is R,

– quote , reporting a construct in the work product, the labels used areQ,QR,
QA and QO respectively for element, relationship, attribute and operation.
Quotation also introduces relationship, hence dependency, with other work
products.
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Fig. 3. An example of Work Product Content Diagram
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In Figure 3 an example of work product content diagram is given, it represents
the outcome of the Single Agent Structure Definition process fragment extracted
from PASSI [3]; here we can see that the aim of this process fragment is to pro-
duce a work product where the Implementation Agent and Implementation Task
are respectively refined by adding the Agent Attribute and the Task Attribute,
hence these latter are defined whereas the former are quoted and related with
them. Besides, in order to define the Agent Attribute and the Task Attribute,
Concept and Java Type have to be quoted. Finally the work product prescribes
to also report the Task Action and the Platform Agent that are consequently
quoted. It is worth noting that the notational symbol used for System Meta-
model Construct (SMMC) is not used for system metamodel relationship, even
if we understand that this is not stylistically correct from a notational point of
view we prefer to maintain that for reducing the complexity of producing and
reading this kind of diagrams. Besides there can be more than one relationship
among instances of the same constructs and this is shown by the number close
to the R label. This kind of diagram let designer to easily identify all the system
metamodel constructs the fragment is devoted to manage.

Another notational element that can be seen in this diagram and that is
largely used in all the SPEM 2.0 diagrams of the fragment documentation is
the Work Product Kind. Briefly, we needed to represent different kinds of work
product so we extended SPEM in order to include the following kinds1:

– Behavioural, it is a graphical kind of work product and is used to represent
the dynamic aspect of the system (for instance a sequence diagram repre-
senting the flow of messages among agents along time);

– Structural, it is also a graphical kind of work product and is used for repre-
senting the static aspect of the system, for instance a UML class diagram;

– Structured, it is a text document ruled by a particular template or grammar,
for instance a table or a code document;

– Free, it a document freely written in natural language;
– Composite, this work product can be made by composing the previous work

product kinds, for instance a diagram with a portion of text used for its
description.

The main aim of the section on Deliverables is to provide, among the others, some
kind of guidelines for producing the work product. Another kind of guidelines
has to be documented in the Guidelines section, here there are two types of
guidelines, the enactment and the reuse. The enactment guideline provides a
textual description on how to carry out the work in the fragment by referring
and describing in details how to manage the system metamodel constructs of
the fragment.

The aim of the reuse guidelines is very different, they are directed to the
reuse possibility of the fragment thus providing suggestions for composing the
fragment with other ones and the dependencies from other fragments. Reuse
guidelines supplies another view on the dependencies of the fragment already

1 Definitions reported from our previous work on the matter in [18].
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Fragment Goal
Describing semantic agent communications in terms of exchanged knowledge (referred to an ontology), content
language and interaction protocol.
Fragment Origin.
The presented fragment has been extracted from PASSI (Process for Agent Societies Specification and Imple-
mentation) design process. PASSI (Process for Agent Societies Specification and Implementation) is a step-by-
step requirement-to-code methodology for designing and developing multi-agent societies. The methodology
integrates design models and concepts from both Object-Oriented software engineering and artificial intelli-
gence approaches. PASSI has been conceived in order to design FIPA-compliant agent-based systems, initially
for robotics and information systems applications. . . .
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Fig. 4. A Portion of the COD Fragment Document - The Fragment Description

visible in the workflow description by means of the input work products and
in the content diagram by means of the quoted elements so as in all the tables
describing input and output constructs of the fragment.

What we consider the key concept of our approach to SME for represent-
ing design process in general and process fragment in particular, the System
Metamodel, is documented in the second section on the proposed template. The
attention paid to the System Metamodel, how it is conceived and it is composed
of is the most important improvement the authors give to the previous fragment
definition made in [17]. The section on metamodels includes a class diagram for
representing the Complete System Metamodel of the fragment and the definition
of each SMM Construct together with, when applicable, a statechart describing
its different states while managed by the designer during the application of the
fragment. An example reported from the Communication Ontological Descrip-
tion (COD) process fragment is shown later in Figure 5 (consider that this and
the following figures are extracted from the COD documentation so other fig-
ures are present with different numeration). Then all the input/output system
metamodel constructs are listed in a table where a distinction is made between
the constructs to be designed and the ones to be quoted.

The first section regards the Fragment Description that includes: the goal,
the granularity, the origin of the fragment and an overview on the fragment.
The description of the fragment goal aims to provide the reader with a quick
understanding of the goal pursued by the process fragment using a simple sen-
tence like, for instance, “the aim of this fragment is collecting requirements”,
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System metamodel
The portion of metamodel of this fragment is:

Figure a. The fragment System metamodel

This fragment refers to the MAS meta-model adopted in PASSI and contributes to define and describe the ele-
ments reported in Figure a.
Definition of System metamodel elements.
This fragment underpins the following model elements:
Agency_Agent - an autonomous entity capable of pursuing an objective through its autonomous decisions,
actions and social relationships. It is capable of performing actions in the environment it lives; it can communi-
cate directly with other agents, typically using an Agent Communication Language; it possesses resources of
its own; it is capable of perceiving its environment; it has a (partial) representation of this environment in form
of an instantiation of the domain ontology (knowledge); it can offer services; it can play several, different (and
sometimes concurrent or mutually exclusive) agency_roles.
Each agent may be refined by adding knowledge items necessary to store/manage communication contents.
The Agency_agent statechart is:

Description of the Agency_Agent states:
Defined: An Agency_Agent is in this state once it is instantiated in the system model. The agent’s unique name
has to be defined.
Refined: An Agency_Agent moves in this state once its knowledge chunks are defined.

Fig. 5. A Portion of the COD Fragment Document - The System Metamodel

possibly relating the description to common-sense in software engineering. The
goal serves mainly in giving a mean for the method designer to select the right
fragment for his purposes.

