
Adaptive Autonomous Systems –

From the System’s Architecture to Testing

Franz Wotawa

Technische Universität Graz,
Institute for Software Technology,

Inffeldgasse 16b/2, 8010 Graz, Austria
wotawa@ist.tugraz.at

http://www.ist.tugraz.at/

Abstract. Autonomous systems have to deal with situations where ex-
ternal events or internal faults lead to states, which have not been con-
sidered during development. As a consequence such systems have to have
knowledge about themselves, which has to be used to reason about adap-
tions in order to fulfill a given goal. In this paper we present a control
architecture that combines a the sense-plan-act paradigm and model-
based reasoning. The latter is used to identify internal faults. Beside
discussing the control architecture we also briefly explain advantages of
model-based diagnosis where there is a shift from providing control pro-
grams to developing models. Consequently, testing of models becomes
an issue. Therefore, we also introduce basic definitions related to testing
models for diagnosis and discuss the involved challenges.

Keywords: Adaptive systems, model-based reasoning, testing model-
based systems.

1 Introduction

Truly autonomous systems like mobile robot have to fulfill given tasks even in
case of internal faults or external events potentially preventing the robot from
reaching its goal. Such an autonomous robot has to detect a misbehavior by its
own. Therefore, the robot has to have capabilities to reason about its state and
all the consequences of the state. One consequence might be that a sensor signal
cannot longer be trusted or that certain reconfigurations of the hardware and
software have to be performed. The ability of reasoning about itself is even more
required in cases where a robot has to deal with non-foreseen situations during
the development of the robot.

Today almost no available robot is able to deal with internal faults or not
previously known external events in an intelligent way. The reasons are (1) the
increasing complexity of systems dealing with faults in an automatic fashion,
(2) the complexity of the environment, i.e., the real physical world, of an au-
tonomous and mobile robot, and (3) difficulties to enumerate all potential faults
and interaction scenarios in advance, e.g., during the development phase of the

R. Hähnle et al. (Eds.): ISoLA 2011 Workshops, CCIS 336, pp. 76–90, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.ist.tugraz.at/

Adaptive Autonomous Systems 77

Fig. 1. Fetch the key scenario

SENSE PLAN ACT

E N V I R O N M E N T

Fig. 2. Sense-plan-act control architecture

robot. The latter prevents using simple solutions like rule-based systems. More-
over, there is also the problem of testing intelligent systems especially when using
neural networks and other potentially non-deterministic approaches.

In this paper we present a software architecture that allows for constructing
truly autonomous systems. We use model-based reasoning techniques for en-
abling a robot reasoning about itself. We state the theory behind the approach.
But the paper focuses more on the architecture and its components, and on
testing. In the following we illustrate the underlying idea using an example sce-
nario where a robot has to fetch a key lying on a floor (see Fig. 1). In many
cases the used underlying control architecture of robots follows more or less a
traditional sense-plan-act architecture depicted in Fig. 2. In this architecture the
robot computes a plan using the given sensor inputs, its internal state, and the
given goal. A plan in this terminology is nothing else than a sequence of actions
that are executed sequentially. The execution of the actions potentially changes
the state of the environment, which is sensed again. In case of failing actions or
situations where a plan cannot longer be followed re-planning is performed.

A plan for our key fetching task would include actions for moving forward,
turning left, and moving forward again until the robot reaches the key, i.e.,
〈forward, left, forward〉. In a perfect world such a plan can be correctly exe-
cuted. Let us assume now that in the first forward action there is a problem
with the robot’s drive. The attached sensor of a wheel is returning that the wheel
is not rotating. Hence, the action cannot be successfully continued and the robot
might not be able to fulfill its objective anymore because of lack of functioning
actuators allowing a robot to move from one position to another. However, the
reason for the sensor signal might not be that the motor is not working anymore.
It is also possible that the sensor is faulty but distinguishing this two explana-
tions requires self-reasoning capabilities and a certain degree of redundancy. In
this example, a robot that is able to identify wrong sensor information would
be able to reach the goal and fetch the key, because the robot would not termi-
nate plan execution. The forward action would still be executed, and the robot
would be able to move to the key.

In the following sections we introduce the theory behind root cause identifi-
cation and discuss an algorithm. Afterwards we discuss the new robot control
architecture where root cause identification is an integral part. This extended
control architecture relies on combining root cause identification and the sense-

78 F. Wotawa

plan-act architecture. Then we discuss the software engineering challenges of
such systems with respect to development and testing. Finally, we review re-
lated research and conclude the paper.

