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Abstract. In this paper we address the major bottleneck of active au-
tomata learning, the typically huge number of required tests, by inves-
tigating the impact of using a distributed testing environment (a crowd
of teachers) to execute test cases (membership queries) in parallel. This
kind of parallelization of automata learning has the best potential when
the time for test case execution is dominant, an assumption valid for
most practical applications. Our investigation explicitly focuses on the
impact of the structure of the system under learning (number of states,
size of alphabet) and the degree of supported parallelism. It comprises
three variants of active learning algorithms with different test case gen-
eration profiles. These differences can be observed directly at the level of
the run-times, which all show a linear speedup for moderate degrees of
parallelization, but with different saturation points beyond which further
parallelization does not pay off.

1 Introduction

Automata learning techniques are becoming a valuable tool in software construc-
tion. They have been used successfully to infer models of black-box systems in
the context of model-checking [16], interface synthesis [1], and (model-based)
testing [6]. In all these cases, models are a necessary prerequisite, and the lack
of appropriate models can therefore be considered a show stopper. Active au-
tomata learning paves the way to overcome this problem by providing a solely
test-based approach for inferring models of black-box systems. Key to this ap-
proach is the active interaction with the system under learning (SUL): The heart
of the automata learning process consists of an elaborate way to generate test
cases tailored to support the construction of adequate system models. This di-
rectly reveals the major bottleneck of the approach: active automata learning
requires the execution of enormously many test cases. Already learning models
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with a few hundred states typically requires the execution of some hundred thou-
sand tests case on the SUL. In classical automata learning terminology, where
the considered systems are simply deterministic automata, this means that huge
numbers of so-called membership queries need to be answered by a (minimally
adequate) teacher also called membership oracle [2].

In this paper we investigate the impact of using a distributed testing environ-
ment (a crowd of teachers) to execute test cases (membership queries) in parallel.
In our experience, this kind of parallelization of automata learning has the best
potential for speedup, as it allows for quite a flexible load balancing with very
little overhead. Our investigation comprises three variants of active learning al-
gorithms with different test case generation profiles that can be observed also at
the level of parallelization-based speedup.

As conceptual basis we consider the sequential L∗
M algorithm presented in

[19] that can be regarded as state of the art of practical automata learning. We
present here its parallel version, which essentially arises from enabling parallel
execution of test cases at three dedicated points. We have implemented this
version together with two similar versions for learning algorithms with slightly
different querying profiles in LearnLib1, our library for experimenting with active
automata learning algorithms [17,13].

The paper presents an evaluation of these three parallel implementations in a
series of experiments that explicitly focus on the impact of the structure of the
SUL (number of states, size of alphabet) and the degree of supported parallelism
in a context where the time for test case execution is dominant. This assumption
is valid for most practical applications. The results indicate that for moderate
degrees of parallelization a linear speedup can be realized, but that there seem
to be saturation points beyond which further parallelization does not pay off.

Related Work. Active automata learning has been introduced in [2] for deter-
ministic finite automata (DFAs). It has been extended to infer Mealy machine
models in [15,9], which are more adequate for describing reactive systems that
produce outputs rather than accept or reject sequences of inputs. It has been
used successfully to infer models of black-box systems in model-checking [16],
testing [6], and interface synthesis [1].

The largest reported learned model concerns a software router with 22,000
states and 7 inputs [17]. Models of actual systems are easily bigger by some
orders of magnitude. Thus, models inferred by active learning are valuable assets
for documenting behavior of smaller systems or for organizing test suites. This is
already useful in practice even if these models are not yet used in the verification
of real systems.

The performance of active learning (in terms of queries) is essential when
it comes to practical application. Performance has been addressed by applying
application specific filters, which help answering membership queries without
performing tests on a SUL [7]. The potential of different generic types of filters
and the interplay of different filters has been investigated in [11,10].

1 http://www.learnlib.de
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While optimizations to the number of membership queries have been investi-
gated thoroughly, distributing queries has only been investigated from a theoretic
perspective in [3]. In this paper, we investigate the impact of this optimization
from a practical point of view.

Outline. We start in the next Section by providing some preliminary concepts
and notation. In Section 3 we present our main result: an active automata learn-
ing algorithm that executes tests on a SUL in parallel. Section 4 presents the
results of a practical evaluation of our new algorithm and compares its pro-
file w.r.t. distribution of membership queries with some other active learning
algorithms from LearnLib. Finally, we conclude in Section 5.