As regard the granularity, it establishes the length of the work done in the
fragment and in some way the complexity of the fragment in terms of work
product. As already said there can be three kinds of fragment: phase, composed
and atomic (see also Figure 1).
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Finally Glossary and References completes the documentation by providing
useful description of the most important terms used in the fragment and a list
of references for improving knowledge on the fragment, above all on the origin,
the application context and so on.

5 An Example of Process Fragment Document

In the following an example of fragment documentation is given through a set
of figures that we extracted from the document related to the Communication
Ontological Descritpion - COD process fragment from PASSI [3]. Each figure
represents a relevant portion of the document, the complete version of this frag-
ment can be found in the FIPA DPDF working group website2.

Looking at the fragment outline, it can be seen that first of all we focus on
the fragment presentation through its goal and its origin, in so doing we reach
a twofold objective, letting the designer have a quick idea on the focus and the
domain in which the fragment might work and allowing a sort of automatic
or semiautomatic selection of the fragment. Figure 4 shows the fragment goal,
it is described in a very concise textual form that puts in evidence the main
elements the fragment will deal with, for instance it can be noticed the words

Workflow.
Workflow description.
The process that is to be performed in order to obtain the result is represented in the following as a SPEM 2.0
diagram

Figure b. The flow of tasks of this fragment

Fig. 6. A Portion of the COD Fragment Document - The Workflow Description

2 http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/docs.htm

http://www.pa.icar.cnr.it/cossentino/fipa-dpdf-wg/docs.htm 
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Example.
In Figure c, the PurchaseManager agent starts a communication (see QueryForAdvice association class) with
the PurchaseAdvisor agent. The communication contains the Course ontology, the Query protocol and the RDF
language. This means that the PurchaseManager wants to perform a speech act based on the FIPA query
protocol in order to ask the PurchaseAdvisor advice on how to purchase (supplier, number of stocks, number of
items per each, purchase-money) provided the Course information.

Figure c. An example of Communication Ontological Description diagram.

Fig. 7. A Portion of the COD Fragment Document - An Example of the Produced WP

agent communication, knowledge and protocol. It is to be hoped that this part
of the document were compiled using words focussing on the fragment scope.
Figure 4 also shows a portion of the section dedicated to the design process the
fragment has been extracted from, the importance of this early discussion has
been already said.

As well as a design process, each process fragment is based on a MAS meta-
model composed of elements and relationships; the fragment document has to
explore this issue and to show all the elements type to be defined/quoted/related
in the fragment. Figure 5 shows the COD document section about System meta-
model. As already said the process fragment description, and documentation, is
principally aimed at showing the process and product part of the fragment for
easily identifying the way in which it can be reused. Figure 6 refers to the frag-
ment description section and details the inputs, the outputs and the fragment
workflow through a SPEM 2.0 activity diagram.

The fragment document continues with an example and the explanation on
how to produce the work product (see Figure 7) and with a set of composition
guidelines and dependency relationships.

6 Conclusions and Remarks

In this paper we presented the process fragment definition and the documenta-
tion template we use in our work. After a long experience done on the construc-
tion of design processes we realized that this template is an optimum starting
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point for the definition of a standard notion of process fragment. The presented
document has been conceived with both a textual and a diagrammatic part in or-
der to provide different views on the fragment and in order to allow the designer
to retrieve the most useful information for his own needs in a quick and also vi-
sual fashion. We created the document for being used for two purposes: reusing
the fragment during the process creation in a (Situational) Method Engineering
fashion and using it during design process enactment.

This work presents a fundamental improvement with respect to the work
done some years ago and illustrated in [17], here the system metamodel was
also considered as a component of the fragment but its importance has been
now enriched by all the notions related to its constructs and how they can be
defined. Moreover the fact that within PRoDe the System Metamodel is the
central element for retrieving, selecting and assembling fragments have led to
the need for its right and more fruitful representation in the fragment definition
and documentation.

Another important outcome of our work is that since the fragment aims at
designing a specific system metamodel construct, we can consider the fragment
itself independent from the specific notation. The same result can be obtained
by producing different work products in different notations. Such a feature is
one of the strengths of the proposed fragment definition that is highly reusable
and composable being mainly oriented to the metamodel construct it is aimed
to define; for instance a fragment that delivers UML based work products can
be easily composed to another fragment delivering free textual work product, it
is only important that the two have a matching set of input/output metamodel
constructs. This fact overcomes the problem of interfaces among fragment and
the problem, until now present, of having all fragments producing work products
with the same notation; at worst we could create design processes where different
parts have different notations but also this problem can be overcame by using a
CAPE (Computer Aided Process Engineering) tool able to instantiate the right
CASE tool for managing the enactment of the newly created design process. An
example of such CAPE tool is Metameth, a prototype that we developed in the
past in our laboratory [5].
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Abstract. In multi-agent systems, anticipating the behavior of other
agents constitutes a difficult problem. In this paper we present the case
where a cognitive agent is inserted into an unknown environment com-
posed of different kinds of other objects and agents; our cognitive agent
needs to incrementally learn a model of the environment dynamics, doing
it only from its interaction experience; the learned model can then be
used to define a policy of actions. It is relatively easy to do so when the
agent interacts with static objects, with simple mobile objects, or with
trivial reactive agents; however, when the agent deals with other complex
agents that may change their behaviors according to some non-directly
observable internal properties (like emotional or intentional states), the
construction of a model becomes significantly harder. The complete sys-
tem can be described as a Factored and Partially Observable Markov
Decision Process (FPOMDP); our agent implements the Constructivist
Anticipatory Learning Mechanism (CALM) algorithm, and the experi-
ment (called mept) shows that the induction of non-observable variables
enable the agent to learn a deterministic model of most of the system
events (if it represents a well-structured universe), allowing it to antici-
pate other agents actions and to adapt to them, even if some interactions
appear as non-deterministic in a first sight.

Keywords: Factored Partially Observable MDPs, Anticipatory Learn-
ing Mechanisms, Model-Based RL, Constructivist Artificial Intelligence,
Agent Intersubjectivity.