2 Model-Based Reasoning

In this section we introduce the basic concepts of model-based diagnosis (MBD)
[3,4] following the definitions of Reiter [18]. The basic idea behind MBD is to
use a model of the system directly for identifying the root causes of detected
deviations between the observed and the expected behavior. The model specifies
the correct behavior of the system. Hence, in the original definition of MBD
there is no need for modeling incorrect behavior. This is especially important
in cases where the incorrect behavior of components is not known in advance
or too expensive to obtain. Since we also want to deal with unknown situations
this capability of MBD serves our purpose.

MBD starts with a model, which is called a diagnosis system comprising a
system description SD and a set of components COMP , where each component
may fail. There are two important aspects regarding MBD to mention. First,
SD comprises a set of logical sentences that state the model of the components
and the structure of the system. In SD also the connections between the com-
ponents, i.e., the means for communication between components, have to be
specified. Second, the component models in SD define the correct behavior of
the component. In order to distinguish between the correct and the incorrect
behavior MBD makes use of a special predicate AB. AB(c) is true if component
c is faulty (or behaves abnormal). The negated predicate ¬AB(c) states that c
is working as expected1.

We illustrate how to write a model for MBD using the fetch key example
(Fig. 1), where we model the robot drive partially and in an abstract way. The
considered part of the robot drive (see Fig. 3) comprises a motor m connected
with a wheel w. The rotation of the wheel is measured using a wheel encoder e.
In order to allow for deciding whether the motor is working or not we assume
that the current flowing through the motor is also observed by means of a current
meter c.

In the following we introduce the logical model SD written in first order logic
for our example:

Motor: In case of a correct behavior a particular motor is running in forward
direction if there is command for moving forward cmd fwd. In this case there
is a current flowing through the motor. This current can be of nominal value
or higher if there is a strong resistance coming from attached components like
wheels. Hence, for all components X that are motors, the following logical
sentence formalize their behavior:

1 It is worth noting that it would also be possible to use a predicate NO stating normal
operation instead of the negation of AB. However, the AB predicate has been used
in almost all MBD papers. Therefore, we also make use of AB in order to introduce
the basic MBD theory.

Adaptive Autonomous Systems 79

Motor m

Wheel w

Commands fwd

Current
meter c

Wheel encoder e

Fig. 3. Schematic of a robot drive

∀X : motor(X) →⎛
⎜⎜⎜⎜⎝

¬AB(X) → (cmd fwd → direction(X, fwd))
direction(X, fwd) → torque(X, fwd)

direction(X, fwd) ∧ resistance(X) → current(X,high)
direction(X, fwd) ∧ ¬resistance(X) → current(X,nominal)
current(X,high) ∨ current(X,nominal) → direction(X, fwd)

⎞
⎟⎟⎟⎟⎠

(1)

Wheel: The torque provided via the axle is turned into rotations of the wheel.
Only in case of a stuck wheel there is a resistance against the applied torque.
But this case is not going to be formalized because we are only interested
in the correct behavior. For wheels X we formalize the correct behavior as
follows:

∀X : wheel(X) →
(¬AB(X) → (torque(X, fwd) → (rotate(X, fwd) ∧ ¬resistance(X))))

(2)
Current Meter: The current meter measures the value of the current. Hence,

there is a one to one correspondence of the current flow and the measurement
in case of a correct behavior. This behavior of a current meter X can be
formalized as follows:

∀X : current meter(X) →(¬AB(X) → (current(X,high) ↔ observed current(X,high))
¬AB(X) → (current(X,nominal) ↔ observed current(X,nominal))

)

(3)
Wheel Encoder: The wheel encoder X is providing a frequency only in case of

a rotation. For a wheel encoderX we introduce the following logical sentence:

80 F. Wotawa

∀X : encoder(X) →
(¬AB(X) → (rotate(X, fwd) ↔ frequency(X)))

(4)

What is now missing to complete the model for our example is a description of
the structure. We first define the components:

motor(m) ∧ wheel(w) ∧ current meter(c) ∧ encoder(e) (5)

Second, we have to define the connections between the components. This can be
done using the following logical sentences:

torque(m, fwd) ↔ torque(w, fwd)
resistance(m) ↔ resistance(w)

current(m,nominal) ↔ current(c, nominal)
current(m,high) ↔ current(c, high)
rotate(w, fwd) ↔ rotate(e, fwd)

(6)

The rules stated in Equations (1) – (6) define the structure and behavior of
the model SD of our small example. For this example the set of components
comprise 4 elements, i.e., COMP = {m, c, w, e}.