2 Preliminaries

In this section we define some preliminary concepts. We describe Mealy machines
as a modeling formalism for a system under learning (SUL) and introduce a
semantic model for Mealy machines that closely resembles regular languages.
This model allows for the formulation of a Myhill/Nerode-like theorem for Mealy
machines, which serves as the conceptual backbone of our learning algorithm.

Let Σ be a finite set of inputs of some system, e.g., method calls to a software
library. We describe such system as an automaton.

Definition 1. A Mealy machine is a tuple M = 〈Q, q0, Σ,Ω, δ, λ〉 where
– Q is a finite nonempty set of states,
– q0 ∈ Q is the initial state,
– Σ is a finite input alphabet,
– Ω is a finite output alphabet,
– δ : Q×Σ → Q is the transition function, and
– λ : Q ×Σ → Ω is the output function. ��

A Mealy machine processes sequences of inputs (input words or simply words)

and, other than a DFA, it produces outputs. We write q
a/o−−→ q′ to indicate that

M moves from q to q′ on input a producing output o according to δ and λ.
Abstracting from the fact that a Mealy machine will produce an output in

every single step, we can describe the semantics of a Mealy machine as a function
from the set of words to the set of outputs. Let ε denote the empty word, and
Σ+ = Σ∗ \ {ε} be the set of all words of length greater than zero. Then, let
�M� : Σ+ → Ω be the set of traces of M.

In order to describe �M� in terms of M, we inductively extend the transi-
tion function δ to δ∗ : Q × Σ∗ → Q by defining δ∗(q, ε) = q and δ∗(q, aw) =
δ∗(δ(q, a), w) for q ∈ Q and aw ∈ Σ+ with w ∈ Σ∗.

Let �M� now simply be defined to be the last output of M on a particular
word, i.e.,

�M�(wa) = λ( δ∗(q0, w), a) for wa ∈ Σ+.

From this definition, we can immediately derive an equivalence relation of the
set of words that resembles the Nerode relation for regular languages [14].
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q0 q1 q2 q3

put/� put/� put/�

get/�get/�get/�
get/×

put/×

Fig. 1. Mealy machine model of a 3-place buffer

Definition 2. For a mapping T : Σ+ → Ω, two words u, u′ ∈ Σ∗ are equivalent
wrt. T , denoted by u ≡T u′, iff

∀v ∈ Σ+ . T (uv) = T (u′v). ��

As for regular languages and DFAs, this relation can be used as a basis for the
following characterization theorem, which we proved in [19].

Theorem 1. A mapping T : Σ+ → Ω is a set of traces for some Mealy machine
iff ≡T has finite index. ��
The theorem is a direct reformulation for Mealy machines of the well-known
Myhill/Nerode theorem for DFAs. One direction of the proof of this theorem
comprises the construction of the canonical Mealy machine MT for T , in which
every class of ≡T corresponds to exactly one state in MT . This approach to
automata construction is the conceptual backbone of all active automata learning
algorithms. A detailed discussion can be found in [19].

Example. Figure 1 shows a graphical representation of a Mealy machine model-
ing a 3-place buffer with two inputs put and get, that add and remove elements
from the buffer. States in the model correspond to the number of elements in
the buffer. Successful actions on the buffer are indicated by output � in the
figure. The only two unsuccessful operations (indicated by output ×) are adding
an element to the already full buffer and retrieving an element from the empty
buffer. We will pick up this example when discussing the learning algorithm in
Section 3. ��

3 Parallel Learning

In this section we present our learning algorithm that distributes test cases to
multiple systems under learning SULs, and a description of how we realized the
distributed implementations of the active learning algorithms within LearnLib.
The results from an experimental evaluation of the gained speedup are presented
in the next section.

Active learning algorithms are formulated in the MAT-learning model [2],
which assumes the existence of a Minimally Adequate Teacher (MAT) that an-
swers two kinds of queries.
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Membership queries test for the output of a word w ∈ Σ+. Sometimes
MQ(w) will be used instead of �SUL�(w) to emphasize that the value has
to be determined by a test on the SUL.

Equivalence queries test whether an intermediate hypothesis automaton H
is equivalent to the SUL, i.e., if �H� = �SUL�. If hypothesis and system are
not equivalent, an equivalence query delivers a counterexample, i.e., a word
w ∈ Σ+ for which �H�(w) 
= �SUL�(w). Equivalence queries will be denoted
by EQ(H) in pseudo-code listings.