1 Introduction

Trying to escape from AI classic (and simple) maze problems toward more so-
phisticated (and therefore more complex and realistic) agent-based universes,
we are led to consider some complicating conditions: (a) the situatedness of the
agent, which is immersed into an unknown universe, interacting with it through
limited sensors and effectors, without any holistic perspective of the complete
environment state, and (b) without any a priori model of the world dynamics,
which forces it to incrementally discover the effect of its actions on the system
in an on-line experimental way; to make matters worse, the universe where the
agent is immersed can be populated by different kinds of objects and entities,
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including (c) other complex agents, and in this case, the task of learning a pre-
dictive model becomes considerably harder.

We are especially concerned with the problem of discovering the existence of
other agents’ internal variables, which can be useful to understand their behavior.
Our cognitive agent needs to incrementally learn a model of its environment dy-
namics, and the interaction with other agents represents an important part of it.
It is relatively easy to construct a model when the agent interacts with static ob-
jects, with simple mobile objects, or with trivial reactive agents; however, when
dealing with other complex agents which may change their behaviors according
to some non-directly observable internal properties (like emotional or intentional
states), the construction of a model becomes significantly harder. The difficulty
increases because the reaction of each agent can seem like a non-deterministic
behavior from the point of view of our agent, regarding the information provided
by the perceptive elements of the situation.

We can suggest at least two points of interest addressed by this paper: the first
one is about concept creation, the second one is about agent inter-subjectivity.
The capability to develop new abstract concepts have always been a central point
in most philosophical and psychological theories concerned with cognitive issues;
the possibility of constructing high-level elements to understand the experienced
reality has often been pointed as an important capability that enables the human
being to deal and adapt itself to a so complex and dynamical environment as the
real world [31], [37]. In contrast to the kind of approach usually adopted in AI,
which easily slip into the strategy of treating exceptions and lack of information
by using probabilistic methods, many cognitive scientists insist that the human
mind tries to accommodate the disturbing events observed in the reality by
improving the mental model with new levels of abstraction, new representational
elements, and new concepts. Moreover, the intricate problem of dealing with
other complex agents has also been studied by cognitive science for some time,
from psychology to neuroscience, suggesting that the human being has developed
the capability to attribute mental states to the others, in order to represent their
beliefs, desires and intentions, and so being able to understand their behavior
[1], [3], [14].

In this paper, we use the Constructivist Anticipatory Learning Mechanism
(CALM), defined in [35], to solve the mept problem, where a cognitive agent is
inserted into an environment constituted of other objects and also of some other
agents, which are non-cognitive in the sense that they do not learn anything,
but that are similar to our agent in terms of structure and possible behaviors.
CALM is able to build a descriptive model of the system where the agent is
immersed, inducting, from the experience, the structure of a factored and par-
tially observable Markov Decision Process (FPOMDP). Some positive results
have been achieved due to the use of 4 integrated strategies [35], [33], [34]: (a)
the mechanism takes advantage of the situated condition presented by the agent,
constructing a description of the regularities of the system relatively to the own
agent’s point of view, which allows to set a good behavior policy without the ne-
cessity of "mapping" the entire environment; (b) the learning process is anchored
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on the construction of an anticipatory model of the world, what could be more
efficient and more powerful than traditional model free reinforcement learning
methods, that directly learn a policy; (c) the mechanism uses some heuristics
designed to well-structured universes, where conditional dependencies between
variables exist in a limited scale, and where most of the phenomena can be de-
scribed in a deterministic way, even if the system as a whole is not, representing
what we call a partially deterministic environment; this characteristic seems to
be widely common in real world problems; (d) the mechanism is prepared to
discover the existence of hidden or non-observable properties of the universe,
which cannot be directly perceived by the agent sensors, but that can explain
some observed phenomena. This last characteristic is fundamental to solve the
main challenge presented in this article because it enables our agent to discover
the existence of internal states in other agents, which is necessary to understand
their behavior and then to anticipate it. Further discussion about situatedness
can be found in [50], [4], [47].

Thus, the basic idea concerning this paper is to describe the CALM mecha-
nism, proposed in [35], presenting its features, and placing it into the Markov
Decision Process (MDP) framework panorama. The discussion is supported, on
the one hand, by these introductory philosophical conjectures, and on the other
hand, by the mept experiment, which creates a multi-agent scenario, where our
agent needs to induce the existence of internal variables to the other agents.
In this way, the paper presents some positive results in both theoretical and
practical aspects. Following the paper, section 2 overviews the MDP framework,
section 3 describes the CALM learning mechanism, section 4 introduces the ex-
periment and shows the acquired results, and section 5 concludes the paper,
arguing that the discover and induction of hidden properties of the system can
be a promising strategy to model other agents internal states.

2 Markov Decision Process Framework

Markov Decision Process (MDP) and its extensions constitute a quite popular
framework, largely used for modeling decision-making and planning problems.
An MDP is typically represented as a discrete stochastic state machine; at each
time cycle the machine is in some state s ; the agent interacts with the process
by choosing some action a to carry out; then, the machine changes into a new
state s’, and gives the agent a corresponding reward r ; a transition function δ
defines the way the machine changes according to s and a. Solving an MDP
is finding the optimal (or near-optimal) policy of actions in order to maximize
the rewards received by the agent over time. When the MDP parameters are
completely known, including the reward and the transition functions, it can be
mathematically solved by dynamic programming (DP) methods. When these
functions are unknown, the MDP can be solved by reinforcement learning (RL)
methods, designed to learn a policy of actions on-line (at the same time the
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agent interacts with the system), by incrementally estimating the utility of state-
actions pairs and then by mapping states to actions [48].