Having now the model (SD,COMP) we are interested in finding root causes.
For this purpose we have to state a diagnosis problem.

Definition 1 (Diagnosis problem). A diagnosis problem is a tuple
(SD,COMP,OBS), where SD is a model, COMP a set of components, and
OBS a set of observations.

Before discussing solutions to diagnosis problems we should discuss some cases.
In the first case assume that the model SD allows for deriving the given ob-
servations OBS, or in other words assume that the observations are not in
contradiction with the model. In this case, it is reasonable to assume that the
system is working as expected. The same holds for the second case where no
observations are available, i.e., OBS = ∅. The third case is the more interesting
one, where the observations are in contradiction with SD. In this case, we are
interested in finding the root cause for the contradiction. What we have are the
components and the assumptions about their correctness or incorrectness. For
this purpose we use the negated AB predicate. Hence, a root cause or diagnosis
should be assumptions about the logical value of the AB predicate, which lead
to a logical sentence that is not in contradiction with the given observations
OBS. Formally, we define a diagnosis as follows:

Definition 2 (Diagnosis). Let (SD,COMP,OBS) be a diagnosis problem. A
set Δ ⊆ COMP is a diagnosis if and only if SD ∪ OBS ∪ {¬AB(X)|X ∈
COMP \Δ} ∪ {AB(X)|X ∈ Δ} is consistent.

We illustrate this definition using our running example again. Let us assume
now that a forward command is sent to the motor, a nominal current is mea-
sured, but the wheel encoder is not delivering any frequency output. The di-
agnosis problem includes SD and COMP described previously and OBS1 =

Adaptive Autonomous Systems 81

{cmd fwd, observed current(m,nominal),¬frequency(e)}. Valid diagnoses are
{e}, {w}, {c,m} but also {c,m, e, w}. In order to eliminate the latter diagnosis,
which states that all components are not working as expected, from the list of
diagnoses we introduce the definition of minimal diagnosis.

Definition 3 (Minimal diagnosis). A diagnosis Δ is a minimal diagnosis if
there exists no diagnosis Δ′ ⊂ Δ.

From here on we assume that a diagnosis algorithm always returns minimal di-
agnoses. Hence, the 3 minimal diagnoses {e}, {w}, {c,m} remain for our running
example. This result allows for distinguishing some reasons for a misbehavior.
For example, the wheel might be the root cause in case of OBS1 but not the
motor alone. In this case we might prefer small diagnosis and thus reject the
fault hypothesis {c,m}. However, we are not able to distinguish the diagnosis
{w} from {e}. In order to solve this challenge there are 3 options: (1) introduce
new observations, which might be not possible in case of autonomous systems
with a limited number of sensors, (2) use fault probabilities, and (3) extend the
model to eliminate diagnoses.

Option (2) can be implemented by assigning a fault probability pf(X) to each
component X . In this case we are able to compute the probability of a diagnosis
assuming independence of component faults as follows:

p(Δ) =
∏
X∈Δ

pf (X) ·
∏

X∈COMP\Δ
(1− pf (X)) (7)

If we assume that a fault in a wheel is less likely than a fault in the wheel
encoder, Equation 7 returns a higher probability value for the diagnosis wheel
encoder than for the diagnosis wheel. It is worth noting that fault probabilities
might also change over time. For a theory of adapting fault probabilities using
diagnosis information we refer the interested reader to [6].

In option (3) the idea is to eliminate diagnoses by adding knowledge about
impossibilities to the system description. Friedrich et al. [10] introduced this con-
cept of physical impossibilities and explained the advantage with respect to diag-
nosis capabilities. For our running example, we might state that it is impossible
that the wheel is the reason for observing no frequency in case of nominal cur-
rent flow through the motor. In other word we state that the physical connection
between the motor and the wheel can never break. This is not true in general but
might be applicable in special cases. In order to state this impossibility we defined
SD′ to be SD together with the rule current(m,nominal)∧¬rotate(w, fwd) →
⊥. When using SD′ together with OBS1 only diagnosis {e} remains as single
diagnosis.

There are many algorithms available for computing diagnosis. Reiter [18] in-
troduces a hitting set based algorithm that makes use of conflicts, which was
corrected by Greiner et al. [12]. De Kleer and Williams [6] introduced their
general diagnosis engine (GDE). GDE is based on an assumption based truth
maintenance system (ATMS) [5]. Later on Nejdl and Fröhlich [11] presented
a very fast diagnosis engine that is also based on logic model representations.

82 F. Wotawa

Diagnosis algorithms that make use of certain structural properties include [8]
and [22].