Corresponding to the two kinds of queries, inference is organized in two phases,
alternated iteratively. In the hypothesis construction phase a hypothesis model is
derived from the observations and iteratively refined using membership queries.
In the hypothesis validation phase hypothesis models are tested for equivalence
with the SUL by means of equivalence queries.

3.1 The L∗
M Algorithm

We present here a variant of the reduced observation table algorithm presented by
Rivest and Schapire for determined finite acceptors (DFAs) in [18]. Our variant,
the L∗

M algorithm, infers Mealy machine models and is described in [19], that also
presents an extended example. Here we restrict ourselves to a brief description
of the realization of the two phases discussed above in the basic algorithm and
focus rather on the distribution of membership queries.

Hypothesis construction. In its basic form, active learning starts with a hypoth-
esis automaton with only one state and refines this automaton on the basis of
membership queries until a consistent state-minimal deterministic hypothesis
automaton can be constructed. Key to achieving this result is the dual charac-
terization of states that is established in Definition 2 and Theorem 1:

– by a set U ⊂ Σ∗ of prefixes. L∗
M constructs such a set U , containing prefixes

u ∈ Σ∗ reaching all states of the hypothesis automaton. This characteriza-
tion of states is too fine, as different words u1, u2 ∈ U may lead to the same
state in the target system. Hence, L∗

M maintains a second set Us ⊆ U of
access sequences for which it is guaranteed that during learning u1, u2 ∈ Us

(and u1 
= u2) definitely lead to different states in the SUL. Technically, the
relation between U and Us is U = Us ∪ Us ×Σ.

– by an ordered set, V ⊂ Σ∗, of distinguishing sequences. L∗
M realizes the char-

acterization of a hypothetical state reached by some prefix u in terms of a
vector 〈r1, . . . , rk〉 (with ri ∈ Ω), characterizing the states by means of sub-
sequent outputs, i.e., ri = �SUL�(u · vi) with vi ∈ V . Intuitively, the vector
approximates a characterization of the state wrt. to ≡T (cf. Definition 2).

L∗
M maintains its observations in an observation table 〈U, V, T 〉, where U is the

set of prefixes, V is the set of suffixes, and T : U × V → Ω is the table mapping
with T [u, v] = �SUL�(u·v). We define the table row of a prefix u ∈ U , denoted by
row(u), to be the vector 〈T [u, v1], . . . , T [u, vk]〉 for V = 〈v1, . . . , vk〉. Of course,
membership queries are used to construct and maintain the table mapping.
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put get

ε � ×
get � ×
put � �
put put
put get

|Σ||V |

put get put put

ε � ×

|U |
put � �
get � ×
put put � �
put get � ×

Fig. 2. Two intermediate observation tables with batches of membership queries for
example from Figure 1

Example. Figure 2 displays two snapshots of the observation table that is con-
structed when inferring a model of the 3-place buffer of Figure 1. The rows of
the table are labeled with prefixes from U , the columns are labeled with suffixes
from V , and the cells correspond to the table mapping; row(u) is the actual row
labeled by u in a table. The set Us corresponds to the row labels in the upper
parts of the tables. ��
When learning, the set Us is initialized as {ε} and contains only the access
sequence to the initial state. The set U \ Us is initialized accordingly as Σ and
covers all transitions originating from the initial state. The ordered set V of
distinguishing suffixes is initialized as Σ and characterizes states by the output
that are produced along outgoing transitions.

The L∗
M algorithm then continues by refining the hypothesis. It checks whether

an automaton constructed from the observation table is closed under the one-
step transitions, i.e., if every transition from a state of this automaton ends
in a well defined state of this same automaton. Since states in a hypothesis
are characterized by rows in the observation table, this is the case if for every
u ∈ U \ Us there exists a u′ ∈ Us with row(u) = row(u′).

In case row(u) 
= row(u′) for some u ∈ U \ Us and all prefixes u′ ∈ Us, i.e., if
the observation table is unclosed, the set of access sequences Us is extended by
u and U is extended by {u} ·Σ accordingly. This procedure is iterated until the
observation table is closed and a hypothesis automaton H = 〈Q, q0, Σ,Ω, δ, λ〉
can be constructed from the table, where:

– for every access sequence u in Us there is a state qu ∈ Q,
– q0 = qε is the state reached by the prefix ε, and

– for every prefix ua ∈ U with a ∈ Σ there is a transition qu
a/T [u,a]−−−−−→ qu′ such

that row(ua) = row(u′).