2.1 The Classic MDP

Markov Decision Process first appeared (in the form we know) in the late 1950s
[5], [24], reaching a concrete popularity in the AI research community from the
1990s [39]. Currently the MDP framework is widely used in the domains of Au-
tomated Control, Decision-Theoretic Planning [7], and Reinforcement Learning
[16]. A "standard MDP" represents a system through the discretization and enu-
meration of its state space, similar to a state machine in which the transition
function can be non-deterministic. The flow of an MDP (the transition between
states) depends only on the system current state and on the action taken by the
agent at the time. After acting, the agent receives a reward signal, which can be
positive or negative if certain particular transitions occur.

However, for a wide range of complex (including real world) problems, the
complete information about the exact state of the environment is not available.
This kind of problem is often represented as a Partially Observable Markov De-
cision Process (POMDP) [28]. The idea of representing non-observable elements
in a MDP is not new [2], [44], but became popular with the revived interest on
the framework, occurred in the 1990s [10], [29], [28]. The POMDP provides an
elegant mathematical framework for modeling complex decision and planning
problems in stochastic domains in which the system states are observable only
indirectly, via a set of imperfect, incomplete or noisy perceptions. In a POMDP,
the set of observations is different from the set of states, but related to them by
an observation function ω; the underlying system state s cannot be directly per-
ceived by the agent, which has access only to an observation o. The POMDP is
more powerful than the MDP in terms of modeling (i.e. a larger set of problems
can be described by a POMDP than by an MDP), but the methods for solving
them are computationally even more expensive, and thus applicable in practice
only to simple problems [21], [30], [40].

The main bottleneck about the use of MDPs or POMDPs is that representing
complex universes implies an exponential growing-up on the represented state
space, and the problem quickly becomes intractable. Fortunately, most of real-
world problems are quite well-structured; many large MDPs have significant
internal structure, and can be modeled compactly if the structure is exploited in
the representation; the factorization of states is an approach to do so [9]. In the
factored representation, a state is implicitly described by an assignment to some
set of state variables. Thus, the complete state space enumeration is avoided, and
the system can be described referring directly to its properties. The factorization
of states enables to represent the system in a very compact way, even if the
corresponding MDP is exponentially large [19], [41]. When the structure of the
Factored Markov Decision Process (FMDP) is completely described, some known
algorithms can be applied to find good policies in a quite efficient way [19].
However, the research concerning the discovery of the structure of an underlying
system from incomplete observation is still incipient [13], [12].
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2.2 Factored and Partially Observable MDP

The classic MDP model can be extended to include both factorization of states
and partial observation, then composing a Factored Partially Observable Markov
Decision Process (FPOMDP). In order to be factored, the atomic elements of the
non-factored representation will be decomposed and replaced by a combined set
of elements. The description of a given state s in the original model will be decom-
posed in a set {x1, x2, ... xn} in the extended model; a given action a becomes
a set {c1, c2, ... cm}; the monolithic reward signal r becomes {r1, r2, ... rk};
and the transition function δ is replaced by a set of transformation functions
{T1, T2, ... Tn}.

A FPOMDP ([18], [20], [38], [40], [42], [12]) can be formally defined as a
4-tuple {X, C, R, T}. The finite non-empty set of system properties or vari-
ables X = {X1, X2, ... Xn} is divided into two subsets, X = P ∪ H, where
the subset P = {P1, P2, ... Pk} represents the observable properties (those
that can be accessed through the agent sensory perception), and the subset
H = {Hk+1, Hk+2, ... Hn} represents the hidden or non-observable proper-
ties; each property Xi is associated to a specified domain, which defines the
values the property can assume. C = {C1, C2, ... Cm} represents the control-
lable variables, composing the agent actions, R = {R1, R2, ... Rk} is the set
of (factored) reward functions, in the form of normal probability distributions
Ri : Pi → N(μi, σi

2), and T = {T1, T2, ... Tn} is the set of transformation
functions, as Ti : X × C → Π(Xi), defining the system dynamics. Each trans-
formation function can be represented as a Dynamic Bayesien Network (DBN)
[11], which is an acyclic, oriented, two-layers graph; the first layer nodes repre-
sent the environment situation in time ti and the second layer nodes represent
the next state in time ti+1 [9]. A stationary policy π is a mapping X → C where
π(x ) defines the action to be taken in a given situation. The agent must learn a
policy that optimizes the cumulative rewards received over a potentially infinite
time horizon. Typically, the solution π* is the policy that maximizes the ex-
pected discounted reward sum, as indicated in the classical Bellman optimality
equation [5], here adapted to our FPOMDP notation.

V π(x) = R(x) + maxc

[
γ.

∑
P (x′, x, c).V π(x′)

]
(1)

In this paper, we consider the case where the agent does not have an a priori
model of the universe where it is situated (i.e. it does not have any idea about
the transformation function), and this condition forces it to be endowed with
some capacity of learning, in order to be able to adapt itself to the system.
Even if there is a large research community studying model-free methods (that
directly learn a policy of actions), in this work we adopt a model-based method,
through which the agent must learn a descriptive and predictive model of the
world, and so define a behavior strategy based on it. Learning a predictive model
is often referred as learning the structure of the problem, which is an important
research objective into the MDP framework community [13], as well as in related
approaches like Induction of Decision Trees and Decision Graphs [23], Bayesian
Networks [32], [17] and Influence Diagrams [25].
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In this way, when the agent is immersed in a system represented as a FPOMDP,
the complete task for its anticipatory learning mechanism is both to create a
model of the transformation function, and to define an optimal (or sufficiently
good) policy of actions, in order to establish a behavioral strategy; a given policy
of actions π : X → C defines the behavior to be taken in each given situation.
Some algorithms create stochastic policies, and in this case the action to take
is defined by a probability. Degris and Sigaud [12] present a good overview of
the use of this representation in artificial intelligence, referring several related
algorithms designed to learn and solve factored FMDPs and FPOMDPs, includ-
ing both the algorithms designed to calculate the policy given the model [9], [8],
[20], [38], [26], [45], [18], [42], [41] and the algorithms designed to discover the
structure of the system [13], [12],[46], [27].