Note that there is no restriction regarding the modeling language used for
model-based reasoning. In this section we make use of first order logic, but
also constraint representations [7], or other formalisms might be used. The only
requirement is to have a solver that allows for checking consistency. Algorithm 1
introduces a straight forward but not optimal algorithm that computes minimal
diagnoses up to a pre-defined size. The algorithm basically checks all subsets of
COMP for being a diagnosis. Although there are many improvements possible
the algorithm is fast enough if we are interested in smaller diagnoses like single
faults only.

Algorithm 1. DIAGNOSIS

Input: A model (SD,COMP), a set of observations OBS, and the maximum size of
computed diagnoses max > 0. In case max is not given, we assume max := |COMP |.

Output: A set of minimal diagnoses accordingly to Definition 3.
{Computes all minimal diagnoses up to the given size.}
Let DS be the empty set.
for i:= 0 to max do

Generate all subset of COMP of size i and store the results in DS′.
Remove all elements in DS′ that are subset of minimal diagnosis stored in DS.
for all Δ ∈ DS′ do

Call the theorem prover on SD ∪ OBS ∪ {¬AB(X)|X ∈ COMP \ Δ} ∪
{AB(X)|X ∈ Δ}).
if the theorem prover call returns an inconsistency then

Remove Δ from DS′.
end if

end for
Let DS be DS ∪DS′.

end for
return DS

3 A Model-Based Control Architecture

In this section, we discuss the extension of the ordinary sense-plan-act control
architecture (Fig. 2) to handle cases of internal faults and external events, pre-
venting actions to be executed. In the original architecture a plan is generated
that leads from an initial state to a goal state. The state (comprising the sensor
information and internal state) is observed and used to select actions based on
the plan. The actions are executed using the actuators. This execution might
lead to changes in the internal state or in the environment. As discussed in
the introduction the original control architecture cannot react on internal faults
and hardly interact on external events, preventing actions to be executed and
therefore plans to reach their goals.

Adaptive Autonomous Systems 83

SENSE PLAN ACT

E N V I R O N M E N T

MBR EngineModel

Fig. 4. The adaptive robot control architecture

In order to overcome this problem, we introduce an extended sense-plan-act
control architecture, which computes root causes in case of a detected misbe-
havior. In Figure 4 the extended sense-plan-act control architecture is depicted.

The main control loop of the sense-plan-act architecture remains the same but
in some cases, which we discuss later, a model-based reasoner is used to decide
the current health status of the autonomous system. The reasoner has access to
the internal state of the controller and the sensor information. The health status
needs not to be always checked. A check has to be performed only in cases
where an action that is decided by the planning module cannot be successfully
executed. As already stated, there might be several reasons: (1) there is a fault
in the hardware preventing the action to be successfully terminated, or (2) an
external event occurred. The latter requires re-planning activities whereas the
first reason requires determining the fault in order to adapt the behavior.

Algorithm 2 describes the underlying behavior of the extended sense-plan-
act architecture. We assume that the goal state specifies the purpose of an au-
tonomous system. The task of the control architecture is now to find a plan,
i.e., a sequence of actions, that allows the system to reach the goal state from
the current state, and to execute this plan. This idea originates from STRIPS
planning [9] and our algorithm relies on the same input data, i.e., a planning
knowledge base Mp comprising a set of actions a where each action has a cor-
responding set of pre conditions and effects. Moreover, we require a goal state
SG and a diagnosis model (SD,COMP), used in cases of failing actions during
plan execution.

In Algorithm 2 we make heavily use of a function SENSE(). This function
returns the current state of the autonomous system comprising the internal
state and the information obtained from the sensors. We assume that the sensor
information is only given when reliable. Hence, in case of a diagnosis indicating
a sensor to fail, the information is no longer provided. Although time is not
handled explicitly in the algorithm it is worth noting that time exceeds during
execution. Therefore, SENSE() represents the state at a discrete point in time
only, where measurements and the internal state are observed. We assume that
this is done on a regular basis.

84 F. Wotawa

Algorithm 2. EXT PSA ARCH

Input: A planning model Mp, a diagnosis model (SD,COMP), and the goal state
SG.