This construction resembles closely the construction of a canonical Mealy ma-
chine from a set of traces (cf. [19]). Closedness of the observation table guarantees
that H is well-defined.

Hypothesis verification. Once a hypothesis H is produced from the observation
table, an equivalence query can be used to find a counterexample, i.e., a word w ∈
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Algorithm 1. Parallel L∗
M

Input: A fixed set of inputs Σ
Output: A model H with �H� = �SUL�
1: Us := {ε} � Initialize observation table
2: U := Us ∪ Σ
3: V := Σ
4: for all u ∈ U, v ∈ V do � (|Σ|+ 1)|V | membership queries
5: T [u, v] := MQ(uv) � performed in parallel
6: end for
7: loop
8: while 〈U, V, T 〉 not closed do
9: Let u in U \ Us s.t. ∀u′ ∈ Us : row(u) �= row(u′) � Close table
10: Us := Us ∪ {u}
11: U := U ∪ {ua | a ∈ Σ}
12: for all a ∈ Σ, v ∈ V do � |Σ||V | membership queries
13: T [ua, v] := MQ(uav) � performed in parallel
14: end for
15: end while
16: construct hypothesis H from 〈U, V, T 〉 � cf. Section 3
17: ce := EQ(H) � Perform equivalence query
18: if ce = ′OK′ then � Learned successfully?
19: return H
20: end if
21: decompose ce to find suffix v � �log2(|ce|)	 membership queries
22: as described in Section 3 � performed sequentially
23: V := V ∪ {v}
24: for all u ∈ U do � |U | membership queries
25: T [u, v] := MQ(uv) � performed in parallel
26: end for
27: end loop

Σ+ for which �H�(w) 
= �SUL�(w). In practice, an equivalence query is usually
approximated by a number of membership queries, using ideas from conformance
testing (e.g., [4]). Thus, equivalence queries can also be optimized by distributing
membership queries to multiple instances of a SUL. This, however, exceeds the
scope of this paper. Here we assume the existence of actual equivalence queries.

In [19] we proved the following theorem about counterexamples, which is a
variant of the version for DFAs from [18].

Theorem 2. A counterexample w has a suffix v such that for two prefixes u ∈ U
and u′ ∈ Us with u 
= u′ and row(u) = row(u′) it holds that �SUL�(u · v) 
=
�SUL�(u′ · v). ��
Intuitively, the theorem states that there is at least one suffix of the counterex-
ample that will lead to unclosedness in the observation table if added to the set
of distinguishing suffixes. Such a suffix can be found using a binary search on
the counterexample [18,19].
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Adding the suffix to the set V leads to a refined hypothesis automaton in the
next equivalence query, with at least one new state. Since, on the other hand,
the characterization of states by rows in the table will never refine ≡T (which
would correspond to using Σ+ as set of suffixes), the process is guaranteed to
terminate with the canonical Mealy machine for SUL.

Put together, this results in Algorithm 1, where lines 1-6 initialize the ob-
servation table and lines 8-15 close the observation table as described above. In
lines 16-17 an equivalence is used to search for a counterexample. In case none
is found, the algorithm terminates successfully with the correct model in line 19.
Otherwise, a new suffix is extracted from the counterexample and added to the
table in lines 21-26.

3.2 Parallel Execution of Queries

In Algorithm 1 the parts between for all domain do and end for are meant to
be parallelized, where domain defines a set of objects to be used in the different
threads of execution. In particular, the algorithm performs batches of member-
ship queries in parallel

– when initializing the observation table (lines 4-6),
– when closing the observation table (lines 12-14), and
– when adding new suffixes from counterexamples (lines 24-26).

The membership queries used in the analysis of counterexamples (lines 21-22),
on the other hand, cannot be executed in parallel since the binary search on the
counterexample cannot be split into multiple independent threads of execution.