3 Anticipatory Learning Mechanism

Anticipatory learning mechanisms refer to methods, algorithms, processes, ma-
chines, or any particular system that enables an autonomous agent to create an
anticipatory model of the world in which it is situated. An anticipatory model of
the world (also called predictive environmental model, or forward model) is an
organized set of knowledge allowing inferring the events that are likely to hap-
pen [36]. When immersed in a complex universe, an agent (natural or artificial)
needs to be able to compose its actions with the other forces and movements of
the environment. In most cases, the only way to do so is by understanding what
is happening, and thus by anticipating what will (most likely) happen next. A
predictive model can be very useful as a tool to guide the behavior; the agent
has a perception of the current state of the world, and it decides what actions
to perform according to the expectations it has about the way the situation will
probably change. The necessity of being endowed with an anticipatory learning
mechanism is more evident when the agent is fully situated and completely au-
tonomous; that means, when the agent is by itself, interacting with an unknown,
dynamic, and complex world, through limited sensors and effectors, which give
it only a local point of view of the state of the universe and only partial control
over it. Realistic scenarios can only be successfully faced by an agent capable of
discovering the regularities that govern the universe, understanding the causes
and the consequences of the phenomena, identifying the forces that influence the
observed changes, and mastering the impact of its own actions over the ongoing
events.

3.1 CALM

The Constructivist Anticipatory Learning Mechanism (CALM), detailed in [35],
is a mechanism developed to enable an agent to learn the structure of an un-
known environment where it is situated, trough observation and experimenta-
tion, creating an anticipatory model of the world, which will be represented as
an FPOMDP. It is inspired on the theory of the human intelligence described
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by [37]. CALM learning process is active and incremental : the agent needs to
choose between alternative actions online, and learn the world model as well as
the policy at the same time it actuates. There is no separated previous training
time; the agent has a single uninterrupted interactive experience into the system,
quite similarly to real life problems; it needs performing and learning at the same
time. The task is composed by two parts: first, building a world model, i.e. to
induce a structure which represents the dynamics of the system (composed by
agent-environment interactions). Second, to establish a behavioral policy, i.e. to
define the actions to do at each possible different state of the system, in order
to increase the estimated rewards received over time.

The task becomes harder because the environment is only partially observ-
able, from the point of view of the agent, constituting an FPOMDP. In this case,
the agent has perceptive information from a subset of sensory variables, but the
system dynamics depends also on another subset of hidden variables. To be able
to create a consistent world model, the agent needs, beyond discover the regu-
larities of the phenomena, also discover the existence of non-observable variables
that are important to understand the system evolution. In other words, learning
a model of the world is more than describing the environment dynamics (the
rules that can explain and anticipate the observed transformations), it is also
discovering the existence of hidden properties (once they influence the evolution
of the observable ones), and finally find a way to deduce the values of these
hidden properties. The system as a whole is in fact a FPOMDP, but CALM
is designed to discover the existence of non-observable properties, integrating
them in its anticipatory model, and in this way CALM can induce a structure
to represent the dynamics of the system in a form of a FMDP (if the agent
can successfully discover and describe the hidden properties of the FPOMDP
which it is dealing with, then the world becomes treatable as a FMDP because
the hidden variables become known). There are some algorithms able to effi-
ciently calculate the optimal (or near-optimal) policy, when the FMDP is given
[19]. The algorithm to calculate the policy of actions used by CALM is similar
to the one presented by [13]. On the other hand, the main challenge is to discover
the structure of the problem based on the on-line observation, and CALM do it
using representations and strategies inspired on [15].

Representing Predictive Knowledge by Schemas. CALM tries to recon-
struct, by experience, each system transformation function Ti, representing it
by an anticipatory tree; each anticipatory tree is composed by pieces of predic-
tive knowledge called schemas; each schema represents some perceived regularity
occurring in the environment (some regular event checked by the agent during
its interaction with the world) by associating context (sensory and abstract),
actions and expected results (anticipations).

A schema is composed by three vectors, Ξ = {context ∧ action → result},
denoting a kind of predictive rule. The context vector has their elements linked
both with the agent sensors and with the abstract variables; these abstract vari-
ables are represented by (mentally created) synthetic elements not linked to any
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sensor but referring to non-sensory properties of the universe, which the exis-
tence is induced by the mechanism. The action vector is linked with the agent
effectors. Context and action vectors can represent sets of equivalent situations
or actions, by generalization. The result vector represents the value expected
for the context in the next time, after executing the given action in the given
context. Each element vector can assume any value in a discrete interval defined
by the respective variable domain.

Some elements in these vectors can undertake an "undefined value". For ex-
ample, an element linked with a binary sensor must have one of three values:
true, false or undefined, represented respectively by the symbols {1, 0, #}. The
undefined value generalizes the schema because it allows to ignore some prop-
erties to represent a set of situations. The learning process happens through
the refinement of the set of schemas. After each experienced situation, CALM
updates a generalized episodic memory, and then it checks if the result (context
perceived at the instant following the action) is in conformity to the expected
result of the activated schema. If the anticipation fails, the error between the
result and the expectation serves as parameter to correct the model. The context
and action vectors are gradually specialized by differentiation, adding each time
a new relevant feature to identify more precisely the situation class.

The use of undefined values makes possible the construction of an anticipatory
tree. Each node in that tree is a schema, and relations of generalization and
specialization guide its topology (quite similar to decision trees or discrimination
trees). The root node represents the most generalized situation, which has the
context and action vectors completely undefined. Adding one level in the tree is to
specialize one generalized element, creating a branch where the undefined value is
replaced by the different possible defined values. This specialization occurs either
in the context vector or in the action vector. In this way, CALM divides the state
space according to the different expected results, grouping contexts and actions
with its respective transformations. The tree evolves during the agent’s life, and
it is used by the agent, even if until under construction, to take its decisions,
and in consequence, to define its behavior. The structure of the schemas and an
example of their organization as an anticipatory tree are presented in Figure 1.