Output: Computes and executes a plan from the current state to SG.
Let p := PLAN(Mp,SENSE(),SG).
while p is not empty do

Let a be the first action of plan p.
Remove a from p.
if pre conditions of a are not fulfilled in SENSE() then

Let p := PLAN(Mp,SENSE(),SG).
else

Execute a.
if execution terminates with a failure then

Let SΔ be the result of calling DIAGNOSIS(SD,COMP,SENSE()), and Δ be
the leading diagnosis of SΔ.
if Δ indicates a sensor failure only then

Consider a to be executed without failure and proceed.
else

Remove all actions from the planning model that cannot be longer used
because of diagnosis Δ.
Let p := PLAN(Mp,SENSE(),SG).

end if
else

if effects of a are not fulfilled in SENSE() then
Let p := PLAN(Mp,SENSE(),SG).

end if
end if

end if
end while

The control algorithm starts computing a plan based on the available infor-
mation, i.e., the current state provided by SENSE() and the planning knowledge
based Mp together with the goal state SG. At the beginning all actions that
can be performed by the system are functioning, and are therefore available for
planning. Afterwards, the plan is executed by sequentially executing the actions.
First, the pre conditions of the current action a are checked. In case that the pre
conditions are not fulfilled in the current state, the action cannot be performed.
This might happens due to an external event. As a consequence, re-planning has
to be performed and plan execution starts again using the new plan.

If the pre conditions of an action are fulfilled, the action is executed. This
execution might be terminated returning a failure. In this case diagnosis has
to be performed that returns diagnoses from which a leading diagnosis can be
obtained. A leading diagnosis in our case might be the smallest diagnosis or the
one with the highest fault probability. For simplicity we do not handle the case of
multiple diagnoses that cannot be distinguished with the available information.
If such case occurs, measures for distinguishing diagnoses have to be performed,
like providing testing procedures. For example, Wotawa et al. [25] introduce

Adaptive Autonomous Systems 85

distinguishing test cases for solving such problems. Hence, we assume that we
can always determine a leading diagnosis. This leading diagnosis is used to either
remove actions that cannot be performed anymore, or to assume that some sensor
data is no longer reliable. In the latter case there is no need to apply re-planning.
Instead the action is forced to be executed and the procedure continues.

The last possibility for a fault occurring during execution is that the effects of
an action are not visible. In this case we again perform re-planning, which might
lead to the case where the current action is re-executed again. Note that this
might lead to a situation where the robot is executing an action again and again
due to a sensor failure or an external event. Therefore, in the implementation
the repetition of executions of the same actions should be tracked and handled
appropriately. For example, a diagnosis step might also be performed.

The extended sense-plan-act control architecture provides adaptation due to
internal faults and external events. Depending on the used models it allows for
distinguishing sensor and actuator faults. It might also be used for handling
faults in software providing a model of the behavior. Of course the implementa-
tion of the control loop and the diagnosis module have to be correct and cannot
be corrected using the proposed approach.

4 Testing Model-Based Systems

One advantage of the model-based reasoning approach is that the underlying
implementation, i.e., the diagnosis module and the control architecture, can be
easily re-used. The only changes necessary are changes of the underlying mod-
els. Therefore, we focus on challenges of testing models instead of testing the
implementation of the different modules that together contribute to the overall
system’s architecture. Testing models especially when they are written in logic
or any other relational language is rather similar to ordinary software testing
[1]. In both cases we are interested in comparing the behavior imposed by a
system with the expected behavior. However, there are some differences and
challenges like answering the question when to stop testing? Usually, in software
engineering practice there are some criteria like mutations scores or coverage,
e.g., statement or branch coverage, a test suite has to fulfill. In case of testing
models such criteria can hardly be applied directly and new criteria have to be
developed.

We start with discussing testing the diagnosis model. What we have to ensure
is that the model allows for deriving all correct diagnoses for any given set of
observations. Moreover, the model should never allow deriving diagnoses that are
not correct. So what we want to show is whether DIAGNOSIS(SD,COMP ,OBS)
= DSexpected holds for all possible OBS or not. This is of course not feasible
even in the case of a finite number of predicates that might be used in OBS.
Therefore, in testing diagnosis models we have to restrict the number of tests.
Formally, we introduce a test suite for a model (SD,COMP) as follows:

Definition 4 (Test, test suite). Let (SD,COMP) be a diagnosis model and
PO the set of possible observations. A tuple (OBS,DS,max), where OBS is

86 F. Wotawa

a set of observations, DS a set of diagnoses with cardinality less or equal to
max, is a test for the diagnosis model if OBS ⊆ PO and SD ∪OBS �|= ⊥ or if
OBS ⊆ PO, SD∪OBS |= ⊥ and DS = ∅ . A test suite for the diagnosis model
is a set of tests.