Example. Figure 2 shows operations on the observation table for our running
example. In the left table, the prefix put is added to the set of access sequences
(indicated by an arrow). The resulting extension of the table is shown below:
the two extensions of put with put and get are added to the set of prefixes.
The resulting batch of membership queries has size 4 in this particular case. In
the right table, the set of suffixes is extended by the new suffix put put, which
will eventually lead to row(put) 
= row(put put). The corresponding batch of
membership queries has size 5. ��

3.3 Implementation

We have implemented a method for distributing membership queries on top
of LearnLib. The conceptual idea of our realization is shown in Figure 3: The
learning algorithm produces sets of membership queries (batches), which are
handed to a so-called BatchOracle. This oracle schedules the distribution of the
queries to a fixed number of MembershipOracles, each of which is connected to
a separate instance of the SUL.

Since this pattern is quite universal, we were able to extend all learning al-
gorithms in LearnLib to support BatchOracles. The next section discusses our
experimental results showing that the different learning algorithms have different
parallelization profiles.
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L∗
M BatchOracle

MembershipOracle

...

MembershipOracle

Map<Word,Word> processQueries(

Collection<Word> queries)

Word processQuery(Word query)

Fig. 3. Schematic overview of learning algorithm using multiple SULs in LearnLib

4 Evaluation

In this section we present the results of three series of learning experiments
conducted using the newly implemented parallelized versions of the learning
algorithms in LearnLib. The experiments were executed in a simulation environ-
ment that supports equivalence queries. In order to compare the algorithms w.r.t.
the distribution of membership queries, we voluntarily did not use membership
queries to approximate equivalence queries. For the same reason we excluded
membership queries used during analysis of counterexamples from the statistics
since these (few) sequentially produced membership queries occur in all algo-
rithms. Finally, we used a cache and counted only original membership queries.
In the experiments in which we measured run-times, however, the time spent for
analysis of counterexamples is included in the observations.

Our evaluation focuses on the impact of the structure of the SUL (number
of states, size of alphabet) and the degree of supported parallelism in a context
where the time for test case execution is dominant and thus the bottleneck, an
assumption valid for most practical applications. In order to model this domi-
nance without imposing too long experimentation times, we set up the simulator
to require 5 ms (realized as busy waiting) per membership query. Although 5
ms are still extremely short when considering practical applications, where sev-
eral seconds are not uncommon, they were sufficient to make the time spent in
processing membership queries the dominant costs during learning while still
allowing to execute experiments on systems of reasonable size in an acceptable
amount of time. We therefore believe that the observed speedup patterns are
quite representative, and that run-times for real systems of similar size can be
easily extrapolated.

In the experiments we used the parallelized versions of the following three
active learning algorithms:

L∗
M This is the algorithm we discussed in the previous section. It uses an ob-

servation table as underlying data structure, and it can produce batches of
queries when (1) resolving an unclosedness or when (2) extending the set of
suffixes as discussed in Section 3.

DHC The Direct Hypothesis Construction (DHC) algorithm [19,12] has a dif-
ferent profile w.r.t. to the batches of queries produced during learning. It is
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capable of resolving multiple occurrences of unclosedness at the same time,
resulting in fewer but larger batches and a less uniform batch size. The im-
plemented behavior would correspond to executing lines 8-15 of Algorithm 1
in parallel. When extending the set of suffixes the DHC algorithm behaves
exactly like the L∗

M algorithm in lines 23-26.
Observation Pack Finally, the Observation Pack algorithm [5] uses a discrim-

ination tree (cf. [8]) instead of an observation table. In this algorithm new
prefixes are not added to the table but rather sunken into a tree. At every
inner node of the tree a membership query is performed for each prefix. This
leads to smaller batches than in the L∗

M algorithm: after resolving an un-
closedness, k new prefixes can be sunken into the tree in parallel, resulting
in batches of size at most k (the tree does not have to be balanced).

Also this algorithm uses new suffixes from counterexamples only to split
one leaf of the tree (containing the set of prefixes corresponding to the in-
coming transitions of the hypothetical state represented at that particular
leaf.) Thus, also batches produced by new suffixes tend to be smaller than
in the L∗

M and the DHC algorithm.

Additionally, all three algorithms differ in the absolute number of membership
queries and equivalence queries consumed during learning: While the Observa-
tion Pack algorithm uses dramatically less membership queries than the other
two algorithms it uses, on the other hand, many more equivalence queries.

Experimental Setup. We conducted three series of experiments, targeted at deter-
mining the profile of these algorithms along different dimensions of variability.
All the experiments were conducted using LearnLib in Potsdam, on the Au-
tomata Learning server, a 2.4GHz AMD Opteron processor with 16 cores (= 16
threads) and 256GB memory running Linux. The first two series address profile
trait inherent to the algorithm-specific organization of the learning process (in
Sect. 4.1) and to the behaviour’s scalability on a family of examples (in Sect. 4.2)
and were performed in sequential learning mode. On the contrary the third series
(in Sect. 4.3) concerns speedup and makes use of the multicore capability of the
server.