Fig. 1. The anticipatory tree; each node is a schema composed of three vectors: context,
action and expected result; the leaf nodes are decider schemas
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The context in which the agent is at a given moment (perceived through its
sensors) is applied in the tree, exciting all the schemas that have a compatible
context vector. This process defines a set of excited schemas, each one suggest-
ing a different action to do in the given situation. CALM will choose one to
activate, performing the defined action through the agent’s effectors. The algo-
rithm always chooses the compatible schema that has the most specific context,
called decider schema, which is the leaf of a differentiated branch. This decision
is taken based on the calculated utility of each possible choice. There are two
kinds of utility: the first one estimates the discounted sum of rewards in the
future following the policy, the second one measures the exploration benefits.
The utility value used to take the decision depends on the circumstantial agent
strategy (exploiting or exploring). The mechanism has also a kind of general-
ized episodic memory, which represents (in a compact form) the specific and
real situations experimented in the past, preserving the necessary information
to correctly constructs the tree.

3.2 Anticipatory Tree Construction

The learning process happens through the refinement of the set of schemas.
At each given moment in the time, the set of schemas of our agent, gradually
constructed by the mechanism, is supposed to be coherent with all the past
experience, describing in a organized way the regular phenomena observed during
the interaction with the universe. To do so, the mechanism must have a memory
of the past situations, but this memory cannot be neither too much precise
(because remembering all the experienced episodes would require a nonviable
amount of space) nor too much simple (because the lack of information makes
impossible to revise the model in case of contradiction with new disequilibrating
observations). The implementation of a feasible episodic memory is not evident;
it can be very expensive if we try to stock too much information coming from
the sensory flow; however, using some strong but well chosen restrictions (like
limiting dependency analysis between variables), and using a generalized and
structured representation of the past experience, it becomes computationally
viable.

After each experienced situation, CALM actualizes the generalized episodic
memory and checks if the result (context perceived at the instant following the
action) is in conformity to the expectation of the activated schema in the an-
ticipatory tree. If the anticipation fails, the error between the result and the
expectation serves as parameter to correct the model. In the anticipatory tree
topology, the context and action vectors are taken together. This concatenated
vector identifies the node in the tree, which grows up using a top-down strategy:
the initial tree contains a unique schema, with completely generalized context
and action, and it is gradually specialized by differentiation, adding new relevant
features to identify more precisely the category of equivalent situations, which
implies the creation of new branches in the tree where the context and action
vectors are each time more defined. In well-structured universes, there is a shorter
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way starting with an empty vector and searching for the probably small set
of features relevant to distinguish the important situations, than starting with
a full vector and having to waste energy eliminating a lot of useless elements.
Selecting the good set of relevant features to represent some given concept is a
well known problem in AI, and the solution is not easy, even by approximated
approaches. To do it, CALM adopts a forward greedy selection [6], using the
data registered in the generalized episodic memory.

The expected result vector can be seen as a label in each decider schema,
anticipating how the world changes when the schema is activated. Initially all
different expectations are considered as different classes, and they are gradually
generalized and integrated with others. The agent has two alternatives when the
expectation fails. In a way to make the knowledge compatible with the experi-
ence, the first alternative is to try to divide the scope of the schema, creating new
schemas, with more specialized contexts. Sometimes it is not possible and then
the schema expectation is reduced. In the expected result vector, # means that
the element is not deterministically predictable. Another symbols can be used
to represent some special situations, in order to reduce the number of schemas;
it is the case of the symbol ’=’, used to indicate that the value of the expected
element will not be changed.

Three basic methods compose the CALM learning function, namely: differ-
entiation, adjustment, and integration. Differentiation is a necessary mechanism
because a schema responsible for a context too general can hardly make precise
anticipations. If a general schema does not work well, the mechanism divides it
into new schemas, differentiating them by some element of the context or ac-
tion vector. In fact, the differentiation method takes an unstable decider schema
and changes it into a two level sub-tree. The parent schema in this sub-tree
preserves the context of the original schema. The children, which are the new
decider schemas, have their context vectors a little bit more specialized than
their parent. They attribute a value to some undefined element, dividing the
scope of the original schema. Each one of these new deciders engages itself in
a part of the domain. In this way, the previous correct knowledge remains pre-
served, distributed in the new schemas, and the discordant situation is isolated
and treated only in its specific context. Differentiation is the method responsible
to make the anticipatory tree grows up. Each level of the tree represents the in-
troduction of some new constraint. The algorithm needs to choose what will be
the differentiator element, and it could be from either the context vector or the
action vector. This differentiator needs to separate the situation responsible for
the disequilibrium from the others, and the algorithm chooses it by calculating
the information gain, and considering a limited (parametrized) range of interde-
pendencies between variables. Figure 2 illustrates the differentiation process.

When some schema fails and it is not possible to differentiate it in any way,
then CALM executes the adjustment method. This method reduces the expec-
tations of an unstable decider schema in order to make it reliable again. The al-
gorithm simply compares the activated schema’s expectation and the real result
perceivedby the agentafter the application of the schema, setting the incompatible
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Fig. 2. Differentiation method example; (a) some real experimented situation (with five
variables) and executed action (one variable); (b) activated schema (with compatible
context and action); (c) associated episodic memory (representation of real situations
where the scheme has been activated, in this case representing no interdependencies be-
tween variables); (d) real observed result, after the execution of the action; (e) sub-tree
generated by differentiation, in order to compensate the divergence observed between
expectation and result

expectation elements to the undefined value (’#’). The adjustment method
changes the schema expectation (and consequently the anticipation predicted
by the schema). Successive adjustments can reveal some unnecessary differenti-
ations. Figure 3 illustrates that.