Note that in the definition |= stands for the logical consequence, and ⊥ for the
contradiction. In the above definition there is no restriction on DS with the
exception of the case, where the observations directly are in contradiction with
the model. In this case no diagnosis is allowed to be computed. This fact follows
directly from the definition of diagnosis in MBD.

We are now able to specify soundness and completeness of a model with
respect to the given test suite. In particular, we might be interested whether
a given model delivers all correct diagnoses. This can be ensured when having
sound and complete models. A model is sound if only correct diagnoses can be
obtained from the model. A model is complete if all diagnoses can be derived
from the model and the given observations.

Definition 5 (Soundness, completeness). Let (SD,COMP) be a diagnosis
model and TS its non empty test suite. (SD,COMP) is sound with respect
to TS iff for all (OBS,DS,max) ∈ TS: DIAGNOSIS(SD,COMP ,OBS,max)
⊆ DS. (SD,COMP) is complete with respect to TS iff for all (OBS,DS) ∈ TS:
DIAGNOSIS(SD,COMP ,OBS,max) ⊇ DS.

We further say that a diagnosis model is correct with respect to a test suite iff
it is sound and complete.

After defining test suites and their impact on the model under test, we are
interested in generating test suites that obey a reasonable criterion. Although we
know that ”Program testing can be a very effective way to show the presence of
bugs, but is hopelessly inadequate for showing their absence.”2 generating tests
that at least allows us to check correctness for some important cases is essential.
Hence, we have to ask ourselves what are the important cases for diagnosis?
When considering the practical application of diagnosis, correctly identifying
single fault might be enough. Double and triple faults might occur but can
hardly be distinguished. Therefore, there would be a strong need for handling
a huge amount of diagnoses concurrently, which increases complexity. Hence,
classifying test suites regarding their capabilities of testing diagnosis results up
to a certain cardinality, seems to be a good choice.

We now generalize the concept of classifying test suites with respect to the
checking diagnoses up to a certain cardinality.

Definition 6 (n-cardinality criteria). A test suite TS for a diagnosis model
(SD,COMP) fulfills the n−cardinality criteria iff ∀Δ ⊆ 2COMP ∧ |Δ| ≤ n :
∃(OBS,DS,max) ∈ TS : (Δ ∈ DS ∨ ∃Δ′ ∈ DS : Δ ⊃ Δ′).

Obviously in this definition a test suite that fulfills 2-cardinality also fulfills 1-
cardinality. Therefore, when constructing a test suite, starting with 1-cardinality

2 from Edsger Wybe Dijkstra, The Humble Programmer, ACM Turing Lecture 1972.

Adaptive Autonomous Systems 87

and than extending the test suite to fulfill the higher cardinality criteria, seems
to be a good procedure. It is worth noting that even constructing 1-cardinality
test suites may not be easy because specifying all diagnoses of size 1 for given
observations can be a hard problem. Hence, in practice it might be a good
option to iteratively construct test cases. First, start with observations that
must lead to some diagnosis. Call the DIAGNOSIS algorithm for computing all
diagnosis up to a given size. If the intended diagnoses are part of the result,
check the remaining diagnoses (if there are any). Remove all diagnoses that are
unexpected. Add diagnoses that are missing and generate the new test case.

Besides testing the diagnosis model the planning model and the interaction of
the planning module and the diagnosis module has to be tested. The planning
model might be tested similarly to the diagnosis model. The initial and the goal
state have to be specified, and possible plans have to be provided. If the planner
computes the same plans, the model has to be correct with respect to the test
case. Again certain corner cases should be specified and tested in order to ensure
at least partial correctness.

The interaction between the planner and the diagnosis engine can be tested
by stating more complex scenarios. The integration test has to specify a scenario
where a fault occurs, which has to be detected by the diagnosis algorithm. If the
implementation together with the model fulfill the scenarios the model might
be assumed to be correct because the system behaves like expected. However,
because of complexity it is impossible to check all scenarios. Again only some
important cases can be used for evaluation purposes.

Testing model-based applications basically means testing the developed mod-
els. Because of the complexity of models and underlying domains it is a painstak-
ing task to generate larger sets of test cases. Moreover, the quality of test suites
can hardly be quantified. In case of the model-based diagnosis module we are
able to quantify test suites with respect to the cardinality of diagnoses handled
in a certain case. What remains to do is to work on supporting test case gener-
ation for model-based systems. Even for diagnosis this seems not to be an easy
task and requires an iterative procedure.