4.1 Different Profiles by Example

In this first series of experiments we compared the three algorithms on identical
SULs and analyzed in detail the resulting profiles in terms of the number of
membership queries, the number of equivalence queries, the number of batches,
and size of batches. Figure 4 explicitly summarizes the resulting batch sizes for
each of the considered algorithms for one particular (small) SUL with 15 states
and 5 inputs. Considering our other experiments, the data displayed in the figure
are, however, quite representative.

1. The L∗
M algorithm produces batches of the same size during a single phase of

hypothesis construction. Batches produced when adding new counterexam-
ples tend to be bigger in size (especially later in the progress) than batches
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Fig. 4. Concrete numbers and sizes of batches for all algorithms and one SUL

produced by unclosedness, which grow slowly and strictly monotonically with
every new suffix.

2. The DHC algorithm, on the other hand, produces fewer but large batches of
queries. Each spike in Figure 4 represents one phase of model construction.
In the first two batches of every spike a new suffix is added for the initial
state and then to every prefix. Then, some bigger batches follow resolving
multiple occurrences of unclosedness at the same time, before the phase ends
much faster than in the L∗

M algorithm.
3. The Observation Pack algorithm produces significantly more and smaller

batches (of sizes of ca. 5 (= k)) than the other algorithms. In the case of L∗
M

batch sizes for most of the batches are slightly above 25 (= k2).
Finally, the Observation Pack algorithm needs less membership queries

(450) than the L∗
M and DHC algorithms (624 and 650), while these need

fewer equivalence queries (4 each) than the Observation Pack (10).

4.2 Asymptotic Profiles

In a second series of experiments we analyzed the mean size of batches produced
by the learning algorithms for particular classes of target systems. In the first
sub-series we randomly created canonical Mealy machines with 2i states (1 ≤
i ≤ 8), 4 inputs and 8 outputs. In each class we performed 20 experiments and
recorded the mean size of batches (mean of all batches of all experiments in a
class).

The results are shown on the left of Figure 5. Please note that in this diagram
the value axis is scaled logarithmically. The size of the batches produced by
the DHC algorithm, develops almost linearly in the number of states, indicating
that the number of occurrences of unclosedness that can be resolved in parallel
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Fig. 5. Mean sizes of batches for SULs with increasing numbers of states (left) and for
SULs with increasing numbers of inputs (right)

grows with the size of the inferred automata. While the mean batch sizes for
the L∗

M start from k2 and increase moderately with the number of states (and
suffixes needed to distinguish these), the mean batch sizes for the Observation
Pack algorithm converge towards k, as was anticipated (see above). It may look
surprising at first sight that the average batch size decreases with growing system
size. This is simply due to the fact that the Observation Pack algorithm starts
with a batch size of k2, and that the influence of this initial batch size becomes
less relevant the longer the learning process lasts.

In the second sub-series we fixed the number of states to 10, the number of
outputs to 4, and varied the number of inputs in 2i (1 ≤ i ≤ 5). As in the first
sub-series, we performed 20 experiments in every class and recorded the mean
size of batches over all batches of all experiments in a class.

Figure 5 (right) shows the mean sizes of the created batches in the exper-
iments. As is observed easily, increasing the number of inputs has (1) a more
dramatic and (2) a more uniform effect on the mean sizes of batches for all learn-
ing algorithms: The L∗

M algorithm produces batch sizes very close to k2, which
is consistent with our expectations and with the discussion above. The behavior
of the other algorithms does not meet their anticipated profile. This is due to
the fact that in these experiments the number of inputs clearly dominates the
number of states, leading to learning processes with only very few iterations of
hypothesis construction and hypothesis validation. Thus the number of mem-
bership queries issued in the initial batch has a significant influence of the mean
size of all batches.