Fig. 3. Adjustment method example; (a) some real experimented situation and action;
(b) activated schema; (c) related episodic memory; (d) real observed result; (e) schema
expectation reduction after adjustment

In this way, the schema expectation can change (and consequently the class
of the situation represented by the schema), and the tree maintenance mecha-
nism needs to be able to reorganize the tree when this change occurs. There-
fore, successive adjustments in the expectations of various schemas can reveal
unnecessary differentiations. When CALM finds a group of schemas with sim-
ilar expectations to approach different contexts, the integration method comes
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Fig. 4. Integration method; (a) sub-tree after some adjust; (b) an integrated schema
substitutes the sub-tree

into action, trying to join these schemas by searching for some unnecessary com-
mon differentiator element, and eliminating it. The method operates as shown
in figure 4.

3.3 Dealing with the Unobservable

When CALM reduces the expectation of a given schema by adjustment, it sup-
poses that there is no deterministic regularity following the represented situation
in relation to these incoherent elements, and the related transformation is un-
predictable. However, sometimes a prediction error could be explained by con-
sidering the existence of some abstract or hidden property in the environment,
which could be useful to differentiate an ambiguous situation, but which is not
directly perceived by the agent sensors. So, before adjusting, CALM supposes
the existence of a non-sensory property into the environment, which will be rep-
resented as a synthetic element. When a new synthetic element is created, it is
included as a new term in the context and expectation vectors of the schemas.
Synthetic elements suppose the existence of something beyond the sensory per-
ception, which can be useful to explain non-equilibrated situations. They have
the function of amplifying the differentiation possibilities.

In this way, when dealing with partially observable environments, CALM has
two additional challenges: (a) inferring the existence of unobservable properties,
which it will represent by synthetic elements, and (b) including these new ele-
ments into its predictive model. A good strategy to do this task is looking at
the historical information. In the case where the POMDP is completely deter-
ministic, it is possible to find sufficient little pieces of history to distinguish and
identify all the underlying states [22], and we suppose that it is similar when the
POMDP in non-deterministic but well structured.

CALM introduces a method called abstract differentiation. When a schema
fails in its prediction, and when it is not possible to differentiate it by the current
set of considered properties, then a new boolean synthetic element is created,
enlarging the context and expectation vectors. Immediately, this element is used
to differentiate the incoherent situation from the others. The method attributes
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Fig. 5. Synthetic element creation method; (e) incremented context and expectation
vectors, and differentiation using synthetic element

Fig. 6. Predicting the dynamics of a non-observable property; in (a) a real experienced
sequence; in (b) the use of a synthetic element to explain the logic behind the observed
transformations

arbitrary values to this element in each differentiated schema. These values rep-
resent the presence or absence of some non-observable condition, necessary to
determine the correct prediction in the given situation. The method is illustrated
in figure 5, where the new elements are represented by card suites.

Once a synthetic element is created, it can be used in next differentiations.
A new synthetic element will be created only if the existing ones are already
saturated. To avoid the problem of creating infinite new synthetic elements,
CALM can do it only until a determined limit, after which it considers that
the problematic anticipation is not deterministically predictable, undefining the
expectation in the related schemas by adjustment.

The synthetic element is not associated to any sensory perception. Conse-
quently, its value cannot be observed. This fact can place the agent in ambigu-
ous situations, where it does not know whether some relevant but not observable
condition (represented by this element) is present or absent. Initially, the value
of a synthetic element is verified a posteriori (i.e. after the execution of the ac-
tion in an ambiguous situation). Once the action is executed and the following
result is verified, then the agent can rewind and deduce what was the situation
really faced in the past instant (disambiguated). Discovering the value of a syn-
thetic element after the circumstance where this information was needed can
seem useless, but in fact, this delayed deduction gives information to another
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method called abstract anticipation. If the non-observable property represented
by this synthetic element has a regular dynamics, then the mechanism can prop-
agate the deduced value back to the schema activated in the immediate previous
instant. The deduced synthetic element value will be included as a new antici-
pation in the previous activated schema. Figure 6 shows how this new element
can be included in the predictive model.

4 Experiment

The CALM mechanism has already been used to successfully solve problems such
as flip, which is also used by [43] and [22], and wepp, which is an interesting RL
situated problem. CALM is able to solve both of them by creating new synthetic
elements to represent underlying states of the problem [35], [33], [34]. In this
paper, we introduce an experiment that we call mept (acronym to the actions
that the agent can do: move, eat, play, touch).

In the mept experiment, the agent is inserted into a two-dimensional environ-
ment (like a "grid") where it should learn how to interact with other agents and
objects that can be found during its life. Our agent needs to create a policy of
actions in a way to optimize its feelings (internal rewards). When it is hungry, it
feels good by eating some food (which is an object that can be sometimes found
in the environment, among other uneatable objects like stones). Agents and ob-
jects can be differentiated by observable features, it means that our agent can
sensorially distinguish what is the "thing" with which it is interacting. However,
both food and stone have the same appearance, and in this way, to discover if
the object is either food or stone, the agent needs to experiment, it means, the
agent needs to explicitly interact with the environment in order to take more
information about the situation, for example, tapping the object to listen what
sound it makes.

When our agent is happy, it founds pleasure by playing with another agent.
However, the other agents also have internal emotional states; when another
agent is angry, any tentative to play with results in an aggression, which causes
a disagreeable painful sensation to our agent. Playing is enjoyable and safe only
if both agents are happy, or at least if the other agent is not angry (and then, not
aggressive), but these emotional states are internal to each agent, and cannot be
directly perceived. With such configuration, our agent will need to create new
synthetic elements to be able to distinguish what is food and what is stone, and
to distinguish who are aggressive and who are peaceable.

At each time step, our agent can execute one of 4 actions: move, eat, play or
tap. Moving itself is a good strategy to scape from other aggressive agents, but
it is also the action that changes the context, allowing the agent to search for
different contexts. The agent does not control precisely the movement it does; the
action of moving itself causes a random rotation followed by a position changing
to an adjacent cell. Eating is the good choice when the agent is hungry and it
is in front of some food at the same time, action that ceases the bad sensation
caused by hungry. Playing is the good action to be carried out when the agent
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is happy and in frontal contact with another non-aggressive agent. Tapping is
the action that serves to interacting with other objects without compromise;
doing it, the agent is able to identify the solution to some ambiguous situations;
for example, tapping stones or tapping food provokes different kinds of sound
effects; the same for another agents, that react to a tap with a growl when angry,
and with a laugh when happy.