5 Related Research

The application of MBD in the context of autonomous mobile systems is not
new. To our knowledge Williams and colleagues [24,17] were the first introduc-
ing a system that automatically adapts to internal faults in order to reach its
objectives. The MBD system had been tested in real-world conditions as part
of the control system of the NASA deep space one space probe3. The focus of
the approach was on hardware faults. Hence, intelligent interactions in case of
external events were not considered. Moreover, the space probe itself had no in-
tended capabilities of changing the external world. This is different to the mobile
robotics domain where actions have an impact on the environment.

3 See http://nmp.nasa.gov/ds1/

88 F. Wotawa

Approaches for applying MBD to the domain of robotics include [2], [15], and
[16] where the focus lies more in diagnosing interactions between many mobile
robots that should work together in order to reach a specified goal. Steinbauer
and colleagues [19] introduced a system that is capable of dealing with software
faults in mobile robot control systems. The approach is based on a very simplified
structural model of the control software and makes use of monitoring procedures
for detecting a misbehavior. The structural model is used to extract pieces of
software, i.e., modules, that should be restarted in order to overcome the detected
problems. The approach of Steinbauer and colleagues does not make use of a
behavior model and does not consider the case of external events.

In [14] the authors describe a MBD approach for handling faults in robot
drives. In particular the authors claim that they can adapt the kinematics of the
robot in case of faults in the drive. In the paper the focus is on how to adapt the
kinematics. The whole system’s architecture is explained but not in detail. The
adaption of high level control is also not given in detail. However, we borrow the
idea of using diagnosis information for changing high-level control from [14].

The idea of adapting plans based on diagnosis knowledge gained during ex-
ecution was outlined in [23] and [21]. The first paper deals in particular with
dependent failures, which might occur in robotics systems. In both papers the
authors make use of repair in case of misbehavior to ensure robustness. In this
paper we formally introduce the system’s architecture and also discuss the chal-
lenge of verifying such systems by means of model testing.

The work most closely to our work described in this paper is [13]. There the
authors introduce a MBD approach for mobile autonomous systems that is capa-
ble to handle internal faults as well as external events. The approach of Gspandl
et al. makes use of a Reiter’s situation calculus and is characterized by combin-
ing control and diagnosis knowledge in a uniform framework. In contrast to this
work our approach separates planning and control from diagnosis. Moreover, we
also tackle the problem of testing such systems, which has not been covered
before.

Steinbauer and Wotawa [20] discussed the evaluation of adaptive mobile and
autonomous robots. There the objective is to find an evaluation testbed that
allows for comparing different solutions. The paper does not deal with testing
such systems during development. Instead the paper focuses on the validation
of intelligent and adaptive robots with respect to their robustness in practical
situations.

6 Conclusion

In this paper we introduced a control architecture that enables adaptive control
of autonomous systems. The control architecture integrates the sense-plan-act
architecture and a model-based diagnosis engine. As a consequence both exter-
nal events and internal faults can be treated in a smart way. Internal faults are
handled by the diagnosis engine directly. External events cause re-planning ac-
tivities. An advantage of the proposed system is also the implicit software re-use.

Adaptive Autonomous Systems 89

The implementation of the approach could be used in many applications. Only
the underlying models have to be adapted or changed.

From the software engineering point of view, there is a focus switch from
coding to modeling. Or in other words, model-based development requires writ-
ing models instead of more traditional source code. Consequently, testing has
to focus on model testing. Unfortunately, testing models is not an easy task. In
the paper we outline some basic definitions of testing models for diagnosis and
briefly discuss an iterative approach for generating test suites from models.

Although, authors have shown in their papers that the model-based reason-
ing approach really allows for generating adaptive autonomous systems, there
is almost no work on developing and testing such systems. In future work we
will discuss this issue in much more detail. It is also worth mentioning that the
proposed approach requires a certain degree of redundancy. This redundancy is
different from the redundancy used to ensure robustness and reliability of sys-
tems, where components are typically available many times. In case of MBD
there is a need for an overlap of functionality, e.g., sensor input, in the system
that is maybe provided by different sensors. Developing guidelines for construct-
ing systems in order to fulfill the requirement of partial redundancy is also an
open research issue.

Acknowledgement. The work presented in the paper has been funded by the
Austrian Science Fund (FWF) under contract number P22690.