4.3 Speedup

We performed a third series of experiments in order to determine the speedup
that can be gained for a fixed number (8 and 16 in this case) of SULs among
which the membership queries can be distributed. For this series we have gen-
erated randomly a suite of 850 Mealy machine models, with varying number of



244 F. Howar et al.

0 20 40 60 80 100 120
0

2

4

6

8

Mean size of batches

S
p
ee
d
u
p

L∗
M

0 60 1200

4

8

Pack

0 120 2400

4

8

DHC

Fig. 6. Speedup per mean batch size for 8 SULs

1 2 3 4 5 6 7 8
0

100

200

300

400

Speedup

E
x
p
er
im

en
ts

L∗
M

DHC
Pack

2 4 6 8 10 12 14 16
0

100

200

300

Speedup

E
x
p
er
im

en
ts

L∗
M

DHC
Pack

Fig. 7. Distribution of speedup in 850 experiments. Left: for 8 SULs. Right: for 16
SULs.

states, number of inputs, and number of outputs. The constructed automata had
up to 10 states, up to 20 inputs, and up to 10 outputs.

For every Mealy machine in this suite, we inferred a model three times: once
using only one instance of the SUL to process membership queries (used as
sequential control baseline), once using 8, and once using 16 instances of the
SUL to process membership queries. Each SUL was allocated to a core (thread)
of the multicore server. We tried to use in different batches both the 8 and the
16 cores, in order to determine which grade of parallelism is most beneficial. As
discussed above, we fixed the costs for a single membership query to 5 ms, which
were spent in a busy waiting loop. The speedup in a single experiment is then
the ratio between the runtime when using a single SUL and the runtime when
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using 8 (16) SULs. Figure 6 shows the speedup gained in the experiments with
increasing mean size of batches (per experiment this time) in the case of 8 SULs.

Considering the results, two observations are striking:

– For eight SULs a speedup of nearly 8 can be actually realized in many cases.
– A speedup of 8 is not realized for mean batch sizes of 8 (or little above) but

only for mean batch sizes greater than 40.

This phenomenon has to do with the quantization effect at the number of avail-
able cores. As soon as the batch size exceeds the number of cores, the job needs
to schedule an additional cycle. The last such cycle is nearly always suboptimally
used, as likely some cores are not needed and remain idle. For example, using
8 SULs, the worst case is a batch of size 9: needing more than 8 cores, it will
require two 5ms cycles and 10 ms to compute. In the sequential case, 9 queries
would require 45 ms. This results in a speedup of just 4.5. Growing batch size re-
duces the impact of not using all resources for the last queries of the batch, thus
reaching better speedup. For example, a batch with 41 queries would compute
with a speedup of 6.8 (205ms/30ms).

The results in Figure 6 show nicely the correspondence of mean batch sizes and
speedup for the learning algorithms. The results are consistent for all three algo-
rithms. The algorithms differ, however, in the distribution of achieved speedup
on the set of 850 examples. This distribution is shown in Figure 7 for the case
of 8 SULs (left) and 16 SULs (right) for all algorithms. In both series of ex-
periments the Observation Pack algorithm achieves less speedup than the L∗

M

algorithm, which in turn gains less speedup than the DHC algorithm. This is
little surprising since the gained speedup correlates to the mean batch sizes.

Interestingly, none of the algorithms lead to a speedup of 14 or more in the
experiments with 16 SULs. This can be attributed to the fact that for these
examples no algorithm produced batch sizes large enough to fully leverage 16
SULs.

Summarizing the results, one can see that the potential speedup depends hugely
on the system to be inferred (i.e., its size and the size of its input alphabet).
Both factors have an influence on the mean batch size. To optimally leverage
distribution of queries to multiple SULs, the expected mean batch size has to
be considered (a) when choosing a particular learning algorithm and (b) when
determining the number of SULs to be used.

Acknowledgement. We thank Mohamed Babiker for conducting preliminary
experiments.

5 Conclusion

We have investigated the impact of parallelizing the execution of test cases (mem-
bership queries) during active automata learning in a context where the time for
test case execution is dominant - an assumption valid for most practical applica-
tions. Our systematic investigation has focused on the impact of the structure of
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the SUL (number of states, size of alphabet) and the degree of supported paral-
lelism. Our results indicate that for moderate degrees of parallelization a linear
speedup can be realized, but that there seem to be saturation points beyond
which further parallelization does not pay off.

Currently we are investigating how these results transfer to industrial-scale
case studies, like e.g. the Springer’s Online Conference Service (OCS), and how
the different batch-profiles of the three considered algorithms show up there.
Furthermore, we will investigate how this optimization can be combined with
other optimizations - especially those that reduce the number of membership
queries.
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