The agent has two limited external perceptions, both focused on the cell that
is directly in front of it; the sense of vision allows it to see if the place before
him contains an object, an agent, or nothing; the sense of hearing permits to
listen the sounds coming from there. The agent’s body has 5 internal properties,
corresponding to 5 equivalent internal perceptions: pain, anger, hungry, happi-
ness, and pleasure. Pleasure occurs always when the agent plays with another
agent, independently of the other agent internal state (which is quite selfish).
However, as we know, our agent can get punched if the other agent is angry, and
in this case pain takes place. When our agent feels pain and hungry at the same
time, it becomes angry too. Initially the agent does not know anything about the
environment or about its own sensations. It does not distinguish the situations,
and also does not know what consequences its actions imply.

The problem becomes interesting because playing can provoke both positive
and negative rewards, the same for eating, that is an interesting behavior only in
certain situations; it depends on the context where the action is executed, which
is not fully observable by sensors. This is the model that CALM needs to learn
by itself before establishing the behavior policy. Figures 7 to 10 show some of
the anticipatory trees created by the mechanism after stabilization.

Fig. 7. Anticipatory tree for hearing; the only action that provokes sound is tapping
(T), it is different depending on the mood of the tapped agent (happy or angry); if the
action is other (*) than tapping, then no sound is produced

Figure 5 shows the evolution of the mean reward comparing the CALM solu-
tion with a random agent, and with two classic Q-Learning [49] implementations:
the first one non-situated (the agent has the vision of the entire environment as
flat state space), and the second one with equivalent (situated) inputs than
CALM.

The non-situated implementation of Q-Learning algorithm (Classic Q) takes
much more time to start drawing a convergence curve than the others, and in
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Fig. 8. Anticipatory tree for vision; when the agent taps (T) another agent (A), it
verifies the permanence of this other agent in its visual field, which means that tapping
an agent makes it stay in the same place; however, no other actions (*) executed in
front of an agent (A) can prevents it to leave its position, and so the prediction is
undefined (#); the same for moving itself (M), which causes a situation changing and
the unpredictability of the visual field for the next instant; in all of the other cases the
vision stays unchanged

Fig. 9. Anticipatory tree for pleasure; playing with a peaceable (♦) agent (A) is pleas-
ant, and it is the only known way to reach this feeling

Fig. 10. Hidden element anticipatory tree; this element allows identifying whether
an object is food or stone, and whether an agent is angry or not; CALM abstract
anticipation method allows modeling the dynamics of this variable, even if t is not
directly observable by direct sensory perception; the perception of the noise (1) is the
result that enables the discovering of the value of this hidden property; the visual
perception of an object (O), or the fact of tapping (T) another agent (A), also permit
to know that the hidden element does not change
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Fig. 11. Evolution of mean reward in a typical execution of the mept problem, consid-
ering four different agent solutions: CALM, situated Q-Learning, Random, and Classic
Q-Learning; the scenario is a 25x25 grid, where 10% of the cells are stones and 5% are
food, in the presence of 10 other agents

fact, the expected solution will never be reached; it is due to the fact that Q-
Learning tries to construct directly a mapping from states to actions (a policy),
but the state space is taken as the combination of the state variables; in this
implementation (because it is not situated) each of the cells in the environment
compose a different variable, and then the problem becomes quickly big; by the
same cause, the agent becomes vulnerable to the growing of the board (the grid
dimensions imply directly in the complexity of the problem).

The CALM solution converges much earlier than Q-Learning, even taken in
its situated version, and CALM found a better solution also; it is due to the fact
that CALM quickly constructs a model to predict the environment dynamics,
including the non-observable properties in the model, and so it is able to define
a good policy sooner. The "pause" in the convergence that can be seen in the
graphic indicates two moments: first, the solution found before correctly mod-
eling the hidden properties as synthetic elements, and then, the solution after
having it. On the other side, Q-Learning stays attached to a probabilistic model,
and in this case, without the information about the internal states of the other
agents, trying to play with them becomes unsafe, and the Q-Learning solution
will prefer do not do it.

5 Conclusions

The CALM mechanism, presented in [35], can provide autonomous adaptive ca-
pability to an agent, because it is able to incrementally construct knowledge
to represent the deterministic regularities observed during its interaction with
the system, even in partially deterministic and partially observable environ-
ments. CALM can deal with the incomplete observation trough the induction and
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prediction of hidden properties, represented by synthetic elements, thus it is able
to overpass the limit of sensory perception, constructing more abstract terms to
represent the system, and to describe its dynamics in more complex levels. CALM
can be very efficient to construct a model in non-deterministic environments if
they are well structured. In other words, if the most part of transformations are
in fact deterministic relatively to the underlying partially observable properties,
and if the interdependence between variables are limited to a small range. Several
problems found in the real world present these characteristics.

This paper presented a new experiment (mept) which, even if simple, intro-
duces a new challenge to the agent : learning the regularities in the interaction
with other complex agents. We have successful demonstrate that the CALM
mechanism is able to create an anticipatory model of the other agents’ behav-
iors when certain conditions are satisfied. The next step in this way could be to
insert several cognitive agents like CALM in the same scenario; it means, agents
that change our own internal model and policy of action, and in this way, agents
that present non-stationary behaviors; the difficulty for one agent to model the
other agents in this kind of condition would be even harder.

We believe that the same strategy can be adapted to several kinds of classi-
fication tasks, where a previous database of samples are available. In this case,
the algorithm learns to classify new instances based on a model created from a
training set of instances that have been properly labeled with the correct classes.
This task is similar to several real world problems actually solved with the com-
puter aim, such as e-mail filtering, diagnostic systems, recommendation systems,
decision support systems, and so on.
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