References

1. Beizer, B.: Software Testing Techniques. Van Nostrand Reinhold (1990)

2. Daigle, M., Koutsoukos, X., Biswas, G.: Distributed diagnosis of coupled mo-
bile robots. In: IEEE International Conference on Robotics and Automation,
pp. 3787–3794 (2006)

3. Davis, R.: Diagnostic reasoning based on structure and behavior. Artificial Intelli-
gence 24, 347–410 (1984)

4. Davis, R., Hamscher, W.: Model-based reasoning: Troubleshooting. In: Shrobe,
H.E. (ed.) Exploring Artificial Intelligence, ch.8, pp. 297–346. Morgan Kaufmann
(1988)

5. de Kleer, J.: An assumption-based TMS. Artificial Intelligence 28, 127–162 (1986)
6. de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artificial Intelli-

gence 32(1), 97–130 (1987)
7. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)
8. El Fattah, Y., Dechter, R.: Diagnosing tree-decomposable circuits. In: Proceedings

14th International Joint Conf. on Artificial Intelligence, pp. 1742–1748 (1995)
9. Fikes, R.E., Nilsson, N.J.: STRIPS: A New Approach to the Application of Theo-

rem Proving to Problem Solving. Artificial Intelligence 2, 189–208 (1971)

10. Friedrich, G., Gottlob, G., Nejdl, W.: Physical impossibility instead of fault mod-
els. In: Proceedings of the National Conference on Artificial Intelligence (AAAI),
Boston, pp. 331–336 (August 1990); also appears in Readings in Model-Based Di-
agnosis. Morgan Kaufmann (1992)

90 F. Wotawa

11. Fröhlich, P., Nejdl, W.: A Static Model-Based Engine for Model-Based Reasoning.
In: Proceedings 15th International Joint Conf. on Artificial Intelligence, Nagoya,
Japan (August 1997)

12. Greiner, R., Smith, B.A., Wilkerson, R.W.: A correction to the algorithm in Reiter’s
theory of diagnosis. Artificial Intelligence 41(1), 79–88 (1989)

13. Gspandl, S., Pill, I.H., Reip, M., Steinbauer, G., Ferrein, A.: Belief management for
high-level robot programs. In: Proceedings of the International Joint Conference
on Artificial Intelligence, IJCAI (2011)

14. Hofbaur, M., Köb, J., Steinbauer, G., Wotawa, F.: Improving robustness of mo-
bile robots using model-based reasoning. Journal of Intelligent & Robotic Sys-
tems 48(1), 37–54 (2007)

15. Kalech, M., Kaminka, G.A.: On the design of coordination diagnosis algorithms
for teams of situated agents. Artificial Intelligence 171(8-9), 491–513 (2007)

16. Micalizio, R., Torasso, P., Torta, G.: On-line monitoring and diagnosis of a team
of service robots: A model-based approach. AI Communications 19(4), 313–340
(2006)

17. Rajan, K., Bernard, D.E., Dorais, G., Gamble, E.B., Kanefsky, B., Kurien, J.,
Millar, W., Muscettola, N., Nayak, P.P., Rouquette, N.F., Smith, B.D., Taylor, W.,
Tung, Y.: Remote agent: An autonomous control system for the new millennium.
In: 14th European Conference on Artificial Intelligence (ECAI), pp. 726–730 (2000)

18. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

19. Steinbauer, G., Mörth, M., Wotawa, F.: Real-time diagnosis and repair of faults of
robot control software. In: RoboCup International Symposium, pp. 13–23 (2005)

20. Steinbauer, G., Wotawa, F.: Evaluating the robustness of the perception-decision-
execution cycle of autonomous robots. In: Proceedings of the ICAR Workshop on
Performance Measures for Quantifying Safe and Reliable Operation of Professional
Service Robots in Unstructured, Dynamic Environments (2011)

21. Steinbauer, G., Wotawa, F.: Robust plan execution using model-based reasoning.
Advanced Robotics 23(10), 1315–1326 (2009)

22. Stumptner, M., Wotawa, F.: Diagnosing Tree-Structured Systems. In: Proceedings
15th International Joint Conf. on Artificial Intelligence, Nagoya, Japan (1997)

23. Weber, J., Wotawa, F.: Diagnosis and repair of dependent failures in the control
system of a mobile autonomous robot. Applied intelligence (2008)

24. Williams, B.C., Pandurang Nayak, P.: Immobile robots – ai in the new millennium.
AI Magazine, 16–35 (1996)

25. Wotawa, F., Nica, M., Aichernig, B.K.: Generating distinguishing tests using the
minion constraint solver. In: CSTVA 2010: Proceedings of the 2nd Workshop on
Constraints for Testing, Verification and Analysis. IEEE (2010)

	Adaptive Autonomous Systems – From the System’s Architecture to Testing
	Introduction
	Model-Based Reasoning
	A Model-Based Control Architecture
	Testing Model-Based Systems
	Related Research
	Conclusion
	References

